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The objective of this work is to make a comparative study between the numerical and 

analytical results generated by the Asymptotic Iteration Method (AIM) and the Tridiagonal 

Representation Approach (TRA).  In the AIM the calculation of the energy eigenvalues for 

a given potential is performed using the quantization condition that terminates the iterations 

asymptotically. While in the TRA the energy eigenvalues will be obtained using a suitable 

infinite L2 basis which transforms the Schrödinger into a matrix eigenvalue problem. 

Usually, Jacobi and Laguerre basis are used, where the basis parameters are selected to 

ensure a tridiagonal and symmetric matrix representation of the Hamiltonian matrix. To 

test the accuracy and effectiveness of both methods we consider situations where the 

potential is either analytically or approximately solvable. In this case, one can give a more 

accurate assessment of the advantages and disadvantages of each method and, thus, can 

give a fair judgment on the superiority of one method over the other. Usually, in the AIM, 

the quantization condition that gives the energy spectrum depends also on the chosen 

configuration space point, say . In this work, we observed that for a desired accuracy 

there exists an interval in configuration space (a plateau of convergence/stability) where  
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the calculated energy spectrum is independent of . This plateau of convergence grows up 

rapidly to an optimal iteration number and then shrinks slowly to a point. This constitutes 

one of our main contributions to the AIM in this Thesis. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Almost all known methods of solution of the wave equation in quantum mechanics do very 

well (to a varying degree of accuracy) in problems with exactly solvable potentials. 

However, the real test of these methods is when the potential is not exactly solvable. There 

exist various methods to obtain approximate solutions. For instance, time-independent 

perturbation theory [1], WKB approximation [2], finite-element method [3, 4], and 

numerical method [5]. In atomic and molecular physics, numerical solution of the 

Schrödinger equation frequently employs self-consistent field approximation whereas in 

nuclear physics the Born-Oppenheimer approximation is used. Moreover, from the early 

days of quantum mechanics, numerical methods were already developed [6] in order to 

overcome the limitations of the number of exactly solvable problems. Therefore, in cases 

where analytical solutions are difficult to find or not possible, numerical methods are 

necessary [7]. In the past and in recent years, many developments in the numerical solution 

of the Schrödinger equation have appeared. Some of these methods include Matrix 

Diagonalization Method, Nikiforov-Uvarov method, Spectral Method, Discrete Variable 

Method and Runge-Kutta methods [8, 9]. In our work, we will compare the numerical 

advantages of two methods to obtain the energy eigenvalues: the Asymptotic Iteration 

Method (AIM) and Tridiagonal Representation Approach (TRA). 
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The AIM has been developed  [10] to solve second order differential equations. For most 

Schrödinger equations with exactly solvable potentials, the AIM was found to reproduce 

very well the exact energy spectrum and wave functions [11-14]. Additionally, it gave very 

good results in the case of non-exactly solvable potentials [15-18]. Moreover, for 

analytically solvable potentials, the AIM formulation resulted in energy eigenvalues 

identical to those derived by other analytical means [19]. On the other hand, the TRA [20] 

has been successfully used to compute the wavefunction and energy eigenvalues for bound 

states and resonances associated with different short-range potentials. In particular, the 

approach was used for the Morse potential [21], the inverse Morse potential [22], the tamed 

Yukawa potential [23], the generalized Yukawa potential [24], the Hulthen potential [25], 

the Hellmann potential [26] and exponential-cosine-screened Coulomb potential [27]. 

However, there exist a class of non-conventional potentials with discrete spectra and in our 

work, we seek the solutions of such non conventional potentials in the 1D Schrödinger 

equation. We plan to apply both AIM and TRA to this type of problems. 

It is worthwhile to begin this work by a brief introducing of the famous equation in the 

physics that appears in most of the research work in the past and present.  In quantum 

mechanics, the wave equation, Schrödinger equation  (SCH.), is a partial differential 

equation which describes how a quantum system state (quantum state) changes with time 

was developed by the Austrian physicist Erwin Schrödinger, this equation was formulated 

in autumn 1925 and published in 1926 [28].  In quantum mechanics, the analog of  

Newton's law in classical mechanics, (F = ma), is the Schrödinger equation for a quantum 

system (molecules, atoms, and subatomic particles whether bound, free, or localized).  
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The wave function is also called the "state function" it describes the time-evolution of the 

system [1]. It has two forms; one is a time-dependent SCH in which time explicitly appears 

describing how the wave function of a particle will evolve in time [29]. The other is the 

time-independent SCH describing the allowed energies for the particle.  

Time-dependent Schrödinger equation is defined by 

                        
,

,
r t

i r t
t

                                                                       (1.1) 

where  is the Planck constant divided by 2 ,   is the imaginary unit,   is the wave 

function of the quantum system, and t   are the position vector and time respectively, and 

 is the Hamiltonian operator (the total energy of the system). 

Time-independent  Schrödinger equation is 

                        E                                                                                           (1.2) 

In the case of  a particle in one dimension, the Hamiltonian is: 

                   

2

2

P
V x

m
   ,   

d
P i

dx
                                                        (1.3) 

Then, the general Schrödinger equation is given by: 

                  
2 2

2
( ) ( ) ( ) ( )

2

d
x V x x E x

m dx
,                                                 (1.4) 

In 1D the SCH Eq. is an ordinary differential equation, rather than a partial differential 

equation. However, the stationary solutions of the SCH Eq. take  the form: 

1                  ( , ) ( ) iEtx t x e ,                                                                           (1.5) 

In this work, we concentrate on the one-dimensional time-independent linear Schrodinger  
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equation (in the atomic units )  that reads 

                 
2

2
2 ( ) 2 ( ) 0,

d
V x E x

dx
                                                            (1.6) 

Whereis the potential function (in higher dimensions with is the energy and 

central symmetry, this is an effective potential made up of the sum of the orbital term, 

which is proportional to 2x , and the physical potential). 

Generally, for problems with bound states we would like to obtain solutions of the time-

independent wave equation , which represents an eigenvalue problem, 

where n  are the eigen-functions, H is the Hamiltonian and nE  are the corresponding 

eigen-energies [30]. In the AIM, we start by converting the Schrödinger equation into a 

standard form suitable for the method  [10] and then use the quantization condition to 

terminate the iterations asymptotically and obtain the energy spectrum and eigenstates.  On 

the other hand, in the TRA one expands the wavefunction in the space spanned by a suitable 

square integrable discrete basis set. The basis set is chosen to produce a tridiagonal matrix 

representation  [31-34] for the wave operator. We start briefly by introducing both methods 

and then use them to calculate the energy spectra for some potentials in the two cases in 

situations where we have exactly and not exactly solvable potentials. 
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CHAPTER 2 

ASYMPTOTIC ITERATION METHOD 

2.1 Theoretical formulation 

The AIM was established to obtain analytic solutions of second order ordinary differential 

equations  [10] and was applied to a wide range of problems in quantum mechanics. The 

asymptotic iteration method was designed for solving second-order homogeneous linear 

differential equation considers the following standard form: 

                        0 0'' 'y x k x y x S x y x                                                      (2.1) 

Where 0k x  and 0S x   are C  functions (infinitely differentiable in a domain  of 

the complex plane) and not necessarily bounded but such that 0 0k x . In practice, 

 and 0S x  have sufficiently many continuous derivatives. 

In most applications, the functions 0 ( )k x  and 0 ( )S x  are polynomials or rational functions.  

The general solution of Eq. (2.1) can be obtained using the symmetric structure of the right-

hand side of Eq. (2.1). We differentiate Eq. (2.1) and iterate up to ( 1)thn  and ( 2)thn

derivatives. Thus, due to the linearity of the right side of (2.1) in ( )y x  and its first order 

derivative, we can easily obtain 

1
1 1'n

n ny x k y x S x y x ,       2 'n
n ny x k y x S x y x                  (2.2) 
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where nk x  and nS x  are defined recursively as follows 

1 1 0 1'n n n nk x k x S x k x k x ,           (2.3) 

Once the functions 0 ( )k x  and 0 ( )S x  are determined, the sequences nk x  and nS x  can 

be computed using (2.3). However, it should be noted that one can start the iteration from 

 with the initial condition 1 1k  and 1 0S . 

The ratio of ( 1)thn  and ( 2)thn  derivatives of ( )y x  gives 

                        
2

1
1

1 1 1

'
ln

'

n
n n nn

n
n n n

k y S k yy d
y x

y dx k y S k y
                               (2.4) 

Therefore, as per the asymptotic iteration technique and for adequately large n, we impose 

the termination condition: 

                        ,                                                  (2.5) 

Asymptotically, the terminating function  is independent of n. Equation (2.4) reduce 

to: 

                    1

1

ln nn

n

k xd
y x

dx k x
                                                                  (2.6) 

Using Eq. (2.3) and substituting in Eq. (2.6) which yields: 

1
1 1 1 0

1

( ) exp expnn
n

nx x

k x
y x C dx C k x x k x d x

k x
                     (2.7) 



7 
 

Where  is the integral constant. Substituting Eq. (2.7) into Eq. (2.2) yields the general 

solution of the 2nd order differential equation Eq. (2.1): 

,

, , ,, ,, ,, ,
2 1 0( ) exp exp ( ) 2 ( )n n

x x x

y x x dx C C k x x dx dx                  (2.8) 

It should be noticed that although the general solution is given by Eq. (2.8), the first part 

of Eq. (2.8) is observed to give polynomial solutions which are convergent and physical, 

while, the second part gives non-physical solutions that are divergent. Therefore, 1 0C  

in Eq. (2.8) and the wave functions are determined by the following 

,

, , ,
2 2 ,

( ) exp exp
n

n

x x n

S x
y x C x dx C dx

k x
                                            (2.9) 

The Energy spectrum (eigenvalues nE ) of the differential equation Eq. (1.6) such as 

Schrodinger equation are then obtained from the roots of the termination condition 

,          1,2,3,...n            (2.10) 

Where n is the number of iterations and this is called the quantization equation. 

Numerically, the eigenvalues of the thn  energy levels are obtained by the requirement that 

 becomes vanishingly small for as large number of iterations as possible to 

achieve the desired accuracy. 
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2.2.     Asymptotic Iteration Equation 

In the application of this method to eigenvalue problems of Schrodinger-type, such as the 

time-independent one dimensional Schrodinger equation 

                        
2

'' ( ) 0
2

x V x E x
m

 

it is very clear that the direct application of the AIM is not possible. Thus, this equation 

(1.6) is not in the standard AIM form (2.1) and hence we need to make a transformation to 

bring it to (2.1). That is we need to introduce a first order derivative into the Schrodinger 

equation. Thus, the first step when applying AIM is the conversion of the eigenvalue 

problem to a standard form suitable to use in AIM. 

2.2.1    Wave-Function Transformation  

The general strategy is to rewrite the wave-function as ( ) ( ) ( )x g x f x   together with a 

possible change of coordinate in order to transform Eq. (1.6) to the form (2.1). Thus, we 

select ( )g x  so that the Schrödinger equation  will be written as a function of ( )f x  as 

follows: 

                                                              (2.11) 

Where          0

'
( ) 2

g
k x

g
    ,      0

''
( ) 2 2

g
S x V E

g
                                     (2.12)            

Where the prime denotes the derivative with respect to x, and equation (2.11) is now in the 

convenient form of the Asymptotic iteration equation. Usually, ( )g x  is chosen so as to the 

factorize singularities in Eq. (2.11) or take care of the boundary condition requirements 

and/or the asymptotic behavior of the wavefunction. 
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2.2.2    Coordinate  Transformation  

Another technique to transform Eq. (1.6) into the AIM equation is to use a coordinate 

transformation ( )x y x , which changes Eq. (1.6) into 

                         
2

2
2

2 ( ) 2 ( ) 0
d d

y y V y E y
dy dy

, 

This again gives an AIM form that reads 

                         0 0''( ) ( ) '( ) ( ) ( )y k y y S y y  

where the prime stands for the derivative with respect to y and 

2
0 0( ) ( )k y y y A y  

0 0 02

2
( ) ( ) ( ) ( )S y V y E y E y

y
 

The functions 0 ( )y , 0 ( )y  and 0 ( )A y  are defined for a given potential function and 

coordinate transformation. 

2.3     Termination Condition Problem 

In general, the AIM sequences nk x  and nS x , 0,1,2,.......n  depends not only on x but 

also on the (unknown) energy E. Thus, the energy eigenvalue nE  that solves (2.10) depends 

generally on x. However, for analytically solvable potentials, the termination condition 

(2.10) gives an expression that depends just on (independent of x). In such situations, the 

energy eigenvalues are simply the zeros of 0, 1,2,.....n E n . Thus, the condition 
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0n E  gives the energy spectrum of the exact solutions. On the other hand for 

problems that are not exactly solvable the termination condition (2.10) produces for each 

iteration an expression that depends on both and . Nevertheless, physically the 

eigenvalues should not depend on the space variable. In such case, to find the eigenvalues 

by solving the termination condition equation we are usually faced with problems related 

to the convergence and sometimes instability of the numerical computation. Thus extra 

measures should be taken into consideration to overcome such problems and to improve 

the convergence.  

2.3.1   Asymptotic Behavior of the Wave-Function 

One of the methods that can help for stabilizing the process and improve the convergence 

is to rewrite the wave-function as ( ) ( ) ( )x g x f x  and  is chosen to reflect the 

asymptotic form of the wavefunction and/or its behavior near the singularities of the 

Schrödinger wave operator. Thus, for the eigenvalue problem with ,x x x  one should 

study the asymptotic behavior when x x and x x  to obtain the suitable wave-

function that yields the appropriate AIM standard form. 

2.3.2    Boundary Condition 

Much attention should be paid to the boundary condition of the eigenvalue problem when 

applying the AIM. In this case, the function  is chosen so as to include the effect of 

the boundary condition.  Thus, the boundary condition is enforced into the wave-function 

in order to guarantee that the wavefunction vanishes at the endpoints. Thus, for 

,x x x  the wave-function can be rewritten as ( ) ( ) ( )x g x f x  where 
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( ) ( ) 0x x .  This transforms Eq. (1.6) into an equation for  Eq. (2.11) where 

the characteristics functions 0 ( )k x   and 0 ( )S x  are  given by: 

                        0

'
( ) 2

g
k x

g
    ,      0

''
( ) 2 2

g
S x V E

g
.                                     (2.12) 

where the prime stands for the derivative with respect to x. 

2.3.3      Plateau of Convergence  

One of the most important procedures that strongly assist the stabilization of the process 

and improve the convergence is the appropriate choice of the initial value of the space 

variable.  Traditionally, researchers who use the AIM choose  as either the position of 

the minimum value of the potential under consideration or as the location of the maximum 

of the ground state wavefunction. Another option was used is by setting  In this 

work, we present a more general and systematic method to choose a suitable value for  

to be within the plateau of stability, defined to be the range of  values where the 

calculated energy eigenvalue is stable against variations in . For this purpose, we solve 

the quantization equation Eq. (2.10) for certain value of x and then compute the eigenvalues 

  where  refers to the number of iterations and m  refers to the order of the energy 

eigenvalues. This can be done by calculating the eigenvalues (
0 1 2
, , ,....n n nE E E ) with different 

values of x  in the given range,  and then we may plot them versus x  to obtain 

the plateau of convergence for each eigenvalue. 

As an example, the ground state energy  is calculated for different values of x then we  
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plot this eigenvalue versus x and observe that within a given range of x the plateau 

of stability envalue does not change with x (within the chosen 

accuracy of calculation). Therefore, our mechanism that selects a natural or ideal point 

0x x  that gives stable and convergent results independent of this point for as large range 

of values of  as possible.  In principle, the solution should not depend on the choice of 

 which means that the computation of the roots of 0; 0n x E  should be free of the 

choice of . We refer to this range of values of  
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Figure 1 Flow chart for applying AIM 
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CHAPTER 3 

TRIDIAGONAL REPRESENTATION APPROACH 

is the H where  ,H E equation,solving the wave  This technique aims at

Hamiltonian and E is the energy eigenvalue. The energy eigenvalue is either discrete (for 

bound states) or continuous (for scattering states). The eigenvalue equation can be solved 

algebraically without solving the differential equation. In this approach, the wave-function 

we start by  . Therefore,
0m n

xbasis set  integrable-squareis written in terms of 

expanding the wave function in a complete basis:                                   

.1)(3                                                                 

 are the coefficients of expansion and the basis is chosen such that we get a 

tridiagonal symmetric matrix for the wave operator J H E . The following is the 

general form of the square-integrable basis: 

                            ( ) ( ) ( )m m mx A w y P y                                                                     (3.2) 

where , mA  is a normalization constant, mP y  is a polynomial of a degree m  in 

y and  is the associated weight function that vanishes on the boundaries of 

configuration space x.  Consequently, the wave operator matrix elements are defined by 
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2

, 2

1
0

2n m n m n m

d
J H E V x E

dx
             (3.3) 

The transformation ( )x y x  is chosen such that the space of the basis becomes 

compatible with the domain of the Hamiltonian x. With this coordinate transformation, the 

wave operator (3.3) becomes: 

                        
2

2

, 2

1
2 ( ) 0

2n m n m

d d
J y y U y

dy dy
                       (3.4) 

where ( ) ( )U y V x y E . The prime on y stands for the derivative with respect to x. 

Requiring that this matrix be tridiagonal and symmetric (as shown in the next sections) 

transforms the wave equation into the following three-term recursion relation for the 

expansion coefficients of the wave-function: 

2                                                      (3.5) 

Where all the ,
,n mJ s  are functions of energy and potential parameters.  This equation can 

be solved either iteratively starting with a chosen 0 ( )f E  or using results from classical 

orthogonal polynomials, if any. Solving this recursion relation gives the energy spectrum 

and associated wave-functions. 
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3.1 Tridiagonal Representation Approach (TRA) to 1D Schrodinger    

      Equation 

are the Jacobi  where Jacobi basis the  In our present work we will be using

the Laguerre are the Laguerre basis where  and [ 1, 1]y polynomials with

.polynomials with  

3.1.1 TRA for the Jacobi Basis 

The orthogonality relation of the Jacobi polynomial  

, ,
1

1

1 1
n m n mny y P y P y dy A , suggest that we can consider

, as a complete basis set in [ 1, 1]  and use the free 

parameters  to ensure a tridiagonal representation of the Hamiltonian. The 

Jacobi basis where  and  is written in the following form:                             

                                                               (3.1.1) 

where ,  is the Jacobi polynomial of a degree 

m  in y  and the real dimensionless parameters , , ,  are such that , 0  and 

, 1 . These parameters will be chosen later to support the tridiagonal requirement of 

the wave operator matrix (3.4). The integration measure becomes
1

1

..... ...
'

x

x

dy
dx

y
. Thus, 

compatibility with the weight functions of the Jacobi polynomial and dimensionality 
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requires that  with  and  being real parameters and  is a positive 

real parameter having a dimension of inverse length. In fact, the tridiagonal requirement of 

(3.4) also leads to the same form for . Using the differential equation of the Jacobi 

polynomial and its differential property, the wave operator matrix elements are obtained 

after some manipulation (shown in Appendix B1) as 

 

                                                                                                                                 (3.1.2) 

3.1.2 TRA for the Laguerre Basis 

In the spirit of the orthogonal property of the Laguerre polynomials 

0

( 1)
( 1)( ) ( )y

n m nm
n

ny e L y L y dy  which state that  , 

 , form an orthonormal basis in 0,y . The following are 

general basis set and form a complete set in 0, . The Laguerre basis is defined as: 

                        ,                                                                   (3.1.3) 

Where 0,y , , ( )nL y  is the polynomial of Laguerre of a 

degree  in y  and real parameters  with  > 1 and  to ensure convergence 
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of the Laguerre polynomial and compatibility with the boundary conditions. They will be 

determined later to support the tridiagonal requirements. In this basis, we use ' a byy y e  

with  being real and positive so that   vanishes only at the boundaries and no new 

singularity will be introduced in the differential wave operator. The integration measures 

are 
0

..... ...
'

x

x

dy
dx

y
 and   should be compatible with the weight function of the Laguerre 

polynomial. Using the differential equation of the Laguerre polynomial and its differential 

property, the wave operator matrix elements are obtained after some manipulation (shown 

in Appendix B2) as 

22 1
,

0

1 2 2

2

22 1

0

1
2

2 1
                                1 2 ( )

                       ( ) 1 2

b ya
m n m n m

a by

n

b ya
m n m

a
J A A y e L y n b a b y

y

a y e
n b U y L y dy

y

A A n y e L y b 1

2 1
n

a
L y dy

y

                  

                                                                                                                                 (3.1.4) 

 

3.2 1D Solvable Potentials using Tridiagonal Representation Approach 

3.2.1 1D Solvable Potentials for Jacobi Basis 

Generally, we are looking for the tridiagonal representation form of the ,m nJ  , thus, 

generally Eq. (3.1.2) has for the Jacobi polynomials the integral form
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1
, ,

1

1 1 m ny y P y F y P y dy . Therefore, the tridiagonal matrix 

requirement dictates that F y  be linear in y (e.g. ) that is equivalent to the 

term  

( ). Thus, F y  should be selected in order to cancel terms that destroy the tridiagonal 

representation like 1 1y y and 1 1y y . 

Based on the fact that
1

2 2 , ,

1

1 1 m ny y P y P y dy will be tridiagonal only for

, which will be proven using three-term recursion 

relation for ,
nP y .  So, the   only tridiagonal terms in  should have the following 

three forms: 

1
2 1 2 1 , ,

,

1

1 1
a b

m n m ny y P y P y dy             

                                                2 1a ,                            (3.2.1a) 

1
2 1 2 2 , ,

1 , , 1 , 1

1

1 1
a b

m n m n m n m ny y P y P y dy   

                                      2 1a , 2 2b                                     (3.2.1b) 

1
2 2 2 1 , ,

1 , , 1 , 1

1

1 1
a b

m n m n m n m ny y P y P y dy   

                                   2 2a , 2 1b                                      (3.2.1c) 
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Now, we can say that according to the recursion relation and orthogonality formula of the 

Jacobi polynomials that the matrix representation of the wave operator ,m nJ  becomes 

tridiagonal only in three cases: 

                         (1)  , ,                                               (3.2.2a) 

                         (2)  , 2 2 b ,                                              (3.2.2b) 

                         (3)  2 2 a , ,                                             (3.2.2c) 

For the previous three cases, we can find the tridiagonal matrix representation for the wave 

operator ,m nJ  and the possible solvable potentials. The wave operator for the first case is 

given by: 

21
, 2 2

,

1

1 2 1 2

,
2

1 1
1 1 2 1

2 4

1 1 ( ) 1 1
                  0

1 1

m n m n m

a b

n

J A A y y P y n ab

y y U y y y
A B P y dy

y y

 (3.2.3) 

Since only
1

, ,
,

1

1 1 m n m ny y P y P y dy , 
1

1 , ,

1

1 1 .m ny y P y P y dy tridiag  

1
1 , ,

1

1 1 .m ny y P y P y dy tridiag  Then, we need to include in ( )U y  all the 

possible tridiagonal terms,   in addition, to counterterms that eliminate the non-

tridiagonal terms in (3.2.3). Therefore, the solvable potential should have the following 

form: 
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1 2 1 2

2

( ) 1 1 1 1

1 1

a b
U y y y y y

A B py q
y y

                                  (3.2.4) 

Where we set    , and . 

Similarly, for the second case, the wave operator ,m nJ is written as: 

21
1 2 2 2,

, 2
1

1
, , ,

1

1

1 ( )
1 1 1 1

1

2
                          1 1

2

a b

m n m n m

m m n m n

y U y
J A A y y P y Q Ky A y y

y

n n
P y dy A A y y P y P y dy

n

 

                                                                                                                                 (3.2.5) 

and the solvable potential has the form: 

1 2 1 2

2

( ) 1 1 1

1 1 1

a b
U y y y y y q

A p
y y y

                         (3.2.6) 

Where 

2
2 21 1 1 1

2 1 1 2
2 4 2 2 4

Q n ab n b b
n

 

2
2 21 1 1 1

2 1 1 2
2 4 2 4

K n ab n b b  

The wave operator ,m nJ  for the third case as follow: 
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21
2 2 1 2,

, 2
1

1
, , ,

1

1

1 ( )
1 1 1 1

1

2
                 1 1 0

2

a b

m n m n m

m m n m n

y U y
J A A y y P y W My B y y

y

n n
P y dy A A y y P y P y dy

n

                             

                                                                                                                                 (3.2.7) 

The solvable potential: 

1 2 1 2

2

( ) 1 1 1

1 1 1

a b
U y y y y y q

B p
y y y

                                         (3.2.8) 

Where  

2
2 21 1 1 1

2 1 1 2
2 4 2 2 4

W n ab n a a
n

 

2
2 21 1 1 1

2 1 1 2
2 4 2 4

M n ab n a a  

Now, as an application of the above cases, we can produce many solvable potentials using 

a possible transformation to be compatible with the Jacobi polynomials. 

As an example, using the possible transformation: 

                        siny x x ,                                      (3.2.9) 

Where , comparing with the general form , 

the relation between the parameters , ,  and  is given as  , 

. The wave operator for this case is written as follows: 
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21
,

,

1

,
2 2

1 2 2
1 1

2 1 1

2 2
                                             0

m n m n m

n

A B
J A A y y P y n

y y

V y E
P y dy

          (3.2.10) 

Then, the solvable potential can be found by eliminating terms ( 2 1 ,2 1A y B y ) 

that are not tridiagonal and adding  to have a linear form as the following: 

2

2 2 2

1 1

V y A B
py q

y y
 

Then       
2 2

2

2 2 21

A B B A y p
V y y q

y
 

Thus the solvable potential should have the form: 

0 12

sin
sin

cos

V V V V x
V x V V x

x
                                      (3.2.11) 

Where we set  
2

2 2 1 4
4

V A     2
2

41

4

V
,  

2
2 2 1 4

4
V B        

 2

2

41

4

V
,  1

2

2V
p , and 0

2

2V
q . According to the original requirement that 

, 0  the potential parameters V and V  satisfy the condition . Similar 

procedures can be done for any possible transformation. The following is the table of some 

possible solvable potential using the TRA for the Jacobi polynomials in 1D Schrodinger 

equation. More details on this approach can be found in the recent comprehensive review 

by  Alhaidari [35].
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3.2.2  1D solvable potentials for Laguerre basis 

Similarly, we are looking for the tridiagonal representation form of the  , thus, 

generally Eq. (3.1.4) has for the Laguerre polynomials the integral form 

0

y
m ny e L y F y L y dy . Therefore, the tridiagonal matrix requirement dictates 

that . Thus, F y  should be selected in order to cancel terms that destroy 

the tridiagonal representation like 1 y and 2y . Again orthogonality of the Laguerre 

polynomials
0

y
m n n nmy e L y L y dy A , ( 1) ( 1)nA n n  along with the 

three-term recursion relation for suggest that 
0

y
m ny e L y L y dy , will be 

tridiagonal only for 1  and . So, the   only tridiagonal terms in  should 

have of the following two forms: 

22 1
,

0

b ya
m n m ny e L y L y dy           ,         (3.2.12a) 

22
1 , , 1 , 1

0

b ya
m n m n m n m ny e L y L y dy  

                                                               ,                (3.2.12b) 

Now, we can say that according to the recursion relation and orthogonality formula of the 

Laguerre polynomials that the matrix representation of the wave operator  becomes 

tridiagonal only in two cases: 
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                         (1) ,                                                      (3.2.13a) 

                        (2) ,                                                      (3.2.13b) 

Similarly, we can find the tridiagonal matrix representation for the wave operator  and 

the possible solvable potentials. The wave operator and solvable potential for the first case 

are written as the following: 

22 2
,

0

1 1 1 1
1 1 1

2 4 4
y

m n m n m nJ A A y e L y L y n ab b y a
y

  

1 2 2

2
( )

a byy e
U y dy (3.2.14) 

 , 
221

1
4

A a                                (3.2.15) 

For the second case: 

,

0

2 2 2
2 2

12
0

1 1
2 2

4 2

1
1 ( ) ( ) 0

4

y
m n m n m

a by
y

n m n m n

J A A y e L y a a n n ab y

y e
b y U y L y dy A A n y e L y L y dy

          

                (3.2.16) 

2 2 2
2

2
( )

a byy e
U y By py q        , 21

1
4

B b                                             (3.2.17) 
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And similarly, we can find the possible solvable potential using the TRA for Laguerre 

polynomials. The following is a table of some possible transformations to obtain the 

solvable potentials. 

 
 
 

 

 

          Table 2 Solvable potentials in the Laguerre basis. 
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CHAPTER 4  

RESULTS AND DISCUSSION 

In this work, our main concern is to solve 1D Schrödinger equation with potentials that are 

analytically and approximately solvable using both the Asymptotic Iteration Method and 

Tridiagonal Representation Approach. The objective being to make a comparative study 

between the two approaches. In the following, we present a solution of  1D SCH  for two 

exactly solvable potentials. These potentials  are ( i ) the simple Harmonic oscillator 

potential  

                        
2

2

x
V x ,                                                                                             (4.1) 

, where       and  ( ii ) the confining potential   

                        2
0 tan  V x V x a ,                                                                          (4.2) 

where   ,  
2 2

a a
x and    0 0V .    Furthermore, we solved ID SCH with ( iii )  the 

generalized version of the trigonometric Scarf potential that is introduced using the 

Tridiagonal Representation Approach. The potential is defined by  

 0 12

sin
sin ,           

( ) cos 2 2

   ,                                                                      outside

V V x L L L
V V x L x

V x x L ,              (4.3)  

where L . Without the 1V  term, this is just the trigonometric Scarf potential, which 
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belongs to the conventional class of exactly solvable problems with the following energy 

spectrum 

2
2

02 2

2 21 1 1 1 1

2 2 2 4 2 4n

W W
E n V ,    (4.4) 

where W V V . The special case where 0 0V V , which leaves only the new 

component, is just the infinite square well with a sinusoidal bottom that does not have an 

exact solution in the conventional formulation of quantum mechanics. However, using the 

TRA, the Authors in [36] were able to obtain an exact solution for this problem. In addition, 

for convenience and better understanding 

 In the following sections, we will compute the energy 

spectrum (energy eigenvalues  ) associated with the three potentials defined 

(4.1,4.2,4.3)  using both the AIM and the TRA. to enable us to make a reasonable 

comparison of both approaches.  
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4.1 Solving Schrodinger equation for Harmonic oscillator potential 

4.1.1  Solution using AIM 

Consider the simple example, the Harmonic oscillator potential: 

                        
2

2

x
V x ,                                                                      (4.1.1) 

The time-independent linear Schrodinger equation (in the atomic units ( 1m ) reads 

                        
2 2

2

1
( ) 0,

2 2

d x
E x

dx
                                                          (4.1.2) 

According to the AIM solution procedures, the first step is to convert SCH Equation into 

the AIM form. Thus, to obtain the AIM form we rewrite the wave function as

( )x g x f x . The wave function that satisfy the asymptotic behavior for large x of 

the Schrödinger wave operator can be written as: 

                        

2

2( )
x

x g x f x e f x                                                        (4.1.3) 

This transforms Eq. (4.1.2) into an equation for ( )f x  as 

                          ,                                              (4.1.4) 

Now, this equation is in the form of the AIM (2.4), thus, the characteristics functions 

and  defined as: 

                          0 ( ) 2k x x     ,                0 ( ) 1 2S x E .                                        (4.1.5) 

Using the iteration formulas (2.3), the functions and  ,  1, 2,...n    will be 

calculated as it is shown below 
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. 

 

 

 

a  

The Energy spectrum (eigenvalues nE ) of the Schrodinger equation Eq. (4.1.2) will be 

found from the root quantized equation (2.10) 

 

As mentioned before, one can start the iteration from  with the initial condition 

1 1k  and 1 0S . 

For ,  ,                                         0 1 2E  

For ,  , 2 1 2 3 0E E  0 1 2E , 1 3 2E  

For ,  3
2

215 46 36 8 0E E EE , 

2 1 2 3 2 5 0E E E                                             0 1 2E , 1 3 2E , 2 5 2E  

For ,  , 

2 1 2 3 2 5 2 7 0E E E E               0 1 2E , 1 3 2E , 2 5 2E ,  

a  



33 
 

The previous calculations yield the exact eigenvalues 1 2nE n . From the above 

calculation, it is clear that we are dealing with an eigenvalue problem that is analytically 

solvable ( a closed form of a solution). The termination condition (2.10) leads to an 

expression that is independent of and depends only on the eigenvalues . Therefore, we 

found out that the energy eigenvalues are simply the roots of . This leads to the 

exact solutions of the Schrodinger equation for the harmonic oscillator potential [

1 2, 0,1,2,.....nE n n ].  Another interesting point is that by induction we conclude that 

 and  are polynomials in E of degree . Whereas,  and  

are polynomials of degree n in E. Thus, from the quantization equation (2.10) we conclude 

that ( , )n x E  is a polynomial in E of degree  , and  gives the energy 

spectrum
0

m n

m m
E . In addition, we would like to show how to find the wave functions of 

the Schrodinger equation for this case, using Eq.(2.9) we deduce the wavefunctions for the 

first five iterations with 2 1C . 

For   0 0
0

0

1 2

2

S x E
x

k x x
,                                

 

For ,   1
1

1
2

1

1 2 4

3 4 2

x xS x
x

E

xk Ex
,                     1

1
( ) exp

x

f x dx x
x

 

 

For ,   
2 2 2

2

2

2
2 3

2

2

5 4 12 8 4

16 8 8

x x E

x

ES x
x

k Ex x x
, 
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2
2 2
( ) exp

4
1

2 1
2

x

f x dx
x

x
x

  ,     
2 22 2 2

2 2 2 1x xx e f x x e  

For ,   
3 3 2

3

2 4 2

33

3
2

3 3

3

24 8 56 16 16

21 60 16 20 24 4

ES x
x

k x

x x x x xE

x x x E E
, 

33

2
36 3

2 3
2 3

( ) exp
x

x
x xx dx

x
f

x
  ,   

2 232 2
3 3 2 3x xx e f x x x e  

a  

The functions nf x ,  represent the Hermite polynomials. The wavefunctions 

of the Schrodinger equation can be represented by the special Hermite function in confluent 

hypergeometric functions form as the following: 

2

22
!

!

2
1 ;1 2;

x
n

n

n
x e M n x

n
,               for      0, 2, 4,...n  

                                                                                                                                 (4.1.6) 

2

22
2 2 1

1 ;3
!

2;
! x

n

n

n
x xe M n x

n
,    for         1,3,5,...n  

4.1.2 Solution using TRA 

The transformation of this problem is defined by 2y x . In this case, the variable space is 

in [0, [, thus, we use the Laguerre basis. Using equation (3.2.14), where  

[ 1 2' 2 1 2, 0,  2 = +1 2y y a b ]. The J-Matrix for this case will be as the 

following (see [37]) 

                      , ,

1
2 1

2n m n mJ n E                                                                (4.1.7) 

Then, the three-term recursion relation will reduce to a single term: 
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1

( ) 2 1 ( )
2n n nE f E n f E                                                                (4.1.8) 

This represents the diagonal term of the three-term recursion relation. The energy spectrum 

nE  (the eigenvalues) of the Schrodinger equation with the harmonic oscillator potential is 

given by 

                       

1 1
2 ,                             

2 2
3 1

2 ,                             
2 2

n

n
E

n
                                         (4.1.9) 

Table 3 The first five exact eigenvalues (Energy spectrum) for harmonic oscillator 

potential. 

Methods 0E   2E  3E  4E  

Exact   1 2      

AIM 
1 2      

TRA( 1 2) 
1 2      

 

 

Figure 2  Plot of the harmonic oscillator potential. 
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4.2 Solving Schrodinger equation for  the tangent square  potential  

The potential is defined as 

                        
2

0 tan       
 2 2

                             outside         

a a
V x a x

V x ,                               (4.2.1) 

 where   ,  
2 2

a a
x and    0 0V . This potential contained within an infinite square 

well with sides at 
2

a
x ,  and  , gives an indication of how rapidly the potential 

increases within the well [38]. In this case, the time-independent Schrödinger equation 

reads   

                        
2

2
02

2 tan 2 0
d

V x a E x
dx

                                        (4.2.2) 

The boundary conditions are given by  0
2 2

a a
. 

4.2.1 Solution using AIM  

To obtain the  AIM standard form we take a different approach to reach the suitable form 

of AIM. we start by using the following transformation  

             siny x a                                                                                     (4.2.3) 

where 1, 1y . Thus, Sch. Eq. reads 
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2 2 2
0

22 22

2 2
''( ) '( ) ( )

1 11

a V yy a E
y y y

y yy
(4.2.4)

For convergence purposes, we use the substitution defined below which also takes into 

consideration the boundary conditions: 

                        21y y g y                                                                         (4.2.5) 

Then, Sch. Eq. can be written in a simple form for g y  as: 

2

2 2

2 2
0

4 1 4
'' '

1

2
)

1

2
(

y
g

a E a V
gy yg y

y y
(4.2.6)            

Where   2
0

1
1 1 8

4
a V . Now, Equation (4.2.6) is a differential equation of an 

exactly solvable problem solved via AIM. 

The Characteristics functions 0k y  and 0S y  are defined by the following:       

20

4 1

1
y

y
k

y
  ,           

2 2
0

2

20

4

1

2 2a E

y

a V
S y                            (4.2.7) 

Similarly, like what we did for the previous problem, the iteration formula  nk y  and 

nS y  will be computed using (2.3)  

2 2 2 2 2
0

1 22

1 2 2 1 6 6 2 1

1

y a y V E
k y

y
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2 2
0

1 22

2 3 4 2

1

a V E y
S y

y
 

2 2 2 2 2
0

2 32

3 4 3 12 8 2 1 6 4 4 1

1

y a y V E y
k y

y
 

2 2 2 2 2 2 2
0 0

2 32

2 2 4(1 ) (11 24 12 ) 2 1

1

a V E y a y V E
S y

y
  

And so on. Then, the termination condition (2.10)   

1 1, , , , , 0n n n n ny E k y E S y E k y E S y E   ,       yields the following  results 

2 2 2 2 2
0 020 04 2 2 0     4 2

2

1
E Ea V a a V

a
 

1

0

2 22 2 2 4
0 0

2 2 2 2 2 2
0 0

2 2 2 2
0 02 1 2

2 1 2 1 4 8 2

   1 2 4 4 2 4 2 2 0    

                          4 2 ,       4 4 1 2  
2 2

1 1

E E

E

a V E a V E

a V a a V a

a V a VE
a a

 

22 2 2 2 3 4
0

2 34 2 6
0 0

2 2 2 2

2

2 2 2 2 2
0 0 0

2 2 2
0 0 1

2
02 2

4 1 3 2 2 1 6 18 24 12

        5 12 12 2

1 2 4 4 2 4 2 2 4 2 8 4 2 0 

            4 2 ,  4 4 1

     

2
1

,
2

1
 

2

a V E

a V E a V E

a V a a V a a V a

a V

E E

a

E

aE V
a

E

2 2
022 4 8 4 2

2

1
                

a
E a V
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And so on.  It is obvious that the termination condition yields expression that is independent 

of the variable space y. In such case, the solution can be written in a closed form for the 

eigenvalues ( Analytical solution). Thus, generalizing the results from the termination 

condition,  we can write  

  2 2 2
22 0  4 4

1
2

2
0n n n a V

a
E ,     

where 2 2
0 4 2 2 a V  ,  Therefore, the energy eigenvalues are given by  

2 22 2 2 1 ,        na E n n               

2 2
02

1 1 1
2

2 4 2
2 1 ,         0,1, 2,...n an V

a
nE n                             (4.2.8)  

4.2.2 Solution using TRA  

Starting from the J-Matrix wave operator of the Schrodinger equation with the Jacobi 

polynomials Eq. (3.2.3), we use the transformation   siny x a      where   1, 1y , 

1 2 1 2' 1 1
cos 1 1y x a y y

a a
, and compare with the general case 

, [ 1 2a b , 1 a ]. The potential function is given as 

2

0 0 02 2

1
( ) 2 2 2 2 2 2 2

1 1

y
U y V y E V E V V E

y y
. The  wave operator 

matrix elements for this problem  reads  
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221
0,

, 2
1

1
1 1 2

2 1
m n m n m

A B V a A B y
J A A y y P y n

y
 

                                              (4.2.10) 

Where  21
1 4

4
A   , 21

1 4
4

B  

According to the tridiagonal representation requirement, terms inside the square bracket 

must be linear in y . Moreover, terms that destroy the tridiagonal representation must be 

eliminated. Therefore, tridiagonal representation requirement yields the following relation 

between the parameters 2 2 2
0

1
2

4
a V ,   and regarding the original requirement, 

, 0  , the strength of the potential should have the condition   
2

0

1 1

2 2
V

a
. Then, 

the  matrix elements are  

21
, 2 2 ,

, 0

1

1
1 1 2 2 0

2m n m n m n nJ A A y y P y n V a a E P y dy                       

                                                                                                                               (4.2.11) 

And the three-term recursion relation of the wave operator gives the diagonal term as 

bellow: 

2
2

02

1 1
( ) 2 ( )

2 2n n nE f E n a V f E
a

                                                   (4.2.12) 

The  energy spectrum for Schrodinger equation (4.2.2) given as:  
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2
2

0 2
02

1 8 11
2

2 2n

a V
E n a V

a
                                                         

2 2
02

1 1 1
2

2 4 2
2 1nE n a V

a
n      (4.2.13)       

n  AIM TRA Exact 

0  1 1 1 

1  3.5 3.5 3.5 

2  7 7 7 

3  11.5 11.5 11.5 

4  17 17 17 

 

Table   4  The lowest five Eigen-energies of the SCH for the tangent square potential with 

the potential parameters defined as 0 1V  and 1a , using AIM and TRA. 

 

Figure 3  Plot of the tangent square potential for potential parameters 0 1V a  
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4.3 Solving Schrodinger equation for the Generalized  Scarf Potential  

4.3.1   Solution using TRA 

Starting with the Tridiagonal Representation Approach, we consider the coordinate 

transformation sin( )y x  where 2 2L x L , L  making 1
2a b  and 

, we start by using equations (3. ) and (3.2.4), where we just consider the first 

case of (3.2.2). The tridiagonal matrix elements of the wave operator ,m nJ  for this problem 

read as follows: 

21
, 2 2

,

1

1 1
1 1 1 2

2 4m n m n mJ A A y y P y n                                                    

                                 ,
2

1 1 ( )
 0

1 1 n

y y U y
A B P y dy

y y
                      (4.3.1) 

 Where we set    , and . A, B, p, and q are real 

parameters with 1 2A , 1 2B . It results in the potential function 

defined bellow: 

0 12

sin
sin

cos

V V x
V x V V x

x
                                                                 (4.3.2)  

where the basis parameters are obtained from the physical parameters V , 0V  and  as 

2
2

1 2

4
V V , 2

2

1 2

4
V V ,  and 0

2 2 2

2 2VV E
q . Thus, 

reality requires that  and 0V . Figure 7, show this potential for a given 
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set of physical parameters. Using the orthogonality formula and the recursion relation of 

the Jacobi polynomials we obtain the matrix elements of the wave operator ,m nJ  as follows: 

2

0 1
, ,2 2

2 21

2n m n m

V V
J n n y m                                             (4.3.3) 

where 22E . Using the form of n y m  given in the Appendix, the wave operator 

matrix elements takes the following form: 

22 2
01

, ,2 2

22 1

2 2 2 2n m n m

VV
J n

n n
  

1
, 12

2 2 2

2 2 1 2 1 2 2n m

n n n nV

n n n n
  

, 1

1 1 1 1

2 1 2 3 n m

n n n n

n n
                                                 (4.3.4) 

The diagonal representation requires 1 0V  giving 
22

01 2 1 2nE n V , 

which is the well-known energy spectrum associated with the trigonometric Scarf potential. 

The three-term recursion relation associated with (4.3.4) reads as follows  
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22 2
01

2 2

1
12

22 1
( ) ( )

2 2 2 2

2 2
( )

2 2 1 2 1

n n n

n

VV
f n f

n n

n n n nV
f

n n n

  

1

1 1 1 12
( )

2 2 2 1 2 3 n

n n n n
f

n n n
         (4.3.5) 

If we take the special case 0V V  which leads to 1 2  then this results in the 

infinite potential well in one-dimension with sine bottom 1 sinV x  which was treated in 

[31]. Under the restriction 1 2 , the three-term recursion relation equation reads as 

follows 

2 2 2
0 1 1 1( ) 1 2 ( ) ( ) ( )n n n n nf n V f V f f                             (4.3.6) 

Solving the three-term recursion relation (4.3.6) gives the energy spectrum  for 

(eigenvalues of the Schrödinger equation with) the potential (4.3.5). The results are 

reported below and compared to the AIM. 

4.3.2   Solution using AIM 

For the AIM, the Schrödinger equation with the given potential reads: 

2

0 12 2

sin
2 sin 2 0

cos

V V xd
V V x E x

dx x
                           (4.3.7) 

Now, to obtain the AIM form one should take into consideration of the boundary condition 

that requires the wavefunction to vanish at the boundaries 2x L . First, in order  to 
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bring the independent variable domain to , we use the following coordinate 

transformation  

                                                                             (4.3.8) 

This transforms Schrödinger equation into the following form: 

0 1
22 2 2

'' '
1 1 1

A A y A A yy
y y y

y y y
                           (4.3.9) 

where 0 1
0 12 2 2

2 2 2
, ,

V V V
A A A  and 

2

2E
.  

To enforce the boundary satisfaction we use  the following substitution 

21y y f y                                                                                        (4.3.10) 

Then equation (4-10) can be written in a compact form for  f y  as follows: 

0 1
22

2

22

4 1 2 2 1
( )

1 1

4
'' '

1

A A yA A y
f y

y

y
f y f y

y y
(4.3.11) 

From the mathematical point of view, the points  are regular singular points of the 

differential equation (4.3.11).  and nS y  with containing regular singular point and 

due to higher order derivative, the presence of the last term in 0 ( )S y  will play a very 

destructive role for the convergence of our termination condition. Thus to improve the 

convergence of the termination condition we need to perform a transformation that 

eliminates this spurious term. Equation (4.3.11) is now amenable to the AIM where the 

characteristic functions 0 ( )k y  and 0 ( )S y  are defined by 
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20

4 1
)

1
(k y

y

y
  ,      0

0 2 2

2
1

2

2 2 1
( )

1 1

4 A A yA A y
S y

y y
     (4.3.12) 

By means of the iteration formulas (2.3), the functions  and nS y  are computed 

for  and then the energy spectrum (eigenvalues n
mE ) will be found using the roots 

of equation (2.10). In this work we consider two cases by just selecting the potential 

parameters: 

CASE 1:  1, 0,V V , and 0 0V V  

 

The characteristic functions 0 ( )k y  and 0 ( )S y  written as follows: 

20

4 1
)

1
(k y

y

y
   ,        

0
2

2
1

22
( )

1 1

2 2 14 AA y
S y

y y
               (4.3.13)     

For convergence purposes, we eliminate the spurious term in (4.3.13), so that 0 ( )k y  and 

0 ( )S y  reads  

20

4 1
)

1
(k y

y

y
   ,        1

0 2
( )

1

A y
S y

y
                                     (4.3.14) 

where we set 24  and 
1

1 1 4
4

A . Using Eq. (2.3) and Eq. (2.10) the 

functions  and nS y  are calculated as follows: 

2 2 2 2
1

1 22

1 4 1 2 12 16 1

1

y y A y y
k y

y
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2
1

1 22

1 2 4 3 4

1

y A y
S y

y
 

2 2 2 2
1

2 32

2 1 1 (2 4 ) 3 4 3 12 2 (1 6 8 ) 2

1

y y A y y
k y

y
 

2 2
2 32

2 2 2 2 2
1 1

1
4 8 11 24 16

1

                             9 12 2 3 10 8 2 1

S y y
y

y y A y y A

            

and so on. From the above calculations and by induction we conclude that  and 

2 1nS y  are polynomials in  of degree 1n  while 2nk y  and  are polynomials 

in   of degree n in . The Energy spectrum (eigenvalues) will be calculated using the 

termination equation (2.10), 

For 0n : 

   

With an appropriate choice of value, 0y y  we will obtain the first eigenvalue 0 .                           

For : 

2 3 4 2 2
2

1

2
1 2 1 2

1
4 16 16, 2 40 ; 8

A
y a a y y a

Again, with the same appropriate value of 0y y  we obtain  
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For  

2 3 4 5

2 3
2 3 2 1

3

6 2
1

2 3 4 2 23
1

3

16 96 208 192 64 2

4 24 72 96 48 5 1

, 3 3 0 ;

1
           

12
 

2

y a a y a y y

a
A

A  

giving . 

and so on. 

Where the relation between the termination condition equations for this problem obey  

1

,
1 ,n

n

y
n y

y
                                                                          (4.3.15) 

Which implies that the termination condition takes the following from 

1
1

0

,
n

k
n k n

k

y a y Q                                                                   (4.3.16)            

and so on where nQ  is a linear combination of na with coefficients that can be 

drawn from Pascal triangle. It is worth mentioning that the general structure of  

still holds independent of the specific potential and can be written as follows 

1
0

,
n

k p
n k n

k

y a y Q                                                                     (4.3.17) 

Where p  is an integer that is potential dependent. The coefficients  na   are functions 

of energy and potential parameters, 1nQ  are polynomials of degree 1n  in . Now, it 

is obvious that the function  is a polynomial of degree 1n  in . Thus, at the nth 

iteration, there are 1n  eigenvalues that depend generally on the choice of 0y . Now, it is 

clear that this problem with the generalized Scarf potential given by Eq. (4.3.7) will not 
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have an analytic solution in the conventional formulation. In other words, the termination 

condition (2.10) gives an expression that depends on both y  and . Therefore, one has to 

find the best possible starting value  that stabilizes the process of computation of the 

energy spectrum. As mentioned before, the computation of the eigenvalues using (2.10) 

should be independent of the choice of 0y . Researchers traditionally choose this as either 

the minimum value of the potential or the maximum of the ground state wavefunction. 

However, the best choice of the starting value is observed to be critical only for the stability 

of the process, as well as to the speed of convergence. By means of the iteration formula 

(2-3)  and the termination condition (2.10), the eigenvalues are then computed.  Our 

calculation shows the effect of  (i) different choice of initial values  and (ii) the 

number of iterations on the accuracy and convergence of the eigenvalues. In Table 5, we 

have considered only the lowest two Eigen-energies while varying  in the range

. It is obvious that by increasing the iterations the process stabilizes and the 

values of 0y  that are very close to the singular points lead to strong oscillations and 

divergence. It is very clear in this table that for the ground state (for a given accuracy) for 

4 iterations the Eigen-energies are stable for any initial value within the range 

00.1 0.1y  (plateau of convergence). Increasing the number of iterations to 5 

iterations makes the plateau increase and the Eigen-energies are stable for any value in the 

given range (away from the singular points). Continuing, for 6 and further iterations, the 

plateau shrinks slowly to a point, in this problem it is zero. Similarly, for the first excited 

states, the plateau of convergence has the same behavior that it grows up to an optimal 
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number of iteration and then shrinks to a point (or points). For a better display of precision 

and convergence, the eigenvalues of the ground state are computed within the range 

00.1 0.1y  and for iterations ranging from 1 to 100. It is obvious for AIM that the 

accuracy increases by increasing the number of iterations. The results are shown in Table 

6 by comparing the ground state obtained via TRA (Table 7) with that obtained using AIM 

for different iterations. From the above two Tables, we observe that by choosing a certain 

accuracy the termination condition can be solved for any starting value at a certain number 

of iterations. For this number of iterations, the eigenvalues are stable against variation in y 

within a given range.  After that optimal number of iterations, the plateau starts to shrink 

to a point which can be considered as the ideal starting value of the space variable to ensure 

a good accuracy and convergence of the process. Therefore, we predict that for this 

problem, the best choice of 0y  is 0 0y . Many published researches used to set the initial 

value of space variable to be zero without explanation. In this work, we tried to have a 

closer look at the termination condition and its behavior (Eq. (4.3.16) and studied its 

plateau of convergence). The termination condition depends on the iteration formula (2.3) 

which rely on derivative terms. For higher number of iteration, the termination condition 

equation becomes more and more complex and more difficult to solve.  

At first look at (4.3.16), it seems that if we insist that the roots of  being 

independent of  y  then one obvious possibility is to set y = 0.  In such case what is left are 

the roots of the energy polynomials 1na , hence the roots of these polynomials represent 

the eigenenergies of the problem. Therefore, the technique of plateau of stability described 
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above could be considered as one of the finest methods for choosing the best starting value 

of the space variable for the AIM. 

Most of our computations in this work were done using the computation software 

Mathematica. In Tables 7, the lowest Eigen-energies using both AIM and TRA methods 

are reported for comparison purpose. 
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Table 5: The effect of different initial value 0y  and number of iterations on the 

convergence and accuracy of the eigenvalues. We took the potential parameters as:

1 01, 0.25, 0V V V V , and 1L . 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Table 6: The effect of different initial values 0y  and number of iterations on the accuracy 

of the ground state energy for a different number of iterations with the potential parameter: 

1 01, 0.25, 0V V V V , and 1L .  

 

 

 

 

 

  

Table 7: The lowest levels of the energy spectrum for CASE 1 with the potential 

parameters: 1 01, 0V V V , 0.25V , and 1L  for both methods AIM (40 iterations ) 

and TRA (matrix size N=20). We took 0 0y . 
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CASE 2:  0 , 0V V  and 1 0V  

 

We consider now the case of the infinite potential well with sine bottom 

1( ) sin( )V x V x L . In the TRA this corresponds to 1 2 . Equation (4.3.12) is then 

written as follows: 

                        
2

22
1

4 1 4
'' ' ( )

1 1

y
f y f y

y

A y
f y

y
                             (4.3.18) 

Clearly, the same procedures for the calculation of the functions ( )nk y  and ( )nS y as in the 

previous case will be used. Similarly, for this case, the stability of eigenvalues due to 

variation in 0y  has a similar behavior. The results of the AIM are reported in Table 8 with 

the TRA results for different parameters of the potential for comparison purpose. Due to 

the rapid convergence and stabilization of the process for this case, the results are displayed 

for 10 iteration with more than 10 decimals of accuracy. There is an excellent agreement 

regarding the accuracy of both methods. 

In addition, we calculated the energy spectrum using the AIM in the case of Schrodinger 

equation with the potential 1( ) cos( )V x V x L , 0 x L , that was treated in  [36] by the 

TRA. Using the AIM described above, we rewrite the wavefunction that satisfies the 

boundary conditions as ( ) sin( )x x L f x . Then, we use the transformation 

cos ,   1 1y x L y . The AIM basic equation for this case will be similar to that 

of equation (4.3.18) with 0 0A A . The results shown in Table 9 are for . The 
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computed eigenvalues n  using the AIM are in excellent agreement with the results 

obtained in [31] using the TRA. It should be obvious that the physical properties of the 

system with the potential 1( ) cos( )V x V x L  should be identical to that with 

1( ) sin( )V x V x L  since one is obtained from the other by the artificial shift of 

configuration space . 

 

 
Table 8: The lowest levels of the energy spectrum for CASE 2 with the potential 
parameters 0 10, 1V V V and 1L  for both methods AIM (10 iterations) and TRA 

(N=10). 
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Table 9: The lowest levels of the energy spectrum for the potential with the parameters  

0 , 0A A  and 1 5A , for both methods AIM (10 iterations, 0 0y ) and TRA (N=20). 

 

 

Figure 4: The generalized Scarf potential for the parameters 0 1, 1, 0.25, 0.1V V V V , 

and 1L . 
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4.4  Applying  Plateau of Convergence  (PC) technique to SCH type problems 

Our objective in this section is to apply the plateau of convergence technique to different 

SCH equations with different potentials. This was done in order to feel its importance for 

our conclusions. For the  AIM we have improved convergence of the quantization 

condition that terminates the iterations asymptotically. This is accomplished by looking for 

the range of initial values of the space variable in the terminating condition that produces 

stable results (plateau of convergence) for the SCH with the generalized scarf potential. 

We have shown that with a given accuracy the plateau of convergence shows up and 

broaden into an ideal number of iteration. Furthermore, the plateau of convergence shrinks 

with increasing the number of iterations to a single point that, in this problem (4.3) and is 

independent of the potential parameters.  It is more convenient when applying  this 

technique to see the behavior of the plateau of convergence for many problems in 1D 

(bound state). The following are the calculated eigenvalues for the ground state for 

different potentials. These tables show the effect of different initial values and number of 

iterations on the convergence and accuracy of the eigenvalues. 
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 4.4.1  Sine square  potential 

2
0 sin ,         -

2 2

,                           
2

a a
V x a x

V x
a

x

,                                                         (4.4.1) 

Where .  

 In this case, the time-independent Schrödinger equation reads: 

2
2

02
sin 0

d
V x a E x

dx
                                                                (4.4.2) 

The boundary condition  0
2 2

a a
. 

However, to obtain the  AIM standard form we take a different approach to reach the 

suitable form of AIM. We start by  rewriting  the wave-function that satisfies the boundary 

condition as the following 

cosx x a f x                                                                           (4.4.3) 

Then the Sch. Eq. is written as a function of f x as follow: 

2 2 2
02

2 1
'' tan ' sin 1f x x a f x a V x a a E f x

a a
                    (4.4.4)  

A  further change of variable we use  siny x a      where   1, 1y . Thus, Sch. Eq. 

reads  
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2 2

3
'' '

1 1

y
f y f y f y

y y
                           (4.4.5) 

Where we set that 21 a E , 2
0a V  [38]. 

The Characteristics functions 0k y  and 0S y  are defined by the following: 

0 2

3

1

y
k y

y
  ,           0 21

S y
y

                                        (4.4.6) 

Similarly, like what we did for the previous problems, the iteration formula  nk y  and 

nS y  will be computed using (2.3)  Then, the termination condition (2.10)   

1 1, , , , , 0n n n n ny E k y E S y E k y E S y E   ,       yields the following   

2
0

2 2
01 Ea a V y  

 

2 4 2 2 2 4 2 2 4 6 3 6 2
0 0 0 0 0

2 2 4
0

2

2 6 3

3 1 2 3 2 36 8

       2 49 14

a V a a V y a V a y a V yE E

E

a V

a V E a a aE E
 

And so on.  It is obvious that the termination yields expression that depends on the space 

variable y and the energy E.  To obtain the eigenvalues we should find an appropriate initial 

value of y and this can be done by studying the plateau of convergence in the given range 

1, 1 . 
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Table 10: The effect of different initial value 0y  and number of iterations on the 

convergence and accuracy of the eigenvalues. We took the potential parameters as: 

0 0.1V , and 1a . 

 

 

Figure 5  Plot of the sine square potential. 

 

 

 

 

 

 

 



62 
 

4.4.2  Deformed well potential 

2 2
2

1
cos sin

sin
V x A x B x

x
,                                     (4.4.7) 

A, B, and  are the potential parameters and . 

Schrodinger equation reads  

2
2 2

2 2

1
cos sin 0

sin

d
A x B x E x

dx x
                           (4.4.8) 

To obtain the AIM form we rewrite the wavefunction  by taking care the boundary 

condition as: 

cos1sin B xx x e f x ,                                                                    (4.4.9) 

And using  the transformation cosy x . 1 1y  Then, Sch. Eq. written as the 

following: 

2 2
'' 2 ' 0

1 1

y y
f y B f y f y

y y
                                     (4.4.10) 

0 2
( ) 2

1

y
k y B

y
                        , 0 2

( )
1

y
S y

y
 

Where we set 2A B 2 2 3 [39].

The  termination condition (2.10)   
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1 1, , , , , 0n n n n ny E k y E S y E k y E S y E   ,       yields the following   
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Table 11 The effects of choosing different starting values of  0y y  on the desired accuracy of 

0
nE  for different iterations. We took the potential parameters as: 4, 3, 1,B , and

4.5 . 

 

 

 

Figure 6  Plot of the deformed well potential 
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4.5  REMARKS ABOUT  AIM 

In this work, we have made some important remarks that should be taken into consideration 

especially for the main part of this work which is the implementation of the Asymptotic 

Iteration Method. The following is a summary of the most important remarks that should 

be stressed when applying the Asymptotic Iteration Method. 

There are two main problems we can face when applying AIM 

I. The conversion of Schrodinger equation into the standard form of AIM 

0 0'' 'y x k x y x S x y x  

To obtain the standard form of AIM, much attention should be paid to the convergence of 

the solution.  

 Check the given boundary condition of the problem, this will leads to a   proper 

choice of the wave-function. 

 Rewrite the wave-function so that it satisfies the given boundary condition. 

 Keep track of the  singular behavior of the wave operator.  

 When obtaining AIM equation form use a convergence test which can be done  as   

follows: 

Test the convergence of the ratio    
2

1

1
ln

n
n

n

y d
y

dxy
, or test the convergence
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of the condition 1

1

n n

n n

S S
, that gives the asymptotic aspect of the method and this 

condition leads to   
2

1
1

n
n

n
n

y

y
. 

Taking into consideration the previous steps before you start your calculation, will help to 

obtain the appropriate AIM form that has a rapid convergence and the desired solution 

without losing much time in the iterations. 

II. The appropriate choice of the initial point of the space variable. 

The best choice of the initial value plays a critical role that leads to a  good convergence of 

the solution and saves your time in the iteration process. The following are some methods 

used to select the initial values.  

 The maximum value of the wave-function and, some researcher suggest that 

 can be used for this purpose, but it does not work for all problems. 

 The minimum value of the potential that can be found using , or from 

the potential plot . 

 It can also be found by setting . 

 The systematic way is to find the plateau of convergence by plotting the eigenvalues 

versus the space variable which gives a certain space variable range over which the 

eigenvalues are stable against the variation in the space variable. 

A remarkable point here should be noticed, that each problem has its properties so that the  
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first three ways sometimes do not work for some problems. Therefore the plateau of 

convergence is considered as one of the finest methods to be used for choosing the starting 

value.  

In addition, from most solution adopted to the AIM, it is found that for problems that have 

2
0 1 ,1k x x x  do not have a good convergence. Thus, to overcome this issue try to 

avoid this term by using another transformation.  For convergence propose also, a term like 

 should be eliminated in the Schrodinger equation by using an appropriate 

transformation. Usually, problems that have,  , will not present a difficulty for 

the choice of the initial value of the variable space. It is also observed that when 0k x  

and 0S x  do not have the same singularities (or order of the singularities) this play a 

destructive role on the convergence as well as the stabilization of the process. 

Finally, we must also underline that there are some disadvantages of AIM which we hope 

to tackle in the future. Among the first to note is that an unappealing feature of the relation 

formula nk x  and nS x  in Eqs. (2.3). It is obvious that nk x  and nS x  depend on a 

derivative formula which means that at each iteration one must take the derivative of the  

 and S  terms of the previous iteration. These cause problems for the computation and 

results in a slow convergence of the AIM. Some researchers worked on these issues by 

developing an improved version of the AIM which bypasses the need to take derivatives at 

each step [19]. Overcoming these types of problems will greatly improve both the accuracy 

and speed of the method. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK  

5.1 CONCLUSIONS 

The  Asymptotic Iteration and Tridiagonal Representation techniques were used to solve 

1D Schrödinger equation and find the eigen-energies of some analytically and 

approximately solvable problem for the purpose of making a comparative study. In this 

work, we used some tested potentials such as the Harmonic oscillator and the tangent 

square potential for which both methods led to closed form ( exact solution)  of the energy 

spectrum. We also considered the generalized scarf potential which is non-exactly solvable 

in the AIM.  This work brings up the importance of the asymptotic wave function and 

coordinates transformation used in introducing AIM. The aim of our approach is to 

improve the convergence and to eliminate the numerical instabilities that might be 

experienced in direct usage of the AIM. It was noticed that the existence of regular 

singularities will slow the convergence of the AIM. A remarkable observation, however, 

is that the use of plateau of stability in the implementation of the AIM plays an important 

role in the convergence, precision as well as the stability of the numerical algorithm. 

However, for a given accuracy the plateau widens rapidly with increased iterations up to 

an optimum number of iterations. After which the plateau shrinks slowly with increasing 

the number of iterations and converges to a single point. In the problem of generalized 

scarf potential, it seem to be independent of the potential parameters. In this work, we tried 
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to make a reasonable explanation to answer the question of why the zero initial value seems 

to be the convergence point of most published research. This was done by studying 

carefully the termination condition and its general structure and the plateau of convergence.  

Generally, we have succeeded in making a conclusive comparative study between AIM 

and TRA approaches. For the AIM, we have investigated the most important factors that 

contribute to the  improvement and rapid convergence of the quantization condition. Aside 

from analytically solvable potentials our investigations raise a real concern regarding the 

wide usage of the AIM for numerical computations of bound states. We also think that our 

assertion is well substantiated by our results but also due to the fact that AIM is really based 

on higher and higher order derivatives and hence it well known that successive numerical 

derivatives are not very reliable since the numerical accuracy reduces significantly with 

higher order derivatives which are the building blocks of the termination condition. We 

also expect that extensions of the AIM to deal with resonances, states with finite lifetime, 

will not converge rapidly for the above mentioned reasons. 

 However, we might want to underline that AIM is a viable technique to obtain exact 

solutions for second order differential equations, like Schrodinger equation. By using the 

technique we obtain the eigenvalues by transforming the second-order differential equation 

into a form of the asymptotic iteration method results in exact analytical solutions if it 

exists and provides closed forms for the energy eigenvalues. The energy eigenvalues are 

obtained using an iterative approach. As it is presented, AIM puts no constraint on the 

potential parameter values involved and it is easy to implement. This method also yields 

the corresponding eigen-functions which can be found via equations (2.9) and (2.10). 
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For the Tridiagonal Representation Approach, the wave-function is expanded in suitable 

discrete basis elements which must be compatible with a domain of the Hamiltonian and 

satisfying the boundary condition. The problems translated into three terms recursion 

relation for the expansion coefficients of the wave-function that solved either analytically 

or numerically to find the energy spectrum.  

However, it is important to note that the implementation of the AIM is very sensitive to the 

evaluation of higher order derivatives which affect both the accuracy and stability of the 

approach. To sum up, the AIM and TRA are efficient and steady methods for obtaining the 

energy spectrum to many interesting physical problem. However, the TRA is much more 

robust due to the drawback of AIM caused by its strong dependence on higher order 

derivatives which are the main cause of numerical instabilities. 
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5.2 FUTURE WORK  

The results of these investigations are sufficiently accurate for practical purposes. In this 

work we have succeeded in treating the 1D Schrödinger equation in the Asymptotic 

Iteration Method (AIM) and Tridiagonal  Representation Approach (TRA). As explained 

in the literature the TRA can produce a wider class of solvable potentials. In this project, 

we have considered the general approach and then considered some cases in which were 

rich and led to solvable potentials. However, it is worth mentioning that we have restricted 

our work to Jacobi and Laguerre basis but one might try another square-integrable basis. It 

should be noticed here for future work that the problem is still open and other solvable 

potentials can be found using TRA, especially in higher dimensions. Moreover, we are 

interested in applying these methods to some real physical applications such as in graphene. 

It is worth also extending these methods to examine interacting systems. 
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Appendices 

Appendix A: Classical polynomials 

A.1 The Jacobi polynomials 

The Jacobi polynomials  are a special class of classical orthogonal polynomials 

defined on  and 1, 1. These polynomials can be calculated using the 

[32, 34, 40, 41]: 

, 21
1 1 1 1 1

2 !

n n
n

n n n

d
P y y y y y y

n dy
                     (A.1) 

The Jacobi polynomials satisfy the following properties: 
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              (A.7) 

A.2 The Laguerre polynomials 

The orthogonal Laguerre polynomials ( )nL x  are defined on 0,y  and . These 

en below [32, 34, 40, 41]: 

1
!

n

n
n

y d
L y y

n dy
                                                                                       (A.8) 

These polynomials satisfy the following properties: 

                                                 (A.9) 
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Where  
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b b b
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In terms of the Pochhammer symbols 
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A.3  Hermite functions: 
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Appendix B: Calculation details  

B.1 The general form of wave operator matrix  for Jacobi basis 

The first derivatives of (3.1.1) is 

,

,( )
1 1 ( )

1 1
n n

n n

d dP y
A y y P y

dy dy y y
                               (B.1) 

Using (A.3) and substitute in (B.1) 
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1 1 2 21 1
n n

n n
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dy y y n n Ay y
  

                                                                                                                                   (B.2) 

The second derivative of (B.1): 

2 2

2 22 2

1 12 2
1 1

1 1 1 1
n
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1 1 nP y
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Using (A.2), and  
2

1 1 1

2 1 11

y

y yy
, then 
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Using (A.3) 
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Using these derivatives (B.2) and (B.5) the action of the wave operator (3.1.4) on the basis 

element will be as follows: 
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Now, for simple algebra, much attention should be paid to , that must be compatible 

with the weight function  of the basis, where and the 

integration measure is given as
1

, ,

1 'm n m n m n

dy
F y A A w y P y F y P y

y
. 

Since the weight function of the Jacobi polynomials , then, 

compatibility with the solution of this function, we require that , 

which puts a big constant and limitation on the transformations. 

Thus, generally, where , then we can use that   

2'' '
1 1

b a
y y

y y
.  Then,  the J-matrix can be written as 
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Where the integration measure is  
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The J-Matrix  element reads as  
1
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J J y J y
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In terms of  and   where  ,  

, then the J-Matrix  has the following general form 
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,
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B.2 The general form of the wave operator matrix  for Laguerre basis 

The first derivatives of (3.1.3) 
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yn
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A y e L y

dy dy y
                                                                      (B.10) 

Using (A.12): 
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For the second derivative of (B.10): 
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Using (A.11) and substitute in (B.12) 
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Using these derivatives (B.11) and (B.13) the action of the wave operator (3.1.4) on the 

basis element will be as follows: 
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A similar explanation about the potential form of  that are compatible with the Laguerre 

weight function that should be given as ' a byy y e , then we can  use that   

2'' '
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y y b
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, thus  the J-matrix can be written as: 
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In terms of nL y  and 1nL y  , where ,  

, then the J-Matrix  has the following general form 
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