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Recent advances in MEMS-based sensors, low consumption actuators, as well as

affordable and high performance computing and communication equipment has

allowed mobile robots to advance rapidly towards development of multi-agent

systems. Control system of the robot, which consists of the sensors to quantify

measurable variables affecting it, the software which takes this information to

dictate the actuators to achieve prescribed goals. For multi-agent systems, the

key ingredient is communication among the agents to coordinate decisions and

control actions. Coordination efficiency is dictated by communication bandwidth

and reliability, as well as computational power available. This thesis addresses the

formation control of teams of mobile robot - or multi-agent system of autonomous
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vehicles - by providing a rigorous generalized framework for distributed model

predictive control of constrained nonlinear systems. We address leader-follower

formation control of constrained autonomous vehicles operating in an environment

where communication bandwidth is limited and transmission delays are present,

along with other sources of uncertainty and disturbances. A number of sources

of uncertainty are taken into account to provide robustness to the algorithms de-

veloped. In existing literature, usually only measurement / estimation errors or

model mismatch are taken into account. We consider the simultaneous presence

of six sources of uncertainty consisting of errors in estimation, modeling, predic-

tion, data compression and loss of information due to delay. We provide detailed

feasibility and stability analysis to derive closed form analytic expressions relating

the growth of uncertainty along the prediction horizon, and its effect on recursive

feasibility and robust stability. Nearly ten new algorithms are developed in this

thesis for designing distributed robust NMPC controllers for multi-agent vehicle

control based on a very general theoretical framework providing key insights in

choosing design parameters for control design. The proposed algorithms can be

divided into two main categories: offline and online algorithms. The offline al-

gorithms are computationally intensive, but since they are executed offline, this

is not a major concern. The online algorithms are fast processing and provide

update to the receding horizon control strategy. We provide robustness by finding

upper bounds on uncertainty growth and hence restricting the admissible states

to tighter constraints. Recursive feasibility is shown to depend on controllability

xvi



characteristics of system dynamics, which restricts the maximum allowable un-

certainty growth. Our approach is dual-mode NMPC, where stability is ensured

by suitable selection of terminal weighting factor, terminal constraint set and a

linear terminal control law. We provide a method of maximizing this terminal

constraint set, which is a measure of stability. Similarly, output feasible set of

NMPC algorithm is determined with proposed min-max optimization technique.

We also propose a method for data compression and trajectory tail estimation.

We propose a practically stable (ultimately bounded) formulation of the dis-

tributed nonlinear model predictive controller (DNMPC), in which agents commu-

nicate compressed information to each other with propagation delays and collision

avoidance is guaranteed, despite the presence of these delays and uncertainties.

Data compression using neural networks approach is used ensuring a considerable

reduction of the data packet size (as much as 75 %). Moreover, the approach al-

lows the agents to be sampled locally at different rates as well as to have different

dynamics, constraints and prediction horizons, while being robust to uncertain-

ties and propagation delays. Collision avoidance is achieved by means of a novel

spatial filter-based potential field. Analytical results proving Input to State Prac-

tical Stability (ISpS) and generalized small gain conditions are presented for both

strongly connected and weakly connected networks. Extended analytical and sim-

ulation based examples are provided to show the efficacy of proposed algorithms.
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THESIS ABSTRACT (ARABIC) 

  ملخص الرسالة
 :         بلال احمد صدیقيالاسم

 تنبؤي غیر خطيال الموزعة  تحكمالبواسطة   أسطول من المركبات للتنقل العامالإطار :       العنوان

 النظم:   ھندسة التخصص

  ٢٠١٤  دیسمبر:        التاریخ

  

نقوم في ھذا البحث العلمي بمعالجة عملیة تشكیل تركیبات ذات خاصیة القائد والأتباع للتحكم في المركبات ذاتیة 

الحركة المقیدة والتي تعمل في بیئة ذات عرض نطاق ترددي بالاضافة الى وجود تأخیر وبطء في الاتصالات. نقترح 

تنبؤي غیر خطي، بحیث لا تحتاج فیھ الروبوتات إلى تقدیر حركة الروبوتات المجاورة مع تصمیم نموذج تحكم 

ضمان تجنب الاصطدام. لضمان تخفیض حجم حزمة البیانات المرسلة، یتم ضغط البیانات باستخدام الشبكات 

عار بمعدلات مختلفة العصبیة. وعلاوة على ذلك، فإن اقتراحنا یتمیز بتكیف الروبوتات مع قراءات لأجھزة الاستش

بالاضافة إلى التكیف مع دینامیات مختلفة وعوامل تنبؤ وتقیید مختلفة، مع كونھا ذات قدرة على تحمل بطء في 

الاتصالات وعدم الیقین من مسارات الروبوتات المجاورة. نقترح في ھذا البحث وسیلة مبتكرة في تحقیق تفادي 

تي تثبت رسوخ واستقرار نموذج التحكم المقترح أثناء تجربتھا في أنماط الاصطدام. یتم عرض النتائج التحلیلیة ال

  شبكیة مختلفة. توضح نتائج المحاكاة فعالیة نموذج التحكم المقترح.

 



CHAPTER 1

INTRODUCTION

1.1 Prologue

Research in robotics until recently has focused on development of autonomous

agents working as singular units to interact with the environment. It was soon

realized, however, that in many cases it is far more advantageous - sometimes

necessary - for robots to work together in teams to increase scope, efficiency and

protect against single points of failure. The main impediment to such develop-

ment were physical constraints in terms of lack of miniaturization and high power

consumption of sensors and actuators, lack of high speed, high volume and reli-

able communication and low on-board computation power. Recent advances in

MEMS-based sensors, low consumption actuators, as well as affordable and high

performance computing and communication equipment has allowed robotics - es-

pecially mobile robots - to advance rapidly towards development of multi-agent

systems. The core of any robotic system is its b́rain circuitry’ or how it is pro-
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grammed to interact with its environment to achieve its objectives. This is the

control system of the robot, which consists of the sensors to quantify measurable

variables affecting it, the software which takes this information to dictate the ac-

tuators to achieve prescribed goals. For multi-agent systems, the key ingredient

is communication among the agents to coordinate decisions and control actions.

Coordination efficiency is dictated by communication bandwidth and reliability,

as well as computational power available. This thesis addresses the formation

control of teams of mobile robot - or multi-agent system of autonomous vehicles

- by providing a rigorous generalized framework for distributed model predictive

control of constrained nonlinear systems, in the presence of propagation delays.

1.1.1 Nature Inspires Multi-Agent Systems

Many engineering solutions are inspired from nature. Attractive monikers like ‘bi-

ologically inspired engineering’, ‘biomimicry’, ‘bio-inspired design’, ‘bio-inspired

robotics’, ‘artificial intelligence’ are of relatively recent origin, but the ideas of

adopting ideas, processes and design from nature to solve human problems is as

old as engineering itself. Over the time, engineers and scientists have realized that

the most efficient artificial designs are those which mimic nature’s designs. For

example, we see that the wire-and-strut bi-wings of the Wright Brothers in 1903

were probably less efficient than Leonardo da Vinci’s bat-inspired wings in 1503.

Da Vinci’s design had one problem though: the lack of materials and technology

to realize that design, which was probably why the Wright airplane resembled a

2



flying truss bridge more than a modern airplane. In the last couple of decades,

emergent technologies have breached new frontiers in materials, communication,

computation and miniaturization that has made it possible to re-engineer some of

nature’s solutions to meet new problems and needs in an affordable manner. This

is especially true in the field of robotics and automation, which aims to mimic

natural intelligence and physical implementation of intelligent decisions. From

the beginnings of serious automation in 8th century Abbassid Baghdad with its

peak in Al-Jazari’s 12th century complex programmable humanoid automata [1]

to the current state of the art in robotics, the main evolution has not been - as

commonly thought - of the mechanical infrastructure. Instead, a careful study

would show that medieval means of actuation have evolved only gradually, but

the most startling improvements have been in sensors, artificial intelligence and

computational resources. In other words, to imitate nature we need more brain

than brawn, which ironically is a bit counterintuitive!

Hence, even though remote controlled vehicles started appearing in the 1870s,

the first truly autonomous robots were only demonstrated in the 1950s, coinciding

with the birth of digital computers and artificial intelligence (AI). Mobile robots

and autonomous intelligent vehicles did not appear until the 1970s, owing to the

time it took to miniaturize and customize sensors and computers. From that time

to the late 1980s, research and development had concentrated on improving single

mobile robots (autonomous vehicles). However, the robotics research community

soon realized that organism and agents in nature seldom live or work alone. Even

3



simple organisms have structured leadership and/or team mechanisms which en-

able them to achieve complex tasks which can be performed much less efficiently

by single agents, if at all. Many examples of collective behavior exist in na-

ture, see Figure 1.1, where it can be seen that most obvious collaborations occur

among members of a given species. However, one can have intra-species compe-

tition e.g. packs of wolves or dingos fighting over turf, and there might indeed

be evolving cooperation and competition based on selfish interests. All of these

interesting biological behaviors have been a source of inspiration in multi-agent

robotic systems (MArS) [2]. Therefore, nature has inspired work on multi-agent

systems with the ability to swarm/flock [3], forage/track while avoiding predators

[4], prey herding [5], locomotion and climbing [6], traveling in formation [7], self

organization/adaptation and reconfigurability [8] etc.

Recent advances in MEMS technology has resulted in plethora of affordable,

customizable and embedded sensors capable of wireless communication. Coupled

with progress in miniaturization of micro-controllers and actuators with low power

consumption, now sensing, computation, communication and actuation resources

can be embedded in miniature packaging [9]. This proved particularly useful for

mobile robots (also known as autonomous vehicles) working in teams due to the

need to maintain communication among team members at low power expendi-

ture. Such multi-agent teams of autonomous vehicles have found both civilian

and military applications on land [10] and sea [11], as well as in air [12], space [13]

and underwater [14]. These teams do not have to consist of members of the same
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Figure 1.1: Inspirations of multi-agent systems from nature. (Clockwise from top left):
fire ants collabirating to form a bridge to let others cross with food; migratory birds
flying in pattern to benefit from upwash of other agents; sharks cooperatin to herd prey
fish into a tight ball to close the surface; lions cooperate to isolate a prey from its herd,
as the herd maintains strength in numbers from a distance.

species, and can even be heterogeneous [15]. Applications of these robotic vehicle

teams include reconnaissance and surveillance [16], striking payload delivery [17],

inspection ([18], [19]), exploration and mapping [20], search and rescue [21] etc.

This thesis will focus on cooperative control of multi agent teams of heterogeneous

autonomous vehicles.

1.1.2 Cooperative Control and Formation Keeping

Research in unmanned vehicle systems has gathered interest from academia and

industry alike, particularly during the last couple of decades. Starting early as

remote controlled vehicles, they have also experienced a considerable advance to-

wards autonomy at all levels. Cooperation between autonomous vehicles (agents)
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Figure 1.2: Examples of multi-agent systems inspired by nature. (Clockwise from top
left): quadcopters cooperating to lift an object too heavy for single agent; UAVs flying
in formation to refuel and benefit from upwash; microsubmarine team inspecting pipes
for leaks (see author’s patent [19]); humanoid teams in soccer match.

working in teams extend these robots’ capabilities to a level beyond what can be

achieved by a single vehicle. In addition, such cooperation has shown promising

advantages in terms of robustness, adaptivity, reconfigurability, flexibility, and

scalability. Cooperation has been defined as a close relationship among all agents

in the team with information sharing playing an important role [22]. This in-

cludes cooperative tasks like formation control and flocking, collision avoidance,

rendezvous at the control level, cooperative perception at the information level,

and cooperative planning and decision making at the mission level [23]. As a

subclass of cooperative control, formation control has three basic elements [24] in

multi-agent formation control:

a. Cohesion: attraction to distant neighbors up to a reachable distance.
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b. Separation: repulsion from neighbors within some minimum allowable distance.

c. Alignment: velocity and average heading agreement with neighbors.

Formation control without collision avoidance is also called state synchronization.

Additionally, the team of multiple agents may be required to avoid obstacles and

predators, encircle or flock around targets, while maintaining team formation [5].

1.1.3 Uncertainty, Disturbances and Real World Effects

Besides computational and communication topologies, the real world environment

in which the agents must operate is both uncertain and disturbed. In fact, un-

certainty is a fact of life for us mortals (but the Immortal does not play dice, to

quote Einstein). For example, the precision in knowing one quantity usually comes

at the expense in being more uncertain of another related quantity (Heisenberg

uncertainty principle), and measurements of a system cannot be made without

disturbing the observed system itself (“observer effect”)! Then, there are other

sources of uncertainty which cannot be reasonably ignored for a successful de-

sign of control algorithms. Despite tremendous advances in computational tech-

nologies, we can (and will) not be able compute control actions instantaneously,

communication occurs over usually uncertain, undedicated channels with limited

throughput and packet drops.

Hence, the formation control algorithm should also cater for disturbances, un-

certainties, delays and asynchronicity. The environment is sensed by on-board

sensors which may have different bandwidths, sampling rates and accuracy. Rely-
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ing on inertial measurement unit (IMU) consisting of gyroscopes and accelerom-

eters, alone for localization (known as dead reckoning) can lead to large errors

due to integration. Position fixes can be provided by global positioning system

(GPS) with high accuracy. GPS sensors have a much slower sampling rate but

generally lower noise than gyroscopes and accelerometers. Hence, some sort of

data fusion is required to locally estimate the position of individual agents [25].

However, GPS signal often suffers from lack of satellite coverage in built-up areas

or under rain. GPS signals experience an attenuation of over 50 dB a meter below

the sea surface [26]. Hence, for underwater autonomous vehicles (AUVs), novel

localization means and algorithms have to be employed. Also, if agents in the

team are trying to track or localize a target or predators, they may benefit from

sharing and combining individual estimates cooperatively [5].

1.2 Literature Review

Cooperative control of systems with multiple autonomous vehicles to perform co-

ordinated tasks has many civilian and military applications, such as autonomous

search and rescue, exploration, targeting, surveillance etc. Formation control of

such a team can be performed in either centralized or distributed fashion. How-

ever, centralized control is neither always feasible, nor desirable in most scenarios

due to increased computational burden on the central hub, communication issues

and single point of failure meaning failure of the entire system. This section will

review primarily the work in distributed nonlinear multi-agent control and related
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topics.

1.2.1 Formation Control and Conflict Resolution

Nonlinear cooperative control of a team of underactuated hovercraft with con-

strained inputs is achieved in [27] by stabilizing individual agents using cascade

back-stepping and distributed potential function based control for formation con-

trol. Formation control without collision avoidance is also called state synchro-

nization. Dynamic neural network based adaptive control scheme for distributed

fleet state synchronization, without the need to know local or leader (nonlinear)

dynamics is applied in [28]. Lyapunov analysis is used to derive tuning rules,

with the implicit need for persistent excitation, for both strongly connected and

weakly connected networks. However, delays, asynchronous measurements, col-

lision avoidance and limits on control actuation forces are not considered. In a

similar approach, synchronization of nonlinear Lagrangian systems with linear-in-

parameter model uncertainties has been solved using distributed adaptive back-

stepping and adaptive redesign [29]. But unlike [28], all agents are assumed to

have access to group reference trajectory, which constitutes a further limitation.

Synchronization of a fleet of nonlinear Euler-Lagrangian systems has also been

achieved using distributed H∞ controllers robust to model uncertainties and dis-

turbances in fixed and switching network topologies guaranteeing input to state

stability (ISS) [30].

One of the most promising techniques for formation control of both linear
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and nonlinear systems is model predictive control (MPC), also known as receding

horizon control (RHC) for its inherent ability to handle constraints, incorpora-

tion of non-local information and reconfigurability. The main disadvantage is the

heavy computational load for solving constrained nonlinear optimization problem

at each sampling time, which may not be feasible for very fast dynamics. Few at-

tempts at centralized NMPC have been made (e.g. [31]-[32]), but computational

complexity is major impediments towards its pursuit. Distributed implementa-

tion of NMPC for multi-agent systems is therefore an attractive alternative for

real time applications.

Unlike multi-agent (also called large scale systems) chemical and electrical

plants, unmanned autonomous vehicles are not dynamically coupled. They are

coupled only in their constraints and cost functions. Work on multi-agent for-

mation control of autonomous vehicles using MPC was pioneered by Dunbar at

Caltech in 2001 [33]. He considered distributed NMPC for leader-less synchroniza-

tion of agents with constrained, continuous dynamics. All agents had access to

the dynamic model of every other agent as well as the virtual leader. Stability was

ensured using terminal set and linear terminal control technique [34]. However, no

delay was considered. This work has been extended later in [35] by requiring each

agent to transmit its optimum control trajectory at every sampling instant to its

neighbors. Each vehicle control is determined by solving an NMPC problem that

minimizes a local cost function, which considers the received control trajectories

and models of its neighbors. For stability, it is required that the actual trajec-
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tory of each vehicle does not deviate too much from the one it transmitted to its

neighbors. Hence, no account is taken of model uncertainties and delays. The

need to know neighbors’ dynamic models was removed in a recent work [36], by

communicating state error trajectories to immediate neighbors, instead of vehicle

trajectories. However, the results are conservative in that only a queue or string

formation is considered.

A generalized framework for distributed NMPC for cooperative control of team

of agents is proposed in [37], based on the terminal set approach in [38]. Asymp-

totic stability is ensured by means of invariance of a terminal set and terminal

control law, such that all agents communicate their planned trajectories to all

other agents. This last requirement was weakened to neighbor-to-neighbor com-

munication in [39]. On a parallel course, a framework for NMPC without the

restriction of terminal control and terminal set was introduced in [40]. Stability is

guaranteed using “relaxed” dynamic programming arguments, instead of control

Lyapunov function approach. This approach allows for shorter control and predic-

tion horizons, as well as strategies for adapting the horizon [41]. This was extended

to the multi-agent case recently in [42], where the individual agents solve their

local optimization problem sequentially after receiving predicted states from their

neighbors. However, the problem solved was non-cooperative distributed NMPC,

such that the neighborhood information is used to design state constraints for

collision avoidance, but the cost function in optimal control problem (OCP) of in-

dividual agents does not take into account this information. Also, the algorithm
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is sequential, that is other agents have to wait for their turn till one agent finishes

computing its control move. This may cause unacceptable delays in agents with

fast dynamics or teams where the number of agents is large. Extending the work of

[42], instead of sequential implementation, a quasi-parallel dispensation is shown

to be asymptotically stable in [43]. Since agents impose state constraints on their

neighbors, a covering algorithm assigns hierarchy to the agents to coordinate their

actions. Agents at the same hierarchy level implement their control in parallel,

even though the hierarchy itself is computed sequentially.

Moving a team of agents in close proximity to each other is challenging in the

sense that performing relatively aggressive manoeuvres can cause collision among

the agents. On the other hand obstacles between the team and the waypoint need

to be avoided for safe conduct of the team. Similarly, a predator e.g. an enemy

aircraft, has to be evaded. The ability to avoid collisions among team members

and with external obstacles and evading predators will be called conflict resolution.

Moreover, faults in individual agents can compromise both group cohesion and

conflict resolution. Not only must predators, obstacles and neighbors be located

using some sensors, but appropriate actions should be planned and executed for

attaining mission objectives. Similarly, there should be a method for identifying

faults, as well as measures for fault tolerance in the control architecture.

The pioneering work in distributed multi-agent MPC of [33] was extended

using graph theory to specify distributed NMPC cost functions for agents, and

ensuring collision avoidance by repelling potential field [44]. In a similar vein,
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[45] considered collision and obstacle avoidance in a pursuit-evasion game among

multiple vehicles by adding repulsive potential fields to local NMPC cost function

and using current position and velocity of other vehicles to predict their future

trajectories. However, the author did not provide stability proofs and ignored

robustness issues. In [46], feedback linearization is used in the terminal set of

NMPC, but only collision avoidance is considered in formation, without stabil-

ity proofs. In contrast to this approach, in [47] the nonlinear dynamics is first

linearized using feedback linearization in an inner loop and then MPC using the

linearized model is employed to find collision free trajectories. It is assumed that

the tracking error of predicted trajectories are exchanged among the vehicles with-

out delay. Collision avoidance in a distributed NMPC setting for car-like robots

is presented in [48] using potential-like functions to avoid collisions. Two com-

munication strategies are considered. In one case, only the first element of the

planned control action is transmitted and the receiving agent assumes this control

would remain fixed during the entire prediction horizon. Using this assumption

and a dynamic model of the neighbor, it predicts its neighbor’s planned trajec-

tory. In the other approach, the entire planned state trajectory is transmitted to

all neighbors. It is shown through simulations that the latter approach is more

successful in avoiding collisions. No stability proofs were provided. Centralized

computation of NMPC is coupled with a finite state machine (FSM) in [49] for

real time collision and obstacle avoidance. The FSM processes sensor information

about obstacles and agents on collision course, and modifies the optimal control
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problem (OCP) of NMPC by adding inequality constraints pertaining to the ob-

stacle detected. Stability results provide are of a very preliminary nature. In [50],

cost penalty is applied in OCP for obstacle avoidance and penalty combined with

priority strategy for collision avoidance in the NMPC framework, using neighbors’

randomly delayed information, which is assumed to be noise free. For collision

avoidance, the vehicle with higher tracking error is given a higher priority and

takes action to avoid collision, while the other vehicle continues on its course. No

stability proofs were provided.

Distributed NMPC for simultaneous formation control and trajectory planning

for multi-agent airport snow shoveling application in a partially known environ-

ment is considered in [51]. In this leader-follower approach, a virtual leader op-

timizes its trajectory with terminal set constraints (for stability), and the agents

follow this trajectory at an offset. Both static and dynamic (including other team

members) obstacles, which are not always known a priori, are avoided using a

novel technique, which combines potential like functions with state constraints. It

is also interesting that the overall objective is to maneuver the team to target in

minimum time, and is achieved by splitting the prediction horizon into two parts.

In the first segment, classical cost function penalizing distance from target and

input energy is used, while in the second segment, the time to target is used in

the cost function. However, no stability or convergence proof of this modification

is offered. The only communication required is transmission of virtual leader’s

trajectory and sharing detected objects among agents.
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A related development is non-cooperative distributed NMPC for multi-agent

teams. In this approach, the information received from neighbors is process as

state constraints for the receiving agent, but their individual cost functions are

not affected by this information. In other words there is no cooperation cost com-

ponent in the distributed cost functions of the individual agents. The information

received from other agents is used only for collision avoidance by applying state

constraints, not potential-like functions in the distributed cost function. It is well

known that in the non-cooperative setting the global minimum can no longer be

reached, and the best result that can be hoped for is a Nash equilibrium. Non-

cooperative distributed NMPC with terminal constrained set has been suggested

in [52] for collision and obstacle-free trajectory planning for way-point tracking by

unmanned fixed-wing aircraft (with identical dynamics and prediction horizons)

sharing an airspace, but no common goals. In the event of failure to find feasible

conflict-free trajectory, it is assumed that the aircraft are able to switch to safe

loiter trajectory for an indefinite period of time. Hence, conflict resolution means

avoiding intersection of aircraft trajectories and loiter patterns by incorporating

predicted states received from other aircraft as state constraints (no-fly zones).

NMPC, with linear dynamics but nonlinear constraints, is solved sequentially by

the aircraft according to some ordering logic. In the distributed NMPC approach

without terminal set taken in [42], predicted states trajectories received from the

neighbors are treated as state constraints for collision avoidance for sequentially

solving NMPC on individual agents. However, with or without terminal con-
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straint set, sequential implementation can introduce unacceptably large delays if

the number of agents are high, or agent dynamics is fast. A degree of paralleliza-

tion of this approach was achieved recently in [43] using a sequential hierarchy

assignment algorithm. In both of these works, asymptotic stability for nominal

conditions was demonstrated using dynamic programming principles.

1.2.2 Robustness

Most research in distributed NMPC of autonomous vehicles is focused on finding

solutions in ideal conditions, i.e. with fully known dynamics and no uncertainty,

asynchronicity or delays. However, in many practical cases, there might be serious

departure from these ideal conditions, which may lead to failure.

One of the chief reasons for collision among team members or with obstacles

is development of sensor or physical faults in one or more team members. Since

NMPC is a model based control technique, deviation of the vehicle dynamics or its

measurement from that predicted by its internal model can lead to large errors or

even instability and collisions. For a fleet of underwater vehicles [53], decentralized

MPC was proposed, while ensuring fault tolerance. Each vehicle shares its plans

and information on faulty states with its neighbors in a virtual-leader setting.

This work was extended in [54], by merging extended Kalman filtering (EKF)-

based sensor fusion for localization with distributed MPC for collision avoidance

and formation tracking. Control of a quadcopter with NMPC is proposed in [55].

Local states, as well as fault parameters are estimated using unscented Kalman
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filters (UKF) on each agent. Since, the internal model of vehicle dynamics is

parametrized using these fault parameters, the updated internal model is shown

to be able to mitigate effects of actuator fault. However, no formal proof of

stability is furnished. The major drawback of the approach is that Kalman filter

is known to have overshoots in its predictions, which might violate system bounds.

Therefore, a potential improvement is to estimate states using constrained versions

[56] of filtering algorithms.

A very interesting application of distributed multi-agent NMPC was pursued

in [57], where multiple GPS-fitted robots are tasked with localizing features in

an unknown environment. Hence, the objective function is maximization of lo-

cal Fischer information matrix by planning a finite time trajectory which gathers

the most information. The objective function is not only nonlinear, but uncer-

tain, due to noise. Hence, the OCP is an optimal control problem with gradually

identified model, as the features appear in the state vector. Simulations show

remarkable improvement over some existing algorithms. Additionally, constraints

are also applied for collision avoidance by declaring the uncertainty ellipse around

the identified feature as a no-fly zone. However, there are quite a few shortcom-

ings in this pioneering work. Firstly. no stability results were provided for this

approach. Secondly, the multiple agents do not share information with each other,

nor coordinate their tasks, which may lead to agents duplicating the same effort,

and collisions. Discovering more features leads to growth of the state vector which

will make the OCP harder to solve. Therefore, there should be mechanism to limit
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the size of the state vector. And the use of unconstrained estimation may lead to

violation of system bounds.

Autonomous agents working in a cooperative team can work in coordination

with each other only if there is some communication among them. Even though

their dynamics is decoupled from each other, the information structure and co-

operation goals couples them in the distributed control architecture. Since, com-

munication bandwidth is limited, no information can travel immediately. The

amount of delay in reception (also known as latency) depends on the communica-

tion protocol, network traffic, congestion, bandwidth of medium etc. Along with

this, the information received must be situation in time of broadcast, which can

be difficult if the clocks at the two agents are not synchronized, itself a non trivial

issue. Also, the sampling time of two agents might be different, and multi-rate

information needs to be processed for optimization. Since, cooperative control

is intrinsically tied to communication and information flow, these are important

elements in control design.

Pioneering theoretical work on extending distributed NMPC framework to a

group of autonomous vehicles receiving delayed information (delay is fixed) from

their neighbors was recently presented in ([58]-[59]). Rigorous stability analysis is

used to establish regional input-to-state (ISS), extending the work on NMPC of

single systems in [60]. The delayed state information is projected in the predic-

tion horizon using a forward forgetting-factor. In effect, it means that each agent

assumes that the states of its neighbors will asymptotically go to zero (or equilib-
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rium) and uses this assumed prediction to plan its own trajectory. Hence, there

is no need for agents to know their neighbors’ dynamics, but agents are assumed

to have synchronous clocks and same sampling time. However, no explicit conflict

resolution is considered and it appears that the scheme may fail during aggressive

manoeuvres. This is because all states in a system do not settle down to target set

at the same exponential rate (dictated by forgetting factor) and during aggressive

manoeuvres, the assumption of smooth asymptotic trajectory may not hold.

NMPC based formation control in leader-follower formulation is shown in [61]

to be tolerant to limited communication failure, provided that the network is

strongly connected (i.e. each agent communicate with all other team members). In

[50], using cost penalties for obstacle avoidance and penalty combined with priority

strategy collision avoidance in the NMPC framework, the neighbors’ randomly

delayed information is projected in the prediction horizon by linear recurrence.

No stability proofs are furnished in both cases.

Another approach for the same problem is taken in [62], where some members

of the team develop fault in communication systems, so that trajectory broadcast

by them is received after a fixed delay. It is assumed that all agents have dynamic

models of every other agent in the team. It is assumed that after developing

fault in communication system, the faulty agent will limit its control authority to

predefined limits, which are known to all agents a priori. Obviously, when delayed

information is received, the first part of received trajectory is intact, but the “tail”

is missing. Using dynamic model of the agent having faulty communication, the
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receiving agents simulate all possible trajectories of the faulty agent in the tail

segment, or a so-called “tube” regional in the tail segment. Then the worst case

trajectory, from a collision avoidance point of view is selected in the cost function

of the receiving agent [63]. This method has many limitations. The computation

of tube region is computationally heavy, and may take too long to calculate for

multiple input systems. Then, there is also the need for each agent to know

the dynamics of all team members, and their hard limits on control authority.

Also, the agents’ clocks are assumed to be synchronized. To alleviate the online

computation load, the tube region can be calculated off line and retrieved for

online implementation [55]. However, the authors do not mention how could one

possibly calculate tubes for all feasible trajectories. It should be pointed out that

even though the approach seems promising, no stability proofs are provided.

The same authors extended their work to distributively and adaptively allocate

available bandwidth among agents being controlled by delay tolerant distributed

NMPC [64]. It is assumed there is no uncertainty in dynamic model or sensor

noise, and states are measurable without delay. All agents are assumed to know

the dynamic model of all other agents and their clocks are synchronized. More-

over, the tube calculation technique for tail-segment estimation due to delay [55]

is abandoned in this work, and it’s cost is simply removed from the cost func-

tion. Surprisingly, no theoretical justification is provided for this. The delay in

communication between two vehicles in inversely proportional to the bandwidth

allocated to that channel. For distributed dynamic bandwidth allocation, each
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vehicle calculates the error in NMPC calculation of all of its neighbors due to

delay caused by allocated bandwidth. Then, bandwidth is allocated to neighbors

by solving a large scale nonlinear optimization problem minimizing some measure

of these errors, and rigorous proof for its convergence based on linearized models

is furnished. This approach is very promising, however it computationally very

expensive and no convergence or stability proof for the overall NMPC/bandwidth

allocation algorithm is provided. Also, the stability proofs are applicable to agents

which can be represented by single linear models for the entire trajectory, which

is not feasible for many autonomous vehicles.

1.2.3 Gaps in Current Body of Work

It should be noted that this literature survey was focused on nonlinear model pre-

dictive control (NMPC) for robust multi-agent control of dynamically decoupled

systems, like autonomous vehicles. There is a huge body of work pertaining to

other control techniques for formation control (see [65] and [22]), including linear

MPC. There is also a considerable amount of literature on NMPC for dynamically

coupled systems (see [66] and [67]), for example chemical process plants. However,

these are outside the scope of this work. It is noteworthy that work in this focus

area is very recent, with preliminary work starting only in 2001, and formal proofs

with delay tolerance beginning to appear as recently as 2008. Therefore, it is not

surprising that the body of literature in this regard is relatively small, and offers

many fertile avenues for research and development. We found the following areas
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where we can contribute to the current body of work:

i. Conservativeness of Existing Algorithms. The first area of improvement in

the current body of work is theoretical establishment of stability and feasi-

bility for cooperative distributed multi-agent NMPC for uncoupled systems.

Even though the stability proofs furnished in the seminal work of [59] are

rigorously derived using terminal constraint to prove input to state stability

(ISS), the results are very conservative. The algorithm and stability theo-

rems are applicable to trivial trajectories, without any guarantee for collision

avoidance or robustness properties. Many of the other algorithms which have

been proposed lack any theoretical justification from stability standpoint.

ii. Limited Bandwidth Algorithms which require propagation of entire trajectory

to neighbors require exchange of large data packets. Reduction of packet size

or utilizing more efficiently the limited bandwidth is another area where only

preliminary and very conservative results are available [64].

iii. Robustness to faults, noise, uncertainty is considered in very adhoc manner

in the literature. There has been a very recent attempt to prove practical

stability of NMPC coupled with extended Kalman filter (EKF) based state

estimation for single system in the presence of non-vanishing errors with de-

terministic model and no disturbance or measurement noise [68]. We will

consider simultaneous presence of several sources of noise, including those

mentioned above.
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1.3 Problem Statement

This thesis addresses the formation control of teams of mobile robot - or multi-

agent system of autonomous vehicles - by providing a rigorous generalized frame-

work for distributed model predictive control of constrained nonlinear systems.

We address leader-follower formation control of constrained autonomous vehi-

cles operating in an environment where communication bandwidth is limited and

transmission delays are present, along with other sources of uncertainty and dis-

turbances. A number of sources of uncertainty are taken into account to provide

robustness to the algorithms developed. In existing literature, usually only mea-

surement / estimation errors or model mismatch are taken into account. We

consider the simultaneous presence of six sources of uncertainty

i. error in estimating current state,

ii. error in estimating current external input (disturbance or external informa-

tion),

iii. error in predicting future system state due to model mismatch,

iv. error in predicting future external input due to disturbance model mismatch

(disturbance model is another uncertain dynamic system with unknown in-

put),

v. error in approximating trajectory due to data compression, and

vi. error in approximating the last segments (tail) of the compressed trajectory

due to propagation delays.
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We provide detailed feasibility and stability analysis to closed form analytic ex-

pressions relating the growth of uncertainty along the prediction horizon, and its

effect on recursive feasibility and robust stability. In particular the objective is to

be able to simultaneously plan the trajectory and drive a formation of cooperative

autonomous agents to accomplish assigned missions in a safe and stable manner,

such that collisions are reliably avoided. The dynamical models of autonomous

vehicles are uncertain and subject to an externally driven disturbance system.

The agents are heterogeneous in dynamics, and can therefore have different dis-

cretization times and sampling rates. Moreover, the bandwidth of communication

channel is limited and needs to be utilized efficiently. The communication chan-

nel is also subject to random delays. Out objective to design stable distributed

NMPC controllers for collision free formation control tasks, robust to these sources

of uncertainties, for different network topologies.

1.4 Research Contribution

The contributions of this paper are non-trivial in the following aspects.

i. Existing literature mostly considers either modeling uncertainty with per-

fect measurements or measurement noise with perfect model. The proposed

approach provides a unified framework for dealing with both types of uncer-

tainties, along with the inclusion of a non-additive disturbance with uncertain

dynamics and unknown input.

ii. Input-to-state stability (ISS) framework in existing literature is extended with
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Theorem 3.2.2 to cater for the combination of uncertainties mentioned above.

iii. New bounds on prediction error growth along the prediction horizon have

been derived (Lemma 3.2.1) based on the bounds on components of the com-

bined uncertainty. In addition, constraint tightening for robust satisfaction

of original constraints in the presence of this combination of uncertainties

(Theorem 3.2.1) is also a new development.

iv. Recursive feasibility is ensured by the newly developed Theorem 3.1 which

relates it to the size of the one-step controllable set to the terminal region.

v. Terminal constraint region is maximized (Theorem 4.3.1) based on PLDI

based LMIs, and warm started with a novel approach involving algebraic

Riccati equations.

vi. One-step controllable set and robust output feasible set are determined based

on min-max optimization (Algorithm 6) rather than the existing set based

approaches.

vii. One main and five component new algorithms are presented for constraint

tightening, terminal region optimization, determining feasibility and online

optimization.

viii. Robustness to inaccuracy in communicated trajectories is explicitly taken

into account, resulting in practical stability instead of asymptotic stability in

existing literature.
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ix. Collision avoidance is also explicitly catered for. A novel modification of

potential field method is proposed, based on a novel spatial filter, whose

feasibility and stability is rigorously proved.

x. New generalized input to state practical stability (ISpS) and generalized small

gain conditions are derived for the distributed controller.

xi. Unlike existing literature, the stability results of this chapter are not limited

to strongly connected networks. It is shown even a weakly connected network

topology for multiple agents can be designed for fleet-wide stability.

The contributions of this paper resulted in the following peer-reviewed research.
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the best presentation in the session].
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Leak Detection System, U.S. Patent 8 499 617, Aug 6, 2013. [19]. [Awarded
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3. S. El-Ferik, B. A. Siddiqui, and F. L. Lewis, Distributed Nonlinear MPC

of Multi-Agent Systems with Data Compression and Random Delays, IEEE
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Multi-agent Robust Predictive Control with Data Compression”, submitted

to US Patent Office, December 2014.
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1.5 Thesis Organization

This chapter (Chapter 1) introduced the problems to be studied in this chapter

in a comprehensive manner, first by motivating the reader about the significance

of multi-agent control systems and how they relate to nature, the problems and

challenges involved. A detailed literature review provides insights into avenues

where research is still lacking and where this work can help bridge the gaps by

providing a generalized framework for robust, distributed NMPC control design

methodology. The research problem is clearly stated along with details of the

research methodology followed in this work.

Chapter 2 motivates the reason nonlinear discrete-time systems are the focus

of this research. Some useful set theoretic and functional analysis tools are intro-
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duced , including the concept of set invariance, comparison functions and a useful

property of these functions. Different notions of nonlinear stability analysis are

also introduced. Modern concepts of input-to-state and input-to-state practical

stability are also introduced. An important new result in the form of Theorem

2.5.2 is presented which forms the cornerstone of later development.

Chapter 3 presents new results in nonlinear MPC control with robustness

against a number of sources of uncertainty. The main NMPC algorithm and

one of its five component algorithms to address constraint tightening and online

optimization are introduced in this chapter. Algorithm 1 includes offline compo-

nents and online optimization of the recursive finite horizon OCP 3.2.1. It shows

that due to uncertainties, only practical stability (ISpS) can be ensured, and the

amount of tolerable disturbance is bounded by the size of the one-step control-

lability set to the terminal constraint region. An extended numerical example

was introduced in two parts. Closed form analytic expressions of all nonlinear

functions and Lipschitz constants are provided along with a simulation example

for constraint tightening Algorithm 2.

Chapter 4 presents new results in terminal region maximization and feasibility

set estimation of robust nonlinear MPC algorithm. We presented four algorithms

terminal region optimization, terminal control law design and determining maxi-

mum robust output feasible set. Terminal region is maximized based on polytopic

linear difference inclusions (PLDI) by Algorithms 5-4. One-step controllable set

and robust output feasible set are calculated using Algorithm 5-6. Hence, this
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chapter completed the development of all components of Algorithm 1. To in-

crease robustness and initial feasibility region, the terminal region was maximized

with theoretically derived methods for warm starting the algorithm. Moreover,

min-max optimization to find the maximum initial feasibility set for the worst case

realization of uncertainties as also described. Simulations based on the extended

nonlinear oscillator were used to validate the theoretical results.

Chapter 5 , we address the problem of leader-follower formation control of

constrained autonomous vehicles subject to propagation delays and uncertainties,

building on the development in previous chapters. Limited network throughput

demands reduction in packet size. The proposed approach achieves formation

tracking through NMPC such that each agent performs local optimization based

on planned approximate trajectories received from its neighbors. The trajectory

is compressed using neural networks, which is shown to reduce the packet size

considerably. Moreover, the method allows the agents to be heterogeneous, make

asynchronous measurements and have different local optimization parameters. A

method for estimating the tail of trajectory not available due to delays is also

furnished. Collision avoidance is achieved by formulating a novel spatial-filtered

potential field which is activated in a “zone of safety” around the agent’s trajec-

tory. New theoretical results are presented along with validating simulations for

different network topologies.

Finally, the thesis is concluded in Chapter 6, summarizing the contributions

of this work along with interesting future research directions.
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CHAPTER 2

NOTIONS OF STABILITY IN

NONLINEAR SYSTEMS

2.1 Introduction

Analysis and design of nonlinear dynamical systems and their control laws in elec-

trical, mechanical, aerospace, biological or any other engineering system requires a

wide range of mathematical tools, especially those pertaining to notions of stabil-

ity and control. This chapter serves as the generalized mathematical foundation

of later theoretical development particularized to study of distributed nonlinear

model predictive control. We introduce important concepts such as comparison

functions, Lyapunov’s method, input-state and practical stability. We will focus

on deterministic discrete-time nonlinear systems, for ease of relating to digital

implementation. We present an important new result in input-to-state practi-

cal stability, which is very general and will serve as the foundation of NMPC
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framework in later chapters.

As made clear in later chapters, information from other members of the team

is treated by each agent as external inputs. Besides not being controllable from

the point of view of the agents, these external inputs are also uncertain. Therefore

asymptotic stability is very difficult to achieve, and we have to resort to practical

stability criteria. Also, since external inputs are present, we have to use the rel-

atively modern concept of input to state stability (ISS) to analyze dependence of

system response in terms of external input magnitude. ISS was introduced in the

90s by Sontag [70]. It utilizes comparison functions to characterize the Lyapunov

function and establish stability. ISS is equivalent to asymptotic stability of a ball

around the origin whose radius is a function of the norm of the applied control

input [71]. Therefore, zero-input (unforced system) means asymptotic stability

of the origin. Due to its ability to handle external inputs, ISS has been widely

used as a framework for robust control design [72]. Since asymptotic stability is

not achievable in many practical situations, extensions of the original ISS to cover

robustness issues have also appeared. Among them is input-to-state practical sta-

bility (ISpS) [73] and integral ISS (iISS) [74]. ISpS is a more general property

than iISS, and will therefore be the focus of this and following chapters. Prac-

tical stability means that even with zero-input, some uncertainty may make the

equilibrium unapproachable, and we can only ensure asymptotic stability of a ball

around the equilibrium who radius is a function of the magnitude of uncertainty.

We wil provide a new result on ISpS, after introducing several concepts which lead
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up to it. In later chapters, we will develop it further to formulate a small-gain

theorem and develop a general framework for distributed NMPC.

Chapter Organization General nonlinear systems are compared with their

linear approximations, and the contrast between continuous-time and discrete-

time descriptions with their pros and cons are discussed in sections 2.2-2.3. Then

some useful set theoretic and functional analysis tools are introduced in section

2.4, including the concept of set invariance, comparison functions and the useful

Lemma 2.4.1. Different notions of stability analysis are introduced in section

2.5. Modern concepts of input-to-state and input-to-state practical stability are

introduced. An important new result in the form of Theorem 2.5.2 is presented

which forms the cornerstone of later development. Finally, salient features of the

chapter are concluded in the final section.

2.2 Linear versus Nonlinear Systems

In general all dynamical systems are described by nonlinear difference (discrete-

time) or differential (continuous-time) equations, if all phenomena related to their

dynamics are considered and no approximation is made. We will deal with systems

that can be modeled by a finite number of coupled first-order non-autonomous
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(state equation is an explicit function of time) difference equations

x1,t+1 = f1(t, x1,t, . . . xn,t, u1,t, . . . um,t, w1,t, . . . wp,t)

...

xn,t+1 = fn(t, x1,t, . . . xn,t, u1,t, . . . um,t, w1,t, . . . wp,t)

(2.1)

where xi,t ∈ R
n, uj,t ∈ R

m and wk,t ∈ R
p are the ith system state, jth inter-

nal input and kth external input respectively, at time instant t ∈ Z≥0, and fi

are locally Lipschitz maps (see Definition 2.4.13) for i = 1, . . . , n, j = 1, . . . , m

an k = 1, . . . , p. Internal input u can be considered the manipulable con-

trol variable, whereas w can be an external input, like disturbance etc. to

the system. We will use a vector notation for these equations for compact-

ness. Let xt = [x1,t, . . . xn,t]
T , ut = [u1,t, . . . um,t]

T , wt = [w1,t, . . . wp,t]
T and

f(xt, ut) = [f1(t, xt, ut), . . . fn(xt, wt)]
T ,

xt+1 = f(t, xt, ut, wt) (2.2)

However, most nonlinear systems can be approximated reasonably well by linear

models, linearized about some set point in the state space. A common linearization

of (2.2) is representation in terms of first difference (derivative) around some set

point (x̄, ū, w̄).

xt+1 = A(t)xt +B(t)ut + E(t)wt (2.3)
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where, A = ∂f
∂x
(t, x̄, ū, w̄), B = ∂f

∂u
(t, x̄, ū, w̄) and E = ∂f

∂w
(t, x̄, ū, w̄) are Jacobean

matrices of the system. Linear systems are far easier to analyze and control, due

to a wide variety of easy to use tools, such as root-locus and Nyquist plots, even

for sophisticated and high order linear models. Indeed, many practitioners do not

feel the need to abandon well-understood linear analysis for the more complex

nonlinear model. However, linearization has its limitations. Firstly, linear model

is generally only valid in some neighborhood of the set point, whereas nonlinear

models are globally applicable throughout the state-space. Another reason for

engineers to study nonlinear models is that often the dynamics of linear models

is not rich enough to predict phenomena such as multiple equilibria, limit cy-

cles, bifurcation, synchronization and frequency entrainment, chaotic behavior,

finite escape time, subharmonic and almost-periodic oscillations etc ([75], [76]).

These phenomena and other rich insight into system dynamics can be predicted

with nonlinear models. In other cases, it is not even possible to linearize (2.2),

though one may resort to more complex parameter-varying or time-varying linear

representations, with increasing difficulty in analysis and control design. There-

fore, even though linear analysis and design is more tractable, in many cases it is

more desirable - if not necessary - to design controllers and analyze systems using

nonlinear tools.
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2.3 Discrete- versus Continuous-time models

As mentioned in Section 2.2, system dynamics can be modeled in two alternative

frameworks: in continuous time with differential equations or in discrete-time

with difference equations. Continuous time ranges over the entire real-number

line. This is how all dynamic variables evolve in nature. However, this is often

not how we measure them, especially in this age. In most digital circuits, the

continuous variables are measured by sampling them at discrete intervals of time.

Moreover, most controllers today are implemented on embedded digital computing

hardware making it necessary to have a discrete-time description of the controller.

Controllers designed in discrete-time can be directly implemented in digital form

on embedded computers [77]. Digital control offers several distinct advantages over

analog (continuous) controllers, including inexpensive hardware, reconfigurable

software, scalability, adaptability, less prone to noise etc. Another advantage not

yet obvious is that the optimization problem with discrete-time model is easier

to solve than continuous model in MPC, as the number of decision variables is

countable. Therefore, in this thesis we will focus on nonlinear discrete time system

models.

However, one must caution that design of controller in discrete-time is often

more complex than continuous-time design, since the first difference of Lyapunov

function in discrete-time is quadratic in the state variables, as opposed to being

linear in the continuous case [77].
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2.4 Some Mathematical Theory Concepts

Set theory and functional analysis are important tools in nonlinear and robust con-

trol theory. In future chapters we will be making extensive use of them. Therefore,

in order to make the thesis self-contained, a concise introduction to some of these

concepts is rendered below.

2.4.1 Set Theoretic Concepts

Set theory is the branch of mathematical logic that studies sets, which are col-

lections of (mathematical) objects. Let R, R≥0, Z, Z≥0 denote real, non-negative

real, integer and non-negative integer sets of numbers, respectively. Given a signal

x, let xt,t+N be the discrete-time sequence from time instant t to t + N . In the

following, we introduce a few concepts from set theory which will be useful for

later development.

Definition 2.4.1 (Compact Sets) A set is closed if and only if it contains all

of its limit points. A set is bounded if all its points lie within finite distance of

each other. A closed and bounded set is said to be compact.

Definition 2.4.2 (Interior Set and Point) All points in a set excluding its

boundary is called the interior of the set, i.e. intA , {x : x ∈ A\∂A}. Members

of the interior set are called interior points.

For a set A ⊆ R
n, the point to set distance from ζ ∈ R

n to A is denoted by

dist (ζ, A) , inf {| η − ζ |, η ∈ A}, and if A is a closed set, its boundary is denoted

by ∂A.
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Definition 2.4.3 (Set Difference) For two sets A,B ⊆ R
n, their set differ-

ence is denoted by A\B , {x : x ∈ A, x /∈ B}, and their distance is denoted by

dist (A,B) , inf {d (ζ, A) , ζ ∈ B}

Definition 2.4.4 (Minkowski (Pontryagin) Difference and Sum) For two

sets A,B ⊆ R
n, the Pontryagin (or Minkowski) difference between them is defined

as

A ∼ B , {x ∈ R
n : x+ y ∈ A, ∀y ∈ B}. (2.4)

The Minkowski (or vector) sum of these two sets is defined as

A⊕ B , {x+ y ∈ R
n ∀x ∈ A, y ∈ B}. (2.5)

Definition 2.4.5 (Indicator Function) The indicator function of a subset A

of a set X is a function 1A : X → {0, 1} defined as:

1A(x) =



















1 if x ∈ A,

0 if x /∈ A.
(2.6)

Set Invariance Theory

Set invariance is a fundamental concept in design of robust controllers for con-

strained systems. Set invariance is strictly connected with (Lyapunov) stability.

We will briefly introduce some of its fundamental concepts. Consider the following
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discrete-time nonlinear system

xt+1 = f(xt, ut, w, t) (2.7)

with f (0, 0, 0) = 0 i.e. the origin is an equilibrium point and xt ∈ X ⊂ R
n,

ut ∈ U ⊂ R
r and wt ∈ W ⊂ R

p are the system state, input and external (or

‘disturbance’) input respectively. Sets X , Uand W are compact, containing the

origin as an interior point.

Definition 2.4.6 (Admissible and Allowable Inputs) An admissible con-

trol input is one which satisfies input constraints u ∈ U , while and allowable

disturbance is contained in its constraint set w ∈ W .

It is now possible to state basic concepts of invariance.

Definition 2.4.7 (Robust Positively Invariant Set) A set Ξ ⊆ X is called

robust positively invariant (RPI) for system (2.7), if f̄(xt, ut) ∈ Ξ for every xt ∈ Ξ,

if the control is admissible (ut ∈ U) and disturbance input is admissible (wt ∈ W ).

In other words, if the system reaches an RPI set, its future evolution remains

inside that set. We often need to determine the subset of state constraint set X

which is compatible with some feedback control law.

Definition 2.4.8 (Robust Input Admissible Set) Given a feedback control

law (CL) ut+l = k(xt+l) for system (2.7), the robust input admissible (also knows

as Robust Positive Control Invariant in case of state feedback) set XCL ⊆ X is
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defined as

XCL , {xt+l : xt+l+1 ∈ X, k(xt+l) ∈ U,wt+l ∈ W} (2.8)

for l ≥ 0, with closed loop dynamics

xt+1 = f(xt, k(xt), w, t) (2.9)

Reachability and controllability are important concept in constrained robust con-

trol. We study the problem of determining the subset of state space which can

be reached using an admissible control sequence to any given target set, while

guaranteeing that the state constraints will be satisfied along the trajectory for all

allowable disturbance sequences. This is a more comprehensive problem than clas-

sical interpretations of reachability and controllability problems in unconstrained

linear systems.

Definition 2.4.9 (One-Step Robust Controllable Set) Given a set Ω ⊆ X ,

the robust 1-step robust controllable set to Ω is denoted by C1(Ω, X). It is the set

of all states in X which can be steered to Ω by applying an admissible control in

exactly one step, for all allowable disturbances.

C1(Ω, X)
∆
= {xt ∈ X : f(xt, ut, wt) ∈ Ω, ut ∈ U, wt ∈ W} (2.10)
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C1(Ω) is also called the predecessor set of Ω in the literature. One-step controllable

sets have the rather obvious property of monotonicity [78], i.e.

Ω ⊆ Ω̄ =⇒ C1(Ω) ⊆ C1(Ω̄).

Definition 2.4.10 (N-Step Robust Controllable Set) Given a set Ω ⊆ X ,

the robust I-step robust controllable set to Ω is denoted by CN(Ω, X). It is the

largest set of states in X which can be steered to Ω by applying an admissible

control sequence in exactly N steps, for all allowable disturbances.

CN(Ω, X)
∆
= {xt ∈ X : xt,t+N+1 ∈ Ω, ut,t+N ∈ U, wt,t+N ∈ W} (2.11)

Definition 2.4.11 (N-Step Robust Stabilizable Set) If the N -step control-

lable set CN (Ω, X) in (2.11) is also RPI, then it is called the N -step robust stabi-

lizable set to Ω, denoted by SN (Ω, X). It is the set of all sets in X which can be

steered to Ω in N steps or less for all allowable disturbances. Since Ω is RPI, the

state remains in Ω after entering it.

SN(Ω, X)
∆
= {xt ∈ X : xt,t+l ∈ Ω, ut,t+l ∈ U, wt,t+l ∈ W, ∀0 ≤ l ≤ N} (2.12)

Stabilizability is of course a weaker condition that controllability, like its inter-

pretation in linear unconstrained systems. This is a very useful result in “dual

mode” MPC control, which is the subject of this thesis.
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2.4.2 Functional Analysis Concepts

Functional analysis is a branch of mathematical analysis that studies vector spaces.

It has its roots in calculus of variations, which was the precursor of optimal control

- which in turn is the precursor of MPC! A vector space is a mathematical structure

formed by a collection of (real-valued)vectors, which may be added together and

multiplied by scalars. A vector space on which a norm is defined is called normed

vector space.

Definition 2.4.12 (Vector Norm) A function |v|p of a vector v is called its

norm if

i. |v|p > 0, ∀v 6= 0,

ii. for any positive scalar c ∈ R≥0 we have |cv|p = c|v|p, and

iii. it satisfies triangle inequalities for any two vectors v and w

|v + w|p ≤ |v|p + |w|p (2.13)

|v − w|p ≥ |v|p − |w|p (2.14)

Let absolute value of a vector v ∈ R
n be denoted by abs(v). The p-norm is

defined as |v|p ,

(

n
∑

i=1

abs(v)p
)1/p

. The p-norm is generic: p = 1 defines the L1

or taxicab norm denoted as | · |1, p = 2 defines the L2 or Euclidean norm denoted

as | · | and p→∞ is the L∞ norm denoted by | · |∞. The taxicab norm is just the

summation of absolute values of elements of v, Euclidean norm is the notion of

41



distance in vector space and infinity norm is maximum absolute value of elements

of the vector, i.e. |v|∞ , max{abs(x1), . . . abs(xn)}. Weighted norm of a vector

x for a positive definite matrix P is denoted as |x|P = xTPx.

For a discrete-time series φ = [φ0, φ1, . . . . . . ]
T , we define ‖φ‖ ∆

= supl≥0 {|φl|}

and
∥

∥φ[t]

∥

∥

∆
= sup0≤l≤t {|φl|}.

Definition 2.4.13 (Local Continuity) For any u ∈ R
m, the function f(x, u)

is locally (Lipschitz) continuous w.r.t. x ∈ X , if for some Lipschitz constant

Lfx ∈ R≥0

|f(x1, u)− f(x2, u)| ≤ Lfx|x1 − x2|, ∀x ∈ X

If X = R
n, the continuity is global. The identity function is denoted by I :

R→ R, functional composition of two functions γ1 and γ2 by γ1 ◦ γ2 and function

inverse of function α by α−1. A vector valued function of the form f(x1, . . . xn) =

A1x1+ . . .Anxn+ b is called an affine function, where xi can be scalars or vectors,

coefficients Ai can be scalars or matrices and constant b is a scalar or vector.

Comparison Functions

We also make extensive use of class K,K∞ and KL functions commonly used in

nonlinear analysis. A function α : [0, a) → [0,∞) is said to belong to class K,

if it is continuous, strictly increasing and α (0) = 0. It belongs to class K∞, if

α (r) → ∞ as r → ∞ and a → ∞. A function β (r, s) : [0, a) × [0,∞) → [0,∞)

is said to belong to class KL, if for each fixed s ≥ 0, the mapping β (·, s) belongs

to class K, and for each fixed r ≥ 0, the mapping β (r, ·) is non-increasing and
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β (r, s)→ 0 as s→∞ [75].

Examples of comparison functions include: α(r) = 1
a−r

, ∀0 < r < a belongs to

class K-functions, α(r) = r, ∀r > 0 belongs to class K∞-functions and β (r, s) =

r/s belongs to class KL-functions. Comparison functions have some important

properties which will be used in later development. Some of them are reproduced

here without proof ([75], [79]). The last property is very important and original

to this thesis, so the proof for it will be rendered at the end of this section. Let

α1,2 belong class K-function, α3,4 ∈ K∞ and β ∈ KL. Then the following hold for

r1, r2, r3, r, s > 0

� α−1
1 ∈ K and α−1

3 ∈ K∞

� α1 ◦ α2 ∈ K and α3 ◦ α4 ∈ K∞

� α1 ◦ β(α2(r1), s) ∈ KL

� max(α1(r1), α2(r1)) ∈ K and max(α3(r1), α4(r1)) ∈ K∞

� min(α1(r1), α2(r1)) ∈ K and min(α3(r1), α4(r1)) ∈ K∞

� α1(
r1+r2

2
) ≤ α1(r1) + α1(r2)

� α1(r1) + α2(r2) ≤ α1(r1 + r2) + α2(r1 + r2)

� min(α1(
r1+r2

2
), α2(

r1+r2
2

)) ≤ α1(r1) + α2(r2)

� For any α3(r1) < α4(r1), ∀a > r1 > 0, the function α5 , α4 − α3 belongs to

class K. Similarly, for any α3(r1) < r1, ∀a > r1 > 0, the function α6 , I−α3

belongs to class K
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Since K∞-functions are a class of K-functions; hence all the properties above can

be extended to K∞-functions. Finally, we state and prove an important property

which will be used in later development.

Lemma 2.4.1 Let, α(r) , min(α(r/3), σ(r/3), µ(r/3)), where α, α, σ, µ ∈ K∞.

Then,

α(r1 + r2 + r3) ≤ α(r1) + σ(r2) + µ(r3) (2.15)

Proof. Let, r , r1 + r2 + r3. If, r1 ≥ r2, r1 ≥ r3 then, r1 ≥ r/3, and hence

α(r/3) ≤ α(r1) ≤ α(r1) + σ(r2) + µ(r3)

But, if r2 ≥ r1, r2 ≥ r3. Then, r2 ≥ r/3, and hence

σ(r/3) ≤ σ(r2) ≤ α(r1) + σ(r2) + µ(r3)

Similarly, if r3 ≥ r1, r3 ≥ r2, then

µ(r/3) ≤ µ(r3) ≤ α(r1) + σ(r2) + µ(r3)

Combining the three inequalities above, we obtain inequality (2.15).
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2.5 Notions of Stability

Stability theory plays a central role in systems analysis and control design. We

discuss stability for discrete-time systems, but the same definitions also hold for

continuous-time systems with trivial modifications. There are several notions of

stability, e.g. equilibrium point/set stability, input-state stability, input-output

stability etc. In this thesis, we will be dealing mostly with input-to-state stability

(ISS) and input-to-state practical stability (ISpS), and therefore explain these

concepts in more detail than other notions of stability.

Definition 2.5.1 (Equilibrium Point) Set-point (t, x̄, ū) is said to be an equi-

librium point of system (2.2), if xt+1 = xt, ∀xt = x̄, ut = ū, t ≥ t0.

For linear systems, the only possible equilibrium point is (t0, x̄, ū) = (0, 0, 0), but

for nonlinear systems, (t0, x̄, ū) may be nonzero - or even an equilibrium set, such

as a limit cycle [77].

2.5.1 Stability of System with Feedback and no External

Input

For the systems in which there is no external inputs wt ≡ 0, ∀t ≥ 0 below, it is

useful to consider that a feedback control law exists such that ut = Θ(xt), such

that (2.2) can be written as

xt+1 = ḡ(t, xt) (2.16)
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such that the xe can be considered an equilibrium point for system (2.16), which

is equivalent to the set point (x̄t,Θ(x̄t), 0) for system (2.2).

Definition 2.5.2 (Lyapunov Stability) Point xe is Lyapunov stable (often

simply referred to as stable) at t0, if for every ǫ > 0, there exists a δ(ǫ, xto) > 0,

such that | xto − xe |< ǫ =⇒ | xt − xe |< δ for t > t0.

Lyapunov stable equilibrium means that solutions starting close (within a distance

δ) to the equilibrium remain close (within a distance ǫ) to it for all future time.

Note that this must hold for any ǫ one may desire, i.e. xt should be kept arbitrarily

close to xe by starting sufficiently close to it.

Definition 2.5.3 (Asymptotically Stability) Point xe is locally asymptoti-

cally stable (LAS) at t0, if there exists a compact set xe ∋ D ⊂ R
n if

xto ∈ D =⇒ lim
t→∞

| (xt − xe) |→ 0. It is said to be globally asymptotically

stable (GAS) if D = R
n.

Asymptotic stability means that solutions that start close to the equilibrium point

not only remain close in the future, but also eventually converge to the equilibrium.

Definition 2.5.4 (Exponential Stability) Point xe is exponentially stable at

t0 if it is asymptotically stable and there exist M > 0, a > 0, such that xto ∈

D =⇒ | (xt − xe) |≤M | (xt − xto) | e−a(t−to) for t ≥ t0.

It is obvious that exponential stability is a special case of asymptotic stability.

Definition 2.5.5 (Practically Stable/ Ultimately Bounded ) Equilibrium

point xe is ultimately bounded (UB) or practically stable (pS) after settling time
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Ts if for xto ∈ D, there exist c > 0, Ts > t0 such that | (xt − xe) |≤ c for all

t ≥ Ts + t0 [80].

Thus, for pS with settling time or UB , the state reached and stays within a

neighborhood of the equilibrium after some time Ts+ t0. All definitions above are

called uniformly stable/bounded if the stability condition does not depend on t0.

Of course, all autonomous systems (f(x, u, w) or ḡ(x) does not depend on t) are

uniformly stable if they are stable.

Remark 2.5.1 Exponential and asymptotic stability are very strong properties,

and quite difficult to obtain in closed-loop, due to presence of unknown though

bounded external disturbances and/or uncertainty. Lyapunov stability is a weaker

condition, but still difficult to achieve, since it requires the state to be taken ar-

bitrarily close (ǫ) to equilibrium, but starting close enough (δ) to it. However,

practical stability is a much weaker and easier to achieve condition as, unlike

Lyapunov stability, bound c cannot be made arbitrarily small by choosing an ar-

bitrarily close initial condition (ǫ). In practice, bound c depends on the magnitude

of external input/disturbance.

For linear systems, asymptotic stability requires all closed loop poles to be inside

the unit disc. Lyapunov stability requires all poles to be either inside or on the

unit disc, but no repeated poles on the unit disc (marginal stability). For nonlinear

or non-autonomous (time-varying) systems, stability is not so straight-forward to

determine. To investigate stability and design control of nonlinear systems, one

has to resort to (direct) Lyapunov method.

47



Lyapunov Stability Analysis

Let the system (2.16) be autonomous (time invariant), i.e.

xt+1 = ḡ(xt) (2.17)

Without loss of generality, we can consider xe = 0 ∋ D ⊂ R
n to be an equilibrium

point. For non-zero equilibrium, trivial modification of state variables can make

the origin an equilibrium point.

Definition 2.5.6 (Generalized Lyapunov Function) A scalar function

V (x) : Rn → R≥0 with continuous partial differences is a Lyapunov function for

the system (2.17) and equilibrium xe = 0 ∋ D ⊂ R
n, such that there exist class

K-functions α1,2 and constants c1,2, c̄ ≥ 0 so that the following conditions hold

V (x) ≥ c1α1(| xt |) ∀x ∈ D (2.18)

∆Vt , V (ḡ(xt))− V (xt) ≤ −c2α2(| xt |) + c̄ ∀x ∈ D (2.19)

Based on this generalized definition of Lyapunov function, we can now state the

following theorem.

Theorem 2.5.1 If there exists a Lyapunov function according to definition 2.5.6,

then the equilibrium xe = 0 ∋ D ⊂ R
n is locally

i Lyapunov stable if c1,2, c̄ = 0, such that V (0) = 0, V (x) ≥ 0 for x ∈ D\{0}
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ii Asymptotically stable (LAS) if c1,2, c̄ = 0, such that V (0) = 0, V (x) > 0 for

x ∈ D\{0}

iii Practically stable if c1,2, c̄ > 0 for some bound c.

We present this theorem without proof, because Lyapunov and asymptotic sta-

bility proofs are readily available (e.g. in [75]), and proof for practical stability is

similar to proof of the more general ISpS theorem in the next section.

Corollary 2.5.1 (Global Stability) To obtain global stability from Theorem

2.5.1, set D = R
n.

Example 2.5.1 (Bounds on quadratic Function) Consider a Lyapunov

function V (x) = xTQx, with Q ∈ R
n×n a positive definite (p.d.) matrix for

system (2.17). It can be easily shown that

α(| x |) ≤ V (x) ≤ α(| x |)

where α, ᾱ ∈ K∞ with α(·) = λmin(Q) and ᾱ(·) = λmax(Q), corresponding to

extreme eigenvalues of Q.

For collaborative control, this notion of stability which ignores the effect of exter-

nal inputs is not sufficient. We will model the information shared between agents

as external input w, and will therefore require the notion of input-state stability.
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2.5.2 Stability of System with Feedback and External In-

put

Dependence of state trajectory on magnitude of input - especially an input which

cannot be manipulated, e.g. external disturbance - is an important issue in system

analysis. For linear systems, one can resort to consideration of system gains

and operator-theoretic approach, for example H∞ and H2 control. For nonlinear

systems however, there is still debate about suitable formulation of stability in

terms of input perturbation. A widely used concept is that of input-to-state

stability (ISS) and its extensions, first introduced by Sontag [70]. ISS is similar

to asymptotic stability in that the zero-input trajectory is asymptotically stable.

Therefore, all development below is more general and can be particularized to

results of the previous section.

Consider the discrete-time nonlinear system (2.2) which is autonomous and

supplied with appropriate feedback u = Θ(x), such that

xt+1 = f̄(xt, wt) (2.20)

with f (0, 0) = 0 i.e. the origin is an equilibrium point. xt ∈ V ⊂ R
n and

wt ∈ W ⊂ R
r are the system state and input respectively. We will use the

following definitions in the course of this thesis.

Definition 2.5.7 (Input-to-State practical Stability (ISpS)) If Ξ is com-

pact, RPI and contains the origin as an interior point, the system (2.20) is said
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Figure 2.1: Ilustration of difference between ISS (asymptotic) and ISpS (practical)
stability.

to be regionally ISpS [71] in Ξ for t ≥ 0, x0 ∈ Ξ and w ⊂ W , and there exists a

KL-function β, a K-function γ and a constant c > 0 such that

|xt(x0, w)| ≤ β (|x0| , t) + γ (‖w‖) + c (2.21)

Definition 2.5.8 (Input-to-State Stability (ISS)) If in the inequality (2.21),

c ≡ 0 , then system (2.20) is said to be regionally ISS in Ξ [71].

The difference between the ISS (asymptotic) stability and ISpS (practical) stabil-

ity is illustrated in the phase portrait of Fig. 2.1.

Remark 2.5.2 I. ISS implies ISpS, but converse is not true, since an ISS

system with 0−input, i.e. wk = 0, ∀k ≥ 0 implies asymptotic stability to the

origin, while for an ISpS system, 0−input implies asymptotic stability to a

compact set (ball of radius c) containing the origin [81].

II. ISpS is equivalent to ISS extended to point-to-set distance from the state to

a proper compact invariant set for the system [71].
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III. Set of ISpS systems includes the set of systems that are ISS but the converse

is not true.

IV. In this thesis, the stability analysis will demonstrate that according to the

proposed control approach, closed-loop dynamics is ISpS, not ISS, due to the

presence of a range of uncertainties. In fact, even the error present is neural

network approximation error in compressing trajectories, only ISpS can be

ensured, as we showed in [73], even though this uncertainty does not affect

open-loop dynamics. Thus, in this study, c in equation (2.21) is not zero but

function of the NN estimation error which is bounded due to properties of

NN as universal approximator [77].

Lyapunov-like Stability Analysis

We state an important new result in regional input-to-state practical stability.

This general result will form the cornerstone of later development. We first for-

mulate a generalized version of the Lyapunov function.

Definition 2.5.9 (ISpS Lyapunov function) V : Rn → R≥0 is an ISpS Lya-

punov function for (2.20) in Ξ, if for suitable functions α1,2,3, σ3 ∈ K∞, σ1,2 ∈ K

and positive constants c̄, ¯̄c > 0, there exists a compact and RPI set Ξ ∋ 0 and

another RPI set Ω ⊂ Ξ with origin as an interior-point, such that the following

conditions hold.

V (xt, wt) ≥ α1(|xt|), ∀ xt ∈ Ξ (2.22)
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Figure 2.2: Ilustration of solution sets for ISpS Stablity.

V (f (xt, wt) , wt+1)− V (xt, wt) ≤

−α2 (|xt|) + σ1 (|wt|) + σ2 (|wt+1|) + c̄, ∀ xt ∈ Ξ

(2.23)

V (xt, wt) ≤ α3 (|xt|) + σ3 (|wt|) + ¯̄c, ∀ xt ∈ Ω (2.24)

for all wt,t+1 ∈ W .

We are now in a position to state the general ISpS result. Relationship between

sets in definitions above are illustrated in Fig. 2.2.

Theorem 2.5.2 If system (2.20) admits an ISpS-Lyapunov function in Ξ,

then it is regional ISpS and satisfies condition ( (2.21)), with β(r, s) ,

α1
−1(3β̂(3α3 (r) , s)), γ(s) , α1

−1(3(γ̂(3
3
∑

i=1

σi(s)) + β̂(3σ3 (s) , 0))) and c ,

α1
−1(3(β̂(3(¯̄c+d), 0)+α1

−1γ̂(µ(3¯̄c))+α1
−1γ̂(3c̄)), where µ, γ̂ ∈ K∞ while β̂ ∈ KL.
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Proof. Let ᾱ3(s) , α3(s) + σ3(s) + s ∈ K∞. Then, (2.24) implies that

V (xt, wt) ≤ ᾱ3 (|xt|+ |wt|+ ¯̄c) , ∀xt ∈ Ω, wt ∈ W (2.25)

But, from Lemma 2.4.1,

α2(|xt|+ |wt|+ ¯̄c) ≤ α2(|xt|) + σ3(|wt|) + µ(¯̄c) (2.26)

where α2(s) , min(α2(s/3), σ3(s/3), µ(s/3)). Combining ((2.25))-((2.26)) leads

to

α2(s) ◦ ᾱ−1
3 (V (xt, wt)) ≤ α2(|xt|) + σ3(|wt|) + µ(¯̄c)

−α2(|xt|) ≤ −α4(V (xt, wt)) + σ3(|wt|) + µ(¯̄c) (2.27)

where α4(s) , α2(s) ◦ ᾱ−1
3 (s) ∈ K∞. Consider ((2.24)) and ((2.27)):

V (f (xt, wt) , wt+1)− V (xt, wt) ≤ −α4 (|V (xt, wt)|) + σ1 (|wt|)

, +σ3(|wt|) + σ2 (|wt+1|) + µ(¯̄c) + c̄

(2.28)

where xt ∈ Ω, ∀wt, wt+1 ∈ W . Since |wt| ≤ ||w[t]||, |wt+1| ≤ ||w[t+1]||, let ŵ ,

max(||w[t]||, ||w[t+1]||) and define ω(ŵ, c̄, ¯̄c) ,
3
∑

i=1

σi(ŵ) + µ(¯̄c) + c̄. Therefore,

V (f (xt, wt) , wt+1) ≤ ( Id− α4) (V (xt, wt)) + ω(ŵ, c̄, ¯̄c) (2.29)
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Let ρ be a K∞ function, such that (Id − ρ) is also a K∞ function, e.g. ρ(s) =

s/k, ∀k ∈ Z>1 and define a compact set D ⊂ Ω ⊂ Ξ containing the origin such

that

D , {x| d(x, dΩ) > d1, V (xt, wt) ≤ γ̂(ω)} (2.30)

where, γ̂ , α−1
4 ◦ ρ−1 ∈ K∞. Hence, assuming that (Id− α4) is also K∞ function,

and letting xt ∈ D,

V (f (xt, wt) , wt+1) ≤ ( Id− α4) ◦ γ̂(ω) + ω, ∀xt ∈ D (2.31)

By adding and subtracting ρ ◦ α4 ◦ γ̂(ω) from ((2.29)), one has

V (f (xt, wt) , wt+1) ≤ γ̂(ω)− (I − ρ) ◦ α4 ◦ γ̂(ω) + ω − ρ ◦ α4 ◦ γ̂(ω)

But, ρ ◦ α4 ◦ γ̂(ω) = ω. Hence,

V (f (xt, wt) , wt+1) ≤ γ̂(ω)− (Id− ρ)α4 ◦ γ̂(ω)

≤ γ̂(ω)

(2.32)

Thus, D is a robust positive invariant (RPI) set, and states starting within D

remain inside it. In addition, D is attractive for state starting in Ω\D. Hence, if

xt ∈ Ω\D, then from ((2.30)) it is clear that V (xt, wt) > γ̂(ω) and

ρ ◦ α4(V (xt, wt)) > ω, ∀xt ∈ Ω\D,wt ∈ W (2.33)
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But, from ((2.27)):

α4(V (xt, wt)) ≤ α2(|xt|) + σ3(|wt|) + µ(¯̄c), ∀xt ∈ Ω (2.34)

Using ((2.33)), one gets:

ω ≤ ρ ◦ (α2(|xt|) + σ3(|wt|) + µ(¯̄c)), ∀xt ∈ Ω\D

However, Id > ρ, for (Id− ρ) > 0. Thus,

ω ≤ α2(|xt|) + σ3(|wt|) + µ(¯̄c)

3
∑

i=1

σi(ŵ) + µ(¯̄c) + c̄ ≤ α2(|xt|) + σ3(ŵ) + µ(¯̄c)

(2.35)

And,

σ1(ŵ) + σ2(ŵ) + c̄ ≤ α2(|xt|)

σ1(wt) + σ2(wt+1) + c̄ ≤ α2(|xt|)
(2.36)

where xt ∈ Ω\D. Using ((2.23)), one has:

V (f (xt, wt) , wt+1)− V (xt, wt) < 0, ∀xt ∈ Ω\D (2.37)

Therefore, starting from Ω\D, the state enters D in a finite time and then remains

within D since D is RPI. Consequently, T2 exists such that

xT2
(x2, w2) ∈ D, ∀x2 ∈ Ω\D (2.38)
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Similarly, starting from x1 ∈ Ξ\Ω, we will now show the state enters Ω in finite

time, i.e. a time T1 exists such that

xT1
(x1, w1) ∈ Ω, ∀x1 ∈ Ξ\Ω (2.39)

To prove this, consider the fact that |x1| ≥ |x2|, so that there exists d2 such that

α2(|x1|) ≥ α2(|x2|) + d2. Now taking into account ((2.36)),

σ1(ŵ) + σ2(ŵ) + c̄ < α2(|x2|) ≤ α2(|x1|)− d2

−α2(|x1|) + σ1(ŵ) + σ2(ŵ) + c̄ < −d2
(2.40)

where, x1 ∈ Ξ\Ω and x2 ∈ Ω\D. When seen in conjunction with ((2.23)),

V (f (xt, wt) , wt+1)− V (xt, wt) < −d2, ∀xt ∈ Ξ\Ω (2.41)

This proves the assertion in ((2.39)). Hence, a state xt starting in Ξ will enter

Ω\D in finite time, and from there it will enter D in finite time as well, where it

shall remain for D is RPI.

Using a standard comparison lemma (see e.g. [82]), there exist a KL function

β̂(r, s) and a K function γ̂ such that

V (xt, wt) ≤ max(β(V (x0, w0) , t), γ̂(ω(||w[t]||, c̄, ¯̄c)) (2.42)

where xt ∈ Ξ, w[t] ∈ W , and ω ,
3
∑

i=1

σi(ŵ) + µ(¯̄c) + c̄.
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Since, V (x1, w1) ≥ V (x2, w2) for x1 ∈ Ξ\Ω and x2 ∈ Ω as Ω is RPI, then there

exists d such that V (x1, w1) ≤ V (x2, w2) + d. Therefore and in conjunction with

((2.24)), one has

V (x0, w0) ≤ α3 (|x0|) + σ3 (|w0|) + d3, ∀x0 ∈ Ξ, w0 ∈ W (2.43)

where d3 , ¯̄c+ d. Now ((2.42)) can be written as

V (xt, wt) ≤ max(β(α3 (|x0|) + σ3 (|w0|) + d3, t), γ̂(ω)) (2.44)

We have the property for any K-function α̂(r)

α̂(r1 + r2 + r3) ≤ α̂(3max(r1, r2, r3)) ≤ α̂(3r1) + α̂(3r2) + α̂(3r3) (2.45)

Applying (2.45) to (2.44), one gets

V (xt, wt) ≤ max(β̂(3α3 (|x0|) , t) + β̂(3σ3 (|w0|) , t) + β̂(3d3, t), γ̂(ω)) (2.46)
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where xt ∈ Ξ, w[t] ∈ W∀t ≥ 0. Thus, using (2.45) and noting that β̂(·, t) ≤ β̂(·, 0),

one has

V (xt, wt) ≤ β̂(3α3 (|x0|) , t) + β̂(3σ3 (|w0|) , t)

+β̂(3d3, t) + γ̂(
3
∑

i=1

σi(ŵ) + µ(¯̄c) + c̄)

≤ β̂(3α3 (|x0|) , t)

+γ̂(3
3
∑

i=1

σi(||w[t]||)) + β̂(3σ3
(

||w[t]||
)

, 0)

+β̂(3d3, 0) + γ̂(µ(3¯̄c)) + γ̂(3c̄)

(2.47)

Using ((2.22)) leads to

α1(|xt|) ≤ β̂(3α3 (|x0|) , t)+

+γ̂(3
3
∑

i=1

σi(||w[t]||)) + β̂(3σ3
(

||w[t]||
)

, 0)

+β̂(3d3, 0) + γ̂(µ(3¯̄c)) + γ̂(3c̄)

(2.48)

Hence, applying (2.45) again and noting that α−1(r) ∈ K, the system ((2.20)) is

regional ISpS in Ξ, i.e.

|xt| ≤ β(|x0|, t) + γ(||w[t]||) + c, ∀xt ∈ Ξ, w[t] ∈ W

where, β(r, s) , α1
−1(3β̂(3α3 (r) , s)), γ(s) , α1

−1(3(γ̂(3
3
∑

i=1

σi(s))+β̂(3σ3 (s) , 0)))

and c , α1
−1(3(β̂(3(¯̄c+ d), 0) + α1

−1γ̂(µ(3¯̄c)) + α1
−1γ̂(3c̄))

The proof above is very general can combined with the definitions of ISS and ISpS

in this section, can be particularized not only to prove ISS, but the properties of

Theorem 2.5.1 as well. Theorem 2.5.2 is completely general and it will serve as

the foundation on which more particular results of NMPC in the coming sections
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will be based.

2.6 Chapter Conclusion

In this chapter we introduced some important concepts in nonlinear system anal-

ysis. Linear and continuous-time system descriptions were found to be more con-

venient frameworks for stability analysis and control design, but practical reasons

were given to motivate the focus of this thesis on nonlinear discrete-time au-

tonomous systems. Commonly used Lyapunov methods and stability notions for

feedback systems without external disturbance were introduced and shown to be

inadequate for the more realistic scenario of uncertainty and disturbance prone

control systems. This motivated the notion of input-to-state stability (ISS) and

its extension to practical stability (ISpS). It is shown that ISpS is a general frame-

work from which other particular results can be extracted. Finally Theorem 2.5.2

is stated and rigorously proved to form the cornerstone of future development of

distributed NMPC framework in the coming chapters.
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CHAPTER 3

ROBUST NONLINEAR MPC

CONTROL

3.1 Introduction

This chapter is the first step towards establishing a distributed nonlinear model

predictive control (NMPC) strategy for fleet of autonomous vehicles. Various con-

trol techniques exist for design of control of vehicles. Depending on complexity of

model of the vehicle, its mission profile, hardware, computational resources, uncer-

tainty, disturbances, and real world constraints, many different control algorithms

have been developed and applied to mobile robots for the purpose of navigation.

These include both linear and nonlinear techniques, including but not limited to

proportional-integral-derivative (PID), linear quadratic regulator (LQR), linear

quadratic Gaussian (LQG), H∞, L2, adaptive, gain-scheduling, neural-network

(NN), fuzzy, model predictive control (MPC) etc. All of these algorithms have
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their merits and demerits. Some, like PID are very straight-forward but not ro-

bust, others like LQR are optimal but for an infinite horizon, still others like NN

require prior training of the controller or at least persistent excitation (which is

required for adaptive control).

However, a disadvantage common to all of the controllers above is that there is

no explicit mechanism in them to handle system or control constraints, and those

which are optimal in some sense are optimized for an infinite future time. Real

systems have constraints on the system states and manipulable control inputs as

well, e.g. limitations on maximum power, actuation limits, minimum speed (e.g.

in aircraft), physical boundaries, etc. The only control architecture which simul-

taneously caters to all system constraints is a family of controllers called MPC.

Both industry and academia have enthusiastically pursued and applied control

designs based on MPC concepts. Most techniques other than MPC resort to ad-

hoc methods for dealing with constraints, e.g. anti-windup techniques. Flexible

constraint handling capabilities of MPC are a unique feature, and there is flexi-

bility to formulate the online optimal control objective can be formulated as 1-,

2-, ∞-norm etc. Virtually the same architecture can be carried over to nonlin-

ear systems as well. MPC also has inherent robustness qualities, which can be

further improved quite easily [83]. MPC technology has found wide application

in diverse areas like process, petrochemical, chemical, food processing, manufac-

turing, aerospace, robotics, etc. It is the standard approach for implementing

constrained, multi-variable control.
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In this chapter, a robust model predictive control scheme for constrained

discrete-time nonlinear systems affected by several bounded uncertainties is con-

sidered. States and disturbances are measured with noise, and both system and

disturbance models are also uncertain. The objective is to guarantee the robust

satisfaction of state constraints, ensure recursive feasibility and stability despite

the combined effect of these uncertainties. For that, restricted constraint sets are

introduced to satisfy state constraints for the perturbed system. In our approach,

we derive several conditions based on bounds on each component of uncertainty.

Feasibility and stability of the algorithm is proportional to the size of the terminal

region and the one-step controllable set to this region. Theoretical development

shows that due to uncertainties, only practical stability (ISpS) can be ensured by

using suitably selected cost functional for MPC optimization.

3.1.1 Chapter Contributions

The contributions of this chapter are non-trivial in the following aspects, which

are under review in Automatica [84].

i. Existing literature mostly considers either modeling uncertainty with perfect

measurements [85] or measurement noise with perfectly well known statis-

tics [68]. The proposed approach provides a unified framework for dealing

with both types of uncertainties, along with the inclusion of a non-additive

disturbance with uncertain dynamics and unknown input.

ii. Input-to-state practical stability framework in existing literature is extended
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with Theorem 3.2.2 to cater for the combination of uncertainties mentioned

above.

iii. New bounds on prediction error growth along the prediction horizon have

been derived (Lemma 3.2.1) based on the bounds on components of the com-

bined uncertainty. In addition, constraint tightening for robust satisfaction

of original constraints in the presence of this combination of uncertainties

(Theorem 3.2.1) is also a new development.

iv. Recursive feasibility is ensured by the newly developed Theorem 3.1 which

relates it to the size of the one-step controllable set to the terminal region.

v. Two new algorithms are presented for constraint tightening and online opti-

mization.

Chapter Organization An introduction to nonlinear MPC technique is pro-

vided in Section 3.2, with a discussion on merits / demerits of NMPC and its

comparison with other optimal control approaches. We also formulate the robust

NMPC problem in terms of the cost function, its components and the role of

uncertainties, and propose the solution in terms of Algorithm 1. The constraint

tightening approach for robustifying the NMPC Algorithm is formulated in Sec-

tion 3.2.5, by deriving bounds on growth of uncertainty in prediction of state and

disturbance due to contribution of various components of the combined uncer-

tainty (Algorithm 2). Based on these bounds on prediction and the minimum size

of one-step controllability set to the terminal constraint set, conditions of recursive
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feasibility for Algorithm 1 are derived in Section 3.2.6. The final component of

theoretical framework of this chapter is stability analysis for Algorithm 1, which is

carried out in Section 3.2.7, where stability of both the nominal system and actual

(perturbed) system is evaluated. Finally, a numerical example is introduced in

Section 3.3, which is used to illustrate application of Algorithm 2 in this chapter.

The example is extended in Chapter 4.

3.2 Nonlinear Model Predictive Control

Model Predictive Control is a family of controllers in which there an explicit dy-

namic model of the system or process to be controlled is directly used to predict

and optimize its response for some finite time in the future. MPC was first intro-

duced in the late 1960s as a nonlinear control framework for industrial applications

(mostly process control) [86]. When the dynamic model of the system used for

prediction is linear, the technique is called Linear MPC, even though the optimiza-

tion problem is invariably nonlinear. Similarly, when prediction dynamic model

is nonlinear, the entire control scheme is called nonlinear model predictive control

(NMPC). It is worth noting that this is slight abuse of notion, since both linear

and nonlinear constrained MPC are nonlinear control techniques (since control is

an implicit and nonlinear function of the state). Existing body of work, however,

treats linear and nonlinear MPC separately, mainly due to the different theoretical

tools needed to prove the closed-loop stability in the two frameworks.
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3.2.1 Advantages and Disadvantages

The concept behind this scheme is simple and controller tuning can be achieved

by persons not well versed with control engineering, and the concept has evolved

to a mature level [87]. It is a model based control process, like linear quadratic,

pole placement and adaptive control, however MPC has many remarkable features

[88], some of which are:

� 1. A wide variety of processes can be controlled, including non-minimum

phase, unstable, time delays and non-linear plants.

� It can be easily extended to multiple input / multiple output (MIMO) plants.

� It is robust to modeling errors to some extent.

� It is relatively easy to tune.

� Process model can be finite impulse response (FIR), step response, trans-

fer function, state space or even non-linear. This is in contrast to linear

quadratic (LQ) or pole-placement control.

� Predictive control can cater for process constraints during the controller

design itself. It is the most attractive feature of MPC.

� It is an open design framework, i.e. within its broader framework the con-

troller can be designed in a variety of ways, and it can be fused with other

control schemes, such as adaptive control.
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� Known and unknown disturbances can also be catered for in the design

process.

� Since MPC is predictive in nature, if the reference set-point trajectory is

known in advance (e.g. landing trajectory), it too can be used in the con-

troller design by looking ahead for the trajectory.

� Due to its constraint handling, model updatability and inherent robustness

it has been proposed and implemented for reconfigurable and fault tolerant

control.

It was for these properties precisely, that it was brought into use in the industry

about 15 years before stability proofs were established for it [89]. However, MPC

techniques also have some disadvantages, namely

� Increased computational burden due to the requirement to solve an online

optimization problem avery sampling instant.

� Having a nonlinear model for prediction makes the constrained optimization

problem non-convex, making the problem harder to solve.

� Stability requirements are less intuitive.

However, in recent years, there has been remarkable progress towards mitigating

all of the above mentioned disadvantages. We will now first introduce the basic

algorithm of NMPC, and discuss these merits and demerits further after that
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3.2.2 Problem Formulation

Consider an agent (vehicle) having nonlinear discrete-time dynamics

xt+1 = f(xt, ut, wt) (3.1)

and the nonlinear output is

yt = h(xt) (3.2)

Internal states xt, outputs yt, local control inputs ut and external inputs wt belong

to the following constrained convex sets:

xt ∈ X ⊂ R
n, X , {x : xmin ≤ x ≤ xmax > 0}

yt ∈ Y ⊂ R
q, Y , {y : ymin ≤ y ≤ ymax > 0}

ut ∈ U ⊂ R
m, U , {u : umin ≤ u ≤ umax > 0}

wt ∈ W ⊂ R
p, W , {w : wmin ≤ w ≤ wmax > 0}

(3.3)

External input w will be later used to model the information communicated by

other members of the team or obstacles. In the current context of a single vehicle,

we can utilize it to model any disturbance affecting the agent (e.g. wing gust,

water current, turbulence etc.) or information about obstacle it has to avoid. The

disturbance evolves according to the following nonlinear mapping

wt+1 = g(wt, φt) (3.4)
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where φ is an unknown input vector, possibly random. Since wt is not additive,

we can also use it represent plant uncertainty. Let the actual state of the system

be xt, while the state predicted by model (3.5) at time t for future time instant

t + l by x̃t,t+l. We assume that our model of the system is not perfect, such that

the nominal model actually used for state prediction is

x̃t+1 = f̃(x̃t, ut, w̃t) (3.5)

Often, not all states are directly measurable, and when they are sensors may

produce an output corrupted with noise and this lead to uncertainty. Therefore,

the measured output is

ỹt = yt + ξyt, ξy ≤ |ξyt| ≤ ξ̄y (3.6)

Therefore, given the outputs measured by sensors, there is an need to estimate

the states in a manner such that the effect of noise and uncertainty are mitigated.

In this chapter, we assume a mechanism of state estimation exists, such that the

state is estimated with some bounded error ξx, such that

x̃t = x̃t|t−1 +Kt(ỹt − h(x̃t|t−1)) (3.7)

where Kt is time varying nonlinear filter, which is assumed to be available and

x̃t|t−1 is the prior estimate. In ths thesis, we assume that this filter exists, such
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that

x̃t = xt + ξxt
, ξ

x
≤ |ξxt

| ≤ ξ̄x (3.8)

Moreover, assume that we have another estimator for w, which produces the

estimate w̃, such that

w̃t = wt + ξwt
, ξ

w
≤ |ξwt

| ≤ ξ̄w (3.9)

We assume that we do not have exact knowledge of the evolution of wt,t+Np , and

that can only have an approximation w̃t,t+Np of it using a nominal model g̃(·)

given by

w̃t+1 = g̃(w̃t), (3.10)

such that there is a bounded disturbance transition uncertainty due to disturbance

model mismatch

g̃(wt) = g(wt, φt) + ewt
, ew ≤ |ewt

| ≤ ēw, (3.11)

Similarly, we assume that system model mismatch leads to system transition un-

certainty ext
,= f̃(xt, ut, wt)− f(xt, ut, wt), such that

f̃(xt, ut, wt) = f(xt, ut, wt) + ext
, ex ≤ |ext

| ≤ ēx (3.12)
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Now, due to uncertainty, the constraint sets (3.3) for x and w will be ’larger’ than

constraints sets for x̃ and w̃, such that

x̃t ∈ X̃t(ēx, ξ̄x, ēw, ξ̄w) ⊂ X, ỹt ∈ Ỹt(v̄) ⊂ Y, w̃t ∈ W̃t(ξ̄w, ēw) ⊂W (3.13)

The exact definition of these ’tightened’ constraint sets is deferred to Section 3.2.5.

Normally NMPC is used for state regulation, i.e. to it will is usually to steer the

state to the origin or to an equilibrium state xr = r, where r is a constant reference.

This is generally true for process industries. However, in mobile robotics, The

control objective depends on the mission profile of the vehicle, as the target state

may evolve over time, rather than being constant. Tracking and path tracking

are two fundamental control problems in mobile robotics. For tracking problems,

the objective is to converge to a time-varying reference trajectory xd(t) designed

separately. On the other hand, in path following applications, the objective is

to follow a reference path parameterized by geometric parameters rather than

time. The path following problem can be reduced to state regulation task [90].

Therefore, we will explain the control strategy of MPC using regulation problem as

an example. Based on the control objective, let the vehicle have the finite-horizon

optimization cost function given by

Jt (x̃, u, w̃, Nc, Np, kf) =
t+Nc−1
∑

l=t

[h(x̃l, ul) + q(x̃l, w̃l)]

+
t+Np−1
∑

l=t+Nc

[(x̃l, kf(x̃l)) + q(x̃l, w̃l)] + hf
(

x̃t+Np

)

,

(3.14)
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where Np and Nc are prediction and control horizons. Cost function (3.14) con-

sists of transition cost h, terminal cost hf and robustness cost q (due to the effect

of external input). Control sequence ut,t+Np
consists of two parts, ut,t+Nc−1 and

ut+Nc,t+Np−1. The latter part is generated by terminal (also called auxiliary) con-

trol law ul = kf(x̃l) for l ≥ Nc, while the former is finite horizon optimal control

ut,t+Np
which is the solution of the optimization problem 3.2.1.

Problem 3.2.1 (Finite Horizon Optimal Control Problem (FHOCP) )

At every instant t ≥ 0, given prediction and control horizons Np, Nc ∈ Z≥0,

terminal control kf(x̃) : R
n → R

m, state estimate x̃t and disturbance estimate w̃t,

find the optimal control sequence uot,t+Nc−1, which minimizes the finite horizon

cost (3.14)

uot,t+Nc−1 = argmin
u∈U

Jt
(

x̃t, w̃t,t+Np
, ut,t+Np

, Nc, Np

)

, (3.15)

subject to

I. nominal state dynamics (3.5)

II. nominal disturbance dynamics (3.10)

III. Control constraint (3.3) and the tightened constraint sets (3.13)

IV. Terminal state x̃t+Np is constrained to an invariant terminal set Xf ∈

X̃t+Nc, i.e.

x̃t+l ∈ Xf , ∀l = NC , . . . , NP (3.16)
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Definition 3.2.1 Suboptimal sequence ut,t+Nc−1 satisfying the constraints (3.1),

(3.3) and (3.16) is called feasible control.

In other words, a control input is feasible if and only if it is the provides a feasible

solution to the finite horizon optimal control problem 3.2.1. Hence if a control

input is admissible (u ∈ U), it is not necessarily feasible. For a given state the set

of feasible inputs is a subset of the admissible inputs.

3.2.3 Receding Horizon Strategy

The loop is close by implementing only the first element of u0t,t+Nc−1 at each

instant, such that the NLMPC implicit control law becomes

Θt(x̃, w̃) = u0t (x̃t, w̃t, Np, Nc) (3.17)

and the closed loop dynamics becomes

xt+1 = f(xt,Θt(x̃, w̃), wt) = fc(xt, wt) (3.18)

with closed loop nonlinear map fc(x, w). This process is repeated every sampling

instant, as illustrated in Fig. 3.2. The overall control architecture is shown in

Fig. 3.1. To summarize, at time t, current state is sampled and an estimate of

the disturbance is made, then cost (3.14) is minimized over a finite horizon Np,

using Nc control adjustments and pre-computed terminal control law kf , such

that system constraints (3.1)-(3.3) are satisfied in addition to state remaining in
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Figure 3.1: Complete architecture of the NMPC controller for Single Vehicle. Optimizer
output consists of the optimization of first NC − 1 steps of control sequence appended
with NP − NC − 1 steps of terminal controller kf (x). (This art is original; copyrights
belong to the author).

74



an invariant terminal set Xf . Only the first step of this optimized control sequence

is implemented. Then the plant state is sampled again and the same optimization

problem 3.2.1 is solved again, yielding re-optimized control. Prediction horizon

keeps being shifted forward and for this reason MPC is also called receding horizon

control (RHC), though this is a slight abuse of notation (RH strategy along with

model based optimization together forms the MPC strategy).

In this thesis, we have developed a comprehensive strategy for robust non-

linear model predictive control, elucidated in Algorithm 1. There two classes

Algorithm 1 Robust NMPC Control with Constraint Tightening

1: Input nominal model f̃(x̃, u, 0), nominal constraints (3.3), RH cost (3.14) and
error bounds (3.7)- (3.12).

2: procedure Offline Optimization

3: Tighten constraints using Algorithm 2 for robustness.
4: Determine optimized terminal set Xf and terminal control kf using Al-

gorithm 3
5: Warm-start Algorithm 5 with Algorithm 4.
6: Determine One-step controllability set C1(Xf) to ensure recursive feasi-

bility using Algorithm 5.
7: Determine Robust output feasibility set XMPC using Algorithm 6.
8: end procedure
9: Start system time at t, l = 0
10: while Target state is not reached do
11: procedure (Online Optimization)
12: Measure outputs ỹt+l and disturbance w̃t+l

13: Estimate state x̃t+l and disturbance w̃t+l

14: Solve finite horizon OCP 3.2.1 at t + l for control u0t+1,t+l+Nc

15: Implement first element of optimized control u0t
16: end procedure System clock advances, l = l + 1
17: end while

of optimization problems solved in Algorithm 1: offline and online. This overall

algorithm consists of various ingredient algorithms which will be duly explained

in the following sections of this and the next chapter.
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Figure 3.2: Basic concepts of Model Predictive Control. (Clockwise from top left):
estimated (red) and predicted (blue) state at t for x̃t,t+Np, along with terminal constraint
set Xf ; applied (red), optimized (blue) and terminal (orange) control input at time t;
applied, optimized and terminal control input at time t+ 1 (first element of optimized
control at t was applied at t+1); estimated and predicted state at t+1 for x̃t+1,t+Np+1.
(This art is original; copyrights belong to the author).
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3.2.4 Comparison with other Optimal Control Techniques

The main difference between conventional optimal control techniques and MPC

is the fact that the control law in former is pre-computed, while MPC requires

online control optimization. Even though, now the overriding reason for resorting

to MPC is its explicit constraint handling capabilities, its initial appeal amongst

practitioners was the applicability to multi variable systems (many early formu-

lations did not even consider constraints). Apart from that, it can be argued that

MPC is an alternate formulation of classical optimal control. However, most other

formulations of optimal control e.g. LQR/G (H2), H∞ linear optimal control con-

sider infinite horizon (unconstrained) optimization problem computed offline for

all (unconstrained) states. MPC, on the other hand solves an open-loop, finite-

horizon constrained optimization problem online at every sampling instant for

the measured (constrained) state. The finite horizon is required to be reasonable

short, mainly to

1. allow computation of the control input within the sampling interval, and

2. reduce prediction errors, since errors in prediction due to uncertainty grows

with prediction horizon.

Therefore, the difference is more in implementation than in the concept and formu-

lation [38]. In fact, the MPC strategy of applying the first step of the optimized

control sequence can be argued to having its roots in Dynamic Programming

theory [40]. However, it is worth noting that the abject failure of many optimal

control techniques (such as LQR) in industrial applications was their inadequacies
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in handling constraints, nonlinearities and uncertainty. These real world issues

are handled very well by MPC which led to its popularity among practitioners.

In the following section, we will determine requirements of stability for NMPC,

and based on these, derive appropriate values of design parameters of the control

law.

3.2.5 Robustness of NMPC Algorithm

If there was no uncertainty about system dynamics or no disturbance was present,

one will expect the prediction to be accurate and therefore there would be no need

to measure and optimize at every sampling instant. In that case one could simply

apply the entire optimized sequence u0Np−1 and re-optimize after every NP − 1

time steps. However, in the real world, one can never measure or model with

absolute precision and accuracy, and external disturbances are always present,

even in very controlled laboratory environments. Therefore, in the real world the

system dynamics does not exactly match the predicted behavior. Maintenance of

acceptable performance and stability in presence of uncertainty and disturbances

is called robustness. One way to deal with it is to sample and re-optimize every

sampling instant in the receding horizon strategy of NMPC described above. This

lends NMPC the inherent robustness property, if the magnitude of uncertainty or

disturbance is sufficiently small and if the FHOCP is unconstrained. Simultaneous

presence of constraints and disturbances - even if non-persistent - can make an

MPC controller infeasible and unstable, even if it is stabilizing for the nominal case
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[91]. However, this inherent robustness may not guarantee acceptable performance

(it has even been shown that stabilizing NMPC designed for constrained nominal

model may exhibit zero-robustness [92]) and one needs to improve the robustness

credentials of NMPC by taking more deliberate steps in that direction.

Explicitly incorporating uncertainties and disturbances in the design of NMPC

control law is not trivial, as one needs to ensure performance, stability and con-

straint non-violation for all possible realizations of uncertainty/disturbance. Dif-

ferent approaches have been suggested in the literature in this regard. We will

review some of them, before choosing the constraint tightening robustness tech-

nique for reasons made clear later. We will make a few standard MPC assumptions

on initial feasibility and continuity.

Assumption 3.2.1 (Feasible Initial Set) There exists a compact robust out-

put feasible set XMPC ⊆ X, which is the set of initial states for which optimal

control problem 3.2.1 is feasible.

This is an assumption of initial feasibility of the FHOCP 3.2.1. We need this to

prove recursive (also called iterative) feasibility later. Note that Assumption 3.2.1

is fairly standard in MPC literature (e.g. see [93], [59] etc.).

Assumption 3.2.2 (L. Continuity of Transition Maps) . We assume that

transition maps f̃(·) and g̃(·) are locally Lipschitz continuous, such that

I. f̃(0, 0, 0) = 0 and f̃ ∈ C2, i.e. the nominal map is twice differentiable.

II. g̃(0) = 0
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III. |f̃(x1, u1, w1)− f̃(x2, u2, w2)| ≤ Lfx|x1 − x2|+ Lfu|u1 − u2|+ Lfw|w1 − w2|

for x1, x2 ∈ X, u1, u2 ∈ U and w1, w2 ∈ W .

IV. |g̃(w1)− g̃(w2)| ≤ Lgw|w1 − w2|, for w1, w2 ∈ W

These assumptions are fairly standard and satisfied for most estimation models.

Min-Max Optimization based Robustness Approach

In min-max MPC controllers [79], the cost functional is minimized for the worst

possible realizations of the uncertainty over the prediction horizon at each time

instant. This is often the most computationally the most expensive approach ,

and even the reduced conservatism by its proponents is contested [91]. Practi-

cally, min-max robust NMPC is limited to systems with small size or very slow

dynamics. This approach, however, suffers from two major drawbacks (i) the re-

sulting optimization problem is computationally more expensive even if it is pos-

sible to design minmax controllers with a finite-dimensional parameterization; (ii)

the minmax paradigm of optimizing performance for the worst-case disturbance

represents an unrealistic scenario and may yield poor performance whenever the

disturbance realization gets close to zero. For the above reasons, a more sensi-

ble approach seems to minimize the nominal performance index while imposing

constraint fulfillment for all admissible disturbances, presented in the next section.
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Constraint Tightening Robustness Approach

Satisfying constraints along the horizon depends on the future realization of the

uncertainties, which are random. By assuming Lipschitz continuity of the nomi-

nal disturbance and state models (Assumptions 3.2.2), it is possible to compute

bounds on effect of the evolving uncertainties on the system. Since, our system

consists of many possible sources of uncertainty, the bound calculated will be much

more involved and comprehensive than those presented in existing literature (e.g.

[94] and [85]). The idea of constraint tightening for robustifying MPC algorithms

was introduced in 2001 by Chisci et al in [91]. This seminal work presented the

idea that, for constrained linear systems

“Robustness against persistent bounded disturbances can be en-

forced by inserting in the predictive controller suitable constraint

restrictions. The robust predictive controller obtained in this way

guarantees, for all admissible disturbances, constraint fulfillment and

asymptotic state regulation, i.e. convergence of the state to a minimal

robust invariant set, provided that the initial state is feasible.”

Marruedo et al extended this idea to nonlinear systems in the next year [94].

Lemma 3.2.1 (Bounded Prediction Errors) Given the following estimation

and transition error bounds

i. Estimation error bounds ξ̄x, ξ̄w ∈ R≥0 defined in (3.8)-(3.9),

ii. One step transition error bounds ēx, ēw ∈ R≥0 defined in (3.12)- (3.11),
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and Lipschitz constants Lfx, Lfc and Lgw defined in Assumption 3.2.2, then the

l-step prediction errors in predicting xt,t+Np and wt,t+Np are bounded by

|wt+l − w̃t+l| ≤ Ll
gw ξ̄w + ēw

Ll
gw − 1

Lgw − 1
, (3.19)

|xt+l − x̃t+l| ≤ Ll
fxξ̄x + ēx

Ll
fx

−1

Lfx−1
+ ξ̄wLfw

Ll
fx

−Ll
gw

Lfx−Lgw

+ēw
Lfw

Lgw−1

(

Ll
fx

−Ll
gw

Lfx−Lgw
− Ll

fx
−1

Lfx−1

)

,

(3.20)

for l = 0, ..., NP , and Lfx, Lgw 6= 1 and Lfx 6= Lgw.

Proof. Let us first look at the prediction error for the disturbance. From (3.9),

we have for l = 0

|wt − w̃t| = ξwt
≤ ξ̄w

At the next sampling instant, i.e. l = 1, we have from (3.4), (3.10), (3.9) and

(3.11)

|wt+1 − w̃t+1| = |g (wt, φt)− g̃ (w̃t) |

= |g̃ (wt) + ewt
− g̃ (w̃t) |

≤ |g̃ (wt)− g̃ (w̃t) |+ ēw

But, in view of Assumption 3.2.2

|wt+1 − w̃t+1| ≤ Lgw|wt − w̃t|+ ēw ≤ Lgw ξ̄w + ēw (3.21)
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At next sampling instant when l = 2,

|wt+2 − w̃t+2| = |g (wt+1, φt+1)− g̃ (w̃t+1) |

= |g̃ (wt+1)− g̃ (w̃t+1) + ewt+1
|

≤ |g̃ (wt)− g̃ (w̃t) |+ ēw

≤ Lgw|wt+1 − w̃t+1|+ ēw

Substituting (3.21)

|wt+2 − w̃t+2| ≤ Lgw

(

Lgw ξ̄w + ēw
)

+ ēw ≤ ξ̄wL
2
gw + ēw (Lgw + 1) (3.22)

Finally, following the same development as above, we can show that for l = 3

|wt+3 − w̃t+3| ≤ ξ̄wL
3
gw + ēw

(

L2
gw + Lgw + 1

)

(3.23)

So generalizing from (3.21)-(3.23) for l-step ahead prediction

|wt+l − w̃t+l| ≤ ξ̄wL
l
gw + ēw

(

k=l−1
∑

k=0

Lk
gw

)

= ξ̄wL
l
gw + ēw

Ll
gw − 1

Lgw − 1
,

which proves (3.19).

Now, consider prediction error for system state. From (3.8), we have for l = 0

|xt − x̃t| = ξxt
≤ ξ̄x
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At the next sampling instant, i.e. l = 1, we have from (3.1), (3.5), (3.8) and (3.12)

|xt+1 − x̃t+1| = |f (xt, ut, wt)− f̃ (x̃t, ut, w̃t) |

= |f̃ (xt, ut, wt) + ext
− f̃ (x̃t, ut, w̃t) |

≤ |f̃ (xt, ut, wt)− f̃ (x̃t, ut, w̃t) |+ ēx

But, in view of Assumption 3.2.2

|xt+1 − x̃t+1| ≤ Lfx|xt − x̃t|+ Lfw|wt − w̃t|+ ēx ≤ Lfxξ̄x + Lfw ξ̄w + ēx (3.24)

At next sampling instant when l = 2,

|xt+2 − x̃t+2| = |f (xt+1, ut+1, wt+1)− f̃ (x̃t+1, ut+1, w̃t+1) |

= |f̃ (xt+1, ut+1, wt+1)− f̃ (x̃t+1, ut+1, w̃t+1) + ext+1
|

≤ Lfx|xt+1 − x̃t+1|+ Lfw|wt+1 − w̃t+1|+ ēx

Substituting (3.21) and (3.24)

|xt+2 − x̃t+2| ≤ Lfx

(

Lfxξ̄x + Lfw ξ̄w + ēx
)

+ Lfw

(

Lgw ξ̄w + ēw
)

+ ēx

≤ L2
fxξ̄x + ēx (Lfx + 1) + ξ̄wLfw (Lfx + Lgw) + Lfwēw

(3.25)
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Finally, following the same development as above, we can show that for l = 3, 4, 5

|xt+3 − x̃t+3| ≤ ξ̄xL
3
fx + ēx

(

L2
fx + Lfx + 1

)

+ξ̄wLfw

(

L2
fx + LfxLgw + L2

gw

)

+ ēwLfw (Lfx + Lgw + 1)

|xt+4 − x̃t+4| ≤ ξ̄xL
4
fx + ēx

(

L3
fx + L2

fx + Lfx + 1
)

+ξ̄wLfw

(

L3
fx + L2

fxLgw + LfxL
2
gw + L3

gw

)

+ēwLfw

(

L2
fx + LfxLgw + LfxLgw + L2

gw + 1
)

|xt+5 − x̃t+5| ≤ ξ̄xL
5
fx + ēx

(

L4
fx + L3

fx + L2
fx + Lfx + 1

)

+ξ̄wLfw

(

L4
fx + L3

fxLgw + L2
fxL

2
gw + LfxL

3
gw + L4

gw

)

+ēwLfw









L3
fx + L2

fxLgw + L2
fx + Lfx (L

2
gw + Lgw + 1)

+L3
gw + L2

gw + Lgw + 1









(3.26)

We are now in a position to generalize from (3.24)-(3.26) for l-step ahead prediction

|xt+l − x̃t+l| ≤ ξ̄xL
l
fx + ēx

k=l−1
∑

k=0

Lk
fx + ξ̄wLfwL

l−1
fx

k=l−1
∑

k=0

(

Lgw

Lfx

)k

+ ēwLfwL
l−1
fx

j=l−1
∑

j=0











k=j
∑

k=0

Lj
gw

Lj
fx











Using geometric series sum formulation

|xt+l − x̃t+l| ≤ ξ̄xL
l
fx + ēx

Ll
fx

−1

Lfx−1
+ ξ̄wLfw

Ll
fx

−Ll
gw

Lfx−Lgw

+ēw
LfwLl−1

fx

Lgw−1

j=l−1
∑

j=0

(

Lj
gw

Lj
fx

− 1

Lj
fx

)
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Summing the geometric series once more will result in (3.20) after minor manip-

ulation, which proves the lemma.

Remark 3.2.1 This results seems a bit conservative at fist sight. We will clarify

this is not necessarily the case.

i. Lemma 3.2.1 is limited for Lfx, Lgw 6= 1 and Lfx 6= Lgw. However, only

trivial modification is needed to reformulate the result for Lfx, Lgw = 1 and

Lfx = Lgw. For example, (Ll
gw−1)/(Lgw−1) can be replaced by the geometric

series
l−1
∑

k=0

Ll
gw in case of Lgw = 1. Other cases can also be easily worked by

following the development of the proof above.

ii. It is worth mentioning that prediction error bounds (3.19) and (3.20) are

rather conservative, due to Lipschitz constants being used. Several methods

have been suggested to reduce Lipschitz conservatism by pre-compensation,

using different norms (other than Euclidean) and online estimation of local

Lipschitz constant [94].

We will claim an important result which will be proven in Chapter 4.

Claim 3.2.1 (Terminal Set and Terminal Control) There exists an termi-

nal control kf(x̃l) ∈ U, /, ∀l = NC , . . . , NP −1, application of which to the nominal

plant x̃t+l = f̃(x̃l, kf(x̃l), 0) ensures that a terminal constraint set Xf is robust

positively invariant (RPI) i.e. xl ∈ Xf and x̃l ∈ Xf , ∀l = t+NC + 1, . . . , t+NP

for any x̃t+Nc ∈ Xf , such that
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I. The rate of convergence of nominal state x̃ under control kf(x̃) is lower

bounded by

∣

∣

∣
f̃ (x̃t+l+1, kf(x̃t+l+1))− x̃t+l+1

∣

∣

∣
≥ ξ̄xL

l
fx (Lfx − 1) + ēxL

l
fx+

ξ̄wLfw

Ll
fx (Lfx − 1)− Ll

gw (Lgw − 1)

Lfx − Lgw
+

ēw
Lfw

Lgw − 1

(

Ll
fx (Lfx − 1)− Ll

gw (Lfx − 1)

Lfx − Lgw

− Ll
fx

)

, (3.27)

for l = NC − 1 . . . NP − 2, and (b) there exists a ∈ Z≥0 and 0 ≤ Qf ∈ R
n×n

such that

x̃TQf x̃ ≤ a, ∀x̃ ∈ Xf (3.28)

By considering the effect of the prediction uncertainty bounds on the FHOCP

constraints, it is possible to guarantee that state/output evolution of the actual

system will be admissible as well. Recall the definitions of Pontryagin difference

from Section 2.4 and Euclidean ball from Section 4.2.1.

Theorem 3.2.1 (Constraint Tightening) With actual constraints X and W

defined in (3.3), let the tightened constraints be given by

X̃t+l , X ∼ Bn
(

ρ̄xt+l

)

, (3.29)

W̃t+l ,W ∼ Bn
(

ρ̄wt+l

)

, (3.30)

for l = 0, ..., NP , where ρ̄x and ρ̄w are prediction error bounds from Lemma 3.2.1
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defined as

ρ̄xt+l
, Ll

fxξ̄x + ēx
Ll
fx

−1

Lfx−1
+ ξ̄wLfw

Ll
fx

−Ll
gw

Lfx−Lgw

+ēw
Lfw

Lgw−1

(

Ll
fx

−Ll
gw

Lfx−Lgw
− Ll

fx
−1

Lfx−1

)

,

(3.31)

ρ̄wt+l
, Ll

gw ξ̄w + ēw
Ll
gw − 1

Lgw − 1
, (3.32)

Then, any (in general suboptimal) admissible control sequence ut,t+Nc−1 and ter-

minal control ut+Nc,t+Np−1 = kf(x̃t+Nc,t+Np−1) which is feasible (x̃t+l ∈ X̃t+l,

ut,t+Np−1 ∈ U and w̃t+l ∈ W̃t+l) with respect to tightened constraints (3.29)-(3.30)

applied to the actual system (3.1), guarantees the satisfaction of original con-

straints (3.3), i.e. xt+l ∈ X and wt+l ∈ W for l = 0, . . . , NP and xt ∈ XMPC.

Proof. The proof will be divided in two parts.

(a) Given state and disturbance estimates, x̃t estimate w̃t respectively, let us first

consider the error in state prediction by applying the first NC − 1 steps of

a feasible sequence, i.e. ut,tN c−1. Consider the error bounds defined in (3.7)-

(3.12). Let us hypothesize that the realization of uncertainties is instead

bounded by

|x̃t − xt| = |ξxt
| ≤ ξ′x < ξ̄x,

|w̃t − wt| = |ξwt
| ≤ ξ′w < ξ̄w,

|f̃(xt, ut, wt)− f(xt, ut, wt) = |ext
| ≤ e′x < ēx

|g̃(wt)− g(wt, φt)| = |ewt
| ≤ e′w < ēw,

Then, following the same development as in the proof of Lemma 3.2.1, we
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can show that

|xt+l − x̃t+l| ≤ ρ′xt+l
, Ll

fxξ
′
x + e′x

Ll
fx

−1

Lfx−1
+ ξ′wLfw

Ll
fx

−Ll
gw

Lfx−Lgw

+e′w
Lfw

Lgw−1

(

Ll
fx

−Ll
gw

Lfx−Lgw
− Ll

fx
−1

Lfx−1

)

,

for l = 0, ..., NC . Therefore, applying the triangle inequality

|xt+l| ≤ |x̃t+l|+ ρ′x

Since x̃t+l ∈ X̃t+l, therefore

xt+l ∈ X̃t+l ⊕ Bn
(

ρ′xt+l

)

Comparing with (3.29) and (3.31), it is obvious that ρ′xt+l
< ρ̄xt+l

and hence

Bn
(

ρ′xt+l

)

⊂ Bn
(

ρ̄xt+l

)

. Therefore,

xt+l ∈ X̃t+l ⊕ Bn
(

ρ̄xt+l

)

But, from the definition of tightened constraints in (3.29), we gather that

X = X̃t+l ⊕ Bn
(

ρ̄xt+l

)

. Hence, we have proven that

xt+l ∈ X, ∀l = 0, . . . , NC

(b) Given state and disturbance prediction x̃t+Nc ∈ Xf ⊆ X̃t+Nc and w̃t+Nc ∈

W̃t+Nc respectively, consider the error in state prediction by applying the
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terminal sequence ut,tN c−1 = k − f(x̃t,tN c−1). Consider the prediction error

bounds defined in (3.31). The rate of growth of prediction error can be

calculated as follows. For l = NC − 1 . . .NP − 2, we have

xt+l+2 − x̃t+l+2 − (xt+l+1 − x̃t+l+1) = f(xt+l+1, kf(x̃t+l+1), wt+l+1)

− f̃(x̃t+l+1, kf(x̃t+l+1), 0)− f(xt+l, kf(x̃t+l), wt+l) + f̃(x̃t+l, kf(x̃t+l), 0)

Rearranging these terms and using Assumption 3.2.2,

(xt+l+2 − xt+l+1)− (x̃t+l+2 − x̃t+l+1) ≤ Lfxξxt+l+1
+ Lfwξwt+l+1

+ ext+l+l

−
(

Lfxξxt+l
+ Lfwξwt+l

+ ext+l

)

Using the definition of prediction error bounds in Theorem 3.2.1

(xt+l+2 − xt+l+1)− (x̃t+l+2 − x̃t+l+1) ≤ ρ̄xt+l+1
− ρ̄xt+l

But, comparing with the rate of convergence of the nominal system under

the action of terminal control as described in Claim 3.2.1, it is obvious that

− (x̃t+l+1 − x̃t+l+2) +
(

ρ̄xt+l
− ρ̄xt+l+1

)

≤ −ǫ for some ǫ ≥ 0. Therefore,

|xt+l+2 − xt+l+1| ≤ −ǫ

Using triangular inequality,

|xt+l+2| ≤ xt+l+1| − ǫ (3.33)
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Now, for l = NC−1, we have that xt+Nc ∈ X from part 1 of this proof, hence

xt+Nc+1 ∈ X ∼ Bn(ǫ)

Since X ∼ Bn(ǫ), this means X ∼ Bn(ǫ) ⊆ X and hence |xt+Nc+1| ∈ X .

Recursively repeating this procedure, we can show that

xt+l ∈ X, ∀l = NC + 1, . . . , NP

Therefore, combining both parts of this proof, we have proved that if the nominal

state satisfies tightened constraints (x̃t+l ∈ X̃t+l), the actual constraints (x̃t+l ∈

X̃t+l) are also satisfied throughout the prediction horizon l = 0, . . . , NP , as long

as initial feasibility is provided (xt ∈ XMPC).

Remark 3.2.2 Constraint tightening (3.29)-(3.30) is novel as it is the first time

that such a variety of uncertainty contributions have been considered simultane-

ously. Remarkably, the external input is not a constant or random unknown as is

usually assumed, but here it is considered to evolve according to an uncertain non-

linear map. Besides, estimation errors and prediction errors are also considered.

This leads to very general bounds on prediction error, which can be specialized to

specific cases (e.g. perfect measurement will mean ξx → 0). Also worthy of note

is the fact that we have not considered the model mismatch to be state-dependent

as in [85], as it does not have obvious practical application in mobile robotics. In

fact, if the system is very nonlinear, one cannot expect modeling error to reduce
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with state, as in many cases larger state amplitude offers better model fidelity.

The constraint tightening procedure is summarized in the algorithm below.

Algorithm 2 Constraint Tightening

1: Given (i) nominal models f̃(x̃, u, w̃), g̃(w̃), (ii) uncertainty bounds ξ̄x, ξ̄w, ēx,
ēxw, and (iii) horizons NC , NP .

2: procedure Constraint Tightening

3: Calculate Lipschitz constants of nonlinear maps f̃(x̃, u, w̃) and g̃(w̃).
4: Calculate the prediction error bounds in (3.31) and (3.32).
5: Tighten the constraints by Pontryagin difference as given in (3.29)-(3.30).
6: end procedure

3.2.6 Robust Recursive Feasibility of NMPC Algorithm

We defined the robust output feasible set XMPC in Assumption 3.2.1 as the set of

initial states for which the OCP 3.2.1 is feasible. However, finding this set or even

guaranteeing feasibility for constrained nonlinear FHOCP is not a trivial task.

In MPC however, the initial feasibility is not enough to prove feasibility of the

receding horizon optimal control problem. We must prove recursive feasibility, i.e.

at every sampling instant, the FHOCP is feasible. We will assume that initially,

the problem has a feasible solution, as stated in Assumption 3.2.1.

Definition 3.2.2 (One-Step Controllable Set of Xf) The one-step control-

lability set to the terminal constraint set Xf is defined as

C1(Xf , X̃t+Nc)
∆
=
{

x̃ ∈ X̃t+Nc : f̃(x̃, u, w̃) ∈ Xf , u ∈ U, w̃ ∈ W̃
}

(3.34)

Let us also define d̄ , dist(X̃t+Nc\C1(Xf , X̃t+Nc), Xf).
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Numerical computation of C(X,Xf) is very difficult. There have been some at-

tempts nonetheless for efficient approximation of the one-step controllability set,

such as [95]. We will present a method to calculate the terminal region and its

one-step controllability set in this regard in Chapter 4.

Assumption 3.2.3 (Feasibility Bounds on Uncertainties) The following

bounds apply to the allowable uncertainties (Lfx 6= Lgw)

I. Lower bound on uncertainty growth

ρ̄xt+l
− ρ̄xt+l−1

≥ Ll−1
fx

(

ξ
x

)

+ Lfw

Ll−1
fx − Ll−1

gw

Lfx − Lgw

(

ξ
w

)

(3.35)

for l = 1, . . . , NC.

II. Uncertainties are upper bounded by minimum size of one-step controllability

set to terminal constraint set









LNc−1
fx

(

(Lfx + 1) ξ̄x + Lfw ξ̄w + ēx
)

+

Lfw
LNc−1

fx
−LNc−1

gw

Lfx−Lgw

(

(Lgw + 1) ξ̄w + ēw
)









≤ d̄ (3.36)

For the case where Lfx = Lgw, the assumption above can be easily reformulated

as shown in Remark 3.2.1. Recursive feasibility and robust positive invariance of

feasible region XMPC will now be stated and proven.

Theorem 3.1 (Recursive Feasibility) Under Assumptions 3.2.2 and 3.2.3,

terminal control (Claim 3.2.1), suitable bounds on uncertainties (Assumption
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3.2.3) and tightened constraints (Theorem 3.2.1), given the feasibility of initial

state x̃t ∈ XMPC (Assumption 3.2.1), the FHOCP 3.2.1 is recursively feasible.

Proof. We need to show that given an initially feasible state x̃t ∈ XMPC

at time instant t, there exists a feasible solution for the FHOCP 3.2.1 at t + 1,

and by induction for the entire horizon. We will carry out the proof in two

steps. Therefore, suppose that at time instant t, there exists an optimal control

solution u0t,t+Nc−1|t. In particular at t + 1, there is a possibly feasible sequence

u′t+1,t+Nc|t+1 = col [u0t+1,t+Nc−1|t, u
′
t+Nc], where u

′
t+Nc is a feasible control action.

We will have to show that (a) u′t+1,t+Nc−1|t+1 = col [u0t+1,t+Nc−1|t, u
′
t+Nc] is feasible

for the tightened constraints (3.29), and (b) u′t+Nc exists.

(a) To prove x̃t+l,t+Nc|t+1 ∈ X̃t+l|t+1 for l = 1, . . . , NC : Given estimations for

state x̃t|t and disturbance w̃t|t at t, we mentioned that there exists the fea-

sible control u0t,t+Nc−1|t which state and disturbance predictions x̃t,t+Nc|t and

w̃t+l,t+Nc|t respectively, using nominal maps (3.5) and (3.10). At t + 1, new

estimations x̃t+1|t+1 and w̃t+1|t+1 are made, such that the new predictions

using the old sequence u′t+1,t+Nc−1|t+1 = u0t+1,t+Nc−1|t are x̃t+1,t+Nc|t+1 and

w̃t+l,t+Nc|t+1. We can write

x̃t+l|t+1 − x̃t+l|t

= f̃(x̃t+l−1|t+1, u
0
t+l−1|t, w̃t+l−1|t+1)− f̃(x̃t+l−1|t, u

0
t+l−1|t, w̃t+l−1|t)

≤
∣

∣

∣
f̃(x̃t+l−1|t+1, u

0
t+l−1|t, w̃t+l−1|t+1)− f̃(x̃t+l−1|t, u

0
t+l−1|t, w̃t+l−1|t)

∣

∣

∣
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Using Assumption 3.2.2,

x̃t+l|t+1 − x̃t+l|t ≤ Lfx|x̃t+l−1|t+1 − x̃t+l−1|t|+ Lfw|w̃t+l−1|t+1 − w̃t+l−1|t|

Using the same recursion we can write

x̃t+l|t+1 − x̃t+l|t ≤ L2
fx

∣

∣x̃t+l−2|t+1 − x̃t+l−2|t

∣

∣

+Lfw (Lfx + Lgw)
∣

∣w̃t+l−2|t+1 − w̃t+l−2|t

∣

∣

≤ L3
fx

∣

∣x̃t+l−3|t+1 − x̃t+l−3|t

∣

∣

+Lfw

(

L2
fx + LfxLgw + L2

gw

) ∣

∣w̃t+l−3|t+1 − w̃t+l−3|t

∣

∣

≤ L4
fx

∣

∣x̃t+l−4|t+1 − x̃t+l−4|t

∣

∣

+Lfw

(

L3
fx + L2

fxLgw + LfxL
2
gw + L3

gw

) ∣

∣w̃t+l−4|t+1 − w̃t+l−4|t

∣

∣

This can be generalized as

x̃t+l|t+1 − x̃t+l|t ≤ Ll−1
fx

∣

∣x̃t+1|t+1 − x̃t+1|t

∣

∣

+Lfw
Ll−1
fx

−Ll−1
gw

Lfx−Lgw

∣

∣w̃t+1|t+1 − w̃t+1|t

∣

∣ ,

(3.37)

for l = 1, . . . , Nc− 1. Now, since we have assumed that x̃t+l|t ∈ X̃t+l|t , X ∼

Bn(ρ̄xt+l|t
), with ρ̄xt+l|t

given as (3.31), this means

x̃t+l|t+1 ∈ X ∼ Bn
(

ρ̄xt+l|t

)

⊕Bn

(

Ll−1
fx

∣

∣x̃t+1|t+1 − x̃t+1|t

∣

∣ + Lfw
Ll−1

fx
−Ll−1

gw

Lfx−Lgw

∣

∣w̃t+1|t+1 − w̃t+1|t

∣

∣

)

(3.38)

However, we need to prove x̃t+l,t+Nc|t+1 ∈ X̃t+l|t+1 , X ∼ Bn(ρ̄xt+l|t+1
). For
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this to be true, we should have

ρ̄xt+l|t+1
≤ ρ̄xt+l|t

−Ll−1
fx

∣

∣x̃t+1|t+1 − x̃t+1|t

∣

∣− Lfw

Ll−1
fx − Ll−1

gw

Lfx − Lgw

∣

∣w̃t+1|t+1 − w̃t+1|t

∣

∣

(3.39)

But, since ρ̄xt+l|t+1
= ρ̄xt+l−1|t

, we can write the inequality above as

ρ̄xt+l|t
− ρ̄xt+l−1|t

≥ Ll−1
fx

∣

∣x̃t+1|t+1 − x̃t+1|t

∣

∣ +Lfw

Ll−1
fx − Ll−1

gw

Lfx − Lgw

∣

∣w̃t+1|t+1 − w̃t+1|t

∣

∣

Adding and subtracting actual state xt+l and disturbance wt+l,

ρ̄xt+l|t
− ρ̄xt+l−1|t

≥ Ll−1
fx

∣

∣(x̃t+1|t+1 − xt+1)− (x̃t+1|t − xt+1)
∣

∣

+Lfw
Ll−1

fx
−Ll−1

gw

Lfx−Lgw

∣

∣(w̃t+1|t+1 − wt+1)− (w̃t+1|t − wt+1)
∣

∣

Using triangle inequality,

ρ̄xt+l|t
− ρ̄xt+l−1|t

≥ Ll−1
fx

∣

∣|x̃t+1|t − xt+1| − |x̃t+1|t+1 − xt+1|
∣

∣

+Lfw
Ll−1
fx

−Ll−1
gw

Lfx−Lgw

∣

∣|w̃t+1|t − wt+1| − |w̃t+1|t+1 − wt+1|
∣

∣

≥ Ll−1
fx

∣

∣x̃t+1|t+1 − xt+1

∣

∣+ Lfw
Ll−1

fx
−Ll−1

gw

Lfx−Lgw

∣

∣w̃t+1|t+1 − wt+1

∣

∣

Since we take fresh samples at t + 1, estimation error’s lower bounds are

given by (3.8) and (3.9). This leads to inequality (3.35). Since this proves

the inequality (3.39), we can substitute it in (3.38) as

x̃t+l|t+1 ∈ X ∼ Bn(ρ̄xt+l−1|t
) ⊆ X ∼ Bn(ρ̄xt+l|t+1

)
∆
= X̃t+l|t+1 (3.40)
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for l = 1, . . . , NC . This completes the first part of the proof.

(b) To prove x̃t+Nc+1|t+1 ∈ Xf ⊆ X̃t+Nc+1|t+Nc+1: We will start with rewriting

inequality (3.37).

x̃t+Nc|t+1 − x̃t+Nc|t ≤ LNc−1
fx

∣

∣(x̃t+1|t+1 − xt+1)− (x̃t+1|t − xt+1)
∣

∣

+ Lfw
LNc−1

fx
−LNc−1

gw

Lfx−Lgw

∣

∣(w̃t+1|t+1 − wt+1)− (w̃t+1|t − wt+1)
∣

∣

≤ LNc−1
fx

∣

∣|x̃t+1|t+1 − xt+1|+ |x̃t+1|t − xt+1|
∣

∣

+ Lfw
LNc−1
fx

−LNc−1
gw

Lfx−Lgw

∣

∣|w̃t+1|t+1 − wt+1|+ |w̃t+1|t − wt+1|
∣

∣

Since upper bounds on accumulated prediction errors are given by (3.19)-

(3.20) and (3.31)-(3.32),

x̃t+Nc|t+1 − x̃t+Nc|t ≤ LNc−1
fx

∣

∣

∣
ρ̄xt+1|t+1

+ ρ̄xt+1|t

∣

∣

∣

+Lfw
LNc−1
fx

−LNc−1
gw

Lfx−Lgw

∣

∣

∣
ρ̄wt+1|t+1

+ ρ̄wt+1|t

∣

∣

∣

We have ρ̄xt+1|t+1
= ρ̄xt|t

and ρ̄wt+1|t+1
= ρ̄wt|t

. Hence,

x̃t+Nc|t+1 − x̃t+Nc|t ≤ LNc−1
fx

∣

∣(Lfx + 1)ξ̄x + Lfw ξ̄w + ēx
∣

∣

+Lfw
LNc−1
fx

−LNc−1
gw

Lfx−Lgw

∣

∣(Lgw + 1)ξ̄w + ēw
∣

∣

(3.41)

From Assumption 3.2.3, let

LNc−1
fx

∣

∣(Lfx + 1)ξ̄x + Lfw ξ̄w + ēx
∣

∣+Lfw

LNc−1
fx − LNc−1

gw

Lfx − Lgw

∣

∣(Lgw + 1)ξ̄w + ēw
∣

∣ ≤ d̄

Now, since we have assumed that x̃t+Nc|t ∈ Xf , with ρ̄xt+l|t
given as (3.31),
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this means

x̃t+Nc|t+1 ∈ Xf ⊕ Bn(d̄) , C1(Xf , X)

Hence, there exists a feasible control u′t+Nc ∈ U , such that x̃t+Nc+1|t+1 ∈

Xf ⊆ X̃t+Nc+1|t+Nc+1. This completes the proof.

Remark 3.2.3 It can be seen from the inequality (3.35) that the lower bound

on growth of uncertainties depends on the lower bounds on estimation errors. If

these lower bounds are zero (which is often the case), this condition on uncertainty

growth is always satisfied. It is apparent from the foregoing that ensuring recursive

feasibility is dependent on two factors:

1. finding the set of initial states XMPC for which feasible control solutions

exist,

2. finding the minimum size d̄ of one-step robust controllability set C1(Xf ).

We present a novel algorithm for determining the robust one-step controllability

set to Xf and an iterative scheme for determining XMPC in Chapter 4.

3.2.7 Robust Stability of NMPC Algorithm

Even if the system model being controlled is linear, presence of constraints make

the control problem nonlinear [75]. Therefore, Lyapunov and Dynamic Program-

ming analysis are natural tools for determining stability of the NMPC controllers.
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As pointed above, NMPC inherits many features of classical optimal control,

therefore many concepts like Hamilton-Bellman-Jacobi theory, Bellman’s ’curse

of dimensionality’, calculus of variations etc. have direct correspondence in MPC

theory. In fact, one can calculate offline static optimal controllers for finite horizon

optimality of unconstrained linear time-invariant (LTI)systems using the same ar-

guments as those that apply to stability requirements of NMPC [38]. It is another

matter that we are not interested in unconstrained LTI systems. Constrained

nonlinear systems optimized over finite horizon is much more involved and chal-

lenging.

Asymptotic ISS for MPC schemes can be shown in case of additive, vanishing

disturbance [96]. However, [79] proves that only ISpS can be guaranteed a priori

in case of non-vanishing (not decaying with state) uncertainties. In the proposed

approach, the uncertainty in predicting ξx and ξw are non-vanishing and one

can only guarantee ISpS. One method to ensure closed-loop stability of MPC

[38] is by specifying a terminal cost hf and a terminal constraint set, such that

control switches to terminal or auxiliary control kf upon the system entering Xf

during control horizon Nc. We consider the stability of the system with respect

to uncertain external input by exploiting Theorem 2.5.2. We will introduce some

useful assumptions and justify them.

Assumption 3.2.4 (Cost Lipschitz Continuity) We assume that kf(·), h(·),

q(·) and hf(·) are locally Lipschitz continuous and there are nonlinear functions

relating to the cost components.
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I. |kf(x̃)| ≤ Lkf |x̃|, for x̃ ∈ X̃f

II. |h(x̃, u)| ≤ Lhx|x̃|+ Lhu|u|, for x̃ ∈ X̃t and u ∈ U

III. 0 ≤ |q(x̃, w̃)| ≤ Lqx|x̃|+ Lqw|w̃|, for x ∈ X̃t and w ∈ W̃t

IV. |hf(x̃)| ≤ Lhf |x̃| for x̃ ∈ X̃f

V. α1(|x̃t|) ≤ h(x̃t, ut), for x̃ ∈ X̃t.

VI. α1,f(|x̃t|) ≤ hf (x̃t) ≤ α2,f(|x̃t|), for all x̃t ∈ X̃t,

with positive local Lipschitz constants Lkf , Lhx, Lhu, Lqx, Lqw and Lhf .

These continuity assumptions are not restrictive. Local Lipschitz conditions and

nonlinear bounds are satisfied by most quadratic cost functions, as shown in Ex-

ample 3.3.1. Hence, with the above development, we have explicit relations for

all parameters (in terms of designer chosen variables) mentioned in Assumption

3.2.4.

Remark 3.2.4 Due to the use of Lipschitz constants, nonlinear bounds in As-

sumption 3.2.4 are conservative. Similarly, as noted in [59], small-gain condition

may turn out to be conservative in practice as it is typical of these kind of re-

sults. On the other hand, the generality of the problem makes it rather difficult to

obtain tighter conditions without introducing more restrictive assumptions on the

structure of the dynamics and on the cost function.

We will prove the stability of the nominal system first and show that even the

nominal system is only practically stable (ISpS). We will then treat the robust
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stability of the actual system, and show that only ultimate boundedness (ISpS)

can be guaranteed for the uncertain, perturbed system.

Stability of Nominal System with Nominal Disturbance Model

In this section we will investigate stability of the nominal system (3.5) with nomi-

nal disturbance model (3.10) under the receding horizon control strategy. We will

show that it is practically stable and converges to a region around target state.

It will be extended in the next section for the uncertain perturbed system (3.1).

We will introduce a few definitions which will be proven later.

Lemma 3.2.2 (Technical) With reference to Definition 2.5.9, the following hold

for practical stability of the nominal system (3.5) with nominal disturbance model

(3.10) under RH control (3.17),

(i). α1(s) = α2(s) , min h(s, 0)

(ii). α3(s) , α2,f(L
Np

fx s) + (Lhx + LhuLkf + Lqx)
(Lfx)

Np
−1

Lfx−1
s

(iii). σ1(s) ,



















Lqx+Lhx

Lfx−Lgw

(

LNp−1

fx
−1

Lfx−1
− LNp−1

gw −1

Lgw−1

)

+
LNp−1
gw −1

Lgw−1
Lqw

Lfw

+
LhuLkf

Lfx−Lgw

(

LNp−1

fx
−LNc

fx

Lfx−1
− LNp−1

gw −LNc
gw

Lgw−1

)

+
LNp−1

fx
−LNp−1

gw

Lfx−Lgw



















Lfw (Lgws)

(iv). σ2(s) , σ1

(

s
Lgw

)

+ ψ(s)

(v). σ3(s) , Lqw
(Lgw)Np−1

Lgw−1
s

(vi). c̄ ,









LNp−1

fx
−1

Lfx−1
(Lqx + Lhx)

+LhuLkf
LNp−1

fx
−LNc

fx

Lfx−1
+ LNp−1

fx









c1 + Lhu |umax − umin|
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Figure 3.3: Ilustration of sets introduced in Theorem 3.2.2 and feasible trajectories.
State constraint set X, tightened constraint set X̃, terminal set Xf and uncertainty ball
Bn(c) are shown (left); a feasible trajectory is also shown (right).

(vii). ¯̄c = 0,

where c1 , ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx.

Figure 3.3 illustrates the sets introduced in this chapter and feasible trajectory.

Theorem 3.2.2 (Stability of Nominal System) Let there be a terminal set

X̃f ⊂ X̃ and auxiliary control kf(x) according to Claim 3.2.1, such that Assump-

tions 3.2.1, 3.2.2, 3.2.3 and 3.2.4 hold. If the following condition holds for some

ψ ∈ K

hf

(

f̃ (x̃, kf(x̃))
)

− hf (x̃) ≤ −h(x̃, kf(x̃))− q(x̃, w̃) + ψ (|w̃|) , (3.42)

for all x̃ ∈ Xf and w̃ ∈ W̃ , then the nominal system (3.5) under NMPC opti-

mal control (3.17) which optimizes cost (3.14) admits the optimal value of cost

functional Vt(x̃t, ut, w̃t) = Jt(x̃t, u
0
t,t+Np

, w̃t) as an ISpS Lyapunov function. It is

therefore input-to-state practically stable (ISpS) for all initial states within the

robust output feasible set XMPC ⊆ X.
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Proof. We need to prove that Vt(x̃t|t, ut, w̃t|t) = Jt(x̃t|t, u
0
t,t+Np|t

, w̃t|t) is an ISS

Lyapunov function in XMPC . From (3.14), the optimal cost is given as

Vt(x̃t|t, u
o
t,t+Nc−1|t, w̃t|t) = h(x̃t|t, u

o
t|t) + q(x̃t|t, w̃t|t)

+
t+Nc−1
∑

l=t+1

[

h(x̃l|t, u
o
l|t) + q(x̃l|t, w̃l|t)

]

+

t+Np−1
∑

l=t+Nc

[

h(x̃l|t, u
o
l|t) + q(x̃l|t, w̃l|t)

]

+ hf(x̃t+Np|t) (3.43)

The lower bound on Vt(x̃t|t, ut|t, w̃t|t) is obviously given by (Assumption 3.2.4)

α1(|x̃t|t|) ≤ Vt(x̃t|t, u
o
t,t+Np|tw̃t|t), ∀x̃t|t ∈ X̃t|t ⊇ X, w̃t|t ∈ W̃t|t ⊆W (3.44)

By Assumption 3.2.1, XMPC is not empty. In fact, the control sequence

ũt,t+NC−1|t = [kf(x̃t|t), . . . , kf(x̃t+NC−1|t)]
T is feasible (but in general suboptimal)

for any x̃tt|t ∈ Xf . Using Assumptions 3.2.2 and 3.2.4

Vt(x̃t|t, u
o
t,t+Nc−1|t, w̃t|t) ≤ Jt(x̃t|t, ũt,t+Nc−1|t, w̃t|t)

=

t+Np−1
∑

l=t

[

h
(

x̃l|t, ũl|t
)

+ q
(

x̃l|t, w̃l|t

)]

+ hf
(

|x̃t+Np|t|
)

≤
t+Np−1
∑

l=t

[

Lhx

∣

∣x̃l|t
∣

∣ + Lhu

∣

∣kf(x̃l|t)
∣

∣ + Lqx

∣

∣x̃l|t
∣

∣+ Lqw

∣

∣w̃l|t

∣

∣

]

+ α2,f

(

|x̃t+Np|t|
)

≤
t+Np−1
∑

l=t

[

(Lhx + LhuLkf + Lqx)
∣

∣x̃l|t
∣

∣+ Lqw

∣

∣w̃l|t

∣

∣

]

+ α2,f

(

|x̃t+Np|t|
)

≤
t+Np−1
∑

l=t

[

(Lhx + LhuLkf + Lqx)L
l−t
fx

∣

∣x̃t|t
∣

∣+ LqwL
l−t
gw

∣

∣w̃t|t

∣

∣

]

+α2,f

(

(Lfx)
Np|x̃t|t|

)
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Summing the geometric series, we obtain

Vt(x̃t|t, u
o
t,t+Nc−1|t, w̃t|t)

≤ (Lhx + LhuLkf + Lqx)
(Lfx)

Np − 1

Lfx − 1

∣

∣x̃t|t
∣

∣

+ Lqw
(Lgw)

Np − 1

Lgw − 1

∣

∣w̃t|t

∣

∣ + α2,f

(

(Lfx)
Np
∣

∣x̃t|t
∣

∣

)

≤ α3(|x̃t|t|) + σ3(|w̃t|t|) + ¯̄c (3.45)

for x̃t|t ∈ Xf and w̃t|t ∈ W̃t|t. It is obvious that α3, σ3 and ¯̄c are as defined in

Lemma 3.2.2. For (3.45) to hold, Lfx, Lgw 6= 1. However, following the reasons

explained in Remark 3.2.1, in the very special case of Lfx = 1 and/or Lgx = 1,

minor modifications are required (3.45).

Refer to Assumption 3.2.3 and the result expressed in Theorem 3.1, which

states that given the optimal control sequence u0t,t+Nc−1|t at time t for x̃t ∈ X̃t,

there exists at least one feasible control u′t+1,t+Nc|t+1 = [uot+1,t+Nc−1|t, u
′
t+Nc|t+1]

T

at t+1, where u′t+Nc|t+1 ∈ U is such that x̃t+Nc+1|t+1 ∈ Xf any xt ∈ XMPC . Also,

note that since new measurements are made at t + 1, nominal estimates xt+1|t+1

and wt+1|t+1 at t+1 are different than the estimates xt+1|t and wt+1|t, even though

the same model is used for prediction. The cost of using this (suboptimal, in

general) control is

Vt+1(x̃t+1|t+1, u
o
t+1,t+Nc|t+1w̃t+1|t+1) ≤ J(x̃t+1, w̃t+1, u

′
t+1,t+Nc|t+1, NC , NP )

=
t+Nc
∑

l=t+1

[

h(x̃l|t+1, u
′
l|t+1) + q(x̃l|t+1, w̃l|t+1)

]

104



+

t+Np
∑

l=t+Nc+1

[

h(x̃l|t+1, kf(x̃l|t+1)) + q(xl|t+1, w̃l|t+1)
]

+ hf
(

x̃t+Np+1|t+1

)

=

t+Nc−1
∑

l=t+1

[

h(x̃l|t+1, u
o
l|t) + q(x̃l|t+1, w̃l|t+1)

]

+ h(x̃t+Nc|t+1, u
′
t+Nc|t+1) + q(x̃t+Nc|t+1, w̃t+Nc|t+1)

+

t+Np
∑

l=t+Nc+1

[

h(x̃l|t+1, kf(x̃l|t+1)) + q(xl|t+1, w̃l|t+1)
]

+ hf

(

f̃
(

x̃t+Np|t+1, kf(x̃t+Np|t+1)
)

)

(3.46)

Add and subtract (3.43) from (3.46).

Vt+1(x̃t+1|t+1, u
o
t+1,t+Nc|t+1w̃t+1|t+1)

≤ Vt(x̃t|t, u
o
t,t+Nc−1|t, w̃t|t)− h(x̃t|t, uot|t)− q(x̃t|t, w̃t|t)

+

t+Nc−1
∑

l=t+1

[

h(x̃l|t+1, u
o
t|t)− h(x̃l|t, uol|t) + q(x̃l|t+1, w̃l|t+1)− q(x̃l|t, w̃l|t)

]

+ h(x̃t+Nc|t+1, u
′
t+Nc|t+1)− h

(

x̃t+Nc|t, kf(x̃t+Nc|t)
)

+ q(x̃t+Nc|t+1, w̃t+Nc|t+1)− q(x̃t+Nc|t, w̃t+Nc|t)

+

t+Np−1
∑

l=t+Nc+1









h(x̃l|t+1, kf(x̃l|t+1))− h
(

x̃l|t, kf(x̃l|t)
)

+q(xl|t+1, w̃l|t+1)− q
(

x̃l|t, w̃l|t

)









+ h(x̃t+Np|t+1, kf(x̃t+Np|t+1)) + q(x̃t+Np|t+1, w̃t+Np|t+1)

+ hf

(

f̃
(

x̃t+Np|t+1, kf(x̃t+Np|t+1)
)

)

− hf
(

x̃t+Np|t

)

(3.47)
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Now, we compute upper limits on the components of (3.47). From Assumptions

3.2.4 and 3.2.2, and inequality (3.37) for l = 1, . . . , NC − 1

∣

∣h(x̃t+l|t+1, u
o
t+l|t)− h(x̃t+l|t, u

o
t+l|t)

∣

∣ ≤ Lhx

∣

∣x̃t+l|t+1 − x̃l|t
∣

∣

≤ Lhx









Ll−1
fx

∣

∣x̃t+1|t+1 − x̃t+1|t

∣

∣

+Lfw
Ll−1
fx

−Ll−1
gw

Lfx−Lgw

∣

∣w̃t+1|t+1 − w̃t+1|t

∣

∣









But, utilizing Lemma 3.2.1,

∣

∣x̃t+1|t+1 − x̃t+1|t

∣

∣ =
∣

∣x̃t+1|t+1 − xt+1 − x̃t+1|t + xt+1

∣

∣

≤
∣

∣x̃t+1|t+1 − xt+1

∣

∣+
∣

∣x̃t+1|t − xt+1

∣

∣ ≤ ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx

Therefore,

∣

∣h(x̃t+l|t+1, u
o
t+l|t)− h(x̃t+l|t, u

o
l|t)
∣

∣ ≤ LhxL
l−1
fx

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+ LhxLfw

Ll−1
fx − Ll−1

gw

Lfx − Lgw

(∣

∣w̃t+1|t+1

∣

∣+ Lfx

∣

∣w̃t|t

∣

∣

)

(3.48)

for l = 1, . . . , NC − 1. Using the treatment of (3.48)

∣

∣q(x̃t+l|t+1, w̃t+l|t+1)− q(x̃t+l|t, w̃t+l|t)
∣

∣

≤ Lqx

(∣

∣x̃t+l|t+1 − x̃l|t
∣

∣

)

+ Lqw

(∣

∣w̃t+l|t+1

∣

∣+
∣

∣w̃l|t

∣

∣

)

≤ Lqx









Ll−1
fx

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+Lfw
Ll−1

fx
−Ll−1

gw

Lfx−Lgw

(

Lgw

∣

∣w̃t|t

∣

∣ +
∣

∣w̃t+1|t+1

∣

∣

)








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+ LqwL
l−1
gw

(

Lgw

∣

∣w̃t|t

∣

∣ +
∣

∣w̃t+1|t+1

∣

∣

)

(3.49)

l = 1, . . . , NP − 1. Similarly,

∣

∣h(x̃t+l|t+1, kf(x̃t+l|t+1))− h
(

x̃t+l|t, kf(x̃t+l|t)
)∣

∣

≤ Lhx

(∣

∣x̃t+l|t+1 − x̃t+l|t

∣

∣

)

+ LhuLkf

(∣

∣x̃t+l|t+1 − x̃t+l|t

∣

∣

)

≤ (Lhx + LhuLkf)









Ll−1
fx

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+Lfw
Ll−1

fx
−Ll−1

gw

Lfx−Lgw

(

Lgw

∣

∣w̃t|t

∣

∣+
∣

∣w̃t+1|t+1

∣

∣

)









(3.50)

for l = NC + 1, . . . , NP − 1. Consider (3.41) for the difference between transition

costs at NC .

∣

∣h(x̃t+Nc|t+1, u
′
t+Nc|t+1)− h

(

x̃t+Nc|t, kf(x̃t+Nc|t)
)∣

∣

≤ Lhx

(∣

∣x̃t+l|t+1 − x̃l|t
∣

∣

)

+ Lhu

(∣

∣u′t+Nc|t+1 − kf(x̃t+Nc|t)
∣

∣

)

≤ LhxL
Nc−1
fx

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+ Lhu |umax − umin|

+ LhxLfw

LNc−1
fx − LNc−1

gw

Lfx − Lgw

(

Lgw

∣

∣w̃t|t

∣

∣ +
∣

∣w̃t+1|t+1

∣

∣

)

(3.51)

and finally,

∣

∣hf
(

x̃t+Np|t+1

)

− hf
(

x̃t+Np|t

)∣

∣ ≤ Lhf

∣

∣x̃t+Np|t+1 − x̃t+Np|t

∣

∣

⇒ hf
(

x̃t+Np|t+1

)

− hf
(

x̃t+Np|t

)

≤ Lhf

∣

∣x̃t+Np|t+1 − x̃t+Np|t

∣

∣

⇒ −hf
(

x̃t+Np|t

)

≤ −hf
(

x̃t+Np|t+1

)

+ LNp−1
fx

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)
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+ Lfw

LNp−1
fx − LNp−1

gw

Lfx − Lgw

(

Lgw

∣

∣w̃t|t

∣

∣ +
∣

∣w̃t+1|t+1

∣

∣

)

(3.52)

Substituting inequalities (3.48) - (3.52) in (3.47), we can write

Vt+1(x̃t+1|t+1, u
o
t+1,t+Nc|t+1, w̃t+1|t+1)− Vt(x̃t|t, uot,t+Nc−1|t, w̃t|t)

≤ −h(x̃t|t, uot|t)− q(x̃t|t, w̃t|t)

+

Np−1
∑

l=1

















Ll−1
fx (Lqx + Lhx)

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+
Ll−1
fx

−Ll−1
gw

Lfx−Lgw
(Lqx + Lhx)Lfw

(

Lgw

∣

∣w̃t|t

∣

∣+
∣

∣w̃t+1|t+1

∣

∣

)

+LqwL
l−1
gw

(

Lgw

∣

∣w̃t|t

∣

∣ +
∣

∣w̃t+1|t+1

∣

∣

)

















+ Lhu |umax − umin|

+

Np−1
∑

l=Nc+1









(LhuLkf)









Ll−1
fx

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+Lfw
Ll−1

fx
−Ll−1

gw

Lfx−Lgw

(

Lgw

∣

∣w̃t|t

∣

∣+
∣

∣w̃t+1|t+1

∣

∣

)

















+LNp−1
fx

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+Lfw

LNp−1
fx − LNp−1

gw

Lfx − Lgw

(

Lgw

∣

∣w̃t|t

∣

∣+
∣

∣w̃t+1|t+1

∣

∣

)

+ h(x̃t+Np|t+1, kf(x̃t+Np|t+1)) + q(x̃t+Np|t+1, w̃t+Np|t+1)

+ hf

(

f̃
(

x̃t+Np|t+1, kf(x̃t+Np|t+1)
)

)

− hf
(

x̃t+Np|t+1

)

Noting that q(x̃t|t, w̃t|t) ≥ 0 and condition (3.42), we obtain

Vt+1(x̃t+1|t+1, u
o
t+1,t+Nc|t+1, w̃t+1|t+1)− Vt(x̃t|t, uot,t+Nc−1|t, w̃t|t) ≤ −h(x̃t|t, uot|t)
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+



























Lqx+Lhx

Lfx−Lgw

(

LNp−1

fx
−1

Lfx−1
− LNp−1

gw −1

Lgw−1

)

Lfw

(

Lgw

∣

∣w̃t|t

∣

∣ +
∣

∣w̃t+1|t+1

∣

∣

)

+
LNp−1
gw −1

Lgw−1
Lqw

(

Lgw

∣

∣w̃t|t

∣

∣+
∣

∣w̃t+1|t+1

∣

∣

)

+
LhuLkf

Lfx−Lgw

(

LNp−1

fx
−LNc

fx

Lfx−1
− LNp−1

gw −LNc
gw

Lgw−1

)

Lfw

(

Lgw

∣

∣w̃t|t

∣

∣+
∣

∣w̃t+1|t+1

∣

∣

)

+Lfw
LNp−1

fx
−LNp−1

gw

Lfx−Lgw

(

Lgw

∣

∣w̃t|t

∣

∣+
∣

∣w̃t+1|t+1

∣

∣

)

+ ψ
(∣

∣w̃t+1|t+1

∣

∣

)



























+

















LNp−1

fx
−1

Lfx−1
(Lqx + Lhx)

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+LhuLkf
LNp−1

fx
−LNc

fx

Lfx−1

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+LNp−1
fx

(

ξ̄x + Lfxξ̄x + Lfw ξ̄w + ēx
)

+ Lhu |umax − umin|

















Since α1(|x̃|) ≤ h(x̃, u) (Assumption 3.2.4), we can now write

Vt+1(x̃t+1|t+1, u
o
t+1,t+Nc|t+1, w̃t+1|t+1)− Vt(x̃t|t, uot,t+Nc−1|t, w̃t|t)

≤ −α2(|x̃t|) + σ1(|w̃t|) + σ2(|w̃t+1|) + c̄

∀x̃t ∈ XMPC , ∀w̃t ∈ W̃t, w̃t+1 ∈ W̃t+1, (3.53)

where α2, σ1, σ2, and c̄ are as defined in Lemma 3.2.2. Hence, in view of Theorem

2.5.2 and inequalities (3.44), (3.45) and (3.53), the nominal system (3.5)-(3.10)

under RH optimal control (3.17) is ISpS in XMPC. Hence, in reference to Theorem

2.5.2, we can write

∣

∣x̃t+l|t+l

∣

∣ ≤ β̃
(∣

∣x̃t|t
∣

∣ , l
)

+ γ̃
(∥

∥w̃[t+l|t+l]

∥

∥

)

+ c̃ (3.54)

according to the definitions given in Theorem 2.5.2.

Remark 3.2.5 Practical (ISpS) stability of nominal system model coupled with
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nominal disturbance model under proposed NMPC controller was demonstrated.

Some remarks are in order.

R-I. For comparison, consider the ISS stability of the nonlinear system under

additive disturbance studied in [59]. However, Theorem 3.2.2 considers the

nominal system with nominal disturbance model. We do not have a strict

structural requirement on the nominal disturbance model (3.10), unlike

[59] which assumes a linear asymptotically stable disturbance model.

R-II. Stability of nominal system does not necessarily translate into same margin

of stability and convergence for the actual system with disturbances and

uncertainties. In the next section we will study stability of the perturbed

dynamics, and show that ultimate boundedness (ISpS) can be achieved,

albeit with different bounds.

Stability of Uncertain and Perturbed System

In the previous section, we showed practical (ultimately bounded) stability of the

nominal system under NMPC control. However, we are more interested in the

trajectory of the actual uncertain and perturbed system in closed loop. We will

see that due to recursive feasibility and constraint tightening, the ISpS results

for nominal system are easily translated into corresponding ISpS stability for the

perturbed system. The treatment below is inspired from [97].

Theorem 3.2.3 (ISpS Stability of Perturbed and Uncertain System) If

the nominal system (3.5) with nominal disturbance model (3.10) is ISpS stable
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within tightened constraint sets (3.13) under RH control law (3.17), then the

uncertain system (3.1) perturbed with external input (3.4) under the same control

(3.17) is also ISpS stable.

Proof. Let us start from the result derived in the last section, i.e practical

stability of the nominal system under RH control law. At every instant, new

measurements are taken and hence we have from (3.6)

∣

∣xt+l − x̃t+l|t+l

∣

∣ ≤ ξ̄x

xt+l − x̃t+l|t+l ≤ ξ̄x

∣

∣x̃t+l|t+l

∣

∣ ≥
∣

∣xt+l − ξ̄x
∣

∣ ≥ |xt+l| −
∣

∣ξ̄x
∣

∣

Put this in (3.54),

|xt+l| ≤ β̃
(∣

∣x̃t|t
∣

∣ , l
)

+ γ̃
(∥

∥w̃[t+l|t+l]

∥

∥

)

+ c̃+ ξ̄x (3.55)

Similarly,

∣

∣xt − x̃t|t
∣

∣ ≤ ξ̄x ⇒
∣

∣x̃t|t
∣

∣ ≤ |xt|+ ξ̄x

Put this in (3.55), and apply properties of comparison functions from Section

2.4.2.

|xt+l| ≤ β̃
(

|xt|+ ξ̄x, l
)

+ γ̃
(∥

∥w̃[t+l|t+l]

∥

∥

)

+ c̃+ ξ̄x

≤ β̃ (2 |xt| , l) + γ̃
(∥

∥w̃[t+l|t+l]

∥

∥

)

+ c̃+ ξ̄ + β̃
(

2 ξ̄x, 0
)

(3.56)
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Now, from (3.9),

∥

∥w̃t,t+l|t+l

∥

∥

∆
= sup

0≤k≤l

{∣

∣w̃t+k|t+k

∣

∣

}

≤ sup
0≤k≤l

{

|wt+k|+ ξ̄w
}

= sup
0≤k≤l

{|wt+k|}+ ξ̄w = ‖wt,t+l‖+ ξ̄w

Put this back in (3.2.7)

|xt+l| ≤ β̃ (2 |xt| , l) + γ̃
(

‖wt,t+l‖+ ξ̄
)

+ c̃+ ξ̄ + β̃
(

2 ξ̄x, 0
)

≤ β̃ (2 |xt| , l) + γ̃ (2 ‖wt,t+l‖) + c̃+ ξ̄ + β̃
(

2 ξ̄x, 0
)

+ γ̃
(

2 ξ̄w
)

Hence, we can now write

|xt+l| ≤ β (|xt| , l) + γ (‖wt,t+l‖) + c (3.57)

with β(r, s)
∆
= β̃ (2 r, s), γ(s) = γ̃ (2 s) and c

∆
= c̃ + ξ̄ + β̃

(

2 ξ̄x, 0
)

+ γ̃
(

2 ξ̄w
)

.

Therefore, in view of (3.57), the perturbed system (3.5) under RH control law

(3.17) is also ISpS stable.

3.3 Illustrative Examples: Quadratic Cost and

Constraint Tightening

In many cases the cost functional in MPC is quadratic. We will see that in this

case, we can derive explicit analytic forms of Lipschitz constants and other bounds

112



in the development above. We will furnish two examples, one analytic and another

numerical to elucidate the theory developed in this chapter.

Example 3.3.1 (Bounds and L. Constants of Quadratic Cost) If the cost

functional is quadratic, such as

Jt (x̃, u, w̃, Nc, Np, kf) =
(

x̃t,t+Np

)T
Qf

(

x̃t,t+Np

)

+

t+Np−1
∑

l=t









(x̃l)
TQ (x̃l) + (ul)

TR (ul)

+
(

x̃l − f̃(0, 0, w̃l)
)T

S
(

x̃l − f̃(0, 0, w̃l)
)









(3.58)

with positive definite matrices Q, R, S and Qf , then the Lipschitz constants and

nonlinear bounds in Assumption 3.2.4 can be explicitly found in terms of system

and design variables. Lipschitz constants Lfx, Lfu and Lgw of state and distur-

bance models can be determined easily after examining the model. Comparing

(3.58) with cost functional (3.14), it is easy to see that h(x̃, u) = |x̃|Q + |u|R,

q(x̃, w̃) = |x̃ − f̃(0, 0, w̃l−1)|S and hf (x̃t+Np) = |x̃t+Np|Qf
. Continuing from Ex-

ample (2.5.1), we can show that (using nomenclature of Assumption 3.2.4 and

Lemma 3.2.2). Let λΠmin
and λΠmax

are the minimum and maximum eigenvalues

of the p.d. matrix Π. Constraint values xmax, umax and wmax are defined in (3.3).

Here, |x̃|max , max(|xmin|, |xmax|) and similarly defined for u and w̃.

I. α1(|x̃|) = α2(|x̃|) = λQmin
|x̃|2

II. α1f (|x̃|) = λQf,min
|x̃|2

III. α2f (|x̃|) = λQf,max
|x̃|2
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IV. Lhx = λQmax
|x̃|max

V. Lhu = λRmax
|u|max

VI. From triangular inequality |x̃− f̃ (0, 0, w̃l)|S ≤ |x̃|S + |f̃(0, 0, w̃l)|S, hence we

have Lqx = λSmax
|x̃|max

VII. Similarly, Lqw = λSmax
L2
fw|w̃|max

VIII. From (3.28), xTQfx ≤ a for x̃ ∈ Xf , therefore |x̃| ≤
√

a/λQf,max
, ∀x̃ ∈ Xf ,.

Therefore, Lhf =
√

aλQf ,max
.

IX. Lkf = λkfmax

√

a/λQf,max
, where λkfmax

is the maximum eigenvalue of KTK,

if the terminal control is given by kf(x̃) = KT x̃.

Inserting these values in Lemma 3.2.2 gives explicit expressions for the remaining

nonlinear functions described in this chapter.

Next, we consider a numerical example (inspired by [95]) which further illustrates

these concepts introduced in this chapter. We will consider constraint tightening

of a simple nonlinear oscillator.

Example 3.3.2 (Nonlinear Oscillator: Part I (Constraint Tightening))

Consider an unstable second order nonlinear oscillator. The perturbed system is

given as

x(1)t+1
= x(1)t + 0.051

[

−x(2)t + 0.4902
(

1 + x(1)t
)

ut
]

+ w(1)t

x(2)t+1
= x(2)t + 0.049

[

x(1)t + 0.5102
(

1− 4x(2)t
)

ut
]

+ w(2)t
,

(3.59)
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where subscript (i) denote the i-th component of a vector. The external input

(disturbance) is driven by the following system

wt+1 = 10−3wt + φt (3.60)

where |φt| ≤ 10−4 is a normally distributed noise. Constraints are given as below

U = {u ∈ R : −2 ≤ u ≤ 2}

X =
{

x ∈ R : −0.4 ≤ x(1) ≤ 0.225, −0.49 ≤ x(2) ≤ 0.175
}

W =
{

w(1,2) ∈ R : −5 × 10−3 ≤ w(1,2) ≤ 5× 10−3
}

(3.61)

We assume that the model available to us is

x̃(1)t+1
= x̃(1)t + 0.05

[

−x̃(2)t + 0.5
(

1 + x̃(1)t
)

ut
]

+ w̃(1)t

x̃(2)t+1
= x̃(2)t + 0.05

[

x̃(1)t + 0.5
(

1− 4x̃(2)t
)

ut
]

+ w̃(2)t
,

(3.62)

while the model of disturbance is

w̃t+1 = 1.01× 10−3w̃t (3.63)

We also assume that the estimation errors are bounded by

|xt − x̃t|t| ≤ ξ̄x = 10−5

|wt − w̃t|t| ≤ ξ̄w = 10−5

(3.64)
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We can write (3.62) as

x̃t+1 =









1 + 0.025ut −0.05

0.05 1− 0.1ut









x̃t + 0.025









1 + x̃(1)t

1− 4x̃(2)t









ut + w̃t

= Ãtx̃t + B̃tut + D̃tw̃t (3.65)

Let the cost functional be given by (3.58) in Example (3.3.1), with the following

Q = 0.1 × I2, R = 1, S = 10−3 I2, NP = 12 and Nc = 5. Continuing from

Example (3.3.1),

I. Lfx = 1.189. This is given by max
t

(

abs

(

eig

(

Ãt

)))

.

II. Lfu = 0.0801. This is given by
∣

∣

∣
B̃t

∣

∣

∣
.

III. Lfw = 1.4142, given by
∣

∣

∣
D̃t

∣

∣

∣

IV. Lgw = 1.01× 10−3

V. α1(|r|) = α2(|r|) = λQmin
|r|2 = 0.1|r|2

VI. Lhx = 0.06325, given by λQmax
|x̃|max.

VII. Lhu = 2, given by λRmax
|u|max

VIII. Lqx = 6.325× 10−4, given by λSmax
|x̃|max

IX. Lqw = 1.414× 10−5, given by Lqw = λSmax
L2
fw|w̃|max

X. ēx = 6.325× 10−4, as |f(x, u, w)− f̃(x, u, w)| ≤ 10−3|x|
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Figure 3.4: Grownth of state prediction error along the horizon. Value at NC is marked
in brown.

XI. ēw = 5× 10−8, as |f(x, u, w)− f̃(x, u, w)| ≤ 10−5|w|

We are now in a position to find the shrunk constraints given in Theorem 3.2.1.

Substituting the above values in (3.31)

ρ̄xt+l
= (1.189)l × 10−5 + 3.3× 10−3

(

(1.189)l − 1
)

+5.95× 10−8
(

(1.189)l −
(

1.01× 10−3
)l
)

+3.745× 10−8
(

(1.189)l − 1− 0.159
(

(1.189)l −
(

1.01× 10−3
)l
))

(3.66)

The growth of prediction uncertainty is depicted in Fig. 3.4. It can be seen that the

growth is exponential, which limits the maximum horizon which can be employed

while ensuring feasibility. Constraints are tightened according to Theorem 3.2.1,

as shown in Fig. 3.5. It can be seen how the growth of prediction error effects the

of constraint shrinkage.
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Figure 3.5: Constraint tightening for the nonlinear oscillator of Example (3.3.2). Notice
the exponential increase in shrinkage of constraints with increasing horizon.

3.4 Conclusion

This chapter presented new results in nonlinear MPC control with robustness

against a number of sources of uncertainty. The main NMPC algorithm and one

of its five component algorithms to address constraint tightening and online opti-

mization are introduced in this chapter. Algorithm 1 includes offline components

and online optimization of the recursive finite horizon OCP 3.2.1. We showed

that due to uncertainties, only practical stability (ISpS) can be ensured, and the

amount of tolerable disturbance is bounded by the size of the one-step control-

lability set to the terminal constraint region. An extended numerical example

was introduced in two parts. Closed form analytic expressions of all nonlinear

functions and Lipschitz constants are provided along with a simulation example

for constraint tightening Algorithm 2.
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CHAPTER 4

OPTIMIZATION OF

TERMINAL, CONTROLLABLE

AND FEASIBLE SETS

4.1 Introduction

In the previous chapter, we laid the foundation blocks of the robust NMPC algo-

rithm introduced in this thesis. However, details of several ingredients were delib-

erately postponed. We talked about the terminal set constraint and its associated

terminal control law, but assumed its existence in Claim 3.2.1 for expediting de-

velopment of the mathematical framework. Similarly, we assumed the existence of

feasible initial conditions in Assumption 3.2.1. We also assumed the knowledge of

one-step controllable set to the terminal set in Definition 3.2.2. All three of these

assumptions are justified and quantified in this chapter. We do so by using the
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convenient and highly developed framework of convex optimization, particularly

the mathematically adept Linear Matrix Inequalities (LMI) form.

4.1.1 Chapter Contributions

The contributions of this chapter are non-trivial in the following aspects, which

are under review in Automatica [84].

i. Terminal constraint region is maximized (Theorem 4.3.1) based on PLDI

based LMIs, and warm started with a novel approach involving algebraic

Riccati equations.

ii. One-step controllable set and robust output feasible set are determined based

on min-max optimization (Algorithm 6) rather than the existing set based

approaches [78].

iii. Four new algorithms are presented for terminal region optimization and de-

termining feasibility.

iv. Important guidelines on the choice of components of cot function, especially

the robustness cost are provided due to unprecedented insight gained in de-

velopment of this chapter.

Chapter Organization Most of the algorithms in this chapter are based on

convex optimization, for which a brief primer is provided in Section 4.2. A method-

ology (Algorithms 3-4) for simultaneous optimization of terminal control law and
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maximization of terminal constraint set is developed in Section 4.3. The numer-

ical example first introduced in Section 3.3 is extended to show application of

Algorithms 3-4. As mentioned in the last chapter, recursive feasibility is related

to the minimum size of the one-step controllability set to the terminal region.

This one-step controllable set is determined with Algorithm 5 developed in Sec-

tion 4.4. Having verified condition for recursive stability, in Section 4.5 the robust

output feasible set for the nonlinear system under Algorithm 1 is determined us-

ing Algorithm 6. Since all ingredients of Algorithm 1 have now been developed,

the algorithm is finally applied to extended example of the nonlinear oscillator in

Section 4.6.

4.2 Introduction to Convex Analysis

Convex analysis is the branch of mathematics that studies properties of convex

functions convex sets. It has application in optimization and therefore of relevance

to MPC. In this chapter we will utilize this tool to determine terminal (auxiliary)

control laws and maximizing the terminal region. Symbols used in this intro-

ductory section should not be confused with ones used in the rest of the chapter

dealing with the main algorithm. Given a scalar c ∈ [0, 1], vectors u, v ∈ S ⊆ R
n,

the set S ⊆ R
n is a convex (or affine) set and real valued vector function s(·) is a

convex function if

cx+ (1− c)y ∈ S (4.1)

f(cx+ (1− c)y) ≤ cf(x) + (1− c)f(y) (4.2)
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Figure 4.1: Convex and nonconvex sets. Left. The polyhedron is convex. Middle. The
star shaped set is not convex, since the line segment (dotted) between the two points in
the set is not contained in the set. Right. The pentagon in red is a convex hull of the
non-convex star shaped set. (This art is original, copyrights belong to author).

A function is convex if and only if its epigraph (region above its graph) is a

convex set. Given some non-negative scalars c1, . . . ck ∈ R≥0 such that
k
∑

i=1

ci = 1,

the vector
k
∑

i=1

cixi, ∀xi ∈ R
n is called a convex combination. The convex hull of

set S is the set of all convex combinations of vectors in S, i.e.

CoS ,

{

k
∑

i=1

cixi : xi ∈ S, ci ≥ 0, i = 1, . . . k,
k
∑

i=1

cixi = 1

}

(4.3)

It is obvious that convex hulls are also convex.

4.2.1 Examples of Convex Sets

Balls and ellipsoids are also examples of convex sets. A Euclidean ball (or just

ball) of radius c ∈ R>0 and centered at xc ∈ R
n is denoted as

Bn(xc, c) , {x ∈ R
n : |x− xc| ≤ c} (4.4)
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A ball centered at the origin (xc = 0) is simply written as Bn(c). Given a p.d.

matrix P > 0, an ellipsoid centered at xc is denoted by

En(xc, P ) ,
{

x ∈ R
n : (x− xc)TP (x− xc) ≤ c

}

(4.5)

for some positive scalar c. The lengths of semi-axes of E are given by
√
λi, where

λi are the eigenvalues of cP−1 and i = 1, . . . n. The volume of E is equal to

4
3
π
√

det (P/c)−1.

Another important class of convex sets is polyhedra. A polyhedron is defined

as the solution set of a finite number of linear equalities and inequalities, such

that

Pn(A, b, C, d) , {x : Ax 4 b, Cx = d} (4.6)

where x ∈ R
n, b ∈ R

m, d ∈ R
p are vectors and A ∈ R

m×m, C ∈ R
p×p are ma-

trices representing m inequalities and p equalities. The symbol 4 denotes vector

inequality or component-wise inequality in R
m. Convex hull is also a polyhe-

dron, therefore both terms are used alternatively. A closed polyhedron is called a

polytope. This distinction between polyhedra and polytopes is reversed by some

authors, but we will adhere to our definition above [98].The Minkowski sum of

line segments in any dimension forms a type of polytope called zonotope.
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4.2.2 Convex Optimization and LMIs

Minimization of a convex function subject to convex constraints is called convex

optimization. Such problems have special mathematical structure which lends

them to very efficient numerical algorithms, such as the interior-point and ellipsoid

methods. Maximization probems are simply the minimization of the negative of

the objective function above. Least squares, linear programing (LP), semidefinite

programming (SDP) etc. are all convex optimization problems. The generic

convex optimization problem is

Problem 4.2.1 (General Convex Optimization Problem) Find the opti-

mum x0 that minimizes convex function f(x) : Rn → R≥0

x0 = argmin
x

f(x)

subject to convex set X ⊆ R
n and convex function gi(x), hi(x) : Rn → R con-

straints

x ∈ X (4.7)

gi(x) 4 0m, i = 1, . . .mhi(x) = 0p, i = 1, . . . p (4.8)

Convex optimization problems of a very wide variety are efficiently solved using

linear matrix inequalities (LMIs) [99], which deal with matrix variables. LMIs

were first introduced by Lyapunov in his celebrated work on stability at the dawn
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of the 20th century. An LMI has the form

A(x) , A0 +
m
∑

i=1

xiAi > B (4.9)

where x = {x1, . . . xm} ∈ R
m is a real valued vector variable, Ai = AT

i ∈ R
n×n are

symmetric matrix variables and B ∈ R
n×n is positive semi-definite (p.s.d.) matrix

i.e. B ≥ 0. Positive matrix means that all eigenvalues of the matrix are positive

and p.s.d. means all eigenvalues are non-negative. LMI (4.9) is called a convex

constraint on x. Nonlinear convex inequalities (such as those in Problem 4.2.1)

can be converted to converted to LMI form using Schur complements.

Definition 4.2.1 (Schur Complement) Given matrices A ∈ R
n×n, B ∈

R
n×m, C ∈ R

m×n, D ∈ R
m×m and D is invertible. Then,

F =









A B

C D









> 0

is equivalent to

G = A−BD−1C > 0

where G ∈ R
m×m is the Schur complement of block D of matrix F ∈ R

(n+m)×(n+m).

These concepts will now be used as tools for convex optimization of terminal

region and control design.
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4.3 Terminal Control Design and Maximization

of Terminal Constraint Set

Points consisting of extreme or boundary values of constrained variables are called

extreme or vertex points of the system. For example if x̃ ≤ 2, u ≤ 3, then (2, 3)

is a vertex point of the system.

4.3.1 Re-parametrization of Constraints

We defined the terminal region as Xf =
{

x̃ : x̃TQf x̃ ≤ a
}

. Now, let us the

parametrize the state and control constraints (3.3) as follows.

|zv| ≤ bv, ∀v = 1, . . . , v̄, (4.10)

where

zv = cvx+ dvu (4.11)

and v̄ is the number of constraints. Therefore, the set

Z =

{

[

x̃ u

]T

∈ R
n+m : |zv| ≤ bv, bv > 0, v = 1, . . . , v̄

}

(4.12)

defines the set of allowable states and controls. In fact, we can scale these con-

straints by bv = 1 for v = 1, . . . , v̄ without loss of generality. Suppose, we can
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have a polytope M ⊆ Z defined by

M =

{

[

x̃ u

]T

∈ R
n+m : c̄vx̃+ d̄vu ≤ 1, v = 1, . . . , v̂

}

. (4.13)

In general v̄ 6= v̂. Notice that in this setting, if there is an upper and lower bound

on a variable, these bounds will appear as two separate bounds, i.e. v̄ = 2(n+m),

where n and m is the size of state and control vector respectively. Suppose there

are two states and one control variable with only upper and lower bounds, then

v̄ = 23 = 8. When a linear terminal control u = Kvx̃ ∈ U for x̃ ∈ Xf is considered,

the state and input constraints are defined in X̃f ⊆ X̃t+Nc, such that

X̃f = {x̃ ∈ R
n : pvx̃ ≤ 1, v = 1, . . . , v̂} , (4.14)

where pv ,
(

c̄v + d̄v
)

. We will show that Xf is contained in X̃f .

Lemma 4.3.1 (Technical) Let the allowable set of states X̃f be given as (4.14).

The ellipsoid Xf (a) =
{

x̃ : x̃TQf x̃ ≤ a
}

is contained in the set X̃f , such that

Xf ⊆ X̃f ⊆ X̃t+Nc, iff

pv
(

aQ−1
f

)

pTv ≤ 1, ∀v = 1, . . . , v̂ (4.15)

Proof. For x̃ ∈ Xf , it holds that x̃
TQf x̃ ≤ a. Therefore,

x̃x̃TQf x̃x̃
T ≤ ax̃x̃T ⇒ x̃x̃T ≤ aQ−1

f (4.16)
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However, for x̂ ∈ X̃f , condition (4.14) holds i.e.

pvx̂ ≤ 1⇒ pv
(

x̂x̂T
)

pTv ≤ 1, ∀v = 1, . . . , v̂ (4.17)

However, from (4.16), x̂ ∈ Xf holds if and only pv
(

aQ−1
f

)

pTv ≤ 1 for v = 1, . . . , v̂,

and thus Xf ⊆ X̃f . Also, since d̄vx̃v ≥ Kvx̃v ∈ U , it is obvious that X̃f ⊆ X̃t+Nc.

Hence the result.

4.3.2 Terminal Control Design for Linearization around

Vertex Points

It is clear that the most important aspect of determining the stability of the

system (3.1) under RH control law (3.17) is the terminal inequality (3.42). To

satisfy this, we propose an algorithm for maximizing the terminal region and

designing terminal control which is based on global linearization of the nominal

system. We will first state an important result based on (3.42) about stabilizing

general linearization of the nominal system, before describing the main method.

Let Av ,
∂f̃
∂x̃

∣

∣

∣

x̃=x̃v,u=uv,w̃=w̃v

and Bv ,
∂f̃
∂u

∣

∣

∣

x̃=x̃v,u=uv,w̃=w̃v

be linearization about an

arbitrary point in the terminal set Xf .

Lemma 4.3.2 (Stabilization of Arbitrary Points in Xf) Under Assump-

tion 3.2.2, let the cost functional be quadratic, as defined in (3.58). Also, assume

that there exists a p.d. matrix S̃ > 0, such that −q(x̃, w̃) + ψ(|w̃|) ≤ x̃T S̃x̃, for

x̃ ∈ Xf and allowable disturbances w̃ ∈ W̃t+l, ∀l = NC , . . . , NP . Then, there
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exists a terminal control law u = Kvx̃, for x̃ ∈ Xf , and terminal constraint

set Xf as defined in Claim 3.2.1, such that the closed loop general lineariza-

tion ACLv
, Av + BvKv of the nominal system (3.5) is locally stable. Let

Q̃ , Q + KT
v RKv − S̃. Stability of the point x̃ = x̃v, u = uv, w̃ = w̃v is ensured

with desired rate of convergence hata, if the following Lyapunov LMI holds

AT
CLv

QfACLv
−Qf + Q̃ ≤ 0 (4.18)

subject to:

Q+KT
v RKv − S̃ > âIn, (4.19)

kf(x̃) = Kvx̃ ∈ U (4.20)

and

x̃TQf x̃ ≤ a (4.21)

Rate of convergence â is obtained from (3.27).

Proof. We know the nominal system (3.5) with nominal disturbance model

(3.10) is stable if condition (3.42) holds in Xf . Rewriting (3.42) in terms of

quadratic cost (3.58)

hf

(

f̃ (x̃, kf(x̃))
)

− hf (x̃) ≤ −x̃T
(

Q +KT
v RKv

)

x̃− q(x̃, w̃) + ψ (|w̃|)
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But, since −q(x̃, w̃) + ψ(|w̃|) ≤ x̃T S̃x̃, we can write

f̃(x̃, kf(x̃))
TQf f̃ (x̃, kf(x̃))− x̃TQf x̃ ≤ −x̃T

(

Q+KT
v RKv − S̃

)

x̃ (4.22)

Therefore for the region Xf =
{

x̃ : x̃TQf x̃ ≤ â
}

to be invariant, we need

Q+KT
v RKv − S̃ > 0. However, we need a minimum rate of convergence â, such

that

−x̃T
(

Q +KT
v RKv − S̃

)

x̃ ≤ −x̃T (âIn) x̃

which is equivalent to (4.19). Now, ’near’ the point where the system is linearized,

f̃ (x̃, kf(x̃)) ≈ ACLv
x̃. Therefore, we can rewrite (4.22) as

x̃T
(

ACLv

TQfACLv
−Qf

)

x̃ ≤ −x̃T Q̃x̃,

which is equivalent to (4.18), for Q̃ , Q + KT
v RKv − S̃. Finally, the constraint

(4.20) ensures control constraints are obeyed, while also ensuring existence of an

upper bound on hf i.e. x̃TQf x̃ ≤ a.

Remark 4.3.1 The result above gives us some important guidelines.

I. The requirement −q(x̃, w̃) > +ψ(|w̃|) ≤ x̃T S̃x̃ and (4.19) provide guidelines

on selection of weight S ∈ R
n×n on the external input. In general Q≫ S.

II. If one can find Xf ∈ X̃t+Np by putting Q+KT
v RKv−S̃ > 0, then there is no

need to enforce the rate constraint of form (4.19), since, the invariance of

Xf will ensure tightened constraints are not violated from t+NC to t+NP .
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This will be the case in most circumstances, so as a guideline it is better

solve without the rate condition, initially.

4.3.3 Terminal Region Optimization

Even though we hinted at the method to find kf = Kvx̃, we did not mention how

exactly to find Qf , or indeed what are the points x̃v ∈ Xf . One way to solve

(4.18) is by solving the equality AT
CLv

QfACLv
− Qf + Q̃ = 0 with linearization

at x̃v = 0, u = 0, by using efficient discrete algebraic Riccati equation (DARE)

algorithms, but this does not fix a, and it does not mean that the region itself has

been maximized. In this section we will present analytical and algorithmic results

to maximize the terminal region, while simultaneously solving for the control law,

without the results being based on linearizing the origin alone.

Suppose that for each point (x̃, u), there is a matrix F (x, u) ∈ Ω(M), such

that the LDI of the nonlinear system (3.5) with no disturbance, i.e. x̃ + t + 1 =

f̃(x̃t, ut, 0) within the set M ∈ R
n+m defined by (4.13) is given as

Ω(M) =

{

F
∆
=

[

A B

]

∆
=

[

∂f̃
∂x̃

∂f̃
∂u

]

, [ x̃ u ]
T

∈M
}

(4.23)

The minimum convex polytope which contains the set Ω(M) is called a polytopic

linear difference inclusion (PLDI), and is described by a list of its vertex (or

extreme) matrices. The PLDI CoΩ(M) is given by

CoΩ(M)
∆
= Co

{[

A1 B1

]

,

[

A2 B2

]

, . . . ,

[

Av̂ Bv̂

]}

131



=

{

F ∈ R
n×(n+m) : F =

v=v̂
∑

v=1

φv

[

Av Bv

]

, 0 < φv < 1,
v=v̂
∑

v=1

φv = 1

}

(4.24)

for v = 1, . . . , v̂. The nonlinear system x̃+ t+1 = f̃(x̃t, ut, 0) can be described by

the PLDI (4.3.3). Suppose that Kv ∈ R
m×n is a time invariant feedback gain of

the vth vertex system, then the control law of the entire PLDI system (4.3.3) (and

by implication the nonlinear system itself) can be given as the wighted average of

controllers of the designed for for all v̄ vertices [100], i.e.

K =
v=v̂
∑

v=1

φvKv (4.25)

Substitute (4.25) in (4.3.3), we obtain the closed loop system

x̃t+1 = ACLx̃t =
v=v̂
∑

v=1

φv

[

Av BvK

]

=
i=v̂
∑

i=1

[

φi

j=v̂
∑

j=1

[

Ai BiφjKj

]

]

(4.26)

Based on the PLDI of nonlinear system (3.1), maximization of the terminal re-

gion subject to (4.18) and (4.15) can be formulated as a linear matrix inequality

(LMI) problem. Very efficient methods for solving LMI based convex optimization

problems exist [98], and hence this is a very attractive feature of the algorithm pre-

sented in this chapter. The convex OCP for maximizing the terminal constraint

set is presented below.

Problem 4.3.1 (Maximization of Terminal Constraint Set) The volume

of terminal constraint set Xf(a) =
{

x̃ : x̃TQf x̃ ≤ a
}

for a > 0, within set M

defined in (4.13) with cost functional (3.58), is maximized for matrix variables
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W1 , Q−1
f ∈ R

n×n and W2 , KQ−1
f ∈ R

m×n by solving

min
W1,W2,a

log det (aW1)
−1 (4.27)

subject to

W1 =W T
1 > 0, (4.28)

a > 0, (4.29)

























W1 (AvW1 +BvW2)
T W1

(

Q− S̃
)1/2

W2
TR1/2

∗ W1 0 0

∗ ∗ I 0

∗ ∗ ∗ I

























≥ 0 (4.30)

for v = 1, . . . , v̄.








1/a c̄vW1 + d̄vW2

∗ W1









≥ 0 (4.31)

for v = 1, . . . , v̂. Matrix S̃ is defined in Lemma 4.3.2. Additionally, if it is required

to converge with a given rate â, then the OCP is subject to another condition









−
(

Q−
(

S̃ + âIn

))

W T
2

∗ R−1









≥ 0 (4.32)

We will now prove the result below, that the arguments (W1, W2 and a) which

minimize (4.27) result in maximum volume of Xf , while being stabilizing and

obeying state/control constraints (4.13).
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Theorem 4.3.1 Given the PLDI of the nonlinear system (3.5) is described by

(4.3.3) within the set M defined in (4.13), and matrices W1 ∈ R
n×n, W2 ∈ R

m×n

and scalar a ∈ R≥0, which are the solution of the convex OCP 4.3.1, then the

following postulates are true

i. Qf = W−1
1 , such that the volume of ellipsoid Xf (a) =

{

x̃ : x̃TQf x̃ ≤ a
}

is

maximized.

ii. Xf ∈ X̃f ∈ X̃t+Nc

iii. Terminal control law kf(x̃) = Kx̃ for x̃ ∈ Xf , such that

K = W2W
−1
1 (4.33)

satisfies the control constraints Kx̃ ∈ U and stabilizes the nonlinear system

(3.5) with zero external input.

iv. If required, the controller (4.33) makes the closed loop system converge with

at least the desired rate â.

Proof. The proof will be carried out in four parts as there are as many postulates

to prove in Theorem 4.3.1.

i. Given a p.d. matrix Qf > 0, an ellipsoid centered at origin is denoted by

Xf(a,Qf ) =
{

x̃ : x̃TQf x̃ ≤ a
}

for some positive scalar a. The volume of

Xf is proportional to (det (a−1Qf ))
− 1

2 . Maximizing the volume is therefore

the same as minimizing det (a−1Qf ). But, W1 = Q−1
f , this is equivalent to

134



minimizing det (aW1)
−1. However, the objective det (aW1)

−1 (which is to

be minimized) is not convex, but monotonic transformations can make this

OCP convex. One alternative is the logarithmic transform, leading instead

to minimization of − log det (aW1), proving postulate (i).

ii. From Lemma 4.3.1, Xf ∈ X̃f ∈ X̃t+Nc, when (4.15) holds, from which we

have

pv
(

aQ−1
f

)

pTv ≤ 1, ∀v = 1, . . . , v̂,

(

c̄vQ
−1
f + d̄vK

)

Q−1
f QfQ

−1
f

(

c̄v + d̄vK
)

≤ 1/a,

1/a−
(

c̄vQ
−1
f + d̄vKQ

−1
f

)

Qf

(

c̄vQ
−1
f + d̄vKQ

−1
f

)

≥ 0

Applying Schur’s complement results in









1/a c̄vQ
−1
f + d̄vKQ

−1
f

∗ Q−1
f









≥ 0

Substituting W1 = Q−1
f and (4.33) results in (4.31), which proves the postu-

late (ii).

iii. For stability we require the closed loop system to satisfy the Lyapunov in-

equality (4.18), from which we have

Qf ≥ (Av +BvK)TQf (Av +BvK) +Q+KTRK − S̃
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Post- and pre-multiply by W1 = Q−1
f and substitute (4.18) in the expression

above, we obtain

W1 ≥ (AvW1 +BvW2)
TW1

−1 (AvW1 +BvW2) +W1

(

Q− S̃
)

W1 +W2RW2

Applying Schur complement,









W1 −W1

(

Q− S̃
)

W1 −W2RW2 (AvW1 +BvW2)
T

∗ W1









≥ 0,









W1 (AvW1 +BvW2)
T

∗ W1









−









W1

(

Q− S̃
)

W1 +W2RW2 0

∗ 0









≥ 0

The last inequality can be written as









W1 (AvW1 +BvW2)
T

∗ W1









−









W1

(

Q− S̃
)

1
2

W2R
1
2

0 0

















I 0

0 I









−1







W1

(

Q− S̃
)

1
2

0

W2R
1
2 0









Applying Schur compliment once again results in (4.30), which proves pos-

tulate (iii).

iv. Applying Schur complement to (4.19) directly results in (4.32), which proves

postulate (iv).

By Relaxation Theorem [99], it is clear that proving these properties at vertex
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points prove them for the whole PLDI (4.3.3) and hence for the nonlinear system

(3.5) with zero external input as well.

4.3.4 Description of Terminal Region Optimization Algo-

rithms

We are now in a position to gather all of our results in a concise algorithm. Effi-

cient algorithms exist for solving the volume maximization convex problem. This

Algorithm 3 Optimizing Terminal Region and Control

1: Given nominal model f̃(x̃, u, 0) and cost weights Q, R and S.
2: Select S̃ ∈ R

n×n, such that −q(x̃, w̃) + ψ(w̃) ≤ x̃T S̃x̃
3: Get initial guess values of Qf as Q∞

f and K as K∞ by Algorithm 4
4: procedure Convex Optimiation

5: Solve convex OCP 4.3.1 subject to (4.28)-(4.31).
6: if Xf ⊂ X̃t+Np then
7: Go to 11
8: else
9: Solve convex OCP (4.3.1) subject to (4.28)-(4.32).
10: end if
11: end procedure End algorithm; accept optimal values of Qf , K and a.

is the basic algorithm, for which we did not mention how the optimization rou-

tine is initialized. Most modern software packages (see the examples in the next

section) select the initial iterate internally. For example, the SDPT3 semidefinite

programming package [101] algorithms can start with an infeasible starting point,

as the algorithms try to achieve feasibility and optimality of its iterates simulta-

neously. However, the performance of these algorithms is quite sensitive to the

choice of the initial iterate. Reasonable initial guesses is often crucial, especially

in non-convex optimization. It is advisable to choose an initial iterate that at
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least has the same order of magnitude as the optimal solution [102].

Therefore, we have developed a methodology to provide a reasonably good

initial guess of optimization variables to warm-start Algorithm 3. It is based on

the fact that (4.30) can be approximated as the discrete version of linear quadratic

regulator (DLQR) [103], when a = 1. Therefore, we solve the following discrete-

time algebraic Riccati equations (DARE) at each vertex point:

Q∞
fv = (Q− S̃) + Av

T
(

Q∞
fv +Q∞

fvBv

(

R +BT
v Q

∞
fvBv

)−1
BT

v Q
∞
fv

)

Av, (4.34)

where Q∞
fv

is the solution of the DARE above. The control gain computed from

(4.34) is given as

K∞
v =

(

R +BT
v Q

∞
fvBv

)−1
BT

v Q
∞
fvAv (4.35)

Obviously, we will have v̄ values of Q∞
fv

and K∞
v . Therefore, we will solve another

optimization problem that finds the maximum volume ellipsoid which is confined

in the intersection of all the v̄ vertex ellipsoids. This will serve as the initial

guess for W 0
1 =

(

Q∞
fv

)−1
. It is important to note that the initial guess is based

on solution of unconstrained algebraic Riccati equations (4.34). Therefore, we

formulate the following convex OCP by exploiting the S-procedure [104].

Problem 4.3.2 [Warm-Start for Algorithm 3] Given v̄ vertex ellipsoids

Env (Q∞
fv
) ,

{

x̃ ∈ R
n : x̃TQ∞

fv
x̃ ≤ 1

}

which are solutions of (4.34), the maximum

volume ellipsoid in the intersection of all Env is obtained by solving the following
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convex OCP for some Lagrangian variables tv

min
W̃∞

− log det W̃∞ (4.36)

subject to

W̃∞ > 0 (4.37)

1 ≥ tv ≥ 0 (4.38)

tvW̃
∞
v − W̃∞ ≥ 0 (4.39)

for v, . . . , v̄. Here W̃∞ ,
(

Q∞
f

)−1
and W̃∞

v ,
(

Q∞
fv

)−1
.

The warm-start procedure is listed in Algorithm 4

Algorithm 4 Warm-Start Procedure for Algorithm 3

1: procedure Convex Optimiation

2: Solve Riccati equations (4.34) for vertex values of Q∞
fv

3: Solve convex OCP 4.3.2 to obtain Q∞
f .

4: Claculate K∞ by solving (4.35) for Q∞
f at A0 and B0, i.e. linearization

of origin
5: end procedure End algorithm and pass Q∞

f and K∞ to Algorithm 3

4.3.5 Illustrative Example on Terminal Region Optimiza-

tion

We will now proceed to continue the example of nonlinear oscillator introduced

in the previous chapter. In this work, we used the semi-definite programming

packages LogDetPPA [105], SDPT3-4.0 [101] and PENBMI [106], running on the

optimization toolbox YALMIP [107].
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Table 4.1: Parameters of Constraint Set for Terminal Optimization
v x̃(1) x̃(2) u c̄v d̄v
1 min - - [−8.89 0] 0
2 max - - [ 8.89 0] 0
3 - min - [0 − 8.89] 0
4 - max - [0 8.89] 0
5 - - min [0 0] -0.5
6 - - max [0 0] 0.5

Example 4.3.1 (Nonlinear Oscillator: Part II (Optimizing Xf)) Recall

Example 3.3.2, where we illustrated the constraint tightening Algorithm 2. To

proceed, we need to first specify the set M ⊂ Z within which the OCP 4.3.1 is

feasible. This can be checked by starting from Z and making the constraints

tighter progressively till the problem becomes feasible. Therefore, we take the set

M ⊂ Z as 2 ≤ u ≤ 2, −0.1125 ≤ ˜x(1) ≤ 0.1125 and −0.1125 ≤ ˜x(2) ≤ 0.1125.

Therefore, the values of parameters of the normalized set

M =

{

[

x̃(1) x̃(2) u

]T

∈ R
n+m : c̄vx̃+ d̄vu ≤ 1, v = 1, . . . , 6

}

are given in Table 4.1. The general linearization of the system is









x̃(1)t+1

x̃(2)t+1









=









1 + 0.025ut −0.05

0.05 1− 0.1ut

















x̃(1)t

x̃(2)t









+ 0.025









1 + x̃(1)t

1− 4x̃(2)t









ut

(4.40)

There are v̄ = 23 = 8 vertex systems, which are listed in Table 4.2. Since we

have to choose S̃ such that −q(x̃, w̃) > +ψ(|w̃|) ≤ x̃T S̃x̃, let us choose S̃ =

10 · S = 10−2I2. To warm start the algorithm, we solve DAREs (4.34)-(4.35) at
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Table 4.2: Vertex Matrices of Nonlinear Oscillator System
v x̃(1) x̃(2) u Av Bv

1 min min min

[

0.95 −0.05
0.05 1.20

] [

0.0222
0.0294

]

2 max min min

[

0.95 −0.05
0.05 1.20

] [

0.0278
0.0294

]

3 min max min

[

0.95 −0.05
0.05 1.20

] [

0.0222
0.0206

]

4 max max min

[

1.05 −0.05
0.05 0.80

] [

0.0278
0.0206

]

5 min min max

[

1.05 −0.05
0.05 0.80

] [

0.0222
0.0294

]

6 max min max

[

1.05 −0.05
0.05 0.80

] [

0.0278
0.0294

]

7 min max max

[

1.05 −0.05
0.05 0.80

] [

0.0222
0.0206

]

8 max max max

[

1.05 −0.05
0.05 0.80

] [

0.0278
0.0206

]

each vertex system listed in Table 4.2. Numerical values of the vertex solutions of

DAREs (4.34) are listed in Table . The initial guess about terminal region Qf is

found by solving OCP 4.3.2. The procedure is illustrated in Figure 4.2. Numerical

value of the initial guess Q∞
f is

Q∞
f =









342.04 69.16

69.16 670.08









(4.41)

The linearization of origin (0, 0) is obtained from (4.40) as follows

A0 =









1 −0.05

0.05 1

















x̃(1)t

x̃(2)t









, B0 =









0.025

0.025









ut

Initial iterate of the the control gain K is found by solving (4.35) at A0 and B0,
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Table 4.3: Solutions of Riccati Equations at Vertex Points
v Q∞

fv
(K∞

v )T eig(Av +BvK
∞
v ) eig(Av +BvK)

1

[

16.26 73.79
73.79 362.54

] [

−2.13
−10.31

]

(0.96, 0.84) (0.98,−0.20)

2

[

15.16 68.83
68.83 340.15

] [

−2.06
−9.99

]

(0.96, 0.84) (0.99,−0.27)

3

[

28.86 134.63
134.63 656.40

] [

−2.85
−13.88

]

(0.96, 0.84) (0.99, 0.12)

4

[

26.32 122.85
122.85 601.76

] [

−2.75
−13.29

]

(0.96, 0.84) 0.99, 0.05

5

[

314.34 −65.66
−65.66 13.98

] [

−4.85
1.01

]

(0.96, 0.81) 0.99,−0.50

6

[

172.88 −36.07
−36.07 7.80

] [

−3.60
0.75

]

(0.96, 0.81) (0.98,−0.55)

7

[

253.54 −53.91
−53.91 11.31

] [

−4.36
0.91

]

(0.96, 0.81) (0.97,−0.15)

8

[

147.21 −30.70
−30.70 6.67

] [

−3.33
0.69

]

(0.96, 0.81) (0.95,−0.20)
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Figure 4.2: Warm Start Ellipsoids used in Algorithm 4 applied to Example 4.3.1

.
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Figure 4.3: Optimized terminal region using Algorithm 3 applied to Example 4.3.1.
Results both with and without warm starting with Algorithm 4 are shown

.

and the result is

K∞ =
(

R +BT
0 Q

∞
f B0

)−1
BT

0 Q
∞
f A0 =

[

−6.52 −10.45
]

Now, using these initial iterates, Algorithm 3 can be used to solve for optimum

parameters of the terminal region. We have taken a = 1, though it can take other

non-negative values as well. The optimized results are given below and illustrated

in Fig. 4.3.
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Figure 4.4: Terminal region Xf optimized with Algorithms 3-4 for Example 4.3.1.
Tightened constraints from Algorithm 2 are also shown

.

Qf =









6222.7 631.1

631.1 3709.7









, K =

[

−11.66 −36.33
]

(4.42)

As one can see from Fig. 4.3, there is a slight improvement by using warm starting,

which results in a larger terminal region. Also, it can been observed from the last

column of Table 4.3, the optimized value of terminal control gain K is stabilizing

for every point of the terminal region. For perspective, the terminal region Xf =

x̃TQf x̃ ≤ 1 is shown in the allowable state space in Fig. 4.4.
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4.4 Determination of 1-Step Controllable Set to

Terminal Constraint Set

Recall that the maximum allowable uncertainty is bounded by the minimum size

of the 1-step controllable set to Xf , denoted by C1(Xf) as given by (3.36). In

particular, this bound (3.36) on uncertainty was shown to ensure recursive fea-

sibility. Therefore, it is imperative to determine the minimum size of C1(Xf),

defined below

Definition 4.4.1 The minimum size of 1-step controllability set to terminal set

Xf is defined as

d̄ , dist(X̃t+Nc\C1(Xf , X̃t+Nc), Xf) (4.43)

The relationship between X̃t+Nc, C1(Xf) and d̄ is illustrated in Fig. 4.5. It is

clear that to find d̄, we must know the topology of C1(Xf ). There are various

techniques for estimating one-step controllability to given sets. A conservative set-

based estimation of C1(Xf) by iteratively computing convex inner approximations

of C1(Xf ) is presented in [95]. However, the effect of disturbance on size of C1(·) is

not considered. Another set-based approach [108] is based on Minkowski difference

between a collection of polytopes for calculating one-step robust with polytopic

additive uncertainties. A similar approach solved as a mixed-integer feasibility

program is presented in [78]. Set based approaches are however conservative,

providing only inner approximations. We propose an explicit method based on

min-max optimization to give better estimates of C1(Xf).
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Figure 4.5: Relationship between tightened contrraint X̃t+Nc, terminal set Xf and
minimum size d̄ of 1-step controllable set C1(Xf ) to Xf .

Let the boundary of Xf and C1(Xf) be denoted by ∂(Xf ) and x
i
c ∈ ∂ (C1(Xf))

respectively. We propose the following algorithm for this purpose.

Algorithm 5 Determining One Step Controllable Set to Xf

1: Divide the boundary of terminal set ∂(Xf ) into N̄ steps.
2: Solve OCP 4.4.1 to find points x̃ic ∈ ∂ (C1(Xf)) for i = 1, . . . , N̄ .
3: Calculate minimum size of C1(Xf ) as d̄ = min

(∣

∣x̃1c1 − x̃1f
∣

∣ , . . . ,
∣

∣x̃N̄c1 − x̃N̄f
∣

∣

)

for x̃if ∈ ∂(Xf ) and i = 1, . . . , N̄ .

Problem 4.4.1 (Min-Max Optimization of One-Step Robust Controllability Set C1(Xf))

Given the target set Xf , tightened constraints defined in (3.29)-(3.30) and nomi-

nal constraints (3.3) , let the boundary of Xf be discretized appropriately into N̄

point x̃if ∈ ∂(Xf ) for i = 1, . . . , N̄ . Then, the one-step robust controllability set

C1(Xf) is obtained by solving the following N̄ min-max OCPs

x̃ic1 = max
w̃

(

min
u

(

− log
(

x̃ic1Qf x̃
i
c1

))

)

(4.44)
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for i = 1, . . . , N̄ , subject to

x̃if = f̃(x̃ic1 , u, w̃) (4.45)

1− x̃ic1Qf x̃
i
c1 ≤ 0 (4.46)

x̃ic1 ∈ X̃Nc−1, u ∈ U, w̃ ∈ W̃Nc−1 (4.47)

The boundary of C1(Xf ) is given as ∂ (C1(Xf)) =
{

x̃ic1 , ∀i = 1, . . . , N̄
}

.

Notice that even though cost functional (4.44) is convex, the overall OCP is

not convex due to presence of nonlinear constraints (4.45)-(4.46). Due to non-

convexity, it is important to have a good initial guess. This can be easily ac-

complished by choosing initial guess in the sector of state space where the half

space containing xif lies. This will be further illustrated in Example 4.4.1. Cost

functional (4.44) is the convex form of
(

x̃ic1Qf x̃
i
c1

)−1
, minimizing which maximizes

the distance from Xf = {x̃ : x̃Qf x̃ ≤ 1}. Constraint (4.45) ensures that x̃ic1 is the

point from which the point x̃if ∈ ∂(Xf ) can be reached in exactly one step. Con-

straint (4.46) ensures that is outside Xf . Finally, the cost is (4.44) is minimized

with control u, but maximized with respect to the disturbance w̃ to account for

the worst case of disturbance input.

Algorithm 5 is computationally expensive, but these are optimizations carried

out offline, therefore computational time is not very important. We will now apply

the algorithm to an the nonlinear oscillator example from previous sections.

Example 4.4.1 (Nonlinear Oscillator: Part III (Determining C1(Xf)))

We optimized the terminal constraint region Xf in Example 4.3.1. In this example
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Figure 4.6: Optimal Cost from (4.44) for i = 1, . . . , N̄ with various disturbance levels
using Algorithm 5 for Example 4.4.1. Notice the cost does not change monotonously
with disturbance level.

we will apply Algorithm 5 to determined the one-step robust controllability set to

terminal set Xf . We begin by noting from Example 3.3.2 that (NC = 5)

x̃ic1 ∈ X̃4 =

{

[

−0.398 −0.488
]T

≤ x̃ic1 ≤
[

0.223 0.173

]T
}

u ∈ U = {−2 ≤ u ≤ 2}

w̃ ∈ W̃Nc−1 =
{

−5× 10−3 ≤ w̃1,2 ≤ 5× 10−3
}

(4.48)

for i = 1, . . . , N̄ . The metric x̃i
T

c Qf x̃
i
c from (4.44) for i = 1, . . . , N̄ with vari-

ous disturbance levels is shown in Fig. 4.6. Applying these values to the non-

linear oscillator (3.62), we obtain the boundary of one-step controllability set
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Figure 4.7: Boundary points of one-step controllability set calculated using Algorithm
5 for Example 4.4.1. The target set Xf is shown in solid red, the boundary points
x̃c ∈ ∂ (C1(Xf )) in green circles, and the one-step trajectories (starting from green
circles) in dotted blue lines.

x̃ic ∈ ∂ (C1(Xf)) for i = 1, . . . , N̄ shown in Fig. 4.7. Initial guess for x̃ic is cho-

sen according the direction of the vector normal to the ellipsoid surface at point

x̃fδXf . We are now in a position to calculate the minimum size of C1(Xf ) as

follows

d̄ = min
i

(∣

∣x̃ic1 − x̃if
∣

∣

)

, ∀i = 1, . . . , N̄ = 6.18× 10−2 (4.49)

Calculating the inequality (3.36) for recursive feasibility









LNc−1
fx

(

(Lfx + 1) ξ̄x + Lfw ξ̄w + ēx
)

+

Lfw
LNc−1

fx
−LNc−1

gw

Lfx−Lgw

(

(Lgw + 1) ξ̄w + ēw
)









=
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Figure 4.8: One-step controllability set C1(Xf ) calculated using Algorithm 5 for Ex-
ample 4.4.1. Also shown are target set Xf and tightened constraints, for perspective.









1.1894
(

2.189× 10−5 + 1.414× 10−5 + 6.325× 10−4
)

+

1.414
1.1894−(1.01×10−3)

4

1.189−1.01×10−3

(

2.01× 10−8 + 5× 10−8
)









= 1.34× 10−3 ≤ d̄ = 6.18× 10−2

Therefore, it is clear that recursive feasibility is ensured. The one-step set C1(Xf)

is shown in Fig. 4.8 along with Xf and constraints to get a perspective on its size.
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4.5 Determination of Robust Output Feasible

Set XMPC

In the last section we applied Algorithm 5 to find the one-step robust controlla-

bility set C1(Xf ). This proved useful in determining recursive feasibility of the

nonlinear MPC scheme. In this section, we will extend Algorithm 5 to solve for

the entire feasibility region of for the MPC algorithm. This will form the final

ingredient of the NMPC Algorithm developed in Chapter 3. For development in

this chapter, we will state a few postulates, sometimes without proof as they are

straightforward, to help in developing the main algorithm of this section.

Postulate 4.5.1 Robust one-step controllability set C(Xf ) contains the target set

Xf , i.e. Xf ⊂ C(Xf).

Proof. According to Theorem 7 of [109], Xf is RPI, if and only if Xf ⊂ C(Xf),

and since we have proven in Theorem 4.3.1 that Xf is RPI, therefore Postulate

4.5.1 follows.

Postulate 4.5.2 Robust one-step controllability set C(Xf ) to the terminal set Xf

is contained in the one-step controllability set of robust output feasible set XMPC,

i.e.

C1(Xf) ⊆ C1( ¯XMPC) (4.50)

Proof. Recall from Definition 2.4.9 that one-step controllable sets possess

monotonicity, i.e.Ω ⊆ Ω̄ =⇒ C1(Ω) ⊆ C1(Ω̄). Now, we know that Xf ⊂ XMPC ,

and hence C1(Xf) ⊆ C1( ¯XMPC).
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Postulate 4.5.3 Robust one-step controllability set C(Xf ) to the terminal set Xf

can be written as a finite union of polyhedra.

Proof. This holds because Xf is convex (RPI) Xf ⊂ C(Xf) according to

Postulate 4.5.1. Therefore C(Xf ) is compact and can divided into intersecting

polyhedra.

Postulate 4.5.4 The one-step controllable set operator can be used recursively to

define l-step controllable set Cl(Xf) as follows (for l ≥ 2).

Cl(Xf) = C1 (Cl−1(Xf )) (4.51)

This follows from dynamic programming like arguments for overlapping subprob-

lems.

Postulate 4.5.5 The boundary of target set, i.e. ∂(Xf ) is included in the one

step controllable set C1(Xf ).

∂(Xf ) ⊂ C1(Xf) (4.52)

This result is obvious, since we require the states in C1(Xf) to at least reach Xf

in one step. Based on these postulates we can state our main result.

Theorem 4.5.1 Given the terminal set Xf , tightened constraints x̃ ∈ X̃t+l, w̃ ∈

W̃t+l for l = 1, . . . , NC and control constraint u ∈ U , the robust feasibility set

is obtained by NC applications of the one-step controllable set operator C∞(·) by
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recursively solving OCP 4.4.1, such that

XMPC =
l=Nc∪
l=2
C1 (C1−1(Xf)) ∪ C1 (Xf) ∪Xf (4.53)

Proof. From Postulate 4.5.4, we have that

C2(Xf) = C1 (C1(Xf))

Similarly, C3(Xf ) = C1 (C2(Xf)), but from the expression above

C1(Xf) = C1 (C1 (C1(Xf)))

We can therefore generalize this expression as follows

XMPC = C1 (CNC−1(Xf)) = C1 (C1 (CNC−2(Xf ))) . . . = C1 (C1 (. . . C1(Xf))) (4.54)

Also, from Postulate4.5.5, we have ∂(Xf ) ⊂ C1(Xf). Applying this to the recursive

set operation of (4.54), we obtain

∂ (CNC−1(Xf)) ⊂ C1 (CNC−1(Xf))

∂ (CNC−2(Xf)) ⊂ C1 (CNC−2(Xf)) , . . . ,⊂ ∂(Xf ) ⊂ C1(Xf)
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But, since XMPC = C1 (CNC−1(Xf )), we can write

XMPC = C1 (CNC−1(Xf )) ∪ C1 (CNC−2(Xf)) ∪ . . . C1(Xf) ∪Xf

which is the same as (4.53) and hence the result.

With this theoretical development, we can now state the procedure for recursively

solving for robust output feasibility set XMPC.

Algorithm 6 Determining Feasibility Region XMPC

1: Determine C1(Xf) by using Algorithm 5, given as x̃ic1 ∈ ∂ (C1(Xf )) for i =
1, . . . , N̄ .

2: procedure Recursive Estimation of XMPC

3: for l = 2, . . . , NC do
4: if l = 2 then
5: Solve OCP 4.4.1 with target set C1(Xf) to obtain C2(Xf ) =
C1 (C1(Xf))

6: else
7: Solve OCP 4.4.1 with target set Cl−1(Xf) to obtain Cl(Xf) =
C1 (Cl−1(Xf))

8: end if
9: end for
10: Determine XMPC according to (4.53).
11: end procedure

Remark 4.5.1 The method given in Algorithms 5-6 is computationally demand-

ing. However, all algorithms in this chapter are for used offline in the proposed

MPC scheme, therefore computational burden is not an overriding concern. How-

ever, we must provide the caveat that choosing initial conditions for higher dimen-

sion systems is far less intuitive. In that case Algorithms 5-6 should be imple-

mented in a heuristic (non gradient based approaches) to avoid the problems of

local minima.

154



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x
(1)

x
(2

)

X
f

C
1
(X

f
)

C
1
(C

4
(X

f
))

C
1
(C

1
(X

f
))

C
1
(C

2
(X

f
))

C
1
(C

3
(X

f
))

Figure 4.9: Recursive one-step controllable sets in Example 4.5.1. Circles indicate
set boundary points and dotted lines show one step trajectories between boundaries of
successive sets.

Example 4.5.1 (Nonlinear Oscillator: Part IV (Determining XMPC))

Continuing our example of the nonlinear oscillator, we recall that we determined

C1(Xf) in Example 4.4.1. Here, we will apply Algorithm 6 to find the robust

output feasible set XMPC. Using the same parameters as in previous examples,

the iterative one-step controllability sets Cl(Cl−∞(X{)), ∀l = 2, . . . , (NC = 5) are

shown in Fig. 4.9. C∞(X{) was calculated in Example 4.4.1. It can observed that

the sets are not symmetric about the terminal set Xf , which is due to asymmetric

state constraints (see Fig. 4.11), as well as nonlinear dynamics. It is also seen

that only a subspace of constrained state space is feasible for OCP 3.2.1. Optimal

cost (4.44) for boundary of each set ∂Cl(Xf), ∀l = 1, . . . , NC is shown in Fig.

4.10. Being closest to Xf , C∞(X{) has the highest cost. Fig. 4.11 shows the
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Figure 4.10: Optimal Cost from (4.44) for boundary points of 1-step Controllable Sets
Cl(Cl−∞(X{)), using Algorithm 6 for Example 4.5.1.

robust output feasible set XMPC along with tightened constrained X̃t+Nc. It is

observed that boundary of XMPC coincides with tightened state constraint set

boundary ∂X̃t+Nc. This estimation of the set of initial feasible state is much less

conservative than the one given in [110] due to explicit inclusion of constraints in

the optimization.

4.6 Illustrative Example of Overall Robust

NMPC Scheme (Algorithm 1)

We have now fully developed all the ingredients of Algorithm 1. Examples 3.3.2-

4.5.1 showed the application of ingredient Algorithms 2-6 on a nonlinear oscillator

(3.59). Therefore, in this section we apply Algorithm 1 on the same system.
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Figure 4.11: Robust Output Feasible Set XMPC with Tightened Constraints. Bound-
aries of XMPCC coincide with tightened constraint X̃t+Nc.

Example 4.6.1 We can now implement the online part of Algorithm 1, imple-

mented using fmincon package of Matlab [111]. The initial condition is chosen

as x̃t = [−0.25 − 0.4]T ∈ XMPC. The goal is to regulate the state to the origin,

without violating any constraints. Fig. 4.12 shows the state trajectory in the phase

plane, along with terminal region Xf and tightened constraints (inner most set is

X̃t+Np and outermost is X̃t). It can be observed that the state does not converge

to zero, since Theorem 3.2.3 only guaranteed practical stability. Evolution of the

states with time is shown in Fig. 4.13, where it is again clear that the state does

not converge to the origin due to the presence of uncertainty. The control input

calculated by application of Algorithm 1 is shown in Fig. 4.14. The figure shows

how the maximum control authority is utilized initially without violation of this
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Figure 4.12: State trajectory in phase plane for Example 4.6.1, solved with Algorithm
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constraint set (red dotted) and tightened constrain sets.
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Figure 4.13: Tme evolution of states for Example 4.6.1. Notice that the state does not
converge to the origin.
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Figure 4.14: Control history for Example 4.6.1. Notice that maximum control authority
is utilized by Algorithm 1.

constraint, which is a unique feature of NMPC. Fig. 4.15 shows the evolution of

cost functional (3.58), which decreases monotonously, as expected. Computation

time for offline part of Algorithm 1 was 320 seconds and for 50 seconds of sim-

ulation, the online algorithm took 39 seconds of computation time, on an Intel

Core i5-4210U 2.7 GHz machine with 4 GB memory. This is adequate for online

implementation, and can be further improved with dedicated code and hardware.

Table 4.4 gives the breakdown of the computational time for various components

of Algorithm 1. The offline algorithms take the most time to compute, but the

online algorithm takes 0.8 seconds to simulate every second of simulation.
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Figure 4.15: Evolution of Optimization Cost Function for Example 4.6.1.

Table 4.4: Computational Times of Algorithms 1-6 for Examples 3.3.2-4.6.1

S. No. Algorithm Computational Time (s)
1 Algorithm 2 (offline) 0.004
2 Algorithms 3-4 (offline) 5.286
3 Algorithm 5 (offline) 62.779
4 Algorithm 6 (offline) 251.117
5 Algorithm 1 online part (50 s simulation) 38.535
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4.7 Conclusion

In this chapter, we presented new results in terminal region maximization and

feasibility set estimation of robust nonlinear MPC algorithm. We presented four

algorithms terminal region optimization, terminal control law design and deter-

mining maximum robust output feasible set. Terminal region is maximized based

on polytopic linear difference inclusions (PLDI) by Algorithms 5-4. One-step con-

trollable set and robust output feasible set are calculated using Algorithm 5-6.

Hence, this chapter completed the development of all components of Algorithm 1.

Moreover, theoretical development in Chapter 3 showed that due to uncertainties,

only practical stability can be ensured, and the amount of tolerable disturbance

is bounded by the size of one-step controllability set to terminal constraint re-

gion. Hence, to increase robustness and feasibility region, the terminal region was

maximized with theoretically derived methods for warm starting the algorithm.

Moreover, min-max optimization to find the maximum initial feasibility set for the

worst case realization of uncertainties as also described. Simulations were used to

validate the theoretical results. In the next chapter, we will extend the results so

far for the multi-agent case for cooperative control.
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CHAPTER 5

FORMATION CONTROL

BASED ON ROBUST

DISTRIBUTED NMPC

5.1 Introduction

With increasing computational power in affordable deployable packages, advanced

control techniques like NMPC have been implemented on mobile robots in chal-

lenging environments [112]. NMPC has the unique feature of being able to handle

constraints on state and control variables, which are invariably present in mobile

robots. These constraints may be minimum speed (aerial vehicles), maximum

speed, maximum acceleration dictated by structural integrity, throttle and steer-

ing control limits etc. The robust NMPC framework we developed in Chapters

3-4 can be easily applied to single autonomous vehicles, and it can handle mea-
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surement noise as well as modeling uncertainty and external disturbance. In this

chapter, we will extent the framework for systems consisting of multiple agents.

Chapter Organization The chapter is organized as follows: The problem is

introduced in Section 5.2, and an outline of the proposed solution is provided.

An important new result in the form of Theorem 5.5.1 is presented, which forms

the basis of the rest of the development in this chapter. Also presented are the

novel data compression and collision avoidance schemes. In Section 5.5, Theo-

rem 2.5.2 is extended to prove stability of Algorithm 7 in several new theorems

and lemmas. These theoretical results are validated in extensive simulations pre-

sented in Section 5.6. Finally, a summary of the chapter is presented along with

recommendations for future research directions.

5.1.1 Centralized versus Distributed Cooperative Control

As mentioned in Chapter 1, most biological systems are not only interconnected,

but in many cases, individual agents often cooperate with each other to obtain

a mutually beneficial goal. Recently, with advances in cheap sensors and actua-

tors, mobile robots have become ubiquitous in academia and research institutions.

Cooperative control in a team of autonomous vehicles can be thought of as dis-

tributed control of dynamically decoupled cooperating systems [59]. Cooperation

has been defined as a close relationship among all agents in the team with infor-

mation sharing playing an important role [22]. Therefore, cooperative tasks may

be performed in three manners [113], depending on how information is exchanged,
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Figure 5.1: Centralized (a), decentralized (b) and (c) distributed control of multi-agent
systems. Notice the information exchange between agents in the three settings.

depicted in Fig. 5.1.

� Centralized control. All information is collected at a single hub which also

computes control for all agents.

� Decentralized control. No information exchange among agents; control ac-

tions are based only on local measurements by each agent.

� Distributed control. Agents have access to information from other agents,

which is used in calculation of control action computed locally by each agent.

Centralized control is the framework we developed in Chapters 3-4. It has the

advantage of being a control architecture which has been studied since the begin-

ning of automatic control and therefore many control design methods are available.

However, it has sever limitations due to the necessity to maintain communication

of all agents with the central hub, the failure of which usually means failure of
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the entire control systems. Also, as the number of variables increase, centralized

control becomes increasingly difficult to calculate and synthesize. If the agents

are spread over a large area or wirelessly connected, such as aircraft formations, it

may become very difficult to maintain communication or handle large amount of

data over a limited bandwidth budget. Decentralized control is the other extreme

in which no information is exchanged with other agents. This is the simplest

approach and works if the interconnection among system variables is weak or the

systems have a certain structure [114]. However, in general it is limited to a certain

class of systems, often at the cost of reduced performance. Distributed control is

an architecture which is between these two extremes. Control is calculated locally

but information from other agents is incorporated in control synthesis. In terms

of performance, it is lower than the performance of centralized control but better

than decentralized control, but in terms of computational burden it is much less

demanding than centralized control. In many multi-agent problems, distributed

control is often the architecture of choice due to practical considerations and ac-

ceptable performance at lower computational and bandwidth requirements. In

this work we will consider the distributed control of a fleet of autonomous agents.

5.1.2 Introduction to Graph Theory

Information exchange among networked vehicles is conveniently modeled by di-

rected or undirected graphs [65]. An information graph is a set of nodes Ai and

edges connecting pairs of these nodes. If order of pairing in an edge E(Ai, Aj),
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where i, j = 1, . . . , N, i 6= j is ordered (meaning information flow is from one node

to the other only, and not vice versa), it is called a directed graph, but if the order

is unimportant (two way communication), it is an undirected graph. If a weight

is assigned to every edge in the graph, it is called a weighted graph. A path is a

sequence of edges from one node to get to another in the direction of information

flow. In this work, we consider general mixed graphs (i.e. having both directed

and undirected edges).

Let’s define the connectivity matrix as Γ = [γij], where γij > 0 if (Ai, Aj) ∈

E and 0 otherwise. By convention γii = 0, i.e. there are no self-loops. The

neighborhood of a node Ai is Gi : {Aj : γij > 0} ∪ {Aj : γji > 0}. The diagonal

matrix D = [dij] where dij ,
∑

j∈Gi

γij is called the weighted in-degree of node Ai,

i.e. the row sum of Γ at row i. The graph’s Laplacian matrix is L , D − Γ ,

which has all row sums equal to zero.

5.1.3 Formation Control

Often the main task in multi-vehicle cooperative control is formation [50]. Forma-

tions control means the ability to move the entire fleet with a common speed and

heading. This invariably means that the vehicles in the team should be able to

either sense the states of team members, or receive state information from other

team members. In most cases however, the communication occurs wirelessly as

the agents are spread over a large area or it is not possible to maintain tethered

connection network due to movement of vehicles and presence of obstacles. Also
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due to mobile nature of these vehicles, the on-board computational power is lim-

ited due to size and power budgets. Therefore, distributed control is often the

only practical control architecture. There are three basic elements in multi-agent

formation control [24].

i. Cohesion: attraction to distant neighbors up to a reachable distance.

ii. Alignment: velocity and average heading agreement with neighbors.

iii. Separation: repulsion from neighbors within some minimal distance. This is

also called collision avoidance.

Formation control without collision avoidance is also called state synchronization.

In [28],a dynamic neural network based adaptive control scheme for distributed

fleet state synchronization, without the need to know local or leader (nonlinear)

dynamics. Lyapunov analysis is used to derive tuning rules, with the implicit need

for persistent excitation, for both strongly connected and weakly (simply) con-

nected networks. However, delays, asynchronous measurements, collision avoid-

ance and limits on control actuation forces are not considered. In a similar ap-

proach, synchronization of nonlinear Lagrangian systems with linear-in-parameter

model uncertainties has been solved using distributed adaptive back-stepping and

adaptive redesign [29]. But unlike [28], all agents are assumed to have access to

group reference trajectory, which constitutes a further limitation. Synchroniza-

tion of a fleet of nonlinear Euler-Lagrangian systems has also been achieved using

distributed H∞ controllers robust to model uncertainties and disturbances in fixed

and switching network topologies guaranteeing input to state stability (ISS) [30].
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A prevalent technique for formation control of both linear and nonlinear sys-

tems is model predictive control (MPC), also known as receding horizon control

(RHC) for its inherent ability to handle constraints, incorporation of non-local

information and reconfigurability. Few attempts at centralized NMPC have been

made (e.g. [31]-[32]), but all suffer from computational complexity and time,

both being two major impediments towards its perusal. Work on multi-agent

formation control using MPC was pioneered at Caltech in 2001 [33]. He consid-

ered distributed NMPC for leader-less synchronization of agents with constrained,

continuous dynamics. All agents had access to the dynamic model of every other

agent as well as the virtual leader. Stability was ensured using terminal set and

linear terminal control technique [34]. However, no delay was considered. This

work has been extended later in [35] by requiring each agent to transmit its opti-

mum control trajectory at every sampling instant to its neighbors. Each vehicle;s

control is determined by solving an NMPC problem that minimizes a local cost

function, which considers the received control trajectories and models of its neigh-

bors. For stability, it is required that the actual trajectory of each vehicle does

not deviate too much from the one it transmitted to its neighbors. Hence, no

account is taken of model uncertainties and delays. The need to know neighbors’

dynamic models was removed in a recent work [36], by communicating state error

trajectories to immediate neighbors, instead of vehicle trajectories. However, the

results are conservative in that only a queue or string formation is considered. In

another direction, the results of [33] were extended using graph theory to spec-
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ify distributed NMPC cost functions for agents, and ensuring collision avoidance

by repelling potential field [44]. In a similar vein, [45] considered collision and

obstacle avoidance in a pursuit-evasion game among multiple vehicles by adding

repulsive potential fields to local NMPC cost function and using current position

and velocity of other vehicles to predict their future trajectories. However, the

author did not provide stability proofs and ignored robustness issues. In [46],

feedback linearization is used in the terminal set of NMPC, but only collision

avoidance is considered in formation, without stability proofs.

Recently, [58]-[59] distributed NMPC was considered for a group of agents

receiving delayed input from their neighbors. The delayed information is pro-

jected in the prediction horizon using a forward forgetting-factor. For a fleet of

underwater vehicles [53], decentralized MPC was proposed, while ensuring fault

tolerance. Each vehicle shares its plans and information on faulty states with its

neighbors in a virtual-leader setting. This work was extended in [54], to take into

account extended Kalman filtering (EKF)-based sensor fusion for localization in

addition to distributed MPC for collision avoidance and formation tracking. In

[50], using penalties for obstacle/collision avoidance in the NMPC framework, the

neighbors’ randomly delayed information is projected in the prediction horizon by

linear recurrence.

In this chapter, we address the problem of leader-follower formation control of

constrained autonomous vehicles subject to propagation delays. Limited network

throughput demands reduction in packet size. The proposed approach achieves

169



formation tracking through NMPC such that each agent performs local optimiza-

tion based on planned approximate trajectories received from its neighbors. Since

exchanging the entire horizon will increase packet size proportional to length of

prediction horizon, the trajectory is compressed using neural networks, which is

shown to reduce the packet size considerably. Moreover, the method allows the

agents to be heterogeneous, make asynchronous measurements and have different

local optimization parameters. Correction for propagation delays is achieved by

time-stamping each communication packet [115]. Collision avoidance is achieved

by formulating a novel spatial-filtered potential field which is activated in a “zone

of safety” around the agent’s trajectory. New theoretical results are presented

along with validating simulations.

5.1.4 Chapter Contributions

This chapter extends the work in [59] and contributes to the literature with the

following original results, which resulted in several publications [73], [19] etc.

mentioned in Chapter 1.

� Robustness to inaccuracy in communicated trajectories is explicitly taken

into account, resulting in practical stability instead of asymptotic stability

as in [59].

� An unprecedented number of sources of uncertainty is simultaneously con-

sidered, with explicit analytic closed form expressions for contribution of

each source in uncertainty growth.
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� Collision avoidance is also explicitly catered for. A novel modification of

potential field method is proposed. Unlike [45], our potential field is multi-

plicative, based on a spatial filter and stability is rigorously proved.

� New input to state practical stability (ISpS) and generalized small gain

conditions are derived, with explicit closed form expressions rendering great

insight into the role of each source of uncertainty in reducing feasibility and

stability.

� Unlike [59], the stability results of this chapter are not limited to strongly

connected networks. It is shown even a weakly connected network topology

for multiple agents can be designed for fleet-wide stability.

5.2 Problem Formulation

Consider a set of N agents, where each agent is denoted as Ai with i = 1, . . . , N .

Each agent has the following open loop nonlinear discrete-time dynamics described

by

xit+1 = f i
o(x

i
t, u

i
t), ∀t ≥ 0, i = 1, . . . , N, (5.1)

where f i
o is a nonlinear map for local open loop dynamics. xit and uit are states

and controls local to agent Ai. These variables belong to the following constraint
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sets :

xit ∈ X i ⊂ R
ni

, X i , {xi : ximin ≤ xi ≤ ximax > 0}

uit ∈ U i ⊂ R
mi

, U i , {ui : uimin ≤ ui ≤ uimax > 0}
(5.2)

One can observe that the agents’ dynamics (5.1) are decoupled from each other in

open loop. This is the standard case for most formation control problems [116].

It is rare for formations to be dynamically coupled, but such cases do exist, e.g.

[19]. In this thesis, we will focus on team of dynamically decoupled agents. Due

to measurements corrupted with sensor noise, we assume that local states are

estimated (locally) with bounded error ξix, such that

x̃it = xit + ξixt
, ξi

x
≤ |ξixt

| ≤ ξ̄ix (5.3)

Even though the agents are dynamically decoupled, they need to cooperate with

each other to perform the formation keeping task. To achieve this goal, a coop-

eration component is added to the cost functional (performance index) (5.10) of

each agent. To this end, define wi
t as an information vector transmitted to agent

Ai by other agents in its neighborhood Gi, which consists of the states of these

neighbors.

Definition 5.2.1 (Information Vector) The external input to agent Ai in for-

mation control task in a multi-agent system consists of state information of other
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agents in its neighborhood Gi, such that

wi , col(xj), ∀j = 1, . . . ,M i, j ∈ Gi, j 6= i, (5.4)

whereM i is the number of agents in the neighborhood of Ai. This external input in

the form of the information vector wi is driven by the dynamics of the neighboring

systems, as below

wi
t+1 = gi(wi

t, φ
i
t) , col(f j

o (x
j
t , u

j
t)), ∀j = 1, . . . ,M i, j ∈ Gi, j 6= i, (5.5)

where gi is a nonlinear map composed of nonlinear dynamics of neighboring agents

and their local inputs φi
t , col(ujt). We assume that the information vector is

constrained to the following set

wi
t ∈ W i ⊂ R

pi, W i , {wi : wi
min ≤ wi ≤ wi

max > 0} (5.6)

Moreover, assume that we have an updatable approximation for wi, which pro-

duces the approximation w̃i, such that

w̃i
t = wi

t + ξiwt
, ξi

w
≤ |ξiwt

| ≤ ξ̄iw (5.7)

We assume that we do not have exact knowledge of the evolution of the information

over the horizon i.e. wi
t,t+Np , and that we can only have an approximation of it

w̃i
t,t+Np. The exact approximation method will be discussed in Section 5.2.1. Also,
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let us assume that the agent Ai has nominal model g̃(·) of the true information

vector (5.5) given by

w̃i
t+1 = g̃i(w̃i

t), (5.8)

such that there is a bounded information vector transition uncertainty due to

information vector model mismatch

g̃(wi
t) = g(wi

t, φ
i
t) + eiwt

, eiw ≤ |eiwt
| ≤ ēiw, (5.9)

Now, let the distributed cost function of each agent be given as

J i
t

(

x̃i, ui, w̃i, dh
i

, dq
i

, N i
c, N

i
p

)

=

t+N i
c−1
∑

l=t

[

hi
(

x̃il, u
i
l, d

hi
)

+ qi
(

x̃il, w̃
i
l , d

qi
)]

+

t+N i
p−1
∑

l=t

[

hi
(

x̃il, k
i
f(x̃

i
l), d

hi
)

+ qi
(

x̃il, w̃
i
l , d

qi
)]

+ hif

(

x̃it,t+N i
p
, dh

i
)

, (5.10)

where N i
P and N i

C are the local prediction and control horizons, respectively,

according to the NMPC notation (see Fig. 3.2). The distributed cost function

(5.10) consists of three components

i. Local transition cost hi, which is the cost to a reach a local target state, which

is embedded in the local alignment vector dh
i

.

ii. Cooperative cost qi which is the cost for agent Ai to converge to an aligned

state with its neighbors Aj ∈ Gi. The cooperation goal is embedded in the

cooperative alignment vector dq
i

.
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iii. Terminal cost hif is the cost of distance between the local state at t+N i
P and

the local target state.

Local control sequence ui
t,t+N i

P

consists of two parts, ui
t,t+N i

C
−1

and ui
t+N i

C
,t+N i

P
−1
.

The latter part is generated by a local terminal control law ui = kif(x̃
i
l) for l ≥ N i

C ,

while the former is finite horizon optimal control ui
t,t+N i

P

which is the solution of

the optimization problem 5.2.1. Now, in spite of the agents being dynamically

decoupled, states of other agents in the multi-agent system affect the control of

agent Ai by virtue of the information vector w̃i being part of its NMPC cost

function (5.10). Therefore, even though the agents are decoupled in the open

loop, their dynamics is coupled in close loop due to cooperation cost component

in distributed cost (5.10). Therefore we can write the closed loop form of the open

loop agent dynamics (5.1) as

xit+1 = f i(xit, u
i
t, w

i
t), ∀t ≥ 0, i = 1, . . . , N, (5.11)

We assume that our model of agent dynamics is not perfect, such that the nominal

model used for control synthesis is

x̃it+1 = f̃ i(x̃it, u
i
t, w

i
t), (5.12)

where, the actual state of the system is xit, while the state predicted by model

(5.12) is x̃it. This system model mismatch leads to agent transition uncertainty
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eixt
,= f̃ i(xit, u

i
t, w

i
t)− f i(xit, u

i
t, w

i
t), such that

f̃ i(xt, ut, wt) = f i(xt, ut, wt) + eixt
, eix ≤ |eixt

| ≤ ēix (5.13)

Now, due to uncertainty, the constraint sets (5.2) and (5.6) for xi and wi will be

‘larger’ than constraint sets for x̃i and w̃i, such that

x̃t ∈ X̃ i
t(ē

i
x, ξ̄

i
x, ē

i
w, ξ̄

i
w) ⊂ X i, ut ∈ U, w̃i

t ∈ W̃ i
t (ξ̄

i
w, ē

i
w) ⊂W i (5.14)

The exact definition of these ‘tightened’ constraint sets is given later. We will

now state the distributed finite horizon control problem for NMPC.

Problem 5.2.1 (Distributed Finite Horizon Optimal Control Problem)

At every instant t ≥ 0, given prediction and control horizons N i
p, N

i
c ∈ Z≥0,

terminal control kif(x̃
i) : Rn → R

m, state estimate x̃it and information vector ap-

proximation w̃i
t,t+N i

p
, find the optimal control sequence uo

i

t,t+Nc−1, which minimizes

the finite horizon cost (5.27)

uo
i

t,t+N i
c−1 = argmin

ui∈U i

J̃ i
t

(

x̃it, w̃
i
t,t+N i

p
, uit,t+N i

p
, N i

c, N
i
p

)

, (5.15)

subject to

I. nominal state dynamics (5.12)

II. nominal information vector dynamics (5.8)

III. Tightened constraint sets (5.14)
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IV. Terminal state x̃it+Np is constrained to an invariant terminal set X i
f ∈

X̃ i
t+Nc, i.e.

x̃it+l ∈ X i
f , ∀l = N i

C , . . . , N
i
P (5.16)

The loop is closed by implementing only the first element of u0
i

t,t+N i
c−1 at each

instant, such that the NLMPC control law becomes

Θi
t(x̃

i, w̃i) = uo
i

t (x̃
i
t, w̃

i
t, N

i
p, N

i
c) (5.17)

and the closed loop dynamics becomes

xit+1 = f(xit,Θ
i
t(x̃

i, w̃i), wi
t) = f i

c(x
i
t, w

i
t) (5.18)

with local closed loop nonlinear map f i
c(x, w). This process is repeated every

sampling instant, as illustrated in Fig. 3.2. To summarize, at time t, each agent

Ai (i = 1, . . . , N) estimates its local state x̃it and receives an approximation of

information vector w̃i
t,t+N i

p
from its neighbors. Then, cost (5.10) is minimized over

a finite horizon N i
p, using N i

c control adjustments and pre-computed terminal

control law kif , subject to constraints (5.14) and (5.16). Only the first element of

this optimized control sequence is implemented. Then the cycle is repeated at the

next sampling instant. This algorithm is stated below
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Algorithm 7 Distributed NMPC Algorithm for Formation Control

1: procedure Offline Convex and Min-max Optimization

2: Input A1,Ai ← x̃it, d
hi

, dq
i

, gi ⊲ i = 1 , Leader, t = 0
3: Tighten constraints with Algorithm 8
4: Compute Qi

f and Ki
f using Algorithms 3 and 4

5: Compute Output feasibility set X i
MPC and controllability sets C1(X i

f)
using Algorithms 5 and 6

6: end procedure
7: procedure Distributed Online RH Optimization

8: Design Spatially filtered potential (5.72)
9: Solve Problem 5.2.1 at Ai for ui

o

t,t+N i
c−1

10: Train NN Train Neural network for x̃i
o

t,t+Np

11: Implement first element/block of ui
o

t,t+N i
c−1

12: Transmit/Receive data packets
13: Estimate time delay ∆ij

14: Reconstruct w̃i
t,t+Npi with received NN and estimate tail of received tra-

jectory (5.22).
Increment time by one sample ⊲ ti = ti + T i

15: end procedure

5.2.1 Neural Network based Trajectory Compression

For cooperation, agents transmit their planned state trajectories, x̃it,t+N i
p
∈ R

ni×N i
p

as mentioned in Definition 5.2.1. These communication packets are received by

vehicles within the neighborhood of transmitting agents. Neighborhood may be

defined based on communication range, number of channels on receiving agents

etc.

Definition 5.2.2 (Neighborhood of Agents) Each agent Ai in the team of

N agents has a neighborhood Gi = Aj, ∀j 6= i, j = 1, . . . ,M i, consisting of M i

neighbors from which it is able to at least receive information.

However, reception of these packets occurs after some delay ∆ji, called the prop-

agation delay, which is not necessary an integer multiple of the sampling time T i.
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Table 5.1: Anatomy of a Typical Communication Packet.

Data Register Data
1 Agent identity, i
2 Time stamp, T i

s

3 Sampling time, T i

4 to 3 + qi Neural network, N i

4 + qi onwards Error correcting codes
Optional (leader) Cooperation Goals

This delay may depend on the relative range and orientation between the agents

or the medium and method of communication [117]. Considering that most multi-

vehicle systems are connected over wireless channels, the bandwidth allocated to

each channel may be limited. Hence, there is an interest in compressing the data

before sending it and then recovering it at the receiver’s end. To reduce packet

size, this trajectory containing ni × N i
p floating points is compressed by approx-

imating it with neural network N i of qi weights and biases, with compression

factor C i
w of

C i
w = 1− qi + overhead size

ni ×N i
p

(5.19)

Overhead size accounts for agent identity i, time-stamp (T i
s) and sampling time

T i etc. The leader also communicates formation geometry and way-points to fol-

lowers. The typical communication packet from Ai to Aj will have the topology

shown in Table 5.1. It is assumed that there exists a mechanism for synchronizing

clocks, which allows delay ∆ji to be estimated. NN at Ai is trained using state

trajectory as output and N i
p discrete instants as input. Using sampling rate T j

and prediction horizon N j
p at Aj, re-sampled trajectory w̃j

t ∈ W j ⊂ R
nj×Nj

p is gen-
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Figure 5.2: Trajetory comressed at Agent Aj is transmitted to Agent Ai, where it is
received after delay ∆ij and recovered using neural network.

erated using received neural network N i. If horizon is sufficiently long, states can

be extrapolated with bounded error, but very long horizons are impractical due

to increased computational load. Therefore, we have suggested another method of

‘extrapolation’ in the next section. If packet is delayed by more than a threshold

∆̄, the packet is deemed to be lost. The data compression and recovery process

is depicted in Fig. 5.2. The basic universal approximation result says that any

smooth function w(t) can be approximated arbitrarily closely on a compact set

using a two-layer NN with appropriate weights. This result has been shown using

various activation functions, see [77]. In general, a single-layered NN will not

provide universal approximation, but can still give acceptable performance. Let

x̃j
t,t+Nj

P

(τ) be the trajectory optimized at Aj , then we can show [77]

x́j
t,t+Nj

P

(τ) = x̃j
t,t+Nj

P

(τ) + ξjN , ξj
N
≤ |ξjN | ≤ ξ̄jN (5.20)

180



where x́j(τ) is the approximation of xj(τ) by the NN, and τ , col(t, t . . . t) is the

stack of t vector ni times and ξ̄jN ∈ R≥0 is the NN function approximation error

which decreases as the hidden-layer size HL increases.

Tail Recovery and Maximum Allowable Delay

For ease of understanding, we will consider a two member team, though gener-

alization to a larger team is trivial. Similarly, for the development here, we will

assume delay ∆ to be an integer multiple of sampling time T i, though it is easy to

generalize. As depicted in Fig. 5.2, the trajectory of Aj is compressed by a neural

network N j
t in (5.20). This neural network N j

t is broadcast over the communi-

cation channel and received at agent Ai after some delay. Therefore, the packet

when it is received at time t by Ai was actually sent at t−∆ij . Let us assume there

is a mechanism for estimating propagation delay ∆ij . Then the neural network

received N i
t = N j

t−∆ij
is used to reconstruct trajectory as follows

w̃i
t−∆ij ,t+Nj

P
−∆ij

(τ) = x́j
t−∆ij ,t+Nj

P
−∆ij

(τ),

∣

∣

∣
w̃i

t−∆ij ,t+Nj
P
−∆ij

(τ)− x̃j
t−∆ij ,t+Nj

P
−∆ij

(τ)
∣

∣

∣
≤ ξ̄iN , (5.21)

Note that at the time of reception t, from (5.21), the useful part of the trajectory

is that we recover is only w̃i
t,t+Nj

P
−∆ij

. Therefore, we need to recover the “tail” of

the transmitted trajectory w̃i
t+N i

p−∆ij ,t+N i
p
. Since we have nominal model for the
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dynamics of Aj as (5.8), we can predict the tail as

w̃i
t+N i

p−∆ij+1 = g̃i
(

w̃i
t+N i

p−∆ij

)

, . . . w̃i
t+N i

p
= g̃i

(

w̃i
t+N i

p−1

)

(5.22)

The nominal model is not perfect, hence increasing the delay will increase tail

approximation error. As shown in Section 5.3.1, the approximation error will be

grow with delay, such that there is an upper limit to the maximum allowable

delay ∆̄i. An important factor in limiting the tolerable delay is the need to ensure

collision avoidance. If the approximation error is greater (or delay is greater) than

an upper bound, admissible control for avoiding collision may not exist. This

means that agents will get too close due to trajectory approximation error, such

that collision cannot be avoided in the sense of (5.25)-(5.27) (see Section 5.2.2),

i.e. if there is not enough time to maneuver to avoid collision. Consequently, we

assume an upper bound on the allowable delay ∆ij
t ≤ ∆̄, which is the worst case

scenario of two agents on a direct collision course at maximum allowable speed

and with minimum separation between them, i.e.

∆̄ , Rmin/vmax (5.23)

With this conservative bound on ∆ij
t , there is always enough time to execute

collision avoidance manoeuvres.
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5.2.2 Collision Avoidance

Let us first define the “distance” between two agents as the minimum distance

between the balls of uncertainty around their predicted or estimated positions at

any given instant.

dijk , dist
(

B(x̃ik, ρ̄ixk
),B(w̃ji

k , ρ̄
i
wk
),
)

(5.24)

We define an agent Ai to be on collision course with at least one other agent if

∑

j∈Gi

1(Ri
min

−dij
k
)>0,∀t≤k≤(t+N i

p)
> 0, ∀j 6= i (5.25)

where Rmin safety zone of an agent and dijk is the Euclidean distance between agent

Ai and Aj .
∑

j∈Gi

1(Ri
min

−dij
k
)>0,∀t≤k≤(t+N i

p)
represents the total number of agents in

collision course with agent Ai. The definition of collision course is illustrated in

Fig. 5.3. A repelling potential can be formulated as:

Φi
t =

∑

j∈Gi

λ̄Ri
min1(Rj

min
−dij

k
)>0,∀t≤k≤(t+N i

p)

t+N i
P

∑

k=t

λ(dijk )d
ij
k

(5.26)

where 0 < λmin ≤ λ(dij) ≤ λmax are positive weights of a filter and are strictly

decreasing in their argument, such that λ̄ ,
t+N i

P
∑

k=t

λ(dijk ). To take into account

agents on a possible collision course, the cost (5.10) is then modified as:

J̃ i
t = J i

t (1 + Φi
t) (5.27)
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Figure 5.3: Illustration of the cocept of collision course. Notice that in order to maintain
clarity, the uncertainty balls B(x̃ik, ρ̄ixk

) and B(w̃ji
k , ρ̄

i
wk

) have not been depicted in the

figure. Also, it is obvious that w̃i
k stands for w̃ji

k in the figure.
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One should note that if at any instant t ≤ k ≤ (t+N i
p) in the prediction horizon,

an agent Ai has a feasible trajectory which falls within Rj
min of agent Aj , the cost

of taking such a course would be increased from (5.10) to (5.27). In addition, the

strength of potential field (5.26) is inversely proportional to the weighted average

of the distance between the two agents

d̄ijt =

t+N i
P

∑

k=t

λ(dijk )d
ij
k

λ̄
(5.28)

The weights λ, strictly decreasing with dijk , ensure that the smallest separation

between two agents gets the highest weight. On the other hand, taking a simple

average (i.e. λ ≡ 1) or a time-based forgetting factor (λ is strictly decreasing

with k, the time index), results in poor performance in collision avoidance, as

trajectories which enter very late in zone Rmin (i.e. Ri
min − dijk > 0, ∀k → t +N i

p)

have a small repelling potential (5.26), and hence not prevented from very early on.

Such strategy results in agents getting very close before they start repelling each

other to avoid collision, causing a loss of tracking performance. However, with

the proposed cost modification as in (5.27), trajectories are immediately penalized

upon falling within zone Rj
min and are obviously avoided in the NMPC optimal

control selection process, as depicted in Fig. 5.4. In other words, the potential

(5.26) is present when feasible solutions fall inside Rmin. The indicator function

in (5.26) acts as a “gain-scheduled” binary (0-1) variable depending on whether a

feasible trajectory falls within Rmin. Conditions for stability of this approach are
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Figure 5.4: Illustration of the successful collision course. The agents were on collision
couse in (a), but collision avoidance mechanism pushed them away in (b).

shown in Section 5.5. We define successful collision avoidance to occur if weighted

average distance between the agents on collision course is increased during the

next time instant i.e.

t+N i
P

∑

k=t

λ(dijk )d
ij
k <

t+N i
P+1
∑

k=t+1

λ(dijk )d
ij
k (5.29)

Remark 5.2.1 It should also be noted that since prediction uncertainty (5.30)

and (5.31) increase with prediction horizon, the definition of inter-agent distance

(5.24) also embeds temporal information in our novel spatially filtered potential

field (5.26).
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5.3 Robustness Analysis

We will analyze the conditions for robust feasibility of the proposed multi-agent

Algorithm. Therefore, the similar assumptions to the ones made in Section 3.2.5

are made.

Assumption 5.3.1 (Feasible Initial Sets) There exist compact robust output

feasible sets X i
MPC ⊆ X i for each agent (i = 1, . . . , N), which is the set of initial

states for which each optimal control problem 5.2.1 is feasible.

This is an assumption of initial feasibility of the FHOCP 5.2.1 for each agent,

which we will need to prove recursive feasibility later.

Assumption 5.3.2 (L. Continuity of Agent Transition Maps) . We as-

sume that transition maps f̃ i(·) and g̃i(·) are locally Lipschitz continuous, such

that

I. f̃ i(0, 0, 0) = 0 and f̃ i ∈ C2.

II. g̃i(0) = 0

III. |f̃ i(xi1, u
i
1, w

i
1)− f̃ i(xi2, u

i
2, w

i
2)| ≤ Li

fx|xi1− xi2|+Li
fu|ui1− ui2|+Li

fw|wi
1−wi

2|

for xi1, x
i
2 ∈ X i, ui1, u

i
2 ∈ U i and wi

1, w
i
2 ∈ W i.

IV. |g̃(wi
1)− g̃(wi

2)| ≤ Li
gw|wi

1 − wi
2|, for wi

1, w
i
2 ∈ W

Using these assumptions, we can now find the bounds used to tighten constraints

for robust constraint satisfaction.
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5.3.1 Constraint Tightening

Due to presence of estimation errors, prediction errors and propagation delays,

we need to find bounds on the growth of errors in a way similar to the bounds

derived in Section 3.2.5. However, we have to now do this in a multi-agent setting,

as shown in this section.

Lemma 5.3.1 (Multi-Agent Prediction Error Bounds) Given the follow-

ing estimation and transition error bounds

i. Estimation error bounds ξ̄ix, ξ̄
i
w ∈ R≥0 defined in (5.3) and (5.7),

ii. One step transition error bounds ēix, ē
i
w ∈ R≥0 defined in (5.13) and (5.9),

iii. Neural network approximation error ξiN , defined in (5.21).

and Lipschitz constants defined in Assumption 5.3.2, then the l-step prediction

error in predicting xt,t+Np is bounded by

∣

∣xit+l − x̃it+l

∣

∣ ≤ Lil

fxξ̄
i
x + ēix

Lil

fx − 1

Li
fx − 1

(5.30)

and the l-step prediction error in predicting wt,t+Np is bounded by

∣

∣wi
t+l − w̃i

t+l

∣

∣ =
∑

j∈Gi

∣

∣wi
t+l − w̃i

t+l

∣

∣

j
(5.31)
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where,

∣

∣wij
t+l − w̃ij

t+l

∣

∣

j
,















Ljl

fxξ̄
j
x + ējx

Ljl

fx
−1

Lj
fx

−1
+ ξ̄iN , ∀l = 0, . . . , N j

P −∆ij − 1

Li
l−(Ni

p−∆ij)
gw ρ̄iw,N i

p
+ ēiw

Li
l−(Ni

p−∆ij)
gw −1

Li
gw−1

, ∀l = N i
p −∆ij , . . . , N

i
p

(5.32)

and

ρ̄iw,N i
p
, Lj

Ni
p−∆ij

fx ξ̄jx + ējx
LjN

i
p−∆ij

fx − 1

Lj
fx − 1

+ ξ̄iN (5.33)

for i = 1, . . . , N , l = 0, ..., NP , and Lfx, Lgw 6= 1.

Proof. Let us first look at the prediction error for the agent Ai. From (5.3), we

have for l = 0

|xit − x̃it| ≤ ξ̄ix

At the next sampling instant, i.e. l = 1, we have from (5.5), (5.8), (5.7) and (5.9)

∣

∣xit+1 − x̃it+1

∣

∣ =
∣

∣

∣
f i
(

xit, u
i
t, w̃

i
t

)

− f̃ i
(

x̃it, u
i
t, w̃

i
t

)

∣

∣

∣

=
∣

∣

∣
f̃ i
(

xit, u
i
t, w̃

i
t

)

+ ēix − f̃ i
(

x̃it, u
i
t, w̃

i
t

)

∣

∣

∣

≤
∣

∣

∣
f̃ i
(

xit, u
i
t, w̃

i
t

)

+ ēix − f̃ i
(

x̃it, u
i
t, w̃

i
t

)

∣

∣

∣
+ ēix

But, in view of Assumption 5.3.2

∣

∣xit+1 − x̃it+1

∣

∣ ≤ Li
fx

∣

∣xit − x̃it
∣

∣+ ēix ≤ Li
fxξ̄

i
x + ēix (5.34)
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At next sampling instant when l = 2,

∣

∣xit+2 − x̃it+2

∣

∣ ≤ Li
fx

∣

∣xit+1 − x̃it+1

∣

∣ + ēix

Substituting (5.34)

∣

∣xit+2 − x̃it+2

∣

∣ ≤ Li
fx

(

Li
fxξ̄

i
x + ēix

)

+ ēix = ξ̄ixL
i2

fx + ēix
(

Li
fx + 1

)

(5.35)

Finally, following the same development as above, we can show that for l = 3

∣

∣xit+3 − x̃it+3

∣

∣ ≤ ξ̄ixL
i3

fx + ēix

(

Li2

fx + Li
fx + 1

)

(5.36)

So generalizing from (5.34)-(5.36) for l-step ahead prediction

∣

∣xit+l − x̃it+l

∣

∣ ≤ Lil

fxξ̄
i
x + ēix

(

k=l−1
∑

k=0

Lik

fx

)

= Lil

fxξ̄
i
x + ēix

Lil

fx − 1

Li
fx − 1

which proves (5.30).

Now, consider prediction error for the information vector. From (5.7). Assume

that Ai receives the neural network from only Aj after a delay of ∆ij sampling

instants. Then, from (5.30), at t+ l we have

∣

∣xjt+l − x̃jt+l

∣

∣ =
∣

∣wi
t+l − x̃jt+l

∣

∣ ≤ Ljl

fxξ̄
j
x + ējx

Ljl

fx − 1

Lj
fx − 1

(5.37)
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Note that wi
t+l = xjt+l. Now, as mentioned in Section 5.2.1, we compress x̃j

t,t+Nj
p

with neural network N j
t , but the packet that arrives at Aj was compressed at

t−∆ij . Hence, we are only able to recover w̃t−∆ij ,t+Nj
P
. From (5.21), we can write

that

∣

∣w̃i
t+l − x̃jt+l

∣

∣ ≤ ξ̄iN , ∀l = 0, . . . , N j
P −∆ij

Using the inequality above in (5.37), we get

∣

∣wi
t+l − w̃i

t+l

∣

∣ =
∣

∣wi
t+l − x̃jt+l −

(

w̃i
t+l − x̃jt+l

)∣

∣

≤ Ljl

fxξ̄
j
x + ējx

Ljl

fx − 1

Lj
fx − 1

+ ξ̄iN , ∀l = 0, . . . , N j
P −∆ij (5.38)

Now, we look at the error in estimating the tail as mentioned in Section 5.2.1.

Since we estimate the tail with the nominal model of the information vector given

in (5.8), using (5.22) at l = N i
p −∆ij + 1, we get

∣

∣

∣
wi

t+N i
p−∆ij+1 − w̃i

t+N i
p−∆ij+1

∣

∣

∣
=
∣

∣

∣
gi
(

wi
t+N i

p−∆ij
, φi

t+N i
p−∆ij

)

− g̃i
(

w̃i
t+N i

p−∆ij

)∣

∣

∣

≤
∣

∣

∣
g̃i
(

wi
t+N i

p−∆ij

)

− g̃i
(

w̃i
t+N i

p−∆ij

)

+ ēiw

∣

∣

∣

≤ Li
gw

∣

∣

∣
wi

t+N i
p−∆ij

− w̃i
t+N i

p−∆ij

∣

∣

∣
+ ēiw

Now, substitute (5.38) in the inequality above

∣

∣

∣
wi

t+N i
p−∆ij+1 − w̃i

t+N i
p−∆ij+1

∣

∣

∣
≤ Li

gw



Lj
Ni
p−∆ij

fx ξ̄jx + ējx
LjN

i
p−∆ij

fx − 1

Lj
fx − 1

+ ξ̄iN



+ ēiw
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Using the same development as in the derivation of (5.30), we can generalize

∣

∣wi
t+l − w̃i

t+l

∣

∣ ≤ Li
l−(Ni

p−∆ij)
gw



Lj
Ni
p−∆ij

fx ξ̄jx + ējx
LjN

i
p−∆ij

fx − 1

Lj
fx − 1

+ ξ̄iN





+ ēiw
Li

l−(Ni
p−∆ij)

gw − 1

Li
gw − 1

, ∀l = t +N i
p −∆ij , . . . , t+N i

p (5.39)

Therefore, combining (5.38) and (5.39) and generalizing for multiple neighbors

(noting that the norm of a vector of positive values is less than the sum of the

vector elements), we prove (5.31).

The same comments as in Remark 3.2.1 are applicable in the multi-agent case.

Notice that the error growth bound are markedly different from the single agent

case in Section 3.2.5. Since the nominal models of agents (5.12) are similar to the

nominal model in (3.5), we will state the following without a formal proof, as it

is the same as in Chapter 4.

Claim 5.3.1 (Terminal Set and Terminal Control for Agents) There ex-

ists an terminal control kif(x̃
i
l) ∈ U i, /, ∀l = N i

C , . . . , N
i
P − 1, application of

which to the nominal plant x̃it+l = f̃(x̃il, kf(x̃
i
l), 0) ensures that a terminal con-

straint set X i
f is robust positively invariant (RPI) i.e. xil ∈ X i

f and x̃il ∈ X i
f ,

∀l = t+N i
C + 1, . . . , t+N i

P for any x̃it+Nci ∈ X i
f , such that

I. The rate of convergence of nominal state x̃ under control kf(x̃) is lower

bounded by

∣

∣

∣
f̃ i (x̃t+l+1, kf(x̃t+l+1))− x̃it+l+1

∣

∣

∣
≥ ξ̄ixL

il

fx

(

Li
fx − 1

)

+ ēixL
il

fx, (5.40)
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for l = N i
C−1 . . . N i

P −2, and (b) there exists ai ∈ Z≥0 and 0 ≤ Qi
f ∈ R

ni×ni

such that

x̃i
T

Qi
f x̃

i ≤ a, ∀x̃i ∈ X i
f (5.41)

By considering the effect of the prediction uncertainty bounds on the constraints, it

is possible to guarantee that state evolution of the actual system will be admissible

as well.

Theorem 5.3.1 (Agent Constraint Tightening) With actual constraints X i

and W i defined in (5.2), let the tightened constraints be given by

X̃ i
t+l , X i ∼ Bni

(

ρ̄ixt+l

)

, (5.42)

W̃ i
t+l , W i ∼ Bpi

(

ρ̄iwt+l

)

, (5.43)

for i = 1, . . . , N and l = 0, ..., N i
P , where ρ̄ix is the prediction error bound in

Lemma 5.3.1 defined as

ρ̄ixt+l

∆
= Lil

fxξ̄
i
x + ēix

Lil

fx − 1

Li
fx − 1

(5.44)

and

ρ̄iwt+l

∆
=
∑

j∈Gi

∣

∣wi
t+l − w̃i

t+l

∣

∣

j
, (5.45)

with defined in
∣

∣wi
t+l − w̃i

t+l

∣

∣

j
defined in (5.32)-(5.33). Then, any (in gen-

eral suboptimal) admissible control sequence uit,t+Nc−1 and terminal control

ui
t+N i

C
,t+N i

P
−1

= kif(x̃
i
t+Nc,t+Np−1) which is feasible (x̃it+l ∈ X̃ i

t+l, u
i
t,t+Np−1 ∈ U i
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and w̃i
t+l ∈ W̃ i

t+l) with respect to tightened constraints (5.42) applied to the ac-

tual system (5.18), guarantees the satisfaction of original constraints (5.2), i.e.

xit+l ∈ X i for l = 0, . . . , N i
P and xit ∈ X i

MPC.

Proof. The proof is very similar to the proof of Theorem 3.2.1, and therefore

will not be repeated here.

Remark 5.3.1 Constraint tightening (5.42) is novel as it is the first time that

such a variety of uncertainty contributions have been considered simultaneously in

the multi-agent case. Remarkably, an explicit bound on growth in uncertainty is

derived based on the tail reconstruction. Besides, estimation, prediction and data

compression errors are also considered. This leads to very general bounds on pre-

diction error, which can be specialized to specific cases (e.g. perfect measurement

will mean ξix → 0).

The constraint tightening procedure is summarized in the algorithm below.

Algorithm 8 Agent Constraint Tightening

1: Given (I) nominal models f̃ i(x̃i, ui, w̃i), g̃i(w̃i), (ii) uncertainty bounds ξ̄ix,
ξ̄iw, ξ̄

i
N , ēix, ē

i
w and horizons N i

C , N
i
P .

2: procedure Constraint Tightening

3: Calculate Lipschitz constants of nonlinear maps f̃ i(x̃i, ui, w̃i) and g̃i(w̃i).
4: Calculate the prediction error bounds in (5.44) and (5.45).
5: Tighten the constraints by Pontryagin difference as given in (5.42)-(5.43).
6: end procedure

194



5.4 Robust Recursive Feasibility without Colli-

sion Avoidance

In this section, we assume agents are not on collision course. Later we will also

consider the case where collision avoidance becomes active. We defined the robust

output feasible set X i
MPC in Assumption 5.3.1 as the set of initial states for which

the OCP 5.2.1 is feasible. We will prove the recursive feasibility of the Algorithm

using arguments very similar to those in Theorem 3.1.

Definition 5.4.1 (Agent One-Step Controllable Set of X i
f) The one-step

controllability set to the terminal constraint set X i
f is defined as

Ci1(X i
f , X̃

i
t+N i

c
)

∆
=
{

x̃i ∈ X̃t+Nc : f̃(x̃
i, u, w̃i) ∈ X i

f , u
i ∈ U i, w̃i

t ∈ W̃ i
}

(5.46)

Let us also define d̄i , dist(X̃ i
t+Nc\Ci1(X i

f , X̃
i
t+Nc), X

i
f).

Numerical computation of C(X,Xf ) will be carried out using Algorithm 5.

Assumption 5.4.1 (Feasibility Bounds on Uncertainties) The following

bounds apply to the allowable uncertainties

I. Lower bound on uncertainty growth

ρ̄ixt+l
− ρ̄ixt+l−1

≥ Lil−1

fx

(

ξi
x

)

(5.47)

for l = 1, . . . , NC.
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II. Uncertainties are upper bounded by minimum size of one-step controllability

set to terminal constraint set

LiN
i
c−1

fx

((

Li
fx + 1

)

ξ̄ix + ēix
)

≤ d̄ (5.48)

Recursive feasibility and robust positive invariance of feasible region X i
MPC can

now be stated.

Theorem 5.1 (Agent Recursive Feasibility without Collision Avoidance)

Under Assumptions 5.3.2 and 5.4.1, terminal control (Claim 5.3.1), suitable

bounds on uncertainties (Assumption 5.4.1) and tightened constraints (Theorem

5.3.1), given the feasibility of initial state x̃it ∈ X i
MPC (Assumption 5.3.1), the

FHOCP 5.2.1 is recursively feasible.

Proof. The proof is similar to the proof of Theorem 3.1 and can be easily

derived from the proof of that theorem, and therefore not reproduced here.

Due to obvious similarities, algorithms in Chapter 4 can be utilized for determining

the robust one-step controllability set to X i
f feasibility region X i

MPC.

5.5 Stability Analysis

The stability of the multi-agent team is more involved than the case of a single

system. Therefore, stability analysis will be carried out in three steps.

i. We will first ignore the interconnections and consider the stability of the

agents without collision avoidance.

196



ii. While still ignoring interconnections we will study the stability of agents with

collision avoidance active.

iii. We will take into consideration the interconnections among agents and study

the stability of the team without collision avoidance.

iv. Finally, we will study the stability of the team with collision avoidance active.

In the first case, the multi-agent system is very similar to the single system studied

in Chapters 3-4, therefore some of the results will be stated without proof, unless

required. We will build on these results to prove the stability of the team under

collision avoidance.

5.5.1 Stability of Individual Agents without Collision

Avoidance

In the proposed approach, the uncertainty in trajectory approximation ξiN is non-

vanishing, even if other sources of uncertainty are not present and therefore one

can only guarantee practical (ultimately bounded) stability. We consider first

the stability of individual agent Ai with respect to the information received from

other agents, by exploiting Theorem 3.2.2. At this stage the interconnections are

ignored, and hence information from neighbors is considered as external input.

We assume at this stage that agents generate conflict free trajectories. We will

make the following useful assumptions.

Assumption 5.5.1 (Distributed Cost Lipschitz Continuity) We assume
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that components of distributed cost (5.10) kif(·), hi(·), qi(·) and hif(·) are locally

Lipschitz continuous and there are nonlinear functions relating to the cost

components.

I. |kif(x̃i)| ≤ Lki
f
|x̃i|, for x̃i ∈ X̃ i

f

II. |hi(x̃i, ui)| ≤ Li
hx|x̃i|+ Li

hu|u|, for x̃i ∈ X̃ i
t and ui ∈ U i

III. 0 ≤ |qi(x̃i, w̃i)| ≤ Li
qx|x̃i|+ Li

qw|w̃i|, for xi ∈ X̃ i
t and wi ∈ W̃ i

t

IV. |hif(x̃i)| ≤ Li
hf |x̃i| for x̃i ∈ X̃ i

f

V. αi
1(|x̃it|) ≤ h(x̃it, u

i
t), for x̃

i ∈ X̃ i
t .

VI. αi
1,f(|x̃it|) ≤ hif (x̃

i
t) ≤ αi

2,f(|x̃it|), for all x̃it ∈ X̃ i
t ,

with positive local Lipschitz constants Li
kf
, Li

hx, L
i
hu, L

i
qx, L

i
qw and Li

hf .

We will introduce a few definitions, similar to 3.2.2.

Lemma 5.5.1 (Technical) With reference to Definition 2.5.9, the following hold

for practical stability of the nominal system (5.12) with nominal disturbance model

(5.8) under RH control (5.17),

(i). αi
1(s) = αi

2(s) , min hi(s, 0)

(ii). αi
3(s) , αi

2,f(L
i
Ni
p

fx s) +
(

Li
hx + Li

huL
i
kf + Li

qx

) (Li
fx)

Ni
p−1

Li
fx

−1
s

(iii). σi
1(s)

∆
=

LiNpi−1

gw −1

Li
gw−1

Li
qwLgw.s

(iv). σi
2(s) , σi

1

(

s
Li
gw

)

+ ψi(s)
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(v). σi
3(s) , Li

qw
(Li

gw)
Ni
p−1

Li
gw−1

s

(vi). c̄i
∆
=









LiNpi−1

fx
−1

Li
fx

−1

(

Li
qx + Li

hx

)

+Li
huL

i
kf

LiNp−1

fx
−LiNci

fx

Li
fx

−1
+ LiNp−1

fx









ci1 + Li
hu (|uimax|+ |uimin|)

(vii). ¯̄ci = 0,

where ci1
∆
= ξ̄ix + Li

fxξ̄
i
x + ēi.

With these definitions, we can now state the stability of the nominal model (5.12)

without collision avoidance.

Theorem 5.5.1 Let there be a terminal set X̃ i
f ⊂ X̃ i and auxiliary control kif(x)

according to Claim 5.3.1, such that Assumptions 5.3.1, 5.3.2, 5.4.1 and 5.5.1 hold.

If the following condition holds for some ψ ∈ K

hif

(

f̃ i
(

x̃i, kif(x̃
i)
)

)

− hif
(

x̃i
)

≤ −hi(x̃i, kif(x̃i))− qi(x̃i, w̃i) + ψi
(

|w̃i|
)

, (5.49)

for all x̃i ∈ X i
f and w̃i ∈ W̃ i, then the nominal system (5.12) under NMPC

optimal control (5.17) which optimizes cost (5.10) admits the optimal value of

cost functional V i
t (x̃

i
t, u

i
t, w̃

i
t) = J i

t (x̃
i
t, u

i0

t,t+N i
p
, w̃i

t) as an ISpS Lyapunov function.

It is therefore input-to-state practically stable (ISpS) for all initial states within

the robust output feasible set X i
MPC ⊆ X i.

Proof. We need to prove that V i
t (x̃

i
t|t, u

i
t, w̃

i
t|t) = J i

t (x̃
i
t|t, u

0
t,t+N i

p|t
, w̃i

t|t) is an ISS

Lyapunov function in X i
MPC . From (5.10), the optimal cost is given as
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V i
t (x̃

i
t|t, u

io

t,t+Nc−1|t, w̃
i
t|t) = hi(x̃it|t, u

io

t|t) + qi(x̃it|t, w̃
i
t|t)+

t+N i
c−1
∑

l=t+1

[

hi(x̃l|t, u
o
l|t) + qi(x̃l|t, w̃

i
l|t)
]

+

t+N i
p−1
∑

l=t+N i
c

[

hi(x̃il|t, u
io

l|t) + q(x̃il|t, w̃
i
l|t)
]

+ hif(x̃
i
t+Np|t) (5.50)

The lower bound on V i
t (x̃

i
t|t, u

i
t|t, w̃

i
t|t) is obviously given by (Assumption 5.5.1)

αi
1(|x̃it|t|) ≤ V i

t (x̃
i
t|t, u

io

t,t+N i
p|t
w̃i

t|t), ∀x̃it|t ∈ X̃ i
t|t ⊇ X i, w̃i

t|t ∈ W̃ i
t|t ⊆W i (5.51)

The control sequence ũi
t,t+N i

C
−1|t

= [kif(x̃
i
t|t), . . . , k

i
f(x̃

i
t+N i

C
−1|t

)]
T
is feasible (but in

general suboptimal) for any x̃itt|t ∈ X i
f . Using Assumptions 5.3.2 and 5.5.1 and

steps similar to the ones in the proof of Theorem 3.2.2, we can write

V i
t (x̃

i
t|t, u

io

t,t+Nc−1|t, w̃
i
t|t) ≤

(

Li
hx + Li

huL
i
kf + Li

qx

)

(

Li
fx

)N i
p − 1

Li
fx − 1

∣

∣x̃t|t
∣

∣

+ Li
qw

(

Li
gw

)N i
p − 1

Li
gw − 1

∣

∣w̃i
t|t

∣

∣ + αi
2f

(

(

Li
fx

)N i
p
∣

∣x̃it|t
∣

∣

)

≤ αi
3(|x̃it|t|) + σi

3(|w̃i
t|t|) +¯̄ci (5.52)

for x̃it|t ∈ X i
f and w̃i

t|t ∈ W̃ i
t|t. It is obvious that αi

3, σ
i
3 and ¯̄ci are as defined in

Lemma 5.5.1. For (5.52) to hold, Li
fx, L

i
gw 6= 1. However, following the reasons

explained in Remark 3.2.1, in the very special case of Lfx = 1 and/or Lgx = 1,

minor modifications are required (5.52). Refer to Assumption 5.4.1 and the re-

sult expressed in Theorem 5.1, which states that given the optimal control se-
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quence ui
0

t,t+N i
c−1|t at time t for x̃it ∈ X̃ i

t , there exists at least one feasible control

u′it+1,t+N i
c |t+1 = [ui

o

t+1,t+N i
c−1|t, u

′i
t+N i

c|t+1]
T
at t+1, where u′it+N i

c|t+1 ∈ U i is such that

x̃it+N i
c+1|t+1 ∈ X i

f any xit ∈ X i
MPC . Also, note that since new measurements are

made at t + 1, nominal estimates xit+1|t+1 and wi
t+1|t+1 at t + 1 are different than

the estimates xit+1|t and w
i
t+1|t, even though the same model is used for prediction.

The cost of using this (suboptimal, in general) control can be shown to be

V i
t+1(x̃

i
t+1|t+1, u

io

t+1,t+N i
c|t+1w̃

i
t+1|t+1) ≤

V i
t (x̃

i
t|t, u

io

t,t+N i
c−1|t, w̃

i
t|t)− hi(x̃it|t, ui

o

t|t)− q(x̃it|t, w̃i
t|t)

+

t+N i
c−1
∑

l=t+1

[

hi(x̃il|t+1, u
io

t|t)− hi(x̃il|t, ui
o

l|t) + qi(x̃il|t+1, w̃
i
l|t+1)− qi(x̃il|t, w̃i

l|t)
]

+ hi(x̃t+N i
c |t+1, u

′
t+Nc|t+1)− hi

(

x̃it+N i
c |t
, kif(x̃

i
t+N i

c |t
)
)

+ qi(x̃it+N i
c |t+1, w̃

i
t+N i

c|t+1)− qi(x̃it+N i
c |t
, w̃i

t+N i
c|t
)

+

t+N i
p−1
∑

l=t+N i
c+1









hi(x̃il|t+1, k
i
f(x̃

i
l|t+1))− hi

(

x̃il|t, k
i
f(x̃l|t)

)

+qi(xil|t+1, w̃l|t+1)− qi
(

x̃il|t, w̃
i
l|t

)









+ hi(x̃it+Np|t+1, k
i
f(x̃

i
t+Np|t+1)) + qi(x̃it+Np|t+1, w̃

i
t+N i

p|t+1)

+ hif

(

f̃ i
(

x̃it+N i
p|t+1, k

i
f(x̃

i
t+N i

p|t+1)
))

− hif
(

x̃it+N i
p|t

)

(5.53)

Now, we compute upper limits on the components of (5.53). From Assumptions

5.5.1, 5.3.2 and 5.3.1 for l = 1, . . . , NC − 1, and using steps similar to the ones in

proof of Theorem 3.2.2, we obtain

∣

∣hi(x̃it+l|t+1, u
io

t+l|t)− hi(x̃it+l|t, u
io

t+l|t)
∣

∣ ≤ Li
hxL

il−1

fx

(

ξ̄ix + Li
fxξ̄

i
x + ēix

)

(5.54)
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for l = 1, . . . , N i
C − 1. Using the treatment of (5.54)

∣

∣qi(x̃it+l|t+1, w̃
i
t+l|t+1)− qi(x̃it+l|t, w̃

i
t+l|t)

∣

∣

≤ Li
qxL

il−1

fx

(

ξ̄ix + Li
fxξ̄

i
x + ēix

)

+ Li
qwL

il−1

gw

(

Li
gw

∣

∣w̃i
t|t

∣

∣ +
∣

∣w̃i
t+1|t+1

∣

∣

)

(5.55)

l = 1, . . . , N i
P − 1. Similarly,

∣

∣hi(x̃it+l|t+1, k
i
f(x̃

i
t+l|t+1))− hi

(

x̃it+l|t, k
i
f(x̃

i
t+l|t)

)∣

∣

≤
(

Li
hx + Li

huL
i
kf

)

Lil−1

fx

(

ξ̄ix + Li
fxξ̄

i
x + ēix

)

(5.56)

for l = N i
C + 1, . . . , N i

P − 1. Now, the difference between transition costs at N i
C .

∣

∣

∣
hi(x̃t+N i

c |t+1, u
′
t+Nc|t+1)− hi

(

x̃it+N i
c |t
, kif(x̃

i
t+N i

c |t
)
)∣

∣

∣

≤ Li
hxL

iN
i
c−1

fx

(

ξ̄ix + Li
fxξ̄

i
x + ēix

)

+ Li
hu

(

|uimax|+ |uimin|
)

(5.57)

and finally we can show that

− hf
(

x̃t+Np|t

)

≤ −hf
(

x̃t+Np|t+1

)

+ Li
hxL

i
Ni
p−1

fx

(

ξ̄ix + Li
fxξ̄

i
x + ēix

)

(5.58)

Substituting inequalities (5.54) - (5.58) in (5.53) and following the steps in proof

of Theorem 3.2.2, we can write

V i
t+1(x̃

i
t+1|t+1, u

io

t+1,t+N i
c|t+1w̃

i
t+1|t+1) − V i

t (x̃
i
t|t, u

io

t,t+N i
c−1|t, w̃

i
t|t) ≤
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− αi
2(|x̃it|) + σi

1(|w̃i
t|) + σi

2(|w̃i
t+1|) + c̄i

∀x̃it ∈ X i
MPC, ∀w̃i

t ∈ W̃ i
t , w̃

i
t+1 ∈ W̃ i

t+1, (5.59)

where αi
2, σ

i
1, σ

i
2, and c̄

i are as defined in Lemma 5.5.1. Hence, in view of Theorem

2.5.2 and inequalities (5.51), (5.52) and (5.59), the nominal system (5.12)-(5.8)

under RH optimal control (5.17) is ISpS in X i
MPC. Hence, in reference to Theorem

2.5.2, we can write

∣

∣x̃it+l|t+l

∣

∣ ≤ β̃i
(∣

∣x̃it|t
∣

∣ , l
)

+ γ̃i
(∥

∥w̃i
[t+l|t+l]

∥

∥

)

+ c̃i (5.60)

according to the definitions given in Theorem 2.5.2.

We have shown practical (ISpS) stability of the nominal system under NMPC

control. However, we are more interested in the trajectory of the actual uncertain

and perturbed system in closed loop. We will see that due to recursive feasibility

and constraint tightening, the ISpS results for nominal system are easily translated

into corresponding ISpS stability for the perturbed dynamics of the agent.

Theorem 5.5.2 (Stability of Uncertain Agent Dynamics) If the nominal

system (5.12) with nominal disturbance model (5.8) is ISpS stable within tight-

ened constraint sets (5.14) under RH control law (5.17), then the uncertain system

(5.18) under the same control (5.17) is also ISpS stable.

Proof. The proof is similar to that furnished for Theorem 3.2.3, and hence not

reproduced here.
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Comments made in Section 5.5.1 are also applicable here. Terminal control law

and terminal region can be optimized with Algorithm 3. We will now consider

the important case of stability under collision avoidance.

5.5.2 Stability of Team of Agents under NMPC, without

Collision Avoidance

Extending proofs for individual agents in previous section, here we will establish

a generalized small gain condition to prove stability of the interconnected system,

for both strongly connected and weakly connected (with at least a spanning tree)

network topologies. The result is general, not limited by the number of subsystems

and the way in which subsystem gains are distributed is arbitrary. Let us now

state an important small gain result for multi-agent formation control

Lemma 5.5.2 For a team of agents Ai with dynamics (5.18), each with local

ISpS Lyapunov function V i
t (x̃

i
t, u

i
t, w̃

i
t) under Theorem 5.5.1, there exist ᾱi ∈ K∞

and ρ̄i ∈ K∞ such that ᾱi , (I + ρ̄i) ◦ αi
2(|x̃it|) and V i

t+1(x̃
i
t+1, u

i
t+1, w̃

i
t+1) −

V i
t (x̃

i
t, u

i
t, w̃

i
t) ≤ ᾱi(|x̃it|) for x̃it ∈ X̃ i

t ∼ Bn(c̃i). Let the nonlinear ISpS Lyapunov

gain from Ai to Aj ∈ Gi be denoted by the function γ̄ij(s) : R≥0 →R≥0 and given

by

γ̄ij(s) , αi
1 ◦ (ᾱi)−1 ◦ σi

1 ◦ (αj
1)

−1(s), (5.61)

then the multi-agent team satisfies the following small gain condition for all t ≥ 0

V i
t (x̃

i
t, u

i
t, w̃

i
t) > max

j∈Gi,j 6=i
{γ̄ij(V i

t (x̃
j
t , u

j
t , w̃

j
t ))} (5.62)
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Proof. There exists a function ρ̄i ∈ K∞, such that considering (5.59)-(5.60) the

following holds for all x̃it ∈ X̃ i
t ∼ Bn(c̃i)

V i
t+1(x̃

i
t+1, u

i
t+1, w̃

i
t+1)− V i

t (x̃
i
t, u

i
t, w̃

i
t) ≤

− αi
2(|x̃it|) + σi

1(|w̃i
t|) + σi

2(|w̃i
t+1|) + c̄i ≤ −ρ̄i ◦ αi

2(|x̃it|) (5.63)

This is true since Lyapunov function V i(·) has a negative gradient withing X i
MPC ,

excluding the ball of radius c̃i, as mentioned in Theorem 5.5.1. Hence, (5.63) will

hold for the arbitrarily chosen nonlinear scaling function ρ̄i ∈ K∞. Inequality

(5.63) can be written as

− αi
2(|x̃it|) + σi

1(|w̃i
t|) + σi

2(|w̃i
t+1|) + c̄i ≤ ρ̄i ◦ αi

2(|x̃it|),

σi
1(|w̃i

t|) + σi
2(|w̃i

t+1|) + c̄i ≤
(

I + ρ̄i
)

◦ αi
2(|x̃it|) (5.64)

Let ᾱi , (I + ρ̄i) ◦ αi
2(|x̃it|). Then it is easy to show from (5.63) and (5.64) that

V i
t+1(x̃

i
t+1, u

i
t+1, w̃

i
t+1)− V i

t (x̃
i
t, u

i
t, w̃

i
t) ≤ ᾱi(|x̃it|), ∀x̃it ∈ X̃ i

t ∼ Bn(c̃i) (5.65)

Now, from (5.51) we observe that V i
t (x̃

i
t, u

i
t, w̃

i
t) ≥ αi

1(|x̃it|), and hence

σi
1(|w̃i

t|) + σi
2(|w̃i

t+1|) + c̄i ≤ ᾱi(|x̃it|) ≤ ᾱi ◦
(

αi
1

)−1 (
V i
t (x̃

i
t, u

i
t, w̃

i
t)
)

Therefore, since σi
2(·), c̄i ≥ 0 we can say that
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V i
t (x̃

i
t, u

i
t, w̃

i
t) ≥ αi

1 ◦
(

ᾱi
)−1 (

σi
1(|w̃i

t|) + σi
2(|w̃i

t+1|) + c̄i
)

≥ αi
1 ◦
(

ᾱi
)−1 ◦ σi

1(|w̃i
t|) (5.66)

Now, since wi
t = col(xj

t,t+Nj
p

), then |wi
t| ≥ max

j
|xjt | ≥ |xjt |, ∀j ∈ Gi. However,

max(r), r ≥ 0 is also a K∞ function and for any α ∈ K∞ it is evident that

maximization is commutative, i.e. α(max(r)) ≡ max(α(r)). Therefore, (5.66) can

be written as

V i
t (x̃

i
t, u

i
t, w̃

i
t) ≥ αi

1 ◦
(

ᾱi
)−1 ◦ σi

1

(

max
j
|x̃jt |
)

= max
j

(

αi
1 ◦
(

ᾱi
)−1 ◦ σi

1

(

|x̃jt |
)

)

, ∀j ∈ Gi (5.67)

But, from (5.51) we have V j
t (x̃

j
t , u

j
t , w̃

j
t ) ≥ αj

1(|x̃jt |), and hence

V i
t (x̃

i
t, u

i
t, w̃

i
t) ≥ max

j

(

αi
1 ◦
(

ᾱi
)−1 ◦ σi

1 ◦
(

αj
1

)−1 (
V j
t (x̃

j
t , u

j
t , w̃

j
t )
)

)

, (5.68)

for j ∈ Gi. If gain γ̄ij is defined as in (5.61), then (5.62) is obtained.

Function ᾱi is a design ’variable’ which can be freely chosen to satisfy (5.61), as

shown in section 5.6. We will now use Lemma 5.5.2 to the study the stability of

the team of agents connected in a team, without collision avoidance.

Theorem 5.5.3 A team of N agents connected with a network with at least one

spanning tree is ISpS stable if

i. each agent Ai (i = 1, . . . , N) has an ISpS Lyapunov function V i
t (x̃

i, ui, w̃i),
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ii. for each of its neighbors, agent Ai has the edge gain γ̄ij defined in (5.61) for

j ∈ Gi,

iii. small gain condition (5.62) is satisfied.

Proof. We will carry out the proof in two steps. We will first prove the stability

of strongly connected networks, and then prove the same for networks with only

one spanning tree (weakly connected networks).

I. A network (graph) is strongly connected if there is a path from any node to

any other node in the network. In other words, every agents has a spanning

tree to every other agent in the team. In this case the connectivity gain

matrix Γ of the network is irreducible. If µ̄ is a set of nmonotone aggregation

functions (MAF) operating over a vector r of n positive elements, and Γ is

its irreducible gain matrix, define the gain operator Γµ̄ : Rn
≥0 → R

n
≥0,

Γµ̄ ,

















r1

...

rn

















7→

















µ1(γ̄12(r2), . . . , γ̄1n(rn))

...

µn(γ̄n,1(r1), . . . , γ̄n,n−1(rn−1))

















(5.69)

According to the recent generalized small gain theorems of [118], if a strongly

connected network obeys the following small gain condition

I > Γµ̄, (5.70)

then it is stable in the input to state stability sense (see Theorem 5.3 of
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[118]). Now, µ̄ = max is a monotone aggregation function ([119]). Let

r = [V 1
t (x̃

1
t , u

1
t , w̃

1
t ), . . . , V

N
t (x̃Nt , u

N
t , w̃

N
t )], then the (5.70) is satisfied if:

















V 1
t (x̃

1
t , u

1
t , w̃

1
t )

...

V N
t (x̃Nt , u

N
t , w̃

N
t )

















>

















max(γ̄12(V
2
t (x̃

2
t , u

2
t , w̃

2
t )), . . . , γ̄1,N(V

N
t (x̃Nt , u

N
t , w̃

N
t )))

...

max(γ̄N,1(V (x
t
1, w

t
1)), . . . , γ̄N,N−1(V (xtN−1, w

t
N−1)))

















(5.71)

This can be shown to eb equivalent to (5.62). This proves stability for

strongly connected teams.

II. In a weakly connected there are at least two nodes for which a directed

path connecting them does not exist, but there exists at least one spanning

tree.The connectivity gain matrix for a weakly connected network can be

brought in upper block triangular form by appropriate re-indexing of agents,

such that each upper block on the diagonal is either 0 or irreducible. Hence,
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we can now rewrite the gain matrix as

Γ =

































0 γ̄12 γ̄13 . . . γ̄1,M̄

0
. . . γ̄23 . . . γ̄2,M̄

...
. . .

. . .
. . .

...

. . .
. . . γ̄N−1,M̄

0 . . . 0 0

































where M̄ , max
i
M i is the size of neighborhood of the most connected agent.

According to Proposition 6.2 of [118], the interconnected system is stable if

each upper diagonal block satisfies the small gain condition (5.70). Now, the

upper diagonal blocks are

Γ1 = 0, Γ2 =









0 γ̄12

0 0









, Γ3 =

















0 γ̄12 γ̄13

0 0 γ̄23

0 0 0

















Γk =

































0 γ̄12 γ̄13 . . . γ̄1,k

0
. . . γ̄21 . . . γ̄2,k

...
. . .

. . .
. . .

...

. . .
. . . γ̄k−1,k

0 . . . 0 0

































, ΓN = Γ

Then stability is assured if each of the above blocks obey the small gain
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condition (5.70) iteratively, such that

r1 > Γ̄µ̄1(r1)⇒ V 1
t (x̃

1
t , u

1
t , w̃

1
t ) > 0

r2 > Γ̄µ̄2(r2)⇒ V 1
t (x̃

1
t , u

1
t , w̃

1
t ) > γ̄12 (V

1
t (x̃

2
t , u

2
t , w̃

2
t )) ,

V 1
t (x̃

3
t , u

3
t , w̃

3
t ) > 0

r3 > Γ̄µ̄3(r3)⇒ V 1
t (x̃

1
t , u

1
t , w̃

1
t ) > max









γ̄12 (V
2
t (x̃

2
t , u

2
t , w̃

2
t )) ,

γ̄13 (V
3
t (x̃

3
t , u

3
t , w̃

3
t ))









,

V 2
t (x̃

2
t , u

2
t , w̃

2
t ) > γ̄23 (V

3
t (x̃

3
t , u

3
t , w̃

3
t )) ,

(V 3
t (x̃

3
t , u

3
t , w̃

3
t )) > 0

...
...

This iterative procedure reduces to (5.62). Hence, the team is stable irrespec-

tive of the network topology as long as it is at least weakly connected (has

at least one spanning tree), provided it obeys certain small gain conditions.

5.5.3 Stability of Individual Agents with Collision Avoid-

ance

We can now extend the results of the previous section to prove stability of the

agents under the collision avoidance scheme described in Section 5.2.2. Let

V i
t (x̃

i
t, u

io

t , w̃
i
t) = J i

t (x̃
i
t, u

io

t , w̃
i
t) be the local ISpS Lyapunov function for Ai with-

out collision avoidance. Let xi
o

t,t+N i
p
be the optimal solution of the cost (5.10) and

x́i
o

t,t+N i
p
be the optimal solution of the modified cost (5.27). We will prove that
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V́ i
t (x́

i
t, ú

io

t , w̃
i
t) = J i

t (x́
io

t , ú
io

t , w̃
i
t) is also an ISpS Lyapunov function, where úi

o

t is

the optimal control for minimizing (5.27). It is obvious that dij(l) 6= 0 for at least

one instant t ≤ l ≤ t+N i
p, since otherwise would mean that the current position

as well planned optimal trajectories of two agents coincide exactly, which is im-

possible. We assume that κi|x́io | ≤ |x̃io | ≤ κ̄i|x́io |, for some constants κi, κ̄i ≥ 0.

This assumption is also not restrictive since both x̃i
o

and x́i
o

are finite. This leads

to bounds on potential function, i.e. Φi ≤ Φi
t ≤ Φ̄i for some constants Φi, Φ̄i ≥ 0.

Let us introduce the following definitions

Definition 5.5.1 For agents Ai under collision avoidance, define the following

nonlinear functions

I. άi
1(s) , (1 + Φi)αi

1(κ
is) ∈ K∞

II. άi
2(s) , (1 + Φi)αi

2(κ
is) ∈ K∞

III. σ́1,2(s) , (1 + Φ̄i)σ1,2(s) ∈ K

IV. σ́3(s) , (1 + Φ̄i)σ3(s) ∈ K

V. ći , (1 + Φ̄i)(c̄i + κ
i)

VI. ´́ci , (1 + Φ̄i)(¯̄ci + κ
i)

We can now prove the main result of this section

Theorem 5.5.4 For an agent on collision course, the optimal trajectory x́i
o

t,t+N i
p

for modified cost (5.27) not only guarantees collision avoidance with other agents

in the sense of (5.29), but also maintains input-to-state practical stability, if its
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repulsive spatial filter weights λ(dijk|t) are chosen at each sampling instant t such

that

λimax,t

λimin,t

<
ri(|xt|)

(

(N i
p − 1)(Li

hx + Li
qx) + Lhf

) (

N i
pRmini +N i

p(N
i
p − 1)vmax

)

∆
= āt (5.72)

Proof. The proof consists of two parts. We first show that negative gradient of

modified cost (5.27) lies in the direction of expanding weighted average distance d̄ijt

between agents on collision course. Hence, the optimal trajectory x́i
o

t,t+N i
p
reaches

the terminal set by avoiding collision in the sense of (5.29). Next, we will show

that the optimal trajectory in that direction is also ISpS stable. From (5.27), we

can see that

∂J́ i
t

∂d̄ijt
=
∂J i

t

∂d̄ijt
(1 + Φi

t) + J i
t

∂Φi
t

∂d̄ijt

Since ∂Φi
t/∂d̄

ij
t = −Φi

t/d̄
ij
t < 0 and Φi

t > 0, in order to have negative gradient of

cost in direction of increasing inter-agent distance i.e. ∂J́ i
t/∂d̄

ij
t < 0, we have

∂J i
t

∂d̄ijt
<

Φi
t

1 + Φi
t

J i
t

d̄ijt
<
J i
t

d̄ijt

Since J i
t , d

ij
t > 0, this condition can be satisfied if

max

∣

∣

∣

∣

∂J i
t

∂d̄ijt

∣

∣

∣

∣

<
min(J i

t )

max(d̄ijt )
(5.73)
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For RHS, note that by chain rule of differentiation

∂J i
t

∂d̄ijt
=

t+N i
p

∑

l=t

∂J i
t

∂x̃il

∂x̃il
∂dijl

∂dijl
∂d̄ijt

Now, using the triangle inequality,

∣

∣

∣

∣

∂J i
t

∂d̄ijt

∣

∣

∣

∣

≤
t+N i

p
∑

l=t

∣

∣

∣

∣

∂J i
t

∂x̃il

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x̃il
∂dijl

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂dijl
∂d̄ijt

∣

∣

∣

∣

∣

With slight abuse of notation we can write dijl = |x̃il − w̃i
l |. For given neighbor

trajectory w̃i
l = x̃jl , ∀j ∈ Gi, we have ∂dijl /∂x̃

i
l = (x̃il−w̃i

l)/d
ij
l such that |dijl /∂xil | =

1. Similarly, ∂d̄ijt /∂d
ij
l = λil, which results in

∣

∣

∣

∣

∂J i
t

∂d̄ijt

∣

∣

∣

∣

≤
t+N i

p
∑

l=t

1

λil

∣

∣

∣

∣

∂J i
t

∂x̃il

∣

∣

∣

∣

<
1

λimin,t

t+N i
p

∑

l=t

∣

∣

∣

∣

∂J i
t

∂x̃il

∣

∣

∣

∣

Now, from (5.10), we get

max

∣

∣

∣

∣

∂J i
t

∂d̄ijt

∣

∣

∣

∣

<
1

λimin,t





t+N i
p−1
∑

l=t

(∣

∣

∣

∣

∂hil
∂x̃il

∣

∣

∣

∣

+

∣

∣

∣

∣

∂qil
∂x̃il

∣

∣

∣

∣

)

+

∣

∣

∣

∣

∣

∂hif,t+N i
p

∂x̃i
t+N i

p

∣

∣

∣

∣

∣





<
1

λimin,t





t+N i
p−1
∑

l=t

(Li
h + Li

q)+L
i
hf



 <
(N i

p − 1)(Li
h + Li

q) + Li
hf

λimin,t

(5.74)

Now, maximum d̄ijt can occur when the minimum distance between agents

on collision course is Ri
min and then move away from each other at vmax, i.e.

max(d̄ijt ) =
t+N i

p
∑

k=t

λik(R
i
min + 2(k − t)vmax) < λimax,t(N

i
pR

i
min+N

i
p(N

i
p−1)vmax). Also,

as noted in Theorem 5.5.1, min(J i
t ) ≤ V i

t ≤ ri(|x̃it|). This can be combined with
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(5.74) to result in the condition specified in (5.72). Hence, the minimum of mod-

ified cost lies in the direction of collision avoidance in the sense of (5.29). Since

any feasible trajectory for cost (5.10) is also feasible for modified cost (5.27) and

the reachable set is compact, an optimum almost always exists, unless there is

not enough time to manoeuvre (to cater for which we have placed a conservative

bound on ∆ij
t ≤ ∆̄) for t ≥ 0.

For the next part of this proof, note that J́ (́̃xi
o

t , u
io

t w̃
i
t) ≤ J́(x̃i

o

t , ú
io

t , w̃
i
t) and

J(x̃i
o

t , u
io

t , w̃
i
t) ≤ J(x́i

o

t , ú
io

t , w̃
i
t), since x́

io

t,t+N i
p
is admissible but suboptimal control

for minimization of (5.10) and x̃i
o

t,t+N i
p
is suboptimal for (5.27). For conciseness,

we will ignore the difference between V and J in this section and also drop the o

symbol for optimal values. From Theorem 5.5.1, we have αi
1(|x̃it|) ≤ V i

t (x̃
i
t, u

i −

t, w̃i
t), which gives αi

1(κ
i|x́it|) ≤ V (x̃it, u

i
t, w̃

i
t) ≤ V (x́it, u

i
t, w̃

i
t). Combining this with

(5.27) and defining άi
1(s) , (1 + Φi)αi

1(κ
is) ∈ K∞, we get

άi
1(|x́it|) ≤ V́ (x́it, u

i
t, w̃

i
t) (5.75)

Let V (x́it, u
i
t, w̃

i
t)− V (x̃it, u

i
t, w̃

i
t) ≤ κ

i for some constant κi > 0. Combining this

with (3.53) and defining άi
3(s) , (1+Φ̄i)αi

3(κ̄
is) ∈ K∞, σ́3(s) , (1+Φ̄i)σ3(s) ∈ K

and ´́ci , (1 + Φ̄i)(¯̄ci + κ
i), we get

V́
(

x́it, u
i
t, w̃

i
t

)

≤ ά3(|x́it|) + σ́3
(∣

∣w̃i
t

∣

∣

)

+ ´́ci (5.76)
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Using (3.45), (5.27), and defining άi
2(s) , (1 + Φi)αi

2(κ
is) ∈ K∞ = άi

1(|x́it|),

σ́1,2(s) , (1 + Φ̄i)σ1,2(s) ∈ K, ći , (1 + Φ̄i)(c̄i + κ
i), we get:

Υi
t+1V́

(

x́it+1, u
i
t+1, w̃

i
t+1

)

− V́
(

x́it, u
i
t, w̃

i
t

)

≤ −ά2

(∣

∣x́it
∣

∣

)

+ σ́1
(∣

∣w̃i
t

∣

∣

)

+ σ́2
(∣

∣w̃i
t+1

∣

∣

)

+ ći (5.77)

where,Υi
t+1 ,

1+Φi
t+1

1+Φi
t
. From (5.26), Υi

t+1 ≥ 1 if (5.29) holds and we can write:

V́
(

x́it+1, u
i
t+1, w̃

i
t+1

)

− V́
(

x́it, u
i
t, w̃

i
t

)

≤ −ά2

(∣

∣x́it
∣

∣

)

+ σ́1
(∣

∣w̃i
t

∣

∣

)

+ σ́2
(∣

∣w̃i
t+1

∣

∣

)

+ ći (5.78)

Hence, considering (5.75), (5.76) and (5.78), agent Ai is ISpS according to Theo-

rem 2.5.2 and moves towards its goal in an optimal manner while avoiding collision

with other agents.

Corollary 1 If spatial filter for collision avoidance is shaped as a geometric pro-

gression λik|t = λimax,tr
l
t such that dijl > dijl+1 for l = 0, . . . N i

p − 1, then the filter

can be designed by specifying b̄ > 1, λimax,t and calculating rt = (b̄āt)
−1/(N i

p−1)
from

(5.72).
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5.5.4 Stability of Multi-Agent Team with Collision Avoid-

ance

In this section, we will study the stability of the multi-agent team and the influence

of collision avoidance on it. Extending stability results for individual agents under

collision avoidance in the previous section, here we will establish a generalized

small gain condition to prove stability of the interconnected system under collision

avoidance.

Theorem 5.5.5 For a team of agents Ai with dynamics (5.18), each with local

ISpS Lyapunov function V́ i
t (x́

i
t, u

i
t, w̃

i
t) under Theorem 5.5.4, there exist άi ∈ K∞

and ρ́i ∈ K∞ such that άi , (I + ρ́i) ◦ άi
2(|x́it|) and V́ i

t+1(x́
i
t+1, u

i
t+1, w̃

i
t+1) −

V́ i
t (x́

i
t, u

i
t, w̃

i
t) ≤ άi(|x́it|) for x́it ∈ X̃ i

t ∼ Bn(c̃i). Let the nonlinear ISpS Lyapunov

gain from Ai to Aj ∈ Gi be denoted by the function γ́ij(s) : R≥0 →R≥0 and given

by

γ́ij(s) , άi
1 ◦ (άi)−1 ◦ σ́i

1 ◦ (άj
1)

−1(s), (5.79)

then the multi-agent team

i. the multi-agent team satisfies the following small gain condition for all t ≥ 0

V́ (x́it, , u
i
t, w̃

i
t) > max

j∈Gi,j 6=i
{γ́ij(V́ (x́jt , uit, w̃j

t ))} (5.80)

ii. is ISpS stable.
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Proof. Consider the nonlinear functions defined in 5.5.1. There exists a function

ρ́i ∈ K∞, such that considering (5.78), the following holds for all x́it ∈ X̃ i
t ∼ Bn(c̃i)

V́
(

x́it+1, u
i
t+1, w̃

i
t+1

)

− V́
(

x́it, u
i
t, w̃

i
t

)

≤ −ά2

(∣

∣x́it
∣

∣

)

+ σ́1
(∣

∣w̃i
t

∣

∣

)

+ σ́2
(∣

∣w̃i
t+1

∣

∣

)

+ ći ≤ −ρ́i ◦ άi
2(|x́it|) (5.81)

This is true since Lyapunov function V́ i(·) has a negative gradient withing X i
MPC

as shown in Theorem 5.5.4, excluding the ball of radius c̃i, as mentioned in The-

orem 5.5.1. Hence, (5.81) will hold for the arbitrarily chosen nonlinear scaling

function ρ́i ∈ K∞. The rest of the steps are similar to those in the proofs of

Lemma 5.5.2 and Theorem 5.5.3, and therefore will not be repeated here.

This section completes the stability analysis of the multi-agent team under Algo-

rithm. We have shown conditions for stability of the team both with and without

collision avoidance active. We will now particularize the results for the specific

task of formation control with collision avoidance and data compression with the

comprehensive examples in Section 5.6. As a final ingredient, we will particularize

the result for quadratic cost to design the terminal control law.

5.5.5 Terminal Region Optimization and Terminal Con-

trol Law Design

In many cases the cost functional in MPC is quadratic. As shown in Chapter 4,

this form is amenable to efficient convex optimization and LMI techniques. Let
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the cost functional (5.27) be quadratic, such as

J i
t

(

x̃i, ui, w̃i, N i
c, N

i
p, k

i
f

)

=
(

x̃it,t+Np

)T

Qi
f

(

x̃it,t+Np

)

+

t+N i
p−1
∑

l=t



x̃i
T

l Q
ix̃il + ui

T

l R
iuil +

∑

j∈Gi

(

x̃il − x̃j ll
)T
S ij
(

x̃il − x̃jl
)



 (5.82)

with positive definite matrices Qi, Ri, Si and Qi
f . Comparing (5.82) with cost

functional (5.10), it is easy to see that hi(x̃i, ui) = |x̃i|Qi + |ui|Ri, qi(x̃i, w̃i) =

∑

j∈Gi

|x̃i − w̃j|Sij and hif (x̃
i
t+Np) = |x̃it+Np|Qi

f
. The local transition and terminal

costs have the usual meaning, but cooperative cost term is more involved. It

basically allows synchronization of state of Ai with states of other agents in its

neighborhood, by assigning different weights Sij to them, based on desired pri-

orities. It is clear that the most important aspect of determining the stabil-

ity of the system (5.12) under RH control law (5.17) is the terminal inequality

(5.49), based on which we will first state an important result about stabilizing

general linearization of the nominal system. Let Ai
v , ∂f̃ i

∂x̃i

∣

∣

∣

x̃i=x̃i
v,u

i=ui
v,w̃

i=w̃i
v

and

Bi
v ,

∂f̃ i

∂ui

∣

∣

∣

x̃i=x̃i
v,u

i=ui
v,w̃

i=w̃i
v

be linearization about an arbitrary point in the terminal

set X i
f .

Lemma 5.5.3 (Stabilization of Arbitrary Points in X i
f) Under As-

sumption 5.3.2, let the cost functional be quadratic, as defined in (5.82).

Let ψi(w̃i
l) =

∑

j∈Gi

x̃j
T

l S
ij x̃j l and S̃i = M i max

j

(

λSij
max

)

In, such that

q(x̃i, w̃i) ≤ ψi(|w̃i|) + x̃i
T

S̃ix̃i, for x̃i ∈ X i
f and allowable disturbances w̃i ∈ W̃ i

t+l,

∀l = NC , . . . , NP . Then, there exists a terminal control law ui = Ki
vx̃

i, for

218



x̃i ∈ X i
f , and terminal constraint set X i

f as defined in Claim 5.3.1, such that

the closed loop general linearization Ai
CLv

, Ai
v + Bi

vKv of the nominal system

(5.12) is locally stable. Let Q̃i , Qi + Kvi
TRiKi

v − S̃i. Stability of the point

x̃i = x̃iv, u
i = uiv, w̃

i = w̃i
v is ensured with desired rate of convergence hatai, if the

following Lyapunov LMI holds

AiT

CLv
Qi

fA
i
CLv
−Qi

f + Q̃i ≤ 0 (5.83)

subject to:

Qi +Kvi
TRiKi

v − S̃i > âiIn, (5.84)

kif(x̃
i) = Ki

vx̃
i ∈ U i (5.85)

and

x̃iTQi
f x̃

i ≤ ai (5.86)

Rate of convergence âi is obtained from (5.40).

Proof. For the cooperative cost component, we have from (5.82)

qi
(

x̃i, w̃i
)

=
∑

j∈Gi

(

x̃il − x̃j l
)T
S ij
(

x̃il − x̃jl
)

≤
∑

j∈Gi

(

x̃i
T

l S
ij x̃i + x̃j

T

l S
ij x̃j l

)

≤M i max
j

(

λSij
max

)

x̃i
T

l Inx̃
i
l +
∑

j∈Gi

x̃j
T

l S
ij x̃j l (5.87)
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Now, let ψi(w̃i
l) =

∑

j∈Gi

x̃j
T

l S
ij x̃j l and S̃

i = M i max
j

(

λSij
max

)

In. Then it is obvious

that

qi(x̃i, w̃i) ≤ ψi(|w̃i|) + x̃i
T

S̃ix̃i (5.88)

We know the nominal system (5.12) with nominal disturbance model (5.8) is stable

if condition (5.49) holds in X i
f . Rewriting (5.49) in terms of quadratic cost (5.10)

hif

(

f̃ i
(

x̃i, kif(x̃
i)
)

)

− hif
(

x̃i
)

≤ −x̃iT
(

Qi +KiT

v R
iKi

v

)

x̃i − qi(x̃i, w̃i) + ψi
(

|w̃i|
)

≤ −x̃iT
(

Qi +KiT

v R
iKi

v

)

x̃i + qi(x̃i, w̃i)− ψi
(

|w̃i|
)

We were able to do the las step above, since −qi(x̃i, w̃i)+ψi (|w̃i|) ≤ 0. Substitute

(5.88) in the inequality above

f̃ i
(

x̃i, kif(x̃
i)
)T
Qi

f f̃
i
(

x̃i, kif(x̃
i)
)

− x̃iTQi
f x̃

i

≤ −x̃iT
(

Qi +KiT

v R
iKi

v − S̃i
)

x̃i (5.89)

The rest of the steps are similar to the proof of Lemma 4.3.2, and therefore not

repeated here.

Remark 5.5.1 We have completed the stability analysis of multi-agent formation

control task. However, some comments are necessary.

I. The convex OCP for maximizing the terminal constraint set is the same as

OCP 4.3.1. Therefore, Algorithm 3 can be used with obvious changes in
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notation.

II. The requirement that Qi+KiT

v R
iKi

v−S̃i > 0 limits the maximum weight that

can be assigned in the cooperative cost to neighbors. It is obvious that Qi ≈ S̃i

will result in very large control gain Ki, but since control is constrained, the

OCP 4.3.1 may be rendered infeasible. Therefore, in general Qi >> S̃i, which

means each agent should place more emphasis on its local control objective

more than cooperative goals.

III. We will show how to specify the “designer function” ᾱi and άi in Section

5.5.3. One possible way to design the function ᾱi is by choosing

ρ̄i(s) = k̄is, k̄i > 0 (5.90)

for suitable k̄i ∈ R>0, such that (5.63) is satisfied. As we showed in Example

3.3.1, we can derive explicit analytic forms of Lipschitz constants and other

bounds in the development above. Therefore, we can show that

i. αi
1(|x̃i|) = αi

2(|x̃i|) = λQi
min
|x̃i|2

ii. αi
1f (|x̃i|) = λQi

f,min
|x̃i|2

iii. αi
2f (|x̃i|) = λQi

f,max
|x̃i|2

iv. Li
hx = λQi

max
|x̃i|max

v. Li
hu = λRi

max
|ui|max

vi. Li
qx = |x̃i|max

∑

j∈Gi

λSij
max

=M i max
j

(

λSij
max

)

|x̃i|max from (5.87), where
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M i is the size of the neighborhood of Ai.

vii. From (5.41), xiTQi
fx

i ≤ ai for x̃i ∈ X i
f , therefore |x̃i| ≤

√

ai/λQi
f,max

, ∀x̃i ∈ X i
f ,. Therefore, L

i
hf =

√

aiλQi
f
,max

.

viii. Li
kf = λikf i

max

√

ai/λQi
f,max

, where λkf i
max

is the maximum eigenvalue of

KiTKi, if the terminal control is given by kif(x̃
i) = KiT x̃i.

From the definitions in Lemma 5.5.1 and those derived above, we have

σi
1 (s) =

Li
gw

N i
p−1 − 1

Li
gw − 1

Li
qwL

i
gws, αj−1

1 (s) =

(

s

λminQj

) 1
2

,

αi−1

1 (s) =

(

s

λminQi

)
1
2

, ᾱi−1

(s) = αi−1

2

(

1

k̄i + 1
s

)

, αi
1 ◦ αi−1

1 = I

such that (5.61) can be evaluated as

γ̄ij(s)
∆
=

1

k̄i + 1

Li
gw

N i
p−1 − 1

Li
gw − 1

Li
qwL

i
gw

(

s

λminQj

)
1
2

(5.91)

It is obvious that it is always possible to verify (5.62) by choosing a suf-

ficiently large value of k̄i > 0. In other words for the case with collision

avoidance inactive, as long as the agents are locally ISpS, the team will also

be ISpS provided there is at least one spanning tree in the team.

IV. We can similarly derive the nonlinear gain (5.80) in the collision avoidance

multi-agent case by definitions in Section 5.2.2. choosing

ρ́i(s) = ḱis, ḱi > 0 (5.92)
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for suitable ḱi ∈ R≥1, such that (5.81) is satisfied. Therefore, from (5.80)

γ́ij (s) =
1

(

ḱi + 1
)

(

1 + φ̄i
)

κj

Li
qw

(

Li
gw

N i
p−1 − 1

)

Li
gw − 1

(

s
(

1 + φj
)

λminQj

)
1
2

(5.93)

It is also obvious that it is always possible to verify (5.80) by choosing a

sufficiently large value of ḱi ∈ R>0. In other words, as long as the agents are

locally ISpS, the team under collision avoidance will also be ISpS provided

there is at least one spanning tree in the team.

5.6 Illustrative Examples

The theoretical tools developed in this section will now be particularized for a

numerical example. This will allow us to provide concise numerical values for the

expressions derived in this chapter and motivate the reader about applicability

of the algorithms proposed. We validate the theoretical results and algorithm

introduced in this paper by means of simulations. First, a fleet of autonomous

vehicles with strongly connected network topology is considered and then the same

simulation is repeated for a simply (weakly) connected network.

We consider a fleet of autonomous underwater vehicles (AUVs) moving in the

horizontal plane, with the following continuous-time models:

miẍi = −µi
1ẋ

i +
(

uiR + uiL
)

cos θi

miÿi = −µi
1ẏ

i +
(

uiR + uiL
)

sin θi
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I iθθ̈
i = −µi

1θ̇
i +
(

uiR + uiL
)

r1 (5.94)

where mi = 0.75, I itheta = 0.00316, µi
1 = 0.15, µi

2 = 0.005 and ri1 = 8.9 are the

dimensionless vehicle mass, inertia, linear and rotational damping coefficients, and

the vehicle radius respectively. For simplicity, the dynamics is considered to be

the same for all agents, and the parameters are specified in [59]. The state vector

is zi , [xi, yi, θi, ẋi, ẏi, θ̇i]T , consisting of horizontal (x) and vertical distance (y),

horizontal (ẋ) and vertical (ẏ) speeds, heading (θ) and rotational speed θ̇. Control

vector consists right (uR) and left (uL)force inputs . The model (5.94) is discretized

at T = 0.1s (assumed to be the same for all vehicles). The inputs are constrained

to 0 ≤ uiR,L ≤ 6, and the maximum turn rate is constrained to −57θ̇ ≤ 57. The

communication delay is bounded by 0.1s = T ≤ ∆ij ≤ 6T = 0.6s. It is assumed

that ∆ij is uniformly distributed: ∆ij = U(T , 6T ), and that ∆ij 6= ∆ji.

The distributed cost function at each agent (leader is A1) is

J i
t =

t+N i
p−1
∑

l=t











(z̃il − gil)
T
Qi (z̃il − gil) + ui

T

l R
iuIl

+
∑

j∈Gi

(

z̃il − z̃jl + aij
)T
Sij
(

z̃il − z̃jl + aij
)











+
(

z̃it+N i
p
− gil

)T

Qi
f

(

z̃it+N i
p
− gil

)

+
∑

j∈Gi

λ̄Rmini1(R
minj

−dij
k
)>0,∀t≤k≤(t+N i

p)

t+N i
P

∑

k=t

λ(dijk )d
ij
k

(5.95)

Goal gik is the way-point (WP) for leader and for followers it is the leader’s planned

trajectory, i.e. gi = w̃1
l , ∀i 6= 1. Alignment vectors aij define the formation geom-

etry such that adjacent agents occupy designated positions in a given formation
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geometry with the team’s consensus speed and heading. The weighting matrices

are specified as

Qi=









































0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 1









































, Ri =









0.01 0

0 0.01









, (5.96)

which means more emphasis is placed on heading consensus than the displacement

from the ideal position in the formation. The spatial filter is designed with filter

constant λ = 0.95. In the simulations, the only source of uncertainty considered

is the neural network compression errors in trajectory approximation.

Example 5.6.1 (Strongly Connected Team) Let us fist consider the case of

a strongly connected team of three AUVs (N=3), whose network topology is

shown in Fig. 5.5. Each agent can communicate with each other in both di-

rections. Therefore, M i = 2 for all agents and G1 = {A2, A3}, G2 = {A1, A3} and

G3 = {A1, A2}. In this simulation, the three vehicles are requested to maintain

a triangular formation, with three vehicles at vertices of an equilateral triangle,

initially oriented at 450 from the horizontal, at a distance of 15 units from each

other. A minimum distance of Rmin = 5 units should also be maintained to avoid

collision. The cooperation weights are assigned as Sij = 0.25×Qi.

225



Figure 5.5: Network topology of strongly connected team. Notice two way communi-
cation between all vehicles

Fig. 5.6 shows trajectory of the fleet with initial positions marked by circles

and markers showing position and orientation of agents are plotted for every

10 samples. Turning tight corners, such as right angle turns when transitioning

between waypoints, is a difficult task for constrained individual systems, but more

so when operating in a fleet while avoiding collisions. Synchronization of states

is achieved quickly, shown in Fig. 5.7, without violation of constraints on states

and inputs (Fig. 5.10). The effect of delay is manifest in lag in synchronization,

while temporary divergence is due to collision avoidance.

As can be observed from Fig. 5.8, the collision avoidance system starts re-

pelling the agents before they come too close. The distributed cost (5.27) is

normalized with its maximum value. Initially, leader’s (Agent 1) cost decreases

monotonously, but suffers a discontinuous increase as the waypoint changes. How-

ever, for the other two agents, the decrease in cost function is not smooth, indicat-

ing onset of collision avoidance to discourage potential collision courses. However,
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Figure 5.6: Trajectory of fleet of three AUVs connected in a strongly connected net-
work.

when the leader transitions to the next waypoint at about 5 seconds, the sharp

turn causes an oscillation in its cost in order to find a collision free trajectory. Dis-

tance between Agent 1 and Agent 3 reaches its lowest value at this point due to

delay in communication, but they are successfully pushed away from each other.

Despite the relatively large random delays (Fig. 5.9), the proposed algorithm was

able to perform well.

Example 5.6.2 (Weakly Connected Team) In this simulation, five vehicles

(N = 5) are requested to maintain a V-formation, with three vehicles positioned

in the same manner as in Fig.5.5. Two more vehicles are added at vertices of

an equilateral triangle having the leader (Agent 1) at its apex and Agents 4 and

5 at a distance of 30 units from the leader at the port and starboard sides of

Agent 1, respectively. Agents 1,2 and 3 agents have two-way communication with

each other , thus forming a strongly connected subgraph. However, Agents 4
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Figure 5.7: States of Agents connected in a Strongly Connected Network. Agent 1
(blue), Agent 2 (red) and Agent 3 (green). Top to bottom: Heading, Turn rate and
Velocity.
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between the same agents.
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UL is shown in green.
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Figure 5.11: Network topology of weakly connected team. Notice only one-way com-
munication for A4 and A5.

and 5 have an undirected link with each other and directed link from Agents 2

and 3, respectively. Therefore, the overall network is a weakly connected mixed

graph. Moreover, there exists a spanning tree with Agent 1 as the root node, see

Fig.5.11. Rest of the simulation parameters are the same as in Example 5.6.1,

except Sij=0.25 Qi (for i 6= 1) and S1j=0.2 Sij. Therefore, M1 = 2 for all

agents and G1 = {A2, A3}, G2 = {A1, A3}, G3 = {A1, A2}, G4 = {A2, A5} and

G5 = {A3, A4}. Fig. 5.12 shows trajectory of the weakly connected fleet. Only the

first two waypoints are shown in the interest of clarity. Turning tight corners, such

as right angle turns when transitioning between waypoints, is especially difficult

agents on the inside of the turn, such as Agents 2 and 4. Hence, collision among

these agents is more possible. It should be noted that Agents 4 and 5 receive

information about change in formation configuration from the leader, Agent 1,

with extra delay due to multiple hops, i.e. ∆14 = ∆12+∆24 and ∆15 = ∆13+∆35.

Thus, effectively ∆̄4 = ∆̄5 = 2∆̄. However, as seen in Fig. 5.14, any collision
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Figure 5.12: Trajectory of fleet of 5 AUVs connected in a weakly connected network,
in a V-formation.

is successfully avoided throughout the trajectory. Synchronization of states is

achieved effectively, shown in Fig. 5.13, without any violation of constraints on

states and inputs (not shown here). It is evident that the proposed algorithm

performs well in both weakly connected and strongly connected networks.The

small gain condition (5.80) is obeyed by the team, as shown in Fig 5.16 for the

first waypoint of Agent 1.

5.7 Conclusion

We presented distributed NMPC framework for formation control of constrained

agents robust to uncertainty due to data compression and propagation delays.

Collision avoidance is ensured by means of spatially filtered potential field. Rigor-

ous proofs are provided ensuring practical stability regardless of network topology.
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Figure 5.13: States of Agents connected in a Weakly Connected Network. Agent 1
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bottom: Heading, Turn rate and Velocity.
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232



0 5 10 15 20 25
0

5

10

U
R
 &

 U
L

Agent 1

0 5 10 15 20 25
−1

0

1

U
R
 −

 U
L

Agent 2

0 5 10 15 20 25
0

5

10
U

R
 &

 U
L
  

Agent 2

0 5 10 15 20 25
−1

0

1

U
R
 −

 U
L

Agent 2

0 5 10 15 20 25
0

5

10

U
R
 &

 U
L

Agent 3

0 5 10 15 20 25
−1

0

1

U
R
 −

 U
L

Agent 3

0 5 10 15 20 25
0

5

10

U
R
 &

 U
L

Agent 4

0 5 10 15 20 25
−1

0

1

U
R
 −

 U
L

Agent 4

0 5 10 15 20 25
0

5

10

U
R
 &

 U
L

Agent 5

Time (s)
0 5 10 15 20 25

−1

0

1

U
R
 −

 U
L

Agent 5

Time (s)
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Figure 5.16: Small gain condition (5.80) for Agent 1 in weakly connected team. Value
of design function parameter ḱ1 = 5000.
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Simulations illustrate good performance of the proposed scheme in both strongly-

and weakly-connected networks. Future research directions include the need to

cater for model uncertainty, disturbances and fault tolerance.
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CHAPTER 6

CONCLUSION AND FUTURE

WORK

6.1 Epilogue

This chapter summarizes the contributions of this thesis to the existing scientific

body of work on distributed and robust nonlinear model predictive control. It also

points out possible future extensions of this research. Due to “natural” affinity

of all human engineered solutions to converge to optimum solutions provided in

nature, there is a great emphasis in current research to mimic biological multi-

agent and distributed control architectures. Formation “flight” is one of these

tasks modeled after similar behavior of birds, ants, fish etc. to move in geometric

formations, with non-obvious benefits for the entire team. Formation control was

the focus of this thesis, where we found the avenue to contribute with original and

need research due to gaps in existing scientific literature in this regard. An online

235



optimal control technique for distributed implementation called Model Predictive

Control was chosen as the breadboard for designing a generalized robust control

design framework, catering for an unprecedented array of sources of uncertainty.

A number of theorems, lemmas, postulates and corollaries form the basis on which

eight different algorithms are formulated for implementation of numerical recipes

backed by solid theoretical results.

6.2 Thesis Contributions

In preceding sections, we were able to provide original results and solutions for the

thesis problem statement in Section 1.3. We will summarize each of them below.

6.2.1 Robustness to Simultaneous Multiple Sources of Un-

certainty

Existing literature mostly considers either modeling uncertainty with perfect mea-

surements [85] or measurement noise with perfect model [68]. The proposed ap-

proach provides a unified framework for dealing with many types of uncertainties,

along with the inclusion of a non-additive disturbance with uncertain dynamics

and unknown input, data compression errors and propagation delays. A number

of sources of uncertainty are taken into account to provide robustness to the algo-

rithms developed. In existing literature, usually only measurement / estimation

errors or model mismatch are taken into account. We consider the simultaneous

presence of six sources of uncertainty
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i. error in estimating current state,

ii. error in estimating current external input (disturbance or external informa-

tion),

iii. error in predicting future system state due to model mismatch,

iv. error in predicting future external input due to disturbance model mismatch

(disturbance model is another uncertain dynamic system with unknown in-

put),

v. error in approximating trajectory due to data compression, and

vi. error in approximating the last segments (tail) of the compressed trajectory

due to propagation delays.

We provide detailed feasibility and stability analysis to closed form analytic ex-

pressions relating the growth of uncertainty along the prediction horizon, and its

effect on recursive feasibility and robust stability. We provide explicit bounds on

growth of prediction uncertainty along the horizon in both single and multi-agent

case. Based on these results, the nominal constraints are restricted for robust sat-

isfaction of original constraints by the perturbed systems with Algorithms 2 and

8. These results are provided in Sections 3.2.5 and 5.3. New bounds on predic-

tion error growth along the prediction horizon have been derived (Lemma 3.2.1)

based on the bounds on components of the combined uncertainty. In addition,

constraint tightening for robust satisfaction of original constraints in the presence

of this combination of uncertainties (Theorem 3.2.1) is also a new development.
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6.2.2 Results in Input-to-State Practical Stability

Input-to-state stability (ISS) framework in existing literature is extended with

Theorem 3.2.2 to cater for the combination of uncertainties mentioned above.

New generalized input to state practical stability (ISpS) and generalized small

gain conditions are derived for the centralized (Section 3.2.7) and distributed

(Section 5.5) controllers. Analytical results proving ISpS and generalized small

gain conditions are presented. Theorems 2.5.2, 3.2.2, 3.2.3, 5.5.1 and 5.5.2 provide

extensive insights into the conditions of practical stability. It is shown that the

presence of uncertainty means asymptotic (ISS) stability cannot be achieved and

one can only achieve ultimate boundedness (ISpS), even if there is only one source

of uncertainty. The insights gained help choose various designer parameters in

controller implementation.

6.2.3 Results on Recursive Stability and Allowable Uncer-

tainty

Recursive feasibility is ensured by the newly developed Theorems 3.1 which relates

it to the size of the one-step controllable set to the terminal region. One-step

controllable set and robust output feasible set are determined based on min-max

optimization (Algorithms 5 and 6) rather than the existing set based approaches

[78]. This is an iterative approach based on min-max optimization to find the

maximum initial feasibility set for the worst case realization of uncertainties. Due

to the non-convex nature of this optimization, it is susceptible to local minima
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and hence we also provide a methodology for selecting the correct initial iterates.

This is the most computationally expensive algorithm, but since it is implemented

offline, computational time is not an issue.

6.2.4 Terminal Region Maximization and Terminal Con-

trol Optimization

Size of the terminal constraint set is often taken as a measure of the output feasible

set of MPC algorithms. Therefore, there is an overriding interest in maximizing

this region. However, this is not a straightforward task as the states and controls

are constrained. We develop a terminal constraint region maximization approach

(Theorem 4.3.1 and Algorithm 3) based on PLDIs and LMIs, which makes it very

easy to use existing efficient convex optimization techniques. An improvement

is also suggested warm started with a novel approach (Algorithm 4) involving

algebraic Riccati equations. Since very efficient algorithms for solving Riccati

equations exist, this is achieved with a very low computational load.

6.2.5 Data Compression and Trajectory Reconstruction

We propose a practically stable (ultimately bounded) formulation of the dis-

tributed nonlinear model predictive controller (DNMPC), in which agents commu-

nicate compressed information to each other with propagation delays and collision

avoidance is guaranteed, despite the presence of these delays and uncertainties.

Data compression (Section 5.2.1) using neural networks approach is used ensuring
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a considerable reduction of the data packet size (as much as 75 %). Moreover,

the approach allows the agents to be sampled locally at different rates as well

as to have different dynamics, constraints and prediction horizons, while being

robust to propagation delays and uncertainty in neighbors’ trajectories. More-

over, a method to estimate the tail of the received trajectory lost due to delays

is provided in Section 5.2.1, where we also find the effect this has on growth of

uncertainty in prediction.

6.2.6 Collision Avoidance

Collision avoidance algorithms existing in literature are based on additive potential

fields which penalize current states of the system. We propose a novel spatial

filter (Section 5.2.2), ensure that the smallest separation between two agents in

the future horizon gets the highest weight. On the other hand, taking a simple

average or a time-based forgetting factor [59], results in poor performance in

collision avoidance, as trajectories which enter very late in safety zone have a

small repelling potential , and hence not prevented from very early on. Such

strategy results in agents getting very close before they start repelling each other

to avoid collision, causing a loss of tracking performance. However, with the

proposed approach, trajectories are immediately penalized upon falling within

the safety zone and are obviously avoided in the NMPC optimal control selection

process. Conditions for stability of this approach are shown in Section 5.5 in terms

of Theorem 5.5.4.
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6.2.7 Stability of Different Network Topologies

Unlike [59] and existing literature, the stability results of Section 5.5 are not lim-

ited to strongly connected networks. It is shown even a weakly connected network

topology for multiple agents can be designed for fleet-wide stability and recursive

feasibility. We prove generalized small gain conditions (5.62) and (5.80), which

proves stability for all network topologies with at least one spanning tree. The

result is general, not limited by the number of subsystems and the way in which

subsystem gains are distributed is arbitrary. We prove that it is easy to ensure

fleet stability by designing simple nonlinear functions. Simulations are provided

for both strongly connected and weakly connected fleet network topologies, which

prove the validity of theoretical development.

6.3 Future Recommendations

From our survey of the literature and during the course of the research, we found

a number of avenues amenable to extensive academic and scientific inquiry. We

believe the research in observer/estimator based distributed NMPC is still rel-

atively untouched. There is a need to provide nonlinear separation principles

for distributed NMPC and observer design. Also, cooperative and opportunis-

tic estimation is another area where our results can be readily extended. We also

recommend exploring competitive tasks, such as predator-prey games and pursuit-

evasion tasks. Collaborative adaptive filtering and model free predictive control

(we have carried out some preliminary work in these directions with recurrent
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neural networks and collaborative LMS filters for predator-prey games).

6.4 Concluding Remarks

Current body of published work revealed a lack of generalized theoretical frame-

work for robust distributed nonlinear model predictive control catering for various

sources of uncertainties occurring simultaneously. We developed several algo-

rithms for robust and distributed nonlinear model predictive control for a team of

vehicles in the presence of uncertainties and propagation delays. Due to limited

bandwidth allocable to each communication channel in a multi-vehicle team, we

propose an algorithm to compress trajectory information before sending it over

the network. Due to communication and computational delays, the trailing part

of propagated trajectories is lost, for which another method for reconstruction

of trajectory tail is provided. Newly derived bounds on prediction error growth

allows us to place tighter constraints on nominal state evolution in order to sat-

isfy constraints on the actual system. Finally, methods for maximizing size of

the terminal constraint set, optimizing the terminal control law, computing recur-

sive feasibility conditions and determining the feasible set of the NMPC optimal

control problem are presented. This thesis also bridged the gap between theory

and adhoc practicality of existing most existing algorithms by developing a rig-

orously proven framework for the robustness, feasibility and stability of robust

and distributed NMPC. The new framework caters to simultaneous presence of

six sources of uncertainty consisting of errors in estimation, modeling, prediction,
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data compression and loss of information due to delay. We hope this work will

provide an important step toward scientific discovery in distributed robust and

optimal multi-agent control.
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