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ABSTRACT

Full Name : Sadig Ali Mohammed Al-Buradah

Thesis Title : Solution of the Schrodinger Equation for Non-Conventional Potentials
using the Asymptotic Iteration and J-Matrix Methods

Major Field : Physics
Date of Degree : April 2017

The objective of this work is to make a comparative study between the numerical and
analytical results generated by the Asymptotic Iteration Method (AIM) and the Tridiagonal
Representation Approach (TRA). In the AIM the calculation of the energy eigenvalues for
a given potential is performed using the quantization condition that terminates the iterations
asymptotically. While in the TRA the energy eigenvalues will be obtained using a suitable
infinite L? basis which transforms the Schrodinger into a matrix eigenvalue problem.
Usually, Jacobi and Laguerre basis are used, where the basis parameters are selected to
ensure a tridiagonal and symmetric matrix representation of the Hamiltonian matrix. To
test the accuracy and effectiveness of both methods we consider situations where the
potential is either analytically or approximately solvable. In this case, one can give a more
accurate assessment of the advantages and disadvantages of each method and, thus, can
give a fair judgment on the superiority of one method over the other. Usually, in the AIM,

the quantization condition that gives the energy spectrum depends also on the chosen

configuration space point, say x,. In this work, we observed that for a desired accuracy

there exists an interval in configuration space (a plateau of convergence/stability) where

Xiil



the calculated energy spectrum is independent ofx,, . This plateau of convergence grows up

rapidly to an optimal iteration number and then shrinks slowly to a point. This constitutes

one of our main contributions to the AIM in this Thesis.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Almost all known methods of solution of the wave equation in quantum mechanics do very
well (to a varying degree of accuracy) in problems with exactly solvable potentials.
However, the real test of these methods is when the potential is not exactly solvable. There
exist various methods to obtain approximate solutions. For instance, time-independent
perturbation theory [1], WKB approximation [2], finite-element method [3, 4], and
numerical method [5]. In atomic and molecular physics, numerical solution of the
Schrodinger equation frequently employs self-consistent field approximation whereas in
nuclear physics the Born-Oppenheimer approximation is used. Moreover, from the early
days of quantum mechanics, numerical methods were already developed [6] in order to
overcome the limitations of the number of exactly solvable problems. Therefore, in cases
where analytical solutions are difficult to find or not possible, numerical methods are
necessary [7]. In the past and in recent years, many developments in the numerical solution
of the Schrdédinger equation have appeared. Some of these methods include Matrix
Diagonalization Method, Nikiforov-Uvarov method, Spectral Method, Discrete Variable
Method and Runge-Kutta methods [8, 9]. In our work, we will compare the numerical
advantages of two methods to obtain the energy eigenvalues: the Asymptotic Iteration

Method (AIM) and Tridiagonal Representation Approach (TRA).



The AIM has been developed [10] to solve second order differential equations. For most
Schrodinger equations with exactly solvable potentials, the AIM was found to reproduce
very well the exact energy spectrum and wave functions [ 11-14]. Additionally, it gave very
good results in the case of non-exactly solvable potentials [15-18]. Moreover, for
analytically solvable potentials, the AIM formulation resulted in energy eigenvalues
identical to those derived by other analytical means [19]. On the other hand, the TRA [20]
has been successfully used to compute the wavefunction and energy eigenvalues for bound
states and resonances associated with different shortrange potentials. In particular, the
approach was used for the Morse potential [21], the inverse Morse potential [22], the tamed
Yukawa potential [23], the generalized Yukawa potential [24], the Hulthen potential [25],
the Hellmann potential [26] and exponential-cosine-screened Coulomb potential [27].
However, there exist a class of non-conventional potentials with discrete spectra and in our
work, we seek the solutions of such non-conventional potentials in the 1D Schrdédinger

equation. We plan to apply both AIM and TRA to this type of problems.

It is worthwhile to begin this work by a brief introducing of the famous equation in the
physics that appears in most of the research work in the past and present. In quantum
mechanics, the wave equation, Schrodinger equation (SCH.), is a partial differential
equation which describes how a quantum system state (quantum state) changes with time
was developed by the Austrian physicist Erwin Schrodinger, this equation was formulated
in autumn 1925 and published in 1926 [28]. In quantum mechanics, the analog of
Newton's law in classical mechanics, (F = ma), is the Schrodinger equation for a quantum

system (molecules, atoms, and subatomic particles whether bound, free, or localized).



The wave function is also called the "state function" it describes the time-evolution of the
system [1]. It has two forms; one is a time-dependent SCH in which time explicitly appears
describing how the wave function of a particle will evolve in time [29]. The other is the

time-independent SCH describing the allowed energies for the particle.

Time-dependent Schrédinger equation is defined by

ih%:m(r,t) (L1)

where A is the Planck constant divided by 27, i is the imaginary unit, ¥ is the wave

function of the quantum system, 7 and ¢ are the position vector and time respectively, and

H is the Hamiltonian operator (the total energy of the system).

Time-independent Schrodinger equation is

EY =HY (1.2)
In the case of a particle in one dimension, the Hamiltonian is:

2

P d
H=—+V P=—ih— 1.3
2mJr (x) ’ : dx (13

Then, the general Schrédinger equation is given by:

W+ ()= Ep (), (1.4)
m dx

In 1D the SCH Egq. is an ordinary differential equation, rather than a partial differential

equation. However, the stationary solutions of the SCH Eq. take the form:

—iEt/h

y(x,0)=y(x)e ™", (1.5)

In this work, we concentrate on the one-dimensional time-independent linear Schrodinger



equation (in the atomic unitsh =m=1) that reads
dZ
{F—2V(x)+2E}//(x) =0, (1.6)
X

Whereis the potential function (in higher dimensions with }(x)is the energy and E

central symmetry, this is an effective potential made up of the sum of the orbital term,

which is proportional tox~, and the physical potential).
Generally, for problems with bound states we would like to obtain solutions of the time-

independent wave equation H|y,)=E, |y, ), which represents an eigenvalue problem,
where {y,} are the eigen-functions, H is the Hamiltonian and {E, } are the corresponding

eigen-energies [30]. In the AIM, we start by converting the Schrodinger equation into a
standard form suitable for the method [10] and then use the quantization condition to
terminate the iterations asymptotically and obtain the energy spectrum and eigenstates. On
the other hand, in the TRA one expands the wavefunction in the space spanned by a suitable
square integrable discrete basis set. The basis set is chosen to produce a tridiagonal matrix
representation [31-34] for the wave operator. We start briefly by introducing both methods
and then use them to calculate the energy spectra for some potentials in the two cases in

situations where we have exactly and not exactly solvable potentials.



CHAPTER 2

ASYMPTOTIC ITERATION METHOD

2.1 Theoretical formulation

The AIM was established to obtain analytic solutions of second order ordinary differential
equations [10] and was applied to a wide range of problems in quantum mechanics. The
asymptotic iteration method was designed for solving second-order homogeneous linear

differential equation considers the following standard form:

y"(x)=k0 (x)y'(x)+S0 (x)y(x) 2.1
Where £, (x) and S, (x) are C, [Q] functions (infinitely differentiable in a domain Q2 of
the complex plane) and not necessarily bounded but such thatk, (x) # 0. In practice,
ky(x) and S, (x) have sufficiently many continuous derivatives.

In most applications, the functions k,(x) and S,(x) are polynomials or rational functions.
The general solution of Eq. (2.1) can be obtained using the symmetric structure of the right-
hand side of Eq. (2.1). We differentiate Eq. (2.1) and iterate up to (n+1)" and (n+2)"
derivatives. Thus, due to the linearity of the right side of (2.1) in y(x) and its first order

derivative, we can easily obtain

V' (x)=k,_y'(x)+ S, (%) y(x), V' (x)=k,y'(x)+S,(x)y(x) (2.2)



where k, (x) and S, (x) are defined recursively as follows

k,(x)=k' (x)+S, (x)+ky (x)k, (x), S, (x)=8"_(x)+S,(x)k,,(x) (2.3)

Once the functions k,(x) and S,(x) are determined, the sequences &, (x) and S, (x) can

be computed using (2.3). However, it should be noted that one can start the iteration from

n =0 with the initial condition £ , =1 and S_, =0.

The ratio of (n+1)" and (n+2)" derivatives of y(x) gives

n+2

VU _d K0S,k ]
yn+1 _dxl I:y ( )] kﬂ—ll:y'+(Sn—1/kn—l)y:|

(2.4)

Therefore, as per the asymptotic iteration technique and for adequately large n, we impose

the termination condition:

S, (x) _ S, (x) _
k, (x) - k. (x) —Z(X), (2.5)

Asymptotically, the terminating function y(x) is independent of n. Equation (2.4) reduce

to:

%ln[y"“(x)]= k]j:((x x)) (2:6)

Using Eq. (2.3) and substituting in Eq. (2.6) which yields:

Y (x)=C, exph%dx} =Ck | (x)exp[ [ [a(x) +k, (x)] d}} 2.7)

X

6



Where C, is the integral constant. Substituting Eq. (2.7) into Eq. (2.2) yields the general

solution of the 2" order differential equation Eq. (2.1):

y(x)= exp{ J-;(n }{C +CIexp{J‘ k y (X)) + 2 (x ))dx } } (2.8)

X

It should be noticed that although the general solution is given by Eq. (2.8), the first part
of Eq. (2.8) is observed to give polynomial solutions which are convergent and physical,

while, the second part gives non-physical solutions that are divergent. Therefore, C, =0

in Eq. (2.8) and the wave functions are determined by the following

S (x’

Y(x) = Cexp[ [ (x dx} Cexp[!k(x)

n

~—

dx’] 2.9)

The Energy spectrum (eigenvalues £, ) of the differential equation Eq. (1.6) such as

Schrodinger equation are then obtained from the roots of the termination condition
An(x,E):kn(x,E)Sn_l(x,E)—kn_l(x,E)Sn(x,E)zO, n=12,73,.. (2.10)

Where n is the number of iterations and this is called the quantization equation.
Numerically, the eigenvalues of the n” energy levels are obtained by the requirement that

A, (x,E) becomes vanishingly small for as large number of iterations as possible to

achieve the desired accuracy.



2.2. Asymptotic Iteration Equation

In the application of this method to eigenvalue problems of Schrodinger-type, such as the

time-independent one dimensional Schrodinger equation

L)+ [ - By (1) =0

it is very clear that the direct application of the AIM is not possible. Thus, this equation
(1.6) is not in the standard AIM form (2.1) and hence we need to make a transformation to
bring it to (2.1). That is we need to introduce a first order derivative into the Schrodinger
equation. Thus, the first step when applying AIM is the conversion of the eigenvalue
problem to a standard form suitable to use in AIM.

2.2.1 Wave-Function Transformation

The general strategy is to rewrite the wave-function as y(x) = g(x) f(x) together with a
possible change of coordinate in order to transform Eq. (1.6) to the form (2.1). Thus, we
select g(x) so that the Schrodinger equation will be written as a function of f(x) as
follows:

F(x) =k (x) £ () +S, (x) f(x) (2.11)

1 "

Where k(x)=—2& | S (x)=20-£_2F (2.12)
g g

Where the prime denotes the derivative with respect to x, and equation (2.11) is now in the
convenient form of the Asymptotic iteration equation. Usually, g(x) is chosen so as to the
factorize singularities in Eq. (2.11) or take care of the boundary condition requirements

and/or the asymptotic behavior of the wavefunction.



2.2.2 Coordinate Transformation
Another technique to transform Eq. (1.6) into the AIM equation is to use a coordinate

transformation x — y(x), which changes Eq. (1.6) into

'zd—2+ "i—zV( Y+2E [y (y)=0
y 0 ydy y w(y)=0,

This again gives an AIM form that reads

") =k,y'(»)+S, (0w (y)

where the prime stands for the derivative with respect to y and

ky(»)==3"[y" = 4,(»)

S,() =§[V<y)—E]zao(y)+Eﬂo<y)

The functionse,(y), B,(y) and A,(y) are defined for a given potential function and

coordinate transformation.

2.3 Termination Condition Problem
In general, the AIM sequences £, (x) and S, (x) ,n=0,1,2,....... depends not only on x but

also on the (unknown) energy E. Thus, the energy eigenvalue £, that solves (2.10) depends

generally on x. However, for analytically solvable potentials, the termination condition

(2.10) gives an expression that depends just on E (independent of x). In such situations, the

energy eigenvalues are simply the zeros of A, (E )=O,n=1, 2,...... Thus, the condition



A,(E)=0 gives the energy spectrum of the exact solutions. On the other hand for

problems that are not exactly solvable the termination condition (2.10) produces for each
iteration an expression that depends on bothx and E. Nevertheless, physically the
eigenvalues should not depend on the space variable. In such case, to find the eigenvalues
by solving the termination condition equation we are usually faced with problems related
to the convergence and sometimes instability of the numerical computation. Thus extra
measures should be taken into consideration to overcome such problems and to improve
the convergence.

2.3.1 Asymptotic Behavior of the Wave-Function

One of the methods that can help for stabilizing the process and improve the convergence

is to rewrite the wave-function as w(x)=g(x)f(x) and g(x) is chosen to reflect the

asymptotic form of the wavefunction and/or its behavior near the singularities of the

Schrodinger wave operator. Thus, for the eigenvalue problem with x € [x_,x+] one should

study the asymptotic behavior when x — x"and x — x~ to obtain the suitable wave-
function that yields the appropriate AIM standard form.

2.3.2 Boundary Condition

Much attention should be paid to the boundary condition of the eigenvalue problem when
applying the AIM. In this case, the function g(x) is chosen so as to include the effect of
the boundary condition. Thus, the boundary condition is enforced into the wave-function

in order to guarantee that the wavefunction vanishes at the endpoints. Thus, for

xe[x_,)f] the wave-function can be rewritten as w(x)=g(x)f(x) where

10



w(x")=w(x")=0. This transforms Eq. (1.6) into an equation for f(x) Eq. (2.11) where

the characteristics functions k,(x) and S,(x) are given by:

k(==& | Sm=2-£_2F. (2.12)
g g

where the prime stands for the derivative with respect to x.

2.3.3 Plateau of Convergence
One of the most important procedures that strongly assist the stabilization of the process

and improve the convergence is the appropriate choice of the initial value of the space

variable. Traditionally, researchers who use the AIM choose x, as either the position of

the minimum value of the potential under consideration or as the location of the maximum

of the ground state wavefunction. Another option was used is by setting .S, (x) =0. In this
work, we present a more general and systematic method to choose a suitable value for x,
to be within the plateau of stability, defined to be the range of x, values where the

calculated energy eigenvalue is stable against variations inx, . For this purpose, we solve

the quantization equation Eq. (2.10) for certain value of x and then compute the eigenvalues

E!(x) where n refers to the number of iterations and m refers to the order of the energy
eigenvalues. This can be done by calculating the eigenvalues (£7, E", E”,....) with different
values of x in the givenrange, x [x‘, x*] , and then we may plot them versus x to obtain

the plateau of convergence for each eigenvalue.

As an example, the ground state energy E, is calculated for different values of x then we

11



plot this eigenvalue versus x and observe that within a given range ofx, called “the plateau
of stability”, the calculated energy eigenvalue does not change with x (within the chosen

accuracy of calculation). Therefore, our mechanism that selects a natural or ideal point

x = x, that gives stable and convergent results independent of this point for as large range
of values of x, as possible. In principle, the solution should not depend on the choice of
X, which means that the computation of the roots of A, (x,;E)=0 should be free of the

choice of x,. We refer to this range of values of x, as the “plateau of convergence” or

“plateau of stability”.
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Deferential equation /Schrédinger equation
2

;h w " (x)+[V(x)~E]y (x) =0

m
v
Conversion to AlM standard form
v : v
Factorizing the wave-function Coordinate transformation
w(x)=g(x)f(x) x— y(x)
| ]
v
p"(x) = ko (x)y' (x)+ S, (x)y (x)
v
kn (X) =k 'n—l (X)+ Sn—l (X)+ kO (‘x)kn—l (X) ’ Sn (X) =S 'n—l (X)+ SO (x)kn—l (X)
v

The termination condition (to find the eigenvalues )
A, (x,E)=k,(x,E)S, (x,E)-k, (xE)S,(x,E)=0

v v
Approximate solution A (x,,E)=0 Analytical solution A (£)=0
v

Plateau of convergence

\ 4

General solution

()= eXp{_J.Z” (x')dvaCz +ClIeXp{j(ko(x“)+2Z,,(X"))dx'}dx}

X

Figure 1 Flow chart for applying AIM
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CHAPTER 3

TRIDIAGONAL REPRESENTATION APPROACH

This technique aims at solving the wave equation, H|y)=E|y), where H is the

Hamiltonian and F is the energy eigenvalue. The energy eigenvalue is either discrete (for
bound states) or continuous (for scattering states). The eigenvalue equation can be solved

algebraically without solving the differential equation. In this approach, the wave-function
is written in terms of square-integrable basis set {¢m(x)}w_0. Therefore, we start by

expanding the wave function in a complete basis:

v (x)=2, fu(E)d,(x) 3.1)

{ f (E)}:=O are the coefficients of expansion and the basis is chosen such that we get a

tridiagonal symmetric matrix for the wave operator J=H —FE . The following is the

general form of the square-integrable basis:
¢, (x) = A,w(»)E,(») (3.2)
where ¥ = y(x), A, is a normalization constant, P, ( y) is a polynomial of a degree m in

y and w(y) is the associated weight function that vanishes on the boundaries of

configuration space x. Consequently, the wave operator matrix elements are defined by
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Jn,m =<¢n H-E

R ey ad O (AR

The transformation x — y(x) is chosen such that the space of the basis becomes

compatible with the domain of the Hamiltonian x. With this coordinate transformation, the

wave operator (3.3) becomes:

1

J =—
n,m 2 <¢n

pd _.d _
{—(y) o dy+2U(y)}|¢m)—0 (3.4)

where U(y) = V(x( y)) —E . The prime on y stands for the derivative with respect to x.

Requiring that this matrix be tridiagonal and symmetric (as shown in the next sections)
transforms the wave equation into the following three-term recursion relation for the

expansion coefficients of the wave-function:

Jn,mﬁr (E) +Jn,n—1 n—1 (E)+Jr1,n+l n+l (E) = 0 (35)
Where all the J, s are functions of energy and potential parameters. This equation can

be solved either iteratively starting with a chosen f,(E£) or using results from classical

orthogonal polynomials, if any. Solving this recursion relation gives the energy spectrum

and associated wave-functions.
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3.1 Tridiagonal Representation Approach (TRA) to 1D Schrodinger

Equation

In our present work we will be using the Jacobi basis where P, () are the Jacobi
polynomials with y €[-1,+1] and the Laguerre basis where P, (y)are the Laguerre

polynomials with y e[0,00] .

3.1.1 TRA for the Jacobi Basis

The orthogonality relation of the Jacobi polynomial

+1

J-(l -y) (1+ y)VP:M (y)Pan) (y)dy=4,6 suggest that we can consider

n-mn>
-1

$,(v)=A4, (l—y)a (1+y)ﬂ P (»). as a complete basis set in [~1,+1] and use the free

parameters {¢, B, 1,v} to ensure a tridiagonal representation of the Hamiltonian. The

Jacobi basis where ye€[-1,+1] and {%(J’)}oc

., 1s written in the following form:

2, (y)=Am(1—y)a(1+y)ﬁP,fl”“')(y) (3.1.1)

_2m+pu+v+] T(m+DI(mA+p+v+1) (V) ; : :
where 4 _\/ ST T oD * o (») 1s the Jacobi polynomial of a degree

m in y and the real dimensionless parameters {a, B, 1, v} are such that , >0 and

M,v >—1. These parameters will be chosen later to support the tridiagonal requirement of

X +1
. . . ¢ d

the wave operator matrix (3.4). The integration measure becomes | ..... dx = J —Jj Thus,
X_ -1 y

compatibility with the weight functions of the Jacobi polynomial and dimensionality
16



requires that y'=A(1-y)" (1+ )" with a and b being real parameters and A is a positive

real parameter having a dimension of inverse length. In fact, the tridiagonal requirement of

(3.4) also leads to the same form for y'. Using the differential equation of the Jacobi

polynomial and its differential property, the wave operator matrix elements are obtained

after some manipulation (shown in Appendix B1) as

1
Iy = A4, j (1=p) (14 p) " P () {—n(n +u+v+1)-(2ap+ab+ fa)+a(a +a—1)(

-1

+,3(ﬂ+b—1)—(1_y)—n(y+ A )("Hl_a_za—V+1_b_2ﬂ]—U(y)(l_y )}P#’V(J’)dy

(1+y) 2n+ u+v (l—y) (1+y) (y')2 !
2(n+p)(n+v) | 2aral 2Pl u+l—-a-2a v+1-b-2p
A4 ———— 2| (1- 1 P - P dy=0
+ m*on 2n+,U+V :[l( y) ( +y) m (y) (l_y) (1+y) n-1 (y) y
(3.1.2)

3.1.2 TRA for the Laguerre Basis

In the spirit of the orthogonal property of the Laguerre polynomials

[ye L0, ()dy =26, which sate that  y, (y)=4,.e 7y L (y),
0

A, =+ n!/ T(n+v+1) , form an orthonormal basis in ye[0,o0[ . The following are

general basis set and form a complete set in [0, oo[ . The Laguerre basis is defined as:

6,0 =4y e”L,(»), (3.1.3)

Where y e[0,00[, 4, = \/ I'(n+1)/ T(n+v+1), L (») is the polynomial of Laguerre of a
degree n in y and real parameters {c, B,v} withv>—land @ 2 0 to ensure convergence

17



of the Laguerre polynomial and compatibility with the boundary conditions. They will be
determined later to support the tridiagonal requirements. In this basis, we use y'= Ay“e”
with a being real and positive so that ' vanishes only at the boundaries and no new

singularity will be introduced in the differential wave operator. The integration measures

are | ... dx = jd—Jj and y' should be compatible with the weight function of the Laguerre
X_ 0 y

polynomial. Using the differential equation of the Laguerre polynomial and its differential
property, the wave operator matrix elements are obtained after some manipulation (shown

in Appendix B2) as

Jon = AmA”J’yzw"_le_(zﬂ_b)nyn (y)|:n—ba +aﬂ+2aﬂ—ﬂ(ﬂ—b)y——a(a ra _1)
0

20-v+a-1 IPragy |
—n(l+b—2ﬂ+—J+U(y)—y P Ln(y)dy
Yy
T 2a+a-1_—(2p-b)y yv 20—-v+a-1 v
+AmAn(n+v)jy e Lm(y) l+b-2+—m— Ln_l(y)dy
Y
0

(3.1.4)

3.2 1D Solvable Potentials using Tridiagonal Representation Approach

3.2.1 1D Solvable Potentials for Jacobi Basis

Generally, we are looking for the tridiagonal representation form of the J thus,

m,n 2

generally Eq. (3.1.2) has for the Jacobi polynomials the integral form

18



+1
J. (1 - y)# (1 + y)v P (J’)F (y)Pnﬂ’V (y)dy . Therefore, the tridiagonal matrix
e

requirement dictates that F ( y) be linear in y (e.g. F(y) = py+q ) that is equivalent to the

term

(1£y). Thus, F(y) should be selected in order to cancel terms that destroy the tridiagonal

representation like (1+y)/(1-y)and(1-y)/(1+y).

+1
Based on the fact that J (1- y)za (1+ y)zﬁ P (y)P""(y)dy will be tridiagonal only for
|

(2a,28) =(1,v),(1+1,v),(p,v +1), which will be proven using three-term recursion

relation for PV (y). So, the only tridiagonal terms in J, , should have the following

NG

three forms:

+1
J‘(l _y)2a+a—1 (1+ y)2ﬂ+b—1 Pmﬂy (y)Pn,u,v (y)dy ~ 5’",”

-1

—  2a+a-l=u,2p+b-1=v (3.2.1a)

+1

JA=p) (G y) "7 B (0) By ()Y ~ Gy + G + 8

-1

S 2a+a-l=u,28+b-2=v (3.2.1b)

+1

[U=py 1+ p) " B (V) B ()Y ~ 8,1+ + 8

-1

—>2a+a-2=u,2B+b-1=v (3.2.1¢)
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Now, we can say that according to the recursion relation and orthogonality formula of the

Jacobi polynomials that the matrix representation of the wave operator J,, becomes

tridiagonal only in three cases:

(1) 20=pu+l-a, 2B=v+1-b, (3.2.2a)
Q) 2a=p+l-a,2=v+2-b, (3.2.2b)
(3) 20=u+2-a,2f=v+1-b, (3.2.2¢)

For the previous three cases, we can find the tridiagonal matrix representation for the wave

operator J, , and the possible solvable potentials. The wave operator for the first case is

given by:

1 2
T = 4,4, [ (1=3) (1+9) B () HH ”+2V+1j —i(ﬂz +v? +2ab-1)
-1

(3.2.3)

1-2b
Y ]PJ"V (y)dy=0

+1

X +1
Since only [(1— y)* (1+y) P~ (0P (0)dy ~ 8,0 [(1=2)"" (14 9) B (9)BE (v)dy ~ tridiag.
-1

-1

+1
J'(l_y)"(1+y)v+' P (y)P*” (y)dy ~ tridiag. Then, we need to include in U(y) all the

-1

possible tridiagonal terms, py+¢ in addition, to counterterms that eliminate the non-

tridiagonal terms in (3.2.3). Therefore, the solvable potential should have the following

form:

20



1-2a 1-2b
A2 -y  1+y

Where we set Azi[yz—(a—l)z} , and B:i[\f—(b—l)z]

Similarly, for the second case, the wave operator J,, , is written as:

y78% _ (1+ )2 U(y) _ 1-2a 2-2b %
A, n_[ 1+y Pm (y) 0+Ky A(l—y)+ E (1 y) (1+y)

2(n+u)(n+v)% u )
1=y) (14 2) P2 (y)P (v)d
2n+pu+v I( y) ( +y) " (y n-l (y) Y

-1

m n

P* (y)dy—A,A

(3.2.5)
and the solvable potential has the form:
1-2a 1-2b
Up(-y) “(+y) " l+y y q
; =4 +p + (3.2.6)
A -y (1+y) (1+y)
Where

2
Q=(n+ﬂ+;+lj —i(yz +v? +2ab—1)+%(ﬂ+l)—n#—%(v—b+2)(v+b)

2
K:(n+’u+;+lj —i(,uz+v2+2ab—1)+%(u+1)—n+i(v—b+2)(v+b)

The wave operator J,, , for the third case as follow:
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— " H V. opuv (1 - y)2 U(y) 2-2a 1-2b
Jm,n—AmAn:[(l—y) (1+y) P2 (y)|W—-My—B () + E (I-y) " (1+y) 7 |x

2(n+pu)(n+v) p v
P (y)dy+ A A L= Y (14 y) P ()P™ (v)bdy =0
' (v)dy+ 4,4, Tty i( v (1+p) B (V)P (v) pdy

(3.2.7)

The solvable potential:

1-2a 1-2b
U(y)(1-y) " (1+y) :Bl‘y+p y 4 (3.2.8)
A2 I+y -y 1-y B

Where

2
W=(n+'u+;+lj _i(lf +1? +2ab—1)+%(v+l)—n2n‘:ﬁ—i(,u+2—a)(,u+a)

2
M:[(n+’u+;+lj —i(,uz+v2+2ab—1)+%(v+l)+n+%(y+2—a)(y+a)

Now, as an application of the above cases, we can produce many solvable potentials using
a possible transformation to be compatible with the Jacobi polynomials.

As an example, using the possible transformation:
y(Ax)=sin(Ax) , ~L/2<x<L/2 (3.2.9)

12 12

Where y'=A(1-y)" (1+y)", comparing with the general form y'=A(1-y)" (1+y)b ,

the relation between the parameters «, 3, 4 and v is givenas 2 =pu+1/2, 2=v+1/2

. The wave operator for this case is written as follows:
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1 2
| — +
] y) (1+y) (3.2.10)
2V 2F v
+ Zgy)—F}Pf’ (v)dy =0

Then, the solvable potential can be found by eliminating terms (2A/ (1— y),2B/ (1+ y))

that are not tridiagonal and adding py+¢ to have a linear form as the following:

— — 2 2
(4+B)-(B A)y+/1py+/1_q

Then V(y):ﬂu2 (l—yz) 5 5

Thus the solvable potential should have the form:

V.+V )—=(V, =V )sin(Ax .
V(x)=V0+( )C(fsz(ix)) ( )+Vlsm(/1x) (3.2.11)
A’ 1 4r e
Where we set V_:/12A=T(,uz—l/4) — ,u2=2+7, V+=/123=7(v2—1/4)
, 1 4y, o,

- V=

=—+4+—-, p=—", and =%. According to the original requirement that
4 2/2 2’2 q ﬂ,z g g q

a, >0 the potential parameters ¥, and V_ satisfy the condition V, > —(7z/ 4L)2. Similar

procedures can be done for any possible transformation. The following is the table of some
possible solvable potential using the TRA for the Jacobi polynomials in 1D Schrodinger
equation. More details on this approach can be found in the recent comprehensive review

by Alhaidari [35].
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3.2.2 1D solvable potentials for Laguerre basis

Similarly, we are looking for the tridiagonal representation form of the J/,, , thus,

generally Eq. (3.1.4) has for the Laguerre polynomials the integral form
J ye L, (y )F(y )Ll,; (y )dy. Therefore, the tridiagonal matrix requirement dictates
0

that 7 (y)= py+q . Thus, F ( y) should be selected in order to cancel terms that destroy

the tridiagonal representation like 1/yandy®. Again orthogonality of the Laguerre

polynomials '[yve_yL‘:n (»)L.(y)dy=A4,6,,, A =T(n+v+1)/ ['(n+1) along with the
0

three-term recursion relation for L () suggest that j ye L (»)L (y)dy, will be
0

tridiagonal only for #=1 and a =v,v+1. So, the only tridiagonal terms in J,

m,n

should

have of the following two forms:

o0

J-y2a+a—le—(2ﬁ'—b)yL‘;n (y)L‘; (y)dywém,n -  2a+a-1=v,28=1+b (3.2.12a)

0

o0

[y e L (V) Ly (V)Y ~ 8, + Gt + G

0

—2a+a-2=v,28=b+1 (3.2.12b)

Now, we can say that according to the recursion relation and orthogonality formula of the
Laguerre polynomials that the matrix representation of the wave operator J/,,, becomes

tridiagonal only in two cases:
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() 2a=v—a+1, 2p=b+1 (3.2.13a)
(2) 2a=v—-a+2,28=b+1 (3.2.13b)

Similarly, we can find the tridiagonal matrix representation for the wave operator J,,, and

the possible solvable potentials. The wave operator and solvable potential for the first case

are written as the following:

_ T vV _—y7TVv v l l 12 l 2 _ 2 l
Jm’n—AmAn-([ye}Lm(y)Ln(y){n+2(v+l+ab)+4(l b)y+4[v (a-1)’ ]

Yy
1—2ae—2by
—U(y)yT dy (3.2.14)
1-2a _—2by
yree 1 I oy
U == A+t ,A—4[v (a=1)'] (3.2.15)

For the second case:

S =A,nAnIy”e‘nyn (y)[—%(v—a+2)(v+a)—n+(n+%(v+2+ab)jy
0
2-2a —2by

1 14 T v - 14 v
- (1=07)y” +U(y)%}Ln(y)dy+AmAn<n+v)J ye L, (y)L, (y)dy =0
0

(3.2.16)

2-2a _-2by

1
U(y)yT=By2+py+q ,B=Z(l—b2) (3.2.17)

27



And similarly, we can find the possible solvable potential using the TRA for Laguerre
polynomials. The following is a table of some possible transformations to obtain the

solvable potentials.

y(x) V(x) V2 200 2P
2
(2x)” 02[%+(ﬂ,x)a(VO+V1(lx)a)} RINC A B
—0<x<o (4x) o’ A o
V.>—(2/20)
/je—ﬂx #e—ix ("70_'_1'/;#6—/1‘() _g . 1
—0<x<mw E<0 A2

Table 2 Solvable potentials in the Laguerre basis.
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CHAPTER 4

RESULTS AND DISCUSSION

In this work, our main concern is to solve 1D Schrédinger equation with potentials that are
analytically and approximately solvable using both the Asymptotic Iteration Method and
Tridiagonal Representation Approach. The objective being to make a comparative study
between the two approaches. In the following, we present a solution of 1D SCH for two
exactly solvable potentials. These potentials are ( i ) the simple Harmonic oscillator

potential
x2
V (X) = ? ) (4 1)

,where 0<x<o and (ii) the confining potential

V(x)=V,tan’(x/a) , (4.2)
ra wa oy e
where x e (—7,7) and JV,=0. Furthermore, we solved ID SCH with (iii ) the

generalized version of the trigonometric Scarf potential that is introduced using the

Tridiagonal Representation Approach. The potential is defined by

+V, sin(7zx/L), —éstg “3)

V,—V_sin(zx/L)
o+
V(x)= cos’ (7x/L)

o0 outside

where A =(7/L). Without the ¥ term, this is just the trigonometric Scarf potential, which
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belongs to the conventional class of exactly solvable problems with the following energy

spectrum

2
2
En:ﬂ—{n+l+l\/l+2W+ +l\/l+2W‘} +V,, (4.4)

2 2 2\Na a2 2\Na 2

where W, =V _xV . The special case where V, =V, =0, which leaves only the new

component, is just the infinite square well with a sinusoidal bottom that does not have an
exact solution in the conventional formulation of quantum mechanics. However, using the
TRA, the Authors in [36] were able to obtain an exact solution for this problem. In addition,
for convenience and better understanding we apply the technique of the ‘the plateau of
convergence’ to different potentials. In the following sections, we will compute the energy

spectrum (energy eigenvalues E” ) associated with the three potentials defined above Eq.’s

(4.1,4.2,4.3) using both the AIM and the TRA. to enable us to make a reasonable

comparison of both approaches.
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4.1 Solving Schrodinger equation for Harmonic oscillator potential

4.1.1 Solution using AIM

Consider the simple example, the Harmonic oscillator potential:

2
V(x)z%, 0<x<oo (4.1.1)

{_ld_2+x_2_E}//(x):0’ (4.1.2)

According to the AIM solution procedures, the first step is to convert SCH Equation into

the AIM form. Thus, to obtain the AIM form we rewrite the wave function as

v(x)= g(x) f (x) The wave function that satisfy the asymptotic behavior for large x of

the Schrédinger wave operator can be written as:

2

l//(x):g(x)f(x)ze_%f(x) (4.1.3)
This transforms Eq. (4.1.2) into an equation for f(x) as
S =2x"(x)+(1-2E) f(x) , (4.1.4)
Now, this equation is in the form of the AIM (2.4), thus, the characteristics functions
ky(x)and s, (x) defined as:
ky(x)=2x S,(x)=1-2FE. (4.1.5)
Using the iteration formulas (2.3), the functions £k, (x) andS,(x) , n=12,... will be

calculated as it is shown below

K (x) =k, (x)+ 8, (x) + Ky (x) ko (x) =3+ 4x7 —2E
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S, (x) =8, (x)+Sy (x)ky (x) =2x—4xE

ky(x)=k, (x)+S8,(x)+k (x)k, (x)= (16x +8x ) —8xE

S, (%) = 5, (x)+ S, (x) () = (5+427 )~ (1248 E +4E”.

ks (x) =k, (x)+S, (x)+k, (x)k, (x) = (21+60x> +16x* ) —(20+24x ) E + 4E
Sy (x) =S, (x)+S, (x)k, (x) = (24x+8x" ) = (56x +16x* ) E+16xE”
andsoon ...

The Energy spectrum (eigenvalues £, ) of the Schrodinger equation Eq. (4.1.2) will be

found from the root quantized equation (2.10)

A, (xE)=k,(x,E)S, (x,E)—k, (x,E)S,(x,E)=0
As mentioned before, one can start the iteration from #n=0 with the initial condition

k,=1and S =0.

For n=0, A, (E)=2E-1=0, = E,=1/2

For n=1, A (E)=3-8E+4E*>=0, (2E-1)(2E-3)=0 = E,=1/2, E,=3/2

For n=2, A,(E)=15-46E+36E>—8E’ =0,

(2E-1)(2E-3)(2E-5)=0 = E,=1/2, E =3/2,E,=5/2
For n=3, A,(E)=105-352E+344E> —128E° +16E* =0,
(2E-1)(2E-3)(2E-5)(2E-7)=0 = E,=1/2, E,=3/2 ,E, =5/2,E,=7/2

and soon ...
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The previous calculations yield the exact eigenvaluesE, =n+1/2. From the above
calculation, it is clear that we are dealing with an eigenvalue problem that is analytically
solvable ( a closed form of a solution). The termination condition (2.10) leads to an
expression that is independent of x and depends only on the eigenvalues £ . Therefore, we
found out that the energy eigenvalues are simply the rootsof A, (E,)=0. This leads to the
exact solutions of the Schrodinger equation for the harmonic oscillator potential [
E, =n+1/2,n=0,1,2,.....]. Another interesting point is that by induction we conclude that
S,,(x) and S,  (x) are polynomials in E of degree n+1. Whereas, ,, (x) and k,,_, (x)
are polynomials of degree n in E. Thus, from the quantization equation (2.10) we conclude

that A, (x,E) is a polynomial in E of degree n+1, and A (E)=0 gives the energy

spectrum {Em}:z In addition, we would like to show how to find the wave functions of

the Schrodinger equation for this case, using Eq.(2.9) we deduce the wavefunctions for the

first five iterations with C, =1.

For n=0 )(O(x)=S = , fo(x)=exp[0]=1

wo(x)=e "y (x)=e P

_Si(x) _ 2x—4xE
k(x) 3+4x*-2E°

For n=1, g (x) fl(x):exp[_‘édx}:x

v, (x)= e‘xz/zf1 (x)= xe ™2

S () 2080 e
For n=2, y, (x)_ k, (x) B (16x+8x3)_8XE2 ,
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4x

2x* —1

f,(x)=exp [I dx} =2x" -1, wy,(x)= e‘xz/zf2 (x)= (2x2 —l)e"‘z/2

- S(x)  (24x48x7)—(56x+16x" ) E, +16xE,
For n=3. 1(x)= ki (x)  (21460x" +16x*)—(20+24x7 ) E, + 4B

2x* =3x

fi(x)= exp{[ 6x" -3 dx} =2x"=-3x , y,(x)= e_xz/zf3 (x)= (2x3 —?a)c)e_xz/2

and soon ...

The functions f, (x) ,n=0,1,2,... represent the Hermite polynomials. The wavefunctions

of the Schrodinger equation can be represented by the special Hermite function in confluent

hypergeometric functions form as the following:

|
(21’1) ZM(_n;l/z;xz), for n:05274a“'

(4.1.6)

1
Mxe *M(-n;3/2;x7), for n=135,..

w ()=(1y 22
4.1.2 Solution using TRA

The transformation of this problem is defined by y = x”. In this case, the variable space is
in [0,00[, thus, we use the Laguerre basis. Using equation (3.2.14), where

[y'=2y1/2—>a=1/2,b=0, 2a=v+1/2]. The J-Matrix for this case will be as the

following (see [37])

4.1.7)

n,m

Jn,mz[Zni%+l—E}5

Then, the three-term recursion relation will reduce to a single term:
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E f.(E)= |:2n i%+l}fn (E) (4.1.8)

This represents the diagonal term of the three-term recursion relation. The energy spectrum

E  (the eigenvalues) of the Schrodinger equation with the harmonic oscillator potential is

given by
2n+l, V=—l
E=1 2 2 (4.1.9)
3 I
2n+—, V=+—
2 2

Table 3 The first five exact eigenvalues (Energy spectrum) for harmonic oscillator

potential.
Methods E, E, E, E, E,
Exact (n+1/2) /2 32 5/2 7/2 92
AIM 1/2 3/2 5/2 7/2 9/2
TRA(v=%12) V2 32 5/2 7/2 9/2

Figure 2 Plot of the harmonic oscillator potential.
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4.2 Solving Schrodinger equation for the tangent square potential

The potential is defined as

> 7a za
(x)- V, tan® (x/a) _TSxST ’ @2.1)
0 outside

ma rwa . . . s e
where xe (_7’7) and ¥, >0. This potential contained within an infinite square

well with sides at x = i—% , and V, , gives an indication of how rapidly the potential

increases within the well [38]. In this case, the time-independent Schrédinger equation

reads

—5—22+2V0 tan’ (x/a)—ZE},y(x) =0 (4.2.2)
X

The boundary conditions are given by (—%j =y (Ej =0.

4.2.1 Solution using AIM

To obtain the AIM standard form we take a different approach to reach the suitable form

of AIM. we start by using the following transformation
y =sin(x/a) (4.2.3)

where y €[~1,+1]. Thus, Sch. Eq. reads
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2 2 2 2
w"(y)=ﬁw'(y)+ aVoy.  2aE | (4.2.4)

(1) (1))

For convergence purposes, we use the substitution defined below which also takes into

consideration the boundary conditions:
w(»)=(1-")"g(») (4.2.5)
Then, Sch. Eq. can be written in a simple form for g ( y) as:

4a +1 2 h 2 A2
g "(y)=wg'(y)+ i Ez 24V o) (4.2.6)
(1-57) (1-57)

1
Where « =Z(li,/1+8a2V0). Now, Equation (4.2.6) is a differential equation of an

exactly solvable problem solved via AIM.
The Characteristics functions &, ( y) and S, ( y) are defined by the following:

do +1
ko (v) = (da+l)y _ 4o’ 2a E-2a, 4.2.7)

O I A (e

Similarly, like what we did for the previous problem, the iteration formula &£, ( y) and

S, ( y) will be computed using (2.3)

(1+2a) +2(1+6a+6a* ) y* +2a° (1-y*)(V, + E)

(1-0)

k1(y):
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2(3+4a) (22 -a* (V, + E)) y

(1-2)

Sl(y):

6 ()= (3+4a)|3+12a+8a” +2) (1+6a +4a’ )+ 4a” (1= 37 )(F, + E) |y
2\ 3
(1-57)

2(20” -a* (¥, +E))[4(1+a)2 + 2 (11+24a +12a%) +24* (1-*) (¥, +E)]

(1-0)

Sz(y):

And so on. Then, the termination condition (2.10)

A, (».E)=k,(».E)S, (».E)—k,_ (».E)S,(y,E)=0 , yields the following results

1

A, =4a* -2aV,-2a°E=0 = Eozg[4a2—2azlfo]
A =20 (1+2a) —a’ (1+4a+8a°)(V, + E)+2a* (V, + E)’
=(1-2d7V, +4a +4a’ - 2d°E)(4a’ - 2a’V, - 2a°E) =0

= E, =2—22[4a2 -2a’,]. E =$[4a2 +4a+1-247V, |

A, =40’ (1+3a+2a*) ~24* (1+6a+18a° + 240’ +12a°* ) (¥, + E)
+a“(5+120¢+120¢2)(VO +E) =2a° (V,+EY)
=(1-2a"V, +4a +4a’ -2d°E)(4a’ -24°V, - 2a°E ) (4-24°V, +8a + 4o’ = 2a°E) =0

= E, :$[4a2—2a2V0], E, :$[4a2+4a+1—2a21/0] ,

E, :ﬁ[%f +8a+4-2a’V, |

38



And so on. Itis obvious that the termination condition yields expression that is independent
of the variable space y. In such case, the solution can be written in a closed form for the
eigenvalues ( Analytical solution). Thus, generalizing the results from the termination

condition, we can write

n

— _ 1 2 2 2
A,=0 = Ez—g[%{ +4na+n’ =24V, |,

where 4a’ =2a+2a’V, , Therefore, the energy eigenvalues are given by

2d°E, =[ n’ +2a(2n+1)],

1 ) ) 1 1
E =—|n +(2n+1 2a°V, +—+—1], =0,1,2,... 428
' 2a2{" (27 )(\/ “hTy 2}} " (42.8)

4.2.2 Solution using TRA

Starting from the J-Matrix wave operator of the Schrodinger equation with the Jacobi
polynomials Eq. (3.2.3), we use the transformation y = sin(x/ a) where ye [—1,+1] ,

y = lcos(x/a) = l(1 — y)l/2 (1+ y)l/2 , and compare with the general case
a a

y':l(l—y)a(l+y)b, [a=b=1/2,A=1/a]. The potential function is given as
2

U(y):ZV(y)—ZE:ZVO(ly—z)—ZE:ZVOﬁ—ZVO—ZE. The wave operator
-y -y

matrix elements for this problem reads
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1
Ty = A4, [ (1=2) (1+3) B (»)

-1

!(nJrLVsz_2(A+B—V0a2)+(A—B)y

~2V,@’ —2a°E | P (y)dy =0 (4.2.10)

Where A=i[,u2—l/4] , B=i[v2—1/4J

According to the tridiagonal representation requirement, terms inside the square bracket

must be linear in y . Moreover, terms that destroy the tridiagonal representation must be

eliminated. Therefore, tridiagonal representation requirement yields the following relation

1 . . .
between the parameters u° =v° = Z+2a2V0, and regarding the original requirement,

2
a, >0 , the strength of the potential should have the condition V) > —%(%) . Then,
a

the J,,, matrix elements are

n

u+v+1

1 2
Ty = A A [(1=0) (14 2) B () [(+ ) o —ZazEn}Bf‘” (»)dy=0
-1
(4.2.11)

And the three-term recursion relation of the wave operator gives the diagonal term as

bellow:

E f(E)= 222 [(m”*;”j —ZaZVO}f”(E) (4.2.12)

The energy spectrum for Schrodinger equation (4.2.2) given as:
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(4.2.13)

g, AIM TRA Exact
£, 1 1 1
& 3.5 3.5 3.5
£, 7 7 7
& 11.5 11.5 11.5
£, 17 17 17

Table 4 The lowest five Eigen-energies of the SCH for the tangent square potential with

the potential parameters defined as ¥, =1 and a =1, using AIM and TRA.

30

25

20

15

10

-1.5 -1.0 -0.5

0.5

IR I SR SR SR T Y X

1.0 1.5

Figure 3 Plot of the tangent square potential for potential parameters V, =a =1.
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4.3 Solving Schrodinger equation for the Generalized Scarf Potential

4.3.1 Solution using TRA

Starting with the Tridiagonal Representation Approach, we consider the coordinate
transformation y =sin(Ax) where —L/2<x<+L/2, A=7x/L making a=b= % and
vy e[-1,+1], we start by using equations (3.2.3) and (3.2.4), where we just consider the first
case of (3.2.2). The tridiagonal matrix elements of the wave operator J,,, for this problem

read as follows:

1 2
J o=Ad A [(1=y) (1+y) P LVHJ Loy
nr = Ay I( y) (+y) F, (y){[n+ 5 (e -172)

}Pf” (y)dy=0 4.3.1)

Where we set Azi[,uz—(a—l)z] , andei[vz—(b—l)z] A, B, p, and g are real

parameters with 4= a(a—l/2), B=p ( p-1/ 2). It results in the potential function
defined bellow:

V, —V_sin(Ax)

V(x)=r+ cos’ (Ax)

+V,sin(Ax) (4.3.2)

where the basis parameters are obtained from the physical parameters V., V, and V| as

» 12 > 12 > V., 2V, 2F
=—+—=V. -V ), vi==—+=(V.+V), p=2V/A* and g=—=+—L—-—. Thus,
H 4 /12( + —) 4 12( ) p 1/ q FEREFTRNY
reality requires that V, > —2(2,/ 4)2 and V_>0. Figure 7, show this potential for a given
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set of physical parameters. Using the orthogonality formula and the recursion relation of

the Jacobi polynomials we obtain the matrix elements of the wave operator J,, , as follows:

n

2
J”’”’z[(ﬂﬂg/“j +2;E)—g}5mm+%<n|y|m> 4.33)

where &=2E/A*. Using the form of <n| y| m> given in the Appendix, the wave operator

matrix elements takes the following form:

2 2 2
J, .= 2—? Y K +(n+,u+v+lj +2I§)—g o,
’ A2 (2n+p+v)(2n+ p+v+2) 2 A ’

2,
s

20+ u+v\((2n+p+v-1)2n+p+v+1) " 20+ prv+2

{ 2 J( n(n+p)(n+v)(n+pu+v) 5 . 2

X\/(n+1)(n+,u+l)(n+V+1)(”+/U+V+1)5 (4.3.4)

(2n+p+v+1)(2n+pu+v+3)

The diagonal representation requires ¥, =0 giving E, =(1/2)4? [n +(u+v+ 1)/2]2 +V,,

which is the well-known energy spectrum associated with the trigonometric Scarf potential.

The three-term recursion relation associated with (4.3.4) reads as follows
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Pl +v+1Y 2r
Y —4 +(n+’u i + =2

2V,
g”f”(g)_{?(2n+,u+v)(2n+,u+v+2)

% 2 n(n+,u)(n+v)(n+,u+v)
s [2n+ﬂ+v\/(2n+y+v—1)(2n+,u+v+1) Ju(®)

+

2 \/(n+1)(n+,u+1)(n+v+1)(n+,u+v+1)

4.3.5
2n+pu+v+2 (2n+p+v+1)(2n+u+v+3) f””(g)] ( )

If we take the special case V, =V_=0 which leads to ¢ =v =+1/2 then this results in the

infinite potential well in one-dimension with sine bottom V] Sin(/lx) which was treated in

[31]. Under the restriction z=v =1/2, the three-term recursion relation equation reads as

follows
&, f,@) =] (n+1) +20, /27 | £, + (K2 ) fy2 (&) + £,.1(2)] (43.6)

Solving the three-term recursion relation (4.3.6) gives the energy spectrum &, for

(eigenvalues of the Schrodinger equation with) the potential (4.3.5). The results are

reported below and compared to the AIM.

4.3.2 Solution using AIM

For the AIM, the Schrodinger equation with the given potential reads:

_d V, —V_sin(Ax) . ~ ~
{ e +2{V0 A~ () +7, s1n(/tx)} ZE}W(x)— 0 (4.3.7)

Now, to obtain the AIM form one should take into consideration of the boundary condition

that requires the wavefunction to vanish at the boundaries x=+L/2. First, in order to
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bring the independent variable domain to [—1,+1], we use the following coordinate
transformation
y=sin(zx/L), —1<y<+l (4.3.8)

This transforms Schrodinger equation into the following form:

woN ()4 A0+A1y—8+A+—A_y 3
y (y)_(l—yz)v/ (») (l—yz) (1—y2)2 () (4.3.9)

2
where Aoz/l—lj), lz%,/li:z;i and £=i—f.

To enforce the boundary satisfaction we use the following substitution
v (y)=(1-2") 7 (») (43.10)

Then equation (4-10) can be written in a compact form for f ( y) as follows:

f"(y)—mf'(yh da Jr(fi;;‘;ly_g+‘4+_’4-(?:if‘)gza_l) F(1)(43.11)

From the mathematical point of view, the points y ==*1 are regular singular points of the
differential equation (4.3.11). k, ( y) and S, ( y) with containing regular singular point and

due to higher order derivative, the presence of the last term in S,(y) will play a very

destructive role for the convergence of our termination condition. Thus to improve the
convergence of the termination condition we need to perform a transformation that

eliminates this spurious term. Equation (4.3.11) is now amenable to the AIM where the

characteristic functions k,(y) and S,()) are defined by
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(4a+1)y 4a2+A0+A1y—g+A+—A_y—2a(2a—l)

kk(y)="Fr—~ ., S,(= . > (4.3.12)
(1-»7) (1-57) (1-%)

By means of the iteration formulas (2.3), the functions £, ( y) and S, ( y) are computed

for n=1,2,... and then the energy spectrum (eigenvalues E ) will be found using the roots

of equation (2.10). In this work we consider two cases by just selecting the potential
parameters:

CASE1: V.V, #0,,and V. =V, =0

The characteristic functions k() and S,(») written as follows:

ko(y)=w , So(y)z402—8w:A1y+A+—2a(§a§—1)
(l—y ) (l—y ) (l—y )

For convergence purposes, we eliminate the spurious term in (4.3.13), so that k,(») and

(4.3.13)

S,(») reads

(40{+1)y a)+A1y

kO(y):(l——yz) , So(y)=(l_y2) (4.3.14)

where we set w=4a’ —¢ and a = %(1+~/1+4A+). Using Eq. (2.3) and Eq. (2.10) the

functions £, ( y) and S, ( y) are calculated as follows:

I+da+y(1-y") 4+ (2+12a+16a° ) +(1- ¥ )0
kl(y = (1_y2)2
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(14 (2+4a)) 4, +y(3+4a) @
(=)
2(1-y*)(1+ 3?2 +4a)) 4, + y(3+4a)(3+1200 + 2y’ (1+ 60 +8a’ - w) +20)

(1-)

S, (y)= | o(4+8a+0+y* (114 24a +160° - 0))

Sl(y)=

+y(9+12a+2)* (3+10a +80° — )~ 20) 4 —yz(l—yz)Af}
and so on. From the above calculations and by induction we conclude that S,, ( y) and

S

2n+1

( y) are polynomials in & of degree n+1 while k,, ( y) and k,, | ( y) are polynomials

in & of degree n in €. The Energy spectrum (eigenvalues) will be calculated using the
termination equation (2.10),

Forn=0:

Ay(y.e)=a,(g)+y=0 ; al(a):%[%ﬁ _€i|

1
With an appropriate choice of value, y =y, we will obtain the first eigenvalue &, .

Forn=1:

A (y.e)=a,(e)+2a,(e)y+y*=0 ; a, (8)=%|:40!2 +16a’ +160[4—8—40!8—80!28+82j|

1

Again, with the same appropriate value of y = ), we obtain &, ¢,
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Forn=2

A, (y.€)=a,(g)+3a,(e)y+3a,(e)y*+y' =0 ;
1 (16a° +96a” +208c"* +192a° + 64a® —2.4;
a3(8)_A_f —(4+24a+ 720" +960° +48a* ) e +(5+120 +12a* ) & - &’

giving &,,&,&;.
and so on.

Where the relation between the termination condition equations for this problem obey

oA, (y,¢)

N =(n+1)An_1 (y,g) (4.3.15)

Which implies that the termination condition takes the following from

A, (r.2)=Ya, ()7 40,0 (¢) 43.16)

and so on where O, ( 8) is a linear combination of a, (&) with coefficients that can be
drawn from Pascal triangle. It is worth mentioning that the general structure of A ( ¥, 5)

still holds independent of the specific potential and can be written as follows

n

A, (r.e)=2a,(€)y""+0,.(¢) (4.3.17)

k=0

Where p is an integer that is potential dependent. The coefficients a, (8) are functions

of energy and potential parameters, O ., (8) are polynomials of degree n+1 in& . Now, it

is obvious that the function A, (y,é‘) is a polynomial of degree n+1 in¢ . Thus, at the n™

iteration, there are n+1 eigenvalues that depend generally on the choice of y,. Now, it is

clear that this problem with the generalized Scarf potential given by Eq. (4.3.7) will not
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have an analytic solution in the conventional formulation. In other words, the termination
condition (2.10) gives an expression that depends on both y and & . Therefore, one has to
find the best possible starting value y =y, that stabilizes the process of computation of the
energy spectrum. As mentioned before, the computation of the eigenvalues using (2.10)
should be independent of the choice of y,. Researchers traditionally choose this as either

the minimum value of the potential or the maximum of the ground state wavefunction.
However, the best choice of the starting value is observed to be critical only for the stability
of the process, as well as to the speed of convergence. By means of the iteration formula

(2-3) and the termination condition (2.10), the eigenvalues are then computed. Our
calculation shows the effect of (1) different choice of initial values y =y, and (i1) the
number of iterations on the accuracy and convergence of the eigenvalues. In Table 5, we

have considered only the lowest two Eigen-energies while varying ), in the range
—1<y,<+1. It is obvious that by increasing the iterations the process stabilizes and the

values of y, that are very close to the singular points lead to strong oscillations and

divergence. It is very clear in this table that for the ground state (for a given accuracy) for
4 iterations the Eigen-energies are stable for any initial value within the range
—0.1<y,<+0.1 (plateau of convergence). Increasing the number of iterations to 5
iterations makes the plateau increase and the Eigen-energies are stable for any value in the
given range (away from the singular points). Continuing, for 6 and further iterations, the
plateau shrinks slowly to a point, in this problem it is zero. Similarly, for the first excited

states, the plateau of convergence has the same behavior that it grows up to an optimal
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number of iteration and then shrinks to a point (or points). For a better display of precision

and convergence, the eigenvalues of the ground state are computed within the range
—0.1<y, <+0.1 and for iterations ranging from 1 to 100. It is obvious for AIM that the

accuracy increases by increasing the number of iterations. The results are shown in Table
6 by comparing the ground state obtained via TRA (Table 7) with that obtained using AIM
for different iterations. From the above two Tables, we observe that by choosing a certain
accuracy the termination condition can be solved for any starting value ata certain number
of iterations. For this number of iterations, the eigenvalues are stable against variation in y
within a given range. After that optimal number of iterations, the plateau starts to shrink
to a point which can be considered as the ideal starting value of the space variable to ensure

a good accuracy and convergence of the process. Therefore, we predict that for this
problem, the best choice of ¥, is ¥, = 0. Many published researches used to set the initial

value of space variable to be zero without explanation. In this work, we tried to have a
closer look at the termination condition and its behavior (Eq. (4.3.16) and studied its
plateau of convergence). The termination condition depends on the iteration formula (2.3)
which rely on derivative terms. For higher number of iteration, the termination condition

equation becomes more and more complex and more difficult to solve.

At first look at (4.3.16), it seems that if we insist that the roots of A, ( Vs 8) =0 being
independent of y then one obvious possibility is to set y = 0. Insuch case what is left are
the roots of the energy polynomials a, (6‘) , hence the roots of these polynomials represent

the eigenenergies of the problem. Therefore, the technique of plateau of stability described
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above could be considered as one of the finest methods for choosing the best starting value
of the space variable for the AIM.

Most of our computations in this work were done using the computation software
Mathematica. In Tables 7, the lowest Eigen-energies using both AIM and TRA methods

are reported for comparison purpose.
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Table S: The effect of different initial value y, and number of iterations on the
convergence and accuracy of the eigenvalues. We took the potential parameters as:

V=1V, =025V, =V_=0,andL =1,

Yo

-0.1 0 0.1
Iteratio)

1 1.099120224831569! 1.09898585279422 1.0991167526968348
2 1.095729239380395' 1.095753527922459 1.0957777701723037
3 1.095751533141794« 1.095751480043435 1.095751554739332
4 1.095750956836507 1.095750959070117 1.0957509613421887
5 1.0957509589138081 1.095750958910591 1.09575095891494
6 1.095750958895271' 1.095750958895319 1.09575095889537
7 1.095750958895318 1.095750958895318 1.0957509588953176
8 1.095750958895316" 1.095750958895317 1.095750958895317
9 1.095750958895314 1.095750958895318 1.0957509588953156
10 1.095750958895317. 1.095750958895317 1.095750958895318
15 1.095750958895317! 1.095750958895317 1.0957509588953191
20 1.095750958895305: 1.095750958895317 1.0957509588953052
30 1.095750958895341: 1.095750958895317 1.0957509588954089
50 1.095750958894120. 1.095750958895318 1.0957509588954446
100 1.095750955647572: 1.095750958895317 1.0957510397379888

Table 6: The effect of different initial values y, and number of iterations on the accuracy

of the ground state energy for a different number of iterations with the potential parameter:
V=1V, =025V,=V_=0,and L =1.

&n AIM TRA

0 1.095750958895317 1.095750958895317
1  4.196873325806087 4.196873325806094
2 9.292844177187838 9.29284417718781
3 16.389252331506132 16.38925233150634
4  25.485790081950977  25.48579008195058
5 36.58237913869347 36.58237913866615
6 49.678992506294904  49.67899250636078
7  64.77561899613518 64.77561887661372
8 81.87225251919959 81.8727900682211
9 100.97373751566363  100.9688405503092

Table 7: The lowest levels of the energy spectrum for CASE 1 with the potential
parameters: V, =1V, =V =0,V, =0.25,and L =1 for both methods AIM (40 iterations )
and TRA (matrix size N=20). We took y, =0.
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CASE 2: V,,V,=0and V, #0

We consider now the case of the infinite potential well with sine bottom
V(x)=V,sin(zrx/L) . In the TRA this corresponds to x=v =1/2. Equation (4.3.12) is then
written as follows:

. , 4a’ + Ay—¢&
f (y)——(l_yz) f(y)+—(1_y2) f() (4.3.18)

Clearly, the same procedures for the calculation of the functions &,(y) and S, (») as in the

previous case will be used. Similarly, for this case, the stability of eigenvalues due to

variation in y, has a similar behavior. The results of the AIM are reported in Table 8 with

the TRA results for different parameters of the potential for comparison purpose. Due to
the rapid convergence and stabilization of the process for this case, the results are displayed
for 10 iteration with more than 10 decimals of accuracy. There is an excellent agreement

regarding the accuracy of both methods.

In addition, we calculated the energy spectrum using the AIM in the case of Schrodinger

equation with the potential V' (x) =V, cos(zx/L), 0<x < L, that was treated in [36] by the
TRA. Using the AIM described above, we rewrite the wavefunction that satisfies the

boundary conditions as w(x)=sin(zx/L)f (x) Then, we use the transformation
y= cos(ﬂx/ L), —1<y<+1. The AIM basic equation for this case will be similar to that

of equation (4.3.18) with A, = A, =0. The results shown in Table 9 are for 4, =5. The
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computed eigenvalues &, using the AIM are in excellent agreement with the results

obtained in [31] using the TRA. It should be obvious that the physical properties of the

system with the potential V(x)=V,cos(wx/L) should be identical to that with

V(x)=V,sin(zx/L) since one is obtained from the other by the artificial shift of

configuration space X —> X —%L .

AIM

€, v, ==0.1 5, =0 v, =01 Ly

&y 0.9965804414948887 0.9965804414948881 0.9965804414948877 0.9965804414948881
& 4.001366326993638 4.0013663269936615 4.001366326993682 4.0013663269936615
&, 9.000586656216685 9.000586656216424 9.000586656216043 9.000586656216425
€3 16.00032590879089 16.000325908792934 16.000325908795052 16.000325908792927
&, 25.000207394742418 25.000207394728182 25.000207394715762  25.000207394728175
&5  36.00014358054208 36.00014358054704 36.00014358054918 36.0001435805457
& 49.00010529186438 49.00010529226843 49.000105292787566 49.00010529227191
€7 64.00008070727844 64.00008065049936 64.00008070322694 64.00008052770214
€ 81.00003408297702 81.00006328059685 81.00009189292832 81.00060387125417
€y 100.00613182329307 100.00494124743338 100.0059053176835 100.000000000000

Table 8: The lowest levels of the energy spectrum for CASE 2 with the potential
parameters V, =V, =0,V,=land L =1 for both methods AIM (10 iterations) and TRA

(N=10).
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Table 9: The lowest levels of the energy spectrum for the potential with the parameters
A4,, 4, =0 and 4, =5, for both methods AIM (10 iterations, y, =0) and TRA (N=20).

AIM TRA
€y —0.5955395581 —0.5955395590
€ 4.3453451807 4.3453451697
€ 93549646911 9.3549646942
& 16.2001115697 16.2001100733
&, 25.1266893786 25.1266923657
&5 36.0878499905 36.0875520021
& 49.0634094279 49.0641568654
&, 64.0974723518 64.0490437060
&  80.9412278720 81.0387114885
& 103.6280332706  100.0313345578

Figure 4: The generalized Scarf potential for the parameters V,,V, =LV, =0.25,)V_=0.1,

and L=1.

-04

-0.2
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4.4 Applying Plateau of Convergence (PC) technique to SCH type problems

Our objective in this section is to apply the plateau of convergence technique to different
SCH equations with different potentials. This was done in order to feel its importance for
our conclusions. For the AIM we have improved convergence of the quantization
condition that terminates the iterations asymptotically. This is accomplished by looking for
the range of initial values of the space variable in the terminating condition that produces
stable results (plateau of convergence) for the SCH with the generalized scarf potential.
We have shown that with a given accuracy the plateau of convergence shows up and
broaden into an ideal number of iteration. Furthermore, the plateau of convergence shrinks
with increasing the number of iterations to a single point that, in this problem (4.3) and is
independent of the potential parameters. It is more convenient when applying this
technique to see the behavior of the plateau of convergence for many problems in 1D
(bound state). The following are the calculated eigenvalues for the ground state for
different potentials. These tables show the effect of different initial values and number of

iterations on the convergence and accuracy of the eigenvalues.
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4.4.1 Sine square potential

Vysin® (x/a), —%Sxﬁ%
V(x)= 2, (4.4.1)
o0, |x|>——
2

Where a#0.

In this case, the time-independent Schrodinger equation reads:

d’ .
{—$+Vosm (x/a)—E}l//(x)=0 (4.4.2)

The boundary condition (—%) =y (ﬂ) =0.

However, to obtain the AIM standard form we take a different approach to reach the
suitable form of AIM. We start by rewriting the wave-function that satisfies the boundary

condition as the following
w(x)=cos(x/a) f(x) (4.4.3)

Then the Sch. Eq. is written as a function of f ( x) as follow:

£(x)=2 tan(x/a) f'(x)+%[a2V0 sin® (x/a)—a”E+1]f () (4.4.4)

a

A further change of variable we use y = sin(x/ a) where ye [—1, +1]. Thus, Sch. Eq.

reads
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()= )f'(y){—( . z)w}f(y) (343

Where we set that @ =1+ u—a’E, u=a’V, [38].

The Characteristics functions &, ( y) and S, ( y) are defined by the following:

ko(y)=( > S, (1) = —2—~+u (4.4.6)
Similarly, like what we did for the previous problems, the iteration formula £, ( y) and
S, ( y) will be computed using (2.3) Then, the termination condition (2.10)

A, (.E)=k,(».E)S,,(».E)—k,,(»,E)S,(y,E)=0 ,  vyields the following
A,=1-a’E+a’V,y’

A =15aE+a'E* —a’V, (1+24°E) y* +a'V,’ y*

A, =3a’V, (a“E2 —1—26121/0)y2 -3a'vy (2+c12E)y4 +a'V’y® +36+8a’V,
~(2a’V,E+49)d’E+14d*E* —a*F’

And so on. It is obvious that the termination yields expression that depends on the space
variable y and the energy E. To obtain the eigenvalues we should find an appropriate initial

value of y and this can be done by studying the plateau of convergence in the given range

[-1,+1].
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Table 10: The effect of different initial value y, and number of iterations on the

convergence and accuracy of the eigenvalues. We took the potential parameters as:

V,=0.1,anda=1.

Figure 5 Plot of the sine square potential.
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4.4.2 Deformed well potential

1
V(x)=Acos(x)+B*sin’ (x)+7s/i517;-(|_x))’ 0<x<rm (4.4.7)
A, B, and y are the potential parameters and y [0,00).
Schrodinger equation reads
2 1
—%Jmtcos(x)w2 sinz(x)+7s/i(n7;—_(';c))—E w(x)=0 (4.4.8)

To obtain the AIM form we rewrite the wavefunction by taking care the boundary

condition as:
w(x)=sin"" (x)e” " (x), (4.4.9)

And using the transformation y = cos(x). —1<y <+1 Then, Sch. Eq. written as the

following:

f"(y)—2(10—yz—3jf'(y)—5y_f’f(y)=0 (4.4.10)
-y 1=y

ko(y):z(lo'y2 _Bj : So(y)=éiy__f’
- -y

Where we set a)=E—(7/+1)2, E=A+20B,and 20 =2y +3 [39].

The termination condition (2.10)
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A, (y,E) =k, (y,E)S”_1 (y,E)—kn_1 (y,E)Sn (y,E) =0 ,  yields the following
Ay =142y +y* —E+Ey

A, :l+(2+47/+27/2)G+ZB§+(4+6;/‘+47/2+7/3)7/—(2+4;/+27/2+20)E+E2
+(4B+2& +4yE+2y°E +8By —2EE—ABE +4By* )y + £(2B+ &)y’

12B+72By* +48By” +48By —24BE +12By* + 36 + 24B*E +12)E +18y°&
Az(y,E)=+ +12°E+3y*E +24Bo + 48Byo + 24By o + 60 + 1260 + 6y Ec + 6BE? |y
—6(§+27§+4By2+837/+4Ba+§a+72§)E+3(§+4B)E2
12B* +24B°y +12B°y* +9BE +18ByE +9By*E
3 L . Y +E(8B+6BE+E7) )
+E 42057+ E —(6B§+12B +< )E
100 +32y0 +40y°c +24y°c +6y'c +8BEc +80° +16y0” + 8y 0 +3+8B° +14y
+16B*y + 27y +8B%y* + 287 +17y* + 69 + y° + 6BE +12ByE + 6By £ — 2£7
—(7+8B2+207/+22y2+80'2+1273+3;/4+24y0'+12;/20'+6B§+160)E

+(5+6a+67/+3;/2)E2 ~-E’
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Table 11 The effects of choosing different starting values of y =y, on the desired accuracy of
E; for different iterations. We took the potential parameters as: =4,y =3,B=1,, and

o=4.5.
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Figure 6 Plot of the deformed well potential
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4.5 REMARKS ABOUT AIM

In this work, we have made some important remarks that should be taken into consideration
especially for the main part of this work which is the implementation of the Asymptotic
Iteration Method. The following is a summary of the most important remarks that should

be stressed when applying the Asymptotic Iteration Method.

There are two main problems we can face when applying AIM

L The conversion of Schrodinger equation into the standard form of AIM

(%) =k (%) ' (x)+ 5, (x) y(x)
To obtain the standard form of AIM, much attention should be paid to the convergence of

the solution.

e Check the given boundary condition of the problem, this will leads to a proper

choice of the wave-function.

e Rewrite the wave-function so that it satisfies the given boundary condition.
e Keep track of the singular behavior of the wave operator.
e When obtaining AIM equation form use a convergence test which can be done as

follows:

(n+2)
Test the convergence of the ratio J = diln( y(””)), or test the convergence
% X
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... S 8 . . :
of the condition /1” = ﬁL‘l , that gives the asymptotic aspect of the method and this

n n—1

condition leads to — =

Taking into consideration the previous steps before you start your calculation, will help to
obtain the appropriate AIM form that has a rapid convergence and the desired solution

without losing much time in the iterations.

IL. The appropriate choice of the initial point of the space variable.

The best choice of the initial value plays a critical role that leads to a good convergence of
the solution and saves your time in the iteration process. The following are some methods

used to select the initial values.

e The maximum value of the wave-function and, some researcher suggest that

d
d—ko (x ) =0 can be used for this purpose, but it does not work for all problems.
X

e The minimum value of the potential that can be found using d_ V(x ) =0, or from
X

the potential plot .

e It can also be found by setting S, (x)=0.

e The systematic way is to find the plateau of convergence by plotting the eigenvalues
versus the space variable which gives a certain space variable range over which the

eigenvalues are stable against the variation in the space variable.

A remarkable point here should be noticed, that each problem has its properties so that the
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first three ways sometimes do not work for some problems. Therefore the plateau of
convergence is considered as one of the finest methods to be used for choosing the starting

value.

In addition, from most solution adopted to the AIM, it is found that for problems that have
k, (x) ~1/x,1/ x* do not have a good convergence. Thus, to overcome this issue try to
avoid this term by using another transformation. For convergence propose also, a term like
1/ x° should be eliminated in the Schrodinger equation by using an appropriate

transformation. Usually, problems that have, &, (x) ~ x , will not present a difficulty for
the choice of the initial value of the variable space. It is also observed that when £, (x)

and S, (x) do not have the same singularities (or order of the singularities) this play a

destructive role on the convergence as well as the stabilization of the process.

Finally, we must also underline that there are some disadvantages of AIM which we hope

to tackle in the future. Among the first to note is that an unappealing feature of the relation

formula k,(x) and S, (x) in Eqgs. (2.3). It is obvious that &, (x) and S, (x) depend on a

derivative formula which means that at each iteration one must take the derivative of the
k and S terms of the previous iteration. These cause problems for the computation and
results in a slow convergence of the AIM. Some researchers worked on these issues by
developing an improved version of the AIM which bypasses the need to take derivatives at
each step [19]. Overcoming these types of problems will greatly improve both the accuracy

and speed of the method.
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CHAPTER S

CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

The Asymptotic Iteration and Tridiagonal Representation techniques were used to solve
1D Schrédinger equation and find the eigen-energies of some analytically and
approximately solvable problem for the purpose of making a comparative study. In this
work, we used some tested potentials such as the Harmonic oscillator and the tangent
square potential for which both methods led to closed form ( exact solution) of the energy
spectrum. We also considered the generalized scarf potential which is non-exactly solvable
in the AIM. This work brings up the importance of the asymptotic wave function and
coordinates transformation used in introducing AIM. The aim of our approach is to
improve the convergence and to eliminate the numerical instabilities that might be
experienced in direct usage of the AIM. It was noticed that the existence of regular
singularities will slow the convergence of the AIM. A remarkable observation, however,
is that the use of plateau of stability in the implementation of the AIM plays an important
role in the convergence, precision as well as the stability of the numerical algorithm.
However, for a given accuracy the plateau widens rapidly with increased iterations up to
an optimum number of iterations. After which the plateau shrinks slowly with increasing
the number of iterations and converges to a single point. In the problem of generalized

scarf potential, it seem to be independent of the potential parameters. In this work, we tried
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to make a reasonable explanation to answer the question of why the zero initial value seems
to be the convergence point of most published research. This was done by studying

carefully the termination condition and its general structure and the plateau of convergence.

Generally, we have succeeded in making a conclusive comparative study between AIM
and TRA approaches. For the AIM, we have investigated the most important factors that
contribute to the improvement and rapid convergence of the quantization condition. Aside
from analytically solvable potentials our investigations raise a real concern regarding the
wide usage of the AIM for numerical computations of bound states. We also think that our
assertion is well substantiated by our results but also due to the fact that AIM is really based
on higher and higher order derivatives and hence it well known that successive numerical
derivatives are not very reliable since the numerical accuracy reduces significantly with
higher order derivatives which are the building blocks of the termination condition. We
also expect that extensions of the AIM to deal with resonances, states with finite lifetime,

will not converge rapidly for the above mentioned reasons.

However, we might want to underline that AIM is a viable technique to obtain exact
solutions for second order differential equations, like Schrodinger equation. By using the
technique we obtain the eigenvalues by transforming the second-order differential equation
into a form of the asymptotic iteration method results in exact analytical solutions if it
exists and provides closed forms for the energy eigenvalues. The energy eigenvalues are
obtained using an iterative approach. As it is presented, AIM puts no constraint on the
potential parameter values involved and it is easy to implement. This method also yields

the corresponding eigen-functions which can be found via equations (2.9) and (2.10).
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For the Tridiagonal Representation Approach, the wave-function is expanded in suitable
discrete basis elements which must be compatible with a domain of the Hamiltonian and
satisfying the boundary condition. The problems translated into three terms recursion
relation for the expansion coefficients of the wave-function that solved either analytically

or numerically to find the energy spectrum.

However, it is important to note that the implementation of the AIM is very sensitive to the
evaluation of higher order derivatives which affect both the accuracy and stability of the
approach. To sum up, the AIM and TRA are efficient and steady methods for obtaining the
energy spectrum to many interesting physical problem. However, the TRA is much more
robust due to the drawback of AIM caused by its strong dependence on higher order

derivatives which are the main cause of numerical instabilities.
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5.2 FUTURE WORK

The results of these investigations are sufficiently accurate for practical purposes. In this
work we have succeeded in treating the 1D Schrodinger equation in the Asymptotic
Iteration Method (AIM) and Tridiagonal Representation Approach (TRA). Asexplained
in the literature the TRA can produce a wider class of solvable potentials. In this project,
we have considered the general approach and then considered some cases in which were
rich and led to solvable potentials. However, it is worth mentioning that we have restricted
our work to Jacobi and Laguerre basis but one might try another square-integrable basis. It
should be noticed here for future work that the problem is still open and other solvable
potentials can be found using TRA, especially in higher dimensions. Moreover, we are
interested in applying these methods to some real physical applications such as in graphene.

It is worth also extending these methods to examine interacting systems.
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Appendices

Appendix A: Classical polynomials

A.1 The Jacobi polynomials

The Jacobi polynomials P“"’(y) are a special class of classical orthogonal polynomials
defined on y e[—1,+1] and >—1,v >—1. These polynomials can be calculated using the

Rodrigues’ formula, given below[32, 34, 40, 41]:

P () = E 12y 1y L (=y) (40 (1) (A1)

2"n! dy

The Jacobi polynomials satisfy the following properties:

) (y)

dP o
(l_yz)—Ziyz —I:(,u+v+2)y+,u—1/] ndy +n(n+/u+v+l)F:( )(y):O

(A.2)

dp(/ ) _ B .
(1-y*)——= (y):_n(”—z Yo H }Pf )(y)+2—(n+y)(n+v)1’f_l (v) (A3)
n+p+v 2n+u+v

U+V  v—u
(li_yjp(”( ):2n(n+,u+v+l)+(,u+v)( 5 i—z +1)PW(
2 )V (2n+p+v)(2n+p+v+2)

(n+u)(n+v) P(,,,.q( ) (n+1)(n+u+v+1) PW( )
C(2nt+pt+v)(2n+prv+l) C(2n+u+v+)(2ntptv+2) 4

y)

(A.4)
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“ v ) ) pLa C(n+p+)T(n+v+1)

J(l_y)#(ler)P" (") F, (y)dyz(2n+,u+v+1)F(n+1)1“(n+y+v+l)5”’”

(A.5)
2 2
yPn(//.v)( )= 1% _ﬂ P(;z.v)( )+ 2(n+ﬂ)(n+‘/) Pn(i:l,v) (y)
(2n+p+v)(2n+u+v+2) (2n+p+v)(2n+u+v+1)
2(n+1)(n+u+v+1 u
(n+1)(n+p+v+1) P (v) (A.6)
(2n+p+v+1)(2n+u+v+2)
2 2
(n[y|m)= -~ S
Cn+u+v)2n+pu+v+2) 7
N 2 nn+p)(n+v)(n+pu+v) . (A7)
2n+u+v\QCn+u+v-)C2n+pu+v+1) =~
N 2 (n+D)(n+pu+DH(n+v+H(n+pu+v+1)
2n+ p+v+2 Qn+u+v+D)Q2n+ pu+v+3) ol

A.2 The Laguerre polynomials
The orthogonal Laguerre polynomials L (x) are defined on y €[0,00[ and v>—1. These

polynomials can be calculated using the Rodrigues’ formula, given below [32, 34, 40, 41]:

L (y)zy—_v(i—I] yr (A.8)

These polynomials satisfy the following properties:

yL =Q2n+v+D)L —(n+v)L_ —(n+DL.,, (A.9)
v r 1

L) = Ty 1 R (v +157) (A.10)
d—2+(v+1— )i+n L(»)=0 (A.11)

ydy2 y dy WY .
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y iL; =nl —(n+v)L
dy
(A.12)

T v omvpvgongy T(ntv+l
[y oL, oy = s,,
0

(m|y|n)=Qn+v+1)s,, —[n(n+v)3,,  —Jn+D(n+v+1)6,

L (x) = M(—n,l,x)

Where

ax a(a+1) x2

1F1(a;b;x)=M(a,b,x):1+__+

b1l b(b+1) 2!

In terms of the Pochhammer symbols

0 (a)n xﬂ
M(a,b,x):z_(; z,

= (b),

A.3 Hermite functions:
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(A.14)
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Appendix B: Calculation details

B.1 The general form of wave operator matrix for Jacobi basis

The first derivatives of (3.1.1) is

g, o e v 4B (B a ) e
= (1=) (1+y){ o +(1+y l_yan (y)} (B.1)

Using (A.3) and substitute in (B.1)

d¢n=[ﬂ (e G ﬂ«a(y)mz i) Ay (o)

dy l+y_1—y (l—yz) 2n+pu+v —yz) 2n+u+v A,
(B.2)
The second derivative of (B.1):
T TN U RS NS
dy* dy* \(1+y) (1=y))dy  (1-y)  (1+y)
2af ()

-— P B.3
. y 1t 1
Using (A.2), and (l—yz) =5 ((l—y) (1+y)]’ then
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i, VTRV (u+1-2a) (v+1=-2B8)| .\ d
=4,(1=y)" (1+y) ( yz){ (1-») (1+y) }(1 Y )dy
(1+)

(1-»)

—n(n+pu+v+l)+a(a-1)

+ﬂ(ﬁ—1)%—2aﬂ}g‘“"’)(y) (B.4)

Using (A.3)

(1—y2)d2¢”={—n(n+,u+v+1)—2aﬂ—n(y+ V- u )((ﬂﬂ—w)_(vﬂ—zﬂ)]

dy’ 2n+pu+v (l—y) (1+y)
va(a- )W pp ) UmD ) (ra)ney),
( 1)( -y) 2% 1)(l+y)}¢" (v)+2 2n+ p+v
(u+1-2a) (v+1-25)) 4,
[ (1-») (1+) ]An_1¢”‘l(y) (B2

Using these derivatives (B.2) and (B.5) the action of the wave operator (3.1.4) on the basis

element will be as follows:

(1-7)

——J14,)

()
B V- (u+1-2a) (v+1-2p) (1+)
_{—n(n+,u+v+1)—2aﬁ—n(y+2n+#ﬂ+vj( ”(l_y) _ ) }+a(a—1)(1_;)
waian N o B e (o vep Y| UO(-Y)
ﬂ(ﬁ 1)(1+y) (1 y)[1+y -y (l—yz)(y 2n+ﬂ+Vj](y’)2 (y,)z ]¢n(y)
. (n+u)(n+v)| »" N (y+1—20¢)_(v+1—2ﬂ) A
" ey {(y’)2 ( (1-») (1+y) H/&_l(é’“‘l(y) -
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Now, for simple algebra, much attention should be paid to y', that must be compatible

with the weight functionw(y) of the basis, where ¢ (y)=A4,w(y)F (y)and the

8)= 4,4, [ w(n)2e () F (0) B (1) 2.

integration measure is given as(g, |F ()
y

Since the weight function of the Jacobi polynomialsw(y)=(1-y)"(1+ y)ﬁ , then,

compatibility with the solution of this function, we require thaty'=A(1-y)" (1+y)’,

which puts a big constant and limitation on the transformations.
Thus, generally, wherey'=2(1-y)"(1+ y)b , then we can use that

b
yr=y" (— —Lj . Then, the J-matrix can be written as

I+y 1-y
-J ¢n>:
() _ PSP _( v—u )(y+1—a—2a)
(l—yz) n(n+u+v+1)-2apf—ab—Pfa—n y+2n+,u+v =)

_(V+1—b—2ﬁ)J+a(a+a—1)(1+y)+ﬂ(ﬁ+b—1)(1_y)_U(y)(l_y2)]¢n (»)

(1+y) (l—y) (1+y) (y,)z
L) (nev)((url-a=2a) (v+1-b-2p)) 4,
2 2n+pu+v [ (1-y) (1+) J An_l(é,_l(y)} (B.7)

X +1
. ) . d
Where the integration measureis | ..... dx = _[ 4

Then, <¢m

8)=1[4,(»¥, (y)% = 4,4, [(1=p)" (1+ )P (y) B ()2
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The J-Matrix element reads as J ¢

D= [0 00000

1

P TS

—n(n+u+v+l)—2af—-ab-Pa-n| y+ (url-a=2a) (v+1-b-25)

{[ ( “ l)-2ap-ab=p (y 2n+,u+vJ( (l—y) (1+y) ]
(1+y) (1-y) U®) 1-2a 1-26

+a(a+a—1)(1_;)+ﬂ([3+b—1)(1+;) ,122 (1-y) " (1+y) }gﬁn(y)

N (n+u)(n+v) (u+1—a—2a)_(v+1—b—2ﬂ) A
2 2n+ u+v ( (1_y) (1+y) JAn_l(én_l(y)}dy (B.8)

In terms of P*"(y) and P%"(y) where ¢ (y)=4,(1-y)" (1+y) P“"(y),

n—1

¢ (y)=4,_(1-y) (1+ y) P“Y (y), then the J-Matrix has the following general form

n-1

L =A4 AJ. (1- y)2a+a Y1+ )ZW)IP”’”(y){[n(n+,u+v+1)+2aﬁ+ab+ﬂa

+n| y+

2n+,u+vJ (1+y) (1-»)

(ﬂ+b 1)( -y U(y)( )1 2a(1+y)1_2b:|Pn”’v(y)—2(n+'u)(n+v)><

[ﬂ+1 a-2a v+l-b- 2,8} a(a+a_1)(1+y)
)
(1+ ) 2n+ p+v

Utl—a-2a v+1-b-2p
S o Gl o

B.2 The general form of the wave operator matrix for Laguerre basis

The first derivatives of (3.1.3)
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d¢ . {d a } ,
—L=A4ye I —+—=p:L (v (B.10)
dy dy y )

Using (A.12):

d A
y e =[ne =) ()=o), () B.11)

n—1

For the second derivative of (B.10):

A {d—2+2(g—ﬁJi+a(az_l)—zaﬂ+ﬂ2}L:(y) (B.12)
y dy y y

Using (A.11) and substitute in (B.12)

N =Anyae_ﬁy{(y—v—l+2a_2'8Ji_ﬁ+a(a—l)_2aﬂ+ﬂz}q o)

dy’* y d y ) y

Using (A.12), then

y%={ﬂzy—n—2aﬁ+a(a_l)+n(1—2ﬁ+ﬂﬂ¢n (v)
dy y Y

¢, () (B.13)

2a0-v-1) 4,
y A

n—1

—(n+v)(l—2ﬂ+

Using these derivatives (B.11) and (B.13) the action of the wave operator (3.1.4) on the

basis element will be as follows:
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y

I DU S T A oL 000 PR U N PPl o
[ ﬂy](y,)z o) ]qfn(y) (ntv)— !(y!)z (1 2+ == ﬂqjﬂ(y)}

n—1

(B.14)

A similar explanation about the potential form of ' that are compatible with the Laguerre

weight function that should be given as y'=Ay“e”, then we can use that

a . .
y=yp" (— +bJ , thus the J-matrix can be written as:
y

~J,, = [ Ay, (v)x
0

2a—v+a—1)

{[n—ba+aﬂ+2aﬂ—ﬁ(ﬂ—b)y—w—n(1+b—2ﬁ’+
y y

1-2a 5=2by A 2a0—-v+a-1
+U(y)y7}¢n(y)+(n+v)A” (1+b—2ﬂ+f)¢n_1(y)}dy (B.15)
n—1
In terms of L(y) ad L_(y) , where ¢ ()=4y%e¢”L(),

6_.(»)=4_ye”L _(y),then the J-Matrix has the following general form
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0

Joun = /1AmAnIyz’””_le_(zﬂ_h)yL; (y)[n —ba+af+20f3 —ﬂ(ﬂ —b)y -

0

a(a+a-1)

_ _ 1-2a _—2by
—n(l+b—2ﬂ+M]+U(y)y lf }L:(y)dy+AmAn(n+v)x
[yremeep ( y)(l +b-2p8 +@J% (v)dy (B.16)
0
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