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An artificial neural network (ANN) based maximum power point tracking (MPPT) 

algorithm has been investigated. The results obtained have been compared with an 

adaptive neuro-fuzzy inference system (ANFIS). Both  ANN-based and ANFIS based 

MPPT controllers have the ability to estimate wind speed and to track the maximum 

power point (MPP) and the optimal rotor speed with very low error as compared to the 

conventional MPPT methods. Moreover, these methods demonstrate remarkable 

performance under rapidly changing wind conditions in estimating wind speed, tracking 

MPP accurately and suppressing undesired oscillations around maximum power point. 

The algorithm is based on two series neural networks, one for wind speed estimation and 

the other for tracking maximum power point (MPP). The algorithm does not require any 

mechanical sensor for wind speed measurement. Nonlinear time domain simulations have 

been carried out to validate the effectiveness of the proposed controllers in terms of wind 

speed estimation and MPPT under different operating conditions.  

The obtained results demonstrate that both the proposed ANN and ANFIS-based 

MPPT controller has better dynamic and steady state performance than the conventional 
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methods and the obtained results also demonstrate that ANFIS based controller is better 

than ANN based controller. Accuracy in wind speed estimation and maximum power 

point tracking has been used as the performance criterion for evaluating MPPT 

controllers. 

 The performance of the ANFIS based MPPT controller is investigated using 

MATLAB simulation for a grid connected permanent magnet synchronous generator 

(PMSG) wind system represented through a detailed dynamic model of the generator, the 

generator turbine, drive train and the converters. Simulation results confirm that the wind 

turbine system can deliver power to the grid maintaining the optimum value of power 

coefficient (Cp) for rapidly changing wind conditions. 

 

 

 

 

 

 

 

 



 

 

 

xvii 

 

THESIS ABSTRACT (ARABIC) 

 ملخص

 الرحمن عتيق محمد ملا  : الأسم

 طاقة بأنظمة والتحكم العصبية الشبكات على المبنية الكهربائية للطاقة العظمى النقطة تتبع :الرسالة عنوان

 الدائم المغناطيس ذو المتزامن المولد على المعتمدة الرياح

 العلوم في الماجستير :العلمية الدرجة

 الكهربائية الهندسة :الرئيسي التخصص

 4102، سبتمبر :التاريخ 

 العصبية الشبكات على المبنية  (MPPT)الكهربائية للطاقة العظمى النقطة تتبع خوارزمية من التحقق تم

 للتكيف القابلة الضبابية العصبية بالأنظمة عليها الحصول تم التي النتائج مقارنة تم  مث ومن ، (ANN) الاصطناعية

(ANFIS.) 

 النقطة وتتبع الرياح سرعة تقدير على القدرة لهاANFIS)  ) و (ANN) على المبنية(MPPT)   متحكمات  

 أنظمة مع بالمقارنة جدا ضئيل خطأ واقعب الدوار عضولل المثلى سرعةالو (MPP) الكهربائية للطاقة العظمى

(MPPT )تتبع ،السريع لرياحا تغير في متميزا أداء تظهر الأساليب هذه ذلك، على وعلاوة. التقليدية  (MPP) بشكل 

 عصبيتين شبكتين على مبنية الخوارزمية. العظمى الطاقة نقطة حول فيها المرغوب غير التذبذبات واخماد دقيق

 لا الخوارزمية. ((MPP الكهربائية للطاقة العظمى النقطة لتتبع والأخرى الرياح سرعة لتقدير واحدة متواليتين،

 فعالية من للتحقق تنفيذها تم الخطية غير الزمنية المحاكاة. الرياح سرعة لقياس ميكانيكي حساس أية تتطلب

 . متنوعة تشغيلية ظروف عند MPP العظمى الطاقة نقطة و الرياح لسرعة بالنسبة المقترحة المتحكمات
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 على المبنية  (MPPT)الكهربائية للطاقة العظمى النقطة تتبع متحكمات أن تظهر عليها الحصول تم التي النتائج

 من أفضل أداء لها (ANFIS) للتكيف القابلة الضبابية العصبية والأنظمة  (ANN) الاصطناعية العصبية الشبكات

 أن أيضا تظهر عليها الحصول تم التي النتائج وأن التقليدية الطرق مع بالمقارنة المستقرة والحالة الديناميكية الناحية

 أداء تقييم في المعيار كان. (ANN) على المبنية المتحكمات من أفضل (ANFIS) على المبنية المتحكمات

 .الكهربائية العظمى الطاقة وتتبع الرياح سرعة تقدير في الدقة هو  MPPTمتحكمات

 المتصلة للشبكات الماتلاب المحاكاة برنامج باستخدام ANFIS على المبني MPPT متحكم أداء من التحقق تم

 الديناميكي الموديل خلال من الممثلة (PMSG) الدائم المغناطيس ذو المتزامن المولد على المعتمدة الرياح أنظمة مع

 يستطيع الهوائي التوربين نظام أن تظهر المحاكاة نتائج. المحولات ،الحركة نقل قطار ،التوربين للمولد، التفصيلي

 لسرعة السريعة التغيرات خلال (Cp) الطاقة لمعامل المثلى القيمة على محافظا الكهربائية بالطاقة الشبكة تزويد

 .الرياح
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CHAPTER 1  

INTRODUCTION 

The demand of electrical energy is anticipated to increase rapidly because of the very 

fast growth of global population and the development of industry on an extensive scale. 

This rapid increase in energy demand requires electric utilities to increase their power 

generation. The net electricity production all over the world was 17.3 trillion kilowatt-

hours in 2005 and is expected to increase 24.4 trillion kilowatt-hours (an increase of 

41%) in 2015 and 33.3 trillion kilowatt-hours (an increase of 92.5%) in 2030 [1]. A large 

amount of electricity generated is from fossil fuels, especially from coal. However, the 

use fossil fuels causes environmental pollution and greenhouse gas (GHG) emissions, 

those are considered the main reason behind current global warming problem. For 

example, the emissions of carbon dioxide (CO2) and mercury are expected to rise by 35% 

and 8% respectively, by the year 2020 due to the expected increase in power production 

[2]. Moreover, possible diminution of fossil fuel reserves and unstable cost of oil are two 

major concerns for industrialized countries.  
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1.1 WIND ENERGY 

To overcome the problems related with production of electricity from fossil fuels, 

renewable energy sources (RES) can play an important role in the energy mix. Also the 

deregulation in electricity markets and the growth of the distributed generation (DG) 

systems are advancing the use of RES in power production [3]. Among the renewable 

energy sources (RES), wind energy is the most promising and wind turbine system 

provides the most direct method to convert wind energy into electrical energy without 

any environmental pollution [4]-[5]. Wind energy systems require very little capital cost, 

replacement cost, operation and maintenance cost as compared to other RES like solar 

energy. Also considering the energy conversion efficiency wind energy system is better 

than the solar energy system. In spite of the intermittency of wind speed, numerous wind 

energy systems have been developed in many countries all over the world because of 

their long term gains and other schemes offered by governments to encourage the use of 

renewable energy sources (RES). The first wind turbine system for electricity generation 

started on July, 1887 in Scotland was a battery charging machine and currently updated 

technology related to wind energy conversion system is growing rapidly worldwide. In 

fact, many organizations expect a bright future for these systems because it is clean 

energy, abundant, ubiquitous, sustainable, environmental friendly and wind is free of 

cost. The total installed capacity of wind energy systems all over the world was 273TWh 

in year 2009. In 2020, IEA’s expects globally the wind generated electricity will be 

around 1282TWh annually, which is 369% increase from 2009. It is anticipated that by 
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2020 around 12% of the world’s electricity will be generated from wind energy. By 2030 

that figure will be 2182TWh [6],[7]. Rapidly growing wind energy deployment has led 

the researchers to work on the different issues related to wind system: modeling of the 

wind turbine, maximum power point tracking algorithms, power electronic converters 

used to integrate wind turbine with grid and its impact on power system. 

     Wind turbines are usually used in roof top and stand-alone micro-grid systems to serve 

remote or hilly areas that are not connected to the electric grid [8]. Grid-connected wind 

systems designed for supplying energy to local loads as well as to the electric grids, are 

currently dominating the electricity market and can be installed on the onshore, offshore, 

beside the highway and on the open field where wind speed has good potential to 

generate electricity. 

Large penetration of wind power into the electricity grid would have adverse effects 

on the transmission/distribution network and also on the other connected generators due 

to the intermittency of the wind speed. It may cause security and stability issues of power 

system especially in the case of disturbances. An accurate wind turbine model is required 

that can simulate its output characteristics with the change in wind conditions, i.e. wind 

velocity, to study and analyze the impact of wind generation on the utility power grid. 

1.2 MAXIMUM POWER POINT TRACKING (MPPT) 

The efficiency of wind system depends on turbine efficiency, efficiency of the 

converters and efficiency of the MPPT algorithm. Increasing the efficiency of wind 
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turbine and the converters is not an easy task, because it depends on available technology. 

Updated components may increase the efficiency but it increase the installation cost 

extremely. Improving efficiency, using MPPT algorithm is easier and inexpensive and 

can be done in a wind system which is already in operation.  

The maximum power point tracking (MPPT) controller plays an important role to 

improve the efficiency of the wind energy conversion system. The MPPT algorithms can 

be classified into three main control methods, known as tip speed ratio (TSR) control, 

hill-climbing search or perturb and observe (P & O) method and power signal feedback 

(PSF) control. To extract maximum possible power from wind both TSR and PSF control 

methods required accurate measurement of wind speed and rotor speed using mechanical 

sensors. HCS control algorithm has the ability to overcome the drawbacks associated 

with TSR and PSF, but the trade-off characteristics between tracking speed and 

oscillation makes this algorithm less effective [9]. Current research focuses on new 

MPPT methods such as fuzzy logic (FL), artificial neural network (ANN) and adaptive 

neuro-fuzzy inference system (ANFIS). Recent investigations represent better 

performance of ANN and ANFIS based MPPT over conventional methods. 

MPPT algorithm is applicable for variable speed wind turbine configuration due to its 

property of controllable rotor speed, which leads the system to operate persistently near 

the optimum value of tip-speed ratio to extract maximum power. 
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1.3 MOTIVATION AND PROBLEM DESCRIPTION 

The major concerns of variable speed wind generation systems are maximization of 

the wind energy conversion efficiency, system stability and power quality. The energy 

production using wind turbine system can be increased in two ways; one is to build a 

higher generation wind turbine system and the other one is to achieve higher efficiency in 

converting kinetic energy of wind into energy electrical energy. Building higher 

generation wind energy systems is very expensive because it required replacement of 

existing system with a higher generation system. The high efficiency of wind generation 

system depends upon factors such as wind speed, wind turbine technology, converter 

efficiency and MPPT controller. Wind speed depends on natural condition and it is not 

controllable. On the other hand wind turbine and converter efficiency is technology 

dependent. So the easiest and feasible way to improve the efficiency of the wind energy 

system is to use MPPT controller. By extracting the maximum possible power for a 

particular set of operating conditions, the total cost of the wind generation system can be 

reduced. 

The MPPT is a complete electronic system that changes the electrical operating point 

of the wind turbine system as a result the system is able to deliver maximum possible 

power at any wind speed. In a grid connected wind energy system, the main goal is to 

extract maximum possible power from wind system over the entire time of operation. 

Therefore, wind turbine systems required an MPPT controller, which enables the system 

to operate at maximum power point.  
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Over the last decades many MPPT algorithms have been developed to find out the 

maximum power point (MPP). These algorithms differ in many aspects such as required 

mechanical sensors, convergence speed, effectiveness, cost, complexity, tracking 

accuracy during rapid change in wind speed and hardware required for implementation. 

The commonly used MPPT algorithms are tip speed ratio (TSR) control, hill-climbing 

search also known as perturb and observe (P & O) method, power signal feedback (PSF) 

control and functional relation based techniques. To track the maximum power point both 

TSR and PSF control methods required accurate measurement of wind speed and rotor 

speed. Anemometer is used as mechanical sensor to measure the wind speed, which is 

very costly. The main advantages of both methods are simplicity and ease of 

implementation but performance and accuracy are degraded due the rapid change in wind 

speed. HCS control algorithm has the ability to overcome the drawbacks associated with 

TSR and PSF, but its tracking is slow when step size is small and causes oscillations 

around the maximum power point if the step size is large. The main drawbacks of HCS 

technique is lose tracking the MPP during the rapidly changing wind conditions [9]. At 

present  fuzzy logic (FL), artificial neural network (ANN) and adaptive neuro-fuzzy 

inference system (ANFIS) is becoming popular because these techniques has the ability 

to deal with imprecise inputs, fast convergence, great ability in handling nonlinearity and 

accuracy in tracking MPP (negligible oscillation around MPP) even when the wind speed 

changes rapidly. The researchers already found that for wind speed estimation and MPPT 

the performance of ANN and ANFIS is better than any other conventional methods. 

 



 

  

 

7 

 

The characteristics of turbine power and rotor speed for different wind velocity is shown 

in Figure 1.1 The turbine power vs rotor speed characteristic of wind system is non-linear 

because turbine power is the cubic function of rotor speed. Turbine power output varies 

as the rotor speed and wind velocity changes. For a particular wind speed there is only 

one maximum power point (MPP) and that point is vulnerable due to any change in the 

wind velocity. In Figure 1.1 circular points on curves shows the MPP’s for different wind 

speed, whose represents that to extract maximum possible power the turbine need to be 

operated at those point. MPP is the point where the wind turbine is most efficient in 

converting the wind energy into electrical energy. Therefore maximum power point 

tracking (MPPT) controller plays an important role to extract maximum possible power 

and forces the system to operate at its maximum efficiency.  

 

Figure 1.1: Turbine power vs rotor speed showing key points. 



 

  

 

8 

 

    Overall efficiency of the wind system depends upon the efficiencies of wind turbine, 

power electronics converters and maximum power point tracking (MPPT) controller. 

Wind turbine systems have maximum efficiency around 30% only, converters have 

efficiency about 95-98% and MPPT controller has more than 98%. The efficiencies of 

electronic converters and wind turbines are technology dependent but MPPT efficiency 

can be increased by improving its tracking techniques.  

1.4 THESIS OBJECTIVES  

  The wind turbine output power is the cubic function of wind speed. For a particular 

wind speed there is only one maximum power point (MPP) and the MPP point is 

vulnerable due to any change in the wind speed. It is always efficient to obtain maximum 

power at particular wind speed. To extract maximum power from wind, wind turbine 

must be operated at the peak point of its power-rotor speed characteristics curve for a 

certain wind speed. 

Following are the major objectives that are focused in this thesis:  

1. To develop an adaptive control algorithm using ANN for sensor-less wind speed 

measurement and to design a controller to track the wind speed efficiently and 

accurately. 

2. To present a new adaptive control algorithm based on ANN for maximum power 

point tracking (MPPT) in wind energy system and to design a controller for 
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maximum power point tracking (MPPT) accurately for any change in the wind 

velocity.  

3. To develop an adaptive control algorithm using ANFIS for sensor less wind speed 

measurement and to design a fuzzy controller to track the wind speed efficiently 

and accurately. 

4. To presents an ANFIS based new adaptive control algorithm for maximum power 

point tracking (MPPT) in wind energy system and to design a controller for 

maximum power point tracking (MPPT) accurately for any change in the wind 

velocity.  

5. To test and compare the performance of both the ANN and ANFIS based MPPT 

controllers for different wind speed. 

6. To evaluate the performance of the MPPT algorithm for a grid connected PMSG 

wind system. 

 

 

 

 

1.5 PROPOSED WORK 

The methodology that is used to fulfill the objectives is comprised of two major 

phases:  

1) Design and implementation of MPPT controller 
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2) Testing the proposed MPPT controller on a PMSG wind system 

1.5.1 Design and implementation of MPPT controller 

1) Two series artificial neural network (ANN) is used in the proposed MPPT 

algorithm; one for wind speed estimation and the other for maximum power point 

tracking. The algorithm does not require any anemometer or look-up table. 

2) Two series adaptive neuro-fuzzy inference system (ANFIS) controller is used in 

the proposed MPPT algorithm; one for wind speed estimation and the other for 

maximum power point tracking. The algorithm is able to track MPP without using 

any anemometer or look-up table. 

3) Time domain MATLAB/ Simulink simulations of a wind system are carried out to 

verify the robustness and accuracy of the proposed controller under different 

operating conditions. 

4) The dynamic performance of the proposed MPPT controller is tested under 

random variation in wind conditions. 

1.5.2 Testing the proposed MPPT on a PMSG system 

1) Among the proposed ANN and ANFIS based MPPT algorithms, the most 

efficient one will be tested on a 2.5 MW permanent magnet synchronous 

generator tied to the grid. 

2)  The detailed dynamic model of the generator, the generator turbine, drive train 

and the converter system will be considered for testing.  
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3) The testing is based on how well the wind turbine can deliver power to the grid 

maintaining the optimum power coefficient for randomly varying wind 

conditions.  

1.6 THESIS ORGANIZATION 

This thesis is organized as follows: 

Chapter 2 contains the brief description of wind turbine technology and extensive 

literature review on wind turbine modeling and maximum power point tracking (MPPT) 

techniques. 

In Chapter 3 an adaptive artificial neural network (ANN) based MPPT controller has 

been presented and its effectiveness and accuracy is investigated in the 

MATLAB/Simulink environment. 

In chapter 4 an Adaptive neuro-fuzzy inference system (ANFIS) based MPPT 

controller has been presented and its effectiveness and accuracy is investigated in the 

MATLAB/Simulink environment. In addition, a comparison between the overall 

performance of ANN based MPPT controller and the ANFIS based MPPT controller is 

made. 

Chapter 5 investigates the performance of the proposed most accurate maximum 

power point tracking (MPPT) controller tested on a grid connected PMSG system.  
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Chapter 6 presents the conclusions drawn from this research work and states 

directions for the possible future work. 
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CHAPTER 2  

LITERATURE SURVEY  

Wind turbine (WT) system is one of the best promising renewable energy sources 

(RES) that can generate clean energy to the power grid and remote loads connected 

through the power electronic devices. This chapter presents a detailed literature review on 

the WT modeling and maximum power point tracking (MPPT) techniques. 

2.1 RENEWABLE ENERGY FOR POWER PRODUCTION 

Over the past few decades, it is evident that there is a significant increase in global 

demand for electricity. Recent studies predict that the electricity generation is expected to 

rise from 17.3 trillion kilowatt-hours in 2005 to 24.4 trillion kilowatt-hours (an increase 

of 41%) in 2015 and 33.3 trillion kilowatt-hours (an increase of 92.5%) in 2030 [10]. 

Many traditional and conventional methods are applied for generation of electrical 

energy, but when it comes to environmental safety they have adverse effects on 

environment. For example, the emission of carbon dioxide and mercury are expected to 

increase by 35% and 8%, respectively, by the year 2020 due to the increase in electricity 

generation [11]. Though the environmental concern increases and the natural resources 

like fossil fuels are going to be depleted; now researchers are focusing to obtain new 
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environmentally friendly sources of power. To overcome the problems associated with 

generation of electricity from fossil fuels, Renewable Energy Sources (RES) can be used 

in the energy mix. Also the deregulation in electricity markets and the development of the 

distributed generation (DG) technologies are promoting the use of RES in power 

generation [12]. Because of this environmental concern with fossil fuel, it is desirable to 

search for clean energy. Renewable energy (RE) is one of the best sources of clean 

energy that have a very low environmental affect compared to the conventional energy 

sources. Among the all RE sources, Wind energy is a pollution-free and inexhaustible 

source. Therefore, a wind energy generation system could be one of the potential sources 

of alternative energy for the future [13],[14]. As a result, the focus on production of 

energy using RE sources is increased to reduce greenhouse gas emission.  Wind, solar, 

tidal, wave, geothermal and bio-fuels are considered as renewable energy sources. 

 

 

 One of the best renewable sources to serve this purpose is Wind energy. One can 

rely on wind as it is mostly available at all time, but primary focus would be given to the 

installation of plants on a region where the wind blows at a sufficient speed. At present 

wind generators have been widely used in both grid-connected applications and stand-

alone hybrid power systems in remote areas. Compared to the photovoltaic systems, wind 

generators (WGs) have lower installation cost. Moreover, the overall system cost can be 

further reduced by using more-efficient power converters and by controlling such a way 

so that the maximum power is acquired according to the current atmospheric conditions.  
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2.2 WIND ENERGY CONVERSION PRINCIPLES 

The power in wind energy can be calculated on the basis of kinetic energy. The wind 

turbine converts the kinetic energy of wind to mechanical energy. The kinetic energy of 

wind is shown in (2.1). 

                                  Kinetic energy = 
 

 
    

                                                                

Where, ρ is the air density and A is the swept area by the turbine blades and    is the 

velocity of wind. 

        Kinetic energy equation shows that the wind energy is directly proportional to the 

swept area. As the swept area increases the energy also increases. As a result, the 

machines with higher swept area produced more energy comparing to the lower one. The 

characteristics of wind power are related to the cubic function of wind velocity, which is 

shown in Figure 1.1. 

 

2.3 WIND TURBINE MODELING 

The wind power captured by wind turbine depends on its power co-efficient (Cp), which 

is proportional to the power extracted from the wind hitting the blades of the turbine.  Cp 

can be expressed by (2.2). 
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The value of Cp is related to tip speed ratio (λ). The λ is defined in (2.3). Here  is the 

blade pitch angle. 

 

                    
3

1 1 0.035

0.08 1i   
 

 
                                                                             (2.3)  

 
 There is a strong relation between the turbine output power and power coefficient (Cp). 

The wind turbine power output is limited by power coefficient that is a function of tip 

speed ratio (λ). The power coefficient versus tip speed ratio is turbine specific and 

depends particularly on the turbine blade design which is shown in Figure 2.1. It can be 

noticed that the maximum value of power coefficient is about 0.48 when the value of tip 

speed ratio is around 8. 

 

 
Figure 2.1: Tip speed ratio vs power coefficient curve. 
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The value of  can be calculated using (2.4). 

                                         λ= 𝜔r. R/ Vw                                                                           (2.4) 

 

The wind turbine mechanical output is related to the wind speed Vw and can be expressed 

by (2.5). 

 

                                      
 m= 

 

 
      

                                                       (2.5) 

Here   is the air density and A is the swept area of the wind turbine blade. When the 

TSR is adjusted to its optimum value opt then the power coefficient Cp will be its 

maximum value Cpmax and the maximum power extraction will be achieved.  

Rearranging the equation (2.4) and (2.5), the relation between turbine power (Pm) and 

rotor speed (𝜔r) ca be related as in (2.6). 

                                         
 

 
       

  
   

    
                                    (2.6) 

From (2.6), it is clear that the maximum power generated is proportional to the cube of 

the rotational speed as shown in (2.7). 

                                                                         𝜔 
                                                           (2.7) 

2.4 WIND TURBINE SYSTEMS 

Generally, wind energy conversion systems can be categorized in two groups.  The 

first group operates at almost constant speed (variation is limited to around ±1%) and 
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termed as “Danish Concept” [15]. In this type the generator directly coupled the grid with 

the drive the drive train. This type of configuration allows very little changes in rotor 

shaft speed; as a result small turbulence in wind speed and load variation creates 

mechanical stress and decrease the life time of the wind turbine [15]-[18]. The big 

disadvantages of this type are, the optimum tip speed ratio occurs only at one wind speed 

and unable to extract maximum possible power with the change in wind speed [16]-[18]. 

On the other hand, variable speed configuration allows the control of rotor speed, which 

leads the wind turbine to operate constantly near the optimum value of tip-speed ratio and 

MPPT is applicable. There are many advantages of variable speed configuration over 

fixed speed, such as- 

 Annually up to 10% more energy collection is possible based on wind regime 

and turbine aerodynamics [16]. 

 Less mechanical stress and torque pulsations due to the turbulences as a result 

machine life time increases [15],[19]. 

 When wind gust occurs, by increasing rotor speed the inertia of mechanical 

system absorbs the extra energy. 

 Power injection to the grid increases due to the improved power quality. The 

reduction in power pulsations, increases the power quality and limit the 

voltage deviation [15],[19][19]. 

 The pitch control time constant is longer in variable speed configuration, 

which minimizes the pitch control complexity. These types of configuration 

also produce less acoustic noise [15]. 
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Most modern variable speed generators are based on DFIG (which is round rotor 

machine) and PMSG (permanent magnet synchronous generator). The energy conversion 

efficiency of the variable speed wind turbine system can be improved by using MPPT 

algorithm. 

 2.5 MAXIMUM POWER EXTRACTION 

The wind energy conversion technique is although a straightforward process, but the 

maximum power extraction process is very complicated and incorporates different highly 

correlated parameters like power coefficient, tip speed ratio, wind speed, rotor speed and 

so on. From the speed-power curve for wind turbine shown in Figure 1.1, it is obvious 

that there is different operating rotor speed corresponding to each wind speed at which 

maximum power extraction can be obtained. Due to the aerodynamic nature of the wind 

turbine, for a very small change in rotor speed will change the amount of power 

significantly extracted from the wind energy. The rotor speed depends on the wind 

velocity fluctuation as well as the generator loading. As a result, the wind turbines may 

not operate at optimum rotor speed for a particular wind velocity, which causes a waste 

of significant amount of wind energy. The cost effectiveness of wind energy depends on 

the percentage of energy extraction. The more energy we can extract, the more cost 

effective the wind system. So the initial challenge is to extract more with in the shortest 

possible time. As the modern advancement of electronic devices, it can be done by using 

various converter topologies and using maximum power point tracking (MPPT) 

algorithms. 
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For electricity generation, the capital cost for wind turbine system is very competitive 

with the other renewable energy sources. The most important application of wind turbine 

system is to supply electricity to the remote or hilly areas, those are far away from the 

power grid connection and from the economic point of view the grid connection is not 

feasible. Another big advantage of wind turbine system is, it requires very little or no 

maintenance cost. Using maximum power point tracking technique, it is possible to 

achieve the optimum wind energy utilization as well as maximum aerodynamic 

efficiency. So MPPT is a very popular technique that is especially beneficial for small 

wind system [20]-[36]. However, there will be only one rotor speed for every wind 

velocity, which will provide maximum power available, is termed as MPPT [37].   In 

order to implement maximum power extraction, variable-frequency mode operation is 

required for wind turbine generator. In recent years, variable speed wind turbine systems 

are becoming popular than the fixed speed system, because the energy capture ability in 

the later one is poor. Moreover, fixed speed system suffers from poor power quality and 

causes higher stress in mechanical parts. On the other hand variable speed wind turbine 

systems support MPPT algorithm and able to operate at its maximum power coefficient 

over a wide range of wind velocity by reducing the drawbacks discussed for fixed speed 

systems [38]-[41]. 

By using MPPT techniques the efficiency of the wind turbine system will be 

increased at any wind speed of the environment. Therefore an effective and low 

implementation cost MPPT algorithm is essential to enhance the efficiency and 

economics of wind energy conversion systems (WECS).  As a result, the maximum 
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power extraction technique becoming the interesting research topic during the past 

twenty years. To track the MPP, there are various algorithms in the literature based one  

tip speed ratio (TSR) control [20]-[22], power signal feedback (PSF) control [23]-[25] 

and hill-climb search (HCS) control [26],[27]. A revision of the Hill climb searching 

technique in MPPT was introduced in [42] for wind turbine generator system. This was 

done by developing a peak detection method that is capable of maintaining accurate 

result despite the rapid weather changes. The control method was based on referring to 

the optimal power curve. Such reference will dictate the required perturbation step size 

[42]. Perturbation and observation technique often used for the MPPT problem but the 

tracking performance is very slow and continuous oscillation occurs around the 

maximum power point [28],[29]. Anemometer is generally used in most of the wind 

turbine systems [23],[24],[43][43] for wind speed measurement to implement MPPT 

algorithm, but due to the inaccuracies in wind speed measurement, the reliability of the 

wind energy conversion system decreases [14]-[76].  

 

Different MPPT control techniques to estimate wind velocity were reported in [20]-

[22],[44]; however those techniques needed the knowledge of air density and some 

mechanical parameters of the wind turbine system. Neural networks with multilayer 

neurons were widely used to approximate an arbitrary input-output mapping of an 

uncertain system so as to have a faster convergence property [43],[45]. Based on the ratio 

of mechanical power versus turbine rotation speed to eliminate uncertain parameters and 

avoid oscillation, neural networks can be used for MPPT problem [30]. A neural network 
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based control can be used to track MPP for both the dynamic and steady states and to 

estimate wind velocity quickly and accurately without using anemometers [31]. TSR 

control directly regulates the turbine speed to keep the TSR at an optimal value by 

measuring wind speed and turbine speed [46],[47]. In such systems, a fuzzy logic 

controller is used instead of using a regular PID controller to manipulate the optimum 

rotor speed [46]. No detailed mathematical model or linearization about an operating 

point is needed and it is insensitive to system parameter variation. As the measured wind 

speed changes, the turbine pitch also gets regulated. Fuzzy logic and neural network 

based controller can be used to get better performance [48]. The value of the optimum 

TSR may change with the aging of the wind turbine and other system parameters. So an 

adaptive algorithm can be used to increase the system stability as well as the system 

performance [10], [49].  

Finally, we can conclude that TSR control has better efficiency and good 

performance with fast response, but it requires a very accurate anemometer which is very 

expensive and requires extra cost for the wind turbine system.  HCS and fuzzy logic can 

be used to track the maximum power point of a grid connected PMSG wind turbine 

system. The fuzzy-control-based MPPT scheme is good, but complex to implement [50]. 

However, the adaptive fuzzy controller for MPPT control can implement sensor-less peak 

power tracking and overcome some disadvantages of classical methods. The maximum 

power can be estimated through a Takagi-Sugeno-Kang (TSK) fuzzy controller by 

measuring the rotor speed and power generated by the generator without measuring wind 

speed and wind turbine parameters. The advantages of fuzzy logic over HCS are variable 
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step size and fuzzy is capable to remove all output power oscillations that appears in HCS 

[51]. In [52], a data-driven design methodology has been proposed which is able to 

generate a Takagi–Sugeno–Kang (TSK) fuzzy model for maximum energy extraction 

from variable speed wind turbines. In this model turbine power and rotor speed is used as 

input and corresponding maximum power is the output for training process. As a result 

maximum power can be tracked without getting any information about the wind velocity.  

 

Recently, various techniques have been developed to track the MPP for any change in 

the wind speed without using the mechanical sensor to estimate the wind speed [20],[21], 

[25],[26]. Polynomial can be used to determine the wind power co-efficient; then the 

wind speed is estimated online by calculating the roots of the polynomial using an 

iterative algorithm (e.g., Newton’s method or bisection method). However, real-time 

calculation of the polynomial roots is very complex and time-consuming process. As a 

result the system performance will be reduced. Neural network based wind speed 

estimation had in [53], which used manual calculation based on optimum tip speed ratio 

to determine the maximum power point corresponding to the estimated wind speed. But, 

optimal tip speed ratio changes with the aging of the wind system that will give erroneous 

result. MPPT algorithms have been developed depending on optimum relations among 

quantities like wind speed, turbine output power, DC voltage, current and power of the 

converter. Functional relationship based control is a variant of perturb and observe (P & 

O) method. The advantages of this method are sensor-less wind speed measurement and 

no need for look up table [11]-[12]. The wind speed can be estimated using the theory of 
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support vector regression (SVR) in a wind energy system. By using turbine power and 

rotor speed as input to the SVR estimator, the wind speed can be estimated with high 

accuracy and fast transient performance is achievable [22]. Wind speed can be estimated 

using ANN by giving turbine power and rotor speed as input. Then MPPT can be 

obtained by identifying the optimal rotor speed using, λopt =K*rm   and   𝜔   

(λopt*Vw)/R [53]. In [13], ANN and PSO is used together to estimate the wind speed and 

to track the maximum power point. The methodology of RBFNN and PSO can efficiently 

improve power output of a small wind power generator in the conditions of wind speed 

and load impedance variations. Optimization based MPPT has been proposed in [54], 

where two series neural network is used to estimate the wind speed and optimal power 

then PSO is used to determine the optimal rotor speed. Furthermore, considering the 

condition of wind speed and load variation, the maximum output power can be tracked. 

For MPPT using pitch angle, various intelligent control technique can be used such as  

fuzzy, neuro-fuzzy, and genetic algorithm based fuzzy controllers can be used for DFIG 

based wind generation system.  According to the simulation results found in [55], the 

performance of intelligent controllers are better than the PID controllers and among the 

intelligent controllers, GA based fuzzy controller is the best. MPPT algorithms have been 

developed which depend on optimum relationship among quantities like wind speed, 

turbine power output, converter DC voltage, current, power etc. A sensor-less MPPT 

technique by controlling duty cycle of the DC-DC boost converter switch and measuring 

DC voltage and current was reported in [56]. There is a liner relation between the DC 

voltage and the rotor speed of the PMSG. So the operating point can be shifted from one 
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curve to another with changing wind speed by changing the duty cycle of DC-DC boost 

converter. Based on the optimal relationship between maximum converter power and DC 

voltage an MPPT algorithm has been developed for permanent magnet synchronous wind 

generator. This algorithm does not require the measurement of wind conditions or turbine 

parameters [57]. 

 

Maximum power point tracking (MPPT) controller is a crucial part of the wind 

system. It tracks and extracts the maximum possible power from the wind turbine under 

different operating conditions and improves the overall efficiency of wind system. The 

idea of MPPT is not new; many MPPT methods had been reported by researchers that 

discussed in the literature review. Comparing to the others conventional techniques, 

researchers already proved that ANN and ANFIS based MPPT controller are much more 

accurate and efficient. The performance of trained ANN is good, but it will not provide 

the details about the system performance for a particular output, it act as a black box. 

ANFIS combines the advantages of both ANN and FIS, which makes ANFIS a very 

powerful intelligent technique [58]-[59]. To use ANFIS based MPPT technique, a large 

number of training data is required. In [60], the authors used practical data for training 

process and proved that its performance is better than the conventional MPPT technique. 

Researchers already used neural network (NN) and Fuzzy logic (FL) for MPPT. 

Sometimes NN/ANFIS are used for wind speed estimation and look up table for MPPT. 

In some other works, they used Anemometer for wind speed estimation and NN/ANFIS 
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based controller for MPPT. The use of anemometer and look-up table is the main 

drawbacks for the previously reported ANN/ANFIS based MPPT controller systems. 

 

The main objective of this research is to use neural networks (NN) principles and 

adaptive neuro-fuzzy inference system (ANFIS) both for wind speed estimation and to 

track both MPPT and optimum rotor speed for any change in wind velocity.  

2.6 MAXIMUM POWER POINT TRACKING (MPPT) STRATEGY 

         The maximum power point tracking concept with the change in wind velocity is 

illustrated clearly in Figure 2.2. As wind speed changes, the turbine power curve also 

changes. Let us consider that the wind speed known and the turbine is operating at point 

A, so we can easily determine the maximum power point for that wind speed is B and the 

corresponding rotor speed is 𝜔r*. Then the rotor speed of the generator will be controlled 

until it reaches to 𝜔r*, where the turbine power is maximum. 
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Figure 2.2: Three dimensional turbine speed vs power curves 

So first we have to estimate the wind velocity by using the operating condition. It can 

be easily done by using anemometer, which is very costly. So the sensor-less wind speed 

measurement technique will be most cost effective one. Artificial Neural Network (ANN) 

and adaptive neuro-fuzzy inference system (ANFIS) can be used to do this job. With the 

change in wind velocity, the operating turbine power and rotor speed will be changed; 

though the measurement of power and rotor speed can be done precisely, those will be 

used as input to the ANN/ ANFIS network. Based on the given input ANN/ANFIS will 

identify the wind speed as well as the maximum power corresponding to the estimated 

wind velocity and will also specify the turbine optimum rotor speed for which we will get 

maximum power. Though the relation between turbine power and rotor speed is nonlinear 
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regarding to the wind speed change and ANN and ANFIS have great ability to deal with 

the nonlinear objective function; so we can do wind speed estimation and MPPT tracking 

using ANN and ANFIS.  
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CHAPTER 3   

ANN-BASED MPPT CONTROLLER DESIGN 

3.1 INTRODUCTION 

Wind turbine converts the kinetic energy of wind into electrical power. The generated 

power of turbine is the cubic function of wind speed. Figure 1.1 demonstrates that the 

characteristics of turbine versus rotor speed are non-linear in nature. For a particular wind 

speed there is a particular curve and each curve has one optimum point called Maximum 

Power Point (MPP) as discussed in previous chapters. This maximum power point varies 

with the wind speed as well as the operating speed of the rotor. As wind speed is 

intermittent and time to time it changes, that also keeps varying the maximum power 

point (MPP). Therefore, the maximum power point tracking (MPPT) controller is 

essential to extract maximum possible power from any wind speed.  

Already researcher’s reported some ANN based MPPT techniques in literature. 

Among all the previously proposed ANN based MPPT technique, they used single neural 

network for wind speed estimation or to track maximum power point. When neural 

network is used to estimate wind speed then look-up table or manual calculation or PSO 

is used to track maximum power point. In other literature, anemometer is used to measure 
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the wind speed then measured wind speed is used as input to neural network to track the 

maximum power point. The researcher’s already proved that the performance of all the 

proposed ANN based MPPT controller is better than the conventional methods (TSR 

control, PSF control, HCS and P & O control) in terms of accuracy, fast convergence and 

able to track MPP correctly in rapidly changing wind speed conditions. Both anemometer 

and look-up table are considered as the drawback of the ANN based MPPT techniques. 

The anemometer is costly and required numbers of anemometer in different locations for 

accurate measurement of wind speed. On the other hand look-up table required memory 

space and billions of data has to be stored for getting accurate result, therefore MPPT 

accuracy depends on the available system memory.  

In this chapter, the new intelligent MPPT controller based on the artificial neural 

network (ANN) is proposed and developed for wind speed estimation and MPPT. Two 

series neural network will be used, one for wind speed estimation and the other to track 

maximum power point. In the proposed algorithm there is no need of anemometer or 

look-up table. 

3.2 ARTIFICIAL NEURAL NETWORK (ANN) 

 

Artificial neural network (ANN) is a computational tool that follows the activities 

of human brain. The basic processing unit of ANN is neuron [61], introduced by Cajal in 

1911 [62]. The function of ANN’s neuron is similar to the biological neuron. Artificial 

neural network (ANN) has been successfully employed over the past decades to solve for 
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various complex problems.  Recently, ANN is used in various engineering problems as 

an estimation method due to its great pattern identification ability. The application of 

neural networks supports the following useful attributes and capabilities includes 

nonlinearity, adaptively, massive parallelism, uniformity of analysis and design, learning 

ability, generalization ability, input-output mapping, fault tolerance, evidential response, 

VLSI implement ability, distributed representation and computation and neurobiological 

analogy. An artificial neuron generally consists of a computing element that performs the 

weighted sum of the input signals and the associating weights. The weighted sum is added 

with the bias value called threshold and the resultant signal is passed through a non-linear 

activation function. The commonly used activation functions are either sigmoid or hyperbolic 

tangent. Each neuron is interconnected with three parameters whose learning can be adjusted. 

These are the connecting weights, the bias value and the slope of the nonlinear activation 

function. For the structural point of view a NN may be single layer or it may be multilayer.  

ANN is so configured that any set of inputs produces a desired output.  Two basic 

classes of Neural network namely  

1. Feed-forward back-propagation network (FFBP) 

2. Radial basis function network (RBFN) 

3.2.1 Feed forward back-propagation neural networks 

 In feed forward neural network, the information enters at the inputs and passes 

through the network layer by layer, until it arrives at the outputs. During normal 
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operation data moves only in forward direction, there is no feedback. There are three 

layers in a feed forward network termed as input layer, hidden layer and output layer. A 

set of inputs is provided to a hidden layer by different strength of connections or weight 

function, and then finally passed to the output layer as shown in Figure 3.1. Every node 

in a layer is linked with all the nodes in the previous layer. These links are not all same; 

each link may have a different strength or weight. The weights on these connections 

encode the knowledge of a network. In order to obtain desired output, the weights shall 

be updated. 

 

Figure 3.1: Feed forward ANN 

      The learning process of feed-forward network (FFN) cannot assure you the global 

optimum, sometimes it struck into the local optimum. By using back propagation (BP) 
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algorithm along with the FF algorithm, the learning process of FFN can be improved. BP 

is widely used technique due to its simplicity [63]. There are three layers in a feed 

forward back propagation network termed as input layer, hidden layer and output layer as 

shown in Figure 3.2. BP learning algorithm is proposed in [64] and become one of the 

best learning algorithms among ANNs. During learning process, BP network use 

gradient-decent search technique to adjust link weights between nodes to minimize the 

error of ANNs. Back propagation algorithm is very popular and used successfully in 

many applications like pattern recognition, location selection, performance evaluations 

and so on. Since error propagates from output layer through hidden layer to the input 

layer (propagates in backward direction), this method is termed as back propagation. 

 

 

 
 

Figure 3.2: Back-propagation ANN  
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 If the dimension of input is   there would be   weights, as a result the net signal 

available to the neuron would be given by     in Equation (3.1), where xi is the ith input, 

wji is the weight connecting neuron j and neuron i and bj is the bias of neuron j. The 

output for neuron     is best expressed as sigmoidal function as in Equation (3.2), the 

amplitude of the output ranges from 0 to 1. The final actual output is given by Equation 

(3.3) 

                                                            ∑                                                                      

 

   

 

                                                          
 

        
                                                                          

                                                       
 

        
                                                                   (3.3) 

 

The sum of squared error or cost function (E) is given as square of difference of target 

output    and estimated output    best describes by Equation (3.4)  
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Here, m represents all training pattern, Em is the total error over all training pattern 

and i represents all output nodes for a given pattern.  
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 The weights are altered to minimize the cost function to a value by gradient 

descent method. In back-propagation networks the initial weights and biases are selected 

randomly by deploying maximum and minimum value of input. These weights are 

continuously updated, for     neuron the     weight. The equation used to update weight 

is shown in (3.5). 

                                                  (
   

       
)                                                       

Where learning rate is denoted by  ,        is the old weight,           is the new 

weight.  

3.2.2 Radial basis function (RBF) network  

The radial basis function network has similar type of structure like feed forward back 

propagation network as shown in Figure 3.3 . 

 

Figure 3.3: Radial basis Function network 
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The transfer function for a radial basis neuron is  

                                                                   
                                             (3.6) 

 

    RBF network can be trained by two step algorithm. Firstly, in the hidden layer the 

center vectors     are chosen for RBF function. This can be done in many ways; one is to 

sample randomly from set of examples or by using K-means clustering. Then use back-

propagation to determine all network parameters of RBF. Secondly, a linear model is fit 

with coefficient Wi to output hidden layer with respect to least square objective function. 

 

The artificial neural network which employs an activation function as radial basis 

function is called RBF network. Like feed forward networks, the RBF networks also have 

three layers, but the only difference is the hidden layer has nonlinear radial basis 

activation function. Input layer consists of ma source nodes, ma is the dimension of input 

vector. The hidden layer consists of equal number of computation nodes as the size of 

training sample. Each node is mathematically described by a radial basis function as 

shown in (3.7). 

                                                                                                                     

Here, a=1,2,……..,N. N is the training sample size, X is the applied signal to the 

input and Xa defines the center of the radial basis function of  a-th input data point. In 

Figure 3.3, output layer consists of single computational nodes, but there is no restriction 
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on the size of the output layer, typically size of the output layer is much smaller than 

hidden layer. 

 The input units are directly connected to the hidden layer and the hidden layer is 

fully connected to the output layer via output weights [65]. In general radial basis 

function neural network (RBFNN) is a feed forward 3-layers network based on radial 

basis functions like Gaussian function is chosen as their activation function [66]. In 

RBFNN Gaussian function is used as basis function, which depends on two parameters σa 

and μa as shown in (3.8). 

                                         (
       

  
 )                                                 (3.8)    

Here, X is the input vector, σa is the shaping parameter and μa is the a-th center. 

The hidden layer of RBF network takes p-dimensional input vector (Xp) with unit 

connection strengths and determines the Euclidean distance between input and center. 

The calculated result passes to the activation function. The hidden layer maps the input 

space onto a new space by performing the fixed nonlinear transformation. The output 

layer performs the linear combination onto this new space by adjusting the weight matrix 

[67]. The output of RBFNN network is defined as the weighted sum of the hidden layer 

outputs as shown in (3.9). 

                

                                    ∑                
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Here, i=1,2,3,…….,m and a=1,2,3,…,h. h represents hidden nodes and ‖X-μa‖ 

represents the Euclidean distance between inputs and the a-th center. The weight value 

between i-th center and a-th output node is denoted by Wai. 

 In radial basis neural network, every hidden unit calculates a nonlinear function by 

evaluating the distance between the input and the unit weight vector. The unit vector is 

generally called the center of the unit and the distance is called Euclidean distance. The 

ath hidden node Euclidean net function for pth training pattern can be calculated by (3.10). 

                            ∑ (           )
 

 
                                                                

Here, Ca(n) is the n-th element of Ca corresponding to n-th input node. The training 

mean square error (MSE) for each pattern can be calculated according to (3.11).  

               

                                    ∑ [          ]  
                                                                           

Here, yd  is the desired output and O is the output calculated by RBFNN and both are 

the column vectors. 

First step of the training is to prepare input and target data set and spread constant. 

Then set the error goal, after calculating Euclidean distance in each iteration one more 

neuron will be added and the MSE of the new network will be checked. This procedure 

will be continued untill MSE falls down the error goal or maximum number of neuron 
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have reached. The flow chart of radial basis function neural network algorithm is shown 

in Figure 3.4. 

Prepare training data

Set spread constant and error

Calculate Euclidean distance 

using (3.10)

Add neuron

Mapping of input space onto 

a new space by performing 

the fixed nonlinear function

Output layer perform linear 

combination by adjusting the 

weight matrix

Calculate MSE using (3.11)

Has target error met?

Save the network structure

Have neurons reached 

maximum?

YES

 No

     

No

  YES

 

Figure 3.4: RBFNN learning algorithm flow chart 
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3.3 IMPLEMENTATION OF ANN ALGORITHMS 

   A superviesd ANN algorithm is used for wind speed estimation and maximum power 

point tracking (MPPT). Training of neural network is done by using both feed-forward 

back-propagation (FFBP) and Radial basis function networks (RBFN). FFBP algorithm is 

used for wind speed estimation. On the other hand, both FFBP and RBFN algorithm are 

used to track the maximum power point. There are numbers of learning algorithms 

(forward propagation, back propagation, radial basis function and Hopfield algotithm) 

reported in literature to determine the accurate strengths of ANN, among the proposed 

algorithm FFBP and RBFN are widely used for wind speed estimation and MPPT. 

            Two series neural network is used for maximum power point tracking (MPPT). 

One network for wind speed estimation and the other to track maximum power point and 

optimal rotor speed. This method does not required any mechanical sensor for wind speed 

measurement or any pre-system memory. 

 

3.3.1 Wind Speed estimation using ANN 

The initial capital cost of the wind energy conversion chain can be reduced by 

removing the need of the wind velocity sensor. For this, an ANN is used to estimate the 

wind velocity. The proposed training scheme of neural network to estimate wind velocity 

is shown in the following Figure 3.5. 
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Figure 3.5: The proposed training scheme for ANN based wind speed estimation 

 

        Wind speed estimation is done in following steps: 

1. The turbine power data (Pm) is generated from the turbine power equation for 

the preselected rotor speed (𝜔r) and the wind velocity samples (Vw). 

2. The rotor speed and turbine power are recombined as data pairs {𝜔r, Pm}, 

which are employed as input matrix of the neural networks. On the other 

hand, the samples of wind speed (Vw) are set as target for the training process. 

3. Training starts with the random values of the weights and proceeds iteratively. 

During the training process (learning stage), the estimated wind speed is 

compared with the actual wind speed to calculate the estimation error. 
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4. Back propagation algorithm propagates that calculated error in backward 

direction to adjust link weights between nodes to minimize the error of ANNs. 

 

       In this training scheme, the first step is to generate data set for training process. The 

typical operating range for wind is specified between 3~19.5 m/sec. Wind speed will be 

estimated based on the turbine power and the rotor speed. 140 samples of wind speed has 

been taken between 3~19.5 m/sec. The blade pitch angle β is set constant, selecting the 

tip speed ratio λ between the range of 0.1~14 to obtain 140 averagely sampled tip speed 

ratio. Based on this sample data, 19,600 data pair of  {                        

          are generated. With this obtained data pairs {            , 19,600 data set of 

mechanical Power {                                 and 19,600 data set of 

rotor speed {𝜔                                are assembled. Finally, for 

preselected rotor speed and wind speed samples (6~19.5 m/s), 797 data pairs {   𝜔   is 

generated and used as input to the ANN and equal number of wind speed samples are 

used as output for training. 

      A three layer network is used for training, which configured with two linear neurons 

in the input layer, ten tan-sigmoid neurons in the hidden layer and one linear neuron in 

the output layer; wind speed Vw is used as target shown in Figure 3.6. W1 and B1 

denotes the input weights and bias, on the other hand W2 and B2 denotes the linear 

weights and bias for the output. 
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Figure 3.6: Wind velocity estimation ANN with ten tan-sigmoid neurons and one 

linear neuron 

3.3.2 Testing of trained ANN  

The ANN based wind speed estimation is developed in MATALB/Simulink using 

feed-forward back-propagation. Figure 3.7 plots the training errors, validation errors and 

test errors with respect to the number of epochs (iterations). In learning stage, the input 

and target data sets are divided into three types: 60% for training, 20% for validation and 

the remaining 20% for testing.  Figure 3.7 demonstrates that the validation stop at epochs 

37, when the validation curve touches the best error (targeted error) curve; means 

validation performance reached at minimum without any over fitting. Validation is 

needed to stop training before over fitting, because over fitting just memorize the input 

and output data sets. 
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Figure 3.7: Training, validation and testing errors versus epochs for the ANN 

 

The final Mean Squared Error (MSE) is very small and the test and validation set 

errors have similar characteristics. The best validation occurs after 70 epochs as shown in 

Figure 3.7. The error comes to a value of 2.6507x     in epochs 70.  

Linear regression between network outputs and corresponding targets analyze the 

performance of the trained network. In Figure 3.8, the dashed line in each plots indicates 

the perfect result (outputs=targets) and the solid line represents the best fit linear 

regression line among the outputs and targets. If the value of R=1, then there is an exact 

linear relationship exists between outputs and target. Figure 3.8 demonstrates that the 

ANN is so trained that the training data (small circular points) indicates a good fit and the 

outputs tracks the targets accurately for training, testing and validation , because the R 

value is close to 1.  



 

  

 

45 

 

 

Figure 3.8: Linear regression between network outputs and corresponding targets 

 

3.3.3 Maximum power point tracking (MPPT) using ANN 

For a particular wind speed, there are different turbine power and rotor speed, but there 

will be only one power point, at which the power will be maximum (     ). The rotor 



 

  

 

46 

 

speed corresponding to that maximum power point is termed as optimum rotor speed 

(𝜔   ). To extract maximum possible power from a particular wind speed, the rotor must 

be  rotates at the optimum rotor speed. The proposed training scheme of neural network 

to track maximum power point and optimum rotor speed is shown in the following Figure 

3.9. 

 

Figure 3.9: The proposed training scheme for ANN based MPPT 

 Maximum power point tracking is done in following steps:   

1. the turbine maximum power data (Pmax) is generated from the turbine power 

equation for the optimum value of power coefficient (Cp), optimal rotor speed 

(𝜔r) and the wind velocity samples (Vw). 

2. The samples of wind speed (Vw) are set as input for the training process. On 

the other hand, the optimal rotor speed and turbine maximum power are 
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recombined as data pairs {𝜔ropt, Pmax}, which are employed as target matrix of 

the neural networks. 

3. . During the training process (learning stage), the estimated optimal rotor 

speed and maximum power are compared with the orginal optimal rotor speed 

and maximum power resectively to calculate errors. 

4. Back propagation algorithm propagates those calculated errors in backward 

direction to adjust link weights between nodes to minimize the error of ANNs. 

To determine the optimal rotor speed and maximum power at every wind speed, we have 

to find out all maximum and optimal values of power and rotor speed respectively at any 

sampled 140 wind speeds. For 140 samples of wind speed 140 data pairs {     𝜔      is 

generated to train the ANN. 

Now the training process starts, by providing sampled wind speed as input to neural 

network and maximum power and optimal rotor speed data pairs as target output to train 

neural network both in feed-forward and radial basis function methods. 

3.3.4 Implementation of ANN MPPT controller in MATLAB/Simulink  

The method used for training is Feed- forward back-Propagation for wind velocity 

estimation and radial basis function methods for MPPT. After the training process, one 

Simulink block is generated for neural network simulation to estimate wind speed and 

another one for neural network simulation to track MPP. The ANN-based wind speed 

estimation and MPPT controller in Simulink is shown in the following Figure 3.10.  
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Figure 3.10: ANN-based wind speed estimation and MPPT controller in Simulink  

Figure 3.10 shows that the rotor speed and turbine power are presented to neural 

network to estimate the wind. The estimated wind speed is then feed to the radial basis 

network to determine both the maximum power and optimal rotor speed corresponding to 

that estimated wind speed. 

The testing is also done by providing rapidly changing input data (turbine power and 

rotor speed) to evaluate the effectiveness of the proposed controller under rapidly 

changing wind conditions. 



 

  

 

49 

 

3.4 SIMULATION RESULTS 

3.4.1 Simulation results for wind speed estimation 

The verification of wind speed estimation is done by applying random test input 

signals (operating power and rotor speed) to the trained network implemented in 

Simulink. Figure 3.11 shows the applied input signals, based on the input signals the 

wind speed is estimated, which is shown in Figure 3.12. 

 

Figure 3.11: Input signal (Pm, 𝜔r) to the trained ANN. 

 

Figure 3.12: Estimated wind Speed  



 

  

 

50 

 

From the Figure 3.11 and Figure 3.12 it is evidient that with the change in the input 

(turbine power and rotor speed), the trained network can track the change in wind speed. 

Wind speed estimation error is used as performance criterion of the implemented 

simulink model. The wind speed error is measured by calculating the difference between 

the calculated wind speed and simulated wind speed as shhown in table 1. 

 

Table 3.1: Testing using Feed-forward Back-propagation 

Input Simulation Calculated Error 

(%) Turbine power, Pm 

(MW) 

Rotor speed, 𝜔  

(rad/sec) 

Wind speed, Vw 

(m/s) 

Wind speed, Vw 

 (m/s) 

0.124 2.094 6.4546 6.4423 0.190 

0.815 1.727 8.5967 8.6120 0.178 

2.50 4.029 14.0231 14.019 0.003 

1.087 1.604 10.5521 10.495 0.054 

2.00 2.508 11.5981 11.550 0.416 

 

From the above table it is clear the trained network is able to estimate the wind speed 

with very high accuracy. The error in wind speed estimation is very close to zero, the 

maximum error is only 0.416%. 

 

      Figure 3.13 shows a comparison between the original and estimated wind speed 

during rapid change in wind conditions. The solid line shows the original wind speed and 
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the dased line shows the estimated wind speed. The results shown in Figure 3.13, 

demonstrates that the proposed controller has the ability to estimate wind speed under 

rapid change in wind conditions.  

 

Figure 3.13: Original and estimated wind speed 

In Figure 3.14, Simulation result shows the error in wind speed estimation for ANN 

based wind speed estimator. It can be noticed from the graph that the wind velocity is 

well estimated with small errors, the maximum error is only 0.22 m/s. 



 

  

 

52 

 

 

Figure 3.14: Error in wind speed estimation 

3.4.2 Simulation results for MPPT  

 

       The methods used to test the performance of MPPT controllers are both Feed- 

forward back-Propagation (FFBP) and Radial basis function (RBF). Testing is done by 

providing wind speed as input to the trained network. This trained neural network will 

behave as a controller which gives maximum power and the corresponding optimal rotor 

speed at any wind speed. Figure 3.15 shows the estimated wind speed, that is used as 

input to the RBF based MPPT controller to track the maximum power and optimal rotor 

speed. 
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Figure 3.15: Wind speed 

 

Figure 3.16: Maximum power and optimal rotor speed with respect to the estimated 

wind speed 

When wind speed changes, the controller can track the maximum power point (MPP) 

and optimal rotor speed properly as shown in Figure 3.16. Figure 3.17 shows that the 
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ANN based MPPT algorithm is able to maintain the optimum value of power coefficient 

(Cp)  that is almost constant at 0.48. 

 

Figure 3.17: Power coefficient (Cp) 

Test data was provided to the implemented Simulink network. Testing was carried 

out on both methods, i.e.; Feed-forward back-propagation and Radial basis function 

Network. Maximum power point tracking (MPPT) error is used as performance criterion 

of the implemented FFBP and RBF networks. The MPPT error is measured by 

calculating the difference between the actual optimal rotor speed and simulated optimal 

rotor speed as shhown in table 2 and table 3.  
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Table 3.2: Testing using Feed-forward Back-propagation 

 Simulation Calculated  

Wind   

speed  

(m/sec) 

Pmax 

(MW) 
ωopt 

(rad/sec) 

Pmax 

(MW) 
ωopt 

(rad/sec) 

Error 

(%) 

6.443 0.3473 1.4 0.34910 1.3944 0.42 

8.612 0.8297 1.883 0.82477 1.8637 1.04 

14.019 3.5787 3.027 3.57990 3.034 0.24 

10.495 1.5015 2.387 1.52530 2.2712 5.10 

11.55 2.0013 2.649 2.02530 2.4996 5.98 

  

Table 3.3: Testing using Radial basis function 

 Simulation Calculated  

Wind 

speed 

(m/sec) 

Pmax 

(MW) 
ωopt 

(rad/sec) 

Pmax 

(MW) 
𝜔opt 

(rad/sec) 

Error 

(%) 

6.4423 0.34929 1.3942 0.34910 1.3944 0.02 

8.612 0.82523 1.8569 0.82477 1.8637 0.36 

14.019 3.58180 3.0289 3.57990 3.0339 0.16 

10.495 1.52610 2.2793 1.52530 2.2713 0.35 

11.55 2.02650 2.5052 2.02530 2.4996 0.22 

        

Comparing the results obtained from back propagation and radial basis algorithms, 

radial basis function method is found to be more accurate. 
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     Figure 3.18 shows the original and estimated maximum power points together during 

the rapid change in wind speed. The solid line shows the original maximum power and 

the dashed line shows the estimated maximum power. The results shown in Figure 3.18, 

demonstrates that the proposed MPPT controller has the ability to track maximum power 

point under rapid change in wind conditions.  

 

Figure 3.18: Original and estimated maximum power 

In Figure 3.19, Simulation result verifies the effectiveness and accuracy of ANN based 

controller for maximum power point tracking. When wind speed changes the rotor also 

changes and based on the wind speed the controller can track the rotor speed. The 

controller is so trained that it can track the MPP correctly with maximum 9.7x     watt. 
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Figure 3.19: Error in maximum power estimation 

      Figure 3.20 shows the original and estimated optimal rotor speed together. The solid 

line shows the original optimal rotor speed and the dashed line shows the estimated 

optimal rotor speed. The results shown in Figure 3.20, demonstrates that the proposed 

MPPT controller has the ability to track optimal rotor speed under rapid change in wind 

conditions.  

 

Figure 3.20: Original and estimated optimal rotor speed 
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In Figure 3.21, simulation result shows that optimal rotor speed is well estimated with 

very small errors, the maximum error is only 0.01 rad/sec. 

 

Figure 3.21: Error in optimal rotor speed estimation 

The test results confirm the effectiveness and accuracy of the proposed ANN based 

MPPT algorithm and it has very fast response in rapidly changing wind conditions.  

3.4.3 Comparison with the traditional MPPT algorithm 

            The proposed ANN based MPPT algorithm is compared with the three 

commonly used MPPT techniques as shown in table 4. TSR methods required both 

anemometer and system pre-knowledge for wind speed estimation and MPPT; both are 

considered as drawbacks of MPPT algorithm. PSF methods does not required 

anemometer but it required system memory. Moreover, PSF method does not support 

online updating. P & O (also known as HCS) method does not required anemometer and 

system pre-knowledge for wind speed estimation and MPPT, but tracking is slow and 
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causes oscillation around the MPP. By using proposed ANN based MPPT algorithm, it is 

possible to overcome all the shortcomings of the conventional MPPT algorithms. 

 

   

Table 3.4: Comparison between traditional and proposed MPPT algorithms 

  MPPT 

algorithm 

Anemometer System Pre- 

knowledge 

Tracking   

speed 

 Oscillation        

at MPP 

 Online 

updating 

TSR   Required   Required Fast  No  No 

PSF Not required   Required Fast  No  No 

P & O Not required Not required Slow  Yes  Yes 

Proposed 

algorithm 

Not required Not required Fast  No  Yes 

 

3.4.4 Comparison with the previously proposed ANN-based MPPT algorithm 

               The proposed control algorithm is also applicable for other wind generation 

systems. A variable speed small wind generation system is considered to evaluate the 

performance of the proposed algorithm. The rating of the wind system is 1.4 kW and 

radius of turbine blades is 1m. The test results of the proposed controller and the 

previously proposed ANN based controller reported in [21] is compared. 

      Figure 3.22 and Figure 3.23 show the original and estimated wind speed by the 

proposed controller and the reported controller respectively.  
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Figure 3.22: Original and estimated wind speed 

 

Figure 3.23: Original and estimated wind speed [21] 

    Figure 3.24 and Figure 3.25 show the wind speed estimation error using proposed 

controller and the reported controller. The maximum error in wind speed estimation for 

the proposed controller is 0.11 m/s, which is 0.25 m/s for the reported controller as shown 

in Table 3.4: Comparison between traditional and proposed MPPT algorithmsTable 3.4. 
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Table 3.5: Comparison between proposed and reported MPPT techniques 

MPPT Techniques Minimum Wind Speed 

Error (m/s) 

Maximum Wind Speed 

Error (m/s) 

Previous Method 0.02 0.25 

Proposed Method 1.6      0.108 

 

 

Figure 3.24: Wind speed estimation error 

 

 

Figure 3.25: Wind speed estimation error [21] 



 

  

 

62 

 

Performance of the proposed controller is superior to the reported controller since it 

reduces wind speed estimation error. Reported controller has used feed forward back 

propagation algorithm with five tan-sigmoid neurons in the hidden layer to estimate wind 

speed while performance has been improved using ten tan-sigmoid neurons in proposed 

method. 

Figure 3.26  shows optimal rotor speed tracked by the proposed ANN based MPPT 

controller and Figure 3.27 shows the optimal rotor speed for the reported controller. 

 

Figure 3.26: Original and estimated optimal rotor speed 
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Figure 3.27: Original and estimated optimal rotor speed [21] 

From Figure 3.27 it is evident that maximum rotor speed error is around 1 rad/sec. On 

the other hand maximum error in optimal rotor speed tracking is 3.9x     rad/sec as 

shown in Figure 3.28. 

 

Figure 3.28: Rotor speed estimation error 
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A comparison between proposed and reported MPPT techniques has been made in 

Table 3.6 in terms of rotor speed estimation at maximum power point. 

Table 3.6: Comparison between proposed and reported MPPT techniques 

MPPT Techniques Minimum Rotor Speed 

Error (rad/sec) 

Maximum Rotor Speed 

Error (rad/sec) 

Previous Method 0.003 0.5 

Proposed Method 1.35      4.11      

 

So in optimal rotor speed tracking, the performance of the proposed ANN based 

MPPT controller is superior to the reported controller since it reduces wind speed 

estimation and optimal rotor speed tracking error. 

The feasibility of the proposed controller is validated and the simulation results prove 

the robustness, fast response, and exact wind speed estimation with maximum power 

point tracking capabilities of the proposed ANN based MPPT algorithm. 
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CHAPTER 4  

ANFIS-BASED MPPT CONTROLLER DESIGN 

4.1 INTRODUCTION 

Wind energy systems are the nonlinear source of energy, because the turbine output 

power is the cubic function of wind speed. For a particular wind speed there is a 

particular curve and each curve has one optimum point called Maximum Power Point 

(MPP) as discussed in previous chapters. The maximum power point varies with the wind 

speed. Therefore, accurate on-line maximum power point tracking (MPPT) controller is 

essential to extract maximum possible power from any wind speed.  

Artificial intelligence (AI) techniques are becoming popular in MPPT of photovoltaic 

and wind systems due to their learning and adaptive control capabilities. AI technique 

based MPPT algorithms are highly successful comparing to the conventional methods 

such as tip speed ratio (TSR) control method, power signal feedback method (PSF) and 

hill-climbing search (HCS) or perturb and observe (P&O) method. Neural network (NN) 

and fuzzy logic (FL) based MPPT controllers are the commonly used AI techniques. 

After a proper training an AI technique got the ability to produce accurate output for 

random input.  
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Neural network is a powerful tool to deal with nonlinear objective function but it 

works as a black box. On the other hand by using fuzzy rules and membership function, 

fuzzy logic controller can convert heuristic and linguistic terms into numerical values. 

ANFIS integrates neural network and fuzzy logic to take the advantages of both the 

techniques. Researchers already proved that ANFIS based MPPT controller is very 

efficient, robust, simple and economical [68]. The accuracy of maximum power point 

tracking depends on the accuracy of the wind speed measurement. Anemometer is used 

for wind speed estimation in previously proposed ANFIS based MPPT methods, but the 

use of anemometer is not economical. Moreover, to measure wind speed accurately 

numbers of anemometer is required to be placed in different position around the turbine 

system.  

In this chapter, the new intelligent MPPT controller based on the adaptive neuro-

fuzzy inference system (ANFIS) is proposed and developed for wind speed estimation 

and maximum power point tracking. Two series ANFIS network will be used, one for 

wind speed estimation and the other to track maximum power point. In the proposed 

algorithm there is no need of anemometer for wind speed measurement. 

4.2 ANFIS-BASED MPPT CONTROLLER DESIGN 

4.2.1 Adaptive Network-Based fuzzy Inference System (ANFIS) 

In comparison to the neural network, ANFIS also has similar type network structure 

and maps for the input-output data set using the parameters of fuzzy membership 
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functions. A simple ANFIS architecture, based on the two rule Sugeno system with two 

inputs (X and Y) and single output (F) is shown in Figure 4.1, where A1, A2 and B1, B2 

are fuzzy input memberships for input X and Y, respectively and are used to fuzzify the 

inputs [56]. 

For a Sugeno ANFIS model the typical rule set with two fuzzy if-then rules can be 

defined as in (4.1) and (4.2): [69] 

                                                       (4.1) 

                                                      (4.2) 

As shown in Figure 4.1, ANFIS consists of five layers; the function of each layer is 

described below: 

 

Figure 4.1: ANFIS architecture. 

Layer-1: 

In layer-1 every node is adaptive node. Adaptive node is the one which has the ability 

to learn through a process and adjusts its response to a new situation based on its learning 
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process. The number of adaptive node in layer-1 depends on the number of input 

membership functions. Each input is assigned a certain number of membership functions 

and each membership function corresponds to a node. The main task of this layer is to 

fuzzify input parameters using some variables named as large, medium, small etc. Their 

output is given by:  

        
                        (4.3) 

          
                        (4.4) 

Here,  is the membership function and       is the membership value for inputs X 

and Y. The subscripted 1 and j is used to represent the layer number and node number, 

respectively. 

Membership functions    can be different shaped function like trapezoidal, triangle, 

Gaussian. The most commonly used membership function is generalized bell (g-bell) and 

can be define as (4.5). 

      
 

  |
    

  
|

   
           (4.5) 

where aj is the standard deviation, bj is a positive number and cj is the mean. These 

parameters are also termed as premise parameter and will to be optimized during the 

training period. The plot generalized bell shape function is shown in Figure 4.2. The 

value of a, b, c used for this plot are 2,4,6 respectively.                             
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Figure 4.2: Generalized bell shape curve 

It has been observed that the wind speed estimation from turbine power vs rotor speed 

curve follows approximately bell shaped behavior. Though the turbine power vs rotor 

speed curve for different wind speed is not precisely follow the normal distribution 

characteristics but for large sample size (more than 30 samples) would guarantee that 

means will be bell shaped.  

Layer-2: 

All the nodes in this layer is fixed node and admits the output (membership values) 

from layer-1, where t-norm is used to “AND” these values, given by (4.6). A t-norm is a 

binary operation; a function T1= [0, 1] x [0, 1] → [0, 1] is called t-norm. The following 

four properties are to be satisfied for all a, b, c ϵ [0, 1]: 

Commutativity :    T1 (a, b) =T(b, a) 

Associativity:   T1 = (a, T(b, c)) = T(T(a, b), c) 
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Monotonicity:   T1 (a, b) ≤ T1 (a, c) whenever b ≤ c and 

Boundary condition:  T1 (a, 1) = 1 

           
      

                 (4.6) 

Output of all the nodes correspond to the firing strength of the rule. Firing strength is 

a threshold limit above which a rule/ nodes get active and pass the output to other nodes. 

Layer-3: 

In this layer-3, each node is fixed node and used to perform normalization operation. 

The j-th node of this layer calculates the ratio between the j-th node activation level and 

the sum of all activation level, which is known as normalized firing strength. The output 

of every node can be defined by (4.7). 

      ̅  
  

     
     (4.7) 

Output of every node interprets the normalized firing strength of the rule.  

Layer-4: 

In layer-4, every node is adaptive and the function can be defined as (4.8). 

      ̅     ̅                 (4.8) 

Where, pj, qj and rj are the resultant parameters (these parameters are referred as 

consequence parameters), and these need to be minimized during the training period. 
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Layer-5: 

This layer is the output layer. The output signals from layer-4 are summed together to 

obtain the result at the layer 5. This layer can be described as (4.9). 

     ∑  ̅     
∑      

∑    
     (4.9) 

 

Learning Process: 

In learning stage to develop algorithm, ANFIS optimize and adapt its parameters by 

using the training data sets for predicting the output data with very high accuracy. There 

are two types of parameters for Sugeno-type model [54]  

 Nonlinear parameters or membership functions parameters (premise parameters): 

Premise parameter defines the membership function, gradient descent methods is 

used in ANFIS to fine tune them. 

 Linear parameters or rules parameters (consequent parameters): Consequent 

parameters define the coefficient of each output equations. Least square technique is 

used in ANFIS to identify them. 

There are numbers of learning methods that have been developed by the researchers. 

The method used in this thesis work is based on the hybrid learning algorithm that is the 

combination of gradient descend or back propagation (BP) and least square estimation 

(LSE) technique to optimize the premise and consequent parameters [56].  
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In proposed work, forward pass and backward pass are used for learning algorithms: 

 In forward pass consequent (linear) parameters are calculated using a LSE algorithm 

while premise (nonlinear) parameters are held constant. 

 In backward pass premise (nonlinear) parameters are calculated using a back 

propagation algorithm while consequent (linear) parameters are held constant. 

The function of LSE learning algorithm is to calculate the square error between 

training data output and predicted output that is obtained from the Sugeno-type model. 

The expression of  LSE is shown in (4.10). 

                                        
 

 
∑    

 

 
∑         

   
 
                                          (4.10) 

          Where, Om is the target output of node m and ym is the actual output of node m. 

This error is used to update the consequence parameters of the Sugeno-type model. The 

gradient descent method used to propagate the error rates in backward direction to update 

the premise parameters. When the values of premise parameters are learned, the final 

output (F) can be expressed as a linear combination of the consequent parameters as 

shown in (4.11): [69] 

  
  

     
   

  

     
     ̅̅̅     ̅    

                = (  ̅̅̅   p1 + (  ̅̅̅   q1 + (  ̅̅̅   1 + (  ̅̅̅   p2 + (  ̅̅̅   q2 + (  ̅̅̅   2            (4.11) 

p1, q1, r1, p2, q2 and r2 are the consequent parameters. During the learning process the 
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consequent and premise parameters are updated to attain minimum error between the 

actual output and desired target output. 

4.3 IMPLEMENTATION OF ANFIS ALGORITHMS 

   A superviesd ANFIS algorithm is used for wind speed estimation and maximum power 

point tracking (MPPT). Sugeno-type ANFIS model is used for training due to its simplicity and 

three generalized bell (g-bell) membership function is used to train the ANFIS network. 

           ANFIS based MPPT algorithms are recently applied in wind energy system. The 

main draw back of the prevously proposed techniques are, mechanical sensor required for 

wind speed measurement, which is costly and system pre-knowledge is required that 

needed memory and varies from one system to the other. In the proposed ANFIS based 

MPPT methods, two series network is used for maximum power point tracking (MPPT). 

One network for wind speed estimation and the other to track maximum power point and 

optimal rotor speed. This method does not required any mechanical sensor for wind speed 

measurement or any pre-system memory. 

 

4.3.1 Wind Speed estimation using ANFIS 

The initial capital cost of the wind energy conversion system installation is pretty 

high; the capital cost can be reduced by removing the need of the wind velocity sensor 

(Anemometer). This can be done by using ANFIS based controller to estimate the wind 

velocity. The proposed training scheme of ANFIS based network to estimate wind speed 

is shown in the following Figure 4.3. 
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Figure 4.3: The proposed training scheme for ANFIS based wind velocity estimation 

 

Wind speed estimation is done in following steps: 

1. The turbine power data (Pm) is generated from the turbine power equation for 

the preselected rotor speed (𝜔r) and the wind velocity samples (Vw). 

2. The rotor speed and turbine power are recombined as data pairs {𝜔r, Pm}, 

which are employed as input matrix of the ANFIS network. On the other 

hand, the samples of wind speed (Vw) are set as target for the training process 

3. Training starts with some rules and proceeds iteratively. During the training 

process (learning stage), in forward pass consequent (linear) parameters are 

calculated using a LSE algorithm while premise (nonlinear) parameters are 
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held constant. The estimated wind speed is compared with the actual wind 

speed to calculate the estimation error. 

4. Back propagation algorithm propagates that calculated error in backward 

direction to update the premise parameters to minimize the error of ANFIS. 

The training process is completed when the error goal is reached or the total 

number of iteration exceeds the pre-determined number. 

Figure 4.4 shows the overall ANFIS structure is a 5 layer network for wind speed 

estimation. The input is two column matrix consists of turbine power (Pm), rotor speed 

(𝜔r) and the output is single column matix of wind velocity (Vw).  

 

Figure 4.4: Wind velocity estimation ANFIS model structure 
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4.3.2 Testing of trained ANFIS network 

 ANFIS-based wind speed estimation is developed in MATALB/Simulink using three 

generalized bell (g-bell) membership functions. Neural network and fuzzy logic based 

hybrid learning algorithm is used to train the network. Least square error algorithm and 

gradient descend method are used to adapt the consequent parameters and the premise 

parameters of the membership functions respectively. The ANFIS network is trained for 

300 epochs and the root mean square error (RMSE) tolerance set to       Figure 4.5 

shows that the error reached to a value of 1.05x     in about 300 epochs. Though the 

RMSE value reaches close to the targeted error tolerance, the network is said to be well 

trained and ready to use for any input data. 

 

Figure 4.5: Training error versus epochs for the ANFIS based wind speed estimation 
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4.3.3 Maximum power point tracking (MPPT) using ANFIS 

For a particular wind speed (Vw), there are different turbine power and rotor speed. There 

is a optimum power point called maximum power point (     ) for a particular Vw. The 

rotor speed corresponding to that maximum power point is termed optimum rotor speed 

(𝜔   ). To extract maximum possible power from a particular wind speed, the rotor must 

be  operated at the optimum rotor speed. The proposed training scheme of ANFIS based 

MPPT controller is shown in Figure 4.6. 

 

Figure 4.6: The proposed training scheme for ANFIS based MPPT 

           Maximum power point tracking is done in following steps: 

1. The training data, turbine maximum power (Pmax) and optimal rotor speed 

(𝜔ropt) are generated from the turbine power equation for the preselected wind 

velocity samples (Vw). 



 

  

 

78 

 

2. The optimal rotor speed and turbine maximum power are recombined as data 

pairs { 𝜔 ropt, Pmax}. For training, , the samples of wind speed (Vw) are 

employed as input matrix of the ANFIS network and the data pairs {𝜔ropt, 

Pmax} are set as target.  

3. Training starts with some rules and proceeds iteratively. During the training 

process (learning stage), in forward pass consequent (linear) parameters are 

calculated using a LSE algorithm while premise (nonlinear) parameters are 

held constant. The tracked optimal rotor speed is compared with the actual 

optimal rotor speed to calculate the optimal rotor speed tracking error. 

4. Back propagation algorithm propagates that calculated error propagates in 

backward direction to update the premise parameters to minimize the error of 

ANFIS. The training process is stopped when the targeted error goal is 

reached or pre-specified number of epochs exceeds. 

4.3.4 Testing of trained ANFIS network  

 The ANFIS-based MPPT is developed in MATALB/Simulink using three 

generalized bell (g-bell) membership functions. Neural network and fuzzy logic based 

hybrid learning algorithm is utilized to train the network. Least square error algorithm 

and gradient descend (also known as back propagation) method are used to adjust the 

consequent parameters and the premise parameters of the membership functions 

respectively. The ANFIS network is trained for 300 epochs and the root mean square 

error (RMSE) goal set to       Figure 4.7 shows that the error reach to a value of 
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1.0x     in about 300 epochs. Though the RMSE value reaches close to the targeted 

error, the network said to be well trained and ready to use. 

 

Figure 4.7: Training error versus epochs for the ANFIS 

 

4.3.5 Implementation of ANFIS MPPT controller in MATLAB/Simulink  

After the training process, one Simulink block is generated for ANFIS network 

simulation to estimate wind speed and another block for ANFIS network simulation to 

track optimal rotor speed. The ANFIS-based wind speed estimation and MPPT controller 

in Simulink model is shown in Figure 4.8 .  
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Figure 4.8: ANFIS-based wind speed estimation and MPPT controller in Simulink  

Figure 4.8 shows that the rotor speed and turbine power are presented to the first 

ANFIS based fuzzy logic controller network to estimate the wind speed. The estimated 

wind speed is then feed to the ANFIS based fuzzy logic controller network to determine 

the maximum power as well as the optimal rotor speed based on the estimated wind 

speed. 

      The testing is also done by providing rapidly changing input data (turbine power and 

rotor speed) to evaluate the effectiveness of the proposed controller under rapidly 

changing wind conditions.  
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4.4 SIMULATION RESULTS 

 

4.4.1 Simulation results for wind speed estimation 

The verification of wind speed estimation is done by applying random test input 

signals (operating power and rotor speed) to the trained network implemented in 

Simulink. Figure 4.9 shows the applied input signals. Based on the applied input signals 

the wind speed is estimated, which is shown in Figure 4.10. 

 

Figure 4.9: Input signal (Pm, 𝜔r) to the trained ANFIS network 
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Figure 4.10: Estimated wind velocity 

Wind speed estimation error is used as performance criterion of the implemented 

controller. The wind speed error is measured by calculating the difference between the 

actual wind speed and simulated wind speed as shhown in table 4.1. 

Table 4.1: Testing using Feed-forward Back-propagation 

Input Simulation Calculated Error 

(%) Turbine power, Pm 

(MW) 

Rotor speed, 𝜔  

(rad/sec) 

Wind speed, Vw 

(m/s) 

Wind speed, Vw 

 (m/s) 

0.06525453 2.5192 7.2924 7.2804 0.016 

0.8668858 2.3649 9.1219 9.1150 0.075 

4.224699 2.7763 15.2124 15.230 0.11 

2.293007 2.4164 12.2100 12.190 0.16 

2.628508 2.1593 13.9700 14.007 0.26 
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From the above table it is evident that the trained ANFIS network is able to estimate the 

wind speed with high accuracy. The error in wind speed estimation is very close to zero, 

the maximum error is only 0.26%. 

 

       Figure 4.11 shows the comparison between the original and estimated wind speed 

together. The solid line and dashed line represent the actual and estimated wind speed 

respectively. Simulation results verify the effectiveness of trained ANFIS network in 

wind speed estimation under the rapidly changing wind condition. 

 

 

Figure 4.11: Original and estimated wind speed 

Figure 4.12 shows the wind speed estimation error. From Figure 4.12 it can be seen 

that there is a small error in wind speed estimation, the maximum error in wind speed 

estimation is 0.09 m/s. 
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Figure 4.12: Error in wind speed estimation 

4.4.2 Simulation results for maximum power point tracking  

The verification of maximum power point tracking is done by applying random test input 

signal (wind speed) to the trained ANFIS network implemented in Simulink. Figure 4.13 

shows the applied input signals. Based on the applied input signal the maximum power 

point and optimal rotor speed is tracked, which is shown in Figure 4.14. 
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Figure 4.13: Estimated wind speed 

 

Figure 4.14: Maximum power and optimal rotor speed with respect to the estimated wind 

speed 
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The variation of power coefficient (Cp) over the range of transient is shown in Figure 

4.15. The Cp value is calculated based on the relation between the tracked maximum 

power corresponding to the wind speed (Cp =Pmax/0.5*ρ*A*    ). The result proved that 

the ANFIS based MPPT algorithm is able to maintain the optimum value of Cp, that is 

almost constant  at 0.48. 

 

 

Figure 4.15: Power coefficient Cp 

   Maximum power point tracking error is used as performance criterion of the 

implemented MPPT controller. The maximum power point tracking error is measured by 

calculating the difference between the actual optimal rotor speed and simulated optimal 

rotor speed as shown in table 4.2.     
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Table 4.2: Testing using trained ANFIS network 

 Simulation Calculated  

Wind 

speed 

(m/sec) 

Pmax 

(MW) 
ωopt 

(rad/sec) 

Pmax 

(MW) 
𝜔opt 

(rad/sec) 

Error  

(%) 

7.2805 0.50300 1.5823 0.5020 1.5798 0.15 

9.1150 0.98556 1.9792 0.9830 1.9779 0.11 

15.230 4.57390 3.3008 4.5700 3.3009 0.01 

12.190 2.36000 2.6494 2.3520 2.6451 0.16 

14.007 3.54140 3.0316 3.5390 3.0394 0.20 

 

Figure 4.16 shows the original and estimated maximum power points together during the 

rapid change in wind speed. The solid line shows the original maximum power and the 

dashed line shows the estimated maximum power. The results shown in Figure 4.16, 

validates the effectiveness of the proposed MPPT controller that has the ability to track 

maximum power point under rapidly changing wind conditions. 
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Figure 4.16: Original and estimated maximum power 

In Figure 4.17, simulation result shows the error in maximum power point (MPP) 

tracking. The proposed MPPT controller has the ability to track MPP accurately; the 

maximum error in maximum power point tracking is 1.23x    . 
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Figure 4.17: Error in maximum power estimation 

Figure 4.18 shows the original and estimated optimal rotor speed together. The solid line 

shows the original optimal rotor speed and the dashed line shows the estimated optimal 

rotor speed. The results shown in Figure 4.18, validates the effectiveness of the proposed 

MPPT controller that has the ability to track optimal rotor speed correctly under rapidly 

changing wind conditions.  

 

Figure 4.18: Original and estimated optimal rotor speed 
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In Figure 4.19 shows the error in optimal rotor speed tracking. Simulation result 

proved that the proposed MPPT controller tracks optimal rotor speed correctly under 

rapidly changing wind conditions. The maximum error in optimal rotor speed tracking is 

1.5x    rad/sec. 

 

Figure 4.19: Error in optimal rotor speed estimation 

The methods used for ANFIS based MPPT is good enough to estimate the wind speed 

and to track the maximum power as well as optimum rotor speed and good performance 

is achieved. 

4.5 COMPARISON OF ANN AND ANFIS BASED MPPT 

CONTROLLER 

ANN based MPPT controller used feed forward back propagation and radial basis 

function network for wind speed estimation and maximum power point tracking 

respectively. ANFIS combines both the advantages of neural network and fuzzy logic 
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system, back propagation algorithm is used to minimize the error of the controller 

system. 

The performance of ANN and ANFIS based controller is compared based on their 

estimation and tracking accuracy. The solid line and dashed line curve in Figure 4.20 

represents the wind speed estimation error of ANN and ANFIS controller respectively. 

The wind speed estimation error of ANN controller is greater than the ANFIS controller.  

 

Figure 4.20: Wind speed estimation error for ANN and ANFIS based controller 

The maximum wind speed estimation error for ANN is about 0.22 m/s, that is around 

0.1 m/s for ANFIS controller. From Table 4.3, we can conclude that ANFIS based 

controller is more accurate and robust than ANN controller in wind speed estimation. 
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Table 4.3: Comparison between ANN and ANFIS based wind speed estimation 

MPPT Techniques Minimum Wind Speed 

Error (m/sec) 

Maximum Wind Speed 

Error (m/sec) 

ANN 2.1 x     0.23 

ANFIS 4.2 x     0.0988 

 

The simulation results for maximum power point tracking using ANN and ANFIS 

based controller are shown in Figure 4.21. The solid line curve represents the maximum 

power point tracking error of ANN based MPPT controller, on the other hand the dashed 

line curve presents the maximum power point tracking error of ANFIS based MPPT 

controller. The maximum power point tracking error for ANN is 0.0095 that is 

1.23x     for ANFIS controller. Table 4.4 noticed that the maximum power point 

tracking of ANFIS based MPPT controller is better than the ANN based MPPT 

controller.  

 

Figure 4.21: Maximum power tracking error for ANN and ANFIS based controller 
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Table 4.4: Comparison between ANN and ANFIS based maximum power point 

(MPP) tracking 

MPPT Techniques Minimum MPPT Error 

(watt) 

Maximum MPPT Error 

(watt) 

ANN 3.56 x     9.5 x     

ANFIS 2. 3 x     1.23 x     

 

The accuracy of optimum rotor speed tracking depends on maximum power point 

(MPP) tracking. If the accuracy in MPP tracking is very much accurate then the rotor 

speed estimation will be also accurate and vice-versa. The simulation results for optimum 

rotor speed tracking using ANN and ANFIS based MPPT controller are shown in Figure 

4.22. The solid line and dashed line curve in Figure 4.22 represents the optimal rotor 

speed estimation error of ANN and ANFIS based MPPT controller respectively.  

Table 4.5: Comparison between ANN and ANFIS based rotor speed estimation 

MPPT Techniques Minimum Rotor Speed 

Error (rad/sec) 

Maximum Rotor Speed 

Error (rad/sec) 

ANN 3.702 x     0.0100 

ANFIS 1.1300 x     1.4875 x     

 

The maximum error in optimal rotor speed tracking for ANFIS is about 1.4875x    , 

which is 10x     for ANN. From Table 4.5, we can conclude that ANFIS based 
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controller is more accurate and robust than ANN controller in optimal rotor speed 

tracking.   

 

Figure 4.22: Optimal rotor speed error for ANN and ANFIS based controller 

From the above comparison between ANN and ANFIS based MPPT controller, it can 

be concluded that the effectiveness and accuracy in terms of wind speed estimation, 

maximum power point and optimum rotor speed tracking, ANFIS based MPPT controller 

is superior than the ANN based MPPT controller. 
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CHAPTER 5  

IMPLEMENTATION OF THE MPPT ON A PMSG WIND 

GENERATOR SYSTEM 

 

5.1 INTRODUCTION TO PMSG WIND SYSTEM 

Variable-speed wind turbine has the advantage to follow the variation of wind speed 

and produce the maximum power under the normal operation through maximum power 

point tracking (MPPT). Variable-speed wind turbine can use both synchronous generator 

and doubly-fed induction generator. The synchronous generator can either be permanent 

magnet synchronous generator (PMSG) or excited magnet synchronous generator. The 

excited magnet synchronous generator requires an extra DC power supply to the rotor 

windings produce a rotating magnetic field. The magnetic field can be control by 

regulating the flow current of the rotor windings. The generator output varies with the 

rotor speed and the exciting DC current. In contrast, the magnetic field of a PMSG cannot 

be controlled. The PMSG has been considered as a system which is used to convert the 

mechanical energy obtained from the wind to electrical energy. In a PMSG, the field 

winding of the rotor is replaced by a permanent magnet. The advantages of PMSG are- 

 

i). Reduced field copper loss. 

ii). Higher power density. 
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iii). Lower rotor inertia. 

iv). Increase robustness. 

v). The system is simple and reliable. 

vi). It has high quality output and does not need to compensate for reactive 

power. 

 

The demerits are loss of flexibility of field flux control and possible demagnetization 

effect and its cost. 

 

A PMSG connected to a power grid is shown in Figure 5.1. The shaft of the wind 

turbine is directly coupled with the rotor of the generator. There are number of topologies 

of grid connected PMSG wind turbine, the most popular strategy is the back-to-back 

converter. The generator side and grid side back-to-back converters are connected to each 

other through a DC link capacitor. The output power transfers through an AC-DC-AC 

stage, which consists of a diode bridge rectifier, a boost converter, and a grid-side inverter, 

which is connected to the grid. Though the generator is fully decoupled from grid, by using 

active filter the power factor can be corrected.  Therefore, before injecting the power to the 

grid, the inverter can improve the quality of the output power with a unit power factor. 

Converter grid connection is also advantageous because it allows the variable speed operation 

of wind turbine that enables the MPPT to increase the efficiency of the wind system.  
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Figure 5.1: PMSG system configuration 

 

 

         Due to the low cost and high reliability of diode bridge rectifier, it is employed 

instead of a controlled rectifier. A boost converter controls the DC side voltage and current 

for MPPT and steps up the voltage for grid connection. Finally, the captured power is 

transferred to the grid via an inverter. 

5.1.1 Testing Procedure of the MPPT on a PMSG wind system 

The ANFIS based MPPT algorithm is implemented on a PMSG wind system to 

evaluate the effectiveness of the proposed MPPT technique. MPPT means for controlling 

wind turbine to track the maximum power point at different wind conditions during 

operation. The control generation for PMSG wind system using MPPT technique is 

shown in Figure 5.2. The MPPT algorithm determines the optimal rotor speed 

corresponding to the maximum power point at different wind speeds during operation. PI 

controllers along with MPPT techniques are used to extract maximum possible power at 

any wind speed. Based on the relation between optimal rotor speed and DC output 
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voltage (as shown in 5.3), the optimal DC voltage is generated. The generator side 

converter and grid side converter is controlled based on the output of the MPPT 

algorithm. The optimal rotor speed (output of MPPT algorithm) is compared with the 

operating rotor speed to calculate the error. The calculated rotor speed error is used as 

input of PI controller then the PI controller adjusted the operating rotor speed to the 

optimal rotor speed and maximum power extraction is achieved. Similarly, the grid side 

converter duty ratio is adjusted based on the optimal DC voltage and the operating DC 

voltage. The difference between optimal DC voltage and operating DC voltage is used as 

input to the other PI controller, which is used to vary the duty ratio of the grid side 

converter.    

5.2 IMPLEMENTATION OF ANFIS-BASED MPPT TO PMSG WIND 

SYSTEM 

The arrangement of the developed ANFIS-based controller for MPPT of a PMSG wind 

system is shown in Figure 5.2. The input of the proposed ANFIS based MPPT is the 

estimated wind speed (Vw). The output of the ANFIS based MPPT controller will 

determine the optimal rotor speed (𝜔ropt) corresponding to maximum power point at any 

wind speed. Based on the optimal rotor speed the DC capacitor voltage will be calculated 

from equation (5.3). The duty ratio of generator side and grid side converters will be 

controlled based on the optimal rotor speed (𝜔ropt) and calculated optimal DC voltage 

(Vdc0).   
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Figure 5.2: ANFIS based MPPT control generation for PMSG wind system 

Both wind speed (Vw) and optimal rotor speed (𝜔ropt) are the cubic function of the 

maximum power output, 

                                                  
    𝜔    

                                                      (5.1)  

For constant flux (𝜙c), the phase back emf of PMSG system can be defined as (5.2). 

                                                      𝜙 𝜔                                                            (5.2) 

Here, 𝜔r is the rotor speed that is proportional to the back emf Eb and K is a co-

efficient. 

For a non-salient PMSG wind system, the phase terminal voltage (Vac) can be defined 

as (5.3). 

                                                                 𝜔                                     (5.3)        
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Here, Isc, Rs, Ls and 𝜔  are the phase current, stator resistance, stator inductance and 

electrical angular frequency respectively. Electrical angular frequency𝜔   𝜔 , p is the 

number of pole pairs. 

The AC and DC side voltage amplitude of diode bridge rectifier can be expressed as 

in (5.4). 

                                                          (
 √ 

 
)                                                        (5.4) 

Solving equations (5.2) and (5.4), the relation between DC voltage and rotor speed 

can be defined as (5.5). 

                                                                𝜔                                                                    

(5.5) 

At maximum power point,  

                                                                         𝜔                                                      

(5.6)         

Here, Vdc-opt is the optimum rectified DC voltage for a given wind speed.                                              

From equation (5.1) and (5.6), the relation between maximum power and DC voltage 

can be expressed as shown in (5.7). 

                                                         
                                                             (5.7) 
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The DC output power of the rectifier is, 

                                                                                                                 (5.8) 

Here,  r,  G and  T are the efficiency of the rectifier, generator and converter 

respectively. Combining equation (5.7) and (5.8), we get 

                                                         
                                                                       (5.9) 

By substituting the DC output power, Pdc =Vdc Idc in equation (5.6), we can write, 

                                                       
                                                                       (5.10) 

The converters are controlled with optimal rotor speed and DC output voltage. Based 

on the values of optimal rotor speed (𝜔ropt)  and operating rotor speed (𝜔r) the set points 

of the generator side PI controller is adjusted, which results in maximum power 

extraction. On the other hand depending on Vdc0 and Vdc, the set points of grid side PI 

controller are adjusted to maintain the DC link voltage at constant value. The proposed 

ANFIS based MPPT controller is extremely fast and able to generate set points rapidly. 

5.3 NONLINEAR PMSG WIND SYSTEM MODEL 

For actual system implementation, the system dynamics have to be considered in 

details due to the random variation in wind speed. The system model considered in this 

research includes the dynamics of generator stator, the drive train dynamics, and 

converter and DC link dynamics. 
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5.3.1 The Synchronous Generator 

In or to develop the mathematical model of PMSG, it is required to develop the 

following assumptions: 

i). The conductivity of the permanent magnet is zero 

ii). Saturation is neglected 

                        iii). Induced electromotive force (EMF) is sinusoidal 

iv). Eddy currents and hysteresis losses are negligible 

v). There are no field current dynamics 

 

With the assumptions above, the wind turbine causes the rotor of the PMSG to rotate. 

The voltage-current-flux relationship of PMSG wind system can be written as- 

                                                                                                                                    

                                                                                                                                                

                                                                                                                                 

                                𝜔   
 ̇ 

𝜔 
                                                                                      

                                𝜔   
  

  

̇
                                                                         (5.5) 
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Here,    is the produced flux due to the permanent magnets and it is constant. The d-axis 

and q-axis fluxes are denoted as    and    respectively. 

Now, From Equation (5.3) and (5.6) we can write, 

                                                                                                                                        

 

The voltages in the direct axis (d-axis) and quadrature axis (q-axis) coordinate system, 

can be described as follows: 

 

                  

 

  
      𝜔         𝜔

 

  
                                 

 

                  

 

  
      𝜔         𝜔

  

  
                                

 

Where, 

Vstq is the q-axis stator terminal voltage in volt 

Vstd  is the d-axis stator terminal voltage in volt 

istd is the d-axis stator current in ampere  

istq is the q-axis stator current in ampere  

ω  is the angular velocity of generator rotor in rad/sec 

Rst is the equivalent resistance of the stator winding 

Lstd  is the stator equivalent inductance in d-axis 

Lstq  is the stator equivalent inductance in q-axis 

 

  
     is the amplitude of the flux linkages in v/rad/sec 
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The voltages refer to the d-q axis of PMSG system is shown in Figure 5.3

 

Figure 5.3: PMSG equivalent circuit in synchronous frame 

 

The dynamic model of PMSG can be represented in rotating reference frame with the 

help of following equations. 

 

             
     
  

  
𝜔 

  
[         𝜔              ]                                                                

 

 

          
     

  
  

𝜔 

  
[         𝜔          𝜔       ]                                                      

 

Here,       ,       are the d-axis, q-axis generator current respectively and Ef  is the 

voltage due to permanent magnet residual flux. 

The equation of rotor angle for the PMSG system can be written as- 

           ̇  𝜔  𝜔                                                                                                 (5.12) 

 

 



 

  

 

105 

 

5.3.2 The Derive Train 

Already gearbox less operation of PMSG systems are adopted and becoming popular 

due to its higher reliability, less noise and more efficiency. The two-mass drive train 

model is shown in Figure 5.4 Htb and Hgen denotes the turbine and generator inertia 

constant respectively. The shaft stiffness coefficient and torsional angle of shaft 

connecting the turbine with the generator is represented by Kss and θss respectively. 

 

Figure 5.4: The two-mass drive train model 

 The electromechanical equations of the turbine-generator rotor are written in terms of 

the differential equations, 

                            
     

  
               𝜔                                                                    

 

                             
      

  
                   𝜔                                   (5.14) 

   

                        
    

  
  𝜔  𝜔   𝜔                                                                     (5.15) 
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The terms Dtb, Dgen refer to damping coefficients of the turbine and generator 

respectively. The expression for the input power Pm is given in Equation (2.5), while the 

generator electrical output power Pelec is expressed as- 

                                                                                               (5.16)                         

5.3.3 The Converters 

The inverter output current in the d-q axes are written in terms of inverter internal and 

terminal voltages as, 

             
      

  
 =   

 

       
[                      𝜔         ]                          (5.17)         

  

 

              
      

  
 = 

 

    
[                      𝜔         ]                             (5.18) 

The real power transfer from generator to the grid can be successfully completed 

through DC-link capacitor by keeping its voltage constant. The current in DC-link is 

discontinuous which produces voltage ripples in DC-link capacitor. By using large size 

capacitor those ripples can be eliminated but control will be slow. A small size capacitor 

can speed up the control but there will be some ripples. So depending on the application 

the optimum size of the capacitor should be selected; because it’s a trade-off between fast 

control and voltage ripple. 
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The terminal voltage Vter and inverter internal voltage Vinv are broken up along the d-

q axes and substituted in equation (5.10) and (5.11). By equating the input and output 

power to the dc capacitor gives, 

                   
    

  
                                                                                        (5.19) 

The dc capacitor input and output power expressed in terms of component currents 

are written as, 

                                                                                                                    (5.20) 

                                                                                                         (5.21) 

By controlling modulation indices (duty cycles) and the converter firing angles both 

the converters can be controlled, 

                                                                                                          

                                                                                                   (5.23) 

Substituting the above Equations in Equation (5.19) gives the differential equation of 

the dc capacitor as, 

    

  
 

 

   
[                                                                        
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5.4 SIMULATION RESULTS 

A grid connected 2.5 MW permanent magnet synchronous generator (PMSG) system 

is considered to verify the competence of the proposed ANFIS-based MPPT controller. In 

the implementation of the proposed ANFIS based MPPT controller detailed nonlinear 

modeling has been considered. MATLAB/Simulink simulation is used to verify the 

effectiveness of the proposed MPPT controller. The PMSG wind system parameters and 

the control parameters are shown in table 6 and table 7 respectively. 

 

Table 5.1 PMSG wind system parameters 
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Table 5.2 Control parameters 

Items Specification 

PI control in rectifier 

Proportional gain 

factor 

-3 

Integration gain factor 0 

PI control in inverter 

Proportional gain 

factor 

-1 

Integration gain factor -0.1 

 

To evaluate the performance of the proposed ANFIS based MPPT controller on a grid 

connected PMSG system, stair-case wind speed variation is considered. Stair-case wind 

speed variation verifies the competence of the proposed MPPT controller for the worst 

case of step-up or step down change in wind conditions. The randomly changing wind 

velocity is considered for two minutes duration as shown in Figure 5.5. For each sample 

period the change in wind speed remain constant. From 45 sec to 50 sec the wind speed 

increases linearly. 
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Figure 5.5: Wind speed variation over a period of 120s 

With the change in wind speed, the turbine output changes. The variation in turbine 

output power with respect to the change in wind speed is shown in Figure 5.6.  

 

 Figure 5.6: Shaft power variation with the wind speed change 
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The result confirm that the proposed MPPT controller is able to track the maximum 

power point with the change in wind speed correctly as a result the shaft output power is 

changing according to the wind speed variation. From Figure 5.7, it is noticed that the 

generator power output follows the change in wind speed properly.  

 

Figure 5.7: Generator output power following the wind speed variation 

According to Figure 5.2, MPPT algorithm sets the reference value of optimal rotor 

speed and converter DC voltages to the PI controller of the generator side converter and 

grid side inverter. Figure 5.8 and Figure 5.9 demonstrates the change in modulation 

indices (duty ratio) m1 and m2 for both the converters respectively. 
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Figure 5.8: Variation in the generator side converter duty ratio 

 

 

Figure 5.9: Variation in duty ratio for grid side converter 
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The PI controller gains of the converters have been tuned properly to restore the 

system variables to their quasi-steady values without any oscillation. Figure 5.10 and 

Figure 5.11 shows the variation of converter DC voltage and output power respectively. 

The converter DC voltages changes following the random variation in wind speed.    

 

 

Figure 5.10: DC voltage of the converter 

On the other hand Figure 5.11 noticed that the converter output tracks the shaft output 

correctly; there are few spikes due the sharp change in the wind speed. 
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Figure 5.11: DC output power of the converter 

Figure 5.12 presents that the proposed ANFIS based MPPT controller is able to track 

the maximum power point appropriately maintaining the optimum value of the power 

coefficient (Cp). During the whole range of operation period (120 sec), the value of power 

coefficient remains close to 0.48 with very small deviation. 
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Figure 5.12: Change in power coefficient for random wind speed variation 

The proposed ANFIS based MPPT is shown to present a good slowly varying transient 

speed profile shown in Figure 5.13 following the random change in wind speed even 

when all the system dynamic relations are included in system modeling. 

 

Figure 5.13: Speed variation of generator 
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The proposed ANFIS based MPPT algorithm is tested on a permanent magnet 

synchronous generator (PMSG) wind system. The PMSG wind system is controlled 

based on the optimum relationship between rotor speed and DC voltage. To implement 

the proposed MPPT controller detailed nonlinear modelling has been considered. The 

simulation results noticed that the MPPT controller is able to extract maximum power 

even in rapidly changing wind conditions and during the maximum power extraction, the 

optimum value of power coefficient is maintained. The proposed MPPT technique does 

not require any mechanical sensor for wind speed measurement or system pre-

knowledge.  
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

 

6.1 CONCLUSION 

Wind speed sensor-less both ANN and ANFIS based maximum power point tracking 

(MPPT) algorithm has been developed in this work. The effectiveness of the proposed 

ANN based MPPT controller is compared with the previously proposed controller. A 

comparison is also made between the proposed ANN and ANFIS based MPPT controller. 

The performance of the ANFIS based MPPT algorithm has been tested on a grid 

connected PMSG wind system. 

From the comparison between the proposed and the reported ANN based MPPT 

controller it has been observed that the proposed controller is better than the reported 

controller both in wind speed estimation and maximum power point tracking. Comparing 

the results of the proposed ANN and ANFIS based MPPT controller, it has been observed 

that the ANFIS based MPPT controller shows better accuracy both in wind speed 

estimation and maximum power point tracking. By testing the performance of the 

proposed ANFIS based MPPT controller on a PMSG wind system, it has been observed 
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that MPPT controller is very accurate in controlling PMSG wind system to operate close 

to the maximum value of power coefficient (Cp). 

Two series network is used for both ANN and ANFIS based MPPT algorithm. One 

network for wind speed estimation and the other for maximum power point and optimal 

rotor speed tracking. The proposed MPPT algorithm does not require any mechanical 

sensor for wind speed estimation or the system pre-knowledge. Moreover, the proposed 

MPPT algorithm is also applicable for any other wind system. Two series network may 

made the MPPT algorithm little complex, but it can estimate wind speed and track both 

maximum power point and optimal rotor speed with great accuracy. 

 Comparisons were done between the ANN and ANFIS based MPPT controller 

technique and found that ANFIS based controller can provide superior performance over 

ANN based MPPT controller. ANFIS based MPPT controller is selected and 

implemented on a grid connected PMSG wind energy system, test results confirm the 

effectiveness and accuracy of the proposed MPPT algorithm and it has very quick 

response in transient condition.  

6.2 FUTURE WORK 

 The algorithm can be tested on a lab-machine with all necessary sensors and 

controllers can be installed to test the performance of both the proposed ANN and 

ANFIS-based MPPT controller. 
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 In both the proposed MPPT algorithm two series networks have been used, one 

for wind speed estimation and other to track maximum power point and optimal 

rotor speed. If it can be done using a single network, then the complexity of the 

proposed MPPT controller will be reduced. 

 It will be interesting to compare the proposed MPPT algorithm with the other 

existing MPPT techniques. 

 Real time implementation of the proposed MPPT controller will be more 

interesting to study. 
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NOMENCLATURE AND SYMBOLS 

DC Directional Current 

AC Alternating Current 

PMSG Permanent Magnet Synchronous Generator 

PI Proportional plus Integral 

ANN Artificial Neural Network 

ANFIS Adaptive Neuro-Fuzzy Inference System 

FFBP Feed Forward Back Propagation 

RBFNN Radial Basis Function Neural Network 

AIT Artificial Intelligence Technique 

WECS Wind Energy Conversion System 

Pm Turbine mechanical power 

Vw Wind speed 

ρ Air density 

A Wind turbine blades swept area 

Cp Power coefficient 

λ Tip speed ratio 

λopt Optimum tip speed ratio 

β Blade pitch angle  

R Radius of wind turbine rotor 

𝜔 Mechanical angular velocity of the wind turbine rotor 

𝜔opt Optimum rotor speed 

MPP Maximum Power Point 



 

  

 

121 

 

MPPT 

𝝋0 

𝝋d 

𝝋d 

Maximum Power Point Tracking 

Flux due to permanent magnet 

d-axis flux 

q-axis flux 

Vstq q-axis stator terminal voltage in volt 

Vstd d-axis stator terminal voltage in volt 

istd d-axis stator current in ampere 

istq q-axis stator current in ampere 

Rst Equivalent resistance of the stator winding 

Lstd Stator equivalent inductance in d-axis 

Lstq Stator equivalent inductance in q-axis 

WT Wind Turbine 

RE Renewable Energy 

RES Renewable Energy Source 

DG Distributed Generation 

Cpmax Maximum power coefficient 

𝜔r Rotor Speed 

𝜔* Rotor speed corresponding to the maximum power 

FS-VP Fixed Speed Variable Pitch 

FS-FP Fixed Speed Fixed Pitch 

VS-FP Variable Speed Fixed Pitch 

VS-VP Variable Speed Variable Pitch 

HCS Hill Climbing Search 
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P&O Perturb and Observe 

MSE Mean Squared Error 

Pmax Maximum power 

 

TIP            Tip Speed Ratio 

RMSE             Root Means Square Error 

PSO                Particle Swarm Optimization 
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