

Dedication

I dedicate this work to my father, mother, sisters and brothers.
My father, making you proud was my biggest motivation, I would not do it

without your encouragement and support. I did it for you.
My mother, thank you for your constant prayers and support, your certainly

made it easier for me. I was able to do it because of you.
My sincere brothers and sisters, I would never forget the constant faith you all

have in me to finish this journey; it certainly made it easier for me to reach my
destination.

iii

ACKNOWLEDGMENTS

I would like to offer my deepest gratitude to my supervisor, Dr. Sami Zhioua for

his unstinted guidance and support. Without his passion, patience and direction,

this work would never have been possible.

I am also indebted to the committee members Dr. Lahouari Ghouti and Dr.

Moataz Ahmed for their valuable suggestions and time.

My special thanks go to KFUPM Community for granting me this opportunity

to be a student at KFUPM, which has been one of the best education experiences

I have ever been through. I am also grateful to all my dear professors, teaching

staff, and classmates for their help.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT iv

LIST OF TABLES viii

LIST OF FIGURES ix

ABSTRACT (ENGLISH) xi

ABSTRACT (ARABIC) xiii

CHAPTER 1 INTRODUCTION 1

1.1 Website fingerprinting . 2

1.2 Network traffic classification . 3

1.3 Malware traffic detection . 3

1.4 Traffic analysis historical phases 6

1.4.1 Port-based Technique . 6

1.4.2 Payload-based Techniques 7

1.4.3 Pattern-based Techniques 7

1.5 Problem statement . 8

1.6 Thesis contribution . 9

1.7 Thesis organization . 11

v

CHAPTER 2 LITERATURE REVIEW 12

2.1 Network traffic classification . 12

2.2 Malware traffic detection . 16

2.3 Website fingerprinting . 22

2.4 Similarity hashing . 25

2.5 Gap analysis . 28

CHAPTER 3 RESEARCH QUESTIONS 30

CHAPTER 4 APPROXIMATE HASHING: THE TRAFFIC ANAL-

YSIS VERSION 33

4.1 Approach motivation . 33

4.2 Hash-based signature generation 37

4.2.1 Feature entropy vs feature hash 38

4.2.2 Feature selection criteria 40

4.2.3 Building fingerprint representations 43

4.2.4 Comparing similarity digests 45

4.2.5 Similarity hashing time complexity 48

4.2.6 Parameters values . 50

CHAPTER 5 WEBSITE FINGERPRINTING OVER VPN 51

5.1 Selecting parameter values . 52

5.1.1 Cross-validation results . 53

5.2 Effect of the number of training samples 56

5.3 Identifying a website within a sequence of web activity 57

5.4 Effect of the size of the test data 60

CHAPTER 6 WEBSITE FINGERPRINTING OVER TOR AND

ENCRYPTED WIRELESS 63

6.1 Website fingerprinting on Tor traffic 63

6.1.1 One-to-one cross-validation results 64

vi

6.1.2 Identifying a website within a sequence of web activity through

Tor . 65

6.1.3 Effect of website’s instances number in both accuracy and

time calculation . 67

6.2 Website fingerprinting over encrypted wireless connection 68

6.2.1 Data collection . 69

6.2.2 One-to-one cross-validation results 69

6.2.3 Identifying a website within a sequence of web activity en-

crypted wireless connection 70

6.3 Observations . 72

CHAPTER 7 NETWORK MALWARE DETECTION 74

7.1 Data collection . 76

7.2 Clustering procedure . 78

7.3 Chosen parameters . 82

7.4 Evaluation . 84

7.4.1 Compactness . 84

7.4.2 Conciseness . 86

7.4.3 Cluster centroids against single large dataset 87

CHAPTER 8 CONCLUSION 90

8.1 Summary of contribution . 90

8.2 Threat to validity . 92

8.3 Future work . 93

REFERENCES 95

VITAE 109

vii

LIST OF TABLES

1.1 Traffic Classification . 8

2.1 Traffic Classification . 16

2.2 Malware Traffic Analysis . 19

2.3 Website fingerprinting Classifiers 24

6.1 Recall (TPR) for our AHBM, Cai et al., and Tao et al. approaches

on three datasets. 65

6.2 Recall (TPR) for our AHBM, Cai et al., and Tao et al. approaches

on three datasets. 68

viii

LIST OF FIGURES

4.1 Data Object and Data Feature. 36

4.2 Probability density function of normalized Hash values for VPN

web browsing dataset, Cai’s tor dataset and malware dataset. . . 41

4.3 Computing the popularity score (Spop) on a data sample of size 28

packets and using a sliding window of size 9. 42

4.4 Process of inserting a feature into a Bloom filter 46

5.1 Accuracy in terms of feature size and window size. 53

5.2 Precision, Recall, and F1 measure values for cross-validation on

VPN dataset. 55

5.3 10-fold cross-validation using different number of training samples. 56

5.4 The similarity score computation between the website’s SD and the

unknown traffic’s SD. 59

5.5 Distribution of the similarity scores for each website (1) when the

website is part of the testing data and (2) when the website is

removed from the testing data. 60

5.6 Precision, recall, and F1 measures for a modified 10-fold cross-

validation (All test samples are consolidated in a single sequence. 61

5.7 Precision, recall, and F1 measures for different test data sizes. . . 62

6.1 Distribution of the similarity scores for each website when the web-

site is part of the testing data (green) and when the website is

removed from the testing data (red) for (a) our dataset , (b) Cai et

al. dataset, and (c) Tao et al. dataset. 66

ix

6.2 Precision, Recall, and F1 measure values for cross-validation on

wireless dataset. 70

6.3 Distribution of the similarity scores for each website (1) when the

website is part of the testing data and (2) when the website is

removed from the testing data. 71

6.4 Precision, recall, and F1 measures for a modified 10-fold cross-

validation (All test samples are consolidated in a single sequence. 72

7.1 Accuracy in terms of feature size and window size. 82

7.2 Clusters Compactness. 85

7.3 Precision, Recall, and F1 measure values for cross- validation on

Malware dataset. 86

7.4 Centroids Signature VS three single big test datasets. 88

x

THESIS ABSTRACT

NAME:

TITLE OF STUDY:

MAJOR FIELD: DATE OF DEGREE:

June 7, 2017

Communication networks, even small ones, generate a huge amount of network

traffic every day. Furthermore, networking traffic can be captured to be either

analyzed at run-time or stored to be later inspected. Captured network traffic

packets include a lot of sensitive data that can be extracted. Traffic analysis

is the process of extracting useful/sensitive information from observed network

traffic. Typical use cases include Internet traffic classification, malware detection,

and website fingerprinting attacks. Given the large size of network traffic data,

the most important feature of efficient traffic analysis techniques is scalability.

The Internet is expanded every minute.

Machine learning techniques have shown promising results in traffic analy-

sis attacks, in particular, website fingerprinting. However, to be scalable, such

xi

techniques need parallel computation. Furthermore, network traffic classification

using machine learning performs poorly when the number of classes incorporated

in the training increases. In addition, it needs sufficient training samples in order

to produce good accuracy results. Consequently, high accuracy traffic analysis

techniques use heavy machine learning algorithms (e.g. SVM) making them not

applicable in large scale and real-time scenarios.

Recently, efficient tools in data fingerprinting have been developed to help

digital forensics investigators to identify artifacts within hard disk images with

Terabytes of data. Such techniques turned out very efficient and providing high

accuracy with a small false positive rate.

Inspired by digital forensics techniques, we propose a new network traffic analy-

sis approach based on similarity digest. The approach features several advantages

compared to existing techniques, namely, fast signature generation, a compact

signature representation using Bloom filters, efficient similarity detection between

packet traces of arbitrary sizes, etc. Experimental results show very promising

results for VPN and malware traffic, encrypted wireless traffic, but low results for

Tor traffic.

xii

xiii

 ملخص الرسالة

 ممحمد عبده قاس عبد اللهالاسم الكامل:

 .الجزئيالتشابه ستخدامباحليل بيانات شبكة الحاسب تعنوان الرسالة:

 أمن معلوماتالتخصص:

 2017 -ايوم تاريخ الدرجة العلمية:

البيانات من هذه . كبير جدا في اليوم الواحد ما فيها الصغيرة منهاب الحاسب تلتي تنتجها شبكاالبيانات احجم

البيانات ذه ه .يسر جدا اعتراضها وتخزينها سواء من أجل معالجتها وتحليلها بشكل آني أو في وقت لاحقال

بيانات تحليل التي تنتجها الشبكات تحتوي على العديد من البيانات الحساسة والتي من الممكن استغلالها.

 ومعالجة وتحليل هذه البيانات. بإدارةالتي تهتم مجالات الشبكات الحاسب هو أحد

، والتي من خلاله يهدف لمواقع الالكترونيةابصمة هجوممنها تطبيقات دةبيانات شبكة الحاسب له عتحليل

البرمجيات الخبيثة على شبكة تحسس وجود ،الضحية يزوره المستخدم يرق لتحديد هوية الموقع الذالمخت

 .من التطبيقاتوغيرها الحاسب

الحلول المقدمة في مجال تحليل البيانات هو قابلية التوسع، خصوصا أن هالتي تواجالرئيسية التحدياتأحد

 .جداكبير شبكة الأنترنت تتوسع يوميا بشكل

شبكة الحاسب، لكن هذه الحلول نات تحليل بيا أسهمت بشكل كبير في مجال الاصطناعيالذكاء خوارزميات

الى انها تحتاج بالإضافة . لتشغيلها عات عالية جداع تحتاج الى أجهزة حاسب ذات سروسلكي تصبح قابلة للت

 مثالي. شبه حل الحصولأجل من التعلملتستطيع من خلالها النماذجكبير من عددالى

xiv

 ونققالمحأن حيث منها مجال التحقيق الجنائي الالكتروني. مشكلة رئيسية في مجالات عدة التوسعقابلية

بة ذات سعة تخزينية كبيرة صل أقراصون مشكلة فحص كم كبير من البيانات المخزنة في يواجه ونائينجال

 قياسي. في زمن

نتيجة لهذا التوجه تم تصميم العديد من . رية بصمة البياناتظالباحثون الى تطبيق ن ألمشكلة لجتلك الحل

 ومقارنتها بصمة للبيانات ومعالجتها إنشاءب أنها تقومحيث . أثبتت التجارب أنها كفؤه الأدواتتلك الأدوات.

نظرية بتقديم حل يتبنى قمت في مجال تحليل بيانات شبكة الحاسب مشكلة قابلة التوسعلحل بشكل سريع.

لحل المقترح قمت بمحاكاة هجوم بصمة لتقييم جودة ا .من خاصية التوسع التي تمتلكها للاستفادة بصمة البيانات

الخاصة ات الافتراضيةالشبكمثل من التشفير واحدة المواقع الالكترونية على الشبكات التي تستخدم طبقة

كتلك المستخدمة في متصفح تور عدة طبقات من التشفيرالشبكات التي تستخدم و أ الداخلية اللاسلكيةة الشبكو

 ةبينما أظهر كفاء، واحدة تشفير تي تستخدم طبقةلالمقدم أثبت كفاءة عالية في بيئة الشبكات االحل الشهير.

 طبقات من التشفير.على الشبكات التي تستخدم عدة ة متواضع

على تقسيم البرمجيات الخبيثة الى مجموعات بناء عملية في عالية أثبت كفاءة الحل المقترح ،الى ذلك إضافة

 اتم خلق بصمة الكترونية لكل مجموعة بحيث يسهل عملية تحسس وجودهحيث بياناتها المتناقلة في الشبكة.

 على شبكة الحاسب.

CHAPTER 1

INTRODUCTION

Network traffic analysis is the process of capturing and examining network com-

munications in order to retrieve useful/sensitive information from the observed

traffic. It has been used since the early days of digital networking. Network

traffic contains a tremendous amount of information that can be extracted with

small effort compared to the other methods that can be used to extract the same

information. Using network traffic techniques requires only a sniffer positioned at

a central point to captured either every packet passes through the central point

or only once that matches specific filters. In contrary to other methods that re-

quire an agent to be installed on different places that have to be compatible with

the targeted environment, that the installed agent monitors. Based on the cap-

tured traffic, Network traffic analysis has been utilized for network management,

quality-of-service, law enforcement, and for security and privacy purposes. There

are at least three major use cases for traffic analysis: attacks on privacy(website

fingerprinting), network traffic classification, and malware traffic analysis.

1

1.1 Website fingerprinting

Traffic analysis is commonly used to attack privacy of users. Indeed, by carefully

analyzing users traffic, one can reveal sensitive information about the communica-

tion (e.g. session tokens, web browsing activity, etc.). Attacks on privacy can be

carried out by any entity having access to the traffic (local eavesdropper, gateway,

ISP, censorship entity, etc.). When carried out legally (government), such attack

is called Lawful Intercept (LI). One notable traffic analysis attack targeting user

privacy is website fingerprinting. The aim of the attack is to reveal the identity of

the website visited by the targeted user [1]. The attacker puts his effort trying to

figure out what type of content a given user is surfing over the internet when the

user is protecting himself with Privacy enhancing technologies such as single-hop

solutions (e.g. Stunnel, OpenSSH, CiscoVPN, OpenVPN, etc.) and mutli-hop

(e.g. Tor and JAP). Privacy enhancing technologies basically establish an en-

crypted tunnel/s. Therefore, all the network traffic are totally obfuscated. This

scenario can be vulnerable to local traffic analysis attacks. the attacker simply

should have access to a copy of the user’s network traffic either by tapping the

local link medium used by the victim or have access to the local gateway. Then,

the attacker can compare the sniffed filtered traffic to his previously labeled col-

lected database of network traffic, that are captured and filtered in a simulated

environment. In this scenario, the attacker does not try to decrypt the encrypted

traffic. Otherwise, he utilizes the statistical flaw features of the network headers’

traces such as size, inter-arrival-time etc to make his prediction. Evaluation of the

2

Privacy enhancing technologies in [2] shows that Privacy enhancing technologies

such as single-hup solutions are weak whereas multi-hup solutions such as Tor and

JAP are resilient to website fingerprint attack. However, recent contribution in

[3] has achieved greater than 90 % detection rate; but to run their attack demo,

they used high performance parallel computing.

1.2 Network traffic classification

Another area of network traffic analysis in the literature focuses on traffic clas-

sification1 [4] which aims at associating traffic flows with the applications that

generated them (e.g. web browsing, VoIP, P2P, etc.). Recognizing accurately

which type of traffic is flowing through a network is very valuable for quality of

service (QoS) purposes. It allows network service providers to optimize the down-

load/upload speed depending on the type of the traffic. Other benefits of traffic

classification include a better understanding of the network utilization, dealing

with congestion problems, traffic accountability, etc.

1.3 Malware traffic detection

The third very important area of network traffic analysis is detecting the existence

of the malicious applications via network traffic. In particular, traffic analysis is

commonly used to detect malware and botnet infections [5]. Relying on network

traffic analysis to detect malware activity is very attractive since it allows to cover

1Also known as traffic identification

3

a large number of hosts without requiring any of these hosts to install any software.

Malware becomes very sophisticated. By using obfuscation techniques in ad-

dition to borrowing rootkit services, malware can easily bypass the anti-malware.

Fortunately, even if the malware is able to hide its activities within the system;

it wont be able to hide their existence within the network. Malware that does

not communicate with their source; their damage is maintainable. Organizations

really terrified from malware that can successfully steal classified documents and

send them to their source.

During the war between malware authors and malware analysts, several method-

ologies/techniques have been developed to detect the existence of the malware

within the network traffic. Almost all methods used to classify application’s net-

work traffic have been used to identify the existence of malware within the network

traffic. Therefore, malware traffic detection suffers from the same limitations faced

by the network classification methods. Sophisticated malware, to bypass port-

based filtering, starts using dynamically allocated ports or hide themselves via

using popular ports such as HTTP port to bypass firewalls. Furthermore, they

use a secure protocol to decrypt their packet traffic. In addition, between now

and then, a new malware appears. Consequently, network traffic classifier will

not be able to recognize them. Another method used to detect malware traffic is

anomaly based detection technique that tries to learn traffic behavior in order to

differentiate between normal and abnormal network traffic. However, IDS suffers

from high false positive rate.

4

Today, with the increased use of automated obfuscation tools, that are used

to generate multiple variants of malware, the number of the generated malware is

increased exponentially. Obfuscation tools purpose is to change syntax of malware

via inserting nulls, packing, code encryption etc. Consequently, resulted malware

will have different internal structure but has similar semantic behavior. Attackers

resort to these measure to avoid signature-based anti-malware as well as static

malware analysis. Indeed anti-malware fail to maintain an up-to-date database of

malware signatures. as a result, malware scanners suffers from high false positive

rate[6]. Furthermore, Moser et al. [7] had designed an obfuscation problem, that

is proved to be NP-hard to be detected by classical anti-malware signature as

well as by static analysis tools. This escalation from the malware authors triggers

researchers to develop behavioral countermeasure since it becomes impractical to

generate a signature for each malware. Behavioral malware clustering has two

approaches: monitor malware while being executed via observing CPU/memory

usage and system call, registry operations, setting a registry key and resource

allocation etc. to either create a signature from or to learn a model[8, 9, 10]. The

second approach monitor malware networking behavior such as protocol used,

packets’ features or flaw features etc. Behavioral approach utilized the idea that

variant obfuscated malware shares the same semantic behavior. Basically, behav-

ioral system will cluster malware that shares similar activities. Then, it decides

common features for each group to be used as their group signature . Conse-

quently, behavioral defense system would be able to catch almost all the malware

5

variants. According to [11, 12] network behavioral system more attractive than

system level competitive one. First of all, it is easy to implement and deploy. Sec-

ond, it does not require to use virtualized environment as well as costly dynamic

analysis.

1.4 Traffic analysis historical phases

Traffic analysis techniques went through three major historical phases.

1.4.1 Port-based Technique

The first phase consists of using TCP/UDP port numbers to recognize identify

the type of the traffic or to define signatures. This simple approach suffers from

at least three limitations:

• Many applications increasingly avoid using non-registered IANA ports (un-

predictable ports)

• To avoid tagging, many applications use port numbers assigned to other

applications.

• With IPv4 address exhaustion, an increasing number of web servers are

offering various services through port address translation (PAT) sharing the

same public IP address but on different ports.

With these limitations, port-based traffic analysis is still very commonly used

due to its simplicity and efficiency.

6

1.4.2 Payload-based Techniques

To address port-based traffic analysis limitations, payload-based techniques emerged2.

As its name indicates, it classifies the traffic by inspecting packets payloads look-

ing for application-specific data. In turn, payload-based techniques suffer from

the following limitations:

• Inspecting third-party packet payloads involves a significant privacy legal is-

sues. Typically, privacy laws prevents access to third-party packet payloads.

• Applications are increasingly using new and customized protocol and header

formats while packet inspection assumes the knowledge of payload syntax.

• Inspecting all packets payloads is computationally expensive.

• Applications are increasingly encrypting/obfuscating their traffic.

1.4.3 Pattern-based Techniques

The latest phase of traffic analysis evolution is pattern-based techniques which

do not require deep payload inspection [13]. Instead, these techniques rely on

statistical patterns in externally observable attributes of the traffic such as size,

direction, time delay, etc. Pattern-based techniques overcome all shortcomings of

payload-based techniques but are slightly less accurate. A key advantage is that

pattern-based techniques can still be usable if the traffic is encrypted/obfuscated.

2Also known as Deep Packet Inspection (DPI).

7

Table 1.1: Traffic Classification

Paper Classifier Features Application and
Accuracy

Este et
al. [14](MTCLASS)

SVM Sizes of the first 4 packets
of each flow

Focused on scala-
bility

Finamore et
al. [15, 16](Tstat
and KISS)

Euclidean distance
and SVM

First n bytes of each of
the first C UDP packets of
each flow

True positive be-
tween 84% and 99%

Donato et
al. [17](TIE)

Naive Bayes, Ma-
jority Voting, Pri-
ority Based, etc.

Per-session features: num-
ber of packets, total bytes
in each direction, IPT, etc.

Between 50% and
99%

1.5 Problem statement

A large body of works in the literature focused on applying machine learning

techniques to network traffic in order to extract patterns from the traffic traces.

These patterns can then be used to recognize similar traces. On the downside,

existing pattern-based techniques suffer from the following limitations:

• They are good at checking if a sequence of packets matches a signature but

they are not suitable for telling if a large traffic trace contains the trace of

a specific item (e.g. website or malware).

• Being based on machine learning algorithms, they are not efficient enough

for real-time checking.

For the first limitation, consider the following common scenario. An entity

through which a huge amount of traffic is flowing (e.g. ISP) is trying to pinpoint

a specific artifact (e.g website, malware, etc.) in the traffic and in real-time.

Existing pattern-based traffic analysis techniques are not suitable for this task

because they work by matching each part of the traffic with each signature. The

8

signature matching is based on comparing ”apples to apples”. That is, extracting

each time a limited sequence of packets and matching them with the signature.

For example, if a signature is generated from n packets, at each step, only around

n packets should be extracted from the traffic and matched with the signature.

In presence of a large number of artifacts (A bank of malware, a bank of websites,

etc.) with their signatures, keeping up with the real-time intake becomes quickly

infeasible.

For the second limitation, machine learning techniques, in particular SVM

based classifiers which produced the best results in the literature [18, 3], are

relatively slow. For example, Tao and Wang [3] resorted to using SHARCNET, a

Canadian academic consortium that offers high performance parallel computing.

Additionally, as has been noted previously [1], if the samples used for signature

generation are not fresh, the traffic analysis accuracy will decrease significantly.

Hence, to keep high accuracy levels, signatures have to be updated frequently. This

requires efficient signature generation in particular when the number of classes is

large (Websites, Malware, etc.).

1.6 Thesis contribution

This work can be seen as another contribution to pattern-based traffic analysis

but that addresses the above limitations. Unlike the majority of existing works in

the literature which apply machine learning techniques, we apply techniques from

digital forensics. The intuition behind our approach is that some algorithms from

9

digital forensics try to solve problems very similar to traffic analysis problems. A

common scenario in data forensics is to check if a large search space (e.g. hard

disk) contains traces of source data (e.g. a picture file). This scenario has natural

resemblance with the problem of checking if a large amount of network traffic

contains traces of a specific artifact (e.g. website, malware etc).

Inspired by digital forensics technique proposed by [19, 20], We propose a

new network traffic analysis approach based on similarity digest (AHBM). The

approach features several advantages compared to existing techniques in network

traffic analysis, namely, fast signature generation, compact signature representa-

tion using Bloom filters, efficient similarity detection between objects of arbitrary

sizes, etc. To achieve my goal, We have customized approximate hash based

matching (AHBM), a recent and more flexible approach for similarity identifica-

tion which can accommodate various modifications (insertion, deletion, reorder-

ing, etc.) in the source data. Furthermore, AHBM tries to identify statistically-

improbable chunks of bytes and use them to compute the similarity between two

sources of data. Unlike simple hash based techniques, which support yes/no re-

sults, AHBM allows requests to be answered approximately, that is, with a value

between 0 and 100.

With customized similarity hashing (AHBM), We have addresses the above

two limitations of pattern-based approaches. First, signature generation is much

simpler, and consequently much faster, with AHBM, Second, hash based tech-

niques are efficient in presence of a large search space (typical scenario in digital

10

forensics). The downside of using AHBM, however, is a slight decrease in the

traffic analysis accuracy. We show that by carefully tuning the parameters of

the AHBM algorithm, we could significantly improve the traffic analysis accuracy.

In the empirical analysis, We use four datasets representing the three major use

cases of traffic analysis, namely, Web browsing through VPN dataset, Web brows-

ing through Tor dataset,Web browsing through secure wireless network(WiFi),

and Malware traffic dataset. Experimental results show very promising results for

VPN, WiFi, and malware traffic, but low results for Tor traffic.

1.7 Thesis organization

The remaining of the document is organized as follows: Chapter 2, we go through

the literature review. In Chapter 3, we demonstrate how the similarity hashing

could be tailored in order to be used in network traffic analysis. In Chapter 4, we

evaluate our proposed approach via emulating website fingerprinting over secure

VPN. In addition, we show and evaluate the scalability of our proposed approach.

In Chapter 5, we further evaluate our approach over Tor network as well as secure

wireless network(WIFi) using website fingerprinting attack. In Chapter six, we

show how our proposed approach can be utilized to build behavioral malware

traffic detection system. In Chapter 7, we summarize our thesis work as well as

threat to avidity and future work.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Network traffic classification

The first major use case of network traffic analysis is to classify Internet traffic.

Being able to identify the type of traffic flowing through the network allows service

providers to prioritize, protect, or prevent certain types of traffic. Dainotti et al. [4]

provide a state of the art of traffic classification and point to key issues and future

directions in the field. In particular, they mention the difficulty to collect large and

reliable data for traffic classification benchmarking. The obstacles to collect and

share such data sets are mainly the privacy and sensitivity of the traces. Without

such sharable benchmarks it is difficult to validate and compare the efficiency of

proposed algorithms.

The simplest and historically the most commonly used technique for traffic

classification is port-based [21]. Classification is based on the source and/or des-

tination port numbers. This technique assumes that the applications are using

12

well-known TCP and UDP ports consistently [22]. As mentioned in the previous

section, this approach has several limitations [23], in particular, some applica-

tions do not have registered port numbers (e.g. P2P services), some applications

are using other applications port numbers, and some web service providers are

using port address translation (PAT) to share the same public IP address. Port-

based approach is by far the fastest traffic classification technique and it is still

commonly used in practice (when accuracy is not important).

High accuracy traffic classification can be reached with payload-based tech-

niques (DPI) which consist in inspecting packet payloads in order to identify the

type of the traffic. Several open source (L7-Filter [24], nDPI [25], ntopng [26],

libprotoident [27]) and commercial (CloudShield [28], NetFlow [29], NBAR [30])

payload-based traffic analysis tools are available in the market. Each one of these

tools come with a database of signatures that capture the pattern of each type

of traffic. Traffic classification is achieved by matching the payload of each ob-

served packet with the database signatures. Karagiannis et al. [21] were the first

to generate packet payload signatures (P2P applications). However, the signature

generation is based on protocol reverse engineering and is mainly manual. Most

of subsequent contributions focused on automating the signature generation pro-

cess [31, 32, 33, 34, 35]. As mentioned previously, payload-based techniques suffer

from four major drawbacks, namely, efficiency (inspecting all packets payloads is

computationally expensive), privacy (access to third party packet payloads is ille-

gal), new protocols syntax (new protocols with different syntax are quickly emerg-

13

ing), and encryption (the approach is ineffective with encryption/obfuscation).

Pattern-based traffic analysis techniques overlook port numbers as well as pay-

load content and focus on statistical and externally observable properties of the

traffic that can be extracted by examining only TCP/IP headers. Since Frank

[36] showed how machine learning can be used in intrusion detection, machine

learning became a major approach for pattern-based traffic analysis. Nguyen et

al.[13] survived the stat-of-the-art approaches proposed in network traffic clas-

sification using machine learning techniques. It mentioned the applications of

machine learning classification in Quality of service, network management, law

enforcement and security. Furthermore, it outlines the evaluation metrics used to

evaluate proposed network classification models. what is needed to build network

classification module using machine learning? What features have been used so

far in stat-of the-art of network traffic classification? The survived papers are

categorized according to the machine learning strategy used either supervised

or unsupervised as well as how they contribute to these field. It also addresses

the challenge of building a real-time classifier model. Furthermore, it mentioned

the area of integrating the supervised and unsupervised learning techniques in

order to automate the network classification process. The features used in the

surveyed works are packet length statistics, byte counts, connection duration,

Fourier transform of packet, inter-arrival time, size of TCP/IP control fields, to-

tal number of pushed packets, total number of ACK packets, average inter packet

gap etc. Zhang et al.[37] proposed a non-parametric approach to network traffic

14

classification. They incorporated the flow correlation in to supervised learning

classification. BoF- bag of flows - is used to model the flow correlation. They

conducted the correlation analysis on three-tuple heuristic dst-ip; dst-port; Pro-

tocol. They evaluated their work in two datasets. They show that supervised

classification incorporated with flow correlation outperform NN, SVM and Neural

nets classifiers. They further show that classification with correlation can perform

constantly even when trained with small training data samples. Zhang et al.[38]

proposed a new scheme to tackle zero-day application classification. The new

scheme basically utilizes both supervised classification and clustering techniques.

Therefore, it has the capability to discriminate among pre-known applications and

zero-day applications. Their proposed scheme consists of three modules: unknown

discovery utilizing clustering, and BoF based classification using flow correlations

and system update. Furthermore, they propose a new method that intelligently

optimizes the proposed scheme parameters. They test their proposed scheme

against six different datasets; each dataset has been collected at different time,

different location using different network media types. Finally, their evaluation

showed that their proposed scheme outperforms the four state-of-the-art meth-

ods: one-class SVM, semi-supervised clustering, correlation-based classification,

and random forest. Currently, machine learning based classifier implementations

include Tstat [15], TIE [17], MTClass [39], and CoMo [14] (Table 2.1).

15

Table 2.1: Traffic Classification

Paper Classifier Features Application and
Accuracy

Este et
al. [14](MTCLASS)

SVM Sizes of the first 4 packets
of each flow

Focused on scala-
bility

Finamore et
al. [15, 16](Tstat
and KISS)

Eucledian distance
and SVM

First n bytes of each of
the first C UDP packets of
each flow

True positive be-
tween 84% and 99%

Donato et
al. [17](TIE)

Naive Bayes, Ma-
jority Voting, Pri-
ority Based, etc.

Per-session features: num-
ber of packets, total bytes
in each direction, IPT, etc.

Between 50% and
99%

2.2 Malware traffic detection

Pattern-based techniques have been extensively used for network malware detec-

tion [5]. The work of Livadas et al. [40] is a typical example of pattern-based

malware detection where models are learned from a testbed environment with

virtual machines. The classification is based on relatively simple set of features,

namely, duration of the flow, average bytes per packet per flow, average bits per

second per flow, variance of packet inter-arrival time for flow, etc.

Boukhtout et al.[41] propose malware traffic detection using machine learning.

They have employ five different classification techniques -J48, Boosted J48, Naive

Bayesian (NB), Boosted NB, and SVM. They use IP level features proposed by

[42, 43], that have been proposed to classify VoIP traffic over an encrypted channel.

The five created classifier has been trained and tested using two datasets. The

first dataset consists of malware traffic, that has been collected in a controlled

environment using GFI sandbox. For one year they have executed 1.5 million

different malware. They end up with 100000 pcap files labeled with the name of

malware’s hash. the second dataset used to represent benign traffic; they basically

16

use the benign part of DARPA dataset. Their evaluation showed that J48 and

Boosted J48 achieved the superior malware detection rate approached 99% with

less that 1 % false positive. However, when they tried with known malware

samples (Zeus, etc.) with a smaller dataset, they obtained lower rates.

Nelms et al.[44] propose a new approach named ExecScent to detect botnets

that use http protocol to communicate their C&C. They state that their solution

learns from the known C&C botnet communication to identify the existence of

new http C&C botnet as long as the newly discovered botnet has shared com-

munication behavior of the previously known botnet. The approach basically

starts by learning itself from previously known botnet samples. It automatically

generates a signature template for known malware sample via locating the initial

communication of the botnet sample. Therefore, the generated template can be

employed at the edge of the network to detect exact or similar botnets. They

have evaluated their proposed solution on three large networks. Consequently,

they were able to detect many new botnets in addition to discovering hundreds

of newly infected machine. There result outperform up to date commercial C&C

domain blacklist. However,the approach is quite classic because it relies on the

content of the packets.

BotMiner [45] is a general framework able detect botnet regardless of its type,

its structure, or its communication protocol. BotMiner main objective is to detect

a group of infected machines with botnet within the target network. It utilizes

the fact that bots usually behave in a similar manner due to the deterministic

17

nature of the programs behavior. It functions as the following: it clusters similar

connections together at one side, and similar malicious activities on the other side,

then it performs cross cluster correlation trying to find hosts that share the two

clusters. Such finding is an indication of an existence of members of a botnet.

BotSnifer[46] targets centralized botnet structures that use either IRC or

HTTP protocols. BotSnifer is anomaly network detection system employ cor-

relation and similarity and statistics algorithms to detect activities and responses

patterns issued by the infected bots, taking the advantage of the preprogrammed

nature of the software installed on the infected machines.

The more recent BotFinder system [47] used five different flow-based features,

namely, average time interval between flows, average duration of flows, average

number of bytes in each direction (source and destination), and fourier transor-

mation over flow start times. However, unlike other malware detection systems,

BotFinder uses a computed score to find matchings in test traffic.

Rossow and Dietrich [48], through ProVex system, deal with encrypted mal-

ware communications differently: packets are decrypted using brute-force. Then,

botnet signatures are expressed in terms of probabilities to have specific bytes

at specific positions inside the packets (e.g. byte C4 occurs at position 47 with

probability 0.8). The approach has two drawbacks: it works only for botnets us-

ing simple encryption (e.g. XOR, etc.) and it requires plain text (not encrypted)

training samples to learn the botnet signatures. To overcome this latter draw-

back, Gu et al. [49, 45, 46] intersect two types of data inputs: network traffic

18

Table 2.2: Malware Traffic Analysis

Paper Classifier Features Application and
Accuracy

Perdisci et al.[50] 3-steps clustering
using distance
measure between
http requests

http requests between 20% and
85%

Livadas et al. [40] Naive Bayes TCP Stream properties
(total bytes, total packets,
ports, etc.)

False Negative Rate
(FNR) 8%

Tegeler et
al. [47](BotFinder)

Clustering using
CLUES [51]

characteristics of network
trace (sequence of tcp
streams between two IPs):
time interval between
streams, duration, total
bytes in each direction

Up to 90%

Rossow and Diet-
rich [48](ProVeX)

Probabilistic signa-
ture matching

Specific encrypted bytes between 80% and
100%

Gu et
al. [45](BotMiner)

2-steps clustering
using X-mean [52]

TCP/UDP flow character-
istics (number of packets,
average number of bytes
per packet, average num-
ber of bytes per second)

between 75% and
100%

and host activity. The two data inputs are intersected to compute a score of the

likelihood for a host to be infected. The similarity between flows is computed

using several traffic features: number of packets per flow (ppf), average number

of bytes per packet (bpp), average number of bytes per second (bps), etc. The

main problem of this approach is that the clustering is too coarse-grained: the

traffic volume is huge and the obtained flows are too long even with extensive

filtering and white-listing. In addition, the approach depends on having several

hosts infected in the same network so that similarities can be detected. Notable

traffic analysis techniques for malware detection are summarized in Table 2.2.

Another direction of malware traffic analysis is interesting in clustering mal-

ware sharing similar behavior into groups in order to generate a general signature

19

for these group of malware. Researchers put their intentions on these area when

they clearly found that classical signature based anti-malware detection as well

as static analysis are not enough in capturing polymorphic and obfuscated mal-

ware. Moser et al. [7] had design a 3SAT obfuscation problem to demonstrate the

difficulty of the obfuscation problem in the area of static analysis and signature

based anti-malware. Konrad et al.[9] use machine learning to train a model over

the behavioral features extracted from reports generated by sandbox environment.

Then, based on the weights generated by the learned model, they demonstrate

the most important features used the learned model. The main issue with their

contribution is with their reliance on inaccurate anti-malware labels.

Network-based approaches for malware detection have the advantage of cover-

ing a large number of hosts without requiring these hosts to install any software.

This makes deployment easier and incurs no performance penalty for end users.

one prominent work in this area presented by Perdisci et al.[50]. They propose

and implement a behavioral clustering system to group unlabeled similar that

uses HTTP protocol as a way of communication and similar networking activi-

ties. Their proposed system looks into a pool of HTTP malware’s traffic samples

and reveal similarities among malware samples. Then it prepare extracted features

in a suitable format accepted by Token-Subsequences algorithm[53] to generate

signature in snort format. To achieve their goal, they employ multi-clustering

refinement. At the beginning, they utilize statistical properties of HTTP features

such HTTP requests’ numbers, GET request Numbers, Post request numbers etc.

20

Then fine-grained clustering used over structural resemblance among consecutive

HTTP request (Get,Post,Header etc). After that, the centroid of the resulted

clusters are represented as a set of the network signatures. Each summarizing its

related HTTP traffic generated by the malware in the cluster. The main issue

with Perdisci contribution is that, it only work over HTTP traffic while mal-

ware now a day uses diverse communication protocols. Furthermore, it will be

come useless when HTTP traffic goes over an encrypted tunnels. To remedy the

first limitation, zubair et al. [54] propose a tools named FIRMA which able to

extract malwrar traffic signature from a pool of malware traffic samples that use

diverse communication protocols such as HTTP, IRC, SMTP, TCP,UDP). Firstly,

it cluster unlabelled malware that share similar behavior into families. Then it

generate a general signature for each family. Since it is hard to create a general

network traffic signature for all malware. Doing so will end up with high false

positive rate. Finally, their generated signature are printed in two well known

IDS format-Snort and Suricata to be used in real time system. Even though, they

show that their proposed tool are 4.5 more faster than the implemented approach

proposed by Perdisci[50]. Then perdisci etl al [55] improve their previous work

[50] to make their clustering system scalable, they have replaced the hierarchical

clustering approach, that they have used previously, with popular incremental

clustering algorithm (BIRCH) which is more efficient with big dataset. This

new implementation has reduced the processing time from several hours into few

minutes. Even though proposed network behavioral clustering system show very

21

high accuracy in grouping unlabeled families into groups, they still useless when

network payloads are encrypted because both proposed approaches relies on fea-

tures extracted from used protocol structure. therefore, they suffer from the same

limitation faced by payload based detection mentioned earlier.

2.3 Website fingerprinting

Users of anonymity systems (e.g. Tor [56]) are increasingly the target of traffic

analysis attacks which threatens their privacy. In particular, website fingerprinting

is a variant of pattern-based traffic analysis aiming at revealing the identities of

websites accessed by users.

Herrmann et al.[2]applied the test data mining techniques to fingerprint the

web sites. This work target the following privacy enhancing technologies: single-

hup such as Stunnel, OpenSSH, CiscoVPN, OpenVPN and mutli-hup such as Tor

and JAP. They have used the normalized distribution of the IP packet size and

direction as features. The have employs the multinomial naive-bayes classifier

on the extracted features. The dataset used for training and testing has been

generated by the authors in a controlled environment. This contribution shows a

remarkable achievement on a single-hup. However, it shows very poor results on

multi-hup techniques.

Panchenko et al.[57] employ the support vector machine to show a possible

websites fingerprint attack in both Tor and JAP anonymity solutions. They play

with the following features: volume, time and direction of the IP packet of each

22

sample. They start by test each feature individually. Then the combine each

features altogether. Consequently, they have achieved 50 % and 80% in Tor and

JAP respectively. After that, they launched open world experiment; they have

achieved 73% true positive and 0.05 false positive in Tor.

Cai et al. [18] proposes a new attack towards website fingerprints. The idea

of the attack basically works as the following: firstly, network traffic traces are

transformed into strings. Then, Damerau-Levenshtein distance is used to com-

pare between the generated strings. This attack has been evaluated against, SSH

tunnel, SSH integrated with HTTPOS, SSH with Sample-based morphing, Tor

and Tor with randomized pipelining. Furthermore, they compared their meth-

ods against previously published papers in this field. Their attack method scores

80% success rate of 100 web pages dataset. In addition, they have extended their

proposed web pages classifier to create a website classifier using HMM.

Wang and Goldberg [3] proposed a new website fingerprint attack. They em-

ploy SVM with their new proposed distance metrics. They derived their distance

metrics from the way how web pages are loaded. The novelty of this work is

that; they work with Tor cell traces instead of IP packet traces. Each tor cell

consists of 512 bytes. Furthermore, the delete every SENDME cell traces that

used by the Tor to instruct command. To evaluate their attack, they conducted

two experiments: closed-world scenario and open-world scenario. They proposed

a new procedure to create dataset to evaluate website fingerprint against Tor. In

the closed-world experiment, they used the 100 Alexa websites URLs each with

23

Table 2.3: Website fingerprinting Classifiers

Paper Classifier Features Application
and Accuracy

Liberatore and
Levine [58]

Naive Bayes Packet lengths 90% on https traf-
fic

Herrmann et
al. [2]

Multinomial
Naive Bayes

Packet lengths 94% on SSH traf-
fic, 3% on Tor
traffic

Panchenko et
al. [57]

Adhoc SVM Packet lengths, order,
total bytes

54% on Tor traffic

Cai et al. [18] SVM with
Damerau-
Levenstein edit
distance

Packet lengths, order,
direction

80% on Tor traffic

Wang and Gold-
berg [3]

SVM with a fast
variant of Leven-
stein distance

Tor Cells 91% on Tor traffic

40 instances. Then they apply 10-cross fold validation. As a result, they achieve

91% precessions. In the open-world scenario, they use four web sites each with

40 instances. Then, the testing phase consists of trying to identify visits to those

websites in the middle of 860 other website visits chosen from the top 1000 Alexa

websites. The precision was also around 90%. Training the SVM is very process-

ing intensive, therefore the authors used a high-performance parallel computing

by the Canadian academic consortium. The authors proposed a fast version of

their classifier which runs much quickly than the regular one but with slightly less

precision.

The most recent contributions focused on Tor anonymity protocol and showed

very promising precision results are summarized in (Table 2.3).

24

2.4 Similarity hashing

In digital forensics, most of the tools used to determine similarity of binary data

use hashing. Vassil Roussev [59] went through the history of data fingerprint and

its application so far and predict for promising future of similarity hashing uses in

digital forensic. In 1981, Michael Rabin[60] has utilized the random polynomial

to design a real-time string matching algorithm to detect unauthorized changes to

files. Later, his work has been extended to improve pattern matching [61]. These

research got interest after that. Consequently, several applications showed up such

as sif tool for Unix to measure similarities among text files [62], copy-detection

scheme [63], and detect similarities among Web pages [64].

One major area of our interest that utilize data fingerprinting is Payload at-

tribution systems (PASs), which are a major area of network forensics. PAS

basically take the packets’ traces, take their digest hashes, store those hashes,

then it provides a look up interface used to inquiry the existence of a specific byte

sequence. In practice, normally Bloom Filter used as a data structure for PDAs

implementation. It has been Implemented in different flavor: hierarchical Bloom

filters (HBFs)[65], rolling Bloom filter (RBF)[66] and spam filtering [67].

Another pioneered work of fingerprint related to our work named Autograph

[67]. Autograph is a spam filter tool. It is the first work that employs data

fingerprinting approaches. It utilizes the Rabin scheme [60]. First, it separates

suspicious TCP flows from innocuous ones. Then, It breaks the input network

traces into blocks. Then, it computes the most likely statistical ones, and finally

25

hashing them using Rabin fingerprint.

A first implemented similarity hashing called fuzzy hashing or similarity hash-

ing [68]. It utilizes the idea behind the spam filter work Autograph. Fuzzy hashing

simply works as the following: First, it dived provided stream data in equal blocks,

after that it create a hashed for each block-basically 6-digest. Finally, it combines

all the blocks hashes as a one-line string, which is base64 encoded. To see whether

two objects have similarities or not, it compares the string hashes of the two ob-

jects using edit distance measure. Finally, it produces result as a score between

0 and 100. This approach is not suitable to estimate similarity between traffic

traces because a simple bit insertion or deletion anywhere in the data turn all

block hashes different.

After that, Roussev propose a new similarity hashing data fingerprint tool

named sdhash [19, 20]. It also called approximate hash based matching (AHBM).

It works by selecting features that are statically impossible to happen by accident.

Selecting the statistically improbable features consists in picking the features with

the lowest precedence values. The precedence score is proportional to how common

the corresponding entropy value is found in the data. That is, if a feature has a

very common normalized entropy (Hnorm) value, it gets a high value; Whereas

features with low Hnorm values will get small Sprec values.finally, selected features

are represented by consecutive Bloom filters. Computing the similarity between

two data objects consists in comparing their Bloom filters. Hence, the core of the

similarity computation process is the comparison of two Bloom filters which is

26

based on a modified version of Hamming distance. Hamming distance measures

the minimum number of substitutions required to change one object into the

other distance. A detailed explanation of this approach as well as how We have

customized its heart of internal implementation to be suitable in network traffic

analysis field is elaborated in chapter three.

ssdeep and sdhash have common objective but they use different methodolo-

gies. They Intend to check the similarity between two objects using data finger-

printing approach. Roussev [69] had conducted experiments to test the capability

of both ssdeep and sdhash-our customized used tool(AHBM). The experiments

showed that sdhash is capable of identifying the existence of an embed object on

the target object, regardless of the size of target object that contains an embedded

object. On contrary with ssdeep; it is incapable to identify the existence of an

embed object on the target object as long as the size of the embedded object is

less than the one-third of the size of targeted object. For example, ssdeep is not

capable of identifying the existence embedded jpg image which it average size 143

KB within a targeted document (doc/pdf/ppt/xls) that their size is in between

516-1,982 KB.

In a more recent work, Jang et al. [10] used feature hashing to identify similar-

ities between malware binaries. Each malware binary is split into 16 bytes blocks

(n-grams). These n-grams are hashed and for each malware a bitvector is gener-

ated to indicate if a feature is present or not (0 or 1). Unlike Bloom filters which

use several hash functions, feature hashing uses only one hash function. Finally,

27

Jaccard similarity computed on bitvectors is used for malware clustering. The im-

plemented system, BitShred, has similar accuracy to existing malware clustering

systems, but is much more faster.

2.5 Gap analysis

Based on the literature, we have presented earlier, we cover these gaps:

1. No previous work has tailored similarity hashing approach into pattern-

based network traffic analysis.

We tailored the similarity hashing approach to work on the most stable

network packets’ features- packet length, direction, and order- to train our

final network traffic analysis models.

2. No previous work has used similarity hashing to evaluate privacy enhancing

technologies.

To evaluate privacy enhancing technologies, we have emulated a well-known

privacy attack named website fingerprinting over Secured VPN, secured

wireless network(WiFi) and Tor browser.

3. No previous pattern-based network traffic analysis proposed solution suit-

able for telling if a large traffic trace contains a trace of a specific item (e.g.

website or malware)

4. No previous work has employed similarity hashing approach to cluster mal-

ware into groups based on malware’s network traffic behavior.

28

we have utilized similarity hashing comparisons equations as a metric dis-

tance to cluster malware.

29

CHAPTER 3

RESEARCH QUESTIONS

Considering the gaps discussed earlier, in this section 2.5, we have formulated the

following research question:

• RQ1 : Can similarity Hashing be used in network traffic analysis?

– RQ1.1 :How similarity hashing approach could be tailored in order to

be used in network traffic analysis fields?

• RQ2 : Can Similarity hashing solution -network traffic version- are efficient

against privacy enhancing technologies?

– RQ2.1 :How similarity hashing solution -network traffic version- models

are going to be trained and tested?

– RQ2.2: Does the similarity hashing solution- network traffic version-

offer scalability?

• RQ3 : Can similarity hashing solution emulate finding a needle in a haystack

scenario -network traffic version?

30

• RQ4 : How similarity hashing solution- network traffic version- can be uti-

lized in malware traffic detection?

Considering RQ1, similarity hashing has been previously employed in network

traffic analysis. However, it was incorporated as payload-based inspection solution

while our proposed solution is considered under the umbrella of pattern-based

techniques. As our work, in Autograph [67], signatures are hashes of traffic data

blocks. Another similarity is that they carried out an experimental analysis of

the different parameters of the system (size of block, percentage of covered flows,

etc.) to optimize their values. However, Autograph deviates from our approach

in four main aspects. First, the signatures are formed by simply concatenating

selected block hashes, while we use the more efficient bloom filters representation.

Second, the most frequent blocks are selected as features, while in our case we

select the least frequent blocks as features. Third, it is applicable on plain-text

data (not encrypted), in particular HTTP traffic, while our technique is applicable

for plain-text as well as encrypted traffic. Fourth, the system is tailored to only

worm detection1 while ours is usable for any traffic analysis task, in particular,

malware detection, traffic classification, and website fingerprinting.

Considering RQ2, according to our knowledge no previous work has used sim-

ilarity hashing over privacy enhancing technologies.

Considering RQ3, a large body of works in the literature focused on applying

machine learning techniques to network traffic in order to extract patterns from

the traffic traces. The existing pattern-based techniques suffer from that, they are

1Autograph does not work for typical malware.

31

not suitable for telling if a large traffic trace contains the trace of a specific item

(e.g. website or malware).

Considering RQ4, similarity hashing has been previously used to fingerprint

and cluster malware. Similarity hashing was employed over malware’s executable

binary files while our approach utilizes only the malware exchanged packets fea-

tures to cluster malware.

In the following chapters, we address the answers of previous gap’s questions.

32

CHAPTER 4

APPROXIMATE HASHING:

THE TRAFFIC ANALYSIS

VERSION

4.1 Approach motivation

Most of the existing pattern-based traffic analysis techniques learn a model/signature

for each class (website, malware, etc.) using a set of labelled traffic samples for

each class. The signature is then used to identify occurrences of that class in

unknown traffic. The signature is expressed in terms of data features such as the

packet lengths, packets direction, total number of packets in each direction, etc.

For example, in presence of n features, using SVM consists in considering each

labelled sample as a point in the n-dimensional space and trying to find separating

hyperplanes that maximize the gaps between classes. Hence, models tend to be

33

complex and require non-trivial computations.

Finding similarities between data objects 1 is a typical problem in digital foren-

sics. A typical scenario consists in looking for a similarity between a reference data

object (image or office document) and a target data object under investigation

(live memory dump, captured traffic dump, etc.). Compared to the previously

mentioned traffic analysis techniques, the ones used in digital forensics are sim-

pler but more scalable. It is important to note that digital forensics techniques

are based on string comparison where each data object is considered as a string

of bytes. Hence measuring similarity is based on string matching.

Hashing is very common forensics tool for string matching. A typical use case

is when checking the integrity of a whole target (file, sequence of packets, etc.) by

comparing before-and-after states of the file. Simple hashing is considered a good

compression mechanism since it allows to generate a unique fixed-size signature

for data objects of any size. However, if the goal is to discover occurrences of only

parts of the reference data object in the target data object, simple hashes are not

suitable. Instead, a common method is to increase the hashes’ granularity. That

is, splitting the reference and target data objects into smaller blocks, hash each

one of them, and keep a list of hashes for both data objects. Finding matches

between hashes indicate the same block is occurring as-is in the reference and

target data objects.

Simple hashing, regardless of its granularity, has two limitations. First, it

1In this discussion, we refer to the first and second data object as reference and target
respectively.

34

allows to pinpoint occurrences of exact copies. Any alteration (even 1 bit) yields

a hash mismatch. This problem is also known as hash fragility. Second, hashed

blocks should be aligned the same way in the reference and target data objects.

Any displacement in block boundaries yields a hash mismatch.

To address the hash fragility problem, data fingerprinting [60] is typically used

to find similar objects instead of exact object copies. The idea is to select a set of

representative features for each object, then the similarity is computed in terms

of the level of correlation between the features. Data fingerprinting is known to

be resilient to small alterations.

To address the block alignment problem, a technique called Winnowing [70] is

used. Winnowing works as follows. Assuming the block size is k and starting from

the beginning of the data object, for each sequence of k consecutive characters,

compute the hash and store it in an array. Hence, the first entry of the array is

the hash of the characters from 1 to k, while the second entry is the hash of the

characters from 2 to k+ 1, and so on. Then, using a sliding window select a hash

for each window position.

Using data fingerprinting and Winnowing raises three important questions:

1. how features are selected from a data object?

2. how features are stored efficiently?

3. how the correlation/similarity between two sets of features is measured?

Before discussing these questions and how we address them in the context of

traffic analysis, we need to define the data object and data feature terms. A data

35

Figure 4.1: Data Object and Data Feature.

object is a sequence of packets corresponding to a specific network activity (e.g.

website visit, malware communication session, video communication session, etc.).

For each sequence, only the following information is kept: packet lengths, packet

order, and packet directions. This ”meta-data” information is available even if the

traffic is encrypted. A data feature is a sub-sequence of packets in a data object.

Figure 4.1 shows a snippet of a data object with the first three data features.

The proposed traffic analysis technique is based on data fingerprinting and win-

nowing and is inspired by Roussev’s approach of data fingerprinting with similarity

digests [19, 20]. Using this approach, the short answers to the above questions

are as follows. Given a data object (e.g. samples of a website visit), the technique

aims at selecting features (Question 1) that are least likely to occur in other data

objects (e.g. samples of a different website visits) by chance. Selected features are

then hashed and stored using Bloom filters (Question 2) which allow significantly

compact representation and fast membership queries. Hence, each data object

will be represented by a Bloom filter. Measuring the correlation/similarity of two

data objects (Question 3) consists in comparing their Bloom filter representations.

Full details of the approach is provided in the next sections.

36

The proposed traffic analysis approach has several attractive advantages:

• Generating the signature of a class of traffic (website, malware, etc.) is very

efficient.

• A signature can be generated using a few number of samples without signif-

icantly decreasing the detection accuracy (As an extreme case, a signature

can be generated based on a single sample).

• Signature representation is very compact since it is using Bloom filters.

• Similarity can be computed efficiently between data objects of arbitrary

sizes.

• It removes the need to split the traffic in order to match a given signature

(Splitting problem [71]).

In the light of these advantages, the proposed approach can be applied at a

new level of scalability. A typical use case can be an attacker through which

a huge amount of traffic is flowing (e.g. ISP) and who is trying to pinpoint a

specific type of session (e.g website, malware, etc.) in the traffic and in real-time.

In addition, updating the bank of signatures can be done quickly and without

requiring a large number of samples.

4.2 Hash-based signature generation

Our approach’s signature generation process is based on data fingerprinting [60].

Given a set of samples of a specific network communication (website visit, malware

37

communication, etc.), data fingerprinting consists in selecting a set of features that

uniquely identify that specific data network communication. For example, if the

samples correspond to facebook website visits, selected features should have a

high probability to be part of facebook visit samples, but a low probability to be

part of other traffic samples. The criteria we use for selection and that satisfies

these requirements is the following: choosing uncommon (statistically improbable)

features that happen to be part of the available samples. In order to characterize

common and uncommon features, two approaches are possible: using entropy

measure or a hash function.

4.2.1 Feature entropy vs feature hash

In order to characterize statistically improbable features, Roussev [19, 20] used

entropy values. Entropy measures the amount of information contained in the

data. Intuitively, it measures the level of uncertainty in the data. For example,

a feature composed of repeated packet lengths in the same direction results in a

relatively small entropy value.

Let {X1, X2, .., XB} denotes the sequence of packets of a feature F . The en-

tropy of the feature F is defined as follows:

E(F) = −
∑
i

P (Xi) log2 P (Xi) (4.1)

where P (Xi) is the empirical probability of Xi in the string of packets. P (Xi) is

proportional to the number of times it is repeated in the feature. For example,

38

consider the following small feature F1: {1392,−56, 56, 204,−56, 204,−115, 204}.

The alphabet of the feature is composed of 5 different packet items 1392,−56, 56, 204,

and−115. The empirical probability for every symbol is: P (1392) = 0.125, P (−56) =

0.25, P (56) = 0.125, P (204) = 0.375, P (−115) = 0.125. Using Equation (4.1)

results in the value H(F1) = 2.155. The maximum entropy value is obtained when

all bytes of the feature are different, that is, log2B.

To simplify processing and in order to make the entropy value independent

from the size of the feature (B), a normalized entropy value is used:

Enorm(F) = b1000 × H(F)/ log2Bc (4.2)

The normalized entropy leads a value between 0 and 1000 regardless of the length

B of the feature.

On the positive side, entropy values are easy to compute and can be normalized

to values between 0 and 1000. On the negative side, entropy measure does not

take into consideration the order of the packets. That is, two features with the

same set of packets but in different order produce the same entropy value. For

example, F2: {56, 1392, 204,−56, 204,−56,−115, 204} produces the same entropy

value as F1 (E(F1) = E(F2) = 2.155) since they share the same set of packets,

but in different order.

Since in our traffic analysis scenario, the order of packets is important, we use

instead a hash function to characterize features. For every feature, a SHA-1 digest

is computed. In order to map the 160 bits SHA-1 digest to a value between 0 and

39

1000, we consider only the 10 rightmost bits.

Hnorm(F) = 2first10bits(SHA−1(F)) (4.3)

Both entropy and hash functions lead to mapping conflicts (several different

features mapping to the same value). Entropy measures are slightly faster to

compute, but with hashing, packet order is preserved.

4.2.2 Feature selection criteria

A data object of length L packets contains L−B+1 features. Data fingerprinting

approach consists in selecting only a subset of these features to uniquely identify

the data object. A good feature candidate for selection should satisfy two criteria:

• criteria 1: it should be statistically improbable

• criteria 2: it should be part of most of (or all) data samples

For criteria 1, the statistical probability of a feature depends on the likelihood

of its normalized hash value. To this end, we estimate the probability distribution

of all possible normalized hash values [0, 1000]. For example, Figure 4.2 shows the

empirical probability density function for website browsing through VPN dataset

and Tor dataset(Cai’s dataset) in addition to malware dataset. The dataset is

generated by automatically fetching the Alexa’s top 100 websites through VPN

40 times. For each feature in the data object, we compute its normalized SHA-1

digest and use the value to identify its statistical probability from the distribution.

40

0 200 400 600 800 100
0

Normalized Hash (Hnorm)

0.000

0.005

0.010

0.015

0.020

 P
ro

ba
bi

lit
y

VPN Dataset

0 200 400 600 800 100
0

Normalized Hash (Hnorm)

0.000

0.005

0.010

0.015

0.020

 P
ro

ba
bi

lit
y

Tor Dataset(Cai's Dataset)

0 200 400 600 800 100
0

Normalized Hash (Hnorm)

0.000

0.005

0.010

0.015

0.020

 P
ro

ba
bi

lit
y

Malware Dataset

Figure 4.2: Probability density function of normalized Hash values for VPN web
browsing dataset, Cai’s tor dataset and malware dataset.

This is implemented by a rank table of size 1000 mapping normalized hash values

to a precedence score (Sprec) which is a value between 0 and 1000 proportional

to the probability value. It is important to note that a different rank table is

generated for each type of traffic. For the sake of our experimental analysis, 3

rank tables have been generated from 3 different datasets:

• Web browsing through VPN dataset

• Malware traffic dataset

• Web browsing through Tor dataset

This technique of selecting statistically improbable feature using empirical prob-

ability density functions is discussed in details by Roussev [20].

For every feature, the precedence score indicates how common the correspond-

ing normalized hash value is found in the empirical data. That is, if a feature has

a very common Hnorm value, it gets a high Sprec value. Whereas features with

low Hnorm values will get low Sprec values. Selecting the statistically-improbable

41

Figure 4.3: Computing the popularity score (Spop) on a data sample of size 28
packets and using a sliding window of size 9.

features consists in picking the features with the lowest Sprec values. A straight-

forward approach consists in ordering all the data features across the data object

in ascending order of their Sprec values and choosing the top ones. oThe problem

is that all selected features will originate from the same region/cluster of the data

object. Winnowing [70] technique uses a sliding window to pick features with local

minima. This guarantees that features are selected from various locations in the

data object.

Let W be the window size. While the window is sliding across the data, a

feature with the lowest Sprec is marked2 at every step. If the same feature is

marked a number of times (1 ≤ k ≤ W), it can be considered as a feature with a

local Sprec minimum and consequently selected as statistically improbable. This

is achieved by maintaining a popularity counter score Spop which keeps track of

how many times each feature has been marked due to a minimum Sprec.

The actual feature selection is based on setting a threshold value t (1 ≤ t ≤ W)

2If two features happen to have the same Sprec value in the current window, only the leftmost
one is marked.

42

such that any feature with a popularity score Spop ≥ t is selected as statistically-

improbable. In our case, we use a threshold value t = 2.

Figure 4.3 shows how Spop values are updated while a sliding window of size 9

is moving through a data input sample. The upper row shows the Hnorm values.

After the sliding window reaches the end of the data object, the final Spop values

(step 12) are used to select the statistically-improbable features. For instance, if

the threshold t = 2, three features will be selected (positions 4, 8 and 17) whereas

for t = 4, only two features will be selected (positions 8 and 17).

Once a feature is considered statistically improbable (passed the winnowing

process), it passes through the second filter (criteria 2) which checks if the feature

occurs in the other samples of the same class. Keeping only the features that occur

in all other samples is too restrictive and result in a small number of features. On

the other hand, allowing all features that occur in at least half of the samples is

too permissive and result in a large number of features. Empirical analysis showed

that the best threshold value is to keep only features that appear in at least 75%

of the other samples.

4.2.3 Building fingerprint representations

Having selected a set of features to represent a data object, the next step is to

build a fingerprint representation out of the features. A simple approach consists

in computing the digest (e.g. MD5) of each feature and concatenating the digests

to obtain a fingerprint representation of the data input. This approach is inefficient

43

in two aspects. It is space inefficient and it handles membership queries (checking

if an element is part of the set) inefficiently. Note that this simple approach does

not incur any false positive rate for membership queries. A more efficient approach

for set representation is using Bloom filters [72]. The approach trades space and

membership queries efficiency for a small false positive rate in membership queries.

A Bloom filter is an array of bits of a fixed size m initially set to 0. Given a

set of elements {s1, s2, . . . , sn}, inserting an element si in a bloom filter consists

in computing hash values of si according to k different hash functions h1, h2, . . .

hk. Each hash function maps the universe of possible element values to an index

in the bloom filter (i.e. in the range 1 . . .m)3. For each of those hash values,

the Bloom filter entry is set to 1. Checking the membership of an element sj

goes through the same process, that is, computing the k indices using the k hash

values. If all the bits on the k indices are equal to 1, the membership query returns

true. Otherwise, it returns false. As mentioned above, Bloom filter approach for

set representation trades efficiency for a small false positive rate in membership

queries. Indeed, in membership queries, if at least one entry of the computed k

indices is set to 0, we are sure that the element is not in the set. However, if all

the k entries are set to 1, we are not 100% sure that the element is in the set. The

k entries might be set by chance. The good news is that, given the number of

elements already inserted in the Bloom filter, the false positive rate can be easily

estimated [72].

Features are inserted in Bloom filters as follows (Figure 4.4). The sequence

3The hash functions are independent and maps the input to the range 1 . . .m uniformly.

44

of packets (packet lengths and direction) is hashed using SHA-1 algorithm which

generates 160 bits. The hash is then split into five 32 bits sub-hashes. Each

sub-hash is considered as different hash value. Hence, k value in this case is

5. The 11 least significant bits of each 32 bits sub-hash is used as index in the

Bloom filter array of bits. The features are inserted in 256-byte Bloom filters

(m = 256 × 8 = 2048 = 211). To keep the false positive rate negligible, the

capacity of a single Bloom filter is fixed to a default value of 128 features. Hence,

the maximum number of marked bits in the Bloom filter is 128×k = 128×5 = 640

bits. When the capacity is reached, a new Bloom filter is created, and so on, until

all the features are represented.

The process of inserting features in Bloom filters is illustrated in Figure 4.4.

The fingerprint representation of a data object is the concatenation of all

Bloom filters preceded by their total number. The obtained representation is

called similarity digest (SD):

SD(dob) = s|bf 1|bf 2|bf 3| . . . bf s (4.4)

where s is the number of Bloom filters and bf i is the ith Bloom filter of data object

dob.

4.2.4 Comparing similarity digests

Computing the similarity between two data objects consists in comparing their

Bloom filters. Hence, the core of the similarity computation process is the com-

45

Figure 4.4: Process of inserting a feature into a Bloom filter

parison of two Bloom filters which is based on a modified version of Hamming

distance. Hamming distance measures the minimum number of substitutions re-

quired to change one object into the other.

Let bf1 and bf2 be two Bloom filters and consider the following variables:

• n1 and n2: the number of features in bf1 and bf2 respectively.

• e1 and e2: the number of bits set to one in bf1 and bf2 respectively.

• e12 = bf1 ∩ bf2 : the number of bits set to one in both bf1 and bf2.

The modified Hamming distance (MHD) between two Bloom filters is defined

as follows:

MHD(bf1, bf2) =



−1, if n1 ≤ Nmin

0, if e12 ≤ tc

100
e12 − tc
Emax − tc

, otherwise

(4.5)

where,

• Nmin is the minimum number of features in a Bloom filter that is needed to

compute a meaningful MHD value.

46

• tc is a threshold below which any bit matching is assumed to be due to

chance:

tc = α(Emax − Emin) + Emin (4.6)

• Emax is the maximum number of matching bits due to chance:

Emax = min(n1, n2) (4.7)

• Emin is the minimum number of matching bits due to chance:

Emin = m(1− pke1 − pke2 + pk(e1+e2)) (4.8)

• p is the probability that a specific bit is still 0 after the insertion of all

features.

• α is a calibrating parameter that is set experimentally.

We now have all the ingredients to compute the similarity score (SC) between

two data objects. Let dob1 and dob2 be two data objects. Let bf 1
1 , bf

1
2 , bf

1
3 , . . . , bf

1
s

be the set of Bloom filters from dob1 and bf 2
1 , bf

2
2 , bf

2
3 , . . . , bf

2
t be the set of Bloom

filters from dob2. Assuming that s ≤ t, the similarity score (SC) between the two

data objects is defined as follows:

SC(dob1, dob2) =
1

s

s∑
i=1

max
j∈[1...t]

MHD(bf 1
i , bf

2
j) (4.9)

47

The similarity score as defined in Equation (4.9) is typically used to find a

similarity between a small data object (e.g. file) and a much larger data object

(e.g. hard drive), hence, s << t, that is, the number of Bloom filters is much larger

in dob2 than in dob1. The similarity score computation consists in comparing each

Bloom filter of dob1 with every Bloom filter in dob2 and keep the highest value.

The kept highest values are then averaged to produce the similarity score. Because

the score is the average of the s maximum distances between the bloom filters of

dob1 and all the bloom filters of dob2, a large size of dob2 (i.e. t) does not dilute

the similarity score.

Bloom filters are just arrays of bits. Two data objects having similar data

regions will have similar Bloom filters around those regions. By comparing each

Bloom filter of the first data object with all Bloom filters of the second and

taking the maximum value, the similarity score will reflect the presence of such

overlapping.

4.2.5 Similarity hashing time complexity

Building and comparing final signatures based on the operations over bloom filters.

Initialization operation (Initialize) simply assign 0 to each bloom filter bytes.

Therefore, if the bloom filter size is m then the time complexity of the bloom

filter’s initialization operation is O(m). However, in our implementation, bloom

filter size is 256 bytes; consequently, initialization operation can be done in a

constant time.

48

Bloom filter insertion Operation (Insert) insert selected operation into bloom

filter. In theory, inserting an element into a bloom filter requires k-independent

hash functions applied over the selected features. Therefor the time complexity

for this operation would be O(K). However, in our implementation, only one hash

function is applied (SHA1) but the resulted hash digest is split into five parts each

32-bits. Each part is treated as if it is a separated hash function. Consequently,

the time complexity of our implementation could be achieved in a constant time

O(1).

Bloom filters Comparisons operation (Compare) is the heart of the similarity

hashing approach. To do so, both bloom filter should be of the same size as well

as use the same hash function. Bloom filters Comparisons operation basically

compares the two bloom filters via applying the AND bit-wise operation which

has a linear time complexity Θ(m), where m is the size of each bloom filter.

In our implementation, each signature consists of a variable number of bloom

filters. It utilizes the Multi-resolution similarity hashing proposed in [73] which

allow Data objects of variant sizes to be compared against each other. Having

two similarity digest signatures each consists of n bloom filters while every bloom

filter’s size is m, Asymptotically, the time complexity would be O(n2m) since every

bloom filter of the first signature has to be compared against all the bloom filters

of the second data object bloom filters. where n represent the number of bloom

filters in each data object and m is the size of each bloom filter.

According to the author of Multi-resolution similarity hashing [73] going through

49

1024 bloom filter comparisons- 256KB AND bit-wise operation- is a trivial task

for the modern machine. However, 256MB bloom filters comparisons would not be

a trivial task. Furthermore, 1TB bloom filters comparisons would be unfeasible.

Unfortunately, manipulating similarity digest approach parameters can alleviate

the amount of calculation as pinpointed in the next section.

4.2.6 Parameters values

The AHBM approach to traffic analysis depends on a set of parameters. The first

parameter is the feature size B which represents the number of packets to include

in a feature. Choosing a small feature size increases the granularity of the data

object representation while loosing specificity. The number of selected features

tends to be larger. Choosing a large feature size increases the specificity of the

selected features while reducing their numbers.

The window size specifies the number of features to consider at each step

before marking the feature with the lowest Sprec score. A large window size means

that a feature will be marked among a large number of considered features. This

yields to fewer features marked with higher popularity scores. A small window

size yields to more features marked but with lower popularity scores.

A small threshold t value results in a large number of selected features which

leads to a bulky representation of input data but reduces the false positives rate.

On the other hand, a large threshold value results in a small number of selected

features which improves compression but may lead to a higher false positives rate.

50

CHAPTER 5

WEBSITE FINGERPRINTING

OVER VPN

Typically, Virtual Private Networks (VPNs) are used to extend a private network

across public networks [74]. Packets are communicated through an encrypted

tunnel (SSL, IPSec, SSH, etc.). Since an observer of a VPN traffic can only see

encrypted packets to and from the VPN server, VPN is also used to hide user

activity and to bypass simple proxy filtering and censorship. Therefore VPN is a

typical target of website fingerprinting attacks [2, 75].

The aim of this first experiment is to evaluate the accuracy of the proposed

AHBM approach on VPN traffic. The used dataset is generated by visiting the

Alexa’s top 100 websites through VPN. The VPN service is provided by an Open-

VPN server on Amazon Web Services (AWS). Each website is fetched 40 times

using Firefox 48.0.1 running on Ubuntu 16.04. A python script is used to auto-

mate the website visits. At each visit, the script clears the browser cache, launches

51

a tcpdump process for packet capturing, sets a timer and then fetches the URL.

Each visit is given 20 seconds beyond which the connection is closed and the cap-

tured packets are stored in a pcap file. Websites are fetched in a round-robin

fashion (A first sample of each website is collected, then a second sample, etc.).

The data has been collected during December 2016.

5.1 Selecting parameter values

As mentioned above, the proposed AHBM approach depends on a set of crucial

parameters, in particular, the feature size (how many packets are considered at a

time) and the window size (how many features are considered in the winnowing

based selection). In order to empirically choose the optimal values for those

parameters, we used a modified version of 10-fold cross-validation. At each fold,

36 samples (out of 40) of each website are used to learn the model (selecting the

features). The remaining 4 samples of each website constitute the testing data.

However, unlike typical cross-validation, for each website we compute the AHBM

similarity score between the website model (similarity digest) and all the test data

(all 4 samples of all websites as a single sequence). Then, for every website, we

remove the corresponding 4 samples from the test data and we recalculate the

similarity. This yields, for each website and for each fold, 2 similarity scores: one

score when the website samples are in the test data (typically, a high similarity

score) and one score when the website samples are not part of the test data

(typically, a low similarity score). Good parameter values (feature size and window

52

Feature Sizes

2
3

4
5

6

Window Size

0
4

8
12

16
20

24

A
v
e
ra

g
e
 D

if
fe

re
n
ce

5

10

15

20

25

30

Figure 5.1: Accuracy in terms of feature size and window size.

size) should maximize the difference between the two similarity scores. Figure 5.1

shows the average difference between the two similarity scores, for various feature

size and window size values.

The combination that yields the best results is a feature size of 2 and a window

size of 4. Although a feature size of 2 packets is relatively small, but this cor-

roborates previous results [76, 77] where the optimal traffic analysis results were

obtained by considering consecutive pairs of packet size values.

5.1.1 Cross-validation results

Most of existing website fingerprinting techniques are evaluated through typical

cross-validation. Cross-validation is a statistical method for accuracy estimation.

It works by dividing data into two segments: one used to train the model (or

models) and the other used to validate the model. In typical cross-validation,

the training and validation sets must cross-over in successive rounds such that

53

each data point has a chance of being validated against. The basic form is k-fold

cross-validation where the data is first partitioned into k equally sized segments or

folds. Subsequently, k iterations (or folds) of training and validation are performed

using a different segment each time. Our experiment consists in applying a 10-fold

cross-validation on the collected data. That is, in each fold 36 samples are used

for selecting the features and the remaining 4 samples are used for testing. This

process is repeated 10 times (folds) choosing in each fold 4 different samples for

testing.

The measures we used for the precision are: precision, recall and F -measure. In

our context, precision measures the fraction of website samples identified correctly.

Precision is computed as follows:

precision =
tp

tp+ fp
(5.1)

where tp and fp represent respectively the number of true positives and the number

of false positives. Recall, on the other hand, measures the fraction of the total set

of correct websites in the traffic that are identified correctly by system, that is,

recall =
tp

tp+ fn
(5.2)

where fn represents the number of false negatives.

54

Precision Recall F1_measure
40 %

50 %

60 %

70 %

80 %

90 %

100 %

 P
er

ce
nt

ag
e

Figure 5.2: Precision, Recall, and F1 measure values for cross-validation on VPN
dataset.

Finally, F1 combines both precision and recall as follows:

F1 = 2× precision× recall
precision+ recall

(5.3)

The 1 in F1 comes from the fact that recall and precision are evenly weighted.

There is a more general form of the F -measure where precision and recall have

different weights.

Figure 5.2 shows the results of cross-validation on the VPN dataset which are

87% for the precision, 76% for the recall, and 81% for the F1 measure. Previous

work on VPN traffic reported slightly better results: Herrman et al. [2] reported a

94% accuracy while Fegghi et al. [75] reported between 90 and 95% accuracy. The

proposed approach is, however, significantly more scalable than previous work.

55

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of training instances per web page

40%

50%

60%

70%

80%

90%

100%

Pe
rc
en
ta
ge

Precision
Recall
F1_measure

Figure 5.3: 10-fold cross-validation using different number of training samples.

5.2 Effect of the number of training samples

Figure 5.3 shows how the different accuracy measures (precision, recall, and F1)

behave as the number of samples used to generate the similarity digest changes.

The experiment consists in repeating 10-fold cross-validation starting from only

one training samples up to 28 training samples. As expected, more training sam-

ples produces better accuracy measures. Interestingly, the accuracy stays ac-

ceptable (85% precision with 63% recall) even when only one sample is used to

generate the similarity digest. In that extreme case, it is important to mention

that all features considered statistically improbable are selected and added to the

bloom filters because the second criteria (Section 4.2.2) can’t be used with only

one sample.

56

5.3 Identifying a website within a sequence of

web activity

In all existing website fingerprinting techniques [18, 3, 57, 2] learning a website

”fingerprint” requires to visit the website several times and to record the set of

packet sequences (samples) resulting from those visits. The set of samples have

typically comparable sizes (number of packets). This allows to extract features

such as the number of incoming packets, the number of outgoing packets, the

number of received bytes, etc. which allow to build a model/signature for that

website. Consequently, for a website model to be efficient in identifying website

occurrence in unknown traffic, it should be matched, each time, with an extracted

sequence of packets having a size similar to the samples used in the training

phase. Captured traffic, however, comes in the form of a long sequence of packets

corresponding to all sort of user activity without clear separation. This issue

was not considered in most of previous work on website fingerprinting because

k-fold cross-validation is typically used for the experimental evaluation. k-fold

cross-validation calculates the accuracy in terms of already ”split” samples.

To identify a website occurrence within a long sequence of captured packets,

there are currently two main approaches: splitting the traffic and using a sliding

window. Tao and Goldberg [71] discussed the splitting problem and proposed two

ways of implementing it: time-based splitting and classification-based splitting.

Time-based splitting is efficient provided that the time-gap between two website

visits is large. If the time-gap is small, classification-based splitting is used which

57

has an additional processing overhead. Either ways, the website fingerprinting

attack needs to go through an initial splitting pre-processing step.

Feghhi and Leith [75] adopt a sliding window approach with a 10 packets

moving step. At each step, a sequence of n packets is extracted from the traffic

and matched with the website model where n is the size of samples used in the

training phase. Even with a moving step of 10 packets, this approach is clearly

not scalable for realistic scenarios.

The proposed AHBM approach is particularly efficient to identify website oc-

currences in a network traffic capture of arbitrary size. This is achieved by com-

paring bloom filters composing the similarity digest of the website with bloom

filters corresponding to different regions of the network traffic capture. By taking

the average of the maximum distances between each bloom filter of the website

and all bloom filters of the unknown traffic, the final similarity score is not diluted

by the size of the unknown traffic capture. Figure 5.4 shows the similarity score

computation process in terms of bloom filters.

We carried out a modified version k-fold cross-validation where all samples of

the test data are consolidated to form a single long sequence of packets. For each

website, the similarity score with test data is computed two times: one time when

the website packets are part of the test data and one time when the website packets

are excluded from the test data. For each case and for each website, Figure 5.5

shows the range of all values observed in the 10-folds (dashed lines) and where

75% of the values are concentrated (closed boxes). The following interesting facts

58

Figure 5.4: The similarity score computation between the website’s SD and the
unknown traffic’s SD.

can be observed from the figure:

1. The average similarity scores, when the website is part of the test data and

when it is excluded, are clearly far apart with the former larger than the

latter for all 100 websites.

2. The standard deviation of the similarity scores when the website is not part

of the test data is interestingly small. This justifies the selection of the

threshold tsc on the basis of this case (the similarity score with arbitrary

traffic capture not including the website).

3. The standard deviation of the similarity scores when the website is part of

the test data is relatively large. One explanation is that from one fold to

59

0 20 40 60 80
100

Websites

0

20

40

60

80

100

S
im

il
a
ri

ty
 S

c
o
re

website is included
website is excluded

Figure 5.5: Distribution of the similarity scores for each website (1) when the
website is part of the testing data and (2) when the website is removed from the
testing data.

another, not all distinguishing features are selected for the website model.

Recall that features are selected provided they are part of at least 75% of

the training samples.

Figure 5.6 shows the precision, recall and F1 measures for the same experiment.

Compared to Figure 5.2, values are 10% lower but are still acceptable.

5.4 Effect of the size of the test data

In the modified k-fold cross-validation experiment of the previous section, all

samples of the test data are consolidated into a single long sequence of packets.

The website similarity digest is then matched with that long sequence. Having 100

60

Precision Recall F1_measure
40 %

50 %

60 %

70 %

80 %

90 %

100 %

 P
er

ce
nt

ag
e

Figure 5.6: Precision, recall, and F1 measures for a modified 10-fold cross-
validation (All test samples are consolidated in a single sequence.

websites, the size of the test data in each fold is approximately 1GB. To see the

effect of the size of the test data on the accuracy measures, we repeated the k-fold

cross-validation (Figure 5.6) while increasing the size of the test data. To this end,

we collected additional web browsing data by visiting the next top 900 websites

according to alexa (top 100 - 1000 websites) using the same setup (OpenVPN

on AWS Cloud Service). The test data is then augmented incrementally using

chunks of 200MB from the additional collected data. Figure ?? shows the accuracy

measures as the test data goes from 1GB to 3GB. As the test data increases, the

measure values do not change significantly. The recall (TPR) keeps the same

value (7̃7%). The precision, however, decreases slowly. The explanation is that

as the test data increases, the website presence in the large test data is missed

slightly more often.

61

1.0GB
1.2GB

1.4GB
1.6GB

1.8GB
2.0GB

2.2GB
2.4GB

2.6GB
2.8GB

3.0GB

Test Data Size

40%

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

 M
ea

su
re

s

Precision
Recall
F1_measure

Figure 5.7: Precision, recall, and F1 measures for different test data sizes.

62

CHAPTER 6

WEBSITE FINGERPRINTING

OVER TOR AND ENCRYPTED

WIRELESS

6.1 Website fingerprinting on Tor traffic

Tor traffic is a common target for website fingerprinting attacks as Tor is an

overlay network that aims to provide privacy and anonymity to its users. Previous

work reported high accuracy website fingerprinting attacks on Tor [18, 3, 78, 79].

However, several concerns have been raised regarding the practicality of these

attacks in realistic scenarios [80, 1, 71].

We used three datasets to assess the accuracy of the proposed AHBM approach

on Tor traffic:

• Cai dataset [18]: 100 websites, 40 samples each.

63

• Tao dataset [3]: 100 websites, 40 samples each.

• Our dataset: 100 websites, 40 samples each.

Our dataset have been collected by visiting the top 100 Alexa websites, 40

times each, using Tor Browser. The websites are fetched in round-robin fashion

and is automated using the Tor-selenium plugin. Every visit lasts for a maximum

of 30 seconds and there is a 5 seconds time gap between each successive visits.

Packets are stored in pcap files which are then parsed to keep only the direction,

order, and size of packets (Figure 4.1). The data is collected during January 2017.

6.1.1 One-to-one cross-validation results

Table 6.1 shows the result of 10-fold cross-validation on the three datasets. The

values are clearly lower than previous work (Cai et al. [18] and Tao and Gold-

berg [3]). As in the case of VPN dataset, for our AHBM approach, the best

results were obtained with a feature size of 2 and window size of 4. The only

exception is Cai et al. dataset where the best results were obtained with a feature

size of 6 and a window size of 4. The explanation is that in Cai et al. dataset,

packet sizes are rounded to multiple of 600 and consequently the number of dif-

ferent packet sizes becomes very limited (600, 1200, 1800, etc.) which requires a

longer feature size to allow ”distinguishability”.

64

Recall (TPR) Recall (TPR) Recall (TPR)
(AHBM) (Cai et al.) (Tao et al.)

Our dataset 58% – –
Cai dataset (rounded) 64% 86% 91%

Tao dataset 53% 88% 99%

Table 6.1: Recall (TPR) for our AHBM, Cai et al., and Tao et al. approaches on
three datasets.

6.1.2 Identifying a website within a sequence of web ac-

tivity through Tor

In order to assess the efficiency of the proposed AHBM approach to identify a

website visit within a long sequence of network traffic packets (without splitting

and using a sliding window), we used one-to-all cross-validation on the three

datasets. For each website, Figure 6.1 shows the range of all values observed in

the 10-folds (dashed lines) and where 75% of the values are concentrated (closed

boxes).

For the majority of websites, the similarity score between the website similarity

digest and the consolidated test data is smaller when the website is not part of

the test data. However, there is a clear overlap between the two cases (website is

included and website is excluded). This explains the low recall (TPR) values for

the same 3 datasets: 44% on our data, 41% on Cai data, and 31% on Tao data.

65

0 20 40 60 80
100

Websites

0

5

10

15

20

Si
m

ila
ri

ty
 S

co
re

website is included
website is excluded

(a) Our dataset

0 20 40 60 80
100

Websites

0

5

10

15

20

25

30

35

40

Si
m

ila
ri

ty
 S

co
re

website is included
website is excluded

(b) Cai et al. dataset

0 20 40 60 80
100

Websites

0

5

10

15

20

25

30

35

40

45

Si
m

ila
ri

ty
 S

co
re

website is included
website is excluded

(c) Tao et al. dataset

Figure 6.1: Distribution of the similarity scores for each website when the website
is part of the testing data (green) and when the website is removed from the
testing data (red) for (a) our dataset , (b) Cai et al. dataset, and (c) Tao et al.
dataset.

66

6.1.3 Effect of website’s instances number in both accu-

racy and time calculation

To test the scalability of the state of the art contribution into website finger-

printing field on tor, We have run each implemented work with their companion

dataset. every time Weconfigure each implementation with different training in-

stances number. starting with 4 instances for each website then , 8, 12,...,40. Ac-

curacy for each run as well as the the time in hours each implementation needed

to train its final model/s. The values are summarized in table 6.2. Table shows

clearly that Toe and Cai work has the superiority in this field respectively. How-

ever, to reach their high accuracy tens of hours are need to train their classifier.

Our implemented approach are very quick and scalable, but it has a decent ac-

curacy against Tor. The good news it that our approach has a very promising

in other fields on network analysis while these Superior contribution at tor are

not practical at the other fields due to their intensive calculation. Furthermore, a

pre-processing operation has to be achieved before their classifier get trained such

as packets’ length rounding as with Cai et al.[18] or working with cells instead of

working with packets or splitting process as with Toe et al. [3] work.

67

Cai et al. Toe et al. Our Approach
W.No Inst.No Acc Time Acc Time Acc Time1 Time2
100 4 0 0.17 0 1.16 9 0.045 1.51
100 8 0 0.72 0 4.61 23 0.051 1.54
100 12 79.7 1.62 85.1 10.42 32 0.048 1.56
100 16 81.7 2.82 85.3 17.70 38 0.047 1.58
100 20 83.5 4.31 86.45 27.68 41 0.050 1.56
100 24 84.3 6.12 86.5 39.67 42 0.049 1.51
100 28 85.6 8.18 87.55 54.35 45 0.050 1.58
100 32 87 10.78 88.00 71.41 46 0.049 1.54
100 36 87.7 13.61 88.83 89.06 49 0.048 1.53
100 40 88.1 16.93 – – 50 0.049 1.50

Table 6.2: Recall (TPR) for our AHBM, Cai et al., and Tao et al. approaches on
three datasets.

6.2 Website fingerprinting over encrypted wire-

less connection

The aim of this experiment is to evaluate the accuracy of the proposed AHBM

approach on Encrypted Wireless network traffics. Our evaluation of encrypted

wireless connection based on side-channel information leaks where the attacker

has no access to the targeted encrypted WLAN. The attacker’s goal is to infer

user’s internet browsing activities. According to the literature, a similar attack

could be achieved on cellular networks with relative ease [81].

To achieve such attack successfully, an attacker should have a foreknowledge

about the targeted device MAC address. If not, MAC address still can be obtained

via utilizing the organizationally unique identifier (OUI) lists to identify the tar-

geted user device MAC address. Moreover, the targeted device MAC address can

be also obtained through utilizing wireless Localization techniques [82].

68

6.2.1 Data collection

Dataset has been collected in an automated controlled environments that con-

sist of three devices: Victim PC with a wireless adapter, Wireless Access Point

and attacker PC powered by Kali Linux and a wireless adapter in monitor mode.

Victim PC with wireless adapter equipped with a python script that utilizes se-

lenium library to control the chrome Browser. It visited 30 websites of Alexa’s

top websites each 40 times in a round-robin fashion (the first sample of each web-

site is collected, then a second sample, etc.). During website fetching process

from Victim PC over the encrypted wireless connection, attacker PC monitors all

the wireless traffic between victim PC and the Access Point over their dedicated

channel. To ensure that our labeling process is accurate for classification pro-

cess, victim PC and attacker PC were synchronized over socket communication.

airodump-ng tool is used for capturing process while Wireshark was used for the

filtering process. During both processes, filtering was achieved over MAC address.

The data has been collected during April 2017.

6.2.2 One-to-one cross-validation results

As in the case of VPN dataset, we have evaluated our approach against the wireless

dataset. Only features that are shared among the 75% of the training instances

will be incorporated in creating the final model for each website. The good result

is obtained with a feature size of 2 and window size of 2 instead of 4 as with

VPN experiment because it gets better accuracy. With Windows size of 4 recall,

69

Precision Recall F1_measure
40 %

50 %

60 %

70 %

80 %

90 %

100 %

 P
er

ce
nt

ag
e

Figure 6.2: Precision, Recall, and F1 measure values for cross-validation on wire-
less dataset.

precession and F-measure were 0.75, 0.71 and 0.73 respectively while with window

size 2 recall, precession and F-measure were 0.84, 0.89 and 0.86 as shown in

figure 6.2. It is logical that window size 2 produce better results than window size

4. As mentioned in chapter 3 that smaller window size resulted with more number

of features are incorporated in generating the final bloom filters. Consequently,

false positive will be decreased while true positive are increased. The price paid is

slightly increases in feature processing. However, the increase in processing could

be negligible. The change will in the following, instead of chosen the least likely

features among 4 features; it will be selected between two features.

6.2.3 Identifying a website within a sequence of web ac-

tivity encrypted wireless connection

Again, in order to assess the efficiency of the proposed AHBM approach to identify

a website visit within a long sequence of network traffic packets (without split-

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Websites

0

20

40

60

80

100

S
im

il
a
ri

ty
 S

c
o
re

website is included
website is excluded

Figure 6.3: Distribution of the similarity scores for each website (1) when the
website is part of the testing data and (2) when the website is removed from the
testing data.

ting and using a sliding window), we used one-to-all cross-validation on wireless

dataset. For each website, Figure 6.1 shows the range of all values observed in

the 10-folds (dashed lines) and where 75% of the values are concentrated (closed

boxes).

For the majority of websites, the similarity score between the website similarity

digest and the consolidated test data is smaller when the website is not part of

the test data. However, there is a clear separation between the two cases (website

is included and website is excluded). This explains the high values resulted from

the one-to-one cross validation demonstrated earlier.

Figure 6.4 shows the precision, recall and F1 measures for the same experiment.

Compared to Figure 6.2, values are slightly lower but are still acceptable.

71

Precision Recall F1_measure
40 %

50 %

60 %

70 %

80 %

90 %

100 %

 P
er

ce
nt

ag
e

Figure 6.4: Precision, recall, and F1 measures for a modified 10-fold cross-
validation (All test samples are consolidated in a single sequence.

6.3 Observations

Based on results acquired from website fingerprinting over encrypted wireless con-

nection, configured with WAP2, and secure VPN client software installed on user

computer device, We can see that there are similarities between VPN and wireless

experiments. This similar behavior resulted form the fact that both secure VPN

and wireless access point configured with encrypted protocol do nothing except

that they encapsulate the exchanged data in a secure tunnel even though the both

techniques are functions at different network layers. While website fingerprinting

over tor browser has shown different and poor accuracy result with our approach

is because of the following: firstly, tor browser is utilizing the tor network which

uses anonymity protocol-Onion routing- in addition to applying three layer of en-

cryption. Furthermore, tor browser has built in randomization technique that its

purpose is to exchanged data in a randomized manner in order to hide brows-

ing fingerprinting activities. Moreover, tor browser exchange data using cell unit.

72

Each unit is of size 512 bytes. Even though if the exchanged data is less than

512; the exchanged data will be padded with random data. Cells and padding are

intentionally incorporated in order to wipe out fingerprinting resulted from the

generated packets size. Therefore, the only things remaining for the attacker to

infer the signature from is the order of the consecutive packets.

73

CHAPTER 7

NETWORK MALWARE

DETECTION

Detecting malware activity through traffic analysis is attractive since it allows to

cover a large number of hosts without requiring any of these hosts to install any

software. Deep packet inspection (DPI) is the major approach for network mal-

ware detection which consists in checking the packet payloads in search of specific

bytes. As mentioned above, DPI assumes that malware communicates through

plain-text protocols (e.g. http, IRC, etc.). As malware are increasingly using en-

crypted protocols as well as secure tunneling, recent network malware detection

approaches resorted to pattern-based traffic analysis [40, 47, 83]. Furthermore,

incorporating obfuscation techniques as well as rootkit services borrowed from

other malware make malware detection by anti-malware very challenging prob-

lem. According to the literature, classical anti-malware have shown a failure to

keep an up-to-date database of malware signatures to defend against rapid mal-

74

ware generations. This escalation from the malware authors triggers researchers

to develop behavioral countermeasure since it becomes impractical to generate a

signature for each malware.

Malware network signatures are defined in terms of features such as number of

packets, number of bytes, average bytes per packet, etc. which requires, again, to

split the traffic into packet sequences corresponding to potential malware sessions.

This section details the empirical analysis of applying AHBM approach on

a malware dataset. We will demonstrate how our similarity hashing approach

can be incorporated in building behavioral network-based clustering system. To

reach our goal, we have utilized our customized approximate hash based matching

as a similarity metric. Consequently, our proposed system clusters unlabeled

malware into groups based on the similarity of the groups’ members. The goal of

clustering malware is not to discriminate between malware families. However, it

is for creating behavioral model for each group. Therefore, learned models should

have the ability to identify their representative similarities and variants.

We have two scenarios to achieve this. The first option could be achieved via,

starting by assuming each malware sample acts as a cluster. Then, a hierarchical

clustering algorithm is applied. The second option, which we have applied is

through applying K-mean clustering algorithm. One of the main issue with K-

mean algorithm is deciding the number of the clusters that the algorithm should

start with. To solve this issue, we resort to using AVCLASS tool [84] that

utilize virus total to label binary malware samples. even though, according to

75

the literature, anti-malware labeling is not accurate since there is no labeling

standard that majority of anti-malware agree on. Even though our used tool for

labeling tries to use the majority name resulted from virus-total. However, our

clustering uses this labels just to decide the number of initial clustering as an input

to k-mean clustering algorithm. One more benefit of using major anti-malware

labeling before indulging in clustering procedure is that, we can see during the

clustering operation how the family members grouped together. For example, w

have seen the two biggest families- trymedia and installcore respectively- spilted

into several clusters. On the other hand, two different malware families-imaili and

zenzue- are grouped together into one cluster with all their instances. Each group

is represented by a centroid. The Centroid is a malware sample instance that has

the highest similarity connection relationship among all the other members of its

related group.

7.1 Data collection

The list of malware binaries used in the data collection is retrieved from virusshare1

malware repository. The list consists of 16000 malware binaries posted on the

repository on September 2016. To execute the binaries and capture their traf-

fic, we used a sandbox-based isolation program, namely, sandboxie2 running on a

Windows XP SP3 32-bits virtual machine. As an initial filtering step, Wewrote

a script to automatically check the PE header of the binaries and filter out all

1www.virusshare.com
2www.sandboxie.com

76

non-windows, non-32 bit, and corrupted header binaries. Then, each valid binary

is executed once through the sandbox while capturing its network communica-

tion. Each execution lasts 2 minutes. As expected, a significant portion of valid

malware did not yield network activity. The list of possible reasons include:

• malware using anti-VM

• malware using anti-sandbox

• malware using anti-debugging

• Command and Control (C2) server is down.

Malware that exchanged less than 50 packets is filtered out. Among the 16000

initial malware binary retrieved from virusshare, only 1050 passed the two filtering

steps. Among this 1050 binary, we chose the first 1000 for the data collection.

Malware data collection consists of executing the filtered 1000 binaries, 10 times

each, in a round-robin fashion through the sandbox on the same Windows XP

SP3 virtual machine. Each execution lasts 2 minutes. From the 1000 malware,

we kept only the malware that yields 10 valid samples. That is, if a malware has

at least one sample (out of 10) with less than 50 packets, it is dropped. After this

last filtering, we ended up with 587 malware, with 10 valid samples each.

Malware execution has been done automatically via utilizing the sandboxie

command line for either running the malicious program as well as halting it. Each

malware allowed two minutes to be executed. During malware execution, tshark-

Wireshark command line- used to sniff the network generated by the executed

77

malware and filter out all unrelated network traffic such as DNS, NBNS. Fur-

thermore, background services are implicitly stopped, that automatically initiate

internet connection between now such as windows update, google service update,

multimedia sharing, Firefox browser update and error reporting, are stopped.

Moreover, before running the data collection process, we have made our virtu-

alized environment powered on for about one hour while making sure nothing is

running on except Wireshark sniffer on it to inspect if there were some unobserved

program or service that still use the Internet connection without our knowledge.

After dataset collection process finished, all malware samples that generate less

than 50 packets has been deleted for each related instance. Consequently, only

587 samples remained in our dataset. Then, we use AVCLASS tool [84] that uti-

lize virus total to label binary malware samples according to their family name.

Malware that can not be recognized by the labeling tool unrecognized label is

assigned to them. At the end, we got 27 families. The biggest family consist of

92 samples whereas the small family has two.

7.2 Clustering procedure

Applying cross-validation on the malware dataset the same way as VPN and Tor

datasets produced very low accuracy results. The main problem is that considering

each binary as a separate class is not appropriate for malware traffic analysis

because several binaries correspond to the same malware due to obfuscation3.

3Malware obfuscation consists of a set of technique to change the shape of binaries in order to
bypass antivirus detection. This includes encryption, packing, polymorphism, metamorphism,

78

To overcome this issue, malware binaries are clustered into families sharing the

same features. Malware clustering is a commonly used technique to deal with the

redundancy of malware binaries [50, 10].

Typical malware clustering approaches rely either on malware executable bytes [85,

86] malware system call traces [87, 88], or non-encrypted network activity [50, 10,

8]. The malware clustering we propose in this section relies only on packets size,

order, and direction of the malware network traffic. This makes the clustering

applicable for any malware having network activity.

Our data set consist of 587 samples. Each sample has 10 instances. To test our

proposed approach on behavior malware clustering based on network traffic, we

have applied five fold cross-validation. In each fold step, we take eight instances

from each malware sample in our dataset to participate in the clustering process.

The remaining two instances from each malware sample are kept to be used lately

as a testing dataset against the generated final signature of each final cluster.

Clustering Procedure goes through the following steps: firstly, fold one train-

ing data are grouped based on labels using AVCLASS tool, which assign a label

for each malware via utilizing virus-total reports as mentioned earlier. How-

ever, this labeling is not mandatory as Wewill explain later. Then, a distance is

calculated between each pair in every group using our customized approximate

hashing (AHBM). Consequently, a malware instance that has the highest similar-

ity connections relationship among the group members and satisfies the similarity

threshold will be nominated as the centroid of that group. If it happens that

etc.

79

more than three instances within a group have not matched with threshold simi-

larity(out layers); They will be moved to their new cluster and the same centroid

calculation will be applied to them in a recursive way. After this step, each cluster

will have its own centroid. Then, all centroid will be compared against each other.

If two centroids happen to mach the similarity threshold; the cluster with small

members will be merged with with largest cluster. The remaining clusters that

their centroid have no similarity, each instance of that cluster will be compared

with every other clusters’ centroids. If it happens that a higher similarity value

has been achieved with other centroids other than its current one, then this in-

stance will move to that centroid cluster. After every instance has got its chance

to see the best cluster to stay in, centroid calculation algorithm will calculate

again to fit the new movement and merging process. Centroid calculation, merg-

ing and movement process will be repeated several time until no need for further

merging or movement steps any more. Then, all centroids similarity hashes digest

using AHBM will be selected as the final behavior model for each group. To see

the effect of the selected centroid models, each centroid will be tested against its

related test data samples and tested also against two normal data sets that have

been used as a benchmark for the intrusion detection systems [89]. After that

fold two, fold three. Fold four and fold five go through the same steps that fold

one went through but with their training and test data. The whole clustering

procedure can summarize in the following pseudo code.

80

Algorithm 1 Malware clustering using AHBM similarity score

INPUT: S = {the set of all malware traffic samples mts}
INPUT: thclst: a similarity score threshold
OUTPUT: C: a set of malware clusters

Divide S randomly into malware clusters C (e.g. clustering S based on virus-
total family names)
repeat

//centroid Calculation
for each cluster Ck in C do

centroid calculation(Ck)
end for

//Merging
Ctemp = C
for each pair of clusters Ci and Cj in Ctemp do

if SC(ctroidi, ctroidj) ≥ thclst then
Merge Ci and Cj into a new cluster
Remove Ci and Cj from Ctemp

end if
end for
//Migrating outliers
for each cluster Ck still in Ctemp do

for each instance mts in Ck do
Find the closest cluster to mts
closestC ← arg max

i...|C|
SC(mts, ctroidi)

Migrate mts to closestC
end for

end for

until no more splitting and no more merging

function centroid calculation(Ck)
//Select a centroid (ctroidk) for Ck

ctroidk ← arg max
i=1...|Ck|

∑
j=1...|Ck|

SC(mtski ,mts
k
j)

//Look for outliers in cluster Ck

outliersK ← {mtski |SC(mtski , ctroidk) < thclst}

//Create a new cluster and split recursively
if |outliersk| > 3 then

Create a new cluster Cn and add it to C
Split recursively(Cn)

end if
end function

81

Feature Sizes

2
3

4
5

Window Size

4
8

12
16

20
24

F1
_m

e
a
su

re

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Figure 7.1: Accuracy in terms of feature size and window size.

7.3 Chosen parameters

several parameters participated in our proposed system. First of all anti-malware

labeling, as We have mentioned earlier that it is not mandatory to resort to it

because we can start with arbitrary as if we start to used hierarchical clustering

algorithm. We argue with this because of the following: first of all the purpose

of the proposed system is to create a behavioral network clustering models for

unlabeled malware group that has similar network behavior to be used as their

signature. Secondly, merging and movement operation have the capability to

end up with almost similar group resulted from k-mean. Furthermore, most of

the labeling approaches are taken from either strings within binary code, system

behavior; its rarely a name has been generated network behaviour. Last but not

the least, several malware today are composed of more than one malware type or

different malware types are using the same network payloads delivery mechanisms

or two malware variant use different network payload delivery; that is why we

82

notice that two or more different families have similar network behavior. What

is matter practitioner’s more is the false positive. They suffer from false positive

especially with using intrusion detection systems.

Score similarity threshold is the second parameter participated in malware

clustering procedure. Score similarity threshold means the minimum similarity

score needed so that we can tell that the two compared instances are similar.

In our evaluation we have used similarity score (t=20) based on experimental

experiments. We have tested it with three different values t=[15,20,30]. Larger

the similarity score threshold value used will result in a large number of generated

clusters. Consequently, more centroids will be generated with high False negative.

This typically happens with large malware families that include a big number of

instances. Consequently, it will be hard to represent all the malware with on or

two centroids. For example, in our experiment, installCore and trymedia families,

which are the largest malware families in our dataset, have been represented with

around six clusters each.

As with VPN experiment mentioned in chapter 3, feature size (how many

packets are considered at a time) and the window size (how many features are

considered in the winnowing based selection). In order to empirically choose the

optimal values for those parameters, Clustering Procedure has been applied several

times using a different combination for both features size and widow size. Good

parameter values (feature size and window size) should maximize the F1-measure

calculated for each five-fold cross validation clustering experiment. Figure 7.1

83

shows F1-measure resulted form the different combinations of feature size and

window size. Clearly, it can be seen that the best result acquired resulted form

using feature size equals to 2 and window size equals to 4. This combination is

similar to the best values chosen at VPN experiment demonstrated at chapter 3.

7.4 Evaluation

As long as the purpose of our contribution is to test the applicability of our

customized approximate hashing as a similarity metric to cluster the unlabeled

malware into groups. So that we can generate a behavioral signature for each

group as it has been demonstrated clearly in the previous section. Therefore,

we will evaluate our clustering procedure using two measures: Conciseness and

Compactness. The purpose of using these two accuracy measures is to test how

good our proposed similarity metric at clustering malware into groups as well as

how are members of each generated cluster are close to each other respectively.

7.4.1 Compactness

Compactness Basically measures the relationship connectivity among resulted

clusters’ members. A good generated cluster its members are very close to each

other. In our context, a good cluster exists when all cluster’s members have high

similarity among each other. To check similarity connectivity among cluster’s

members in our case we applied the following formula: the number of relations

exists that satisfy the assigned similarity score threshed over the maximum num-

84

 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Compactness

Figure 7.2: Clusters Compactness.

ber of the all possible relations supposed to be existed. Where the maximum

number of the all possible relations calculated via following formula:

compactness = A/(n ∗ (n− 1)/2) (7.1)

where n is the number of instances in cluster, A represents the number of relations

exists that satisfy the assigned similarity score threshed.

To evaluate how good our generated clusters using our proposed approach,

compactness has been calculated for each final resulted cluster using the previous

formula. Figure 7.2 shows the compactness values calculated for every cluster

that have been generated during the five cross-fold validation with confidence

interval equals 0.99. From the figure, we see that almost all the clusters members

have high similarity value matching the similarity score threshold assigned at the

start of clustering procedure (t=20). Furthermore, from quartile figure, we can

see that for each cluster around half its members have full similarity relationship

85

Precision Recall F1_measure
40 %

50 %

60 %

70 %

80 %

90 %

100 %

 P
e
rc

e
n
ta

g
e

Figure 7.3: Precision, Recall, and F1 measure values for cross- validation on
Malware dataset.

connection with all their siblings.

7.4.2 Conciseness

Conciseness demonstrates the capability of our proposed similarity metric as a

function to cluster malware into groups that share similar network behavior. Fur-

thermore, it will test how good our final generated centroids’ approximate hash

bloom filters are a good representative to there related group members. To fulfill

this objective, we will test our final generated centroid’s approximate hash bloom

filters resulted from each fold mentioned in the cluster procedure mentioned earlier

against their related test dataset. For each fold, we calculate the Recall, Preces-

sion and F1-measure. Through these values, we can see how good our clustering

process as depicted in figure 7.3.

Figure 7.3 shows the results of malware behavioral clustering procedure which

are 96% for the precision, 71% for the recall, and 82% for the F1-measure. As we

86

can see that Precession is very high compared to the Recall which means that,

whenever we faced a similar malware test instance point, we have a high confidence

that our centroids approximate hash based filters will be able to catch it. However,

regarding the recall’s low degrade compare to the precession is because of that, a

test malware instance might be get caught by another centroid’s signature other

than its related one or might be tested against a different centroids other than

its related centroid. This situations might happen when some malware instances

spreed into different clusters. Therefore, its related test instances will be tested

against two different centroids because our implementation allows each centroids

to have a list of all its member’s test data instances to be tested later against them.

Another reason behind is that, a malware instances spread into different groups

during clustering procedure is that, as we mentioned in the dataset collection

earlier that, each malware samples has been executed ten times at different time

intervals. Therefore, a malware might decide to change his networking behaviour

at different time it has been executed in order to avoid classical anti-malware or

firewall rules.

7.4.3 Cluster centroids against single large dataset

In these evaluation, we check the capability of our approach to check the existence

of a needle in a haystack instead of comparing an apple with an apple as it usually

happened with other proposed solutions in this field. We accomplish these via

checking the existence of a cluster’s centroid or any malware instance belonging

87

 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
0

20

40

60

80

100

S
im

ila
ri

ty
 V

a
lu

e

Malware Test dataset
Normal dataset-1
Normal dataset-2

Figure 7.4: Centroids Signature VS three single big test datasets.

to its group within one thousand of malware traffic gathered into one single test

file. Basically, the test dataset used has been taken from cross fold test data used

during the clustering process. The difference between this experiment and the

ordinary cross-fold validation experiment preformed earlier is that, during cross-

fold validation each cluster’s centroid checked against each test malware instance

in one-to-one comparison fashion while this experiment is similar to finding a

needle in a haystack as mentioned earlier. Every cluster’s centroid is tested against

the all its fold malware instances that are combined into a single file. Therefore,

we do not know where the centroids test data instances exists. It may be at

the beginning, at the middle or scattered through the combined single test data

file. During the same time, each cluster’s centroid is also tested against two

normal traffic datasets borrowed from the intrusion detection system test data

benchmark[89]. The first dataset size is 16GB while the second dataset size is

4GB. The result of this experiment is demonstrated in fig 7.4. We can see from

88

the figure that similarity values of malware centroids against the malicious test

data vary between 85 and 100 similarity score. Furthermore, as the quartiles show

that, more than half of the similarity values hit 100 similarity with confidence

interval equals 0.99. While centroids similarity values against the two normal

dataset vary between 0 and 33 similarity score. In the same way, half of similarity

scores between the malware clusters’ centroids and the two normal traffic dataset

is zero with confidence interval equals 0.99. These values give us a high confidence

that our proposed approximate hashing used as a similarity metric as well as the

way to represent the final clusters’ centroid by hash bloomed filter is an effective

method for clustering malware in groups in order to create a behavioral network

signature for each group.

89

CHAPTER 8

CONCLUSION

8.1 Summary of contribution

Networking traffic can be easily captured. Captured Traffic can be either analyzed

at run-time or stored for later inspection. Privacy enhancing technologies, that

applies extensive encryption, aim at protecting clients from malicious software,

that has been implemented intentionally to intrude internet users’ privacy. Several

works, that utilize different machine learning algorithms, have shown that VPN

product is vulnerable to website fingerprint attack. Highest contribution achieved

94%. However, their proposed solution are calculation intensive. Tens of hours are

needed to train a classifier on only 100 websites. Furthermore, currently available

contributions can not handle needle in a haystack scenario without extensive pre-

processing. Therefore, scalability is a major issue for current works.

The main Contribution of this thesis is to tackle the scalability faced earlier

proposed solutions. It is inspired by similarity digest hashing(ABHM), that it has

90

been incorporated recently in digital forensics. We have customized the core of

the similarity digest approach to be tailored with network traffic analysis. My

proposed approach has shown superiority over the current website fingerprint at-

tacks. It generates the final modules in minutes instead of hours with scalability

merit as well. It achieved 87% precision rate over VPN and 0.89 over an en-

crypted wireless connection. This accuracy have been achieved while taking a

fixed threshold values. Selected thresholds are learned for each website while test-

ing each website’s generated model against a large test data when that website

is not included within that test data. Consequently, our final models consist of

both sdhash bloom filters, that generated by our customized tool, and the learned

threshold.

In addition, we have also shown that my proposed approach has a very promis-

ing application in designing behavioral malware traffic detection system. Cus-

tomized similarity digest has been tailored to be used as a distance metric. My

implemented approach was able to cluster 587 malware into (17-19) clusters- re-

sulted from five different runs. At the end, the centroids generated for each group

are selected as a final malware signatures. Last but not the least, we have also

shown that our generated malware clusters’ centroid signatures were able to dif-

ferentiate between normal and malicious traffic with a very small false positive

rate. We can control false positive until approaches zero via adjusting selected

thresholds, that are companion to our generated models as we have demonstrated

in the previous chapter. Empirical experiments showed that there are a clear sep-

91

aration when clusters’ centroids signature are tested against both normal traffic

and malware traffic testing data.

To summarize, experimental results show a very promising results for VPN,

malware traffic, encrypted wireless traffic, but low results for Tor traffic.

8.2 Threat to validity

Regarding incorporating the tailored similarity hashing approach into network

traffic analysis, if a new formula used for calculating the similarity score instead

of the one mentioned in section 4.2.4; a major difference in reported results may

appear especially for website fingerprinting over tor browser with which we have

got a poor result compared to the other experiments.

On the other hand, to detect malware’s network traffic, our proposed solution

has weakness which commonly shared with dynamic analysis solutions. First of

all, our collected dataset is collected from the execution of malware under sandbox

environment. Therefore malware that employs anti-sand-boxing techniques will

evade disclosing their networking behavior. Consequently, they will not contribute

in clustering procedure. To remedy this limitation, instances that did not generate

network sample should be given another chance to be executed in real physical

environment. The second limitation is due to the time interval allowed for each

malware to be executed. In our experiment, each malware instance allowed only

two minutes. Therefore, some malware might not expose a distinctive behavior

during this time period limit waiting for a certain activity or related issues as

92

mentioned in [90]. In the same way, similar limitation resulted form malware

samples that relies on user input to perform their actions as demonstrated in

[91]. Another limitation is related to the environments that we used for executing

malware samples, which is over windows XP SP3. According to Moser et al.

[92] running malware in multiple environment in parallel with other computer

programs such as anti-malware or with different network infrastructure might

yield different behavior.

Last but not the least, any traffic manipulation such as Morphing-Packet size,

HTTPOS, Traffic padding etc. might reduce the accuracy our approach. For

example, Tor browser applies packets padding. As a result, we have got a poor

result compared to the other experiments.

8.3 Future work

A possible area of work is to keep optimizing the parameters of the proposed

approach to gain more accuracy while keeping the same scalability levels.

Another application of our approach could be classifying different internet

application(p2p, video streaming, etc.) that exchange packet over the internet

network.

One more potential application of our approach is about secured wireless net-

work. We intend to further classify smart phones application (Facebook, twitter,

email-client, ..etc.) either over Android and IPhone. According the literature,

classifying Facebook application is easier than fingerprinting its related website

93

visit through internet browsers.

94

REFERENCES

[1] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical eval-

uation of website fingerprinting attacks,” in Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security. ACM,

2014, pp. 263–274.

[2] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting: at-

tacking popular privacy enhancing technologies with the multinomial naive-

bayes classifier,” in Proceedings of the 2009 ACM workshop on Cloud com-

puting security, ser. CCSW ’09. New York, NY, USA: ACM, 2009, pp.

31–42.

[3] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in Pro-

ceedings of the 12th ACM workshop on Workshop on privacy in the electronic

society. ACM, 2013, pp. 201–212.

[4] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions in

traffic classification,” Network, IEEE, vol. 26, no. 1, pp. 35–40, 2012.

95

[5] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann,

H. Bos, and M. Van Steen, “Prudent practices for designing malware exper-

iments: Status quo and outlook,” in Security and Privacy (SP), 2012 IEEE

Symposium on. IEEE, 2012, pp. 65–79.

[6] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version antivirus in

the network cloud.” in USENIX Security Symposium, 2008, pp. 91–106.

[7] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware de-

tection,” in Computer security applications conference, 2007. ACSAC 2007.

Twenty-third annual. IEEE, 2007, pp. 421–430.

[8] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario,

“Automated classification and analysis of internet malware,” in International

Workshop on Recent Advances in Intrusion Detection. Springer, 2007, pp.

178–197.

[9] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and

classification of malware behavior,” in International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment. Springer, 2008,

pp. 108–125.

[10] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: feature hashing mal-

ware for scalable triage and semantic analysis,” in Proceedings of the 18th

ACM conference on Computer and communications security. ACM, 2011,

pp. 309–320.

96

[11] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: cap-

turing system-wide information flow for malware detection and analysis,” in

Proceedings of the 14th ACM conference on Computer and communications

security. ACM, 2007, pp. 116–127.

[12] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer, “Behavior-

based spyware detection.” in Usenix Security, vol. 6, 2006.

[13] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic

classification using machine learning,” Communications Surveys & Tutorials,

IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[14] A. Este, F. Gringoli, and L. Salgarelli, “On-line svm traffic classification,”

in Wireless Communications and Mobile Computing Conference (IWCMC),

2011 7th International. IEEE, 2011, pp. 1778–1783.

[15] A. Finamore, M. Mellia, M. Meo, M. M. Munafo, and D. Rossi, “Experiences

of internet traffic monitoring with tstat,” Network, IEEE, vol. 25, no. 3, pp.

8–14, 2011.

[16] A. Finamore, M. Mellia, M. Meo, and D. Rossi, “Kiss: Stochastic packet

inspection classifier for udp traffic,” IEEE/ACM Transactions on Networking,

vol. 18, no. 5, pp. 1505–1515, 2010.

[17] W. de Donato, A. Pescapé, and A. Dainotti, “Traffic identification engine:

an open platform for traffic classification,” Network, IEEE, vol. 28, no. 2, pp.

56–64, 2014.

97

[18] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a distance:

Website fingerprinting attacks and defenses,” in Proceedings of the 2012 ACM

conference on Computer and communications security. New York, NY, USA:

ACM, 2012, pp. 605–616.

[19] V. Roussev, “Data fingerprinting with similarity digests,” in Advances in

digital forensics vi. Springer, 2010, pp. 207–226.

[20] ——, “Building a better similarity trap with statistically improbable fea-

tures,” in System Sciences, 2009. HICSS’09. 42nd Hawaii International Con-

ference on. IEEE, 2009, pp. 1–10.

[21] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos, “Is

p2p dying or just hiding?[p2p traffic measurement],” in Global Telecommuni-

cations Conference, 2004. GLOBECOM’04. IEEE, vol. 3. IEEE, 2004, pp.

1532–1538.

[22] A. M. M. K. K. O. M. S. L. E. A. M. W. E. Joe Touch, Eliot Lear and

A. Zimmermann, “Service name and transport protocol port number reg-

istry,” IANA, 2016.

[23] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service map-

ping for qos: a statistical signature-based approach to ip traffic classification,”

in Proceedings of the 4th ACM SIGCOMM conference on Internet measure-

ment. ACM, 2004, pp. 135–148.

[24] “L7 filter,” ”http://l7-filter.sourceforge.net”, Clear Foundation, 2009.

98

[25] “Ndpi,” ”http://www.ntop.org/products/deep-packet-inspection/ndpi”,

NTOP, 2016.

[26] “ntopng,” ”http://www.ntop.org/products/traffic-analysis/ntop”, NTOP,

2016.

[27] S. Alcock and R. Nelson, “Libprotoident: traffic classification using

lightweight packet inspection,” WAND Network Research Group, Tech. Rep,

2012.

[28] “Cloudshield (lookingglass,” ”https://www.lookingglasscyber.com”, Look-

ingGlass, 2016.

[29] “Netflow traffic analyzer,” ”http://www.solarwinds.com/netflow-traffic-

analyzer”, Solarwinds, 2016.

[30] “Network based application recognition,” ”http://www.cisco.com”, CISCO,

2016.

[31] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “Acas: automated construc-

tion of application signatures,” in Proceedings of the 2005 ACM SIGCOMM

workshop on Mining network data. ACM, 2005, pp. 197–202.

[32] B.-C. Park, Y. J. Won, M.-S. Kim, and J. W. Hong, “Towards automated

application signature generation for traffic identification,” in Network Opera-

tions and Management Symposium, 2008. NOMS 2008. IEEE. IEEE, 2008,

pp. 160–167.

99

[33] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. X. Liu, Z. Zhang, D. Yao,

Y. Zhang, and L. Guo, “A semantics aware approach to automated reverse

engineering unknown protocols,” in Network Protocols (ICNP), 2012 20th

IEEE International Conference on. IEEE, 2012, pp. 1–10.

[34] Y. Wang, Y. Xiang, W. Zhou, and S. Yu, “Generating regular expression

signatures for network traffic classification in trusted network management,”

Journal of Network and Computer Applications, vol. 35, no. 3, pp. 992–1000,

2012.

[35] A. Tongaonkar, R. Torres, M. Iliofotou, R. Keralapura, and A. Nucci, “To-

wards self adaptive network traffic classification,” Computer Communica-

tions, vol. 56, pp. 35–46, 2015.

[36] F. J., “Machine learning and intrusion detection: current and future direc-

tions,” in In Proceedings of the 17th National Computer Security Conference,

October 1994.

[37] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, “Network

traffic classification using correlation information,” IEEE Transactions on

Parallel and Distributed Systems, vol. 24, no. 1, pp. 104–117, 2013.

[38] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust network traffic

classification,” IEEE/ACM transactions on networking, vol. 23, no. 4, pp.

1257–1270, 2015.

100

[39] F. Gringoli, L. Nava, A. Este, and L. Salgarelli, “Mtclass: enabling statistical

traffic classification of multi-gigabit aggregates on inexpensive hardware,”

in Wireless Communications and Mobile Computing Conference (IWCMC),

2012 8th International. IEEE, 2012, pp. 450–455.

[40] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer, “Using machine learning

techniques to identify botnet traffic,” in In 2nd IEEE LCN Workshop on

Network Security, 2006, pp. 967–974.

[41] A. Boukhtouta, N.-E. Lakhdari, S. A. Mokhov, and M. Debbabi, “Towards

fingerprinting malicious traffic,” Procedia Computer Science, vol. 19, pp. 548–

555, 2013.

[42] R. Alshammari and A. N. Zincir-Heywood, “Investigating two different ap-

proaches for encrypted traffic classification,” in Privacy, Security and Trust,

2008. PST’08. Sixth Annual Conference on. IEEE, 2008, pp. 156–166.

[43] ——, “Machine learning based encrypted traffic classification: Identifying ssh

and skype.” CISDA, vol. 9, pp. 289–296, 2009.

[44] T. Nelms, R. Perdisci, and M. Ahamad, “Execscent: Mining for new c&c

domains in live networks with adaptive control protocol templates,” in Pre-

sented as part of the 22nd USENIX Security Symposium (USENIX Security

13), 2013, pp. 589–604.

[45] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: clustering analysis of

network traffic for protocol- and structure-independent botnet detection,” in

101

Proceedings of the 17th conference on Security symposium, ser. SS’08. Berke-

ley, CA, USA: USENIX Association, 2008, pp. 139–154.

[46] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command and

control channels in network traffic.” in NDSS. The Internet Society, 2008.

[47] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder: Finding bots in

network traffic without deep packet inspection,” in Proceedings of the 8th in-

ternational conference on Emerging networking experiments and technologies.

ACM, 2012, pp. 349–360.

[48] C. Rossow and C. J. Dietrich, “Provex: Detecting botnets with encrypted

command and control channels,” in Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer, 2013, pp. 21–40.

[49] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “Bothunter: detect-

ing malware infection through ids-driven dialog correlation,” in Proceedings

of 16th USENIX Security Symposium on USENIX Security Symposium, ser.

SS’07. Berkeley, CA, USA: USENIX Association, 2007, pp. 12:1–12:16.

[50] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-based

malware and signature generation using malicious network traces.” in NSDI,

2010, pp. 391–404.

[51] X. Wang, W. Qiu, and R. H. Zamar, “Clues: A non-parametric clustering

method based on local shrinking,” Computational Statistics & Data Analysis,

vol. 52, no. 1, pp. 286–298, 2007.

102

[52] D. Pelleg, A. W. Moore et al., “X-means: Extending k-means with efficient

estimation of the number of clusters.” in ICML, vol. 1, 2000.

[53] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generat-

ing signatures for polymorphic worms,” in Security and Privacy, 2005 IEEE

Symposium on. IEEE, 2005, pp. 226–241.

[54] M. Z. Rafique and J. Caballero, “Firma: Malware clustering and network sig-

nature generation with mixed network behaviors,” in International Workshop

on Recent Advances in Intrusion Detection. Springer, 2013, pp. 144–163.

[55] R. Perdisci, D. Ariu, and G. Giacinto, “Scalable fine-grained behavioral clus-

tering of http-based malware,” Computer Networks, vol. 57, no. 2, pp. 487–

500, 2013.

[56] R. Dingledine, N. Mathewson, and P. Syverson, “Tor : the second-generation

onion router,” in Proceedings of the 13th Usenix Security Symposium, August

2004.

[57] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fingerprinting

in onion routing based anonymization networks,” in Proceedings of the 10th

annual ACM workshop on Privacy in the electronic society, ser. WPES ’11.

New York, NY, USA: ACM, 2011, pp. 103–114.

[58] M. Liberatore and B. N. Levine, “Inferring the source of encrypted http

connections,” in Proceedings of the 13th ACM conference on Computer and

103

communications security, ser. CCS ’06. New York, NY, USA: ACM, 2006,

pp. 255–263.

[59] V. Roussev, “Hashing and data fingerprinting in digital forensics,” Computing

in Science and Engineering, vol. 7, no. 2, pp. 49–55, 2009.

[60] M. O. Rabin et al., Fingerprinting by random polynomials. Center for Re-

search in Computing Techn., Aiken Computation Laboratory, Univ., 1981.

[61] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching al-

gorithms,” IBM Journal of Research and Development, vol. 31, no. 2, pp.

249–260, 1987.

[62] U. Manber et al., “Finding similar files in a large file system.” in Usenix

Winter, vol. 94, 1994, pp. 1–10.

[63] S. Brin, J. Davis, and H. Garcia-Molina, “Copy detection mechanisms for

digital documents,” in ACM SIGMOD Record, vol. 24, no. 2. ACM, 1995,

pp. 398–409.

[64] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic

clustering of the web,” Computer Networks and ISDN Systems, vol. 29, no. 8,

pp. 1157–1166, 1997.

[65] K. Shanmugasundaram, H. Brönnimann, and N. Memon, “Payload attribu-

tion via hierarchical bloom filters,” in Proceedings of the 11th ACM conference

on Computer and communications security. ACM, 2004, pp. 31–41.

104

[66] C. Y. Cho, S. Y. Lee, C. P. Tan, and Y. T. Tan, “Network forensics on

packet fingerprints,” in IFIP International Information Security Conference.

Springer, 2006, pp. 401–412.

[67] H.-A. Kim and B. Karp, “Autograph: Toward automated, distributed worm

signature detection.” in USENIX security symposium, vol. 286. San Diego,

CA, 2004.

[68] J. Kornblum, “Identifying almost identical files using context triggered piece-

wise hashing,” Digital investigation, vol. 3, pp. 91–97, 2006.

[69] V. Roussev, “An evaluation of forensic similarity hashes,” digital investiga-

tion, vol. 8, pp. S34–S41, 2011.

[70] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local algorithms

for document fingerprinting,” in Proceedings of the 2003 ACM SIGMOD in-

ternational conference on Management of data. ACM, 2003, pp. 76–85.

[71] T. Wang and I. Goldberg, “On realistically attacking tor with website finger-

printing,” Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 4,

pp. 21–36, 2016.

[72] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A

survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[73] V. Roussev, G. G. Richard, and L. Marziale, “Multi-resolution similarity

hashing,” digital investigation, vol. 4, pp. 105–113, 2007.

105

[74] R. Stanton, “Securing vpns: Comparing ssl and ipsec,” Computer Fraud &

Security, vol. 2005, no. 9, pp. 17–19, 2005.

[75] S. Feghhi and D. J. Leith, “A web traffic analysis attack using only tim-

ing information,” IEEE Transactions on Information Forensics and Security,

vol. 11, no. 8, pp. 1747–1759, Aug 2016.

[76] Y. Shi and S. Biswas, “Detecting tunneled video streams using traffic anal-

ysis,” in Communication Systems and Networks (COMSNETS), 2015 7th

International Conference on. IEEE, 2015, pp. 1–8.

[77] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson, “Language identi-

fication of encrypted voip traffic: Alejandra y roberto or alice and bob?” in

USENIX Security, vol. 3, no. 3.6, 2007, p. 3.

[78] J. Hayes and G. Danezis, “Website fingerprinting at scale,” University College

of London (UCL), number: Technical report, 2015.

[79] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle, and

T. Engel, “Website fingerprinting at internet scale,” in Network & Distributed

System Security Symposium (NDSS). IEEE Computer Society, 2016.

[80] M. Perry, “A critique of website traffic fingerprinting attacks,”

”https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-

attacks”, The Tor Blog, 2013.

[81] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who do you sync you

are?: smartphone fingerprinting via application behaviour,” in Proceedings

106

of the sixth ACM conference on Security and privacy in wireless and mobile

networks. ACM, 2013, pp. 7–12.

[82] R. W. Ouyang, A. K.-S. Wong, and C.-T. Lea, “Received signal strength-

based wireless localization via semidefinite programming: Noncooperative

and cooperative schemes,” IEEE Transactions on Vehicular Technology,

vol. 59, no. 3, pp. 1307–1318, 2010.

[83] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer: Clustering analysis

of network traffic for protocol-and structure-independent botnet detection.”

in USENIX Security Symposium, vol. 5, no. 2, 2008, pp. 139–154.

[84] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool

for massive malware labeling,” in International Symposium on Research in

Attacks, Intrusions, and Defenses. Springer, 2016, pp. 230–253.

[85] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, “Mutantx-s: Scalable malware

clustering based on static features.” in USENIX Annual Technical Confer-

ence, 2013, pp. 187–198.

[86] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scal-

able, behavior-based malware clustering.” in NDSS, vol. 9. Citeseer, 2009,

pp. 8–11.

[87] M. Z. Rafique and J. Caballero, “Firma: Malware clustering and network sig-

nature generation with mixed network behaviors,” in International Workshop

on Recent Advances in Intrusion Detection. Springer, 2013, pp. 144–163.

107

[88] I. Gurrutxaga, O. Arbelaitz, J. M. Perez, J. Muguerza, J. I. Martin, and

I. Perona, “Evaluation of malware clustering based on its dynamic be-

haviour,” in Proceedings of the 7th Australasian Data Mining Conference-

Volume 87. Australian Computer Society, Inc., 2008, pp. 163–170.

[89] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward devel-

oping a systematic approach to generate benchmark datasets for intrusion

detection,” computers & security, vol. 31, no. 3, pp. 357–374, 2012.

[90] J. R. Crandall, G. Wassermann, D. A. de Oliveira, Z. Su, S. F. Wu, and

F. T. Chong, “Temporal search: Detecting hidden malware timebombs with

virtual machines,” in ACM Sigplan Notices, vol. 41, no. 11. ACM, 2006, pp.

25–36.

[91] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, “A crawler-based

study of spyware in the web.” in NDSS, vol. 1, 2006, p. 2.

[92] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for

malware analysis,” in Security and Privacy, 2007. SP’07. IEEE Symposium

on. IEEE, 2007, pp. 231–245.

108

Vitae

• Name: Abdullah Mohammed Qasem

• Nationality: Yemeni

• Date of Birth: 1/1/1987

• Email: abdullahqasem87@gmail.com

• Permenant Address: Yemen-Taiz

• Education: King Fahd University of Petroleum and Minerals, Saudi Arabia

(2014-2017).

M.Sc. in Information and Computer Science.

Major: Security and Information Assurance.

109

