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Modern scientific computing focuses on developing applications using GPU

(Graphics Processing Unit) because of the rapid growth in computing power and

drop in the price of massively parallel accelerators. The growth in emerging

architectures is also supported with powerful programming languages like the

Compute Unified Device Architecture (CUDA) released by NVIDIA. The abundant

parallel arithmetic hardware in GPUs largely exceeds that available with multi-core

CPU (Central Processing Unit). Science simulations heavily depend on Iterative

linear algebra solvers (ILAS). ILAS is one of the algorithms that could exploit

this GPU massive parallelism provided by GPGPU (General Purpose Graphics

Processing Unit) to accelerate science simulation. BiCGStab (Biconjugate

Gradient Stabilized) is a relatively general solver for solving sparse systems of

xvii



linear equations. BiCGstab is selected on this thesis to solve on implementing

the reservoir simulation. The characteristic matrices that come from reservoir

simulation allow defining the pattern and properties of the above matrix. The

General Hepta (GH) sparse matrix is found to be the matrix pattern for reservoir

simulation. GH must be handled effectively and efficiently especially for Sparse

Matrix-Vector Multiplication (SpMV) that takes most of the computation time

in the simulation. To optimize the storage, a new sparse matrix storage format

called Block Diagonal General Hepta (BDIA-GH) is proposed in this work to

accelerate the corresponding SpMV. Evaluation shows that the speedup of using

BDIA-GH in the SpMV on single GPU is up to 3.0 compared to other storages like

CSR (Compressed Storage Row) format, 2.8 compared to BSR (Block Compressed

Storage Row) format, and 1.4 compared to HYB format. The optimization of

SpMV, leads to the improvement on BiCGStab on a single GPU by 2.64 speedup

over CSR, 2.4 over BSR, and 1.35 over HYB. With multi-GPU, the SpMV almost

scaled perfectly. Speedup of 2 is gained by 2 GPUs over single GPU, 3.97 for 4

GPUs, and 7.97 for 8 GPUs. Multi-GPU BiCGStab also proposed as a novel

approach to improve the computing performance. Speedup with 1.88 factor gained

by using 2 GPUs over single GPU, and 3.28 by using 4 GPUs, and 4.38 by using

8 GPUs. This work contributes to development of scalable SpMV and BiCGstab

for reservoir simulation on many-core.
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 ملخص الرسالة

 

 لطفى عزيز فردوس الاسم الكامل:

  كلاس أوف إيتيراتيف لينير ألجيبرا سولفرسكودا أوبتيميزاتيون أوف  عنوان الرسالة:

 هندسة الحاسوب التخصص:

 هـ ٨٣٤١ شعبان تاريخ الدرجة العلمية:

 

بسبب التطور السريع في  (GPU)تركز الحوسبة العلمية الحديثة على تطوير التطبيقات باستخدام وحدة معالجة الرسومات 

قوة الحوسبة وانخفاض سعر المسرعات المتوازية بشكل كبير. التطور في عمارة الحاسب الناشئة مدعوم أيضا من لغات 

( الصادرة عن نيفيديا. الاجزاء المسؤولة عن CUDAوسبة الاجهزة الموحدة )كودا( )برمجة متطورة مثل معمارية ح

العمليات الحسابية المتوازية المتوفرة في وحدات معالجة الرسومات تتجاوز إلى حد كبير تلك المتوفرة في وحدة المعالجة 

طريقة التكرارية في حل معادلات الجبر الخطي المركزية متعددة النواة. تعتمد عمليات المحاكاة العلمية بشكل كبير على ال

(ILAS(  .)ILAS هي واحدة من الخوارزميات التي يمكن أن تستغل هذا التوازي الضخم المقدم من وحدة معالجة )

الرسومات التي تقدمها وحدة معالجة الرسومات للاغراض العامة لتسريع المحاكاة العلمية. طريقة المرافق الثنائي المتدرج 

نسبيا لحل المعادلات الخطية للانظمة الخفيفة. اختيارنا طريقة المرافق الثنائي المتدرج حل عام هو BiCGStabابت الث

في هذه الأطروحة لحل ينفذ على محاكاة الخزانات المائية الكامنة. خصائص المصفوفات المرتبطة  BiCGStabالثابت 

مصفوفة العامة السباعية الشبه صفرية البمحاكاة الخزانات المائية الكامنة تسمح بتحديد نمط وخصائص المصفوفة أعلاه. 

نمط مصفوفة المحاكاة للخزانات المائية الكامنة. المصفوفة السباعية يجب التعامل معها بشكل فعال وكفء وخاصة تمثل 

والتي تأخذ معظم الوقت الحسابي في المحاكاة.   (SpMV)جه الشبه صفري بالنسبة لعمليات الضرب بين المصفوفة والمت

لتحسين واستغلال التخزين، اقترحنا في هذا العمل صيغة جديدة لتخزين المصفوفة الشبه صفرية يسمى المصفوفة السباعية 

. التقييم (SpMV) لتسريع عمليات الضرب بين المصفوفة والمتجه الشبه صفري  (BDIA-GH)القطرية القاطاعات

لحل عمليات الضرب بين المصفوفة   BDIA-GHاوضح أن سرعة استخدام المصفوفة السباعية القطرية القاطاعات 

والمتجه الشبه صفري على وحدة المعالجة الرسومية الواحدة يصل إلى ثلاثة اضعاف مقارنة مع غيرها من طرق التخزين 

اضعاف مقارنة بضغط التخزين المعتمد على قطاعات الصف  CSR   ،2.8مثل ضغط التخزين المعتمد على الصف 

BSR  مقارنة ب صيغة الخليط  1.4، وHYB  تحسين عمليات الضرب بين المصفوفة والمتجه الشبه صفري .(SpMV)  

 2.64على وحدة معالجة رسومية واحدة  ب  BiCGStab، يؤدي إلى تحسين طريقة المرافق الثنائي المتدرج الثابت 

اضعاف مقارنة بضغط التخزين المعتمد على قطاعات الصف  CSR ،2.4ى ضغط التخزين المعتمد على الصف ضعف عل

BSR  مقارنة ب صيغة الخليط  1.35، وHYB  مع تعدد وحدات المعالجة الرسومية، عمليات الضرب بين المصفوفة  .

باستخدام وحدتي معالجة رسومية  2 وتتناسب بشكل مناسب جدا. التسريع يصل الى  (SpMV)والمتجه الشبه صفري 

وحدات معالجة الرسومات.  8ل  7.97وحدات معالجة الرسومات، و  4ل  3.97مقارنة بوحدة معالجة رسومية واحدة، و 

على وحدات معالجة رسومية متعددة اقترحت ايضا كنهج جديد لتحسين  BiCGStabطريقة المرافق الثنائي المتدرج الثابت 

باستخدام  3.28ضعف باستخدام وحدتي معالجة رسومات مقارنة بوحدة معالجة رسومية، و  1.88صل الى أداء الحوسبة. لي

وحدات معالجة رسومات. ويسهم هذا العمل في تطوير وتحسين عمليات  8باستخدام  4.38وحدات معالجة الرسومات، و  4

لمحاكاة   BiCGStabلثنائي المتدرج الثابت طريقة المرافق او    (SpMV)الضرب بين المصفوفة والمتجه الشبه صفري 
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CHAPTER 1

INTRODUCTION

Modern scientific and engineering applications are increasing in size and

complexity due to the need for higher resolution in large scale modeling and

simulations. These applications dominant a wide range of daily engineering

and scientific applications. Large scale scientific simulations generally need

high-performance computing to accelerate the simulation time and/or increasing

the simulation accuracy. Solving large system of linear equations requires a lot of

computation time using both direct solvers and iterative approaches. Most science

simulations spend a significant fraction of time in the solver algorithm [1].

Usually, two solver approaches are most commonly used, which are the direct

and the iterative linear algebra methods. The direct methods are more reliable

and more accurate but require much more storage than the other methods, which

make them difficult to scale. Excessive transfer and storage of data in a massive

parallel computing system may easily become the bottleneck in addition to the

high computational complexity. The iterative methods are more scalable, so large
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sparse systems have abundant data parallelism, which favor the iterative methods

over the direct methods especially when a high accuracy is not needed. The Krylov

subspace solvers [1] represents the iterative methods to solve large sparse linear

systems. Specifically, the Bi-conjugate Gradient Stabilized (BiCGstab) algorithm

is one example of techniques that belongs to the above sub-space of solvers.

The most computational effort in science simulation is the solving of large sparse

linear systems. These approaches require linear algebra operations such as

matrix-vector multiplication, norm, dot product, vector scaling, and summation

of vectors [2].

Modeling of various modern scientific and engineering applications requires

repetitive solving of a large sparse system of linear equations. Hence the use

of efficient sparse matrix data structure is the pre-requisite for the efficient

implementation of these application on wide SIMD (Single Instruction Multiple

Data) such as GPUs and other many core. Several bottlenecks which may limit the

performance of the GPUs which are the low efficiency due to the sparse structure

of above matrices and the increased overhead due to the irregular accesses to the

memory which may cause a limitation on the memory bandwidth [3].

Offloading all computation of matrix and vectors to the GPU is considered a

straightforward method to utilize the GPU accelerator to implement a Krylov

subspace solver using the functions available in the numerical libraries. Although,

this approach provides good improvement in the performance comparing to

CPU-based implementation, sometimes the high capability of these accelerators
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is not efficiently exploited due to the limitations caused by the operations of the

linear algebra functions available in the numerical libraries [4], [5].

The GPU acceleration provides tremendous computational power provided that

it is properly programmed to take advantage of all its abundant parallelism [6].

The Compute Unified Device Architecture (CUDA) programming language is

developed by NVIDIA. CUDA is designed as a general purpose programming

model [2] which has enough control of the hardware to control the explicit memory

system, distribute the work over the available parallel compute units, and provide

some tools for run-time profiling.

The sparse matrix-vector multiply (SpMV) is considered one of the most

important computational and time-consuming kernel for a wide range of

engineering and scientific applications ranging from structural mechanics to

quantum physics including fluid dynamics. Thus, to achieve scalable performance

for these applications, it is important to optimize the SpMV by developing

customized sparse matrix storage format and efficiently utilizing the underlying

GPU architecture to optimize its operations.

To decrease the overhead and avoid the bottlenecks mentioned above, many

studies have proposed some storage formats for sparse matrices to take advantage

of their data layouts in optimizing the memory access pattern and to reduce the

matrix storage space in GPU memory. Each of these formats has different storage

requirements and computational properties.
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1.1 Iterative Methods

Solving systems of linear equations in scientific computing is one of the most

common encountered problems [7]. Given a known matrix A and a known vector

b, the problem is to find a solution x satisfying:

Ax = b (1.1)

Gaussian Elimination (GE) is the most straightforward approach to solve the

above system of linear equations. Although GE provides more accurate solution

compared to other methods, it has one important drawback which is the excessive

storage which is a major problem to scalability. This problem can be alleviated

by iterative methods.

Iterative methods are not very accurate compared to direct methods but have

abundant parallelism and can be engineered to produce a refined solution. The

solution of this method could approach the exact solution within the margin of

error determined by the user. By using initial guess as the value of x, the x

may converge to an exact solution using more iterations. On every iteration, the

solution will be updated and the margin of error will be reduced if some conditions

are satisfied such the use of proper preconditioning.
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1.2 Problem Statement

The high-performance computing technology nowadays is escalating rapidly.

Devices and architectures are improving along with so many research conducted

to maximize computer architecture performance. But programming with optimal

code on high performance computing is not easy. Certain problems usually need

to be solved by considering the detailed knowledge of the hardware. There is no

general solution for implementing all of the possible programming optimizations

to account for the hardware complexity. That is also the case for iterative linear

algebra solver with sparse matrix vector multiplication. Several storage formats

have been proposed to accommodate many kinds of sparse matrices, but still none

of them provide the solution in best practices. Implementation on BiCGStab as

the chosen iterative linear algebra solver also needs to be optimized. That is why

several questions arise to address these problems. Here are some critical questions

that our work has attempted to answer:

� What is the best storage scheme for sparse matrix on reservoir simulation?

� How to implement matrix vector multiplication that suits well with the

storage scheme proposed for reservoir simulation?

� How to optimize the implementation of the BiCGStab to utilize the available

hardware using CUDA?
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1.3 Contributions to this Topic

In this thesis we developed a customized storage format that is suitable to

solve reservoir simulation problems. The storage is called BDIA-GH (Block

DIA General-Hepta) Format. Sparse matrix-vector multiplication SpMV uses

the above storage format as one of its problem optimizations. We first present

a methodology for optimizing SpMV and BiCGStab algorithm using CUDA

programming for one GPU. Next, we extend our work to a cluster of GPUs and

present a methodology for Multi-GPU implementation of SpMV and BiCGStab

using a shared virtual memory at the server level. We evaluate performance using

execution time, speedup, and Flops performance and assess the scalability of the

proposed implementations. Also to the best of our knowledge, our work is the

first implementation BiCGStab on multi-GPU with several optimizations.
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CHAPTER 2

BACKGROUND

2.1 GPU and CUDA

2.1.1 GPU Architecture

The new architecture of GPU with Tesla leads to very highly efficient

general-purpose parallel computing application [8]. Because this GPU architecture

could be programmed directly in C with CUDA, the number of research on this

general-purpose GPU (GPGPU) computing escalates very quickly (figure 2.1).

This programmability of GPU in C with CUDA is available in many kinds of

computing devices like servers, workstations, desktops, and laptop. For example,

as shown in Table 2.1, Tesla K80 that has CUDA computing capability of 3.7 has

13 Streaming Multiprocessors (MP) that called as SMX with 192 single-precision

CUDA Cores on each SMX (figure 2.2).

Each Tesla K80 GPU has a total 2496 single-precision CUDA Cores. Each
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Figure 2.1: Growth of GPU computing [9]

SMX has 2048 maximum number of threads. It means maximum number of

active thread at a time is:

Nmax active threads = NSMX ×Nactive thread/SM = 13× 2048 = 26624 (2.1)

Every 32 threads are grouped as one warp. In every SMX, there are 4 warp

schedulers with 2 instruction dispatch unit for each scheduler to schedule the

work on warps (figure 2.3).

For each GPU, the global memory is 11441 MBytes and shared memory per block

is 49152 bytes. There are also 64 double-precision units, 32 special function units

(SFU), and 32 load/store unit (LD/ST). On Kepler architecture, the CUDA cores

could run tasks simultaneously with Hyper-Q feature (figure 2.4). Instead of using

only one single hardware work queue for all the streams, the Kepler architecture

supports each stream to work in parallel using separate work queues.
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Figure 2.2: SMX on Kepler Architecture [10]
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Table 2.1: Device Specification for Tesla K80

Device Specification for Tesla K80
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 3.7
Total amount of global memory: 11441 MBytes
(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Max Clock rate: 824 MHz (0.82 GHz)
Memory Clock rate: 2505 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Support host page-locked memory mapping: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes

Figure 2.3: Warp Scheduler [10]
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Figure 2.4: Hyper-Q on Tesla Kepler K80 [10]

Other features that are supported by this architecture of Kepler is GPUDirect

(figure 2.5) that enable multi-GPU system to communicate each other without the

need of host to be involved. The communication goes through the NIC (Network

Interface Card) using RDMA (Remote Direct Memory Access) feature.

2.1.2 CUDA Programming

CUDA (Compute Unified Device Architecture) is a parallel computing platform

and programming model for many programming languages including C/C++

that enable the programmer to do programming in software and hardware side

by using NVIDIA GPU.

A CUDA application could call a parallel program to be executed in NVIDIA

11



Figure 2.5: RDMA GPUDirect [10]

GPU CUDA enabled device that called as kernel. This kernel invoking many

threads in parallel to work on the CUDA core inside GPU. A kernel is a set of

thread block organized as a 1D, 2D, or 3D grid as shown in figure 2.6.

In every thread block, each thread executes the same program from the kernel

and run all created threads in parallel using the SIMD (Single Instruction Multiple

Data) model. Figure 2.7 shows that every thread has own private local memory,

and the thread block has Shared Memory that could be accessed by every thread

in the thread block. The global memory is accessed by all thread blocks in the

grid. The mapping of CUDA application into the hardware is as follows: a GPU

could execute one or more kernel grids. The SMX and CUDA cores in the GPU

works on their assigned thread blocks.
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Figure 2.6: Description of CUDA Architecture [11]

2.1.3 Numerical Library

As parallel programming in CUDA is complex, researcher use numerical libraries

for the basic algebra operators and many other math function to alleviate the

problem of developing optimized code for all involved operations. This greatly

improves the use of the NVIDIA CUDA for programming scientific computing

applications. Therefore, there are many numerical libraries available to be used

for linear algebra like BLAS and Sparse, FFT, seismic imaging, etc. Our focus in

this thesis is on NVIDIA CUBLAS and CUSPARSE numerical libraries.
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Figure 2.7: CUDA Threads and Memory Hierarchy [10]

2.1.3.1 CUBLAS

CUBLAS (CUDA Basic Linear Algebra Subroutines) is a library of BLAS (Basic

Linear Algebra Subroutines) that contains many operators for solving linear

algebra problems using CUDA. The operation is divided into 3 level functions.

Level-1 is scalar-vector operation, level-2 is matrix-vector operation, Level-3

is matrix-matrix operation. Dense matrix is assumed in this library. The

examples operation of Level-1 operations are copying vector to other vector

(e.g. cublasScopy), calculating dot product of two vectors (e.g. cublasSdot),

axpy operation that multiply vector x by the scalar a and adds it to the

vector y (e.g. cublasSaxpy). The examples for level-2 CUBLAS operations are

symmetric banded matrix-vector multiplication (cublasSsbmv), symmetric packed

matrix-vector multiplication (cublasSspmv), and many more. As for level-3,

the example of operations are matrix-matrix multiplication (cublasSgemm),
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symmetric matrix-matrix multiplication (cublasSsymm), hermitian matrix-matrix

multiplication (CublassChemm), and others.

2.1.3.2 CUSPARSE

CUDA Sparse Matrix library (CUSPARSE) is a library of BLAS (Basic Linear

Algebra Solver) that contains many operators for solving sparse linear algebra

problem using CUDA but specialized for working on sparse matrices. This

library supports some general purpose sparse storage formats like ELL/HYB,

CSR, Blocked CSR (BSR), and COO. These assume general sparse distribution

of non-zeros (NZs) without specific regularity. Just like CUBLAS, CUSPARSE

also has three level operation. Level-1 is sparse vector and dense vector operations,

level-2 is sparse matrix and dense vector operations, and level-3 is sparse matrix

and dense vector operation (tall matrix). There are also routines for sparse matrix

by sparse matrix addition and multiplication. Also in this library, the storage

formats conversion is available between COO to other formats and vice versa.

2.2 Multi-GPU Programming

Multi-GPU programming is becoming a new trend in recent years that attracts

many researchers to carry out research on parallel application scalability over a

set of cooperating GPUs [12] that communicate using share host memory or using

some dedicated links. There are many advantages on implementing applications

on Multi-GPU systems. Firstly, Multi-GPU could accelerate the computation of
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scientific applications. Secondly, Multi-GPU implementation could handle larger

problem size because more memory is available. Furthermore, it could save power

by using Multi-GPU on the same node so it could amortize the server cost among

more GPUs.

Performance of Multi-GPU systems depends on how communication could be

done within GPUs and CPU(s). Figure 2.8 shows the memory transfer path in

Multi-GPU communication [13]. This octo-GPU system illustrating 6 kinds of

memory transfer paths. The type of data transfers are:

1. from the host memory to other host memory,

2. from host memory to own host memory,

3. from device memory to other device memories in the same host,

4. from device memory to other device memory in different host,

5. from device to host and host to device, and

6. from device to other hosts, and from other hosts to own device.

Besides the transfer paths, the communication model also determined by how the

data will be allocated in the host memory. Figure 2.9 shows the difference between

paged and pinned memory scheme in host. By default, the data in the host will

be stored in paged memory. But in Tesla ”Kepler” K80, as shown in table 2.1, it

support host page-locked memory mapping. It means the data in the host could

be stored in pinned memory so the transfer path from host to device or vice versa
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Figure 2.8: CPU-GPU communication schemes (a) inside CPU memory (b)
between CPUs memory (c) between GPUs memory in same host (d) between
GPUs memory in different host (e) CPU memory to GPU memory and vice versa
in same system (f) CPU memory to GPU memory and vice versa in the different
system [13]

could go directly from pinned memory to DRAM instead of from paged memory

to pinned memory and then stored into DRAM. But there is limitation of using

pinned memory, because by default this memory is reserved as the temporary

memory and if it reserved for certain data, then available physical memory to be

used by other applications will be reduced. The other component that effected

the performance of communication is PCI-e bridge. PEX 8747 (figure2.10) is PCI

Express that has 48 lanes with 5 ports. Maximum latency of this PCI-e is 100ns.

The configuration of this PCI-e is by using 4 port from the devices, and 1 port

to the host. Each port from the device has 8 lanes, while the port to the host

is 16 lanes. This number of ports could make some limitation to the number of

connection from devices to host.
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Figure 2.9: Paged host memory scheme (left), Pinned host memory scheme (right)

Figure 2.10: PEX 8747 48-Lane, 5-Port PCI Express
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2.3 Biconjugate Gradient Stabilized Method

(BiCGStab)

On solving a system of linear equations, there are two kinds of iterative methods.

First is stationary iterative methods and the second is Krylov subspace methods

that has more general implementation of matrices. Stationary iterative methods

examples are Successive over-relaxation method, Gauss-Seidel method, and

Jacobi method. While Krylov methods examples are generalized minimal

residual method (GMRES), conjugate gradient (CG), and biconjugate gradient

method (BiCG) that has variant called biconjugate gradient stabilized method

(BiCGStab) that could be used for non-symmetric linear system and could be

used when there is no transposed matrix available. This method also gives faster

and smoother convergence than original BiCG [14].

From algorithm 1, we could see that there are several reductions and global

writes that must be done cooperatively by all blocks and all kernels especially for

Multi-GPU BiCGStab implementation. At the step 7, 11, and 14 the reductions

are occurring. It means all the GPUs should communicate to gather the dot

products. Before SpMV (at step 10 and 13), a global synchronization also has to

be called to make sure the operation on SpMV using previous arrays is correct

because of the communication between GPUs and CPU to transfer parts of the

array from previous operation on devices to host and then host to devices. For all

of the SpMV operations are using our own code BDIA-GH and also CUSPARSE
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Algorithm 1 BiCGStab algorithm

1: x0 is an initial guess
2: r0 ← b−Ax0

3: Choose an arbitrary vector r̂0 such that (r̂0, r0) 6= 0, e.g., r̂0 = r0
4: ρ0 = α0 = ω0 = 1
5: v0 = p0 = 0
6: for i = 0 to imax do
7: ρi ← (r̂0, ri−1)
8: β ← (ρi/ρi−1)(α/ωi−1)
9: pi ← ri−1 + β(pi−1 − ωi−1vi−1)
10: vi ← Api

11: α← ρi/( ˆr0,vi)
12: s← ri−1 −αvi

13: t← As
14: ωi ← (t, s)/(t, t)
15: xi ← xi−1 +αpi + ωis
16: If xiaccurate enough, then quit
17: ri ← s− ωit
18: end for

library, while other operations like vector dot products (step 7, 11, 14), axpy

operation (step 9, 12, 15, 17), and scal (step 9) are using CUBLAS library.
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CHAPTER 3

SPARSE MATRIX STORAGE

FORMATS

3.1 General Sparse Storage Format and Its

SpMV

Matrix operation often used in scientific computations are mainly needed for

implementing iterative linear algebra solver. From the real applications, it is

found that matrix to be used in scientific computing is in form of sparse matrices

(figure 3.1) [15]. By definition, sparse matrix defined as ”The matrix may be

sparse, either with the nonzero elements concentrated on a narrow band centered

on the diagonal or alternatively they may be distributed in a less systematic

manner. We shall refer to a matrix as dense if the percentage of zero elements

or its distribution is such as to make it uneconomic to take advantage of their

presence.” [16].
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Figure 3.1: Examples of Sparse Matrices [2]

The distribution of zeros and non-zeros in matrices my considerably vary for

each case. But generally, [15] these matrices can be grouped into two categories.

The first category includes the problems which have no 2D/3D geometry. The

second category is for the problems with 2D/3D geometry. In each category there

are sub-categories that grouped by the type of computation. For example, circuit

simulation problem, directed graph, linear programming problem that lies into the

problems with no 2D/3D geometry, where materials problem, thermal problems,

computational fluid dynamics problem are lies into the problems with 2D/3D

geometry.

Because of the variation in the type of sparse matrix, Bell et. al. [17] proposed

a general storage format that could help computing and manipulating the sparse

matrix to achieve better performance.
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Figure 3.2: COO representation of A with arrays row, col, and data [17]

3.1.1 Coordinate Format (COO)

The simplest storage format is the Coordinate (COO) of the non-zero elements.

This storage format basically will have stable performance on every kind of sparse

matrices, because the required storage capacity is linear with the number of

non-zero in the matrix regardless its structure. This scheme stores row and column

indices explicitly. Therefore, this storage formats have three arrays: an array to

store the data, an array to store the row indices and an array to store the column

indices (figure 3.2). Because the storage format is straight forward, the SpMV

application in this format is also straight forward. The parallelization is done by

dividing the data among the threads. Because the indices are all stored explicitly,

any access to the data requires accessing the row and column indexing. The

drawback of this scheme is the access to the memory is not coalesced manner

which makes it inefficient in using the parallel memory bandwidth (figure 3.3).
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Figure 3.3: COO SpMV kernel memory access pattern with the arrays row col,
and data [17]

3.1.2 Compressed Storage Row Format (CSR)

Basically, Compressed Storage Row format (CSR) is like the extension of COO

format. All the values in matrix data are stored in row-major order and the column

indices for the corresponding value of data is stored explicitly. But the difference

with the COO format is instead of storing all the row numbering explicitly, CSR

stores the row implicitly using a pointer ptr to determine the address of the first

and last row elements (figure 3.4). The SpMV operation requires loading the

values of the data after accessing the row and the column indices on each row

(figure 3.5). Therefore, parallelizing the SpMV is based on assigning a separate

thread to each row. The problem of this implementation are the data and the

column indices which are stored contiguously but their access is not in coalesced

manner (figure 3.6). There are some proposed approach to overcome this problem,

but not discussed in detail.
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Figure 3.4: CSR representation of A with arrays ptr, indices, and data [17]

Figure 3.5: CSR sparse matrix format using serial CPU SpMV kernel [17]

Figure 3.6: CSR SpMV kernel memory access pattern using arrays indices and
data [17]
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3.1.3 Block Compressed Storage Row Format (BSR)

Block Compressed Sparse Row (BSR) is another version of compressed storage

row (CSR). This scheme takes advantages of sparse matrices that have non-zeros

in a group of neighbours, which can be considered as a data block. In scientific

computation, the blocked structure represents interaction between cells that have

more than one state variable. The general idea of this storage scheme is the

same with CSR but in blocked version. Instead of storing each value of the data

in row major order, they combine the row by the size of the block and put the

block values into the data array with row major order of the block in block rows

and also row major order within the block. Inside the block, there at least one

number of non-zero. Therefore, it is not suitable if the non-zero elements in the

sparse matrix is highly scattered because the block data will store too many zero

elements. Other variations of this scheme stores the column indices of the blocks,

pointers to each block in the matrix to determine the first end of the last block in

a row of the matrix.

3.1.4 ELLPACK Format (ELL)

ELLPACK storage format is more specific compared to previous mentioned

storage format because this scheme is suitable when the maximum number of

non-zeros in the row of the matrix (K) is close to the average number of non-zero

in other rows. Otherwise, like in figure 3.9 the data and indexing arrays will store

too many non-zeros. Figure 3.8 shows some suitable matrices for this scheme.
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Figure 3.7: ELL representation of A with arrays data and indices [17]

Figure 3.8: Example of the matrix that is suitable with ELL format [17]

This format is constructed by grouping the non-zero elements in every row of the

matrix (assuming M ×N matrix) to the left side of the matrix and the zeros will

be on the right. The row (Kth) that has the maximum number of non-zero will be

the limit and the zeros on the right side of Kth row that will be trimmed so the

new data matrix will be M ×K. Besides the data, other array called indices are

used in this format for indexing the column. ELL scheme stores the row implicitly

and stores the column indices explicitly in an array like COO (figure 3.7).

Figure 3.10 shows how SpMV with this ELL format has been done. Generally,

kernel of ELL is similar to DIA format, ELL can be helpful to parallelize the

computation by assigning one thread per row. But because the column indices

is stored explicitly, while DIA store the column implicitly, generally DIA will
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Figure 3.9: Example of the matrix that is not suitable for ELL format [17]

perform better on matrices that have some diagonal trend. Also the memory

access of the x vector is not always referring to contiguous addresses (3.11).

3.1.5 Hybrid Format (HYB)

Hybrid format is combining the format of ELL and format of COO. As mentioned

in section 3.1.4, ELL is not suitable if the maximum number non-zero in a row is

very different compared to the average non-zero number in a row. To overcome

this problem, hybrid scheme is storing the non-zero to the left and the zeros to

the right like ELL storage scheme and then truncating the number of non-zero

in the row that has maximum number of non-zero. The new maximum number

of non-zero in the row decreases and approaches the average number of non-zero

in a row for other rows. This truncated non-zero elements in the matrix will be

stored as COO storage format.
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Figure 3.10: ELL sparse matrix format SpMV kernel [17]

Figure 3.11: Memory access pattern of ELL SpMV and its data linearization [17]
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Figure 3.12: Five diagonals sparse matrix [17]

3.1.6 Diagonal Format (DIA)

Diagonal format is not suitable for general sparse matrix type and it is even more

specific format than ELL. But when the non-zero elements are highly concentrated

and restricted in the diagonal of the sparse matrix, this storage scheme could give

the best performance because this format is very efficient in term of data storage

and computation.

Figure 3.12 shows a band diagonal sparse matrix that is suitable with this format

and figure 3.14 is not suitable. There are two arrays that represents this storage

scheme. We need to store the data values of the non-zero elements and the offsets

to determine the row and column position of the non-zero element. The main

diagonal in the matrix represented by 0 in the offset, where the upper diagonal

will be represented by positive value (i > 0) and lower diagonal will be represented

with negative value (i < 0) compared to diagonal. The value is determined by

how far the distance from the main diagonal. To understand more about the
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Figure 3.13: DIA representation of A in arrays data and offsets [17]

storage scheme of this format, Figure 3.13 illustrate the implementation of this

scheme. From the Figure 3.13, we see that the matrix A has non-zeros in three

diagonal places. In the main diagonal, upper diagonal with one distance, and lower

diagonal with two distances. So the data will have three columns to represent each

diagonal, and there will be an offset array that represent the diagonal position

of each data column. In term of storage scheme, if the matrix has a diagonal

type the storage requirement for this format will be the least compared to other

formats.

This storage format has some advantages. This format stores the data, x, and y,

in contiguous way so that the memory access will be efficient. Furthermore, unlike

the COO formats, the row and the column of this format stored implicitly so that

it will reduce the memory occupation and also reduce memory access when SpMV

is being computed.

Figure 3.16 shows how SpMV in DIA storage format is being computed.

Parallelizing the SpMV in DIA storage format can be done by assigning a thread

to every result. The thread will compute the dot product along the non zero on
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Figure 3.14: Sparse matrix type that not suited well with DIA format [17]

Figure 3.15: DIA SpMV memory access pattern and data array linearization [17]

the same row and compute the column index the non-zero value is placed using

the offset. The result y of each row is the accumulation of the value of non-zero

in the data times the value of x vector in the certain column. The best practice

on storing the data is by using column major so the access of thread to the data

will be coalesced. And also, each thread access to every diagonal will leads to

the contiguous access to the vector x because in the same diagonal the column is

contiguous (figure 3.15).

3.2 Previous Work Studies

Bell and Garland paper [18] first presented a comprehensive analysis of

performance for the SpMV on General Purpose GPUs (GPGPUs) using different
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Figure 3.16: DIA sparse matrix format SpMV kernel [17]

storage formats. It has been shown that the main bottleneck of the COO and

CSR is memory bandwidth due to the explicit storage of the row and column

indices. So the computation to communication ratio is low due to frequent access

to the GPU global memory. Unlike COO and CSR, DIA and ELL formats store

both row and columns indices implicitly. This paper also concluded that DIA

is most appropriate for the structured matrices especially when non-zero values

are located into a small number of matrix diagonals. They have showed that for

unstructured matrices, the CSR or HYB schemes produce the best performance.

However, the DIA storage format produces the best performance for the structured

matrices.

Using the libraries or basic routines is an excellent approach to support

programming on the GPU to compute many scientific simulation operations and

practical applications accelerated via GPU. In this direction, a large number
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of routines related to matrix computation are provided by NVIDIA such as

CUSPARSE [19] and Cusp [20]. CUSPARSE firstly introduced in 2010 [21]

by NVIDIA. This library supports Level-1, Level-2, Level-3 operations and also

Sparse Matrix Format conversion. Sparse matrix storage format that supported

by this library is COO, CSR, CSC, ELL, HYB, BSR, and BSRX. In CUSPARSE,

level-1 operation means vector-vector operation, level-2 is sparse matrix-vector

operation, and level-3 is sparse matrix-matrix operation.

Paper [22] proposed a static method to predict the optimal storage format

depending on the input matrix and time needed to communicate and transfer

data between CPU and GPU. They claim that the overhead time needed for the

prediction is very small compared to overall time of SpMV execution time. All

analyzed matrices are square for simplicity. The capability of bus between CPU

and GPU and data size of an input matrix are used to measure the communication

cost. The communication time is defined as the ratio of total data size for the

chosen format to the effective bandwidth of bus used between CPU and GPU.

In that paper, the proposed algorithm tested on number of matrices presented in

Sparse Matrix Collection of Florida University.

In addition to communication time used as a factor in a prediction model,

pre-processing associated with the format conversion is also used to choose the

optimal sparse format and this factor is used when the format is not decided based

on the previous factor. Pre-processing overhead comes from three parameters

which are number of used data Structures, number of iterations, and the non-zero
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elements or number of rows in the representation. This paper concluded that,

CSR format is recommended for non-square matrices and dense matrices. If the

number of columns is more than number of rows, then it is better to use CSR,

otherwise ELL is recommended. The matrix is categorized into highly sparse or

densely sparse types for square sparse matrices, based on number of the rows and

the average number of non-zero elements in a row. In each category, the matrix

is further analyzed with respect to the non-zero element distribution based on

maximum number non-zero elements per row and average number of non-zero

elements in the rows.

Further, paper [22] proposed a Bit Level Single Index (BLSI) representation to

reduce the memory foot print and pre-processing overhead. This procedure is used

if the prediction model mentioned above selects the HYB or ELL as an optimal

storage format and that because these two formats have high pre-processing

overhead. In this case the input matrix is converted into BLSI representation. A

BLSI format is not used to represent the matrix but used for indices to reduce the

pre-processing overhead. As a summery, this paper don’t consider the structure

of non-zero elements in the matrix. It carry out a test on a set of specific matrices

and suggest the optimal storage format to be used.

The Authors in paper [23] proposed a method to increase the SpMV kernel

performance by studying some quantities values of the input matrix such as

number of non-zero elements deviation in each row, number of non-zero elements

average in each row, etc. They improve the performance by balancing the load for
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every thread, reducing irregular memory access of the vector, coalescing memory

access, reducing the overhead of loading matrix element, and concerning about

the data structure. From the observation, they conclude that CSR and ELL

format have low computational load. The memory access of both formats is also

coalesced. From that observation, they decided to combine both CSR and ELL

formats and proposed some changes in HYB by storing some rows in CSR and

the remaining rows in ELL.

To address the issue of load balancing when using this combination, multiple

warps are assigned to a row that depends on the number of non-zero in that row.

In their proposed method, the threshold value is found empirically because the

CSR format is used for rows that have more nonzero elements than the threshold

and for the remaining rows the ELL format is used. Also, the thresholds on

the minimum and maximum number of nonzero elements are evaluated for warps

assigned to the CSR and ELL formats, respectively. Multiple warps are assigned

to a row stored in both formats. Their storage format improves the performance

by a factor of 25% on average compared with the best results of HYB that was

previously proposed by Bell and Garland.

The experiments performed on a set of highly unstructured sparse matrices and

also on standard dataset contains 14 sparse matrices from the work of Williams

et. al. [24] and these matrices have varying degree of sparsity. Some matrices

have a structure of a dense matrix, some highly unstructured sub-matrices, and

others with few non-zero elements per row. They compared their results with the
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best performance of CSR and HYP formats presented in the work of [25].

Paper [26] proposed a new sparse matrix storage format named Compress Sparse

Row with Non-zero Size (CSRNS) and According to the new format, the authors

designed a Hybrid Processing Method for SpMV on GPU and at the end the

performance of the new method is compared with the traditional method. The

storage format proposed in this paper is updated version of traditional CSR

format. The basic idea behind the proposed method is to sort the sizes of rows in

a roughly descendant order. An another two-dimensional array is used in addition

to those used in CSR format and this array stores the size of non-zero elements

in each row and its corresponding row index.

The Authors proposed Hybrid Processing Method (HPM) corresponding to

CSRNS format. HPM starts by sorting the sizes of rows with a descendant

order for the whole sparse matrix. It is claimed that this classification and the

way threads are assigned to the rows contribute in solving the load balancing

problem which CRS suffers from. The performance of the proposed format and

its corresponding hybrid SpMV kernel is compared with that of used scalar CSR

and vector CSR formats proposed in the art of the literature. It is clear from the

results that the proposed method outperforms both of the traditional methods.

Paper [2] proposed the Vector CSR storage format for SpMV kernel based on Bell

& Garland kernel [17] using Alinea library. They used several types of matrices

from the University of Florida repository [15] to compare the performance of their

kernel with kernels from CUSPARSE and Cusp libraries. For the solution of sparse

37



linear systems with non-symmetric matrices, they consider transpose-free Quasi

Minimal Residual (P-tfQMR), Bi-Conjugate Residual (P-BiCGCR), Generalized

Conjugate Residual (P-GCR), Stabilized BiCOnjugate Gradient (BiCGStab), and

Stabilized BiConjugate Gradient (L) (BiCGStabl) as the solution for sparse linear

system with non-symmetric matrices and for symmetric positive definite matrices

using Conjugate Gradient. For vector addition and multiplication, CUDA library

CUBLAS (CUDA Basic Linear Algebra Solver) is being used. Furthermore, for

dot product and norm, to make the computation effective, optimizing dot product

is important by dividing the operation into two parts. First part is by multiplying

each vector element, and second part is computing the summation of each vector

to get the final result. For Sparse matrix-vector multiplication (SpMV) several

storage format is being used, such as CSR, COO, HYB, and ELL. They found

that their implementation outperforms CUSPARSE and Cusp libraries for double

precision computations.
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CHAPTER 4

LITERATURE REVIEW

The graphics processing units GPUs offer a modern parallel computing

alternative to solve computational problems that have abundant parallelism.

The performance and capabilities of GPUs is increasing significantly in the past

decade due to the effectiveness and powerfulness of this device. The GPU is

not only powerful but also has massive arithmetic hardware and large memory

bandwidth which overwhelm the host CPU in some cases. Because of this

superiority, the research community has been focused on the use of GPUs or

accelerators as to boost performance of traditional microprocessors or multi-cores

in high-performance computing system such as clusters and grids [6].

Initially GPUs were intended to do processing for display in computer video

card but now they appear to be among the most robust compute units for high

performance computing. In comparison to multicore CPU architectures that has

only has scant number of cores, GPU architectures has many core with hundreds

of core capable of running thousands of threads in parallel [27]. But the problem
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on early stages of GPGPU computing model (general purpose graphics processing

unit) is the difficulty of parallel programming and associated optimizations [8].

Latest generation of GPU architecture provides easier programmability

and increased generality while keeping the large memory bandwidth and

computational power compared to earlier GPU architectures. The computational

capabilities come together with the programming complexity, diversity of

optimizations, and the difficulty of making efficient use of the resource. The

GPU uses a massive multithreading that utilizes a huge amount of cores. The

global memory latency hiding hold the key point on increasing the performance.

Ryoo et al. reported that to efficiently use a huge amount of cores and hide the

global memory latency, balancing resources on solving computational problem is

a necessary. By managing a large number of registers, amount of on-chip memory

used per thread, number of threads per multiprocessor, and global memory

bandwidth, speedup of their kernel codes could reach between 10.5× to 457×

and 1.16× to 431× for their total application [28].

Since NVIDIA released CUDA in 2007, developers have rapidly developed scalable

parallel programs for a wide range of applications, including computational

chemistry, sparse matrix solvers, sorting, searching, and physics models. These

applications scale transparently to hundreds of processor cores and thousands of

concurrent thread [8]. But unfortunately, CUDA is still not supported for mobile

GPU application on smartphone [29].
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4.1 CUDA Application

4.1.1 Ocean Modelling

The Regional Ocean Modeling System (ROMS) is a primitive equations ocean,

terrain-following, free-surface model for many kinds of application that widely

used by the scientific community (www.myroms.org). This ocean modelling

simulation take a very long time to complete the computation from hours to

days because of the nature from the software is compute-intensive. Therefore, the

performance limitations of modern computing hardware constrain the size and

resolution of simulation. The existing ROMS code could be run in parallel with

either MPI or OpenMP to address these issues. This paper using CUDA Fortran to

implement a new parallelization of ROMS on a graphics processing unit (GPU).

This work could gain a better performance for a less power and lower cost by

exploiting the massive parallelism offered by modern. To test the implementation,

real data collected from coastal waters near central California for benchmarking

with idealistic marine conditions has been done. This implementation gains

speedup 2.5x over an OpenMP and 8x over a serial implementations and

demonstrating comparable performance to a MPI implementation with much less

device cost [30].

4.1.2 Artificial Intelligence

With the new paradigm and evolution of the architecture of Graphics Processing

Units (GPUs), it has computational-power that surpassed the performance of
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CPUs (Central Processing Units). Machine Learning (ML) algorithm has a very

intensive computational problem that suit-well with GPUs that inherent high

parallelism as a device. However, some of the currently available ML algorithms

that have been implemented on the GPU are not shared openly. This create

difficulties for engineers and researchers to develop a better ML algorithm on GPU.

To tackle this issue, creation of an open source GPU Machine Learning Library

(GPUMLib) is proposed to provide the building blocks for the development of

efficient GPU ML software. Experimental results show that the algorithms on

benchmark datasets could implemented yield significant time savings over the

CPU counterparts [31].

4.1.3 Oil and Gas

4.1.3.1 Reservoir Data Visualization

In oil and gas exploration, processing large set of data from the field and visualizing

it, is very important task to do. By doing those processes and visualizing the

simulation results, the data become useful. Paper [32] is describing how the

visualization tool on a multi-phase 3D oil-water reservoir is being developed and

parallelized with CUDA enabled GPU on IBM Cell computer. Ertekin et al. [33]

described an independent 2-Phase oil reservoir simulator, in which the grid state

is characterized by the oil/water saturation and pressure values over a period of

time. This oil reservoir simulator displayed the data grids in 3D and the user could

interact with it. This interaction needs a HPC to accelerate the simulation. The
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author proposed to parallelize the computation including the user interactions

with the data grids such as zooming, transformation [34], compute intensive

lighting [35] and also camera movement [36]. IBM Cell SDK 3.0 and NVIDIA

CUDA along with OpenGL libraries and QT are being used as the environment

of this implementation. The result shows that this proposed implementation could

speedup 67x over serial implementation.

4.1.3.2 Reservoir Simulation

Paper [37] proposed a novel poly-algorithmic solver for solving large sparse

linear systems with multicore CPU and GPU. This algorithm is implemented

for realistic compositional and black oil flow scenarios. This approach mainly

uses multicore CPU computing to exploit the functional parallelism in reduction

operations, sparse algebra, algebraic multigrid preconditioning, reordering, and

system partitioning in order to decrease the number of GCR (General Conjugate

Residual) iterations while accelerating it. On the other hand, the author also

exploited the data parallelism using GPU in multi-coloring SSOR algorithm with

preconditioning option such as BILUT and BILU(k). In addition, the basic linear

algebra solver (BLAS) kernel is used by reducing the memory overhead per floating

point operations while simultaneously deploying thousands of threads. The result

shows that this method could achieve speedup 2x of overall simulation time over

conventional multicore CPU implementation. This shows that many core solver

has the potential to accelerate the reservoir simulation operation and computation.
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4.1.3.3 Iterative Linear Algebra Solver

Paper [38] is purposed to show the difficulties encountered and advantages

on developing sparse linear algebra computation in GPU. This paper is an

overview of early experience in developing a high-performance iterative linear

solver accelerated by GPU processors. Many techniques are discussed in order

to find suitable methods for preconditioning and to speedup kernel for sparse

matrix vector product (SpMV). The experiments is performed by using NVIDIA

TESLA M2070. The result show that GPU could achieve speedup up to 8 factor

over Intel MKL on the host Intel Xeon X5675 Processor. The performance overall

for Incomplete Cholesky (IC) factorization preconditioned CG method using GPU

accelerated can outperform its CPU by a smaller factor, up to 3, and on incomplete

LU (ILU) factorization preconditioned GMRES method with GPU-accelerated

can reach a speedup nearing 4. However, with better suited preconditioning

techniques for GPUs, this performance can be further improved.

4.1.4 Math Compiler

Bergstra et. al., [39] describing how to use Theano

(https://github.com/Theano/Theano), explains its overall design, provides

benchmarks on both CPU and GPU processors, and outlines the scope of the

compiler. Theano is a compiler that combines the speed of optimized native

machine language with the convenience of NumPy’s syntax in Python for

mathematical expressions. While being statically typed and functional, the
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user composes mathematical expressions in a high-level description that mimics

NumPy’s syntax and semantics. Theano optimizes the choice of expressions

before performing computation. It compiles them into dynamically loaded

Python modules after automatically being translated into C++ (or CUDA for

GPU). The speedup gains by implementing Theano for common machine learning

algorithms scaled from 6.5Ö and 44Ö faster compared to other alternatives

(including machine learning that implemented with MATLAB, NumPy/SciPy,

and C/C++) when compiled for the GPU and between 1.6Ö to 7.5Ö faster when

compiled for the CPU.

4.1.5 RSA Decryption

Paper [40] proposed an efficient parallel algorithm for RSA decryption with

CUDA that use many-core GPUs. In the telecommunication, when there is an

unrecognized communication is trying to connect in the network, it is necessary

to use cryptography. Public-key cryptography algorithm like RSA, use D as the

private key and a pair (N, E) as the public key. The N is a large number that

produced by two large prime numbers p and q that are kept secret. To extract

p and q from N cannot use any polynomial time algorithm and it is very hard.

There are many proposed methods to factoring large numbers. Furthermore, for

modern GPUs, the advantages of memory bandwidth and computing power have

made porting applications on it become a very important issue. The experimental

results showed that to find out the result of factoring large numbers compared to
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the CPU-based algorithm, the proposed GPU-based algorithm can achieve 1197.5x

average speedup within a reasonable time.

4.2 CUDA Multi-GPU

In CUDA, it’s possible to do implementation using Multi-GPU to increase the

performance of the application. Multi-GPU implementation of an application

means that the application uses several GPUs instead of a single GPU to further

speedup the computation. By having multiple GPUs per node, it means improving

performance/Watt that amortize the CPU server cost among more GPUs. Similar

effects are observed for the price [41]. Micikevicius et al. [42] implemented a

3D Finite Difference Computation on single GPU and Multi-GPU using CUDA,

and showed for single Tesla 10-series GPU a better performance than 4-core

Harpertown CPU using similar code from seismic industry. On Multi-GPU

implementation, it shows that the performance for the above application achieves

linear speedup by overlapping inter-GPU communication with computation either

for 2 GPUs or 4 GPUs. Asynchronous communication and computation is used

in this application along with the page-locked memory in the CPU part. The

memory exchange has been done in this application by carrying the data from the

GPU to CPU, and then from CPU to CPU, and return it back from CPU to GPU

to continue the process.

Xu et al. [43] is implementing Multi-GPU of bottom-up attention selection using

CUDA that used for autonomous switching on mobile robot vision and achieving
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a decent scaling for two, three, and four GPUs over one GPU. The CUDA

implementation is not described much on this work, but they said Multi-GPU

performance strongly depends on the efficient usage of thread-block organization

and different memories. Because the application is using mobile robot and vehicle,

the main drawbacks of using Multi-GPU is the power demand for Multi-GPU.

On novel implementation in cellular genetic algorithm with Multi-GPU

implementation by Vidal et al. [44], the performance of single GPU

is better than Multi-GPU. It’s happened because the communication

only enabled when the current GPU kernel that executes on both

GPUs finished and then the data sent to the host, then it could

continue with the other GPUs after getting the new data serially.

Schaetz et al. [13] presenting Multi-GPU programming library called MGPU for

real-time applications by using CUDA as the backend. For the testing application,

they use CUFFT library to calculate the Fourier transforms and CUBLAS library

to calculate scalar products. The result shows that the Multi-GPU achieving

2.1 speedup for 4 GPUs over single GPU and 1.7 speedup for 2 GPUs over

single GPU. Referring to the power drain and energy consumption, 2 GPUs

show the most efficient energy consumption while 4 GPUs do not consume

significantly more energy compared to single GPU for energy consumed per frame.

Thibault et al. [45] implementing an incompressible flow Navier-Stokes solver for

Multi-GPU workstation platforms. In this application, the communication has

been done synchronously by using single cudaMemcpy(). Many small memory
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copy operations are not advisable according to CUDA best practices. However,

this application is not communication extensive, so on 4 GPUs it stills achieve

speedup of 3 over single GPU and 2 GPUS achieve speedup 1.6 times over single

GPU. Organizing data for shared memory and global memory gives better results

than storing the data in all-global memory or all-shared memory.

Simulating Multilevel Fast Multipole Algorithm (MLFMA) Guan et al. [46]

has been proposed using hybrid OpenMP-CUDA programming model with

Multi-GPU. This algorithm is calculating radiation patterns of the basis functions

(Vs) and receiving patterns of testing functions (Vf), translator (T), and the

assembly of the near-field system matrix (Znear) before invocation of an iterative

solver using BiCGStab to calculate far-field interaction. COO (coordinates list)

storage scheme is used for the block matrices to reduce the storage and to achieve

coalesced memory access. The idea of this implementation is by using 4 core CPU

using OpenMP that mapped each core to each GPU using CUDA. To calculate

the sparse matrix-vector multiplication for BiCGStab, this implementation uses

CUDA library CUSPARSE. For memory management, the authors use two

different strategies. First the use of the pinned memory strategy, and the second is

based on using the global memory strategy. For calculating Vs and Vf, T, Znear,

the same parallelization scheme is applied which leads to the same speed-ups

for pinned memory and global memory strategies. The assembly of the near-field

system matrix (Znear), the speed-up of OpenMP-CUDA-MLFMA (Multilevel Fast

Multipole Algorithm) is 60 times faster than CPU-MLFMA . For BiCGStab as
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the last part of the algorithm, the speedup of OpenMP-CUDA-MLFMA using

pinned memory is 4.2 faster than CPU-MLFMA, and 16 times speedup is achieved

by using global memory strategy. The global memory strategy shows better

result over pinned memory strategy because the host-device communication on

pinned memory strategy degrade the performance of overall operation including

BiCGStab, while global memory strategy does not need to do any host-device

communication.

Boyer et al. [47] presenting a Dense Dynamic Programming on Multi-GPU or

knapsack problems. The parallelization has been done by dividing the loop that

process the value of f(c) on solving Knapsack Problems (KP) as this operation

consumes the major part of processing time. Furthermore, the computation is

partitioned so that each GPU computes a subset of values of f(c). The result

shows that single GPU could achieve 14.7 times speedup over CPU and 2 GPUs

achieving about 28 times speedup over CPU.

Sourouri et al. [48] compared the state of the art implementation of 3D stencil

using MPI with combination of OpenMP and CUDA. Overlapping communication

with computation is the main focused on this work. Three OpenMP threads are

spawned for every GPU to handle processing, incoming, and outgoing buffers.

Two CUDA streams on every GPU are created to overlap communication with

computation. The implementation has been done by using Fermi architecture

Tesla C2050 and Kepler architecture Tesla K20. The result shows that

OpenMP-CUDA outperform MPI with 1.85x faster in 4 GPUs implementation
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on Fermi architecture, but for 2 GPUs, the difference is not really noticed. Also

in Kepler architecture, the result of OpenMP-CUDA approach is only slightly

increasing.

Ren et al. [49] investigated the power consumption for multi core and GPUs

processing in large scale SIMD computation with CUDA. It is concluded that to

get the best efficiency of power consumption, it is better to balance the workload

between CPU cores and GPUs. Other optimizations are proposed to reduce the

power consumption using the CPU instead of GPU for small workloads because

CUDA GPUs initialization has significant overhead that consumes more power.

An implementation of an iterative tomographic reconstruction algorithm on

Multi-GPU has been done by Jang et al. [50]. The background of this work is the

need of computational demands for this algorithm. First task is to differentiate

which work should be done in CPU and which work should be done in GPU.

Thread mapping takes an important role on this implementation to make sure

the threads have balanced workload. On Multi-GPU implementation, the same

number of CPU threads is created as much as the number of GPUs to be utilized

during GPU operations like kernel invocation and data copying to minimize the

overhead. The result shows that speedup of 4 GPUs over single GPU is about 2.1

for the Forward Projection.

Implementation of the simplex algorithm using Multi-GPU has been done by

Lalami et al. [51]. Simplex algorithm is one of popular method to solve linear

programming (LP) problems. This work is using Quad-Core Intel Xeon E5640
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and NVIDIA Tesla C2050 for the GPUs. There are two kinds of data in this

algorithm, first is shared data, and second is local data. The shared data is stored

in page-locked host memory and the local data is stored in global memory of

GPUs. This work achieves maximum speedup of 24.5 with two Tesla C2050 over

CPU, and 1.93 speedup over single GPU.

Paper [52] proposed a Multi-GPU and Multi-CPU parallelization for interactive

physics simulation. Author stated that CPUs is mostly working better on small

workload than GPUs while GPUs is better on the large workloads. Because of

this, the author dividing the task based on the weight of the workload by looking

at the execution time and use the appropriate processing unit (PU) to do the

job. The experiments show that more than 400 thousands finite element methods

(FEM) and 64 colliding objects in the complex simulation could be done in a

time of 0.082s on every iteration for 8 GPUs instead of 3.82s on single CPU. On

heterogeneous computation that contains complex and simple objects, the tasks

could be separated to exploit all of the resources between 8 CPU cores and 4

GPUs to make the job done efficiently. The result shows that with 4 CPU cores

manage the GPUs and other 4 CPU cores done individual tasks, the performance

is increasing by 30% because the CPUs unload GPUs task on small workload and

makes the job done more efficiently. The author developed a mechanism that

works like the Distributed Shared Memory (DSM) to ease the programmer work

on transferring data between CPU and GPU also between GPUs. To minimize

communication between CPUs and GPUs, the author use METIS or SCOTCH by
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re-computing the mapping of each partition every time the task graph changing,

which indicates that the partitioning is adaptive. For the objects that are not

colliding, the speedup could reach 7 with 8 GPUs while the objects that collide

the efficiency decreased but still get about 50% efficiency. This loss of efficiency

is due to the need to adapt ever time the collide is happening so there will be an

overhead for GPU-CPU-GPU communication.

4.3 CUDA BiCGStab

Ament et al. [53] presented a parallel preconditioned conjugate gradient solver

[54] [55] for the simulating the Poisson’s Equation on a Multi-GPU platform.

The author stated that for Multi-GPU platform, the bandwidth limitations and

the implied communications in computing sparse linear systems could cause poor

performance or even negative speedups at least for a small problem size. Therefore,

this approach is questionable to become a solution. Conjugate gradient solver is

well known iterative algorithm that rapidly converges when the solver matrix is

symmetric and positive definite. With a proper implementation of preconditioning

for conjugate gradient (PCG), the convergence is greatly enhanced. A strategy

to improve the problem of efficient preconditioning has been proposed. This

strategy leads to a reasonable speedup. The preconditioners like Jacobi are easy

to parallelize but only have minor impact on the speed of convergence. The

incomplete Cholesky factorization (IC) or symmetric successive over-relaxation

(SSOR) have a major impact on the speed of convergence but are hard to
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parallelize due to their sequential nature. The problem of this implementation is

when adding more GPUs, sooner or later the host capabilities will be exhausted.

For the small problem the cost of communication is relatively high which leads

to the poor performance. The result shows that the speedups of 2.02 for 4 GPUs

over single GPU.

Paper [56] proposed to accelerate the well-known Strassen Algorithm and

Conjugate Gradient by using CUDA and MPI. By examining the application, the

authors noted that the implementation with normal MPI give better performance

over CUDA+MPI because of the lack of second level parallelism in the Conjugate

Gradient method. The latency between the GPU memory and the host memory

represent a huge disadvantage of CUDA+MPI implementation.

Cevahir et al. [57] presented a fast conjugate gradients with multiple GPUs.

In this implementation, the authors used BCSR (Blocked Compressed Sparse

Row) storage scheme. Multiple GPUs is useful not only to accelerate the

application simulation time and enhance its performance, but also to overcome

the memory bottleneck. To provide a load balanced execution between GPUs,

the proposed approach lead to distributing the same amount of non-zeros to each

GPU on matrix vector multiplication. CPU and GPUs are communicating when

exchanging input vector for matrix-vector multiplication in conjugate gradient

algorithm. The global synchronization is occurring before SpMV by exchanging

the input vector for matrix vector multiplication, and twice when computing the

scalars. The result shows that the speedup of 2 GPUs over single GPU is 1.73
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and 4 GPUs is 2.83.
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CHAPTER 5

METHODOLOGY

5.1 General Hepta BDIA (BDIA-GH)

The basis of this work is the need of design for a customized storage scheme that

will be suitable for the solver matrices encountered in reservoir simulation [58].

This General Hepta matrix is meant to represent the interaction among the grid

cells for a Reservoir Simulation (RS) using a Black Oil system (BO). There are

several parameters for characterizing the solver matrix in RS:

1. Nc: Number of components used in reservoir simulation in Black Oil system.

2. Grid defined using (J,H, and I) which consist of 3D grid with dimension

J ×H × I and so that each grid cell has Nc independent variables.

(a) The definition of the order for the X,Y, and Z directions (J,H, and I).

(b) Unfolding the above 3D grid space into 1D array consists of converting
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the each cell address (j, h, i) into its index in 1D vector as

m = (j, h, i) = j + hJ + iJH

(c) The stencil in the 3D space define the immediate neighbours to each

grid cell located at (j, h, i) are (m − 1), (m + 1), (m − J), (m + J),

(m–JH) and (m+JH) representing the cells located at the left, right,

down , up, backward, and forward to the central cell m = (j, h, i).

(d) Each grid cell is associated with a block of Nc ×Nc in the GH matrix

as we have Nc components for each grid cells.

(e) Assume a black oil reservoir with k-phase, each block in the block×block

section of the Jacobian or GH matrix is denoted as ’square’ which a

square matrix of size Nc ×Nc, i.e Nc residuals.

Suppose a grid (J = 2, H = 4, I = 2). A grid point

m = (j, h, i) = j + hJ + iJH (5.1)

In the block×block section of Jacobian, the 6 points stencil lead to the distribution

rows as in figure 5.1

From this General Hepta matrix (figure 5.2), we are supposed to develop a storage

Figure 5.1: Example of General Hepta (GH) row
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Figure 5.2: Example of GH matrix with parameter J=2, H=4, I=2, Nc=2

format that is suitable with this sparse matrix. From the chapter 3, we could see

that this sparse matrix type is diagonal matrix and it is very structured. For this

kind of problem, the well-suited solution is by using DIA storage format or ELL

storage format.

Figure 5.3 shows that ELL has data values smaller than DIA. But ELL need

twice of the storage to store the column indices while DIA is only need additional

offset as much as the number diagonal as shown in figure 5.4.

From this observation, we cannot decide which one of these storage formats

represents the best solution, because each of them has its own advantage and

drawbacks. For ELL, the main drawback is the need of column indices that will

lead to more storage needed and more memory access, while the DIA format
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Figure 5.3: Comparison between ELL and DIA storage format for GH

only needs a small offset size to calculate the column indexing. For DIA, the

main disadvantage over ELL is the data value that will storing many zeros and

it could become worse when the block size (Nc) is larger (figure 5.6). Because

of that, we proposed a solution on presenting the General Hepta matrix called

Block Diagonal-General Hepta format (BDIA-GH). This format is similar to DIA

format but it is customized to the above pattern with a General Hepta matrix

because it could adapt with the changing size of block size, so there will be no

zeros in the middle of data value.

If we see this proposed storage format, this format is as compact as ELL but

without the need of column index vector, it only needs an offset vector just like

DIA.
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Figure 5.4: Comparison between ELL indices and DIA offset

To work on this format, we have to build a program to generate BDIA-GH matrix

and store it as a matrix market file that is stored in COO format so it could be

used by CUDA libraries CUBLAS and CUSPARSE.

Matrix Market I/O library is used to export the generated BDIA-GH matrix. As

the preparation on generating BDIA-GH matrix, memory should be allocated as

much as BDIA-GH matrix needed. The memory needed for the BDIA-GH is

memsize = ndia ×N × floatsize (5.2)

ndia = 7×Nc (5.3)

N = I × J ×H ×Nc (5.4)
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Figure 5.5: Proposed BDIA-GH storage format that contains two array: data and
offset

The offsets memory also has to be allocated by

offsetsize = ndia ×Nc × floatsize (5.5)

Unlike DIA format that has a straight forward implementation for offset by

putting the distance between the main diagonal and desired diagonal with positive

value on upper diagonal and negative value on lower diagonal, determining the

offset value of BDIA-GH is a little bit tricky. Because of the block characteristic

of BDIA-GH, in the same column of BDIA-GH doesn’t always have the same

diagonal distance with the main diagonal (figure 5.6).

So we decided to use the top row of the block (figure 5.6) as the main offset and
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Figure 5.6: Comparison between BDIA-GH and DIA in one row of block

later in kernel, the calculation of the column indices will be different with DIA

format (algorithm 2).

There are three routines that are used for generating BDIA-GH matrix. The

first is generalHeptaBdia() (algorithm 3) that moves across the row block and

calls fillRowBdia() (algorithm 4) routine to fill every row with blocks by calling

fillBlock() (algorithm 5) routine to fill the block in every point. This BDIA-GH

format is in column major order.

To generate matrix market file, there is additional function that translates the

BDIA-GH formats into COO format (algorithm 6). As mentioned in chapter 3,

COO format has three arrays to store value, column indices, and row indices.

These array then become the input for matrix market I/O library to generate

matrix market file (algorithm 7).
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Algorithm 2 Generate Offset algorithm

1: for r = 0 to 6 do
2: for s = 0 to Nc do
3: if r = 0 then
4: offsests[r ×Nc + s]← s− (Nc × j × h)
5: else if r = 1 then
6: offsests[r ×Nc + s]← s− (Nc × j×)
7: else if r = 2 then
8: offsests[r ×Nc + s]← s−Nc

9: else if r = 3 then
10: offsests[r ×Nc + s]← s
11: else if r = 4 then
12: offsests[r ×Nc + s]← s+Nc

13: else if r = 5 then
14: offsests[r ×Nc + s]← s+ (Nc × j)
15: else if r = 6 then
16: offsests[r ×Nc + s]← s+ (Nc × j × h)
17: end if
18: end for
19: end for

Algorithm 3 General Hepta BDIA Algorithm

1: procedure generalHeptaBdia
2: for mi = 0 to i do
3: for mh = 0 to h do
4: for mj = 0 to j do
5: m← mi +mh × j +mi × h× j
6: fillRowBdia(data,m, j, h, i, Nc)
7: end for
8: end for
9: end for

10: end procedure
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Algorithm 4 Fill Row BDIA-GH Algorithm

1: procedure fillRowBdia
2: mxSize← j × h× i×Nc

3: colSize← 7×Nc

4: blockSize← Nc

5: mainStart← m×mxSize× k +m× k
6: mainStartBdia← m× k +mxSize× 3× k
7: //0 < value < 1
8: fillBlock(data,mainStartBdia, blockSize,mxSize, value)
9: min← m× k ×mxSize

10: max← min+mxSize
11: start← mainStart− (h× j × k)
12: startBdia← mainStartBdia− (3× k ×mxSize)
13: if min < start then
14: fillBlock(data, startBdia, blockSize,mxSize, value)
15: end if
16: start← mainStart− j × k
17: startBdia← mainStartBdia− (2× k ×mxSize)
18: if min ≤ start then
19: fillBlock(data, startBdia, blockSize,mxSize, value)
20: end if
21: start← mainStart− 1× k
22: startBdia← mainStartBdia− (1× k ×mxSize)
23: if min ≤ start then
24: fillBlock(data, startBdia, blockSize,mxSize, value)
25: end if
26: start← mainStart+ 1× k
27: startBdia← mainStartBdia+ (1× k ×mxSize)
28: if start < max then
29: fillBlock(data, startBdia, blockSize,mxSize, value)
30: end if
31: start = mainStart+ j × k
32: startBdia← mainStartBdia+ (2× k ×mxSize)
33: if start < max then
34: fillBlock(data, startBdia, blockSize,mxSize, value)
35: end if
36: start← mainStart+ (h× j × k)
37: startBdia← mainStartBdia+ (3× k ×mxSize)
38: if start← max then
39: fillBlock(data, startBdia, blockSize,mxSize, value)
40: end if
41: end procedure
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Algorithm 5 Fill Block BDIA-GH Algorithm

1: procedure fillBlock
2: for j = 0 to blockSize do
3: for i = 0 to blockSize do
4: m← mi +mh × j +mi × h× j
5: data[start+ i+ j ×mxSize] = value
6: end for
7: end for
8: end procedure

Algorithm 6 BDIA-GH to COO Conversion Algorithm

1: procedure BDIAtoCOO
2: for mi = 0 to mtxSize do
3: for mj = 0 to numdia do
4: diff ← mi mod k
5: idx← mi + offset[mj]− diff
6: val← data[mi × numdia +mj]
7: if idx ≥ 0 ∧ idx < mtxSize then
8: y[count]← mi

9: x[count]← idx
10: data[count+ +]← val
11: end if
12: end for
13: end for
14: end procedure

The configuration that used to generate the matrix market file is as table 5.1.

5.2 Sparse Matrix-Vector Multiplication for

BDIA-GH

There are two ways for implementing the sparse matrix-vector multiplication

kernel. First is using CUDA library CUSPARSE and the second is by calling
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Algorithm 7 Generate Matrix Market File Algorithm

1: procedure MMIO
2: FILEf2 = fopen(str, ”w”)
3: mmInitializeTypecode(&matcode)
4: mmSetMatrix(&matcode)
5: mmSetCoordinate(&matcode)
6: mmSetReal(&matcode)
7: mmWriteBanner(f2,matcode)
8: mmWriteMtxCrdSize(f2, N,N, nz)
9: // NOTE: matrix market files use 1-based indices,
10: // i.e. first element of a vector has index 1, not 0.
11: for i = 0 to nz do
12: fprintf(f2, I[i] + 1,J[i] + 1,values[i])
13: end for
14: end procedure

Table 5.1: Matrix Market File configuration

N J H I Nc nnz
65536 16 16 32 8 3635072
131072 16 32 32 8 7272320
131072 16 16 32 16 14540288
524288 32 64 64 4 14613472
262144 16 32 32 16 29089280
524288 32 32 64 8 29224832
1048576 32 128 64 4 29228000
1048576 32 64 64 8 58453888
1048576 32 32 64 16 116899328
2097152 32 128 64 8 116912000
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spMV bdia gh kernel() (algorithm 8). For the CUSPARSE, the application

accepts input of the matrix market file that must be executed and also the block

size to determine the size of the block that will be used by the BSR matrix

format. After that, the file will be read and memory will be allocated to store the

data from the file into the host memory in COO format. A vector X with the size of

V = I × J ×H ×Nc × floatsize (5.6)

will be allocated and filled randomly to be multiplied with the desired matrix.

After all of the required data are available in the host, the data are copied from

host to device in desired format (i.e. CSR, BSR, and HYB). Furthermore, when

all the data are ready in the device, the SpMV are executed according to the

certain format (i.e. CSR, BSR, and HYB).

For the BDIA-GH format, there is no need to use the matrix market file. The

application could directly input the configuration of the desired BDIA-GH matrix

and after that, the memory will be allocated in the host and the BDIA-GH will

be ready at the host by calling routine generalHeptaBdia() (algorithm 3). The

offset vector for BDIA-GH is allocated and filled directly to the host according to

the input from the user. The solution of the vector x that will be multiplied by

BDIA-GH matrix is also allocated and filled in the host randomly. After all the

data ready in the host, the data are copied to the device and sparse matrix vector

multiplication (SpMV) is executed by calling spMV bdia gh kernel() (algorithm

8). Since each thread is assigned to compute each row for SpMV result, the grid
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size to be executed in the kernel must equals to number of blocks, where

Nblocks = N/blocksize (5.7)

and

blocksize = Nthreads (5.8)

For the optimization in the kernel algorithm 8, the offset from the global memory

is copied to shared memory to make sure that the communication will be as fast as

possible (algorithm 9). So in every block, the thread that has ID threadIdx.x less

than the number of offset elements, must copy the offset element of threadIdx.x

from the global memory to the shared memory. Furthermore, the thread will go

along the row and fetch its value (step 4) and the index of the column could be

fetch from offset that has already stored in shared memory (step 3) and it will

be subtracted by diff that depends on its row position in the block k (step 2).

Because the data is put in column major order in global memory, the access of

the thread for data also for vector x is coalesced. To get the best execution time,

we tried several block size of thread, and the result is the optimized thread number

in a block for this application is 256.

The data correctness is addressed by comparing the computation from device

and computation from host using checkPracticalErrors() function (algorithm 10).
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Algorithm 8 SpMV BDIA-GH Algorithm

1: procedure spMV bdia gh kernel
2: sum← 0
3: for j = to numdia do
4: diff ← i mod k
5: idx← i+ offset[j]− diff
6: val← data[i+ j ×N ]
7: if idx ≥ 0 ∧ idx < N then
8: sum← sum+ val × x[idx]
9: end if
10: end for
11: v[i]← sum
12: end procedure

Algorithm 9 Copy from Global Memory to Shared Memory Algorithm

1: shared sharedOffset
2: i← threadIdx.x
3: if i < offsetsize then
4: sharedOffseti ← offseti
5: end if
6: syncthreads

Algorithm 10 Check Practical Error Algorithm

1: procedure checkPracticalErrors
2: sum← 0
3: low ← c0 − gold0

4: up← low
5: for i← 0 to n do
6: temp← ci − goldi

7: sum← sum+ (temp < 0?− temp : temp)
8: if temp > up then
9: up← temp

10: else if temp < low then
11: low ← temp
12: end if
13: end for
14: end procedure
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5.3 BiCGStab with General Hepta

Implementing BiCGStab with BDIA-GH required another library to do

vector-vector operation called CUBLAS. Refer to BiCGStab algorithm in table

5.2, at the initial state all the vectors required are allocated in the host and device.

Like in the SpMV, the matrix for the CUSPARSE matrix-vector operation is

taken from matrix market file, while for BDIA-GH the matrix is built directly

into BDIA-GH format along with the offset.

At the step 1, b will be copied into r0 using copy kernel from CUBLAS, then

SpMV will be called either using BDIA-GH or CUSPARSE (step 2). The r0 will be

subtracted by the result from SpMV using axpy kernel val (step 3). Furthermore,

r0 will be copied to the r̂0 (step 4). Then, we initiate v0 and p0 as 0 (step 5). At

the step 6, there will be a for loop that will be executed 5 times. At the step 7,

dot kernel will be called to get ρi value. pi will be calculated in the step 8, 9, and

10 using axpy, scal, and another axpy kernel. The first SpMV inside loop will be at

step 11. At step 12, dot product is occured and the scalar operation will be done

in the host. Step 13 and 14 will calculate s by copying ri−1 to s and then it will

be subtracted by αvi using axpy kernel val. Second SpMV is occured at step 15.

To calculate ωi, dot kernel called twice in step 16 and 17. Furthermore, xi will be

calculated by calling axpy kernel val twice (step 18, 19) and the result will become

input value for dot kernel to determine whether the xi is converged or not. The

last operation will be calculating ri by calling copy kernel and axpy kernel val.

There are four methods (storage schemes) for computing the solution using the
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BiCGStab algorithm. First is using CSR, second is using BSR, third is using

HYB, and the last one is using BDIA-GH.

All of the vector operations have been done by using CUBLAS library routines.

CUBLAS library routines has vector-vector product (dot), axpy, and vector-scale

functions to implement the vector operations in BiCGStab Algorithm.

For the SpMV operation in BiCGStab, the output vector from CUBLAS operation

is the input operand for the corresponding SpMV format (i.e. cusparseScsrmv(),

cusparseSbsrmv(), cusparseShybmv(), spMV bdia gh kernel()).

After all the operations have been finished, all the memory is freed, and library

handle are destroyed.

5.4 Multi-GPU BiCGStab BDIA-GH

For Multi-GPU BiCGStab implementations, we are not using any CUSPARSE

library since our BDIA-GH SpMV implementation is already the best over any

CUSPARSE library SpMV (see Chapter 6 Result and Discussion).

The implementation of Multi-GPU BiCGStab BDIA-GH is by dividing the

workload of BiCGStab across the GPUs. We are using 2, 4, and 8 GPUs for the

implementation. In the CUDA code, to use multi-GPU for the implementation is

by calling every CUDA device before using the function that desired to be called

(algorithm 11).

From the table 5.2, we could see that there are several reductions and global

writes that must be done cooperatively by all blocks and all kernels especially
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Table 5.2: BiCGStab Algorithm with Its Function Call kernels

No BiCGStab Algorithm Kernel Calls Library/Function
1

r0 ← b−Ax0

copy kernel CUBLAS
2 spMV bdia gh kernel BDIA-GH/CUSPARSE
3 axpy kernel val CUBLAS
4 r̂0 = r0 copy kernel CUBLAS
5 v0 = p0 = 0 memset CUDA
6 inside loop
7 ρi ← (r̂0, ri−1) dot kernel CUBLAS
8

pi ← ri−1 + β(pi−1 − ωi−1vi−1)
axpy kernel val CUBLAS

9 scal kernel val CUBLAS
10 axpy kernel val CUBLAS
11 vi ← Api spMV bdia gh kernel BDIA-GH/CUSPARSE
12 α← ρi/( ˆr0,vi) dot kernel CUBLAS
13

s← ri−1 −αvi
copy kernel CUBLAS

14 axpy kernel val CUBLAS
15 t← As spMV kernel BDIA-GH/CUSPARSE
16

ωi ← (t, s)/(t, t)
dot kernel CUBLAS

17 dot kernel CUBLAS
18

xi ← xi−1 +αpi + ωis
axpy kernel val CUBLAS

19 axpy kernel val CUBLAS
20 (xi,xi) dot kernel CUBLAS
21

ri ← s− ωit
copy kernel CUBLAS

22 axpy kernel val CUBLAS
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for Multi-GPU BiCGStab implementation. At the step 7, 12, 16, 17 and 20 the

reductions are occurring. It means all the GPUs should communicate to gather

the dot product. Before SpMV at step 2, 11 and 15, a global synchronization also

has to be called to make sure the operation on SpMV using previous arrays is

correct because there need communication between GPUs and CPU to transfer

part of the array from previous operation on device to host and host to device

for SpMV. For all of the SpMV operations are using our own code BDIA-GH and

also CUSPARSE library (step 2, 11 and 15), while other operations like vector

dot products (step 7, 12, 16, 17 and 21), axpy operation (step 3, 8, 10, 14, 18, 19,

and 22), and scal (step 9) are using CUBLAS library.

There are several model communications that we tried in this implementation to

find out which communication model is the best. There are two types of storing

memory in host which are pinned memory or paged memory. For the data copying

between host and devices, there are synchronous and asynchronous memory copy.

Thus, there will be 4 combination of communication model: synchronous pinned

memory copy, asynchronous pinned memory copy, synchronous paged memory

copy, and asynchronous paged memory copy.

Algorithm 11 Multi-GPU implementation Algorithm

1: n← Ngpu

2: for i← 0 to n do
3: cudaSetDevice(i)
4: cudaFunction()
5: end for
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5.5 Analysis of Deadlock in Inter-Block

Synchronization

In order to know how deadlock on GPU (Graphics Processing Unit) could occur,

we have to understand about how the GPU distributing works between the SMX

(Streaming Multiprocessor) inside the GPU. First of all, we have to know the

specification of GPU that we used. NVIDIA Kepler Architecture Tesla K20Xm

3.2 compute capability. It means the maximum number of resident blocks per

streaming multiprocessor is 16 and this GPU has 14 SMX.

Secondly, as the flowchart in figure 5.7, we have to carry out the experiment by

ourself to understand how the block dispatching order works because NVIDIA

didn’t give any of detail about it. To do that, we initialize two arrays A and B

on host with the size of number of blocks to record start and end time for every

block execution. After that, these two arrays copied into device so every block

could access on it. Furthermore, we invoke dummy kernel and array A[blockID]

will be filled with clock cycle by using inline PTX (parallel thread execution)

assembly in CUDA to record when the block start to be executed. Dummy

work is executed inside the block before the clock cycle being recorded in array

B[blockID] to know when the clock ends and the block is finished and the kernel

will take another block until the kernel exit. After exiting the kernel, array A

and B are copied from device to host, and print it to a file.

From the figure 5.8, if we saw the clock start for each block, we could see that the

clock start lost it patterns when it reaches blockID 224 and its multiplier. And if
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we order the table based on clock start, we could see that at the first 224 block,

the block is starting randomly, but the next 224 block, is starting from the lowest

blockID number to the highest. From that observation, we could conclude that

224 block is working concurrently, and whenever a block is finished, the lowest

number of block in the next group blocks will be started.

Figure 5.7: Flowchart of block dispatching order
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Figure 5.8: Block dispatching order result

5.5.1 Evaluating Number of Active Blocks on Kernel

in Kepler K20Xm and Deadlock Condition with

Experimental Validation

In order to understand the rule of number of active blocks that limited by number

of register, shared memory, and wrap, several experiments has been done. The

kernel that used in this experiment is Jacobi Algorithm. The machine used for

this experiment is NVIDIA Kepler Tesla K20Xm with compute capability of 3.2.

Note:

Ba = block limit due to architecture

Bl = Block size in launch configuration

Bs = block limit per multiprocessor due to shared memory usage

Br = Limit number of active blocks due to register

Bw = Block limit per multiprocessor due to warp
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Rm = total registers per multiprocessor

R = registers used

Ra = register unit allocation size

ShMb = shared memory allocation per block

ShMu = shared memory used per block

ShMa = shared memory unit allocation size

ShMx = configured shared memory per multiprocessor

Tw = threads per warp

Wa = warp allocation granularity

Wb = Number of warps per block

Wl = warps per block in launch configuration

Wr = warps per multiprocessor imposed by register use

Ws = warp size for architecture

Wx = maximum warp per multiprocessor

1. Block Size: 16 1 1, Shared Memory: 1.0625KB, Registers: 38

With this configuration of kernel, from previous work by Anas Almousa’s

Thesis (KFUPM, 2017), we could analyse deadlock-occupancy trade-off in

inter-block GPU synchronization.

The first parameter we need to calculate is shared memory allocation per

multiprocessor. With compute capability 3.2, the allocation unit size for the
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shared memory (ShMa) is 256, so

ShMb =
⌈ShMu

ShMa

⌉
× ShMa =

⌈1062.5

256

⌉
× 256 = 1280 bytes (5.9)

After that, to calculate the block limit per multiprocessor due to shared

memory usage, we could divide the configured shared memory size in the

processor (for Kepler Tesla K20Xm it is 49152 bytes) by the used shared

memory.

Bs =

⌊
ShMx

ShMb

⌋
=

⌊
49152

1280

⌋
= 38 blocks (5.10)

Another factor for number of active blocks per multiprocessor is the limit

due to number of warps to be launched on a multiprocessor.

Wb =
⌈ Bl

Ws

⌉
=
⌈16

32

⌉
= 1 warp (5.11)

Bw =

⌊
Wx

Wb

⌋
=

⌊
64

1

⌋
= 64 blocks (5.12)

Other factor that limiting the number of active block is register. To calculate

the limit due to register usage:

Wr =



Rm⌈
R× Tw
Ra

⌉
×Ra

Wa

×Wa =



65536⌈
38× 32

256

⌉
× 256

4

× 4 = 48 warps
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(5.13)

Hence

Br =

⌊
Wr

Wl

⌋
=

⌊
48

1

⌋
= 48 blocks (5.14)

After finishing this calculation, we could conclude that number of active

blocks per multiprocessor would be

Resident blocks = min{Bs, Bw, Br, Ba} = min{38, 64, 48, 16} = 16 blocks

(5.15)

After experiment by using various number of block (table 5.3), this kernel

configuration got deadlock on number of blocks 225, which is exceeding

available number of resident block × number of processor = 16 × 14 =

224 blocks.

2. Block Size: 32 1 1, Shared Memory: 4.125KB, Registers: 38

With this configuration of kernel, like previous calculation, we could analyse

Deadlock-occupancy trade-off in inter-block GPU synchronization.

The first number we need to calculate is shared memory allocation per

multiprocessor. With compute capability 3.2, the allocation unit size for
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the shared memory is 256, hence

ShMb =
⌈ShMu

ShMa

⌉
× ShMa =

⌈4125

256

⌉
× 256 = 4352 bytes (5.16)

After that, to calculate the block limit per multiprocessor due to shared

memory usage, we could divide the configured shared memory size in the

processor (for Kepler Tesla K20Xm it is 49152 bytes) by the used shared

memory.

Bs =

⌊
ShMx

ShMb

⌋
=

⌊
49152

4352

⌋
= 11 blocks (5.17)

Another factor for number of active blocks per multiprocessor is the limit

due to number of warps to be launched on a multiprocessor.

Wb =
⌈ Bl

Ws

⌉
=
⌈32

32

⌉
= 1 warp (5.18)

Bw =

⌊
Wx

Wb

⌋
=

⌊
64

1

⌋
= 64 blocks (5.19)

Other factor that limiting the number of active block is register. To calculate

the limit due to register usage:

Wr =



Rm⌈
R× Tw
Ra

⌉
×Ra

Wa

×Wa =



65536⌈
38× 32

256

⌉
× 256

4

× 4 = 48 warps
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(5.20)

Hence

Br =

⌊
Wr

Wl

⌋
=

⌊
48

1

⌋
= 48 blocks (5.21)

After finishing this calculation, we could conclude that number of active

blocks per multiprocessor would be

Resident blocks = min{Bs, Bw, Br, Ba} = min{11, 64, 48, 16} = 11 blocks

(5.22)

After experiment by using various number of block (table 5.3), this kernel

configuration got deadlock on number of blocks 155, which is exceeding

available number of resident block × number of processor = 11 × 14 =

154 blocks.

3. Block Size: 48 1 1, Shared Memory: 9.1875KB, Registers: 43

With this configuration of kernel, like previous calculation, we could analyse

deadlock-occupancy trade-off in inter-block GPU synchronization.

The first number we need to calculate is shared memory allocation per

multiprocessor. With compute capability 3.2, the allocation unit size for
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the shared memory is 256, hence

ShMb =
⌈ShMu

ShMa

⌉
× ShMa =

⌈9187.5

256

⌉
× 256 = 9216 bytes (5.23)

After that, to calculate the block limit per multiprocessor due to shared

memory usage, we could devide the configured shared memory size in the

processor (for Kepler Tesla K20Xm it is 49152 bytes) by the used shared

memory.

Bs =

⌊
ShMx

ShMb

⌋
=

⌊
49152

9216

⌋
= 5 blocks (5.24)

Another factor for number of active blocks per multiprocessor is the limit

due to number of warps to be launched on a multiprocessor.

Wb =
⌈ Bl

Ws

⌉
=
⌈64

32

⌉
= 2 warps (5.25)

Bw =

⌊
Wx

Wb

⌋
=

⌊
64

2

⌋
= 32 blocks (5.26)

Other factor that limiting the number of active block is register. To calculate

the limit due to register usage:

Wr =



Rm⌈
R× Tw
Ra

⌉
×Ra

Wa

×Wa =



65536⌈
43× 32

256

⌉
× 256

4

× 4 = 40 warps
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(5.27)

Hence

Br =

⌊
Wr

Wl

⌋
=

⌊
40

1

⌋
= 40 blocks (5.28)

After finishing this calculation, we could conclude that number of active

blocks per multiprocessor would be

Resident blocks = min{Bs, Bw, Br, Ba} = min{5, 32, 36, 16} = 5 blocks

(5.29)

After experiment by using various number of block (table 5.3), this kernel

configuration got deadlock on number of blocks 71, which is exceeding

available number of resident block × number of processor = 5 × 14 =

70 blocks.

5.5.2 General Conclusion

Linear algebra algorithms Ax = b in computation are being solved using iterative

method where for every iteration, the solution of x is getting narrow to the

real solution. In GPGPU computation for iterative linear algebra solver like

Jacobi algorithm where the elements are distributed on every processing unit, it is

required for every element to be synchronized on every iteration to make sure the
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data correctness because the data layout of this algorithm is all cooperatively

computed results in one iteration are needed for every thread of the next

iteration. NVIDIA with his CUDA is facilitating programmers to do thread

synchronization within block using syncthreads() but that is not the case for

inter-block synchronization. In iterative linear algebra solver algorithm, there will

be a deadlock for any inter-block synchronization if number of blocks is exceeding

number of resident blocks, because the active blocks is waiting for inactive blocks

to be completed (as shown in table 5.3).
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Table 5.3: Validation Experiment for Analyzing Deadlock on inter-block GPU
synchronization using Jacobi Algorithm

Jacobi Algorithm

No
Threads/ ShM/ Regs/ Resident Blocks in Time (ms) or
Block Block (KB) Block Blocks Kernel Deadlock

1 16 1.0625 38 224 16 137.19
2 16 1.0625 38 224 64 34.926
3 16 1.0625 38 224 128 28.326
4 16 1.0625 38 224 223 30.677
5 16 1.0625 38 224 224 30.76
6 16 1.0625 38 224 225 Deadlock
7 16 1.0625 38 224 226 Deadlock
8 16 1.0625 38 224 256 Deadlock
9 16 1.0625 38 224 512 Deadlock
10 32 4.125 38 154 16 63.907
11 32 4.125 38 154 64 26.264
12 32 4.125 38 154 128 26.943
13 32 4.125 38 154 153 27.64
14 32 4.125 38 154 154 27.618
15 32 4.125 38 154 155 Deadlock
16 32 4.125 38 154 156 Deadlock
17 32 4.125 38 154 256 Deadlock
18 48 9.1875 43 70 16 72.145
19 48 9.1875 43 70 64 29.785
20 48 9.1875 43 70 69 29.934
21 48 9.1875 43 70 70 30.024
22 48 9.1875 43 70 71 Deadlock
23 48 9.1875 43 70 72 Deadlock
24 48 9.1875 43 70 128 Deadlock
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CHAPTER 6

RESULTS AND DISCUSSION

In this thesis, there are several experiments that have been carried out to evaluate

the performance of the proposed storage scheme, SpMV, and BiCGStab solver

algorithm. Our target is to develop an optimized CUDA implementation for

a class of iterative linear algebra solver, in this case is BiCGStab. Firstly,

we are comparing our method with available libraries on sparse matrix vector

multiplication. Secondly, we are comparing BiCGStab implementation that use

our own SpMV with BiCGStab that use the available libraries. After that, we are

benchmarking the available memory transfer methods to determine which method

we should use to generate the best results for BiCGStab on Multi GPU. All of

these results are using the same GPU system. The specification of the GPU is

available in Table 2.1.
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6.1 Sparse Matrix-Vector Multiplication

In order to know the effectiveness of our implementation on sparse matrix vector

multiplications, we compare our BDIA-GH SpMV with the available SpMV

from CUSPARSE. The result from the table 6.1 figure 6.1 and figure 6.2 shows

that our BDIA-GH SpMV has the best performance compared to other storage

format along with the SpMV of CUSPARSE library. Every row has different

configuration of matrix (table 5.1) that is characterized by specific number of

non-zeros, i.e. to quantify the number of arithmetic operations involved in each

problem configuration. Where the formula of number of non-zero is as follows:

nnz = (7×Nc
2 × J ×H × I)− (Nc

2 × (2 + I + I ×H)) (6.1)

It can be seen that with different size of blocks but similar number of non-zeros,

CSR and BSR show the worst performance on block size of 8. The best

performance is found for the block size of 4 for BSR and block size of 16 for CSR

while block size of 16 slightly take longer execution time compared to block size of

4 on BSR and block size of 4 is slightly faster compared to block size of 8 on CSR.

On the other hand, BDIA-GH and HYB give similar performance within its own

format regardless the block size as long as the number of non-zero as far as the nnz

are comparable. The execution time scale well for all formats versus the number

of non-zero when the size is large enough (starting from nnz=14540288). From

the table 6.2 and figure 6.3, the speedup of our implementation with BDIA-GH
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gain over CSR format is up to 3.067, and BSR is up to 2.86, while compared to

HYB the speedup is up to 1.404. The speedup over BSR and CSR are vary along

with the variations of the block size.

This best performance of BDIA-GH SpMV is due to the effective access of the

data like offset that stored in shared memory and the data is being accessed

in coalesced manner and it taken from memory contiguously while the other

formats are accessing more data, pointer, or indices that could be not available

in shared memory and the access not in coalesced manner, also memory access is

not contiguous that leads to longer communication time.

From the checkPracticalErrors function, this SpMV implementation has error

means of 1.2503× 10−7, the highest error value is 1.90735× 10−6, and the lowest

error value is −1.90735 × 10−6 compared to serial implementation. Note that

SpMV is invoked 100 times for each measurement of the average execution time

that will be reported on the performance plots. From the table 6.3 and figure 6.4

and 6.5 we could see that the best performance by floating-point operations per

second (FLOPS) reach by BDIA-GH format with about 45 GFLOPS. This result

means the implementation of BDIA-GH SpMV only reach about 2.4% of peak

performance of GK210 with 1.87 TFLOPS. This low performance is acceptable

for sparse matrix vector multiplication due to its characteristic that it is a

memory bound application [59]. Unlike matrix multiplications that perform O(n3)

operations on O(n2) data, the sparse matrix vector multiplication is performing

O(n2) operations on O(n2) data. It means that the number of memory access
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Table 6.1: SpMV Execution Time of Various Storage Formats (Single GPU)

SpMV Execution Time of Various Storage Formats (Single GPU)

N Block Size nnz
Execution Time (ms)

BDIA-GH CSR BSR HYB
65536 8 3635072 0.18851 0.50463 0.47276 0.24265
131072 8 7272320 0.1878 0.50389 0.47292 0.24259
131072 16 14540288 0.66271 1.2885 1.1027 0.91189
524288 4 14613472 0.68753 1.8479 0.93752 0.93817
262144 16 29089280 1.3078 2.5671 2.2011 1.8007
524288 8 29224832 1.3351 4.0743 3.7693 1.8147
1048576 4 29228000 1.3646 3.8202 1.952 1.888
1048576 8 58453888 2.6393 8.097 7.5488 3.6241
1048576 16 116899328 5.1904 10.283 8.8488 7.2885
2097152 8 116912000 5.3238 15.991 14.53 7.2856

ratio to the number of floating point operation on SpMV is higher than M ×M .

The memory access of SpMV is also higher compared to M×M operation. As we

know the SpMV has additional data to be accessed called offsets (in BDIA-GH)

to get the benefit of the sparsity of the matrix. This memory access operation is

greatly degrade the performance of the SpMV since there will be additional cache

interference, memory bandwidth pressure, and memory access operations.

6.2 BiCGStab on Single GPU

Once the performance of SpMV from the various format has been assessed, the

implementations of various SpMV on BiCGStab are collected. In our experiments,

the BiCGStab inner loop is computed 5 times in each BiCGstab invocation. Note

that BiCGStab is invoked 100 times for each measurement of the execution time

that will be reported on the performance plots. In each BiCGStab invocation

we have 11 calls to SpMV (i.e. 1 SpMV call before loop, and 10 SpMV calls
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Table 6.2: SpMV Speedup of BDIA-GH over Other Storage Formats (Single GPU)

SpMV Speedup of BDIA-GH over Other Storage Formats (Single GPU)

N Block Size nnz
Speedup BDIA-GH over Other Formats

CSR BSR HYB
65536 8 3635072 2.67694 2.50788 1.2871996
131072 8 7272320 2.68312 2.51821 1.2917465
131072 16 14540288 1.94429 1.66393 1.3760016
524288 4 14613472 2.68774 1.36455 1.3645514
262144 16 29089280 1.96291 1.68306 1.3768925
524288 8 29224832 3.05168 2.82323 1.359224
1048576 4 29228000 2.7995 1.43046 1.3835556
1048576 8 58453888 3.06786 2.86015 1.3731292
1048576 16 116899328 1.98116 1.70484 1.404227
2097152 8 116912000 3.00368 2.72925 1.3684962

Table 6.3: SpMV FLOPS of Various Storage Formats (Single GPU)

SpMV FLOPS of Various Storage Formats (Single GPU)

N Block Size nnz
GFLOPS

BDIA-GH CSR BSR HYB
65536 8 3635072 38.5664 14.4069 15.378086 29.9614424
131072 8 7272320 77.4475 28.8647 30.754969 59.9556453
131072 16 14540288 43.8813 22.5693 26.372156 31.8904429
524288 4 14613472 42.5101 15.8163 31.174742 31.1531428
262144 16 29089280 44.4858 22.6631 26.431584 32.3088577
524288 8 29224832 43.7792 14.3459 15.506769 32.2089954
1048576 4 29228000 42.8375 15.3018 29.946721 30.9618644
1048576 8 58453888 44.295 14.4384 15.486935 32.25843
1048576 16 116899328 45.0444 22.7364 26.42151 32.0777466
2097152 8 116912000 43.9205 14.6222 16.092498 32.0939936
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Figure 6.1: SpMV execution Time on Small Size Matrices of Various Storage
Formats (Single GPU)

inside the loop). In one iteration, percentage of exit-re-entry kernel of BiCGStab

implementation is 0.192%, with average of exit-re-entry kernel time is 10±1.567×

10( − 5)us. From the table 6.4 which represented in chart by figure 6.6 and 6.7,

it shows that the BDIA-GH in BiCGStab is performing the best compared to

the other formats. BDIA-GH format could reach up to 2.64 speedup over CSR,

2.41 over BSR, and 1.352 over HYB. We could see that the speedup of BDIA-GH

BiCGStab over other formats are quite comparable to the SpMV. This is due the

fact the SpMV is the main function of BiCGStab and the other functions are

scalable vector operations. This especially true for larger problem sizes where

problem scalability is proved to be more effective. On small sizes of the solver

matrix (i.e. nnz=3635072), SpMV takes about 75% of overall operations, while

on large size of matrix (i.e. nnz=116912000), SpMV takes about 90% of overall
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Figure 6.2: SpMV execution Time on Large Size Matrices of Various Storage
Formats (Single GPU)

operations. The error on this impementation of result x compared to serial is

1.54069× 10−5 for error means, the highest error value is 6.38962× 10−5, and the

lowest error value is −6.00815× 10−5.

6.3 CUDA Memory Transfer

This experiment is to figure out which kind of memory transfer will perform the

best on BiCGStab. This communication models mimics the communication model

of BiCGStab. The implementation is using left-right approach that proposed by

[60] and it is fully compatible with our BiCGStab implementation.

Figure 6.11 illustrate how the communication is being done. Our goal is to

distribute current GPU data to the neighbour GPU(s). We are implementing

this methods using device-host communication and peer-to-peer (Figure

6.12) GPUDirect communication along with synchronous and asynchronous
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Table 6.4: BiCGStab Execution Time on GH Matrices of Various Storage Formats
(Single GPU)

BiCGStab Execution Time on GH Matrices of Various Storage Formats (Single GPU)

N Block Size nnz
Execution Time (ms)

BDIA-GH CSR BSR HYB
65536 8 3635072 3.479 6.745 5.198 4.008
131072 8 7272320 4.786 10.974 8.617 5.991
131072 16 14540288 10.116 16.217 14.512 12.727
524288 4 14613472 12.126 24.768 14.609 14.702
262144 16 29089280 14.136 30.668 17.949 18.479
524288 8 29224832 14.3 48.89 30.234 19.294
1048576 4 29228000 22.075 47.917 27.688 27.74
1048576 8 58453888 35.98 95.126 86.792 46.493
1048576 16 116899328 64.251 117.408 101.92 86.921
2097152 8 116912000 71.115 188.163 171.983 92.391

Table 6.5: Speedup BiCGStab BDIA-GH over Other Formats (Single GPU)

Speedup BiCGStab BDIA-GH over Other Formats (Single GPU)

N Block Size nnz
Speedup

CSR BSR HYB
65536 8 3635072 1.938776 1.494108 1.1520552
131072 8 7272320 2.292938 1.80046 1.251776
131072 16 14540288 1.603104 1.434559 1.258106
524288 4 14613472 2.042553 1.204767 1.2124361
262144 16 29089280 2.169496 1.269737 1.3072298
524288 8 29224832 3.418881 2.114266 1.3492308
1048576 4 29228000 2.170646 1.25427 1.2566251
1048576 8 58453888 2.643858 2.412229 1.2921901
1048576 16 116899328 1.827333 1.586279 1.352835
2097152 8 116912000 2.645897 2.418379 1.2991774
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Figure 6.3: Speedup of BDIA-GH SpMV over Other Storage Formats (Single
GPU)

communication, and also pinned and paged host memory models. The result

(Table 6.7, 6.8,6.9 and Figure 6.13, 6.14, 6.15) shows that asynchronous

device-host with pinned memory communication model give the best result. In

the 2 GPUs, the ideal throughput of device-host-device communication model is

6GB/s [60] while our implementation reach up to 5.99 GB/s (Figure 6.7). It means

that for 2 GPUs communication, the implementation is almost fully parallel.

For the 4 GPUs, the ideal throughput of device-host-device communication is

12 GB/s, while our implementation reach about 9.72 GB/s (Figure 6.8) because

of the overhead from device synchronization. Unfortunately, for the 8 GPUs

implementation, our implementation is very degraded from the ideal scaling of 24

GB/s, we only got 3.67 GB/s due to the limitation of the PCIe channel of 4.
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Table 6.6: BiCGStab GFLOPS on GH Matrices of Various Storage Formats
(Single GPU)

BiCGStab GFLOPS on GH Matrices of Various Storage Formats (Single GPU)

N Block Size nnz
GFLOPS

BDIA-GH CSR BSR HYB
65536 8 3635072 24.88954 12.83776 16.658465 21.60447
131072 8 7272320 36.195 15.78543 20.103202 28.91492
131072 16 14540288 32.93047 20.54169 22.955112 26.17464
524288 4 14613472 30.87988 15.11828 25.631423 25.46929
262144 16 29089280 47.14493 21.73082 37.129683 36.06476
524288 8 29224832 48.66429 14.23398 23.017112 36.06818
1048576 4 29228000 33.92626 15.62957 27.048619 26.99791
1048576 8 58453888 38.68515 14.63208 16.037097 29.93766
1048576 16 116899328 41.67548 22.80672 26.272482 30.80604
2097152 8 116912000 39.14612 14.79503 16.186927 30.13147

Table 6.7: Transfer rate between 2 GPUs with various memory access

Transfer rate between 2 GPUs with various memory access

Chunk Size Data Size
Throughput (GB/s)

Async Pinned Sync Pinned Async Paged Sync Paged P2P
128 256 1.41436 1.04634 0.06468 0.06567 0.00479
256 512 3.48299 0.40716 0.83388 0.98344 0.01005
512 1024 3.64413 1.9256 1.02196 1.20804 0.01976
2048 4096 5.58799 2.2258 1.5176 1.59725 0.08093
4096 8192 5.83060 3.49717 1.76021 1.83908 0.16232
8192 16384 5.99927 3.60504 1.86904 1.98709 0.32107

Table 6.8: Transfer rate between 4 GPUs with various memory access

Transfer rate between 4 GPUs with various memory access

Chunk Size Data Size
Throughput (GB/s)

Async Pinned Sync Pinned Async Paged Sync Paged P2P
128 768 3.03557 1.07459 0.64864 0.88621 0.01555
256 1536 6.144 1.94645 1.59336 1.6432 0.02714
512 3072 7.52941 2.91401 2.39066 2.39755 0.04680
2048 12288 9.02202 3.39670 2.03040 1.93451 0.1463
4096 24576 9.53297 3.53423 1.91715 2.03555 0.42152
8192 49152 9.72344 2.4316 0.77033 0.75570 0.8294
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Figure 6.4: SpMV FLOPS of Various Storage Formats on Small Matrices (Single
GPU)

Table 6.9: Transfer rate between 8 GPUs with various memory access

Transfer rate between 8 GPUs with various memory access

Chunk Size Data Size
Throughput (GB/s)

Async Pinned Sync Pinned Async Paged Sync Paged P2P
128 1792 5.25513 1.3053 1.06921 1.1899 0.01203
256 3584 5.95348 1.84911 1.5548 1.47347 0.02419
512 7168 5.05857 2.5150 1.64177 1.64394 0.0475
2048 28672 3.43459 2.4020 1.76725 1.78979 0.14462
4096 57344 3.63581 2.40781 1.99909 2.1498 0.28802
8192 114688 3.67613 2.43086 2.3283 2.31371 1.06592

6.4 BiCGStab on Multi GPU

Multi-GPU implementation on BiCGStab has been done by using 2, 4, and 8

GPUs of GK210. We could see from the table 6.10, figure 6.16, 6.17, the SpMV

performance is almost fully scaled on every number of GPUs for various size

of matrices. It means that the operations (especially SpMV) is relatively load

balanced for all the studied number of GPUs and configurations.
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Figure 6.5: SpMV FLOPS of Various Storage Formats on Large Matrices (Single
GPU)

From the table 6.11 and figure 6.18, we observe that the execution time on

multi-GPU does not scale perfectly versus problem size. This is happening due

to the computation over communication that increases gradually along with the

problem size. At the larger size (figure 6.19), the larger computation could

amortize the communication overhead so that the speedup could go almost

to 2 (figure 6.20, 6.21) when the problem size is doubled on each multi-GPU

configuration. It means on the 2 GPUs, the implementation is scaled well and the

best communication model is shown by asynchronous pinned memory.

From the table 6.13 that represented by the figure 6.22 and 6.23, we could

see that at the small size of matrices the execution time is not scaled well

while on the larger size, the execution time is scaled well. The asynchronous

pinned memory communication scheme shows the best performance over other
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Table 6.10: Execution time of SpMV with Various Number of GPU(s)

Execution time of SpMV with Various Number of GPU(s)

N size nnz
Execution time (ms)

1 GPU 2 GPUs 4 GPUs 8 GPUs
4096 110304 0.028407 0.02671 0.03398 0.077103
8192 224992 0.027291 0.0273 0.02974 0.060425
16384 450272 0.037309 0.03002 0.04191 0.038135
32768 900576 0.066582 0.0483 0.02778 0.058688
65536 1818080 0.102553 0.06767 0.04647 0.056994
131072 3636704 0.184461 0.10352 0.06816 0.038174
262144 7273440 0.352834 0.18491 0.10322 0.068892
524288 14613472 0.69292 0.36019 0.18644 0.103858
1048576 29228000 1.351868 0.68468 0.35393 0.184603
2097152 58456032 2.358288 1.35347 0.68607 0.351683
4194304 117176288 4.362842 2.42619 1.38289 0.661889
8388608 234354656 8.101533 4.38098 2.24341 1.184934
1.7E+07 468709344 16.237883 8.16651 4.06914 2.713917
3.4E+07 938471392 32.635021 16.5146 8.18372 4.076508

Table 6.11: Execution Time of 2 GPUs BiCGStab with Various Communication
Model

Execution Time of 2 GPUs BiCGStab with Various Communication Model

N size nnz
Execution Time (ms)

Async Pinned Sync Pinned Sync Paged Async Paged
4096 110304 3.174 5.419 5.562719 4.983
8192 224992 4.933 5.266 5.665826 5.237
16384 450272 4.923 5.846 5.62379 5.023
32768 900576 7.196 5.39 5.684459 5.392
65536 1818080 5.525 5.96 6.54797 5.768
131072 3636704 6.063 6.525 6.99361 6.398
262144 7273440 6.506 6.327 7.939675 7.46
524288 14613472 9.046 9.885 9.103636 9.689
1048576 29228000 12.106 11.798 14.451855 13.316
2097152 58456032 19.804 37.814 30.867605 21
4194304 117176288 36.676 48.966 39.448963 38.496
8388608 234354656 69.934 72.562 74.416008 73.528
16777216 468709344 135.757 139.845 141.790466 140.805
33554432 938471392 264.878 276.79 279.762573 282.147
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Figure 6.6: BiCGStab Execution Time on Small Size GH Matrices of Various
Storage Formats (Single GPU)

schemes. While synchronous with pinned memory shows better performance over

synchronous with paged memory and asynchronous with paged memory and the

worst performance is coming from asynchronous paged memory. The speedup

that shown by table 6.14 and figure 6.24, 6.25, conclude that maximum speedup

of 4 GPUs implementation could reach up to 3.28. The speedup is not achieving

ideal speedup of 4 due to the communication that will be described in the section

6.5.

On 8 GPUs implementation results (table 6.15), as the previous results, we

could see that on the small size of matrices the execution time is not scaled well

over the size of the matrices (figure 6.26) while on the larger size (figure 6.27) the

execution time is scaled well over the size of the matrices. Asynchronous pinned

memory communication model shows the best performance over others. For the

speedup (table 6.16, figure 6.28, 6.29), we could observe a speedup of almost 4.5
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Table 6.12: Speedup of 2 GPUs BiCGStab with Various Communication Model
over Single GPU

Speedup of 2 GPUs BiCGStab with Various Communication Model over Single GPU

N size nnz
Speedup

Async Pinned Sync Pinned Sync Paged Async Paged
4096 110304 0.729364 0.427201 0.416163391 0.46458
8192 224992 0.469288 0.439613 0.408590027 0.442047
16384 450272 0.486695 0.409853 0.426047203 0.477006
32768 900576 0.378683 0.505566 0.479377193 0.505378
65536 1818080 0.581719 0.539262 0.490839146 0.557212
131072 3636704 0.655121 0.608736 0.567947026 0.620819
262144 7273440 0.960344 0.987514 0.786933974 0.837534
524288 14613472 1.05472 0.9652 1.048042782 0.984725
1048576 29228000 1.376921 1.412867 1.153415946 1.251802
2097152 58456032 1.595587 0.835643 1.023694582 1.504714
4194304 117176288 1.717417 1.286362 1.596695964 1.636222
8388608 234354656 1.78484 1.720198 1.677340714 1.697598
16777216 468709344 1.835117 1.781472 1.757029277 1.769326
33554432 938471392 1.879246 1.798371 1.779262303 1.764226

Table 6.13: Execution Time of 4 GPUs BiCGStab with Various Communication
Model

Execution Time of 4 GPUs BiCGStab with Various Communication Model

N size nnz
Execution Time (ms)

Async Pinned Sync Pinned Sync Paged Async Paged
4096 110304 8.356 10.327 10.787149 10.307
8192 224992 8.91 11.032 10.513056 10.666
16384 450272 8.61 10.331 10.888618 10.467
32768 900576 8.603 7.311 11.054871 10.656
65536 1818080 8.852 10.917 11.388177 11.162
131072 3636704 9.615 11.857 11.976296 11.083
262144 7273440 10.299 13.122 13.009516 11.976
524288 14613472 11.443 10.787 14.375854 14.63
1048576 29228000 14.34 28.165 18.317841 18.826
2097152 58456032 15.528 23.039 20.171215 20.203
4194304 117176288 26.581 35.387 27.645063 30.629
8388608 234354656 47.264 53.105 48.967529 54.209
16777216 468709344 84.481 90.541 91.484093 90.168
33554432 938471392 151.572 166.07 174.382538 174.411
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Figure 6.7: BiCGStab Execution Time on Large Size GH Matrices of Various
Storage Formats (Single GPU)

is shown by the largest size of the matrix using asynchronous pinned memory

communication model.

Table 6.17 and figure 6.30, 6.31, shows that at the small size of matrices, single

GPU is performing better than other number of GPUs. This is happened due to

the communication of other implementation is larger than the computation. But

on the larger size, we could see that 8 GPUs is showing the best performance

followed by the 4 GPUs and 2 GPUs. It means that the communication on the

larger size of matrix could be amortized by the computation.
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Table 6.14: Speedup of 4 GPUs BiCGStab with Various Communication Model
over Single GPU

Speedup of 4 GPUs BiCGStab with Various Communication Model over Single GPU

N size nnz
Speedup

Async Pinned Sync Pinned Sync Paged Async Paged
4096 110304 0.277046 0.22417 0.214607215 0.224605
8192 224992 0.25982 0.209844 0.220202385 0.217045
16384 450272 0.278281 0.231923 0.220046291 0.22891
32768 900576 0.31675 0.372726 0.246497675 0.255724
65536 1818080 0.363082 0.294403 0.282222519 0.287941
131072 3636704 0.413105 0.334992 0.331655129 0.358387
262144 7273440 0.606661 0.476147 0.480263831 0.52171
524288 14613472 0.833785 0.884491 0.663682311 0.652153
1048576 29228000 1.162413 0.591834 0.909987154 0.885424
2097152 58456032 2.034969 1.371544 1.566539249 1.564075
4194304 117176288 2.369663 1.779976 2.278453842 2.056482
8388608 234354656 2.640932 2.350457 2.549056539 2.302588
16777216 468709344 2.948947 2.751571 2.723205662 2.762954
33554432 938471392 3.284056 2.997357 2.854477322 2.854012

Table 6.15: Execution Time of 8 GPUs BiCGStab with Various Communication
Model

Execution Time of 8 GPUs BiCGStab with Various Communication Model

N size nnz
Execution Time (ms)

Async Pinned Sync Pinned Sync Paged Async Paged
4096 110304 14.794 19.16556 17.549328 18.305
8192 224992 14.882 19.00965 17.980619 16.708
16384 450272 14.822 18.83247 18.299026 17.137
32768 900576 14.719 19.26395 18.135403 17.008
65536 1818080 14.729 19.31243 18.465593 18.037
131072 3636704 14.999 20.50044 18.489302 18.393
262144 7273440 16.035 21.3932 19.462868 16.217
524288 14613472 16.939 22.09774 20.958366 24.722
1048576 29228000 18.019 21.16504 53.211971 25.524
2097152 58456032 21.855 29.25381 28.722815 28.076
4194304 117176288 29.699 38.7294 37.445099 38.4
8388608 234354656 44.815 61.90405 59.743706 58.037
16777216 468709344 75.224 86.95006 85.973877 84.644
33554432 938471392 113.458 131.4541 158.420776 132.333
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Table 6.16: Speedup of 8 GPUs BiCGStab with Various Communication Model
over Single GPU

Speedup of 8 GPUs BiCGStab with Various Communication Model over Single GPU

N size nnz
Speedup

Async Pinned Sync Pinned Sync Paged Async Paged
4096 110304 0.156482 0.12079 0.131913883 0.126468
8192 224992 0.155557 0.12178 0.128749739 0.138556
16384 450272 0.161652 0.127227 0.130935931 0.139814
32768 900576 0.185135 0.141456 0.150258585 0.160219
65536 1818080 0.218209 0.166421 0.174053441 0.178189
131072 3636704 0.264818 0.193752 0.214826931 0.215952
262144 7273440 0.389648 0.292055 0.321021547 0.385275
524288 14613472 0.563256 0.431764 0.455235871 0.385932
1048576 29228000 0.925079 0.787572 0.313256579 0.653072
2097152 58456032 1.445848 1.080167 1.100135902 1.125481
4194304 117176288 2.120879 1.626361 1.682142702 1.640313
8388608 234354656 2.78525 2.016362 2.089274475 2.150714
16777216 468709344 3.311842 2.865208 2.897740671 2.943268
33554432 938471392 4.387271 3.786652 3.142081566 3.761503

Table 6.17: GFLOPS of BiCGStab on Various Number of GPU(s)

GFLOPS of BiCGStab on Various Number of GPU(s)

N size nnz
GFLOPS

1 GPU 2 GPUs 4 GPUs 8 GPUs
4096 110304 1.226939 0.894885 0.3399191 0.191994
8192 224992 2.495549 1.171132 0.648394613 0.3882
16384 450272 4.82502 2.348314 1.342711731 0.779972
32768 900576 8.485218 3.213205 2.687692665 1.57091
65536 1818080 14.50432 8.437444 5.266253502 3.164972
131072 3636704 23.47577 15.37947 9.697944878 6.216797
262144 7273440 29.8483 28.66465 18.10779726 11.63032
524288 14613472 39.24635 41.39393 32.72301424 22.10576
1048576 29228000 44.92904 61.86372 52.22609177 41.56291
2097152 58456032 47.40166 75.63346 96.46091164 68.53558
4194304 117176288 47.65198 81.83834 112.9191159 101.0641
8388608 234354656 48.09328 85.83882 127.0110829 133.9518
16777216 468709344 48.19213 88.4382 142.1160304 159.6047
33554432 938471392 48.286 90.74128 158.5739334 211.8438
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Figure 6.8: Speedup of BiCGStab BDIA-GH over Other Storage Formats (Single
GPU)

6.5 Overhead in Computing BiCGStab

In order to understand the overhead in computing BiCGStab for multi-GPU

implementation, we carried an experiment by running BiCGStab algorithm for

one iteration. By using NVIDIA profiling tool, we could retreive the start time

and duration for each kernel calls. Table 6.18 shows the number of kernel that

called in one iteration. As we see that SpMV is called 3 times in one iteration

of BiCGStab while dot and reduce kernel is called 5 times. These operations

are requiring device to host (D2H) communications. So the number of D2H

communication is the addition of SpMV kernel and dot kernel, i.e. 8 times. In

other hands, host to device (H2D) communication only required while distributing

data to each GPUs to do SpMV operations, so the number of H2D communication

is 3 times. Copy kernel, axpy, scale, and memset called for 4, 7, 1, and 2 times

respectively. The configuration of this experiment that we are using is the largest

problem size of our implementation that has about 33.5 million rows (N) and 938.5
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Figure 6.9: FLOPS on Small Size GH Matrices of BiCGStab in Various Storage
Format (Single GPU)

Figure 6.10: FLOPS on Large Size GH Matrices of BiCGStab in Various Storage
Format (Single GPU)

million number of non-zero (nnz). From the table 6.19, we could see that the total

number of arithmetic operation in one iteration of BiCGStab in this experiment

is 21N + 6nnz − 2 or about 6.335 billion arithmetic operations.

By analysing the profiling result for one iteration of BiCGStab, we could see that

from the table 6.20 and 6.21 the communication time is increasing along with

the increasing number of GPUs. For 8 GPUs, the D2H communication takes

almost 33 percent of total execution time while 4 GPUs takes about 16 percent
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Figure 6.11: Memory transfer routes on 4 GPUs implementation

of total execution time. This very high percentage of communication makes the

multi-GPU BiCGStab is not scaled perfectly while we are expecting with the

increase number of GPUs should leads to the lower data transfer. But device

synchronization on device to host communication is high that leads to the higher

communication time. PCI-e channel also takes role in this poor performance of 8

GPUs implementations because the PCI-e that has 4 channel could only take 4

memory transfer from 4 GPUs at a time, so other transfers from other 4 GPUs is

getting a low throughput.
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Table 6.18: Number of Kernel Calls on BiCGStab

Number of Kernel Calls
Kernel Number of Calls

SpMV 3
dot kernel 5
reduce 1Block kernel 5
D2H 8
H2D 3
copy kernel 4
axpy kernel 7
scal kernel 1
memset 2

Table 6.19: Number of Arithmetic Operation in BiCGStab

Operation Number of Arithmetic Operation
r0 ← b−Ax0 N+2nnz
ρi ← (r̂0, ri−1) 2N-1
pi ← ri−1 + β(pi−1 − ωi−1vi−1) 4N
vi ← Api 2nnz
α← ρi/( ˆr0,vi) 2N
s← ri−1 −αvi 2N
t← As 2nnz
ωi ← (t, s)/(t, t) 4N-1
xi ← xi−1 +αpi + ωis 4N
ri ← s− ωit 2N

Table 6.20: Kernel Calls Execution Time of BiCGStab on various number of GPUs

Kernel Calls Execution Time (ms)
Kernel 2 GPUs 4 GPUs 8 GPUs

D2H 4.379223 8.773 11.316
H2D 0.31 1.045 1.313

Memset 0.874 0.439 0.234
SpMV 66.96 33.565 16.674
axpy 10.239593 5.145449 2.588105
copy 4.632 2.352 1.178
dot 3.801 1.918 0.993

reduce 0.022751 0.022592 0.053
scal 1.094 0.551 0.278
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Figure 6.12: Peer-to-Peer GPUDirect 4 GPUs implementation. (a) right
communication, (b) left communication

Table 6.21: Kernel Calls Execution Time Percentage of BiCGStab

Kernel Calls Execution Time Percentage (%)
Kernel 2 GPUs 4 GPUs 8 GPUs
D2H 5.136895391 16.30334563 32.67960172
H2D 0.335815599 1.941980643 3.791827241
Memset 0.946783334 0.815817706 0.675771191
SpMV 72.53616943 62.37567491 48.15302925
axpy 11.09230664 9.562069242 7.474217091
copy 5.017735018 4.370850213 3.401959246
dot 4.117532557 3.564324281 2.867695697
reduce 0.024645615 0.041983949 0.153059287
scal 1.185104082 1.02395343 0.802839279
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Figure 6.13: Transfer rate between 2 GPUs with various memory access

Figure 6.14: Transfer rate between 4 GPUs with various memory access
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Figure 6.15: Transfer rate between 2 GPUs with various memory access

Figure 6.16: Execution time of SpMV on various number of GPU(s) (Small Size)
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Figure 6.17: Execution time of SpMV on various number of GPU(s) (Large Size)

Figure 6.18: Execution Time of 2 GPUs BiCGStab with Various Communication
Model (Small Size)
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Figure 6.19: Execution Time of 2 GPUs BiCGStab with Various Communication
Model (Large Size)

Figure 6.20: Speedup of 2 GPUs BiCGStab over Single GPU with Various
Communication Model (Small Size)
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Figure 6.21: Speedup of 2 GPUs BiCGStab over Single GPU with Various
Communication Model (Large Size)

Figure 6.22: Execution Time of 4 GPUs BiCGStab with Various Communication
Model (Small Size)
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Figure 6.23: Execution Time of 4 GPUs BiCGStab with Various Communication
Model (Large Size)

Figure 6.24: Speedup of 4 GPUs BiCGStab over Single GPU with Various
Communication Model (Small Size)
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Figure 6.25: Speedup of 4 GPUs BiCGStab over Single GPU with Various
Communication Model (Large Size)

Figure 6.26: Execution Time of 8 GPUs BiCGStab with Various Communication
Model (Small Size)
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Figure 6.27: Execution Time of 8 GPUs BiCGStab with Various Communication
Model (Large Size)

Figure 6.28: Speedup of 8 GPUs BiCGStab over Single GPU with Various
Communication Model (Small Size)
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Figure 6.29: Speedup of 8 GPUs BiCGStab over Single GPU with Various
Communication Model (Large Size)

Figure 6.30: FLOPS of BiCGStab on Various Number of GPU(s) (Small Size)
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Figure 6.31: FLOPS of BiCGStab on Various Number of GPU(s) (Large Size)

Figure 6.32: Kernel Calls Execution Time of BiCGStab on various number of
GPUs

117



CHAPTER 7

CONCLUSION

In this thesis a new sparse matrix storage format called BDIA-GH has been

proposed as a storage scheme for sparse matrix on reservoir simulation. This

matrix format is proved as the best storage scheme compared to other storage

format that available on CUSPARSE library, such as CSR, BSR, and HYB. The

sparse matrix vector multiplication for the corresponding format also has been

proposed and it showed that BDIA-GH SpMV perform better than other storage

formats SpMV using single GPU in CUDA. This better performance on SpMV

leads to better performance on BiCGStab algorithm. A novel implementation

on Multi-GPU BiCGStab also has been proposed with several optimizations like

optimizing shared memory usage, using a best parameter for number of thread

size in a block, and choosing memory communication scheme that leads to the

better performance on Multi-GPU BiCGStab with CUDA.
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