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Blind source separation (BSS) and blind system identifications (BSI) date back to
1970s. Due to the rapid growth of the wireless communication systems, this subject
starts receiving an increase attention as it leads to an increased throughput in case
of deploying it in conjunction with the training-based channel estimation approach,
namely semi-blind scenario. So far, it turns out that the standing literature related
to the BSS and BSI subjects is not well addressed for the emerging semi-blind
system identification technique.

This work addresses some of the earlier stated issues. In particular touches
upon BSI, BSS and blind deconvolution (BD) in the context of communication sys-

tems. One of the main objectives is to use the side information which is available



in such systems to obtain much efficient blind algorithms/methods and evaluate
their impact on the estimation quality. This is done by using different sufficient
optimization techniques, namely Givens/Shear rotations, fized point optimization
rule, and exact line search strategy. In the first part,we use the non-constant mod-
ulus nature of QAM signals to propose dedicated BSS algorithm for instantaneous
mixtures. Furthermore, to cope with a real case scenario, we extend different BSS
algorithm to perform BD and cover convolutive MIMO miztures.

In the second part, the BSI problem in the context of SIMO systems is treated.
Here, we propose a novel BSI method, which exploits the inherent Toeplitz struc-
ture that exists in most of communication systems. This method indeed leads to
a significant enhancement over the standard subspace method (SS) in terms of
performance, especially in the ill-conditioned scenario. On the other hand, by
means of the Cramer-Rao lower bound (CRB), the influence of some a priori side
information on the channel system identification is investigated. In particular, a
priori information includes channel sparsity and some other statistical properties
such as the non-circularity. These side information are classified into statistical
and structural ones. Their impact on the channel system identification’s quality

18 handled at the end of this part.
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CHAPTER 1

INTRODUCTION

In the last two decades, research efforts succeeded in introducing new technologies
to mankind. This has stimulated researchers appetite to advance the technology
further and further to cope with the market desire for fast, accurate and robust
systems. The advancement includes digital signal processing, antenna theory, and
semi-conductors fabrications. Telecommunications have been also witnessing a
very fast development. Yet, this development is confronted with very fundamental
problems which exist due to the system’s nature. Limited channel bandwidth and
the introduced Inter-symbol Interfere (ISI), due to the multipath propagation
behavior of the wireless communication systems, are among these fundamental
limitations. Besides, these systems suffer from the Inter-User Interference (IUT)
in the case of sharing the common radio resources among multiple users [1].
Many transmission, modulation, configuration and coding schemes have been
successfully introduced to overcome the challenges of the limited bandwidth and

provide the user with high-speed wireless communications [1, 2|. Traditionally,



training data sequences/Pilots are used to estimate the channel state information
and this is a kind of wasting the communication resources.

The subject addressed in this thesis has been inspired with different new re-
search efforts in the context of wireless communications. The main motivation
is the lack, as will be shown later, of existing dedicated blind algorithms for cer-
tain kind of modulation, such as QAM signaling, which is heavily used in many
standards. Also, modern wireless communications are very demanding in terms
of throughput, high transmission rate, and oriented to become greener. The use
of blind techniques has been considered for many purposes including waiving the
training sequence [3], reducing the pilot size using semi-blind approaches [4], or
mitigating the pilot contamination problem in massive MIMO systems [5]. In par-
ticular, it has been shown in [4, 5] that, thanks to the semi-blind solution, the pilot
sequence size can be reduced by a factor of 80 to 90% without affecting the chan-
nel estimation quality. Besides, in certain systems, this represents close to 25%
of energy reduction which is the main objective of the current research activities
for ’Green Communications’. These motivations were mainly behind this research
work. In this thesis, we contribute to the non-stop streaming contribution in the
literature throughout many axes.

The first axis targets the convolutive communication channels which usually
arises in wireless communication systems. Mainly, Multi-Modulus (MM) criterion
is used along with the simple unitary and/or J-unitary rotations to achieve the

Blind Deconvolution (BD). Four different BD classes have been proposed. The



first two classes are classified as two-step method, while the rest are one-step
recursive methods. The first class performs the BD by applying Blind Source
Separation (BSS) routine on a spatio-temporal system model, this results in the
separation of each source with its possible replicas where second order statistics
(SOS) rule is used to be able to perform pairing and sorting. The second class is
basically based on inverting the consequence of multipath effect by using certain
channel estimation and equalization algorithms. This reduces the convolutive
system into an instantaneous one and hence enabling the BSS step. While the
third method is based on optimizing a hybrid cost function and the last class is a
deflation based method and is conducted by extracting a single source each time
followed by a course of orthogonalization technique based on the SOS approach.
These contributions come as a natural extension of the recently proposed BSS
algorithms in [6].

The main rational behind introducing the four different classes of deconvo-
lution algorithms is to present an extensive comparison between the potential
method that can be employed to identify and separate signals of a predefined con-
stellation structure. Moreover, these class of algorithms, which are mainly derived
based on the elementary Givens and Shear rotations, in addition to their simplic-
ity and low computational cost as compared to other state of the art methods,
show to a have a very interesting convergence behavior [6, 7, 8.

In the same context, we developed another new class of BSS algorithms which

are shown to be fast and less costly as compared to the above described methods.



These methods are given in two implementations: the first one is a deflationary
MM-based method which is able to extract the sources one after another, while
the second one is a full MM-based method which is able to recover all sources
at once. These are obtained in favor of the fixed point optimization (FPO) rule.
The later implementation is shown to have an improved estimation quality. More-
over, the deflationary MM-based implementation is extended to cover systems of
convolution nature and perform the blind deconvolution in an efficient way. Fur-
thermore, these algorithms are shown to belong to the gradient descent fixed step
size iterative methods with a similar update recursive equation. In doing so, the
exact line search technique is used to derive an algebraic optimal step size and
eventually, by tolerating a slight increase in the computational cost, boosting the
algorithm’s speed of convergence further.

The second axis contributes to the multi-channel Blind System Identification
(BSI) problem. In particular to the case of ill-conditioned system identification,
whereby channel’s zeros become close, and hence most of the existing BSI fails
to identify the system’s response. In this regard, we exploit directly the impeded
Toeplitz channel structure in the signal linear model to build a quadratic form
whose minimization leads to the desired channel estimation up to a scalar factor.
This method can be extended to estimate any predefined linear structure, e.g.,
Hankel, that is usually encountered in linear systems. As will be shown later, this
method can be shown as a dual approach of the standard subspace (SS) method.

In brief, the SS method achieves the channel estimation by exploiting the



subspace information (i.e., orthogonality principle between signal and noise sub-
spaces) as well as the block Sylvester (block-Toeplitz) structure of the channel
matrix. More precisely, it enforces the latter matrix structure and minimizes the
subspace orthogonality error. As will be shown later, our proposed method, which
is shown to be a dual approach of the SS method, enforces the subspace infor-
mation while minimizing a cost function representing the deviation of channel
matrix from the Sylvester structure in the mean square sense. Theoretical and
experimental findings support our method for being able to maintain satisfac-
tory performance under challenging environments such as poor channel diversity
(ill-conditioned) scenario and small window size.

In the last axis, we explore alternative ideas to improve the channel estimation
and quantifying their impact. Such ideas are based on the side information which
is usually available in most of the standing systems. The side information can
be deployed to assist in the channel estimation and it can be of different shapes:
structural, such as sparsity, or statistical, such as cyclostaionarity, non-circularity
and Gaussianity. The impact of this side information is measured by the Cramer-
Rao lower bound (CRB). Moreover, most of the popular blind SOS methods fail
when the channel length is overestimated. Therefore, we evaluated the response of
both blind and semi-blind approaches against the channel length overestimation
effect by means of the CRB. This part is developed to explore the advantages of

utilizing the side information on the estimation problem.



1.1 Channel Estimation

Three major sorts of channel estimation are encountered in the literature which

are briefly discussed in the ensuing subsections.

1.1.1 Training-Based Channel Estimation

As discussed earlier, wireless communication systems crucially suffer from ISI
and IUI. Both emerge an extra processing and waste of the scarce wireless com-
munication resources, i.e., power and bandwidth. That said, the design of the
conventional communication receivers mitigate the earlier mentioned problems ei-
ther by knowing the communication channel or by estimating it by requesting an
access for the transmitted signals throughout transmitting pilots. The later is the
case in the standing wireless communication systems. Although, in the case of
invariant channels, the training signals insignificantly lessen the throughput, yet it
becomes significant for the time variant scenario. For instance, in high-frequency
communication systems, the pilot transmitting time can be as much as 50% of

the total transmission [9].

1.1.2 Blind Channel estimation

Estimating the channel state information based on the received data only without
depending on the training pilots refers to the blind channel estimation technique.
At first glance, this estimation seems to be untraceable, but it does! How would

it be possible to separate the source from the channel when no one of them is



known?

The existence of blind channel estimation resides in its ability to exploit the
properties and/or the structure of the input and/or the channel. A well-known
scenario is when the input has a known probabilistic model or statistics. In such
case, the separation is possible, for example, in communication systems the input
signals have a finite alphabet property or sometimes exhibit cyclostationarity. The
later property was deployed in [10] to show that the SOS can be successfully used
to identify non-minimum phase channels. This led to an immense development of
many subspace-based algorithms. Most of SOS based techniques impose diversity
conditions and deteriorate in case of channel overestimation. This concludes that
SOS techniques should not be used alone in communication systems and this
is perhaps the reason for not using blind techniques in this context. For more
information about SOS based methods and overview see [11] and the references
therein.

Besides to the SOS approach, there is a family of algorithms which is based on
the High Order Statistics (HOS). These algorithms waive the diversity conditions
and accordingly can be applied for single-input single-output (SISO) systems.
In the contrary to SOS-based algorithms which are phase blind methods, HOS
statistics, which are known as cumulants and their respective Fourier transforms
known as poly-spectra, reveal both amplitude and phase information. On the
other hand, cumulants are blind to all kind of Gaussian processes, whereas the

correlation (SOS-based) is not. Consequently, since many real world scenarios are



basically non-Gaussian, HOS are applicable to deal with non-Gaussian processes
successfully.

HOS-based algorithms are classified into two classes [12]: implicit and explicit
methods. The earlier, which uses the HOS implicitly, includes Sato algorithm [13]
and Godard-2 algorithm (or constant modulus algorithm (CMA)) [14]. However,
the explicit methods employ directly the cumulants or the poly spectra criterion,
see for example in the case of SISO systems [15] and [16], and for multi-channel
systems [17].

The fundamental drawback of the cumulant-based methods is that they require
a much longer data samples than the correlation-based methods. This is needed
in order to reduce the variance associated with the estimation of the higher order
moments from the sample averaging techniques. For a rich overview of the HOS

ttechniques kindly refer to [17] and [18].

1.1.3 Semi-Blind Channel Estimation

Lastly, hybridized techniques are traditionally emerged to solve pitfalls that may
arise in one or both of the hybridized techniques. Hence, one might conclude that
the remedy of the drawbacks revealed in both parties; training based and blind-
based channel estimation might lie in the semi-blind techniques. To understand
the meaning of this new terminology, we commence with the definition of both of
the hybrid methods. Training based methods depend completely on the known

received samples to retrieve the channel’s response, hence the unknown samples



are ignored. On the other hand, blind techniques rely fully on the received data
which contain known and unknown samples and using the characteristics of the
input samples, for instance, i.i.d while ignoring the possible use of some known
data. Now, the target of the semi-blind methods is to rely on the received data and
use a few known data (see Fig. 1.1). Hence, one gain the positive aspects of both,
the blind and the training-based methods. Also, these techniques allow estimating
a longer impulse response with short training pilots. Such application is of special
interest for wireless communication applications, especially in mountainous and
harsh areas. Moreover, in the case of SOS methods, only one pilot is needed to
make any channel to be identifiable. Besides to the aforementioned advantages,
the semi-blind methods are very attractive from a performance point of view
as compared to both individuals techniques. With this, semi-blind methods are
becoming very promising and popular to be deployed in the next generation of
wireless communications. For an overview of the semi-blind estimation methods,

the reader is urged to refer to [19].

1.2 Thesis Purpose

It is not surprising arguing that wireless communications standards continue to
develop to raise the data throughput capability. Boosting the data rate is basically
accomplished through enhancements in the physical layers of the protocols, which
usually take years to show up and see the light. Nowadays, there are two hottest

wireless standards namely IEEE 802.11ac which is used in wireless local area
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Figure 1.1: Training-Based, Blind and Semi-Blind Principles.

network (WLAN) products and marketed under the name of Wi-Fi, and 3GPP
LTE-Advanced used in cellular communications. These standards featuring more
spatial streams (i.e., more MIMO channels), wider bandwidths, and higher order
modulations as compared to the earlier standards such as IEEE 802.11a/g/n. All
of these standards use the regular channel estimation throughout injecting some
known pilots. Lately, research efforts in [4] and [5] revealed another key feature,
thanks to the semi-blind solution, which is able to increase the throughput further

by reducing pilots sequence. It is shown that in some scenarios, a reduction up
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to 90% of pilots without affecting the channel estimation quality can be achieved.
This, as well, corresponds to 25% power saving which is a main trend of the
current green communications.

Standing literature leaves the door open for new research in the field of blind
identification and source separation for SIMO/MIMO systems. Among the earlier
mentioned features which enable the new wireless communication systems, MIMO
systems are receiving an increased interest. As the existing communication sys-
tems are build based on the training pilots philosophy to estimate the channel
information, the literature arena is very rich in this topic. However, in the case
of blind MIMO system identification and BSS for wireless communications, there
is a shallow advancement in the advised methods and techniques, probably due
to the dominance of the training-based approach. Also, the band-width efficient
constellation-like signals, i.e., QAM and PSK are used tremendously in wireless
communications, as outlined earlier, they are one of the key features for improving
throughput. Since the modulation techniques used in communication system are
known a priori, this property has been used recently to maintain the same prop-
erty for the output signals and hence recover the source signals blindly. Depending
on the source signal, different cost functions can be found in the literature to per-
form the source demixing [20, 21], including the CM criterion for phase/frequency
modulated signals and MM criterion for QAM signals.

The CM criterion is used tremendously and lead to a number of CM algorithms

(CMA) used in blind equalization [22], blind beamforming [23], and BSS [24,
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7]. Moreover, there is a more general family of algorithms, known as multiuser
Kurtosis (MUK) [25], which are obtained by minimizing the kurtosis as a contrast
function. Further, The MM criterion [26] which is dedicated for square QAM
signals lead to a plenty of MM algorithms (MMA) used in different applications,
including blind equalization [26] and BSS. The BSS is performed either in an
adaptive way [27, 28] or in a batch way [7, 6]. In the existing literature, it is
shown that MMA outperforms both the CMA and MUK, specifically for the case
of QAM signals. So far, the non-constant modulus signals’ BSS is not explored
satisfactorily.

On the other hand, as for convolutive MIMO mixtures, there are limited efforts
which have been done for providing successful extensions for the earlier mentioned
algorithms, namely MUK, CMA, and MMA. For instance, the adaptive MUK has
been extended in [29] and the CMA in [30], where all were implemented in an
adaptive manner. More importantly, the existing MMA, which fits the phase
modulated signals, do not address the convolutive MIMO systems, which are
more practical. Table 1.1 summarizes the relevant literature. In addition, among
the different approaches which are followed in performing the extensions, there is
a lack of the material which compares and outlines the main differences among
them.

As mentioned earlier, the semi-blind technique is becoming very attractive
especially for mitigating the pilot contamination problem and increasing the

throughput gain. Hence, some new dedicated and efficient algorithms need to
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be developed in order to open the door for such promising approaches.

BSS Alg. MUK CMA MMA
Instantaneous (Adaptive) | [25, 31, 32] 7, 33, 34] 27, 28]
Instantaneous (Batch) (35, 36] 24, 25, 37, 38, 39] 6]

Convolutive (Adaptive) [29] 30, 40] open
Convolutive (Batch) [41] open open

Table 1.1: Literature Classification.

Also, as can be seen in Chapter 5, multi-channel FIR systems encountered
in certain applications could suffer from ill-conditioned scenario [42, 43]. This
might happen in the case of high receiver diversity, or when the channel response
is of small tails [44]. A shared weakness of most of SOS methods, including the
standard subspace method (SS) [45, 46], the cross-relation (CR) method [47] and
the two-step maximum likelihood (TSML) method [48], is that their performance
is poor under ill-conditioned case. Despit of several iterative approaches have
been proposed to put up with the ill-conditioned channels [43, 49], these solutions
suffer from local minima problem and hence results in wrong channel estimation.

As will be shown in Chapter 6, the existing side information that can be used
in blind system identification methods falls into two categories: statistical, i.e.
non-circularity, Gaussianity, cyclostationarity, and structural, i.e., sparsity. The
statistical side information has been quantified partially in case of MIMO systems
[50, 51, 52, 53, 54, 55| and in case of SIMO systems [50, 56, 57, 58, 59, 60, 61, 62].
Whereas, the structural one has not been explored fully in this context so far.

Moreover, most of the existing blind system identification methods’ perfor-

mance depends on the robustness and accuracy of the channel order estimation.
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The solution for this deelma can be classified into two approaches: the first ap-
proach is based on developing methods for estimating the channel order accurately
[63, 64, 65, 66, 67]. The second one is based on developing robust blind method
which are able to tolerate the channel order mismatch [49, 68, 67].

Interestingly, the promising semi-blind technique can also be shown as a new
approach to compete this shortcoming. This is gained thanks to the lest squares
structure impeded in this approach. However, so far, there is no exploration on
the impact of these added pilots on the degree of channel overestimation. Hence,
it is important to quantify and explore the effect of the structural side information
as some did not explore statistical yet the side information on the blind system

identification problem.

1.3 Contributions of the Dissertation

This dissertation touches upon different axises in the field of blind system identifi-
cation, blind source separation, blind deconvolution, and performance evaluation.
Meanwhile, the ultimate goal of this dissertation is to contribute opportunistically
into this growing area of research by proposing new methods to fill some existing
gaps in the literature (where it is applicable) and propose performance-wise and
cost-wise enhanced techniques. This is to increase the opportunity of the power-
ful blind methods to be deployed in the wireless communications and probably in
some other emerging applications.

The contributions of this dissertation are in the multi-channel systems, i.e,
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SIMO and MIMO systems, in wireless communications. As will be discussed in the
last chapter, other applications are possible. The contributions are summarized

as follows:

e We filled the existing gap in the literature by proposing a new class of decon-
volution methods to recover the constellation-like signals. This is achieved
by optimizing the MM criterion using the efficient unitary /non-unitary ele-
mentary rotations. The work resulted into four different approaches which

are presented in Chapter 3.

e Review and compare the state-of-the-art deconvolution approaches which

can be considered to perform BD.

e In match with the earlier contributions, we proposed new methods which
are more competitive and further efficient. The new methods are able to
perform the BSS for instantaneous mixtures with less computational cost
and improved performance quality. This is done by minimizing the MM
criterion using the simple Fixed Point Optimization (FPO) rule. These
algorithms are extended to perform blind deconvolution in a deflation way.
Furthermore, we were able to boost the speed of convergence further by
proposing an algebraic optimal step size using the exact line search strategy.

This, eventually, lead to a new family of variable step size (VSS) algorithms.

e We proposed a novel structural-based subspace method. Although this new

method is argued to be a dual approach of the standard subspace method, it
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has an interesting gain, especially in the ill-conditioned scenario where the

standard subspace method has a degraded performance in this environment.

e We explored the side information’s impact, which usually exists in most of
the communications systems, on the channel estimation quality. In partic-
ular, side information includes channel’s sparsity and some other statistical
properties such as the non-circularity. These side information are shown to
be either structural or statistical. By means of the CRB, we demonstrated
that these freely available side information, if they are properly exploited,
would improve the channel estimation quality. Moreover, in the context
of semi-blind system identification, we explored the channel overestimation

consequence on the estimation quality.

Eventually, the contributions of this thesis are published /submitted in:

1. Q. Mayyala, K. Abed-Meraim, and A. Zerguine, “Structure-Based Subspace
Method for Multi-Channel Blind System Identifications” ,IEEE Signal Pro-

cessing Letters, Accepted.

2. Q. Mayyala, K. Abed-Meraim, and A. Zerguine, “Fast Multi Modulus Al-

gorithms”, submitted to IEEE Transactions on Communications

3. Qadri Mayyala, K. Abed-Meraim, and A. Zerguine, “A Class of Multi-
Modulus Blind Deconvolution Algorithms Using Hyperbolic and Givens Ro-
tations for MIMO Systems”, submitted to IEFEE Transactions on Commu-

nications.
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4. Q. Mayyala, K. Abed-Meraim, and A. Zerguine, “New Blind Deflation-Based
Deconvolution Algorithms Using Givens and Shear Rotations”, Proc. of

IEEE ICC, Paris, France, 2017.

5. Q. Mayyala, K. Abed-Meraim, and A. Zerguine, “On the Performance Eval-
uation of Blind System Identification in Presence of Side Information”, Proc.

of IEEE IWCMC, Valencia, Spain, 2017.

1.4 Organization of the Dissertation

Besides to the introduction chapter, this dissertation comprises two parts and a
general conclusion chapter. The first part comprises Chapter 2, Chapter 3 and
Chapter 4. In this part, we treat the general deconvolution problem blindly and
we propose a class of BD algorithms which are dedicated for the non-constant
modulus signals. In the second part, we elaborate on the Blind System Identifi-
cation (BSI) problem and propose a subspace dual approach which exploits the
convolutive nature of the communication channel. This is achieved by optimizing
directly the Toeplitz structure that usually appears anywhere convolutive system
exists.

Ultimately, a comprehend conclusion chapter is closing this dissertation, in

addition to some perspectives for potential future work.
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1.4.1 Part I: Blind Deconvolution

Blind deconvolution is a terminology referred to a composite task of performing
equalization as well as BSS. It is usually encountered in communication systems
where the multipath effect (results into ISI) and multi-user access (results into
MUI) appear. BD includes a wide spectrum of techniques which are used to re-
cover the sources from its convolved mixtures. Most of the existing algorithms
assume the mutual independence between the transmitted sources. This assump-
tion is pretty general. In addition to this assumption, some other assumptions
characterizing the transmitted sources have recently been used, such as time co-
herence [69], cyclostationarity [70], sparsity [71, 72], bounded magnitude [73], kur-
tosis [25, 29], constant modulus [23, 7, 40] and multi-modulus [6], just to mention
a few.

In this part, based on the fact that many communication signals have the
constant and non-constant modulus property such as the phase modulated signals,
i.e., PSK and QAM, we adopt the MM criterion.

Part one comprises the first three chapters target the BSS and BD problem in
the context of wireless communication systems. In Chapter 2, a preliminary one,
some of the used terminologies are covered. Also it outlines the system’s model,
and presents the solution approach. Chapter 3 mainly forms an extension and a
generalization of [6] where BSS for instantaneous mixtures was extended to cover
the convolutive mixtures. The efficient unitary and non-unitary Givens and Shear

rotations are used to solving this problem in conjunction with other techniques
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such as orthogonalization, sorting and pairing, and enabling the hybrid criterion.
We were able to come up with a class of algorithms which summarizes and adds
to the existing methodologies in the literature.

Besides, in Chapter 4, we devise even more efficient methods, called fast MMA
algorithms, which are experiencing faster convergence and low computational com-
plexity. These algorithms cover both BSS and BD problems. Eventually, this
chapter ended by proposing an optimal algebraic variable step size using the ex-
act line search technique. The impact of the VSS is demonstrated in its ability
to boost the speed of the convergence of these algorithms and enable them to

converge in a single iteration in certain scenarios.

1.4.2 Part II: Blind System Identification

The idea of blind system identification is built upon the use of available side infor-
mation to substitute for the lack of the training phase. This side of information
can be argued to be any free piece of information which is naturally impeded in
the signals and /or the systems. By doing so, one can develop dedicated algorithms
to perform system identification. For instance, the well-known subspace methods
[11, 45] exploit the subspace structure to minimize the orthogonality between noise
and signal subspaces. These kind of algorithms are attractive; since the channels
estimates can be obtained in a closed form through optimizing a quadratic cost
function, which is obtained here by minimizing the orthogonality property.

In this part, Chapter 5 introduces a dual subspace-based method based on the
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channel’s Toeplitz structure which is employed directly to formulate our quadratic
cost function. This is of great interest since the Toeplitz structure is an inherent
nature that exists in most of the linear systems due to their convolutive nature.
The proposed method gain is demonstrated with a particular emphasis on the
ill-conditioned channels.

In Chapter 6, we elaborate more on different side information and we pose
the following question: What can different side information bring into the BSI
problem in terms of estimation quality?

Various structural and statistical side information, such as the channel’s spar-
sity and signals’ non-circularity, have been considered. Accordingly, their effects
have been assessed in terms of the CRB lower bound. These evaluations are
conducted for the blind scenario, however, the semi-blind scenario is covered by
evaluating their tolerance to the channel overestimation problem.

Eventually, Chapter 7 concludes the covered work in this dissertation and

accordingly motivate some possible future work.
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Part 1

Blind Deconvolution
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The first part composes three Chapters, which addresses both BD and BSS
problems. These problems are investigated in the context of communication sig-
nals, in particular, the non-constant modulus signals. Mainly, four contributions
are presented in this part, i.e., (i) propose, for the first time, four deconvolution
algorithms based on the alphabet nature of the constellation signals (MM crite-
rion) using the elementary Givens and Shear rotations, (ii) review and compare
the state-of-the-art deconvolution approaches (i.e., the four previously mentioned
solutions) that can be considered to perform BD, (iii) propose a novel set of fast
and efficient BSS multi-modulus algorithms (MMA) and expand them again to
cover the general BD problem, and (iv) boost the speed of convergence, for the
former set of algorithms, further by proposing an optimal algebraic VSS strategy.

In the sequel, Chapter 2 formulates the BD problem, develops the solution
methodology, and discusses the need for the pre-whitening as a preprocessing step
on the received data before it starts beamforming or BSS. Furthermore, elaborates
on some preliminaries such as the inherent permutation and scale ambiguity which
exist in the BSS/BD problems. Finally, reviews the used rotations, i.e., Givens
and Shear, to perform the BD in the subsequent chapter.

Chapter 3 proposes four different approaches, which resulted in eight algo-
rithms, to perform the BD for QAM signals. These algorithms are classified into
two main groups, the first one is able to perform the BD in two steps, while
the second class is a one -step methods. Eventually, this chapter highlights the

main differences between these approaches in terms of complexity, design, and
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performance.

In the same context, Chapter 4 addresses again both BSS and BD problem and
proposes much faster algorithms as compared to the class of algorithm which are
recently presented in [74] and extended in Chapter 3. This is done using the FPO
method. Interestingly, these algorithms are shown to be free of any user-defined
parameters. Also, so far they are much cheaper than all existing counterpart.
Finally, an optimal VSS is proposed and integrated with the proposed algorithms.

This VSS leads to much faster algorithms.
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CHAPTER 2

PRELIMINARIES, SYSTEM

MODEL AND BD PRINCIPLE

2.1 Chapter Introduction

MIMO systems are becoming of great interest in differnt signal processing applica-
tions, including speech processing [75], bio-medical applications [76], multi-access
communication [77], multi-sensor/radar systems [78], [79]. In wireless communi-
cations systems, for instance, usually N; devices transmitting at the same time
using a shared frequency band, such systems are called muli-access communica-
tions systems, which is described in Fig. 2.1. However, at the receiver side, the
signal is received by N, element array, and the assembled signal at each element
can be viewed as a weighted sum of the N, transmitted signals. Besides, due
to the likely multi-path fading effect, this weighted sum of the transmitted waves

would be a sum of a convolved versions of the transmitted waves in the mullti-path
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channels. Usually, the multi-path channels are modeled with an FIR filter.

To recover the transmitted signals at the receiver side, the channel state in-
formation is crucially need to be known. In doing so, the effect of the channel
is waived using the so called equalization process. Classically, training sequence
(pilots), which are known a priori for both sides, are periodically transmitted to
help the receiver in revealing the channel information. Although, this approach is
shown to be a very successful approach, it still scarifying the communication re-
sources, i.e., bandwidth and power. For example, in wireless distributed systems,
usually the users are battery powered, and pilot transmission reduces the battery
life, also it reduces the data transmission rate. As for now, both battery life and
transmission rate are of great interest especially in the obligation current market.

In comparison, blind MIMO system identification approaches, which is de-
scribed in the subsequent section, only requires some a priori structural and/or
statistical information about the transmitted sources and/or the channel model,
and eventually works with no need for the training phase.

Delayed
copies

( e

Sources Convolutive Channel Receivers Estimated Sources

Figure 2.1: MIMO wireless communications system.
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2.2 System Model
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Figure 2.2: MIMO wireless communications system with QAM signaling.

Figure 2.2 reflects the considered MIMO wireless communication system:
N; transmitters emit signals independently from QAM constellation. They
use the same time slot and frequency band. FEach transmitted QAM signal
s(k) = sg(k)+js;(k) is drawn from T-ray square constellation, i.e., sg(k), s;(k) €
{:I:l, +3,-- (VT — 1)} The transmitted data is assumed to pass through a
noisy frequency selective (convolutive) channel, i.e., ISI is presented, so that the

collected N, > N; samples at time instant £ can be modeled as:

y(k) =>_ H(n)s(k —n) + e(k), (2.1)



where

Here

e H(n) € CN~*Nt i5 the unknown matrix represents the channel impulse re-
sponse which captures the introduced ISI. h; ;(k) is the channel path between
the i-th transmitter and the j-th receiver at the time instant k. Without
loss of generality, M is assumed to be the degree of the longest channel im-

def

pulse response. Also, by defining H(z) = Y™ H(n)>™" as the unknown

FIR transfer function, we assume H (z) is irreducible and column reduced

80, 81].

e s(k) € CM*! is the vector of unknown i.i.d and uncorrelated phase modu-

lated (PSK or QAM) communication signals.
e y(k) € CN"*! is the received data vector.
e e(k) € CM! is the additive (spatially and temporally) white noise vector.

BD seeks to find the source signal matrix s(k) from the observation signal
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y(k) with knowing neither the channel nor part of the source signal (pilots).
Instead, some statistical and/or structural side information is utilized. Note that
the convolutive model (4.1) becomes an instantaneous one at zero channel memory,
i.e., M = 0, hence the effect of ISI diminish. This case turns the BD problem into

BSS one. Next section briefs the BD problem and its solution approach.

2.3 Blind Deconvolution

This section elucidates the followed methodology to solve the BD problem.

2.3.1 Spatio-Temporal Framework

The target of BD algorithms is to revoke the convolutive channel effect. In other
words, retrieve the transmitted sources s(k) using only the received data y(k)
without resorting to the help of the pilot symbols. As pointed earlier, batch
framework will be considered. To this end, consider the following spatio-temporal

model

Vo(k) = Hsy(k) + ey (k), (2.2)

where

28



and N; = N;(N,, + M) is the overall expected number of sources (including the
delayed copies). It is noteworthy to mention that the temporal effect is due to
introducing the window size N,,, whereas, the spatial one is because of the multiple
receivers existence, i.e., N,. H is an (NN, x Ng) block Toipletz convolution

matrix defined as

-H(O) H(1) H(M) 0 o |
0 H(0) H(1) - HM) 0
H = (NN, x Ny)
S . . . . .
0 0  H() H(1) H(M)

As for the convolution matrix H to be identified, the following condition must
hold

Ny

Np > —t
_Nr_Nt

M (2.3)

so as, the convolution matrix H is of full column rank. The previous condition,
which is justified in section 2.4.2, lead to constraints on the considered window
length or the number of received antennas.

BD is achieved using deconvolution filters (DF) which are a collection of filter-
ing vectors, w; € CNNwx1 5 =1 ... N, To recover all the transmitted sources
including the delayed ones, Ny deconvolution filters are needed to be estimated.
Each DF applied on the received vector y,, (k) produces an estimate of the source

signal s;(k), such that wi'y,, (k) = z;(k) = §;(k). These DF’s are collected in an
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(Ng x Ny N,) deconvolution matrix W = [wy, - - - ,de}H. Applying the decon-

volution matrix to the received signal y,, (k) produce the desired output as

z(k) =Wy, (k) = WHs, (k) + We,(k) = Gs,(k) + e, (k) (2.4)

where z(k) = [s1(k),- - ,sNd(k)]T is the (Ng x 1) estimated source signal, G =
WH is the (Ng x Ny) global deconvolution matrix and e, (k) € CYa*! is the
filtered noise vector at the receiver output. Literally, to perform the BD, one
need to estimate the deconvolution matrix W'.

As discussed earlier, we will be using the batch approach to perform BD.
Hence, Next subsection layout the mathematical system model appropriately so

that the Batch processing is enabled.

2.3.2 Batch Setup

Our implementation focus on batch (block) processing. In contrary to the common
belief, batch implementations are not necessary more costly than the adaptive
ones, also, they are able to exploits the information contained in the received
data block more effectively [82, 36].

In batch BD algorithms, N, samples of the received data are usually collected
before processing, so that K vectors y,(k), & = 1,-, K can be formed, where
K = N, — N, + 1, and concatenated in a matrix Y of a size N,N, x K. In

doing so, the transmitted and received source signals are related in a similar way
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to relations (4.2) as

Y =HS+E (2.5)

and similar to (2.4), the estimated sources can be written in matrix form as

Z=WY (2.6)

where

Y = [yw<Nw)7 e >yw(Ns)]7 (NTNw X K)
S:[Sw(Nw)a"' 73w(Ns)]v (NdXK>
E = [ew(Nw)’ T 7ew(Ns)]7 (Ner X K)

Z = [Z<Nw)a"' 7z(Ns)]7 (NdXK)

2.4 Solution to the BD Problem

As outlined earlier, the main objective of BD problem is to find the deconvolution
matrix W. Generally, before performing the BD, the received data is subjected to
a pre-processing whitening step. The whitining step is mainly initiated to shrink
the searching space of the matrix W among the unitary matrices.

This section mainly explains the reasons behind deploying rank reduction and
whitening operation as a pre-processing step. Then, give a nice review of the used
pre-whitening method. Finally, explains the BD Procedure. Next, we will be

outlining some principles associated with the blind MIMO system identification,
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i.e., pre-whitening, rank-reduction, and ambiguities.

2.4.1 Pre-whitening and Rank reduction Operation

This section basically explains the pre-whitening and rank reduction procedure

and the reason behind introducing them.

Rank reduction

As shown earlier, the BD problem has a spatio-tempral structure model. Based
on the model, we considered that NN, > N, this means that the number of the
virtual (spatio-temporal) receivers (N,N,,) are greater than the number of the
virtual transmitters (Ny = N,.(N, + M)), i.e., N,N, > N4, where the matrix
H becomes tall. Henceforth, from matrix algebra, this might lead to undesirable
null-space solutions, i.e. WHY = 0. This problem is treated by using Rank
reduction operation, which reduces the number of rows of Y form (N,N,) to
(Ny), as shown hereafter.

Using underscore (-) to refer to the pre-filtered variables, and applying the

(Ng) square pre-filter matrix B to (2.5) leads to

Y =H"S+E, where #H"=BH, E=BE (2.7)

The BD problem is now replaced by finding the square deconvolution matrix
H : (Ng x Ng). After Finding #, the deconvolution matrix on the original

(non-filtered) data will be W = H B. In general, many methods are found for
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dimension reduction, however, two conditions are opposed on finding B: H? =
BH should be of full rank, also to avoid noise enhancement, it should be well
conditioned. The ratio between the largest and smallest singular values of the
matrix defines its conditioning. The well-conditioned matrix has a ratio close
to 1. The two mentioned conditions lead to choose the matrix B such that its
columns are orthogonal and at the same time span the signal space (column span
of H). This justifies the use the whiting technique which can accomplish this

requirements, as described in the subsequent part.

Whitening

The whitening process described here is based on the work of Van Der Veen
published in 2006. The whitening matrix B € CN¢XNe  which makes the matrix

Y white, can be obtained as follows:

1. Estimate the received data mnoisy covariance matrix: Ry =

# D Yo Ryl (k) = Y'Y

2. Find the corresponding eigenvalue decomposition:

=

(2.8)

3
)

Ry -0s0" - | 0, o,

® X

where U is an N, N,, square unitary matrix and 32 is a diagonal matrix
contains the singular values of Y /v/ K. The largest N, eigenvalues are sorted

in the diagonal matrix 2? and their corresponding eigenvectors, which spans
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the signal space, in U,.

3. The whitening matrix is defined as

B=X'U (2.9)

This whitening procedure resulted into a reduced dimension data matrix: Y €
CNexK “and a unitary deconvolution matrix 4 which whiten the received filtered
data, i.e., RX = Iy,. To see this, let H = U%EHVi be an economy-size SVD
of H (Uyp € CNNwxNa jg g unitary sub-matrix, Vg € CNe*Ne and is unitary,
and X4 € CNo*Na contains the singular values). Assuming a large sample size,
ie., Ry ~ Ry, then

¥ + o020 Uy

Ry = HH" + 01 = [ Uy Ujy, } . (2.10)
ol | | (Uz)

e

By comparing (2.8) with (2.10), we find that U, = Uy and 32 = X3, + o21.

Hence,
BH =SS0 UpSyVE = (35715, VE = v (2.11)

is true if (32, + 02I)~Y/234 = cI, where c is a scalar constant. This is possible
at noise free case or when the columns of H are orthonormal, i.e., all singular
values of # are equal). If this is not the case (more practical scenario), then

H is transformed to a matrix V,Ii close to unitary which is always better condi-
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tioned (close to well-conditioned) than H itself. Considering the above explained
covariance-based whitening procedures, we find the whitening matrix B. For sim-
plicity, assume noise-free case, then the whitened received signal can be written

as

Y =BY =BHS=V"S (2.12)

Clearly, whitening operation reduces the problem of BD into finding the unitary
matrix V', we will be refering to it as filtered doconvolution matrix throughout this
part. Finding the unitary matrix V' is a simpler constraint compared to finding
the matrix W of linearly independent rows, i.e., independent deconvolution rows
w;. This is because we only need to assure the orthogonality between the rows
of V. Also, it is well established in adaptive filtering theory that moving into
whitened domain boosts the convergence speed.

The subsequent subsection will discuss the procedures to find the filtered de-

convolution matrix V.

2.4.2 BD Procedure

Now, once the matrix V is obtained, the BD matrix is given as W = V B,

resulting into the output

Z=WY =VBY =VY=VVi§=§ (2.13)
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The derivation of the new BD methods is based on the existence of a deconvolution
matrix W, which is a composite of a whitening matrix B and unitary matrix V',
such that WY = §. This means that the row span of S is contained in (or
equivalent to the row span of Y. This is true if the channel matrix H has a
full column rank matrix, which justifies the suggested condition on the processing
window length N,, given in(2.3). Based on the cost or contrast function, many
methods are developed to estimate the channel deconvolution matrix [83, 8, 84, 26,
85, 25]. However, most of them are tackling the instantaneous mixture scenario,
and non of them has considered the MM nature as a minimizing criterion in the

light of convolutive mixture.

2.5 Indeterminacies in BD

After discussing one source of indeterminacy in BD problem in subsection 2.4.1,
we list here another two inherent sources of indeterminacy that ever encountered
in multichannel BSI and BSS theory. Knowing nothing about the source signal
except some of the statistical and non-statistical properties, enables to recover the

sources up to two scenarios of non-uniqueness [23]:

1. Source ordering is arbitrary: mislabeling the source ordering means that the
columns of the beamformer W are mislabeled and this is referred to as the

permutation ambiguity.

2. The output of each beamformer can be resolved up to an arbitrary scale
factor (phase ambiguity).
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That is to say

WH = PA, (2.14)

where P € CNeXNa ig the permutation matrix and A € C¥*Na ig the scaling non-
singular diagonal matrix. As it is revealed by (2.14), the ambiguities are always
presented in BD problem. However, such problem might be solved using some

kind of Differential coding or/and injecting some short pilot data [86].

2.6 Review of Givens and Shear Rotations

The next subsections brief the unitary and non-unitary rotations which will be

used as an optimization tools in the subsequent chapter.

2.6.1 The Givens Rotations

The Givens rotation is a unitary transformation. Givens matrix ¢, (6, ) is an
identity matrix with ones in the main diagonal except for the two elements ¢,,
and ¢,,. Also, all the off-diagonal elements are filled with zeros except for the two

elements ¢,, and ¢g,. The exempted four elements are defined as follows:

Pprp  Prq cos(0) e sin(6)
Py = = (2.15)

Pap  Paq —e sin(f)  cos(f)
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where {6, a € [—7/2, —7/2]} are the Givens’ angle parameters. Note that, in the
real case scenario, & = 0, and subsequently, Givens rotations has the following

distinctive properties:

1. Givens rotations are unitary, i.e.,

2. Givens rotations preserves the vector norms. To see this, let & and y be two
column vectors that are related by Givens transformation ¢, say px =y,

then

A
lyl?> = vy = 2oz = 2"z = ||z

Thus, the related vectors have a preserved Euclidean norms.

3. Givens rotations preserves inner products between vectors, i.e.; if b and c
are two other vectors related by the same transformation, say ¢b = ¢, then

we get

y.c 2 ylc=xp?pb=a"b=2ab

This property is called angle preservation property as well as it preserves

the angle between transformed vectors.

As a summary, say that vectors (x, b) are transformed into (y, c), this means that
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their norms as well as the angles between them are all preserved.

2.6.2 The Hyperbolic Rotations

The Hyperbolic(Shear) rotations matrix ¢, (7, x) is a non-unitary (or J-unitary)
rotations defined in a similar way to the Givens rotations. Whereby, the exempted

four elements in the main and off-diagonal are defined as follows:

bop Ppg cosh(7) e sinh()
Qpy = = (2.16)

gp  baq e Xginh(y)  cosh(y)
where x € [-7/2,7/2] and {vy € [-7,7],7 > 0} are Hyperpolic rotations param-
eters. Also, for the real case scenario, y = 0. The Shear matrix is J-unitary,

ie.,
o' = "I =J.

for some signature diagonal matrices J, i.e. matrix with diagonal entries equal
+1.
For further information about Givens, Shear and some other useful unitary

and non-unitary rotations, one can refer to [87, 88].
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2.7 Conclusion

This chapter presents different terminologies which are regularly used through-
out the dissertation, such as the pre-whitening filtering, optimization techniques
(Givens and Shear rotations), and some other BD indeterminacy. Moreover, the
convolutive MIMO system’s model is described and the unified spatio-temporal
framework is formulated. Eventually, this chapter declares that the batch pro-

cessing approach will be the framework of this dissertation.
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CHAPTER 3

DECONVOLUTION METHODS

This chapter targets the blind deconvolution problem for multiple-input multiple-
output communication system, using small and moderate constellation’s size phase
modulated signals, i.e. PSK and QAM. We introduce four different blind decon-
volution algorithms based on four different techniques. These algorithms come as
a natural extension of the successful work done by Shah et al in 2015. The first
two methods are considered as two-step based methods, where the first one is ac-
complished by performing a cascaded linear equalization, using one of the existing
subspace-methods, followed by the BSS routine. While the second performs the
BSS for the spatio-temporal system and then a pairing and sorting phase. The
third method is based on the minimization of a hybrid cost function. The last
one is a deflation-based method. These solutions summarize the main possible
paths that can be followed to extend any of the existing instantaneous de-mixing
algorithms. Experimental results are provided to show the unique characteristics

of each of the four different methods.
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3.1 Introduction

In the context of wireless communications, blind methods have been considered for
many purposes including waiving the training sequence [3], reducing the pilot size
using semi-blind approaches [4] or mitigating the pilot contamination problem in
massive MIMO systems [5]. In particular, it has been shown in [4, 5] that, thanks
to the semi-blind solution, the pilot sequence size can be reduced by a factor of 80
to 90% without affecting the channel estimation quality®. To achieve these objec-
tives, different cost functions exist for the blind deconvolution of phase modulated
signals such as PSK and QAM signals [3, 20]. Among them are the constant mod-
ulus and Multi-modulus criteria. The latter has shown to be more appealing for
high order QAM signals [85], as well as the ability of the associated algorithms,
namely multi-modulus algorithms (MMA), to perform joint blind equalization and
carrier recovery without the need for a separate carrier-recovery system [14, 89].

Wireless communications suffer from the multipath fading effect which results
into the intersymbol interference (ISI). Moreover, MIMO systems experience an
additional interuser interference (IUI) problem. Hence, the blind deconvolution
for MIMO systems is a twofold problem: a blind equalization to get rid of the ISI
and a blind source separation for the TUI removal.

Recently, efficient BSS methods used to seperate QAM signals based on the op-

timization of the Multi-Modulus Critera using the elementary Givens and Shear?

INote that, in certain systems, this represents close to 25% of energy reduction which
is a main objective of the current research activities for ’Green Communications’.

2The terms Hyperbolic and Shear will be used interchangebly throughout this chap-
ter.
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rotations have been introduced in [6]. These methods are designed for the spe-
cial case when the signal undergoes a flat fading, where the channels have an
instantaneous mixing effect. However, in most practical cases, the channels are
convolutive and the previous methods [6] do not apply directly.

Our first motivation is to extend the previous approach to the more general
convolutive mixture case. This extension can be done in several different ways
that we have developed and compared in this chapter. More precisely, we consider
four different approaches. The first one is refered to as Full-BSS deconvolution,
whereby we form a space-time (spatio-temporal) array from the collected data
followed by a source de-mixing using BSS techniques, ended by paring and selec-
tion using a correlation-based method. The second method is a cascade of linear
Second Order Statistics (SOS)-based equalization followed by a BSS demixing
approach. The equalization is needed to remove the channel ISI effect, so that
the problem is reduced from being of convolutive nature into an instantaneous
mixture of signals, whereas the BSS is needed to get rid of IUI effect. Such a
cascaded approach is referred to as a two-stage deconvolution approach, and it
has been reported in several earlier works, such as [90], [40] and [91].

In the third method, we perform blind deconvolution (BD) through considering
one composite cost function which penalizes the Multi-Modulus (MM) criterion
and the cross-correlation between the different source signals. The optimization
of the cost function is done using elementary Givens and Shear rotations resulting

in two different algorithms, namely, Givens and Hyperbolic Givens MM Deconvo-
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lution algorithms G-MMDA and HG-MMDA, respectively. The last approach is a
deflation-based method, such that each time one single source is extracted, then it
is waived from the convolutive mixture using an appropriate subspace projection.
This is repeated until all sources are extracted.

This chapter has mainly two contributions:

e Propose, for the first time, deconvolution algorithms based on the alpha-
bet nature of the constellation signals (MM criterion) using the elementary

Givens and Shear rotations.

e Review and compare the state-of-the-art deconvolution approaches (i.e. the
four previously mentioned solutions) that can be considered to perform blind

deconvolution.

The chapter is organized as follows: Section 3.3 presents the data model, briefs
the BD principle, and defines the used cost function as well as Givens and Shear
rotations. Section 3.3 outlines the four different approaches and the corresponding
derived algorithms. Section ?? compares the four different approaches in terms
of computational cost and source signal restoration quality. Finally, Section 3.6

concludes the chapter.

3.2 Cost Function

Communication signals experience Multi-Modulus (MM) nature (e.g., QAM), and

hence one proposes to estimate V' in (2.12) by optimizing the MM criterion in-
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troduced by [26] as

(V) = 3B |(22r(k) = Ra)* + (224(0) = Rr)’| (3.1)

where Rr = El[sh(k)]/E[s%(k)] and R; = E[s}(k)]/E[s*(k)] are, respectively,
the real and imaginary dispersion constants®. z;(k) is the (i, k)-th element of Z.
The MM function enjoys several advantages over the Constant Modulus (CM)
one [84], whereby, it drives to: a) faster convergence algorithms [92], b) carrier
phase recovery [89], c¢) less undesirable minima [93], and d) ease of hardware
implementations [94].

The aim of this chapter is to find a sub-unitary (close to unitary matrix) V as
a product of elementary Shear and/or Givens rotations (see Section 2.6). The use
of this approach is motivitated by Jacobi-like algoritms [83, 95]. These algorithms
are used for diagonalization of symmetric matrices. The idea is to sweep a sequence
of unitary rotations such that Y <— @Y ¢, whereby the updated matrix Y is
more diagonal than the earlier one. In this chapter, we adopt the same idea to find
the matrix V' and at the same time Z in (2.13) using a sequence of unitary/non-
unitary transformations where the optimization parameters, i.e., the angels, are
evaluated according to the MM criterion (3.1).

The fast convergence, ease of implementation and storage [95] are the mo-

tivations behind using these elementary rotations. Also, these matrices have a

3For ease of simplicity, we assume that the different dispersion constants are equal,
i.e., Rp = Ry. Also we assumed implicitly that all emmiting sources belong to the same
QAM constellation.
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determinant equal to 1 and hence they guarantee the non-singularity of the build
up beamforming matrix. It is customarily to mention that, by using the whitening
matrix B in (2.9) with a large sample size Ny, we guarantee a good whitening step.
Therefore, the claim for searching the matrix V' as a unitary one becomes valid,
thus using only Givens rotations is enough. Yet, for moderate and small sample
sizes, we use Shear and Givens rotations together so that we enlarge the search-
ing space by dropping the unitary condition, that said, it leads to an improved
estimation accuracy.

In the subsequent section four different methods are deployed to blindly de-
convolve and separate QAM source signals. The rational for introducing these
methods is that, each one of them has different unique pros and cons that allow
the designer to have more selection freedom as well as to conduct a comparative

study of their performance.

3.3 Two-Stage Deconvolution Algorithms

By imitating the Jacobi-like algorithms [83, 95|, one can write the unitary matrix

V as a product of elementary Givens rotations, according to:

V=] I 0.0 (3.2)

NSweeps 1<p,q<Nq

where Ngyeeps stands for the number of needed sweeps (iterations) until conver-

gence. The Givens rotations’ angles (# and «) are obtained by optimization of
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—* BSS Pairing & Sorting >

Figure 3.1: Two-Stage Full-BSS Deconvolution Approach.

the MM cost function given in (3.1).

Unfortunately, it can be shown that closed form or simple solutions for this
optimization problem are not possible due to the complex non-linear expression of
the cost function* w.r.t. parameters a and . To overcome this issue, the authors
in [6] used an appropriate complex to real data transformation before resorting
to the real valued Givens rotations (with a = 0). In this work, we opt for using
special versions of complex rotations by fixing the values of parameters « (for the
Givens) and y (for the Shear) to specific values, as detailed in the subsequent
sections, which leads to an easy-go derivation.

Next subsections are dedicated to the development of the different BD ap-

proaches mentioned in section 3.1.

3.3.1 Full-BSS Deconvolution

To find matrix V in (2.12), many algorithms exist in the litrature which are
designed for instantaneous mixtures [6], [8], [83]. Our first approach uses the
ones in [6] to the built spatio-temporal system model (Y = HS + E) given in
(2.5). The resulted signals are separated up to two kinds of permutation; the

first permutation is within the symbol scale (within the window size), while the

4All what have been discussed so far applies to both Given and Shear rotations.
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Figure 3.2: Paring and sorting mechanism.

second is a window scale-type permutation. Symbol scale permutation is the
consequence of the full-BSS deconvolution method, where the window scale one
is the inherent BSS permutation. To get rid of the former kind of permutation, a
second step is carried through the use of pairing and sorting mechanism. In this
step, pairing is used to collect each source and its replicas in one window, then
sorting is followed to arrange the signal within the window according to the delay
index. This procedure is illustrated in Figure 3.2.

Pairing and sorting step is built around the correlation between the signals

and their delayed copies, it can be summarized as follows:

1. Pairing: at first, randomly pick any source signal from the N, set, then the
time-lagged correlation matrix, R; between the picked source z; and the
rest of the separated sources denoted as Z; (where i refers to the order of

the extracted source), is defined as

E[zi(k)z;(k + N5)| | -+ | E[Zi(k)z;(k — Ny)) (3.3)
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where z;(k) is the k-th column vector of matrix Z; and Ns = M + N,
represents the number of delayed replicas for each source. Note that z; has
non-zero correlation with its Ns — 1 delayed copies and it is uncorrelated
with the other source signals. Hence, ideally R; should have only Ns — 1
non-zero rows. Therefore, the pairing is achieved as follows: one computes
the norms of the row vectors of R;, sort them in a descending order and

select the first Ns — 1 that correspond to z;.

2. Sorting: since the source signals are i.i.d, the non-zero rows of R; have
ideally only one non-zero entry corresponding to the time shift in between
the two correlated sources. Then, the N paired signals are arranged by
sorting the correlation delays in ascending order. The next example gives a

clear idea about this step.

3. Extract the paired and sorted set of signals from Z;, go back to step 1 to

extract the next set as long as ¢ < V.

Example: After completing the pairing step, consider sorting the following

picked source and its paired ones:

(& (] 3 T4

Q"(k) =
sT(k—1) sT(k) sT(k—3) sT(k—2)

assume z; is chosen to be s(k —2), i.e.,z; = s(k —2), then one evaluate (3.56)
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for Ns as follows:

[Elq(k)si(k—2+3)], Elq(k)si(k —2+2)], E[q(k)sj(k — 2+ 1)], E[q(k)s; (k — 2)]

Elg(R)si(k =2 = 1), Elg(k)si(k =2 =2)], E[q(k)si(k =2 = 3)]]

where q(k) is the k-th column vector of Q. Ideally this resulted into the following:

rnm|0 0 o2 0 0 0 0

|0 ¢ 0 0 0 0 0

Now, by sorting the correlation delays in ascending order, i.e., —2,—1,0,1,
and comparing locations of o2 with that of @, i.e., ro,71, 74,73, We conclude the

following appropriate sorting:

|

The above detailed method results in separating multiple replica of the desired
sources. This has the advantage to provide a controlled delay equalizer which is
known to be an important issue for MIMO systems [96]. However, from the
computational complexity point of view, this is costly. This method can work
in the case of N, < N, as opposed to our data model assumption, but with a

tolerated performance degradation.
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Figure 3.3: Two-Stage Equalization-BSS approach.

In the ensuing, methods with less complexity will be proposed.

3.3.2 Equalization-BSS approach

This is a two-step method, whereby the first stage is needed to remove the ISI
introduced by the channel memory using one of the SOS-based blind equalization
methods. Among the powerful methods to perform blind channel identification
and equalization is the linear prediction method [90], the subspace (SS) method
[81], the minimum noise subspace (MNS) method [97] and the structured-based
subspace (SSS) method [98], to mention a few. These techniques convert the
convolutive MIMO system into an instantaneous one®. Thus, the second stage is
necessitated to perform the BSS for the equalized mixture. In other words, the
decomposition of blind deconvolution problem assumes two successive stages (see

Figure 3.3):

1. Equalizer construction by estimating H (up to the inherent indeterminacies
of MIMO blind identification). The output of this step is an instantaneous
mixture of source signals. This is done based on the SOS.

2. BSS, i.e., retrieving the source signals by estimating the linear separator W

®Note that the model (2.1) and the subsequent formulation reduce to the instanta-
neous model by setting M =0 and N, = 1.
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in (2.5).

In the first stage, we used the MNS method to perform the blind channel identi-
fication due to its desirable low complexity and excellent performance [97]. Now,
having ‘H estimated and the equalization performed, the instantaneous mixture
will be separated using any appropriate BSS methods/algorithms. As mentioned
earlier, many BSS algorithms are dedicated to seperate instananeous mixtures,
and in this work, we intentionally use the recently proposed effective G-MMA
and HG-MMA algorithms [6].

As it is clear from the above, in the first step we rely on the SOS method for
the blind system identification. Since the SOS methods depend on the availability
of channel diversity, therefore, this method sustains powerful as long as N, > N;.
Yet, for the case of N, < N, one can resort to higher order statistics based
methods (see for example [99]).

So far, the two considered methods proceed in two stages. With this analogy,
one can refer to the methods that are proposed in the ensuing section as one-stage

methods.

3.4 One-Stage Deconvolution Algorithms

We introduce in this section two BD methods based on the use of a hybrid criterion

optimization and on a deflation technique, respectively.
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3.4.1 Deconvolution Using Hybrid Criterion

In order to separate different signals and avoid extracting multiple replica of same
source signal while missing the others, one devise to perform the deconvolution in

one stage using the following hybrid cost function®:
Thp(V) = Tum (V) + T« (V) (3.4)

where V is a N; x N; beamformer and

Tt (V) = £ 57 5% (2alk) — ) + (2,(b) — )

k=11=1
. (3.5)

(V)= > 3 |rg@®

1<i<j<N¢ 6=—Njy

2

1:;(6) stands for the cross-correlation function between user ¢ and user j, at time

lag 6, defined as

rij(6) = E [z(k)z; (k — 0)] (3.6)

The hybrid cost function (3.4) is of two sides: Jan (V') penalizes the deviation of
the real and imaginary parts of the equalized signals, while J, (V') penalizes the
cross-correlation between the estimated signals to ensure unique extraction of each
source signal. The parameter Ny is an integer that should be chosen in consistent
with the channel’s delay spread, so that it counts for all expected replicas that

might be generated for each single user due to the channels’ convolutive nature.

6Similar cost function has been adopted in [40] with some minor differences.

53



Givens MM Deconvolution Algorithm (G-MMDA)

We propose here to build our beamformer V' as the first V; rows of the matrix
obtained by using a sequence of the special version of the complex Givens rota-
tions’ that have been observed in [6, 8], whereas the two free parameters o and 6
are replaced by two successive rotations with one free parameter for each rotation,

i.e., 6 and €', respectively according to:

V=J H H (Pg,q (97 0) ‘Pg,q (6,7 _g) DP<8H)

NSweep.s 1SPSqSNi‘

b

I1 ¢, 0,000, —5)
1<p< Ny
Ni<g<Ngq

where J = [Iy,,0] is a row selection matrix, ¥y 18, by convention, the identity
matrix and D,(0") is a diagonal matrix equal to the identity except for its p-
th diagonal entry which is equal to e7%". The novelty of our design resides

in deconvolving only NV; sources out of the Ny mixed sources and their delayed

8

a
versions®. In that sense, the first product set of rotations [] are designed to

b
target the first IV; sources, while the second set [] limits index p within the first
N, sources and allows the g index to span the whole set of Ny mixed sources. The

phase term e s called upon to compensate for the phase shift introduced by

"Indeed, it has been observed in [6] that working on real Givens (and Shear) rotation
is equivalent to working on a special versions of Complex Givens (and Shear) rotation
by fixing the value of angles o (and x) appropriately.

8To the best of our knowledge, the elementary Givens and Shear products are usually
covers the whole matrix space of dimension Ny. Yet our design exclusively aims to reduce
the computational complexity by targeting the recovery of the transmitting sources
without their delayed versions, i.e., the sweeping space is partially reduced to recover
only N; sources.
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the diagonal entries of the convolution matrix .

Shortly, we will be expressing J,,(V) given in (3.4) as a function of the
desired angle parameters. Thus, we break down the problem of finding matrix V'
into estimating the angles solely, so that (3.4) is optimized. To this end, consider

a single unitary rotation, given as

Z =5, (0,00Y (3.8)

According to (2.15), only rows p and ¢ change. Then, the first part of (3.4)
can be re-written in terms of Givens angle (6) (after omitting the terms that are

independent of (f) and for the sake of simplicity let Rgr = R; = R), as

p;
k=1 (3.9)
2 2
+(z2alk) = R)" + (z2,(k) - B)’|
Hence, due to the transform in (3.8), z,(k) and z,(k) can be read as’
(k) = Oty (k) + 1 (2(8) + (k) 10

z2(k) = —O©Tty (k) + § (gi“f) Wi(’“))

9The indexes R and I will be dropped intentionally, since both lead to a similar
results.
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where

0= { cos(26)  sin(26) r’ (3.11)

This leads to expressing the two real terms of (3.9) into a quadratic term plus a

constant term, given as

p (3.12)
eT |2 1;1 tmR(k)tgqﬁR(k) O + 2c§q7R(k)

where c,, r(k) = (y?

_p7R(k) + Q;R(k))/Q — R. Likewise, the two imaginary terms of

(3.9) are expressed by replacing the real parts of (3.12) with the imaginary ones

as

p (3.13)
e’ 2];tpq,1(k)tgq71(k) © +2c, (k)

where ¢, (k) = (Q;I(k:) +g§71(/€))/2 — R. By combining (3.12) and (3.13), and
after dropping the constant terms that are irrelevant to the determination of the

optimum value 6, we express the first part of the hybrid cost function (3.4) as a

quadratic form

Jum(0) = ©TTO (3.14)
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where

K
T=2 Z tpqﬁ(k)tgqﬁ(k) + tpq,f(k)tgq,l(k) (3.15)
k=1

In an analogous way, we simplify 7, and express it as a function of # while we are
evaluating the first set of rotations (case ’a’). To follow up with the introduced

rotation in (3.8), only rows p and ¢ are adjusted, that allows to re-write J in

(3.5) as
Ny Ns N Ny
TV)=>_ > Ir@F+ D D Ira@) (3.16)
ijé; b=—Ns ii;{lp q} o=—Ns

Beginning with the first summation, two scenarios are encountered: the first
one is when j # ¢, in this case only p is updated, according to (2.15) and using the

double angle trigonometric identities, |r,;(d)|” is expressed by a linear relation®

153 (8)]” = ©T1,5(3) (3.17)

where 10;(6) = [5(Irp;|* — 741), (rp;7;)r]". The second scenario is when j = g,

here p and ¢ rows are modified, accordingly, |r,,(5)|” leads to a quadratic and

0For the sake of simplifying the presentation, from now on all the irrelevant terms
that are independent of estimation parameters (i.e., #) will be dropped). Also, ¢ will be
sometimes dropped to shorten the equations presentation.
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linear term, given by

\%(5)\2 =0’ (rpq(5)rH (5))3 O+ ®T(2A;q(5)rpq(5))

Pq

. (3.18)

with

Ap(d) = % (Tpg = Tap) »

Tpg(0) = % (Tpg + Tgp) % (Tgg — Tpp)

Likewise, the evaluation of the second summation in (3.16), |ri(d)|* leads to the

linear relation

[rig(O)* = —OTr; 49(5) (3.19)

where 1;,0(0) = [5(|rip]® — 7ig|?), (ripry,)r]". This allows to re-write J, () in a

quadratic-linear format as

T« (0) = ©"RO + O'r (3.20)
where
Ns
R= ) (rpq(é)rg(é))}%v
=—N;
Ns
r = 572]\[ (2A;q(5)rpq(6))R (3.21)
Ny 5N5 Nt Ns
+20 2 Tpgi(0) = X2 D0 Tipg(d)
T2y 0= NS ittpay O
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Finally, Jpys is summarized as a sum of linear and quadratic terms

Tnyp(6,0) = er [T+ R|O + eTr
(3.22)

= 07Qe + ©7q

The optimization problem (3.22) can be solved exactly using a constrained min-
imization problem. However, other approximate solutions are possible by lin-
early approximating the sine and cosine around zero point. Using the Lagrangian

method, (3.22) can be set as

min - F(©) = 0'Qe +0'q st 07'Je =1 (3.23)

where Jg = diag{[1,1]} is a constraint which is equivalent to the trigonometric
identity sin?(26) + cos?(20) = 1. Considering the Lagrangian multiplier, (3.22)

can be written as
L(®,8)= ©'Q0 +0'q+ (0710 —1) (3.24)
where [ is the Lagrange parameter. The solution of (3.24) is given as

0= 1(Q+ e g (3.25)

By substituting the solution in (3.25) into the constraint that is given in (3.23),
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we obtain [ as a solution of

197(Q+536) " I6(Q + T6) =1 (3.26)

which is a 4-th order polynomial equation (see Appendix A). Interestingly, the
rooting of this polynomial can be performed at insignificant cost using non-iteritive
analtical procedures such as Ferrari or Cardanou’s formulas [100, 101]. Among
the 4 roots of (3.26), we select the one [y which is real-valued and corresponds to
the least value of (3.24). Eventually, we solve for @° = [6?,09]7 in (3.25) to get

sine and cosine of 6 as

0 0
cos() = Lo , sin(f) = % (3.27)
2 2(1 + 67)

which allows us to find the entries of Givens rotation ¢ (0,0) assigned in (3.7).

r_m

Now, to evaluate the second Givens rotations ¢ , (6 =3 ), a similar procedure

will be followed. Then, one might express the first part of (3.4), i.e., Jy(6'), as

jMM<9/> — @/TT/@/
% (3.28)
=072 /;1 t7 (k)0 (k) +t, (k)tD(k) | ©

The parameters of (3.28) are defined in Appendix B. Whereas, the second part of

(3.4) is derived in a similar way to (3.20) and it is given as

JI«(0) =0"TR'O + 7Y (3.29)
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where

N
R'= 3 (r,(0)15(0)
§=—Nj
Ns
r' = 5-ZN (2475 (8)rp,(9)) (3.30)
Ny i\ﬁs Ny Ns
T2 2 T+ >0 > ri,(00)
j=1 §=—Ng i=1 =—Ns
J#p i¢{p,q}
and
A;)q(é) =5 (Tpg +74p) s

l
2
T

[ % Tpg = Tqp) %(Tpp—rqq) ] ’

T
rqu((s) - [ %(|ij|2 |qu| ) (V _1ijr;1kj)R} ’

T
ré,qp(é) - [ %(|riq|2 - ‘Tip|2) (V _1ripr;<q)R ]

(3.31)

Ultimately, the hybrid cost function corresponding to the second group of Givens

rotations ¢y , ¢,-z

2) can be stated in a quadratic-linear form as

jhyb(ela _%) — @/T [T/ + R] @/ + @/Tr/
(3.32)

— @/TQ/@/ + @/Tq/

Then, matrix ¢7 (9’ , —g) is obtained using a similar approach to (3.25)-
(3.27), and according to (3.7), it should be applied successively on matrix Y so
that the filtering matrix V can be constructed accordingly.

The last phase term e7? can be evaluated by considering the compensation

for the concerned index p, i.e., z,(k) = e*jeﬁgp(k:). Then, the equivalent MM cost
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function, expressed in terms of #”, is obtained simply by setting (p = ¢ = 1) in
(7.8).

For the remaining rotations, and since we are interested in deconvolving the
first V; sources of Y, only the p-th rows are involved in the cost function during
the evaluation of product set b in (3.7). In that case, considering ¢?  (6,0) and
ignoring the ¢ parts in (3.12) and (3.13), (3.9) is restructured in a linear-quadratic

form as (constant terms are dropped)
Tum(0) =07TO + 't (3.33)

where

K
T = ];tpqu(k)th,R(k) + tpq,l(k>tgq,1(k)

K
t=2 kZ_]L tpq,R(k)Cpqu(k’) + tpq,l(k)cpq,f(k)

In regards to the cross-correlation term, the second sum in (3.16) becomes irrel-
evant while the first one does, also ¢ indices are out of bound (i.e., ¢ > N;). In
this case Jx(#) will be given only by the linear relation (3.17) and the net hybrid
cost function in (3.22) is modified accordingly and is given as

jhyb(eu O) =0'TO + er [t + I‘]
(3.34)

- 07Qe + 07q
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where

N: N

r=>5, > I‘qu(é)
j=1 6=—Nj
J#p

The evaluation of the second angle (¢') in rotation set b is also analogous to
the evaluation of the same angle in set a. Excluding the ¢-th part of (3.9) and
making use of the real and imaginary parts of p-th index in (7.7), results into the

following linear-quadratic reduced-MM equivalent cost function
Tun(0) =07T'e" +e"t (3.35)

where

T = i t1 ()L (k) + t/gp (k)T ()
t'=2 ]fjl t,(K)ep (k) — t'gp(k)cy, (k)
k) =3 (2 0) +42,(0)) — R

k) =3 (2 0 +2,(0)) — R

_p7I

Considering the first summation of (3.16), the composite cost function (3.4) re-

duces to

jhyb(ela _g) — @/TT/@/ + @/T [t/ + I‘l]
(3.36)
— @/TQ/@/ + @/Tq/
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Table 3.1: G-MMDA and HG-MMDA Algorithms
a. Initialize V = Iy,
b. Pre-Whitening: Y = BY
c. Givens Rotations:
for n = 1: Ngyeeps do
forp=1:N, do
1. Evaluate D,(6")
2. Update Y =D,(0")Y and V =D,(#")V
forg=p+1: N, do
3. Evaluate ¢}, (0,0) using (3.22), (3.27) and (2.15)
4. Update Y = 5 (0,0)Y and V = ¢} (0,0)V
5. Evaluate 2 (¢, —%) using (3.32), (3.27) and (2.15)
6. Update Y = ¢y , (8’, —g)X, V=, (9’, —%)V
end for
for ¢ > N, do
7. Evaluate ¢? (6, 0) using (3.34), (3.27) and (2.15)
8. Update Y = b (0,0)Y and V = b (0,0)V
9. Evaluate 2 (¢, —%) using (3.36), (3.27) and (2.15)
10. Update Y = gog,q (9’, —g)X, V= cpg’q (9', —g)V
end for
end for
end for
d. Compute the deconvolution matrix: W = JVB
e. Recover the sources: S = WY, which is equivalent to JY

Note: To get the HG-MMDA, we repeat steps: 3 — 4 after 4 using ¢, , (7,0),
steps: 5 — 6 after 6 using ¢} (7', —7/2), steps: 7 — 8 after 8 using ¢g’q (7, 0),
and steps: 9 — 10 after 10 using qbé’w (', —7/2).

where

Ny  Ns

r'= >0 > 1,00
j=16=—Ns
J#p

At the end, matrix V is initialized'" as V = Iy, and the complete derived G-

MMDA is summarized in Table 3.1.

"The selection matrix J is applied only at the last stage after the algorithm’s con-

vergence.
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Hyperbolic Givens MMDA (HG-MMDA)

In the case of small number of samples N, the pre-whitening is not effective,
accordingly, the transformed convolution channel matrix H would be far from
being unitary. For this reason, the performance of the proposed G-MMDA algo-
rithm lessens. To overcome this limitation, the Hyperbolic (Shear) non-unitary
rotations are applied alternatively along with the Givens rotations. This results
in the Hyperbolic Givens MMDA (HG-MMDA). Hence, the matrix V', can be de-

composed into a product of elementary unitary ¢, , and non-unitary ¢, , rotations

as follows:
v=J 11 I1 Tog (,0) Toq (§/7 _%) D,(0")
NSweeps ISPSqSNt
b (3.37)
b b s
H prq (g, 0) Tp,q <§I7 _5)
1<p<N
N:<q<Ng4
where
T
Tp,q(g a) = 90p7q(97 a)¢p,q(7> Oé), S = [0, '7]7 o€ {07 5} (338)

Again the special version of the complex Hyperbolic rotations is used, also, the
derivation flow is very similar to what has been presented earlier. Hence, we brief
the findings of the Hyperbolic transformation parameters to minimize the hybrid
criterion (3.4).

Consider a single unitary rotation, given as Z = ¢, (7,0) Y. According to
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(2.16), only rows p and ¢ change. Then, (3.9) can be re-written in terms of Shear

angle (7), as well. Hence, as derived for the Givens rotations, we can show that

Ip Zq (3.39)
(k) = @ (k) + & (12(0) — y2(0))
where
P = [ cosh(2v) sinh(2y) } ’ (3.40)

—p

(k) = [ L (yQ(k:) + gg@;))

Similar to the derivations in (3.12)-(3.13), using (3.39) and ignoring the terms that
are independent of -y, we express (3.9) by the compact quadratic-linear formulation

as
Tum(y) = ®"'U® + &"u (3.41)

where

K
U= /; upq,R(k)ugq,R(k) + upq,l(k)ugq,f(k)a

K
u=—-2RY upq,R(k) + upq,l(@a
k=1

Also, the corresponding Jx (V') terms are evaluated by imitating the steps (3.16)-
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(3.21). One can easily express J (V) as

TI«(7) = ®T0® + ®70o

where

Ns
0= 3 (0p(0)0p(9))p
5=—Nj
Ns
o= > <2A;q(5)OPQ(5))R
§=—Njs
N: Ns Ny Ns
+Z > 0pqi(0) + Z > Oipq(0),
Tap 0= igtpay 0N

0pq(0) = [(1pq(0) + 74p(8)), (rpp(8) + 744 (0))]" /2,
035 (8) = (17 (6)* + 1745 (6)[*) /2, (15 (8)r;(6)) 7

0ipg(0) = [(Irip(O) + Iriq(8)[*) /2, (rin(8)r7,(8)) 1"

Hence, we use (3.41) and (3.42) to express Jhyp in (3.5) as

jhyb(’% 0) = (I)T [U + O] P + (I)T [11 + O]

— 37Q® + d”q

(3.42)

(3.43)

(3.44)

The optimization problem (3.44) can also be solved using the Lagrange multiplier

as followed earlier (see (3.23)-(3.25)). This is done by imposing the constraint

cosh?(27) —sinh?(2v) = 1 and, consequently, replacing J¢ by Jg = diag{[1, —1]}..
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Then, we solve for ®° = [1? 19| to get!?

149 . V3
cosh(y) = Tl ., sinh(y) = ﬁ (3.45)
1

which allows us to find the entries of the Shear rotations ¢, (7,0) defined in

(2.16).

s

Now, to evaluate the second Shear rotations ¢y, (7’ =5

), a similar procedure
to the one used for ¢} , (9’ , —g) evaluation is followed, which lead to (see Appendix

C)
TJum () =@ U'® + @ (3.46)
Similar to (3.20) and (3.29), the second part of (3.4) is found as follows:

TI«(7) = ®TO'® + &0 (3.47)

2Note that the first entry of ® is forced to be non-negative.

68



where

Ns
O'= 3 (044(0)0p(9)) 5
§=—Nj
Ns
o= > (2A;kq(5)oé)q(5))R
§=—Nj
Ny Ns Ny Ns
T2 2 0,0+ X0 D 0p,,(0),
J2p 0= N ieway =N (3.48)

O;q(é) = [(rpg(8) = rgp(9)), _\/__l(rpp((s) + qu((s))]T/Qa
005 (8) = [(17p; (6)* + 745 ()" /2, (V=Trp (8)r5;(6)) I
0} g (8) = [(rip () + [rig(6)[*) /2, (V=Trip " (8)1ig(6)) )"

Then, (3.47) and (7.11) are used to evaluate Jpy in (3.4) as

Jhp(7,0) = T [U' + O] &' + &7 [u' + 0]
(3.49)
— (I)/TQ/(I', + (I)/Tq/
This optimization is also solved using the Lagrange multiplier approach considered
before.

Having evaluated the first set of shear rotations, i.e. ’case a’, we proceed to

evaluate 'case b’, for which the term w in (3.41) becomes:

u =2 Z Upq, 1 (K)Cpg, r(K) + Wpg,1 (K)Cpg1 (K) (3.50)

k=1

where ¢,,(k) = (g;(k:) —gz(k‘))/Q — R. Likewise, the arguments explained to
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evaluate J(0) in (3.34), are followed here to find Jx () as

Ny N
jx(V):(I)TO_(I)T > > 0pq,5(9)
j=1 6=—Nj
J¢{p.a}

Accordingly,

Thyp(7,0) = ®TUD 4 &7 [u + o]
(3.51)

= 3TQP + d'q

Eventually, the evaluation of the second angle (7') in rotation set b is also

analogous to the evaluation of the same angle in set a. We obtain:

Juu () = @TU'D + @ (3.52)

where (details are given in Appendix C)

Considering the first summation of (3.16), the composite cost function (3.4) re-
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duces to

Tp(Y, —5) = @TU' P + &' [u’ + 0]
(3.53)
— @/TQ@/ + (I)/Tq

where

Ny Ns

o' =2 > 04,09
j=16=—Ns
J#

The complete HG-MMDA is summarized in Table 3.1.

3.4.2 Deconvolution Using Deflation Approach

In the subsequent sections, we use the Givens and Shear rotations also to develop
new deflation based deconvolution algorithms!®. In the algorithm designs we
resort to extract a single source each time. After this, an appropriate subspace

projection procedure is used to remove the effect of the extracted source and its

potential delayed versions.

Givens Deflation MMDA (G-DMMDA)

Since each time we target to extract a single source, one can reduce the MM

criterion (3.9), with p = 1, into

Tun(V) = = 3 [(alb) — B) 4 (a0~ BT (359

k=1

13Part of this work have been presented in [102].
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Following (3.7), the complex matrix V is accordingly decomposed into succes-

sive multiplications of the elementary Givens rotations as'*

V=i II D@ TI 0.0, (¢.-3) (3.55)

Nswceps p=1<QSNd

where j = [1,0] is a row selection vector. According to (3.55), p is maintained to
1 in order to retrieve the first row, while ¢ is allowed to sweep and combine the
whole signal space domain, i.e., 1 < g < Ny . To reduce the MM criterion (3.54)
into a criterion of finding the angles parameters, we take advantage of the earlier
derivation carried for G-MMDA.

Thus, considering the first two sets of rotations ¢, , (0,0) and ¢, , (¢, —7/2),
then, the equivalent MM cost function, expressed as a function of parameter 6
and ¢, is given in (3.33) and (3.35), respectively with p = 1. in similar analogy
we evaluate the third rotations e 7 is obtained by setting p = ¢ = 11in (7.8).

As pointed earlier, the deflation approach is an iterative method such that
each run results into extracting a single source. Each source has an expected
number of replicas which depend on the window size and the channel memory, i.e.,
Ns = N, + M. To waive the effect of the extracted source and its corresponding
delayed copies, define the time-lagged correlation matrix R; between the extracted

source z; = jVY, ; and the data matrix Y, ;, at the (i — 1)-th deflation run (i

1For ease of presentation, we keep using the index p, despite it is always fixed to 1.
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indicates the order of the extracted source) as

R = [ [y () (k + Np)] .-+, E [y, (k)= (k = Ny)] (3.56)

where y,_,(k) is the k-th column vector of matrix Y, ;. The singular value

decomposition of R; has the form

R, = Qudiag (\3,--- ,)%,) QI +5°Q.Q," (3.57)

where )\;’s are the singular values of R;, also the columns of Q; and Q; spans
the so-called extracted source subspace, i.e., span{Q;} = span{z;} and the non-
extracted sources subspace (orthogonal complement), respectively. Now, given
that one source is extracted successfully, then the extracted source subspace eigen-
values (\;) are much greater than 6% and very close to 1, i.e., 52 < \; ~ 1. Even-
tually, after having the basis of the extracted source subspace, the new set of data

which will be ready for the next source extraction, i.e., Y, is obtained by

Y, =PY, (3.58)

where P; = I — Q,Q; is the orthogonal projector which is supposed to ”deplete
the effect” of the extracted source and its replicas contribution from the data
matrix Y, ;. Again, the depleted matrix Y, will go through the process again
to separate a new source signal until all the source signals are recovered. The

complete derived G-DMMDA is summarized in Table 3.2.
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Next, we discuss an alternative way to find the projector matrix P; without
resorting to the costly SVD decomposition. As shown earlier, the matrix R; would
have ideally Ns non zero column vectors. In practice, the latter are obtained by
selecting the Ns column vectors of R; of maximum norm. This set of columns
forms the matrix Q;

It is customarily to mention that, the proposed method regularly suffers from
local minima problems which is the consequence of shortening the sweeping space,
i.e., fixing p = 1. One of the strategic plans that is used here is to re-randomize
the data matrix Y once the algorithm gets stuck in a local minima. The re-
randomization can be done by initializing V' to be a random matrix instead of
identity and as a consequence the updated matrix Y becomes VY, ie., Y =VY.

Finally, one might use the proposed algorithms, HG-DMMDA and G-
DMMDA, as new BSS algorithms to seperate instantaneous mixtures. In either
case, i.e. using the algorithms for instantaneous or convolutive mixtures, our
methodology has a gain in terms of computational complexity as compared to [6]
and [7]. This is due to the fact that our approach considers sweeping the con-
cerned source only by fixing p = 1. Moreover, as discussed earlier, we devised a
less complex alternative method to evaluate Q, rather than performing the costly

SVD decomposition (Table 3.2, step III).

Hyperbolic G-DMMDA (HG-DMMDA)

to substitute for the inadequacy in the whitening phase, specially in case of small

processing samples, the decomposition of V' is conducted based on the successive
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Table 3.2: G-DMMDA and HG-DMMDA Algorithms
Pre-Whitening: Y, = BY
Initialize V = I,
Givens Rotations and Deflation:
for:=1:N,do
for n =1: Ngyeeps do

1. Evaluate D,(6")

2. Update Y, = D,(0")Y,_, and V =D, (0")V

forp=1,g=1: N;do

1. Evaluate D,(6")

2. Update Y, =D,(0")Y,_, and V =D, (8")V
3. Evaluate ¢, (6,0) using (3.33), (3.27) and (2.15)
4. Update Y, =, ,(0,0)0Y;, ; and V=, (0,0)V
5. Evaluate ¢, , (¢, —%) using (3.35), (3.27) and (2.15)
Y, = ¥pg (9/7 _%) Y,
6. Update V=g, (9’, _%) v
end for
end for

1. Recover the source number i: z; = jVY,
II. Evaluate correlation matrix: R; using (3.56)
III. Perform SVD (or use the alternative method) to evaluate Q,
IV. Evaluate the projector matrix: P; = I — Q,Q;
V. Find the new subset of data: Y, = P;Y, ;
end for

Note: To get the HG-DMMDA, we repeat steps: 3 — 4 after 4 using ¢, , (7,0)
and steps: 5 — 6 after 6 using ¢, , (v, —7/2).

applications of the Givens and Shear rotations. Using (3.37), the decomposition

becomes

V=] H D,(0") H Ypq(s,0) Lpyg (gl’ _g> (3.59)

NSweeps p:1§q§Nd

Now, considering the first two sets of rotations ¢, , (¢,0) and ¢, , (¢, —7/2), then,
the equivalent MM cost function expressed as a function of parameter v and +/

is given in ((3.41), (3.50)) and (3.52), respectivly. The complete HG-DMMDA is
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summarized in Table 3.2.

3.5 Simulation Results

This section elaborates on the performance of the proposed algorithms by present-
ing simulation results. Due to the non-presence of the batch MM deconvolution
algorithms, we do the comparison among the different proposed algorithms, also
with the CM-like algorithms when it is applicable. The comparison is delivered
in terms of the average symbol error rate (SER).

The first experiment compares algorithms’ performance againest the processed
samples size Ng. In this regards, we consider a MIMO communication system
with 3 transmitters and 5 receivers, i.e. (N; = 3, N, = 5). The sources transmit
uncoded samples which are drawn from 4-QAM constellation. At each Monte-
Carlo run, the data are passed throughout a randomly generated convolution
matrix H with a channel degree M = 2. The used window size is set to 3, i.e.,
N,, = 3, and is selected in a compliance with (2.3). The noise variance is modified
according to the handled SNR. The results are averaged over 1000 trials.

Considering the on ” Full BSS” method, Fig. 3.4 depicts the effect of the sample
size for different MM-BSS (G-MMA, HG-MMA) and CM-BSS (G-CMA, HG-
CMA, ACMA) algorithms. It is clear that the ACMA has a degraded performance
as compared to the unitary/non-unitary based algorithms. This means that at
small number of samples, the ACMA does’t appropriately handle QAM signals.

Also, the figure shows that the rest of the "Full-BSS” methods feasibly work for
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data samples greater than 200, i.e.,N; > O (10Ny).

100 150 200 250 300 350 400 450 500
Ny(samples)

Figure 3.4: Average SER of "Full-BSS” algorithms (using ACMA, G-CMA, HG-
CMA, G-MMA, HG-MMA) vs. N, with SNR = 30 dB and 4-QAM.

On the other hand, Fig. 3.5 demonstrate the behavior of the Equalization-
BSS algorithms over different sample size. Unlike the Full-BSS methods, the
algorithms’ performance is monotonically iproving as the processed number of
samples increases. Also, one notice that the Equalization-BSS class is more effi-
cient than the Full-BSS class in terms of the processing data size.

The behavior of the hybrid-based deconvolution algorithms (HG-MMDA, G-
MMDA) and the deflated-based algorithms (G-DMMDA and HG-DMMDA) is
shown in Fig. 3.6 and Fig. 3.7, respectively. They have a comparable performance
with the "Full-BSS” algorithms. Additionally, as expected, we notice that at
comparably low N, the HG-DMMDA has a remarkable gain over the G-DMMDA.
This is due to the ineffective pre-whitening operation. However, at sufficient large
number of samples, all methods in both classes demonstrate a similar performance.

So far, the performance of different proposed approaches with the size of the
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Figure 3.5: Average SER of Equalization-BSS (using ACMA, G-CMA, HG-CMA,
G-MMA, HG-MMA) vs. Ng with SNR = 30 dB and 16-QAM.

processed number of samples N, is presented. We regarded that each class has
a completely different behavior, despite that all performing the same task. The
simulation is done at fixed high SNR, i.e., 30 dB. However, one might ask about
their performance at different noise level. This question is incorporated in the
subsequent simulation part.

Figure 3.8 compares the average SER of the proposed method ”Full-BSS”
for different CM and MM-based BSS algorithms, namely ACMA, G-CMA, HG-
CMA, G-MMA and HG-MMA, against the SNR. As noticed previously in Fig.
3.4, the ACMA has the worst performance. Whereas, the other methods have a
comparable performance, especially in the case of 4-QAM.

Figure 3.9 depicts the performance of the ”"Equalization-BSS” class of algo-
rithms. It is obvious that this class behaves very well at high SNR values, how-
ever it has a poor results at low and moderate SNR values. As expected, one can

notice that the HG-MMA BSS algorithm has the best performance among others
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Figure 3.6: Average SER of G-MMDA and HG-MMDA a vs. Ny with SNR =
30 dB and 4-QAM.

with a tolerated increment in the computational cost.

Figure 3.10 shows the performance of the hybrid-based algorithms, namely G-
MMDA and HG-MMDA. It is clear that this class of algorithms needs moderate
number of samples to perform well, as already shown in Fig. 3.6, also they have an
appealing results at all SNR levels. Moreover, we noticed that the HG-MMDA has
an improved performance over the G-MMDA algorithm at high SNR. In the last
experiment, we verify in Fig. 3.11 the deflated-based class, namely HG-DMMDA
and G-DMMDA, for two different samples size, 200 and 350. It is clear that, both
algorithms have an improved perormance at high N, and it becomes more obvious
at high SNR values. One may also notice that both algorithms experience a close

performance in case of high Nj.
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Figure 3.7: Average SER of G-DMMDA and HG-DMMDA a vs. N with SNR =
30 dB and 4-QAM.
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Figure 3.8: Average SER of Full-BSS algorithms (ACMA, G-CMA, HG-CMA,
G-MMA, HG-MMA) vs. SNR for N, = 250 and 4-QAM.
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Figure 3.9: Average SER of Equalization followed by BSS (using ACMA, G-CMA,
HG-CMA, G-MMA, HG-MMA) vs. SNR for N, = 120 and 16-QAM.
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Figure 3.10: Average SER vs. SNR for the G-MMDA and HG-MMDA algorithms
at Ny = 300 and 4-QAM.
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Figure 3.11: Average SER vs. SNR at both Ny = 200 and N, = 350 and 4-QAM.
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3.6 Conclusion

This work tackled one of the fundamental problems in wireless communications,
more precisely, performing blind deconvolution and channel estimation for con-
volutive MIMO systems without the help of pilot data. In this work, for the
first time, a class of MM-based algorithm combined with the SOS techniques
implemented in different scenarios, to perform the blind deconvolution, are de-
vised. Four different batch BD algorithms are presented; the first two, namely
Full-BSS and Equalization-BSS, are classified as a two-step methods, while the
last two, namely, Hybrid and deflation-based, are one step iterative approaches.
The proposed algorithms are designed using a prewhitening operation to reduce
the complexity of the optimization problem followed by applying special-versions
of the unitary (Givens) and non-unitary (Shear) rotations on the whitened data.
The proposed algorithms are mainly designed for the QAM signals. Finally, in
addition to the computational cost comparison, simulation results are provided to

highlight the favorable performance for different algorithms.

83



CHAPTER 4

FAST MULTI-MODULUS

ALGORITHMS

A novel class of Fast Multi-Modulus (fastMMA) Blind Source Separation (BSS)
and deconvolution algorithms are presented in this chapter. These are obtained
through a fast fixed-point optimization rule used to minimize the Multi-Modulus
(MM) criterion. In section 4.3, two BSS versions are provided to separate the
sources either by finding the separation matrix at once or by separating a single
source each time using a fast deflation technique. Further, the latter method
is extended in section 4.4 to cover systems of convolutive nature. Interestingly,
these algorithms are implicitly shown to belong to the fixed step-size gradient
descent family, henceforth, an algebraic variable step-size is given in section 4.5
to make these algorithms even much faster. Apart from being computationally
and performance-wise attractive, the new algorithms are free of any user-defined

parameters.
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4.1 Introduction

Blind Source Separation (BSS) stands for the process of retrieving N; transmitted
sources by processing N, received signals without the need for a training phase.
A prior statistical or structural information of the emitted sources is used instead.

Among the successful attempts to perform BSS for QAM signals is the Analyt-
ical Constant Modulus Algorithm (ACMA) [24], which provides an exact algebraic
solution in the noise free case. It is able to solve the BSS in batch mode using few
samples by solving a generalized eigenvalue problem. However, ACMA has a high
computational complexity. Recently, CM and MM-based algorithms, named as
Givens Constant Modulus Algorithm (G-CMA), Hyperbolic G-CMA (HG-CMA)
[7], Givens Multi-Modulus Algorithm (G-MMA) and Hyperbolic G-MMA (HG-
MMA) [74], have been introduced to overcome the numerical complexity of the
ACMA algorithm. These algorithms use the unitary (Givens) and non-unitary
(Shear) rotations to perform the BSS of the instantaneous mixtures.

In this chapter, the target is to solve both kind of mixtures, instantaneous and
convolutive, in a fast and a less complex way, as compared to all existing algo-
rithms. This is obtained through solving the MM criterion by the Fixed Point
Optimization (FPO) numerical technique inspired by the famous fastICA method
[35]. In the context of instantaneous mixtures, we provide a first separation algo-
rithm which minimizes the MM criterion using FPO with a deflation approach.
This algorithm is then modified in such a way all sources are extracted simulta-

neously (without the deflation) which improves the performance of the fast MMA.
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Moreover, the previous deflation based fastMMA is extended to cover the convolu-
tive mixtures using a simple correlation based criterion for the deflation. Finally,
the proposed algorithms are shown to belong to the well-known family of gradient
descent update rule, with a fixed step-size, henceforth, using the exact line search
strategy, we derive an algebraic optimal step size, which increases the convergence
rate of the proposed algorithms. Indeed, the variable step size (VSS) version of
fastMMA is shown to converge in a very small number of iterations and sometimes
in only one single iteration as illustrated in Section 5.5.

Unlike the MM stochastic Gradient Algorithm (SGA) such as MMA [27] and
MUK [25], the proposed algorithms are shown to be free of user-defined parame-
ters. Besides having fast convergence and reduced computational complexity, the
proposed algorithms lead to improved estimation accuracy as illustrated in the
simulation results section.

The rest of the chapter is organized as follow: Section 4.2 revise the problem
formulation and explains the followed BSS approach®. Section 4.3 presents the
two fastMMA versions which perform BSS for instantaneous mixtures. Section
4.4 extends fastMMA into fast MMDA, whereby the BSS and equalization (Decon-
volution) for convolutive mixtures is enabled. The former algorithms are shown
to belong to the standard step-size gradient-descent algorithms, hence in Section
4.5, we formulate a variable step procedure to make these algorithms even much
faster. The performance advantages of the proposed algorithms are empowered
in the simulation Section 5.5. Ultimately, Section 5.6 concludes this work.

IThe problem formulation is already described in the preliminaries Chapter 2.
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4.2 Problem Formulation: Revisited

Consider a MIMO system with V; transmitters and N, receiving antennas. The
transmitted data is assumed to pass through a noisy frequency selective channel,

so that the collected N, samples at time instant £ can be modeled as:

y(k) =>_ H(n)s(k —n) + e(k) (4.1)

where H (n) is the channel impulse response, which captures the introduced Inter-

Symbol Interference (ISI), defined as

hii(k) ... hiw, (k)
H(k) =
hwa(k) - oy, (F)
and H(z) = SM  H(n)z™" is the unknown FIR transfer function, which is as-

sumed to be irreducible and column reduced [80], s(k) is the unknown indepen-
dent identically distributed phase modulated communication signal, and e(k) is
the additive (spatially and temporally) white noise.

Considers the spatio-temporal variables:

Yo (k) = Hsy(k) + en(k), (4.2)
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where

Y, (k) = [y (k), -,y (k- N, +1)]",
y(k) = [y (k), - yn, (k)]
su(k) = [sT(k), -, 8T (k — Ny — M +1)]",

s(k) = [s1(k), -+ s ()],

H is an (N, Ny, X Ni(N,, + M)) block Toeplitz convolution matrix with the first
block row [H (0),- -+, H(M),On,xnt, - ,Onrxnt]. As for H to be identified and
of full column rank, the condition N,, > (N;M)/(N, — N;) must hold.

The source signals are recovered blindly using the Ny(N,, + M) x N, N,, beam-
former matrix W. Hence, the receiver output is evaluated as z(k) = Wy, (k)
which is an Ny = N;(N,, + M) dimensional estimated source signal with some
delayed versions. In batch Blind Deconvolution (BD) algorithms, N, samples
of the received data are usually collected before processing, so that K vectors
Y, can be formed, where K = Ny — N, + 1, and concatenated in a matrix
Y = [y,(Nw), -+ ,Y,(Ns)]. Similarly, the estimated sources can be written in
matrix form as Z = WY.

To simplify the problem, a prewhitening operation [7], [23] is used so that it
reduces the dimension of Y from (N,N, x K) to (N4 x K) and it transforms
the channel matrix # into a matrix that is close to unitary (see Section 2.4.1),
according toY = BY = BH.S = V S in the noiseless case. B is the (Ngx N, N,)
whitening (filtering) matrix, V.= BH is a (Ng x Ny) unitary matrix®. This kind

2This is an ideal case which is satisfied with a large number of samples.
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of manipulation reforms the problem of BD into finding the unitary matrix V' in
a way that the beamformer matrix becomes W = V¥ B, and ultimately results

into the following:
Z=WY =V BY =V VvS§=8 (4.3)

By reducing the Blind deconvolution problem to finding the unitary matrix
V', we aim to use the efficient FPO technique to build V' in (4.3), and hence be
able to recover the source signals. Making use of the QAM signals’ constellation

structure, one can optimize the MM criterion [26]:

2

JWV) = B|(Znlk) ~ Ba)* + (2 (k) — i)’ (4.4)

where R = E[sh(k)]/E[s%(k)] and R; = E[s}(k)]/E[s%(k)] are, respectively, the

real and imaginary dispersion constants®. z;(k) is the (i, k)-th element of Z.

4.3 Fast MMA for Instantaneous Mixture

In this section, we focus on solving the BSS problem for memoryless systems.
Hence, substituting M = 0 and accordingly N,, = 1 in (4.2) reduces the con-
volutive model given in (4.1) into an instantaneous one. After performing the
whitening phase, we aim to find the unitary matrix V such that Z = VY.

Each column of V', ie., v; extracts one source signal, hence we need to find

3W.Lo.g., we assume a square QAM constellation so that Rr = R; = R.
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v; = v; g + jv; 1 such that the i-th source signal z; = v,fIX is obtained. To do

this, define

Then, any part of the MM criterion in (4.4) becomes

B[00 - r] = £ | (61 PR - R)'
— B |0l FYY)'| - 28 (6! FLY)’| R+ B2

where F'x is a fixed matrix defined as

I, when evaluating z; r
Fyx =

F;, when evaluating z;

(4.5)

(4.6)

After dropping the irrelevant terms and due to the whitening step, (4.6) becomes

B (.0 - B)’] = B [T FAY)'] - 2R ol (A7)
To avoid the trivial solution v; = 0, the constraint ||v;||3 = 1 is introduced.
Ultimately, the final objective function is
T4 T T~ 4 .2 .12
Twi\) = B |6IY)' | + B |6IFIY)'| - arfod; + 2 (1 - [oi3)  (438)
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where X is the Lagrange parameter. To guarantee a fast convergence with an easy
implementation, we propose to use the FPO numerical method. To do this, one
needs to put the update equation in the format such that ©v; = f(v;). Hence, the
fixed point ¥; of (4.8) is obtained by zeroing the gradient vector. This results
into the following iterative rule (for simplicity, we adopt here Matlab notation to

avoid to rename the updated vector after each iteration):

A . .
Soi=E [X o eNta;] +E [F? Yoeyal| — 2Rv; (4.9)

where o denotes the Hadamard product, ar = v'Y, a; = v/ F1Y, ey, is a
column vector of size 2N; filled with ones, and a% refers to (ag o ag o ag). F|]
refers here to the averaging of the column vectors of its argument. After each
update, A is chosen so that ||9;]| = 1. The significant gain of this method is that
with a minimal computational cost, only a few number of iterations are needed
to converge, usually 5 to 15 for small or moderate number of sources, as will
be shown in the simulation section. This learning rule separates only one single
source. To recover the N; sources, two schemes are possible and are presented in

the subsequent subsections.

4.3.1 Deflation Based Estimation of V' (fastMMAd)

To retrieve the Ny independent components, we run (4.9) N, — 1 times. To ensure

that each time we extract a new different source, we install an orthogonal pro-
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jection to remove the extracted source and simultaneously reduce the size of the
problem, i.e., we reduce by 1 the number of sources at each run. To achieve this,
let’s decompose the separation vector according to v; = [, a]? where a > 0 is
the last entry* of v;. Now, the orthogonal projection matrix P; can be expressed

as:

&, } (4.10)

It is easy to check that P;v; = 0, PZ»PlH = I and that P;Y;_; reduces by one

the number of rows of Y;_; according to:

ol

PY, =Y, - Ui ( Y, o1 +Y,_1)

1+«

where Y,_; is the projected data matrix at the (i — 1)-th run (starting with

Y, = Y) which is decomposed as: Y;_; = [Y,_,, 4 ,]7, where 9, , being the
last row vector of Y;_;. This results into the deflated fastMMA algorithm which

is summarized in Table 4.1.

4.3.2 Full Estimation of V' (fastMMATf)

Another possible scheme will be by iterating the up-dating of the separation matrix

V such that all the N, independent sources are separated simultaneously in each

4If 6 is the phase argument of the last entry of v;, the latter vector is multiplied by
e7% so that its last component o becomes non-negative valued. This choice is made to
guarantee that the term 1+ « is non-zero.

92



Table 4.1: fastMMAd Algorithm

Pre-Whitening: Y, = BY O(N,N? + N3)
fori=1:N,—1do

1. Initialize v; as a random vector of norm one.

2. Build the real arrays: YO, ;.

forn=1: Nsweeps do

ap — ’UZTYZ,1 ZNS(Nt — 1+ 1)
a;=v'FTY,_, 2N (N; —i+1)
o, = E [YH oen, a%} +E [F? Yi.o eNtag] — 2Rw;
0; = v/ ||0s|? ING(N, —i+1)
end for
3. Extract the source number i: z; = vY,; 2N (N — i+ 1)
4. Remove its effect: Y, = P,Y,;_; ANg(Ny —i+1)
end for

sweep. This implementation allows us to relax the orthogonality constraint on
the matrix V. In doing so, we avoid the orthogonal projection step and the
restricted search of V' among the unitary matrix set only®. Consequently, this
relaxed constraint leads to a slight improvement in the estimation performance.

The complete implementation is summarized in Table 4.2.

4.4 fastMMDA for Convolutive Mixture

To deal with convolutive channel systems, i.e., mitigate both ISI and inter-user
interferences, we extend the attracting deflated-based fastMMAd algorithm and
propose the fast MMDA algorithm (D stands for deconvolution).

Due to the channel memory and the windowing effect in the convolutive model

(4.2), each single source is expected to have N5 = N,, + M number of replicas. We

SIf the pre-whitening step is inadequate (due for example to a short sample size) the
unitary constraint might affect significantly the algorithm’s performance.
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Table 4.2: fastMMAf Algorithm

Pre-Whitening: Y = BY O(N,N? + N3)
1. Initialize V' as a random unitary matrix.
2. Build the real arrays: Y, V.
for n = 1: Ngyeeps do
fori=1: N, do

aip="vY (2N, N,)
a,;=v F1Y (2N, Ny)
o, = E [Y o eNta?,R] B [F?Y oenal,| — 2Rb,
(AN,Ny)
end for . o
Normalize the separation matrix: V =V /||V||?
end for

3. Recover all the transmitted sources: Z = VZY

use the orthogonalization and dimension reduction strategies to remove the effect
of the source and its delayed copies after each deflation run. To this end, define
the time-lagged correlation matrix between the extracted source z; = v2Y,; 4
and the collected data set Y;_; at the (i — 1)-th deflation run (where i refers to

the order of the extracted source) as

R = [E[y, (k)2 (k+ N5)] -+ E [y, (k)2 (k — Ny))]

where y, (k) is the k-th column vector of matrix Y,;,_;. The correlation results
ideally are either zero or the column vector of the mixing matrix of Y, _; corre-
sponding to one of the shifted version of the i-th extracted source z;. Hence, the
matrix R; would have ideally Ns non zero column vectors. In practice, the latter
are obtained by selecting the Ns column vectors of R; of maximum norm. Af-

ter normalization, these vectors form the columns of Q,, which is ideally unitary
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thanks to the prewhitening step.
Now, to remove the extracted i-th source and its shifted versions, one uses

T
the projection matrix P;. To do this, split @, into [ QT | QT ] , where the

square matrix @, ; has the following polar decomposition: Q,; = Q20; 2 > 0,0

is unitary. Eventually, P; in (4.10) will look as follows:

_ =~ 1 /H ~
P, = Id—QLi(I"‘Q) 1Ql,i _Ql,i}

where QM = QMG)H . Similarly to the instantaneous case, P; achieves both
orthogonal projection and dimension reduction in a fast way.

Remarks: In the convolutive case, the number of runs is /V; instead of N; — 1
(as for the instantaneous case), because one needs to remove the ISI for the last
step. Also, the extension of fastMMATf is not proposed here due to its high com-
putational cost in the convolutive context. Finally, note that the full version (i.e.
fastMMAf) might require several initialization trials to guarantee the algorithm’s

convergence.

4.5 MMA with optimized Step Size

One can read the update in equation (4.9) as®:

1 ) )

by = Dy — §{4E [XoeNta?j%} V4B [F}oneNtaﬂ} (4.11)

60One can fix R to 1, as it can be tolerated due to the inherent scale ambiguity in

the BSS techniques. Equation (4.11) is obtained by factorizing the constant —2R and
including it in the normalization constant A.
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followed by a normalization step. Interestingly, similar to the work presented in
[103] and [36], the former update rule is argued to be a gradient-descent based,

with a fixed step size (FSS) p = 1/8, of the form

(Vi) pew = (Vi) gia — 119 (4.12)

where g; = Vy, M(v;) and M(0;) = E||z;r|*] + E||2i1|*] is a sum of forth-order
moments of the real and imaginary parts of the reconstructed source signals.
The FPO rule has shown to be a fast technique, in the sense that it maintains
a fixed step size which has a cubic speed of convergence in the case of infinite num-
ber of samples [104]. Still, the fast convergence is not guaranteed as it might slow
down and even get trapped in a local minima, especially in the short sample size
case, as is shown in [105]. Recently, the exact line search optimization technique
has been successfully deployed in channel identification [106], blind equalization
[103] and independent component analysis [36], to provide an optimal variable step
size (VSS), which has shown to speed up the convergence and improves the algo-
rithm’s robustness against local minima convergence. With this rational, faster
versions of the earlier proposed algorithms can be obtained via the following step
size optimization approach defined in (4.13). This is achieved by appropriately

enrolling the exact line search strategy, i.e,”

Hopt = arg min J (”(’Uw) (4.13)

Z () new |

"We dropped the index i intentionally for ease of presentation.
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where (0), . is given by (4.12) and J is the MM cost function. The search

new
direction is typically in the negative direction of the gradient g, in (4.12).

In addition to some other limitations [100], exact line search is known to suffer
from high computational complexity, and this is maybe the reason for lack of its
extensive use in practice [36]. Fortunately, some criteria, such as the constant
modulus, the kurtosis, the constant power and multi-modulus, can be expressed
as a polynomial or a rational function of . Hence, the algebraic optimal step size
Lopt can be easily determined by finding the roots of these functions. The fast

MMA algorithms can be simply extended and become much faster by finding the

optimal step size. This is done by performing the following tasks at each iteration:

1. Evaluate the coefficient {n;}?_, of the 4-th order polynomial given by:

N(p) = Z nip! (4.14)

The coefficients’ expressions (given in Appendix D) are defined in terms of
the whitened received signal’s block Y and the current values of © and g.

This polynomial is obtained via the derivation w.r.t. u of the cost function

in (4.13).

2. Find the four roots of the polynomial in (4.14). Interestingly, this step can
be performed at an insignificant cost, compared to step 1, using for example

standard algebraic procedures such as Ferrari’s formula [100].

3. Select the VSS root among the real-valued candidates obtained in 2, i.e.,
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the root which leads to the minimum of the MM cost function in (4.13).

4. Update (4.12) and normalize the vector (v)

new"

It is noteworthy to mention that the above mentioned tasks are described for the
deflated MMA version, i.e., fastMMAd, yet a similar procedure can be performed
to find the optimal VSS for both fast MMAf and fastMMDA. Also, besides improv-
ing the convergence speed, the VSS is able to bestow the methods and enhance

the robustness to the initialization and local minima problem [103, 36].

4.6 Computational Complexity

As discussed earlier, the new fast algorithms will be compared to the state of the
art algorithms in the next simulation section. However, to make a fair compar-
ison, this section provides some insight into the numerical cost of the proposed
algorithms too. It is compared to the CMA and MMA-like BSS algorithms in
terms of the number of flops, i.e., a real addition and a real multiplication, per

sweep in Table 4.3.

Table 4.3: Numerical Cost of Different BSS Algorithms

BSS Algorithm | Complexity Order | VSS Extra Cost
fast MMAf 8N, N? + O(N,Ny) AN N + O(NNy)
fast MM Ad 6N,N? + O(N,N;) 2N,NZ + O(N,Ny)
G-MMA [74] 20N ,N}? + O(N,Ny) -
HG-MMA [74] 40N N2 + O(N,Ny) -
ACMA [24] O(N,N}) -
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4.7 Simulation Results

In this section, we examine the performance of the proposed algorithms. This
is done by considering different simulation scenarios and comparing the achieved
gain to the state of the art algorithms, such as ACMA, G-MMA, HG-MMA and
other CMA like algorithms. The results are averaged over 1000 Monte-Carlo trials,
whereby the channel is randomly generated at each run.

Figure 4.1 gives snap-shots for the proposed algorithm’s speed of convergence
by plotting the cost function, for both FSS and VSS versions, against the number
of sweeps for different N; and N,.. In this figure, parts (a) and (c) reveal that the
fastMMATf algorithm, with the VSS, converges earlier than the FSS case with a
reduction of 3 — 4 iterations for small and intermediate number of transmitters.
Meanwhile, parts (b) and (d) show that fastMMAd algorithm converges much
faster than the fastMMAf for both VSS and FSS versions. Hence, it is clear that
the proposed algorithms converge fast with a small number of iterations, < 10 in
the given examples, which varies with the system dimension and the initial value
of matrix V.

Similar setup has been conducted at low SNR values and similar conclusions
are drawn. However, in Fig. 4.2, we examine the speed of convergence, once again,
for 16-QAM, a non constant modulus modulation. The optimal VSS scenario, in
both fastMMAf and fastMMAGJ, still shows to be faster with a slight increment,
comparing to Fig. 4.1 (c¢) and (d), in the number of iterations due to the higher

constellation size.
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Figure 4.1: Speed of Convergence (J vs. Ngyeeps), for VSS and FSS, at SNR=30
dB, 4-QAM case.
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Figure 4.2: Speed of Convergence (J vs. Nguyeeps), for VSS and FSS, at SNR=30
dB, Ny =5,N, =7, N, = 200, 16-QAM case.

100



Figure 4.3 evaluates the SER vs. SNR for 4-QAM case at different setups. It is
shown that the proposed fastMMAd has a comparable performance in comparison
to other methods, yet fastMMATf has the best performance results among the rest.
Also, as expected, fastMMATf has a superior performance over the fastMMAJ,

since the former is free to search the desired separation matrix in a wider space.
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Figure 4.3: Average SER for different CMA and MMA, for different scenarios,
4-QAM case.
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Figure 4.4 compares the SER of the considered algorithms for high order con-
stellations. The experiment setup is (N, = 3, N, = 7, Ny = 300). Once more,
without the performance limitations imposed by the orthogonalizaiton, fastM-
MAf proves out-performance to other counterparts even for non-constant modulus

signals.
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Figure 4.4: Average SER for different CMA and MMA at different constellation
setups, N; = 3, N, =7, N, = 300.
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The last experiment in Fig. 4.5 deals with the convolutive mixtures and com-

pares the proposed fastMMDA with the newly proposed extensions of the G-MMA

and HG-MMA, namely G-MMDA and HG-MMDA [102]. Again, our algorithm

leads to the best performance at a lower computational cost.
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Figure 4.5: Average SER for HG-MMDA, G-MMDA, and fastMMDA at 4-QAM
and 16-QAM, N, =3, N, =5, M = 2.
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4.8 Conclusion

This chapter develops a new set of fast and low cost BSS algorithms dedicated
to phase modulated communication signals. Both instantaneous and convolutive
mixture cases are considered. Similarly to the well-known fastICA algorithm,
our methods rely on the efficient FPO technique used in conjunction with a fast
deflation approach. In addition, we proposed a new version (fastMMAf) where the
unitary constraint is relaxed in order to allow a wider space exploration and hence
an improved separation quality. Furthermore, aiming at boosting the convergence
speed further, a VSS procedure is provided using the well-known exact line search
strategy. Surprisingly, our algorithms, not only have the lowest numerical cost, but

also have the best performance among all standing MMA or CMA type methods.
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Part 11

Blind System Identification
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This part composes three Chapters, which mainly addresses the BSI problem
of SIMO systems in different perspectives including methods and performance

evaluations. Two contributions are presented in this part,

[. Chapter 5 proposes a novel subspace method which demonstrates an ap-
pealing performance, especially in the poor spatial diversity (ill-conditioned)

scenario.

II. By means of the CRB, Chapter 6 investigates the possible performance’s
gain by incorporating some a priori (freely accessed) side information, such
as the channel’s sparsity and some other statistical information such as the
signals’ non-circularity, on the BSI problem. Also, evaluates the impact of

the semi-blind approach on the system overestimation problem.

Eventually, Chapter 7 concludes all the work covered in this dissertation and

accordingly motivate some possible future work.
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CHAPTER 5

STRUCTURE-BASED

SUBSPACE SYSTEM

IDENTIFICATION

In this chapter, a novel subspace-based method for blind identification of multi-
channel finite impulse response (FIR) systems is presented. Here, we exploit di-
rectly the block Toeplitz channel’s structure in the signal’s linear model to build
a quadratic cost function whose minimization leads to the desired channel es-
timation up to a scalar factor. This method can be extended to estimate any
predefined linear structure, e.g. Hankel, that is usually encountered in linear sys-
tems. Simulation findings are provided to highlight the appealing advantages of
the new structure-based subspace (SSS) method over the standard subspace (SS)

method in certain adverse identification scenarios.

107



5.1 Introduction

Blind system identification (BSI) is one of the fundamental signal processing prob-
lems that was initiated more than three decades ago. BSI refers to the process of
retrieving the channel’s impulse response based on the output sequence only. As it
has so different applications, such as mobile communication, seismic exploration,
image restoration, medical, and other applications, it has drawn researchers’ atten-
tion and resulted in a plethora of methods. Since then, a class of subspace-based
methods dedicated to BSI has been developed, among them the standard subspace
method (SS) [45, 46], the cross-relation (CR) method [47], the two-step maximum
likelihood (TSML) method [48], and the truncated transfer matrix (TTM) method
[107], which all are second order statistics (SOS) based methods. According to
the comparative studies carried out in [108] and [109], the SS method is claimed
to be the most powerful one.

It is noteworthy to argue that multi-channel FIR systems encountered in cer-
tain applications could suffer from an ill-conditioned scenario [42, 43]. This might
happen in the case of low receiver diversity, or when the channel response is of
sparse or small tails [44]. A shared weakness of most of SOS methods is that their
performance is poor in the ill-conditioned case.

In this work, a novel subspace-based method relying on the channel’s Toeplitz
structure, which is employed directly to formulate our cost function, is proposed.
This is of great interest since the Toeplitz structure is an inherent nature that

exists in most of the linear systems due to their convolutive nature. The proposed
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method’s gain is demonstrated with a particular emphasis on the ill-conditioned
channels.

The chapter presentation focuses first on the development of the proposed
structure-subspace (SSS) method. Then, the improvement obtained by the SSS
method over SS, in the case of channels with closely spaced roots, is highlighted.
Although, the SSS method sounds to be a promising technique, yet it has a higher
computational complexity that needs to be addressed in a future work.

Notation: The invertible column vector-matrix mappings are denoted by
vec{.} : C™** — C® and mat,z{.} : C*1 — C*’. (A® B) is the Kro-
necker product. AT, A7 and A" denote the transpose, the Hermitian transpose,

and the pseudo-inverse, respectively.

5.2 Problem Formulation

5.2.1 Multi-channel model

In this work, a multichannel framework is considered which is obtained either by
oversampling the received signal or using an array of antennas or a combination
of both [11]. To further develop the multi-channel system model, consider the
observed signal y(t) from a linear modulation over a linear channel with additive

noise given by

y(t) =Y h(t—k)s(k)+e(t), t=0,...,N—1 (5.1)
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where h(t) is the FIR channel impulse response, s(k) are the transmitted symbols
and e(t) is the additive noise. If the received signal is oversampled or recorded

with N, sensors, the signal model in (6.1) becomes N,-variate and expressed as

M-1

y(t) = Y h(i)s(t — i) + e(t) (5.2)

1=

where y(t) = [yi(t), - ,yn. O], k() = [(), - hn6], elt) =
[en(), -+ en, ()]

Define the system’s transfer function H(2) = 3 p o' h(k)z~* with (M — 1) =
deg(H (z)) and consider the noise to be additive independent white circular noise
with Ele(k)ef (i)] = 6xi02In, (014, 02, and Iy, are the Kronecker index, the noise
power and the N, x N, identity matrix, respectively). Assume a reception of a

window of N, samples, by stacking the data into a vector/matrix representation,

we get:

Yn, () = Hy, (h)sn,+1-1(t) + en, (1) (5.3)
where YN (t) = [yH(t)a e 7yH(t — Ny + 1)]H> SNerMfl(t) =
[s(t), - ,s(t = Ny — M +2)]", en,(t) is stacked in a similar way to as

Yy, (t), and Hy, (k) is an mM x (N, + M — 1) block Toeplitz matrix defined as

h(0) -+ h(M—1) - 0

0 - h(0) - h(M-1)
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h is the desired parameter vector containing all channels’ taps, ie., h =
[R(0),--- ,h" (M — 1)]”. Using the observation data in (6.3), our objective is to
estimate the different channels’ impulse responses, i.e, recover h up to a possible
scalar ambiguity. In the following subsection, we describe the subspace method,

briefly.

5.2.2 Subspace method revisited

For consistency and reader’s convenience, the SS method [45], which is also re-
ferred to as the noise subspace method, shall be reviewed hereafter. The SS
method implicitly exploits the Toeplitz structure of the filtering matrix Hy,, (h).
Let v = [vf, -+, o} 17, where v; = [vi_1)n 41, vin, )" with @ = 1,..., N,

be in the orthogonal complement space of the range space of Hy,, (k) such that

v’ Hy, (h) =0 (5.5)

Using the block Toeplitz structure of Hy, (h), the above linear equation can be

written in terms of the channel parameter h as

V1 -+ UNnN, 0 0
r | | o | =hr"V=0 (5.6)
0O O vy - Uy,

The former equation can be used to estimate the channel vector h provided that

(5.6) has a unique solution. Moulines et al. [45] proposed the SS method which
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is based on the following theorem:

Theorem 5.1 Assume that the components of H(z) have no common zeros, and
Ny, > M. Let {vi}le be a basis of the orthogonal complement of the column space

of Hy, (h), then for any H'(z) with deg(H'(2)) = M — 1 we have

VIR =0,for i=1,---,d <= H'(z) = aH(2) (5.7)

where « 18 some scalar factor.

One of the encountered ways to estimate the orthogonal complement of Hy,, (h),
i.e., the noise subspace, is the signal-noise subspace decomposition. From the
multi-channel model and noise properties, the received signal covariance matrix

R, = Elyy, (t)yF, (1)) is given as

R, =Hy,(R)R/HY (h) + 021 (5.8)

where Ry is the covariance of the input signal. Consequently, the singular value

decomposition of R, has the form

R, = Vdiag (A}, -+, AY_ym1) Vi + 02V V! (5.9)

where A\?’s, i =1,--- , N, + M — 1, are the principal eigenvalues of the covariance
matrix R,. Also, the columns of V'; and V. span the so-called signal and noise

subspaces (orthogonal complement), respectively. After having the basis of the
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Table 5.1: Duality Table

Method || Toeplitz Structure | Orthogonality

SS forced minimized

SSS minimized forced

noise subspace, the channel identification can be performed based on the following

quadratic optimization criterion:
P . H 2 . pH H
h = arg min V. Hn,(h)||* =arg m}inh [Z V.V, ] h (5.10)

In brief, the SS method achieves the channel estimation by exploiting the
subspace information (i.e., ideally, (RangeH y, (h)) = Range(V) L Range(V.))
as well as the block Sylvester (block-Toeplitz) structure of the channel matrix.
More precisely, it enforces the latter matrix structure through the use of relations
(5.5) and (5.6) and minimizes the subspace orthogonality error in (5.10). In the
sequel, unlike the approach of the SS method, we propose a dual approach which
enforces the subspace information (i.e., Range(Hy, (h)) = Range(V'5) where V
refers to the principal subspace of the sample covariance matrix) while minimizing
a cost function representing the deviation of H y, (k) from the Sylvester structure

as indicated in Table 5.1. This will result in the SSS method described next.

5.3 Structure-Based SS method (SSS)

In the proposed subspace method, one searches for the system matrix Hy,, in the

form H N, = V5@ so that the orthogonality criterion in (5.10) is set equal to zero,
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ie. |[VEHy, ||> = 0 while Q is chosen in such a way the resulting matrix is close
to the desired block Toeplitz structure. This is done by minimizing w.r.t. @ the

following structure-based cost function (informal Matlab notions are used):

T=N"h+T+Ts
K—1Nr(Ny-1) 2
Z Z W(i, j) —w(i+ N, j+ 1) (5.11)
- - ) 2
K mM .
Z w(l: Ny, j)| +| > w(i 1)
j=M+ i=N,r+1

where K = N, + M — 1 and W refers to Hy,. The cost function in (5.11)
is inspired and matched to the Toeplitz structure introduced in (5.4). It is a
composite of three parts: [J; seeks to force the Toeplitz structure on the possibly
non-zero entries, while 75 and J3 account for the zero entries in the first NV, rows
and first column of H y, (h), respectively.

Starting with [J;, one can express it in a more compact way as follows:

~ A 2
T =T WIg—J WJg| (5.12)

where:

I, is the (N,N,) x (N.N,) left identity square matrix with setting the last N,
diagonal entries to zeros.

Iy is the K x K right identity square matrix with setting the last diagonal entry

to zero.
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Jpis a (N.N,) X (N,.N,) square translation matrix with ones on the sub-diagonal
and zeros elsewhere, i.e., [JL]i,j = 0it N, j-
Jpr is a K x K square translation matrix with ones on the super-diagonal and
zeros elsewhere, i.e., [JR]Z,’]. = 0i jt1-

Now, using the Kronecker product property vec(AGB) =

(B" ® A) vec(G) = (B" @ A) g, one can write J; as follows:

Ji=(Ir@ I~ Jh® JL) vec(W)|?

(5.13)
=|(Ire I -JreJdr)(I@V,)q|* = Kq|
where ¢ = vec(Q). In a similar way, J, can be expressed as
Jo=|[W (1: N,y M +1:end)|> = |VarowQIrou|?
(5.14)

= [[(ZTrow ® Vsmow) Q||2 = HI{Q(]H2

where Vg 0, is the sub-matrix of V4 given by its first N, rows, and I,,, is the
K x K square identity matrix with setting the first M diagonal entries to zero.
Finally, J5 can also be set up as

x73 - ||W (Nr +1: Nera 1)”2 = ||Vs7colQIcol||2
(5.15)

= H(Icol ® VS,col) qH2 = HK?)QH2

where Vg ., is the sub-matrix of V¢ given by its last N, (N, — 1) rows, and I, is
the K x K square diagonal matrix with one at the first diagonal entry and zeros

elsewhere.
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As a result of (5.13), (5.14) and (5.15) the optimization problem in (5.11) is
reduced to the minimization of the following quadratic equation

min ¢’ K" Kq (5.16)

q

T
whereK:{K”{ KT K:;f} .

The optimal solution g of (5.16), under unit norm constraint of g, is the least
eigenvector that corresponds to the smallest eigenvalue of K7 K. The square
matrix @ can be constructed by reshaping the obtained solution g from a vector
into the matrix format, such that @ = matg x{q}. Once matrix Q is obtained,
the channel taps are estimated by averaging over the non-zero diagonal blocks of

the matrix V,Q.

5.4 Discussion

In this section, we provide some insightful comments in order to highlight the

advantages and drawbacks of the proposed subspace method.

e As explained earlier the proposed approach consists of neglecting the sub-
space error (i.e., considering Range(V'5) as perfect in the sense one searches
for the desired solution within that subspace) while minimizing the system’s
matrix (Toeplitz) structure error. The motivation behind this choice resides
in the fact that the subspace error at the first order is null and hence it

can be neglected in favor of more flexibility for searching the appropriate
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channel matrix. Indeed, the first order expansion of the subspace error can

be written as (see [110, 81] for details):

6T1 = (I — TI)6R,(R, — o2I)*

+(R, — o2I)#*5R,(I — TI) + 0o(6R,)

where IT = ’HNw’Hﬁw is the orthogonal projection matrix on the principal
(signal) subspace of R, and 0 refers to the estimation error. Now, plugging
the previous first order terms into the subspace error criterion [111], leads
to E(||0II(I — II)||*) = 0 due to the orthogonality relation (I — II)(R, —
o2I)#* = 0. This explains the observed gain of the SSS over SS method in

certain difficult scenarios including the case of closely spaced channels roots.

e In the favorable cases where the channel matrix is well conditioned, the two
subspace methods (ours and that of [45]) lead to similar performance as

illustrated next in the simulation example of Fig. 5.1.

e For the SS method to apply, one needs that the noise subspace vectors
generate a minimal polynomial basis of the rational subspace orthogonal
to Range(H (z)) (see [45] for more details) and so the condition N, > M
is considered to guarantee such requirement to hold. As the SSS does not
explicitly rely on the orthogonality relation in (5.10), the latter condition

might be relaxed as illustrated in the simulation example of Fig. 5.4.

e The proposed subspace method has a higher numerical cost as compared
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to the SS method. However, the cost might be reduced by taking into
account the Kronecker products involved in building matrix K. This issue is
still under investigation together with an asymptotic statistical performance

analysis of SSS.

e In the case N,, > M, the solution of (5.16) is unique (up to a constant)
thanks to the identifiability result of Theorem 5.1. Indeed, if ¢’ is another
solution zeroing criterion (5.11), then the FIR filter associated to matrix
H' = V,Q' satisfies all conditions of Theorem 5.1, which leads to V,Q’ =

aV,Q or equivalently Q' = aQ.

5.5 SIMULATION RESULTS

In this section, the devised SSS method will be benchmarked to the standard SS
and the TTM methods. Three different experiments will be examined to illustrate
the behavior of the SSS method in different contexts.

Two FIR channels are considered, each has a second order impulse response

given by [109, 112]:

hy = { 1 —2cos(d) 1 r,

T
hy = [ 1 —2cos(6+9) 1}

where 6 is the absolute phase value of h;’s zeros and ¢ indicates the angular

distance between the zeros of the two channels on the unit circle. Small § results
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into an ill-conditioned system. In all simulations, the excitation signal is a 4-
QAM, each channel receives N = 100 samples, and the noise is white Gaussian.

Note that the SNR is defined as

[Hysnanl
mNo?

SNR(dB) = 10log,, E

The performance measure is the normalized mean-square-error (MSE), given as

N,
1 1 mc "
MSE(dB) = 20logus | 1y | > llhi = h?

=1

where N,,. = 100 refers to the number of Monte-Carlo runs and iLZ is the channel
vector estimate at the ¢-th run.

In the first experiment given by Fig. 5.1, we show that for a well-conditioned
system (0 = 7), both SS and SSS methods have a comparable performance while
the TTM has a very poor performance unless the sample size is very high. This
can be explained by the fact that, the SS and SSS methods share the subspace
property discussed in the first item of section 5.4 while TTM does not.

In the second experiment, we consider ill-conditioned systems (i.e. poor chan-
nel diversity, § = 7/10). In this case, as shown in Fig. 5.2, the devised SSS method
beats the SS method at all SNR values while it outperforms the TTM method at
high SNR. At low SNR, TTM achieves the best performance due mainly to the
fact it combines two channel estimates, a costly procedure known to improve the

estimation performance in noisy scenarios [113].
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Figure 5.1: Well-conditioned channels, § = 7/10,0 = 7.
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Figure 5.2: Ill-conditioned system, § = 7/10,6 = 7/10.
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Figure 5.3 depicts the consequence of varying ¢ on the MSE for SNR=15dB,
once again the SSS has a clear sustainable gain at almost all the channel diversity

conditions.

N, =2, N =100, N, = 5 and Ny, =100

SSS
- SS B
-18 —B—T™

0.4 0.6 0.8 1 1.2
0

Figure 5.3: MSE versus 6, SNR =15 dB

In the last experiment, the number of channels is N, = 3 and the number
of taps in each channel is M = 5, and the transfer function of the channels are
given in [81] (corresponding to a relatively well-conditioned channel case). In this
experiment, we are primarily interested to look at the impact of the processing
window length on the estimation performance. As can be seen from the results
reported in Fig. 5.4, the performance of the SS method gets worse and degrades
when the processing window length N,, becomes less than the number of the
channels’ taps M, while our proposed SSS is weakly affected by the window length
condition, i.e. N, > M. This allows us to reduce the dimension of the channel
matrix Hy, with smaller window size values, especially for large dimensional

systems where N, > 1.
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.\ SSS,N, =3
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- —x- SSS,N =4

_Q_ SS,N, =4

Figure 5.4: MSE versus SNR for different window size IV,,.

5.6 CONCLUSION

In this chapter, we proposed a dual approach to the standard subspace method,
whereby the channel matrix is forced to belong to the principal subspace of the
data covariance matrix estimate while its deviation from Toeplitz structure is
minimized. By doing so, we show that the channel estimation is significantly
improved in the difficult context of weak channels diversity (i.e. channels with
closely spaced roots). Interestingly, the principle of the proposed approach can
be applied for estimation problems with other matrix structures where subspace

method can be used.
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CHAPTER 6

PERFORMANCE ANALYSIS

Blind channel estimation techniques have gained a considerable attention over the
last two decades. The need for Blind channel estimation emerges in many engi-
neering applications including bio-medicine, sonar, radar, radio astronomy, seismic
exploration, navigation, spying and wireless communications. Recently, there is
a renewed increased interest in a hybrid or assisted blind channel estimation and
equalization techniques due to the emergence of new MIMO and Massive-MIMO
communication systems.

In this chapter we investigate the impact of certain side information that are
available in the channels and/or signals on the blind system identification through
the Cramer-Rao Bound (CRB). More precisely, we considered a Single Input Mul-
tiple Output (SIMO) system, and studied, for different scenarios, the performance
bounds for channel estimation in both deterministic and Bayesian cases. The lat-
ter correspond to the situations where side information is brought by either a

pilot sequence (semi-blind case), channel sparsity (specular channel case) or cer-
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tain signal’s statistical properties such as the non-circularity. This analysis allows
us to have a better understanding of the behavior of the blind channel estimation

when the considered side information is taken into account.

6.1 Introduction

Recent advances in communication systems calls for new alternatives of chan-
nel estimation to solve the problem of scarce bandwidth. Traditionally, in wire-
less communication systems, recurrent training signals are needed as the channel
varies rapidly. This process showed to result in a reduced transmission rate. Blind
channel estimation was one of the solution to get rid of the pilot signal, where the
channel estimation process depends completely on the received signal. Yet, unsat-
isfactory results of the blind channel estimation methods and algorithms emerged
attention on some other approaches, one is known as semi-blind [114], whereby a
superior performance is achieved by utilizing the received signal and few training
pilots. Another strategy consists of reinforcing the blind estimation by exploiting
structural or statistical a priori information about the signals or channels, such as
the prior distribution [50], channel sparsity or signal cyclostationarity.

Recently, some efforts have been put forward to quantify the gain that could
be obtained in the semi-blind scenario and develop appropriate algorithms for
that. That was done in the Muli-channel context in both SIMO case [50, 56, 57,
58, 59, 60, 61, 62] and MIMO case [115, 116, 117, 54, 118, 55, 119]. The spirit of

this contribution is to extend this investigation to other properties that have not
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been explored carefully. Also, most of the existing blind methods such as subspace
[45], least squares [48] and linear prediction [120] methods suffer from the channel
length overmodeling problem. The robustness of blind estimation methods to
channel overmodeling is a crucial issue that is directly related to their usefulness
to real world applications. Based on that and using the most efficient lower bound

accustomed by statisticians, namely the CRB, the focus of this chapter is of two

folds:

e The first one is to point out and quantify the effect of channel overmodeling
on the estimation quality in different scenarios, such as blind, semi-blind,

Bayesian and non-Bayesian estimation [50],[58].

e The second one is to investigate the consequence of using side information,
i.e. structural or statistical, on the CRB and hence on the channel estimation

performance.

The rest of the this chapter is organized as follows: section II describes the
blind and semi-blind SIMO! models. Section III reviews the corresponding CRB
for the Bayesian and non-Bayesian scenarios. It also includes the non-circularity
and stochastic CRB as well as the CRBs for the structure-aided models (sparse
and specular channels). Comments and insightful discussions are given in section
IV. The numerical simulation that illustrates the handled CRBs are presented in

section V. Section VI provides the concluding remarks.

'We have chosen to focus on SIMO system at first before investigating the more
general case of MIMO systems in a future work.
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6.2 Problem Formulation

6.2.1 Blind data model

Multichannel framework can be achieved either by oversampling the received sig-
nal or from using an array of antenna or a combination of both [45]. To further
develop the multi channel system model, consider the observed signal y(t) from a

linear modulation over a linear channel with additive noise given by

y(t) =Y h(t —k)s(k) +e(t) (6.1)

k

In (6.1), A(t) is the FIR channel impulse response, s(k) are the transmitted sym-
bols and e(t) is the additive noise. If the received signal is oversampled or recorded

with N, sensors, the signal model in (6.1) can be written as follows:

M-1

y(t) = Y h(i)s(t —i) + e(t) = Hs(t) + e(t) (6.2)

=1

where, y(t) = [y{'(t), - ,yn. (t)]”, suscript ()7 stands for conjugate trans-
pose, (i) = [HH(0),- KL, e(t) = [eli(0),- el (D17, H = [h(M —
1),-++,h(0)] and s(t) = [s(t—M +1),---,s(¢)]. Consider the noise to
be additive independent white Gaussian circular process with Ele(k)ef (i)] =

0ri02Iy,. Assume a reception of N samples, by stacking the data into a vec-
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tor/matrix representation, we get:

y=Hs+e (6.3)

where y = [y?(0), -,y (N — 1)]* and similarly applies for e. # is an N, N x
(N 4+ M —1) block Toeplitz matrix with /N block rows and [H Oy, «x(v—1)] as its

first block row, and s = [s7(1 — M), -, sI(N — 1)]H.

6.2.2 Semi-Blind data model

In the semi-blind case, by using the convolution commutativity property, the
received signal s is modeled as follows:

y=Hs+te=H,s,+Hqis.+e
(6.4)

=Sh+ex(S,+S,)h+e
where H, and H, are partitions of H coresponding to pilot sequence s, and
data sequence sy, respectively, see (6.5). Also, S, S, and S, are block Hankel
matrices filled with the elements of s, s, and s, respectively?. For simplicity,
all known/pilot symbols are sorted at the beginning of vector s. For the data
models in (6.3) and (6.4), our objective is to compare next the CRBs for channel
estimation corresponding to different assumptions on the channel model or side

information.

2The approximation in (6.4) can be used if we ignore the overlapping sequence which
is common between the pilot and data sequences [58].
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6.3 Channel’s CRBs Derivations

In this section, we introduce the CRB expressions of the channel parameter vec-
tor for different scenarios representing various side information situations. At
first (subsections 6.4.2,6.4.3 and 6.4.4), the side information is related to the in-
put data, the last section corresponds to side information on the channel taps,
while subsection 6.4.5 combines both. These CRBs are compared to the "no side

information” case given by subsection 6.4.1.

6.4 Unified Framework for Different CRBs’ De-

velopment

In this section, we shall provide a unified framework for the different CRBs’ deriva-
tion. Generally, the subject of the estimator is to jointly estimate the symbols
(unknown-symbols) and the channel impulse response. This is done by impos-
ing some assumptions on both the channel and/or the symbols. It customarily to
mention that in this kind of estimators the estimation of the symbols and channels

is decoupled from the estimation of the noise variance, as the later has no effect
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on the estimation of the earlier parameters. To this end, denote the unknown

parameter vector ® by

© = [s" n")H (6.6)

then, the likelihood function is given by

fY,0)=[f(Y/©)f(©) (6.7)

where f(Y,®) is the joint probability density function of Y and ©, f(©) is the
probability density function (pdf) of ®, and f(Y /©) is the conditional pdf.
Substituting (6.6) in (6.7) and noting the a priori independence of both the
symbols and the channel, i.e., f(s,h) = f(s)f(h).
In the sequel, knowing that the CRBs, and accordingly the fisher information
matrix (FIM), are developed by applying the log operator to the joint pdf. Hence,

the log-likelihood function applied to the earlier developed expression is given as

[f(Y,©)] = In[f(Y /s, h)] + In[f(s)] + In[f(h)] (6.8)

The FIM is given by [60];

00* 00*

H
- 0_ (9In[f(Y,s,h)]
= by ( 00~ )

Foo = E (aln[f(y,s,h)]> (aln[f(y,s,h)]>H
(6.9)
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Since we are treating complex parameters, in addition to Jee, we need to evalu-

ated Jee+ which is defined as

H
Joor = E <81n[{9((})’*,s,h)]> <Bln[fé}(;,s,h)]>

" (6.10)
o o ( 0ln[f(Y,s,h)]
- _E%< FER )
In case of Jge+ # 0, we resort to @ which is defined as
Re{O®} (C)] 1 I I
O = =M , M= 3 (6.11)
Im{®} o —/ =11 +/—1I
Noting that Jee = Jg-g- and Jee+ = J g+, then 6.11 implies:
Joee Joeeo- .
Jere, =M M (6.12)

* *
00* J@G)

Interestingly, in the case of jointly estimating the channel and symbols parameters,
one can show that Jge+ = 0 and hence Jg 0, can be obtained totally from Jee.
After some regularity conditions and assumptions, the error covariance matrix of

an unbiased estimator A(Y) is defined as [121]

C,=FE { (ﬁ(Y) - h) (ﬁ(Y) - h)H} (6.13)
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satisfies the following inequality:

C; > {Jo,0,} ' 2 CRB (6.14)

6.4.1 Deterministic Gaussian CRB

Considering the data model in (6.2) we assume here that the transmitted source
samples and channel impulse response are all unknown deterministic variables
such that the unknown parameter vector is @ = [s¥, h* ]#. Noting that, due to
inherent scalar ambiguity in all blind channel identification, various constraints
are imposed on the channel estimation to regularize the estimation problem [52] In

what follow, we introduce the CRB that corresponds to the following constraint:

f(©) = hy(i) =h7=0 (6.15)

whereby one of the channel tap h, () is assumed to be known (equal to h?2). Hence,

the constrained CRB is given by [51]

DCRBying = U, (UTT,,U,) " U (6.16)

where

th = U?(SHP»J{_LS) (617)
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with Pz = I — Py and Py = H(H"H) 1" is the projection matrix on .
h = vec(H), vec(H) is an operator stacking the columns of a matrix H into
a vector. U, is the orthonormal matrix which columns span the null space of
0f(©)/00* and obtained by removing the ((M — 1 —i)N, + 7)™ column from the
identity matrix Iy /.

In the light of channel order overdeterminacy, it can be shown that the blind
system identification has an inherent polynomial indeterminacy problem. To this
end, let H(z) = M h(i)2~ = [HY(2) - HY (2)]", if M is unknown and
we overestimate it by M = M + P, then the system model in (6.2) will be
equivalent to y(t) = [H(z)a(z)] 3(t) + e(t), where a(z) is a scalar polynomial of
degree P, also 3(t) = [a(z)7!]s(t). In that case, the channel parameters are not
uniquely identifiable and the FIM is not invertible unless certain side information

is provided as will be discussed next

6.4.2 Stochastic and Non-Circularity Based CRB

In this subsection, we consider two sorts of the statistical prior information, i.e,
the circularity and non-circularity®. Such two piece of side information charac-
terize the majority of the communication signals. Besides, other characteristics
have been investigated, and due to the noticed neglected impact, it has not been

presented here, such as cyclo-stationarity. The rest of this subsection is dedicated

3We have derived similar work for cyclostationary input signals but omit to present
it here. Indeed, we observed that cyclostationarity has great positive impact on MIMO
system identification (when sources have different cyclofrequencies) but negligible im-
pact for SIMO systems.
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to assess and quantify the statistical side information impact on the channel esti-
mation. In the following, the received signal s(¢) in (6.2) is modeled as a white,
non-circular 4, Gaussian distributed random process. The noise e(t) is white, cir-
cular, zero-mean Gaussian random process of covariance oIy, . Hence, the array
output y(t) is a temporally white, zero-mean, non-circular, Gaussian distributed

random process with covariance matrices given by:

R,=HRHM" +°1,,, R,=HRH" (6.18)

where R, = E[ss'] and R, = E[ss”] = po2I(x4ar_1), and p: (0< p| < 1) is a
complex factor controlling the non-circularity rate. Under these assumptions, and
taking advantage of scale ambiguity to assume o2 = 1, and the phase ambiguity to

consider p as a real valued, the FIM with respect to unknowns parameter vector

© = [Re{h"},Im{R"}, |p| ,O'E}T is given by (elementwise) [53]:

1 OR OR
J).,==T ‘R’ R 1
( )k,l 2 r aek z ael z (6 9)
) R, Ry ]
where z = and R, = . In this case, no closed form
y* R, R;

expression for the CRB was found. To this end, one simply use the traditional
computation way, such that evaluate the inverse of the complete FIM, then Jpj,

can be easily evaluated by considering the top left (2N, M) block matrix of FIM

4Non-circularity of the source signal means that its probability distribution varies
under rotation in the complex plane
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inverse. As for the derivatives with respect to different parameters, they are

given as below:

H
OR _ OR _ OH OH H
Relhy] — ORelhn (@] — {H(BR_e{wq‘)}) - (aR_e{hr(q‘n) H }

. . T
OR, _ _ OR _ OH OH T

BRe(in — ORe(n@] {”(aRe{huq)}) + (ometitay) }

OR ) T

8|;" =0 HH

OR, _

3l =0

8&% = dmMm

ot =0
with 7 = mod(k — 1,N,) + 1 and ¢ = k]\? +1,(r=1:N,q=1:M). For the
derivation w.r.t Im{h}, we just use mm?}?:(q)} =7 8Re?;,:(q)} in the previous formula.

Note that the stochastic circular Gaussian CRB can be obtained by setting |p| = 0
and © = [Re{h"}, Im{h"},o? 02}T.

) S e

6.4.3 Deterministic Semi-Blind CRB

In this case, the channel and the data symbol sequence are both assumed to be
deterministic and needs to be estimated jointly, i.e. © = [s], hH]H ® the CRB is

expressed by [58]:

1

DCRBsp = Jpp, = 02 (8" Py, S) (6.20)

with P’itd =1 — Py, and Py, = Ho(HHa)"'HY is the projection matrix on

Ha.

5Often, we disregard o2 as its estimation can be shown to not affect the channel
CRB in the considered context.
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6.4.4 Bayesian CRB

It is well noticed that wireless communication channels are typically modeled as
having Rayleigh fading with a prior Gaussian distribution expressing correlations
between channel coefficients. Below, we shall exploit and investigate the knowl-
edge of channel a priori information effect on its estimation quality. Hence, both
the symbol sequence and the channel are treated to be random with Gaussian
distributions f(s) = W exp(—sf—gs) and f(h) = m exp(—h"C,'h),

respectively. Thanks to this priori information, and considering the unknown

parameter vector @ = [s", h¥]¥ | the Bayesian (stochastic) BCRB is given as [59]

2 —1
BCRByjing = J1j = (N%INTM - C;1> (6.21)

e

In this BCRB, the channel covariance matrix C}, is assumed to be known or
estimated a proiori. Note that this bound is known to be ’optimistic’ and even-
though we use it in this chapter, ongoing investigations are currently done to verify
whether the drawn conclusions (in section IV) are valid if other tighter bounds

are used.

6.4.5 Bayesian Semi-Blind CRB

This lower bound [55] assumes both the channel and the unknown symbol sequence
to be random with known a priori zero mean Gaussian distribution, hence, the

parameter vector is © = [sf, hH J# and it is supposed to be jointly estimated.

135



The corresponding CRB is giving by:

BCRBsp = Jyt = 0%(C, + a2C;") ™ (6.22)

where Cp = E{SHS} = SfSp + Ngo2I,,1,, Ny is the number of unknown data

sequence, i.e., Ny = N — N,. We assume here that Ng > M.

6.4.6 Structurally-Aided CRBs (Sparse Channel)

In this subsection, we pose the question of how would the channel sparsity struc-
ture improve the estimation process in terms of CRB. Afterward, we give an
example where such a priori information are available. In general, the following
model encounter the sparsity structure:

y=38h+e,
(6.23)

h = Dh;
where D is a known (or eventually partially known) dictionary matrix which is a
function of the considered side information, h; is a vector with M, active coeffi-
cients. Two cases will be studied whereby the channels’ supports are overlapping
and not. Considering deterministic scenario where the channel and source are

both deterministic, the corresponding CRB is giving as follows:

DCRBuyarse = I3, = 02 (U D" 8" PLSDU,) ™ (6.24)
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Next, we give an example of sparsness corresponding to specular channel model.
Also, some other examples do exist such as fixed basis model in the case of time
varying channels [122, 123].

In the so called specular multipath model, the channel h(t) in (6.2) can be
modeled as a composite response of a propagation channel and the effective known
pulse shape function® g(t) [124], which encompasses the effect of both the trans-

mitting and receiving filters. Hence, the channel response may be given by:

h(t) = ag(t — ) (6.25)

where d, 7, and ay = [af, - ,al 17 are respectively the number of paths, un-

known/known delays and the array vector attenuation factor associated with
the k™ path. To match the model in (6.23), h = Da, D = (G ® Iy,),

a=al - aff]f ® is the Kronecker product, and G is a matrix given by:

g(0—1) g(0 —7y)
g(T — ) 9(T — 1)
G —
g(M-1D)T —m7) - g((M—-1T—14)

Next, we find the DCRB for two scenarios, when the model and delays are

assumed to be known and when only the model is known.

6Usually, it corresponds to a raised cosine function.
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Known Delays

H_ a"]" and the corresponding deter-

in this case the parameter vector ® = [s" a

ministic CRB is given by (6.24).

Unknown Delays

. . . . H
in this scenario, the parameter vector becomes @ = [sf 75 o] = [sf O],

7 is the delays vector. Using the convolution property, h can be writ-
ten as h = Ag = f(©), with A = (Iy®A), A = a1, - ,a4, g =
[9(0)7 o 7g((M - 1)T)]T and g(Z) = [g(ZT - Tl)?' o 7g(lT - Td)]' Hencea the

corresponding CRB is given by:

. 1
CRB,L(O) = Joe = U (Joo — I J 11 J12) U, (6.26)

spe 2
O¢

where

Ji=H"H, J12:J§{1: {’HHSAQI

HISD } ,

J22:

D"S"S Aqg’ D"S"SD

Now, the channel CRB is obtained as:

CRBiye(h) = Vf(©)CRB,,(©)Vf(©)" (6.27)

with h = D(7)a = f(©), Vf(©);; = 0h;/00; = [ G, gA } and g =2,
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6.5 Discussion

The following remarks can be pointed out of this study:

e Using the available side information in any system would add more to the
estimation performance. However, as shown in our simulation examples, the
most significant gains are obtained for the semi-blind and the sparse channel

(with known dictionary) cases.

e In the case of Bayesian scenario, using pilot symbols has insignificant effect
on the estimation performance. However, we must admit that, since the
considered bound is too optimistic, we are currently re-investigating this

surprising result via other tighter bounds.

e In the case of channel order overestimation (OE) problem:

— For the deterministic Semi-Blind case, the channel can still be esti-
mated without ambiguity as long as the overestimation length (i.e.

M > M) does not exceed the number of pilots.

— Bayesian Blind and Semi-Blind estimators do not suffer from OE prob-
lem. Indeed, the channel power profile (given by matrix C',) takes into
account the decaying of the channel taps power and hence the OE is

not any more an issue in that case.

— In case of sparse channels, the estimation is also robust to the non-zero

entries order overestimation.
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Clearly, this chapter considers extensions and analysis of some existing blind and
semi-blind CRBs, meanwhile, it has some novel ones. That said, makes the picture
noticeably broadened, therefore, to summarize we provide a clarification in Table

6.1.
Table 6.1: Summary of CRBs

CRB Type Novel
DC RByjing, DCRBgsp, BCRByjing, BOCRBgsp | No
CRBNon—circularity Eq. (6.19) Yes
DCRBgparse Yes
CRBgpe Yes

6.6 Experimental Performance Analysis

The derived CRBs throughout this chapter will be illustrated in this section.
The considered CRBs are averaged over several channel and signal (for the de-
terministic case) realizations. In each Monte-Carlo run, different realizations of
the symbols, channel and noise will be generated randomly. With regards to the
channel, we generate a Rayleigh fading channel with an exponentially decaying
power delay profile (PDP) e™*™ where m = 0--- M —1 and w = 2. Accordingly,
C'}, becomes a diagonal matrix Cj, = Iy, ® diag{e "",m = 0---M — 1}. As
for the transmitted symbols, a random QPSK is considered but treated as deter-
ministic. The performance of the different CRBs are evaluated in terms of the

normalized mean squares error NMSFE against the SN R. Both are defined as:

SNR = Elﬂjﬁ and NMSE = %, where avg, tr and ||| stand for the

140



average, trace and norm, respectively.

Channel’s OE impact

In the first experiment we shed light on the advantages and robustness/sensitivity
of Blind/Semi-blind Bayesian against non-Bayesian to the channel overestimation
problem. Also, we highlight the maximum allowable channel overestimation in the
case of DCRBgp. In figure 6.1 we plot the CRB for different scenarios to check
their behavior in case of channel order OE. DCRBgg is the most affected and it
inflate when the length of the channel impulse response become greater than the
number of known pilots i.e. M > N,, whereas the BCRBgp and BCRBying are

not affected, yet their behavior is moderately affected at high SN R.

M =3, N =50, N, =7, N, =2, Ny, =100
| ‘ ‘ —j— DCRB,,

—O— BCRB,; ,P=0
—A—BCRB,, P=2
N = (% BCRBinnd’P: 4

_*_ DCRB, P=0
- % = DCRB_, P=2

20

10

- 4 - DCRB, P=4

‘ _o. . BCRB,P=0

' _V- ! BCRBSB,PZZ
~

5 10 15 20 25 30
SNR (dB)

Figure 6.1: NMSE for DCRBblmd,BCRBblmd, DCRBSB and BCRBSB
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Channel’s Sparsity impact

In the second experiment, we investigate the consequence of exploiting the spar-
sity structure on the channel estimation. Figure 6.2 demonstrates that using the
sparse structure information gives a significant gain against ignoring that struc-
ture, moreover, if there is a prior information such that if different channels overlap
in time spread (i.e., have the same common supports’ location) or not, would also
improve the estimation further. Moreover, in the light of channels’ non-zero en-
tries OE case, figure 6.3 shows that by exploiting the sparse structure, the channel

estimation is robust to the channel OE scenario.

M, =4, M =16,N =100, N, =2

—— DCRBg;

0_“‘ -t - DCRBsparse, Overlapping
A ‘ _D. DCRBsparse, No Overlapping ||
~
| SR
U RN
— N
T -15 X,
7
= -20
4
=251 , %
™ *
-30 ‘N, RN ~
~, ~
>, 4
-35¢ = ~, ]
~
R
5 10 15 20 25 30

SNR (dB)

Figure 6.2: Impact of using sparse structure on the CRB, when different channels’
coefficients are overlapping and not.

Channel’s Structure impact

In the third experiment, a practical scenario which is the specular channel model,
was tested. In this experiment, a raised-cosine pulse shaping filter g(¢) with 0.25
roll-off factor is used, the array response to a point source vector a is arbitrary
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Figure 6.3: Impact
scenario.
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SNR (dB)

of channels’ non-zero entries order overestimation in sparse

generated. Figure 6.4 shows that using the specular embedded structure gives

a pronounced gain in the first scenario where the dictionary is assumed to be

partially unknown, i.e. 7 is unknown, and this gain becomes significant when the

dictionary is assumed to be fully known.

M =17 M,=2 N=100N, =2, r = [0,1.75]

—B— T is known,B =[s a]
—©—06=[s14]
—¥— Blind, 6 =[s h]

10

"

_45 1 L !
0 5 10 15 20 25 30

SNR (dB)

Figure 6.4: Impact of using specular channel structure on the CRB.
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Non-circularity impact

In the last experiment, the impact of source non-circularity is presented in figure
6.5. The test conveys two main messages, the first one is that the non-circularity
is a gainful side information. Also, the non-circularity degree has a marked impact

on the channel estimation performance.

M=3N=50,N,=2p=05

_e_ CRB )
non-circular |
—B— DCRBy;

NMSE (dB)

-45 .
0 5 10 15 20 25 30
SNR (dB)

a.
M =3, N=50,N,=2

NMSE (dB)

-45 ‘
0 5 10 15 20 25 30
SNR (dB)

b.

Figure 6.5: a. Impact of using non-circularity of the source, b. Impact of non-
circularity factor |p| on the CRB
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6.7 Conclusion

This chapter addresses and quantifies the impact of exploiting some available side
information on the system identification problem. We have derived the CRBs for
different scenarii corresponding to the considered side information cases. Sparse-
ness with known dictionary and pilot symbols are shown to be the one that brings
the most important gain. In particular, the channel order overestimation problem

is mitigated up to certain extent when considering the previous side information.
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CHAPTER 7

CONCLUSION & FUTURE

WORK

7.1 Conclusion

In this thesis, we try at one hand to fill some existing gaps in the literature, and
on the other hand, propose some new competitive and efficient methods. Also,
shed the light on some free side information which might improve the channel

estimation quality. The motivations behind selecting this topic were the following:

e The shortage of the blind deconvolution and source separation methods

which handle the most common type of digital signal modulation, i.e., PSK

and QAM.

e The recent studies which demonstrates the superiority of the semi-blind
methods over the training based ones. Moreover, the semi-blind topic is no
more a theoretical one, there are different applications in the market, such
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as optical communication and microwave links, which successfully adopt the

semi-blind concept.

e Help in solving the problem of pilot contamination problem which is caused
by the pilot propagation especially in some promising wireless system solu-

tions such as Massive MIMO systems.

e There is an increase interest in the blind and semi-blind methods in some
emerging topics such as cognitive radio and ad hoc networks whereby sharing
the users’ information (such as the training sequence) between the primary

and secondary is undesirable.

Blind deconvolution for MIMO systems was the first problem targeted in this
thesis. The new class of BSS algorithm, proposed in [6], to perform demixing
for the instantaneous mixture using Unitary and non-unitary elementary rations,
inspired us to generalize these methods to the more general convolutive case.

Different schemes were used for this purpose:

e The first one is based on performing equalization to remove the effect of ISI

followed with BSS to remove the effect of TUI.

e The second one is to perform full-BSS for the spatio-temporal model which
is built from the received signals, hence after, we perform a kind of pairing,
to group the separated signals with their delayed copies, and eventually,

sorting these copies accordingly.

e The third one is based on optimizing hybrid criteria which penalizes the MM
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criterion along with the cross-correlation among the different sources. Again,

the used optimization technique is the Givens and Hyperbolic rotations.

e The last method is a deflationary-based one whereby a single source is ex-

tracted each time.

These techniques form a basement for possible solutions for extending any BSS
method to cover non-instantaneous mixtures, which we believe it constitutes a
good reference for researchers.

In addition to the analytic solution to the MM criterion, Givens and Shear
rotations so far are the only fast and iterative solution for this problem. At this
level, we raised the following question: Is there a better technique or optimiza-
tion method in term of ease of implementation, performance and computational
complexity to perform BSS for non-constant modulus signals?

Accordingly, in Chapter 4, inspired by the well-known fastICA and using the
FPO optimization method, we proposed fast and less costly set of algorithms,
namely fastMMA algorithms, to perform the BSS. Two variants were developed:
the first one is a deflationary-based, while the second is a full-based, whereas the
later demixes all the sources at once. Morover, the full-based variant has shown
an improved quality of estimation due to relaxing the unitary constraint on the
separation matrix. The deflationary based algorithm is extended to cover the
convolutive mixtures by employing an appropriate subspace projection. Finally,
to boost the convergence speed further, a VSS procedure is provided by deriving

an algebraic optimal step size using the well-known exact line search strategy.
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Interestingly, in comparison with the existing CMA and MMA algorithms, our
proposed algorithms are the best in terms of computational complexity, speed of
convergence, ease of derivation and implementation, and separation quality.

The second targeted problem is the BSI. Specifically, we are inspired by the
following question: How would the side information improve the channel esti-
mation quality? The answer is considered in both algorithmic and performance
evaluation point of view. In Chapter 5, a dual subspace approach is proposed by
penalizing the principle subspace of the data covariance matrix from deviation
from the Toeplitz structure. By doing so, we show that the channel estimation
is significantly improved in the difficult context of weak channel diversity (i.e., a
channel with closely spaced roots).

In terms of performance evaluation, using the CRB, different statistical and
structural side information has been explored to quantify their impact on the
channel estimation quality. In particular, three novel deterministic and statistical
CRBs, out of seven, are presented in Chapter 6. These side information has shown

a potential improvement if they are used appropriately in the algorithm’s design.

7.2 Future Work

It is true that we have explored different topics in this work, also it is true that
different directions and open future work are possible. In the ensuing, we list
some of these directions which some of them are related to the work presented in

this thesis and some are not.
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. In Chapters 3 and 4, we deal with batch methods, whereby the channel
is assumed to be constant during the processing data packet. However,
in some communication systems which assume mobility, the channel varies
within the symbol period. In such scenario, developing adaptive versions of

the proposed BSS and BD algorithms would be a good solution.

. Also, in Chapters 3 and 4, we used the non-constant modulus criterion to de-
velop BSS and BD algorithm for QAM signals, these algorithms are shown
to have good performance in case of small and intermediate constellation
sizes, i.e., up to 64-QAM. One can use these algorithms and target higher
constellation sizes by exploring hybrid cost functions such as MM and Al-

phabet Matched criteria [see for example [125, 126]] .

. The optimization methods used in this work can be used to develop new
algorithms using some other cost functions such as constant power and kur-

tosis criterion.

. So far, we have seen an analytical solution for the CM criterion, namely
ACMA. It would be interesting to explore the MM analytical solution, as

well.

. In this thesis, we have also focused on extracting all the sources with giving
no priority to any of them. It is of great interest to develop algorithms which
can extract specific user’s signal (source of interest) with no need to extract

all users’ signals at once.
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6. In Chapter 5, the new proposed SSS method experience a high computa-
tional complexity in comparison with the state of the art SS method. Thus,
it is so interesting to explore different solutions to reduce its computational

cost.

7. The proposed SSS method uses the linear Toeplitz structure to perform
channel estimation. Following the same procedure, one can target direct
equalization by working on the linear Henkel structure. Henkel structure is

a dual presentation of the model (6.3) [see for example [127]].

8. In the context of subspace tracking, one interesting application is to invoke
the proposed structure subspace technique along with the subspace tracking
in order to estimate the communication channel directly instead of estimat-

ing a general principle subspace.

9. In Chapter 6, different CRBs are evaluated for the case of SIMO systems.
Similar derivations can be extended to cover the more general MIMO sys-

tems.
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APPENDIX A

Fourth order polynomial solution

In order to prove that (3.26) is a 4-th order polynomial equation. Let U and
A = diag {[M\1, \2]} be a 2 x 2 generalized eigenvectors and eigenvalues matrices

of the matrix pair (Q, J¢), then,
(Q+8J6) ' =U(A+ L) U g (7.1)
plugging (7.1) into (3.26), lead to

1
ZqTU(A + L) U Jgq=al(A+6L,) > =1 (7.2)

where

aT:%qTU:[al CL2:|7

T
b= %U_IJGq - [ br by ]

and since

(A + BL,) 72 = diag H B2 (B4 r) ]}
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then, (7.2) is expressed in a more compact way as

2 aibi
aChAC— 7.3
Z Gy (7.3)
which is equivalent to
2
(B4 X)?) = (aba(B+ M)+ aibi(B+X2)%) =0 (7.4)

=1

Hence, it is clear that (7.4) is a 4-th order polynomial equation of the form
Py (B) =Bt + 38 + o + 1ft +¢o =0

with the coefficients

C4:1
03:2(>\1+)\2)

2
02:4)\1/\2—aTb+Z)\Z2

=1
2

CcC1 = 2 Z (Az — Clzbz> Z /\j
i=1

2 2
=1 j=1
JF

As stated earlier, the solutions of this polynomial can be found, at a negligable

cost, using the analtical Ferrari or Cardano’s formulas [100, 101].
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APPENDIX B

Second Givens rotations ¢ (9’, —%)

The following relation are used to extract the real and imaginary parts of the

rotation Z = ¢ | (9’, —g) Y

%(k) + 25 (k) Z(k) — 2 (k)

9 P s Zp’[(k?): 2 (75)

zpr(k) =

using the earlier relations and Z = ¢ | (9’, —g) Y after setting o = —7. One can

easily shows that:

2, r(k) = COS(QI)Qp,R + sin(é”)g%[
zp1(k) = cos(@)ng - sin(@’)gq’R (7.6)
zr(k) = sin(@)y, , +cos(®)y,

2q1(k) = — sin(@’)gpﬁ + COS(QI)qu

Accordingly,
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where

Q = {005(29/) sin(20) r» i
t (k) = { ! @;R(k)_g;[(k)) gpﬂ(k)gq,f(k)} )
t/ (k) = [ 1 @;R(k) _Q;I(k;)) Y, k), (k) ]

using (7.7), and after dropping constant terms that are independent of (¢'), (3.9)

can be expressed in terms of (¢') as

JMM<0/) — @/TT/@/
p (7.8)
=07 |2 kg_jl tr ()t (k) + t,, (k)L (k)| ©
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Second Shear rotations ¢, , (v, -%)

APPENDIX C

2

Based on the real-complex relations (7.5), one can write the following:

Accordingly,

where

zpr(k) = cosh(y’)gnR + sinh(v’)g%[

sz(k‘) = COSh(’)/)gp,I - Sinh(’)/)gq’}g

(7.9)
Zq,R(k) == Sinh(’Y/)QpJ + COS(V/)Q%R
zor(k) = sinh(v')g]mR + cosh(v’)qu
E(h) = @ (1) 4 (12, (0) — 42, ()
zg1(k) = @Tu, (k) + 5 (y§,1< )= y;R(k)) (7.10)

P = { cosh(2y/) sinh(27/) r
(k) = [ 3 (gf,,R(M +2§,I<k)> Yy (R, () ] ’

(k) = { 1 (QZ’ (k) +Q5,R<k)> _Qq,R(k)y I(k) :|T
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using (7.10), and after dropping constant terms that are independent of (7'), (3.9)

can be expressed in terms of (7') as
j(’}/) — (PITU/@/ + @/Tul

where

U' = k; W,y r (k) g (k) + wg, (R)ug (),

K
u =-2R> u, pk)+u, (k),
k=1

g, R qp,
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APPENDIX D

Step-Size Derivation

The MM criterion given in (4.4) becomes a function of the step-size p solely, and

is expressed by the rational function

El(zr = 1)) + El(z1 — pa)')
(1(8) 0 122 (712)

J(p) =

_ P
Q*(u)

where zp = ¥'Y 2, = 9¢"Y, 2z, = v'FIY 2, = g"FTY, Q = || (v),_, ||>. After

new

some straightforward algebraic manipulations, the above polynomials simplify to

Plu) =D _pinr's Q) = ain (7.13)

where
po = Elz} + 2], p1 = —4E[2%2r + 237/],
p2 = 6E[2},2% + 212]], ps = —AE[zr2}, + 21Z),
pa = Bz, + 77,

and

a0 =9 @ =-29"0, ¢=]g|?
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Henceforth, the gradient of J(p) in (7.12) w.r.t p is given by

QWP (n) = 2P()Q' (1) N(w)
Vi) = &) R 1y

By combining (7.13) and (7.14), the numerator N (1) becomes a 4-th order poly-

nomial with the following coefficients:

ng = qop1 — 2qiPo, M1 = 2qop2 — @1p1 — 4qGapo,
Ny = 3qops — 3q2p1, N3 = 4qops + @1p3 — 2q¢apa, (7.15)

Ny = 2q1ps — GoP3

The optimal step-size is among the real-valued roots of polynomial A (x). The
optimal step size is chosen as the one leading to the minimum value of the cost

function in (4.13).
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