




©Hafiz ur Rahman
2017

iii



Dedication
To my parents and family, may Allah protect them and give them good health

and happiness.

iv



ACKNOWLEDGMENTS

First and foremost, praise and thanks to Allah almighty for giving me strength

and health to complete this thesis work.

Secondly, I would like to express my sincere gratitude to my thesis adviser

Dr. Farag Azzedin, for his consistent support and guidance throughout my

MS degree. His valuable suggestions and encouragement can never be forgotten.

I would also like to thank my thesis committee members Dr. Mahmood

Khan Niazi and Dr. Salahadin Mohammed for their guidance and help. I

would like also to express my special thanks to my friend Mr. Saleh Alyahya

for his contribution in my experimentation. I would also like to extend my thanks

to the Chairman of Information and Computer Science Department, Dr.

Khalid Al Jasser, for providing me all the required facilities for my work.

A very special gratitude goes to King Fahd University of Petroleum and

Minerals for supporting my study and providing the computing facilities. I also

grateful to Mr. Yusuf, Mr. Muneed Iqbal, Mr. Khurram Shahzad, Mr.

Faisal Munir and Mr. Mohsin Ali for their technical support.

Last but not least, I would like to thank my family for providing me their

continuous support and patience throughout my studies.

v



TABLE OF CONTENTS

ACKNOWLEDGEMENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

ABSTRACT (ENGLISH) xiii

ABSTRACT (ARABIC) xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2 BACKGROUND 8

2.1 Cloud Service Models . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Infrastructure-as-a-Service . . . . . . . . . . . . . . . . . . 11

2.1.2 Platform-as-a-Service . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Software-as-a-Service . . . . . . . . . . . . . . . . . . . . . 13

2.2 Cloud Deployment Models . . . . . . . . . . . . . . . . . . . . . . 13

vi



2.2.1 Private Cloud . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Public Cloud . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Hybrid Cloud . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Community Cloud . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Virtualization Solutions . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Hypervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Types of Hypervisors . . . . . . . . . . . . . . . . . . . . . 18

2.4 Virtualization Approaches and Challenges . . . . . . . . . . . . . 21

2.4.1 Virtualization Techniques . . . . . . . . . . . . . . . . . . 22

CHAPTER 3 RELATED WORK 26

3.1 Hypervisor Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 vCPU-pCPU Mapping and vCPU-VM Configuration . . . . . . . 29

CHAPTER 4 RESEARCH METHODOLOGY AND EXPERI-

MENTAL DESIGN 33

4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Methodology Architecture . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 N-Queens Benchmark . . . . . . . . . . . . . . . . . . . . . 38

4.4.2 Test Configurations . . . . . . . . . . . . . . . . . . . . . . 40

4.4.3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 5 RESULTS AND DISCUSSION 44

5.1 The Effect of Virtualization Technology . . . . . . . . . . . . . . . 44

5.2 The Effect of Virtual Machines on Performance . . . . . . . . . . 47

5.2.1 Under Allocation . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.2 Balance Allocation . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 Over Allocation . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 The Effect of Virtual CPUs on Performance . . . . . . . . . . . . 53

vii



5.3.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 57

5.4 The Significance of Over Allocation . . . . . . . . . . . . . . . . . 58

5.5 The Effect of Pinning Strategies on Performance . . . . . . . . . . 64

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 69

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

REFERENCES 72

VITAE 80

viii



LIST OF TABLES

3.1 Summary of related work . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Specification of the Servers . . . . . . . . . . . . . . . . . . . . . 38

4.2 N-Queens problem with elapsed time (seconds) . . . . . . . . . . 39

5.1 Elapsed time (sec) to solve N-Queens problem using Citrix

xenServer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Elapsed time (sec) to solve N-Queens problem using KVM . . . . 67

5.3 Elapsed time (sec) to solve N-Queens problem using Citrix

xenServer and KVM for balance allocation . . . . . . . . . . . . . 68

ix



LIST OF FIGURES

1.1 Regular system and Virtualized environment . . . . . . . . . . . . 2

2.1 Cloud Computing [1] . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Cloud Service Models . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Cloud Deployment Models [2] . . . . . . . . . . . . . . . . . . . . 14

2.4 Server Virtualization [3] . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 A Virtualization Solution . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Type I and Type II Hypervisors . . . . . . . . . . . . . . . . . . . 19

2.7 Commonly used Approaches for Virtualization Layer [4] . . . . . . 24

4.1 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Proposed Methodology Architecture . . . . . . . . . . . . . . . . . 35

4.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 One Solution of N-Queens Problem (8 x 8 board) [5] . . . . . . . 37

5.1 The effect of Virtualization Layer using N-Queens benchmark . . 45

5.2 The effect of Virtualization Layer using John-the-Ripper bench-

mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 The effect of Virtual Machines on Performance - Under allocation 48

5.4 The effect of Virtual Machines on Performance - Balance allocation 50

5.5 The effect of Virtual Machines on Performance - Over allocation . 52

5.6 The effect of Virtual Machines on Performance . . . . . . . . . . 53

5.7 The effect of Virtual CPUs on Performance - Citrix xenServer . . 54

5.8 The effect of Virtual CPUs on Performance - KVM . . . . . . . . 54

x



5.9 Total CPU Utilization at Hypervisor Level - Citrix xenServer . . . 55

5.10 Total CPU Utilization at Hypervisor Level - KVM . . . . . . . . . 55

5.11 Mean Elapsed time of Hypervisor, VMs, and vCPUs . . . . . . . . 57

5.12 The effect of Virtual CPUs on Performance - Uniform vCPUs per

VMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.13 CPU Utilization for Uniform vCPUs . . . . . . . . . . . . . . . . 60

5.14 The effect of Virtual CPUs on Performance - Non-uniform vCPUs

per VMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.15 CPU Utilization for Non-uniform vCPUs . . . . . . . . . . . . . 62

5.16 Normal distribution of Elapsed time (sec), Uniformed vCPU allo-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.17 Normal distribution of Elapsed time (sec), Non-uniformed vCPU

allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



xii 
 

LIST OF ABBREVIATIONS 

CMP               Chip Multiprocessor 

CPU   Central Processing Unit 

FV   Full Virtualization 

KVM   Kernel-based Virtual Machine 

HAV   Hardware Assisted Virtualization 

IaaS   Infrastructure-as-a-Service 

NUMA   Non-Uniform Memory Access 

OS   Operating System 

PaaS   Platform-as-a-Service 

PV   Paravirtualization 

pCPU   Physical CPU 

PTS   Phronix Testing Suite 

RHEV    Red Hat Enterprise Virtualization 

SaaS   Software-as-a-Service 

SMP   Symmetric Multiprocessing 
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Virtualization is used to ease computing resource management, resource utilization and 

running multiple heterogeneous or homogeneous operating systems on a single physical 

machine. Virtualization offers many advantages such as reducing fiscal costs, easing 

system migration, running legacy applications, easing backups and disaster recovery, and 

utilizing the shared resources over traditional data centers. In virtualized environments, the 

higher the percentage of the CPU utilization results in the maximum performance. 

However, virtualization systems have shortcomings including virtual machines allocation, 

virtual CPU configuration, and virtual CPU to physical CPU mapping. Such shortcomings 

may lead to system performance degradation. In this thesis, we focus on the role that 

hypervisors, virtual CPU to virtual machine allocation, and the virtual CPU to physical 

CPU mapping play on CPU utilization. PTS benchmarking tool is used as a traffic 

generator and analyzer, which provides a detailed evaluation of CPU utilization. The 

results of this study will help cloud service providers and researchers select and decide 

which virtualization technology, virtual CPU to virtual machine configuration, and 

mapping strategies to used for better performance and best CPU resources allocation. 
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 ملخص الرسالة

 
 

 .حفيظ الرحمن :الاسم الكامل
 

 تقييم الاستخدام الأمثل لوحدة المعالجة المركزية في البيئة السحابية. :عنوان الرسالة
 

 علوم الحاسب الآلي والمعلومات. :التخصص
 

.2017 مايو :تاريخ الدرجة العلمية  

 
 

لك الموارد ولتشغيل عدة أنظمة تشغيل لتالأمثل  الاستخدامالافتراضية مستخدمة لتسهيل إدارة موارد الحوسبة ولتسهيل 

متجانسة أو متفاوتة على ماكينة مادية وحيدة. الافتراضية تقدم العديد من المزايا مثل تقليص التكاليف المالية وتسهيل 

الأمثل للموارد المشتركة من مراكز البيانات التقليدية. في البيئات  والاستخدام كارثةمن ال تعافيالنسخ الاحتياطية وال

ومع ( فأنها تسفر عن الأداء عالي لها. CPUالافتراضية، كلما زادت نسبة الاستفادة من وحدة المعالجة المركزية )

لافتراضية، تكوين وتهيئة وحدة المعالجة ذلك، الأنظمة الافتراضية لديها قصور مشتملة على تخصيص الآلات ا

قود إلى تراجع في يما لافتراضية بالمادية. هكذا قصور ربالمركزية الافتراضية، ووصل وحدة المعالجة المركزية ا

بالإضافة إلى وصل وحدة المعالجة المركزية  Hypervisorـ في هذه الرسالة، سنركزعلى الدور للأداء النظام.  

أداة  وحدة المعالجة المركزية.لالأمثل  الاستخدامحدة المعالجة المركزية المادية في أن تلعب دوراً في بو -الافتراضية 

( مستخدمة كمولد ومحلل لحركة المرور، والتي تزود بتقييم مفصل لتكشف التباين في الاستخدام الأمثل PTSالاختبار )

نتائج هذه الدراسة ستساعد مزودي الخدمة السحابية والباحثين ليختاروا ويقرروا التقنية لوحدة المعالجة المركزية. 

الافتراضية الأفضل، التهيئة والتكوين لوحدة المعالجة المركزية الافتراضية في الآلات الافتراضية، وربط 

   الاستراتيجيات لاحتياجاتهم الخاصة. 



CHAPTER 1

INTRODUCTION

Virtualization is the fundamental element of cloud computing [6, 7, 13] by which

we can deliver resources or data as a service. In the last decade, virtualization has

attracted many different research groups working on server consolidation, security,

and computing [8, 9]. For example, distributed data centers are now being utilized

by using virtualization technology which was not possible in the past.

Usually, servers are underutilized, which results in making the data centers

unproductive [10]. Traditional data centers have several shortcomings including

maintenance cost and resources utilization. Furthermore, traditional data centers

suffer from server proliferation, low resource utilization, physical infrastructure

cost, and migration challenges [3, 8, 11, 13]. Thus, virtualization plays a vital role

in mitigating such challenges [8]. Virtualization makes use of server resources in a

well-organized manner by setting up different servers within different cloud types

[13]. Moreover, virtualization consolidates workloads so that one physical machine

can be used for different users. This improves the efficiency and utilization of
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Figure 1.1: Regular system and Virtualized environment

data centers by allowing more work to be done on a smaller set of physical nodes

[14, 15]. Through virtualization, organizations can achieve better management

and improve resource efficiency [15]. As a result, organizations can access and

manage their data more efficiently. Therefore, many organizations are adopting

virtualization technology to reduce the cost while maximizing the productivity,

flexibility, responsiveness, and efficiency.

Virtualization can be done to various resources such as CPU, memory, or I/O

devices. Virtualization vendors use different technologies to provide virtualization

environment. These environments can be built to enhance the utilization of tradi-

tional IT infrastructures as well as resource management capabilities. Hypervisors

are used in virtualized environments as agents facilitating virtual machines and

hardware [4, 15, 16, 17].

2



1.1 Problem Statement

Virtualization technology inserts an additional abstraction layer between the hard-

ware and the operating system [4, 8, 18] as shown in Figure 1.1. In a regular sys-

tem, the hardware resources are shared by single OS. While in virtualization envi-

ronments, hypervisors are responsible to manage hardware resources and virtual

machines. Moreover, every guest operating system is in charge of virtual resources

and concurrently share and access the hardware resources [9]. Therefore, virtual-

ization systems face challenges such as virtual machines (VMs) allocation, virtual

CPU allocation, and virtual CPU to physical CPU (vCPU-pCPU) mapping. Such

challenges may lead to system performance degradation [19, 20, 21].

Nevertheless, CPU is one of the most significant and critical resource among

all the available resources in a system [8, 22, 23]. Improving CPU utilization is

one goal of any virtualization technology. In addition, CPU utilization is used as

a metric to measure system performance. The cloud provider assigns resources to

each user request aiming to minimize resource allocation and fulfill user require-

ments [24]. The following [25] are the main factors that have implications on CPU

utilization namely: resource sharing between physical cores, resource sharing be-

tween logical cores (hyper threading), the choice of guest OS, the BIOS setting

for power management (machine level), the hypervisor/OS setting for power man-

agement, and VM setting (over-commitment between vCPU and physical CPU

(pCPU)).

CPU utilization can be improved at different levels by tuning up different

3



components. At VM level [19, 20, 21, 26], the following parameters can be tuned to

improve the CPU utilization: (a) vCPU-pCPU commitment, (b) the OS setting for

power management, and (c) the OS scheduling algorithm. Moreover, at hypervisor

level, the following parameters can be tuned to improve the CPU utilization: (a)

the hypervisor scheduler and (b) vCPU-pCPU mapping [19, 21]. Furthermore,

configuring BIOS setting for power management [25] and choosing the state-of-the-

art hardware, such as Intel and AMD virtualization aware processors [4, 8, 18] that

provides the necessary support for virtualization, contribute towards improving

CPU utilization.

In this thesis, we evaluate the effects of hyppervisor, virtual machine allo-

cation, vCPU-VM configuration, and vCPU-pCPU mapping on performance in

terms of CPU utilization in a cloud environment. Various experiments for CPU

utilization are performed using Citrix xenServer (commercial) and KVM (open

source) hypervisors. Phronix Testing Suite (PTS) [27] benchmarking tool is used

as a traffic generator and analyzer. We chose PTS, since it tracks CPU perfor-

mance and generates data points for performance investigation. The aim of these

experiments is to investigate how to allocate CPU resources (in terms of cores and

logical CPUs) to achieve better performance.

1.2 Motivation

In this thesis, we were motivated by the fact that virtualization suffers from draw-

backs. In addition, researchers evaluate and analyze hypervisors without inves-
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tigating the best vCPU-VM configuration through which better CPU utilization

and performance for each hypervisor can be expected. They assigned vCPU to

VM based on non-suitable vCPU-VM configuration [15, 28, 29, 30]. Furthermore,

there are a variety of vendors for the virtualization environment and all of them

claim that their virtualization hypervisor is the best, however they depend on the

used application [17]. Moreover, when applying virtualization technology to an

infrastructure environment, which hypervisor among others is better and faster

in terms of CPU utilization? When a system administrator or a researcher de-

ploy virtual machine in a cloud environment, which vCPU-VM configuration and

mapping strategies for virtual machine is the best to improve CPU utilization?

What is the effect of VM and vCPU on performance? Is there any other setting

or configuration by which CPU utilization be improved?

1.3 Objectives

In this research study, our aim is to investigate the best CPU resources allocation

and better performance using the latest version of the state-of-the-art hypervi-

sors. In addition, we investigate the effect of hyperviosr, VM, vCPU, and pinning

strategies on performance. We also present the best vCPU configuration and pin-

ning strategy for VM in a cloud environment through which better performance

and maximum CPU utilization can be expected.

Our finding will be a road map to assist cloud service providers to choose

the best hypervisor, vCPU-VM configuration, and mapping strategies for their

5



specific needs.

In a nutshell, the thesis objectives are:

1. Build a private cloud using the latest version of commercial and open source

hypervisors (Citrix xenServer and KVM).

2. Prior to evaluate the hypervisors, investigate the best vCPU - VM config-

uration and vCPU pCPU mapping strategies, through which better CPU

utilization can be expected for each hypervisor.

3. Evaluate the effects of Hypervisor, Virtual Machine, vCPU VM assignment,

and vCPU pCPU mapping on performance in terms of CPU utilization.

1.4 Contributions

Based on the objectives defined previously, we outline the main contributions of

this thesis as follows:

Building a private cloud using the latest version of commercial and open source

hypervisors (Citrix xenServer version 7.0.1 and KVM version 4.4.0). In this

research work, we focus on the effect virtualization technology, VM allocation,

vCPU-VM configuration, and vCPU-pCPU mapping to find out the variation in

CPU utilization prior to evaluate the hypervisors.

As another contribution, we provide recommendations for vCPU-VM configu-

ration and vCPU-pCPU mapping through which better CPU utilization on each

hypervisor can be achieved. As a result, cloud service providers will get the ben-
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efits, when they deploy VMs in a cloud environment or evaluate open source and

commercial hypervisors (KVM, Citrix xenServer, VMware, and Hyper-V).

1.5 Thesis Organization

This thesis is organized into six chapters. Chapter 2 presents a background on

virtualization technology and outlines the definition of virtualization terminology.

Chapter 3 provides an extensive literature review of the impact of hypervisor,

vCPUs-VMs configuration, and vCPU-pCPU mapping on performance. Chapter

4 describes our research methodology and experimental setup. We analyze the

evaluation results in chapter 5 and draw conclusions in chapter 6. Furthermore,

we summarize our major contributions, discuss perspectives, and envisions future

work directions in chapter 6 as well.
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CHAPTER 2

BACKGROUND

This chapter introduces the concept of cloud computing and virtualization. For

completeness and clarity purposes, we provide a list of definitions that will be

used throughout this thesis. We also outline the main concept of virtualization

and cloud computing. Finally, we highlight the virtualization approaches and

challenges.

1. Cloud Computing: Cloud computing is a pay-per-use model on demand

delivery of computing resources over the internet [31]. Figure 2.1, shows the

cloud computing environment.

2. Virtualization: Virtualization refers to a variety of different computing

concepts. It is used for ease computing resource management, resource

utilization, and running multiple heterogeneous or homogeneous OSs on a

single physical machine [7, 9].

3. Hypervisor: An abstraction layer of software which is also known as Vir-

8



Figure 2.1: Cloud Computing [1]

tual Machine Monitor (VMM) that makes virtualization possible. A widely

accepted definition has been provided by [8] for VMM: “As a piece of soft-

ware a VMM has three essential characteristics. First, the VMM provides an

environment for programs which is identical to the original machine; second,

programs running in this environment show at worst only minor decreases

in speed; lastly, VMM is a complete control of system resources”.

4. Virtual Machine: A Virtual Machine (VM) is an efficient isolated dupli-

cate of the real physical machine that can has its own OS [22, 32].

9



5. Host Machine: A host machine is a server component or physical machine

on which a hypervisor is running. Host machines provide the computing

resources such as processing power, memory, network, I/O, etc., to support

virtual machines [8].

6. Guest OS: A guest OS is an independent instance of an OS that is installed

and run in a virtual machine.

7. Physical CPU: A physical CPU (pCPU) is the central processing unit

responsible of all processing operations. A server can have more than one

processor.

8. Core: Inside physical CPU, there are more than one operations unit (like

a processor), called core [33].

9. Logical CPU: It is a processing unit that is capable of executing its own

thread in parallel with other logical cores. Number of logical processors

means number of threads. Normally, a core can handle one thread at the

same time (processor time slot). But when Hyper-Threading is activated

and supported, the core can handle two threads at the same time [8, 22].

10. Virtual CPU: A virtual CPU (vCPU) is also known as a virtual processor.

A vCPU is a physical central processing unit that is assigned to a virtual

machine. A vCPU represents a portion or share of a physical CPU that is

assigned to a virtual machine [8, 22].

11. CPU Utilization: CPU utilization refers to a computer’s usage of pro-

10



cessing resources, or the amount of work handled by a CPU in a given time.

Actual CPU utilization varies depending on the amount and type of man-

aged computing tasks [34]. It is the metric that represents how busy is a

processor. It shows whether the CPU on the host is completely occupied.

Moreover, It can be used to track CPU performance regressions or improve-

ments.

2.1 Cloud Service Models

The cloud computing resources can be accessed through a set of service mod-

els. The cloud service models describe how cloud services are made available

to clients [35]. Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),

and Software-as-a-Service (SaaS) are examples of cloud computing service models

[3, 8]. These service models can be selected and customized for an organization’s

requirements [31, 36]. Cloud service models are shown in Figure 2.2 and details

are given below for each service model.

2.1.1 Infrastructure-as-a-Service

IaaS is the most straightforward model for delivering cloud services. This model

provides the power to control and manage the fundamental computing resources

such as virtual machines, physical servers, operating system, storage, network,

firewalls, and so on. By using IaaS service, users are able to develop their own

application environments. Furthermore, IaaS allows an organization to rent com-

11



Figure 2.2: Cloud Service Models

puting resources on demand instead of spending much money on management

and building their own data centers [3, 8, 28, 35]. Amazon EC2, Nimbus, and

Eucalyptus are popular IaaS providers [28].

2.1.2 Platform-as-a-Service

PaaS hides the low-level details from the user and provides a pre-built applica-

tion development platform for the client to develop, deploy, and manage cloud

applications while not worrying about the technology. PaaS allows a user to de-

ploy applications but hides from the user the backend infrastructure such as OS

12



[3, 8, 35]. Google AppEngine, Heroku, and Microsoft Azure are the most popular

PaaS providers [31].

2.1.3 Software-as-a-Service

SaaS is the top level of service models which providing software solutions to users.

A user can access the SaaS applications using any thin interface such as mobile

device or browsers. Google documents, google apps, online mail, project manage-

ments systems, and social media platforms are some examples of SaaA [3, 8, 35].

The main difference between SaaS and PaaS is that SaaS delivers already

complete and developed applications while PaaS represents a platform where the

user has a complete control over the applications [3, 8].

2.2 Cloud Deployment Models

The cloud service model can be deployed on one or more deployment models.

There are four different approaches to deploying cloud service models, namely

private cloud, public cloud, hybrid cloud, and community cloud [3, 8] as shown in

Figure 2.3. Each of these deployment models is explained in the next subsections.

2.2.1 Private Cloud

A private cloud refers to cloud infrastructures in which the services are maintained

on a private network and not available for public use. A private cloud is hosted

in the data center of a company and provides its services only to users inside

13



Figure 2.3: Cloud Deployment Models [2]

that company or its partners. The cloud infrastructure is accessed only by the

members of the organization and/or by granted third parties. A private cloud

has the potential to give the organization greater control over the infrastructure

and computational resources [37, 38]. Private clouds can be managed by the

organization itself or by a third party cloud [31, 36].

2.2.2 Public Cloud

Public clouds refer to infrastructures operated and owned by a cloud service

provider such as Microsoft Azure, IBM’s Blue Cloud, and Google AppEngine

are the examples of public clouds [31, 36]. Public clouds provide services that are

open to users over the Internet, for a pay-per-usage fee. In public clouds, users

can scale their use on demand and do not need to purchase hardware to use the

service [37, 38].

14



2.2.3 Hybrid Cloud

Hybrid clouds are more complex than the other deployment models, since they

involve a composition of two or more clouds (private, community, or public). A

hybrid cloud is a composition of at least one private cloud and at least one public

cloud. A hybrid cloud is typically offered in one of two ways: a vendor has a

private cloud and forms a partnership with a public cloud provider, or a public

cloud provider forms a partnership with a vendor that provides private cloud

platforms [38]. This deployment model gives greater flexibility, scalability, and

security i.e., by allowing workloads to move between private and public clouds

[31, 36].

2.2.4 Community Cloud

A community cloud is shared by multiple organizations to support a specific com-

munity with shared concerns i.e., security, compliance, jurisdiction, etc. [31, 36].

A community cloud falls between public and private clouds with respect to the

target set of consumers. It is somewhat similar to a private cloud, but the infras-

tructure and computational resources are exclusive to two or more organizations

that have common privacy, security, and regulatory considerations, rather than a

single organization [38].
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Figure 2.4: Server Virtualization [3]

2.3 Virtualization Solutions

Virtualization is the fundamental element of cloud computing [9, 7] by which we

can deliver resources or data as a service. It refers to the creation of virtual

resources on a physical one such as server, OS, network, and storage. Differ-

ent resources can be virtualized including a server, file, storage, and a network

virtualization. All of these cases share the same idea, that is physical resources

abstraction.

Server virtualization is the most common resource abstraction technique in

cloud computing. Server virtualization is a technique in which a physical server

can be split into a number of virtual nodes and run multiple concurrent operat-

ing systems on the same server to better consume, utilize, and achieve maximum

performance [9, 10, 39]. Figure 2.4 represents server virtualization. This kind of
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virtualization allows multiple isolated virtual servers to run on a single physical

server and can be implemented in different ways. There are three main implemen-

tation approaches for server virtualization called full virtualization (FV), para-

virtualization (PV), and hardware assistance virtualization (HAV) [3, 4, 8, 35] as

shown in Figure 2.7

2.3.1 Hypervisor

A hypervisor, as shown in Figure 2.5 is the core component of a virtualization so-

lution [8, 30]. The hypervisor is responsible for running multiple virtual machines

on a host machine to consolidate the workloads so that one physical machine can

be multiplexed for many different users. This improves the efficiency of the overall

system. The resources such as memory, OS, CPU, network, and data are shared

among different virtual machines and completely managed by the hypervisor [40].

This highlights three basic properties or essential requirements for VMM [30].

The first property of the VMM is equivalence by which a program running under

VMM should have the same behavior and effect as that of the program running on

the original physical host machine. The second property is efficiency meaning

that the virtual CPU instruction is executing directly on host hardware without

any intervention by the hypervisor. Resource Control, being the last property

of VMM. This property enables the VMM to control the allocated resources in

such a way that an arbitrary program: (a) can not affect system resources and

(b) it does not have access to any resources not explicitly allocated to it. Figure
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Figure 2.5: A Virtualization Solution

2.5, shows the structure of a simple hypervisor with other essential components.

2.3.2 Types of Hypervisors

Hypervisor are classified into two types [3, 8, 40]; Type I referred to as Bare

Metal and Type II known as Hosted. Figure 2.6, shows the structure of both

hypervisors.

Type I

Type I hypervisor is considered a native or bare-metal installation, which means

that the hypervisor is the first entity installed on the host machine. Type I hyper-

visor runs directly on top of the host machine to control access to the hardware

and is located right below virtual machines to manage the guest OSs [3, 8, 40].

The most important characteristic of Type I hypervisor is performance. Be-

cause there is no intermediary layer between the hypervisor and the physical

hardware. Since Type I hypervisors are written specifically to support virtualiza-
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Figure 2.6: Type I and Type II Hypervisors

tion, they usually have a very small footprint compared to general purpose OSs.

At the same time, designed specifically to support only virtualization. Type I

hypervisors enable us to provide most of the physical hardware resources of the

host machine to the guest virtual machines. In general, Type I hypervisors such

as VMware ESXi are less compatible with hardware equipment due to their small

footprint.

Taking into consideration the performance and capabilities built into Type I

hypervisors, they are good candidates to run in data centers [3, 8, 40]. These

hypervisors are high performance with special capabilities (e.g high availability,

dynamic resource management) designed to support guest OSs that require high

availability features. This makes Type I hypervisors a more efficient solution with
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better performance compared to Type II hypervisors. VMware vSphere ESXi,

Microsoft Hyper-V, Citrix xenServer, Red Hat Enterprise Virtualization (RHEV),

and KVM are some examples of Type I hypervisors.

Type II

Type II hypervisors, also known as hosted hypervisors. They are not deployed

in bare-metal fashion [3, 8, 40]. They are installed as an application on top of a

traditional OS. This type was the first x86 hypervisor to leverage the pre-existing

OS installed on the hardware for managing hardware resources. So, it was the

fastest way to introduce virtualization into the market.

Type II hypervisors are installed in the form of an application on commodity

OSs such as Microsoft Windows and Linux. Furthermore, they are more com-

patible with physical hardware devices compared to Type I hypervisors. This is

because this kind of hypervisors utilize the hardware. Moreover, a Type II hyper-

visor runs as an application on top of the OS, there is an extra layer between the

hypervisor and the hardware.

The difference with the Type I hypervisor is that since a Type II hypervisor

does not have direct access to hardware [30], it has to go through one additional

cycle and provide the request to the OS. So, every transaction in a Type II hy-

pervisor requires two additional steps, which require more time and processing

overhead compared to a Type I hypervisor. Since Type II hypervisors run atop

the OS, any issues such as malware, OS failure,and bad device driver will be

noticed by all virtual machines running on top of the OS.
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Due to the performance and limitations of Type II hypervisors [3, 8, 40], they

are not used in data centers. At the same time, Type II hypervisors can be used by

application developers, who need to access a number of different OSs on their local

machines for research or software testing in different environments [8]. VMware

Workstation, Microsoft Virtual PC, Parallels Workstation, and Oracle Virtual-

Box are some example of Type II hypervisors provided by leading virtualization

vendors [3, 40].

2.4 Virtualization Approaches and Challenges

The x86 platform is the dominant and most commonly used architecture in data

centers [3, 8]. They offer different levels of privilege levels (i.e., 0, 1, 2, and 3)

known as rings [4, 8, 18], numbered 0 (most privileged) to 3 (least privileged), and

main resources such as to execute CPU instruction, memory, and I/O ports are

being protected. The ring 0 have the highest privilege with complete control over

the system where the OSs kernel is running and control the system. Moreover, they

consider themselves the owner of the system resources. Ring 3 is the outermost

ring with the most limited level privilege is where the user applications execute

and called Userspace or Userland. While the other two rings are rarely used

where device drivers reside. This architecture ensures ring 3 application can not

make privilege system calls [18]. If they access privilege resources they create an

exception and corresponding catch, as a result of the unprivileged state change to

privilege mode and the OS execute the instruction.
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In virtualization environment Type I hypervisors run in Ring 0 and control

the overall system resources like OS. The VM behaviors is exactly the same as

the user application program [4, 8, 18]. In virtualized environments, thy system

resources including CPU, main memory, and I/O are virtualized to the guest OS.

However, the x86 platform was not designed with virtualization support. It was

designed to execute a single instance of OS. By running a hypervisor in the most

privilege level without modifying the guest OS is a big challenge in virtualization.

Because the hypervisor moves up the OS to a ring above and de-privilege the OS.

Moreover, the hypervisor can not allow the guest OS to run at the level from

which it originally designs because doing so might corrupt the hypervisor code

and data [4, 29].

In order to handle the challenges of x86 platform virtualization, there are

three main alternative approaches: Paravirtualization (PV) or OS assisted virtu-

alization, Full Virtualization (FV), and Hardware Assisted Virtualization (HAV)

[4, 8, 18, 29]. Each of the solutions is shown in Figure 2.7. We discuss these three

alternative virtualization approaches in the following subsections.

2.4.1 Virtualization Techniques

In order to handle the challenges of x86 platform virtualization, we are present-

ing the three commonly used approaches namely FT, PV, and HAV. Figure 2.7,

depicts the different approaches used to provide the virtualization layer [4].
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Full Virtualization

The hypervisor runs in Ring 0 with binary translation of privileged instructions

with the guest OS is running in Ring 1 in unmodified form or in isolation in full

virtualization [4, 8, 18] as shown in Figure 2.7. In addition, the guest OS is un-

aware that it is running in a virtualized environment. Moreover, it did not require

OS or hardware assistant to virtualize the underlying hardware or to run the confi-

dential instructions. Because full virtualization used binary translation method in

which it dynamically translate the nonvirtualizable instructions to codes, then the

translated codes are executed in Ring 0 with the same sequence of the instructions

having the same effect on the underlining virtualized hardware.

Due to a full control of the hardware resources and no modification on the part

of guest OS, full virtualization enables the hypervisor to support a wide range of

OSs and provides the best security and seemless migration and portability of the

guest OS. Furthermore, a high performance can be archive by using the binary

translation with of the direct execution of OS instruction [4, 8, 18].

Paravirtualization

In paravirtualization (PV) as shown in Figure 2.7, the hypervisor runs directly on

the top of hardware as an abstraction layer called virtualization layer, while the

guest OS runs within its expected ring 0 for which it originally designed [4, 8, 18].

Furthermore, PV provides hypercall interface for nonvirtualizable instructions to

handle and replace kernel operation. But in PV, the guest OS kernel code is
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Figure 2.7: Commonly used Approaches for Virtualization Layer [4]

modified and it directly communicates with the hypervisor with hypercalls for

better performance and efficiency. In PV, the guest OS is aware of virtualization.

Through kernel code modification, virtualization overhead can be minimized

and we can obtain better performance as compared to full virtualization binary

translation. However, it is possible to modify open source OS kernel code such

as Linux, but it is hard and impossible to modify OS kernel code of other OSs

such as Microsoft. Eventually, paravirtualization does not support a wide range

of OSs. In addition, PV can not modify older version of open sources OS kernel

codes that are already in use.

Hardware Assisted Virtualization

Hardware Assisted Virtualization (HAV) is the latest virtulization technology. In

HAV, the guest OS runs in isolation without modifying its kernel code. Latest

processors provide the necessary support for virtualization in HAV [4, 8, 18]. Since

2006, hardware vendors (Intel and AMD) produce virtualization aware processors
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and provided a new CPU exaction mode know as root mode [41]. In root mode

they hypervisors run directly on the top of hardware to take control of both

hardware and guest OS in a new layer below ring 0 as depicted in Figure 2.7.

Furthermore, OS sensitive and privileged requests are automatically trapped by

the hypervisor and binary translation, hypercall are no longer required [4, 8, 18].

Intel and AMD produce virtualization aware processors that simplify virtual-

ization. Both manufacturers provide a new CPU execution mode known as root

mode that enabled the hypervisor to run in a layer below ring 0 to take control of

the guest OS. Using HAV, sensitive and privileged instructions are automatically

trapped by the hypervisor removing the need for binary translation or paravirtu-

alization [18]. In addition, HAV provide excellent compatibility to support a wide

range of OSs regardless of kernel modification. HAV, can not be used on old x86

platform and requires second generation hardware (virtualization assisted hard-

ware). Citrix xenServer, Hyper-V, KVM, and VMware EXSi hypervisors support

hardware assisted virtualization.
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CHAPTER 3

RELATED WORK

In the next two subsections, we discuss recently published papers in order to in-

vestigate the impact of vCPU-pCPU matching, vCPU-VM assignment, and the

impact of hypervisors on CPU utilization. Furthermore, we study the implemen-

tation environments used to conduct the performance evaluation. Other factors

such as the nature of virtualization type (i.e., full virtualization, para virtualiza-

tion, or hardware assistance virtualization) are also investigated and summarized.

3.1 Hypervisor Evaluation

Charles David [28] analyzed two types of virtualization namely paravirtualization

and hardware assisted virtualization using open sources virtualization platforms

KVM (RHEL 5.3 64bit) and Xen 3.1.2 hypervisors on CMP system. The au-

thor measured the throughput and overall performance of the hypervisors using

PTS benchmarking tool under various levels of workload and compared different

system attributes including CPU usage, memory access rate, and I/O operations.
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Unfortunately, the author randomly assigned vCPUs to VMs which caused perfor-

mance degradation. The author did not analyze the root cause of the performance

degradation.

Babu et al. [29] evaluated the system performance of three hypervisors. The

authors had opted Xen-PV, OpenVZ, and XenServer for para virtualization, con-

tainer virtualization, and full virtualization, respectively. They compared the

performance of these techniques based on Unixbench benchmarking tool. They

observed that the hypervisor which supports full virtualization has a compara-

tively higher system performance in terms of file copy, pipe based context switch-

ing, process creation, shell scripts, and floating point operation than the other

two virtualization types. However, the authors did not investigated the effects of

vCPU-VM and vCPU-pCPU. Moreover, the authors only used one virtual ma-

chine for their evaluation.

C. Mancas [30], used Passmask benchmarking tool and evaluated VMware

and KVM hypervisors for CPU, memory, and I/O performance. They observed

that overall VMware behaves better than KVM. However, there are cases, such as

memory and HDD in which KVM overtakes VMware. Like [29], the author used

a simple test case in which he used XP as a guest OS.

S. Varette et al. [15] evaluated energy-efficiency of VMware ESXi 5, KVM

0.12 and Xen 4.0, using NUMA architecture using HPC implementation. The

authors used HPL benchmarking tool and the Grid 5000 platform to investigate

the performance of different hypervisors in a well-regulated and similar to HPC
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environment. The authors concluded that there is a sustainable performance

impact introduced by the virtualization layer across all types of hypervisors.

Hwang et al. [4] investigated open source and commercial hypervisors (Hyper-

V 2008R2, vSphere 5.0, KVM 2.6.32-279, and Xen 4.1.2). The authors stated

that there is no impact by increasing the number of virtual CPUs on performance

from one vCPU up to four vCPUs on all hypervisor. In our work, we will show

that there is a high impact of vCPU on performance.

Graniszewski et al. [17] evaluated open source and commercial hypervisors

(Hyper-V, ESXi, OVM, Virtual Box, and Xen) like Hwang et al. [4] investigated,

but in [17] the authors used the latest version of each hypervisor in CMP archi-

tecture. Moreover, they included type II hypervisor in their experiments to show

the difference as well. More important, they criticized the work of M. Kedziora

[42] by stating that ”Since 2012 the VMware is the market leader, followed by

Microsoft”. Graniszewski et al. [17] recommended that Xen is the best choice for

the small size organization while VMware and Microsoft Hyper-V are good for

enterprise but they are more expensive than Xen. However, the authors did not

investigate the effect of vCPU-VM and vCPU-pCPU for hyper threading enabled

NUMA architecture for each hypervisor.

Sogand et al. [43] compared the performance of three hypervisors: VMware

EXSi 5.0, Xen 3.0.13 and KVM using two quad core CPUs with hyperthreading

enabled (i.e., total 16 logical CPU) and 4x146 GB Hard Drive. As a guest OS,

the authors installed RedHat Enterprise Linux 6.2 on each hypervisor. According
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to their measurements, no single hypervisor has the best performance for CPU

utilization, disk utilization, response time, and downtime: VMware and KVM

performed better in terms of application response time and CPU utilization as

compare with Xen, but Xen performed well during live migration and showed less

downtime than KVM and VMware. However, the authors did not show the actual

work perform by each hypervisor during CPU utilization. Furthermore, they only

conducted their experiments on two VMs running on each host machine with three

different vCPU-VM configurations (6 vCPU, 12 vCPU, and 16 vCPU) such that

they did not consider over allocation of vCPU-VM configuration. It should be

noted that the latest state-of-the-art hypervisors supported to assign more than

16 vCPUs to VM [44]).

3.2 vCPU-pCPU Mapping and vCPU-VM Con-

figuration

Zong et al. [19] analyzed the impact of the non-uniform virtual CPU and vCPU-

pCPU mapping on CMP system using Xen 3.4.0 hypervisor. The authors investi-

gated the impact of non-uniform vCPU-pCPU mapping by running multithreaded

applications (Apahe and TPC-H). The authors concluded that both dynamic and

static non-uniform vCPU-pCPU mapping have the same performance implication

i.e., negative impacts. Furthermore, the authors found out that the application

performance instability such as throughput has a linear relationship with the de-
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gree of non-uniformity. For instant, the performance will be more stable if each

pCPU have the same number of vCPU. However, The authors did not test and an-

alyze the impact of vCPU-pCPU mapping on NUMA system and hyper threading

enabled architecture.

Yuxia and Wnzhi [45] investigated the impact of VMs scheduling on multicore

systems. They applied different VM-mapping combinations using KVM hypervi-

sor and NAS benchmark. They concluded that if the number of threads increases

(i.e., number of threads more than pCPUs), then the scheduler used in KVM

hypervisor can not work effectively in multicore NUMA architecture due to the

NUMA unaware property of CFS algorithm used in KVM. In addition, the au-

thors in [45] found out that due to the dynamic behavior of co-running VMs,

the overall performance and VMs scheduling strategy will be affected. It should

be noted that the latest hypervisors are NUMA aware [46, 47]. Therefore, the

findings of [45] might not apply to the state-of-the-art hypervisors.

Sogand and Lars. [45] studied the performance implication of over allocation of

vCPUs to VMs at NUMA architecture, using VMware ESXi 5.5 hypervisor. They

observed that the performance could decrease up to 20% when there is a massive

over-allocation of physical CPU resources. Moreover, the best performance was

gained when there were only a few VMs with no over-allocation. Such work is

different from our work. Authors tested different hypervisor than us. We tested

Citrex xenServer and KVM hypervisors. Also, the authors did not investigate

vCPU-pCPU mapping.
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The summary of related work is shown in Table 3.1. As a summary of our

related work, we leave the reader with Table 3.1 to compare the work done by

each paper. As we see in Table 3.1, most of the authors analyzed and compared

various hypervisors without investigating the effect of vCPU-VM configuration

and vCPU-pCPU mapping. However, some of them analyzed either vCPU-VM

configuration or vCPU-pCPU mapping by using a certain hypervisor.

In this thesis, prior to evaluate the hypervisors (Citrix xenServer and KVM),

the best vCPU-VM configuration as well as vCPU-pCPU mapping strategies is

analyzed for each hypervisor using NUMA architecture. In addition, the effects

of hypervisor, virtual machine allocation, vCPU-VM configuration, and vCPU-

pCPU mappping on performance in terms of CPU utilization are investigated.
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CHAPTER 4

RESEARCH METHODOLOGY

AND EXPERIMENTAL

DESIGN

In this chapter, we introduce our proposed methodology as well as our experimen-

tal design. Subsection 4.1 starts with some research questions that will influence

our research methodology and our experimental setup. In subsection 4.2 and 4.3,

we discuss our proposed methodology and methodology architecture. We discuss

experimental design in subsection 4.4.

4.1 Research Questions

To properly design and conduct an evaluation environment, an answer to some

research questions must be found. These questions are listed as follows:
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1. What is the effect of hypervisors such as Citrix xenServer and KVM on CPU

utilization?

2. What is the effect of virtualization technology on performance?

(a) What is the effect of VM on performance?

(b) What is the effect of vCPU on performance?

(c) What is the effect of vCPU-pCPU pinning strategies on performance?

4.2 Proposed Methodology

In our evaluation process, we want to follow a systematic problem-solving ap-

proach [48, 49]allowing us to scientifically deliver our contributions explained in

section 1.4. In this study, empirical method [48, 49] is used which is based on

evidence, observations, and experiments.

As shown in Figure 4.1, the proposed methodology consists of six steps. In

the first step, we presented our research objectives. In the second step, we con-

ducted a literature review for our research objectives, to investigate the effect of

the virtualization layer, vCPUs-VMs allocation, and vCPUs-pCPUs matching on

performance. In step three, we built an experimental design and selected an ap-

propriate approach to achieved our research objectives. Performance evaluation

is presented in step four. In step five, we calculated statistics from experiments.

Finally, in step six, we analyzed and drew meaningful conclusions from our work.
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Figure 4.1: Proposed Methodology

Figure 4.2: Proposed Methodology Architecture
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4.3 Methodology Architecture

Our architecture, as shown in Figure 4.2, starts with two identical physical servers.

The specification of these two servers is shown in Table 4.1. We installed two

hypervisors (Citrix xenServer and KVM) on the physical servers. The two physical

machine have similar architecture and specifications in order to achieve a fair

assessment. Next, we created virtual machines running Ubuntu 16.04 as a guest

OS. We built virtual machines on each hypervisor in order to provide the test

environment. Finally, the PTS benchmarking tool is installed on each virtual

machine as a traffic generator and analyzer

4.4 Experimental Design

Various experiments were conducted for CPU utilization using two sate-of-the-art

hypervisors. Before starting our main experiments, we investigated the effect of

virtualization layer on elapsed time. It should be mentioned that we tested only

CPU bound operations. In order to investigate and choose the best vCPUs-VMs

allocation and mapping strategy for better CPU utilization and maximum perfor-

mance. We focused our test measurement for under allocation (i.e., the number

of vCPUs less than available logical CPUs), balance allocation of vCPUs to VMs

(i.e., equally divided available logical CPUs among VMs), and over-allocation (the

number of vCPUs more than available logical CPUs) and vCPU-pCPU mapping

strategies.

PTS benchmarking tool is used to generate the workload and analyze the re-

36



Figure 4.3: Experimental Design

Figure 4.4: One Solution of N-Queens Problem (8 x 8 board) [5]
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sults and a detailed evaluation is conducted to measure elapsed time and CPU

utilization. PTS contains a variety of test profiles. For CPU bound operations,

we chose two important test profiles called N-Queens and John-the-Ripper bench-

marks. Workloads were generated using N-Queens benchmark, which report the

elapsed time in seconds. We also measured the CPU utilization at hypervisor level

for both hypervisors using Linux Top command.

4.4.1 N-Queens Benchmark

N-Queens is an open-source OpenMP benchmarking tool [27] that solves the N-

Queens problem. N-Queens problem is a classical combinatorial problem, widely

used as a benchmarking tool by researchers for CPU-intensive calculation that

have different workloads and simple structure [50, 51]. The problem involves

placing N queens on an N x N chessboard such that no queen can attack any

other. Thus, a solution requires that no two queens share the same row, column,

or diagonal. It is also used to test how the various hypervisors perform under

calculation intensive operations [50, 51]. The N-Queens problem sizes are shown

Table 4.1: Specification of the Servers

Specifications Server 1 Server 2

Hardware Model Intel Xeon Intel Xeon
Processor Speed 2 GHz 2 GHz
CPU Processor 12 Cores 12 Cores
Logical Processors 24 cores 24 cores
Main Memory (RAM) 64 GB 64 GB
Storage Capacity 1024 GB 1024 GB
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Table 4.2: N-Queens problem with elapsed time (seconds)

Board Size
(N x N
chessboard)

Number of Solutions
to N Queens Problem

Without Virtu-
alization

Using
xenServer

Using
KVM

1 1 <0 <0 <0
2 0 <0 <0 <0
2 0 <0 <0 <0
4 2 <0 <0 <0
5 10 <0 <0 <0
6 4 <0 <0 <0
7 40 <0 <0 <0
8 92 <0 <0 <0
9 352 <0 <0 <0
10 724 <0 <0 <0
11 2680 <0 <0 <0
12 14200 <0 <0 <0
13 73712 <0 <0 <0
14 365596 <0 <0 <0
15 2279184 <0 <0 <0
16 14772512 <0 <0 <0
17 95815104 3.38 3.46 3.56
18 666090624 23.28 23.56 23.75
19 4968057848 191.5 193.72 201.18
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in Table 4.2. As the problem size increases, the corresponding possible solutions

and the elapsed time to solve the problem also increasing. For a regular-sized

board (8 x 8), there are 92 distinct solutions, one of them is shown in Figure 4.4.

In this thesis, we tested each hypervisor for different queens size ranges from 4 to

19.

4.4.2 Test Configurations

This evaluation is composed of two main experiments; Citrix xenServer-based

setup and KVM-based setup as shown in Figure 4.3. We have four main factors

in our experimental design namely: type of hypervisor, VMs, vCPUs, and work-

load. The objectives of these test configurations are to investigate the effects of

hyperviosr, VM, vCPU, and pinning strategies on performance. Fore every ex-

periment setup, six test cases and nine vCPU-VM configurations are presented.

Figure 4.3 illustrates the experimental design and the details of each test configu-

ration. In Figure 4.3, there are two different hypervisors, each hypervisor has six

different test cases. Each test case has nine different deployments i.e., allocation

of vCPUs to VMs. In every deployment, we run N-Queens benchmark for sixteen

different workloads (i.e., total 2 x 6 x 9 x 16 = 1728 experiments).

Each experiment is conducted on an identical separate server. Therefore, all

the hardware resources of the server are fully dedicated for each hypervisor and

the results obtained are fairly and reliably analyzed.
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4.4.3 Test Cases

In these test cases, we gradually increase the number of active VMs on the top of

each hypervisor and vary the number of vCPUs inside VM as well as the workload.

The aim is to examine how the number of deployed load on a system and different

vCPUs-VMs configuration will effect the overall performance in terms of CPU

utilization and elapsed time.

One Virtual Machine

To evaluate the effect of hyperviosr, VMs, and vCPUs on performance, only one

VM is running by having different vCPUs configuration. We focused on our

test measurement for under allocation, balance, and over-allocation of vCPU-VM

configuration to investigate the effect of each factor on performance.

We started our test configuration with the simple case; one VM has two vCPUs

using N-Queens benchmark for different workload i.e., problem size range from 4

to 19. We measured average CPU utilization in percentage at VM level the elapsed

time for each N-Queens problem size. Then, we gradually increased the number

of vCPUs in the same VM (i.e., 4, 8, 12, 16, 20, 24, 28, and 32 vCPUs) until we

investigated the best vCPU-VM configuration for which maximum performance

was obtained in terms of CPU utilization and elapsed time. In addition to this,

to investigate the effect of virtulization layer for CPU bound operations, we run

one VM on the top of both hyperviosrs and allocate all physical CPU resource to

one VMs (e.g., one VM having 24 vCPUs).
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Two Virtual Machines

To further analyze the effect of VMs and vCPUs on performance, we doubled the

number of active VMs and performed nine different experiments (vCPUs-VMs

deployment) like we did in ‘One Virtual Machine’ test case.

Four Virtual Machines

In this case the number of active VMs are doubled than case two (total active

VMs are four). The vCPUs-VM configurations are the same as for case one.

Six Virtual Machines

In this case, the number of active VMs are six, the rest of the configurations are

the same as for case one.

Eight Virtual Machines

In this case, the number of active VMs are doubled (i.e., three times of case two

and two time of case four), the other configurations are the same to as case one.

Moreover, to investigate the effect of pinning strategies and the importance of over

allocation of computing resources, we performed four different experiments using

eight concurrent VMs. The aim was to observed the significance of over allocation

of vCPUs and select the best vCPU-pCPU mapping strategies for better CPU

utilization.
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Twelve Virtual Machines

In this case, the number of active VMs are twelve. The rest of configurations

remains the same as for case one.
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CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, the results have been discussed that were obtained using the PTS

benchmarking tool. The objectives of these experiments are to investigate the

effects of hyperviosr, VM, vCPU, and pinning strategies on performance. The

experimental results are shown in Figures 5.1 - 5.11 and Tables 5.1 - 5.3.

5.1 The Effect of Virtualization Technology

This test is designed to investigate the effect of virtualization technology layer

(hypervisor) on performance in terms of CPU bound operations. For this test,

only one VM allocated 24 vCPUs, having Ubuntu 16.04 as a guest OS, running at

the top of both hypervisors, as well as a host OS on a bare-metal (non virtualized)

machine. This test is performed using two powerful servers, server specifications

are shown in Table 4.1. In this experiment, the N-Queens benchmark is used as

a stress test to judge the virtualization overhead for CPU bound operations. The

performance (elapsed time) of non virtualized machine against commercial and
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Figure 5.1: The effect of Virtualization Layer using N-Queens benchmark

open source hypervisor are given in Figures 5.1 and 5.2. Figure 5.1 illustrates

the effect of virtualization on performance using three different workloads (17,

18 and 19; which is low, medium, and high workload) of N-Queens benchmark.

The results illustrate that for low and medium workload there is no significant

performance overheard but for heavy workload a low performance overhead is

observed i.e., performance is decrease by 0.6% and 5% using Citrix xenServer

and KVM respectively. One of the reason of performance reduction for heavy

workload is that when we used heavy workload there are more context switching

due to high elapsed time (i.e., CPU cycle are wasted instead of being utilized by

vCPUs) and NUMA processor affinity between vCPUs as compared to low and

medium workload.

To ensure that the CPU utilization (i.e., elapsed time) seen with N-Queens

benchmark was not an anomaly, John-the-Ripper benchmark (CPU bound oper-
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Figure 5.2: The effect of Virtualization Layer using John-the-Ripper benchmark

ation) is used as a benchmark with the same settings. Figure 5.2 shows the result

of Jon-the-ripper. Both benchmarks were run six times, and the results were av-

eraged. Both results illustrated that for CPU bound operations using only one

VM and consuming all CPUs, the virtualization overhead is almost minimal.

E = t(α/2) ∗ s/
√
n (5.1)

Both benchmarking results are statistically verified using equation 5.1. Where

E is the maximum error with one degree of confidence, (alpha) using two tail dis-

tribution, s is the standard deviation, and n is the number of samples. Confidence

Interval (CI) with 95% significance level and p value is calculated. CI levels over-

lap with each other and p value is less than 0.05. So, the results are significant

and there are no significant differences among the results.
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5.2 The Effect of Virtual Machines on Perfor-

mance

To investigate the effect of VMs on performance. In these experiments, we vary

the number of VMs running on the top Citrix xenServer and KVM hypervisor.

We also vary the number of vCPUs allocation to VMs as well as the workloads,

as already discussed in chapter 4. For both hypervisors total 1728 (2 x 16 x

6 x 9) observations were obtained where (2) is the number of hypervisors used

in our experiments, (16) represents workloads, (6) shows different test cases of

VMs running on top of each hypervisor, and (9) represents different vCPU-VM

configurations. Out of 1728 obtained observations, the significant observations

(324 = 3 x 2 x 6 x 9) were found significant for CPU utilization as shown in

Tables 5.1 and 5.3. Based on the possible solutions and elapsed time, we chose

problem size 17 (low), 18 (medium) and 19 (heavy) workload.

Furthermore, for each experiment, the average CPU utilization in percentage

at hypervisor level is measured. But, only CPU utilization in percentage is in-

sufficient to investigate the effect of VMs on performance, especially when the

CPU utilization level is 100% . Then, we can not judge the effect of VMs on

performance. Therefore, the elapsed time to solve the N-Queens problem was cal-

culated to trace how much actual work is performed by CPU. In the remaining of

the thesis, we focused on elapsed time instead of CPU utilization in percentage.

To systematically investigate the effect of VMs on performance, we performed

three main experiments: under allocation, balance allocation, and over alloca-
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Figure 5.3: The effect of Virtual Machines on Performance - Under allocation

tion of computing resources. We discussed the details of each experiment in the

following subsections.

5.2.1 Under Allocation

Under allocation is the case in which the total number of vCPUs assigned to

VMs are less than the total logical CPUs. Based on user configuration for under

allocation, the physical CPU cores are not fully utilized as shown in Figures 5.9

and 5.10. As a result, poor performance in terms elapsed time in seconds can be

expected.

Figure 5.3 shows the effect of VMs on performance for under allocation of

computing resource on two different hypervisors. In this experiment, the number

of vCPUs are kept fixed (i.e., total 16 out of 24 vCPUs are allocated to VMs),

while the number of VMs and workload are increased from one VM to eight VMs

and low workload to high workload, respectively. As the number of concurrent
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VMs increases, the elapsed time in seconds also increases i.e., nearly double for

each workload. In a cloud environment, under allocation is not recommended due

to the poor performance in terms of CPU utilization. Moreover, we can not run

many VMs per our need, because the performance of the system decreases with

increases in number of VMs. In order to achieved better performance (i.e., low

elapsed time to solved N-Queens problem) and maximum CPU utilization, we

need to consume all CPUs. Therefor, we carried out experiments and discussed

in subsection 5.2.2 for balance allocation, where all the CPU cores were allocated

to active VMs.

5.2.2 Balance Allocation

The maximum performance (i.e., low elapsed time) can be achieved if 100% CPU

is utilized (24 out of 24 CPU logical CPUs are utilized), which is one of the main

objectives of cloud computing. In balance allocation, physical CPU is utilized

100% as shown in Figures 5.9, 5.10. Figure 5.4 depicts the effect of VMs on

performance using Citrix xenServer and KVM hypervisors for balance allocation.

In balance allocation, the number of vCPUs were kept fixed, while the number of

workload and active VMs varied. In this experiment, 24 out of 24 logical CPUs

were equally divided among VMs, such as: 24 CPUs cores were assigned to one

VM; 12 vCPUs, 6 vCPUs, 4 vCPUs, 3 vCPUs and 2 vCPUs were allocated to

other five test cases.

Figure 5.4 illustrates the effect of VMs on performance using balance alloca-
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Figure 5.4: The effect of Virtual Machines on Performance - Balance allocation

tion. By comparing the results of balance allocation with under allocation, in

every test case and workloads, the improved performance (better elapsed time)

was achieved as shown in Figure 5.6.

If we compare the average elapsed time of each test case, inside balance allo-

cation test configuration (1 VM with 2 VMs; 2 VMs with 4 VM; 4 VMs with 8

VMs) using any workload, the average elapsed time is almost double, although

the CPU utilization level is 100%. In one VMs test case, total available physical

CPU resources (24 out of 24 logical CPUs) are allocated to one VMs. Therefore

the total elapsed time is minimum. For two VMs test case, the VMs time share

the CPU resources such as 50% CPU is be used by VM1 and 50% is used by VM2,

therefore the elapsed time is almost double (98% increase) by comparing with one

VM test case and so on.

We used linear regression model [52] for balance allocation to predict the future

elapsed time (i.e., if more or less than 12 VMs are running) using the following

formulas:
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Y = β0 + β1 ∗ VM (5.2)

β0 =
(
∑
Y ) ∗ (

∑
VM2)− (

∑
VM) ∗ (

∑
VM ∗ Y )

n ∗ (
∑
VM2)− (

∑
VM)2

(5.3)

β1 =
n ∗ (

∑
VM ∗ Y )− (

∑
VM) ∗ (

∑
Y )

n ∗ (
∑
VM2)− (

∑
VM)2

(5.4)

Where Y is the dependent variable (elapsed time) and plotted it on Y-axis.

VM is the independent variable and plotted at on the X-axis which is the number

of active VMs running on the top of hypervisor. Beta 1 is the slope of the line and

Beta 0 is the Y-intercept [53]. Using equation 2, elapsed time can be predicted

from active VMs by the following equations:

ElapsedT ime(Sec)Citrix = −4.8 + 195.45 ∗ activeV Ms+− ε, R
2 = 0.99 (5.5)

ElapsedT ime(Sec)KVM = −10.3 + 195.45 ∗ activeV Ms+− ε, R
2 = 0.99 (5.6)

Both prediction models shown in equation 5.5 and 5.6 give a strong prediction

for new observations due to the R square values which are very close to 1. We

also calculated the CI considering the significant level as 95% for each workload
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Figure 5.5: The effect of Virtual Machines on Performance - Over allocation

and for 6 test cases, namely: 1 VMs, 2 VMs, 4 VMs, 6 VMs, 8 VMs and 12 VMs.

It is clear that all CIs levels and means do not overlap with each other. This is

an indication of decrease in performance by increasing the number of concurrent

VMs from one to N, where N is the number concurrent VMs.

Figure 5.4 also illustrates the comparison between Citrix xenServer and KVM

hyperviosr for three different workload. It’s clearly shown that for each workloads

no significant difference was identified in either of the hypervisors.

5.2.3 Over Allocation

Figure 5.5 illustrates the effect of VMs on performance using over allocation (i.e.,

total 32 vCPUs are allocated to VMs). However, Figure 5.6 depicts a compari-

son among all test cases (under, balance, and over allocation). In case of under

allocation, 16 vCPUs were assigned to each VM. In addition, in case of balance

allocation, 24 vCPUs were allocated to each VM, 32 vCPUs were configured per
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Figure 5.6: The effect of Virtual Machines on Performance

VM in case of over allocation. The performance (elapsed time) of over allocation

and balance allocation were found analogous for two different workload. However,

anomalous behavior of lowest performance (elapsed time) was shown by under

allocation results for medium and heavy workloads. Therefore, it is needed to

allocate a suitable vCPUs for each VM for better performance. The significance

of vCPU-VM allocation will be discussed in details in subsection 5.3.

5.3 The Effect of Virtual CPUs on Performance

The cloud service providers are interested to know how much resources (vCPUs-

VMs) should be allocated for maximum performance. Since large number of VMs

are running in cloud environment and sharing physical computer resources, a risk

of poor performance arises due to over allocation of physical CPU resources. These

performance bottlenecks should be investigated, quantified, and avoided.

Here, we are testing the impact of vCPU assigned to VM. Previous studies

[21, 43] showed that the system performance could be affected by using different

ways of the pCPUs. Each virtual machine is configured with a number of vCPUs.
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Figure 5.7: The effect of Virtual CPUs on Performance - Citrix xenServer

Figure 5.8: The effect of Virtual CPUs on Performance - KVM
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Figure 5.9: Total CPU Utilization at Hypervisor Level - Citrix xenServer

Figure 5.10: Total CPU Utilization at Hypervisor Level - KVM
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The performance of a VMs having eight vCPUs will be doubled as compared to

four vCPU-VM configuration (e.g., balance and under allocation). One can decide

to use available pCPUs in two opposite ways such as by using few VMs having

large number of vCPUs, or large number of VMs having small number of vCPU.

Figures 5.7 and 5.8 show the elapsed time in second for different vCPUs con-

figurations (vi.e, CPU-VM configuration are 2, 4, 8, 12, 16, 20, 24, 28, and 32

vCPUs) using heavy workload (problem size 19). In both figures, the number of

active VMs increases from 1 to 12 with nine different vCPUs-VM configuration.

From both figures, it is clearly seen that, the performance is improved by allocat-

ing more vCPUs to VMs. However, there is a performance threshold for vCPUs

i.e, 24 out of 24 logical CPUs are consume. After the threshold, no significance

improvement was observed. The similar trend was observed in the data presented

in Tables 5.1 and Table 5.2, where the performance was decreased after crossing

the threshold. In One VM test case, the effect of over allocation of vCPUs to

VMs was low, but it was significantly high for other test cases. The time sharing

of CPU resources by VMs, in case of over allocation, could be the possible reason.

That why, there was no or very small time sharing in balance allocation. Time

sharing increases the number of context switches among VMs. The overhead, due

to excessive context switching between VMs and NUMA processor affinity, will

result performance reduction, and CPU cycle will be wasted instead of being uti-

lized by the VMs. After further analysis, higher performance implication of over

allocation was observed in 6, 8, and 12 VMs tests cases as compare to the other
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Figure 5.11: Mean Elapsed time of Hypervisor, VMs, and vCPUs

test case (1,2, and 4). In addition to this, the CPU utilization for Citrix xenServer

and KVM are given in Figures 5.9 and 5.10. Both figures show CPU utilization

in percentage at hypervisor level i.e., how much the VMs are using the physical

CPU resources.

5.3.1 Concluding Remarks

In this section, we summarized the effect of hyperviosrs, VMs, and vCPUs on

elapsed time. Figure 5.11 illustrates the mean of elapsed time in seconds for two

hypervisors, active VMs, and vCPUs assigned to VMs using heavy workload. The
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results reveal that mean elapsed time of both hypervisors are similar for active

VMs as well as for vCPUs per hypervisor. So, for CPU bound operations, there is

no significance difference to use commercial or open source hypervisor. The results

also depict that by increasing the number of active VMs from one to twelve VMs,

the performance will be decreases by 1106% i.e,. elapsed time to solve the N-

Queens problem increased. In addition, it is clearly seen that, the performance

is improved by allocating more vCPUs to VMs. However, there is a performance

threshold for vCPUs (i.e., balance allocation of vCPUs). After the threshold, no

significance improvement was observed.

5.4 The Significance of Over Allocation

The over allocations of vCPUs to VMs is also important in a cloud environment.

If a cloud service provider did not use over allocation of vCPUs, they may not be

able to use all the physical cores after live migration or idle VMs. For instance,

there is one host with 24 CPU cores, and there are two VMs running on the host

and each VM has 12 vCPUs. If one VM is migrated to another host, crashed, or

become idle then twelve physical CPU cores will not be used, although one VM

is overloaded. However, if each VM configure more than 24 vCPUs then there

would be enough vCPUs to utilize by overloaded VM after live migration or idle

VM.

To highlight the significance of over allocation of vCPUs on performance,

we performed two more experiments namely: uniform vCPUs and non-uniform
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vCPU-VMs configuration. In addition, we compared two pinning strategies based

on the same experiments. The details are given in the following subsections.

Uniform vCPUs-VMs Allocation

In uniform vCPU configuration, each active VM has the same number of vCPUs

but no over allocation. In this experiment, we vary the pinning strategies and

fixed the number of VMs (eight VMs), vCPUs (i.e., each VM allocated three

VCPU, total vCPUs = 8 x 3 = 24), and also fixed the number of workloads (low,

medium, and high). Two out of eight VMs will run a low workload, two of them

with medium workload while the reaming four VMs will run the heavy workload.

Figure 5.12 illustrates the uniform vCPU-VM configuration for two vCPU

pinning strategies; pinning and no pining strategy. In no pinning strategy, the

hypervisor is free to schedule domain’s vCPUs on any pCPUs. While in pinning

strategy the hypervisor is free to schedule the Dom0 (hypervisor) vCPUs on any

pCPUs and other active VMs’ vCPUs are statically pinned to user define logical

CPUs. We discussed the pros and cons of pinning and no pinning in section 5.5.

To investigate the effect of vCPUs on uniform vCPUs, we have run two differ-

ent experiments with eight VMs each. The purpose of assigning different work-

loads to VMs, while keeping the same vCPUs configuration, was to investigate

the effect of over allocation and pinning strategies. Figure 5.12 shows that after

26 and 28 seconds (depending on pinning strategies), the VMs having low work-

load become idle, due to low workload they finished their task early as compare to

medium and high workload VMs. The other six VMs were still busy. However, the
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Figure 5.12: The effect of Virtual CPUs on Performance - Uniform vCPUs per
VMs

Figure 5.13: CPU Utilization for Uniform vCPUs
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CPU utilization level dropped from 100% to 77% as shown in Figure 5.13. After

180 and 182 seconds (depending on pinning strategies), the VMs having medium

workload become idle. Now four VMs out of eight VMs are idle while other four

are still busy due to heavy workload. Thus, the average CPU utilization level

drops to 52%. So, there was no significant difference among pinning strategies

(pinning strategies have no effect on under allocation and balance allocation of

vCPUs-VMs). For better CPU utilization, the optimum vCPU-VMs configura-

tion is needed. In the next subsection, we will discussed the non-uniform vCPUs

test configuration by which CPU utilization and performance (in terms of elapsed

time) can be improved.

Non-uniform vCPUs-VMs Allocation

In non-uniform vCPU configuration, each active VM has the same vCPUs like

uniform configuration, but we used over allocation. In this experiment, we vary

the pinning strategies and fixed the number of vCPUs (6 vCPUs per VM), the

number of VMs (8 active VMs), and the number of workloads (low, medium, and

high). Two out of eight VMs will run a low workload, two of them with medium

workload while the reaming four VMs will run the heavy workload. The aim of

over allocation of vCPUs, in this experiment was to utilize all the physical cores

after idleness of VMs. Because four VMs were busy due to high workload and

other four VMs which having low and medium workload will be became idle due

to low and medium workload.

Figure 5.14 shows the significance of over allocation of vCPUs and the result
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Figure 5.14: The effect of Virtual CPUs on Performance - Non-uniform vCPUs
per VMs

Figure 5.15: CPU Utilization for Non-uniform vCPUs

62



of two pinning stratagies. It is shown, that after 28 and 26 seconds (depending

on pinning strategies), the VMs having low workload became idle. The other

six VMs having medium and high workload were still busy. But, this time the

CPU utilization level for no pinning strategy did not drop from 100% as shown in

Figure 5.15. Based on pinning strategies, the hypervisor may or may not assign

the idle vCPUs of two idle VMs (having low workload) to VMs having the medium

and high workload while no pinning strategy assign the idle vCPUs to medium

and heavy workload VMs. After 180 and 178 seconds (depending on pinning

strategies), the VMs having medium workload also became idle. Now, four out of

eight VMs are idle while four are still busy due to the heavy workload. The no

pinning strategy takes the advantage of over allocation of vCPUs, by using the

free vCPUs. In addition, the CPU utilization level for no pinning strategy did not

drop from 100% as shown in Figure 5.15. As a result, the performance (elapsed

time) is improved and the elapsed time to solved the N-Queens problem for the

heavy workload is minimized (i.e., almost half as compare with other two pinning

strategies). While the pinning strategies can not utilize the free vCPUs, because

it is restricted to run on particular vCPUs. In conclusion, pinning strategies have

effect on over allocation (vCPUs-VMs) and better performance (elapsed time) and

higher CPU utilization can be achieved using over allocation of vCPUs-VMs with

no pinning strategy.
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Figure 5.16: Normal distribution of Elapsed time (sec), Uniformed vCPU alloca-
tion

5.5 The Effect of Pinning Strategies on Perfor-

mance

We already discussed the effects of pinning and no pinning on performance in

subsection 5.4. Here, we briefly discuss the pros and cons of both strategies.

The effect of pinning strategies depends on workload types and vCPUs-pCPU

allocation (under, balance, and over allocation). Figures 5.16 and 5.17 show nor-

mal distribution of elapsed time (sec) for two pinning strategies. For uniform

vCPU allocation, it seems that both pinning strategies have similar normal dis-

tribution curve. But pinning strategy gives more stable performance for heavy

workload i.e., mean and standard deviation of pinning strategy is 3%, 71% respec-

tively lower than no pinning strategy as shown in Figure 5.16.
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Figure 5.17: Normal distribution of Elapsed time (sec), Non-uniformed vCPU
allocation

Nevertheless, the no pinning strategy having Non-uniformed vCPUs alloca-

tion performed better than pinning strategy as shown in 5.17. The elapsed time

decrease by 74.78% for no pinning strategy.
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Table 5.1: Elapsed time (sec) to solve N-Queens problem using Citrix xenServer

P. Size Number of Active Active Active Active Active Active
vCPUs VMs: 1 VMs: 2 VMs: 4 VMs: 6 VMs: 8 VMs: 12

17

2 26.53 29.54 29.14 30.42 40.00 36.24

4 13.59 15.06 15.36 10.78 21.90 37.67

8 6.92 7.19 8.35 10.86 22.08 40.24

12 4.86 5.09 8.44 10.97 22.89 40.66

16 4.26 5.62 8.99 11.23 23.22 41.28

20 3.81 5.81 9.15 11.87 23.78 42.22

24 3.46 5.88 9.44 12.33 24.03 42.50

28 3.49 5.99 9.23 13.23 25.76 43.20

32 3.46 5.80 10.33 14.85 26.06 44.33

18

2 183.14 195.50 197.10 199.71 232.15 279.33

4 109.57 97.49 120.51 145.66 173.88 282.73

8 47.94 56.48 91.05 147.33 174.33 284.19

12 33.28 44.90 91.67 147.98 176.56 288.30

16 29.23 44.99 92.34 149.50 177.87 292.76

20 26.04 45.15 92.99 152.87 178.33 294.73

24 23.56 45.36 93.23 153.20 178.99 295.22

28 23.60 46.33 94.08 154.89 179.82 296.61

32 23.66 47.07 94.45 155.01 180.23 297.84

19

2 1509.53 1555.39 1591.24 1723.40 1876.00 2337.68

4 800.55 803.41 959.75 1188.84 1565.33 2347.59

8 402.55 476.67 768.80 1188.33 1579.87 2355.33

12 273.76 383.88 768.99 1190.65 1582.51 2364.10

16 244.91 383.97 771.22 1192.51 1584.76 2376.72

20 218.16 385.19 773.74 1196.19 1587.09 2383.11

24 193.72 385.33 775.11 1196.23 1591.72 2388.22

28 194.06 386.48 777.61 1197.56 1593.02 2391.71

32 195.7 387.58 779.15 1199.09 1595.01 2398.22
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Table 5.2: Elapsed time (sec) to solve N-Queens problem using KVM

P. Size Number of Active Active Active Active Active Active
vCPUs VMs: 1 VMs: 2 VMs: 4 VMs: 6 VMs: 8 VMs: 12

17

2 27.04 20.43 28.54 31.04 29.52 36.89

4 13.81 14.12 16.49 16.93 22.33 38.29

8 7.28 7.64 11.22 16.99 23.82 40.72

12 6.58 6.45 11.54 17.23 23.97 40.83

16 4.64 6.72 11.89 17.55 24.09 41.22

20 3.91 6.78 12.23 18.23 24.98 42.12

24 3.56 6.85 12.87 18.66 25.20 42.72

28 3.68 7.09 12.54 19.20 25.33 43.80

32 3.70 7.42 13.08 18.48 26.30 44.03

18

2 188.05 141.16 195.20 205.29 206.97 278.36

4 94.27 96.03 118.00 139.81 164.43 283.06

8 48.67 54.71 89.55 141.22 132.67 285.63

12 46.18 47.39 90.56 141.49 149.56 289.98

16 31.98 47.90 90.34 143.31 172.55 290.60

20 26.33 48.64 91.23 145.98 156.80 291.66

24 23.75 48.80 91.44 147.94 149.36 292.25

28 24.58 49.25 92.78 149.66 131.84 294.30

32 24.79 49.55 93.65 151.83 188.23 295.00

19

2 1584.86 1617.69 1616.63 1700.89 1705.34 2329.92

4 778.25 792.54 964.91 1181.50 1554.88 2329.30

8 410.80 456.05 770.89 1183.45 1562.76 2350.07

12 349.86 371.08 772.98 1184.82 1568.32 2364.33

16 260.38 373.60 774.23 1186.23 1572.22 2371.22

20 216.20 374.75 777.87 1188.90 1574.22 2376.00

24 201.18 374.04 778.02 1190.32 1579.85 2382.33

28 203.99 375.03 779.33 1194.67 1584.34 2386.29

32 207.39 377.05 780.55 1197.33 1589.69 2390.76
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Table 5.3: Elapsed time (sec) to solve N-Queens problem using Citrix xenServer
and KVM for balance allocation

Hypervisor Workload Active VMs vCPU per VMs Elapsed Time (Sec)

Citrix xenServer

17

1 24 3.46
2 12 5.09
4 6 10.77
6 4 10.78
8 3 21.77
12 2 36.24

18

1 24 23.56
2 12 44.90
4 6 90.93
6 4 140.31
8 3 172.74
12 2 278.53

19

1 24 193.72
2 12 383.88
4 6 767.30
6 4 1188.84
8 3 1561.92
12 2 2337.68

KVM

17

1 24 3.56
2 12 6.45
4 6 11.07
6 4 16.93
8 3 22.24
12 2 36.89

18

1 24 23.75
2 12 47.39
4 6 89.49
6 4 139.81
8 3 183.62
12 2 278.36

19

1 24 201.18
2 12 370.08
4 6 770.32
6 4 1181.50
8 3 1547.05
12 2 2329.92
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CHAPTER 6

CONCLUSIONS AND FUTURE

WORK

6.1 Conclusions

In this thesis, we tested the most recent hypervisors (open source and commer-

cial) in terms of CPU utilization. This test was conducted in a cloud environ-

ment. Specifically, we analyzed the implication of virtualization technology layer,

vCPU-VM assignment, and vCPU-pCPU mapping on performance in terms of

CPU utilization. In addition, we proposed a suitable vCPUs configuration and

pinning strategies for VMs in cloud environments. This configuration provides

adequate performance in terms of elapsed time and CPU utilization. It should be

mentioned that we tested only CPU bound operations. Cloud service providers

and researchers will get the benefits when they deploy VMs in a cloud environment

or evaluate open source and commercial hypervisors.
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Using CPU bound operations, the results obtained from this evaluation showed

that commercial (Citrix xenServer) and open source (KVM) hypervisors have

similar performance in terms of elapsed and CPU utilization.

As per our observation, the performance of a system would degrade by running

many VMs, improper allocation of vCPUs to VMs, or using unsuitable vCPUs-

pCPUs pinning strategies. Moreover, we have found that elapsed time increases

when there is a massive over allocation of vCPUs.

The experimental results revealed that the best performance (elapsed time)

was gained when there was only a few active VMs with balance allocation and

over allocation (i.e., over allocation using no pinning strategies). In addition,

virtual CPUs to physical CPUs pinning strategies have no effect on performance

for under allocation and balance allocation of vCPUs-VMs. However, better CPU

utilization and low elapsed time were obtained using over allocation of vCPUs to

VM with no pinning strategy.

We suggested that the cloud service providers and researchers should consider

the effects of massive over allocation of vCPUs, VMs, and vCPUs-pCPUs mapping

when they choose deployment strategies for better performance and best CPU

resources allocation.

6.2 Future Work

Migration refers to moving a server environment from one place to another. With

most virtualization solutions it is possible to move a virtual machine from one
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physical machine to another. Migration is typically used to improve reliability

and availability: in the case of hardware failure, the guest system can be moved

to a healthy server with limited downtime, if any. It is also useful if a virtual

machine needs to scale beyond the physical capabilities of the current host and

must be relocated to physical hardware with better performance. CPU utilization

during live migration of virtual machine from one host to another is one of the

future directions for this work.

There are a variety of vendors for the virtualization environment and all of

them claim that their virtualization hypervisor is the best, however they depend

on the used application. The obtained results from our evaluation experiments can

be validated using other commercial hypervisors (VMware, Hyper-V, and RHV).

This will aid the cloud service providers in choosing which hypervisor to use for

their specific needs.

In addition, CPU utilization for I/O bound operations has not been investi-

gated. We used CPU bound operations and evaluated the effects of hypervisor,

vCPU-VM configuration, and vCPU-pCPU mapping on performance. However,

I/O bound operations or the combination of both could be used to get improved

performance in terms of CPU utilization.
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