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An artificial neural network (ANN) based maximum power point tracking (MPPT)
algorithm has been investigated. The results obtained have been compared with an
adaptive neuro-fuzzy inference system (ANFIS). Both ANN-based and ANFIS based
MPPT controllers have the ability to estimate wind speed and to track the maximum
power point (MPP) and the optimal rotor speed with very low error as compared to the
conventional MPPT methods. Moreover, these methods demonstrate remarkable
performance under rapidly changing wind conditions in estimating wind speed, tracking
MPP accurately and suppressing undesired oscillations around maximum power point.
The algorithm is based on two series neural networks, one for wind speed estimation and
the other for tracking maximum power point (MPP). The algorithm does not require any
mechanical sensor for wind speed measurement. Nonlinear time domain simulations have
been carried out to validate the effectiveness of the proposed controllers in terms of wind

speed estimation and MPPT under different operating conditions.

The obtained results demonstrate that both the proposed ANN and ANFIS-based

MPPT controller has better dynamic and steady state performance than the conventional
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methods and the obtained results also demonstrate that ANFIS based controller is better
than ANN based controller. Accuracy in wind speed estimation and maximum power
point tracking has been used as the performance criterion for evaluating MPPT

controllers.

The performance of the ANFIS based MPPT controller is investigated using
MATLAB simulation for a grid connected permanent magnet synchronous generator
(PMSG) wind system represented through a detailed dynamic model of the generator, the
generator turbine, drive train and the converters. Simulation results confirm that the wind
turbine system can deliver power to the grid maintaining the optimum value of power

coefficient (Cp) for rapidly changing wind conditions.
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CHAPTER 1

INTRODUCTION

The demand of electrical energy is anticipated to increase rapidly because of the very
fast growth of global population and the development of industry on an extensive scale.
This rapid increase in energy demand requires electric utilities to increase their power
generation. The net electricity production all over the world was 17.3 trillion kilowatt-
hours in 2005 and is expected to increase 24.4 trillion kilowatt-hours (an increase of
41%) in 2015 and 33.3 trillion kilowatt-hours (an increase of 92.5%) in 2030 [1]. A large
amount of electricity generated is from fossil fuels, especially from coal. However, the
use fossil fuels causes environmental pollution and greenhouse gas (GHG) emissions,
those are considered the main reason behind current global warming problem. For
example, the emissions of carbon dioxide (CO;) and mercury are expected to rise by 35%
and 8% respectively, by the year 2020 due to the expected increase in power production
[2]. Moreover, possible diminution of fossil fuel reserves and unstable cost of oil are two

major concerns for industrialized countries.



1.1 WIND ENERGY

To overcome the problems related with production of electricity from fossil fuels,
renewable energy sources (RES) can play an important role in the energy mix. Also the
deregulation in electricity markets and the growth of the distributed generation (DG)
systems are advancing the use of RES in power production [3]. Among the renewable
energy sources (RES), wind energy is the most promising and wind turbine system
provides the most direct method to convert wind energy into electrical energy without
any environmental pollution [4]-[5]. Wind energy systems require very little capital cost,
replacement cost, operation and maintenance cost as compared to other RES like solar
energy. Also considering the energy conversion efficiency wind energy system is better
than the solar energy system. In spite of the intermittency of wind speed, numerous wind
energy systems have been developed in many countries all over the world because of
their long term gains and other schemes offered by governments to encourage the use of
renewable energy sources (RES). The first wind turbine system for electricity generation
started on July, 1887 in Scotland was a battery charging machine and currently updated
technology related to wind energy conversion system is growing rapidly worldwide. In
fact, many organizations expect a bright future for these systems because it is clean
energy, abundant, ubiquitous, sustainable, environmental friendly and wind is free of
cost. The total installed capacity of wind energy systems all over the world was 273TWh
in year 2009. In 2020, IEA’s expects globally the wind generated electricity will be

around 1282TWh annually, which is 369% increase from 2009. It is anticipated that by



2020 around 12% of the world’s electricity will be generated from wind energy. By 2030
that figure will be 2182TWh [6],[7]. Rapidly growing wind energy deployment has led
the researchers to work on the different issues related to wind system: modeling of the
wind turbine, maximum power point tracking algorithms, power electronic converters

used to integrate wind turbine with grid and its impact on power system.

Wind turbines are usually used in roof top and stand-alone micro-grid systems to serve
remote or hilly areas that are not connected to the electric grid [8]. Grid-connected wind
systems designed for supplying energy to local loads as well as to the electric grids, are
currently dominating the electricity market and can be installed on the onshore, offshore,
beside the highway and on the open field where wind speed has good potential to

generate electricity.

Large penetration of wind power into the electricity grid would have adverse effects
on the transmission/distribution network and also on the other connected generators due
to the intermittency of the wind speed. It may cause security and stability issues of power
system especially in the case of disturbances. An accurate wind turbine model is required
that can simulate its output characteristics with the change in wind conditions, i.e. wind

velocity, to study and analyze the impact of wind generation on the utility power grid.

1.2 MAXIMUM POWER POINT TRACKING (MPPT)

The efficiency of wind system depends on turbine efficiency, efficiency of the

converters and efficiency of the MPPT algorithm. Increasing the efficiency of wind



turbine and the converters is not an easy task, because it depends on available technology.
Updated components may increase the efficiency but it increase the installation cost
extremely. Improving efficiency, using MPPT algorithm is easier and inexpensive and

can be done in a wind system which is already in operation.

The maximum power point tracking (MPPT) controller plays an important role to
improve the efficiency of the wind energy conversion system. The MPPT algorithms can
be classified into three main control methods, known as tip speed ratio (TSR) control,
hill-climbing search or perturb and observe (P & O) method and power signal feedback
(PSF) control. To extract maximum possible power from wind both TSR and PSF control
methods required accurate measurement of wind speed and rotor speed using mechanical
sensors. HCS control algorithm has the ability to overcome the drawbacks associated
with TSR and PSF, but the trade-off characteristics between tracking speed and
oscillation makes this algorithm less effective [9]. Current research focuses on new
MPPT methods such as fuzzy logic (FL), artificial neural network (ANN) and adaptive
neuro-fuzzy inference system (ANFIS). Recent investigations represent better

performance of ANN and ANFIS based MPPT over conventional methods.

MPPT algorithm is applicable for variable speed wind turbine configuration due to its
property of controllable rotor speed, which leads the system to operate persistently near

the optimum value of tip-speed ratio to extract maximum power.



1.3 MOTIVATION AND PROBLEM DESCRIPTION

The major concerns of variable speed wind generation systems are maximization of
the wind energy conversion efficiency, system stability and power quality. The energy
production using wind turbine system can be increased in two ways; one is to build a
higher generation wind turbine system and the other one is to achieve higher efficiency in
converting Kinetic energy of wind into energy electrical energy. Building higher
generation wind energy systems is very expensive because it required replacement of
existing system with a higher generation system. The high efficiency of wind generation
system depends upon factors such as wind speed, wind turbine technology, converter
efficiency and MPPT controller. Wind speed depends on natural condition and it is not
controllable. On the other hand wind turbine and converter efficiency is technology
dependent. So the easiest and feasible way to improve the efficiency of the wind energy
system is to use MPPT controller. By extracting the maximum possible power for a
particular set of operating conditions, the total cost of the wind generation system can be

reduced.

The MPPT is a complete electronic system that changes the electrical operating point
of the wind turbine system as a result the system is able to deliver maximum possible
power at any wind speed. In a grid connected wind energy system, the main goal is to
extract maximum possible power from wind system over the entire time of operation.
Therefore, wind turbine systems required an MPPT controller, which enables the system

to operate at maximum power point.



Over the last decades many MPPT algorithms have been developed to find out the
maximum power point (MPP). These algorithms differ in many aspects such as required
mechanical sensors, convergence speed, effectiveness, cost, complexity, tracking
accuracy during rapid change in wind speed and hardware required for implementation.
The commonly used MPPT algorithms are tip speed ratio (TSR) control, hill-climbing
search also known as perturb and observe (P & O) method, power signal feedback (PSF)
control and functional relation based techniques. To track the maximum power point both
TSR and PSF control methods required accurate measurement of wind speed and rotor
speed. Anemometer is used as mechanical sensor to measure the wind speed, which is
very costly. The main advantages of both methods are simplicity and ease of
implementation but performance and accuracy are degraded due the rapid change in wind
speed. HCS control algorithm has the ability to overcome the drawbacks associated with
TSR and PSF, but its tracking is slow when step size is small and causes oscillations
around the maximum power point if the step size is large. The main drawbacks of HCS
technique is lose tracking the MPP during the rapidly changing wind conditions [9]. At
present fuzzy logic (FL), artificial neural network (ANN) and adaptive neuro-fuzzy
inference system (ANFIS) is becoming popular because these techniques has the ability
to deal with imprecise inputs, fast convergence, great ability in handling nonlinearity and
accuracy in tracking MPP (negligible oscillation around MPP) even when the wind speed
changes rapidly. The researchers already found that for wind speed estimation and MPPT

the performance of ANN and ANFIS is better than any other conventional methods.



The characteristics of turbine power and rotor speed for different wind velocity is shown
in Figure 1.1 The turbine power vs rotor speed characteristic of wind system is non-linear
because turbine power is the cubic function of rotor speed. Turbine power output varies
as the rotor speed and wind velocity changes. For a particular wind speed there is only
one maximum power point (MPP) and that point is vulnerable due to any change in the
wind velocity. In Figure 1.1 circular points on curves shows the MPP’s for different wind
speed, whose represents that to extract maximum possible power the turbine need to be
operated at those point. MPP is the point where the wind turbine is most efficient in
converting the wind energy into electrical energy. Therefore maximum power point
tracking (MPPT) controller plays an important role to extract maximum possible power

and forces the system to operate at its maximum efficiency.
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Figure 1.1: Turbine power vs rotor speed showing key points.



Overall efficiency of the wind system depends upon the efficiencies of wind turbine,
power electronics converters and maximum power point tracking (MPPT) controller.
Wind turbine systems have maximum efficiency around 30% only, converters have
efficiency about 95-98% and MPPT controller has more than 98%. The efficiencies of
electronic converters and wind turbines are technology dependent but MPPT efficiency

can be increased by improving its tracking techniques.

1.4 THESIS OBJECTIVES

The wind turbine output power is the cubic function of wind speed. For a particular
wind speed there is only one maximum power point (MPP) and the MPP point is
vulnerable due to any change in the wind speed. It is always efficient to obtain maximum
power at particular wind speed. To extract maximum power from wind, wind turbine
must be operated at the peak point of its power-rotor speed characteristics curve for a

certain wind speed.

Following are the major objectives that are focused in this thesis:

1. To develop an adaptive control algorithm using ANN for sensor-less wind speed
measurement and to design a controller to track the wind speed efficiently and
accurately.

2. To present a new adaptive control algorithm based on ANN for maximum power

point tracking (MPPT) in wind energy system and to design a controller for



maximum power point tracking (MPPT) accurately for any change in the wind
velocity.

To develop an adaptive control algorithm using ANFIS for sensor less wind speed
measurement and to design a fuzzy controller to track the wind speed efficiently
and accurately.

To presents an ANFIS based new adaptive control algorithm for maximum power
point tracking (MPPT) in wind energy system and to design a controller for
maximum power point tracking (MPPT) accurately for any change in the wind
velocity.

To test and compare the performance of both the ANN and ANFIS based MPPT
controllers for different wind speed.

To evaluate the performance of the MPPT algorithm for a grid connected PMSG

wind system.

1.5 PROPOSED WORK

The methodology that is used to fulfill the objectives is comprised of two major

phases:

1) Design and implementation of MPPT controller



2) Testing the proposed MPPT controller on a PMSG wind system

1.5.1 Design and implementation of MPPT controller

1)

2)

3)

4)

Two series artificial neural network (ANN) is used in the proposed MPPT
algorithm; one for wind speed estimation and the other for maximum power point
tracking. The algorithm does not require any anemometer or look-up table.

Two series adaptive neuro-fuzzy inference system (ANFIS) controller is used in
the proposed MPPT algorithm; one for wind speed estimation and the other for
maximum power point tracking. The algorithm is able to track MPP without using
any anemometer or look-up table.

Time domain MATLAB/ Simulink simulations of a wind system are carried out to
verify the robustness and accuracy of the proposed controller under different
operating conditions.

The dynamic performance of the proposed MPPT controller is tested under

random variation in wind conditions.

1.5.2 Testing the proposed MPPT on a PMSG system

1)

2)

Among the proposed ANN and ANFIS based MPPT algorithms, the most
efficient one will be tested on a 2.5 MW permanent magnet synchronous
generator tied to the grid.

The detailed dynamic model of the generator, the generator turbine, drive train

and the converter system will be considered for testing.
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3) The testing is based on how well the wind turbine can deliver power to the grid
maintaining the optimum power coefficient for randomly varying wind

conditions.

1.6 THESIS ORGANIZATION

This thesis is organized as follows:

Chapter 2 contains the brief description of wind turbine technology and extensive
literature review on wind turbine modeling and maximum power point tracking (MPPT)

techniques.

In Chapter 3 an adaptive artificial neural network (ANN) based MPPT controller has
been presented and its effectiveness and accuracy is investigated in the

MATLAB/Simulink environment.

In chapter 4 an Adaptive neuro-fuzzy inference system (ANFIS) based MPPT
controller has been presented and its effectiveness and accuracy is investigated in the
MATLAB/Simulink environment. In addition, a comparison between the overall
performance of ANN based MPPT controller and the ANFIS based MPPT controller is

made.

Chapter 5 investigates the performance of the proposed most accurate maximum

power point tracking (MPPT) controller tested on a grid connected PMSG system.

11



Chapter 6 presents the conclusions drawn from this research work and states

directions for the possible future work.
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CHAPTER 2

LITERATURE SURVEY

Wind turbine (WT) system is one of the best promising renewable energy sources
(RES) that can generate clean energy to the power grid and remote loads connected
through the power electronic devices. This chapter presents a detailed literature review on

the WT modeling and maximum power point tracking (MPPT) techniques.

2.1 RENEWABLE ENERGY FOR POWER PRODUCTION

Over the past few decades, it is evident that there is a significant increase in global
demand for electricity. Recent studies predict that the electricity generation is expected to
rise from 17.3 trillion kilowatt-hours in 2005 to 24.4 trillion kilowatt-hours (an increase
of 41%) in 2015 and 33.3 trillion kilowatt-hours (an increase of 92.5%) in 2030 [10].
Many traditional and conventional methods are applied for generation of electrical
energy, but when it comes to environmental safety they have adverse effects on
environment. For example, the emission of carbon dioxide and mercury are expected to
increase by 35% and 8%, respectively, by the year 2020 due to the increase in electricity
generation [11]. Though the environmental concern increases and the natural resources

like fossil fuels are going to be depleted; now researchers are focusing to obtain new
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environmentally friendly sources of power. To overcome the problems associated with
generation of electricity from fossil fuels, Renewable Energy Sources (RES) can be used
in the energy mix. Also the deregulation in electricity markets and the development of the
distributed generation (DG) technologies are promoting the use of RES in power
generation [12]. Because of this environmental concern with fossil fuel, it is desirable to
search for clean energy. Renewable energy (RE) is one of the best sources of clean
energy that have a very low environmental affect compared to the conventional energy
sources. Among the all RE sources, Wind energy is a pollution-free and inexhaustible
source. Therefore, a wind energy generation system could be one of the potential sources
of alternative energy for the future [13],[14]. As a result, the focus on production of
energy using RE sources is increased to reduce greenhouse gas emission. Wind, solar,

tidal, wave, geothermal and bio-fuels are considered as renewable energy sources.

One of the best renewable sources to serve this purpose is Wind energy. One can
rely on wind as it is mostly available at all time, but primary focus would be given to the
installation of plants on a region where the wind blows at a sufficient speed. At present
wind generators have been widely used in both grid-connected applications and stand-
alone hybrid power systems in remote areas. Compared to the photovoltaic systems, wind
generators (WGs) have lower installation cost. Moreover, the overall system cost can be
further reduced by using more-efficient power converters and by controlling such a way

so that the maximum power is acquired according to the current atmospheric conditions.
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2.2\ WIND ENERGY CONVERSION PRINCIPLES

The power in wind energy can be calculated on the basis of kinetic energy. The wind
turbine converts the kinetic energy of wind to mechanical energy. The kinetic energy of
wind is shown in (2.1).

Kinetic energy = - pAV watts (2.1)
Where, p is the air density and A is the swept area by the turbine blades and 1}, is the
velocity of wind.

Kinetic energy equation shows that the wind energy is directly proportional to the
swept area. As the swept area increases the energy also increases. As a result, the
machines with higher swept area produced more energy comparing to the lower one. The
characteristics of wind power are related to the cubic function of wind velocity, which is

shown in Figure 1.1.

2.3 WIND TURBINE MODELING

The wind power captured by wind turbine depends on its power co-efficient (C,), which
is proportional to the power extracted from the wind hitting the blades of the turbine. C,

can be expressed by (2.2).

21
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The value of C, is related to tip speed ratio (A). The A is defined in (2.3). Here B is the
blade pitch angle.

1_ 1 0035 23)

4 A+0088 4341

There is a strong relation between the turbine output power and power coefficient (Cy).
The wind turbine power output is limited by power coefficient that is a function of tip
speed ratio (A). The power coefficient versus tip speed ratio is turbine specific and
depends particularly on the turbine blade design which is shown in Figure 2.1. It can be
noticed that the maximum value of power coefficient is about 0.48 when the value of tip

speed ratio is around 8.

Power Coefficient (Cp)

Tip Speed Ratio

Figure 2.1: Tip speed ratio vs power coefficient curve.
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The value of A can be calculated using (2.4).
A= wr. RI'Vy, (2.4)

The wind turbine mechanical output is related to the wind speed V,, and can be expressed
by (2.5).

P> pAC, V3 (2.5)

Here p is the air density and A is the swept area of the wind turbine blade. When the
TSR is adjusted to its optimum value Aoy then the power coefficient C, will be its

maximum value Cpmax and the maximum power extraction will be achieved.

Rearranging the equation (2.4) and (2.5), the relation between turbine power (Py,) and
rotor speed (wy) ca be related as in (2.6).

1
Pm = =
2

R
PACy,, (57 (2.6)

From (2.6), it is clear that the maximum power generated is proportional to the cube of
the rotational speed as shown in (2.7).

P, < w3 2.7
2.4 WIND TURBINE SYSTEMS

Generally, wind energy conversion systems can be categorized in two groups. The

first group operates at almost constant speed (variation is limited to around £1%) and
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termed as “Danish Concept” [15]. In this type the generator directly coupled the grid with

the drive the drive train. This type of configuration allows very little changes in rotor

shaft speed; as a result small turbulence in wind speed and load variation creates

mechanical stress and decrease the life time of the wind turbine [15]-[18]. The big

disadvantages of this type are, the optimum tip speed ratio occurs only at one wind speed

and unable to extract maximum possible power with the change in wind speed [16]-[18].

On the other hand, variable speed configuration allows the control of rotor speed, which

leads the wind turbine to operate constantly near the optimum value of tip-speed ratio and

MPPT is applicable. There are many advantages of variable speed configuration over

fixed speed, such as-

>

Annually up to 10% more energy collection is possible based on wind regime
and turbine aerodynamics [16].

Less mechanical stress and torque pulsations due to the turbulences as a result
machine life time increases [15],[19].

When wind gust occurs, by increasing rotor speed the inertia of mechanical
system absorbs the extra energy.

Power injection to the grid increases due to the improved power quality. The
reduction in power pulsations, increases the power quality and limit the
voltage deviation [15],[19][19].

The pitch control time constant is longer in variable speed configuration,
which minimizes the pitch control complexity. These types of configuration

also produce less acoustic noise [15].

18



Most modern variable speed generators are based on DFIG (which is round rotor
machine) and PMSG (permanent magnet synchronous generator). The energy conversion
efficiency of the variable speed wind turbine system can be improved by using MPPT

algorithm.

2.5 MAXIMUM POWER EXTRACTION

The wind energy conversion technique is although a straightforward process, but the
maximum power extraction process is very complicated and incorporates different highly
correlated parameters like power coefficient, tip speed ratio, wind speed, rotor speed and
so on. From the speed-power curve for wind turbine shown in Figure 1.1, it is obvious
that there is different operating rotor speed corresponding to each wind speed at which
maximum power extraction can be obtained. Due to the aerodynamic nature of the wind
turbine, for a very small change in rotor speed will change the amount of power
significantly extracted from the wind energy. The rotor speed depends on the wind
velocity fluctuation as well as the generator loading. As a result, the wind turbines may
not operate at optimum rotor speed for a particular wind velocity, which causes a waste
of significant amount of wind energy. The cost effectiveness of wind energy depends on
the percentage of energy extraction. The more energy we can extract, the more cost
effective the wind system. So the initial challenge is to extract more with in the shortest
possible time. As the modern advancement of electronic devices, it can be done by using
various converter topologies and using maximum power point tracking (MPPT)

algorithms.
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For electricity generation, the capital cost for wind turbine system is very competitive
with the other renewable energy sources. The most important application of wind turbine
system is to supply electricity to the remote or hilly areas, those are far away from the
power grid connection and from the economic point of view the grid connection is not
feasible. Another big advantage of wind turbine system is, it requires very little or no
maintenance cost. Using maximum power point tracking technique, it is possible to
achieve the optimum wind energy utilization as well as maximum aerodynamic
efficiency. So MPPT is a very popular technique that is especially beneficial for small
wind system [20]-[36]. However, there will be only one rotor speed for every wind
velocity, which will provide maximum power available, is termed as MPPT [37]. In
order to implement maximum power extraction, variable-frequency mode operation is
required for wind turbine generator. In recent years, variable speed wind turbine systems
are becoming popular than the fixed speed system, because the energy capture ability in
the later one is poor. Moreover, fixed speed system suffers from poor power quality and
causes higher stress in mechanical parts. On the other hand variable speed wind turbine
systems support MPPT algorithm and able to operate at its maximum power coefficient
over a wide range of wind velocity by reducing the drawbacks discussed for fixed speed

systems [38]-[41].

By using MPPT techniques the efficiency of the wind turbine system will be
increased at any wind speed of the environment. Therefore an effective and low
implementation cost MPPT algorithm is essential to enhance the efficiency and

economics of wind energy conversion systems (WECS). As a result, the maximum
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power extraction technique becoming the interesting research topic during the past
twenty years. To track the MPP, there are various algorithms in the literature based one
tip speed ratio (TSR) control [20]-[22], power signal feedback (PSF) control [23]-[25]
and hill-climb search (HCS) control [26],[27]. A revision of the Hill climb searching
technique in MPPT was introduced in [42] for wind turbine generator system. This was
done by developing a peak detection method that is capable of maintaining accurate
result despite the rapid weather changes. The control method was based on referring to
the optimal power curve. Such reference will dictate the required perturbation step size
[42]. Perturbation and observation technique often used for the MPPT problem but the
tracking performance is very slow and continuous oscillation occurs around the
maximum power point [28],[29]. Anemometer is generally used in most of the wind
turbine systems [23],[24],[43][43] for wind speed measurement to implement MPPT
algorithm, but due to the inaccuracies in wind speed measurement, the reliability of the

wind energy conversion system decreases [14]-[76].

Different MPPT control techniques to estimate wind velocity were reported in [20]-
[22],[44]; however those techniques needed the knowledge of air density and some
mechanical parameters of the wind turbine system. Neural networks with multilayer
neurons were widely used to approximate an arbitrary input-output mapping of an
uncertain system so as to have a faster convergence property [43],[45]. Based on the ratio
of mechanical power versus turbine rotation speed to eliminate uncertain parameters and

avoid oscillation, neural networks can be used for MPPT problem [30]. A neural network
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based control can be used to track MPP for both the dynamic and steady states and to
estimate wind velocity quickly and accurately without using anemometers [31]. TSR
control directly regulates the turbine speed to keep the TSR at an optimal value by
measuring wind speed and turbine speed [46],[47]. In such systems, a fuzzy logic
controller is used instead of using a regular PID controller to manipulate the optimum
rotor speed [46]. No detailed mathematical model or linearization about an operating
point is needed and it is insensitive to system parameter variation. As the measured wind
speed changes, the turbine pitch also gets regulated. Fuzzy logic and neural network
based controller can be used to get better performance [48]. The value of the optimum
TSR may change with the aging of the wind turbine and other system parameters. So an
adaptive algorithm can be used to increase the system stability as well as the system
performance [10], [49].

Finally, we can conclude that TSR control has better efficiency and good
performance with fast response, but it requires a very accurate anemometer which is very
expensive and requires extra cost for the wind turbine system. HCS and fuzzy logic can
be used to track the maximum power point of a grid connected PMSG wind turbine
system. The fuzzy-control-based MPPT scheme is good, but complex to implement [50].
However, the adaptive fuzzy controller for MPPT control can implement sensor-less peak
power tracking and overcome some disadvantages of classical methods. The maximum
power can be estimated through a Takagi-Sugeno-Kang (TSK) fuzzy controller by
measuring the rotor speed and power generated by the generator without measuring wind

speed and wind turbine parameters. The advantages of fuzzy logic over HCS are variable
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step size and fuzzy is capable to remove all output power oscillations that appears in HCS
[51]. In [52], a data-driven design methodology has been proposed which is able to
generate a Takagi—Sugeno—Kang (TSK) fuzzy model for maximum energy extraction
from variable speed wind turbines. In this model turbine power and rotor speed is used as
input and corresponding maximum power is the output for training process. As a result

maximum power can be tracked without getting any information about the wind velocity.

Recently, various techniques have been developed to track the MPP for any change in
the wind speed without using the mechanical sensor to estimate the wind speed [20],[21],
[25],[26]. Polynomial can be used to determine the wind power co-efficient; then the
wind speed is estimated online by calculating the roots of the polynomial using an
iterative algorithm (e.g., Newton’s method or bisection method). However, real-time
calculation of the polynomial roots is very complex and time-consuming process. As a
result the system performance will be reduced. Neural network based wind speed
estimation had in [53], which used manual calculation based on optimum tip speed ratio
to determine the maximum power point corresponding to the estimated wind speed. But,
optimal tip speed ratio changes with the aging of the wind system that will give erroneous
result. MPPT algorithms have been developed depending on optimum relations among
quantities like wind speed, turbine output power, DC voltage, current and power of the
converter. Functional relationship based control is a variant of perturb and observe (P &
0O) method. The advantages of this method are sensor-less wind speed measurement and

no need for look up table [11]-[12]. The wind speed can be estimated using the theory of
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support vector regression (SVR) in a wind energy system. By using turbine power and
rotor speed as input to the SVR estimator, the wind speed can be estimated with high
accuracy and fast transient performance is achievable [22]. Wind speed can be estimated
using ANN by giving turbine power and rotor speed as input. Then MPPT can be
obtained by identifying the optimal rotor speed using, iopt =K*r, and w,=
(Aopt*Vy)/R [53]. In [13], ANN and PSO is used together to estimate the wind speed and
to track the maximum power point. The methodology of RBFNN and PSO can efficiently
improve power output of a small wind power generator in the conditions of wind speed
and load impedance variations. Optimization based MPPT has been proposed in [54],
where two series neural network is used to estimate the wind speed and optimal power
then PSO is used to determine the optimal rotor speed. Furthermore, considering the
condition of wind speed and load variation, the maximum output power can be tracked.
For MPPT using pitch angle, various intelligent control technique can be used such as
fuzzy, neuro-fuzzy, and genetic algorithm based fuzzy controllers can be used for DFIG
based wind generation system. According to the simulation results found in [55], the
performance of intelligent controllers are better than the PID controllers and among the
intelligent controllers, GA based fuzzy controller is the best. MPPT algorithms have been
developed which depend on optimum relationship among quantities like wind speed,
turbine power output, converter DC voltage, current, power etc. A sensor-less MPPT
technique by controlling duty cycle of the DC-DC boost converter switch and measuring
DC voltage and current was reported in [56]. There is a liner relation between the DC

voltage and the rotor speed of the PMSG. So the operating point can be shifted from one
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curve to another with changing wind speed by changing the duty cycle of DC-DC boost
converter. Based on the optimal relationship between maximum converter power and DC
voltage an MPPT algorithm has been developed for permanent magnet synchronous wind
generator. This algorithm does not require the measurement of wind conditions or turbine

parameters [57].

Maximum power point tracking (MPPT) controller is a crucial part of the wind
system. It tracks and extracts the maximum possible power from the wind turbine under
different operating conditions and improves the overall efficiency of wind system. The
idea of MPPT is not new; many MPPT methods had been reported by researchers that
discussed in the literature review. Comparing to the others conventional techniques,
researchers already proved that ANN and ANFIS based MPPT controller are much more
accurate and efficient. The performance of trained ANN is good, but it will not provide
the details about the system performance for a particular output, it act as a black box.
ANFIS combines the advantages of both ANN and FIS, which makes ANFIS a very
powerful intelligent technique [58]-[59]. To use ANFIS based MPPT technique, a large
number of training data is required. In [60], the authors used practical data for training
process and proved that its performance is better than the conventional MPPT technique.
Researchers already used neural network (NN) and Fuzzy logic (FL) for MPPT.
Sometimes NN/ANFIS are used for wind speed estimation and look up table for MPPT.

In some other works, they used Anemometer for wind speed estimation and NN/ANFIS
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based controller for MPPT. The use of anemometer and look-up table is the main

drawbacks for the previously reported ANN/ANFIS based MPPT controller systems.

The main objective of this research is to use neural networks (NN) principles and
adaptive neuro-fuzzy inference system (ANFIS) both for wind speed estimation and to

track both MPPT and optimum rotor speed for any change in wind velocity.

2.6 MAXIMUM POWER POINT TRACKING (MPPT) STRATEGY

The maximum power point tracking concept with the change in wind velocity is
illustrated clearly in Figure 2.2. As wind speed changes, the turbine power curve also
changes. Let us consider that the wind speed known and the turbine is operating at point
A, so we can easily determine the maximum power point for that wind speed is B and the
corresponding rotor speed is w,*. Then the rotor speed of the generator will be controlled

until it reaches to w,*, where the turbine power is maximum.
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Maximnm power line

Turbine mechanical power P, (KW)

Rotor speed s, (rad/sec)

Figure 2.2: Three dimensional turbine speed vs power curves

So first we have to estimate the wind velocity by using the operating condition. It can
be easily done by using anemometer, which is very costly. So the sensor-less wind speed
measurement technique will be most cost effective one. Artificial Neural Network (ANN)
and adaptive neuro-fuzzy inference system (ANFIS) can be used to do this job. With the
change in wind velocity, the operating turbine power and rotor speed will be changed;
though the measurement of power and rotor speed can be done precisely, those will be
used as input to the ANN/ ANFIS network. Based on the given input ANN/ANFIS will
identify the wind speed as well as the maximum power corresponding to the estimated
wind velocity and will also specify the turbine optimum rotor speed for which we will get

maximum power. Though the relation between turbine power and rotor speed is nonlinear
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regarding to the wind speed change and ANN and ANFIS have great ability to deal with
the nonlinear objective function; so we can do wind speed estimation and MPPT tracking

using ANN and ANFIS.
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CHAPTER 3

ANN-BASED MPPT CONTROLLER DESIGN

3.1 INTRODUCTION

Wind turbine converts the kinetic energy of wind into electrical power. The generated
power of turbine is the cubic function of wind speed. Figure 1.1 demonstrates that the
characteristics of turbine versus rotor speed are non-linear in nature. For a particular wind
speed there is a particular curve and each curve has one optimum point called Maximum
Power Point (MPP) as discussed in previous chapters. This maximum power point varies
with the wind speed as well as the operating speed of the rotor. As wind speed is
intermittent and time to time it changes, that also keeps varying the maximum power
point (MPP). Therefore, the maximum power point tracking (MPPT) controller is

essential to extract maximum possible power from any wind speed.

Already researcher’s reported some ANN based MPPT techniques in literature.
Among all the previously proposed ANN based MPPT technique, they used single neural
network for wind speed estimation or to track maximum power point. When neural
network is used to estimate wind speed then look-up table or manual calculation or PSO

is used to track maximum power point. In other literature, anemometer is used to measure
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the wind speed then measured wind speed is used as input to neural network to track the
maximum power point. The researcher’s already proved that the performance of all the
proposed ANN based MPPT controller is better than the conventional methods (TSR
control, PSF control, HCS and P & O control) in terms of accuracy, fast convergence and
able to track MPP correctly in rapidly changing wind speed conditions. Both anemometer
and look-up table are considered as the drawback of the ANN based MPPT techniques.
The anemometer is costly and required numbers of anemometer in different locations for
accurate measurement of wind speed. On the other hand look-up table required memory
space and billions of data has to be stored for getting accurate result, therefore MPPT

accuracy depends on the available system memory.

In this chapter, the new intelligent MPPT controller based on the artificial neural
network (ANN) is proposed and developed for wind speed estimation and MPPT. Two
series neural network will be used, one for wind speed estimation and the other to track
maximum power point. In the proposed algorithm there is no need of anemometer or

look-up table.

3.2 ARTIFICIAL NEURAL NETWORK (ANN)

Avrtificial neural network (ANN) is a computational tool that follows the activities
of human brain. The basic processing unit of ANN is neuron [61], introduced by Cajal in
1911 [62]. The function of ANN’s neuron is similar to the biological neuron. Artificial

neural network (ANN) has been successfully employed over the past decades to solve for
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various complex problems. Recently, ANN is used in various engineering problems as
an estimation method due to its great pattern identification ability. The application of
neural networks supports the following useful attributes and capabilities includes
nonlinearity, adaptively, massive parallelism, uniformity of analysis and design, learning
ability, generalization ability, input-output mapping, fault tolerance, evidential response,
VLSI implement ability, distributed representation and computation and neurobiological
analogy. An artificial neuron generally consists of a computing element that performs the
weighted sum of the input signals and the associating weights. The weighted sum is added
with the bias value called threshold and the resultant signal is passed through a non-linear
activation function. The commonly used activation functions are either sigmoid or hyperbolic
tangent. Each neuron is interconnected with three parameters whose learning can be adjusted.
These are the connecting weights, the bias value and the slope of the nonlinear activation

function. For the structural point of view a NN may be single layer or it may be multilayer.

ANN is so configured that any set of inputs produces a desired output. Two basic

classes of Neural network namely
1. Feed-forward back-propagation network (FFBP)

2. Radial basis function network (RBFN)

3.2.1 Feed forward back-propagation neural networks

In feed forward neural network, the information enters at the inputs and passes

through the network layer by layer, until it arrives at the outputs. During normal
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operation data moves only in forward direction, there is no feedback. There are three
layers in a feed forward network termed as input layer, hidden layer and output layer. A
set of inputs is provided to a hidden layer by different strength of connections or weight
function, and then finally passed to the output layer as shown in Figure 3.1. Every node
in a layer is linked with all the nodes in the previous layer. These links are not all same;
each link may have a different strength or weight. The weights on these connections
encode the knowledge of a network. In order to obtain desired output, the weights shall

be updated.

Input Hidden Output

Figure 3.1: Feed forward ANN

The learning process of feed-forward network (FFN) cannot assure you the global

optimum, sometimes it struck into the local optimum. By using back propagation (BP)
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algorithm along with the FF algorithm, the learning process of FFN can be improved. BP
is widely used technique due to its simplicity [63]. There are three layers in a feed
forward back propagation network termed as input layer, hidden layer and output layer as
shown in Figure 3.2. BP learning algorithm is proposed in [64] and become one of the
best learning algorithms among ANNs. During learning process, BP network use
gradient-decent search technique to adjust link weights between nodes to minimize the
error of ANNs. Back propagation algorithm is very popular and used successfully in
many applications like pattern recognition, location selection, performance evaluations
and so on. Since error propagates from output layer through hidden layer to the input

layer (propagates in backward direction), this method is termed as back propagation.

Input layer Hidden layer Output layer

Figure 3.2: Back-propagation ANN
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If the dimension of input is j there would be j weights, as a result the net signal
available to the neuron would be given by w; in Equation (3.1), where X; is the iy input,
wji is the weight connecting neuron j and neuron i and b is the bias of neuron j. The
output for neuron V, is best expressed as sigmoidal function as in Equation (3.2), the

amplitude of the output ranges from 0 to 1. The final actual output is given by Equation

(3.3)
n
j=1
_ 1
Vi = T (3.2)
1
Yi = 1+e(_si) (33)

The sum of squared error or cost function (E) is given as square of difference of target

output t; and estimated output y; best describes by Equation (3.4)

1 M 1 M I
=3 En=y ). )@=y (34)

Here, m represents all training pattern, E, is the total error over all training pattern

and i represents all output nodes for a given pattern.
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The weights are altered to minimize the cost function to a value by gradient
descent method. In back-propagation networks the initial weights and biases are selected
randomly by deploying maximum and minimum value of input. These weights are
continuously updated, for i** neuron the j** weight. The equation used to update weight

is shown in (3.5).

9E,,

Where learning rate is denoted by n, w;;(¢) is the old weight, w;;(t + 1) is the new

weight.
3.2.2 Radial basis function (RBF) network

The radial basis function network has similar type of structure like feed forward back

propagation network as shown in Figure 3.3 .

Output

Linear weights

Radial basis function

Weights

Inputs

Figure 3.3: Radial basis Function network
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The transfer function for a radial basis neuron is

radbas(n) = e " (3.6)

RBF network can be trained by two step algorithm. Firstly, in the hidden layer the
center vectors C; are chosen for RBF function. This can be done in many ways; one is to
sample randomly from set of examples or by using K-means clustering. Then use back-
propagation to determine all network parameters of RBF. Secondly, a linear model is fit

with coefficient W; to output hidden layer with respect to least square objective function.

The artificial neural network which employs an activation function as radial basis
function is called RBF network. Like feed forward networks, the RBF networks also have
three layers, but the only difference is the hidden layer has nonlinear radial basis
activation function. Input layer consists of m, source nodes, my is the dimension of input
vector. The hidden layer consists of equal number of computation nodes as the size of
training sample. Each node is mathematically described by a radial basis function as

shown in (3.7).

Pa(X) = @(lIX — XqID) (3.7)

Here, a=1,2,........ ,N. N is the training sample size, X is the applied signal to the
input and Xa defines the center of the radial basis function of a-th input data point. In

Figure 3.3, output layer consists of single computational nodes, but there is no restriction
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on the size of the output layer, typically size of the output layer is much smaller than

hidden layer.

The input units are directly connected to the hidden layer and the hidden layer is
fully connected to the output layer via output weights [65]. In general radial basis
function neural network (RBFNN) is a feed forward 3-layers network based on radial
basis functions like Gaussian function is chosen as their activation function [66]. In
RBFNN Gaussian function is used as basis function, which depends on two parameters o,

and p, as shown in (3.8).
o IX = pell, o) = exp (1) (38)

Here, X is the input vector, o, is the shaping parameter and p, is the a-th center.

The hidden layer of RBF network takes p-dimensional input vector (Xp) with unit
connection strengths and determines the Euclidean distance between input and center.
The calculated result passes to the activation function. The hidden layer maps the input
space onto a new space by performing the fixed nonlinear transformation. The output
layer performs the linear combination onto this new space by adjusting the weight matrix
[67]. The output of RBFNN network is defined as the weighted sum of the hidden layer

outputs as shown in (3.9).

0(D) = Woi + Xo=1 Waro (IX — tall, 04) (3.9)
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Here, i=1,2,3,....... ,m and a=1,2,3,...,h. h represents hidden nodes and [IX-p,l
represents the Euclidean distance between inputs and the a-th center. The weight value

between i-th center and a-th output node is denoted by Wi;.

In radial basis neural network, every hidden unit calculates a nonlinear function by
evaluating the distance between the input and the unit weight vector. The unit vector is
generally called the center of the unit and the distance is called Euclidean distance. The

amn hidden node Euclidean net function for py, training pattern can be calculated by (3.10).

Bdy(n) = Zhea (X, () = o) (3.10)

Here, Ca(n) is the n-th element of C, corresponding to n-th input node. The training

mean square error (MSE) for each pattern can be calculated according to (3.11).

Euse = Ljz1lya() — 0(D]? (3.11)

Here, yq is the desired output and O is the output calculated by RBFNN and both are

the column vectors.

First step of the training is to prepare input and target data set and spread constant.
Then set the error goal, after calculating Euclidean distance in each iteration one more
neuron will be added and the MSE of the new network will be checked. This procedure

will be continued untill MSE falls down the error goal or maximum number of neuron
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have reached. The flow chart of radial basis function neural network algorithm is shown

in Figure 3.4.

Prepare training data

l€
v

Set spread constant and error

Calculate Euclidean distance
using (3.10)

Add neuron

.

Mapping of input space onto
a new space by performing
the fixed nonlinear function

Output layer perform linear
combination by adjusting the
weight matrix

v

Calculate MSE using (3.11)

No

v

~ Has target error met?

No Have neurons reached

\

maximum?

Save the network structure

YES

A

Figure 3.4: RBFNN learning algorithm flow chart
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3.3 IMPLEMENTATION OF ANN ALGORITHMS

A superviesd ANN algorithm is used for wind speed estimation and maximum power

point tracking (MPPT). Training of neural network is done by using both feed-forward
back-propagation (FFBP) and Radial basis function networks (RBFN). FFBP algorithm is
used for wind speed estimation. On the other hand, both FFBP and RBFN algorithm are
used to track the maximum power point. There are numbers of learning algorithms
(forward propagation, back propagation, radial basis function and Hopfield algotithm)
reported in literature to determine the accurate strengths of ANN, among the proposed

algorithm FFBP and RBFN are widely used for wind speed estimation and MPPT.

Two series neural network is used for maximum power point tracking (MPPT).
One network for wind speed estimation and the other to track maximum power point and
optimal rotor speed. This method does not required any mechanical sensor for wind speed

measurement or any pre-system memory.

3.3.1 Wind Speed estimation using ANN

The initial capital cost of the wind energy conversion chain can be reduced by
removing the need of the wind velocity sensor. For this, an ANN is used to estimate the
wind velocity. The proposed training scheme of neural network to estimate wind velocity

is shown in the following Figure 3.5.
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Figure 3.5: The proposed training scheme for ANN based wind speed estimation

Wind speed estimation is done in following steps:

1. The turbine power data (Pm) is generated from the turbine power equation for

the preselected rotor speed (w,) and the wind velocity samples (V).

2. The rotor speed and turbine power are recombined as data pairs {w;, Pm},
which are employed as input matrix of the neural networks. On the other

hand, the samples of wind speed (V) are set as target for the training process.

3. Training starts with the random values of the weights and proceeds iteratively.
During the training process (learning stage), the estimated wind speed is

compared with the actual wind speed to calculate the estimation error.
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4. Back propagation algorithm propagates that calculated error in backward

direction to adjust link weights between nodes to minimize the error of ANNSs.

In this training scheme, the first step is to generate data set for training process. The
typical operating range for wind is specified between 3~19.5 m/sec. Wind speed will be
estimated based on the turbine power and the rotor speed. 140 samples of wind speed has
been taken between 3~19.5 m/sec. The blade pitch angle B is set constant, selecting the
tip speed ratio A between the range of 0.1~14 to obtain 140 averagely sampled tip speed
ratio. Based on this sample data, 19,600 data pair of {V;,(i),A(j))|i=1,..... 140,j =
1, .......140} are generated. With this obtained data pairs {V,, (i), 1(j)}, 19,600 data set of
mechanical Power {B,,(i,))|i =1, ..........140,j = 1, ... ... ... 140} and 19,600 data set of
rotor speed {w,(i,j)|i=1,......140,j =1,.......140} are assembled. Finally, for
preselected rotor speed and wind speed samples (6~19.5 m/s), 797 data pairs {P,,, w,} is
generated and used as input to the ANN and equal number of wind speed samples are

used as output for training.

A three layer network is used for training, which configured with two linear neurons
in the input layer, ten tan-sigmoid neurons in the hidden layer and one linear neuron in
the output layer; wind speed V,, is used as target shown in Figure 3.6. W1 and Bl
denotes the input weights and bias, on the other hand W2 and B2 denotes the linear

weights and bias for the output.
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“r >

Figure 3.6: Wind velocity estimation ANN with ten tan-sigmoid neurons and one
linear neuron

3.3.2 Testing of trained ANN

The ANN based wind speed estimation is developed in MATALB/Simulink using
feed-forward back-propagation. Figure 3.7 plots the training errors, validation errors and
test errors with respect to the number of epochs (iterations). In learning stage, the input
and target data sets are divided into three types: 60% for training, 20% for validation and
the remaining 20% for testing. Figure 3.7 demonstrates that the validation stop at epochs
37, when the validation curve touches the best error (targeted error) curve; means
validation performance reached at minimum without any over fitting. Validation is
needed to stop training before over fitting, because over fitting just memorize the input

and output data sets.

43



= Train
=== \/alidation

"] —Tst
= Best

Mean Squared Error {MSE)

70 Epochs

Figure 3.7: Training, validation and testing errors versus epochs for the ANN

The final Mean Squared Error (MSE) is very small and the test and validation set
errors have similar characteristics. The best validation occurs after 70 epochs as shown in
Figure 3.7. The error comes to a value of 2.6507x10~> in epochs 70.

Linear regression between network outputs and corresponding targets analyze the
performance of the trained network. In Figure 3.8, the dashed line in each plots indicates
the perfect result (outputs=targets) and the solid line represents the best fit linear
regression line among the outputs and targets. If the value of R=1, then there is an exact
linear relationship exists between outputs and target. Figure 3.8 demonstrates that the
ANN is so trained that the training data (small circular points) indicates a good fit and the
outputs tracks the targets accurately for training, testing and validation , because the R

value is close to 1.
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Figure 3.8: Linear regression between network outputs and corresponding targets

3.3.3 Maximum power point tracking (MPPT) using ANN
For a particular wind speed, there are different turbine power and rotor speed, but there

will be only one power point, at which the power will be maximum ( B,,,,). The rotor
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speed corresponding to that maximum power point is termed as optimum rotor speed
(wopt)- To extract maximum possible power from a particular wind speed, the rotor must
be rotates at the optimum rotor speed. The proposed training scheme of neural network
to track maximum power point and optimum rotor speed is shown in the following Figure

3.9.

Figure 3.9: The proposed training scheme for ANN based MPPT

Maximum power point tracking is done in following steps:

1. the turbine maximum power data (Pmax) iS generated from the turbine power
equation for the optimum value of power coefficient (C,), optimal rotor speed

(wy) and the wind velocity samples (V).

2. The samples of wind speed (V) are set as input for the training process. On

the other hand, the optimal rotor speed and turbine maximum power are
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recombined as data pairs {wropt, Pmax}, Which are employed as target matrix of

the neural networks.

3. . During the training process (learning stage), the estimated optimal rotor
speed and maximum power are compared with the orginal optimal rotor speed

and maximum power resectively to calculate errors.

4. Back propagation algorithm propagates those calculated errors in backward

direction to adjust link weights between nodes to minimize the error of ANNSs.

To determine the optimal rotor speed and maximum power at every wind speed, we have
to find out all maximum and optimal values of power and rotor speed respectively at any
sampled 140 wind speeds. For 140 samples of wind speed 140 data pairs {Pmax, Wropt} 1S

generated to train the ANN.

Now the training process starts, by providing sampled wind speed as input to neural
network and maximum power and optimal rotor speed data pairs as target output to train

neural network both in feed-forward and radial basis function methods.

3.3.4 Implementation of ANN MPPT controller in MATLAB/Simulink

The method used for training is Feed- forward back-Propagation for wind velocity
estimation and radial basis function methods for MPPT. After the training process, one
Simulink block is generated for neural network simulation to estimate wind speed and
another one for neural network simulation to track MPP. The ANN-based wind speed

estimation and MPPT controller in Simulink is shown in the following Figure 3.10.
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Figure 3.10: ANN-based wind speed estimation and MPPT controller in Simulink

Figure 3.10 shows that the rotor speed and turbine power are presented to neural

network to estimate the wind. The estimated wind speed is then feed to the radial basis

network to determine both the maximum power and optimal rotor speed corresponding to

that estimated wind speed.

The testing is also done by providing rapidly changing input data (turbine power and

rotor speed) to evaluate the effectiveness of the proposed controller under rapidly

changing wind conditions.
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3.4 SIMULATION RESULTS

3.4.1 Simulation results for wind speed estimation
The verification of wind speed estimation is done by applying random test input
signals (operating power and rotor speed) to the trained network implemented in

Simulink. Figure 3.11 shows the applied input signals, based on the input signals the

wind speed is estimated, which is shown in Figure 3.12.

Figure 3.11: Input signal (Pm, wy) to the trained ANN.

Figure 3.12: Estimated wind Speed
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From the Figure 3.11 and Figure 3.12 it is evidient that with the change in the input

(turbine power and rotor speed), the trained network can track the change in wind speed.

Wind speed estimation error is used as performance criterion of the implemented

simulink model. The wind speed error is measured by calculating the difference between

the calculated wind speed and simulated wind speed as shhown in table 1.

Table 3.1: Testing using Feed-forward Back-propagation

Input Simulation Calculated Error

Turbine power, Pm Rotor speed, w,, | Wind speed, V,, | Wind speed, V,, (%)
(MW) (rad/sec) (m/s) (m/s)

0.124 2.094 6.4546 6.4423 0.190

0.815 1.727 8.5967 8.6120 0.178

2.50 4.029 14.0231 14.019 0.003

1.087 1.604 10.5521 10.495 0.054

2.00 2.508 11.5981 11.550 0.416

From the above table it is clear the trained network is able to estimate the wind speed

with very high accuracy. The error in wind speed estimation is very close to zero, the

maximum error is only 0.416%.

Figure 3.13 shows a comparison between the original and estimated wind speed

during rapid change in wind conditions. The solid line shows the original wind speed and

50




the dased line shows the estimated wind speed. The results shown in Figure 3.13,
demonstrates that the proposed controller has the ability to estimate wind speed under

rapid change in wind conditions.
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Figure 3.13: Original and estimated wind speed

In Figure 3.14, Simulation result shows the error in wind speed estimation for ANN
based wind speed estimator. It can be noticed from the graph that the wind velocity is

well estimated with small errors, the maximum error is only 0.22 m/s.
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Figure 3.14: Error in wind speed estimation

3.4.2 Simulation results for MPPT

The methods used to test the performance of MPPT controllers are both Feed-
forward back-Propagation (FFBP) and Radial basis function (RBF). Testing is done by
providing wind speed as input to the trained network. This trained neural network will
behave as a controller which gives maximum power and the corresponding optimal rotor
speed at any wind speed. Figure 3.15 shows the estimated wind speed, that is used as
input to the RBF based MPPT controller to track the maximum power and optimal rotor

speed.
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Figure 3.15: Wind speed

Figure 3.16: Maximum power and optimal rotor speed with respect to the estimated
wind speed

When wind speed changes, the controller can track the maximum power point (MPP)

and optimal rotor speed properly as shown in Figure 3.16. Figure 3.17 shows that the
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ANN based MPPT algorithm is able to maintain the optimum value of power coefficient

(Cp) that is almost constant at 0.48.

e offset. 0

Figure 3.17: Power coefficient (Cp)

Test data was provided to the implemented Simulink network. Testing was carried
out on both methods, i.e.; Feed-forward back-propagation and Radial basis function
Network. Maximum power point tracking (MPPT) error is used as performance criterion
of the implemented FFBP and RBF networks. The MPPT error is measured by
calculating the difference between the actual optimal rotor speed and simulated optimal

rotor speed as shhown in table 2 and table 3.
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Table 3.2: Testing using Feed-forward Back-propagation

Simulation Calculated
Sp\é\é:jnd Pmax wopt Pmax wopt Error
(misec) (MW) (rad/sec) (MW) (rad/sec) | (%)
6.443 0.3473 1.4 0.34910 1.3944 0.42
8.612 0.8297 1.883 0.82477 1.8637 1.04
14.019 3.5787 3.027 3.57990 3.034 0.24
10.495 1.5015 2.387 1.52530 2.2712 5.10
11.55 2.0013 2.649 2.02530 2.4996 5.98
Table 3.3: Testing using Radial basis function
Simulation Calculated
Sp\é\é;nd Pmax wopt Pmax wopt Error
(misec) (MW) (rad/sec) (MW) (rad/sec) | (%)
6.4423 0.34929 1.3942 0.34910 1.3944 0.02
8.612 0.82523 1.8569 0.82477 1.8637 0.36
14.019 3.58180 3.0289 3.57990 3.0339 0.16
10.495 1.52610 2.2793 1.52530 2.2713 0.35
11.55 2.02650 2.5052 2.02530 2.4996 0.22

Comparing the results obtained from back propagation and radial basis algorithms,

radial basis function method is found to be more accurate.
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Figure 3.18 shows the original and estimated maximum power points together during
the rapid change in wind speed. The solid line shows the original maximum power and
the dashed line shows the estimated maximum power. The results shown in Figure 3.18,
demonstrates that the proposed MPPT controller has the ability to track maximum power

point under rapid change in wind conditions.

X 105 Comparison Between Original and Estimated Maximum Power
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Figure 3.18: Original and estimated maximum power

In Figure 3.19, Simulation result verifies the effectiveness and accuracy of ANN based
controller for maximum power point tracking. When wind speed changes the rotor also
changes and based on the wind speed the controller can track the rotor speed. The

controller is so trained that it can track the MPP correctly with maximum 9.7x10~3 watt.
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Figure 3.19: Error in maximum power estimation

Figure 3.20 shows the original and estimated optimal rotor speed together. The solid
line shows the original optimal rotor speed and the dashed line shows the estimated
optimal rotor speed. The results shown in Figure 3.20, demonstrates that the proposed
MPPT controller has the ability to track optimal rotor speed under rapid change in wind

conditions.
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Figure 3.20: Original and estimated optimal rotor speed
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In Figure 3.21, simulation result shows that optimal rotor speed is well estimated with

very small errors, the maximum error is only 0.01 rad/sec.

X 10*" Rotor Speed Estimation Error
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Figure 3.21: Error in optimal rotor speed estimation

The test results confirm the effectiveness and accuracy of the proposed ANN based

MPPT algorithm and it has very fast response in rapidly changing wind conditions.

3.4.3 Comparison with the traditional MPPT algorithm

The proposed ANN based MPPT algorithm is compared with the three
commonly used MPPT techniques as shown in table 4. TSR methods required both
anemometer and system pre-knowledge for wind speed estimation and MPPT; both are
considered as drawbacks of MPPT algorithm. PSF methods does not required
anemometer but it required system memory. Moreover, PSF method does not support
online updating. P & O (also known as HCS) method does not required anemometer and

system pre-knowledge for wind speed estimation and MPPT, but tracking is slow and
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causes oscillation around the MPP. By using proposed ANN based MPPT algorithm, it is

possible to overcome all the shortcomings of the conventional MPPT algorithms.

Table 3.4: Comparison between traditional and proposed MPPT algorithms

MPPT Anemometer | System Pre- | Tracking | Oscillation Online
algorithm knowledge speed at MPP updating
TSR Required Required Fast No No
PSF | Not required Required Fast No No
P& O | Notrequired | Not required Slow Yes Yes
Proposed Not required | Not required Fast No Yes
algorithm

3.4.4 Comparison with the previously proposed ANN-based MPPT algorithm

The proposed control algorithm is also applicable for other wind generation

systems. A variable speed small wind generation system is considered to evaluate the

performance of the proposed algorithm. The rating of the wind system is 1.4 kW and

radius of turbine blades is 1m. The test results of the proposed controller and the

previously proposed ANN based controller reported in [21] is compared.

Figure 3.22 and Figure 3.23 show the original and estimated wind speed by the

proposed controller and the reported controller respectively.
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Figure 3.22: Original and estimated wind speed
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Figure 3.23: Original and estimated wind speed [21]
Figure 3.24 and Figure 3.25 show the wind speed estimation error using proposed
controller and the reported controller. The maximum error in wind speed estimation for

the proposed controller is 0.11 m/s, which is 0.25 m/s for the reported controller as shown

in Table 3.4: Comparison between traditional and proposed MPPT algorithmsTable 3.4.
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Table 3.5: Comparison between proposed and reported MPPT techniques

MPPT Techniques Minimum Wind Speed Maximum Wind Speed
Error (m/s) Error (m/s)
Previous Method 0.02 0.25
Proposed Method 1.6x107* 0.108

Wind speed (m/s)
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Figure 3.24: Wind speed estimation error
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Figure 3.25: Wind speed estimation error [21]
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Performance of the proposed controller is superior to the reported controller since it
reduces wind speed estimation error. Reported controller has used feed forward back
propagation algorithm with five tan-sigmoid neurons in the hidden layer to estimate wind
speed while performance has been improved using ten tan-sigmoid neurons in proposed

method.

Figure 3.26 shows optimal rotor speed tracked by the proposed ANN based MPPT

controller and Figure 3.27 shows the optimal rotor speed for the reported controller.
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Figure 3.26: Original and estimated optimal rotor speed
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Figure 3.27: Original and estimated optimal rotor speed [21]

From Figure 3.27 it is evident that maximum rotor speed error is around 1 rad/sec. On
the other hand maximum error in optimal rotor speed tracking is 3.9x10~* rad/sec as

shown in Figure 3.28.
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Figure 3.28: Rotor speed estimation error
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A comparison between proposed and reported MPPT techniques has been made in

Table 3.6 in terms of rotor speed estimation at maximum power point.

Table 3.6: Comparison between proposed and reported MPPT techniques

MPPT Techniques

Minimum Rotor Speed
Error (rad/sec)

Maximum Rotor Speed
Error (rad/sec)

Previous Method

0.003

0.5

Proposed Method

1.35x107°

4.11x107*

So in optimal rotor speed tracking, the performance of the proposed ANN based

MPPT controller is superior to the reported controller since it reduces wind speed

estimation and optimal rotor speed tracking error.

The feasibility of the proposed controller is validated and the simulation results prove

the robustness, fast response, and exact wind speed estimation with maximum power

point tracking capabilities of the proposed ANN based MPPT algorithm.
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CHAPTER 4

ANFIS-BASED MPPT CONTROLLER DESIGN

4.1 INTRODUCTION

Wind energy systems are the nonlinear source of energy, because the turbine output
power is the cubic function of wind speed. For a particular wind speed there is a
particular curve and each curve has one optimum point called Maximum Power Point
(MPP) as discussed in previous chapters. The maximum power point varies with the wind
speed. Therefore, accurate on-line maximum power point tracking (MPPT) controller is

essential to extract maximum possible power from any wind speed.

Acrtificial intelligence (Al) techniques are becoming popular in MPPT of photovoltaic
and wind systems due to their learning and adaptive control capabilities. Al technique
based MPPT algorithms are highly successful comparing to the conventional methods
such as tip speed ratio (TSR) control method, power signal feedback method (PSF) and
hill-climbing search (HCS) or perturb and observe (P&QO) method. Neural network (NN)
and fuzzy logic (FL) based MPPT controllers are the commonly used Al techniques.
After a proper training an Al technique got the ability to produce accurate output for

random input.
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Neural network is a powerful tool to deal with nonlinear objective function but it
works as a black box. On the other hand by using fuzzy rules and membership function,
fuzzy logic controller can convert heuristic and linguistic terms into numerical values.
ANFIS integrates neural network and fuzzy logic to take the advantages of both the
techniques. Researchers already proved that ANFIS based MPPT controller is very
efficient, robust, simple and economical [68]. The accuracy of maximum power point
tracking depends on the accuracy of the wind speed measurement. Anemometer is used
for wind speed estimation in previously proposed ANFIS based MPPT methods, but the
use of anemometer is not economical. Moreover, to measure wind speed accurately
numbers of anemometer is required to be placed in different position around the turbine

system.

In this chapter, the new intelligent MPPT controller based on the adaptive neuro-
fuzzy inference system (ANFIS) is proposed and developed for wind speed estimation
and maximum power point tracking. Two series ANFIS network will be used, one for
wind speed estimation and the other to track maximum power point. In the proposed

algorithm there is no need of anemometer for wind speed measurement.

4.2 ANFIS-BASED MPPT CONTROLLER DESIGN

4.2.1 Adaptive Network-Based fuzzy Inference System (ANFIS)
In comparison to the neural network, ANFIS also has similar type network structure

and maps for the input-output data set using the parameters of fuzzy membership
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functions. A simple ANFIS architecture, based on the two rule Sugeno system with two
inputs (X and Y) and single output (F) is shown in Figure 4.1, where Al, A2 and B1, B2
are fuzzy input memberships for input X and Y, respectively and are used to fuzzify the
inputs [56].

For a Sugeno ANFIS model the typical rule set with two fuzzy if-then rules can be

defined as in (4.1) and (4.2): [69]

If XisAjandyisB; THEN fi=pix+qy+n (4.1)
If XisA,andyis B, THEN f, =p,x+qy+71, 4.2)
As shown in Figure 4.1, ANFIS consists of five layers; the function of each layer is

described below:

_ layerl - bayer2_ . _ _layer3

_ _layerd _
| X

Figure 4.1: ANFIS architecture.

Layer-1:
In layer-1 every node is adaptive node. Adaptive node is the one which has the ability

to learn through a process and adjusts its response to a new situation based on its learning
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process. The number of adaptive node in layer-1 depends on the number of input
membership functions. Each input is assigned a certain number of membership functions
and each membership function corresponds to a node. The main task of this layer is to
fuzzify input parameters using some variables named as large, medium, small etc. Their

output is given by:
01 = pa,(x)  forj=12 (4.3)
01; = HB;_, (y) forj=34 (4.4)

Here, . is the membership function and O, ; is the membership value for inputs X

and Y. The subscripted 1 and j is used to represent the layer number and node number,

respectively.

Membership functions p, can be different shaped function like trapezoidal, triangle,
Gaussian. The most commonly used membership function is generalized bell (g-bell) and

can be define as (4.5).

—2b; (4.5)

where &; is the standard deviation, b; is a positive number and c; is the mean. These
parameters are also termed as premise parameter and will to be optimized during the
training period. The plot generalized bell shape function is shown in Figure 4.2. The

value of a, b, c used for this plot are 2,4,6 respectively.
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Generalized Bell Function Plot

gbellmf, P=[2 4 6]

Figure 4.2: Generalized bell shape curve

It has been observed that the wind speed estimation from turbine power vs rotor speed
curve follows approximately bell shaped behavior. Though the turbine power vs rotor
speed curve for different wind speed is not precisely follow the normal distribution
characteristics but for large sample size (more than 30 samples) would guarantee that

means will be bell shaped.

Layer-2:

All the nodes in this layer is fixed node and admits the output (membership values)
from layer-1, where t-norm is used to “AND” these values, given by (4.6). A t-norm is a
binary operation; a function T1= [0, 1] x [0, 1] — [0, 1] is called t-norm. The following

four properties are to be satisfied for all a, b, ¢ € [0, 1]:

Commutativity : Ty (a, b) =T(b, a)

Associativity: T;=(a, T(b, ¢)) =T(T(a, b), ¢)
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Monotonicity: T (a, b) <Ti(a, ¢) whenever b < ¢ and
Boundary condition: Ty (a, 1) =1

Output of all the nodes correspond to the firing strength of the rule. Firing strength is

a threshold limit above which a rule/ nodes get active and pass the output to other nodes.

Layer-3:

In this layer-3, each node is fixed node and used to perform normalization operation.
The j-th node of this layer calculates the ratio between the j-th node activation level and
the sum of all activation level, which is known as normalized firing strength. The output

of every node can be defined by (4.7).

Output of every node interprets the normalized firing strength of the rule.

Layer-4:

In layer-4, every node is adaptive and the function can be defined as (4.8).

Where, p;, g; and r; are the resultant parameters (these parameters are referred as

consequence parameters), and these need to be minimized during the training period.
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Layer-5:
This layer is the output layer. The output signals from layer-4 are summed together to

obtain the result at the layer 5. This layer can be described as (4.9).

_ Xjwifj

Ljwj

Learning Process:

In learning stage to develop algorithm, ANFIS optimize and adapt its parameters by
using the training data sets for predicting the output data with very high accuracy. There

are two types of parameters for Sugeno-type model [54]

e Nonlinear parameters or membership functions parameters (premise parameters):
Premise parameter defines the membership function, gradient descent methods is
used in ANFIS to fine tune them.

e Linear parameters or rules parameters (consequent parameters): Consequent
parameters define the coefficient of each output equations. Least square technique is

used in ANFIS to identify them.

There are numbers of learning methods that have been developed by the researchers.
The method used in this thesis work is based on the hybrid learning algorithm that is the
combination of gradient descend or back propagation (BP) and least square estimation

(LSE) technique to optimize the premise and consequent parameters [56].
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In proposed work, forward pass and backward pass are used for learning algorithms:

e In forward pass consequent (linear) parameters are calculated using a LSE algorithm
while premise (nonlinear) parameters are held constant.
e In backward pass premise (nonlinear) parameters are calculated using a back

propagation algorithm while consequent (linear) parameters are held constant.

The function of LSE learning algorithm is to calculate the square error between
training data output and predicted output that is obtained from the Sugeno-type model.

The expression of LSE is shown in (4.10).
1 1
Efp = EZ%:lEm =3 %:1(0m = Ym) (4.10)

Where, Oy, is the target output of node m and yp, is the actual output of node m.
This error is used to update the consequence parameters of the Sugeno-type model. The
gradient descent method used to propagate the error rates in backward direction to update
the premise parameters. When the values of premise parameters are learned, the final
output (F) can be expressed as a linear combination of the consequent parameters as

shown in (4.11): [69]

F= W1 n W> W f 4w
_W1+W2f1 W1+W2f2 =Wifs + Wyf;
= (Wi X)p1 + (WY1 + (Wy)rs + (W X)p2 + (W Y) Q2 + (Wy)r2 (4.11)

P1, O1, 1, P2, 02 and r, are the consequent parameters. During the learning process the

72



consequent and premise parameters are updated to attain minimum error between the

actual output and desired target output.

4.3 IMPLEMENTATION OF ANFIS ALGORITHMS

A superviesd ANFIS algorithm is used for wind speed estimation and maximum power
point tracking (MPPT). Sugeno-type ANFIS model is used for training due to its simplicity and

three generalized bell (g-bell) membership function is used to train the ANFIS network.

ANFIS based MPPT algorithms are recently applied in wind energy system. The
main draw back of the prevously proposed techniques are, mechanical sensor required for
wind speed measurement, which is costly and system pre-knowledge is required that
needed memory and varies from one system to the other. In the proposed ANFIS based
MPPT methods, two series network is used for maximum power point tracking (MPPT).
One network for wind speed estimation and the other to track maximum power point and
optimal rotor speed. This method does not required any mechanical sensor for wind speed

measurement or any pre-system memory.

4.3.1 Wind Speed estimation using ANFIS

The initial capital cost of the wind energy conversion system installation is pretty
high; the capital cost can be reduced by removing the need of the wind velocity sensor
(Anemometer). This can be done by using ANFIS based controller to estimate the wind
velocity. The proposed training scheme of ANFIS based network to estimate wind speed

is shown in the following Figure 4.3.
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Figure 4.3: The proposed training scheme for ANFIS based wind velocity estimation

Wind speed estimation is done in following steps:

1. The turbine power data (Pm) is generated from the turbine power equation for

the preselected rotor speed (w,) and the wind velocity samples (V).

2. The rotor speed and turbine power are recombined as data pairs {w;, Pm},
which are employed as input matrix of the ANFIS network. On the other
hand, the samples of wind speed (V) are set as target for the training process

3. Training starts with some rules and proceeds iteratively. During the training
process (learning stage), in forward pass consequent (linear) parameters are

calculated using a LSE algorithm while premise (nonlinear) parameters are
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held constant. The estimated wind speed is compared with the actual wind

speed to calculate the estimation error.

4. Back propagation algorithm propagates that calculated error in backward
direction to update the premise parameters to minimize the error of ANFIS.
The training process is completed when the error goal is reached or the total

number of iteration exceeds the pre-determined number.

Figure 4.4 shows the overall ANFIS structure is a 5 layer network for wind speed
estimation. The input is two column matrix consists of turbine power (Pp), rotor speed

(wy) and the output is single column matix of wind velocity (V).
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Figure 4.4: Wind velocity estimation ANFIS model structure
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4.3.2 Testing of trained ANFIS network

ANFIS-based wind speed estimation is developed in MATALB/Simulink using three
generalized bell (g-bell) membership functions. Neural network and fuzzy logic based
hybrid learning algorithm is used to train the network. Least square error algorithm and
gradient descend method are used to adapt the consequent parameters and the premise
parameters of the membership functions respectively. The ANFIS network is trained for
300 epochs and the root mean square error (RMSE) tolerance set to 1073, Figure 4.5
shows that the error reached to a value of 1.05x1073 in about 300 epochs. Though the
RMSE value reaches close to the targeted error tolerance, the network is said to be well

trained and ready to use for any input data.
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Figure 4.5: Training error versus epochs for the ANFIS based wind speed estimation
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4.3.3 Maximum power point tracking (MPPT) using ANFIS

For a particular wind speed (V), there are different turbine power and rotor speed. There
IS a optimum power point called maximum power point ( B,,,) for a particular V. The
rotor speed corresponding to that maximum power point is termed optimum rotor speed
(wopt)- To extract maximum possible power from a particular wind speed, the rotor must
be operated at the optimum rotor speed. The proposed training scheme of ANFIS based

MPPT controller is shown in Figure 4.6.

— _1 3 Pmax
V Pm= EPACpopti >
A W= }tapt-Uw/R > Wonpt

u |
_ANRS

Figure 4.6: The proposed training scheme for ANFIS based MPPT

WV

Maximum power point tracking is done in following steps:

1. The training data, turbine maximum power (Pmax) and optimal rotor speed
(wropt) are generated from the turbine power equation for the preselected wind

velocity samples (Vy).
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2. The optimal rotor speed and turbine maximum power are recombined as data
pairs { wropty Pmax}. For training, , the samples of wind speed (V) are
employed as input matrix of the ANFIS network and the data pairs {wropt,
Pmax} are set as target.

3. Training starts with some rules and proceeds iteratively. During the training
process (learning stage), in forward pass consequent (linear) parameters are
calculated using a LSE algorithm while premise (nonlinear) parameters are
held constant. The tracked optimal rotor speed is compared with the actual

optimal rotor speed to calculate the optimal rotor speed tracking error.

4. Back propagation algorithm propagates that calculated error propagates in
backward direction to update the premise parameters to minimize the error of
ANFIS. The training process is stopped when the targeted error goal is

reached or pre-specified number of epochs exceeds.

4.3.4 Testing of trained ANFIS network

The ANFIS-based MPPT is developed in MATALB/Simulink using three
generalized bell (g-bell) membership functions. Neural network and fuzzy logic based
hybrid learning algorithm is utilized to train the network. Least square error algorithm
and gradient descend (also known as back propagation) method are used to adjust the
consequent parameters and the premise parameters of the membership functions
respectively. The ANFIS network is trained for 300 epochs and the root mean square

error (RMSE) goal set to 1075. Figure 4.7 shows that the error reach to a value of
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1.0x107> in about 300 epochs. Though the RMSE value reaches close to the targeted

error, the network said to be well trained and ready to use.
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Figure 4.7: Training error versus epochs for the ANFIS

4.3.5 Implementation of ANFIS MPPT controller in MATLAB/Simulink

After the training process, one Simulink block is generated for ANFIS network
simulation to estimate wind speed and another block for ANFIS network simulation to
track optimal rotor speed. The ANFIS-based wind speed estimation and MPPT controller

in Simulink model is shown in Figure 4.8 .
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Figure 4.8: ANFIS-based wind speed estimation and MPPT controller in Simulink

Figure 4.8 shows that the rotor speed and turbine power are presented to the first
ANFIS based fuzzy logic controller network to estimate the wind speed. The estimated
wind speed is then feed to the ANFIS based fuzzy logic controller network to determine

the maximum power as well as the optimal rotor speed based on the estimated wind

speed.

The testing is also done by providing rapidly changing input data (turbine power and
rotor speed) to evaluate the effectiveness of the proposed controller under rapidly

changing wind conditions.
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4.4 SIMULATION RESULTS

4.4.1 Simulation results for wind speed estimation

The verification of wind speed estimation is done by applying random test input
signals (operating power and rotor speed) to the trained network implemented in
Simulink. Figure 4.9 shows the applied input signals. Based on the applied input signals

the wind speed is estimated, which is shown in Figure 4.10.

L

me offset 0

Figure 4.9: Input signal (Pm, w) to the trained ANFIS network
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Wind speed estimation error is used as performance criterion of the implemented

controller. The wind speed error is measured by calculating the difference between the

Figure 4.10: Estimated wind velocity

actual wind speed and simulated wind speed as shhown in table 4.1.

Table 4.1: Testing using Feed-forward Back-propagation

Input Simulation Calculated Error
Turbine power, Pm Rotor speed, w, | Wind speed, V,, | Wind speed, V, (90)
(MW) (rad/sec) (mf/s) (mf/s)
0.06525453 2.5192 7.2924 7.2804 0.016
0.8668858 2.3649 9.1219 9.1150 0.075
4.224699 2.7763 15.2124 15.230 0.11
2.293007 2.4164 12.2100 12.190 0.16
2.628508 2.1593 13.9700 14.007 0.26
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From the above table it is evident that the trained ANFIS network is able to estimate the
wind speed with high accuracy. The error in wind speed estimation is very close to zero,

the maximum error is only 0.26%.

Figure 4.11 shows the comparison between the original and estimated wind speed
together. The solid line and dashed line represent the actual and estimated wind speed
respectively. Simulation results verify the effectiveness of trained ANFIS network in

wind speed estimation under the rapidly changing wind condition.

Comparison Between Original and Estimated Wind Speed
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Figure 4.11: Original and estimated wind speed

Figure 4.12 shows the wind speed estimation error. From Figure 4.12 it can be seen
that there is a small error in wind speed estimation, the maximum error in wind speed

estimation is 0.09 m/s.
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Figure 4.12: Error in wind speed estimation

4.4.2 Simulation results for maximum power point tracking

The verification of maximum power point tracking is done by applying random test input
signal (wind speed) to the trained ANFIS network implemented in Simulink. Figure 4.13
shows the applied input signals. Based on the applied input signal the maximum power

point and optimal rotor speed is tracked, which is shown in Figure 4.14.

84



Figure 4.13: Estimated wind speed

Figure 4.14: Maximum power and optimal rotor speed with respect to the estimated wind
speed
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The variation of power coefficient (C,) over the range of transient is shown in Figure
4.15. The C, value is calculated based on the relation between the tracked maximum
power corresponding to the wind speed (Cp =Pmax/0.5*p*A*Vw 3). The result proved that
the ANFIS based MPPT algorithm is able to maintain the optimum value of C, that is

almost constant at 0.48.

e offset 0

Figure 4.15: Power coefficient Cp

Maximum power point tracking error is used as performance criterion of the
implemented MPPT controller. The maximum power point tracking error is measured by
calculating the difference between the actual optimal rotor speed and simulated optimal

rotor speed as shown in table 4.2.
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Table 4.2: Testing using trained ANFIS network

Simulation Calculated
Sp\é\é:jnd Pmax wopt Pmax wopt Error
(misec) (MW) (rad/sec) (MW) (radisec) | (%)
7.2805 0.50300 1.5823 0.5020 1.5798 0.15
9.1150 0.98556 1.9792 0.9830 1.9779 0.11
15.230 4.57390 3.3008 4.5700 3.3009 0.01
12.190 2.36000 2.6494 2.3520 2.6451 0.16
14.007 3.54140 3.0316 3.5390 3.0394 0.20

Figure 4.16 shows the original and estimated maximum power points together during the
rapid change in wind speed. The solid line shows the original maximum power and the
dashed line shows the estimated maximum power. The results shown in Figure 4.16,
validates the effectiveness of the proposed MPPT controller that has the ability to track

maximum power point under rapidly changing wind conditions.
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Figure 4.16: Original and estimated maximum power

In Figure 4.17, simulation result shows the error in maximum power point (MPP)
tracking. The proposed MPPT controller has the ability to track MPP accurately; the

maximum error in maximum power point tracking is 1.23x1074.
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Figure 4.17: Error in maximum power estimation

Figure 4.18 shows the original and estimated optimal rotor speed together. The solid line
shows the original optimal rotor speed and the dashed line shows the estimated optimal
rotor speed. The results shown in Figure 4.18, validates the effectiveness of the proposed
MPPT controller that has the ability to track optimal rotor speed correctly under rapidly

changing wind conditions.
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Figure 4.18: Original and estimated optimal rotor speed
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In Figure 4.19 shows the error in optimal rotor speed tracking. Simulation result
proved that the proposed MPPT controller tracks optimal rotor speed correctly under

rapidly changing wind conditions. The maximum error in optimal rotor speed tracking is

1.5x10*rad/sec.
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Figure 4.19: Error in optimal rotor speed estimation

The methods used for ANFIS based MPPT is good enough to estimate the wind speed
and to track the maximum power as well as optimum rotor speed and good performance

is achieved.

45 COMPARISON OF ANN AND ANFIS BASED MPPT
CONTROLLER

ANN based MPPT controller used feed forward back propagation and radial basis
function network for wind speed estimation and maximum power point tracking

respectively. ANFIS combines both the advantages of neural network and fuzzy logic
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system, back propagation algorithm is used to minimize the error of the controller
system.

The performance of ANN and ANFIS based controller is compared based on their
estimation and tracking accuracy. The solid line and dashed line curve in Figure 4.20
represents the wind speed estimation error of ANN and ANFIS controller respectively.

The wind speed estimation error of ANN controller is greater than the ANFIS controller.

Comparison Between ANN and ANFIS in Wind Speed Estimation Error
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Figure 4.20: Wind speed estimation error for ANN and ANFIS based controller

The maximum wind speed estimation error for ANN is about 0.22 m/s, that is around
0.1 m/s for ANFIS controller. From Table 4.3, we can conclude that ANFIS based

controller is more accurate and robust than ANN controller in wind speed estimation.
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Table 4.3: Comparison between ANN and ANFIS based wind speed estimation

MPPT Techniques Minimum Wind Speed Maximum Wind Speed
Error (m/sec) Error (m/sec)
ANN 2.1x1073 0.23
ANFIS 4.2 x1075 0.0988

The simulation results for maximum power point tracking using ANN and ANFIS
based controller are shown in Figure 4.21. The solid line curve represents the maximum
power point tracking error of ANN based MPPT controller, on the other hand the dashed
line curve presents the maximum power point tracking error of ANFIS based MPPT
controller. The maximum power point tracking error for ANN is 0.0095 that is
1.23x10~* for ANFIS controller. Table 4.4 noticed that the maximum power point

tracking of ANFIS based MPPT controller is better than the ANN based MPPT

controller.
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Figure 4.21: Maximum power tracking error for ANN and ANFIS based controller
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Table 4.4: Comparison between ANN and ANFIS based maximum power point

(MPP) tracking

MPPT Techniques

Minimum MPPT Error

Maximum MPPT Error

(watt) (watt)
ANN 3.56 x10~% 9.5x1073
ANFIS 2.3x107° 1.23x10~*

The accuracy of optimum rotor speed tracking depends on maximum power point

(MPP) tracking. If the accuracy in MPP tracking is very much accurate then the rotor
speed estimation will be also accurate and vice-versa. The simulation results for optimum
rotor speed tracking using ANN and ANFIS based MPPT controller are shown in Figure
4.22. The solid line and dashed line curve in Figure 4.22 represents the optimal rotor

speed estimation error of ANN and ANFIS based MPPT controller respectively.

Table 4.5: Comparison between ANN and ANFIS based rotor speed estimation

MPPT Techniques

Minimum Rotor Speed
Error (rad/sec)

Maximum Rotor Speed
Error (rad/sec)

ANN

3.702 x10™*

0.0100

ANFIS

1.1300 x10~6

1.4875 x10~*

The maximum error in optimal rotor speed tracking for ANFIS is about 1.4875x10~4,

which is 10x1073 for ANN. From Table 4.5, we can conclude that ANFIS based
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controller is more accurate and robust than ANN controller in optimal rotor speed

tracking.
Comparison Between ANN and ANFIS in Rotor Speed Error
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Figure 4.22: Optimal rotor speed error for ANN and ANFIS based controller

From the above comparison between ANN and ANFIS based MPPT controller, it can
be concluded that the effectiveness and accuracy in terms of wind speed estimation,
maximum power point and optimum rotor speed tracking, ANFIS based MPPT controller

is superior than the ANN based MPPT controller.
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CHAPTER 5
IMPLEMENTATION OF THE MPPT ON A PMSG WIND
GENERATOR SYSTEM

5.1 INTRODUCTION TO PMSG WIND SYSTEM

Variable-speed wind turbine has the advantage to follow the variation of wind speed
and produce the maximum power under the normal operation through maximum power
point tracking (MPPT). Variable-speed wind turbine can use both synchronous generator
and doubly-fed induction generator. The synchronous generator can either be permanent
magnet synchronous generator (PMSG) or excited magnet synchronous generator. The
excited magnet synchronous generator requires an extra DC power supply to the rotor
windings produce a rotating magnetic field. The magnetic field can be control by
regulating the flow current of the rotor windings. The generator output varies with the
rotor speed and the exciting DC current. In contrast, the magnetic field of a PMSG cannot
be controlled. The PMSG has been considered as a system which is used to convert the
mechanical energy obtained from the wind to electrical energy. In a PMSG, the field

winding of the rotor is replaced by a permanent magnet. The advantages of PMSG are-

i). Reduced field copper loss.

if). Higher power density.
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iii). Lower rotor inertia.

iv). Increase robustness.

V). The system is simple and reliable.

vi). It has high quality output and does not need to compensate for reactive

power.

The demerits are loss of flexibility of field flux control and possible demagnetization

effect and its cost.

A PMSG connected to a power grid is shown in Figure 5.1. The shaft of the wind
turbine is directly coupled with the rotor of the generator. There are number of topologies
of grid connected PMSG wind turbine, the most popular strategy is the back-to-back
converter. The generator side and grid side back-to-back converters are connected to each
other through a DC link capacitor. The output power transfers through an AC-DC-AC
stage, which consists of a diode bridge rectifier, a boost converter, and a grid-side inverter,
which is connected to the grid. Though the generator is fully decoupled from grid, by using
active filter the power factor can be corrected. Therefore, before injecting the power to the
grid, the inverter can improve the quality of the output power with a unit power factor.
Converter grid connection is also advantageous because it allows the variable speed operation

of wind turbine that enables the MPPT to increase the efficiency of the wind system.
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Figure 5.1: PMSG system configuration

Due to the low cost and high reliability of diode bridge rectifier, it is employed
instead of a controlled rectifier. A boost converter controls the DC side voltage and current
for MPPT and steps up the voltage for grid connection. Finally, the captured power is

transferred to the grid via an inverter.

5.1.1 Testing Procedure of the MPPT on a PMSG wind system

The ANFIS based MPPT algorithm is implemented on a PMSG wind system to
evaluate the effectiveness of the proposed MPPT technique. MPPT means for controlling
wind turbine to track the maximum power point at different wind conditions during
operation. The control generation for PMSG wind system using MPPT technique is
shown in Figure 5.2. The MPPT algorithm determines the optimal rotor speed
corresponding to the maximum power point at different wind speeds during operation. Pl
controllers along with MPPT techniques are used to extract maximum possible power at

any wind speed. Based on the relation between optimal rotor speed and DC output
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voltage (as shown in 5.3), the optimal DC voltage is generated. The generator side
converter and grid side converter is controlled based on the output of the MPPT
algorithm. The optimal rotor speed (output of MPPT algorithm) is compared with the
operating rotor speed to calculate the error. The calculated rotor speed error is used as
input of PI controller then the PI controller adjusted the operating rotor speed to the
optimal rotor speed and maximum power extraction is achieved. Similarly, the grid side
converter duty ratio is adjusted based on the optimal DC voltage and the operating DC
voltage. The difference between optimal DC voltage and operating DC voltage is used as
input to the other PI controller, which is used to vary the duty ratio of the grid side

converter.

5.2 IMPLEMENTATION OF ANFIS-BASED MPPT TO PMSG WIND

SYSTEM

The arrangement of the developed ANFIS-based controller for MPPT of a PMSG wind
system is shown in Figure 5.2. The input of the proposed ANFIS based MPPT is the
estimated wind speed (V). The output of the ANFIS based MPPT controller will
determine the optimal rotor speed (wropt) COrresponding to maximum power point at any
wind speed. Based on the optimal rotor speed the DC capacitor voltage will be calculated
from equation (5.3). The duty ratio of generator side and grid side converters will be
controlled based on the optimal rotor speed (wropt) and calculated optimal DC voltage

(Vdco)-
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Figure 5.2: ANFIS based MPPT control generation for PMSG wind system

Both wind speed (Vy) and optimal rotor speed (wropt) are the cubic function of the

maximum power output,
Prax <V, o« wgopt (5.1)
For constant flux (¢¢), the phase back emf of PMSG system can be defined as (5.2).
Ep = K¢.w, (5.2)

Here, w; is the rotor speed that is proportional to the back emf E, and K is a co-

efficient.

For a non-salient PMSG wind system, the phase terminal voltage (V) can be defined

as (5.3).

Vac = Ep — Iqc(Rs + jw,L_s) (53)
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Here, Is, Rs, Ls and w, are the phase current, stator resistance, stator inductance and
electrical angular frequency respectively. Electrical angular frequencyw, = pw,, p is the

number of pole pairs.

The AC and DC side voltage amplitude of diode bridge rectifier can be expressed as

in (5.4).

Vac = (i-lﬁ) Vac—amp (5.4)

Solving equations (5.2) and (5.4), the relation between DC voltage and rotor speed

can be defined as (5.5).

VdC X Wy

(5.5)

At maximum power point,

Vdc—opt x wropt

(5.6)
Here, Vc.opt IS the optimum rectified DC voltage for a given wind speed.

From equation (5.1) and (5.6), the relation between maximum power and DC voltage

can be expressed as shown in (5.7).

Prax % Vic—opt (5.7)

100



The DC output power of the rectifier is,

Py = 01N Prax (58)

Here, nr, ne and nr are the efficiency of the rectifier, generator and converter

respectively. Combining equation (5.7) and (5.8), we get

Py x V3. (5.9)

By substituting the DC output power, Pgc =V lgc In equation (5.6), we can write,

Iy, x V2 (5.10)

The converters are controlled with optimal rotor speed and DC output voltage. Based
on the values of optimal rotor speed (wropt) and operating rotor speed (wr) the set points
of the generator side PI controller is adjusted, which results in maximum power
extraction. On the other hand depending on V4o and Vg, the set points of grid side Pl
controller are adjusted to maintain the DC link voltage at constant value. The proposed

ANFIS based MPPT controller is extremely fast and able to generate set points rapidly.

5.3 NONLINEAR PMSG WIND SYSTEM MODEL

For actual system implementation, the system dynamics have to be considered in
details due to the random variation in wind speed. The system model considered in this
research includes the dynamics of generator stator, the drive train dynamics, and

converter and DC link dynamics.
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5.3.1 The Synchronous Generator

In or to develop the mathematical model of PMSG, it is required to develop the

following assumptions:

i). The conductivity of the permanent magnet is zero
il). Saturation is neglected

iii). Induced electromotive force (EMF) is sinusoidal
iv). Eddy currents and hysteresis losses are negligible

V). There are no field current dynamics

With the assumptions above, the wind turbine causes the rotor of the PMSG to rotate.

The voltage-current-flux relationship of PMSG wind system can be written as-

Pa = —Xgqlsta + Xaralfa
Pq = ~Xqlstq

Pra = —Xgralsta + Xrralfa

. Pa

Vsta = —Rgelsta — WPq +—
Wo

_ : Pq

Ustq = _Rstlstq tweg + w_o

Xafalfa = Po
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Here, ¢, is the produced flux due to the permanent magnets and it is constant. The d-axis
and g-axis fluxes are denoted as ¢4 and ¢, respectively.
Now, From Equation (5.3) and (5.6) we can write,

Pa = —Xalsta T Po (5.7)

The voltages in the direct axis (d-axis) and quadrature axis (g-axis) coordinate system,

can be described as follows:

. d . d
Vstq = _Rstlstq + Lstq > lstqg — WLtglsea + W == Psta (5-8)
dt dt
Vsta = —Rstlsta + Lsta 77 lsta — WLhstqlse +0)_y§0td (5.9)
s stls std gits stqlstq dx Vs

Where,
Vstq is the g-axis stator terminal voltage in volt

Vstd is the d-axis stator terminal voltage in volt

istq 1S the d-axis stator current in ampere

Istq IS the g-axis stator current in ampere

o is the angular velocity of generator rotor in rad/sec
Rst is the equivalent resistance of the stator winding
Lsg 1S the stator equivalent inductance in d-axis

Lsiq IS the stator equivalent inductance in g-axis

% Pseq 1S the amplitude of the flux linkages in v/rad/sec
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The voltages refer to the d-q axis of PMSG system is shown in Figure 5.3

Rqt Lag . Ryt Lstq .
AN AN L e
W Xd ig[:nd W Xq ig(!nd
e4=0
d Vgend =N Vgenq

Figure 5.3: PMSG equivalent circuit in synchronous frame

The dynamic model of PMSG can be represented in rotating reference frame with the

help of following equations.

di td Wy i .
dst = - [_Rstlstd + sttq lgenqg — vstd] (5'10)
d
dig Wy ) )
% = [_Rstlstq - (‘)Lstdlgend + wEf - Ustq] (5.11)
Xq

Here, igena » igenq are the d-axis, g-axis generator current respectively and Es is the

voltage due to permanent magnet residual flux.

The equation of rotor angle for the PMSG system can be written as-

0 = wy(w—1) (5.12)
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5.3.2 The Derive Train

Already gearbox less operation of PMSG systems are adopted and becoming popular
due to its higher reliability, less noise and more efficiency. The two-mass drive train
model is shown in Figure 5.4 Hy and Hgen denotes the turbine and generator inertia
constant respectively. The shaft stiffness coefficient and torsional angle of shaft

connecting the turbine with the generator is represented by Kg and 05 respectively.

(Wth Wgen
Kss

H gen
Oss
Shaft system  Generator rotor

Turbine

Figure 5.4: The two-mass drive train model

The electromechanical equations of the turbine-generator rotor are written in terms of

the differential equations,

2Hy, T2 = Pm — Ky, — DepAwy (5.13)
dw

Zngn% = Kssgss - Pelec - DgenA(‘)gen (5-14)

dae

d;S = wp(wep — wgen) (5.15)
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The terms Dy, Dgen refer to damping coefficients of the turbine and generator
respectively. The expression for the input power Py, is given in Equation (2.5), while the

generator electrical output power Pgec is expressed as-

Petec = Lmiqristd - Lmidristq (5.16)

5.3.3 The Converters
The inverter output current in the d-q axes are written in terms of inverter internal and

terminal voltages as,

Alinyg _ w
dt L [Uinvd — Vtera — Rinvlinvd + wLininnvq] (5-17)
mv
dlinvq _ w
dt  L: [Uinvq — Vterq — Rinvlinvq + wLinvlinvd] (5-18)
mv

The real power transfer from generator to the grid can be successfully completed
through DC-link capacitor by keeping its voltage constant. The current in DC-link is
discontinuous which produces voltage ripples in DC-link capacitor. By using large size
capacitor those ripples can be eliminated but control will be slow. A small size capacitor
can speed up the control but there will be some ripples. So depending on the application
the optimum size of the capacitor should be selected; because it’s a trade-off between fast

control and voltage ripple.
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The terminal voltage Vi and inverter internal voltage Vi, are broken up along the d-
g axes and substituted in equation (5.10) and (5.11). By equating the input and output

power to the dc capacitor gives,

aVgc

Cdc Vdc dt

=Py, — Py — P, (5.19)

The dc capacitor input and output power expressed in terms of component currents

are written as,

Pip = vsdisd + vsq isq (520)

Pop = Vinvalinva + vinvqiinvq (5-21)

By controlling modulation indices (duty cycles) and the converter firing angles both

the converters can be controlled,
Vsq = M1V COS Xppe Vinpa = M2V COS Xy (5.22)
Vsq = My VycSin e, Vinvg = M2VqcSIn Ky, (5.23)

Substituting the above Equations in Equation (5.19) gives the differential equation of

the dc capacitor as,

aVgc 1

dt = a [mlisd COS Xpgc + mlisqSin Krec— MyligCOS Xy~ mzlinquin Xiny (5.24)
Cc
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5.4 SIMULATION RESULTS

A grid connected 2.5 MW permanent magnet synchronous generator (PMSG) system
is considered to verify the competence of the proposed ANFIS-based MPPT controller. In
the implementation of the proposed ANFIS based MPPT controller detailed nonlinear
modeling has been considered. MATLAB/Simulink simulation is used to verify the
effectiveness of the proposed MPPT controller. The PMSG wind system parameters and

the control parameters are shown in table 6 and table 7 respectively.

Table 5.1 PMSG wind system parameters

Items Specification
System power rating 2.5 MW
Wind speed range 6 m/s -19.5 m/s
Air density 1.225 kg/m?
Turbine radius 37.5m
Blade pitch angle 0°
Generator inertia constant 0.5 p.u.
Turbine inertia constant 3 p.u.
Pole pairs 40
Maximum rotor speed 40
Maximum power coefficient 0.48
Turbine efficiency 100%
Converter efficiency 99%

108



Table 5.2 Control parameters

Items Specification

PI1 control in rectifier

Proportional gain -3
factor
Integration gain factor 0

Pl control in inverter

Proportional gain -1
factor
Integration gain factor -0.1

To evaluate the performance of the proposed ANFIS based MPPT controller on a grid
connected PMSG system, stair-case wind speed variation is considered. Stair-case wind
speed variation verifies the competence of the proposed MPPT controller for the worst
case of step-up or step down change in wind conditions. The randomly changing wind
velocity is considered for two minutes duration as shown in Figure 5.5. For each sample
period the change in wind speed remain constant. From 45 sec to 50 sec the wind speed

increases linearly.
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Figure 5.5: Wind speed variation over a period of 120s

With the change in wind speed, the turbine output changes. The variation in turbine

output power with respect to the change in wind speed is shown in Figure 5.6.

095
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Figure 5.6: Shaft power variation with the wind speed change
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The result confirm that the proposed MPPT controller is able to track the maximum
power point with the change in wind speed correctly as a result the shaft output power is
changing according to the wind speed variation. From Figure 5.7, it is noticed that the

generator power output follows the change in wind speed properly.

---------------------------------------------------------------------------------

____________________________________________________________

Generator output (pu)

60 80 100 120
Time(sec)

Figure 5.7: Generator output power following the wind speed variation

According to Figure 5.2, MPPT algorithm sets the reference value of optimal rotor
speed and converter DC voltages to the PI controller of the generator side converter and
grid side inverter. Figure 5.8 and Figure 5.9 demonstrates the change in modulation

indices (duty ratio) m1 and m2 for both the converters respectively.
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Figure 5.8: Variation in the generator side converter duty ratio
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Figure 5.9: Variation in duty ratio for grid side converter

112



The PI controller gains of the converters have been tuned properly to restore the
system variables to their quasi-steady values without any oscillation. Figure 5.10 and
Figure 5.11 shows the variation of converter DC voltage and output power respectively.

The converter DC voltages changes following the random variation in wind speed.
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Figure 5.10: DC voltage of the converter

On the other hand Figure 5.11 noticed that the converter output tracks the shaft output

correctly; there are few spikes due the sharp change in the wind speed.
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Figure 5.11: DC output power of the converter

Figure 5.12 presents that the proposed ANFIS based MPPT controller is able to track
the maximum power point appropriately maintaining the optimum value of the power
coefficient (Cp). During the whole range of operation period (120 sec), the value of power

coefficient remains close to 0.48 with very small deviation.
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Figure 5.12: Change in power coefficient for random wind speed variation

The proposed ANFIS based MPPT is shown to present a good slowly varying transient
speed profile shown in Figure 5.13 following the random change in wind speed even

when all the system dynamic relations are included in system modeling.
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Figure 5.13: Speed variation of generator
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The proposed ANFIS based MPPT algorithm is tested on a permanent magnet
synchronous generator (PMSG) wind system. The PMSG wind system is controlled
based on the optimum relationship between rotor speed and DC voltage. To implement
the proposed MPPT controller detailed nonlinear modelling has been considered. The
simulation results noticed that the MPPT controller is able to extract maximum power
even in rapidly changing wind conditions and during the maximum power extraction, the
optimum value of power coefficient is maintained. The proposed MPPT technique does
not require any mechanical sensor for wind speed measurement or system pre-

knowledge.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

Wind speed sensor-less both ANN and ANFIS based maximum power point tracking
(MPPT) algorithm has been developed in this work. The effectiveness of the proposed
ANN based MPPT controller is compared with the previously proposed controller. A
comparison is also made between the proposed ANN and ANFIS based MPPT controller.
The performance of the ANFIS based MPPT algorithm has been tested on a grid

connected PMSG wind system.

From the comparison between the proposed and the reported ANN based MPPT
controller it has been observed that the proposed controller is better than the reported
controller both in wind speed estimation and maximum power point tracking. Comparing
the results of the proposed ANN and ANFIS based MPPT controller, it has been observed
that the ANFIS based MPPT controller shows better accuracy both in wind speed
estimation and maximum power point tracking. By testing the performance of the

proposed ANFIS based MPPT controller on a PMSG wind system, it has been observed
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that MPPT controller is very accurate in controlling PMSG wind system to operate close

to the maximum value of power coefficient (Cp).

Two series network is used for both ANN and ANFIS based MPPT algorithm. One
network for wind speed estimation and the other for maximum power point and optimal
rotor speed tracking. The proposed MPPT algorithm does not require any mechanical
sensor for wind speed estimation or the system pre-knowledge. Moreover, the proposed
MPPT algorithm is also applicable for any other wind system. Two series network may
made the MPPT algorithm little complex, but it can estimate wind speed and track both

maximum power point and optimal rotor speed with great accuracy.

Comparisons were done between the ANN and ANFIS based MPPT controller
technique and found that ANFIS based controller can provide superior performance over
ANN based MPPT controller. ANFIS based MPPT controller is selected and
implemented on a grid connected PMSG wind energy system, test results confirm the
effectiveness and accuracy of the proposed MPPT algorithm and it has very quick

response in transient condition.

6.2 FUTURE WORK

R/

s The algorithm can be tested on a lab-machine with all necessary sensors and
controllers can be installed to test the performance of both the proposed ANN and

ANFIS-based MPPT controller.
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In both the proposed MPPT algorithm two series networks have been used, one
for wind speed estimation and other to track maximum power point and optimal
rotor speed. If it can be done using a single network, then the complexity of the
proposed MPPT controller will be reduced.

It will be interesting to compare the proposed MPPT algorithm with the other
existing MPPT techniques.

Real time implementation of the proposed MPPT controller will be more

interesting to study.
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NOMENCLATURE AND SYMBOLS

Directional Current

Alternating Current

Permanent Magnet Synchronous Generator
Proportional plus Integral

Artificial Neural Network

Adaptive Neuro-Fuzzy Inference System
Feed Forward Back Propagation

Radial Basis Function Neural Network
Artificial Intelligence Technique

Wind Energy Conversion System
Turbine mechanical power

Wind speed

Air density

Wind turbine blades swept area

Power coefficient

Tip speed ratio

Optimum tip speed ratio

Blade pitch angle

Radius of wind turbine rotor

Mechanical angular velocity of the wind turbine rotor
Optimum rotor speed

Maximum Power Point
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RE
RES
DG
Comax

Wy

FS-VP
FS-FP
VS-FP
VS-VP

HCS

Maximum Power Point Tracking
Flux due to permanent magnet
d-axis flux

g-axis flux

g-axis stator terminal voltage in volt
d-axis stator terminal voltage in volt
d-axis stator current in ampere

g-axis stator current in ampere

Equivalent resistance of the stator winding
Stator equivalent inductance in d-axis
Stator equivalent inductance in g-axis
Wind Turbine

Renewable Energy

Renewable Energy Source

Distributed Generation

Maximum power coefficient

Rotor Speed

Rotor speed corresponding to the maximum power
Fixed Speed Variable Pitch

Fixed Speed Fixed Pitch

Variable Speed Fixed Pitch

Variable Speed Variable Pitch

Hill Climbing Search
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P&O

MSE

TIP

RMSE

PSO

Perturb and Observe
Mean Squared Error
Maximum power

Tip Speed Ratio

Root Means Square Error

Particle Swarm Optimization
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