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Chapter 1

Introduction

There has been a close tie between algebraic structures and graphs for more than a century.

The robust combinatorial properties of graphs have been employed extensively to investigate

the algebraic properties of groups and rings and vice versa. This work of course is not

an exception. Recently, associating graphs to rings in order to investigate it seems to be

active area and interest catching among the researchers. This is obvious in the amount of

publications in this perspective, see [3, 6, 7, 47, 68, 69, 73]. Graphs have been ascribed

to commutative ring R with non-zero identity by employing the unit elements of the ring,

[7]. Some researchers have used zero-divisors in a ring R, see [3, 6, 47], while others have

employed the co-maximal ideals of both commutative and non-commutative rings, see [68, 69]

to define graphs on rings. On the other hand, we introduce and investigate inverse graphs

associated with finite groups.

The significance of graph theory cannot be over-emphasized considering its massive ap-

plications in other fields of study apart from mathematics. It is widely utilized in fields like

biochemistry, chemistry, sociology, electrical engineering, biology, computer science, opera-

tion research, chemical engineering, geosciences and landscape ecology, etc. In group theory,

graph combinatorial concepts have been used to solve some eigenstate problems associated
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with “Lie groups”, see [52]. Several other results in group theory have also been proved easily

via associated graphs, [12]. This serves as a motivation for this study. Our main objectives

of this thesis are to:

1. Introduce and investigate inverse graphs associated with finite groups.

2. Study the inter-relatedness between the algebraic properties of groups and the combi-

natorial properties of this graph.

3. Compare this graph with existing graphs associated with finite groups.

4. Apply the inverse graph to some isomorphism problems of groups.

Chapter 2 of this thesis focuses on the required preparations from both the graph and

group theories. In Chapter 3, we give a brief account of what researchers have done for over a

century in associating graphs to finite groups. We constructed the inverse graphs in Chapter

4 and thereafter investigated some of its properties. In order to justify our claim that this

graph is new, we concluded this thesis in Chapter 5 by comparing the inverse graphs with

some existing graphs associated with finite groups.
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Chapter 2

Preliminaries

2.1 Groups

This section contains fundamental notions and results from group theory used in this thesis.

We have employed the standard definitions and results that can easily be found in any good

introductory textbook in group theory. For example, see [32, 55, 58].

A set is a collection of well defined objects called elements. If a set A contains some

element a, we write a ∈ A, and A is non-empty, otherwise it is empty. A mapping f from a

set A into a set B (denoted by f : A→ B) corresponds to a rule that assigns to each element

a ∈ A a unique element b ∈ B. In this case, A is called the domain and B the codomain.

The mapping f is one-to-one if it maps distinct elements of A to distinct elements of B. It

is onto if for every element b ∈ B there exists at least an element a ∈ A such that f(a) = b.

A one-to-one and onto mapping is called a one-to-one correspondence or a bijection. By a

binary operation on a non-empty set A we mean a mapping from the cartesian product A×A

(defined by {(a1, a2) : a1, a2 ∈ A}) into A. Let A be a non-empty set and let R be a subset

of A×A . Then R is called an equivalence (or an equivalence relation) on A if the following

conditions are satisfied.
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1. (a, a) ∈ R for all a ∈ A (reflexive property).

2. If (a1, a2) ∈ R, then (a2, a1) ∈ R (symmetric property).

3. If (a1, a2) ∈ R and (a2, a3) ∈ R, then (a1, a3) ∈ R (transitive property).

Let R be an equivalence relation on a set A. If a ∈ A, we define aR = {ω : ω ∈ A and

(a, w) ∈ R}. This subset aR of A is called the R-class of a, or the R-equivalence class of a.

2.1.1 Definitions and examples

Definition 1. Let * be a binary operation defined on the elements of a non-empty set Γ.

Then Γ is a group under the operation * if the following properties hold:

1. u ∗ v ∈ Γ for every u, v ∈ Γ (closure property).

2. (u ∗ v) ∗ w = u ∗ (v ∗ w) for all u, v, w ∈ Γ (associativity of *).

3. There exists an element e ∈ Γ such that e ∗ u = u ∗ e = u for all u ∈ Γ (existence of

identity e).

4. For every element u ∈ Γ there is a unique element u−1 such that u ∗ u−1 = u−1 ∗ u = e

(u−1 is called the inverse of u).

A groupoid is a non-empty set endowed with the closure property of a binary operation.

An associative groupoid is a semigroup. A semigroup with an identity is called a monoid.

Hence a group can be regarded as a monoid with each element having a unique inverse. A

group is finite if it contains a finite number of elements, otherwise it is infinite. Throughout

this thesis we shall only consider finite groups and for u, v ∈ Γ under the group operation

“ * ”, u ∗ v will be written multiplicatively as uv and will be referred to as the product of

u and v unless otherwise stated. One method of defining a group is by a presentation. One

specifies a set C of generators so that every element of the group can be written as a product
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of powers of some of these generators, and a set R of relations among those generators. We

then say Γ has a presentation 〈C | R〉.

Definition 2. A generating set C of a group Γ is a subset of Γ such that every element of

Γ can be expressed as a product (under the group operation) of finitely many elements of C

and their inverses.

In other words, if C is a subset of a group Γ, then 〈C〉, the subgroup1 generated by C,

is the smallest subgroup of Γ containing every element of C, meaning the intersection over

all subgroups containing the elements of C. If Γ = 〈C〉, then we say C generates Γ; and the

elements in C are called generators or group generators.

Definition 3. A group Γ is abelian provided u ∗ v = v ∗ u, ∀ u, v ∈ Γ.

Definition 4. The number of elements in a group Γ is its order. It is denoted by |Γ|.

Definition 5. The order of an element u, denoted by |u|, in a group Γ is the smallest positive

integer m such that um = e, where e is the identity of the group. The element u has infinite

order if such integer m does not exist.

Definition 6. An element u ∈ Γ is self-invertible if and only if u = u−1, otherwise it is

non-self invertible. Hence the identity e is a trivial self-invertible element in any group Γ.

Example 7. The sets Z of integers, Q of rational numbers, R of real numbers and C of

complex numbers with respect to the usual addition are examples of abelian groups. The

sets Q∗ of nonzero rational numbers and R∗ of nonzero real numbers with respect to the

usual multiplication of numbers are examples of abelian groups.

Example 8. The set of all n by n invertible matrices with real entries is a group with

respect to the usual matrix multiplication. This group is called general linear group of n by

n matrices in R, denoted by GL(n,R).

1See Definition 15.
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Example 9. The set of integers modulo n, Zn = {0, 1, · · · , n− 1}, under the usual addition

modulo n is a group for all n ∈ N.

Example 10. The set of integers modulo p, Zp = {1, 2, · · · , p − 1}, is a group under the

usual multiplication modulo p, where p is prime.

Example 11. Let Γ = {ω ∈ C : ωn = 1} be the set of all nth roots of unity, where C is the

set of complex numbers. Then, Γ is a finite group under the usual multiplication of complex

numbers.

Example 12. Suppose Γ = 〈−1, i, j, k| (−1)2 = 1, i2 = j2 = k2 = ijk = −1〉 which is

isomorphic to a certain eight-element subset of the quaternions under multiplication. This

is a non-abelian group of eight elements often referred to as quaternion group.

Example 13. Let A be a non-empty set. Then, a one-to-one correspondence mapping

π : A → A is called a permutation on A. To be more specific, if A = {1, 2, · · · , n} then π

is called a permutation of degree n on A. Suppose π is a permutation of degree n such that

π(1) = a1, π(2) = a2, · · · , π(n) = an where a1, a2, · · · , an is some rearrangement of elements

of A. This permutation will be denoted by

π =

 1 2 · · · n

a1 a2 · · · an

 (2.1)

The set of all permutations of degree n, denoted by Sn, is a group under the composition of

mappings. This group is called a symmetry group. In this case, for permutations π1, π2 ∈ Sn,

π1 ∗ π2 is the composition of mappings defined as (π1 ∗ π2)(a) = π1(π2(a)), for all a ∈ A. It

is not difficult to see that the number of permutations in Sn is n!. The identity permutation,

e, is written as

e =

1 2 · · · n

1 2 · · · n

 (2.2)
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Example 14. Consider the symmetry group S3 on the set {1, 2, 3}.

e =

1 2 3

1 2 3

 , π1 =

1 2 3

2 3 1

 , π2 =

1 2 3

3 1 2

 ,

π3 =

1 2 3

1 3 2

 , π4 =

1 2 3

3 2 1

 , π5 =

1 2 3

2 1 3

 .

The operation * is the usual composition of mappings. For instance,

π2 ∗ π3 =

1 2 3

3 1 2


1 2 3

1 3 2

 =

1 2 3

3 2 1

 = π4

while,

π3 ∗ π2 =

1 2 3

1 3 2


1 2 3

3 1 2

 =

1 2 3

2 1 3

 = π5

Since π2 ∗ π3 6= π3 ∗ π2 the group S3 is non-abelian.
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2.1.2 Cayley table

In some cases when dealing with groups especially finite groups it is helpful to draw the

multiplication table. This table is referred to as Cayley table. For an arbitrary finite group

Γ = {u1, u2, · · · , un} under the operation * its Cayley table is constructed as follows:

Table 2.1: Cayley table of a finite group

* u1 u2 · · · uj · · · un
u1 u1 ∗ u1 · · · u1 ∗ un
u2
... · · · · · · ...
ui ui ∗ uj ui ∗ un
... · · · · · · ...
un un ∗ u1 · · · un ∗ un

For example, the Cayley table of S3 is as follows:

Table 2.2: Cayley table of S3

* e π1 π2 π3 π4 π5

e e π1 π2 π3 π4 π5

π1 π1 π2 e π5 π3 π4

π2 π2 e π1 π4 π5 π3

π3 π3 π4 π5 e π1 π2

π4 π4 π5 π3 π2 e π1

π5 π5 π3 π4 π1 π2 e

2.1.3 Subgroups and cosets

In some cases a subset of a group can satisfy properties 1−4 in Definition 1. This motivates

the following definition.

Definition 15. Let γ be a subset of a group Γ. Then, γ is a subgroup if it satisfies properties

1 − 4 in Definition 1 under the operation defined on Γ. In other words, γ itself is a group

with respect to the operation defined on Γ. If γ is a subgroup of Γ we write γ ≤ Γ.
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Remark 16. Suppose Γ is a group under the operation *. A subgroup γ is proper if γ 6= Γ,

otherwise, it is improper.

Definition 17. Suppose Γ is a group and γ a subgroup of Γ. Let u ∈ Γ, then γu = {vu :

v ∈ γ} is called a right coset. Similarly, we can define the left coset uγ.

Definition 18. Let γ be a subgroup of Γ. The index denoted by [Γ : γ] is the number of

different left cosets of γ in Γ.

Theorem 19. (Lagrange, see [55]) The order of every subgroup γ of a finite group Γ divides

the order of Γ. In other words, |Γ| = r|γ| for some r ∈ N.

Theorem 20. (see [55]). Suppose γ is a subgroup of Γ and u ∈ Γ. Then, the set χ =

u−1γu = {u−1vu : v ∈ γ} is a subgroup of Γ.

Definition 21. A subgroup γ of a group Γ is normal if and only if γ = χ in Theorem 20.

Definition 22. A group is simple if its only normal subgroups are the identity subgroup and

the group itself.

Definition 23. Let Γ be a group and define commutator of u, v ∈ Γ as [u, v] = u−1v−1uv.

The normal subgroup generated by these commutators is the derived group or the commutator

subgroup of Γ.

2.1.4 Cyclic groups

Definition 24. A group Γ is cyclic with a generator u if every element of Γ is of the form

uk for some integer k. If the operation is addition we write ku instead of uk.

Remark 25. The following follows directly from Lagrange’s Theorem:

1. The order of every element u of a finite group Γ divides |Γ|.
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2. Every group of prime order is cyclic. For this group, every element is a generator

except the identity.

3. For each element u ∈ Γ, un = e, where n is the order of Γ and e the identity.

Example 26. The set of integers under the usual addition is a cyclic group generated by 1.

Example 27. The finite group described in Example 11 is cyclic. It is generated by any nth

root of unity different from 1.

2.1.5 Conjugacy class

Suppose Γ is a group and u ∈ Γ. The centralizer of u is defined as follows:

CΓ(u) = {v ∈ Γ : uv = vu}.

In other words, the centralizer of u in Γ is this set of elements that commute with u. The

set denoted and defined as

Z(Γ) = {u ∈ Γ : uv = vu, ∀ v ∈ Γ}

is called the center of Γ. Thus, a group Γ is abelian if and only if Γ = Z(Γ). If Z(Γ) = {e}

then Γ is centerless or has a trivial center. Otherwise, Γ has non-trivial center.

Now, consider a relation ” ∼ ” defined on the group Γ as follows: let u, v ∈ Γ then u ∼ v

provided there is ω ∈ Γ such that

u = ωvω−1 (2.3)

Elements u and v satisfying equation 2.3 are called conjugates. Also, ” ∼ ” defined in

this case is an equivalence relation. The corresponding equivalence classes, Cl(u), are the

conjugacy classes of the group Γ.
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2.1.6 Dihedral group D2n

The dihedral group of order 2n is denoted and defined as follows:

D2n = 〈u, v|vn = u2 = e, uvu−1 = v−1〉,

where e is the identity element of D2n and u and v are its generators.

2.1.7 Generalized quaternion groups Q2n

The generalized quaternion group of order 2n is denoted and defined as follows:

Q2n = 〈u, v|v4 = u2n−1

= e, v2 = u2n−2

, vu = u−1v〉

Here, e is the identity of Q2n , n > 2 while u and v are its generators. The following

Proposition characterizes the generalized quaternion groups.

Proposition 28. The only involution2 in Q2n is the element u2n−2

Proof. Since u has order 2n−1 its only power with order 2 is u2n−2
. Every element of Q2n

that is not a power of u has the form umv where m ∈ N and

(umv)2 = um(vumv−1)v2 = um(vuv−1)mv2 = umu−mv2 = v2.

Therefore, umv has order 4.

2.1.8 Alternating and solvable groups

Definition 29. A permutation π on a set A = {a1, a2, · · · , an} is a cycle of length m if there

is a subset B = {b1, b2, · · · , bm} of A, such that π(bi) = bi+1, 1 ≤ i < m and π(bm) = b1,

2An element of order 2 in a group is called an involution.
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while π(ai) = ai ∀ ai /∈ B. Such a cycle is denoted by (b1, b2, · · · , bm).

Facts

1. Every permutation can be written as product of cycles each of length 2 (such cycles

are called transposition).

2. A permutation that is a product of an even (odd) number of transpositions is called

even (odd) permutations.

3. The product of two even or two odd permutations is an even permutation.

4. The product of an odd and an even permutations is an odd permutation.

Definition 30. The group of even permutations of n symbols is denoted by An and is called

the alternating group of degree n.

Definition 31. We say that a group Γ is solvable or soluble if Γ has a series of subgroups

{e} = γ0 ⊂ γ1 ⊂ γ2 ⊂ · · · ⊂ γk = Γ,

where, for each 0 ≤ i < k, γi is normal in γi+1 and the derived group γi+1/γi is abelian.

2.1.9 Frobenius groups

A Frobenius group is a finite group Γ with a non-trivial normal subgroup γ1 (called a Frobe-

nius kernel) and a non-trivial subgroup γ2 (called a Frobenius complement) such that the

orders of γ1 and of γ2 are relatively prime and for every u ∈ Γ \ γ1 there exists a unique

v ∈ γ1 with u ∈ vγ2v
−1.
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2.1.10 Isomorphism of groups

Definition 32. Two groups (Γ1, ∗) and (Γ2, •) are said to be isomorphic if there exists a

mapping

φ : Γ1 → Γ2

satisfying the following:

1. φ is one-to-one correspondence.

2. For u, v ∈ Γ1, we have φ(u ∗ v) = φ(u) • φ(v).

The mapping φ satisfying 1 and 2 of Definition 32 is called an isomorphism from Γ1 to

Γ2. If such φ exists we write Γ1
∼= Γ2, otherwise, Γ1 is not isomorphic to Γ2 and we write

Γ1 6∼= Γ2.

Remark 33. Suppose φ is an isomorphism from a group Γ1 to a group Γ2. Then, we have

the following:

1. φ(e1) = e2, where e1 is the identity in Γ1 and e2 is identity in Γ2.

2. If un = e1 in Γ1, then φ(u)n = φ(un) = φ(e1) = e2 in Γ2.

3. If φ(u) = v, u ∈ Γ1, v ∈ Γ2, Then, φ(u−1) = v−1.

Example 34. The mapping φ : (R+,×) → (R,+) defined by φ(u) = log(u), is an isomor-

phism between the group of positive real numbers under multiplication and the group of real

numbers under addition.
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2.1.11 Direct product of groups

Definition 35. The direct product Γ1 × Γ2 × · · · × Γn of groups Γ1,Γ2, · · · ,Γn is the set of

n-tuples (u1, u2, · · · , un) where ui ∈ Γi with the group operation defined componentwise:

(u1, u2, · · · , un)(v1, v2, · · · , vn) = (u1v1, u2v2, · · · , unvn).

The group operation in the above definition is written multiplicatively, but in particular

examples, whatever is the natural group operation on the Γi will be followed. In case

Γ1,Γ2, · · · ,Γn are abelian groups written additively, then it is more customary to write the

direct product as Γ1 ⊕ Γ2 ⊕ · · · ⊕ Γn, and refer to this as an (external) direct sum.

Example 36. Suppose Γi = R for 1 ≤ i ≤ n. Then R ⊕ R ⊕ · · · ⊕ R (n-factors) is the

ordinary Euclidean n-space Rn with the usual vector addition:

(u1, u2, · · · , un) + (v1, v2, · · · , vn) = (u1 + v1, u2 + v2, · · · , un + vn)

Proposition 37. If Γ1,Γ2, · · · ,Γn are groups, their direct product Γ is a group of order

|Γ1||Γ2| · · · |Γn|. This means that if any Γi is infinite, then so is Γ.

Proof. The verification of the group axioms is straightforward from the componentwise defi-

nition of the group operation on Γ. We note that the identity of Γ is eΓ = (eΓ1 , eΓ2 , · · · , eΓn)

and the inverse of (u1, u2, · · · , un) is (u−1
1 , u−1

2 , · · · , u−1
n ). The formula for the order of Γ is

clear.

Let p be a prime and let n ∈ N. Define a group Γpn by

Γpn = Zp × Zp × · · · × Zp (n factors).

The group Γpn is an abelian group of order pn with the property that every nonidentity
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element has order p. Such a group is said to be an elementary abelian p-group. In particular,

if p = 2, then Γ2n = Z2×Z2×· · ·×Z2 (n factors) coincides with a Boolean group3 of order 2n.

Besides, every finite Boolean group Γ is abelian since uv = u−1v−1 = (uv)−1 = vv ∀ u, v ∈ Γ.

Hence, we have the following proposition.

Proposition 38. Every finite group of order 2n whose nonidentity elements have order 2 is

abelian and it is isomorphic to Z2 × Z2 × · · · × Z2 (n factors).

Example 39. The Klein four-group K4 = {e, a, b, ab : e = a2 = b2 = (ab)2} is isomorphic to

Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)} with an explicit isomorphism

φ : K4 → Z2 × Z2

such that φ(e) = (0, 0), φ(a) = (0, 1), φ(b) = (1, 0) and φ(ab) = (1, 1).

2.2 Graphs

This section contains the fundamental notions and results from graph theory used in this

thesis. We have employed the standard definitions and results that can easily be found in

any good introductory textbook in graph theory. For example, see [22, 71].

2.2.1 Definitions and examples

Definition 40. A graph G consists of a set of points in two dimensional space called vertices,

V(G), together with possibly empty set of 2-element subsets of V (G) called edges, E(G).

The cardinality of the vertex set, |V (G)|, is the order of G while the number of elements

in the edge set, |E(G)|, is its size. If {u, v} ∈ E(G) we say u and v are adjacent i.e., there is

3A Boolean group is a group whose every nonidentity element has order 2.
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an edge between u and v. In this case, we write uv ∈ E(G). The number of vertices adjacent

to a vertex u is the degree of u. A vertex u is isolated if it is not adjacent to any other vertex

in G. If u is adjacent to only one vertex, we call it a leaf. A graph G with vertices each of

degree r is called an r-regular graph. Two or more edges that join the same pair of distinct

vertices are called parallel edges. A loop is an edge that joins a vertex to itself. A graph is

simple if it contains neither parallel edges nor loops. We shall consider only simple graphs in

this thesis and refer to them simply as graphs. For instance, Figure 2.1 is a graph with set

of vertices V (G) = {v1, v2, v3, v4}, set of edges E(G) = {v1v2, v1v3, v2v3, v3v4}, order 4 and

size 4. The degrees of the vertices v1, v2, v3, v4 are 2, 2, 3, 1 respectively. It contains neither

parallel edges nor loops. Vertex v4 is a leaf and G contains no isolated vertex.

v

v v

vv4

v3v2

v1

Figure 2.1: A graph of order 4

Definition 41. A graph G is empty if E(G) is empty and is trivial if |V (G)| = 1.

Definition 42. A graph of order n is complete, denoted by Kn, if for every distinct pair

u, v ∈ V (G), we have uv ∈ E(G).

In a complete graph G of order n the size m of G is always

m =

 n

2

 =
n(n− 1)

2
.

In any graph G, the maximum degree is the highest degree among the vertices of V (G),
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denoted by 4(G) while the least degree is the minimum, denoted by δ(G). The following

theorem is referred as The First Theorem of Graph Theory and its proof can be found in

[22].

Theorem 43. For a graph G of size m we have

∑
v∈V (G)

deg(v) = 2m.

2.2.2 Subgraphs and induced subgraphs

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G), in this case

we write H ⊆ G. If V (H) = V (G), then H is a spanning subgraph of G. For a non-empty

subset M of V (G), G[M ] is an induced subgraph of G by M if it has M as its vertex set

and two vertices u, v ∈M are adjacent if and only if they are adjacent in G. This is got by

deleting some vertices of G. An induced subgraph of G that is complete is a clique in G.

Example 44. In Figure 2.2 , H1 is a spanning subgraph of G obtained by deleting edges

e1 = u2u3 and e2 = u3u4 i.e., H2 = G \ {e1, e2}. The subgraph, H2, is a clique in G. It is

obtained by deleting vertex u3 in G.

2.2.3 Graphs isomorphism

A graph G1 is isomorphic to G2 if there is one-to-one correspondence mapping, φ, from V (G1)

to V (G2) such that uv ∈ E(G1) if and only if φ(u)φ(v) ∈ E(G2). The mapping φ is called an

isomorphism from G1 to G2. If G1 and G2 are isomorphic we write G1
∼= G2, otherwise they

are non-isomorphic graphs. An isomorphism of a graph G to itself is called an automorphism.

For example, the graphs G1 and G2 in Figure 2.3 are isomorphic with an explicit isomorphism

φ such that φ(u1) = v1, φ(u2) = v3, φ(u3) = v5, φ(u4) = v2, φ(u5) = v4, φ(u6) = v6.
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G : H1 :

H2 :

e1

e2

Figure 2.2: Subgraphs of a graph G

v

v

v v

v

v v

v v

vv

v

u1 u2 u3

u4 u5 u6

v1 v2

v3

v4v5

v6G1 :
G2 :

Figure 2.3: Two isomorphic graphs of order 6

Remark 45. Determining whether two graphs are isomorphic or not requires a great deal

of ingenuity. In fact, there is no complete characterization of graph isomorphism problem.

Nevertheless, if two graphs G1 and G2 are isomorphic each of the following properties should

be satisfied:

• |V (G1)| = |V (G2)| and |E(G1)| = |E(G2)|.

• The degree of each vertex u in G1 must be equal to the degree of the corresponding

vertex φ(u) in G2.
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• Structural properties in G1 such as the number of cycles, induced subgraphs, girth,

eccentricity, diameter, etc must be preserved in G2.

Definition 46. A non-trivial graph G is vertex-transitive if for each pair u, v of distinct

vertices in V (G) there is an automorphism Φ on G such that Φ(u) = v.

2.2.4 Walks, trails, circuits, paths and cycles

For a given graph G with vertex set V (G) = {v0, v1, · · · , vn}, a walk of length k ≤ n is a

finite sequence

vi0ej1vi1ej2vi2 · · · vik−1
ejkvik

whose terms alternate between vertices and edges such that vit−1vit = ejt for 1 ≤ t ≤ k and

0 ≤ ik ≤ n. The walk W is closed if vi0 = vik , otherwise it is open. A u− v trail is a u− v

walk starting at u and ending at v in which no edge is repeated. A non-trivial4 closed trail

is called a circuit. An open walk in which no vertex is repeated is called a path. A closed

walk of length n ≥ 3 with neither vertex nor edge repeated is called a cycle, denoted by Cn.

A graph is cyclic if it contains at least a cycle otherwise it is acyclic. The shortest length of

a cycle in a non-empty graph G is its girth. A non-empty acyclic connected graph is called

a tree.

2.2.5 Reachability and connectivity

Let G be a non-empty graph. A vertex u of G is said to be reachable if there is walk starting

from or ending at u from every other vertex in G. A graph in which all vertices are reachable

is connected, otherwise it is disconnected. A connected graph G is said to be k-connected if it

has more than k vertices and remains connected whenever fewer than k vertices are removed.

A component of a graph G is a connected subgraph of G that is not properly contained in

4Involving more than one vertex.
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any other connected subgraph of G. The number of such connected components is denoted

by k(G). Hence, a graph is connected if and only if k(G) = 1. The graph G of Figure 2.2 is

connected while H1 is disconnected with 2 components.

2.2.6 Distance, diameter, radius and eccentricity of a graph

Definition 47. In a connected graph G, the distance between two vertices u, v ∈ V (G), is

the length of the shortest path between u and v. It is denoted by d(u, v).

If G is a disconnected graph, then we define the distance between vertices in the same

component of G. If u and v are vertices in distinct components of G, then d(u, v) = ∞.

Eccentricity ρ(u) of a vertex u in a connected graph G is defined as

ρ(u) = Max{d(u, v) : ∀ v ∈ V (G)}.

The minimum eccentricity in a graph G is the radius, rad (G), while the maximum eccen-

tricity is the diameter, diam(G).

2.3 Special graphs

In what follows are the definitions of some special types of graphs and examples that are of

interest in this thesis. The reader may see [22] for the proofs of some stated results.

2.3.1 Bipartite graphs

Definition 48. A graph G is bipartite if V (G) can be partitioned into 2 disjoint sets V1 and

V2 such that uv ∈ E(G) implies either u ∈ V1 and v ∈ V2 or v ∈ V1 and u ∈ V2.

If each vertex in V1 is adjacent to each vertex in V2, then G is a complete bipartite graph.

If |V1| = r and |V2| = s, then this complete bipartite graph, denoted by Ks,r, has order s+ r
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and size sr . The special case when s = 1 i.e., K1,r is called a star. Figure 2.4 illustrates a

bipartite graph G, a star and a complete bipartite graph of order 5.

v

v
v v

v

v v

v v v

v v

v v v

K2,3K1,3G

Figure 2.4: Bipartite, star and complete bipartite graphs

2.3.2 Planar graphs

Definition 49. A graph is planar provided it can be represented on a plane such that there

is no crossing of its edges except at its vertices.

2.3.3 Eulerian and Hamiltonian cycle

An Euler circuit in a graph is a circuit that utilizes every edge of the graph exactly once. An

open trail in a graph that contains every edge of the graph exactly once is called an Euler

trail.

Definition 50. A connected graph G is Eulerian if it contains an Eulerian circuit.

A path in a graph G that visits every vertex of G is called a Hamiltonian path of G. As

for a cycle in G that visits every vertex of G it is called a Hamiltonian cycle of G.

Definition 51. A graph is Hamiltonian if it contains a Hamiltonian cycle.

Unlike the Euler circuit problem, finding Hamilton circuits is very difficult. There is no

simple set of necessary and sufficient conditions, and no simple algorithm. Instead, we have

the following sufficient conditions.

21



Theorem 52. (Dirac’s Theorem)

If G is a graph with n ≥ 3 vertices such that deg(v) ≥ n/2 for each vertex v ∈ V (G), then

G is Hamiltonian.

2.3.4 Directed graphs

Definition 53. A directed graph or digraph D is a finite non-empty set of objects called

vertices together with a (possibly empty) set of ordered pairs of distinct vertices of D called

arcs or directed edges.
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Chapter 3

Review of related literature

In this chapter, we present chronological accounts of what researchers have done for over a

century in associating graphs to finite groups. Definitions and some important results are

stated with references.

3.1 Cayley graphs, 1878.

It was Arthur Cayley in 1878 who was considered the first to associate graphs called the

Cayley graph to finite groups, [20]. Cayley graph is known to have originated from Cayley

color diagram which is a graphical representation of groups introduced by Cayley. This color

diagram is a directed graph with edges colored while the underlying uncolored or undirected

graph is the Cayley graph. For interesting applications of Cayley graphs in algebra, computer

science, biological Sciences, etc, see [9, 41, 45].

Definition 54. Given a finite group Γ and a non-empty subset, C ⊆ Γ that generates Γ,

the Cayley graph denoted by Cay(Γ, C) is defined as follows: each vertex is an element of Γ,

and two vertices u, v ∈ V (Cay(Γ, C)) are adjacent if either uv−1 ∈ C or vu−1 ∈ C, [61].
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3.1.1 Basic properties

Deep investigations and various characterizations have been carried out on Cayley graphs

for over a century. In what follows are the basic properties of Cayley graphs.

Theorem 55. (see [44])

Suppose C is a set of generators of a finite group Γ. The Cayley graph Cay(Γ, C) is:

1. Connected.

2. |C|-regular, where |C| is the cardinality of C.

3. Vertex-transitive.

Remark 56. It is worthwhile to note that every Cayley graph is vertex-transitive but not

every vertex-transitive graph is Cayley. An interesting example is the Petersen graph which

is vertex-transitive but not Cayley.

Theorem 57. (see [57])

Let Γ be an abelian group generated by two elements i.e |C| = 2. If k is the diameter of

Cay(Γ, C) and m its size then,

m ≤ 2k2 + 2k + 1.

Theorem 58. (see [8])

Every subgroup of a planar group1 is planar

Corollary 59. (see [19])

Suppose Cay(Γ, C) is planar and γ ≤ Γ, then there exists a generating set A of γ with

γ ∩ C ⊆ A such that Cay(γ,A) is planar.

1A group Γ is planar provided its Cayley graph, Cay(Γ, C), is planar and C is called planar generating
set.
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3.1.2 Hamiltonicity of Cayley graphs

Hamiltonian characterizations of Cayley graphs have been a very hot research area for many

decades. The classical conjecture of Lovász2 in 1969 coupled with huge applications of

Hamiltonian graphs have attracted the interests of researchers for the past 45 years. Up till

today, several researches are ongoing to completely characterize the Hamiltonian cycles in

Cayley graphs. In what follows are some established results on this topic with references.

Theorem 60. (see [54]) Suppose Γ is a finite group with order n ≥ 3 and C a generating set

such that |C| ≤ log2n. Then, the associated Cayley graph Cay(Γ, C) contains a Hamiltonian

cycle.

Conjecture 61. (Lovász, see [24])

Every finite connected vertex-transitive graph has a Hamiltonian path.

Conjecture 62. (see [4]) There is a Hamiltonian cycle in every connected Cayley graph of

size n ≥ 3.

Theorem 63. (see [39]) Almost all Cayley graphs are Hamiltonian

Many other results abound in the literature regarding the Hamiltonian cycles in Cay-

ley graphs. For additional results and problems on Cayley graphs one can consider the

comprehensive surveys [43, 44, 58, 72].

3.2 Commuting graphs, 1955

The commuting graph, G(Γ;P ) , where Γ is a group and P a subset of Γ, has P as its vertex

set with two distinct elements u, v ∈ P joined by an edge whenever uv = vu in Γ. The

associated graph, G(Γ;P ), where P contains involutions of Γ is called commuting involution

2See Conjecture 61.
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graph. Everett in [30] asserted that commuting graphs came to prominence in the ground

breaking paper of Brauer and Fowler [16]. Bertram in [12] also proved three fundamental and

non-trivial theorems on finite groups using combinatorial properties of commuting graphs.

For some applications of commuting graphs on bounded linear operators of Hilbert spaces

see [5].

3.2.1 Basic properties of commuting graphs

Ever since the introduction of commuting graphs several investigations have been carried

out. We present below some important results for commuting graphs associated with finite

groups.

Theorem 64. (see [51]) Suppose Γ is a non-abelian finite group. If P = Γ \ {e} then the

commuting graph G(Γ, P ) has the following properties:

1. The diameter of every connected component of G(Γ, P ) is bounded above by 10.

2. For a connected G(Γ, P ), the diameter diam[G(Γ, P )] ≤ 10.

Theorem 65. (see [49]) Suppose Γ is a finite group and P = Γ\Z(Γ). Then the commuting

graph G(Γ, P ) is a union of complete subgraphs, K2, if and only if Γ ∼= D8 or Q8. D8 is the

dihedral group of order 8 and Q8 the quaternion group.

Theorem 66. (see [49]) Suppose the order of Γ is greater than 2 and P = Γ \ Z(Γ). Then,

the automorphism group of the associated commuting graph, Aut(G(Γ, P )) is a non-abelian

group.
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3.2.2 Commuting graphs on symmetry, dihedral and generalized

quaternion groups

Some authors have singled out the study of the commuting graphs associated with symmetry,

dihedral and generalized quaternion groups. We shall present only two results here and the

interested reader may see [10, 17] for more results.

Theorem 67. (see [23]) Let n ≥ 3 be any integer. There exists no subset P of D2n such

that the associated commuting graph, G(D2n, P ) is :

1. n-regular.

2. a cycle of length 4.

Theorem 68. (see [65]) Suppose Q2n is a generalized quaternion group and Z(Q2n) its

center. Then, the associated commuting graph, G(Q2n , Q2n \ Z(Q2n)) = G(Q2n) for short,

has the following properties:

1. ω1(G(Q2n)) = 2n−1 − 2,

2. ω2(G(Q2n)) = 2n−2 + 1,

where ω1 and ω2 are clique number and independence number of G(Q2n) respectively.

3.2.3 Commuting involution graphs

Several researches have been devoted to the study of special commuting graphs G(Γ, P ),

where P is a conjugacy class of involutions in Γ. This graph is called commuting involution

graph. According to Bates et al in [11], commuting involution graphs originated from the

investigations carried out by Fisher on the ”3-transposition” groups in 1971. Ever since

then, studies have been directed to this approach. This paper [11], contains a very deep

analysis and comprehensive study of the commuting involution graph, G(Γ, P ), where Γ is

a symmetry group of order n.

27



3.3 Intersection graphs, 1969

Zelinka in [75] asserted that it was Csákány who introduced the intersection graphs on finite

groups, G(Γ), in 1969. The vertices of this graph are the non-trivial subgroups of the group

Γ and there is an edge between two vertices γ1, γ2, provided γ1 \ {e} ∩ γ2 \ {e} 6= ∅, where e

is the identity element in Γ. Literature reveals that Bosák in 1964 (see [15]) had previously

defined the intersection graphs on semigroups but intersection graph on finite groups was

credited to Csákány.

3.3.1 Basic properties of intersection graphs

Ever since the introduction of intersection graphs several investigations have been carried

out. We present below some few results on intersection graphs associated with finite groups.

For a deep investigation of a special intersection graph where only the normal subgroups are

considered, see [38].

Theorem 69. (see [60]) Suppose Γ is a finite group. Then, its intersection graph, G(Γ), is

disconnected if Γ is :

1. Zr × Zs where r and s are prime numbers.

2. a Frobenius group whose complement is a group of prime order and the kernel is a

minimal normal subgroup

Proposition 70. (see [40]) Suppose Γ is a finite abelian group and denote the cyclic group

of order r by Γr. Then, Γ is planar3 if and only if it is isomorphic to one of the following

groups:

1. Γni where i is between 0 and 5 inclusive,

3A group is planar if its associated intersection graph is planar.
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2. Γn2 × Γm,

3. Γn × Γm,

4. Γ4 × Γ2,

5. Γn × Γn,

6. Γl × Γm × Γn

7. Γ2 × Γ2 × Γn, n 6= 2,

where l,m, n are distinct prime numbers.

Lemma 71. (see [40]). Let Γ be a non-abelian group and |Γ| = p4 where p is prime. Then,

Γ is non-planar.

Proposition 72. (see [75]) Let Γ be a finite abelian group. The cardinality of the largest

independence set4 of the graph G(Γ) equals the maximal number of prime order subgroups of

Γ.

3.4 Prime graphs, 1970

Gruber et al in [33] claimed that prime graphs, G(Γ), came into existence as a by-product

of some cohomological questions raised by K.W. Gruenberg in the 1970s. Let q(Γ), the set

of primes dividing the order of Γ, be the vertices of the prime graph G(Γ). There is an

edge between two vertices r1 and r2 provided there exists an element u ∈ Γ of order r1r2.

Vasil’ev in [66] investigated the relationship between finite groups and their prime graphs.

For excellent works on generalization of prime graphs and full classifications of prime graphs

see [2, 35, 67, 70, 76].

4Independence set of a graph G consists of vertices of G such that no two vertices in the set are adjacent.
The cardinality of the largest independence set in a graph is the independence number.
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3.4.1 Basic properties of prime graphs

Theorem 73. (see [64]) Suppose Γ is a group of order n. Then, the prime graph G(Γ) is

3-regular if and only if it is K4.

Lemma 74. (see [64]) Let Γ be a finite group with k-regular prime graph, G(Γ), where

0 ≤ k ≤ 2.

1. If k = 0, then G(Γ) is an empty graph of at most order 3.

2. If k = 1, then G(Γ) ∼= K2.

3. If k = 2, then G(Γ) is either a triangle5 or a square6. Besides, if G(Γ) is a square,

then Γ is a solvable group.

The following conjecture is due to Hung in [64] regarding the k-regular prime graphs.

Conjecture 75. Suppose Γ is a finite group with k-regular prime graph, G(Γ), k ≥ 2. Then,

1. If k is an odd number greater than 4, then, G(Γ) = Kk+1

2. If k is an even number greater than 3, then, either G(Γ) = Kk+1 or a k-regular graph

of order k + 2.

3. If | q (Γ)| = k + 2, then G is solvable.

Theorem 76. (see [63]) Suppose Γ is a group whose prime graph G(Γ) contains no triangle.

Then, the order of G(Γ) is bounded above by 5. In particular, if G(Γ) is a cycle or a tree

then the order of G(Γ) is bounded above by 4.

5A cycle of length 3.
6A cycle of length 4.
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3.5 Non-commuting graphs, 1975

Neumann in 1975 asserted that Erdös in the same year introduced non-commuting graph,

G(Γ), associated with a group Γ. In this graph, the vertices are the elements of Γ and there

is an edge between two vertices u, v ∈ G(Γ) if and only if uv 6= vu i.e the commutator

u−1v−1uv is not the identity, [53]. If Γ is non-abelian and Z(Γ) is the center of Γ then the

non-commuting graph, G(Γ), is also defined as follows: Γ \ Z(Γ) as vertex set and there is

an edge between u, v ∈ Γ \ Z(Γ) provided uv 6= vu, [1, 50].

In 2013, Erfanian and Tolue introduced the relative nth non-commuting graph, Gn
γ(Γ),

where γ is a non-abelian subgroup of Γ for a fixed n ∈ Z+. The vertex set is Γ \ Snγ,Γ where

Snγ,Γ = {u ∈ Γ : [u, vn] = 1 and [un, v] = 1 for all v ∈ γ}. Further there is an edge between

u and v if either u or v ∈ γ and uvn 6= vnu or unv 6= vun, [29]. Some characterizations of

this graph were also investigated. For nice discussions on non-commuting graphs of dihedral

groups see [62].

3.5.1 Basic properties of non-commuting graphs

Theorem 77. (see [1])

Suppose Γ is a non-abelian group. Then, the associated non-commuting graph has the fol-

lowing properties:

1. It has a diameter of 2.

2. It is connected.

3. It has a girth of 3.

4. It is Hamiltonian.

5. It is planar if and only if Γ is isomorphic to either Q8, D8 or S3.

31



Lemma 78. (see [1]). Let Γ be a non-abelian group such that |{deg(u) : u ∈ V (G(Γ))}| = 2.

Then, Γ is solvable.

Theorem 79. (see [28]). Suppose Γ is a non-abelian group and m the size of the associated

non-commuting graph, G(Γ) . Then G(Γ) has the following properties:

1. G(Γ) is not a complete graph.

2. G(Γ) is not bipartite.

3. m ≥ 3
2
|Γ|. Equality holds provided that Γ ∼= Q8, D8 or S3

4. m 6= 2|Γ|.

5. If |Γ| > 16n
3

, where n ∈ N, then m > n|Γ|.

6. If m ≤ 31|Γ| and Γ is simple, then Γ ∼= A5.

3.5.2 Conjectures and further results

The following conjectures are due to Abdollahi et al in [1].

Conjecture 80. Suppose Γ1 and Γ2 are two non-abelian groups. If G(Γ1) ∼= G(Γ2), then

|Γ1| = |Γ2| where G(Γ1) and G(Γ2) are non-commuting graphs associated with Γ1 and Γ2

respectively.

Conjecture 81. Suppose Γ1 and Γ2 are two non-abelian groups and either Γ1 or Γ2 is a

simple group. If the non-commuting graphs G(Γ1) ∼= G(Γ2), then Γ1
∼= Γ2.

Theorem 82. (see [27]). Let Γ1 be a simple group for which the Thompson’s conjecture7

holds and Γ2 a finite group. If G(Γ1) ∼= G(Γ2), then Γ1
∼= Γ2.

7See [34] for the verification of Thompson’s conjecture on simple groups.
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3.6 Conjugacy class graphs, 1990

Bertram in 1990 introduced the conjugacy class graph associated with a finite group Γ as

follows: The vertices of G(Γ) are the non-central conjugacy classes8 of Γ and two vertices

Cl(u) and Cl(v) are adjacent provided (|Cl(u)|, |Cl(v)|) 6= 1, i.e. |Cl(u)| and |Cl(v)| are not

co-prime, see [13]. You et al in an unpublished article, [74], proposed a modified definition

of conjugacy class graphs as follows: The vertices are the non-central conjugacy classes of

Γ and two vertices Cl(u) and Cl(v) are adjacent provided (|u|, |v|) > 1. Furthermore, Lu

and Zhang in [48] devoted a full length article to the study of conjugacy class graphs of

p-regular conjugacy classes9 in a group. For a comprehensive account of interesting results

on conjugacy class graphs, see [46]. Bianchi et al in [14] gave excellent applications of

conjugacy class graphs to proving some results in group theory. The following are some of

the characterizations of conjugacy class graphs associated with finite groups the reader may

see the corresponding references for the proofs.

3.6.1 Basic properties of conjugacy class graphs

Theorem 83. (see [13]). Suppose Γ is a finite group. Then, the associated conjugacy class

graph, G(Γ), has the following properties:

1. Number of connected components k(G(Γ)) ≤ 2. Equality holds if and only if Γ is

quasi-Frobenius10 with commutative kernel and complement.

2. If k(G(Γ)) = 1, then diam(G(Γ)) ≤ 4.

3. If G(Γ) is an empty graph, then Γ ∼= S3.

4. It is a complete graph if Γ is a non-abelian simple group

8Conjugacy classes containing more than one element.
9See [48] for the meaning of this.

10Γ is defined to be quasi-Frobenius provided that Γ \ Z(Γ) is Frobenius.
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Theorem 84. (see [31]). Suppose Γ is a non-abelian finite group. Then, the conjugacy class

graph G(Γ) contains no triangle if and only if there is an isomorphism between Γ and any

of the following groups:

1. S3.

2. D12.

3. A4.

4. Γ = 〈u, v | u6 = e, v2 = u3, vu = u−1v〉.

5. Γ = 〈u, v | u3 = v7 = 1, vu = uv2〉.

Theorem 85. (see [31]). Suppose the conjugacy class graph G(Γ) is connected with no

triangle and distinct Cl(u) and Cl(v) non-central conjugacy classes. Then, |Cl(u)| 6= |Cl(v)|.

Theorem 86. see ([31]). Suppose Γ is a non-solvable finite group. Then, the associated

conjugacy class graph G(Γ) contains C3.

3.7 Power graphs, 2000

Directed power graph, ~G(Γ), was introduced by Kelarev in 2000 as a tool to studying the

combinatorial properties of groups with infinite sequences. This graph is defined on a finite

group Γ with its elements as the vertices and there is a directed edge from u to v ∈ ~G(Γ)

provided v = ut, u 6= v and t ∈ N, see [42]. In this article, Kelarev was able to establish

a new combinatorial property of groups via the directed power graphs. This was the first

application of directed power graph in group theory. In 2007, Imani et al [36] applied some

properties of power graphs to resource placement in networks. For a recent and excellent

survey on power graphs see [37]. The underlying graph, G(Γ), when all the directions are

removed is the power graph first considered by Chakrabarty in 2009, see [21].
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3.7.1 Basic Properties of Power graphs

Theorem 87. (see [25]). For all finite groups of a given order, the cyclic group of that order

has the maximum number of edges in its power graph.

Theorem 88. (see [56]). Let Γ be a p-group11. Then G(Γ) is 2-connected if and only if Γ

is a cyclic group or Qn.

Theorem 89. (see [18]). Suppose Γ1 and Γ2 are finite abelian groups. If G(Γ1) ∼= G(Γ2)

then Γ1
∼= Γ2.

Conjecture 90. (see [18]). Suppose Γ1 and Γ2 are finite groups. If ~G(Γ1) ∼= ~G(Γ2) then Γ1

and Γ2 have equal numbers of elements of each order.

Theorem 91. (see [18]). The only finite group Γ satisfying Aut(Γ) = Aut(G(Γ)) is the

Klein four group.

3.7.2 Eulerian and Hamiltonian cycles in power graphs

Theorem 92. (see [56]). Suppose Γ is any finite group. The power graph G(Γ) is Eulerian

if and only if the order of Γ is odd.

Theorem 93. (see [56]). Let Γ be a p-group. The power graph G(Γ) is Hamiltonian if and

only if Γ is cyclic and its order is not 2.

11A group Γ is called a p-group if it has order a power of the prime p.
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Chapter 4

Construction and characterizations of

inverse graphs

4.1 Definition of inverse graph and examples

Definition 94. Let (Γ, ∗) be a finite group and S = {u ∈ Γ | u 6= u−1}. We define the

inverse graph GS(Γ) associated with Γ as the graph whose set of vertices coincides with Γ

such that two distinct vertices u and v are adjacent if and only if either u∗v ∈ S or v∗u ∈ S.

Remark 95. It is worthwhile to observe the following:

1. Clearly, the identity e is a trivial self-invertible element in any finite group Γ. Hence

e /∈ S. Consequently, the cardinality of S is strictly less than the cardinality of Γ. In

particular, if Γ contains no self-invertible element other than the identity then |S| =

|Γ| − 1.

2. As S has always an even number of elements, then |S| = |Γ| − 1 if Γ contains an odd

number of elements.

3. In any inverse graph deg(e) = |S|.
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Example 96. The graphs in Figure 4.1 are the inverse graphs of the groups (Z3,+) and

(Z5 \ {0}, ·) respectively.

y

y y

0

1 2

y y

yy
2 4

1 3

G(Z3) G(Z5 \ {0})

Figure 4.1: Inverse graphs of (Z3,+) and (Z5 \ {0}, ·).

Example 97. Consider S3 = {e, π1, π2, π3, π4, π5} the symmetry group1 of order 6. S =

{π1, π2} the set of non-self invertible elements in S3. The inverse graph GS(S3) is as follows:

v

v

v
v

v

v

S
S
S
S
SSe

π2

π1 π3

π4

π5

Figure 4.2: Inverse graph of S3.

Example 98. Consider the quaternion group Q8 = {1,−1, i,−i, j,−j, k,−k} with the set of

non-self invertible elements S = {i,−i, j,−j, k,−k}. The inverse graph GS(Q8) is as follows:

1See Example 14.
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Figure 4.3: Inverse graph of Q8.

4.2 Basic properties of the inverse graphs

In this section, we study some basic properties of inverse graphs associated with finite groups.

4.2.1 Trivial/Empty inverse graphs

Proposition 99. For any finite group Γ, the inverse graph GS(Γ) is empty if and only if

|Γ| = 1 or |S| = 0.

Proof. Suppose GS(Γ) is empty. Then by Definition 41 either |Γ| = 1 or for any u, v ∈ Γ

with u 6= v, we have u ∗ v /∈ S. Hence S is empty i.e., |S| = 0. The converse is obvious.

Remark 100. Proposition 99 characterizes the inverse graphs of finite groups all of whose

elements are self-invertible. In particular, the inverse graphs associated with the following

groups are empty graphs:

1. Groups consisting of two elements.

2. Γ1 =


 a b

0 a

 | a, b ∈ Z2

 , with usual addition of matrices.
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3. Γ2 =


 a b

0 c

 | a, b, c ∈ Z2

 , with usual addition of matrices.

4. Γ3 = Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, with usual addition of Z2
2.

On the other extreme, it is natural to ask when will the inverse graphs be complete?

Unfortunately, such graphs never exist. Recall that a graph G is complete provided it is not

empty and there is an edge between every distinct pair of its vertices. In a complete graph

G with |G| = n, we have deg(v) = n− 1 for any vertex v of G.

Theorem 101. There is no inverse graph that is complete for any finite group Γ.

Proof. Suppose on the contrary that there exists an inverse graph GS(Γ) that is complete.

Then for each vertex v ∈ V (GS(Γ)), deg(v) = n− 1, where n = |Γ|.

Case 1: n is even. Since deg(e) = n − 1, by Remark 95-(3) we have |S| = n − 1 which

is not possible as |S| is always even.

Case 2: n is odd. Let u 6= v ∈ Γ such that u = v−1. Since there is an edge between every

two distinct vertices, we have e = u ∗ v ∈ S which is not possible, see Remark 95-(1).

4.2.2 Connectedness of inverse graphs

Theorem 102. For any finite group Γ with at least three elements and a non-empty subset

S of non-self invertible elements, the graph GS(Γ) has no isolated vertex.

Proof. Suppose by contradiction that there exists an isolated vertex v in GS(Γ). Then we

have the following two cases.

Case 1 : v ∈ S. But this is not possible for if e ∗ v = v ∈ S, where e is the identity element

of Γ, then v is connected to e in GS(Γ).
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Case 2 : v /∈ S, then either v is the identity or v is a non-trivial self-invertible element of

Γ. It follows from Remark 95-(3), that v cannot be e. Hence v is a non-trivial self-invertible

element. Let ω ∈ S. If v is the only non-trivial self-invertible element of Γ and as v is an

isolated vertex, then ω ∗ v = e which implies ω = v−1, a contradiction. Hence v is not the

only element of Γ \ {S ∪ {e}}. Thus there exists v′ 6= v ∈ Γ \ {S ∪ {e}} such that v ∗ ω = v′.

Hence ω = v ∗ v′ ∈ S i.e., there is an edge between v and v′, a contradiction.

Theorem 103. For any finite abelian group Γ with at least three elements and a non-empty

subset S of non-self invertible elements, the graph GS(Γ) is connected.

Proof. By Remark 95-(3) the identity e is adjacent to every element of S. We are left to

show that every element of Γ \ {S ∪{e}} is adjacent to each element of S. For this, consider

the product u ∗ v where u ∈ S, v ∈ Γ \ {S ∪ {e}} and * is the operation defined on Γ. Then,

(u ∗ v)−1 = u−1 ∗ v−1 = u−1 ∗ v 6= u ∗ v since u ∈ S. So u ∗ v ∈ S. Since both u and v are

arbitrarily chosen we have every element of Γ \ {S ∪ {e}} to be adjacent to each element of

S. Therefore, each vertex of GS(Γ) is reachable and therefore connected.

Remark 104. Note that the commutativity of Γ in Theorem 103 cannot be dropped for the

conclusion to hold. An example of a non-abelian group with a disconnected inverse graph is

the symmetry group S3 of order 6, see Example 97. On the other hand, it is not true that the

inverse graph of every non-abelian group is disconnected. A counterexample is the inverse

graph associated with the quaternion group Q8, see Example 98.

4.2.3 Diameter of inverse graph

Theorem 105. The diameter of a connected inverse graph is two.

Proof. Let GS(Γ) be a connected inverse graph associated with a group Γ. We consider

the following vertex partition: V (GS(Γ)) = {e} ∪ S ∪ S ′, where S is the set of all non-self
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invertible elements and S ′ is the set of all non-trivial self-invertible elements. Since every

element in S is adjacent to e and there is no edge between e and the elements of S ′, ρ(e),

the eccentricity of e, is 2 . Also, for each element u ∈ S, ρ(u) = 2 as u is not adjacent to

its inverse but adjacent to e and every element in S ′. Now take an arbitrary element v ∈ S ′,

it follows from the construction and connectedness of GS(Γ) that v is not adjacent to e but

adjacent to every vertex in S. Hence ρ(v) = 2.

4.2.4 Bounds on sum of degrees and size of the inverse graphs

Lemma 106. In a non-empty inverse graph GS(Γ) of order n, the sum of the degrees is

bounded above by n(n− 1)− |S|.

Proof. Let V (GS(Γ)) = {v1, v2, · · · , vn}. By the first theorem of graph theory, we have

n∑
i=1

deg(vi) = 2|E(GS(Γ))|.

By Theorem 101, GS(Γ) cannot be complete. Hence

n∑
i=1

deg(vi) = 2|E(GS(Γ))| < 2 · n(n− 1)

2
= n(n− 1).

Since GS(Γ) is a non-empty graph, by Proposition 99, S 6= ∅. As any pair u, v ∈ S with

u = v−1 has no edge in GS(Γ), such a pair contributes −2 to the total degrees of the vertices

of GS(Γ). Hence a total of −|S| degrees is contributed by the elements of S. Therefore,

n∑
i=1

deg(vi) ≤ n(n− 1)− |S|.

The following corollary elicits the fact that the inequality in Lemma 106 cannot be
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improved.

Corollary 107. Let Γ be a finite group with no element of order 2. Then

n∑
i=1

deg(vi) = n(n− 1)− |S|.

Proof. Let V (GS(Γ)) = {v1, v2, · · · , vn}. Without loss of generality, let v1 = e, the identity

element of Γ. By Remark 95-(1), we have |S| = |Γ|−1 = n−1, i.e., S = {v2, . . . , vn}. Hence,

deg(v1) = n − 1. Also, deg(vi) = n − 2 for all vi ∈ S since each vi is not adjacent to itself

and its inverse. Therefore,

n∑
i=1

deg(vi) = deg(v1) +
n∑
i=2

deg(vi)

= n− 1 + (n− 1)(n− 2)

= n(n− 1)− (n− 1)

= n(n− 1)− |S|.

Corollary 108. Suppose Γ is a cyclic group of prime order n > 2. Then for all vi ∈

V (GS(Γ)) we have
∑n

i=1 deg(vi) = (n− 1)2 and size m = (n−1)2

2
.

The following example illustrates Corollary 108.

Example 109. Let Γ = {z ∈ C : z5 = 1} be the group of fifth roots of unity under

multiplication. As Γ is generated by one of its non-trivial elements say ω, then we can write

Γ =< ω >= {ω, ω2, · · · , ω5}. Hence S = {ω, ω2, ω3, ω4}. GS(Γ) is shown in Figure 4.4 .

It is obvious that
5∑
i=1

deg(ωi) = 5(5− 1)− 4 = 16.

Proposition 110. Let Γ be a finite group of an odd order n. Then the size of GS(Γ) is

bounded above by the size of the inverse graph GS(Zn).
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Figure 4.4: Inverse graph, GS(Γ), of the group Γ

Proof. Let m be the size of GS(Γ). By Lemma 106 and the first theorem of graph theory,

we have m ≤ n(n−1)−|S|
2

. Now, suppose that Zn = 〈ω〉 = 〈e, ω, . . . , ωn−1〉 is a cyclic group of

order n. As n is odd, ωi ∈ Zn is non-self invertible since (ωi)−1 = ωj where i + j = n. It

follows from Corollary 107 that the size of G(Zn) is equal to n(n−1)−|S|
2

.

4.2.5 Regular inverse graphs

Theorem 111. Let Γ be a finite group and the set S of non-self invertible elements be

non-empty. The associated inverse graph GS(Γ) is

1. 2-regular if Γ is a group of four elements.

2. (2n − 2)-regular if Γ is a generalized quaternion group of order 2n.

Proof. (1) Let Γ = {e, v1, v2, v3}. Since S is non-empty, without loss of generality, S =

{v1, v2}. By construction GS(Γ) is the cycle C4. Hence it is 2-regular.

(2) Let Γ = 〈u, v : v4 = u2n−1
= e, v2 = u2n−2

, vu = u−1v〉 be the generalized quaternion

group with n > 2. Since the only non-trivial self-invertible element in Γ is u2n−2
, we have

S = Γ \ {e, u2n−2}. Consequently, deg(e) = deg(u2n−2
) = 2n − 2. Now, for each element

v ∈ S, we have deg(v) = 2n − 2 as v is adjacent to all vertices except itself and its inverse.
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Corollary 112. Let G be a connected (2n−2)-regular graph, where n > 2. Then there exists

a generalized quaternion group of order 2n whose inverse graph is isomorphic to G.

4.3 Hamiltonian cycles in inverse graphs

Recall that for a given graph G and vertex set V (G) = {v0, v1, · · · , vn} a walk of length

k ≤ n is a finite sequence

vi0ej1vi1ej2vi2 · · · vik−1
ejkvik

whose terms alternate between vertices and edges such that vit−1vit = ejt for 1 ≤ t ≤ k and

0 ≤ ik ≤ n. The walk W is closed if vi0 = vik , otherwise it is open. An open walk in which

no vertex is repeated is called a path. A closed walk of length l ≥ 3 with neither vertex nor

edge repeated is called a cycle.

4.3.1 Inverse graph as a cycle

Lemma 113. Let Γ be a group of order four and GS(Γ) be a non-empty graph. Then Γ ∼= Z4.

Proof. Let Γ be a group of four elements and S be the set of non-self invertible elements of

Γ. Since non-self invertible elements occur in pairs, |S| is equal to 0, 2, or 4. |S| cannot be

zero because this would imply that GS(Γ) is empty. Also |S| 6= 4 since e /∈ S. Hence |S| = 2

and Γ has exactly one non-trivial self-invertible element.

Theorem 114. Let Γ be a group of order four. Then GS(Γ) is the cycle C4 if and only if

Γ ∼= Z4.

Proof. Suppose that GS(Γ) = C4. Then |Γ| = 4 and so by Lemma 113, we have Γ ∼= Z4.

The converse follows immediately by constructing GS(Z4).
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4.3.2 Hamiltonian characterization of inverse graphs

Recall that a graph G is Hamiltonian provided G contains a cycle that visits all its vertices.

It follows immediately that every cycle Cn is Hamiltonian and hence GS(Z4) is Hamiltonian.

The following theorems characterize the Hamiltonicity of the inverse graphs.

Theorem 115. Let Γ be a finite abelian group of order n greater than three with at most

two self-invertible elements. Then GS(Γ) is Hamiltonian.

Proof. Suppose Γ has exactly one self-invertible element which is the identity e of the group.

We have deg(vi) = n− 2 for all vi 6= e ∈ GS(Γ) , see the proof of Corollary 107. By Remark

95-(3), deg(e) = n − 1 > n − 2 ≥ n
2
, ∀n ≥ 4. Hence deg(v) ≥ n

2
for all vertices of GS(Γ).

Thus by Dirac’s Theorem, GS(Γ) is Hamiltonian. On the other hand, if Γ has exactly two

self-invertible elements then it contains only one non-trivial self-invertible element, say u

with deg(u) = deg(e) = n − 2, see the proof of Theorem 103. For each element v ∈ S, we

have

deg(v) =

 n− 3, if v 6= v−1u ∈ S such that v ∗ v−1u = u;

n− 2, if v = v−1u.

Therefore,

deg(e) = deg(u) = n− 2 > n− 3 ≥ n
2
,

for all n ≥ 6. Thus by Dirac’s Theorem the graph GS(Γ) is Hamiltonian. Observe that when

n = 4, GS(Γ) is a cycle of length 4 and when n = 5 such group Γ does not exist since the

order of u which is 2 must divide 5 by the Larange’s Theorem.

Theorem 116. Let Γ be a finite abelian group of order n > 3. If n = 2|S|, then GS(Γ) is

Hamiltonian.

45



Proof. Let Γ = {e} ∪ T ∪ S, where T is the set of all non-trivial self-invertible elements of

Γ and S is the set of non-self invertible elements in Γ. We have |T | =
(
n
2
− 1
)

and |S| = n
2
.

By Remark 95-(3) deg(e) = n
2
. For vi, vk ∈ T , we have (vi ∗ vk)2 = v2

i ∗ v2
k = e ∗ e = e. Thus,

there is no edge between any pair of non-trivial self-invertible elements in GS(Γ).

However, for vi ∈ T and vj ∈ S, we must have vi ∗ vj ∈ S. Otherwise, there exists an

element vk ∈ T such that vi ∗ vj = vk which implies that vj = vi ∗ vk ∈ T , a contradiction.

Therefore, deg(v) = |S| = n
2

for each element v ∈ T . For each vj ∈ S, the elements of T

contribute
(
n
2
− 1
)

to its degree and the identity contributes 1. So we have deg(vj) ≥ n
2
.

Thus by Dirac’s Theorem GS(Γ) is Hamiltonian.

4.4 Application of inverse graphs to the isomorphism

problem of groups

Recall that two groups or graphs are isomorphic if there is an isomorphism between them.

The concept of isomorphism is of prime importance in both group and graph theories. Among

the three crucial problems for groups raised by Max Dehn in 1911 the isomorphism problem is

the most difficult (the word and conjugacy problems constitute the other two: see [26, 59]).

The isomorphism problem has to do with determining whether two groups that appear

different are actually isomorphic. In fact, Dahmani and Guirardel [26] asserted that, the

isomorphism problem is unsolvable for some classes of groups.

Informally speaking, isomorphic groups are really the same groups except for the nota-

tions used. Besides, if Γ1 and Γ2 are two isomorphic groups then they share the same group

properties such as being abelian, cyclic, having equal elements of finite order, the same num-

ber of involutions, etc. It is clear from the definition of inverse graphs that if Γ1
∼= Γ2 then

GS1(Γ1) ∼= GS2(Γ2) where S1 and S2 are the sets of non-self invertible elements in Γ1 and Γ2

respectively.
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Corollary 117. Let Γ1 and Γ2 be finite groups with GS1(Γ1) ∼= GS2(Γ2). Suppose Γ1 is a

group whose non-trivial elements are involutions. Then Γ1
∼= Γ2.

Proof. Since GS1(Γ1) ∼= GS2(Γ2) and Γ1 is a group whose non-trivial elements are involutions,

it follows from Proposition 99 that GS2(Γ2) is an empty graph. Hence, the set S2 of the non-

self invertible elements in Γ2 is empty. Then Γ2 is a group whose non-trivial elements are

also involutions. Since |Γ1| = |Γ2| by the isomorphism between their corresponding inverse

graphs it follows from Proposition 38 that Γ1
∼= Γ2.

47



Chapter 5

Comparison between inverse graph

and some other graphs associated

with finite groups

In this chapter, we illustrate by examples how our new inverse graphs are different from

some known graphs associated with groups.

5.1 Cayley graph

Recall that for a finite group Γ and a non-empty subset, C ⊆ Γ that generates Γ, the Cayley

graph denoted by Cay(Γ, C) is defined as follows: each vertex is an element of Γ, and two

vertices u, v ∈ V (Cay(Γ, C)) are adjacent if either uv−1 ∈ C or vu−1 ∈ C. Consider the

Klein four-group K4 = {e, a, b, ab : e = a2 = b2 = (ab)2}. The only possible generating sets

of K4 are C1 = {a, b}, C2 = {a, ab}, C3 = {b, ab}, C4 = {a, b, ab} and K4 itself. Figure 5.1

reveals that each of the Cayley graphs Cay(K4, C1), Cay(K4, C2) and Cay(K4, C3) is a cycle

of length four while Cay(K4, C4) and Cay(K4,K4) are complete graphs of four vertices. On
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Figure 5.1: Cayley graphs of Klein four group

the other hand, since S = ∅, GS(K4) is empty by Proposition 99.

5.2 Commuting graphs

Recall that the commuting graph G(Γ;P ), where Γ is a group and P a subset of Γ, has P as

its vertex set with two distinct elements u, v ∈ P joined by an edge whenever uv = vu in Γ.

Notice that for any abelian group Γ and P = Γ, the associated commuting graph G(Γ;P ) is

complete. However, by Theorem 101 there is no inverse graph that is complete.

5.3 Intersection graphs

Recall that the intersection graph G(Γ), has the non-trivial subgroups of Γ as vertices and

two vertices γ1, γ2 are adjacent if and only if |γ1 ∩ γ2| > 1, where e is the identity element

of Γ. Consider the group of integers modulo p, (Zp,+), where p is prime. By Lagrange’s
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Theorem, the only non-trivial subgroup of Zp is itself. Hence the intersection graph G(Zp)

is a trivial graph. On the other hand, the inverse graph of (Zp,+) is non-trivial since S 6= ∅,

see Proposition 99.

5.4 Prime graphs

Recall that the prime graph G(Γ), has the primes dividing the order of Γ as its vertices and

two vertices r1 and r2 are adjacent if and only if there exists an element u ∈ Γ of order r1r2.

Again consider the group of integers modulo p, (Zp,+), where p is prime. The prime graph

G(Zp) is a trivial graph. On the other hand, the inverse graph of (Zp,+) is non-trivial since

S 6= ∅, see Proposition 99.

5.5 Non-commuting graphs

Recall that the non-commuting graph G(Γ), has the elements of Γ as its vertices and two

vertices u, v are adjacent if and only if uv 6= vu. If Γ is non-abelian and Z(Γ) is the center,

then the non-commuting graph G(Γ) is also defined on the set Γ \ Z(Γ) as well. Consider

the symmetry group S3 = 〈a, b|a2 = b2 = (ab)2〉. The non-commuting graph G(S3) has the

identity as an isolated vertex which is not possible in any inverse graph of a group with more

than two vertices, see Theorem 102. Moreover, G(S3 \{e}) has five vertices while the inverse

graph of S3 contains six vertices.

5.6 Conjugacy class graphs

Recall that the conjugacy class graph G(Γ), has non-central conjugacy classes of Γ as its

vertices and two vertices U and V are adjacent if and only if |U | and |V | are not coprime.

Again consider the symmetry group S3. Since S3 has two non-central conjugacy classes,

50



then its conjugacy class graph contains only two vertices while its inverse graph contains six

vertices.

5.7 Power graphs

Recall that the directed power graph G(Γ), has the elements of Γ as its vertices and there

is a directed edge from u to v if and only if v = ut, u 6= v and t ∈ N. The power graph

associated with Γ is defined to be the underlying graph of G(Γ). Consider the cyclic group

Γ = {e, w, w2}. Then the power graph G(Γ) is the complete graph K3 while its inverse graph

is a path P3 of length two.
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