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ABSTRACT 

 

Full Name : Muhammad Talal Ali khan 

Thesis Title : Characterization and Performance of an injection-locked Quantum-

Dash laser in Optical Communication. 

Major Field : Electrical Engineering 

Date of Degree : January 2017 

 

The massive surge in the demand for bandwidth and ultra-large capacity transmission has 

prompted extraordinary growth in the internet traffic in the recent years. To enable faster 

growth in network capacity of future optical communications, different light emitters have 

been considered, especially quantum confined active region based devices. In particular, a 

recent new class of quantum dash laser has shown some niche characteristics which has 

been exploited in optical communication system, particularly the broadband nature, which 

enables wide wavelength tunability. Ultra-broadband lasing emission quantum dash laser 

devices appear to be promising contender for next-generation passive optical networks by 

employing these broadband light emitter as sources.  

In this work, characterization and performance of quantum dash laser is evaluated 

at both device and system level. To improve the laser performance, optical external 

injection locking technique is introduced. The performance of injection-locked QDash 

laser is characterized which shows a wide wavelength tuning range, to which QDash laser 

diode could be injection-locked. We thoroughly performed both optical fiber and wireless 

communication using a single injection-locked Fabry-Perot mode of a QDash laser. 

Specifically, the system performance is evaluated and compared by utilizing Quadrature 
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Phase Shift Keying modulation format. The found results demonstrated the potential of 

QDash laser diode as a light source for future high speed broadband communication, 

capable of providing 100 Gb/s transmission rate in the far L–band wavelengths in both 

fiber and wireless communication. 
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 ملخص الرسالة
 

 

 

 

 

 

 

 .محمد طلال علي خان  الاسم الكامل:

 

 ليزر أداء وتشخيص العنوان الرسالة: 
 
 في الاتصالات الضوئية. الخط الكمي المحكم حقنيا

 

 الهندسة الكهربائية. التخصص: 

 

 . 7201 ياناير تاريخ الدرجة العلمية: 

 

أدت موجة الاحتياج الهائلة لنقل البيانات فائق السعة ذي نطاق العرض الترددي الواسع إلى زيادة النمو في 

ي السنوات الماضية. من أجل تمكين عملية التطور والنمو في حركات المرور على الإنترنت بشكل استثنائي ف

بوسائط  سعة شبكات الاتصالات، فإنه يتم دراسة مختلف من المصادر الضوئية وخاصة تلك التي تتميز

.  بالتحديد، أظهرت فئة من ليزرات الخطوط الكمية خصائص مركزة التي تم اتسغلالها 
 
فعالة حبيسة كموميا

 تلك ذات النطاق الترددي الواسع مما يؤدي إلى إمكانية الضبط في أنظمة الاتصالا 
 
ت الضوئية وخصوصا

الواسعة. ليزرات الخطوط الكمية ذات نطاع الإشعاع الترددي فائق العرض مؤهلة كأحد الأجهزة الواعدة في 

ادر شبكات اتصالات الجيل الجديد الضوئية عن طريق توظيف هذه الأجهزة فائقة العرض الترددي كمص

 ضوئية.
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في هذه الدراسة يتم تقييم وتشخيص أداء ليزر الخطوط الكمية على مستوى الجهاز ومستوى النظام. من 

 أبدى 
 
. أداء الليزر المحكم حقنيا

 
أجل تحسين أداء الليزر فإنه تم تقديم تقنية الإحكام الحقني الضوئي خارجيا

 في الأطوال الموجية التي يمكن أن يحكم
 
 واسعا

 
. بعد ذلك قمنا بشكل  مجالا

 
فيها ليزر الخطوط الكمية حقنيا

 وعن طريق الألياف البصرية من خلال طول فابري 
 
موجي  Perot)-(Fabryبيرو -كامل بعملية الاتصال لاسلكيا

. بالتحديد، تم تقييم أداء النظام ومقارنته باتسخدام تضمين 
 
واحد عن طريق إحكام ليزر خطي كمي حقنيا

. تبرهن النتائج المتحصل عليها على جدوى ديودات ليزر الخطوط الكمية الكامنة (QPSK)الطور الرباعي 

كمصادر ضوئية في الاتصالات السريعة ذات النطاقات الترددية الواسعة قابلة لتزويد معدلات نقل بيانات 

. سواء خلال الأليف ا band) -(Lجيجابت في الثانية في نطاق الأطوال الموجية  100تصل إلى 
 
 لبصرية أو لاسلكيا
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Chapter 1                                                           

INTRODUCTION 

A brief introduction about optical fiber communications is explained in Section 1.1 

highlighting the requirements of wavelength multiplexed network and colorless passive 

optical networks for next generation high speed communications. Later, the basic of optical 

wireless communication and its rapid developments in both indoor and outdoor free space 

optical communications, is discussed in Section 1.2. An overview about light emitting 

sources utilized in passive optical network is discussed in section 1.3. In Last, research 

motivation, thesis contribution and thesis organization are mentioned in section 1.4, section 

1.5 and section 1.6. 

 

 

 

1.1 Optical Fiber Communication  

The historical backdrop of communication is humankind’s quest for approaches to enhance 

yelling. Communication starts with dialect, a particular capacity which has made 

conceivable the development of human culture. With dialect any message, regardless of 

how perplexing, can be passed on between individuals over a long and short distances. In 

old ages, pigeons and fire were used to convey the signal for long distances. As time passes 
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electric telegraph was invented by Sir Charles Wheatstone in 1837 [1]. In 1849, the voice 

over a line electrical transmission device was invented. However, user has to setup a 

receiver near to his mouth in order to listen [2]. For many years use of light has been a 

valuable resource in communication. Using light beam, Alexander Graham bell was able 

to transmit speech in 1880. However due to limited light sources, restricted atmosphere 

and low capacity, the use of photophone after the discovery of telephone was limited. 

 

 In order to overcome this problem electromagnetic waves helped in transferring 

information especially at longer wavelengths but the bandwidth limitation was a challenge 

at that time. The advancement to increase the capacity to higher frequency was 

accomplished by Radio telecommunication. In 1841, Jean-Daniel Colladon trapped the 

light using total internal reflection inside a dielectric [3] But for long haul distance, Charles 

Kao used optical fiber to guide a light for the first time in telecommunication. However, 

losses were too high until Corning were able to reduce the loss up to 20 dB/km [4]. The 

invention of laser in 1960 was the major breakthrough in optical communication due to its 

coherency, modulation at high frequency and low beam divergence provided a more 

possibility of communication via free space beside optical fiber channel. The use of 

efficient light source was needed at that time and then there was a revolution in 

telecommunication when Robert Hall introduced the first laser diode in 1962 with emission 

wavelength of 850 nm in the near infra-red [5‒6]. There was a need for a better solution as 

compared to the exhausted copper-wired transmission lines as communication system 

evolved. At that time, light-wave communication systems showed a great potential in 
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achieving significantly higher transmission rates and higher channel capacities with low 

attenuation in long-haul communication. 

 

1.1.1 The General System  

The general schematic of optical fiber communication consist of three basic elements, a 

compact light source, low loss optical fiber and photodetector. The fiber transmission 

includes transmission of signals as light which is completely different from transmission 

via copper wire wherein electrical signals going through the link. The block diagram of 

fiber optic communication comprise of transmitter, receiver, a light source and detector, as 

shown in Figure 1.1. At the point when the information, as electrical signals, is given to 

the transmitter hardware, it changes over them into light signal. The amplitude, frequency 

and phases of the source which could be of LED or Laser diode (LD) must stay steady and 

fluctuation free to have effective transmission. 

 

 

 

 

Figure 1.1  Working principle of fiber optics communication. 
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The receiver circuit comprises of a photodetector in order to detect the light. Initially 

attenuation of an optical fiber was too high in addition to fiber joint problems. To obtain 

better performance and maintain low loss, for long distance; thanks to silica fibers which 

have solved these problems. Figure 1.2 (a) depicts the used range of wavelengths in optical 

communications which are divided into three main windows at near infra-red region, also 

tabulated in Table 1.1. Initially semiconductor optical devices were fabricated using 

Aluminum Gallium Arsenide (AlGaAs) at near infrared region between 0.8 µm to 0.9 µm. 

Afterwards using other compound semiconductors (i.e InGaAsP) the emission wavelengths 

were successfully extended to multiple communication bands, as shown in Figure 1.2 (b). 

 

 

Figure 1.2 (a) Optical losses in full spectrum silica-based fiber (b) optical communication bands, [5]. 
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Table 1.1:  Major spectral windows of optical fiber [6] 

Spectral windows Wavelength 

(nm) 

Attenuation 

(dB/km) 

Material 

1st   window 850 2 GaAs 

2nd window 1300 0.5 InGaAsP 

3rd window 1550 0.2 InGaAs 

 

 

 

1.1.2 Capacity Increasing Demand 

Fiber optics communication has changed the modern society. It has brought sensational 

changes to the worldwide communication system and to a great extent affected our day by 

day life. Broadband communication technology has been progressing very rapidly in recent 

years and so is the developments through cutting edge research.  The massive surge in the 

demand for bandwidth and ultra-large capacity transmission, to accommodate the ever-

increasing demands of individual users, has prompted extraordinary growth in the internet 

traffic demand in the recent decade, with no sign of stopping. According to the Cisco 

forecast presented in June 2016, the internet data traffic in 2016 has already reached 88.7 

Exabyte (1 Exabyte = 1018 bytes) per month and is expected to increase to 194 Exabyte 

per month by 2020 [7]. Applications such as video on demand (VoD), audio streaming, file 

sharing, high definition television (HDTV), voice over internet protocol (VoIP), online 

gaming, have shown a rapid growth trend in network traffic than the available system 

capacity. Moreover, the system requires portability and interoperability in deployment of 

next generation mobile networks for upgradation. In the following decades, there will be 
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significant challenges in terms of technology and ever-increasing traffic demands for 

telecommunication industry and is of crucial importance to develop optical solutions in 

order to solve such challenges. As depicted in Figure 1.3, it has been forecasted by Cisco 

that global traffic will pass the 1.1 Zettabyte annually at the end of 2016 (1 Zettabyte = 

1021 bytes) and will hit 2.3 Zettabyte per year in 2020.  

 

 

 

 

Figure 1.3 Cisco forecasts IP traffic 194.4 EB per month in 2020 [7]. 

 

 

 

1.1.3 Optical Communication Networks   

A typical communication network architecture consists of three parts long-haul, 

metropolitan area and access networks, as illustrated in Figure 1.4. A long-haul core 

network, also known as backbone network of the communication system, connect all 
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countries in different continents. The links are made up of terrestrial and submarine and 

usually span thousands of kilometers. The ultra-long distance and high speed transmission 

is supported by optical fiber media. The reliable communication has been made possible 

through the use of coherent detection, optical amplification, and various advanced 

modulation schemes with forward error correction [8-9].  To provide robust 

communication links, a mesh topology is usually utilized between exchange nodes in 

network design. 

 

 

 

 

Figure 1.4 Communication network topology [8]. 

 

 

The metropolitan area networks provide interconnectivity between core networks and 

access networks within cities. A coverage span usually covers a range from tens to 
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hundreds of kilometers. These networks adopt a ring topology representing traffic 

exchange nodes to connects central offices, as shown in Figure 1.4. It is necessary for metro 

networks to balance with current core network standard while concurrently meeting 

skyrocket traffic requirements.  

The access networks are referred as last/first mile of the networks depending upon the 

direction of communication, and provide the connection between the end users and the rest 

of the network. The covering range of access networks extends out to a few hundred meters 

or tens of kilometers (i.e. about 20 km) and connect the central office (CO) to the network 

user which can be either residential or business. Access networks employs complicated 

distribution architectures to deliver user applications and data to the massive number of 

subscribers. Remote node (RN) access networks, which is connected to the CO via optical 

fiber, is commonly known as hybrid fiber-coaxial (HFC) network, where the optical signal 

is converted into electrical signal to provide broadband connectivity. Alternatively, 

deployment of fiber-to-the-X (FTTx) transmission system has caught recent attention at 

RN owing to its capability of full-duplex transmission at high rates with the end user 

compared to the conventional HFC network. FTTx refers to fiber-to- the-home (FTTH), 

fiber-to- the-node (FTTN), fiber-to- the-cabinet (FTTC), fiber-to- the-premise (FTTP) and 

fiber-to- the-building (FTTB), and utilizes different network topologies like tree, bus, star 

and ring for bi-directional transmission.  

Traditional access networks such as radio frequency (RF), millimeter wave and microwave 

technologies [10] are limited in terms of the physical media constraints, available 

bandwidth, and maximum reach. Likewise, the wireless alternatives are also limited for 

long distances and unreliability of free-space channel to provide flexible access network 



9 

 

solutions. In this regard, optical fiber is one of the promising candidate for future 

broadband services as compared to the limited bandwidth and bit-rate-distance techniques. 

Optical access networks have the potential to meet the rapidly increasing bandwidth 

demand and in fact, has been commercially deployed with FTTx technology [11]. 

 

1.1.4 Optical Access Networks  

 To connect a central node to the user end nodes at the optical distribution networks, 

different architectures are available in the optical fiber networks. Point-to-point (P2P) and 

point-to-multipoint (P2MP) are the two common topologies which can realized as optical 

access networks. In point-to-point connection, single fiber is connected from each user 

node end to central node for the dedication of huge bandwidth to each customer (see Figure 

1.5 (a)). The main disadvantage of this access network is to deploy a separate fiber for each 

optical network unit (ONU) from the CO, ultimately requires a large number of ports in 

the CO, hence require large capital budget. On the other hand, when a single optical fiber 

is deployed from the optical line terminal (OLT), situated in the CO, to the active or passive 

remote node (RN) nearest to the user end, this is known as point-to-multipoint access 

networks (see  Figure 1.5 (b)) [12]. Active optical network (AON) and passive optical 

network (PON) are the two major categories of optical access networks. AON uses active 

electronic components (i.e. amplifier) at the RN, thus require electrical power supplies and 

hence increases the cost for operational and maintenance of active devices, whilst PON 

employs passive components (i.e. array waveguide (AWG), optical splitters, couplers) at 

the RN for a transmission between OLT and optical network unit (ONU).  
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Figure 1.5 (a) point-to-point (P2P) (b) point-to-multipoint (P2MP). 

 

 

 

 

1.1.5 Passive Optical Networks   

Figure 1.6 shows the most simplified PON infrastructure for FTTx technology. The optical 

transmission path in PON does not contain any active elements like AON. OLT provides 

the communication link between access network and remote nodes where active elements 

are being deployed with an optical transceiver device in the CO. Optical network units 

(ONUs) or optical network terminations (ONT) are placed near or inside the subscriber 

home for the delivery of broadband services. Only passive connection exists between OLT 

and ONU in passive optical networks. RN is located near the user premises to link the OLT 

and ONUs by passive devices like optical splitter. All the passive devices in RN along with 

single mode fiber (SMF) and distribution fiber are called optical distribution network 

(ODN) [10].  
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Figure 1.6 A simplified PON architecture. 

 

 

Through optical fiber access, PON provides a variety of broadband applications to user and 

can meet the ever increasing bandwidth demand as an efficient technology since the 

conversion of optical signal coming from the CO is converted to electrical signal at ONU. 

Some of the advantages like high bandwidth, use of passive components and cost effective 

infrastructure urge the researchers to investigate PON extensively. Massive components 

can be installed using PON technology with less technical difficulties and maintenance 

constraints. PON has several benefits over AON in optical fiber access networks, for 

instance, PON utilizes infrastructure efficiently by sharing feeder fiber as compared to 

large number of fibers and additional transceivers required in the AON network, and non-

requirement of electrical switching devices for power supply [13].  However, to prevent 

the data traffic of different ONU, a number of mechanisms are required to be employed in 

PON to avoid collision as no routing is performed to direct the traffic.   

Different PON technologies in terms of Gigabit PON (GPON) and Ethernet PON (EPON) 

has been standardized and deployed in America & Europe and Korea & Japan, respectively. 
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These conventional PON architectures are being forced to evolve in ten Gigabit PON (XG-

PON) and next-generation (NG-PON) for up to 10 Gb/s and 40 Gb/s - 100 Gb/s access 

networks, respectively, due to rise of hungry bandwidth applications and faster internet 

services [14]. The main objectives of NG-PON involve massive users, lower maintenance 

cost and ultra-high transmission rate which can be achieved by higher modulation formats 

and various architectures such as wavelength division multiplexing (WDM), time division 

multiplexing (TDM), orthogonal frequency division multiplexing (OFDM), orthogonal 

code division multiplexing (OCDM), hybrid TDM/WDM, available in literature. Figure 

1.7 shows the evolution of PON technology in terms of data speed. From these candidates, 

most of the research and development is dedicated to TDM- and WDM- PON systems for 

FTTx solutions. TDM has been widely studied in PON network such as ATM-PON 

(APON), Broadband-PON (BPON) and Gigabit-PONG (PON). In TDM-PON scheme, the 

end subscriber can share the bandwidth according to the time slots used at the OLT, in the 

time domain. However, for NG-PON where high data rates are targeted, TDM technique 

is becoming more challenging due to the requirement for the burst mode receiver where 

security can be compromised. Also, the transmission capacity will be limited when several 

ONU share the bandwidth of a PON [15]. So, WDM-PONs have been identified as 

potential scheme for NG-PONs and is currently being developed to provide higher 

bandwidth in terms of better privacy and scalability.  

 



13 

 

 

Figure 1.7 PON technology evolution [15]. 

 

 

1.1.6 WDM-PONs   

WDM-PON can provide long term solutions for NG-PON system in competition with 

TDM. The use of WDM technology in optical networks were accessed in the late 1980 

[15]. In a WDM-PON, each ONU is assigned a different wavelength to make a connection 

with the OLT, rather than sharing a single wavelength in time domain. The respective 

upstream and downstream can be performed through array waveguide (AWG) or 

multiplexer/ de-multiplexer (MUX/DEMUX). The shortcoming like limited bandwidth per 

user and network upgradation difficulty in TDM can be addressed by WDM scheme [16]. 

The dedicated wavelength for upstream and downstream transmission in WDM-PON 

provides a point-to-point connection by creating a virtual channel between each ONU and 

the OLT. However, the main challenge for practical WDM-PON system is complexity and 

the high cost of WDM components to initialize the setup [17]. Many devices such as Fabry-
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Perot laser diode (FP-LD), semiconductor optical amplifier (SOA) and AWG have been 

formulated and developed in WDM-PONs for commercial purpose [18]. For future 

broadband optical access networks, WDM-PON has gained much research interest in 

recent years as a promising solution. 

 

 

1.1.7 WDM-PON Architecture  

A typical WDM-PON architecture is shown in Figure 1.8 which consists of OLTs, AWGs, 

feeder fiber, distribution fibers. and ONUs. The OLT at central office has many transmitter 

and receivers instead of single transmitter and receiver in the case of TDM-PON. Each 

Tx/Rx connects to one ONU using single wavelength carrier that means ‘N’ ONUs would 

require ‘N’ different wavelengths. The first MUX/DEMUX located at CO is utilized to 

multiplex and de-multiplex the downstream and the upstream wavelengths. The second 

MUX/DEMUX located at RN receives the multiplexed downstream wavelengths through 

the feeder fiber and then sends to the ONU for. Hence, MUX/DEMUX are the key 

components in WDM-PON that replaces the power splitter in TDM-PON. WDM-PON 

schemes provides many peer-to-peer connections because the communication between 

OLT and ONU is realized with different wavelengths.  
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Figure 1.8 Typical WDM-PON configuration. 

 

 

1.1.8 WDM-PON Challenges 

WDM-PON has still challenging issues which needs to be addressed apart from its features 

like easy upgradation, network security and privacy, easy network management and large 

capacity. Two operations, colored (wavelength color) and colorless, are associated with 

WDM-PON. The light sources should be fixed wavelength sources in the ONU, so 

ultimately different wavelengths need to be assigned to ONUs by the WDM-PON system. 

Therefore, colorless operation is more flexible and adopted. The colorless operation makes 

each ONU unselective in wavelengths and makes convenient in maintenance. However, 

the most important challenge is to use a cost effective ONU by employing colorless 

operation to have an independent wavelength in WDM-PON [19]. Another challenge is 

that P2MP architecture in WDM-PON which has limited protection feature, where large 

amount of data can be lost if any component fails.  
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1.1.9 Colorless WDM-PON Literature Review 

To achieve high channel capacity, various WDM-PON architecture have been studied so 

far. It is desired to have a low cost ONU for initial deployment. To realize colorless ONU, 

optical source such as amplified spontaneous emission (ASE), broadband light source 

(BLS), and reflective semiconductor optical amplifier (RSOA) and typical FP-LD have 

been deployed. A bidirectional WDM-PON is demonstrated using multi-wavelength 

source (MWLS) for colorless transmitter [20] as shown in Figure 1.9.  

 

 

 

Figure 1.9 Bidirectional WDM-PON architecture based on MWLS injection-locking [20]. 

 

 

In the proposed scheme, C- and L-band wavelengths of MWLS, located at CO, are 

injection- locked for upstreaming and down streaming, respectively. To enhance the 

modulation bandwidth in low cost colorless WDM-PONs, injection-locking technique is 

adopted and has shown significant improvement in achieving high data rates [20]. A FP-

LD is utilized with a central wavelength of 1548 nm having a 10 dB bandwidth of ~10 nm. 
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The proposed injection locked MWLS showed that half of the pump power could be saved 

and can perform better than conventional BLS. Moreover, a demonstration using multi-

wavelength seeding source based on injection locked-FP-LD for colorless WDM-PON 

bidirectional transmission is explained in [21] where Quantum-dash mode locked laser 

(QD-MLL) serve as a seeding source for both upstream and downstream transmission. The 

proposed architecture in which dual fiber is placed between CO and RN for seeding and 

upstreaming to weaken the Raleigh backscattering effect, is one of the limitation in WDM-

PON. Error free transmission is achieved over 25 km SMF at 2.5 Gb/s transmission rate 

for eight channels. 

 

 

 

Figure 1.10 Colorless WDM-PON transmission based on multi-wavelength source [22]. 

 

 

Likewise, a colorless WDM-PON architecture is proposed and demonstrated by the same 

authors where single QD-MLL is located at CO serving as a multi-wavelength source, for 

injection-locked 16 channels at 2.5 Gb/s over 25 km SMF [22]. Due to high intensity noise 
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of spectrum slicing, transmission rate is limited in these types of WDM-PON transmitter 

(see Figure 1.10).  

In [23], another type of colorless source, where two sets of continuous wave (CW) seed 

lights from CO is fed into ONU to injection-locked FP-LD. Both the CW laser source are 

located at CO and can be shared with multiple WDM-PON for low deployment cost, one 

optical light source being used for downstream seed source and another as upstream seed 

source. It is reported that 10 Gb/s transmission can be achieved over 10 and 15 km fiber 

up to 16 IL- FP longitudinal modes. In this scheme, upstream transmission rate and length 

can be limited due to fiber dispersion and the used colorless source direct modulation 

bandwidth (dependent on carrier lifetime). 

 

Other schemes like wavelength reuse where wavelength specific light source (seeding 

source) is eliminated at the ONUs is proposed in [24]. The injection-locked WDM PON 

configuration based on wavelength reuse scheme is illustrated in Figure 1.11. This schemes 

demonstrates that downstream data is over-modulated ⁄ re-modulated with upstream data. 

When downstream carrier wavelengths are injection-locked at ONU then modulation is 

performed on the selected wavelengths and transmitted to the OLT for upstreaming. The 

master FP-LD placed at ONU used for injection-locking and injection-locked signal 

transmitted back to the OLT by directly modulated non-return-to-zero (NRZ) signals. As 

the passive splitter is used to split each channel at RN, TDM can be utilized to serve more 

users in this proposed architecture. A wavelength reuse is a cost-effective configuration as 

compared to the costly tunable laser source (TLS) or distributed feedback lasers (DFB) and 

RSOA. However, the interference can decrease upstream transmission at the CO since 
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downstream wavelengths were used for upstreaming. Error-free transmission is achieved 

by direct modulation at 1.25 Gb/s over 100 SMF in On-off keying (OOK) versus NRZ.  

 

 

Figure 1.11 WDM-PON configuration based on wavelength reuse scheme [24]. 

 

 

1.1.10  Challenges in Optical Communication 

Over the past few decades, optical fiber communications have been continuously 

developing with improved quality of service and new applications. Moreover, network 

traffic had grown exponentially due to large number of emerging applications and 

technology. In this regard, it is necessary to have a smooth operation of system by the 

telecommunication operators as the data traffic is consistently increasing. The type of 

transmission signal and the communication channel are subject to the capacity of optical 

communication. It is expected that the capacity of an optical channel via a single fiber will 

make no progress by year 2020 and will reach its physical limit known as “fiber wall” [25]. 
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Figure 1.12 shows the low signal-to-noise ratio as one limit, at low optical powers, while 

on the other hand, high nonlinearity is observed at high power, at longer fiber transmission 

distances. Another challenges include system reconfiguration, limitations in local area 

network and economic evolution which requires a major change in existing hardware 

networks and systems. Moreover, the installation of fiber is problematic in some areas 

within the access networks. It could be difficult to get an access and digging across the 

sensitive infrastructures. So, a potential candidate is needed to find a new solution for 

optical backbone networks to get a mobility for both indoor and outdoor users. 

 

 

    

Figure 1.12 Optical fiber communications transmission limit [25]. 
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1.2 Optical Wireless Communication 

Optical wireless (OWC) communication is being considered as an alternative optical access 

technology for future networks. OWC is expected to provide a broadband communication, 

after successfully deployment, to the existing homes where optical fiber could not be 

installed. It is a viable candidate as a ‘last mile bottleneck’ to address the problems of huge 

bandwidth [26]. It can be deployed as an emergency backup link in optical access networks 

without or with fiber system [13].  Figure 1.13 illustrates a typical OWC system comprised 

of transmitter, channel and receiver where collimators or lenses are used for collimating 

the optical beam for transmission and reception 

.  

 

 

Figure 1.13 Block diagram of OWC communication. 

 

 

 

1.2.1 Introduction  

OWC is a technology where an optical carrier is used to transfer information through free-

space channel. OWC can be classified into two major classes, namely indoor and outdoor 
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optical wireless communication. While the indoor links are mostly based on visible light 

sources (visible light communication (VLC) besides infra-red (IR) sources, the outdoor 

communication is dominant by IR sources, and commonly referred as free space optical 

(FSO) communication. Today, it is capable of transmitting 2.5 Gb/s data traffic (10 Gb/s 

using WDM in future) through free space medium. OWC does not require an optical fiber 

cable or spectrum license for an optical connection. Light travels faster through air as 

compared to the glass so OWC is a strong source of transmission at the speed of light. This 

technology is quite simple and based on the optical transceivers which consist of 

transmitter and receiver for bi-directional transmission. An optical source of high power is 

injected into lens for collimation, which transmit the light through air to another lens at 

receiving side.  Laser is a commonly used source in OWC systems. and is based on line of 

sight (LOS) communication, operating at 750-820 nm and 1520-1600 nm transmission 

windows, providing low attenuation and adhering to the eye-safety standards [27]. 

 

1.2.2 History 

Alexander Graham bell invented the first free space optics system prototype ‘Photophone’ 

in 1880 [28]. Using sunlight as a carrier, photophone transfer signal to the receiving end. 

This idea could not be commercialized due to lack of enough light sources. The 

development of free space communication systems was boosted by the invention of laser 

in 1960s. A lot of experiments were performed for deep space communication and 

aerospace application by military and national aeronautics and space administration 

(NASA) for more than 30 years [29]. However, it suffered a setback since 1970 when all 

research was focused on optical fiber communication due to the invention of low-loss fiber. 
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Recently, OWC system has started gaining attention owing to its potential to provide 

similar bandwidth transmission abilities as fiber optics, and hence is an emerging 

technology. 

 

1.2.3 Features and Applications 

OWC technology has a several advantages in terms of transmission capacity (GHz) as 

compared to the radio and microwaves (MHz). Some of its features are following: 

 requires no license for spectrum,  

 low mass requirement, 

 easy and quick upgradation,  

 high transmission rates (i.e. commercially available wireless system 100 Mb/s to 

10 Gb/s [30]) 

 high security with less interception due to the transmission of narrow beam pulses,  

 cost-effective, consume less power, reduced interference (Green communication 

technology). 

 

IR light based OWC finds application in inter-satellite communication, terrestrial 

communication (building-to-building), deep space communication, disaster recovery 

(back-haul for wireless communication), unmanned aerial vehicles (UAV) and indoor 

communication (for data centers and high performance computing). Alternatively, visible 

light based OWC are potential candidates for light fidelity (Li-Fi) technology, etc. 
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1.2.4 Challenges 

In reference [31], it is estimated that OWC communication market is already a worth of $ 

116.7 million and is expected to reach $ 940.2 million by 2020. This is a direct indication 

of its potential in addressing future data transmission capacity requirement. However, there 

are still several challenges in OWC that requires extensive research. For instance:  

 weather attenuation (fog, rain, dust, snow, smoke, haze) due to unguided medium 

which leads to the degradation of communication system. Atmospheric 

absorption, scattering and optical scintillation can affect optical signal 

propagation.  

 geometric loss (narrow unguided beam divergence through free space as FSO 

require clear LOS. 

 misalignment error by earthquake, building vibration, strong winds. 

 atmospheric turbulence. 

 

 

 

Figure 1.14 Integration of local area networks (LAN) to wide area networks (WAN) [30]. 
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Figure 1.14 shows the FSO technology based solution by integration of LAN to WAN 

using FSO communication as a last mile access, where building 1 is directly connected to 

WAN via optical fiber and building 2 has an indirect connection to WAN via free-space 

link between both buildings. Many system parameters depend upon the FSO system 

performance and is critical to understand these parameters in FSO design. Some of these 

parameters includes high transmission rates, channel lengths, misalignment effect, eye-

safety for the performance of indoor OWC, etc.  

 

1.2.5 Literature review  

OWC has been considered as a promising candidate because of its rapid development and 

capability to meet the higher data rate demand. Figure 1.15 depicts the data rate in term of 

link range (transmission distance) for different wireless technologies [32].  

 

 

Figure 1.15 Transmission distance versus free-space link length for wireless technologies [32]. 
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Different types of sources at different wavelengths have been employed to realize the OWC 

in visible and IR region.  OWC has been applied to address various types of communication 

channels such as an outdoor building-to-building FSO communication, an indoor free 

space optical data centers for rack-to-rack communication and radio over FSO (RoFSO) 

technology [33‒35].  

Indoor VLC is a developing technology which offers a number of functionalities. It is 

proposed as an alternative for indoor IR technologies and offers short range applications 

[36]. Both IR and visible links can be used for the uplink in VLC systems. Pang et al. used 

the concept of fast switching LEDs and modulated visible light, for the first time in 1999 

[37]. In 1999, a user controlled technology called RONJA (Reasonable Optical Near Joint 

Access) transmitted 10 Mb/s data using visible light beams over 1.4 km [38]. This 

optoelectronics device (RONJA) could be mounted on the roof and able to connect the 

servers with different networks. This device got quite reliable and uninterrupted operation 

without any interference except dense fog environment. In early 2000, Tanaka et al. 

proposed OWC with white- LED (WLED) for consumer communication networks [39]. 

Both illumination and communication functionality shows the emergence of WLED as one 

optical source and expected >100 Mb/s data rate using pulse-amplitude modulation (PAM) 

and discrete multitone transmission (DMT) [40]. Wireless personal area networks 

(WPANs) group (IEE 902.15) published the first IEEE standard for 802.15.7 VLC, which 

supports up to 96 Mb/s in 2011 [41-42]. Several papers have been published in the literature 

regarding VLC system. Due to high energy efficiency and wide bandwidth, VLC is 

considered as a potential candidate for 5G wireless communication in a recent survey by 

Wu et al. [43]. VLC has a potential in addressing indoor light-based wireless 
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communication (LiFi) which addresses many key advantages and solution. Tsonev et al. 

conducted comprehensive research on light fidelity systems especially for wireless 

networks utilizing OFDM [44]. Recently, VLC system has been introduced with laser 

diodes (LD-VLC) as a source of communication, to achieve higher data rates. Hussein et 

al. proposed LD-VLC system, capable of providing 5 Gb/s using OOK with minimum 

receiver sensitivity of 10−6 [45]. Off-the-shelf LEDs such as organic and white phosphor 

LED (WPLED) have a limited bandwidth of 400 KHz to <10 MHz, respectively. VLC 

system can achieve more than 200 Mbps data rate using commercial LEDs [32]. System 

bandwidth can be increased by utilizing DMT and OFDM modulation schemes in VLC 

[46]. In this regard, VLC has been experimentally demonstrated using RGB LED and 

authors reported highest data rate of 1.5 Gb/s/channel using DMT technique [47]. 

Similarly, Vucic et al. reported 230 Mb/s data rate via OOK format by using avalanche 

photodiode (APD) [48] in the VLC system. For visible light link, some of the challenges 

like high bandwidth, inter-symbol interference (IS) and high path losses need to be address 

to integrate VLC fully in current wireless topologies.  

On the other hand, outdoor OWC has been considered as a promising solution in mobile-

wireless backhaul, disaster recovery, metro ring extensions etc. operating at all three 

transmission window of optical communication band [49]. FSO has witnessed its market 

in many applications due to rapid development of optoelectronic devices. Recently, the 

radio over FSO (RoFSO) is viewed as a new innovation technology to enable the optical 

fiber and FSO communication, hence broadband connectivity would be beneficial to 

remote areas [50]. Another alternative approach has been proposed as a WLAN and FSO 

for internet access method as a data uplink and downlink for digital video broadcasting 
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[51]. Several outdoor experiments have been evaluated and tested during different times of 

the day. In [52], Juaraz et al. demonstrated the 10 Gb/s bi-directional FSO transmission 

over 147 km span communication link between two islands in U.S for 14 days. These type 

of investment flourished and increased the FSO development in commercialization. While 

the FSO for urban area applications are normally short-range link lengths (i.e. 500 m). It is 

an alternative approach to the RF links for providing broadband connectivity to the 

business and residential areas with high bandwidth. Full duplex FSO systems can operate 

up to 3.5 km length at 1.25 Gb/s transmission in all weather conditions reliably [53]. 

Numerous high speed FSO transmission have been reported in literature including 212 m 

FSO link of 1.28 Tb/s (32 40 Gb/s) [54], 320 Gb/s (840 Gb/s) transmission based on 

WDM [55], 160 Gb/s (1610 Gb/s) terrestrial FSO transmission over 2.16 km free-space 

channel length [56] and 1.6 Tb/s (840 Gb/s) transmission over a (2210 m) free space 

optical link [57]. 

Figure 1.16 illustrates the capacity of both optical fiber and optical wireless 

communications in terms of longer distances and high data rates [58]. In 5G technology, it 

is expected that the network speed for each user will reach 10 Gb/s [59]. Optical 

communications have the capacity to reach such requirements with certain constraints and 

limitations of each technology. 
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Figure 1.16 Transmission distance vs. data rate for different technologies [58]. 

 

 

 

1.3 Light Emitters  

To deliver HD video and high quality audio data, high speed optical transmission is needed 

in near future. Modern optical communication exploits light emitting diodes (LEDs) or 

laser didoes (LDs) for modulating light sources. Semiconductor lasers have been much 

focused due to its coherent light transmission within a narrow cone, thus beam coupling 

efficiency is much higher into fiber.  Injection-locking has been utilized for many years to 

increase the modulation bandwidth of communication system. This approach was applied 

in many colorless transmitters for WDM-PON applications through optical sources such 

as ASE, BLS, RSOA and FP-LDs [60‒62]. The more details about proposed PON literature 

is explained in subsection 1.1.9. These transmitters have low-cost but their transmission 

performance is limited. Moreover, the master sources such as BLS may suffer from high 
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intensity noise those includes ASE sources [63]. Similarly, the spectrum sliced ASE also 

showed high intensity noise and limited wavelength tunability when injection-locked with 

typical FP-LD [64]. Likewise, the directly modulated RSOAs WDM-PONs are often used 

in remodulation process where modulated downstream signal reuses as an injection light 

source but are found to be limited by transmission capacity [65]. Also, the conventional 

FP-LDs are typically narrow band and limits on the number of subscribers in PONs and 

hinders bulk production of transceivers in ONUs. However, they have appeared to be 

promising candidates compared to costly externally tunable lasers (TLs) and typical 

contenders like DFB, distributed Bragg reflector (DBR) lasers and vertical cavity surface 

emitting laser [66].  

Alternatively, broadband lasing emission laser devices based on Quantum dashes are also 

shown to promising candidates in optical communications. [63], particularly, WDM 

systems. In general, QDash based active region have wide gain profile due to 

inhomogeneous optical transitions, and hence translated into ultra-broadband lasing 

devices with tunable spectral range. Such devices are highly attractive in next generation 

optical fiber and optical wireless communication. Broadband nature of these devices have 

great advantage in high speed wavelength-division multiplexed (WDM) system as a single 

multi-wavelength source, as depicted in  Figure 1.17 and Figure 1.18.  

 

The quickly expanding interest for rapid information transfers and higher information 

transmission rates is becoming an integral part of our day by day life necessities. we can 

achieve maximum forecast data rate only through optical communication. A typical WDM 
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system is shown in Figure 1.17 which uses N-lasers for N-channels. A single shared 

medium could be used to transmit multiple channels simultaneously by WDM, coarse 

WDM and Dense WDM.  

 

On the other hand, a broadband emitter can supply these sub-carriers as shown in  Figure 

1.18, possesses the potential to cut down the required N number of laser diodes in the 

WDM system significantly. However, broadband emitters in the form of light emitting 

diodes (LEDs) suffered from small power-bandwidth product which limits their usage in 

communications. Recently, novel broadband semiconductor laser with large power-

bandwidth product have been reported which has the potential to be used as a source in 

WDM system. In order to have a green communication (energy efficient), a broadband 

laser which utilizes Quantum dashes in the active region, (QDash) is a potential candidate 

for optical WDM systems, given that its emission is wide enough. 

 

 

1.4 Research Motivation 

Colorless sources should be a capable of wide wavelength tuning range via optical injection 

to encompass maximum sub-carriers. Most of the existing lasers available in literature are 

limited in wavelength tunability [67‒71]. For instance, very recent 20 Gb/s upstream 

transmission using directly modulated weak resonant cavity (WRC) FP-LD is 

demonstrated, which is capable of ~26 nm (~13 nm) C–band (L–band) wavelength 

tunability (i.e. ~25–30 sub-carriers) via low power optical injection [ 67,68]. A directly 
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modulated 2.5 Gb/s ONU transmitter based on antireflection coated Fabry-Perot laser 

amplifier (AR-FPLA) is reported with a wavelength tunability of 30 nm in C–band 

encompassing 25 channels [69]. Likewise, a polarization insensitive FP-LDs with ~35 nm 

C– band tunability (i.e. ~17 sub-carriers) and 2.5 Gb/s OOK direct modulation is reported 

by injection-locking scheme [70]. In this work, we have utilized broadband and wide 

tunable injection-locked QDash laser source in next generation WDM-PON performance. 

This L– and U– band QDash FP-LD transmitter, which is capable of wide wavelength 

tuning from ~1611 to ~1634 nm (~23 nm) via optical injection, is shown to be capable of 

100 Gb/s transmission capacity, encompassing ~50 longitudinal modes or sub-carriers. 

 

On the other hand, OWC is being considered as an alternative optical access technology to 

the existing wireless RF solutions, especially for future WDM-based PON networks. For 

future access networks, several WDM FSO transmissions links have been demonstrated 

with different laser sources and transmission rates such as a 212 m FSO link based on 

wavelength division multiplexed 32 DFB-LDs in C–band (1535.7–1560.5 nm) has been 

demonstrated in [54] at 40 Gb/s/channel data rate. Likewise, 100 Gb/s transmission 

capacity per carrier, using 1550 nm LDs, has been reported in [57] on 80 m FSO links 

based on WDM. In this regard, we addressed a single channel 100 Gb/s 4 m indoor free 

space transmission system using QDash FP-LD and explored the feasibility of employing 

same tunable IL broadband QDash laser diode as a potential source also in outdoor FSO 

link for future high speed free space optical information and communication technology. 
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Figure 1.17 A typical WDM optical communication system. 

 

 

 
 

Figure 1.18 WDM optical communication system employ in a single broadband laser. 
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1.5 Thesis Research Contribution 

The following are the thesis contributions: 

 We evaluated the performance of InAs/InP quantum dash laser with different 

device structures in terms of internal quantum efficiency, internal loss, transparency 

current density, etc.  

 We proposed and demonstrated the feasibility of employing L– and U–band QDash 

laser as light transmitters in both down transmission and up transmission for next 

generation 100Gbit–PONs. This will enable mass production and deployment of 

proposed QDash laser and photodiode based transceivers, thus significantly 

reducing the cost.  

 Another contribution is QDash laser diode as a promising candidate in optcal 

wireless communication. Specifically, we demonstrate the viability of engaging 

QDash broadband laser diode as a source in indoor free space optical 

communication for high-speed broadband wireless access applications. 

 

 

1.6 Thesis Structure 

The organization of thesis is follow as: 

Chapter one contains the brief introduction about optical fiber communications. Then, 

the basic of optical wireless communication and its rapid developments is discussed in both 

indoor and outdoor free space optical communications. 
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Chapter two discusses the various light sources for optical communication and the 

literature survey on different quantum confined structures. The quantitative study is 

performed through experimental characterization of Quantum dash laser. In addition, the 

chapter also includes the comparison of fixed barrier with chirped QDash device. 

Chapter three investigate the experimental characterization of injection-locked QDash 

laser diode. Injection-locking technique and its applications is briefly reviewed. Moreover, 

the chapter explores the different characteristics and parameters for their implementation 

in optical communication system.  

In chapter four, the experimental transmission of an externally modulated far L-band 

injection-locked QDash laser diode is demonstrated. The chapter starts by discussing need 

for a unified WDM-PON transmitter for next generation. Following, the device level laser 

characterization setup is demonstrated. Later, a single channel high-speed dual–

polarization quadrature phase shift keying transmission using broadband injection-locked 

QDash laser is explained via single mode fiber. Finally, the chapter presents the proposed 

WDM-PON upstream and downstream transmitter for next-generation passive optical 

networks. 

In chapter five, the potential of optical wireless communication as an indoor and 

outdoor free space communication is discussed. Then, the single channel free space optical 

transmission and indoor laboratory setup using injection-locked QDash laser over 4 m and 

2 m free space channel, is explained. Chapter five ends with the comparison between 

injection-locked slave QDash laser and tunable master laser, as an independently carrier. 
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Chapter six concludes the thesis work and summarizes some future potential work to 

extend this novel work. 
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Chapter 2                                                                  

QUANTUM DASH LASER CHARACTERIZATION 

The literature survey on broadband Quantum dash laser and device growth process is 

demonstrated in section 2.1. In section 2.2 and 2.3, the experimental characterization of 

Quantum dash laser is investigated device structure and characterization setup is discussed, 

respectively. To extract fundamental laser parameters, the quantitative study is performed 

in section 2.4. Finally, the chapter includes the comparison of fixed barrier with chirped 

QDash device in section 2.5. 

 

2.1 Semiconductor Laser Introduction 

After the invention of first laser diode at 850 nm which was a regular GaAs p-n 

homojunction (Figure 2.1 (a)) where p-type and n type regions are of same materials, a 

novel concept of heterojunction structures was introduced by H. Kroemer [72]. Very soon, 

the first double hetero-structured (DH) laser was demonstrated with a layer of GaAs 

sandwiched between two layers of AlGaAs using liquid phase epitaxy (LPE) whose 
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Figure 2.1 (a) homo-structure junction (b) double hetero-structure junction [72]. 

 

 

bandgap is larger than that of GaAs resulting in a relatively more confined active region as 

compared to regular p-n homojunctions [73], as shown in Figure 2.1 (b). The energy band 

diagram in the DH lasers are more confined inside the active region rather than 

homostructure junctions, thus improving the radiative recombination of electron-hole pairs 

occurring within the active region. Moreover, the variation in the refractive indices of the 

active region and the p and n regions, of the heterojunction forms an optical waveguiding 

mechanism that enables confinement of photons within the transverse modes of the optical 

waveguide, as suggested by Charles B. Henry with respect to GaAs/AlGaAs wave guides 

[74]. 

 

In the early 1970s, the idea of utilizing quantum effects in a laser diode was reported. 

However, at that time, the generally employed LPE technique for growing LEDs and bulk 

laser, were capable of producing thickness greater than 200 nm which created difficulty for 

the realization of quantum well lasers. In 1976, quantum-well lasers were grown with the 

help of molecular beam epitaxy (MBE) and demonstrated in [75]. The superiority of 
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quantum well laser as compare to the DH lasers in terms of reliability was further confirmed 

by R.Dingle [74]. Quantum well technology has several advantages in term of growth 

where we can control the depth, range and arrangement of quantum potential wells. Also 

by using Quantum wells there was a dramatic increase in the population inversion 

phenomenon in the active region. However, the produced optical power of these lasers 

were small compared with bulk lasers because of the faster gain saturation as a result of 

the restricted size of the active medium. In [76], the proposal and demonstration of a 

multiple quantum-well laser solved this issue by growing many single quantum-well layers 

one over the other, providing high power but with an expense of higher threshold current. 

Different configuration have been introduced since then, to control the thickness of 

quantum well; in order to lase in ultra-violet to visible to infra-red regions [77]. 

 

For proper telecommunication applications, 𝐼𝑛1−𝑥𝐺𝑎𝑥𝐴𝑠𝑦𝑃1−𝑦  had been commonly used 

till now which can emit at 1.3 µm and 1.55 µm spectral windows. To grow quantum well 

laser diode at these wavelength windows, metal-organic chemical vapor deposition 

(MOCVD) epitaxial technique was introduced. Figure 2.2 shows the different possible 

compositions alongside the resulting effective energy bandgap. The corners of the polygon 

show the binary compounds, namely, GaP, GaAs, InP, and InAs. On the other hand, solid 

lines of the polygon show the ternary compounds, i.e. InGaAs, InAsP, GaAsP, and, InGaP 

and the points inside the polygon represent the quaternary 𝐼𝑛1−𝑥𝐺𝑎𝑥𝐴𝑠𝑦𝑃1−𝑦  material. 

The composition of the grown materials must be in such a way that their bandgap energy 

is 0.9537 eV and 0.7999 eV in order to lase at 1.3 µm and 1.55 µm according to [78 ‒81]; 

as depicted in Figure 2.2 (a). Moreover, each layer should be lattice matched to the 
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subsequent layers in layer-by-layer fashion during the growth as shown Figure 2.2 (b). The 

vertical line in Figure 2.2 (a) indicates material composition of identical lattice constants. 

This type of growth i.e. the subsequent layers is used, lattice matched to the substrate is 

essential to have a minimum strain mismatch in order to reduce defects formation which 

drastically degrades the device performance [82].  

 

To get three dimensional highly confined quantum dots (QDots), Stranski–Krastanov or 

self-assembled growth technique is used. A deliberately lattice mismatch is introduced in 

the epitaxial growth, in this technique, where the first layer will be a two-dimensional layer 

(barrier layer). Afterwards because of lattice mismatch, three-dimensional shape become 

to appear when enough different material is deposited in two dimensional fashion. Also a 

wetting layer underneath them of about 1-2 nm thickness is formed. Various studies 

employed InAs/GaAs and InGaAs/GaAs QDots active material to demonstrate 1.3 µm 

laser at room temperature, and discuss about the threshold current, gain and characteristics 

temperature T values (reported in the range of 50-100 K) [83-85]. 

 

When the lattice mismatch strain is not identical in all directions in QDots formation, 

quantum dashes (QDashes) is shown to appear, which are highly inhomogeneous in nature. 

Figure 2.3 (a) and (b) show atomic force microscopic images (AFM) of InAs QDots and 

QDashes grown on InP material system, respectively [86]. It is observed that QDashes, 

when grown on InP substrate are a mixture of QDots and quantum wire-like structures and 

follows a quasi-zero dimensional density of states (DOS) (like that of a quantum wire). In 

order to explore more on C-U bands (1.5 µm -2.0 µm) applications, InAs/InP 

QDots/QDashes based quantum confined structures have been focused more rather than 
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GaAs based QDots which are unable to cover these bands [87].  Using existing techniques, 

and InGaAlAs material over InP substrates, a QDot laser was reported in [88] emitting at 

1.63 µm having an internal loss of 3.6/cm. In [82], Akahane et al. showed a lasing emission 

of 1.58 µm out of a multi-stack of InAs/InGaAlAs Qdot lasers with a threshold current 

density of 2.7 𝑘𝐴/𝑐𝑚2. A lower threshold current density value of 1.72 𝑘𝐴/𝑐𝑚2 was 

reported later in [89] which is the lowest reported value for any InAs/InP grown QDot 

laser. 

 

 

 

 

Figure 2.2 (a) Semiconductor material quaternary configurations, showing the materials employed to attain 

1300 nm and 1550 nm emissions [76-78], (b) self-assembled epitaxial grown method. 
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Figure 2.3 AFM images of InAs grown (a) QDots and (b) QDashes on InP substrate [87]. 

 

 

For QDash laser, the first report of InAs QDash laser over a substrate of InP emitted at 1.60 

µm [90]. The reported threshold current density was 410 𝐴/𝑐𝑚2while the internal loss and 

internal quantum efficiency were ~10/cm and 60 % respectively. The better performance 

of results also depends upon the quality of growth process. Afterwards, Schwertberger et 

al. reported a great tunability range of their QDash laser based on the same materials whose 

emission peak ranged from 1.54 to 1.78 µm by the virtue of changing the thickness of the 

deposited InAs layers while keeping the threshold current at the low value of 900 𝑘𝐴/𝑐𝑚2 

[91]. 

 

Better results were reported as the quality of the growth process improved. In [92], longest 

emission wavelength of 2.03 µm was achieved using a stack of 5 layers of InAs QDashes 

embedded in an InGaAs quantum well by Rotter et al. In both QDashes and Qdots material 

system, varying the barrier thickness, composition and thickness of monolayer grown 
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material to form Qdots/QDashes (called as chirping thus creating addition inhomogenity 

of active region) as well as the fixed barrier structure (unchirped or typically grown 

structures) are reported. Chirped active region device structure provide broad gain, 

attractive for semiconductor optical amplifier and broadband laser applications. Different 

research works have followed the chirped active region technique such as [93] and [94] 

with internal loss values of 4.6 𝑐𝑚−1 and 11 𝑐𝑚−1, respectively, and internal quantum 

efficiencies of 60% and 85%, respectively, while lasing at 1.53 µm and 1.62 µm, 

respectively. 

 

In general, broadband nature of QDots and QDashes, are undesirable since it degrades the 

laser performance, however exploiting the broadband nature of these laser, they can 

confined potential applications in energy efficient optical telecommunication. Moreover, 

broadband lasers can produce extremely short light pulses in the order of picoseconds and 

femtoseconds through phase-locked mode locking inside the laser cavity. In [95], 

broadband QDash laser emitting at 1.55 µm are utilized with 8 channels (Fabry Perot 

modes from the lasing emission were used as a sub-carrier) in WDM system of 100 GHz 

spacing. A data transmission of 10 Gb/s was reported using OOK. Later, they were able to 

achieve 1.562 Tb/s over a 75 Km long single mode fiber transmission using WDM and 

higher modulation schemes [96]. All these demonstrations show the potential of broadband 

QDash laser as a potential source in optical communications. 
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2.2 Quantum Dash Device Structure 

The semiconductor laser source used in this work for device characterization is a fixed 

barrier InAs/InGaAlAs/InP QDash laser. The device structure was grown by molecular 

beam epitaxy over InP substrate. The laser is a p-i-n structure with active region consisting 

of four-sheet of InAs QDashes, and each dash layer is embedded in an asymmetric 

InAlGaAs quantum well. The wells are then sandwiched between two sets of separately 

confined heterostructures (SCHs). The QDash-in-well structure consists of a 1.3 nm thick 

compressively strained 𝐼𝑛0.64𝐺𝑎0.16𝐴𝑠0.2𝐴𝑠 layer, a five monolayer thick InAs dash layer 

and a 6.3 nm thick compressively strained  𝐼𝑛0.64𝐺𝑎0.16𝐴𝑠0.2𝐴𝑠 layer. Each dash-in-well 

stack is separated by a 15 nm thick tensile strained barrier layer of  𝐼𝑛0.50𝐺𝑎0.32𝐴𝑠0.18𝐴𝑠. 

The lower and upper cladding consist of a 200 nm thick 𝐼𝑛0.52𝐴𝑠0.48𝐴𝑠 layer with doping 

Si at 11018 𝑐𝑚−3 and a 160 nm thick 𝐼𝑛0.52𝐴𝑠0.48𝐴𝑠, a 150 nm thick 𝐼𝑛0.53𝐺𝑎0.47𝐴𝑠 with 

Be doping Si at 21018 𝑐𝑚−3, respectively [97]. Figure 2.4 (a) shows the band diagram of 

the InAs/InAlGaAs QDash laser while Figure 2.4 (b) show a plane-view AFM of the 

surface QDash. 

 

Figure 2.4 (a) band diagram of the InAs/InAlGaAs QDash laser (b) plane-view atomic force microscopy (AFM) 

of the surface QDash [97]. 
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The device structure is then fabricated using conventional laser fabrication technique and 

then cleaved in to laser bars of several cavity lengths. Figure 2.5 (a) shows such a single 

laser bar containing several fixed cavity-length devices. Each bar contains laser devices 

with different ridge width values, namely 2 µm, 3 µm, and 4 µm. Figure 2.5 (b) shows a 

microscopic image of a partial laser bar displaying two laser diode devices. 

 

 

 

 

Figure 2.5  a) A single laser bar containing several fixed cavity-length devices. (b) a microscopic image of a single 

laser bar. 

 

 

 

2.3 Bare Semiconductor Laser Diode Characterization Setup 

To characterize different laser devices of different cavity lengths, laser diode 

characterization setup was used, as shown in Figure 2.6. As mentioned earlies, each laser 

bar contains different laser devices with different ridge width values of 2 µm, 3 µm, and 4 

µm. We used 4 µm ridge width device of eight cavity lengths for testing. Each laser device 

was probe-injected with a pulsed 0.2 % duty-cycled current between 0.001 A to 1.5 A in a 

0.003 A step size. To get current- voltage (I-V) characteristics, voltage drop across each 
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device was measured at each current step. Subsequently, in order to find output light power 

vs injection current (L-I) characteristics of each laser, we collected the emitted photons 

from one of the facet using photodetector (see Figure 2.7 (a)) and obtain its equivalent 

photo-current which was related to an optical power once the lasing wavelength is known, 

by its responsivity value. Afterwards, in order to couple the optical power into single mode 

fiber, the best laser device, in terms of threshold current, efficiency slopes (extracted from 

L-I characteristics) is selected. One end of the fiber is connected to optical spectrum 

analyzer (OSA) Yokogawa AQ6370D while other end of optical fiber facet is placed on 

the three axis translation stage in front of laser device facet for proper alignment, as shown 

in Figure 2.7 (b). 

 

 

Figure 2.6 Laser characterization laboratory setup. 

 

The wavelength range was swept from 1635 to 1700 nm centered at 1675 nm with a 

resolution of 0.02 nm. Next, emission spectrum of each device were measured at different 
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injected current values to find their emission profiles and -3 dB bandwidth. All the 

measurements were performed at room temperature. The complete illustration of device 

level characterization setup before coupling the power into SMF is shown in Figure 2.8 

 

 

Figure 2.7 a) Photodetector for collection of photons (b) Laser light coupling into a lensed single mode fiber. 

 

 

 

 

 
 

Figure 2.8 Demonstration of laser characterization setup at device level before coupling power into SMF. 
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2.4 Semiconductor Laser Diode Performance Parameters 

2.4.1 I-V Characteristics  

 

The most essential diode characteristics is its I-V relationship. This characterizes what the 

current going through a segment is, given what voltage is measured crosswise across it, 

resistors, for instance, have a basic, linear i-v relationship Ohm’s Law. The slope of the I-

V curve denotes the dynamic series resistance of the diode. Figure 2.9 shows the I-V curves 

of 8 different cavity length laser devices. After extracting the slope of each I-V curve, we 

can find the Ohmic series resistance of the devices which are tabulated in in Table 2.1. In 

addition, the device turn on voltage is also calculated. 

 

 

Figure 2.9 I-V characteristics of different cavity length fixed barrier QDash laser diodes. 
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Table 2.1: Resistance values and turn on voltages of different cavity length lasers. 

 

 

2.4.2 L-I Characteristics  

L-I curve of a laser diode is the most significant performance characteristics, which 

measure the light output power as a function of injection current into device. Figure 2.10 

shows the L-I curve of different cavity lengths of the fixed barrier QDash laser. Parameters 

like threshold current 𝐼𝑡ℎ, threshold current density 𝐽𝑡ℎ and slope efficiencies can be 

extracted form L-I curve. the laser first emits in spontaneous regime as small current is 

being injected into the device, since the gain of the active medium at this point had not 

overcome the losses, yet. However, as injection current increases, until it starts to emit in 

stimulated region and this lasing action starts at the threshold current 𝐼𝑡ℎvalue. It is 

desirable that threshold current be as low as it could be, for the better efficiency of device. 

The second parameter threshold current density 𝐽𝑡ℎ is obtained by dividing the threshold 

current by the area of the active region (which is assumed to be the ridge width × cavity 

length). Threshold current density is an indicator of how good the active medium material 

is; the lower its value the better the material is. Longer cavity length laser device could 

show a much higher threshold current as compare to shorter cavity length due its larger 

active area. Certainly, it requires more current for lasing. Therefore, it is more suitable to 

refer in terms of threshold current density instead of threshold current. Another significant 

parameter is the slope efficiency that can be extracted from the slope of L-I curve. This 

Cavity Length[µm] 450 500 600 700 800 1000 1500 2500 

Resistance [Ω] 1 2 3.33 4 4.2 4 3 3.5 

Turn on Voltage[V] 0.82 0.81 0.70 0.86 0.67 0.69 0.71 0.70 
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slope indicates how much optical power is being emitted by the laser diode with respect to 

the injected current. Therefore, a higher value for this slope is desirable and is another 

direct indicator of the performance of the laser device. Table 2.2 shows the threshold 

current and threshold current density values, measured slope efficiencies and the equivalent 

optical slope efficiencies, which is obtained by dividing by the responsivity of the 

photodetector of these devices which is equal to of 6.52 mA/W (at 1.69 µm wavelength). 

It can be seen from the Table 2.2 that longer cavity has the lower threshold current density. 

However, it provides less slopes efficiencies because of small threshold gain. 

 

 

Figure 2.10 L-I characteristics of different cavity length fixed barrier QDash laser diodes. 
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2.4.3 External Differential Quantum Efficiency 

The external quantum efficiency (EQE) 𝜂𝑑 is another important parameter that represents 

how much optical power is getting out of the laser diode with respect to the supplied 

carriers into the device. It can be found by calculating the slope efficiency using the 

following relation [98]. 

 

 
𝜂𝑑 =  

Δ𝑃

Δ𝐼
 [

𝑞𝜆

ℎ𝑐
] 

  (2.1) 

 

Where, 𝜂𝑑 is the external differential quantum efficiency, 
Δ𝑃

Δ𝐼
 is the L-I curve slope 

efficiency in W/A, ℎ is Planck’s constant equals to 6.626  10−34 J.s, 𝜆 is the emission 

center wavelength, c is the speed of light in a vacuum and equals to 2.99  108 m/s and q 

is the charge of an electron equals to 1.620022  10−19 C.  

 

 

     Figure 2.11 1/ηi vs different cavity lengths of fixed barrier QDash laser. 
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Table 2.2: Threshold current density and efficiency slope of different cavity length fixed barrier QDash laser 

devices. 

 

Cavity 

Length 

[µm] 

 

450 

 

500 

 

600 

 

700 

 

800 

 

1000 

 

1500 

 

2500 

 

Threshol

d Current 

[A] 

 

0.145 

 

0.144 

 

0.183 

 

0.166 

 

0.279 

 

0.206 

 

0.428 

 

0.582 

Active 

region 

area 

[𝑐𝑚2] 

 

1.8

10−5 

 

2

10−5 

 

2.4

10−5 

 

2.8

10−5 

 

3.2

10−5 

 

4

10−5 

 

6

10−5 

 

1

10−4 

Threshol

d 

Current 

Density 

[A/cm2] 

 

8277 

 

7230 

 

7658.33 

 

5946.42 

 

8743.75 

 

5172 

 

7143 

 

5822 

Optical 

Efficien

cy Slope 

[W/A] 

 

0.54 

 

0.43 

 

0.45 

 

0.508 

 

0.506 

 

0.68 

 

0.72 

 

0.11 

Inverse 

Cavity 

Length 

[𝑐𝑚−1]  

 

22.22 

 

20 

 

16.67 

 

14.28 

 

12.50 

 

10 

 

6.67 

 

4 

EQE 

[%] 

73.3 58.3 61.09 68.69 68.69 92.31 98.32 14.9 

1/𝜂𝑑 1.36 1.72 1.63 1.45 1.45 1.08 1.01 2.01 
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In principle, the slope efficiency with respect to the increasing cavity lengths should 

decreases hence external quantum efficiency should also go down. However, Table 2.2 

shows abrupt behavior in term of threshold current, optical efficiency slope and external 

quantum efficiency, as observed in L-I characteristics of different cavity lengths (see 

Figure 2.10), besides the variation in the turn on voltage. This is attributed to the device 

fabrication process, handling and probing of the bare devices for characterization.  For the 

date of Table 2.2, we selected the best device with low threshold current and high slope 

efficiency from a number of tested devices. Moreover, we utilized the available several 

cavity lengths in both CW and pulsed mode for fitting purpose. 

2.4.4 Internal Quantum Efficiency 

Internal quantum efficiency 𝜂𝑖 is a measure of how much of the injected electron-hole pair 

in the active region is contributing to light emission inside the laser diode structure through 

radiative recombination. It is a performance parameter of the material of the active region 

itself regardless of its length unlike external quantum efficiency. External differential 

quantum efficiency values are plotted against different cavity lengths to find its value. The 

y-intercept of the extrapolated fitted line indicate the inverse of this value as shown in 

Figure 2.11. The inverse of this value represents internal quantum efficiency. 

 

Table 2.3:  Internal quantum efficiency and Internal loss of fixed barrier QDash laser. 

 

1/𝜂𝑖 Internal Quantum efficiency 𝜂𝑖 

[%]  

Slope 

[µ𝑚−1] 

Internal loss  𝛼𝑖 

[𝑐𝑚−1] 

1.284 82.64 0.00031 8.803 
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2.4.5 Internal Loss 

The internal loss 𝛼𝑖 is a parameter that represents the portion of lost generated photons 

(which are generated in active region) due to re-absorption before exiting the cavity 

through the mirror facets of the laser diode. The loss inside the optical wave refers to 

internal loss. Referring to Figure 2.11, the slope of linear fitted curve is used to find the 

internal loss according to the following [98], 

 

 
1/𝜂𝑑 =  1/𝜂𝑖 [1 +

𝛼𝑖 

ln (1/𝑅)
𝐿] (2.2) 

Where, 𝜂𝑑 is the external differential quantum efficiency, 𝜂𝑖 is internal quantum efficiency, 

𝛼𝑖 internal loss, R is the reflectivity of the mirror facets of the laser cavity which equals to 

0.31 for as-cleaved facets in typical lasers, L is the cavity length values. Table  lists the 

value of this extracted parameters. 

 

2.4.6 Transparency Current Density 

Another important parameter which is measured in Figure 2.12 , is the transparency 

threshold current density 𝐽𝑜. It is a measure of when the losses in the active region is 

compensated (i.e. Loss = Gain). Unlike the threshold current density, it does not depend 

on the length of the active region. Therefore, it does not make sense to use threshold current 

density 𝐽𝑡ℎ  for comparison of different quality of semiconductors. The transparency current 

density 𝐽𝑜 can be obtained as the y-intercept of the linear fit threshold current density 𝐽𝑡ℎ, 

at different cavity length values, against the inverse of these lengths (1/L). Figure 2.12 
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Threshold current density Jth vs. the inverse of different cavity length values. shows a 

linearly fitted line of the threshold current density values (𝐴/𝑐𝑚2) and the respective 

inverse cavity length at the inverse of different cavity length values (𝑐𝑚−1), which are 

tabulated in Table 2.3. The extrapolated fitted line shows that the transparency threshold 

current density of this laser is 5639 𝐴/𝑐𝑚2. 

 

 

Figure 2.12 Threshold current density Jth vs. the inverse of different cavity length values. 

 

 

2.4.7 Emission Spectrum 

To get the laser spectra, three cavity length lasers have been analyzed. All of them shows 

a central wavelength at ~ 1690 nm. Due to the maximum wavelength limitation of OSA 



56 

 

(Wavelength range: 600 to 1700nm), all these spectrums show high noise at the extreme 

longer wavelengths. This is due to reduce sensitivity of optical spectrum analyzer (OSA) 

at these wavelengths. Figure 2.13 (a) – (c) show the emission spectrum of the 600, 800 and 

1500 µm cavity length laser at 0.384 (2.1 Ith), 0.837 (3 Ith) and 1.19 (2.8 Ith) injection 

currents. It can be observed that 800 µm cavity length shows the broadcast emission. It can 

be observed in Figure 2.13 that as we are increasing the cavity length, the emission gets 

red shifted. This is ascribed to the decrease in the mirror loss (equation 2.2) which enables 

achievement of threshold gain at comparatively lower transition energies, thus translating 

to longer lasing emission.  

 

 

 
 

Figure 2.13 Emission spectra of the 4 µm ridge devices of cavity lengths 600, 800 and 1500 µm fixed barrier 

QDash lasers. 

  

 

2.5 Comparison of Fixed and Chirped barrier QDash Laser 

As explained in section 2.4, we utilized fixed barrier InAs/InGaAlAs/InP QDash laser 

devices for device level characterization. However, for communication experiment, 

chirped multi-stack InAs/ InGaAlAs /InP QDash laser diode was utilized due to its better 
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performance in terms of coupled power and lasing emission wavelength as compared to 

fixed barrier QDash devices. This chirped QDash laser diode laser was grown on n-type 

InP substrate by MBE technique. The active region is composed of a four stack 

InAs/InGaAlAs QDash-in-a-well structure where the layers are separated by barrier layers 

of thickness values of 10 nm, 15 nm, and 20 nm. Varying the barrier layer thickness 

between different dash ensembles introduces more inhomogeneity thereby introducing 

wide emission range. Such inhomogeneity is attributed to the variant vertical strain 

exhibited by each stack during the growth process which has a direct influence on the 

variation of the dashes height. This intentional chirping the active region increases the 

inhomogeneous broadening and consequently ultra-broadband lasing emission. A layer-

by-layer illustration of the structure of the fixed and chirped barrier Qdash laser diode is 

shown in Figure 2.14. 

 

 

Figure 2.14 QDash Laser diode device structure (a) fixed barrier (b) chirped. 
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A 4 µm ridge QDash laser diode is utilized with different cavity lengths in both fixed 

barrier and chirped barrier QDash laser devices. Table 2.4 and Table 2.5 present the 

comparison of both the above type of laser diodes with 700 µm and 800 µm cavity lengths 

which have been utilized in system level experiments. It can be observed from both tables 

that chirped QDash laser has low threshold current which leads to high internal quantum 

efficiency 𝜂𝑖 of 83.62 % as compared to fixed barrier 𝜂𝑖 82.6 %. Moreover, the chirped 

QDash cavity lengths shows better linear fitting, however leads to internal loss of 10.77 

cm−1 due to intentionally homogeneity as compared to the fixed barrier QDash cavity 

lengths which shown 8.6 cm−1 internal loss. Furthermore, Figure 2.15 shows the L-I-V 

characteristics of fixed and chirped barrier QDash laser of both 700 µm and 800 µm cavity 

lengths.  
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Figure 2.15: Light output injected current measured voltage (L I V) characteristics of (a) fixed barrier QDash 

4700 µm2 laser, (b) chirped barrier QDash 4700 µm2 laser, (c) fixed barrier QDash 4800 µm2 laser, (d) chirped 

barrier QDash 4800 µm2 laser. The corresponding insets show the lasing emission at 3 Ith injection current. 

 

 

It can be observed that the chirped barrier devices have low threshold currents as compared 

to the fixed barrier devices. Moreover, the central lasing wavelength of fixed barrier QDash 

laser was found to be ~1690 nm whereas the chirped barrier QDash laser emission is at ~ 

1610 nm, at room temperature (RT), in both cavity lengths, as shown in the insets of  Figure 

2.15. Also notice that the emission wavelength range of fixed barrier QDash lasers was 

beyond the detection limit of various communication equipments, which are in the range 

of 1528 nm ‒ 1630 nm. This rendered employment of fixed barrier QDash laser diodes in 

optical communication unfeasible. Hence, the optical communication experiments were 

accomplished with chirped barrier QDash lasers of two cavity lengths i.e. 700 µm or 800 

µm. It is noteworthy to mention that we also reduced the operating temperature from the 

RT to 14 Cº while performing the optical communications experiments to further blue shift 

the central lasing wavelength of chirped barrier QDash lasers, to be able to reach within 

the sensitivities of all the equipments/components. 
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Table 2.4:  Comparison between fixed barrier and chirped 4  700 µm2 ridge QDash laser diode in terms of 

efficiency parameters. 

  Parameters Measurements Fixed barrier QDash 

laser 

      Chirped QDash laser 

Threshold Current 𝑰𝒕𝒉 [A] 0.166 0.088 

TCD   𝑱𝒕𝒉 [A/𝒄𝒎𝟐] 5946 3372 

Central lasing Wavelength 

(nm) 

~1690  ~1610  

 

 

 

Table 2.5:  Comparison between fixed barrier and chirped 4  800 µm2 ridge QDash laser diode in terms of 

efficiency parameters. 

  Parameters Measurements Fixed barrier QDash 

laser 

      Chirped QDash laser 

Threshold Current 𝑰𝒕𝒉 [A] 0.279 0.108 

TCD   𝑱𝒕𝒉 [A/𝒄𝒎𝟐] 8743 3146 

Central lasing Wavelength 

(nm) 

~1690     ~1610 
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Chapter 3                                                                                        

INJECTION-LOCKING CHARACTERIZATION 

The experimental characterization of injection-locked QDash laser diode is investigated in 

this chapter. In section 3.1, the objectives and the need for injection-locking is discussed. 

Following, the basic operation of injection-locking technique and its applications are 

highlighted in section 3.2 and 3.3, respectively. Injection-locking technique in 

semiconductor laser is reviewed along with a literature review in section 3.4. The 

experimental injection-locking setup and characterization experiments are elucidated in 

sections 3.5 and 3.6, respectively.    

 

 

3.1 Introduction  

The telecommunication field has been driven by the digital and analogue transmission of 

data over the past 35 years with substantial improvement towards high transmission 

capacity and for longer distances. In early 1990s, the development of WDM system 

significantly increased the communication system bandwidth, where multiple users 

(wavelength channels or sub-carriers) share single fiber, as explained in chapter 1, Also 

thanks to the tremendous improvement in the semiconductor laser performance which 

enabled these achievements, particularly quantum confined active region based devices. 

However, the performance of semiconductor laser dynamics can be limited in terms of 
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linewidth, direct modulation and mode stability [99] when it comes to direction modulation 

in which information signal riding on direct current is injected or pumped in to the light 

source. Due to low fabrication cost and compactness, directly-modulated lasers are getting 

attention as promising candidate in optical communications, besides consuming less power 

as compared to the external modulation (the CW laser light, in this case, is modulated by 

an information signal through external modulator and is easier in implementation). 

However, the modulating output power depends on the internal dynamic of the laser which 

limits the transmission rates (usually low bandwidth), and has been attributed to e high 

chirp, small relaxation oscillations, etc. [100]. For instance, a directly modulated weak 

resonant cavity (WRC) lasers are limited to a low transmission rate in the range of 2.5-28 

Gb/s [101‒102].  

 

To enhance the modulation bandwidth of optical communication system, external 

modulation of semiconductor laser can be implemented. Besides, injection-locking 

technique has also been utilized in both external and direction modulation of laser and has 

shown significant improvement in the laser dynamics and thereby achieving high data 

rates. The main motivation for injection locking is to improve the laser’s linewidth, 

coherency, and wavelength instabilities [103].  

 

In the subsequent sections, the basic operation of injection-locking technique is discussed 

and later applied to QDash laser to investigate its performance under injection locking. 



63 

 

This characterization is vital for its successful deployment in optical communication 

experiments that are discussed in chapter 4 and 5.  

 

3.2 Injection-Locking Operation 

The basic operation of injection locking comprises of two optical sources called master and 

salve lasers. Figure 3.1 (a) depicts one possible configuration of injection-locking in which 

a master laser (usually tunable single mode laser) is injected into slave laser via one facet 

and the light output from the slave laser can be collected from the other facet. An optical 

isolator is usually placed to eliminate back reflection in to the master laser. In the other 

configuration where access to both the facets of the slave laser is not possible, the tunable 

master laser with narrow linewidth a CW high power is injected into the slave laser through 

optical circulator (OC), as shown in Figure 3.1 (b). Thereby, a phase become locked when 

matching between two frequencies (of master & slave) almost happens. Subsequently the 

side peaks become suppressed after locking. Physically, when a master laser is injected 

externally into the slave laser, the light we injected emulates with the emission of the slave 

laser to get amplified. When the frequency of the external injection light is close to the 

eigen-frequency or wavelength of the slave laser light, and strong enough in terms of 

power, it gets amplified due to the availability of gain provided by slave laser. 

Simultaneously, the gain of the other modes become saturate and suppress all the remaining 

free-running modes [104]. An optical circulator is placed so that only output light goes to 

the photodetector. To match the polarization states of master and slave laser, which helps 
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in improving the injection locking efficiency, polarization controller could be used within 

the setup. 

 

 
 

Figure 3.1 Typical schematics for injection-locking system (a) transmission style, (b) reflection-style [105]. 

 

 

 

 

Typically, the master laser are commercially available laser sources such as wide 

wavelength tunability external cavity laser with high linearity and DFB laser of high power, 

exhibiting small laser linewidths in the range of MHz to kHz. The important parameters 

for injection locking consists of injection ratio 𝜂 and locking range (frequency detuning) 

Δ𝑓. The injection ratio, defined as (
𝑃𝑚𝑎𝑠𝑡𝑒𝑟

𝑃𝑠𝑙𝑎𝑣𝑒
⁄ ) , determines the optical power ratio of 

master laser over the salve laser, while the frequency detuning is the difference between 

master frequency and slave laser frequency, whilst maintaining locking condition (i.e. slave 

laser should remain injection locked). Following are some advantages of the injection-

locking; 
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 Injection-locking (IL) assists in reducing the linewidth of Fabry- Perot (FP) laser 

(i.e.~ GHz to ~ kHz range). 

 Reduced phase noise and relative intensity noise [106]. 

 Reduced frequency (wavelength) chirp [107]. 

 Increase modulation bandwidth [108]. 

 

In addition, injection locking have been utilized to reduce dispersion effects caused in long 

distances of single mode fiber (SMF) [108]. It has been shown that under stable injection-

locking, a communication system can communicate over substantial length of SMF. 

Stability is an important factor for an injection-locked (IL) laser system and the, stability 

properties have been tested for a weak injection-locking by Mogensen et al. in 1985 [109].  

The authors found that injection-locking is stable under negative frequency detuning 

(𝜆𝑚𝑎𝑠𝑡𝑒𝑟< 𝜆𝑠𝑙𝑎𝑣𝑒 ) instead of positive detuning which created chaotic behavior. Figure 3.2 

shows different stability regions in terms of frequency detuning and injection power. We 

can observe that un-shaded area other than stable and un-stable locking regime where four-

wave mixing and other oscillations could occur while the shaded area represents either 

locking or unlocking operation. The hatched part shows the instability for positive 

frequency detuning with strong injection. On the other hand, the negative frequency 

detuning shows stable injection-locking for weak injection power. 

. 
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Figure 3.2 Frequency detuning vs. injection power for different stability conditions [105]. 

 

3.3 Applications of Injection-Locking  

The method of injection locking was implemented in many state-of-the-art applications. 

For instance, to improve the directly modulated laser characteristics was one of the first 

application to improve the modulation bandwidth via injection locking [110 ̶ 116]. 

Moreover, injection-locking has a wide range of applications in all-optical signal 

processing [117], millimeter-wave generation [118], power amplifiers [19] and multi-

wavelength mode locked lasers [120]. Meanwhile, the wavelength-division-multiplexed 

passive optical network (WDM-PON) concept was proposed due to rapid demand of high 

transmission in optical technology and, injection-locking has found various applications in 

optically IL colorless WDM-PON transmitter (a CW injection locked Fabry-Perot laser 

diode (FP-LD) for achieving high speed WDM-PON at 10 Gb/s upstream and downstream 

transmission [121].  
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On the other hand, injection-locking was also realized in Radio-over-fiber (RoF) 

applications. A directly modulated injection-locked DFB laser was demonstrated in RoF 

communication channel for 155 Mb/s transmission [122], cable access TV applications 

(CATV) [123], and free-space optical communication for both visible and infra-red (IR) 

regions. In visible region, an injection-locked 680 nm VCSEL has been demonstrated to 

increase the transmission rate up to 40 Gb/s for optical wireless communication 

applications such light-fidelity (LiFi). Similarly, an IL laser diode transmitter based on 405 

nm blue light is demonstrated to improve the bandwidth performance of underwater optical 

wireless communication from 2.3 Gb/s to 9.6 Gb/s [124‒125]. Moreover, an 

injection0locked FSO transmission in IR regions will be discussed in chapter 05, in detail.  

 

 

3.4 Injection-Locking in Semiconductor Laser 

Researchers have worked on the idea of frequency locking between two oscillators for 

centuries. Locking phenomena can happen between oscillators of any sort, and was 

demonstrated first on two pendulum clocks which were synchronized by Huygens in 1665. 

He found that two pendulum clock could synchronize to each other even with different 

initial parameters [126]. Later, Van der Pol created forced electronic oscillator using 

Huygens phenomena in 1927 [127]. Moreover, R. Adler in 1945 further made a 

development tothis technique in electronics and communication [128]. He addressed 

locking phenomena theoretically in electric oscillators. 
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After the invention of laser in 1960s, for the first time in 1966, Stover and Steier 

successfully injection-locked two HeNe lasers [129]. In 1976, Buczek and Freiberg 

successfully demonstrated the injection locking in CO2 lasers [130]. Finally, after the 

development of semiconductor lasers, employing injection-locking technique on them has 

been the focus of several researchers. In fact, it was found that injection locking with 

external modulation helped in reduce the linewidth and noise in lasers [131‒132]. This was 

found to be one of the most important advantage of injection-locking. In addition, injection 

locking in direct modulation was also realized for coherent optical communication, with 

the advancement in active materials and laser designs [133‒134]. However, direct 

modulation still limits the transmission capacity in optical communication links.  

Several investigations were performed to enhance the modulation bandwidth of 

semiconductor laser diodes. In 1980’s, Kobayashi et al. demonstrated injection locking on 

GaAs/AlGaAs double heterostructure lasers for single-mode operation [135]. In this paper, 

the authors reported the interference pattern between master laser and slave laser using 

phase injection-locking technique which could be used as an amplifier or oscillator in 

coherent transmission. Subsequently, the suppression of side modes to get a single mode 

via injection-locking with low partition noise at 1550 nm wavelength was demonstrated by 

Iwashita et al. [132]. In 1982, various theoretical works were published by Lang et al. on 

detail characterization of injection locking in semiconductor lasers [136]. Recently, using 

slave DFB at 1.55 µm, Lee et al. showed enhancement in the modulation bandwidth of up 

to 28 GHz [137] via injection locking compared to 20 GHz without injection locking. In 

2003, Cheng et al. demonstrated VCSEL injection locking at 1.55 µm for the first time 

[138], [139] and demonstrated the enhancement of analog transmission. On the other hand, 
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digital transmission is also demonstrated by directly modulated VCSELs with transmission 

rate of 2.5 Gb/s over 50 km SMF.  

Quantum confined active region based laser has also been explored via injection-locking. 

An injection-locked Qwell laser was demonstrated for small-signal modulation 

enhancement. The injection-locking showed twofold improvement in 3dB modulation 

bandwidth of IL- FP laser (10.5 GHz) as compared to free-running (5.3GHz) [140]. Lately, 

three dimensional confined Qdots based lasers have been investigated at 1.33 µm and 1.55 

µm applications. Terry et al., reported the four times modulation bandwidth (16.3 GHz) 

enhancement in Qdot laser via injection-locking at 1.3 µm [141]. In addition, InAs/GaAs 

Qdot mode-locked lasers (MLL) have shown much advancement in improving the 

pulsewidths and RF linewidths. Sub picoseconds pulse widths have been reported using 

single-section 1.55-µm Qdot MLL up to 346 GHz repetition rates with few KHz radio 

frequency (RF) linewidths [142]. Similarly, QDash-based laser has also been explored in 

injection-locking for ultra-high speed and short-pulses generation. Very recently, Sooudi 

et al., in 2011, reported optical injection-locking in 21-GHz single-section and two-section 

InAs/InP 1.5 µm QDash mode-locked lasers [143]. The single-section laser only operates 

as a self-mode-locked laser while the two-section laser could operate as both a self-mode-

locked laser (SMLL) and saturable-absorber mode-locked laser (SAMLL). Figure 3.3 (a) 

and (c) show the optical and corresponding RF spectra of the SMLL while for the SAMLL, 

the locked and free running optical and RF spectra are shown in Figure 3.3 (b) and (d).  

Figure 3.3 (c) shows the injection-locked RF linewidth of 160 KHz as compared to ~100 

KHz free running in SMLL while ~165 KHz linewidth was found in SAMLL in Figure 3.3 

(d). More than 1 GHz locking range is found in both cases with wide frequency tuning 
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range (~270 MHz) of MLL. The authors also proposed dual-mode injection-locking QDash 

for two section SAMLL.  

 

Very recently, an injection-locked QD-MLL is utilized for the reduction of the noise from 

mode locked laser to get narrow linewidth optical combs for coherent communication 

[144], [96]. The InP QD-MLL acts as slave laser whereas external tunable laser is used as 

master laser in injection-locking process. Likewise, the multi-wavelength coherent seeding 

source is proposed for injection-locked FP-LD using QD-MLL [22]. So, the novel 

quantum-dash laser diode can meet the requirements of future high speed communication 

through an injection-locking, hence could be route towards next generation optical 

networks. 

 

 

Figure 3.3 (a) Optical spectrum of the SMLL at free running (dashed-line/blue) and locked (solid-line/red) (b) 

Optical spectrum of the SAMLL. (c), (d) RF spectrum corresponding to (a) and (b) [143]. 
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3.5      Experimental Optical Injection Setup 

Figure 3.4 shows the experimental setup for characterization IL QDash laser. The setup 

consists of high quality narrow linewidth (less than ~ 100 KHz,) tunable laser (master), 

isolator, 3 port optical circulator, polarization controller (PC), chirped QDash laser (slave) 

and Agilent 86142B optical spectrum analyzer (OSA). The TLS is connected to port 1 of 

OC through isolator to prevent the TLS from back reflections. The QDash slave laser is 

injected into the port 2 of the OC via APC/FC connector. PC is placed to improve the 

injection-locking efficiency and maximize the output power. Port 3 of the OC is connected 

to optical spectrum analyzer to analyze the injection-locking. 

 

 

 

Figure 3.4 Experimental setup for the injection-locking of QDash laser diode. 
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3.5.1 Tunable Master laser   

The single mode continuous wave TLS has a wider wavelength tunability of 1461‒1635 

nm with -7 to +7 dBm power range. The TLS was manufactured by Keysight technologies 

having a model number agilent 8146B. The controller is attached to tune the wavelength 

up to four decimal digits’ accuracy. Figure 3.5 shows the single mode (carrier) of the TLS 

at ~1621 nm. This TLS carrier is injected into port 1 of OC which is observed (100 %) 

using OSA with a 0.06 nm resolution having an integrated power of ~ -5 dBm from 1614 

nm to 1628 nm wavelengths which is displayed on OSA. The associated -3 dB (-15 dB) 

bandwidth at ~1621 nm is measured to be ~0.06 (~0.16) nm. The reason to select this 

particular wavelength is because our injection-locked mode utilized for optical 

communication is at around ~ 1621 nm and is discussed in chapter 4. 

 

 

Figure 3.5 Single mode TLS carrier at 1621 nm. 
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3.5.2 Slave (QDash) Laser 

A bare 4  800 µm2 ridge-waveguide QDash Fabry-Perot laser diode (QD-LD) is utilized 

for injection locking characterization. It is mounted on a brass base with p-side up 

configuration as shown in the insets of Figure 3.6. The device temperature is controlled by 

Keithley-2510 temperature controller and a CW of 250 mA is injected through Keithley-

2520 laser diode test system. The single laser facet optical power is then coupled into a 

lensed single mode fiber (SMF) at 14ºC temperature. A maximum optical power up to ~1.0 

mW (~0 dBm) is measured at the fiber end before roll off. After coupling the maximum 

power, the SMF is connected to the OSA to check the free running QDash lasing spectrum, 

as shown in Figure 3.6. The spectrum shows the emission centered at ~1625 nm with ~9 

nm lasing -3dB bandwidth. The longitudinal mode spacing is 0.35 nm (40 GHz). This slave 

laser optical power is injected into port 2 of the OC to get an injection-locked mode at port 

3 of OC after fine tuning of master laser wavelength for injection-locking to occur. 

 

 

Figure 3.6 Free running QDash laser spectrum centered at 1625 nm. 
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In addition, the stability of the QDash laser has been examined in terms of output optical 

power and emission center wavelength. The stability test is conducted for an observation 

time of ~60 minutes. By focusing on a single FP mode at ~1621 nm, (the mode that was 

injection-locked), both the fluctuations in the output power and shifts in the emission center 

wavelength are tracked every 5 minutes, with 3 reading per min for the first 7 minutes. 

Figure 3.7 shows the variation in the measured output power and the emission center 

wavelengths as functions of time, with corresponding fluctuations of ~1.5 dB and ~0.05 

nm. In the subsequent section, via injection locking, these variations were considerably 

reduced, thus improving the mode characteristics to be used as a sub-carrier in optical 

communication experiments. 

 

 

 

 

Figure 3.7 Emission center wavelength and average integrated power as functions of times. 
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3.5.3 Injection-Locked Mode 

An optical spectrum analyzer was connected at port 3 of OC for the measurement of IL- 

FP mode.  A TLS CW injection light, fixed at 5 dBm external injection power, is 

transmitted through an isolator to an OC and PC, and into the QD-LD. The output spectra 

of the injection-locked QD-LD is observed using OSA.  Figure 3.8 shows the optical 

spectrum without TLS injection and with injection and tuned to lock at ~1621 nm 

longitudinal mode with ~ ±10 pm locking range. The measured single mode output power 

and side-mode suppression ratio (SMSR) are -7.8 dBm and 38 dB, respectively. In addition, 

a 9 dB gain is exhibited by injection-locking besides reducing the phase noise. 

 

 

Figure 3.8  QDash laser characteristics under free running mode and injection locked mode. 
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3.6   Characterization of Injection-Locked Modes 

 

3.6.1 Tunability 

The slave QDash could be characterized to check the tunability from shortest to longest 

wavelength Fabry-Perot mode that could be injection locked. Moreover, the performance 

of all the injection locked QD-LD modes should be similar, if employed as sub-carriers in 

the WDM-PON architecture. 

In injection-locking characterization, the tunability experiment of the QD-LD is performed 

using the same 4  800 µm2 QDash Fabry-Perot laser diode. The fixed CW injection power 

of 5 dBm is launched into each longitudinal mode of the QD-LD at different TLS 

wavelengths. The results are plotted in Figure 3.9 which shows a wavelength tunability of 

~23 nm from ~1611 nm to ~1634 with 1.31 nm tuning steps. A fluctuation of ~3.2 dB and 

~3 dBm in SMSR and output power, respectively, is observed across the ~1613.6 –1634 

nm wavelengths tuned IL modes. However, mode-to-mode power variation increases from 

~ 3 dBm to 5.5 dBm after including ~1611 nm IL mode. This is attributed to the high 

fluctuation of Fabry-Perot mode power towards shorter and longer wavelengths of the 

QDash slave laser free-running spectrum which has a central wavelength of ~ 1625 nm. If 

we exclude this IL mode, the wavelength tunability will be ~21 nm.  It is worth to be noted 

that the output power and SMSR of each of the IL mode could be unified by varying the 

injection power besides changing the TLS wavelengths since this has been fixed at ~5 dBm 

in our case. Figure 3.10 shows the output power and the side-mode suppress ratio (SMSR) 
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versus the different lasing wavelengths with ~1 nm tuning step in the same wavelengths 

range mentioned above.  

 

 

Figure 3.9  Tuning range (1611‒1634 nm) of injection-locked modes of a QDash laser at different wavelengths, 

and at a fixed CW external injection of ~5 dBm. 

 

 

It can be observed that the output power and SMSR variation between ~1619.6 –1627.5 

nm is minimal, whereas, these fluctuation increase towards the shorter and longer 

wavelength extremes. This might be due to the smaller output powers of QD-LD Fabry-

Perot modes that resides at the edges of the -3 dB lasing spectrum (see Figure 3.8), as 

discussed above. These variations could be unified by varying the TLS CW power at each 

wavelength locked mode, as explained earlier. Moreover, an improved QD-LD optical 

power (by optimized device design and packaging) would enable working at lower current 
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bias point which might help in lowering down the CW injection power and improve the 

locking range [145,146]. 

 

 

Figure 3.10 Output power and SMSR versus different lasing wavelength with tuning steps of ~1 nm. 

 

 

3.6.2 Short-Term Stability 

A short-term stability of the injection-locked QD-LD mode is also conducted and found to 

be stable throughout the observation time of 24 minutes. The IL mode was at 1619.68 nm 

with -5.7 dBm output power. The power, SMSR and wavelength variations of IL QD-LD 

mode are found to be ~0.5 dB, ~2.5 dB and 0 nm, respectively, as shown in Figure 3.11 (a) 

and (b).  The laser source has performed well in terms of output power and SMSR stability. 
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An injection-locked mode is sustained for ~24 minutes thus affirming the stability of 

injection-locking and hence its potential application in optical communication. 

                  

 

 

Figure 3.11 Short term stability test of the 1619.68 nm IL mode (a) in terms of wavelength and output power 

variations, (b) in terms of output power and SMSR variations. 

 

 

3.6.3 Injection-Locked Hysteresis 

Figure 3.12 illustrates hysteresis curve of the injection locked 1621.01 nm mode. By 

varying the external injection power of the TLS from 7 to 3 dBm (reducing) and then 3 to 

7dBm (increasing), the injection-locked single FP mode and its output power was 

measured. It can be seen that injection-locking was maintained till 4.2 dBm starting from 

+ 7 dBm, afterwards the mode was unlocked which was observed till 3 dBm. Similarly, on 

increasing the external injection power from +3dBm, the mode was unlocked till 5.8 dBm 

and then injection-locking again occurred at 6 dBm which was measured up to 7 dBm. 

 

It was found that injection-locking could be achieved above 4.2 dBm TLS injection power. 

Also, increasing the injection power more than 6 dBm does not appreciably improve the 
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output power of the injection locked mode. Moreover, the power variation in the injection 

locked mode, which is observed at high injected power i.e. > 6 dB, might be the effect of 

variation in gain which might be possible in highly inhomogeneous active region QDash 

lasers.    

 

 

Figure 3.12 Injection powers vs. output powers of the injection-locked QD-LD. The IL mode is fixed at 1621.01 

nm. 
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Chapter 4                                                                          

INJECTION-LOCKED QUANTUM DASH LASER IN 

OPTICAL FIBER COMMUNICATION 

The experimental transmission of an externally modulated far L-band injection-locked 

QDash laser diode is demonstrated in this chapter. In section 4.1, an injection-locked 

conventional transmitter and the need for a unified WDM-PON transmitter for next 

generation is discussed. Following, the device level laser characterization setup is 

demonstrated in section 4.2. The single channel transmission using injection-locked QDash 

laser is explained in section 4.3. In section 4.4, the proposed WDM-PON upstream and 

downstream transmitter is discussed. 

 

 

 

4.1 Introduction  

The explosive increase in the demand for high speed internet and mobile connectivity at 

the user end, driven recently by existing WDM based optical access networks, will soon 

experience difficulties meeting up with the extraordinary increase in the transmission 

capacity in near future [147,148]. The next generation passive optical networks (NG-PON) 
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solutions such as 100Gbit-PON has been considered as a promising solution for ever-

increasing number of subscribers and their broad-band services demand [149]. Besides, 

this trend dictates a need in the expansion of upstream and downstream transmission 

window beyond the current C– and near L– bands (<~1610 nm) which is leveraging on 

low optical fiber attenuation and amplification opportunity, to achieve cost effective and 

upgrade flexibility PON [147,150]. 

 

Indeed, the recently proposed colorless PON to realize wavelength independent 

communication, by employing spectrum sliced and injection locked transmitters is 

garnering attention. Furthermore, semiconductor optical amplifiers (SOA) [149,151], 

Fabry-Perot laser diodes (FP-LD) [152] and weak-resonant-cavity laser diode (WRC-

FPLD) [153] based transmitters has appeared to be promising candidates compared to 

costly externally tunable lasers and DFB or DBR lasers [17]. However, directly modulated 

SOAs are found to be limited by transmission capacity with a maximum of 25 Gb/s 

transmission over 120 km single mode fiber (SMF) [149]. On the other hand, conventional 

FP-LDs are typically narrow band and limits on the number of subscribers in PONs and 

bulk production of transceivers in ONUs.  

 

Therefore, a unified transmitter exhibiting all these essential requirements is decisive for 

mass deployment. Various WDM-PON transmission reports are available in literature 

using IL FP-LD [154-155]. In general, most of the reported works exploit direct modulation 

scheme for simple and cost-effective Gigabit-PONs, nonetheless the bandwidth will be 

limited by the fundamental properties of the transmitter light source active region (i.e. 
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carrier dynamics) which could pose a bottleneck for next generation 100Gbit-PONs, which 

has been standardized, and 400Gbit-PONs, which is under consideration. 

  

In this chapter, we intend to employ an injection locked QDash FP laser mode as a single 

channel for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) 

transmission experiments via SMF. We evaluated the externally modulated QDash FP-LD 

IL mode, without any signal amplification, in terms of maximum transmission data rates 

and longest fiber length possible. 

 

 

 

4.2 CW Characteristics of Chirped QDash Laser Diode 

To meet the requirement of the different system elements, different QDash laser devices 

were identified that operated at shorter central lasing wavelengths and with high power, 

under CW injection. The device temperature has been set at 14º C with the objective of 

blue shifting the lasing spectrum and improving the output optical power. However, 

reducing the temperature further caused the formation of frost over the brass base that could 

damage the laser diode, hence the 14 degrees operating temperature was selected and fixed 

throughout the experiment. The selected 4800 um2 chirped QDash laser diode shows a 

good performance in terms of consistency, optical coupling power and stability for system 

level work.  

.  
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Figure 4.1 Demonstration of laser characterization setup at device level. 

 

 

Figure 4.1 illustrates the bare laser characterization setup by including all pictures of the 

components. The bare 4  800 µm2 ridge-waveguide QDash FP-LD (QD-LD) is mounted 

on a brass base with p-side up configuration. Two probes are used where the cathode one 

connected to the brass base while the anode probe is placed over an isolated gold plated 

clamp that touches the p-contact of the laser. First, the device is characterized under a short 

pulse width (SPW) current operation with a pulse width of 0.5 µs and a delay width of 250 

µs (0.2% duty cycle). After safely current probing the laser using Keithley 2520, the 

voltage drop across the diode is measured. In addition, the optical power from one of the 

facets is also measured via integrating sphere with InGaAs photodiode. For injection 

locking characterization and communication experiment, the single laser facet optical 

power is coupled into a lensed SMF. The facet end L-I-V characteristics under pulsed and 
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CW operation, are shown in Figure 4.2 (a), (b) at 14ºC while the SMF fiber end L-I-V 

characteristic under CW operation, and at 14ºC, is shown in Figure 4.3. The SMF was 

mounted on a three-axis manual translational stage for aligning purpose and the other end 

of the SMF was connected to an optical lightwave multimeter, as shown in Figure 4.1, 

which helped in alignment.  

 

 

Figure 4.2 The facet end L-I-V characteristics (a) pulsed operation and, (b) CW operation. 

 

An optical power up to ~1.0 mW (~0 dBm) is measured at 240 mA maximum injected CW 

current through the SMF end. A huge degradation in the laser performance is observed 

under the CW mode compared to pulsed current operation (see Figure 4.2) which is 

expected since the device active region design is not optimized. With proper growth 

optimization, the laser performance could be substantially improved, and would be 

comparable to the pulsed operation [156]. Moreover, an optimized design laser would 

enable realization of ultra-broadband lasing bandwidth of >50 nm and power > 100 mW in 

CW operation. 
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Figure 4.3 L-I -V characteristic of free running QDash laser, measured at the SMF end. The inset shows the 

bare QDash FP-LD power coupled to a lensed SMF. 

 

 

 

 

4.3 Injection-locked Optical Communication  

After setting up the experiment, we performed an optical fiber transmission experiment 

using only a single channel injection-locked QDash laser, at different transmission rates, 

via back-to-back (BtB) as a reference case and over a fiber link. In the previous chapter, 

we successfully showed an injection locked wavelength tunability of ~23 nm which covers 

~50 sub-carriers, showing its potential usage in PON. Thus, the performance of all the 

injection locked QD-LD modes in PON-WDM system will not be affected appreciably, 

provided the channels (i.e. the injection locked modes) exhibit similar power and SMSR. 
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4.3.1 Optical Fiber Transmission Setup 

Figure 4.4 represent the data transmission experimental setup. The QDash laser spectrum 

of the 4800um2 QDash laser is observed on OSA as shown in Figure 4.5. The OSA is 

used for characterizing the injection-locking characteristics and also to monitor the 

injection-locked mode while performing communication experiments. 

 

 

 

Figure 4.4  Experimental setup of DP-QPSK WDM transmission via injection locked QDash FP-LD. The signal 

transmission is characterized first in a back-to-back (BtB) configuration and then over a 10 km single mode 

fiber (SMF). 
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7  

Figure 4.5 Agilent optical spectrum analyzer for characterization of an injection-locking. 

8  

9 The measured free running lasing spectrum of QDash laser is shown in  Figure 4.6 with 

~8‒10 nm lasing bandwidth at a CW current injection of 240 mA centered at ~1625 

nm (calculated at the full width at half maximum). When the wavelength of the tunable 

master laser source was tuned to one of longitudinal mode (~ 1621 nm) of the QDash 

laser while keeping a fixed external CW injection of 5 dBm, injection-locking occurs, 

as shown in the insets of Figure 4.6.  The longitudinal mode spacing and threshold 

current are 0.35 nm (40 GHz) and 100 mA, respectively. 
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Figure 4.6 Free-running lasing spectra of the bare 4  800 µm2 QDash laser. The inset shows an injection-locked 

single FP mode of the broadband QDash laser at ~ 1621 nm. 

 

 

During the injection-locking process, an optical circulator, polarization controller and 

isolator are utilized, which are shown in Figure 4.7. Isolator and PC are used to protect the 

TLS and improve the injection-locking efficiency, respectively.  

 

 

Figure 4.7 Optical isolator (b) 3-port optical circulator (OC), and (c) polarization controller (PC). 
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Afterwards, the output spectra of the injection-locked QD-LD is observed at the 2% output 

of a 2/98 optical coupler (CP) while remaining 98% is fed into the modulator for 

transmission experiments. The 98% of the injection-locked mode at ~ 1621 nm is fed into 

dual polarization In-phase Quadrature-phase modulator (DP-IQM) for modulation. Figure 

4.8 depicts complete electronic circuitry of the optical modulation that includes Quad 

digital-to-analog converter (DAC), four amplifiers, two Mach-Zehnder IQ modulator 

(MZM) and one phase modulator. 

 

 

Figure 4.8 The optical modulation circuit utilized during communication experiments. 

 

After DP-IQ modulator, we employed a variable optical attenuator (VOA) before sending 

the signal into OMA for detection, as shown in Figure 4.9. After transmission, different bit 

error rate (BER) values can be measured by attenuating the optical received power using 

VOA to reach forward error correction (FEC).   
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Figure 4.9 Variable optical attenuator (VOA). 

 

For signal detection and analysis, we used Keysight optical modulation analyzer (OMA-

N4391A), as shown in Figure 4.10, in order to demodulate the signal and extract 

constellation diagrams, I-Q eye diagrams, received baseband signal, Q-factor, received 

optical power, BER values etc. Figure 4.11 shows an illustration of the whole 

communication system in which the QDash-LD has been employed. 
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Figure 4.10 Keysight optical modulation analyzer (OMA). 

 

 

 

 

 

Figure 4.11 A complete illustration of an experimental optical communication setup via injection-locking 

technique showing all the system and device level components. 
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4.3.2 Transmission Experiments 

Once, the QD-LD is injection locked with an external injection of ~5 dB, the selected sub-

carrier with mode power -5dBm is fed to the dual polarization IQ (DP-IQ) modulator and 

modulated with DP-QPSK scheme at 8, 16 and 25 Gbaud. Pre-processing of the signal was 

performed using MATLAB by generating a pseudo random binary sequence (PRBS) with 

a length of 211-1 and mapped into QPSK constellation by an arbitrary wave generator 

(Keysight AWG M8195A). A sampling rate of 64 GSa/s is used to generate four channels 

multi-level signal, two channel for individual polarization, employed as a digital to analog 

converter (DAC). The output of four signals are driven, through a four channels linear 

amplifier of 20 dB gain over 32GHz flat bandwidth, into the four RF inputs of DP-IQ 

modulator. A far L–band sub-carrier at ~1621 nm (see inset of Figure 4.6) is selected for 

DP-QPSK signal transmission with root raised cosine (RRC) pulse shaping filter having 

0.35 roll-off factor. The signal transmission is characterized first in a back-to-back (BtB) 

configuration and then over a 10 km SMF for all transmission rates. 
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4.3.3 32/64 Gb/s DP-QPSK WDM-PON Transmission 

The DP-QPSK signal is transmitted at 8 and 16 Gbaud transmission which corresponds to 

32 and 64 Gb/s, characterized first in a BtB configuration and then over a 10 km SMF. In 

order to evaluate the performance of the communication system, the bit error rate (BER) is 

estimated. BER is a measure that quantifies the probability of erroneous data in decoding 

a digital signal. Figure 4.12 presents the variation of BER with the received signal 

sensitivity. To achieve 3.8 × 10−3 FEC threshold (ITU-Criterion [157]), received power 

of -18.7 (-19.7) dBm are required for 64 (32) Gb/s in BtB case. On the other hand, a receiver 

sensitivity of -18.4 and -16.7 dBm is observed for 32 and 64 Gbit/s respectively, after 10 

km SMF transmission, with power penalties of ~1.3 dB and ~2 dB respectively, under the 

FEC threshold. This might be loss incurred by the fiber due to extreme far L-band 

wavelength (~1621 nm) operation.  

 

 

Figure 4.12 BER versus received optical power at 32 and 64 Gbit/s under BtB and after 10 km SMF 

transmission. 
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The eye diagrams and constellation are also measured to evaluate the overall optical system 

performance. The opening of an eye diagram, both vertically and horizontally, is a direct 

indication of the quality of the recovered signal. The horizontal openness of an eye diagram 

(eye width) reflects how well aligned both the rise and fall times of each bit are. As the 

transmission rate is increased, reflections, chromatic dispersion, signal distortion, and 

inter-symbol interference (ISI) play a major role. On the other hand, the vertical eye 

openness (eye height) of the eye, plays a significant role in received bit decision making 

between 0 and 1. Moreover, the vertical opening of the eye diagram is affected by the 

optical output power of the QDash laser in addition to different loses that occur at different 

elements of the communication system while Horizontal opening is affected mainly at high 

rates by pulse spreading due to chromatic dispersion and reflections. 

 

Figure 4.13 (a), (b) show the eye diagrams and QPSK constellations for BtB and 10 km 

transmission of 32 Gbit/s data rate at -19.7 dBm received power for BtB transmissions 

while -18.4 dBm received power for 10 km SMF transmission, respectively. Similarly, 

Figure 4.14 (a), (b) show the eye diagrams for 64 Gbit/s at -18.3 dBm and -16.3 dBm for 

BtB and 10 Km transmissions, respectively, just below the FEC threshold. 
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Figure 4.13 Eye diagrams and QPSK constellations of 32 Gb/s data rate (a) BtB and, (b) 10 km SMF 

transmission, at FEC threshold. 

 

 

 

Figure 4.14 Eye diagrams and QPSK constellations of 64 Gbit/s data rate for (a) BtB and, (b) over 10 km 

transmission. 
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4.3.4 100 Gb/s DP-QPSK WDM-PON Transmission 

The corresponding error vector magnitude (EVM) BER results at 25 (100) Gbaud (Gb/s) 

transmission in both configurations are presented in Figure 4.15. To achieve a BER of 

3.8×10-3 (FEC threshold), a received power of -17.2 dBm is required for 100 Gb/s date 

rates, in BTB case. On other front, the corresponding receiver sensitivity of -17.4 dBm is 

noted after 10 km transmission, with power penalty of ~0.2 dB. This also might be 

attributed to the variations in the OMA sensitivity because of the extreme far L-band 

wavelength operation, as explained earlier. In addition, since the measurements are 

performed with a bare QD-LD by coupling the light into a lensed SMF, any transmitter 

(injection-locked mode) power variation could also lead to receiver sensitivity fluctuations. 

Table 4.1 displays the measured Q-factor values for all transmission rates at their maximum 

received optical power. The Figure 4.16 shows the eye diagrams and QPSK constellations 

for 100 Gbit/s at -16.2 (-16.02) dBm received powers for 10 km (BtB) transmission.  

A clear open eye with no eye compression in above eye diagrams without any signal 

amplification of all transmission rates that affirms the potential of QDash laser transmitter 

in WDM-PONs.  
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Figure 4.15 Bit error rate as a function of received optical power for 100 Gbit/s after 10 km SMF transmission. 

 

 

 

Figure 4.16 Eye diagrams and QPSK constellations for 100 Gbit/s transmission (a) BtB and, (b) over 10 km 

SMF. 
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Table 4.1: The maximum received powers and their corresponding Q-factors over 10 km fiber. 

Transmission rate (Gbps) 32 64 100 

Received Power (dBm) -15.2 -14.4 -15.5 

Q-factor (dB) 6.323 5.725 5.183 

 

 

 

4.4  Proposed Transmitter for NG WDM-PON  

We propose a possible next generation WDM-PON capable of more than 100 Gb/s 

transmission capacity, and is depicted in Figure 4.17. The proposed scheme exclusively 

includes Qdash based active devices i.e. ultra-broadband QD-LDs as unified transmitters, 

possible Qdash based broadband photodiodes (QD-PDs) as unified receivers, and 

broadband QD-MLL as external seeding light sources. Two QD-MLLs are utilized, one at 

the OLT situated at CO and other at the RN. The former is used as an external source of 

injection-locking at the OLT for down transmission while the latter is used to realize 

injection-locking at the ONU for up transmission via different wavelength band compared 

to the downstream signal wavelength band, to avoid any crosstalk. A single SMF could 

serve as a channel for bi-directional transmission without any crosstalk [147-149] since 

two different lasing wavelength bands, from the ultra-broadband emission of the QD-LD, 

could be used for down traffic and up traffic, as illustrated in the inset of Figure 4.17. 

Moreover, this architecture would enable utilization of identical transceivers in ONUs and 
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in interface cards (IF) at the OLTs, thus, unifying the transmitters and significantly 

reducing the cost by mass production and deployment.  

 

 

Figure 4.17 Proposed colorless NG-PON based on QD-MLL as seeding source and QD-LDs and QD-PDs 

transceivers at ONU/IF-OLT with 100 Gb/s data traffic capacity. The inset shows the broadband lasing 

spectrum of QD-LD and QD-MLL with half of the spectrum for downstream (DS) and half for upstream (US) 

transmission (symmetric bandwidth case). 

 

 

4.4.1 Proposed WDM-PON Power Budget 

We have estimated the power budget of the proposed NG-PON, for both, downstream and 

upstream transmission. If we consider the FEC threshold receiver sensitivity of -17.4 dBm 

for 100 Gb/s upstream and downstream transmission, the total transmitted power in the 

proposed NG-PON, employing an appropriate 20 dB gain far L-band amplifier at CO 

(Downstream), would be ~5 dBm Hence, the estimated power budget of the proposed NG-

PON is ~22.4 dB (fiber and connectors loss of ~2.4 dB, multiplexer/de-multiplexer loss of 
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~14 dB, circulator of ~2 dB, the U/D multiplexer/de-multiplexer and other connectors loss 

of ~2.5 dB). The power budget for the proposed NG WDM-PON is displayed in Table 4.2. 

In addition, the power budget of 100 Gb/s experimental transmission is also estimated and 

the results are summarized in the Table 4.3. 

 

Table 4.2:  Proposed NG-PON power budget employing a 20 dB far L-band amplifier at CO (Downstream) and 

RN (Upstream). 

Transmission Type Transmitted Power Power budget Receiver 

sensitivity 

Downstream  5 dBm 22.4 dB -17.4 dBm 

Upstream 5 dBm 22.4 dB -17.4 dBm 

 

Table 4.3: Estimated power budget of 100 Gb/s transmission without including any amplifier. 

Transmitted Power Channel loss Receiver sensitivity 

-5 dBm (injection locked 

mode power), -10 dB 

(modulator loss) = -15 dBm 

~2.4 dB for 10 km fiber 

attenuation and connector 

losses 

-17.4 dB 

 

 

The experimental demonstration for 100 Gbps transmission did not utilize any single 

amplification. We have used L-band EDFA (Amonics; Model: AEDFA-L-18B-R) but 

unfortunately it was not helpful in amplifying ~1621 nm signal because of its wavelength 

limitation (maximum up to 1603 nm). Thus, the power budget does not include any 

Estimated Channel 

Loss 

~14 dB (2 multiplexer/de-multiplexers) + ~2 dB 

(OC) + ~2.4 (Fiber loss including connectors) + 

~2.5 dB (U/D multiplexer/de-multiplexer and/other 

connectors)  

~20.9 dB 
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amplifier in 100 Gb/s transmission experiments. However, a far L-band amplifier of 20 dB 

gain is included in the power budget of the proposed WDM-PON. An optimized QD-LD 

device design along with appropriate signal amplifier and the availability of the L-band 

multiplexer/de-multiplexer (wavelength tunability ~1611 to 1634 nm) would potentially 

boost the power budget of the QD-LD and hence the proposed NG-PON architecture, 

enabling not only longer transmission distances but also higher transmission rates. 

It is noteworthy to mention that the mode spacing of the injection-locked modes (see Figure 

3.9) of the QD-LD, and hence the PONs, could be altered to align with WDM standards 

(coarse-WDM or dense-WDM) by essentially selecting a proper cavity length and current 

injection. Hence, with a tunability of ~50 sub-carriers, can be seen in Figure 4.6, a single 

QD-LD would provide a transmission capacity of ~5 Tb/s if all these modes are 

simultaneous IL by an external seeding QD-LD working under mode locked scheme (QD-

MLL) [96], when deployed at OLT for down streaming. Concurrently, a QD-LD in the 

ONU would enable 100 Gb/s upstreaming, thus facilitating a possible route towards next 

generation 100Gbit-PONs. 
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Chapter 5                                                                    

INJECTION-LOCKED QUANTUM DASH LASER IN 

OPTICAL WIRELESS COMMUNICATION 

 

In section 5.1, the potential of optical wireless communication as an indoor and outdoor 

free space communication is discussed. The single channel FSO transmission using 

injection-locked QDash laser over 4 m and 2 m free space channel, is explained in section 

5.2. In section 5.3, a comparison between IL slave QDash laser and tunable master laser, 

as an independent carrier, is discussed. 

 

 

5.1 Introduction  

The massive surge in the commercial demand for unlimited and high-speed broadband 

wireless access, to accommodate the ever-increasing demands of individual users, has 

prompted extraordinary growth in the internet traffic demand in the recent decade. This 

relentless continuous growth necessitates development of higher bandwidth and capacity 

systems and is pushing the current RF systems into bandwidth limitations and ultimately 

to traffic congestion. 
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Optical wireless communication (OWC) has been identified as a promising complement to 

the existing wireless RF solutions, providing large bandwidth and higher data rates with 

low deployment costs and infrastructure maintenance [158]. OWC in the form of FSO 

relies on line of sight (LOS) communication and can be used in both indoor and outdoor 

environments, thus, is highly attractive because of its affordability and license free 

spectrum. In fact, recent demonstrations of FSO in outdoor building-to-building LOS 

communication, indoor data centers for intra/inter-rack communication, and radio over free 

space optics (RoFSO) [159 ‒ 161], substantiate the viability of this alternate solution.  

 

Some of the recent FSO achievements regarding outdoor FSO work, which has been 

considered as a promising solution in mobile-wireless backhaul, disaster recovery, metro 

ring extensions and many more, typically employs near infra-red commercial laser diodes. 

For instance, the longest 1–1.5 km FSO link was presented in [162], achieving 100 Gb/s 

transmission using polarization multiplexed QPSK scheme. A 212 m FSO link based on 

wavelength division multiplexed 32 distributive feedback LDs in C–band (1535.7–1560.5 

nm) has been demonstrated in [163] using OOK and 40 Gb/s/channel data rate. Likewise, 

100 Gb/s transmission capacity per carrier, using 1550 nm LDs, has been reported in [164] 

and [159] on 120 m and 80 m FSO links, respectively. While the former utilized orbital 

angular momentum (OAM) multiplexing and QPSK modulation scheme, the latter was 

based on WDM) and DP-QPSK format. Very recently, a record capacity FSO of 320 Gb/s 

using a single 1550 nm DFB-LD as a carrier and DP-QPSK modulation, has been reported, 

over 11.5 m outdoor link [165].    



105 

 

On the other hand, indoor FSO demonstration with VLC as well as infra-red LDs has been 

reported. VLC has a potential in addressing indoor light-based wireless communication 

(LiFi) applications and solid-state lighting (SSL) concurrently [166‒168] and hence is 

taking center stage in indoor FSO solutions. In contrast, interior FSO employing C–band 

LDs is garnering attention for data centers interconnections and high performance 

computing (HPC) networks which are currently bandwidth overloaded with fiber 

technology and suffering from flexibility issue for cable rerouting after deployment. In this 

respect, references [169] ‒ [171] addressed long indoor communication over 150 m and 20 

m free-space link based on C-band light source, and reported 10–40 Gb/s per channel 

transmission. Short communication channels of 1 m, 2m, and 6 m are considered in [172] 

‒ [174], respectively, with corresponding successful transmission of 100 Gb/s (OAM DP-

QPSK), 37.2 Gb/s and 10 Gb/s data signals on C–band sub-carriers. Very recently, 

experimental demonstration of indoor FSO link of up to 30 cm for card-to-card 40 Gb/s 

flexible interconnection [175] stems the potential of FSO as a promising solution for varied 

wireless applications. 

 

After employing the injection-locked QDash laser diode in optical fiber communication, 

we explored the feasibility of employing same IL broadband laser diode as a potential 

source in indoor FSO link. In this chapter, we investigated the high speed indoor FSO 

communication via single channel and quadrature phase shift keying (QPSK) transmission 

scheme. The far L-band (~ 1621 nm) injection-locked wavelength mode is externally 

modulated through different indoor free-space channels. Furthermore, a comparison of 
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optical communication via injection locked slave quantum-dash laser and with the 

corresponding master laser, as independently carriers, is also performed. 

 

5.2 Injection-locked Indoor Communication 

Figure 5.1 illustrates the optical spectra of QD-LD without injection and with injection at 

~1613 nm. A clear master tunable laser source (TLS) line is visible before injection 

locking, while after injection locking, all the side modes of QD-LD are suppressed, leading 

to a high power IL single mode operation [143].  

 

 

Figure 5.1 The optical spectra of QD-LD with/without injection locking. The master TLS laser linewidth is 

visible. 
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Figure 5.2 depicts the 1621.42 nm IL mode of the QD-LD when the TLS is wavelength 

tuned with a CW injection power of ~4.5 dBm. The measured single mode output power 

and SMSR of this IL single FP mode is -5.34 dBm and 31 dB, respectively.  

 

 

 

Figure 5.2 Injection-locked mode (1621.42 nm) of the QD-LD. 

 

5.2.1 Optical Wireless Transmission Setup 

Figure 5.3 depicts the block diagram of FSO setup. A master TLS at fixed ~4.5 dBm 

external power is injected into an OC via an isolator, and through a PC into the slave QD-

LD. The 1621.42 nm IL QD-LD mode is observed at the 2% output of a 2/98 power splitter 

and combiner (CP) using OSA. The remaining 98%, which corresponds to mode power of 
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~ -5.2 dBm, is fed in to a dual-polarization in-phase and quadrature (DP-IQ) modulator for 

modulation purpose. Pre-processing (pattern generator, modulation, over-sampling) of the 

signal was performed using MATLAB. We have used a 211 –1 PRBS data stream in QPSK 

format. These signals are driven into the DP-IQ modulator whose process is already 

described in chapter 4 and later the modulated signals are detected using OMA. 

 

 

Figure 5.3 Experimental setup of DP-QPSK transmission employing externally modulated IL QD-LD. 

 

Figure 5.4 and Figure 5.5 show the indoor laboratory FSO setup for 2 and 4 meter free-

space channel, respectively. The FSO channel is composed of two SMF collimators, one 

is utilized for transmitting the modulated laser beam into the free space and the other is 

used for reception of the beam. The collimator includes aspheric lens operating in the 

wavelength range of 1050 –1620 nm, and has a beam diameter of 3.6 mm. The beam 

divergence and focal length are 0.032º and 18.75 mm, respectively. Initial alignment of the 

FSO links have been accomplished manually using visible green light laser (520 nm). 

Later, two-dimensional translation stages are used to further fine align the signal into the 

reception collimator SMF and to check the error margin under misalignment conditions. 
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Figure 5.4 2 m indoor laboratory FSO setup. 

 

 

Figure 5.5 4 m indoor laboratory FSO setup. 
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The signal transmission is characterized over a 2-m and 4-m free-space link. We measured 

the free space channel loss over 2 m and 4 m distance by transmitting a known power of 

5.5 dBm using 1550 nm laser, as shown in Figure 5.6 (b). The received power after the 

reception collimator is measured using optical power meter, as shown in Figure 5.6 (a), 

and the loss is deduced. The values are ~0.5 dB and ~2.5 dB for 2 m and 4 m channels, 

respectively. This high channel loss with increasing channel distance is primarily attributed 

to the manual alignment system which can be further improved by precise alignment or 

piezo alignment techniques. After signal coupling into the reception collimator SMF, a 

VOA is employed before sending the signal into OMA for detection. All the FSO system 

level experiments were performed in the Communication and Networking laboratory 

(CNL), King Saud University, Riyadh. 

 

 

Figure 5.6 (a) Optical power meter (b) 1550 nm tunable narrow linewidth laser 
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5.2.2 Eye Safety Standards 

Laser safety standards is one of the important part to be considered in FSO experiments. 

High power and focused laser beam could adverly damage the eye, particularly at shorter 

wavelengths. Several standards for laser safety have been developed by different countries 

such as American National Standards Institute (ANSI) and the European Committee for 

Electrotechnical Standardization (CENELEC) [27]. The permissible emission levels and 

laser classifications for 850 nm and 1500 nm wavelengths, is shown in Table 5.1. Indoor 

FSO communication system is well-suited in Class 1 bands with no warning labels. 

However, Class 3B can be utilized for outdoor FSO communication with certain 

precautions regarding transmitter locations, where high power budget is required. Class 4 

devices are dangerous to the eyes and skin due to very high emission power.  

 

Table 5.1: Classification of Laser safety and permissible emission ranges for 850 nm and 1550 nm wavelengths 

[27]. 

 850 nm 1550 nm 

Class 1 Up to 0.78 mW 

 

Up to 10 mW 

Class 1M Up to 0.78 mW 

 

Up to 10 mW 

             Class 2                               Band reserved for visible light wavelengths (400-700 

nm) 

Class 3R 0.22‒2.2 mW  

 

10‒50 mW 
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Class 3B 2.2‒50 mW  

 

50‒500 mW 

Class 4 >500 mW  >500 mW 

 

 

The eye-safety limit of the laser beam in free space can be calculated by the accessible 

emission limit (AEL) [172], 

 

 𝐴𝐸𝐿 = 𝑀𝑃𝐸 × 𝜋𝑟2 (5.1) 

 

 

Where MPE is maximum permissible exposure and 𝜋𝑟2 is the beam area. For a 4 m 

distance, the beam area is 0.14309 cm2 and MPE is 0.1 W/cm2 [176] (see Table 5.2), thus, 

the maximum AEL is ~14.3 mW (~11.55 dBm). Similarly, the maximum AEL for 2 m 

distance is ~ 11.2 mW (~10.49 dBm) with 0.1121 cm2 beam area. In our experiment the 

estimated maximum transmitted optical power is -13 to -16 dBm which is way below the 

AEL eye-safety limit. 
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Table 5.2:  Maximum permissible exposure (MPE) for 850 nm and 1550 nm wavelengths [173]. 

Exposure 

Time (s) 

1 2 4 10 100 1000 10000 

MPE (W/cm2)  

at 850 nm 

0.0036 0.0030 0.0025 0.002 0.0011 0.00065 0.00036 

MPE (W/cm2)  

at 1550 nm 

0.560 0.330 0.19 0.1 0.1 0.1 0.1 

 

 

5.2.3 4 m DP-QPSK Indoor FSO Communication 

We transmitted a CW 1621.42 nm IL (see Figure 5.2) DP-QPSK signal into the indoor 4 

m FSO link with different Gbaud rates (8, 16 and 25 Gbauds). A root raised cosine (RRC) 

pulse shaping filter with roll-off factor of 0.35 is used at both the transmitter and receiver 

ends. The maximum achieved baud rate over 4 m free space channel is 25 Gbaud 

corresponding to 100 Gb/s with 2.96 b/s/Hz spectral efficiency. The corresponding signal 

constellation and the eye diagram is shown in Figure 5.7 (a) and (b), respectively, at an 

optical received power of -17.2 dBm. The Figure 5.8 (a) and (b), show the eye diagrams 

and QPSK constellations for 64 Gbit/s at -18.8 dBm received power. In Figure 5.9, the 

measured error vector magnitude (EVM) BER versus the received signal power at 16 (64) 

and 25(100) Gbaud (Gb/s) is presented. To achieve a BER FEC threshold of 3.8×10−3, 
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received powers of -17.5 dBm and -19 dBm are required for 100 and 64 Gb/s transmission 

rate, respectively. 

 

 

Figure 5.7 (a) Constellation diagram and, (b) eye diagram, for 4-m/100 Gb/s transmission rate. 

   

 

 

Figure 5.8 (a) Constellation diagram and, (b) eye diagram, for 4-m/64 Gb/s transmission rate. 
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Figure 5.9 Measured BER curves of the IL QD-LD-based FSO link over 4 m channel length, and at transmission 

rate of 64 and 100 Gb/s. 

 

 

5.2.4 2 m DP-QPSK Indoor FSO Communication 

The performance of DP-QPSK 100 Gb/s and 64 Gb/s QD-LD IL modulated signal is tested 

over different channel length scenarios. The Figure 5.10 and Figure 5.11 show the eye 

diagrams and QPSK constellations for 64 Gb/s and 100 Gbit/s at -19.2 and -17.2 dBm 

received powers, respectively, below FEC threshold. The corresponding BER results at 64 

and 100 Gb/s transmission over 2 m free space link is presented in Figure 5.12. To achieve 

a BER of 3.8×10-3 (FEC threshold), a received power of -17.94 dBm is required for 100 

Gb/s date rate.  
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Figure 5.10 (a) Constellation diagram and, (b) eye diagram, for 2-m/64 Gb/s transmission rate. 

 

 

 

Figure 5.11 (a) Constellation diagram and, (b) eye diagram, for 2-m/100 Gb/s transmission rate. 
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Figure 5.12 Bit error rate as a function of received optical power of IL QD-LD-based FSO link over 2 m channel 

length, and at transmission rate of 64 and 100 Gb/s. 

 

 

5.2.5 2 m & 4 m FSO BER curves Comparison  

Figure 5.13 shows the comparison of measure BER curves over 2 m and 4 m free space 

channels, and at 100 Gb/s transmission. A receiver sensitivity of -18.3 (-17.3) dBm is noted 

over 2 m (4 m), translating to ~1.0 dB received power improvement at FEC threshold 

compared to the long channel (4 m). Reducing the channel length from 4 m to 2 m 

noticeably improved the transmission performance, as a result of higher received optical 

power level, and affirms the wide open eye (see Figure 5.10 and Figure 5.11) and better 

BER for the 2 m link case. It is noteworthy to mention that by precise collimators’ 

alignment, the free space channel loss could further be reduced, thereby enabling to realize 

longer indoor FSO link within the available ~0 dBm power budget of the QD-LD. 
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Moreover, with improved power budget by employing a proper far L-band amplifier in the 

system, QD-LD has a potential to address not only long indoor channels but also long 

outdoor communication links.  

 

 

 

Figure 5.13 Comparison of the measured BER curves of the IL QD-LD-based FSO link over 2 m and 4 m long 

free space channels, and at 100 Gb/s transmission 

 

 

5.2.6 Laser Beam Misalignment 

A laser beam propagates through the free-space channel between the SMF collimators as 

if the fibers were connected smoothly. In practice, this is not the case and we expect 

misalignment to occur. To estimate the error margin of this optical misalignment on 4 m/64 
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Gb/s FSO transmission system, we intentionally moved the reception collimator 

horizontally and vertically with a step size of 0.2 mm and measured the BER. The results 

are shown in Figure 5.14 (a) and (b). The measured BER values are found to increase 

exponentially under increasing horizontal misalignment of optical beam while a disrupt 

behavior is observed in misaligning vertically. In general, the horizontal and vertical 

misalignment should provide similar results however, this behavior is attributed to the 

stability of injection-locked mode and fluctuation of DC power in QD-LD at that particular 

experimental time. To achieve BERs below the FEC limit, we estimated the maximum 

horizontal and vertical beam displacement to be ~1.6 mm and ~ 2.4 (~42% and ~ 66% of 

the beam diameter), respectively, that can be tolerated. The two-dimensional translation 

stage into the reception collimator SMF is shown in Figure 5.15 for laser beam 

misalignments. 

 

 

 

Figure 5.14 BER values of 4 m/64 Gb/s IL QD-LD FSO link under different laser beam misalignment conditions. 
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Figure 5.15 Setup of two-dimensional translation stage into the reception collimator SMF for different beam 

misalignments. 

 

 

5.3 Comparison of IL QD-LD and TLS Carrier 

To show the effectiveness of employing IL QD-LD for better transmission, we compared 

100 Gb/s DP-QPSK transmission over 1621.42 nm injection-locked QD-LD and 1620.90 

nm TLS, which are operated individually, as shown in Figure 5.16 (a). We set the carrier  
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Figure 5.16 (a) 1621.42 nm IL QD-LD and 1620.90 nm TLS carrier, (b) measured BER comparison of IL QD-

LD and TLS, for 4 m/100 Gb/s transmission system. 

 

signal power similar for both cases before sending into the DP-IQ modulator, and 

compared the BER values at an identical received power (using VOA), before 

demodulation. The results are illustrated in Figure 5.16 (b) which shows surprisingly 

transmission performance with an IL QD-LD source compared to TLS counterpart.  

The comparison showed superior performance of the IL slave QD laser light source, 

achieving a power improvement of ~1.0 dB at FEC threshold However, it is to be noted 

that the shown TLS mode was not the one that has been utilized for injection locking QDash 

laser diode and hence a direct comparison of the performance is void.  When we measured 

the linewidth of the sources we found an improved coherency of IL QD-LD 1621.42 nm 

mode with -3 dB (-15 dB) linewidth of ~0.04 (~0.12) nm. The associated -3 dB (-15 dB) 

linewidth of 1620.90 nm TLS is measured to be ~0.06 (~0.16) nm. Hence, we believe that 

TLS mode that was utilized for IL should have linewidth of less than or equal to the IL 

QD-LD mode.  
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Chapter 6                                                                                

CONCLUSION AND FUTURE WORK 

6.1 Thesis Conclusion 

In this thesis, characterization and performance of InAs/InP quantum dash (QDash) laser 

is evaluated at device and system level. We experimentally investigated QDash laser 

devices in pulse and CW injection in order to extract the different laser parameters and 

their emission spectrum profiles at device level. At system level, we evaluated the QDash 

laser performance over an optical fiber and optical wireless communication systems. Here 

we summarize the most significant conclusions from this work. 

 

 Firstly, we characterized the fixed barrier InAs/InGaAlAs/InP QDash laser at room 

temperature with different cavity lengths. A 4 um ridge width device was utilized 

during characterization of eight different cavity lengths. The internal quantum 

efficiency was found to be 77.8 % and internal loss 8.8 cm-1. The transparency 

current density showed a high value of ~5639 A/ cm2. . Moreover, the 4800 µm2 

device displayed a broadest lasing emission as compared to the other cavity lengths, 

however, a detailed spectral analysis was not possible owing to the wavelength 

limitation of the OSA.  
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 Later, the fixed barrier InAs/InGaAlAs/InP QDash laser performance was 

compared with a chirped multi-stack InAs/ InGaAlAs /InP QDash laser. The 

internal quantum efficiency and transparency current density was found to be 

superior in the latter case with values reaching 83.62 % and 3146 A/cm2. Besides, 

the central lasing wavelength of fixed barrier QDash laser was found to be ~1690 

nm whereas the chirped barrier QDash laser emission was at ~ 1610 nm, at room 

temperature. Based on the comparison results, the chirped QDash laser diode was 

selected for subsequent transmission experiments., In particular, a 4800 um2 

chirped QDash laser diode is selected, providing a CW SMF fiber coupled optical 

power up to ~1.00 mW (~0 dBm), at an injection current of 240 mA. 

 Afterwards, the injection locking characteristics of chirped 4800 um2 QDash laser 

diode is investigated to improve the laser sub-carrier performance in terms of 

linewidth, coherency and wavelength instabilities for its deployment in optical 

communication experiments. Wavelength tunability, short-term stability, and 

injection-locked hysteresis experiments were performed in characterization of an 

injection-locked QDash laser diode. An injection locked mode wavelength 

tunability of ~23 nm was accomplished from ~1611 nm to ~1634. In short-term 

stability test, a particular injection-locked QD-LD mode (1619.68 nm one of the 

mode from tuning range) was found to be stable throughout the observation time of 

24 minutes. Finally, it was observed that injection-locking hysteresis was 

maintained till 4.2 dBm starting from + 7 dBm injection power, afterwards 

injection-locked mode was unlocked and similar behavior was observed till 3 dBm 

external injection power. 
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 Then, we performed fiber transmission experiment using a single injection-locked 

Fabry-Perot mode of a QDash laser as a sub-carrier. We demonstrated a single 

channel 32, 64 and 100 Gb/s dual–polarization quadrature phase shift keying (DP-

QPSK) transmission at ~1621 nm by employing external modulation. The signal 

transmission was characterized first in a back-to-back (BtB) configuration and then 

over a 10 km single mode fiber (SMF) for all transmission rates. We also proposed 

a next generation WDM-PON with a unified upstream and downstream transmitter 

capable of more than 100 Gb/s transmission capacity, and based on exclusively 

ultra-broadband QD-LDs as unified transmitters, possible QDash based broadband 

photodiodes as unified receivers, and broadband QD-MLL as external seeding light 

sources.  

 Finally, the potential of tunable injection locked far L–band quantum-dash laser as 

a promising light source in both indoor and outdoor future high speed free space 

optical communication, is investigated. We experimentally demonstrated an indoor 

64 Gb/s and 100 Gb/s free space optical communication using single channel 

injection locked (~1621 nm) quantum-dash laser. The far L-band injection-locked 

wavelength mode is externally modulated over 2 m and 4 m indoor free-space links 

using DP-QPSK scheme. Moreover, we estimated the maximum horizontal and 

vertical beam displacement and found to be ~1.6 mm and ~ 2.4 (~ 42% and ~ 66% 

of the beam diameter), respectively, that can be tolerated.  

 



125 

 

6.2 Future Work  

The following are some future work possibilities: 

 Self-injection locking of QDash laser can be employed instead of external injection-

locking for its potential deployment in optical communication. Tuning of the locked 

mode could be performed by changing the bandpass filter center wavelength.  

 Possibility of employing Quantum dash laser as a gain medium and for injection-

locking, while modulating the master laser signal, could be explored.  

 Self-homodyne detection method could be utilized in any proposed future work to 

mitigate the sub-carrier coherency issue at the detection side, instead of employing 

heterodyne detection technique. However, the transmission capacity could be 

reduced appreciably as a copy of local oscillator is also transmitted along with the 

modulated signal.  

 High transmission rate can be achieved through high order modulation formats 

under external modulation, such as 16-Quadrature phase shift keying (QPSK), M-

ary Quadrature amplitude modulation (QAM) and orthogonal frequency division 

multiplexing (OFDM), provided the SMF coupled optical power of QDash laser 

diode is improved 

 To enable future high speed and long distance optical wireless communication, the 

length of free-space channels can be increased with the expense of higher power 

budget of QDash laser device, and its performance in outdoor FSO could be 

investigated. Performance of directly modulated QDash laser in next generation 

PON can be investigated via external or self-injection locking. It will not require 
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any external modulator and an amplifier hence, a cost effective solution for 

colorless WDM-PON. 
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Appendix 

 

Quantum Confinement 

In this section, we present a breakthrough in the development of semiconductor laser which 

is introduction of quantum confinement of carriers with lessened dimensionality in 

structures. Quantum confinement effects appear when the geometrical dimensions of the 

device are in the same order of magnitude as the DeBroglie wavelength of the electrons 

(few 10s of nm). Density of states (DOS) is the number of available states at each energy 

level that electrons and holes can occupy and it is given, for bulk as, 

 

 𝑔(𝐸) ∝  𝐸1/2        

 

where g(E) is the density of quantum state and E is the energy. Equation 2.1 indicates that 

density of quantum states is a function of energy E. Fig. 2.4 shows different quantum 

confinement structures alongside their density of states (DOS). The potential felt by 

electron and holes can be approximated by the basic quantum-wall problem in one 

dimension, i.e. when reducing the dimensionality from 3D to 2D [92]. This can be modeled 

by time-independent one-dimensional form of Schrödinger’s wave equation shown below: 

 

 ∂2

∂x2 ψ(x) +  
2m

ћ
[Eo − U(x)] ψ(x)         
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where ћ is the reduced planks constant, ψ is the time-independent wave function, U is 

potential function experienced by the particle, E is the total energy of the particle. m is 

the effective mass of the particle. The solutions of above equation in the form of Eigen 

energies is given by, 

 

 
𝐸𝑛 =  𝑛2 (

𝜋2ћ2

2𝑚𝐿2
) 

 

 

 

 

Eigen energy and L is the width or thickness of the quantum-well. Note that L in the above 

solution can be used to control how far these energies (sates) are from each other. Quantum 

well are one dimensional confined nanostructures, as shown in Fig. 2.4 (c) and (d). Two-

dimensional confined structures are called quantum wires whereas three-dimensional 

confinement results in quantum dots in which the size has been reduced in all three 

dimensions, as illustrated in Fig. 2.4 (e) and (g), respectively. Quantum dots have density 

of state in the form of delta function which represents a single state for all the carriers to 

occupy (see Fig 2.4 (h)). These features of quantum confinement, significantly improves 

the number of electron-hole pair recombination that results in photons of more discretized 

wavelengths [93]. 
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Figure: Quantum confinements along with their respective density of states. (a), (b). Zero-

dimensional confinement (bulk material). (c), (d). One-dimensional confinement (quantum 

well). (e), (f). Two-dimensional confinement (quantum wire). (g), (h). Three dimensional 

confinement (quantum dot) [1]. 
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