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To achieve a high resolution Through-the-Wall Radar Image (TWRI), massive 

amounts of data is acquired. Compressive Sensing (CS) techniques resolve this issue 

by allowing image reconstruction using much fewer measurements. The 

performance of different CS algorithms, when applied to TWRI, has not been 

investigated in a comprehensive and comparative manner. In this thesis, popular CS 

algorithms are evaluated in terms of their detection capabilities, to see which are 

most suitable for TWRI applications. As for the evaluation cri teria, the notion of 𝐹1-

score is adopted and used. Algorithms responses to different levels of SNR and 

compression rate are evaluated. Numerical results show that for systems with low 

SNR, alternating direction based algorithms work better than others.   

With the aim of exploiting multipath reflections to enhance the image, a general 

framework that jointly detects the position of the inner walls and produces a ghost-

free image of the scene of interest is introduced. Two algorithms are proposed 

within this framework. The first is the basic Wall Pursuit (WP) algorithm, which is 

a greedy-based wall searching method. The second, called the Dynamic Wall Pursuit 
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(DWP), extends the first method to include moving targets.  The results show that 

making use of different time frames of the scene can be of significant help in 

gaining new information about the wall positions. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Through-the-wall radar imaging (TWRI) is an emerging technology which gives the 

ability to see the contents of an indoor scene. During the past decade,  this 

technology has witnessed a growing interest. TWRI is helpful in various civilian 

and military applications; for example, it can be used in determination of building 

layouts, behind-the-wall target detection, surveillance and investigation, rescue 

missions, and even in some medical applications. These features are highly 

desirable for a range of organizations, including police, rescue personnel, first 

responders, and defense forces. [1]  

In such applications, providing timely actionable intelligence by reducing data 

acquisition and processing time is desirable. The number of targets in a scene is 

often small compared to the empty space, and thus the scene is said to be sparse. 

Hence, compressive sensing (CS) techniques can be applied to reconstruct the image 

of the desired scene. These techniques have the capability to recover a sparse signal 

from a far fewer number of measurements. CS has been shown to yield a great 

reduction in cost while maintaining reliable sensing efficiency in terms of resolution 

[2]. However, CS performance with application to TWRI has not been extensively 
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studied yet. In this thesis, the performance of various CS algorithms when applied to 

TWRI will be studied. 

In many cases detecting human motion behind the walls is highly desirable, such as 

fire and hostage situations. Motion detection can be accomplished by subtracting 

two consecutive data frames and therefore suppressing returns from stationary 

objects and leaving the sparse scene with only the moving targets. This is called 

Change Detection (CD) technique. 

In practical applications, the transmitted signal will mainly reflect from the walls, 

stationary objects, and the moving targets inside the room. Moreover, not all of the 

reflections return directly to the receiver. Some of them are received from an 

indirect path (e.g. signal reflects from a target to a side wall then back to the 

receiver). These signals are called multipath signals. Multipath signals are major 

sources of challenge in TWRI applications; the additional propagation time it takes 

the signal to return back to the receiver will be misinterpreted as a reflection of the 

signal from a further away target. This will result in the appearance of false targets 

in the reconstructed image, known as multipath ghosts. Methods for exploiting 

multipath signals resulting from moving targets will be presented in this thesis.  

1.2 Literature Review 

The research in hand covers three main topics, namely: change detection, 

compressive sensing, and multipath exploitation in TWRI. The literature  review is 

organized accordingly. 
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1.2.1 Change Detection 

One approach used to discriminate movements from background clutters is based on 

Doppler exploitation methods [1]. However, these methods are not practical for 

human targets because their motion is abrupt and non-stationary, which makes 

capturing the Doppler shift difficult [2]. Also, time-frequency analysis can be used 

to identify instantaneous frequency signatures [1]. However, time-frequency 

representations are often very complex to interpret [2]. Alternatively, CD can be 

used to suppress heavy clutter caused by reflections from stationary objects [3]. 

CD in TWRI has been implemented in ultra-wide band (UWB) random noise radar 

in [4]. The authors in [4] recognized moving targets through coherently subtracting 

successive frames of the cross-correlation between the transmitted and received 

signals. Then the resulting difference signal was used to obtain the image of the 

moving target using the back-projection imaging algorithm; this scheme is called 

coherent CD, where the image is formed after signal subtraction. Alternatively in 

[5], the image intensities for two consecutive frames in stepped-frequency 

continuous wave (SFCW) radar were first reconstructed, and then a positive 

threshold was applied to the difference between the images; this is called the 

intensity CD scheme, where the subtraction is done after image formation. Both 

Electromagnetic modeling simulation and experimental data were used to validate 

the methods in [4]. Later, this approach was further improved in [6] by making use 

of the phase change detection and applying the constant false alarm rate (CFAR) 

algorithm to determine the appropriate threshold. In [3], a comprehensive analytical 

treatment of multiple-input multiple-output (MIMO) CD was provided for both 
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coherent and intensity CD schemes described earlier. From their experimental 

results, it was concluded that the coherent CD scheme has better performance in 

detecting targets with small displacements.  

1.2.2 Compressive Sensing 

Driven by the challenges that TWRI systems face, such as prolonged data 

acquisition time and a huge amount of data, Huang et al. [7] proposed a data 

acquisition scheme and imaging algorithm for SFCW TWRI based on CS. The 

authors showed that more than 90% of the spatial and frequency measurements can 

be dropped without compromising the image quality. The same was later proposed 

for UWB impulse radar TWRI by Zhang el al. [8]. Instead of applying CS to reduce 

both spatial and frequency , the authors in [9] proposed a hybrid approach were they 

combined the CS approach with the truncated singular value decomposition (TSVD) 

inverse scheme presented in [10]. In their work, the CS approach was used to reduce 

the number of frequency measurements only, where the TSVD was used to reduce 

the number of spatial measurement points. Contrary to the CS only case, this 

approach provides significant reduction in data volume while maintaining good 

image quality. It is therefore preferred when we want to retain the characteristics of 

a back-projection image, particularly the decay of the imaged target intensity; which 

is not possible in the CS only case.  

Most of the previous research implementing CS in TWRI assumes effective removal 

of wall backscattering before implementing CS. The authors in [11] applied the 

spatial filtering and subspace projection wall mitigation techniques with a reduced 
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set of measurements using CS. Using experimental data, they demonstrated that 

their method maintains acceptable performance. When implementing CS in 

detecting moving objects using CD, wall mitigation is not necessary; an attempt to 

reduce the data volume for CD using CS was given in [2]. The authors developed 

CD models for both translational motions and short sudden movements to allow 

scene reconstruction under CS framework. They showed through experiments that 

their approach had achieved a sizable reduction in the data volume without 

degradation in system performance. Another approach for detecting the presence of 

moving targets (but without localizing them) was proposed in [12], where a matrix 

of multiple measurements is formed and compressed using a random measurement 

matrix. By applying singular value decomposition (SVD) on the resulting matrix, 

they found that the singular values increase if there is a target behind the wall; 

which means that it is possible to detect humans using this method. 

Various CS algorithms have been used in TWRI; Table ‎1.1 summarizes some of the 

algorithms used. In Section ‎3.4, a comparison between such algorithms is presented. 
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Table ‎1.1: CS Algorithms Used in TWRI Literature 

CS Algorithm Name Reference 

OMP Orthogonal Matching Pursuit [13, 14, 15, 16, 17] 

CoSaMP Compressive Sampling Matching Pursuit [2] 

MESI Multipath Elimination by Sparse Inversion [18] 

SpaRSA 
Sparse Reconstruction by Separable 

Approximation 
[19] 

CVX
* CVX: Matlab Software for Disciplined 

Convex Programming 
[20, 21, 22] 

NESTA Nesterov's Algorithm [23] 

ℓ1-magic
** ℓ1-magic Recovery of Sparse Signals via 

Convex Programming 
[24, 8, 25] 

BCS Bayesian Compressive Sensing [26] 

* CVX is a Matlab-based modeling system for convex optimization and is not only 

for CS. 

** ℓ1-magic is a package that contains a collection of CS algorithms. 

1.2.3 Multipath Exploitation 

Efforts to exploit multipath signals in TWRI were presented in [27, 28, 29, 30]. In 

[27], the authors introduced a multipath model for an enclosed room containing four 

walls, they demonstrated analytically that the multipath ghosts will appear near the 

wall and its position depends on the sensors locations. They also developed a 

multipath exploitation technique, depending on their model, to map each multipath 

ghost to its corresponding target. This helps in reducing the false positives in the 

image and increasing the signal-to-clutter ratio (SCR) at the true target location. 

Further improvements on [27] were lately presented in [28]. They used a 

http://cvxr.com/cvx/
http://cvxr.com/cvx/


7 

 

householder transformation to express specular reflections. This allows 

straightforward modelling of multiple reflections for non-rectangular rooms; which 

were not possible in the model presented in [27]. Using this model, the locations of 

the ghosts were first estimated assuming free-space, and then used to initialize a 

non-linear least square optimization formulated to estimate the ghost locations in 

the through-wall case. Instead of using a spherical weighting to map the multipath 

ghosts, as done in [27], they used the point spread function (PSF) to directly map 

the multipath ghosts to their corresponding target positions.  

A new attempt to combine multipath exploitation with CS was proposed in [29]. 

They used two methods; in the first method they assumed equal attenuation in all 

propagation paths and the targets to be isotropic scatterers. This is then solved with 

a CS reconstruction method. The second method overcomes the limitation of the 

first by utilizing group sparsity using a mixed-norm optimization approach. Their 

simulation results showed a relatively good reconstructed image quality. However, 

their work, like most of other research on multipath cancelation and exploitation, is 

built on the assumption of prior knowledge of the scene geometry; which is not 

always the case in real life applications. An algorithm was recently proposed in [30] 

for removing multipath in TWRI without requiring prior knowledge about the 

geometry of the scene. First, they identify the impulse response of the strongest 

target reflection which is called the primary target. Then they compute a delay 

operator that matches similar reflections in the residual data to the primary 

response. Finally, they update the waveform to compensate for any distortions due 

to the through wall propagation.  
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1.3 Thesis Contribution 

The main aspects that distinguish the work presented in this thesis from previous 

work in the area are as follows: 

1. We introduce the use of 𝐹1-score in evaluating the performance of CS 

algorithms. Unlike other performance measures, the 𝐹1-score gives a 

quantitative measure of how reliable the algorithm is in terms of detecting 

the true targets without missing any of them or introducing false targets.  

2. We evaluate the performance of fourteen CS algorithms when applied to 

TWRI. Various factors such as SNR level and compression rate are taken 

into consideration. To the best of our knowledge, no such comparison has 

been done in the field. 

3. We present a general framework for jointly estimating the interior wall 

positions of the unknown scene and exploiting the multipath signals resulting 

from these walls. This will allow for further research in designing effective 

multipath exploitation algorithms within this general framework. 

4. We propose two multipath algorithms within our general framework and test 

their performance for several scenarios. Successful results of accurate wall 

position detection and ghost-free images have been obtained.  
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1.4 Thesis Organization 

The remaining part of the thesis is organized as follows: Chapter 2 contains the 

required technical background. In particular, we give an overview about TWRI 

systems, the mathematical models used to describe such systems, and the main 

sources of challenge in TWRI. Also, a summary of two main imaging methods in 

TWRI is included in this chapter. Chapter 3 then describes the methodology used 

for evaluating CS algorithms in the context of TWRI. It introduces the notion of 𝐹1-

score, used as a measure, and discusses the results obtained. A general Wall Pursuit 

(WP) framework for estimating the wall positions and exploiting multipath signals 

is described in Chapter 4, along with two proposed algorithms within this 

framework, namely the basic Wall Pursuit (WP) and the Dynamic Wall Pursuit 

(DWP) algorithms. Simulations results of the implementation of this algorithm are 

also presented in this chapter. This thesis is concluded in Chapter 5 with a summary 

of the work and suggestions for future research in the area. 
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1.5 Notation 

The font-types and symbols used throughout the thesis, unless stated otherwise, are 

briefly described in the following table: 

 

Table ‎1.2: Notation used throughout the thesis 

Symbol Description 

𝑥 Scalars 

𝐱 Vectors 

x(𝑖) The 𝑖𝑡ℎ element in a vector 𝐱 

𝐌 Matrices 

[𝐌]𝑖,𝑗 
The element in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of a 

matrix 𝐌 

‖𝐱‖0 

‖𝐱‖1 

‖𝐱‖2 

ℓ0 "norm": ‖𝐱‖0 = |{x(𝑖) ≠ 0}| 

ℓ1 norm: ‖𝐱‖1 = ∑ |x(𝑖)|𝑛
𝑖=1  

ℓ2 norm: ‖𝐱‖𝟐 = √∑ x(𝑖)2𝑛
𝑖=1  

𝐵𝑙𝑘𝑑𝑖𝑎𝑔(𝐌1, 𝐌2, … , 𝐌n) 
Construct a block diagonal matrix with the matrices 

𝐌1, 𝐌2, … , 𝐌𝑛 being in the diagonal. 

𝛿𝑖𝑗 The Kronecker delta, 𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗
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CHAPTER 2: BACKGROUND 

This chapter presents technical background required for this thesis. The signal 

model for impulse radar based TWRI along with the technique used to detect 

moving targets, namely CD, are first introduced. Also, major challenges facing 

TWRI are briefly described. Further, the back-projection and the CS-based imaging 

techniques are explained. 

2.1 Overview 

In TWRI, it is necessary to produce high resolution images that accurately describe 

the scanned region. This requires the use of signals with extremely wide frequency 

bandwidths. UWB signals are considered to be the perfect candidates since their 

characteristics fulfil the requirements. Generally, these signals are generated by 

either transmitting impulse signals or stepped-frequency continuous-wave (SFCW) 

signals; other methods exist, however these two are the most popular in TWRI [1]. 

In impulse radar, a short pulse with duration less than a nanosecond is transmitted, 

thus allowing for high resolution. On the other hand, SFCW radar is based on 

sequentially transmitting a discrete number of frequencies and observing the 

response at each frequency; hence acquires the total response in the range of desired 
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frequencies. In this thesis, our concentration is based on the former technique, 

though the work done can be easily translated to the latter. 

2.2 Through-the-Wall Impulse Radar 

In impulse TWRI, the region of interest is scanned by transmitting a short pulse and 

processing the received reflected signals. The transmitter interrogates the scene by 

transmitting wideband Gaussian, 𝑠(𝑡), pulses given by: 

 𝑠(𝑡) =
1

√2𝜋𝜎2
  𝑒

−
(𝑡−𝜇)2

2𝜎2 . (‎2.1) 

where 𝜎 and 𝜇 are the standard deviation and the midpoint delay of the Gaussian 

pulse in seconds, respectively. Assuming 𝑀 time-multiplexed transmitters and 𝑁 

simultaneous receivers, the signal emitted from the 𝑚𝑡ℎ transmitter and reflected 

from a point target 𝑞 is received at the 𝑛𝑡ℎ receiver as: 

 𝑦𝑚𝑛(𝑡) = 𝜎𝑞𝑠(𝑡 − 𝜏𝑞,𝑚𝑛), (‎2.2) 

where 𝜎𝑞 is the reflectivity of the target, which is assumed to be independent of 

frequency and aspect angle, 𝜏𝑞,𝑚𝑛 is the time taken by the signal to travel from the 

𝑚𝑡ℎ transmitter to the target and reflect back to the 𝑛𝑡ℎ receiver. The time delay 

𝜏𝑞,𝑚𝑛 is given by: 

 𝜏𝑞,𝑚𝑛 =
𝑑(𝑡𝑚, 𝑞) + 𝑑(𝑟𝑛, 𝑞)

𝑐
 (‎2.3) 



13 

 

where 𝑑( ⋅  , ⋅ ) is the Cartesian distance between two points, 𝑐 is the speed of the 

electromagnetic wave, and 𝑡𝑚 and 𝑟𝑛 represent the 𝑚𝑡ℎ transmitter and the 𝑛𝑡ℎ 

receiver, respectively. The received signal is only a scaled and delayed version of 

the transmitted pulse. Note that wall attenuation and free-space path loss are not 

considered in equation (‎2.3) for notational convenience; they can be easily 

accommodated by using a scalar factor, as in reference [2].  

Figure ‎2.1 illustrates the geometry of a simple TWRI scenario with one point target.  

 

Figure ‎2.1: Simple geometry of the scene 

Under multiple targets scenario, the received signal is the summation of  the delayed 

echoes of the transmitted signal given by: 

 𝑦𝑚𝑛(𝑡) = ∑ 𝜎𝑝𝑠(𝑡 − 𝜏𝑝,𝑚𝑛)

𝑃

𝑝=1

, (‎2.4) 

𝑥 

𝑧 

𝑑(𝑡𝑚, 𝑞) 

𝑑(𝑟𝑛, 𝑞) 
 

𝑟𝑛 𝑡𝑚 
   

𝑞 
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where 𝑃 is the number of targets.  

2.3 Moving Objects Indication Using Change Detection 

Considering the presence of both stationary and moving objects in the desired scene, 

equation (‎2.4) can be expressed as: 

 
𝑦𝑚𝑛(𝑡) = ∑ 𝜎𝑝𝑠

𝑠(𝑡 − 𝜏𝑝𝑠,𝑚𝑛)

𝑃𝑠

𝑝𝑠=1

+ ∑ 𝜎𝑝𝑣
𝑠(𝑡 − 𝜏𝑝𝑣,𝑚𝑛)

𝑃𝑣

𝑝𝑣=1

 (‎2.5) 

where 𝑝𝑠 and 𝑝𝑣 represent stationary and moving objects, respectively. Since the 

returns from stationary objects do not change with time, it is possible to eliminate 

them by subtracting received signals from two different frames, as follows:  

 δ𝑦𝑚𝑛(𝑡) = 𝑦𝑚𝑛
(𝐿+1)(𝑡) − 𝑦𝑚𝑛

(1)(𝑡) (‎2.6) 

where 𝐿 represents the number of frames between the two received signals. For ease 

of notation, we deal with each frame as a separate signal. By substituting (‎2.5) in 

(‎2.6) we get: 

 δ𝑦𝑚𝑛(𝑡) = ∑ 𝜎𝑝𝑣
(𝑠(𝑡 − 𝜏(𝐿+1) 𝑝𝑣,𝑚𝑛) − 𝑠(𝑡 − 𝜏(1)

𝑝𝑣,𝑚𝑛))

𝑃𝑣

𝑝𝑣=1

 (‎2.7) 

We will be left with the difference between the returns coming from the moving 

targets in the two different frames. Here is where the term Change Detection (CD) 
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comes from; we are detecting the change in the scene reflections which therefore 

suppresses the stationary returns and enables us to locate moving objects.  

2.4 Challenges in TWRI 

Accurate imaging of objects behind the wall can be obtained when having single -

path propagation between the transmitter and the target without the presence of any 

obstacles. However, in practical TWRI, signal reflections from the surrounding 

walls and obstruction from the front wall are inevitable. In the following, we briefly 

introduce two main sources of challenge, namely the front wall and the multipath 

reflections. 

2.4.1 Front Wall Effect 

Effects of the front wall on the received signal include, but are not limited to, signal 

reflection, refraction, propagation delay uncertainty, and inner wall reverberations. 

The severity of the effect depends on several wall parameters; related to the wall 

material and its thickness. 

When the electromagnetic waves propagating in the air interact with the material of 

the wall, they change their direction according to Snell's law: 

 sin(𝜑𝑚𝑞) =
sin(𝜃𝑚𝑞)

√𝜖𝑟

. (‎2.8) 

where 𝜃𝑚𝑞 and 𝜑𝑚𝑞 are the incidence and the refraction angles, respectively. This 

phenomenon occurs due to change in the transmission medium and is called 
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refraction, as illustrated in Figure ‎2.2. If not taken into consideration, the resulting 

image will mislead the observer by placing the target in a position shifted away 

from the true one. 

 

Figure ‎2.2: Scene geometry in TWRI showing the effect of the front wall.  

Another challenge resulting from the front wall is the fact that electromagnetic 

waves propagation speed decreases when traveling through the wall according to the 

following relation: 

𝑣 =
𝑐

√𝜖𝑟

 

where 𝜖𝑟 is the relative permittivity of the wall and 𝑣 is the speed of electromagnetic 

waves in the wall . Thus the round trip delay of the signal will be:  

𝑧 
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 𝜏𝑞,𝑚𝑛 =
𝑙𝑎𝑖𝑟1

+ 𝑙𝑎𝑖𝑟2
+ 𝑙𝑎𝑖𝑟3

+ 𝑙𝑎𝑖𝑟4

𝑐
+

𝑙𝑤𝑎𝑙𝑙1
+ 𝑙𝑤𝑎𝑙𝑙2

𝑣
 (‎2.9) 

where 

𝑙𝑎𝑖𝑟1
=

𝑧𝑡𝑚

cos(𝜃𝑚𝑞)
, 𝑙𝑎𝑖𝑟2

=
𝑧𝑞 − ℎ

cos(𝜃𝑚𝑞)
, 𝑙𝑤𝑎𝑙𝑙1

=
ℎ

cos(𝜑𝑚𝑞)
 . 

 

The same can be computed for the path of the reflected signal. Several approaches 

have been proposed in the literature to compensate for the front wall ambiguities, as 

in [31, 32, 33]. 

2.4.2 Multipath Effect 

One of the major challenges in TWRI is multipath stemming from multiple 

reflections of electromagnetic waves from the target to the walls, floor and ceiling 

as depicted in Figure ‎2.3. The signal model in equation (‎2.4) assumes no multiple 

scattering effects. It can be modified by adding the multipath reflections as: 

 𝑦𝑚𝑛(𝑡) = ∑ 𝜎𝑝𝑠(𝑡 − 𝜏𝑝,𝑚𝑛)

𝑃

𝑝=1

+ ∑ ∑ 𝜎𝑝𝑤𝑠(𝑡 − 𝜏𝑝𝑤,𝑚𝑛)

𝑃

𝑝=1

W

𝑤=1

 
(‎2.10) 

where 𝑊 is the number of multipath arrivals per target, and 𝜏𝑝𝑤,𝑚𝑛 is the 

propagation delay of the signal reflecting from target 𝑝 through path 𝑤. When 

received, the receiver interprets these reflections as real targets and thus ghost 

targets arise in the image. 
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Figure ‎2.3: The geometry of the scene including the multipath signals 

2.5 Imaging Techniques 

The main goal of TWRI is to get an image that accurately represents the true scene 

behind the wall. In the literature, there are a number of methods that accomplish 

this. In the following subsections, two commonly used imaging techniques are 

discussed. 

(𝑥𝑡𝑚
, 𝑧𝑡𝑚

) 

  

  

 

𝑧 

 𝑥 

Front Wall 

(𝑥𝑟𝑛
, 𝑧𝑟𝑛

) 

  

  

 

 

 

(𝑥𝑝, 𝑧𝑝)  

Path-1 

Path-3 

Path-2 

Path-0 

    



19 

 

2.5.1 Back-Projection 

The back-projection method is a simple time-domain approach to get the desired 

image. The region of interest is first divided into a finite number of small pixels on 

x and z axis, where x and z represent the crossrange and the downrange, 

respectively. A signal that represents the contribution of a pixel 𝑞 located at (𝑥𝑞 , 𝑧𝑞) 

is obtained by summing delayed versions of the 𝑀𝑁 received signals, given by: 

 𝑦𝑞(𝑡) = ∑ ∑ 𝑦𝑚𝑛(𝑡 + 𝜏𝑞,𝑚𝑛)

𝑁

𝑛=1

𝑀

𝑚=1

 (‎2.11) 

where 𝜏𝑞,𝑚𝑛 is a focusing delay applied to the received signals. Substituting (‎2.4) in 

(‎2.11) yields  

 𝑦𝑞(𝑡) = ∑ ∑ ∑ 𝜎𝑝𝑠(𝑡 − 𝜏𝑝,𝑚𝑛 + 𝜏𝑞,𝑚𝑛)

𝑃

𝑝=1

𝑁

𝑛=1

𝑀

𝑚=1

. (‎2.12) 

If a target 𝑝 lies in pixel 𝑞, 𝜏𝑝,𝑚𝑛 and 𝜏𝑞,𝑚𝑛 will cancel each other and the signal will 

be centered back to its original position 𝑠(𝑡). The image intensity at pixel 𝑞, 𝐼(𝑞), is 

then obtained by applying a matched filter to 𝑦𝑞(𝑡) and sampling at 𝑡 = 0 

 𝐼(𝑞) = 𝑦𝑞(𝑡) ∗ ℎ(𝑡)|
𝑡=0

 (‎2.13) 
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where ℎ(𝑡) = 𝑠(−𝑡) is the matched filter impulse response. This process is repeated 

for all pixels to get the final image of the scene. 

When we apply CD to detect moving targets, equations (‎2.11), (‎2.12), and (‎2.13) are 

modified by replacing the received signal 𝑦𝑚𝑛 with the difference signal 𝛿𝑦𝑚𝑛 to 

obtain: 

 𝛿𝑦𝑞(𝑡) = ∑ ∑ 𝛿𝑦𝑚𝑛(𝑡 + 𝜏𝑞,𝑚𝑛)

𝑁

𝑛=1

𝑀

𝑚=1

 (‎2.14) 

Substituting (‎2.7) in (‎2.14) yields: 

 𝛿𝑦𝑞(𝑡) = ∑ ∑ ∑ 𝜎𝑝𝑣
(𝑠(𝑡 − 𝜏(𝐿+1) 𝑝𝑣,𝑚𝑛) − 𝑠(𝑡 − 𝜏(1)

𝑝𝑣,𝑚𝑛))

𝑃𝑣

𝑝𝑣=1

𝑁

𝑛=1

𝑀

𝑚=1

 (‎2.15) 

The same imaging process as (‎2.13) is used to obtain the final image: 

 𝐼(𝑞) = 𝛿𝑦𝑞(𝑡) ∗ ℎ(𝑡)|
𝑡=0

 (‎2.16) 

2.5.2 CS-Based TWRI 

The back-projection imaging method encounters two main problems First, all the 

received data samples are required to construct the image. Any missing data will 

lead to deterioration in the image quality, proportional to the amount of missing 

data. Secondly, in spite of using the whole available data the image is not as 
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accurate as we desire. To address the above problems, TWRI is implemented under 

the CS framework. 

Consider the following linear system 

 
𝐛 = 𝐀𝐱 + 𝐯 (‎2.17) 

where 𝐛 is a 𝑘 × 1 measured vector, 𝐀 is a 𝑘 × N known matrix with 𝑘 ≪ 𝑁, and 𝐯 is 

i.i.d Gaussian noise. CS claims that the signal 𝐱 can be perfectly reconstructed with 

high probability using extremely few measurements than conventional techniques, 

when certain conditions are met [34, 35, 36]. The first condition is that only few 

elements of the signal are non-zeros i.e. the signal is sparse in a given domain. The 

second condition requires the matrix 𝐀 to satisfy the restricted isometry property 

(RIP): 

Definition: 

For each integer 𝑆 = 1, 2, … define the isometry constant 𝛿𝑆 ≥ 0 of a matrix 𝐀 as the 

smallest number such that 

 1 − 𝛿𝑆 ≤
‖𝐀𝐱‖2

2

‖𝐱‖2
2 ≤ 1 + 𝛿𝑆 (‎2.18) 

holds for all 𝑆-sparse vectors 𝐱. We say that a matrix 𝐀 has the restricted isometry 

property (RIP) of order 𝑆 if 𝛿𝑆 is not too close to 1. 
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If these conditions are satisfied, the sparsest N × 1 vector 𝐱 can be reconstructed, 

with high probability, by solving the following ℓ1-minimization problem [37]: 

 𝐱̂ = min
𝐱

‖𝐱‖1  subject to  ‖𝐀𝐱 − 𝐲‖2 < 𝜖. (‎2.19) 

where 𝜖 is a positive parameter that is related to the noise level. Details of the model 

used to implement CS in TWRI will be presented in the next chapter, Section 3.2. 
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CHAPTER 3: EVALUATING 

COMPRESSIVE SENSING 

ALGORITHMS IN THROUGH-THE-

WALL RADAR VIA F1-SCORE 

3.1 Introduction 

CS was first introduced to TWRI by Huang et al. [7]. Subsequently, a series of 

research followed in implementing TWRI under CS framework. These include 

applying CS in detecting human behind the wall [2, 38], mitigating the effect of the 

front wall [13, 14], determining the interior structure of the building [15], and 

exploiting the effect of multipath reflections [20, 19, 27, 18, 39].  

Various CS Algorithms have been proposed in the literature, however only a limited 

number of them were applied in TWRI. These include Orthogonal Matching Pursuit 

(OMP), Compressive Sampling Matching Pursuit (CoSaMP), Sparse Reconstruction 

by Separable Approximation (SpaRSA) and others. Table ‎1.1 summarizes the 

different algorithms used in TWRI literature. Even though these algorithms initially 

give good results, there is still no concrete argument for which algorithm best suits 



24 

 

TWRI applications. It is desirable to have a specific CS algorithm that utilizes the 

prior knowledge about the structure of TWRI problems. Several factors should be 

considered in such algorithm: reconstruction accuracy, processing time, noise 

immunity and the parameters needed as inputs to the algorithms should be 

practically available. One example of an impractical parameter for TWRI 

applications is the number of nonzeros in the image. Having that on mind, it is 

sensible to first make use of the CS algorithms that have already been devised and 

evaluate their performance in TWRI applications.  

In this chapter, we provide a fairly comprehensive performance investigation of 

several well-known CS algorithms when applied to TWRI. Since CS algorithms are 

proliferating, it is impossible to evaluate all of them; for diversity, algorithms with 

different approaches (greedy, probabilistic, and convex optimization)  are considered 

for evaluation. Table ‎3.1 provides the list of selected algorithms to be evaluated. 

Emphasis is given to the effect of different signal-to-noise ratio (SNR) values and 

compression rates on the reconstructed image quality.  

We concentrate on the ability to detect correct targets in the scene reconstructed by 

the algorithm. Specifically, algorithms producing images which can be correctly 

classified into targets and non-targets, by setting a threshold, are desired. Thus we 

adopt the notion of 𝐹1-score, which is a measure of how precise and sensitive a 

binary classifier is when comparing its output to the ground truth, to evaluate the 

performances of the selected algorithms. 
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This chapter is organized as follows; the formulation of the TWRI problem in the 

context of CS is detailed in Section ‎3.2. In Section ‎3.3, a brief description of the 

F1 measure is provided with the procedure for applying it to TWRI. In Section ‎3.4, 

an empirical performance comparison between the algorithms when applied to 

different scenarios of TWRI is provided. 
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Table ‎3.1: CS Algorithms Evaluated 

Abbreviation Name Reference 

SpaRSA Sparse Reconstruction by Separable Approximation [40] 

TwIST Two-Step Iterative Shrinkage/ Thresholding [41] 

YALL1 Your Algorithm for L1 [42] 

Fpc_AS Fixed-Point Continuation Active Set [43] 

Fpc Fixed-Point Continuation [44] 

Fpc-bb Fixed-Point Continuation with Barzilai-Borwein steps  [44] 

GPSR Gradient Projection for Sparse Reconstruction [45] 

GPSR-bb 
Gradient Projection for Sparse Reconstruction with 

Barzilai-Borwein steps 
[45] 

L1_ls 𝑙1-Regularized Least Squares   [46] 

PCGP Partial Conjugate Gradient Pursuit [47] 

SPGL1-bpdn Spectral Projected-Gradient for solving BPDN  [48] 

SPGL1-lasso Spectral Projected-Gradient for solving LASSO [48] 

FL Bayesian Compressive Sensing Using Laplace Priors [49] 

OMP Orthogonal Matching Pursuit [50] 

 



27 

 

3.2 CS in TWRI 

3.2.1 Sparse Reconstruction 

Consider the scene with 𝑃 targets as shown in Figure ‎3.1. It is desired to form an 

image of the scene behind a wall of thickness 𝑤 and dielectric constant 𝜖. A UWB 

MIMO radar system with a set of 𝑀 transmitters and 𝑁 receivers is placed at a 

distance 𝑑 from the wall and interrogates the scene by transmitting wideband 

Gaussian pulses given by: 

 𝑠(𝑡) =
1

√2𝜋𝜎2
  𝑒

−
(𝑡−𝜇)2

2𝜎2 . (‎3.1) 

 

Figure ‎3.1: Geometry of the scene 
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where σ and μ are the standard deviation and the midpoint delay of the Gaussian 

pulse in seconds, respectively. The transmitted signals are assumed to be time 

multiplexed, while receiving is simultaneous. The signal emitted from the mth 

transmitter and reflected from P targets is received at the nth receiver as: 

 𝑦𝑚𝑛(𝑡) = ∑ 𝜎𝑝𝑠(𝑡 − 𝜏𝑝,𝑚𝑛)

𝑃

𝑝=1

, (2) 

where σp is the reflectivity of the target, which is assumed to be independent of 

frequency and aspect angle, τp,mn is the time taken by the signal to travel from the 

mth transmitter to the pth target and reflect back to the nth receiver. Note that wall 

attenuation and free-space path loss are not considered in equation (2) for notational 

convenience; they can be easily accommodated by using a scalar factor, as in 

reference [2]. 

By sampling the received signal 𝑦𝑚𝑛(𝑡) at {𝑡𝑘}𝑘=0
𝐾−1 , we obtain a 𝐾 × 1 column 

vector,  𝐲𝑚𝑛. The scene is also discretized by dividing it into 𝑄 pixels. It is desired 

to identify which of the pixels contain targets. Following the formulation of [8], we 

have the linear system of equations 

 𝐲𝑚𝑛 = 𝚿𝑚𝑛𝐫 (‎3.3) 

where 𝐫 is a 𝑄 × 1 vector formed by concatenating the reflectivity values of all the 

pixels in the scene; the 𝑞𝑡ℎ element in 𝐫 is either equal to zero if there is no target in 

pixel 𝑞, or equal to 𝜎𝑞 if there is a target. The 𝑞𝑡ℎ column in the 𝐾 × 𝑄 matrix 𝚿𝑚𝑛 
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contains the signal we expect to receive at the 𝑛𝑡ℎ receiver if there was a target at 

pixel 𝑞 and the signal was transmitted from the 𝑚𝑡ℎ transmitter. The 𝑘𝑡ℎ element in 

the 𝑞𝑡ℎ column is given by 

 [𝚿𝑚𝑛]𝑘,𝑞 =
𝑠(𝑡𝑘 − 𝜏𝑞,𝑚𝑛)

‖𝐬𝑞,𝑚𝑛‖
2

. (‎3.4) 

‖𝐬𝑞,𝑚𝑛‖
2
 is the energy of the signal in the 𝑞𝑡ℎ column, which implies that each 

column in 𝚿𝑚𝑛 has unit norm. 

For a typical UWB TWRI application, we are mostly interested in detecting human 

targets [24]. The majority of UWB TWRI systems have a bandwidth ranged between 

500 MHz to 3.5 GHz, which achieves a resolution of 30 to 5 cm [24]. We can 

assume humans to be roughly equal to point targets in this order of resolution. Since 

the number of targets in a room is expected to be small compared to its size  (𝑃 ≪

𝑄), 𝐫 will be a sparse signal with only 𝑃 nonzero elements. Therefore, the signal 𝐫 

can be recovered by applying a sparse reconstruction algorithm that solves the 

following optimization problem [42], known as the constrained basis pursuit 

denoising problem  

 r̂= min
r

‖r‖1     subject to ‖Ψr-y‖2< ϵ (‎3.5) 

 

𝚿 = [

𝚿11

𝚿12

⋮
𝚿𝑀𝑁

] , 𝐲 = [

𝐲11

𝐲12

⋮
𝐲𝑀𝑁

] 
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where ϵ is a positive parameter, the 𝑀𝑁𝐾 × 1 vector 𝐲 is constructed by vertically 

concatenating the received signals of all the receivers, and the same is done with the 

dictionary matrices to get the 𝑀𝑁𝐾 × 𝑄 matrix 𝚿. A variant of (‎3.5) is the 

unconstrained basis pursuit denoising problem given by: [42]  

 
r̂= min

r

1

2
‖Ψr-y‖2+μ‖r‖1 (‎3.6) 

where 𝜇 is the regularization parameter for the ℓ1 norm. 

3.2.2 Compressing Data Via CS 

Directly solving (‎3.5) might be impractical since large amounts of data need to be 

stored and processed, thus consuming time and resources [2]. This subsection 

illustrates how this problem is solved by applying CS in TWRI.  

When implementing CS, instead of directly measuring 𝐲𝑚𝑛, its linear projection on a 

basis 𝚽𝑚𝑛 is measured [38] 

 y̆
mn

=Φmnymn =ΦmnΨmnr (‎3.7) 

and 𝚽𝑚𝑛 is a 𝐽 × 𝐾 measurement matrix (𝐽 ≪ 𝐾). The sparse signal 𝐫 can be 

recovered by solving the following ℓ1-norm minimization problem: 

 

 

r̂= min 
r

‖r‖1     subject to ‖ΦΨr-y‖2< ϵ, (‎3.8) 



31 

 

𝚽 = 𝐵𝑙𝑘𝑑𝑖𝑎𝑔(𝚽11, 𝚽12, … , 𝚽𝑀𝑁) 

To be able to recover 𝐫 accurately from (‎3.8), the matrix 𝚽𝑚𝑛 has to be chosen such 

that it has minimum mutual coherence with 𝚿𝑚𝑛 [24]�. A matrix 𝚽𝑚𝑛 that has 

elements that are independent and identically distributed Gaussian or Bernoulli 

random variables, has been proven to give good results in impulse radar TWRI 

applications [2].  

Many algorithms have been proposed to efficiently solve ℓ1 norm minimization 

problems similar to that in (‎3.8); can be solved using convex optimization, greedy 

pursuit, or combinatorial algorithms [2]. However, no study has been done to 

evaluate which of them is practically suitable for TWRI. In section ‎3.4, an empirical 

comparison between the performances of different types of algorithms, when 

applied to TWRI, will be presented. 

3.3 Evaluation Criterion 

In order to compare different CS algorithms, an evaluation criterion, that takes into 

account the problem in hand, is needed. The 𝐹1-score is chosen as the performance 

measure since it gives a reasonable comparison between different CS algorithms 

implemented to TWRI. The fundamentals of 𝐹1-score was laid out in [51], where an 

information retrieval (IR) effectiveness measure,  𝐸, was introduced; 𝐸 is the 

complement of the 𝐹1-score: 𝐸 = 1 − 𝐹. 𝐹1-score has been used as performance 

measure in information retrieval [51], natural language processing [52], video 

tracking [53], and radar [54, 55], to name a few. 
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We would like to correctly classify each pixel in an unknown scene into two 

categories: targets and non-targets. One mistake that could happen is classifying 

empty regions as targets, which results in having false alarms (also known as false 

positives, 𝐹𝑃). The opposite could also happen where true targets are classified to 

be non-targets, resulting in having missed targets (also known as false negatives, 

𝐹𝑁). The correctly classified regions are called true positives, 𝑇𝑃, and true 

negatives , 𝑇𝑁, for correctly classifying targets and non-targets, respectively. If the 

true target is actually represented with a group of pixels, we define a 𝑇𝑃 to be the 

detection of any one of these pixels, and a 𝐹𝑁 to be the failure of detecting any of 

these pixels. 

The accuracy of a classifier depends on the ratio between the number of targets 

correctly detected and all the detected targets, known as precision, and the ratio 

between the number of targets correctly detected and all the true targets, known as 

recall. 

 precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (‎3.9) 

 recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (‎3.10) 

Since precision and recall are both necessary for evaluating the detection 

capabilities of an algorithm, it is convenient to find a single measure that considers 

both of them. One measure that combines both of them is the 𝐹1-score, which is the 

harmonic mean of the precision and recall 
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F1= 2 .

Preceision . Recall

Precision + Recall
 

= 
2. 𝑇𝑃

2. 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 . 

(‎3.11) 

Taking the harmonic mean is more reasonable than taking the arithmetic mean. For 

example, if a classifier has recall = 1 and precsion = 0.4, this means that it detects 

all the true targets but has many false alarms, thus its performance is bad. In such a 

case, the arithmetic mean is 0.7, however the harmonic mean, 𝐹1-score, is 0.29, 

which reflects the bad performance of the classifier. 

In the next section, the 𝐹1-score is used to test the performance of different CS 

algorithms when applied to TWRI. However, CS algorithms return continuous 

values for each pixel rather than a binary classification of target or non-target. This 

continuous value can be turned into a binary classifier by setting a threshold 𝜂 and 

classifying pixels with values greater than 𝜂 as targets and those less than 𝜂 as non-

targets. Two hypotheses are formed for each pixel 

ℋ0:no target in pixel p, if r(𝑝) < 𝜂 

ℋ1:a target in pixel p, if r(𝑝) > 𝜂. 

The resulting output of an algorithm is first normalized to give values between 0 

and 1. Then a threshold is chosen in order to get a binary classification of the scene 

(target or non-target). The threshold is adjusted such that it results in the maximum 
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𝐹1-score that the given algorithm can achieve. This maximum value represents the 

performance of the algorithm 

 FCS= max
η

F1(η). (‎3.12) 

Accordingly, we are looking for the best 𝐹1-score that the algorithm can achieve, 

regardless of the considered value of 𝜂. If 𝐹CS = 1, it means that the algorithm is 

able to retrieve all the true targets without any misclassifications, if 𝜂 is chosen 

properly. On the other hand, if 𝐹CS < 1 , the algorithm will always result in 

misclassifications. 

3.4 Results and Discussion 

In order to compare different CS algorithms in TWRI applications, several 

numerical examples are presented in this section. The simulated scene is a 4 m ×

4 m region behind a 20 cm thick wall with a dielectric constant 𝜖r = 6. For 

simplicity, the effect of the front wall on the received signal is assumed to be taken 

care of using the available methods [6,7]. Three transmitters are placed 0.8 m away 

from the front wall with 0.9 m interspacing between them. The antenna in the center 

is also used as a receiver. A Gaussian pulse of width 0.7 ns is used to interrogate the 

scene. The time step used in simulation is Δt = 50 ps and the total number of time 

steps is 𝐾 = 800.  

Four random targets of size 25 cm × 25 cm were generated and the CS algorithms, 

listed in Table ‎3.1, were used to reconstruct the image. Since we are measuring the 
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practicality of the algorithms, the processing time of the algorithm should be 

reasonably small to allow for real-time imaging. Thus, to make a fair comparison, 

the algorithms were allowed to work for a limited time slot of 0.2 seconds. The 

performance of each CS algorithm was then measured by taking the 𝐹1-score after 

averaging the precision and recall over 100 runs. We concentrated on the effect of 

varying SNR, and size of the measurement matrix  𝚽 on the performance of a given 

algorithm. 

Each CS algorithm has some parameter that should be set in order to get the 

algorithm working properly. If chosen improperly, it could decrease the 

performance of the algorithm. To have a fair comparison between the algorithms, 

similar regularization parameters, have been used. 

3.4.1 Detection Performance vs.  SNR 

Figure ‎3.2 shows the performance of the algorithms under different SNR values, 

when all the data is used and only 10% of the data. It can be observed that some of 

the algorithms that perform well in high SNR might not be the best choice when 

having low SNR. It is noted that the performance of some CS algorithms is a strong 

function of the SNR. Thus, to achieve acceptable performance in our system, 

algorithms which are mostly invariant to SNR values are desired. It is found that 

YALL1 has the best performance in low SNR values, whereas SPGL1-lasso and L1-

ls have the worst when reduction is applied. The other algorithms have similar 

moderate performance. In practical TWRI, we need to process a highly cluttered 

noisy signal with low SNR. 
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Figure ‎3.2: Performance of CS algorithms when varying the SNR, (a) all the data is used, (b) 10% of the 

data is used (for clarity, only the 9 algorithms are shown) 

3.4.2 Detection Performance vs. Compression Rate 
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capabilities of the algorithms decrease rapidly with increased reduction. YALL1 

seems to be the best in this case, where it still gives reasonable results when having 

up to 50% percent reduction. On the other hand, for high SNR values, most of the 

algorithms are not highly affected when the percentage of reduction is increased; 

meaning that similar performance can be obtained with fewer amounts of data. It is 

found that the following algorithms perform well in high reduction percentages:  

GPSR-bb, SPGL1-bpdn, Fpc-bb, YALL1 and SpaRSA. However when the 

percentage of reduction exceeds 90%, the performance of the two latter algorithms 

decreases.  

It can also be observed that the performance of some algorithms, such as SpaRSA, 

increases when 𝚽 is reduced until it reaches a point where it decreases afterwards. 

This is because reducing the size of the matrix 𝚽 has two main effects on the 

algorithm. First, it decreases the amount of computations and hence processing 

needed for a single iteration. On the other hand, this reduction makes the system 

more underdetermined, thus increasing the number of iterations needed to get 

acceptable results. Reducing the size of 𝚽 not only reduces processing time but also 

hardware complexity, such as having less memory and less arithmetic operations. 
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Figure ‎3.3: Performance of CS algorithms when varying the size of the measurement matrix, SNR = (a) -

10 dB, (b) 30 dB  (for clarity, only the 9 algorithms with best performances are shown) 
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3.4.3 Regions of desired performance 

To be able to see the effect of both SNR and the compression rate, a graph showing 

the effect of these two factors on the algorithms performance is shown in Figure ‎3.4. 

The curve represents the contour where an algorithm achieves a performance of 

𝐹1 = 0.9. Above this curve is the region where the algorithms performance is 

𝐹1 ≥  0.9, meaning that if there are five truly detected targets we can withstand 

having either one 𝐹𝑁 or one 𝐹𝑃 at maximum. This graph helps in identifying the 

algorithm with the best performance, for a given SNR, and the percentage of 

compression that achieves that. It is observed that YALL1 spans the widest region 

with the desired performance followed by SpaRSA, FPC, and GPSR-bb with similar 

performance regions. 

 

Figure ‎3.4: Algorithms region of desired performance (𝑭𝟏 ≥ 𝟎. 𝟗) (for image convenience, only the 6 

algorithms with best performances are shown) 
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3.5 Conclusion  

TWRI faces significant challenges; of which is the large amount of data that need to 

be saved and processed. CS allows for signal reconstruction using very few 

measurements. Many algorithms exist in literature for solving CS problems; 

however they have not been comparatively evaluated when applied to TWRI. In this 

chapter, the performances of the most popular CS algorithms were compared, by 

means of maximum 𝐹1-score, when applied to TWRI.  

For high values of SNR, all the algorithms perform well when the reduction rate is 

small. When the reduction rate is increased, FPC-AS works poorly, YALL1 and 

SpaRSA perform moderately, and the remaining algorithms have similar good 

performance. For low SNR, YALL1 has the best performance for all reduction 

percentages, and SPGL1-lasso and L1-ls have the worst compared to the others. 
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CHAPTER 4: JOINT WALL 

POSITION DETECTION AND 

MULTIPATH EXPLOITATION IN 

TWRI 

4.1 Introduction 

In this chapter we introduce a general framework for jointly recovering the room 

geometry and a ghost-free image of the scene. Two algorithms are proposed within 

this framework. The first algorithm utilizes the fact that when false wall positions 

are considered, the reconstructed image will be populated with false targets. The 

algorithm starts by finding one wall position, in each considered direction, that 

minimizes the number of targets in the scene. When that it is found, the dictionary is 

updated with the multipath returns of the detected walls and is used in a subsequent 

search, with the same goal of minimizing the number of targets in the scene. This 

process is repeated until a stopping criterion is reached. The second algorithm 

builds on the first one and extends it to make use of moving targets in the scene. 

Results show the effectiveness of the first algorithm in high SNR values. They also 
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show that moving targets increase our knowledge of the wall positions. When this is 

utilized, as in the second algorithm, accurate wall position detection is obtained 

even in low SNR values 

The remainder of this chapter is organized as follows. Section ‎4.2 presents the 

multipath model used in this research. A general framework for detecting the 

interior wall positions is introduced in Section ‎4.3. An algorithm within this 

framework is then proposed in Section ‎4.4. This algorithm is further extended in 

Section ‎4.5 to include moving targets. Finally we summarize and conclude in 

Section ‎4.6. 

4.2 Multipath Model 

One of the major challenges in TWRI is multipath stemming from multiple 

reflections of EM waves from the target to the walls, floor, and ceiling. The receiver 

interprets these multipath signals as reflections from physical targets  and considers 

them as real targets; these hypothetical targets are called ghost targets. The received 

signal with multipath can be expressed as: 

 ỹ=Ψ
(0)
x(0)+Ψ

(1)(𝐰1)x(1)+…+Ψ
(R)(𝐰𝑅)x(R), (‎4.1) 

where the first term corresponds to the direct path while the others correspond to 

multipath coming from 𝑅 different paths. The wall positions are discretized and 

each element in 𝐰𝑟 represents a wall position in direction 𝑟, 𝑟 = 1,2, … 𝑅. In the case 

that only one back-wall and two side-walls are present, 𝑅 = 3. This vector will have 
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at most one nonzero element, with a value of 1, corresponding to the position of the 

wall in direction 𝑟. The dimension of 𝐰𝑟 is proportional to the resolution of 

discretization and the wall range considered.  The dictionary matrix Ψ
(r)(𝐰𝑟) 

contains the returns of the 𝑟𝑡ℎ path, and x(r) is a vector that contains the 

corresponding target reflection coefficients for that path.  

Equation (‎4.1) can be rewritten in a compact form as 

 ỹ=Ψ̃(w)x̃ (‎4.2) 

where 

𝐰 = [𝐰1
𝑇 𝐰2

𝑇 … 𝐰𝑅
𝑇]𝑇 , 

Ψ̃=[Ψ(0)
, Ψ

(1)(𝐰1), …, Ψ
(𝑅)(𝐰𝑅)], 

x̃=[x(0)𝑇
, x(1)𝑇

, …, x(𝑅)𝑇]
𝑇

. 

This formulation is similar to that provided in [56], except that 𝐰 in our case is a 

vector. 

If the scene is reconstructed by using only the direct path returns, multipath signals 

will be thought to be reflections of real targets and thus ghost targets will appear in 

the image. On the other hand, if the wall positions are known, 𝐰 is known, it is 

possible to construct the dictionary matrix Ψ̃(w) and reconstruct a ghost free image 

by applying the following  optimization problem 
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 min
x̃

‖x̃‖1,2 + λ‖𝐲̃ − 𝚿̃(𝐰)𝐱̃‖
2

  (‎4.3) 

where 

‖𝐱̃‖1,2 = ∑‖[x(1)(𝑞), x(2)(𝑞), ⋯ , x(𝑅)(𝑞)]𝑇‖2

𝑄

𝑞=1

. 

Consequently only real targets will be present in the reconstructed scene.  

However, when incorrect wall positions are used to construct the dictionary, wrong 

multipath propagation delays will be associated with each pixel, thus creating ghost 

targets in the reconstructed scene. 

In the next section an effective reconstruction technique, that jointly estimates the 

true wall positions and reconstructs a ghost-free image of the scene, is proposed. 

4.3 In Pursuit of the Wall Positions 

4.3.1 General Framework 

Since the true wall positions are unknown, we need to ensure a good estimate of 

them in order to get a ghost-free image. We exploit the fact that a wrong estimate of 

the wall positions will lead to a populated scene. In other words, it is desired to find 

the wall positions that minimizes the number of targets in the scene, and at the same 

time obeys (‎4.2). This can be translated to the following mathematical optimization 

expression 
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 ŵ,x̂= argmin
w,x̃

  ‖x̃‖1,2 +λ ‖ỹ-Ψ̃(w)x̃‖
2
 (‎4.4) 

s.t. ,    ‖wr ‖0≤ 1, ∀ 𝑟 = 1,2, … , 𝑅. 

The solution of (‎4.4) will give us the wall positions, constrained to the presence of 

one wall or none in each direction, and the ghost free image. Several methods can 

be proposed to solve (‎4.4). One approach is exhaustively searching all possible wall 

combinations, updating the matrix Ψ̃ each time, and then seeing which results in the 

sparsest image. This approach is costly and time consuming since we have to search 

through 𝒪(𝑅𝑊) different wall combinations.  

A simpler approach is to iteratively build the room geometry. That is to first scan 

for the most effective wall positions in each direction separately. These walls are 

then fixed and the dictionary is updated with the new wall positions. Further, we can 

refine by repeating this process; we define the number of refinement iterations as 

the depth of the algorithm. The wall positions will converge to the true positions 

after a couple of refinement iterations and the final image is then obtained using the 

refined dictionary. 

Figure ‎4.1 is provided to further illustrate this process. First, initial wall positions 

are given to the multipath dictionary generator (MDG), which generates the initial 

dictionary 𝚿̃0(𝐰). For each wall direction, the scanning process starts looking for 

the most probable wall position in that direction, this step is shown within the 

dashed boxes in Figure ‎4.1. Each dashed box is called a layer and represents one of 

the wall directions, thus we have 𝑊 of them (only 3 are shown in the figure for 
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visual clarity). The layer on the top is for the 𝑟𝑡ℎ wall direction. Using 𝐲̃, 𝚿̃𝑟(𝐰) and 

𝚿 
(𝑟)(𝐰𝑟), an image 𝐱𝑤

(𝑟)
is constructed for the 𝑤𝑡ℎ wall position and is given a cost 

s𝑟(𝑤). This is done for all 𝑤 = 1,2, … , 𝑊. The cost function of each wall position, 

𝐬𝑟, is then passed to the MDG, which in turn updates the dictionary and routes it 

back to the layers if more depth is desired. This process is repeated until all wall 

positions converge or a specific depth 𝐷 is reached. 

The number of search combinations needed in this method is reduced to 𝒪(𝐷𝑊𝑅), 

which is far less than that of the exhaustive search method.  To illustrate this 

assume that we are searching in three wall directions, 𝑊 = 3, and for each wall we 

have twenty hypotheses, 𝑅 = 20. The exhaustive method searches through (20)3 =

8000 possible wall combinations, while the latter method only searches through 

𝐷 × 20 × 3 = 60𝐷 wall combinations. The depth 𝐷 needed for convergence will be 

shown to be a small number.  
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Figure ‎4.1: The block diagram of the Wall Pursuit general framework. 
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4.3.2 Variations in the Proposed Wall Pursuit (WP) Framework 

In the framework described in the previous subsection, the details of the following 

steps were intentionally left unspecified: 

1) Reconstructing the Image: This step is performed in each layer. Detecting 

the correct wall positions strongly depends on this step, thus an imaging 

method that allows for a clear distinction between wrong wall choices and 

correct ones should be preferred. 

2) Evaluating the image: This step is also performed at each layer after 

reconstructing the image. Here, we are looking for a cost function that 

changes with wall position accuracy such that it increases with images 

formed from incorrect wall positions and decreases when the wall positions 

are correct. 

3) Updating the dictionary: From each layer, the MDG receives the expected 

wall position and its confidence factor. With the aid of these two values, soft 

decisions on the wall positions, as well as hard ones, can be made.  

4) Computing the final image: The imaging method chosen in this step need 

not be the same as that chosen inside the layers. Since this is only executed 

once at the end, it should give accurate results. 

These four variations allow for the foundation of a family of algorithms under the 

general framework. One of these family members will be introduced in the 

following subsection. 
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4.4 Basic WP Algorithm 

Within the WP framework, we propose an algorithm that detects the true wall 

positions and reconstructs a ghost-free image. Details of the algorithm along with 

results discussion are presented in this section. 

4.4.1 Variations clarified 

Within the WP framework, we propose an algorithm that implements the following 

with the previously described variations: 

1) Reconstructing the Image: The image 𝐱𝑤
(𝑟)

 in each layer is reconstructed by 

solving 

 𝐱𝑤
(𝑟)

= min
x̃

 ‖x̃‖1,2 + λ‖𝐲̃ − 𝚿̃𝑑(𝐰)𝐱̃‖
2

 . (‎4.5) 

From all the scanned 𝑊 positions, the correct image should be distinct from 

the others in terms of sparseness.  

2) Evaluating the image: Since our imaging method distinguishes correct wall 

positions based on sparsity of the reconstructed image, a reasonable cost 

function is the mixed ℓ1,2 norm: 

s𝑟(𝑤) = ‖𝐱𝑤
(𝑟)

‖
1,2

. 

3) Updating the dictionary: A simple updating criteria is used, where the 

minimum value of the cost function for each wall is found: 
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s𝑟(𝑤𝑚𝑖𝑛) < s𝑟(𝑤), ∀ 𝑤 = 1,2, … , W, 
and then 𝐰𝑟 is updated as follows 

w𝑟(𝑖) = 𝛿𝑤𝑚𝑖𝑛 ,𝑖 , ∀ 𝑖 = 1, … , W  

 

 

4) Computing the final image: The final image is reconstructed using (‎4.5) 

with 𝑑 = 𝐷. If the algorithm correctly identifies the wall positions, this 

should result in the best possible image. 

4.4.2 Results and Discussion 

The following simulated scene was used to test the performance of our method. 

Three transceivers are placed 1 m away from the front wall with 0.25 m interspacing 

between them. A 3 m × 2.5 m image, with a pixel discretization of 5 cm along both 

downrange and crossrange, of the scene behind a 20 cm thick wall is interrogated 

using a Gaussian pulse of width 0.73 ns. The time step used in simulation is 

Δt = 25 ps and the total number of time steps is 𝐾 =1085. The effect of the front 

wall on signal propagation is assumed to be compensated for. Behind the wall lie 

four point-targets, with perfect reflection, in a 2.6 m × 2 m room. The received 

signal contains multipath reflections resulting from the back and side walls, with 

amplitudes less than that of the direct reflections because of multiple reflections. 

Additive white Gaussian noise is added to the received signal. A measurement 

matrix of random equiprobable ±1 elements, similar to that in [8], performs 20% 

compression in the acquisition stage. 

The effect of the SNR on the algorithm is investigated. Precisely, we would like to 

see how often the algorithm will give us misleading information about the wall 
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geometry in the room, as a function of SNR. Also, for the cases were correct wall 

position results are obtained, we would like to see how deep the algorithm needs to 

dive to achieve these results. Figure ‎4.2 gives proper insight for this regard, each 

curve in Figure ‎4.2 (a) gives information about the chance of detecting the specified 

number of walls under the corresponding value of SNR. It can be seen that the 

algorithm perfectly constructs the correct wall positions in the case of high SNR. 

When the value of the SNR decreases, a subset of the walls can still be detected 

however the chances of detecting all the walls decreases. The algorithm will also be 

more susceptible to being trapped in oscillations. This means that at some depth 

level 𝑑 the MDG decides on wall positions that were already visited in previous 

depth levels. Thus the algorithm will oscillate through the same sequence of wall 

positions over and over. Figure ‎4.2 (b) shows the percentage of correctly detecting 

the three walls, detecting only a subset of the walls, and oscillations. Another 

interesting observation from Figure ‎4.3 is that when we are four levels deep in the 

algorithm at least two walls have been successfully detected for the given range of 

SNR.  
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Figure ‎4.2: (a) Percentage of successfully detecting the walls with variation in SNR (dB), (b) The status 

of the algorithm at the end for each SNR. 
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Figure ‎4.3: The average level of depth needed to achieve the success rate given in Figure ‎4.2 (a). 
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4.5 Dynamic Wall Pursuit (DWP) Algorithm 

The previous algorithm is described for a received signal in a given snapshot of the 

scene. To be able to continuously get a ghost-free image, one option is to process 

the received signal in first snapshot until the final updated dictionary 𝚿̃𝐷(𝐰) is 

obtained. This dictionary is then used to reconstruct later images. The drawbacks of 

this approach is that it might take a long time to converge, its performance decreases 

in low SNR, and it does not make use of the dynamic information we get from 

moving targets in the scene. This section presents the Dynamic Wall Pursuit (DWP) 

algorithm, which is an extension of the WP algorithm that allows it to make use of 

the dynamic property of the problem to improve wall detection performance.  

4.5.1 Extensions to WP 

 In many applications of TWRI, the target of interest is moving, thus the received 

signal is changing. This can be utilized to further improve the accuracy of wall 

detection. The presence of a moving target inside the room means that more 

information about the wall positions is gained with time. Three simple, but 

effective, extensions are made: 

1) CD is used to detect moving targets and suppress returns from stationary 

objects. This helps in increasing the sparsity of the scene, thus improving the 

performance of the CS algorithm used to reconstruct the images. 
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2) The MPG accumulates the cost of each wall, 𝑠𝑟(𝑤), from different time 

frames. Thus, information from earlier frames will still have an influence on 

the MPG's choice of wall updates. 

3) For each frame, the WP algorithm is applied until a specific depth 𝐷 is 

reached. The value of 𝐷 is chosen such that at least one or two walls are 

detected. We have seen that in most cases when 𝐷 is from two to four, we are 

able to detect two walls for SNR above 10 𝑑𝐵. 

4.5.2 Results and Discussion: 

The same setup of the previous simulation is adopted to test the performance of the 

DWP. Four moving point targets of speed ranging between 0.5 to 1.5 m/s are 

simulated to move inside the room; the speed of a human walking or suddenly 

changing direction is within this range [57]. Since the resolution of the image is 

taken to be 5 𝑐𝑚, a frame rate of 10 frames per second will be convenient. The 

algorithm is processed for only 35 frames and then evaluated. In each frame, a depth 

level of 𝐷 = 2 is chosen. The results in this section are averaged over 100 runs. In 

each run, initial target location, target moving path, and speed are all chosen 

uniformly random.  

We would like to see the performance of this algorithm when varying SNR values. 

Also, for the cases where correct wall positions are obtained, we would like to see 

how many frames are needed to get accurate information about the room geometry.  
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Figure ‎4.4 shows that DWP algorithm is successful in detecting all the walls when 

the SNR is above 15 𝑑𝐵, and at least two walls when it is below that. Compared to 

WP, DWP results in improved wall detection and hence a better image of the scene, 

as shown in Figure ‎4.4. When DWP succeeds in detecting all the walls, it does so in 

a significantly fast manner. Figure ‎4.5 and Figure ‎4.6 show the average number of 

frames and the histogram of the frames needed to find the correct wall positions, 

respectively. When the SNR is 15 𝑑𝐵, the algorithm successfully detects the walls 

on an average of 6 frames, and 25 frames on maximum as shown in Figure ‎4.5 and 

Figure ‎4.6 respectively.  

 

 

Figure ‎4.4: A comparison between the two proposed algorithms with respect to the percentage of 

successfully detectied walls, with variation in SNR (dB).  
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Figure ‎4.5: The average number of frames needed to achieve the success rate given in Figure ‎4.4 (a) 
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Figure ‎4.6: Histogram of number of frames needed for successful wall detection SNR = (a) 10, (b) 15, and (c) 20 
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4.6 Conclusion 

This chapter introduced a general framework for jointly estimating the positons of 

the inner walls and reconstructing a ghost-free image of the given scene. Two 

algorithms within this framework were proposed. The second algorithm is a 

generalization of the first and utilizes the fact that moving targets increase the 

knowledge of the wall positions. The results show that making use of new 

information from different time frames play a significant role in increasing the 

overall performance of wall detection. The algorithm is able to detect the walls in 

less than 1 second, and in worst cases 5 seconds, when the SNR is higher than 

15 𝑑𝐵. 
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CHAPTER 5: CONCLUSION AND 

RECOMMENDATIONS 

5.1 Conclusion 

In an attempt to find out which CS algorithm best suits TWRI, the first part of this 

thesis included a performance based comparison of a group of CS algorithms. The 

research contributions and collusions in this part can be summarized as follows: 

1. 𝑭𝟏-score Performance Measure in CS: We introduced a new method for 

assessing the detection capabilities of CS algorithms. It is based on the 

notion of 𝐹1-score, which allows us to quantitatively measure how well an 

algorithm is capable of detecting all the true targets without introducing any 

false ones.  

2. Performance Comparison of CS algorithms in TWRI:  Using the 

introduced performance measure, we compared the performance of 14 

various CS algorithms after applying them to several TWRI scenarios. 

Different SNR values and reduction rates were considered in this 

comparison. 
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From this part, we specifically concluded the following: 

 When the SNR is high, the algorithms performances are similar in most 

cases.  

 In case of high SNR, discriminations between the algorithms arise when 

more than 90% reduction is required. In such cases, FPC and SPGL1 give the 

best performance. 

 For low SNR values, YALL1 gives the best results in most cases.  

In the second part of this thesis, we aimed at exploiting the multipath returns in 

order to enhance the image of the scene and suppress ghost targets. This part can be 

summarized as follows: 

1. Wall Pursuit (WP) Framework: We developed a general framework for 

detecting the wall positions inside a room and obtaining a ghost-free image. 

The framework is based on parallel scans of the wall positions in each layer 

and gives each wall a cost. Information of the wall positions is shared 

between the layers through the multipath dictionary generator (MDG). This 

general framework sets the ground for a group of algorithms that are capable 

of detecting correct wall positions.  

2. "Basic" Wall Pursuit Algorithm: We proposed an algorithm as an 

extension of the aforementioned general framework. At each layer, the wall 

position that produces the sparsest image is found and the dictionary is 

updated correspondingly and fed back to the layers to improve performance. 
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3. Dynamic Wall Pursuit Algorithm: We suggested making use of the 

presence of moving targets in gaining more information about the wall 

positions. The WP algorithm was extended on this basis. Moving targets 

were first detected using CD, then the same steps of WP algorithm were 

followed except that the cost values are accumulated and the level of depth is 

limited to a small value of 𝐷. This is repeated for several frames until the 

wall positions are detected. 

The following conclusions are worth mentioning for this part:  

 The Wall Pursuit algorithm works well in case of high SNR. However when 

the SNR decreases, the ability of the algorithms to detect all the true walls 

reduces significantly. 

 When Dynamic Wall Pursuit is considered, detecting the correct wall 

positions is possible even with low SNR values. 

 The number of frames needed to converge to the correct wall positions is 

usually less than five, for SNR above 15 𝑑𝐵. 

5.2 Recommendations for Future Research 

For further research, we recommend the following extensions:  

1. Apart from the comparison presented, which concentrated on detection 

capabilities of the algorithms, other comparisons can be performed such as 

practicality of hardware realization, memory usage, processing time, and 

visual quality of the image. 
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2. In the proposed framework, no direct communication between the wall layers 

was taken into account during scanning. An improvement of the algorithm 

would be to allow direct on-line information transfer between the layers 

while scanning, instead of routing through the MPD. 

3. In the WP algorithm, images of the scene are obtained using sparse 

reconstruction algorithms. However, these algorithms are time consuming. 

Simpler schemes for obtaining intermediate images, like back-projection, can 

be investigated with a proper cost function in order to get faster results. 

4. In the DWP algorithm, the choice of depth, 𝐷, can be optimized to give 

better performance in the overall algorithm. 

5. Modeling this problem probabilistically will help in accurately identifying 

which wall position is most probable. 

6. The proposed algorithms can be further supported by providing theoretical 

formulations proving their convergence. 

7. The structure of the dictionary should be utilized in order to improve the 

performance in terms of processing time and memory allocation.  

8. The algorithm can be extended to work for irregular room geometry. 
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