

©Ibrahim Al-thamary
2017

iii

Dedication to my parents for their guidance,patience, and support.
To my dear lovely wife and to my son for their extra patience.

To whom I know.

iv

ACKNOWLEDGMENTS

All praise is due to Allah, Subhanahu-wa-Taala, for his limitless blessing and

guidance. May Allah bestow peace on his prophet, Muhammad (Peace and

blessing of Allah be upon him) and his family. All my appreciation and thanks to

my thesis advisor, Dr. Talal Mousa Al-Kharobi , for his guidance and help all

the way till the achievement of this thesis. I would like also to thank my thesis

committee members, Prof. Tarek Sheltami and Dr. Marwan Abu-Amara for

their cooperation and constructive comments. All my thanks to the Computer

Engineering Department. My deepest appreciation,thanks ,and acknowledgment

to King Fahd University of Petroleum and Minerals (KFUPM) for the full

support. My thanks also to all my colleagues and friends, who encouraged me a

lot in my way to the achievement of this work. Last but not least, my ultimate

thank and love for my parents, brothers, sisters, son, and my wife for their

endless support and love.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT v

LIST OF TABLES viii

LIST OF FIGURES x

ABSTRACT (ENGLISH) xv

ABSTRACT (ARABIC) xvi

CHAPTER 1 INTRODUCTION 1

1.1 Cloud Computing . 2

1.2 Problem Definition . 4

1.3 Thesis Organization . 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Secret Sharing Scheme . 6

2.1.1 Threshold Secret Sharing Schemes 6

2.1.2 Shamir Secret Sharing Scheme 8

2.1.3 Using Secret Sharing Mechanism to Secure Images 10

2.1.4 Securing Files in the cloud 14

2.2 Base64 Encoding . 16

CHAPTER 3 PROPOSED SCHEME 19

3.1 Saving Files . 24

vi

3.1.1 Preparing the File . 24

3.1.2 Shares Building . 24

3.1.3 Shares Distribution . 25

3.2 Loading File . 26

3.2.1 Secret Reconstruction . 26

CHAPTER 4 EXPERIMENT RESULTS 27

4.1 Create Shares/Encryption . 28

4.2 Reconstruct The Secret/Decryption 31

4.3 Enhance The Result . 35

4.3.1 Create the Shares/Encryption 35

4.3.2 Reconstruct The Secret/Decryption 45

4.3.3 Compression and Decompression 54

4.4 Upload Process. 67

4.5 Download Process. 68

4.6 Conclusion . 69

CHAPTER 5 CONCLUSION AND FUTURE DIRECTIONS 71

REFERENCES 73

APPENDICES 80

APPENDIX A CREATE THE SECRET 80

APPENDIX B RECONSTRUCT THE SECRET 102

VITAE 124

vii

LIST OF TABLES

2.1 Comparison Between the most Important Threshold Secret Sharing

Techniques. 8

2.2 Comparison of Different Secret Image Sharing Mechanism. 15

4.1 Sequential implementation of Creating the Shares and Encryption

using AES of most Popular File Formats. 36

4.2 Parallel implementation of Creating the Shares and Encryption us-

ing AES of most Popular File Formats. 37

4.3 Sequential implementation of Creating the Shares and Encryption

using AES of PDF File Type of Different Sizes. 41

4.4 Parallel implementation of Creating the Shares and Encryption us-

ing AES of PDF File Type of Different Sizes. 43

4.5 Sequential implementation of Reconstruct the Secret and Decryp-

tion using AES of most Popular File Formats. 45

4.6 Parallel implementation of Reconstruct the Secret and Decryption

using AES of most Popular File Formats. 47

4.7 Sequential implementation of Reconstruct the Secret and Decryp-

tion using AES of of PDF File Type of Different Sizes. 50

4.8 Parallel implementation of Reconstruct the Secret and Decryption

using AES of of PDF File Type of Different Sizes. 52

4.9 Uploading Time in Second for Different Files with Different Sizes

in Parallel to Cloud Storage. 67

viii

4.10 Download Time in Second for Different Files with Different Size in

Parallel from Cloud Storage. 69

ix

LIST OF FIGURES

1.1 An Example of Cloud Computing [1]. 3

2.1 Constructions of Secret Sharing. 7

3.1 Saving a File to the Cloud . 20

3.2 SFS Model for Uploading a File to the Cloud 21

3.3 Loading a File from the Cloud . 22

3.4 SFS Model for Download a File from the Cloud 23

3.5 Shares Building [2] . 25

3.6 Shares Distribution [2] . 25

3.7 Secret Reconstruction [2] . 26

4.1 Performance Comparison of the Execution Time of Creating Shared

of Files of Different Size when n = 5 and t = 3 Versus Encryption

the Same File using AES. 29

4.2 Performance Comparison of the Execution Time of Creating Shared

of Files of Different Size when n = 8 and t = 2 Versus Encryption

the Same File using AES. 30

4.3 Performance Comparison of the Execution Time of Creating Shared

of Files of Different Size when n = 8 and t = 3 Versus Encryption

the Same File using AES. 30

4.4 Performance Comparison of the Execution Time of Creating Shared

of Files of Different Size when n = 8 and t = 6 Versus Encryption

the Same File using AES. 31

x

4.5 Performance Comparison of the Execution Time of Reconstruct the

the File of Different Size when n = 5 and t = 3 Versus Decryption

the Same File using AES. 32

4.6 Performance Comparison of the Execution Time of Reconstruct the

the File of Different Size when n = 8 and t = 2 Versus Decryption

the Same File using AES. 32

4.7 Performance Comparison of the Execution Time of Reconstruct the

the File of Different Size when n = 8 and t = 3 Versus Decryption

the Same File using AES. 33

4.8 Performance Comparison of the Execution Time of Reconstruct the

the File of Different Size when n = 8 and t = 6 Versus Decryption

the Same File using AES. 34

4.9 Performance Comparison of the Sequential Execution Timevof Cre-

ating the Shares and Encryption using AES of most Popular File

Formats. 36

4.10 Throughput of the Sequential Execution Time of Creating the

Shares and Encryption using AES of most Popular File Formats. 37

4.11 Performance Comparison of the Parallel Execution Time of Cre-

ating the Shares and Encryption using AES of most Popular File

Formats. 38

4.12 Throughput of the Parallel Execution Time of Creating the Shares

and Encryption using AES of most Popular File Formats. 39

4.13 Speed Up of Creating the Shares and Encryption using AES of most

Popular File Formats . 39

4.14 Speed Up of Creating the Shares and Encryption using AES of most

Popular File Formats using pc with better features 40

4.15 Performance Comparison of the Sequential Execution Time of Cre-

ating the Shares and Encryption using AES of PDF File Type of

Different Sizes. 42

xi

4.16 Throughput of the Sequential Execution Time of of Creating the

Shares and Encryption using AES of PDF File Type of Different

Sizes. 42

4.17 Performance Comparison of the Parallel Execution Time of Cre-

ating the Shares and Encryption using AES of PDF File Type of

Different Sizes. 44

4.18 Throughput of the Parallel Execution Time of Creating the Shares

and Encryption using AES of PDF File Type of Different Sizes. . 44

4.19 Performance Comparison of the Sequential Execution Time of Re-

construct the Secret and Decryption using AES of most Popular

File Formats. 46

4.20 Throughput of the Sequential Execution Time of Reconstruct the

Secret and Decryption using AES of most Popular File Formats. 46

4.21 Performance Comparison of the Parallel Execution Time of Recon-

struct the Secret and Decryption using AES of most Popular File

Formats. 47

4.22 Throughput of the Parallel Execution Time of Reconstruct the Se-

cret and Decryption using AES of most Popular File Formats. . . 48

4.23 Speed Up of Reconstruct the Secret and Decryption using AES of

most Popular File Formats. 49

4.24 Performance Comparison of the Sequential Execution Time of Re-

construct the Secret and Decryption using AES of of PDF File

Type of Different Sizes. 51

4.25 Throughput of the Sequential Execution Time of Reconstruct the

Secret and Decryption using AES of of PDF File Type of Different

Sizes. 51

4.26 Performance Comparison of the Parallel Execution Time of Recon-

struct the Secret and Decryption using AES of of PDF File Type

of Different Sizes. 53

xii

4.27 Throughput of the Parallel Execution Time of Reconstruct the Se-

cret and Decryption using AES of of PDF File Type of Different

Sizes. 53

4.28 Performance of Compression PDF File type. 54

4.29 Performance of Decompression PDF File type. 55

4.30 File Share Size before Compression and after Compression of PDF

File type. 55

4.31 Performance of Compression Audio File type. 56

4.32 Performance of Decompression Audio File type. 56

4.33 File Share Size before Compression and after Compression of Audio

File type. 57

4.34 Performance of Compression Binary File Type. 57

4.35 Performance of Decompression Binary File Type. 58

4.36 File Share Size before Compression and after Compression of Bi-

nary File Type. 58

4.37 Performance of Compression Document File Type. 59

4.38 Performance of Decompression Document File Type. 59

4.39 File Share Size before Compression and after Compression of Doc-

ument File Type. 59

4.40 Performance of Compression Executable File Type. 60

4.41 Performance of Decompression Executable File Type. 60

4.42 File Share Size before Compression and after Compression of Exe-

cutable File Type. 61

4.43 Performance of Compression Image File Type. 61

4.44 Performance of Decompression Image File Type. 62

4.45 File Share Size before Compression and after Compression of Image

File Type. 62

4.46 Performance of Compression Text File Type. 63

4.47 Performance of Decompression Text File Type. 63

xiii

4.48 File Share Size before Compression and after Compression of Text

File Type. 63

4.49 Performance of Compression Video File Type. 64

4.50 Performance of Decompression Video File Type. 64

4.51 File Share Size before Compression and after Compression of Video

File Type. 64

4.52 Performance of Compression Archive File Type. 65

4.53 Performance of Decompression Archive File Type. 65

4.54 File Share Size before Compression and after Compression of

Archive File Type. 66

4.55 Performance Comparison of the Uploading Time for Different Files

with Different Sizes in Parallel to Cloud Storage. 68

4.56 Performance Comparison of the Downloading Time for Different

Files with Different Size in Parallel from Cloud Storage. 69

xiv

THESIS ABSTRACT

NAME: Ibrahim Abdullah Al-thamary

TITLE OF STUDY: Secure Cloud Storage Using Secret Sharing Scheme

MAJOR FIELD: Computer Networks

DATE OF DEGREE: May,2017

Cloud computing is a significant model for permitting on-demand network access

to shared data, softwares, infrastructure, and platform resources. However, cloud

storage needs a certain level of availability, confidentiality, and integrity. Infor-

mation sensitivity and value require the use of a highly secure and reliable protocol.

This work proposes a new mechanism to increase the user trust in cloud storage

using secret sharing technique. The proposed algorithm uses Base64 encoding to

convert files of any type to ASCII strings which will then be used to create the

secret. The file does not need any extra process to be converted to Base64 string

and this can speed up the share building process. To increase the trust on the

cloud service provider and to store the data securely each string will be divided

to N shares (using Shamir Secret Sharing Scheme) where each share is stored in

different clouds. Then the secret should be recontract from the k shares.

xv

 خلاصة الرسالة
 ابراهيم عبدالله مصلح الذماريي الاسم:

 secret(تقنيه تقـاسم السرللحوسبه السحابيه باستخدام تخزين البيانات في تأمين عنوان الرسالة:
sharing(

 الحاسب الآلي شبكات التخصص:
 هـ 1438شعبان �ريخ التخرج:

تعتبر آلحوسبة السحابية من اهم النماذج التي تسمح &لوصول إلى المصادر آلمتوفرة في الشبكة عند
الطلب حيث يتم الوصول إلى البيا=ت المشتركة والبرمجيات والبنية التحتية والمنصات البرمجية .

 ماسةٍ إلى السرية و المصداقية والتوافر، فلذلك المعلومات &لرغم أن الحوسبة السحابية لأزالت بحاجةٍ
المهمة والحساسة بحاجة إلى بروتوكول مرن وامن لحمايتها. هذا العمل يقدم تقنية جديدة تعمل

 سم السرفي الحوسبة السحابية &ستخدام تقنية تقاالبيا=�ت على زWدة الثقة أتناء تخزين
)secret sharing . (لتحويل البيا=ت من 64نستخدم في هذه آلتقنية ترميز آلآساس

آي نوع إلى نص "أسكي" وسيتم استخدام هذا النص بعد ذلك للإنشاء أجزاء السر. إن عمليه
لا تتطلب معالجه أضافية مما يعمل على تسريع عمليه أنشاء أجزاء 64تحويل الملف إلى آلآساس

آلوثوقية في مزود خدمه آلحوسبة آلسحابية ولضمان خزن البيا=ت بشكل السر. للعمل على زWدة
 Shamir Secret Sharing(امن ، سيتم تقسيم كل نص إلى عدد من آلأجزاء &ستخدام

Scheme(جزءحيث سيخزن كل)shareلأيمكن كما ان السر مختلفه. سحابية ة) في حوسب
).shares(آلأجزاءاسترجاعه أذا لم يتوفر الحد آلأدنى من

 الحاسب الآليشبكات درجة الماجستير في
 د للبترول والمعادنجامعة الملك فه

 اللملكة العربية السعودية -رانالظه
 ـه 1438شعبان

CHAPTER 1

INTRODUCTION

Due to the rapid advancement in the e-world and the fast growth of using the

internet, information security systems should be developed to protect the privacy

of users. This can be accomplished using cryptography, steganography, or/and

secret sharing. Securing data becomes a big concern in certain environments like

local network, wireless network, the internet or/and cloud computing. Having a

single copy of the data will increase the possibility of losing the data as it is impos-

sible to retrieve the data if this copy is destroyed. In other words, the possibility of

losing data is high when there is only a single copy of the information on a single

location. Having many copies of data may increase the reliability. However, the

existence of data in more than one locations may reduce the confidentiality as it

gives more chances to the attackers. Therefore, there is a need for a technique to

enhance both the availability and the confidentiality of the data which motivates

the use of secret sharing method. Base64 encoding is a mechanism to convert data

to ASCII string which is commonly used in e-mail to make the content unread-

1

able. In addition, base64 is one of the best and most popular encoding/decoding

schemes on the internet. Trillions of bytes are encoded and decoded each day using

base64. In this work, we propose a new approach to increase the user trust in the

cloud using secret sharing. The proposed technique will take any file type as input

and convert it using base64 to ASCII strings. Then, each ASCII string, is a set

to generate n shares. Then , the n shares are distributed one per cloud/location.

The shares should be created such that the string can be regenerated by any t

shares out of the n shares (where t <= n). The reconstruct process will use the

ASCII format which makes the ability for storage and distributed easily.

1.1 Cloud Computing

According to National Institute of Standards and Technology(NIST), ”the cloud

computing is defined as a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., net-

works, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction. This

cloud model is composed of five essential characteristics, three service models, and

four deployment models” [3] . Cloud computing is an expression that indicates

to resources and computer systems that are available on demand through the

network, which can provide a number of combined computing facilities as shown

in Fig. 1.1 without following the local resources in order to make it easier for

the user, and include those resources space for data storage, backup and self-

2

synchronization, also include processing abilities of software and arrangement of

tasks and push e-mail and remote printing, and the user can control when it

is connected to the network in these resources using a simple software interface

simplifies and ignores many details and internal operation [4,5].

Figure 1.1: An Example of Cloud Computing [1].

There are many types of cloud depend on deployment public cloud, private

cloud, hybrid cloud, and community cloud. In addition, the services provided by

the cloud are divided into four main categories: IaaS (Infrastructure as a Service),

SaaS (Software as a Service), PaaS (Platform as a Service), and (XaaS/AaaS)

Anything as a Service. Moreover, the cloud consists of a number of storage servers

and node manager/ a front-end server which manages the storage servers within

the cloud [4,6,7].

3

1.2 Problem Definition

In the last few years, there is a remarkable development in the cloud. This devel-

opment makes societies and companies start to use the cloud to store information.

These societies and companies require certain security guarantees to be made be-

fore using these services. Thus, those security concern needs to be addressed

because the attackers will attack any valuable data. Hence the focus is to find

good techniques that will offer more than confidentiality. Pervious studies have

introduced many techniques, one of this is a secret sharing. Group of those studies

adopt using secret sharing. However, non of them showed the support of different

file types such as (images, sound, video, executable, document file, etc). those

technics have their own weakness and strength points. To support multiple file

types, we will use Base64. As Base64 encoding will significantly increase the file

size approximately 20-25% more than the size of the original file [8, 9] . More-

over, Base64 Encoding/Decoding process consumes resources [10] but it gives the

ability to compress the file and reduce the size. Our proposed scheme increases

the trust and security because each file is converted to the base64 string before

applied the secret sharing mechanism, and then the string is compressed using

GZIP compression [11] before/after creating the secret using the secret sharing

scheme. We send the file in compressed form and the receiver decompress the file

and gets the original file. In addition, The proposed scheme increases the confi-

dentiality, and availability, and it gives the user more privacy because the data

will be separated in different clouds.

4

1.3 Thesis Organization

The organization of this thesis is as follows. In Chapter 2, a literature review of

several compression and compaction of the existing and most recent techniques

is proposed for Secret Sharing Scheme and Base64. In Chapter 3, our proposed

scheme is illustrated in details. Experimental results are demonstrated in Chapter

4. Finally, in Chapter 5, we conclude the thesis and suggest directions for the

future work.

5

CHAPTER 2

LITERATURE REVIEW

This chapter is structured as follows section 1 a secret sharing and section 2 base64

encoding.

2.1 Secret Sharing Scheme

Secret sharing is a cryptographic tool that allows secret information to be shared

among a group of people/machines such that predefined set(s) of them can to-

gether reveal the secret. There are different schemes of secret sharing as shown

in Fig. 2.1. We will focus only on one category of secret sharing schemes called

threshold schemes.

2.1.1 Threshold Secret Sharing Schemes

The idea of threshold secret sharing was proposed independently by Shamir [12]

and Blakley [13]. In (t, n) threshold SSS, the secret s is split into n shares in such

a way that any t participants or more can reconstruct or obtain s but participants

6

Figure 2.1: Constructions of Secret Sharing.

less than t cannot obtain any information about s [14] . The threshold schemes

contains Shamirs scheme, Blakleys scheme, Information Dispersal Rabins IDA, the

7

Chinese remainder, and Hybrid scheme [15]. Blakley [13] introduced a threshold

secret sharing method using linear geometry. His method solves the secret sharing

problem and it has been used in secret image sharing technology. Moreover, as an

example of Chinese remainder scheme, Mignott’s [16] secret sharing scheme uses

a special sequence of integers with CRT. Table 2.1 shows a comparison between

the most important threshold secret sharing techniques.

Table 2.1: Comparison Between the most Important Threshold Secret Sharing
Techniques.

method Year Techniques
Used

Advantage Drawback

Shamir [12] 1979 Polynomial
based

Perfect ,Ideal Not secure against
cheaters.

Blakley [14] 1979 Geometry
based

Ideal Not perfect .
It is less space
efficient than
Shamir“s scheme

Mignott’s [16] 1982 CRT based Ideal Not perfect .

2.1.2 Shamir Secret Sharing Scheme

Shamir [12] introduced a threshold secret sharing approach in 1979 where particu-

lar secret messages are shared over n servers, the dealer D generates the polynomial

y = f(x) with degree t − 1, where t is the threshold. The polynomial will be as

the following.

f (x) = s+ a1x+ a2x
2 + · · ·+ at−1x

t−1 mod p (2.1)

8

Where p is a prime number, the coefficient a i ∈ Zp , i = [2..., n] and x is the

participant’s ID. The dealer determines the shares and distributes them to n

participants. For reconstruction, m participants, where t ≤ m ≤ n, are required

to recollect their shares to the dealer and the dealer can perform the calculation

using the lagrange interpolation equation (2.2) .

f (x) =
n∑

j=1

yj

n∏

k = 1

k �= j

x− xk

xj − xk

(mod p) (2.2)

To reconstruct the original polynomial, equation (2.2) is used for this purpose ,

where xj, are the participant pj’s ID and yi are the participant’s share. Finally,

the dealer adds the value at x = 0 to the f (x) which gives the secret

f (0) = s

For better understanding an example of the secret of Shamir’s is in order.

Let n = 5 and t = 3 and the secret is 19. A possible polynomial is f(x) =

15x2 + 13x+ 19 over the field Z23 where p is 23.

We generate the following five shares of secrets.

s1 = f(1) = (15 × 12 + 13× 1 + 19) mod 23 = 1

s2 = f(2) = (15 × 22 + 13× 2 + 19) mod 23 = 13

9

s3 = f(3) = (15 × 32 + 13× 3 + 19) mod 23 = 9

s4 = f(4) = (15 × 42 + 13× 4 + 19) mod 23 = 12

s5 = f(5) = (15 × 52 + 13× 5 + 19) mod 23 = 22

To reconstruct the secret we choose shares s1(1, 1), s2(2, 13) and s3(3, 9). We use

lagrange interpolation as follows :

1× 2

2− 1
× 3

3− 1
+ 13× 1

1− 2
∗ 3

3− 2
+ 9× 1

1− 3
× 2

2− 3
mod 23

= (1 ∗ 3 + 13 ∗ 20 + 9 ∗ 1) mod 23

= 272 mod 23 = 19

f (0) = 19

2.1.3 Using Secret Sharing Mechanism to Secure Images

In this section, we will review pervious of research work conducted on image

sharing techniques. Although many of them are quite good, there are still many

challenges in this field. The main idea of secret image sharing schemes is to hide

the secret image into number of images and distribute these images to different

participants. Table 2.2 shows a comparison of various secret image sharing

techniques.

10

Lin and Thien [17]. proposed secret image sharing scheme with the ability

of share data reduction. A secret image is first distributed into blocks of size less

than 250 pixels, and by decreasing the size of the shared images, it is easy to deal

with each part in the image individually.

Lukac, et.at. [18] proposed colour image secret sharing that works in the decom-

posed bit-levels (binary pixels of binary share) of the input color vectors to change

both spectral correlation characteristics and spatial position of the share results

and generate random, color- noise-like images for protecting communication

and secure access.In the decryption process ,the perfect reconstruction property

recovers the original color image by logically decrypting the decomposed bit

vector-arrays of the color shares.

Lou et al. [19] proposed color visual secret sharing scheme which uses non-

expanded meaningful shares. They are used to hide a secret image into two

meaningful cover images. The build of shares occurs without using pixel

expansion. At the same time, this scheme makes the sharing of a color image

more secure and adds extra confidentiality. The secret image can be revealed

by overlapping both of them without complexity. Moreover, the validity of the

secret image can be checked at the receiver side.

Tsai et al. [20] introduced a secret color image sharing method with the size

constraint that uses neural networks combined with visual secret sharing.

Adding neural networks improved the memory usage, increased performance

of bandwidth, and saved power and time. Furthermore, this method supports

11

24-bit color and the results show the good quality of the reconstructed image

but the variance between cover images and camouflage images are not visually

distinguishable.

Chen et al[10]. proposed (2, n) and (n, n) scheme for secret image sharing based

on random grids. During the process of image encrypting and decryption, there

is no pixel expansion which gives this scheme an advantage. In this method,

codebook is used in the encryption process. At the receiver end the decryption

shows up by superimposing not less than 2 shares in (2, n) scheme and all n

shares in (n, n) scheme without requiring any computation. The results of the

secret reconstruction can be recognized by a human.

Alex et al. [21] suggested various methods for error diffusion in order to increase

the quality of the image in the halftone shares. The halftone visual cryptographic

is used to fit snugly the pixels of secret information into previously encoded

halftone shares. Visual cryptographic combined with halftone in which the

continuous-tone image is transformed into a binary image then apply visual

secret sharing to it. By using the error diffusion, the complexity is decreased and

the quality of the image is increased. The secret image reconstructs occurs when

the stacking shares combine together and the reconstructed secret image does

not suffer from cross interference of share images.

Yang et al. [22] introduced visual secret sharing scheme using (2, 2), (2, n), and

(k, n) which is based on a probabilistic method with non-expandable shares size

of pixels. The contrast level of this scheme is similar to the traditional visual

12

secret sharing scheme. Moreover, they showed by using transfer function how to

convert from the traditional VSS scheme to probabilistic VSS scheme. The rate

of the white pixels is used for displaying the color contrast of the reconstructed

secret image.

Lin, et al. [23] introduced a framework for multiple secret sharing scheme without

pixel expansion. In this framework, encoding the secret images does not require

codebook. It was found that the pixel expansion was four times less compared to

earlier schemes in their literature review after applying aspect ratio constraints.

Over the separation and camouflaging processes, two share images turn into

meaningless images which did not leak any information about the secret images.

To reconstruct the secret, each share was flapped and human visual system

(HVS) was capable of identifying the reconstructed image. This scheme has very

good quality in reconstructing the secret and resolve the pixel expansion problem.

Sasaki et al. [24] introduced the formulation of VSS encryption for multiple

images. The limitation of the extended visual cryptography schemes (EVCS)

is that each share had the further secret image linked with it. The limitation

of VSS-q-PI is the multiple secret images associated with the matching shares

in capable sets but the shares in forbidden sets must be similar. Therefore,

generalized VSS scheme for encrypting multiple secret images was introduced.

He, et al. [25] proposed a novel (t, n) image that is gradually enhanced by

using lossless compression for Images (LOCO-I) compression. Additionally, by

embedding the hash-based message the three types of cheating will probably be

13

detected. Moreover, they improved the security by using a random strategy with

dynamic embedding. This scheme and the proposed scheme in [26] divided the

shadow or image into groups.

Askari et al. [27] developed the VSS scheme which is given by proposed (2, 2)

VSS scheme without image size expansion. His scheme is based on encrypting a

secret block with four pixels into two shares depending on the distribution of BW

pixels. This can lead to reconstruct the secret image by using XOR operation.

This scheme can apply to binary or halftone images.

Liu et al. [28] developed a new color VCS that depends on the improved VC.

In this scheme, the secret color image is shared over n-1 arbitrary natural

images and one noise-like share image. Instead of modification natural image

properties, the encryption takes the features from all the natural images. This

proposed scheme can efficiently reduce the transmission risk and solve the share

management problems. This method succeeds in dealing with the problem of

expansion of pixel and makes it easy to reconstruct the secret images without

any change in the image quality. Due to this, the suggested scheme can deal with

greyscale pixels or color images. Table 2.2 shows a comparison of various secret

image sharing techniques.

2.1.4 Securing Files in the cloud .

As all information is basically converted to digital format, the need for secure

manipulation is dramatically increasing. Attacking data storage is a target for

14

Table 2.2: Comparison of Different Secret Image Sharing Mechanism.

Schemes year Techniques Used
Mean-
ing-
ful
shares

Type of image
Pixel
Ex-
pan-
sion

Lin and Thien
[17]

2002 Polynomial based No Grayscale No

Lukac,
et.at [18]

2004 Decomposed bit-levels No Color No

Lou et al [[19]. 2011 Cover Image Yes Color No
Tsai et al. [20] 2009 combination No Color Yes
Chen et al [29] 2009 Random Grids No Grayscale No
Alex et al. [21] 2011 Error Diffusion No Grayscale Yes
Yang et al. [22] 2004 Probabilistic No Grayscale No
Lin, et al. [23] 2010 Multiple Secrets No Grayscale No
Sasaki et
al. [24]

2014 Multiple Secrets No Grayscale No

Askari et al.
[27]

2012 XOR operation No Grayscale No

Liu et al. [28] 2013 NVSS Yes Color No

the attackers in order to access to unauthorized information. In order to keep this

information secure and to allow only legitimate access, many researchers have

proposed different methods for securing the process of storing files.

Kallahalla et al. [30] proposed a scalable secure file sharing on untrusted storage

called PLUTUS. The main goal of this method is to provide information owners

with direct control access to their files as well as the key management. This

scheme is based on RSA. The encrypt/decrypt of the file is done on the client

side, not on the server side which increases the trust.

Dong et al. [31] proposed a high level of scalability, user privacy, and effective

data sharing in the cloud by merging the CP-ABE (Cipher text-Policy -Attribute

15

Based Encryption scheme) with IBE (Identity Based Encryption Scheme). This

proposal gives data owners the ability to assign different access privileges to users

as well as to give or deny any access privileges to them. At the same time, the

cloud is not allowed to read or access files shared by data owners.

Bessani, et al. [32] proposed DEPSKY-CA protocol dependable and secure storage

in a cloud-of-clouds to improve the confidentiality and availability by using secret

sharing combined with symmetric encryption and distributed them in multi-cloud.

Alsolami and Boult [33] proposed CloudstaSh that applied Shamir secret sharing

scheme [12] directly on the file and distribute the shares to multi-cloud. According

to this work , the CloudStach is not statically significant for large file .By applying

Shamir secret sharing scheme on the text file with different sizes (1KB, 10KB,

100KB, 1MB, and 10MB) , the confidentiality and availability were increased.

Moreover, they just created eight shares with a threshold of two which is not

enough to show how good their work .

2.2 Base64 Encoding

Base64 [34–39] is an encoding scheme that scans a stream of bytes and converts

every 3 bytes (24 bits) into 4 blocks of 6 bits. Then the algorithm uses its dic-

tionary to convert each resulting block (decimal 0 - 63) into US-ASCII character

(encoded with 8 bits) by converting the binary data to ”ASCII string” and then

sending the data. On the receiver side, the ”ASCII string” is converted back into

the original binary data. Base64 encoding adds a padding character when the

16

number of bytes is less than three or not a multiple of 3. If the total number of

bits in the text are 3n+1, the encoder adds one ”=” at the end of encoded text

while if the total number of bits in the text are 3n+2, it adds two ”==” at the

end of encoded text.

Base64 decoding process is the reverse of encoding process when decoding Base64

text, four characters are returned back to be three bytes. In addition, the padding

character ’==’ shows that the four characters will be decoded to only a single byte

while ’=’ shows that the four characters will be decoded to only two bytes [36,40].

Base64 algorithm is mainly used when there is a necessity to encode binary data

as ASCII text that needs to be stored or transferred. Trillions of data bytes are

base64 encoded/decoded each day [35]. Base64 is generally used for sending e-

mail via MIME (Multipurpose Internet Mail Extensions) .However, the idea of

base64 is not to send secure email but rather to convert the e-mail to make it

difficult to understand its content directly [39]. Moreover, it is specifically used

with email attachments, including files of many different types, such as images,

sound, video, executable, document file, etc. In addition, base64 is one of the

most popular encoding styles to transfer 8-byte code on the internet and Base64

is used widely through which the data is usually put in URL [35]. This is to make

sure that the data remains as such without modification during transmission [8].

Furthermore, Base64 has various applications more than sending e-mail such as

sending the image as SMS, using Base64 to obscure passwords and sending secret

messages without using cryptography and using keys to encrypt and decrypt the

17

message. It can be used for inserting binary data in an XML file and it can be

used against web filters because Base64 changes the input file hence the keyword

filtering cannot be used in the encoded file [38]. Additionally, Base64 is used to

minimize the number of requests to the server by adding image data in HTML

code and image encoded data can be saved inside the database and can generate

the image file [9]. Moreover, Base64 and AES algorithm are utilized to enhance

the security of data [39] and to represent a hash block size such as 128bit or 256bit

(SHA/MD5). Converting the output into Base64 makes it much easier to display

the hash [40] .

18

CHAPTER 3

PROPOSED SCHEME

The proposed technique called Secure File Sharing (SFS) which is mainly used

to protect data and increase the level of availability because the data will be

available in multi cloud and also increase the level of confidentiality because the

attackers need to compromise more than one cloud (equal the threshold) to get

access to the data. Our work is based on base64 and Shamir Secret Sharing

Scheme [12] which is a perfect and ideal threshold scheme that boosts the security

of data and gives the client more trust in cloud computing. Our method can take

any data file as input (image, document, system file, audio, and video... etc.)

and compress the file, then the file is converted to base64. Then Shamir Secret

Sharing mechanism [12] is applied to generate n shares and distribute them to

n different cloud providers. The secret should be regenerated by any t of the

n shares (where t <= n). The threshold value, t, can be selected according

to the security requirements for particular situations. All outputs are in ASCII

printable text which makes them easy to store and distribute. The design of our

19

scheme can be divided into two main procedure: Save and Load. Fig. 3.1 shows

the flowcharts of uploading a file to the cloud and Fig. 3.2 illustrates Secure

File Sharing (SFS) model for uploading a file to the cloud. Fig. 3.3 shows the

flowcharts of downloading a file from the cloud and and Fig. 3.4 demonstrates

SFS model for download a file from the cloud.

Figure 3.1: Saving a File to the Cloud

20

Figure 3.2: SFS Model for Uploading a File to the Cloud

21

Figure 3.3: Loading a File from the Cloud

22

Figure 3.4: SFS Model for Download a File from the Cloud

23

3.1 Saving Files

3.1.1 Preparing the File

After selecting a file, the file will be compressed and then it will be converted

using base 64 to be ready for the next step.

3.1.2 Shares Building

In this step , we divide the file to chunks and generate n shares as illustrate in

Fig. 3.5 ,we need the following information [2] :

• The secret: one of the divided chunks.

• The trusted participants (shareholders): the people/machines that can keep

the generated shares of the secret. These shares will be distributed by

allocating one share for each participant. In our case, the number of cloud

provider that we will use to store the data.

• The threshold value of secret: A qualified subset is a subset of the sharehold-

ers that should be able to rebuild the secret. In our case, it is the minimum

number of location that we require to reconstruct the secret.

24

Figure 3.5: Shares Building [2]

3.1.3 Shares Distribution

After generating n shares , the file is compressed . Then we will have n files ,each

of which will be uploaded to a separated cloud (shareholder) as demonstrate in

Fig. 3.6.

Figure 3.6: Shares Distribution [2]

25

3.2 Loading File

3.2.1 Secret Reconstruction

To reconstruct the secret, the users must select number of clouds provider that are

equal to the threshold that is selected during the shares building. The authorized

users who own the file can reconstruct the file and get access to the share easily

as shown in Fig. 3.7.

Figure 3.7: Secret Reconstruction [2]

26

CHAPTER 4

EXPERIMENT RESULTS

We conducted several experiments to evaluate our proposed scheme and compare

it with existing solution. We conducted the average time needed by our scheme

during the process of creating the shares and reconstructing them with confidence

interval 95%, we compare between time needed by our scheme and symmetric

encryption Advanced Encryption Standard (AES). We select AES to compare

with because it is the encryption algorithm that is announced by NIST to replace

the DES and 3DES and it was selected as the best encryption standard [41,

42] . Moreover, it has been used in [32, 33, 43–45]. We use AES 256 bit with

cipher feedback mode (CFB) mode and for hashing we use SHA512 [33] . We use

System.Security.Cryptography in C#.NET to implement them. Moreover, we

apply secret sharing on the key to divide it into many shares and then distribute

them and storage them in n-cloud. Our work is implemented using C#.NET with

different cloud API and on a machine with this features ”Intel(R) Core(TM)

i7-5500U CPU @ 2.40GHz (4 CPUs), 2.4GHz ,6GB RAM and 64-bit Windows

27

operating system”. The speed of the Internet is 2.2 Mbps on average. We used

four different clouds (OneDrive, Google Drive, Dropbox, and SMEStorage hosted

on Amazon S3 in five different places) and the performance assessment of these

clouds storage can be found in [46].

4.1 Create Shares/Encryption

We run the experiment by applying different number of shares and different num-

ber of thresholds for the same dataset that contains different file sizes and different

file types. To deal with a large file, we divide the file into chunks where every

chunk is at most 200KB and if the file less than 200KB we take as its . Then we

apply the same process for the small file in both methods. We run the experiment

for 59 files with 26 different types of varying sizes. We compare our scheme Secret

File Sharing(SFS) with the time needed to encrypt the same file using AES and

Secret File Sharing(SFS) .

Fig. 4.1 shows the first test set using n=5 and t=3. The line graph illustrates that

both schemes almost require the same execution time for small files. However, for

file sizes of 10 MB or more , SFS consumes less time compered to AES. More

importantly, the difference in execution time increases as the file size increase.

In Fig. 4.2 the line graph shows a comparison between SFS and AES algorithm

when n=8 and t=2. For this case, it is obvious that both schemes consume

comparable execution time. The line graph indicates that AES is slightly better

than SFS for small file size while SFS is better than AES for the file sizes of

28

Figure 4.1: Performance Comparison of the Execution Time of Creating Shared
of Files of Different Size when n = 5 and t = 3 Versus Encryption the Same File
using AES.

25MB and more . However, in this case the difference in the required time is

almost constant and does not depend on the file size.

In Fig. 4.3 the line graph shows a comparison between SFS and AES algorithm

when n=8 and t=3. As we can see when the threshold increases, the time needed of

create the shares is almost equivalent to the AES encryption time. Fig. 4.4 shows

the results when n=8 and t=6. As the threshold increases, the SFS execution

time increases too. Here, the AES algorithm runs faster than SFS but the results

are within the acceptable range.

Fig. 4.4 shows the results when n=8 and t=6. As the threshold increases, the

SFS execution time increases too. Here, the AES algorithm runs faster than SFS

but the results are within the acceptable range.

29

Figure 4.2: Performance Comparison of the Execution Time of Creating Shared
of Files of Different Size when n = 8 and t = 2 Versus Encryption the Same File
using AES.

Figure 4.3: Performance Comparison of the Execution Time of Creating Shared
of Files of Different Size when n = 8 and t = 3 Versus Encryption the Same File
using AES.

30

Figure 4.4: Performance Comparison of the Execution Time of Creating Shared
of Files of Different Size when n = 8 and t = 6 Versus Encryption the Same File
using AES.

4.2 Reconstruct The Secret/Decryption

Fig. 4.5 shows the execution time during the process of reconstructing the secret

for our scheme versus decryption of the same file using AES algorithm with differ-

ent types and sizes when n=5 and t=3. The line graph illustrates that the time of

reconstructing the secret file using SFS is shorter than the decryption time using

AES algorithm regardless of the file size. Moreover, as the file size increases the

difference in excitation time increases as well. In Fig. 4.6 the line graph shows

a comparison between SFS and AES algorithm when n=8 and t=2. The line

graph clearly demonstrates the superiority of our scheme where the difference in

execution time can reach more than two minutes for files of size 120MB. In Fig.

4.7 the line graph shows a comparison between SFS and AES algorithm when

31

Figure 4.5: Performance Comparison of the Execution Time of Reconstruct the
the File of Different Size when n = 5 and t = 3 Versus Decryption the Same File
using AES.

Figure 4.6: Performance Comparison of the Execution Time of Reconstruct the
the File of Different Size when n = 8 and t = 2 Versus Decryption the Same File
using AES.

32

n=8 and t=3. The line graph shows that our SFS method is faster than AES

in reconstructing the secret file. Moreover, the number of shares does not effect

the result of the reconstructing process while the threshold plays the critical role.

Fig. 4.8 shows the result when n=8 and t=6. As the threshold increases ,the SFS

Figure 4.7: Performance Comparison of the Execution Time of Reconstruct the
the File of Different Size when n = 8 and t = 3 Versus Decryption the Same File
using AES.

execution time increases as well. Here, the decryption using AES algorithm runs

faster than SFS but the differences are within the acceptable range.

33

Figure 4.8: Performance Comparison of the Execution Time of Reconstruct the
the File of Different Size when n = 8 and t = 6 Versus Decryption the Same File
using AES.

34

4.3 Enhance The Result

We run our experiment with some modification to enhance the results . First,

instead of applying the secret sharing on the base64 ,we use the index of the

character in the Index Array. Index Array is an array that contains all the char-

acters in Base64 encoding. Using Index Array will solve the cheating problem in

Shamir Secret Sharing Scheme. During creating the shares , the files will be com-

pressed using GZIP compression because the files becomes large when it converts

to Base64. We run the experiment using most popular file types . Moreover, we

apply the parallelization on both algorithms AES and our SFS scheme.

4.3.1 Create the Shares/Encryption

The most popular file formats

Table 4.1 and Fig. 4.9 show a performance comparison of the sequential execution

time of create a secret and encrypt a different file types. The line graph illustrates

that SFS schemes when (n=8, t=6), (n=8, t=3), and (n=8, t=2) almost require

the same execution time for all file sizes . Moreover, both SFS schemes when (n=5,

t=3) and (n=5, t=2) almost require the same execution time for all file sizes, while

SFS scheme when (n=3, t=2) is better than other SFS schemes. Generally, it is

noticed that SFS scheme consumes less time than AES. In addition, increasing

the number of the shares effects on the execution time more than the number of

thresholds.

We can see that SFS scheme when (n=3, t=2) is faster in performance than

35

Table 4.1: Sequential implementation of Creating the Shares and Encryption using
AES of most Popular File Formats.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.txt 0.000806 0.272519 0.001215 0.003352 0.01846 0.002557 0.012505 0.008658

.tgz 0.011756 0.286453 0.014629 0.015214 0.015883 0.022333 0.021726 0.021126

.png 0.129359 0.597376 0.117879 0.166015 0.169303 0.231597 0.233924 0.257071

.exe 1.223342 3.74412 1.086153 1.574501 1.614991 2.215864 2.277921 2.351582

.pdf 13.15998 35.36956 11.22547 16.11115 15.59375 22.38146 22.29741 23.05456

.doc 20.19169 53.38245 16.8928 23.88537 23.55916 33.52248 34.19957 35.21744

.mp3 63.33237 170.8936 58.76135 79.57114 77.82943 114.5714 116.1646 119.5822

.jpg 114.8889 309.3546 106.4165 145.1851 138.5865 205.9828 205.8134 213.6779

Sum= 212.9382 573.9007 194.516 266.5119 257.3874 378.9305 381.0211 394.1706

Throughput

(MB / Sec)

0.371037 1.094708 0.798982 0.827306 0.561945 0.558862 0.540218

Figure 4.9: Performance Comparison of the Sequential Execution Timevof Creat-
ing the Shares and Encryption using AES of most Popular File Formats.

other schemes. Another point can be noticed here is that the difference of the

throughput among the SFS schemes is relatively small in general. Summary of

execution time throughput of SFS and AES schemes is shown in Fig. 4.10. Con-

sidering the throughput of all files, we can see that AES has a lower throughput

than SFS schemes. Therefore, consumes less power than the other schemes. More-

over, we observed that SFS schemes with (n=8, t=6), (n=8, t=3), (n=8, t=2),

(n=5, t=3) and (n=5, t=2) have quite the same throughput. However, SFS with

(n=5, t=3) and (n=5, t=2) are slightly faster.

Table 4.2 and Fig. 4.11 show a parallel implementation of create a secret and

36

Figure 4.10: Throughput of the Sequential Execution Time of Creating the Shares
and Encryption using AES of most Popular File Formats.

encrypt a different file types. The line graph illustrates that SFS schemes when

(n=8, t=6), (n=8, t=3), and (n=8, t=2) almost have quite the same execution

time. However, (n=8, t=3) is slightly slower than (n=8, t=2) whereas (n=8, t=6)

is slightly faster than others . Moreover, both SFS schemes when (n=5, t=3)

and (n=5, t=2) almost require the same execution time for all file sizes, while

SFS scheme when (n=3, t=2) is better than other SFS schemes. Generally, it is

noticed that SFS scheme consumes less time than AES. In addition, increasing

the number of the shares effects on the execution time more than the number of

thresholds.

Table 4.2: Parallel implementation of Creating the Shares and Encryption using
AES of most Popular File Formats.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.txt 0.000806 0.264419 0.007069 0.005957 0.006572 0.006545 0.011622 0.006735

.tgz 0.011756 0.308018 0.02259 0.024005 0.025113 0.034285 0.037243 0.039994

.png 0.129359 0.614951 0.145908 0.222404 0.232572 0.334189 0.355175 0.392909

.exe 1.223342 2.812096 0.787751 1.240126 1.242515 1.976161 2.236696 2.374491

.pdf 13.15998 21.14621 5.530591 8.309103 9.098822 15.95286 15.28679 16.45471

.doc 20.19169 33.84927 6.556674 10.20914 10.93939 16.46419 18.14756 21.22733

.mp3 63.33237 104.7168 28.78238 49.01058 50.38144 75.11581 77.08215 83.43849

.jpg 114.8889 188.3953 56.02712 88.0518 89.62887 127.8719 137.6849 144.2431

sum= 212.9382 352.1071 97.86008 157.0731 161.5553 237.756 250.8422 268.1777

Throughput

(MB / Sec)

0.604754 2.175946 1.355663 1.318052 0.895617 0.848893 0.794019

37

Figure 4.11: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of most Popular File Formats.

We can see that SFS scheme when (n=3, t=2) is faster in performance than

other schemes. Another point can be noticed here is that the difference of the

throughput among the SFS schemes is relatively small in general. Summary of

execution time throughput of SFS and AES schemes is shown in Fig. 4.12. Con-

sidering the throughput of different files type, we can see that AES has a lower

throughput than SFS schemes. therefore, consumes less power than the other

schemes. Moreover, we observed that SFS schemes with (n=8, t=6), (n=8, t=3),

(n=8, t=2), (n=5, t=3) and (n=5, t=2) have quite the same throughput. How-

ever, SFS with (n=5, t=3) and (n=5, t=2) are slightly faster.

Fig. 4.13 illustrates the difference in execution time for sequential and parallel

implementation for create the secret and encryption different file type. We can

note that the performance is improved in the parallel implementation. Also, it

can be seen that the performance is not fixed or constant for all schemes. Here,

we can observe that the performance of parallel implementation for small size file

is less and it is increased as the file size is increased. But it will increase till a

38

Figure 4.12: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of most Popular File Formats.

particular value and after that it will be a constant value. Generally , we observed

more improvement for AES in parallel than in sequential. However, SFS schemes

is still better. Moreover, we can see that there is decreasing in the speed up due

to the devices features . Therefore, we run our experiments again in a different

device with the following features: ” Intel Core(TM) i7 -6700HQ cpu @ 2.59GHz

16GB Memory - 1TB Hard Drive + 128GB ”and we get better results as shown

in Fig. 4.14.

Figure 4.13: Speed Up of Creating the Shares and Encryption using AES of most
Popular File Formats .

39

Figure 4.14: Speed Up of Creating the Shares and Encryption using AES of most
Popular File Formats using pc with better features .

40

PDF file formats

In this section, we explain PDF format in details as an example for create the

shares and encrypt a different file types. The result of creating the shares and

encryption for the other files is given in the Appendix A

The Table 4.3 and Fig. 4.15 show sequential implementation of creating the

shares and encryption using AES of PDF file type of different sizes. The line graph

illustrates that SFS schemes when (n=8, t=6), (n=8, t=3), and (n=8, t=2) almost

have quite the same execution time. However, (n=8, t=6) is slightly slower than

others. Moreover, both SFS schemes when (n=5, t=3) and (n=5, t=2) almost

require the same execution time for all file sizes, while SFS scheme when (n=3,

t=2) is better than other SFS schemes. Generally, it is noticed that SFS scheme

consumes less time than AES. In addition, increasing the number of the shares

effects the execution time more than the number of thresholds.

Table 4.3: Sequential implementation of Creating the Shares and Encryption using
AES of PDF File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.pdf 0.000834 0.305094 0.001005 0.001188 0.001429 0.002764 0.001963 0.150591

.pdf 0.006684 0.266376 0.005391 0.006383 0.008004 0.010362 0.01138 0.028576

.pdf 0.106799 0.579613 0.089085 0.115132 0.136405 0.187575 0.172644 0.216746

.PDF 0.830359 2.272317 0.546168 0.897309 0.905497 1.219139 1.288421 1.416338

.pdf 1.36139 3.562602 0.920778 1.422522 1.449138 2.113922 2.139843 2.179916

.pdf 13.16027 32.53742 8.792271 13.60339 14.19589 20.48834 20.18966 21.4545

.PDF 26.9594 68.96663 17.97656 28.57989 29.51048 43.40014 42.77134 44.89893

.pdf 60.9044 156.2485 42.7172 67.51218 68.36503 98.6137 98.96433 105.1793

.pdf 128.7644 330.8267 97.68768 152.1946 149.8191 219.9563 218.184 234.9162

sum= 232.0945 595.5653 168.7361 264.3326 264.3909 385.9922 383.7236 410.4411

Throughput

(MB / Sec)

0.389705 1.375488 0.87804 0.877846 0.601293 0.604848 0.565476

We can see that SFS scheme when (n=3, t=2) is faster in performance than

other schemes. Another point can be noticed here is that the difference of the

throughput among the SFS schemes is relatively small in general. Summary of

41

Figure 4.15: Performance Comparison of the Sequential Execution Time of Cre-
ating the Shares and Encryption using AES of PDF File Type of Different Sizes.

execution time throughput of SFS and AES schemes is shown in Fig. 4.16. Con-

sidering the throughput of all files, we can see that AES has a lower throughput

than SFS schemes. therefore, consumes less power than the other schemes. More-

over, we observed that SFS schemes with (n=8, t=6), (n=8, t=3), (n=8, t=2),

(n=5, t=3) and (n=5, t=2) have quite the same throughput. However, SFS with

(n=5, t=3) and (n=5, t=2) are slightly faster.

Figure 4.16: Throughput of the Sequential Execution Time of of Creating the
Shares and Encryption using AES of PDF File Type of Different Sizes.

The Table 4.4 and Fig. 4.17 show a performance comparison of the parallel

42

execution time of create a secret and encrypt a PDF file type. The line graph

illustrates that SFS schemes when (n=8, t=6), (n=8, t=3), and (n=8, t=2) almost

have quite the same execution time. However, (n=8, t=6) is slightly slower than

others. Moreover, SFS schemes when (n=5, t=3) is slightly slower than (n=5,

t=2), while SFS scheme when (n=3, t=2) is better than other SFS schemes.

Generally, it is noticed that SFS scheme consumes less time than AES. We also

observed that SFS schemes are slightly better in Parallel than in sequential. In

addition, increasing the number of the shares effects on the execution time more

than the number of thresholds.

Table 4.4: Parallel implementation of Creating the Shares and Encryption using
AES of PDF File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.pdf 0.000834 0.208378 0.00635 0.004335 0.003938 0.004655 0.00655 0.005321

.pdf 0.006684 0.215344 0.017837 0.013165 0.016623 0.019169 0.023733 0.022129

.pdf 0.106799 0.463873 0.10624 0.188977 0.251047 0.345154 0.296366 0.319448

.PDF 0.830359 1.222278 0.468225 0.795654 0.886653 1.22869 1.136174 1.26054

.pdf 1.36139 2.005185 0.741972 1.219852 1.356754 1.943219 1.802287 2.000625

.pdf 13.16027 18.59345 6.617767 11.27738 11.74478 17.90399 16.68294 18.8062

.PDF 26.9594 32.4183 13.50459 21.97078 22.15551 34.82851 33.95971 37.86716

.pdf 60.9044 80.24629 26.31003 46.18155 47.84104 66.146 76.59416 86.01726

.pdf 128.7644 166.119 53.01418 90.15962 99.86032 136.7923 169.8715 186.7328

sum= 232.0945 301.4921 100.7872 171.8113 184.1167 259.2117 300.3735 333.0315

Throughput

(MB / SEC)

0.76982 2.302818 1.350869 1.260584 0.895386 0.772686 0.696915

We can see that SFS scheme when (n=3, t=2) is faster in performance than

other schemes. Another point can be noticed here is that the difference of the

throughput among the SFS schemes is relatively small in general. Summary of

execution time throughput of SFS and AES schemes is shown in Fig. 4.18. Con-

sidering the throughput of all files, we can see that AES has a lower throughput

than SFS schemes. Therefore, consumes less power than the other schemes. More-

over, we observed that SFS schemes with (n=8, t=6), (n=8, t=3), (n=8, t=2)

43

Figure 4.17: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of PDF File Type of Different Sizes.

have quite the same throughput. However, SFS scheme with (n=8, t=6) is slightly

slower. Whereas SFS schemes with (n=5, t=3) and (n=5, t=2) have also quite

the same throughput. However, SFS with (n=5, t=2) is slightly faster.

Figure 4.18: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of PDF File Type of Different Sizes.

44

4.3.2 Reconstruct The Secret/Decryption

The most popular file formats

The Table 4.5 and Fig. 4.19 show a performance comparison of the sequential

execution time of reconstruct and decryption using AES of different file types.

The line graph illustrates that the execution time of SFS scheme is improved

dramatically and therefore consumes very less time than AES. Moreover, we ob-

served that SFS schemes when t=2 almost require the same execution time for

all file sizes, and both SFS schemes t=3 almost require the same execution time

for all file sizes. However, they are slightly slower than SFS with t=2. While SFS

scheme when t=6 is slower than other SFS schemes, but still better than AES. In

addition, we can see that increasing the number of the thresholds effects on the

execution time.

Table 4.5: Sequential implementation of Reconstruct the Secret and Decryption
using AES of most Popular File Formats.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.txt 0.000806 0.259497 0.000392 0.000317 0.000924 0.00031 0.000357 0.000596

.tgz 0.011756 0.261842 0.004937 0.005026 0.005581 0.004869 0.006141 0.011531

.png 0.129359 0.523923 0.045061 0.043325 0.052838 0.044957 0.052975 0.080394

.exe 1.223342 3.445708 0.396014 0.390648 0.472805 0.409168 0.47547 0.745363

.pdf 13.15998 36.49325 4.352675 4.292135 5.181315 4.414166 5.092969 8.028322

.doc 20.19169 56.82038 6.922966 6.901265 8.0602 6.931192 8.060043 12.44748

.mp3 63.33237 175.4779 21.34528 21.43678 25.56629 21.45706 25.65903 37.29487

.jpg 114.8889 313.7745 37.30818 37.05509 44.98251 36.98753 44.34046 64.61524

sum= 212.9382 587.057 70.3755 70.12459 84.32247 70.24925 83.68745 123.2238

Throughput

(KB / ms)

0.362722 3.025744 3.03657 2.525285 3.031182 2.544447 1.728061

We can see that SFS scheme when t=2 is faster in performance than other SFS

schemes. However, it can be noticed that the difference of the throughput among

different files reconstructed using the SFS schemes is relatively small. Summary

of throughput of SFS and AES schemes is shown in Fig. 4.20. Considering

45

the throughput of all files, we can see that AES has a lower throughput than

SFS schemes. Therefore, consumes less power . Moreover, we observed that

SFS schemes when t=2 almost have quite the same throughput, and both SFS

schemes t=3 almost have also quite the same throughput. However, they are

slightly slower. While SFS scheme when t=6 is slower than other SFS schemes,

but still better than AES.

Figure 4.19: Performance Comparison of the Sequential Execution Time of Re-
construct the Secret and Decryption using AES of most Popular File Formats.

Figure 4.20: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of most Popular File Formats.

The Table 4.6 and Fig. 4.21 show a performance comparison of the parallel

46

execution time of reconstruct the secret and decryption using AES of most popular

file formats. The line graph illustrates that the execution time of SFS scheme is

improved dramatically and therefore consumes very less time than AES. Moreover,

we observed that SFS schemes when t=2 almost require the same execution time

for all file sizes, and both SFS schemes t=3 almost require the same execution

time for all file sizes. However, they are slightly slower. While SFS scheme when

t=6 is slower than other SFS schemes, but still better than AES. In addition, we

can see that increasing the number of the thresholds effects on the execution time.

Table 4.6: Parallel implementation of Reconstruct the Secret and Decryption
using AES of most Popular File Formats.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.txt 0.000806 0.300373 0.002389 0.002899 0.002588 0.002789 0.004162 0.005223

.tgz 0.011758 0.308509 0.015617 0.012056 0.021017 0.018118 0.016687 0.042235

.png 0.129373 0.434473 0.06281 0.060916 0.099873 0.063399 0.101994 0.232432

.exe 1.223363 2.292842 0.364921 0.331134 0.610034 0.358143 0.528697 1.428648

.pdf 13.15995 22.87396 4.199058 3.860987 6.895496 4.017666 6.250292 16.63279

.doc 20.19173 35.06085 7.509392 8.692852 10.42986 8.561988 10.39432 22.67067

.mp3 63.33208 107.9735 27.31328 26.96642 33.29497 27.14255 32.41477 52.62848

.jpg 114.8893 190.5882 40.0472 40.96611 51.44264 39.9216 52.36443 86.90132

sum= 212.9384 359.8327 79.51467 80.89338 102.7965 80.08625 102.0754 180.5418

Throughput

(KB / ms)

0.591771 2.677976 2.632334 2.071456 2.658863 2.08609 1.179441

Figure 4.21: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of most Popular File Formats.

In Fig. 4.20 Summary of execution time throughput of SFS and AES schemes.

47

We notice that SFS scheme when t=2 is faster in performance than other SFS

schemes. However, it can be noticed that the difference of the throughput among

the SFS schemes is relatively small in general. Considering the throughput of all

files, we can see that AES has a lower throughput than SFS schemes. Therefore,

consumes less power . Moreover, we observed that SFS schemes when t=2 almost

have quite the same throughput, and both SFS schemes t=3 almost have also

quite the same throughput. However, they are slightly slower. While SFS scheme

when t=6 is slower than other SFS schemes, but still better than AES.

Figure 4.22: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of most Popular File Formats.

Fig.4.23 illustrates the difference in execution time for sequential and parallel

implementation for reconstruct and decryption different file type. We can note

that the performance is improved in the parallel implementation. In this also it

can be seen that the performance is not fixed or constant for all schemes. Here

we can see that the performance of parallel implementation for small size file is

less and it will increase as the file size increases till a particular value after which

it will be a constant value. Generally , we observed more improvement for AES

48

in parallel than in sequential. However, SFS schemes is still better.

Figure 4.23: Speed Up of Reconstruct the Secret and Decryption using AES of
most Popular File Formats.

49

PDF file formats

In this section, we explain PDF format in details as an example for reconstruct

the secret and decryption using AES of PDF File type of different sizes. The

result of reconstructing the secret for the other file types is shown in Appendix B.

The Table 4.7 and Fig. 4.24 show performance comparison of the sequential

execution time of reconstructing the secret and decryption using AES of PDF

file type of different sizes. The line graph illustrates that the execution time of

SFS scheme is improved dramatically and therefore consumes very less time than

AES. Moreover, we observed that SFS schemes when t=2 almost require almost

the same execution time for all file sizes, and both SFS schemes t=3 almost require

the same execution time for all file sizes. However, they are slightly slower. While

SFS scheme when t=6 is slower than other SFS schemes, but still better than

AES. In addition, we can see that increasing the value of the thresholds effects

the execution time.

Table 4.7: Sequential implementation of Reconstruct the Secret and Decryption
using AES of of PDF File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.pdf 0.000834 0.237528 0.000393 0.000274 0.000481 0.000384 0.000467 0.000703

.pdf 0.006684 0.260077 0.00368 0.002372 0.004506 0.00388 0.004204 0.006337

.pdf 0.106799 0.562031 0.047703 0.036748 0.066607 0.062995 0.065124 0.075652

.PDF 0.830359 2.424523 0.270143 0.280818 0.331581 0.274417 0.338507 0.515038

.pdf 1.36139 4.053242 0.52511 0.502577 0.678461 0.474573 0.613416 0.848786

.pdf 13.16027 37.10253 4.910213 4.567748 5.639248 4.600203 5.646171 8.219183

.PDF 26.9594 74.1524 9.488832 9.610638 11.00949 9.353508 11.63609 16.97265

.pdf 60.9044 158.8993 21.77991 21.32283 25.32741 21.77832 25.80141 38.63707

.pdf 128.7644 333.0299 42.18129 41.85679 49.24716 42.03524 49.97805 72.78362

sum= 232.0945 610.7215 79.20727 78.1808 92.30494 78.58352 94.08344 138.059

Throughput

(MB / SEC

0.380033 2.930217 2.96869 2.514432 2.953475 2.466901 1.681125

We can notice that SFS scheme when t=2 is faster than other SFS schemes.

However, it can be noticed that the difference of the throughput among different

50

Figure 4.24: Performance Comparison of the Sequential Execution Time of Re-
construct the Secret and Decryption using AES of of PDF File Type of Different
Sizes.

experiments is relatively small in general. Summary of execution time throughput

of SFS and AES scheme is shown in Fig. 4.25. Considering the throughput of all

files, we can see that AES has a lower throughput than SFS schemes. Therefore,

SFS consumes less power . Moreover, we observed that SFS schemes when t=2

almost have quite the same throughput, and both SFS schemes t=3 almost have

also quite the same throughput. However, they are slightly slower. While SFS

scheme when t=6 is slower than other SFS schemes, but still better than AES.

Figure 4.25: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of of PDF File Type of Different Sizes.

51

The Table 4.8 and Fig. 4.26 show a performance comparison of the paral-

lel execution time of reconstruct and decryption PDF file type. The line graph

illustrates that the execution time of SFS scheme is improved dramatically and

therefore consumes very less time than AES. Moreover, we observed that SFS

schemes when t=2 almost require the same execution time for all file sizes even

if the number of shares is different , and both SFS schemes t=3 almost require

the same execution time for all file sizes even if the number of shares is different.

However, they are slightly slower. When SFS uses t=6 , it takes long time more

than other threshold values , but still better than AES. In addition, we can see

that increasing the number of the thresholds effects on the execution time.

Table 4.8: Parallel implementation of Reconstruct the Secret and Decryption
using AES of of PDF File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.pdf 0.000834 0.208378 0.00635 0.004335 0.003938 0.004655 0.00655 0.005321

.pdf 0.006684 0.215344 0.017837 0.013165 0.016623 0.019169 0.023733 0.022129

.pdf 0.106799 0.463873 0.10624 0.188977 0.251047 0.345154 0.296366 0.319448

.PDF 0.830359 1.222278 0.468225 0.795654 0.886653 1.22869 1.136174 1.26054

.pdf 1.36139 2.005185 0.741972 1.219852 1.356754 1.943219 1.802287 2.000625

.pdf 13.16027 18.59345 6.617767 11.27738 11.74478 17.90399 16.68294 18.8062

.PDF 26.9594 32.4183 13.50459 21.97078 22.15551 34.82851 33.95971 37.86716

.pdf 60.9044 80.24629 26.31003 46.18155 47.84104 66.146 76.59416 86.01726

.pdf 128.7644 166.119 53.01418 90.15962 99.86032 136.7923 169.8715 186.7328

sum= 232.0945 301.4921 100.7872 171.8113 184.1167 259.2117 300.3735 333.0315

Throughput

(MB / SEC)

0.76982 2.302818 1.350869 1.260584 0.895386 0.772686 0.696915

We notice that SFS scheme when t=2 is faster in performance than other

SFS with different values of t. However, it can be noticed that the difference of

the throughput among the SFS schemes is relatively small in general. Summary

of execution time throughput of SFS and AES schemes is shown in Fig. 4.27.

Considering the throughput of all files, we can see that AES has a lower through-

put than SFS schemes. therefore, consumes less power than the other schemes.

52

Figure 4.26: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of of PDF File Type of Different
Sizes.

Moreover, we observed that SFS schemes when t=2 almost have quite the same

throughput, and both SFS schemes t=3 almost have also quite the same through-

put. However, they are slightly slower. While SFS scheme when t=6 is slower

than other SFS with different values of t, but still better than AES.

Figure 4.27: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of of PDF File Type of Different Sizes.

53

4.3.3 Compression and Decompression

Converting file to Base64 increases the file size. We select the GZIP algorithm

for the compression and decompression of the converted file. GZIP is very fast

and has small memory footprint according to [11, 47, 48] . In this section, we

show the execution time for compression and decompression of the different file

type before/after create the share and compare the file size with the original

file. Reducing the file size will reduce the time needed to create the shares and

reconstruct the secret . Some fluctuations happened in some graph because of the

file size and type.

Fig. 4.28, Fig. 4.29 , and Fig. 4.30 shown performance of compression, decom-

pression , and file share size before compression and after compression respectively

for PDF file.

Figure 4.28: Performance of Compression PDF File type.

54

Figure 4.29: Performance of Decompression PDF File type.

Figure 4.30: File Share Size before Compression and after Compression of PDF
File type.

55

Fig. 4.31, Fig. 4.32 , and Fig. 4.33 shown performance of compression, decom-

pression , and file share size before compression and after compression respectively

for Audio file.

Figure 4.31: Performance of Compression Audio File type.

Figure 4.32: Performance of Decompression Audio File type.

56

Figure 4.33: File Share Size before Compression and after Compression of Audio
File type.

Fig. 4.34, Fig. 4.35 , and Fig. 4.36 shown performance of compression, decom-

pression , and file share size before compression and after compression respectively

for Binary file.

Figure 4.34: Performance of Compression Binary File Type.

57

Figure 4.35: Performance of Decompression Binary File Type.

Figure 4.36: File Share Size before Compression and after Compression of Binary
File Type.

58

Fig. 4.37, Fig. 4.38 , and Fig. 4.39 shown performance of compression, decom-

pression , and file share size before compression and after compression respectively

for Document file.

Figure 4.37: Performance of Compression Document File Type.

Figure 4.38: Performance of Decompression Document File Type.

Figure 4.39: File Share Size before Compression and after Compression of Docu-
ment File Type.

59

Fig. 4.40, Fig. 4.41 , and Fig. 4.42 shown performance of compression, decom-

pression , and file share size before compression and after compression respectively

for Executable file.

Figure 4.40: Performance of Compression Executable File Type.

Figure 4.41: Performance of Decompression Executable File Type.

60

Figure 4.42: File Share Size before Compression and after Compression of Exe-
cutable File Type.

Fig. 4.43, Fig. 4.44 , and Fig. 4.45 shown performance of compression, decom-

pression , and file share size before compression and after compression respectively

for Image file.

Figure 4.43: Performance of Compression Image File Type.

61

Figure 4.44: Performance of Decompression Image File Type.

Figure 4.45: File Share Size before Compression and after Compression of Image
File Type.

Fig. 4.46, Fig. 4.47 , and Fig. 4.48 shown performance of compression, decom-

pression , and file share size before compression and after compression respectively

for Text file.

62

Figure 4.46: Performance of Compression Text File Type.

Figure 4.47: Performance of Decompression Text File Type.

Figure 4.48: File Share Size before Compression and after Compression of Text
File Type.

Fig. 4.49, Fig. 4.50 , and Fig. 4.51 shown performance of compression, decom-

63

pression , and file share size before compression and after compression respectively

for Video file.

Figure 4.49: Performance of Compression Video File Type.

Figure 4.50: Performance of Decompression Video File Type.

Figure 4.51: File Share Size before Compression and after Compression of Video
File Type.

64

Fig. 4.52, Fig. 4.53 , and Fig. 4.54 shown performance of compression, decom-

pression , and file share size before compression and after compression respectively

for Archive file.

Figure 4.52: Performance of Compression Archive File Type.

Figure 4.53: Performance of Decompression Archive File Type.

65

Figure 4.54: File Share Size before Compression and after Compression of Archive
File Type.

66

4.4 Upload Process.

Table 4.9 and the Fig. 4.55 illustrate the experiment of the uploading time for

different files with different sizes in parallel to cloud storage. Overall, regarding

uploading time, Dropbox is the worst, while the best is SMEstorage which is

hosted in Amazon S3. Although, the time in AES DropBox includes the uploading

time for the encryption file and the average time of the uploading all shares of the

key.

Table 4.9: Uploading Time in Second for Different Files with Different Sizes in
Parallel to Cloud Storage.

File

Size-

MB

DropBox Google

Drive

SME OneDrive SME

S3

SME

S1

SME

S2

SME

S4

AES

DropBox

0.0007 5.0044 4.1324 3.6020 5.1743 4.6917 4.5937 4.5613 4.7232 10.4428

0.0127 5.1847 4.4554 3.4053 6.0728 5.5025 5.4818 4.5357 4.9421 10.6230

0.0479 5.4428 5.2285 3.8557 5.8736 5.4568 5.2115 4.6294 5.9285 10.8812

0.0990 7.3329 4.6575 4.9211 5.6339 5.3054 5.1047 4.8727 5.0761 12.7713

0.9775 14.9435 13.1944 13.0493 14.5562 15.3208 14.4413 15.5067 15.2434 20.3819

10.0778 58.3193 52.4350 54.1062 55.5180 55.1580 56.1183 57.7684 56.2539 63.7576

25.1418 101.7160 99.5973 101.6725 101.0624 101.1508 100.6766 101.1795 101.5205 107.1544

50.8237 194.5096 193.9219 196.8051 192.1513 193.1364 189.7932 188.0017 192.0535 193.9234

67

Figure 4.55: Performance Comparison of the Uploading Time for Different Files
with Different Sizes in Parallel to Cloud Storage.

4.5 Download Process.

Table 4.10 and the Fig. 4.56 show experiment results of the time of download

for different files with different sizes in parallel from cloud storage. concerning

download time , Dropbox is the worst, while the best is SMEstorage which is

hosted in Amazon S3. However, when the file size is 50MB, the SMEstorage

shows the worst performance which indicates the dependence of the results on

the network state and the download rate. Although, the time in AES DropBox

includes the download time for the encryption file and the average time of the

download all shares of the key.

68

Table 4.10: Download Time in Second for Different Files with Different Size in
Parallel from Cloud Storage.

File

Size-

MB

DropBox Google

Drive

SME OneDrive SME

S3

SME

S1

SME

S2

SME

S4

AES

DropBox

0.0005 1.1174 1.4544 0.9619 2.2992 1.8707 1.1074 1.1376 1.0545 3.1280

0.0007 1.2886 1.2459 0.8784 1.7981 0.8525 1.0962 0.8456 0.9029 3.2992

0.0127 1.5160 1.5185 1.4284 2.7746 1.4394 1.4522 1.4587 1.5642 3.5266

0.0479 2.3980 1.9101 2.4369 2.9549 2.0131 2.0281 1.9668 3.0042 4.4086

0.0990 2.6569 2.9511 3.0598 5.8820 2.6076 2.8406 2.8947 2.9987 4.6675

0.9775 10.9620 10.6109 11.0750 12.1696 10.3473 10.5648 10.3478 10.1664 12.9726

10.0778 83.5843 76.6780 74.5356 84.0721 71.9610 78.9003 76.2712 73.3049 85.5949

25.1418 182.4045 162.5270 186.0100 172.0826 164.4602 172.1932 182.9029 171.8020 184.4151

50.8237 344.2008 325.6052 351.2803 332.7302 322.0095 327.5514 324.9523 319.7728 346.2114

Figure 4.56: Performance Comparison of the Downloading Time for Different Files
with Different Size in Parallel from Cloud Storage.

4.6 Conclusion

Overall, we can conclude that the results are all within the acceptable range and by

using the index array. Parallel implementation of the scheme shows significantly

improve in the results . Also using SFS to build the shares, we noticed that the

outputs change significantly according to the number of shares and the threshold

.Moreover, increasing both parameters shows acceptable results, and the level of

69

security is definitely enhanced. It is clear that the threshold value plays critical

role in the reconstruction process . Finally, compressing file before preparing the

shares reduce the time needed significantly.

70

CHAPTER 5

CONCLUSION AND FUTURE

DIRECTIONS

In conclusion, securing files in the cloud is a vital issue because large amount of

data has been moved to the cloud. Applying the secret file sharing (SFS) for

all types of files such as (image, document, system file, audio, and video... etc.)

increases the trust and achieves the security goal. Each file is converted to the

base64 string before applying the secret sharing mechanism, and the string is

compressed using GZIP compression before and after applying the secret sharing

scheme. As a result, the file is sent in compressed form and the receiver should

decompress the file and get the original shares. Using compression makes the size

of file less than the original file even if we convert it to base64 unless the file is

already compressed. Our scheme adds more security, extra confidentiality, and

availability because the data will be available in multi cloud and the attackers

will need to compromise number of clouds more than or equal to the threshold.

71

It should be noted that there is a trade-off between the execution time and the

threshold which means that the outputs change significantly due to the number

of shares and the threshold. Increasing the threshold leads to increase the trust

in the cloud. Finally, SFS shows significant results compared with symmetric

algorithm in both creating and reconstructing the secret for any type of file.

As for future improvements, applying secret file sharing in different field such

as the social media. In addition, doing more experiment for large file size .

72

REFERENCES

[1] A. Westerheim, “What is cloud computing?” accessed:13.02.2016.

[Online]. Available: http://www.ekaru.com/blog/bid/92650/What-is-Cloud-

Computing?smau=iV V sP1FpvNQ6pnvN

[2] T. Alkharobi, Secure Repayable Storage System. Springer, 2008, pp. 102–109.

[3] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud comput-

ing,” 2011.

[4] “Searchcloudcomputing,” accessed: 22.07.2016. [Online]. Available:

http://searchcloudcomputing.techtarget.com/

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,”

Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[6] M. Miller, Cloud computing: Web-based applications that change the way you

work and collaborate online. Que publishing, 2008.

73

[7] S. Singh, Y.-S. Jeong, and J. H. Park, “A survey on cloud computing se-

curity: Issues, threats, and solutions,” Journal of Network and Computer

Applications, vol. 75, pp. 200–222, 2016.

[8] M. Gobi and M. R. Sridevi, “Performance analysis of biometric image encryp-

tion in transformed formats using public key cryptography,” International

Journal of Scientific Engineering Research, vol. 6, no. 2, 2015.

[9] R. Prajapati, “Base64 images advantages disadvantages - coderiddles,”

2014. [Online]. Available: http://www.coderiddles.com/base64-images/

[10] A. D. Diary, “Advantages of base64 encoding,” 2012. [Online].

Available: http://dev-faqs.blogspot.com/2012/12/advantages-of-base-64-

encoding.html? sm au =iVVsP1FpvNQ6pnvN

[11] L. P. Deutsch, “Gzip file format specification version 4.3,” 1996.

[12] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,

no. 11, pp. 612–613, 1979.

[13] G. R. Blakley, “Safeguarding cryptographic keys,” vol. 48, 1979, pp. 313–317.

[14] Z. Chen, S. Li, Y. Zhu, J. Yan, and X. Xu, “A cheater identifiable multi-

secret sharing scheme based on the chinese remainder theorem,” Security

and Communication Networks, vol. 8, no. 18, pp. 3592–3601, 2015.

[15] S. Iftene, “Secret sharing schemes with applications in security protocols,”

Sci. Ann. Cuza Univ., vol. 16, pp. 63–96, 2006.

74

[16] M. Mignotte, How to share a secret. Springer, 1982, pp. 371–375.

[17] C.-C. Thien and J.-C. Lin, “Secret image sharing,” Computers Graphics,

vol. 26, no. 5, pp. 765–770, 2002.

[18] R. Lukac and K. N. Plataniotis, “Colour image secret sharing,” Electronics

Letters, vol. 40, no. 9, p. 529, 2004.

[19] D.-C. Lou, H.-H. Chen, H.-C. Wu, and C.-S. Tsai, “A novel authenticatable

color visual secret sharing scheme using non-expanded meaningful shares,”

Displays, vol. 32, no. 3, pp. 118–134, 2011.

[20] D.-S. Tsai, G. Horng, T.-H. Chen, and Y.-T. Huang, “A novel secret im-

age sharing scheme for true-color images with size constraint,” Information

Sciences, vol. 179, no. 19, pp. 3247–3254, 2009.

[21] N. S. Alex and L. J. Anbarasi, “Enhanced image secret sharing via error dif-

fusion in halftone visual cryptography,” in Electronics Computer Technology

(ICECT), 2011 3rd International Conference on, vol. 2. IEEE, Conference

Proceedings, pp. 393–397.

[22] C.-N. Yang, “New visual secret sharing schemes using probabilistic method,”

Pattern Recognition Letters, vol. 25, no. 4, pp. 481–494, 2004.

[23] T.-L. Lin, S.-J. Horng, K.-H. Lee, P.-L. Chiu, T.-W. Kao, Y.-H. Chen, R.-S.

Run, J.-L. Lai, and R.-J. Chen, “A novel visual secret sharing scheme for

multiple secrets without pixel expansion,” Expert systems with applications,

vol. 37, no. 12, pp. 7858–7869, 2010.

75

[24] M. Sasaki and Y. Watanabe, “Formulation of visual secret sharing schemes

encrypting multiple images,” in Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on. IEEE, Conference Pro-

ceedings, pp. 7391–7395.

[25] J. He, W. Lan, and S. Tang, “A secure image sharing scheme with high quality

stego-images based on steganography,” Multimedia Tools and Applications,

2016.

[26] P. Li, C.-N. Yang, and Z. Zhou, “Essential secret image sharing scheme with

the same size of shadows,” Digital Signal Processing, vol. 50, pp. 51–60, 2016.

[27] N. Askari, C. Moloney, and H. M. Heys, “A novel visual secret sharing

scheme without image size expansion,” in Electrical Computer Engineering

(CCECE), 2012 25th IEEE Canadian Conference on. IEEE, Conference

Proceedings, pp. 1–4.

[28] X.-Y. Liu, M.-S. Chen, and Y.-L. Zhang, “A new color visual cryptogra-

phy scheme with perfect contrast,” in Communications and Networking in

China (CHINACOM), 2013 8th International ICST Conference on. IEEE,

Conference Proceedings, pp. 449–454.

[29] T.-H. Chen and K.-H. Tsao, “Visual secret sharing by random grids revis-

ited,” Pattern Recognition, vol. 42, no. 9, pp. 2203–2217, 2009.

76

[30] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:

Scalable secure file sharing on untrusted storage.” in Fast, vol. 3, 2003, pp.

29–42.

[31] Y. L. Y. C. G. X. Xin Dong, Jiadi Yu and M. Li, “Achieving an effective,

scalable and privacy-preserving data sharing service in cloud computing,”

Computers security, no. 42, p. 151164, 2014.

[32] A. Bessani, M. Correia, B. Quaresma, F. Andr, and P. Sousa, “Depsky:

dependable and secure storage in a cloud-of-clouds,” ACM Transactions on

Storage (TOS), vol. 9, no. 4, p. 12, 2013.

[33] F. Alsolami and T. Boult, “Cloudstash: using secret-sharing scheme to secure

data, not keys, in multi-clouds,” in Information Technology: New Genera-

tions (ITNG), 2014 11th International Conference on. IEEE, Conference

Proceedings, pp. 315–320.

[34] V. S. Agme and A. C. Lomte, “Cloud data storage security enhancement

using identity based encryption,” Identity, vol. 3, no. 4, 2014.

[35] D. Esbensen, “Apparatus and method for fast data encoding and decoding,”

2012.

[36] S. Josefsson, “The base16, base32, and base64 data encodings,” 2006.

[37] W. L. Li, R. X. Zhu, J. Kang, L. Tao, and G. H. Cai, “A design of im-

proved base64 encoding algorithm based on fpga,” in Applied Mechanics and

Materials, vol. 513. Trans Tech Publ, 2014, pp. 2220–2223.

77

[38] M. Shirali-Shahreza and S. Shirali-Shahreza, “Sending pictures by sms,”

in Advanced Communication Technology, 2009. ICACT 2009. 11th Interna-

tional Conference on, vol. 1. IEEE, Conference Proceedings, pp. 222–223.

[39] G. Singh, “Modified vigenere encryption algorithm and its hybrid implemen-

tation with base64 and aes,” in Advanced Computing, Networking and Secu-

rity (ADCONS), 2013 2nd International Conference on. IEEE, Conference

Proceedings, pp. 232–237.

[40] Wikipedia, “Base64,” 2013. [Online]. Available:

https://en.wikipedia.org/wiki/Base64

[41] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

[42] N. F. Pub, “197: Advanced encryption standard (aes),” Federal Information

Processing Standards Publication, vol. 197, no. 441, p. 0311, 2001.

[43] S. Gupta and S. Lamba, “An enhanced python based approach of secret

sharing scheme with encryption,” Issues, vol. 1, no. 1, pp. 173–180, 2014.

[44] T. Guo, F. Liu, C. Wu, C. Yang, W. Wang, and Y. Ren, “Threshold secret

image sharing,” in International Conference on Information and Communi-

cations Security. Springer, 2013, pp. 404–412.

[45] M. Kadam, S. Chaudhary, and B. Carvalho, “Security approach for multi-

cloud data storage,” International Journal of Computer Applications, vol.

126, no. 4, 2015.

78

[46] M. Villari, A. Celesti, F. Tusa, and A. Puliafito, “Data reliability in multi-

provider cloud storage service with rrns,” in European Conference on Service-

Oriented and Cloud Computing. Springer, 2013, pp. 83–93.

[47] L. Collin, “A quick benchmark: Gzip vs. bzip2 vs. lzma,” May 2005.

[Online]. Available: https://tukaani.org/lzma/benchmarks.html

[48] N. T. Ltd, “Dotnetcompression,” accessed: 22.05.2017. [Online]. Available:

https://www.noemax.com/dotnetcompression/compression-analysis-tool

79

APPENDIX A

CREATE THE SHARES

A.1 Audio file formats

Table A.1: Sequential implementation of Creating the Shares and Encryption
using AES of Audio File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.wav 0.000881 0.258789 0.001101 0.001506 0.001522 0.001806 0.001921 0.036963

.mp3 0.001864 0.259201 0.001985 0.002791 0.003727 0.003432 0.003353 0.330767

.wav 0.007831 0.294619 0.005677 0.008783 0.010861 0.052654 0.01421 0.012654

.mp3 0.010812 0.273951 0.007457 0.011918 0.012524 0.046865 0.146118 0.017968

.ogg 0.012504 0.271327 0.008783 0.016023 0.015435 0.026 0.351585 0.037681

.aac 0.012911 0.298225 0.022086 0.01627 0.013338 0.052738 0.048324 0.04841

.WAV 0.121142 0.551301 0.105401 0.15469 0.156741 0.32877 0.224957 0.22039

.MP3 0.130061 0.548204 0.122379 0.150613 0.152555 0.23105 0.228292 0.257148

.WAV 1.113782 3.265649 0.815514 1.299425 1.264672 1.927354 1.933144 2.08116

.ogg 1.198285 3.582327 0.906589 1.335281 1.394397 2.088357 2.076078 2.204324

.MP3 1.340312 3.954375 0.986417 1.494072 1.599407 2.226711 2.518357 2.546987

.mp3 13.39954 35.3693 9.358547 15.65688 15.54519 21.38748 21.29459 23.6293

.mp3 25.38321 69.01725 18.81481 30.15872 30.39643 44.30236 45.30303 51.80042

.mp3 63.33239 160.4711 47.91844 74.07479 74.86859 108.1481 109.4823 114.2877

.mp3 120.1339 304.848 87.90203 138.0069 141.0048 202.002 203.049 212.0839

Sum= 226.1994 583.2636 166.9772 262.3887 266.4402 382.8257 386.6753 409.5957

Throughput

(MB/ Sec)

0.387817 1.354672 0.862078 0.848969 0.590868 0.584986 0.55225

80

Figure A.1: Performance Comparison of the Sequential Execution Time of Creat-
ing the Shares and Encryption using AES of Audio File Type of Different Sizes.

Figure A.2: Throughput of the Sequential Execution Time of Creating the Shares
and Encryption using AES of Audio File Type of Different Sizes.

Figure A.3: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of Audio File Type of Different Sizes.

81

Table A.2: Parallel implementation of Creating the Shares and Encryption using
AES of Audio File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.wav 0.000881 0.212544 0.003598 0.005382 0.006298 0.007093 0.006465 0.005412

.mp3 0.001864 0.212733 0.004581 0.008444 0.008387 0.007231 0.007532 0.008529

.wav 0.007831 0.216555 0.010176 0.021127 0.021199 0.022377 0.023183 0.037674

.mp3 0.010812 0.221017 0.012955 0.020222 0.021914 0.029407 0.030511 0.065329

.ogg 0.012504 0.214901 0.014742 0.026708 0.027311 0.047649 0.035634 0.078343

.aac 0.012911 0.219033 0.016109 0.023323 0.029781 0.033199 0.036728 0.048151

.WAV 0.121142 0.425984 0.137705 0.202679 0.213944 0.304942 0.349024 0.35694

.MP3 0.130061 0.428282 0.132465 0.204694 0.266967 0.368537 0.342154 0.452074

.WAV 1.113782 1.691637 0.614169 1.098647 1.140247 1.624402 1.472002 1.74404

.ogg 1.198285 1.743921 0.609442 1.051533 1.223562 1.69918 1.561549 1.730436

.MP3 1.340312 1.856065 0.669877 1.225101 1.13647 1.946015 1.718602 2.043991

.mp3 13.39954 19.27124 6.715657 10.7606 6.412136 12.95901 17.18541 19.03588

.mp3 25.38321 36.33403 12.43381 21.13461 21.31677 32.9218 32.30493 36.29371

.mp3 63.33239 84.57047 30.49876 51.82066 53.35351 68.85662 83.14607 91.55714

.mp3 120.1339 155.721 54.54024 80.16999 88.11212 122.2988 159.0777 177.3213

sum= 226.1994 303.3394 106.4143 167.7737 173.2906 243.1262 297.2975 330.7789

Throughput

(MB / SEC)

0.745698 2.125649 1.348241 1.305319 0.930379 0.760852 0.683839

Figure A.4: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of Audio File Type of Different Sizes.

82

A.2 Binary file formats

Table A.3: Sequential implementation of Creating the Shares and Encryption
using AES of Binary File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.bin 0.000469 0.260092 0.001124 0.001519 0.001056 0.001593 0.001285 0.001665

.bin 0.001416 0.272884 0.001551 0.001632 0.001797 0.003898 0.002612 0.002727

.bin 0.006151 0.263719 0.005139 0.007253 0.009235 0.015373 0.012344 0.019479

.bin 0.013671 0.260876 0.012379 0.015352 0.016438 0.022141 0.022835 0.054751

.BIN 0.099341 0.5704 0.075895 0.107014 0.107434 0.163852 0.176037 0.183152

.bin 0.136086 0.539318 0.100944 0.171087 0.145995 0.231123 0.265223 0.218306

.BIN 11.06026 29.72963 8.497002 12.66103 12.90051 18.31017 20.1091 20.03366

.bin 68.75715 176.3291 55.19748 80.41183 80.55144 111.095 122.2123 123.6259

Sum= 80.07454 208.226 63.89152 93.37672 93.73391 129.8431 142.8017 144.1397

Throughput

(MB/ Sec)

0.384556 1.253289 0.857543 0.854275 0.616702 0.560739 0.555534

Figure A.5: Performance Comparison of the Sequential Execution Time of Creat-
ing the Shares and Encryption using AES of Binary File Type of Different Sizes.

Table A.4: Parallel implementation of Creating the Shares and Encryption using
AES of Binary File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.bin 0.000469 0.210581 0.021321 0.005805 0.006655 0.010671 0.007664 0.015982

.bin 0.001416 0.212847 0.118866 0.010359 0.011488 0.00953 0.011657 0.010061

.bin 0.006151 0.220952 0.012162 0.016129 0.017953 0.023464 0.02309 0.023072

.bin 0.013671 0.215129 0.020866 0.027378 0.028539 0.391576 0.05124 0.078118

.BIN 0.099341 0.427601 0.119191 0.165678 0.195634 0.259694 0.278518 0.309176

.bin 0.136086 0.441484 0.139459 0.244893 0.249088 0.436146 0.428882 0.412394

.BIN 11.06026 15.06531 5.601418 9.278003 9.897554 13.57165 15.24423 15.84823

.bin 68.75715 93.41486 35.86503 53.97019 57.10886 79.08547 77.76194 86.11326

sum= 80.07454 110.2088 41.89831 63.71844 67.51577 93.78821 93.80722 102.8103

Throughput

(MB / SEC)

0.726571 1.911164 1.256693 1.186012 0.85378 0.853607 0.778857

83

Figure A.6: Throughput of the Sequential Execution Time of Creating the Shares
and Encryption using AES of Binary File Type of Different Sizes.

Figure A.7: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of Binary File Type of Different Sizes.

Figure A.8: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of Binary File Type of Different Sizes.

84

A.3 Document file formats

Table A.5: Sequential implementation of Creating the Shares and Encryption
using AES of Document File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.rtf 0.000682 0.25657 0.00087 0.001034 0.00115 0.001674 0.002312 0.001945

.doc 0.00391 0.282181 0.004034 0.004856 0.005231 0.008066 0.007063 0.007883

.rtf 0.00412 0.272458 0.003338 0.004924 0.004977 0.015225 0.008683 0.010046

.xls 0.015959 0.3028 0.009538 0.018354 0.018126 0.029702 0.032278 0.095342

.doc 0.024937 0.281358 0.017203 0.060271 0.032458 0.064207 0.039818 0.060842

.ppt 0.029634 0.270333 0.025412 0.029638 0.036121 0.054576 0.059647 0.062144

.rtf 0.176815 0.539536 0.137009 0.199765 0.219962 0.343091 0.304243 0.329191

.xls 0.351154 1.072159 0.307644 0.500562 0.389111 0.6178 0.59127 0.672995

.doc 0.514131 1.589471 0.38096 0.592942 0.583752 0.907477 0.94272 0.938984

.ppt 0.977554 2.914775 0.764354 1.273339 1.120937 1.853127 1.945434 2.057141

.rtf 2.758348 7.745389 2.140532 3.15942 3.103664 5.001559 4.989784 5.426379

.doc 4.955577 13.82073 3.795599 5.653618 5.616455 8.310213 8.638379 9.0385

.xls 7.267596 19.87585 5.556785 8.434565 8.229632 10.66159 11.53966 13.23916

.doc 20.19167 53.35038 15.61758 23.37844 23.45928 35.16928 36.81468 38.29706

Sum= 37.27208 102.574 28.76086 43.31173 42.82086 63.03759 65.91597 70.23761

Throughput

(MB/ Sec)

0.363368 1.295931 0.860554 0.870419 0.591268 0.565448 0.530657

Figure A.9: Performance Comparison of the Sequential Execution Time of Cre-
ating the Shares and Encryption using AES of Document File Type of Different
Sizes.

85

Figure A.10: Throughput of the Sequential Execution Time of Creating the Shares
and Encryption using AES of Document File Type of Different Sizes.

Table A.6: Parallel implementation of Creating the Shares and Encryption using
AES of Document File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.rtf 0.000682 0.22177 0.017078 0.007246 0.006886 0.008299 0.022362 0.022258

.doc 0.00391 0.216435 0.014056 0.012681 0.019312 0.066418 0.024594 0.053482

.rtf 0.00412 0.211404 0.010761 0.018826 0.412218 0.017453 0.024363 0.06178

.xls 0.015959 0.21169 0.022814 0.041189 0.032128 0.056442 0.055528 0.09306

.doc 0.024937 0.219155 0.031692 0.05265 0.068825 0.079153 0.117189 0.106038

.ppt 0.029634 0.214551 0.051261 0.053423 0.0951 0.082261 0.085379 0.106089

.rtf 0.176815 0.42811 0.192223 0.301592 0.626554 0.489394 0.48686 0.514473

.xls 0.351154 0.882336 0.363713 0.668518 0.615499 0.999196 1.097724 1.153876

.doc 0.514131 0.96838 0.564774 0.883676 0.952018 1.718909 1.585221 1.494305

.ppt 0.977554 1.530761 0.62087 1.272644 1.377048 2.014145 2.087577 2.151535

.rtf 2.758348 3.683754 1.619502 2.628539 2.755792 4.117527 4.279383 4.31965

.doc 4.955577 6.791374 2.799002 4.622872 4.646973 6.486644 6.880884 7.427726

.xls 7.267596 10.33937 4.087246 6.353829 6.703177 9.499622 10.14086 10.54591

.doc 20.19167 29.22544 10.56182 17.06578 17.50842 25.83571 27.12501 29.36498

Sum= 37.27208 55.14453 20.95682 33.98346 35.81995 51.47117 54.01293 57.41516

Throughput

(MB / SEC)

0.675898 1.778519 1.096771 1.04054 0.724135 0.690059 0.649168

Figure A.11: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of Document File Type of Different Sizes.

86

Figure A.12: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of Document File Type of Different Sizes.

87

A.4 Executable file formats

Table A.7: Sequential implementation of Creating the Shares and Encryption
using AES of Executable File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.bat 0.000713 0.244369 0.000845 0.001197 0.001043 0.001493 0.001945 0.002084

.dll 0.001415 0.274988 0.00151 0.001782 0.001882 0.002211 0.009267 0.002838

.exe 0.001495 0.284219 0.001475 0.001992 0.002045 0.003332 0.004632 0.003099

.dll 0.005783 0.283335 0.004423 0.006806 0.006662 0.008781 0.009836 0.011689

.exe 0.006152 0.2303 0.004985 0.006714 0.008062 0.01182 0.011509 0.011364

.dll 0.04107 0.264275 0.031726 0.065644 0.047674 0.07236 0.096915 0.090005

.exe 0.066244 0.259295 0.055403 0.073512 0.077957 0.117566 0.123413 0.111054

.dll 0.248048 0.818193 0.191385 0.284103 0.304107 0.399444 0.436465 0.448274

.exe 1.223361 3.450952 0.920674 1.366027 1.425149 2.113238 2.083826 2.210319

.dll 2.333558 6.630939 1.730802 2.695176 3.373681 4.228074 4.24525 4.357876

.dll 10.86065 29.06437 8.233721 13.1182 13.0774 19.21185 18.82423 20.01682

.exe 26.83663 68.62444 20.30046 32.11373 32.54346 47.40163 47.0745 49.92586

.exe 67.34037 172.5429 50.85121 78.15311 78.34051 114.4208 114.9852 119.9217

.exe 135.1324 342.9647 100.2372 153.7538 155.466 228.755 228.2236 240.3368

Sum= 244.0979 625.9372 182.5658 281.6418 284.6756 416.7476 416.1305 437.4498

Throughput

(MB/ Sec)

0.389972 1.337041 0.866696 0.85746 0.585721 0.58659 0.558002

Figure A.13: Performance Comparison of the Sequential Execution Time of Cre-
ating the Shares and Encryption using AES of Executable File Type of Different
Sizes.

88

Figure A.14: Throughput of the Sequential Execution Time of Creating the Shares
and Encryption using AES of Executable File Type of Different Sizes.

Table A.8: Parallel implementation of Creating the Shares and Encryption using
AES of Executable File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.bat 0.000713 0.213739 0.003598 0.003121 0.005068 0.078625 0.005974 0.004703

.dll 0.001415 0.20849 0.004408 0.004694 0.004798 0.007484 0.007125 0.011655

.exe 0.001495 0.215081 0.004252 0.006489 0.007339 0.009656 0.009148 0.013773

.dll 0.005783 0.207518 0.009643 0.01181 0.012659 0.018706 0.026482 0.020472

.exe 0.006152 0.211504 0.012021 0.020524 0.016289 0.021564 0.018982 0.02145

.dll 0.04107 0.226455 0.042681 0.065367 0.114305 0.123692 0.121251 0.127043

.exe 0.066244 0.219964 0.070777 0.105348 0.11523 0.205284 0.169415 0.203267

.dll 0.248048 0.640215 0.247825 0.466582 0.425578 0.800424 0.644667 0.709498

.exe 1.223361 1.779023 0.631442 1.099701 1.237363 1.933157 1.621186 1.81041

.dll 2.333558 3.223319 1.211213 2.068216 1.423098 2.955583 3.199935 3.633691

.dll 10.86065 15.46298 5.453487 8.68426 9.285773 14.61379 13.59542 15.15177

.exe 26.83663 37.99645 13.87555 22.55861 23.30909 35.69784 33.9087 37.81834

.exe 67.34037 89.63716 33.79753 52.88443 55.95502 90.8836 86.52061 100.0499

.exe 135.1324 176.3424 61.02184 90.86358 92.96739 181.6937 176.8927 202.8125

Sum= 244.0979 326.5843 116.3863 178.8427 184.879 329.0431 316.7416 362.3885

Throughput

(MB / SEC)

0.747427 2.097308 1.364874 1.320312 0.741842 0.770653 0.673581

Figure A.15: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of Executable File Type of Different Sizes.

89

Figure A.16: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of Executable File Type of Different Sizes.

90

A.5 Image file formats

Table A.9: Sequential implementation of Creating the Shares and Encryption
using AES of Image File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.ico 0.000775 0.26154 0.000905 0.001321 0.002072 0.001593 0.004676 0.002925

.bmp 0.000807 0.267638 0.001277 0.001177 0.001161 0.001723 0.001756 0.002494

.jpg 0.001109 0.263 0.001013 0.001641 0.001667 0.002318 0.002568 0.002366

.gif 0.001202 0.316324 0.003517 0.001806 0.00189 0.002231 0.002264 0.002411

.png 0.001417 0.26047 0.001752 0.00169 0.001741 0.004881 0.002607 0.003035

.bmp 0.003551 0.303355 0.003708 0.00369 0.004199 0.005792 0.005834 0.040669

.jpg 0.005877 0.298653 0.004796 0.006924 0.007445 0.009013 0.017379 0.010203

.jpg 0.006936 0.283171 0.006992 0.007034 0.00958 0.03364 0.043605 0.012393

.jpg 0.012669 0.280681 0.011543 0.017913 0.016 0.021337 0.046872 0.029333

.png 0.012883 0.258304 0.055577 0.013994 0.013029 0.020287 0.047906 0.021543

.gif 0.013248 0.299246 0.010646 0.014103 0.258932 0.021056 0.021449 0.024236

.png 0.013301 0.303843 0.010123 0.041552 0.015814 0.020709 0.04604 0.060099

.bmp 0.03936 0.271087 0.034906 0.044479 0.046854 0.07155 0.074185 0.071894

.jpg 0.114242 0.533996 0.10096 0.146746 0.166983 0.224292 0.228562 0.211573

.png 0.129358 0.531398 0.119743 0.157928 0.183688 0.234433 0.253805 0.23771

.jpg 0.129999 0.565075 0.103761 0.165103 0.167235 0.213376 0.224194 0.361685

.gif 0.130485 0.553679 0.105285 0.186552 0.16837 0.21483 0.307666 0.242841

.jpg 0.278825 0.789374 0.217536 0.316601 0.378456 0.500222 0.482507 0.565068

.gif 1.343994 3.759202 1.05984 1.571618 1.631586 2.170897 2.730744 2.602271

.png 1.365189 3.995258 1.02548 1.576976 1.587642 2.212854 2.503148 2.689167

.jpg 1.377728 3.992126 1.009566 1.608666 1.690152 2.009282 2.644322 2.821811

.jpg 13.55293 36.6108 10.79649 15.79177 16.02471 21.86269 24.35159 25.74785

.jpg 27.60827 70.17239 21.14492 31.71205 30.87441 41.15647 47.6556 50.65194

.jpg 67.6302 170.7265 53.15942 79.34566 80.19234 108.7535 122.1022 122.2144

.jpg 114.8891 290.0348 90.64383 133.962 134.8911 182.304 197.8783 205.6673

Sum= 228.6635 585.9319 179.6336 266.699 268.3371 362.073 401.6797 414.2972

Throughput

(MB/ Sec)

0.390256 1.272944 0.857384 0.85215 0.63154 0.569268 0.551931

Figure A.17: Performance Comparison of the Sequential Execution Time of Cre-
ating the Shares and Encryption using AES of Image File Type of Different Sizes.

91

Figure A.18: Throughput of the Sequential Execution Time of Creating the Shares
and Encryption using AES of Image File Type of Different Sizes.

Table A.10: Parallel implementation of Creating the Shares and Encryption using
AES of Image File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.ico 0.000775 0.207467 0.008654 0.007275 0.007688 0.009064 0.01013 0.015162

.bmp 0.000807 0.209836 0.007422 0.02198 0.009449 0.081768 0.0107 0.015228

.jpg 0.001109 0.210709 0.009503 0.011064 0.007492 0.009034 0.009331 0.008268

.gif 0.001202 0.212189 0.023548 0.011473 0.013421 0.009382 0.028617 0.025267

.png 0.001417 0.206505 0.007472 0.008562 0.008097 0.008905 0.012053 0.043258

.bmp 0.003551 0.208624 0.010847 0.030567 0.014178 0.021826 0.026642 0.041532

.jpg 0.005877 0.212804 0.011722 0.035109 0.016442 0.022211 0.024464 0.023615

.jpg 0.006936 0.210046 0.020734 0.02312 0.018069 0.032686 0.034866 0.026817

.jpg 0.012669 0.209779 0.033818 0.046068 0.029402 0.045234 0.039285 0.085553

.png 0.012883 0.227681 0.022824 0.146297 0.027478 0.040673 0.099511 0.061354

.gif 0.013248 0.212815 0.085903 0.041822 0.048648 0.058377 0.063148 0.094535

.png 0.013301 0.21411 0.021279 0.027278 0.307864 0.057364 0.042239 0.077219

.bmp 0.03936 0.212838 0.050551 0.089628 0.08981 0.119262 0.126191 0.138153

.jpg 0.114242 0.430414 0.11745 0.237439 0.204744 0.399508 0.446457 0.519105

.png 0.129358 0.424773 0.162726 0.246521 0.275861 0.347335 0.374399 0.383393

.jpg 0.129999 0.421199 0.144001 0.230935 0.244129 0.383875 0.364692 0.376488

.gif 0.130485 0.443856 0.179598 0.213325 0.261551 0.340514 0.510153 0.412996

.jpg 0.278825 0.643629 0.401487 0.51326 0.513809 0.803113 0.784673 1.094782

.gif 1.343994 1.840062 0.914034 1.472087 1.642216 2.292468 2.38604 2.502315

.png 1.365189 1.935442 0.983557 1.515872 1.620416 2.644309 2.433163 2.525222

.jpg 1.377728 1.960808 1.223339 0.897234 0.925212 2.513832 2.480095 1.631172

.jpg 13.55293 19.25334 7.064779 11.01736 11.43894 17.55378 18.02951 19.2361

.jpg 27.60827 36.63105 12.92628 12.59721 15.37501 27.86897 30.84277 32.11911

.jpg 67.6302 89.56975 33.27388 47.52559 50.4043 72.29256 76.56782 81.29878

.jpg 114.8891 150.7191 49.12106 76.95854 84.14759 119.1356 130.8456 144.5832

sum= 228.6635 307.0288 106.8265 153.9256 167.6518 247.0917 266.5926 287.3386

Throughput

(MB / SEC)

0.744762 2.140513 1.485545 1.363919 0.925419 0.857726 0.795798

92

Figure A.19: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of Image File Type of Different Sizes.

Figure A.20: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of Image File Type of Different Sizes.

93

A.6 Text file formats

Table A.11: Sequential implementation of Creating the Shares and Encryption
using AES of Text File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.txt 0.000807 0.3021 0.000907 0.001259 0.001076 0.001599 0.003731 0.005654

.txt 0.005672 0.240221 0.004316 0.005555 0.006091 0.011364 0.008621 0.00868

.txt 0.015554 0.266474 0.011712 0.019246 0.018859 0.026282 0.031968 0.058434

.txt 0.704043 1.886232 0.463386 0.695211 0.740363 1.076405 1.05143 1.130196

.txt 5.26441 14.73039 4.513525 6.122312 6.123311 8.885614 8.992157 9.443522

.txt 24.19914 61.58744 18.59172 27.063 27.74973 37.38928 40.03352 42.12983

.txt 36.85302 95.29174 28.9812 44.12774 44.14673 64.01463 65.61778 68.83184

Sum= 67.04264 174.3046 52.56676 78.03432 78.78616 111.4052 115.7392 121.6082

Throughput

(MB/ Sec)

0.384629 1.275381 0.859143 0.850944 0.601791 0.579256 0.551301

Figure A.21: Performance Comparison of the Sequential Execution Time of Cre-
ating the Shares and Encryption using AES of Text File Type of Different Sizes.

Figure A.22: Throughput of the Sequential Execution Time of Creating the Shares
and Encryption using AES of Text File Type of Different Sizes.

94

Table A.12: Parallel implementation of Creating the Shares and Encryption using
AES of Text File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.txt 0.000807 0.211733 0.131485 0.007159 0.007605 0.018394 0.008555 0.010492

.txt 0.005672 0.215084 0.012916 0.02575 0.022799 0.024164 0.034651 0.034829

.txt 0.015554 0.240679 0.021144 0.039163 0.043415 0.044661 0.082896 0.079835

.txt 0.704043 1.28985 0.747303 1.21432 1.323482 1.951733 2.098843 2.312144

.txt 5.26441 7.475327 3.001531 4.612706 4.905367 7.213662 7.574712 8.237012

.txt 24.19914 34.19009 12.497 19.27192 19.96731 27.13081 31.796 33.85541

.txt 36.85302 52.1411 19.66458 30.03736 32.18727 40.80034 47.78314 49.20029

sum= 67.04264 95.76387 36.07596 55.20838 58.45725 77.18376 89.37879 93.73001

Throughput

(MB / SEC)

0.700083 1.858374 1.214356 1.146866 0.868611 0.750096 0.715274

Figure A.23: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of Text File Type of Different Sizes.

Figure A.24: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of Text File Type of Different Sizes.

95

A.7 Video file formats

Table A.13: Sequential implementation of Creating the Shares and Encryption
using AES of Video File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.ts 0.000669 0.244085 0.001178 0.001503 0.001259 0.002193 0.002123 0.001474

.ts 0.002464 0.240815 0.003307 0.00302 0.003326 0.003607 0.004225 0.003958

.flv 1.387849 4.040784 1.046781 1.534642 1.623827 2.305611 2.38564 2.532559

.MKV 1.405831 3.968854 1.051176 1.584132 1.676247 2.10116 2.194908 2.515951

.MKV 1.755652 5.103292 1.35474 1.985873 2.108826 2.97388 3.065907 3.204205

.avi 12.81602 33.83223 9.34734 13.35568 13.94558 20.05421 22.12938 21.79297

.MKV 13.44737 35.68476 10.33202 15.34349 16.44393 20.44667 23.48308 24.17046

.flv 13.53714 37.96164 9.828212 15.37841 16.16786 23.3123 23.6713 24.78966

.MKV 13.70051 35.89625 10.36824 15.60317 18.22771 21.78381 22.36971 23.66909

.FLV 27.32828 72.26743 20.95478 33.17578 33.06738 47.63057 49.46713 51.30326

.MKV 27.38996 73.46028 20.85068 32.78063 32.94681 48.04299 50.07635 52.11477

.MKV 66.155 169.2735 50.25245 77.80298 80.26006 112.9988 116.1001 121.3827

.mov 119.4465 301.5958 88.24741 139.5351 139.4253 201.1956 204.3368 216.9755

.MKV 130.4061 330.2066 97.16172 150.426 150.0391 218.0424 224.9972 237.521

.avi 137.9018 346.0712 103.6173 159.1928 162.312 227.6705 229.6781 248.0756

Sum= 566.6811 1449.848 424.4173 657.7033 668.2493 948.5644 973.9619 1030.053

Throughput

(MB/ Sec)

0.390856 1.335198 0.861606 0.848009 0.597409 0.581831 0.550147

Figure A.25: Performance Comparison of the Sequential Execution Time of Cre-
ating the Shares and Encryption using AES of Video File Type of Different Sizes.

96

Figure A.26: Throughput of the Sequential Execution Time of Creating the Shares
and Encryption using AES of Video File Type of Different Sizes.

Table A.14: Parallel implementation of Creating the Shares and Encryption using
AES of Video File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.ts 0.000669 0.184383 0.006452 0.006969 0.014137 0.011379 0.048981 0.006647

.ts 0.002464 0.18373 0.007958 0.009599 0.00968 0.008578 0.009171 0.017234

.flv 1.387849 2.117553 0.858279 1.637039 1.704443 2.632385 2.559958 2.930011

.MKV 1.405831 1.964219 0.980868 1.700778 1.681489 2.695033 2.617101 2.906916

.MKV 1.755652 2.722497 1.175957 1.945766 2.017536 3.072792 3.293765 3.567436

.avi 12.81602 18.53886 6.651224 5.76569 8.737804 13.8445 13.42963 16.61818

.MKV 13.44737 19.22737 7.691684 11.43127 11.87164 18.46591 18.69308 21.59098

.flv 13.53714 19.61065 6.990308 11.50166 12.1788 17.57379 18.13515 20.37754

.MKV 13.70051 16.3108 7.073713 9.952842 6.650318 13.36864 15.54856 17.73247

.FLV 27.32828 37.92532 14.3619 22.37964 23.89967 34.99093 36.71413 41.22584

.MKV 27.38996 38.08249 15.24409 22.45874 23.51405 36.55736 35.55556 42.92936

.MKV 66.155 90.40687 32.59527 50.32345 54.32381 75.53735 84.12947 88.63307

.mov 119.4465 158.1147 48.30215 84.94016 89.12784 135.2178 137.5684 160.1241

.MKV 130.4061 172.9231 46.20615 92.90914 99.15387 142.8584 148.366 170.9934

.avi 137.9018 180.4383 58.21084 98.67343 104.9238 152.4514 152.885 180.7646

sum= 566.6811 758.7508 246.3568 415.6362 439.8089 649.2862 669.554 770.4177

Throughput

(MB / SEC)

0.746861 2.300245 1.363407 1.288471 0.872775 0.846356 0.73555

Figure A.27: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of Video File Type of Different Sizes.

97

Figure A.28: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of Video File Type of Different Sizes.

98

A.8 Archive file formats

Table A.15: Sequential implementation of Creating the Shares and Encryption
using AES of Archive File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.tar 0.000533 0.26528 0.002938 0.001356 0.001222 0.00155 0.001737 0.001965

.jar 0.001053 0.267974 0.001208 0.001756 0.001858 0.001619 0.002203 0.002489

.zip 0.00113 0.27578 0.001148 0.001548 0.001528 0.002162 0.002129 0.002773

.tgz 0.001496 0.262906 0.001422 0.001934 0.002452 0.00279 0.003252 0.00285

.zip 0.007612 0.294287 0.006919 0.006833 0.008125 0.01071 0.01372 0.253649

.jar 0.011474 0.259132 0.00902 0.012432 0.01525 0.016147 0.019902 0.022005

.tgz 0.011759 0.288956 0.008129 0.144608 0.016327 0.016807 0.018508 0.021788

.jar 0.036816 0.246671 0.058294 0.037919 0.037177 0.06279 0.060714 0.059513

.tar 0.091844 0.264071 0.071464 0.096797 0.113511 0.159354 0.152423 0.19083

.bz2 0.131865 0.519244 0.100655 0.156497 0.188986 0.217895 0.226256 0.233533

.zip 1.318213 3.303679 1.229269 1.379277 1.381425 2.138486 2.058948 2.147091

.gz 1.334643 3.733418 0.981979 1.530097 1.498154 2.200661 2.054917 2.474532

.cab 1.344069 3.754602 1.069848 1.656337 1.598301 2.355648 2.457156 2.470547

.jar 1.35046 3.581442 1.044623 1.491795 1.603974 2.078314 2.229113 2.485373

.rar 1.353995 3.559951 0.971724 1.388622 1.45478 2.030451 2.327711 2.276004

.jar 12.62993 34.30476 9.904787 14.38281 15.01945 22.14223 22.61611 23.98629

.rar 13.02323 36.44472 10.54137 15.25329 15.28601 21.30421 23.16577 24.60699

.zip 13.36134 32.86407 10.40675 14.41442 15.32784 19.96134 23.66191 23.13263

.gz 13.39809 36.68574 10.54945 15.44803 15.6029 22.96284 24.11456 24.62229

.jar 20.97486 51.98819 16.01221 23.12955 22.91316 32.49338 35.17731 36.92568

.rar 27.44257 74.32415 21.85323 32.75942 32.74193 47.20672 48.4346 51.91759

.cab 27.68423 74.65109 22.01327 32.47095 32.878 47.44926 48.96709 51.68246

.zip 27.84394 70.46894 22.04262 30.0966 32.70848 41.89507 46.41074 47.93042

.jar 42.70904 109.7715 33.94955 49.91811 50.13963 70.26502 72.30565 78.90181

.cab 67.44812 172.3997 52.64786 78.25493 78.601 113.3462 116.799 121.426

.zip 67.87289 173.4575 53.85516 79.7104 79.21954 113.4751 118.0412 122.5157

.bz2 68.7001 177.0263 54.60911 79.58382 80.96236 110.7014 119.234 124.091

.rar 132.5344 335.4979 103.2131 153.1637 153.0636 212.3813 229.7249 236.8785

Sum= 542.6197 1400.762 427.1571 626.4939 632.3869 886.8794 940.2815 981.2624

Throughput

(MB/ Sec)

0.387375 1.270305 0.866121 0.85805 0.61183 0.577082 0.552981

Figure A.29: Performance Comparison of the Sequential Execution Time of Cre-
ating the Shares and Encryption using AES of Archive File Type of Different
Sizes.

99

Figure A.30: Throughput of the Sequential Execution Time of Creating the Shares
and Encryption using AES of Archive File Type of Different Sizes.

Table A.16: Parallel implementation of Creating the Shares and Encryption using
AES of Archive File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.tar 0.000533 0.214641 0.007593 0.004151 0.003816 0.011969 0.007307 0.00558

.jar 0.001053 0.215522 0.005225 0.006241 0.004638 0.006157 0.028372 0.006388

.zip 0.00113 0.22302 0.003786 0.012842 0.007039 0.006367 0.014508 0.006079

.tgz 0.001496 0.221678 0.004651 0.006077 0.005275 0.00853 0.012755 0.027725

.zip 0.007612 0.210432 0.010132 0.015171 0.015669 0.022339 0.02575 0.030642

.jar 0.011474 0.181526 0.014006 0.035418 0.023381 0.032752 0.047877 0.045531

.tgz 0.011759 0.189121 0.014581 0.021087 0.022256 0.035389 0.053477 0.077518

.jar 0.036816 0.217075 0.039003 0.059119 0.061435 0.089891 0.117946 0.108884

.tar 0.091844 0.215591 0.089888 0.150298 0.18199 0.222595 0.338322 0.348689

.bz2 0.131865 0.426827 0.111829 0.226586 0.239959 0.321499 0.477082 0.401263

.zip 1.318213 1.929565 0.751393 1.211158 1.218222 1.651659 3.335875 1.934106

.gz 1.334643 1.817429 0.662164 1.201045 1.289681 1.681213 3.405802 2.073699

.cab 1.344069 1.827014 0.685123 1.242893 1.256804 1.689911 3.490201 1.901789

.jar 1.35046 2.00548 0.692658 1.294897 1.310784 1.665376 3.35232 1.932799

.rar 1.353995 1.747367 0.796415 1.222818 1.28243 1.690006 3.50681 1.970929

.jar 12.62993 18.03885 6.270601 10.11057 10.75763 15.47928 18.71159 17.4263

.rar 13.02323 18.62211 6.585283 10.67261 10.83543 15.8751 18.90561 17.93968

.zip 13.36134 18.50181 6.754231 8.36998 9.964911 16.24021 21.33709 18.41719

.gz 13.39809 19.24553 6.705059 11.28207 11.94678 16.52535 20.89908 18.89354

.jar 20.97486 27.60034 10.44766 15.14109 17.89576 25.37648 32.09092 29.32713

.rar 27.44257 38.59434 13.52581 23.25422 24.02039 34.46649 39.78756 38.25546

.cab 27.68423 39.14305 13.97467 23.08016 24.71458 33.99184 41.00914 39.08563

.zip 27.84394 36.26288 10.9331 19.32445 15.76131 33.5387 42.42107 39.27345

.jar 42.70904 58.51731 20.79835 33.12746 36.84034 52.40613 65.64318 60.59498

.cab 67.44812 93.78899 32.50352 52.56874 54.11802 82.6981 99.4618 96.85045

.zip 67.87289 90.89594 34.31373 53.63226 53.6111 84.62525 99.95392 96.91834

.bz2 68.7001 90.93116 35.36137 51.65609 54.87644 84.11406 102.6577 98.7098

.rar 132.5344 171.8773 55.05326 87.48828 95.14789 167.5214 195.2636 194.7235

sum= 542.6197 733.6619 257.1151 406.4178 427.414 671.994 816.3567 777.2871

Throughput

(MB / SEC)

0.739605 2.110416 1.335128 1.269541 0.807477 0.664685 0.698094

100

Figure A.31: Performance Comparison of the Parallel Execution Time of Creating
the Shares and Encryption using AES of Archive File Type of Different Sizes.

Figure A.32: Throughput of the Parallel Execution Time of Creating the Shares
and Encryption using AES of Archive File Type of Different Sizes.

101

APPENDIX B

RECONSTRUCT THE SECRET

B.1 Audio file formats

Table B.1: Sequential implementation of Reconstruct the Secret and Decryption
using AES of of Audio File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.wav 0.000881 0.266704 0.000443 0.000417 0.0005 0.000313 0.000519 0.000553

.mp3 0.001864 0.256475 0.001103 0.000907 0.001094 0.000643 0.001467 0.001275

.wav 0.007831 0.267861 0.004538 0.004608 0.003253 0.003006 0.005285 0.004204

.mp3 0.010812 0.257966 0.02061 0.004406 0.007316 0.003874 0.004677 0.006157

.ogg 0.012504 0.270494 0.011542 0.005148 0.006491 0.004426 0.009025 0.012107

.aac 0.012911 0.266263 0.00582 0.007003 0.008533 0.004425 0.007116 0.00758

.WAV 0.121142 0.526905 0.048723 0.058641 0.060934 0.052316 0.049689 0.081812

.MP3 0.130061 0.538363 0.042318 0.042656 0.063739 0.049198 0.052725 0.085387

.WAV 1.113782 2.961481 0.377997 0.369009 0.454035 0.392167 0.450319 0.832329

.ogg 1.198285 3.093872 0.440574 0.464943 0.533791 0.400703 0.586032 0.788632

.MP3 1.340312 3.758824 0.4492 0.448864 0.553225 0.531021 0.525743 0.817227

.mp3 13.39954 35.73699 4.792736 5.298058 4.908169 5.185837 4.962159 8.532472

.mp3 25.38321 68.24257 8.989292 8.864306 10.60341 8.861075 10.64335 16.60936

.mp3 63.33239 160.7493 21.82624 22.29331 26.41494 21.80935 27.12788 38.33652

.mp3 120.1339 305.4833 38.9719 38.8627 48.92713 39.26023 48.52871 69.03022

Sum= 226.1994 582.6774 75.98304 76.72498 92.54655 76.55858 92.9547 135.1458

Throughput

(MB / Sec)

0.388207 2.976973 2.948185 2.444169 2.954593 2.433437 1.673743

102

Figure B.1: Performance Comparison of the Sequential Execution Time of Recon-
struct the Secret and Decryption using AES of of Audio File Type of Different
Sizes.

Figure B.2: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of of Audio File Type of Different Sizes.

Figure B.3: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of of Audio File Type of Different
Sizes.

103

Table B.2: Parallel implementation of Reconstruct the Secret and Decryption
using AES of of Audio File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.wav 0.000881 0.212544 0.003598 0.005382 0.006298 0.007093 0.006465 0.005412

.mp3 0.001864 0.212733 0.004581 0.008444 0.008387 0.007231 0.007532 0.008529

.wav 0.007831 0.216555 0.010176 0.021127 0.021199 0.022377 0.023183 0.037674

.mp3 0.010812 0.221017 0.012955 0.020222 0.021914 0.029407 0.030511 0.065329

.ogg 0.012504 0.214901 0.014742 0.026708 0.027311 0.047649 0.035634 0.078343

.aac 0.012911 0.219033 0.016109 0.023323 0.029781 0.033199 0.036728 0.048151

.WAV 0.121142 0.425984 0.137705 0.202679 0.213944 0.304942 0.349024 0.35694

.MP3 0.130061 0.428282 0.132465 0.204694 0.266967 0.368537 0.342154 0.452074

.WAV 1.113782 1.691637 0.614169 1.098647 1.140247 1.624402 1.472002 1.74404

.ogg 1.198285 1.743921 0.609442 1.051533 1.223562 1.69918 1.561549 1.730436

.MP3 1.340312 1.856065 0.669877 1.225101 1.13647 1.946015 1.718602 2.043991

.mp3 13.39954 19.27124 6.715657 10.7606 6.412136 12.95901 17.18541 19.03588

.mp3 25.38321 36.33403 12.43381 21.13461 21.31677 32.9218 32.30493 36.29371

.mp3 63.33239 84.57047 30.49876 51.82066 53.35351 68.85662 83.14607 91.55714

.mp3 120.1339 155.721 54.54024 80.16999 88.11212 122.2988 159.0777 177.3213

sum= 226.1994 303.3394 106.4143 167.7737 173.2906 243.1262 297.2975 330.7789

Throughput

(MB / SEC)

0.745698 2.125649 1.348241 1.305319 0.930379 0.760852 0.683839

Figure B.4: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of of Audio File Type of Different Sizes.

104

B.2 Binary file formats

Table B.3: Sequential implementation of Reconstruct the Secret and Decryption
using AES of of Binary File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.bin 0.000469 0.231307 0.000193 0.000135 0.000538 0.000195 0.000174 0.000214

.bin 0.001416 0.23592 0.000753 0.000846 0.000447 0.001058 0.000656 0.001633

.bin 0.006151 0.258013 0.002014 0.002196 0.00348 0.004073 0.003453 0.005384

.bin 0.013671 0.254833 0.004164 0.004553 0.005551 0.007807 0.00676 0.013598

.BIN 0.099341 0.558249 0.037402 0.082877 0.047695 0.043811 0.055286 0.05561

.bin 0.136086 0.472206 0.057019 0.04548 0.046658 0.048788 0.048984 0.082861

.BIN 11.06026 29.70218 3.88771 3.968977 4.104478 4.04534 4.67626 7.071209

.bin 68.75715 177.2776 23.58591 24.01403 28.0626 23.82384 27.83008 40.60998

Sum= 80.07454 208.9903 27.57517 28.11909 32.27145 27.97491 32.62165 47.84049

Throughput

(MB / Sec)

0.38315 2.903864 2.847693 2.481281 2.86237 2.454644 1.673782

Figure B.5: Performance Comparison of the Sequential Execution Time of Recon-
struct the Secret and Decryption using AES of of Binary File Type of Different
Sizes.

Table B.4: Parallel implementation of Reconstruct the Secret and Decryption
using AES of of Binary File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.bin 0.000469 0.210581 0.021321 0.005805 0.006655 0.010671 0.007664 0.015982

.bin 0.001416 0.212847 0.118866 0.010359 0.011488 0.00953 0.011657 0.010061

.bin 0.006151 0.220952 0.012162 0.016129 0.017953 0.023464 0.02309 0.023072

.bin 0.013671 0.215129 0.020866 0.027378 0.028539 0.391576 0.05124 0.078118

.BIN 0.099341 0.427601 0.119191 0.165678 0.195634 0.259694 0.278518 0.309176

.bin 0.136086 0.441484 0.139459 0.244893 0.249088 0.436146 0.428882 0.412394

.BIN 11.06026 15.06531 5.601418 9.278003 9.897554 13.57165 15.24423 15.84823

.bin 68.75715 93.41486 35.86503 53.97019 57.10886 79.08547 77.76194 86.11326

sum= 80.07454 110.2088 41.89831 63.71844 67.51577 93.78821 93.80722 102.8103

Throughput

(MB / SEC)

0.726571 1.911164 1.256693 1.186012 0.85378 0.853607 0.778857

105

Figure B.6: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of of Binary File Type of Different Sizes.

Figure B.7: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of of Binary File Type of Different
Sizes.

Figure B.8: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of of Binary File Type of Different Sizes.

106

B.3 Document file formats

Table B.5: Sequential implementation of Reconstruct the Secret and Decryption
using AES of of Document File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.rtf 0.000682 0.225538 0.001212 0.000346 0.000341 0.000426 0.000215 0.000336

.doc 0.00391 0.275867 0.004319 0.001516 0.001868 0.004457 0.003267 0.002119

.rtf 0.00412 0.239225 0.001971 0.002423 0.001517 0.001594 0.001573 0.002432

.xls 0.015959 0.247336 0.007446 0.005097 0.019087 0.01208 0.006242 0.007694

.doc 0.024937 0.254311 0.012096 0.023319 0.025143 0.008627 0.01199 0.014774

.ppt 0.029634 0.277894 0.010971 0.011687 0.010984 0.012558 0.019906 0.039508

.rtf 0.176815 0.491175 0.076853 0.071089 0.067288 0.055648 0.058276 0.101099

.xls 0.351154 0.963935 0.140702 0.131818 0.120932 0.148874 0.122447 0.203602

.doc 0.514131 1.417535 0.144952 0.183496 0.202214 0.178158 0.179373 0.263059

.ppt 0.977554 2.600946 0.277173 0.309414 0.3296 0.319692 0.324887 0.600683

.rtf 2.758348 6.918239 1.004094 0.930535 1.009524 0.987415 0.982597 1.482225

.doc 4.955577 14.27966 1.744648 1.775981 1.850111 1.696236 2.116852 3.502684

.xls 7.267596 20.4323 2.781647 2.590862 3.078215 2.510083 3.026076 4.610353

.doc 20.19167 56.3689 7.099734 7.02722 8.546578 7.22949 8.406233 12.91145

Sum= 37.27208 104.9929 13.30782 13.0648 15.2634 13.16534 15.25993 23.74202

Throughput

(MB / Sec)

0.354996 2.800766 2.852863 2.441925 2.831077 2.44248 1.569879

Figure B.9: Performance Comparison of the Sequential Execution Time of Recon-
struct the Secret and Decryption using AES of of Document File Type of Different
Sizes.

107

Figure B.10: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of of Document File Type of Different Sizes.

Table B.6: Parallel implementation of Reconstruct the Secret and Decryption
using AES of of Document File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.rtf 0.000682 0.22177 0.017078 0.007246 0.006886 0.008299 0.022362 0.022258

.doc 0.00391 0.216435 0.014056 0.012681 0.019312 0.066418 0.024594 0.053482

.rtf 0.00412 0.211404 0.010761 0.018826 0.412218 0.017453 0.024363 0.06178

.xls 0.015959 0.21169 0.022814 0.041189 0.032128 0.056442 0.055528 0.09306

.doc 0.024937 0.219155 0.031692 0.05265 0.068825 0.079153 0.117189 0.106038

.ppt 0.029634 0.214551 0.051261 0.053423 0.0951 0.082261 0.085379 0.106089

.rtf 0.176815 0.42811 0.192223 0.301592 0.626554 0.489394 0.48686 0.514473

.xls 0.351154 0.882336 0.363713 0.668518 0.615499 0.999196 1.097724 1.153876

.doc 0.514131 0.96838 0.564774 0.883676 0.952018 1.718909 1.585221 1.494305

.ppt 0.977554 1.530761 0.62087 1.272644 1.377048 2.014145 2.087577 2.151535

.rtf 2.758348 3.683754 1.619502 2.628539 2.755792 4.117527 4.279383 4.31965

.doc 4.955577 6.791374 2.799002 4.622872 4.646973 6.486644 6.880884 7.427726

.xls 7.267596 10.33937 4.087246 6.353829 6.703177 9.499622 10.14086 10.54591

.doc 20.19167 29.22544 10.56182 17.06578 17.50842 25.83571 27.12501 29.36498

Sum= 37.27208 55.14453 20.95682 33.98346 35.81995 51.47117 54.01293 57.41516

Throughput

(MB / SEC)

0.675898 1.778519 1.096771 1.04054 0.724135 0.690059 0.649168

Figure B.11: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of of Document File Type of Different
Sizes.

108

Figure B.12: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of of Document File Type of Different Sizes.

109

B.4 Executable file formats

Table B.7: Sequential implementation of Reconstruct the Secret and Decryption
using AES of of Executable File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.bat 0.000713 0.267205 0.00019 0.000734 0.000609 0.000342 0.000678 0.00091

.dll 0.001415 0.294345 0.000541 0.002589 0.00189 0.000939 0.00133 0.001699

.exe 0.001495 0.25951 0.000701 0.001147 0.001179 0.001019 0.0013 0.001602

.dll 0.005783 0.230387 0.004567 0.002015 0.00836 0.003027 0.002239 0.003445

.exe 0.006152 0.235662 0.002984 0.007224 0.003097 0.002882 0.002354 0.010557

.dll 0.04107 0.236151 0.031733 0.019597 0.027034 0.013004 0.021453 0.030865

.exe 0.066244 0.247727 0.024079 0.022347 0.025516 0.037111 0.047553 0.059116

.dll 0.248048 0.735027 0.085684 0.102072 0.374102 0.078061 0.093783 0.169503

.exe 1.223361 3.527363 0.425338 0.43445 0.531791 0.472638 0.484404 0.880089

.dll 2.333558 6.660625 0.815485 0.670252 0.88138 0.744838 0.882904 1.271991

.dll 10.86065 29.92286 4.126446 3.888614 4.616005 4.197897 4.653631 6.714568

.exe 26.83663 70.83018 9.434205 9.388177 11.34905 9.38265 11.49654 16.97195

.exe 67.34037 174.5782 23.24232 23.43106 27.73457 23.2306 27.72915 39.44042

.exe 135.1324 346.2312 44.4568 47.18127 54.64361 43.81838 56.00021 76.17412

Sum= 244.0979 634.2564 82.65107 85.15155 100.1982 81.98339 101.4175 141.7308

Throughput

(MB / Sec)

0.384857 2.953354 2.866629 2.436151 2.977407 2.406861 1.722264

Figure B.13: Performance Comparison of the Sequential Execution Time of Re-
construct the Secret and Decryption using AES of of Executable File Type of
Different Sizes.

110

Figure B.14: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of of Executable File Type of Different Sizes.

Table B.8: Parallel implementation of Reconstruct the Secret and Decryption
using AES of of Executable File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.bat 0.000713 0.213739 0.003598 0.003121 0.005068 0.078625 0.005974 0.004703

.dll 0.001415 0.20849 0.004408 0.004694 0.004798 0.007484 0.007125 0.011655

.exe 0.001495 0.215081 0.004252 0.006489 0.007339 0.009656 0.009148 0.013773

.dll 0.005783 0.207518 0.009643 0.01181 0.012659 0.018706 0.026482 0.020472

.exe 0.006152 0.211504 0.012021 0.020524 0.016289 0.021564 0.018982 0.02145

.dll 0.04107 0.226455 0.042681 0.065367 0.114305 0.123692 0.121251 0.127043

.exe 0.066244 0.219964 0.070777 0.105348 0.11523 0.205284 0.169415 0.203267

.dll 0.248048 0.640215 0.247825 0.466582 0.425578 0.800424 0.644667 0.709498

.exe 1.223361 1.779023 0.631442 1.099701 1.237363 1.933157 1.621186 1.81041

.dll 2.333558 3.223319 1.211213 2.068216 1.423098 2.955583 3.199935 3.633691

.dll 10.86065 15.46298 5.453487 8.68426 9.285773 14.61379 13.59542 15.15177

.exe 26.83663 37.99645 13.87555 22.55861 23.30909 35.69784 33.9087 37.81834

.exe 67.34037 89.63716 33.79753 52.88443 55.95502 90.8836 86.52061 100.0499

.exe 135.1324 176.3424 61.02184 90.86358 92.96739 181.6937 176.8927 202.8125

Sum= 244.0979 326.5843 116.3863 178.8427 184.879 329.0431 316.7416 362.3885

Throughput

(MB / SEC)

0.747427 2.097308 1.364874 1.320312 0.741842 0.770653 0.673581

Figure B.15: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of of Executable File Type of Different
Sizes.

111

Figure B.16: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of of Executable File Type of Different Sizes.

112

B.5 Image file formats

Table B.9: Sequential implementation of Reconstruct the Secret and Decryption
using AES of of Image File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.ico 0.000775 0.283962 0.000265 0.000201 0.000544 0.000268 0.000361 0.000711

.bmp 0.000807 0.228693 0.000615 0.000245 0.000887 0.00027 0.000355 0.000685

.jpg 0.001109 0.29788 0.000632 0.000449 0.000362 0.000925 0.000475 0.001681

.gif 0.001202 0.231668 0.000434 0.000503 0.000573 0.000902 0.002278 0.000974

.png 0.001417 0.230551 0.001091 0.001113 0.000729 0.000496 0.00045 0.000751

.bmp 0.003551 0.27284 0.001194 0.001208 0.002184 0.001442 0.001429 0.003804

.jpg 0.005877 0.22911 0.002541 0.001711 0.003166 0.001994 0.002114 0.005624

.jpg 0.006936 0.24059 0.002495 0.002148 0.008187 0.004039 0.002526 0.005217

.jpg 0.012669 0.230585 0.006608 0.003806 0.005124 0.004377 0.007174 0.008402

.png 0.012883 0.229307 0.00437 0.011451 0.004325 0.004254 0.008136 0.012967

.gif 0.013248 0.27627 0.004409 0.006358 0.007451 0.00716 0.00539 0.008693

.png 0.013301 0.228764 0.006409 0.003997 0.017911 0.005525 0.00459 0.012909

.bmp 0.03936 0.229886 0.013184 0.010818 0.017069 0.012573 0.014728 0.03494

.jpg 0.114242 0.463345 0.041667 0.04991 0.038088 0.048161 0.039898 0.083772

.png 0.129358 0.514058 0.040394 0.040218 0.044032 0.041608 0.050842 0.098939

.jpg 0.129999 0.501337 0.051583 0.042926 0.062498 0.052854 0.043001 0.072227

.gif 0.130485 0.470558 0.18517 0.036797 0.041958 0.051863 0.053309 0.100515

.jpg 0.278825 0.713863 0.092266 0.075158 0.123232 0.1018 0.098379 0.170692

.gif 1.343994 3.319946 0.488396 0.378363 0.479867 0.433836 0.498907 0.847751

.png 1.365189 3.572244 0.508978 0.412667 0.472038 0.472825 0.509048 0.925527

.jpg 1.377728 4.013582 0.400682 0.43411 0.539797 0.453008 0.498119 0.85353

.jpg 13.55293 36.18946 4.860618 4.827061 5.673581 4.793114 6.023042 8.663898

.jpg 27.60827 70.86314 9.601606 10.15581 12.16054 10.27412 11.96856 17.80969

.jpg 67.6302 174.9266 23.54142 23.51935 28.36164 23.52656 27.39076 41.11191

.jpg 114.8891 293.3882 40.56186 39.08564 45.50476 37.82236 45.92455 66.62804

Sum= 228.6635 592.1464 80.41888 79.10201 93.57054 78.11633 93.14843 137.4638

Throughput

(MB / Sec)

0.38616 2.843405 2.890741 2.443755 2.927217 2.454829 1.663444

Figure B.17: Performance Comparison of the Sequential Execution Time of Re-
construct the Secret and Decryption using AES of of Image File Type of Different
Sizes.

113

Figure B.18: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of of Image File Type of Different Sizes.

Table B.10: Parallel implementation of Reconstruct the Secret and Decryption
using AES of of Image File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.ico 0.000775 0.207467 0.008654 0.007275 0.007688 0.009064 0.01013 0.015162

.bmp 0.000807 0.209836 0.007422 0.02198 0.009449 0.081768 0.0107 0.015228

.jpg 0.001109 0.210709 0.009503 0.011064 0.007492 0.009034 0.009331 0.008268

.gif 0.001202 0.212189 0.023548 0.011473 0.013421 0.009382 0.028617 0.025267

.png 0.001417 0.206505 0.007472 0.008562 0.008097 0.008905 0.012053 0.043258

.bmp 0.003551 0.208624 0.010847 0.030567 0.014178 0.021826 0.026642 0.041532

.jpg 0.005877 0.212804 0.011722 0.035109 0.016442 0.022211 0.024464 0.023615

.jpg 0.006936 0.210046 0.020734 0.02312 0.018069 0.032686 0.034866 0.026817

.jpg 0.012669 0.209779 0.033818 0.046068 0.029402 0.045234 0.039285 0.085553

.png 0.012883 0.227681 0.022824 0.146297 0.027478 0.040673 0.099511 0.061354

.gif 0.013248 0.212815 0.085903 0.041822 0.048648 0.058377 0.063148 0.094535

.png 0.013301 0.21411 0.021279 0.027278 0.307864 0.057364 0.042239 0.077219

.bmp 0.03936 0.212838 0.050551 0.089628 0.08981 0.119262 0.126191 0.138153

.jpg 0.114242 0.430414 0.11745 0.237439 0.204744 0.399508 0.446457 0.519105

.png 0.129358 0.424773 0.162726 0.246521 0.275861 0.347335 0.374399 0.383393

.jpg 0.129999 0.421199 0.144001 0.230935 0.244129 0.383875 0.364692 0.376488

.gif 0.130485 0.443856 0.179598 0.213325 0.261551 0.340514 0.510153 0.412996

.jpg 0.278825 0.643629 0.401487 0.51326 0.513809 0.803113 0.784673 1.094782

.gif 1.343994 1.840062 0.914034 1.472087 1.642216 2.292468 2.38604 2.502315

.png 1.365189 1.935442 0.983557 1.515872 1.620416 2.644309 2.433163 2.525222

.jpg 1.377728 1.960808 1.223339 0.897234 0.925212 2.513832 2.480095 1.631172

.jpg 13.55293 19.25334 7.064779 11.01736 11.43894 17.55378 18.02951 19.2361

.jpg 27.60827 36.63105 12.92628 12.59721 15.37501 27.86897 30.84277 32.11911

.jpg 67.6302 89.56975 33.27388 47.52559 50.4043 72.29256 76.56782 81.29878

.jpg 114.8891 150.7191 49.12106 76.95854 84.14759 119.1356 130.8456 144.5832

sum= 228.6635 307.0288 106.8265 153.9256 167.6518 247.0917 266.5926 287.3386

Throughput

(MB / SEC)

0.744762 2.140513 1.485545 1.363919 0.925419 0.857726 0.795798

114

Figure B.19: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of of Image File Type of Different
Sizes.

Figure B.20: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of of Image File Type of Different Sizes.

115

B.6 Text file formats

Table B.11: Sequential implementation of Reconstruct the Secret and Decryption
using AES of of Text File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.txt 0.000807 0.319752 0.000237 0.000377 0.000279 0.000213 0.000809 0.000408

.txt 0.005672 0.308658 0.002759 0.002635 0.003712 0.007858 0.003228 0.006105

.txt 0.015554 0.262268 0.009543 0.006333 0.006414 0.005294 0.010244 0.008673

.txt 0.704043 2.09437 0.27176 0.238526 0.285303 0.24012 0.322035 0.452985

.txt 5.26441 14.86831 1.858954 1.894026 2.348347 1.870894 2.312914 3.323454

.txt 24.19914 65.71618 8.514996 8.491031 10.19678 8.754758 10.1514 15.47788

.txt 36.85302 94.2097 13.21783 12.94392 15.66598 13.10733 15.50164 22.95322

Sum= 67.04264 177.7792 23.87608 23.57685 28.50681 23.98647 28.30228 42.22272

Throughput

(MB / Sec)

0.377112 2.807941 2.84358 2.351811 2.79502 2.368807 1.587833

Figure B.21: Performance Comparison of the Sequential Execution Time of Re-
construct the Secret and Decryption using AES of of Text File Type of Different
Sizes.

Table B.12: Parallel implementation of Reconstruct the Secret and Decryption
using AES of of Text File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.txt 0.000807 0.211733 0.131485 0.007159 0.007605 0.018394 0.008555 0.010492

.txt 0.005672 0.215084 0.012916 0.02575 0.022799 0.024164 0.034651 0.034829

.txt 0.015554 0.240679 0.021144 0.039163 0.043415 0.044661 0.082896 0.079835

.txt 0.704043 1.28985 0.747303 1.21432 1.323482 1.951733 2.098843 2.312144

.txt 5.26441 7.475327 3.001531 4.612706 4.905367 7.213662 7.574712 8.237012

.txt 24.19914 34.19009 12.497 19.27192 19.96731 27.13081 31.796 33.85541

.txt 36.85302 52.1411 19.66458 30.03736 32.18727 40.80034 47.78314 49.20029

sum= 67.04264 95.76387 36.07596 55.20838 58.45725 77.18376 89.37879 93.73001

Throughput

(MB / SEC)

0.700083 1.858374 1.214356 1.146866 0.868611 0.750096 0.715274

116

Figure B.22: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of of Text File Type of Different Sizes.

Figure B.23: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of of Text File Type of Different
Sizes.

Figure B.24: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of of Text File Type of Different Sizes.

117

B.7 Video file formats

Table B.13: Sequential implementation of Reconstruct the Secret and Decryption
using AES of of Video File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.ts 0.000669 0.256799 0.000212 0.000626 0.00032 0.000312 0.000332 0.000485

.ts 0.002464 0.293664 0.001637 0.005602 0.003467 0.001838 0.001198 0.002566

.flv 1.387849 4.03047 0.461222 0.428631 0.714023 0.540466 0.607379 0.877016

.MKV 1.405831 3.803419 0.480534 0.503221 0.643316 0.520095 0.64709 0.8997

.MKV 1.755652 4.719978 0.632293 0.498171 0.963268 0.601641 0.802551 1.093034

.avi 12.81602 35.2293 3.934831 3.912593 4.776419 3.980353 6.196741 8.332461

.MKV 13.44737 33.35583 4.724364 5.084271 5.870088 4.83259 5.615623 8.551873

.flv 13.53714 35.31849 5.56572 4.162075 5.044161 5.208081 5.72568 8.578368

.MKV 13.70051 37.00518 5.231454 5.153261 5.101218 4.869663 5.934921 8.870448

.FLV 27.32828 74.47737 9.540214 9.706642 11.65917 9.561162 11.65794 17.95487

.MKV 27.38996 73.62939 9.629694 9.868815 11.51664 9.580877 11.54118 17.45302

.MKV 66.155 171.4361 22.85618 22.77387 28.1996 23.13909 27.15777 39.61638

.mov 119.4465 304.2607 39.0111 38.79849 47.08623 38.94526 46.20445 68.4274

.MKV 130.4061 334.0517 45.83825 42.86129 51.44863 42.953 51.16815 74.67544

.avi 137.9018 352.8027 47.47269 46.022 55.27507 47.72214 53.09463 79.25238

Sum= 566.6811 1464.671 195.3804 189.7796 228.3016 192.4566 226.3556 334.5854

Throughput

(MB / Sec)

0.3869 2.900399 2.985997 2.48216 2.944462 2.503499 1.693681

Figure B.25: Performance Comparison of the Sequential Execution Time of Re-
construct the Secret and Decryption using AES of of Video File Type of Different
Sizes.

118

Figure B.26: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of of Video File Type of Different Sizes.

Table B.14: Parallel implementation of Reconstruct the Secret and Decryption
using AES of of Video File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.ts 0.000669 0.184383 0.006452 0.006969 0.014137 0.011379 0.048981 0.006647

.ts 0.002464 0.18373 0.007958 0.009599 0.00968 0.008578 0.009171 0.017234

.flv 1.387849 2.117553 0.858279 1.637039 1.704443 2.632385 2.559958 2.930011

.MKV 1.405831 1.964219 0.980868 1.700778 1.681489 2.695033 2.617101 2.906916

.MKV 1.755652 2.722497 1.175957 1.945766 2.017536 3.072792 3.293765 3.567436

.avi 12.81602 18.53886 6.651224 5.76569 8.737804 13.8445 13.42963 16.61818

.MKV 13.44737 19.22737 7.691684 11.43127 11.87164 18.46591 18.69308 21.59098

.flv 13.53714 19.61065 6.990308 11.50166 12.1788 17.57379 18.13515 20.37754

.MKV 13.70051 16.3108 7.073713 9.952842 6.650318 13.36864 15.54856 17.73247

.FLV 27.32828 37.92532 14.3619 22.37964 23.89967 34.99093 36.71413 41.22584

.MKV 27.38996 38.08249 15.24409 22.45874 23.51405 36.55736 35.55556 42.92936

.MKV 66.155 90.40687 32.59527 50.32345 54.32381 75.53735 84.12947 88.63307

.mov 119.4465 158.1147 48.30215 84.94016 89.12784 135.2178 137.5684 160.1241

.MKV 130.4061 172.9231 46.20615 92.90914 99.15387 142.8584 148.366 170.9934

.avi 137.9018 180.4383 58.21084 98.67343 104.9238 152.4514 152.885 180.7646

sum= 566.6811 758.7508 246.3568 415.6362 439.8089 649.2862 669.554 770.4177

Throughput

(MB / SEC)

0.746861 2.300245 1.363407 1.288471 0.872775 0.846356 0.73555

Figure B.27: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of of Video File Type of Different
Sizes.

119

Figure B.28: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of of Video File Type of Different Sizes.

120

B.8 Archive file formats

Table B.15: Sequential implementation of Reconstruct the Secret and Decryption
using AES of Archive File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.tar 0.000533 0.242376 0.000247 0.00024 0.00018 0.000239 0.000291 0.000263

.jar 0.001053 0.234573 0.000294 0.000364 0.000572 0.000544 0.000875 0.001277

.zip 0.00113 0.299076 0.000333 0.000451 0.000393 0.000463 0.000644 0.000653

.tgz 0.001496 0.278332 0.000742 0.001779 0.000529 0.000752 0.000885 0.001756

.zip 0.007612 0.255407 0.004522 0.002927 0.005253 0.005586 0.011559 0.008053

.jar 0.011474 0.292837 0.005575 0.006713 0.004775 0.013113 0.015511 0.0072

.tgz 0.011759 0.26441 0.004514 0.013109 0.003994 0.006407 0.00871 0.006437

.jar 0.036816 0.257485 0.012898 0.015473 0.015178 0.029047 0.028208 0.022504

.tar 0.091844 0.278502 0.030515 0.028311 0.036073 0.0319 0.03547 0.054143

.bz2 0.131865 0.485364 0.063491 0.07223 0.064509 0.06189 0.059715 0.095637

.zip 1.318213 3.753446 0.50226 0.508672 0.549625 0.428201 0.513374 0.838018

.gz 1.334643 3.795429 0.435248 0.37148 0.458152 0.390704 0.541494 0.841931

.cab 1.344069 3.753309 0.460387 0.441517 0.548179 0.461132 0.643197 0.837472

.jar 1.35046 3.998891 0.482514 0.458766 0.560475 0.513973 0.576656 0.855937

.rar 1.353995 3.574848 0.446467 0.516675 0.615695 0.511206 0.526367 1.023215

.jar 12.62993 31.64608 4.695976 4.596131 4.625538 4.80168 5.285697 7.907785

.rar 13.02323 36.62286 4.622633 4.65696 5.491159 4.67042 5.373151 8.133996

.zip 13.36134 37.55304 4.786923 4.050668 4.858523 4.010406 5.423294 8.483888

.gz 13.39809 38.11117 4.713219 5.087152 5.588199 4.728284 5.620838 8.568021

.jar 20.97486 56.81981 7.433035 7.769295 8.845101 7.568561 8.808253 13.19771

.rar 27.44257 72.91977 9.478216 9.604407 11.56578 9.641595 11.54791 17.50508

.cab 27.68423 72.1966 9.609181 9.754971 11.71301 9.914219 11.63645 17.63824

.zip 27.84394 69.81085 9.889767 9.848058 12.16307 9.772322 10.36968 17.6818

.jar 42.70904 109.0025 15.02562 15.07055 17.96355 15.18873 18.0401 25.70592

.cab 67.44812 174.1442 22.96422 23.08314 27.80905 23.31829 27.49221 40.20562

.zip 67.87289 175.0772 23.83713 23.43831 27.73775 24.70881 27.77851 40.47685

.bz2 68.7001 178.1055 24.07647 23.8861 27.88458 23.8102 27.9228 40.37151

.rar 132.5344 340.6436 46.12009 45.80777 50.9975 43.97627 54.15067 75.50048

Sum= 542.6197 1414.417 189.7025 189.0922 220.1064 188.5649 222.4125 325.9714

Throughput

(MB / Sec)

0.383635 2.860372 2.869604 2.465261 2.877628 2.439699 1.664624

Figure B.29: Performance Comparison of the Sequential Execution Time of Re-
construct the Secret and Decryption using AES of Archive File Type of Different
Sizes.

121

Figure B.30: Throughput of the Sequential Execution Time of Reconstruct the
Secret and Decryption using AES of Archive File Type of Different Sizes.

Table B.16: Parallel implementation of Reconstruct the Secret and Decryption
using AES of Archive File Type of Different Sizes.

Cpu Time(sec)

File Type File Share Size(MB) AES SFS(3,2) SFS(5,2) SFS(5,3) SFS(8,2) SFS(8,3) SFS(8,6)

.tar 0.000533 0.214641 0.007593 0.004151 0.003816 0.011969 0.007307 0.00558

.jar 0.001053 0.215522 0.005225 0.006241 0.004638 0.006157 0.028372 0.006388

.zip 0.00113 0.22302 0.003786 0.012842 0.007039 0.006367 0.014508 0.006079

.tgz 0.001496 0.221678 0.004651 0.006077 0.005275 0.00853 0.012755 0.027725

.zip 0.007612 0.210432 0.010132 0.015171 0.015669 0.022339 0.02575 0.030642

.jar 0.011474 0.181526 0.014006 0.035418 0.023381 0.032752 0.047877 0.045531

.tgz 0.011759 0.189121 0.014581 0.021087 0.022256 0.035389 0.053477 0.077518

.jar 0.036816 0.217075 0.039003 0.059119 0.061435 0.089891 0.117946 0.108884

.tar 0.091844 0.215591 0.089888 0.150298 0.18199 0.222595 0.338322 0.348689

.bz2 0.131865 0.426827 0.111829 0.226586 0.239959 0.321499 0.477082 0.401263

.zip 1.318213 1.929565 0.751393 1.211158 1.218222 1.651659 3.335875 1.934106

.gz 1.334643 1.817429 0.662164 1.201045 1.289681 1.681213 3.405802 2.073699

.cab 1.344069 1.827014 0.685123 1.242893 1.256804 1.689911 3.490201 1.901789

.jar 1.35046 2.00548 0.692658 1.294897 1.310784 1.665376 3.35232 1.932799

.rar 1.353995 1.747367 0.796415 1.222818 1.28243 1.690006 3.50681 1.970929

.jar 12.62993 18.03885 6.270601 10.11057 10.75763 15.47928 18.71159 17.4263

.rar 13.02323 18.62211 6.585283 10.67261 10.83543 15.8751 18.90561 17.93968

.zip 13.36134 18.50181 6.754231 8.36998 9.964911 16.24021 21.33709 18.41719

.gz 13.39809 19.24553 6.705059 11.28207 11.94678 16.52535 20.89908 18.89354

.jar 20.97486 27.60034 10.44766 15.14109 17.89576 25.37648 32.09092 29.32713

.rar 27.44257 38.59434 13.52581 23.25422 24.02039 34.46649 39.78756 38.25546

.cab 27.68423 39.14305 13.97467 23.08016 24.71458 33.99184 41.00914 39.08563

.zip 27.84394 36.26288 10.9331 19.32445 15.76131 33.5387 42.42107 39.27345

.jar 42.70904 58.51731 20.79835 33.12746 36.84034 52.40613 65.64318 60.59498

.cab 67.44812 93.78899 32.50352 52.56874 54.11802 82.6981 99.4618 96.85045

.zip 67.87289 90.89594 34.31373 53.63226 53.6111 84.62525 99.95392 96.91834

.bz2 68.7001 90.93116 35.36137 51.65609 54.87644 84.11406 102.6577 98.7098

.rar 132.5344 171.8773 55.05326 87.48828 95.14789 167.5214 195.2636 194.7235

sum= 542.6197 733.6619 257.1151 406.4178 427.414 671.994 816.3567 777.2871

Throughput

(MB / SEC)

0.739605 2.110416 1.335128 1.269541 0.807477 0.664685 0.698094

122

Figure B.31: Performance Comparison of the Parallel Execution Time of Recon-
struct the Secret and Decryption using AES of Archive File Type of Different
Sizes.

Figure B.32: Throughput of the Parallel Execution Time of Reconstruct the Secret
and Decryption using AES of Archive File Type of Different Sizes.

123

Vitae

• Name: Ibrahim Abdullah Musleh Althamary

• Nationality: Yemen

• Date of Birth: January 1, 1985

• Email: i.ibrahim42009@gmail.com

• Permenant Address: Thamar, Yemen

• EDUCATION:

2014-2017 Graduated from KFUPM with a MS in Computer Engineering

Department, Major: Computer Network.

2005-2009 Graduated from Thamar University-Computer Science Informa

tion System with a BS in Computer Science, Thamar Yemen.

• PUBLICATIONS :

-Althamary, Ibrahim Abdullah, and Talal Mousa Alkharobi. ”Secure File

Sharing in Multi-clouds using Shamirs Secret Sharing Scheme.” Transactions

on Networks and Communications 4.6 (2017): 43.

- Althamary, Ibrahim Abdullah, and El-Sayed M. El-Alfy. ”A More Secure

Scheme for CAPTCHA-Based Authentication in Cloud Environment.” Int.

Conf. Information Technologies 2017.

124

	Scan
	Sc1an
	full

