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CHAPTER 1

INTRODUCTION

1.1 Introduction

Natural resources like oil, gas, coal and other minerals are important for life.
These resources are buried inside earth (both land and marine). To explore these
resources we need a clear image of the earth sub-surface [1]. This image can be
obtained using method of reflection seismology. In this method, artificial seismic
waves are generated and these waves are reflected from different geological layers
which are recorded by receivers. The recorded data is in raw form and it needs
further processing to obtain the image of earth sub-surface [1, 2.

Digital signal processing has played important role in many applications. Some
examples are sonar, radar, medical, communications and seismology [3]. The ac-
tual application of signal processing in seismology began with the work of Geo-
physical Analysis Group at the Massachusetts Institute of Technology (MIT) in

the era 1960-65, it was historical milestones in seismic data processing [4].



To obtain the image of earth subsurface some preprocessing is required to
attenuate noise accompanying the data. By using an imaging technique, the
time traces of the preprocessed shot records are transformed into depth traces.
For this process a earth model is required and the imaging technique is called
magration. After the imaging, a geologist can interpret the migrated section and
can identify the layers and structures in the earth subsurface model. For instance,
this interpretation can be used to make a decision about the position of a future
borehole. If an error is made in the imaging technique and interpretation based on
it is wrong, the borehole will miss its target. Therefore, a good quality of imaging
technique (or seismic migration) is important.

Seimic Migration can be performed in different domains and in each domain
there are number of algorithms. There exists many migration (extrapolation) al-
gorithms. One migration method is frequency-wavenumber ( f — k,) algorithm
[1, 5]. In this method the data in time-space (¢ — z) domain is first trans-
formed into frequency-wavenumber (f — k,) domain. At each frequency sample, a
complex-valued FIR filters are applied in the wavenumber-response domain. An-
other method is frequency-space (f — ), in which the data is transformed into
frequency-space domain before migration, only the time axis is transformed to
the frequency. In this method FIR extrapolation filters (known as extrapolators)
are applied in space domain via convolution [5, 6, 7]. By using convolution, each
designed filter output can be calculated independently (or in parallel). In addi-

tion, this method can easily be extended to 3-D depth migration. This method



can accurately migrate the one-way wavefields through strong laterally varying
media.

Most of the existing methods focused on acoustic data migration, which is
the best approximation of the earth subsurface. Many researchers used different
approaches to design non-compensating acoustic medium wavefield extrapolators
in the f —x domain [6, 5, 8, 9, 7, 10, 11, 12, 13]. In reality, the wave attenuates
as it travels in the earth. If data is considered to be visco-acoustic, then new
methods are required to compensate for addressing the effect of attenuation and
dispersion. The loss in energy, if not compensated, reduces the data resolution.
Depth migration is considered to be a physically more consistent and accurate
domain to compensate and improve the resolution of the data at higher depths

14, 15].

1.2 Contributions

As in reality, the data encounter attenuation. To compensate for this attenuation
new operators are required. To verify the newly design FIR filters (which have
compensating effect for attenuation) on shot records or prestack data sets, the

following three main components are required:

e Acoustic and visco-acoustic data sets.

e Compensating visco-acoustic FIR filter designs.

e Prestack depth migration algorithm.



Firstly, we generated shot gathers for acoustic and visco-acoustic case. Acous-
tic data set is required to get a reference migrated image. Visco-acoustic data
set is required to compare the results of compensating and non-compensating
operators with that of reference migrated section. Secondly, visco-acoustic com-
pensating operators are designed with two algorithms. First algorithm design is
compensating L;-norm (sparse and non-sparse) FIR filters and second design is
weighted Lq-error compensating FIR filter designs. Finally, for verification, the
prestack depth migration process is required. Prestack depth migration to our

designed filters is used and the resulting images are provided.

1.3 Organization of Thesis

In chapter 2, the background of seismic data processing, migration and visco-
acoustic concepts are discussed. In chapter 3, the compensating L;-norm visco-
acoustic f — z filters (both sparse and non-sparse) are designed. The filters re-
sponses are shown along with prestack depth migration of Marmousi model data
sets. In chapter 4, the method of weighted Li-error is presented. The importance
of weighting is discussed and the accuracy of the filters are shown along with the
migrated sections. In the end of chapter both the algorithms of L;-norm and
weighted Li-error are compared. In chapter 5, the final concluding remarks are

presented. Also, further recommendations are suggested for possible future work.



CHAPTER 2

BACKGROUND

2.1 Introduction

Among many geophysical techniques, seismic reflection is the most widely used.
Its success lies in the fact that the seismic raw data is used to generate migrated
images of the earth’s subsurface structures. Seismic signals are generated at a
source (such as explosion) which propagates through different layers of the earth.
These signals are reflected, refracted and lost (due to attenuation). At the surface,
the reflected signals are recorded by receivers at the acoustic impedance contrast.
Reflectivity defines the strength of the impedance contrast. The signals recorded
by these receiver is termed as seismic raw data which is further processed to obtain
the migrated images of the earth subsurface structures. This processing require

several steps. The following are typical seismic signal processing steps [1]:
e Preprocessing

e Deconvolution



CMP sorting

Velocity analysis

e NMO correction and muting

Stacking

Migration

These steps are for poststack migration algorithms. In case of prestack migration,
the stacking is done after migrating each independent shot gather.The primary
steps in the above workflow are deconvolution, stacking and migration, rest are
secondary processes and improve the performance of these primary stages. The

function of primary steps are summarized as:

e Deconvolution: Increases the vertical/time resolution

e Stacking: Increases the signal to noise ratio and produces the initial subsur-

face image

e Migration: Increases the horizontal resolution and produces the final sub-

surface image

In this thesis the main focus is on migration which is the final stage of the

workflow.



2.2 Migration

The earliest migration! technique were graphical and was based on geometrical
ideas developed. In 1954 Hagedoorn describes the process of seismic migration
in terms of propagating wavefronts and tries to avoid the use of non-physical ray
paths [16]. Later on Huygens-Fresnel argued that the beam between source and
receiver is at least a half wavelength wide, therefore, rather than rays it is better
to work with propagating wavefronts. Huygens’ principle is basis of migration
1, 17].

In seismic migration, wave propagation effects, can correctly determine the
reflection points of the subsurface structures [18]. Migration can be defined as
the process of reconstructing a seismic section so that the reflection events are
repositioned under their correct surface location at their correct vertical reflection
(time or depth) location [1, 19]. The migration process removes the distorting
effects of dipping reflectors from the seismic sections. In addition it also removes

the diffracted arrivals which are resulted from sharp lateral discontinuities [20, 21].

2.2.1 Migration Types

Migartion can be classified as poststack or prestack migration. In poststack mi-
gration, the migration process is done on the Common Midpoint gather (CMPs)
stacked data set. In prestack migration, migration is performed either on CMPs

or Common shot gathers (CSGs) and the migrated sections are stacked after mi-

IThe collection of reprints of Gardner is recommended for complete overview of
migration upto 1985



gration. Prestack migration is relatively expensive in terms of processing [22]. On
the other hand, poststack migration is not that much expensive but less accurate
in complicated sub-surfaces.

Migration can also be classified as depth and time migration. Both prestack
and poststack migration can give output in time or depth. This classification is
based on how much physics we put in the algorithm. For strong velocity varia-
tions, depth migration is used which results in depth section. Geological examples
of strong lateral velocity variations include salt overhangs, sub-salt regions or its
combination. In Figure 2.1, both the poststack and prestack migrations are com-
pared based on the lateral velocity variations and complexity of the algorithm.
Among all, the prestack depth migration results in good quality images of the
sub-surface with strong lateral velocity variations at the expensive of processing

power.

2.2.2 Two-way and one-way Migration

Two-way wavefields can be described in terms of total acoustic pressure and the
total particle velocity. Both the terms are always coupled by the two-way wave
equations. In one-way, the wavefields are described by the wave traveling in
the positive and negative axial direction. If the parameters of the medium are
not varying, the axial direction of up-going and down-going one-way wave are
completely decoupled. If the medium parameters are varied, the coupling between

both the waves is expressed in terms of axial variations of the medium parameters.
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Figure 2.1: Types of migration based on lateral velocity variations and computa-
tional complexity.



In surface seismic exploration the vertical direction is preferred which makes the
one-way wave theory well suited for seismic applications [7].

Migration can be implemented in number of ways. It is expensive process in
terms of processing and the final step to the seismic reflection data to be inter-
preted. As it is considered the last major step in the seismic processing, so it is
blamed for the problems with the earlier processing steps [22]. There are number
of algorithms and different ways to classify the algorithms. Here, our algorithm
depends on one-way extrapolation. In Figure 2.2, variety of different algorithms
are shown for seismic reflection data. This hierarchy shows the assumptions made
for solving initial partial differential equations. Algorithms are available in differ-
ent domains like f — x, f — k.. Frequency-wavenumber-space f — k, — x is called
dual domain methods because this algorithm bounce back and forth in frequency,

wavenumber and space.

2.2.3 Explicit f — x Depth Extrapolation

Seismic imaging in the f — 2z domain is among the attractive methods for imag-
ing the earth subsurface structures [6, 5, 1]. This method is implemented via
spatial convolution to obtain seismic images [23, 1], so each output sample can
be computed independently, whenever parallel implementation is possible. Most
importantly, one-way wave extrapolation in the f — x domain can accurately
image the subsurface with strong lateral varying medium. For strong varying

medium, short length filters are required. Also, the short length filters will reduce

10
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Figure 2.2: One-way extrapolation algorithms.
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the computational cost of convolution. At the same time, to accommodate high
propagation angles of wavefields, large length filters become desirable. Hence,
the design problem can be treated as an optimization problem between the two
trade-offs [10, 11].

The explicit f—x migration can be easily extended to the 3-D depth migration,
which requires 2-D filters as extrapolators. The f—x extrapolation, can accurately
image the laterally varying materials by using N length FIR digital filters. In the
f—x extrapolation, the seismic wavefields are spatially sampled, i.e. u(z;, e/, z;)
from depth z; to zx411 = 2, + Az and the process can be performed independently
for each frequency w, by spatial convolution with a pre-designed filter [24].

(N-1)/2
w(w, @, zen) = > hlnju(@io, @7, 2) (2.1)
n=(—N+1)/2

In equation 2.1, it is shown how to apply the designed h[n] filter response
to extrapolate for each depth level. In prestack extrapolation is applied to both
downgoing and upgoing wavefields. This process is recursive in nature as shown
by the equation 2.1. Due to this recursive nature of algorithm the extrapolation
process can be unstable, so accurate designs are required to avoid instability. In
the equation 2.1, x; = iAx and 2z, = kAz for all i and k € Z (set of integers)..
This method can be easily extended to 3-D Seismic Migration. When explicit
depth migration is treated as filtering process it resembles convolution and we
can compute each sample independently. This method is less expensive and can

handle lateral variations in velocity.
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2.2.4 Explicit f — x Prestack Depth Migration

Prestack depth migration is a model-based seismic imaging methodology that
works well for complex geological structures such as subsalt layers and basement
fractures [25]. Prestack migration is results in better image quality, but at the
expense of processing power. The method used for migration in this thesis is
explicit f — x prestack depth migration.

In this method, extrapolation in performed on each shot gather and stacking is
done at later stage. While in poststack migration extrapolation is done on stacked
section. Shot gather is first transformed from ¢ — x domain to f — x domain. FIR
filter is selected based on frequency (f), velocity (¢) and value of (). For each
frequency, both downgoing and upgoing extrapolation is performed followed by
imaging condition. This process is repeated for each depth step. When this
process is completed for each depth level, this results in migrated image for one
shot gather. The same process is repeated for all shot gathers. Once this process
is completed for all shot gathers, stacking of all the migrated images is done to
get the final migrated depth section. This algorithm is shown by Algorithm 1 and

a flowchart in the Figure 2.3.
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Algorithm 1 Explicit f — x prestack depth migration

1: procedure PRESTACK

2: for each shot gather do
Input shot gather i in (t — z)
Fourier transform of shot gather i along (¢t — axis)
Shot gather i in (f — 2)

3: for each depth level do

4: for each freqeuency do
Look-up Table (Predesigned 1-D FIR Filters)
Downgoing wave extrapolation
Upgoing wave extrapolation

5: end for
Imaging Condition
6: end for
Image ¢
7 end for
Stacking

Get the final depth migrated (z — x) section
8: end procedure

2.3 Visco-Acoustic Concepts

2.3.1 Linear Visco-Acoustic Medium

In frequency domain wave equation for linear visco-acoustic medium is given by

w2

0 i)

}P(w, ) = (2.2)

c(w,z) =/ M(w,x)/p

at lateral position z and w frequency, where P(w,x) is pressure, M(w) is bulk
modulus, 9?7 is partial differentiation with respect to cartesian coordinates and p
is density. If velocity is independent of lateral coordinate i.e. z, spatial Fourier

transform along x-direction is performed on equation 2.3, ¢(w, x)is relaxed and is
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independent of z lateral position [6].

{63 + [Cz‘("(l) - k} P(w, ks, 2) =0 (2.3)

]2 k2 Az
Plw, by, 2+ Az) = ¢ VIG5 P, g2 (2.4)

Solution of equation 2.3 is given by equation 2.4, it has two solutions i.e. up and
down going waves downward extrapolation. In this equation, it is shown that how
to get pressure P(w, k., z + Az) at next step z+ Az from current pressure at z in
the frequency-wavenumber domain [14].

Extrapolation operators are required which approximate this response accu-
rately. From the equation it is clear that it is recursive process and repeated for
all depth steps to get the final migrated image, where j =+/—1. If velocity c(w)or
bulk modulus M (w)is allowed to be complex, it will compensate for absorption

[14], we can then write it as

2.3.2 Effect of Q parameter

According to the equation 2.5, the magnitude of wavenumber response must be
close to one, not too large than one and not too less than one. Magnitude response
above one will make the system unstable while less than one will attenuate the

wavefields in the passband. In case of acoustic media the magnitude is almost
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one in the passband and less than one in the evanescent region. While, in case of
visco-acoustic media magnitude in passband is slightly above one to compensate
for absorption and dispersion, this slight increase is according to the value of
() which corresponds to absorption. If the value of () becomes too small then
the magnitude response will lead the process to instability. For stable operation
magnitude response should be thoroughly seen before applying to the prestack
migration data set, to guarantee stability. In Figure 2.4, effect of Q) is shown on
the wavenumber magnitude response with different values of (). For acoustic case
() = oo, which means no absorption took place and there is no compensation. In
extrapolation process phase is also important in the passband, while in evanescent
region it is of no importance. Phase in the passband will reposition the seismic

events accurately.

2.3.3 Wavenumber Response for Visco-Acoustic Extrapo-
lation

In order to implement the design for compensating operator, ideal wavenumber
response is required for visco-acoustic case. The ideal response incorporate the
effect of attenuation compensation in terms of value of (). In explicit depth f —x
migration the extrapolation process is a filtering process. The f —x extrapolation
filters (operators) are designed to compensate for dispersion and attenuation based
on the absorption law of linear visco-acoustic wave equation given by equation 2.3.

The objective here is to design the visco-acoustic f — z extrapolators based on
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the following 1-D normalized desired wavenumber response [15], that is given by:

Hy(k,) = eV (kemiao® =k (2.5)

where the term a. is given as:

Note that b is ratio of the depth sampling to the horizontal lateral sampling i.e.
b= g—f&, k. is the normalized cutoff, k, is the normalized horizontal wavenumber
and () is the compensating parameter. There exists many ways to estimate the
@ values. Here, we follow the work of [15] by which its value is square root of the
velocity at each grid point of velocity model except for the water layer in which
() = oo (no attenuation). From equation 2.5, the cutoff is now a complex quantity,

while in case of acoustic medium, the term «, = 0 because () = oco.

2.4 Sparse Filters

A general N length FIR filters that contain at most K nonzero coefficients (and
N — K zero coefficients) are called sparse FIR filters. Sparse FIR filters have been
of interest to digital signal processing researchers since the mid-1990s. However,
the design of sparse FIR digital filters has gained more interest after the intro-
duction of compressive sensing [26, 27], a recent development in DSP offering the
potential of high resolution acquisition of signals from relatively few measured

samples under certain conditions. The few measured samples are typically below
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the minimum number of samples based on Shannons sampling theorem [28]. Note
that the only common factor between designing sparse FIR digital filters and the
CS theory is the use of Li-norm convex optimization methods, which are sparsity

preserving.

2.5 Conclusions

In this chapter, a brief background for thesis work is discussed. An overview
of seismic signal processing steps is highlighted. In the following chapters, to
understand the designing process and apply the designs to the prestack depth
migration of the Marmousi model data sets, prestack depth migration and visco-
acoustic concepts are explained. Different types of migration details are briefly
highlighted but the main focus is on explicit f — x prestack depth migration. The
visco-acoustics concepts are important for the thesis, for both data sets generation
and migration of the data sets. In visco-acoustic case the main defining parameter
is the value of @), which is derived from the velocity model. Its effect is shortly
shown in the figure, that how will it effect the magnitude wavenumber response of
filter designs. The visco-acoustic wavenumber response is also highlighted, which

is the main designing function in the thesis.
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CHAPTER 3

VISCO-ACOUSTIC
WAVEFIELD L;-NORM FIR

SPARSE FILTERS

3.1 Introduction

Most of the f — x extrapolators designed for prestack and poststack migration
consider the data to be acoustic in nature. In reality, seismic waves experience
loss in energy when they propagate from the sources to the receivers. This loss
in energy, if not compensated, reduces the data resolution. Depth migration is
considered to be a physically more consistent and accurate domain to compensate
and improve the resolution of the data at higher depths, as reported in [14] and
[15]. Many authors used different approaches to design non-compensating acoustic

medium wavefield extrapolators in the f — x domain [6, 5, 8, 9, 7, 10, 11, 12,
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13]. In this chapter, the f — x extrapolation filters(operators) are designed to
compensate for dispersion and attenuation based on the absorption law of linear
visco-acoustic wave equation. The Li-norm reported by [12] is used for the case
of visco-acoustic medium to design compensating extrapolators that are sparse
and non-sparse. Sparse coefficients require relatively low computational power
because some coefficients are forced to be zero, with the expense of some allowed
error in the design.

In the next section, the design of L;-norm and its sparse version extrapolators
is shown. To prove the concept of the designed operators, prestack depth migra-
tion is performed on the synthetic dataset of Marmousi model for both acoustic

and visco-acoustic data. Finally, concluding remarks of the chapter are presented.

3.2 Design Algorithm for Sparse f—x FIR Wave-

field Operators for Visco-Acoustic Medium

The magnitude and phase responses of this extrapolator are even symmetric,
which result in complex valued filter coefficients. Equation 2.5 can be approxi-

mated by:

H(e*) = (2 = 8[n])h[n] cos(nk,) , (3.1)

n=0
which is the wavenumber response of finite impulse response (FIR) filter with an
odd length N and having a non-causal even symmetry [5, 9, 1, 12]. The filter

coefficients h[n] € C are complex valued, M = (N — 1)/2 and d[n] is unit sample
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sequemnce.

3.2.1 Designing Li;-norm Visco-Acoustic Extrapolators

Let h = [[h[0] A[1] R[2] ... A[M]]*, which is a complex-valued vector represent-
ing the required extrapolation filter coefficients. Note that * denotes Hermitian

conjugate, then the equation 3.1 can be written as:

H(e*) = r(k,)h, (3.2)

where

r(k;) =[1 cos(ks) cos(2k,) ... cos(Mk,)l, (3.3)

and R as column of r(k,) given as:

r(k.,)

Now, sample the wavenumber variable k, into L points, k,,, where ¢ =

1,2,3,...., L. Then equation 3.2 can be written as:

H(e"1) = h*r(k,,).
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The design problem now turns into finding the points H(ef ) that match the
desired wavenumber response (see equation 2.5) Hy(k,,) at k., i = 1,2,3,...., L.
That is:

H(eM) = Hy(ky,). (3.5)

In a matrix form, for all points (i = 1,2, ..., L) along the wavenumber axis, equa-

tion 3.5 is given as:

Hy(k,,) r(ks,) h[0]
Hay(ky,) r(ka,) h[1]
_ , (3.6)
| Halkep) || vlhey) | | AIM]
H, = Rh, (3.7)

where Hy is L x 1, R is L X M dimension and h is a vector of length M. Now, to
obtain sparse coefficients of the f —x visco-acoustic extrapolation filters, we adopt
the Ly-norm minimization. Following the work of [12], we aim to design N-length

sparse and non-sparse f — x visco-acoustic wavefield extrapolation filters by:

min ||[h|[;

subject to ||Hys — Rhl|y <, (3.8)
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which is the Li-norm minimization with quadratic constraint. Note that € is a
small positive number and is used for relaxing the quadratic constraints, which
can be computed as [12]:

¢ = |[|[Hg — Rh'||5, (3.9)

where h'! is the least square solution given as [29)]:

h' = R*[RR*]'H,. (3.10)

3.3 Proposed Li-norm Algorithm

The steps of the algorithm is as follow:

e Select the filter length N and cutoff k. and @) value.

Formulate the vector H,; using equation 2.5.

Generate the matrix R using equation 3.4.

Solve the Li-norm minimization problem given in equation 3.8 to obtain the

filter coefficients.

Compute the threshold value and apply hard thresholding to find new h[n]

for sparse case based on [12].
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3.3.1 Optimization Solution

The proposed Li-norm convex optimization problem with quadratic constraints
can be solved using method of log barrier [28] or disciplined convex programming
[30], which can successfully solve L; convex problem with quadratic constraints.
Once Li-norm of h[n| is minimized there is possibility that some coefficients has
very small value (both real and imaginary parts), not necessarily zero because
Li-norm is sparsity preserving [31]. To obtain the sparse filter coefficients the

method described by [12] is used.

3.3.2 Filter Designs

Figure 3.1 shows the designed extrapolation operators, Figure 3.2 shows spectral
responses and Figure 3.3 shows errors for k. = 0.25, ) = 20 with N = 25 and
N = 35. In Figure 3.1, real and imaginary part of coefficients are shown. For
the above parameters in the sparse version, out of N = 25, nine coefficients are
set to zero, while for N = 35, ten coefficients are set to zero. The reduction
in non-zero coefficients will reduce total number of flops for complex additions
and multiplications, for further details on computational complexity calculation
see [12]. Figures 3.2a and 3.2b show the magnitude and phase spectrum of the
designed filter operators, respectively. Figures 3.3a and 3.3b show the magnitude
and phase spectrum error, respectively. In case of non-compensated filters i.e.
() = oo (corresponds to water layers without attenuation) magnitude error is

much less as compared to low value of (). When the value of @) is reduced, the
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error is slightly increased. That is why, in this section, smaller value of ) = 20
is used to show the accuracy of filters, for worst case scenario. Also, note the
vertical scales for errors in the Figure 3.3a and 3.3b. The Marmousi model data,
has a minimum value of @ = 39. In [15], the author stated that low values of @,
the designs become increasingly inaccurate. The designs, in this chapter, show

how accurate they are even for low values of Q).

3.4 Prestack Imaging of the Marmousi Model

Visco-Acoustic Data

The proposed Li-norm f — x extrapolation filters are tested on the Marmousi
model seismic data. A synthetic data set is generated using Marmousi velocity
model and derived ) model. The derived () model has the same dimension as the
velocity grid and is obtained by taking the square root of velocities at each grid
point except for the water layer which corresponds to ) = co. High values of )
mean lower attenuation and vice-versa. So there is no attenuation in the water
layer. The velocity ranges from 1500 m/s to 5500 m/s in the Marmousi model, so
the corresponding range of () is 39 to 75 for rest of the layers except water. The
marmousi velocity model is shown in Figure 3.4 and the () model is shown in the
Figure 3.5.

For the both the acoustic and visco-acoustic shot gathers, finite difference

modeling is used as reported by [32]. The visco-acoustic modeling require velocity
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Figure 3.1: An example of compensating sparse and non-sparse f—x extrapolation
filters designed using the proposed L;-norm method with () = 20 and a normalized
k. = 0.25. (a) shows the real part and (b) shows the imaginary part of the designed

filters’ coeflicients.
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Figure 3.2: An example of compensating sparse and non-sparse f—x extrapolation
filters designed using the proposed Li-norm method with () = 20 and a normalized

k.= 0.25. (a) shows the magnitude spectrum and (b) shows the phase spectrum.
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Figure 3.3: An example of compensating sparse and non-sparse f—x extrapolation
filters designed using the proposed L;-norm method with () = 20 and a normalized
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response error.
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Figure 3.4: Marmousi velocity model.
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Figure 3.5: Marmousi Q model.
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and () model grids while the acoustic modeling require only the velocity model
grid and density is kept constant for both the cases. In order to obtain stable shot
gathers, the velocity and ) model grid spacings are kept 5 m for both dz and dz
and time sampling is dt = 0.4 msec, the total recording time for each shot gather
is 4 seconds.

Two datasets are generated, acoustic and visco-acoustic with the same param-
eters, parameters used here are the same as used in [15]. The shot interval is 50 m
and the receiver interval is 25 m, maximum frequency of source wavelet is 45 Hz.
In Figure 3.6a, the acoustic shot gather 100 is shown while Figure 3.6b shows the
corresponding visco-acoustic shot gather. Both shot gathers are at source location
4950 m. From Figures 3.6a and 3.6b, it is clear that wave energy is attenuated
when traveling in the visco-acoustic medium. For that reason, acoustic filters does
not provide a good solution for extrapolation. Hence, compensated visco-acoustic
filters are required to compensate for the attenuation in such a away that the
migration remains practically stable, as the migration process is recursive.

Prestack depth migration is performed for three cases: (a) the acoustic op-
erators migration on the acoustic data set, (b) the acoustic operators migration
on the visco-acoustic data set and, finally, (c¢) the compensating visco-acoustic
operators migration on the visco-acoustic data set. Note that, in all cases, the
imaging condition used for the prestack depth migration is cross-correlation of
both upward and downward fields for the compensated operators. All the cases

are migrated with extrapolators of length N = 25 and N = 35 filter coefficients
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Figure 3.6: Shot gather 100 at location 4950 m, (a) shows Acoustic data and (b)
shows Visco-acoustic data.
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for both the sparse and non-sparse designs.

Figures 3.7a-c show depth migrated sections using non-sparse filter and 3.8a-c
show migrated sections using sparse filter coefficients with extrapolators of length
N = 25. Figures 3.9a-c and 3.10a-c show the same migrated images but with N =
35. In Figures 3.11-3.14 the zoomed sections of area (lateral position, 3200 — 8000
m; depth, 1950 — 2990 m) are shown. Figures 3.11a-c show zoomed migrated
sections of the non-sparse filters, while Figures 3.12a-c¢ show migrated sections
for the sparse case. Similarly, the Figures 3.13a-c and 3.14a-c show the same
for N = 35. Clearly, the prestack depth migrated images using the compensating
operators outperform those generated using non-compensating operators. For case
of sparse filters with N = 25, the migrated images show that it has slightly salt
and pepper noise near the end, while this effect is minimal for the image obtained
using the sparse f — x extrapolation filters with N = 35.

The envelope of the average value of traces at each depth level is plotted in
the Figure 3.15. Again, it is clear that the compensating operators provide better
seismic images than the non-compensating ones. At higher depth the resolution of
the non-compensating operators is very low, on the other hand, both sparse and
non-sparse compensating operators provide improved resolution. In Figure 3.15a,
the sparse envelope is slightly deviating from non-sparse compensating operators

while in Figure 3.15b, both sparse and non-sparse have more closer envelope.
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Migrated acoustic data using acoustic f—x filters
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Figure 3.7: Migrated Marmousi images using the proposed non-sparse L;-norm
filters with N = 25. (a) and (b) show images obtained from applying acoustic
(non-compensating) f — x extrapolation filters to both acoustic and visco-acoustic
data sets, respectively.(c) shows the resulting image after using the compensating
f — x extrapolation filters to the visco-acoustic data set.
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Migrated acoustic data using acoustic f—x sparse filters
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Figure 3.8: Migrated Marmousi images using the proposed sparse Li-norm filters
with N = 25. (a) and (b) show images obtained from applying acoustic (non-
compensating) f —z extrapolation filters to both acoustic and visco-acoustic data
sets, respectively.(c) shows the resulting image after using the compensating f —x
extrapolation filters to the visco-acoustic data set.
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Migrated acoustic data using acoustic f—x filters
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Figure 3.9: Migrated Marmousi images using the proposed non-sparse L;-norm
filters with NV = 35. (a) and (b) show images obtained from applying acoustic
(non-compensating) f —x extrapolation filters to both acoustic and visco-acoustic
data sets, respectively.(c) shows the resulting image after using the compensating
f — x extrapolation filters to the visco-acoustic data set.
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Migrated acoustic data using acoustic f—x sparse filters
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Figure 3.10: Migrated Marmousi images using the proposed sparse L;-norm filters
with N = 35. (a) and (b) show images obtained from applying acoustic (non-
compensating) f —z extrapolation filters to both acoustic and visco-acoustic data
sets, respectively.(c) shows the resulting image after using the compensating f —x
extrapolation filters to the visco-acoustic data set.
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Migrated acoustic data using acoustic f—x filters
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Figure 3.11: Zoom-in area of the migrated images using the proposed non-sparse
Ly-norm (N = 25) (lateral position: 3200—8000 m and depth: 1950—2990 m). (a)
and (b) show images obtained from applying acoustic (non-compensating) f — x
extrapolation filters to both acoustic and visco-acoustic data sets, respectively.

(c) shows the resulting image after using compensating f — x extrapolation filters
to the visco-acoustic data set.
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Migrated acoustic data using acoustic f—x sparse filters
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Migrated visco—acoustic data using compensated visco—acoustic f—x sparse filters
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Figure 3.12: Zoom-in area of the migrated images using the proposed sparse L;-
norm (N = 25) (lateral position: 3200 — 8000 m and depth: 1950 — 2990 m). (a)
and (b) show images obtained from applying acoustic (non-compensating) f — x
extrapolation filters to both acoustic and visco-acoustic data sets, respectively.

(c) shows the resulting image after using the compensating f — x extrapolation
filters to the visco-acoustic data set.
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Migrated acoustic data using acoustic f—x filters
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Figure 3.13: Zoom-in area of the migrated images using the proposed non-sparse
Ly-norm (N = 35) (lateral position: 3200—8000 m and depth: 1950—2990 m). (a)
and (b) show images obtained from applying acoustic (non-compensating) f — x
extrapolation filters to both acoustic and visco-acoustic data sets, respectively.

(c) shows the resulting image after using compensating f — x extrapolation filters
to the visco-acoustic data set.
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Migrated acoustic data using acoustic f—x sparse filters
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Migrated visco—acoustic data using acoustic f—x sparse filters
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Figure 3.14: Zoom-in area of the migrated images using the proposed sparse L;-
norm (N = 35) (lateral position: 3200 — 8000 m and depth: 1950 — 2990 m). (a)
and (b) show images obtained from applying acoustic (non-compensating) f — x
extrapolation filters to both acoustic and visco-acoustic data sets, respectively.(c)

shows the resulting image after using the compensating f — x extrapolation filters
to the visco-acoustic data set.
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Figure 3.15: The envelopes of the average trace from images migrated using the
proposed non-compensating and compensating sparse and non-sparse f — r ex-
trapolation filters with (a) N = 25 and (b) N = 35.
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3.5 Discussion

At higher depths there are some small ringing events in the compensated f —
x filter migrated images. These ringing events were also discussed by [15]. If
the maximum value of k., = cfii is less than Nyquist, these ringing events are
reduced. To decrease this value either we decrease f,,q. of the source wavelet or
dx but in practical scenario, it is difficult to vary these parameters. Lowering f,,..
decreases the resolution while lowering dz is like placing more receiver which is
sometimes not feasible. In a practical scenario, probably, pre-processing of real
data may reduce the high-frequency noise that is increasing these ringing events.
In all cases, compensated operators will provide better results as compared to
non-compensating operators for visco-acoustic data sets. As this prestack depth
migration is recursive in nature and magnitude is slightly higher than one, this
can make the process unstable. We have adopted a similar approach of smoothing
reported by [10]. For the visco-acoustic case, the wavenumber response needs to

be smoothed because there is slight discontinuity at the cutoff. For lower () values

this discontinuity increases in the magnitude of wavenumber response.

3.6 Computational Complexity

In terms of complex multiplications and additions, the total computational cost

of the non-sparse explicit depth f —z extrapolation for a given angular frequency
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at one depth slice (for either up-going or down-going extrapolation) is:
COSTy =n, x (N —1), (3.11)

for complex additions and

N+1
COST, = ng x (T+) (3.12)

for complex multiplications, where n, is the total number of spatial samples (total
number of traces per shot) and N is the filter length. FEach complex addition
requires two flops while each complex multiplication requires six flops [33]. To
perform the prestack depth migration on the any benchmark model data set, the

general formula for given angular frequency is given by:
TotalFlops, = 2 x nshots x ndepth x ntraces x 2 x (N — 1), (3.13)

where T'otal Flops, is the total number of flops for complex additions. In case of

multiplication the total flops (for given angular frequency) is given by:

N +1
TotalFlopsy, = 2 X nshots X ndepth X ntraces X 6 X (T+)’ (3.14)

where Total Flopsy is total number of flops for complex multiplications. Also,
nshots is total number of shot gathers, ndepth is total number of depths, ntraces

is total number of traces per shot gather. The factor 2 in both the calculation is
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because of down-going and up-going extrapolation in the prestack depth migra-
tion, same process is repeated twice with corresponding filter coefficients.

Now in sparse case, the number of non-zero coefficients are K so the equation
becomes:

SCOST, = ny x (K —1), (3.15)

for complex additions and

K41
SCOST, = n, x (%) (3.16)

for complex multiplications. And the total flops equations for addition and mul-

tiplication are given by:
STotal Flops; = 2 x nshots x ndepth x ntraces x 2 x (K — 1), (3.17)
and

K+1
STotal Flopsy = 2 x nshots x ndepth x ntraces x 6 x (T—i_) (3.18)

Here, in case of Marmousi model data, the total shot gathers are nshot = 209
shots, each shot has ntraces = 417 traces, total number of depths are ndepth =
362 depths. For instance, the cost of prestack depth migration for given angular
frequency using the explicit depth non-sparse f — x wavefield extrapolation filters

of length N = 35 will be equal to 2 x 209 x 362 x 417 x 2 x 34 = 4,290, 716, 496
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flops for the complex additions and 2 x 209 x 362 x 417 x 6 x 18 = 6,814, 667, 376
flops for the complex multiplications; both are per a given angular frequency. Of
course, this takes into account the symmetry of the filter coefficients. Similarly,
for sparse case of N = 35 (if we assume on average 10 zeros) with K = 25,
the complexity is 2 x 209 x 362 x 417 x 2 x 24 = 3,028,741,056 flops for the
complex additions and 2 x 209 x 362 x 417 x 6 x 13 = 4,921,704, 216 flops for the
complex multiplications; both are per a given angular frequency. In Table 3.1 the
comparison of computational cost for sparse and non-sparse is shown. For non-
sparse N represents the filter length. While in case of non-sparse some coefficients
are zero, so K represents the number of non-zero filter coefficients. The N = 25
and 35 are for non-sparse computational complexity. For sparse filters, K = 17
means N = 25 assuming eight zeros and K = 25 means N = 35 assuming ten
zeros. The computational complexity of N = 25 non-sparse is the same as N = 35

(or K = 25) sparse case.

Filter length | x’s flops | Savings in x’s | +'s flops | Savings in +'s
N =25 65052 - 40032 -
K =17 45036 30.77 % 26688 33.33 %
N =35 90072 - 56712 -
K =25 65052 27.28 % 40032 29.41 %

Table 3.1: Comparison of Computation Cost (Flops for additions and multipli-
cations) for each angular frequency at each depth slice (single shot gather) for
Marmousi model.

In Table 3.2 the number of non-zero filter coefficients are shown for both sparse
and non-sparse f — x extrapolators. It shows details for one filter bank of 7377
filters. Decrease in the number of non-zero filter coefficients result in increasing
the computational performance.

48



N | Non-sparse | Sparse | Reduction
25 184425 122218 | 33.73 %
35 258195 185732 | 28.83 %

Table 3.2: Number of non-zero filter coeflicients.

3.7 Conclusions

We proposed the Li-norm to design visco-acoustic explicit depth f —x sparse and
non-sparse wavefield extrapolators. Acoustic designs can easily be transformed to
compensated visco-acoustic designs by adding the effect of () value and followed
by smoothing of the response. The designed filters resulted in practically stable
prestack seismic images of the challenging Marmousi data set. The compensating
filters enhanced the resolution as function of depth by applying to prestack depth
migration. From the Marmousi images, it is evident that the sparse f — x filters
results in some ringings effects at the higher depth, although they can save some

convolution operations as compared to the non-sparse ones.
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CHAPTER 4

VISCO-ACOUSTIC
WAVEFIELD WEIGHTED

L1-ERROR FIR FILTERS

4.1 Introducation

In this chapter, the method of weighted Li-error is used to design the required
compensating operators. In chapter 3, the Li-norm of the operators is minimized,
subject to the quadratic constraint of the error. Here, the required operators are
design which reduce the L;-error between the ideal and the designed wavenumber
response. In this case, the objective function is minimization of the error. If same
number of coefficients are used, the Li-error will perform better because here the
optimization problem focus on minimizing the error instead of minimizing the

coefficients, which was the case in the L;-norm minimization. The error, here, is
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assumed to be sparse. In explicit f — x extrapolation, the error minimization of
passband is more important than the evanescent region. Because of the recursive
nature of algorithm, the wavenumber in the evanescent region decays after few
iterations. The passband should be given more priority, ideally in the passband,
the magnitude should remain constant and phase should be hyperbolic. Hence,
we also weight the error, the weighting term in the designing problem solve this
problem by giving more weights to the passband as compared to the evanescent

region.

4.2 Designing Weighted L-Error FIR Filters

Formulating the weighted Li-error approximation for visco-acoustic wave equa-
tion is discussed in this section. Consider the desired 1-D visco-acoustic extrapo-
lation filter’s wavenumber response in the equation 2.5, the magnitude and phase
response of these extrapolators are even symmetric, because of even symmetry
filter coefficients are complex valued. In this chapter, the minimization prob-
lem is treated differently. Rather than finding the L;-norm of filter coefficients,
the Li-norm of error is minimized. Now in this case the error is sparse. Let
h = [[h[0] A[1] R[2] ... R[M]]*, which is a complex-valued vector representing the
required extrapolation filter coefficients. Note that * denotes Hermitian conjugate,

then the equation 3.1 can be written as:
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where

r(k,) =[1 cos(ks) cos(2k,) ... cos(Mk,)], (4.2)

and R as column of r(k,) given as:

r(k,)

Now, sample the wavenumber variable k, into L points, k,,, where ¢ =

1,2,3,...., L. Then equation 4.1 can be written as:

H(e1) = h*r(k,,).

The design problem now turns into finding the points H(e% ) that match the

desired wavenumber response (see equation 2.5) Hy(k,,) at k., i = 1,2,3,...., L.

Y

That is:

H(e") = Hy(ky,). (4.4)

In a matrix form, for all points (i = 1,2, ..., L) along the wavenumber axis, equa-

tion 4.4 is given as:
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Ho(ka, ) r(kz,) h[0]
Hd(kmz) r(km) h[l]
_ 7 (4.5)
k) || ek | | i) |
H, = Rh, (4.6)

where Hy is L x 1, R is L x M dimension and h is a vector of length M. Now the
objective function here is to find the filter coefficients which minimize the L;-norm
of the error between the ideal desired response and the designed response which
is given as:

min |H, - Rh],, (4.7)

where H, is the ideal desired wavenumber response given by equation 2.5 for
visco-acoustic case. In fact Li-error minimization technique try to obtain the
sparse difference. The approximating error via L; can result in a few large signif-
icant values. To address this issue, the performance of Li-norm can be improved
by emphasizing more weights on passband wavenumber, when compared to the

evanescent region so that equation 4.7 can be written as:

min [[W(Hg — Rh)],, (4.8)
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where

W = , (4.9)

is the diagonal weighting matrix. the weights of the pass band is given by W,
and evanescent region by W,. These weights are chosen in such away to give more
priority to passband which is more important as compared to evanescent region
of the wavenumber response. In later sections, it will be shown that weighted
version of extrapolators perform better than its non-weighting counterpart. Non-
weighting designs can be considered as special case of weighting, if the weight

matrix is considered to be identity matrix.

4.3 Weighted Li-error Algorithm

The steps of the proposed weighted Li-error algorithm is as follow:

Select the filter length N and cutoff k. and @) value.

Formulate the vector H; using equation 2.5.

Generate the matrices R and W using equations 4.3 and 4.9.

Solve the weighted Li-error minimization problem given in equation 4.8 to

obtain the filter coefficients.

The proposed Li-error minimization problems given by equations 4.7 and 4.8

can be solved using CVX optimization toolbox [30].
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4.4 Simulation Results

The parameters used for simulation purpose here are the same as used in chapter
3,1i.e, k. =0.25, @ = 20 with N = 25. Figures 4.1a and 4.1b show the magnitude
and phase spectrum of the designed filter operators, respectively. Figures 4.2a and
4.2b show the magnitude and phase spectrum error, respectively. The designs with
weighting, show how accurate they are even for low values of Q.

The envelope of the average value of traces at each depth level is plotted in
the Figure 4.7. Again, it is clear that the compensating operators provide better
seismic images than the non-compensating ones. At higher depth the resolution
of the non-compensating operators is very low, on the other hand, both weighted

and non-weighted compensating operators provide improved resolution.

4.5 Prestack Imaging of the Marmousi Model

Visco-Acoustic Data

The datasets used for acoustic and visco-acoustic cases are the same as in chapter
3. Prestack depth migration is performed for three cases: (a) the acoustic op-
erators migration on the acoustic data set, (b) the acoustic operators migration
on the visco-acoustic data set and, finally, (c) the compensating visco-acoustic
operators migration on the visco-acoustic data set. Note that, in all cases, the
imaging condition used for the prestack depth migration is cross-correlation of

both upward and downward fields for the compensated operators. All the cases
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Figure 4.1: An example of compensating weighted and non-weighted f — x ex-
trapolation filters designed using the proposed Li-error method with ) = 20 and
a normalized k. = 0.25. (a) shows the magnitude spectrum and (b) shows the
phase spectrum.
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Figure 4.2: An example of compensating weighted and non-weighted f — z ex-
trapolation filters designed using the proposed Li-error method with ) = 20 and
a normalized k. = 0.25. (a) shows the passband magnitude response error and

(b) shows phase response error.

57



Migrated acoustic data using acoustic f—x filters
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Figure 4.3: Migrated Marmousi images using the proposed non-weighted Li-error
filters with N = 25. (a) and (b) show images obtained from applying acoustic
(non-compensating) f — x extrapolation filters to both acoustic and visco-acoustic
data sets, respectively.(c) shows the resulting image after using the compensating
f — x extrapolation filters to the visco-acoustic data set.
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Migrated acoustic data using weighted acoustic f—x filters
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Figure 4.4: Migrated Marmousi images using the proposed weighted Li-error
filters with N = 25. (a) and (b) show images obtained from applying acoustic
(non-compensating) f — x extrapolation filters to both acoustic and visco-acoustic
data sets, respectively.(c) shows the resulting image after using the compensating
f — x extrapolation filters to the visco-acoustic data set.
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Migrated acoustic data using acoustic f—x filters
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Figure 4.5: Zoom-in area of the migrated images using the proposed non-weighted
Ly-error (N = 25) (lateral position: 3200—8000 m and depth: 1950—2990 m). (a)
and (b) show images obtained from applying acoustic (non-compensating) f — x
extrapolation filters to both acoustic and visco-acoustic data sets, respectively.

(c) shows the resulting image after using compensating f — x extrapolation filters
to the visco-acoustic data set.
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Migrated acoustic data using weighted acoustic f—x filters
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Figure 4.6: Zoom-in area of the migrated images using the proposed weighted L;-
error (N = 25) (lateral position: 3200 — 8000 m and depth: 1950 — 2990 m). (a)
and (b) show images obtained from applying acoustic (non-compensating) f — x
extrapolation filters to both acoustic and visco-acoustic data sets, respectively.

(c) shows the resulting image after using compensating f — x extrapolation filters
to the visco-acoustic data set.
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are migrated with extrapolators of length N = 25 filter coefficients for both the
weighted and non-weighted designs.

Figures 4.3a-c show depth migrated sections using non-weighted filter and 4.4a-
¢ show migrated sections using weighted filter coefficients with extrapolators of
length N = 25. In Figures 4.5 and 4.6 the zoomed sections of area (lateral position,
3200 — 8000 m; depth, 1950 — 2990 m) are shown. Figures 4.5a-c show zoomed
migrated sections of the non-weighted filters, while Figures 4.6a-c¢ show migrated
sections for the weighted case. Clearly, the prestack depth migrated images using
the compensating operators outperform those generated using non-compensating

operators.

4.6 Comparsion

In this section the best results for compensating operators of Li-error and L;-norm
are compared for N = 25. In Figure 4.8 both the algorithm results are shown
by applying the compensating operators to the visco-acoustic data set. Both
enhanced the migrated results at the higher depth. L;-norm non-sparse version
seems slightly more enhanced at depth but there are slightly more ringings. On the
other hand the weighted Li-error behave more robust and stable for the ringings.
As the Marmousi model data set have depth of 3 km, the effect of ringing is not
that much high. It will be more evident for larger depths. For larger depths, both
the algorithms can become unstable but Li-error will behave relatively better

for larger depths. In the Figure 4.9 the corresponding zoomed section (lateral
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position: 3200 — 8000 m and depth: 1950 — 2990 m) are shown.

4.7 Conlusions

In this chapter, the L;-error (weighted and non-weighted) algorithm is discussed.
For N = 25 Ly-error performs better than L;-norm (both sparse and non-sparse).
For weight selection, the method of Thorbecke in [10] is adapted. For selecting
weights some adaptive algorithm can be utilized to ensure better performance.
The error in filter responses shows that the weighted version of the design is
performing better. If non-weighted version is special case of weighted designs. In
case of Li-error the ringings at higher depth are relatively low as compared to the

Li-norm.
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Figure 4.7: The envelopes of the average trace from images migrated using the
proposed non-compensating and compensating weighted and non-weighted f — x
extrapolation filters with N = 25
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Migrated visco—acoustic data using compensated visco—acoustic f—x filters
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Figure 4.8: Migrated Marmousi images using the proposed compensating filters
with N = 25. (a) shows image obtained from applying L;-norm non-sparse f — x
extrapolation filters to visco-acoustic data set and (b) shows image obtained from
applying weighted Li-error f — x extrapolation filters to visco-acoustic data set.
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Figure 4.9: Zoom-in area of the migrated images using the proposed compensating
filters with N = 25. (lateral position: 3200 — 8000 m and depth: 1950 — 2990 m).
(a) shows image obtained from applying L;-norm non-sparse f — z extrapolation
filters to visco-acoustic data set and (b) shows image obtained from applying
weighted Li-error f — x extrapolation filters to visco-acoustic data set.
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CHAPTER 5

CONCLUSIONS AND

RECOMMENDATIONS

As in reality the seismic data has attenuating effect which should be compen-
sated. As in past decades number of researcher assumed the data to be acoustic,
those algorithms need to accommodate the compensating effect of visco-acoustic
data. Two algorithms are used to design such filters which have this compen-
sating effect. In result, enhanced resolution images are obtained as compared to
non-compensating operators. Lj-norm has both sparse and non-sparse versions.
Sparsity helps in improving the computational performance of the migration pro-
cess. The second algorithm introduces the weighting effect, which helps in improv-
ing results using less number of coefficients. With weighting the required design
results in better images and relatively low ringing effects.

The method discussed in this thesis can easily modify all the existing acoustic

non-compensating filter designs to visco-acoustic compensating filter designs with
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little effort. This method can also be extended to 2-D filters which are used to
migrate 3-D seismic data. For 2-D filters design either use direct designing the
2-D filters or use McClellan transformation to extend 1-D filters to 2-D case.
Another approach to extend the work is to design operators for elastic and
visco-elastic medium which are more realistic models. For that case 3D elastic and
visco-elastic datasets are required. To generate acoustic, visco-acoustic, elastic
and visco-elastic opensource codes can be used. Sofi2D can generate 2-D datasets
and for 3-D case, Sofi3D can be used [34]. OpenSource codes from Dr. Jan
Thorbcke can work only for 2-D data set generation. And for migration of 2-D
and 3-D data sets using 1-D and 2-D filters, respectively, the functions of Dr.

Thorbecke can be used [35].
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