

Copyright ©2014 by Taher A. Al-shehari
All Rights Reserved

iii

Dedication
I dedicate this thesis to my parents, my wife and children (Ameen and Fahd).

iv

 داءـــــــــــــــــإه

لي تشجيعهم و دعائهم و لصبرهم ورعاهم الله حفظهم ووالدتي والدي إلى العمل هذا أهدي

 و ،العلمية مسيرتي خلال متواصل ومعنوي مادي دعم و جهد من لي قدماه ولمامنذ الصغر

 رب العظيم الله سألأ لي، قدماه مما اليسير بالجزء ولو أفي أن استطيع فلن عملت مهما

إنه مجيب برهم و طاعتهم إلى يوفقني أن و والعافية الصحة تاج يلبسهم أن العظيم العرش

أمين الغالين وإلى أبنائي أمين أم زوجتي إلى والأمل الصبر ينبوع إلى أهديه كما الدعاء،

 و أخواتي إلى ، كما أهديهالدراسةدور كبير في تخفيف أعباء لابتسامتهمالذي كان وفهد

 .والدعاء بالتشجيع لي لدعمهم إخواني

ACKNOWLEDGMENTS

My great thanks to almighty Allah for every things on my live and for helping

me to achieve this work. Acknowledgment is due to King Fahd University of

Petroleum and Minerals for supporting this research. Most importantly, I would

like to express my sincere gratitude to my advisor Dr. Sami Zhioua for supervising

me on this thesis and helping me in every step of my work. His patience, moti-

vation and guidance helped me immensely during my research and the writing of

this thesis. I am so grateful to Dr. Moataz Ahmed and Dr. Jameleddine Hassine

for their invaluable advice and interest in my research and for taking time to serve

on my thesis committee. I would not come to this position without huge support

from my family and friends. Thank my parents and thank my wife for your great

family leader to carry all the burdens to focus on achieving my thesis. My babies

Amen and Fahd who have offered their beautiful smile to comfort me during the

tough journey of the thesis. I also express my sense of gratitude to all who, directly

or indirectly, have lent their helping hand in this enterpriser. Great thanks due

to King Fahd University of Petroleum and Minerals represented by Dr. Khaled

Al-Sultan for supporting me throughout this research and during my MS study.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS v

LIST OF TABLES viii

LIST OF FIGURES ix

ABSTRACT (ENGLISH) xii

ABSTRACT (ARABIC) xiv

CHAPTER 1 INTRODUCTION 1

1.1 Privacy issues in Internet . 2

1.2 Anonymity protocols . 5

1.3 Traffic Analysis Attacks on Anonymity Protocols 7

1.4 Website Fingerprinting . 9

1.5 Web Browsers . 11

1.6 Objectives of the research . 12

1.7 Methodology . 13

1.8 Overview of contributions . 14

1.9 Thesis organization . 15

CHAPTER 2 TRAFFIC ANALYSIS ON TOR ANONYMITY

SYSTEM 18

2.1 Overview of Tor system . 19

2.2 How does Tor work? . 21

vi

2.3 Website fingerpinting attacks on Tor 25

CHAPTER 3 COMMONLY USED WEB BROWSERS 30

3.1 How web browsers work? . 32

3.2 Core differences between web browsers 34

3.2.1 Web browsers’ rendering/layout engines 35

3.2.2 Web browsers’ JavaScript engines 37

3.2.3 Important web contents and web technology features . . . 43

CHAPTER 4 WEBSITE FINGERPRINTING ATTACK 53

4.1 Experimental Setup . 54

4.2 Data collection and Preprocessing Phases 56

4.3 Classification of web browsers resistances 59

CHAPTER 5 4. ROOT CAUSES BEHIND DIFFERENT RESIS-

TANCE LEVELS OF BROWSERS 62

5.1 Browsers’ web technology features 63

5.2 The impact of browsers-dependent features on their web browsing

traffic patterns . 66

5.2.1 The impact of JavaScripts on web browsers’ traffic patterns 68

5.2.2 The impact of third-party loaded contents on traffic pat-

terns of browsers . 71

5.2.3 The impact of retrieval aspects of browsers on the consis-

tency of their traffic patterns 74

5.3 Discussion . 82

5.3.1 Dynamic contents . 83

5.3.2 Localization . 83

5.3.3 Recommendation . 85

CHAPTER 6 CONCLUSION AND FUTURE WORK 86

REFERENCES 88

vii

LIST OF TABLES

3.1 The recent rendering/layout engines used by tested web browsers. 36

3.2 The recent JavaScript engines used by tested web browsers. 38

3.3 The web technologies that have an impact the web browsing traffic

pattern. 51

4.1 Software Tools. 54

4.2 Specifications of hardware platform. 54

4.3 List of used websites for investigating the resistance levels of

browsers to website fingerprinting attack. 58

5.1 Web technologies that affect the shape of traffic patterns of web

browsers. 64

5.2 List of all possible web browsing content-types that we analyzed on

Web pages’ Data Set. 67

5.3 Characterizing traffic characteristics generated by tested web

browsers. 68

viii

LIST OF FIGURES

1.1 A survey conducted by Pew Research Center’s internet and ameri-

can life project omnibus in July 2013, shows possible eavesdroppers

that may violate the privacy of web users [66]. 4

1.2 Browsers’ Statistics and Trends On May, 2013. Source:

http://gs.statcounter.com/ . 12

2.1 Recent statistics of the number of Tor users around the world.

Source: http://www.torproject.org/about/overview.html.en. . . . 20

2.2 Recent trend of the number of Tor relays around the world. Source:

http://www.torproject.org/about/overview.html.en. 21

2.3 Tor circuit components: the client node, the destina-

tion node, and the three relays in between. Source:

http://www.torproject.org/about/overview.html.en. 22

2.4 The Onion Routing technique of Tor in which the client sends a

message to a server wrapped with encrypted layers[65]. 23

2.5 Tor session is decoded as it was normal HTTPS session. 24

3.1 Browsers’ main components [34]. 33

3.2 Basic flow of browser rendering engines [34]. 37

3.3 The interactions between Java Script ,that is executed on browser,

and web page server. 40

3.4 Possible scenario of XSS attack 42

ix

3.5 Common web contents that may be fetched from

third party sites. Source: http://bharathmarrivada.

blogspot.com/2010/09/browser-wars-speed-testperformance.html . 45

3.6 A process mechanism of Server-Sent Event between supporting web

browser and a server. 47

3.7 Accessing multi level/linked web pages over the web [45]. 48

3.8 An inline iframe element embedded within the main web page. . . 49

4.1 The various phases and an overview of our web page fingerprinting

attack scenario over Tor. 56

4.2 The resistance rate of web browsers against website fingerprinting

attack over Tor. 60

5.1 The various amount of JS data flow which reflects the different

behaviors of browsers’ JavaScript engines. 69

5.2 The various number of third-party servers retrieved by web

browsers which affect their web browsing traffic patterns. 72

5.3 The inconsistency between the sequence order of retrieved objects

for 5 visits to the same website. 75

5.4 The impact of JavaScripts blocking on web browsing traffic pattern

of Opera. 76

5.5 The impact of JavaScripts blocking on web browsing traffic pattern

of Opera. 77

5.6 The variations in retrieval time of browsers and their impact on the

consistency of web browsing traffic patterns. 78

5.7 The automatic periodical loading of Chrome from Google’s servers. 79

5.8 The number of empty log files collected over browsers during data

collection phase which affect the website fingerprinting accuracy of

browsers. 81

5.9 The security features that caused the most empty log traces of Opera. 82

x

5.10 Different contents for the same website that shows website local-

ization. 84

xi

THESIS ABSTRACT

NAME: Taher A. Al-shehari

TITLE OF STUDY: Web Browsers Resistance to Traffic Analysis Attacks

MAJOR FIELD: Department of Information and Computer Science

DATE OF DEGREE: November 29, 2014

Privacy enhancing technologies (PETs) is the most recent field of security focus-

ing on protecting network communications from traffic analysis attacks. The main

idea of PETs is to establish an encrypted tunnel to hide the contents and addresses

of users from external observers. One of the most popular anonymity systems is

The Onion Routing (Tor) with more than 4,000,000 users and around 4500 re-

lays. The popularity of Tor is gained from protecting users’ confidential activities

and personal privacy by hiding their locations and traffic contents against traffic

analysis attack. Although Tor is considered as the most commonly used anonymity

system, an attacker can recognize visited web pages over Tor by exploiting some

features inferred from observed traffic (e.g., packets sizes, directions, timings, etc).

A recent and popular traffic analysis attack is called website fingerprinting. Ex-

isting website fingerprinting attacks identify visited web pages on Tor using just a

xii

single web browser namely ”Firefox”. However, the web users around the world

use Tor to protect their privacy over various browsers. In this thesis we setup a

website fingerprinting attack on ”Tor” to investigate different levels of resistance

of the most commonly used browsers against traffic analysis attack based on fea-

tures inferred from their traffic patterns. To the best of our knowledge, this is

the first comparative analysis study involving browsers resistance against website

fingerprinting attack based on a deep analysis that reaches the main causes that

stand behind those different resistances. The aims of applying web page finger-

printing attack on top web browsers are three folds: First, to expose the possible

vulnerabilities in (Tor and browsers) that the attacker may exploit in order to push

Tor and browsers makers to empower their products to defeat any possible exploits

by attackers. Second, to raise web users awareness for more privacy protection

by selecting the browser with the highest privacy protection. Third, the outcomes

of our research might be very beneficial to security forces and law enforcement

of the governments to highlight what are the web pages their citizens may visit

anonymously on different browsers. Our empirical results showed to which extent

each browser protects against web page fingerprinting attack as well as exposing

the root causes stand behind different resistances of browsers.

xiii

xiv

 الرسالةملخص

 "العنكبوتيةعبرالشبكه المارةمقاومة متصفحات الإنترنت للهجوم عن طريق تحليل البيانات "

 : طاهر علي يحيى الشهاريالاسم

 تاالقسم: علوم الحاسب الآلي والمعلوم

 التخصص: علوم الحاسوب

 27\10\2014: المناقشةتاريخ

في أمن المعلومات والتي تركز على حماية الحديثةمن أهم المجالات الخصوصيةتعتبر تقنيات حماية

 الفكرةعبر الشبكات. إن المارةعن طريق تحليل خصائص البيانات الاختراقيةمن الهجمات الشبكيةالاتصالات

مستخدمي بيانات مشفره لإخفاء محتويات وعناوين اتصالهو إنشاء قناة الخصوصيةوراء تقنيات حماية الرئيسية

أكثر تقنيات حماية ”Tor“تور التعمية. يعتبر نظام الشبكةالإنترنت من المتنصتين المحتملين عبر نطاق

مستخدم. على الرغم من أن نظام تور يعتبر من أقوى 4,000,000شيوعاً حيث يستخدمه حالياً أكثر من الخصوصية

إلا أن بيانات مستخدميه مهدده بإمكانية وجود المتنصتين المجهولين بين نقطتي الاتصال)الزبون التعميةأنظمة

عبر المارةبعض خصائص البيانات استنتاجوالخادم(الذين يمكن أن يكشفوا هوية المواقع التي يتصفحونها من خلال

تقنيات لكسر نظام السابقة(. لقد طبقت الأبحاث ، التوقيت بينهم، .. إلخاتجاههم)أحجام رزم البيانات، مثل الشبكة

مرور من خلال استنتاج خصائص نمط الضحيةالمواقع التي يتصفحها هويةتور عن طريق التعرف على التعمية

 مختلفةباستخدام متصفح واحد فقط "فايرفوكس". إن مستخدمي الانترنت حول العالم يستخدمون متصفحات البيانات

 التعميةبكسر نظام البحثية لأطروحةاتور، لذا لقد قمنا في هذه التعميةن المتنصتين عبر نظام لحماية خصوصيتهم م

باستخدام أكثر المتصفحات شيوعاً)فايرفوكس، انترنت الضحيةالمواقع التي يتصفحها هويةتور للتعرف على

التي استخدمت و السابقة(. إن هذا البحث يتغلب على جوانب القصور في البحوث سفاري، أوبيرااكسبلورر، كرووم،

أكثر خمسه متصفحات التي يقوم المقاومةتحليليه لمدى دراسةمتصفح ويب واحد "فايرفوكس" من خلال قيامنا بعمل

تحليليه عميقه بدراسةا إلى ذلك لقد قمن بالإضافة .عبرا لشبكه لحماية البيانات من المتنصتينحول العالم استخداما

الذي يقوم بها كل متصفح لحماية خصوصية المقاومةمدى للمتصفحات التي تقف خلف الجذريةالأسباب لاستنتاج

من الحكوماتجداً لقوات أمن المعلومات وتطبيق القانون في مفيدةتعتبر نتائج مخرجات هذا البحث مستخدميه.

التي يمتع بها كل متصفح ضد الخصوصيةالضعف في حماية خلال وضع صوره واضحه عن مدى القوة و

تور من تصفح المواقع التي تعتبر ممنوعه في التعميةوأيضا مراقبة المستخدمين الذين يستخدمون نظام المتنصتين

 .تلك الدول

CHAPTER 1

INTRODUCTION

The World Wide Web (WWW) makes modern life much more convenient as the

people relay massively on the internet in several daily activities, but there are

real threats in which their privacy and anonymity might be violated. The privacy

and anonymity of web users can be endangered by possible attackers using some

tools to eavesdrop their activities. When internet users browse the web, their vis-

ited websites destinations are revealed to several routers along the way. External

observers such as private and governmental security agencies may passively ob-

serve and collect information by monitoring and censoring users’ activities on the

internet. Therefore, the anonymity systems on the internet are very important

to hide the privacy of people who want to surf the web for their critical needs

such as sending secret E-mails and making online business. Earlier encryption

techniques like secure shell (SSL) have been used for encrypting the contents of

the web from being fetched by attackers but the identity of the user can be mon-

itored using some information extracted from packets headers. To hide both the

1

addresses of users and the contents of their traffic, advanced anonymous systems

such as Tor [32] and Jap [8] are proposed to protect web users from such threats

by allowing them to communicate and share information safely without hurting

their privacy. Although Tor is considered as a strong anonymity system, its users

can be endangered by local traffic analysis attacks that can be placed between the

client and server to uncover the identity of the requested web sites even though

the traffic is encrypted. The main target of our research is to investigate the be-

havior of the most commonly used web browsers in protecting web users against

website fingerprinting attack over Tor anonymity system by conducting our pro-

posed attack explained later. To the best of our knowledge, we are the first to

push the boundary of knowledge from this angle. Furthermore, the outcomes of

our research might be very beneficial to the security forces and law enforcement

worldwide.

1.1 Privacy issues in Internet

The rapid advance of technology and growth of Internet raise the concern of

users from possible online threats that may endanger their privacy. In order to

understand privacy issues perfectly, we need to define the meaning of ”privacy”.

Warren and Brandeis [83] defined privacy as the ”right to be let alone”. Roger

Clarke suggested that ”Privacy is the interest that individuals have sustaining

in a personal space, free from interference by other people and organizations”

[24]. However, the privacy of web users is satisfied when the usage, exchange

2

and release of their information can be one hundred percent under control [27].

Unfortunately, this is not the case as data is transmitted on cyberspace and the

users do not maintain full control over their information, so the privacy attack can

occur. As the individuals join to the Internet, their information may become out

of their control with the presence of several threats (e.g. Malwares, traffic analysis

attacks, etc). Therefore, a local observer on an ISP or attacker on a WLAN can

analyze and track information sent or received to a victim efficiently, inexpensively

and unconsciously. The privacy issues that most users are concerned with include

[23]:

� The nature of their visited websites which can be revealed using website

fingerprinting attack.

� Their E-mail addresses and contact information that can be used for targeted

advertisement and other purposes.

� Their personal information that can be misused and exported against users’

preference and interest.

� Their Passwords and Credit card information.

� Their locations/origin on Internet space.

These are the most important privacy issues that should raise people awareness

to know possible sources that threaten their privacy. Figure 1.1 shows possible

adversaries that may carry out such kind of privacy violations which web users

should take care of. Therefore, users must take several precautions to protect their

3

privacy against such privacy issues as well as designing containment strategies once

their personal information has been collected.

Figure 1.1: A survey conducted by Pew Research Center’s internet and american
life project omnibus in July 2013, shows possible eavesdroppers that may violate
the privacy of web users [66].

To solve privacy issues on the internet, multiple privacy enhancing technolo-

gies have been proposed (e.g. SSL, IPSec, SSH, Tor, etc) so theses encryption

mechanisms hide the content of transferred data but there are still some valuable

information that can be exploited be attackers such as size, direction, order, and

timing of the transmitted packets between client and server. For example, in web-

site fingerprinting attack the attackers use this information to identify a web page

that a victim visits. Several individuals such as journalists, human rights work-

ers, the military, and ordinary citizens, employ anonymity systems to protect their

identities on the Internet. Internet users’ privacy issues have been highlighted in

many published works such as [30], [17], [19], [55], and [75] .

4

1.2 Anonymity protocols

In this section we define the meaning of ”anonymity” in term of our research and

what are the most commonly used anonymity systems. Pfitzmann et al. defined

anonymity as ”the state of being not identifiable within a set of subjects, the

anonymity set.” [63]. They meant by the anonymity set are the set of all pos-

sible players in the system such as the sender, known as the sender anonymity

set, the recipient, the recipient anonymity set, of a specific message. Because of

the high increase of traffic analysis attacks, several anonymity systems have been

developed in order to enhance the security and privacy of users over the internet.

These anonymity tools provide privacy protection by encrypting the transmitted

data ranging from simple to complicated method. For example, Chaum [18] is

the first who proposed a system that provides a level of anonymity by establish-

ing a connection that mixes certain traffic with other traffic connections. Later,

several systems have been proposed which employ a wide number of sophisticated

techniques that are summarized in the following points:

� Setting up various proxies through multiple number of systems worldwide

in order to hide the source of the connection from its destination.

� The packets flows are mixed and reordered.

� The packets sizes are padded into a fixed length.

� The packets flow rates are controlled with any batching strategy or timer.

� The data packets are covered using some strategies (e.g. tunnels, onion

5

routing, etc) [25].

Different anonymity systems employ the aforementioned techniques in order to

make it very difficult for attackers to trace and analyze the traffic. Some systems

use timing techniques to modify the timing of packets flows which has a great ef-

fect on the system. The systems that are based on timing techniques are classified

into two classes. First, High-latency systems ,which are much better at protect-

ing possible attacks, are based on timings such as Mixminion [28] and Mixmaster

[74]. These systems employ strategies such as mixing, reordering and patching to

defend against traffic analysis attacks that are based on packet timings ”delays”

[53]. The anonymous systems that work based on timing strategies are not as

widely used due to the extra delays that they add in data transmission. Second,

Low-latency systems that have been used suitably for web browsing protocols such

as HTTP and interactive protocols such as SSH because they do not disrupt the

timing of packets during the communication. The systems that underlie this cate-

gory are The Onion Routing (Tor) [32], Java Anon Proxy (JAP) [8], and Invisible

Internet Protocol (I2P) [48]. In our experiments we select Tor anonymous system

to evaluate different levels of browsers resistances as it is the most commonly used

system of desirable Low-latency systems. Anonymity systems can be utilized by

users in both an illegal and legal sides. For example, they can be misused in mis-

appropriation of funds and terrorist actions so researches for breaking anonymous

systems like ours can be much more helpful for governments to track such kinds of

criminal processes. On the other hand, a lot of people employ anonymity systems

6

in multiple legal fields such as e-banking, e-voting, e-commerce, and e-auction,

etc. However, several anonymous systems [59], [99], [82], [31], [3], and [50] with

different features and encryption mechanisms have been used by web users to

protect their privacy from real threats that appeared in last decade.

1.3 Traffic Analysis Attacks on Anonymity Pro-

tocols

Traffic analysis term refers to the process of profiling and monitoring network

traffic in order to identify the nature and behavior of parties that generate certain

traffic pattern such as web browser (the client) and website (the server). Traffic

analysis can be implemented equally in both encrypted and non-encrypted traffic

and it is based on the observation of the traffic generated during the communi-

cation. It is easy for possible eavesdroppers to show the contents of transmitted

data by capturing transmitted packets using free available capturing tool such as

Wireshark, tcpdump, etc. Then, many features can be deduced from captured

packets, so a potential adversary exploits those features to track and correlate

a user’s browsing activities such as who is talking (the source), to whom they

are talking (the destination), type of visited sites, etc. Consequently, it is very

important to encrypt sensitive information from being observed by eavesdroppers

when it is transmitted through the internet.

However, the anonymous systems do not guarantee protecting the privacy of

7

users completely because the eavesdroppers can exploit some information (packet

sizes, timing, ordering, etc) inferred from encrypted traffic transmitted between

clients and remote servers. As a result, several traffic analysis attacks can be

conducted for illegal purposes (e.g., infering the identity of visited website by

a victim, fingerprinting browsers to exploit their vulnerabilities, etc). On the

other hand, researchers implement various traffic analysis attacks to improve the

security of Privacy Enhancing Technologies by exploring their vulnerabilities in

order to push anonymous systems vendors to add novel defences against such

attacks.

In this section we explore the most well-known examples of traffic analysis

attacks on encrypted systems. For example, Song et al. established profiles of

typing characteristics of users in order to guess the keys that the user types under

Secure Shell (SSH) session [70]. They used Hidden Markov model to predict the

sequences of pressed keys since SSH protocol transmits each pressed key into its

own separate packet across the network. They were able to measure the delays

between packets then matching them to pre-determined delays of a combination

of certain keys. The aim of this attack is to enhance the probability of breaking

passwords over SSH protocol. Moreover, Hints [41] used traffic analysis attack to

identify the website that the user may visit based of unique signature of loaded

resources of a certain HTTPS website (e.g. HTML document, CSS files, JS,

images, etc). He created profiles of timing signatures to detect visited websites

over Security Shell Layer (SSL). More robust website fingerprinting attacks on a

8

broader variety of encrypted systems are proposed by Bissias et al [11], Liberatore

et al [49], Herrmann et al [39], Shi and Matsuura [69], Cai et al [15], and most

recently Wang et al. [81].

1.4 Website Fingerprinting

Hints [41] is the first who described the traffic analysis for identifying visited

websites as a term ”Web site Fingerprinting”. Website fingerprinting is one kind

of traffic analysis attacks which enables the adversary to infer a visited web page

that the victim may visit for violating his privacy even if the victim uses certain

anonymous system like Tor [65]. It is a process of footprint information of a target

web page based on inferred features from its traffic pattern.

When a user visits a certain web page, the HTML document of that page will

be fetched with its referenced contents (e.g. CSSs, JSs, Images, Text, etc). Each

fetched content has specific characteristics(size, order, direction, delay). Encrypt-

ing protocols (e.g. encrypting tunnels, SSL, Tor) encrypt the contents of transmit-

ted information but they do not effectively encrypt some features such as packets

sizes, directions, timing, etc[14]. Therefore, it is possible for an eavesdropper to

monitor/sniff the network traffic of a victim and profile fingerprint about web

page contents based on (order, direction, timing, and sizes) of the packets used

to load a target web page. Thus, the set of extracted information for a given web

page comprises a unique fingerprint for that page. Using such fingerprint method,

a visited website can be uniquely identifiable even if the connection is encrypted

9

using any anonymous system such as SSL, SSH, Tor, etc. For example, Website

fingerprinting process on encrypted traffic can be used by governments to censor

and block some web pages that they mark them as illegal websites. Using the

previously mentioned web page features, a government can generate fingerprints

for all banned websites. Then, they censor and sniff all traffic that matches all

previously recorded fingerprints of banned list of websites. Furthermore, they

can avoid monitoring a huge amount of traffic and focus only https traffic that

comprises a very small portion of Internet traffic. Some websites are changed con-

tinuously (e.g. news websites) so the government should generate new fingerprints

frequently to cope such changes [41].

Existing works in website fingerprinting attacks [11], [61], [11], [39], [15], and

[81] show that this kind of traffic analysis attack is possible against several anony-

mous systems like SSH, IPSec tunnels, JAP, and Tor. Consequently, vendors of

these systems tray to defeat these kind of attacks by using several techniques and

tricks that are specified in Section 1.2. We select Tor as it is the most popular

anonymous system in use today ”currently used by around 500,000 daily clients

and carrying 2000 MB of data per second”[64]. More details about website fin-

gerprinting attack over Tor are explored in Chapter 2. In our experiments we set

up a website fingerprinting attack using most commonly used browsers on real

user who defends himself using Tor for the sake of investigating to which extent

each browser defends against such website fingerprinting attack. Our research

outperforms existing ones in that it breaks Tor anonymous system using most

10

commonly used browsers while all existing works without exception used only

Firefox browser.

1.5 Web Browsers

Today, more and more services and a variety of information contents (e.g. HTML,

images, video, etc) become available on the Internet ”Web servers”. These con-

tents are accessed and retrieved using web browsers such as Chrome, FF, IE, etc.

Web browser acts as an interface between web user and web server, so the need for

fast and secure browsing experience is more important to satisfy the experience

of end users. Recently, the market of web browsers becomes highly competitive

to fulfill the World Wide Web (WWW) demands of people securely and privately.

Internet browser is the client-side application in internet communication and

its main function is to fetch the requested contents from web server and display

them on browser’s window. The web contents are fetched in the form of requests

and responses between web browsers and web servers by implementing Hypertext

Transfer Protocol (HTTP) and its secure version (HTTPS). Before the evolution

of the web, the web pages were very simple HTML pages containing simple con-

tents (e.g. text, input boxes, and buttons) [10]. Currently, web pages contain

multimedia contents (e.g. JSs, CSSs, flashes, audio, etc) so many people use

different browsers to perform many tasks (e.g. access email, buy products, do

research, etc). Therefore, web browsers are essential part of people daily live so

they are built with a lot of functions to perform those tasks and protect user from

11

any malicious content residing on the World Wide Web. The details behind dif-

ferent browsers’ structure and features are described in Chapter 3. Our focus in

this study is to evaluate different resistance levels of top five web browsers against

website fingerprinting attack as they have relative importance among applications

today. In this research we select the most commonly used web browsers namely

Chrome, Firefox, Internet explorer, Safari, and Opera according to market share

statistics of browsers [?] as it is shown in the distribution of pie chart in Figure

1.2.

Figure 1.2: Browsers’ Statistics and Trends On May, 2013. Source:
http://gs.statcounter.com/

1.6 Objectives of the research

Recent attacks on data streamed over Tor identify the websites that the victim

may visit just only under Firefox web browser. The question is why we do not

12

apply traffic analysis attack on the most commonly used web browsers to see their

resistances against traffic analysis attack as a lot of users browse the internet

anonymously using different web browsers? To answer our research question, we

build a model to test various resistance levels of popular web browsers by making

a lot of experiments on tested browsers (e.g., various web technologies, Java Script

APIs, parallel downloads, etc) in order to reach into the root causes that make

each browser behave differently. Our approach highlights a clear picture of the

resistance of each browser against website fingerprinting attack outperforming

the previous approaches that share the same shortcoming which is a single web

browser (Firefox).

1.7 Methodology

Our methodology in this research is to study, design, and implement a website

fingerprinting attack for evaluating the resistance behavior of web browsers on

Tor anonymity system. It consists of the following research phases:

1. Study and survey the existing literature of website fingerprinting approaches.

2. Carry out a technical survey on the five commonly used web browsers

(Chrome, FF, IE, Safari, and Opera) to clarify their differences in terms

of layout engines, Java Script engines, and HTML/CSS features, etc.

3. Set up sniffing modules/scripts for capturing web pages traffic using a strong

network sniffing tool ”tshark” ,the command line version of wireshark traffic

13

analyzer.

4. Parsing and filtering captured traffic to isolate Tor packets and browsers’

relevant packets from the rest of the traffic.

5. Construct websites fingerprints based on certain features (packets sizes and

directions) which serve as an input to a classification phase.

6. Carry out a comparative study of the top five web browsers to assess the

variations of their resistances to website fingerprinting attack in terms of

recognition accuracy of each browser.

1.8 Overview of contributions

The contribution of this thesis is to fingerprint websites being accessed over Tor

using the five most popular web browsers. The main contributions of our research

are as follow:

1. Carry out a deep analysis of the most commonly used web browsers to

identify key differences and similarities in the rendering engines, the fetching

schemes, etc.

2. Investigate website fingerprinting attack on Tor anonymity system taking

into consideration the most relevant features that improve the accuracy of

website fingerprinting which can be used also for ”web browser fingerprint-

ing”.

14

3. Carry out a comparative analysis with respect to the resistance of the most

commonly used web browsers to traffic analysis attacks on Tor.

4. Publish the outcomes of our research in reputable journals and conferences

as well as patents.

1.9 Thesis organization

In Chapter 1 we outline the motivation and relevant background behind the topics

discussed in this thesis. Section 1.1 explores the rapidly growing field of privacy

issues on the internet and shows its importance as a field of study. Section 1.2

outlines the importance of anonymity systems and their various encryption tech-

niques as well as their types and uses. Section 1.3 displays a brief introduction

of traffic analysis attack on anonymity systems and shows the most important

examples of traffic analysis attacks for improving the effectiveness of end users’

privacy under various anonymity systems. A brief overview of the most com-

monly used browsers and their trends are explored in Section 1.4. Chapter 3 is

dedicated for more details behind web browsers as they are the main topic of

this research. Furthermore, Section 1.5 describes the main objectives of this re-

search and the primary questions that we seek to answer. Section 1.6 outlines

the research methodology that we followed to reach to our objectives. Section

1.7 explores our main contributions. The sequence organization of this thesis is

highlighted in Section 1.8.

Chapter 2 demonstrates many concepts behind Tor anonymity system. An

15

overview of what is Tor and its implementation fields as well as its main security

features and usage statistics are explored in Section 2.1. The technique that Tor

uses to establish Tor circuit for anonymous communication is explored in Section

2.2 such as how it selects the relays, associates encryption keys, etc. The summary

of the existing published researches are explored in Section 2.3.

More functional details behind web browsers are illustrated in Chapter 3. An

overview of typical architecture of browsers and how their internal components

work are explained in Section 3.1. The core components of browsers that af-

fect their rendering behavior are demonstrated in Section 3.2. The main task of

browsers rendering/layout engines and their types are clarified in 3.2.1 Subsec-

tion. Web browsers Java Script engine/interpreters and their functionalities are

explained in 3.2.2 Subsection. In 3.2.3 Subsection, the JS and CSS web contents,

and web technologies that have an impact on web browsers traffic patterns are

explained.

Chapter 4 demonstrates our website fingerprinting attack to investigate the

various resistance levels of browsers against website fingerprinting attack. The

detailed description of the experimental platform is presented in Section 4.1 fol-

lowed by a presentation of the data collection and preprocessing phases that are

demonstrated in Section 4.2. In Section 4.3 we explained the applied approach

that we implement to validate the various resistances of browsers against website

fingerprinting attack over Tor.

Chapter 5 evaluates the root causes behind various resistances of tested

16

browsers. The comparison of browsers’ web technologies is evaluated in Sec-

tion 5.1. The results of the factors that affect the traffic patterns of browsers (

JavaScript, Third-party domains ,parallel download and time optimization) are

evaluated in 5.2, 5.2.1, 5.2.2, 5.2.3, and 5.2.4 Subsections respectively. Sections

5.3 and its related subsections we summarized the discussion of some web issues

and dynamism of network condition that add a noisy on traffic patterns and re-

duce the privacy protections introduced by browsers. Some recommendations that

raise the resistances of browsers against website fingerprinting attack are pointed

in 5.3.3 Subsection.

Chapter 7 concludes the thesis by summarizing the findings and some hot

research points that can be guided as hints for further future works.

17

CHAPTER 2

TRAFFIC ANALYSIS ON TOR

ANONYMITY SYSTEM

Many governments worldwide consider viewing certain web pages by their citizens

as an illegal action. For instance, in China more than 2600 websites were blocked

as illegal sites and they put under the policy internet censorship of the country [95].

Furthermore, internet censorship in Iran has been increased with 50 percent of the

top 500 visited websites (e.g. Facebook, Google Plus, Twitter, etc) [92]. These

restrictions trigger people in such countries to use different anonymity systems

(e.g. Tor, JAP, SSL, etc) to bypass online censorship and surveillance systems

and browse freely. In our research we select Tor to evaluate the resistance of

browsers against fingerprinting attack as it is the most commonly used anonymity

system. Moreover, there are relatively a few research on website fingerprinting

attacks on Tor.

18

2.1 Overview of Tor system

Tor is the anonymity system that was developed primarily by U.S. Navy to protect

the communications of the US government. Later it has been donated to the open

source community to have clients of more than 126 countries around the world [5].

It is an overlay network of virtual tunnels that is built via layered encryption mode

called Onion Routing. It was built to anonymize TCP-Based services such as web

browsing, instant messages and secure shell. Tor is an open network that helps

users defend against a form of network surveillance that threaten their privacy,

confidential business activities and relationships. Based on the statistics in [64],

Tor recently is the largest deployed anonymous communication network in the

world. From its first release in 2004, there are many attacks that illustrate several

of its vulnerabilities. These attacks push Tor’s designers to enhance its anonymity

protection with several modifications and improvements. The main recognizable

features of Tor protocol system are as follow:

� Renewal of circuits: Tor has perfect forward strategy in which it builds a

circuit of three relays in the first of each negotiation session and this circuit

is changed periodically.

� Reduce the latency: in which the TCP stream are multiplex in a circuit to

which help in reduce latency.

� Reliability and anonymity: Tor makes it difficult to modify transmitted

data and describe its relays because the transactions between relays are

19

TLS based.

� Preventing end-to-end attack: Tor has leak pipe circuit topology feature

in which it is responsible for directing traffic to nodes pathway down the

circuit, meaning that the traffic can exit the circuit at the middle, thereby

prevent end-to-end attack.

In its first deployment, Tor has only 250 relays with just about 50,000 users,

however at present there are over 4000 relays and around 4000000 daily users all

around the world as it is shown in the following Figures 2.1 and 2.2.

Figure 2.1: Recent statistics of the number of Tor users around the world. Source:
http://www.torproject.org/about/overview.html.en.

Tor is used for different purposes; the military use Tor to hide their location

and protect military operations, normal People use Tor to protect their privacy

such as protecting their children from being stolen by corrupt marketers and

thieves, bloggers use Tor to avoid being sued or fired for saying completely legal

20

Figure 2.2: Recent trend of the number of Tor relays around the world. Source:
http://www.torproject.org/about/overview.html.en.

things online, journalists use Tor to investigate state propaganda and opposing

viewpoints, activists use Tor to anonymously report abuses from dangerous zones

in the world, law enforcement officers use Tor for carrying undetected surveillance

on questionable websites [28],[67],[72], and [73]. Furthermore, Tor has been used

by political opponents in non free countries (e.g. Iran, China, etc) to access banned

web pages (e.g. Facebook, Twitter, etc). Therefore, Tor encrypts the origin/place

and contents of transmitted data from being exposed by possible eavesdroppers.

2.2 How does Tor work?

The main goal of Tor anonymity system is to make it very difficult for an attacker

at the source point to determine the destination of a request, or an attacker at

the destination point to determine the source of a request. This can be done by

21

three components that play important roles in establishing Tor’s circuit session

which are the client, the server, and three Tor relays in between [65]. Tor client

establishes its circuit by negotiating an individual shared secret with each node

of the three circuit relays: entry/guard relay, middle relay, and exit relay as it is

demonstrated in Figure 2.3.

Figure 2.3: Tor circuit components: the client node, the des-
tination node, and the three relays in between. Source:
http://www.torproject.org/about/overview.html.en.

The transmission of the traffic is encrypted using three shared secret keys that

are negotiated with the three relays of established Tor’s circuit. Each relay in

Tor network knows only its successor and predecessor, so this technique of Tor

provides strong resistance against data analysis attacks of man-in-the-middle [65].

When the client establishes an anonymous connection with the server, the proxy

of client starts to select three relays randomly from list of Tor relays residing in

directory server as it is shown in Figure 2.4. The relays of Tor selected based on

22

certain algorithm that depends on various Tor relays statistics that are distributed

by the directory server such as some client history and preferences [1].

Figure 2.4: The Onion Routing technique of Tor in which the client sends a
message to a server wrapped with encrypted layers[65].

The proxy of Tor client establishes session key with the first Entry relay after

selecting and meeting the policy of Exit relay. Then, the tunnel is extended from

the entry relay incrementally one node at a time up to the exit node [65]. After

establishing Tor network, the client communicates with the server anonymously.

Throughout the Tor anonymity network, the entry/guard relay knows just only

the next relay in the path and this is applied for the next relay up to the exit relay.

After establishing the Tor anonymity network, many virtual circuits are created

periodically so transmitted traffic is routed and multiplexed to the destination.

During the connection the transmitted message is sent from relay to relay along

the circuit so in each relay the encryption layer of that relay/node is puled off

until the original message reach to exit relay. The origin of transmitted message

appears at the Tor exit relay so it will be forwarded to the distinction [94]. The

middle relay knows that the message is forwarded to the exit relay, but cannot

say who is sending the message.

23

Tor client routes incoming and outgoing traffic through a shifting and multi-

hop circuit of relays. The main goal of designing such system is to make the

job of eavesdropping adversary much more challenging by anonymizing who is

communicating with whom and exchanged traffic. Tor system works only at the

Transmission Control Protocol (TCP) stream level and it can be used by any

application that supports SOCKS such as web browsers. Therefore, the web

browsers can be configured to direct their traffic through Tor SOCKS interface

[65, 94]. A strongest feature of Tor is that it masks its traffic to look like HTTPS

normal traffic which makes Tor traffic more difficult to be identified as it is shown

in Figure 2.5.

Figure 2.5: Tor session is decoded as it was normal HTTPS session.

Tor often establishes a connection over TCP 443 which follows spec (RFC

2246) of Transport Layer Security (TLS) protocol so most packets inspectors fail

at identifying Tor traffic [42]. In our experiments we successfully filter and inspect

Tor traffic using several statical analysis methods as explained later in empirical

evaluation chapter. In this chapter did not go deep into Tor anonymity system

24

as it is not the main focus of our research so more details about Tor design are

given in [32].

2.3 Website fingerpinting attacks on Tor

There are few proposed papers in website fingerprinting attack over Tor all of

them are relatively recent. The early techniques were focusing on analyzing the

encrypted HTTP traffic by extracting certain features from traffic pattern for

training traffic instances. Then, a classification mechanism is used to identify

testing traffic instances. In this section we outline the existing approaches in

website fingerprinting attacks.

The first author who refers to the process of identifying websites under en-

crypted connection as a term of ”fingerprinting” is Hintz [41]. He conducted a

simple website fingerprinting attack under encrypted traffic based on features ex-

tracted from website contents such as sizes and separate TCP connections. His

experiments are conducted on HTTP/1.0 version where each web content (e.g.

image, JS, text, etc) is fetched using a separate TCP connection. The results

show that his approach detects only 5 websites with an accuracy rate between 45

and 75 %. Later this approach becomes invalid with the presence of HTTP/1.1

version where the feature using TCP connections does not hold anymore.

Since Tor deployment in the late of 2003, few techniques have been proposed

for website fingerprinting attack on Tor protocol. Liberatore et al. in [49], pro-

posed two techniques for identifying the source of encrypted HTTP connections.

25

They used only one feature for their experiments which is the packets sizes of

transmitted data under the cover of encrypted OpenSSH tunnels. Data mining

techniques like Jaccard’s coefficient and Naive Bayes (NB) classifiers are used

to classify the similarities between captured traffic and predefined fingerprints of

websites. The results of their experiments show that if IP packets are padded and

frequencies of packet lengths are considered, the NB classifier is more robust than

Jaccard’s classifier. They claim that their methods are quite effective in website

fingerprinting on a simple SSH tunnel with an accuracy of about 70 % in both

methods.

In [39] Herrmann et al. identify websites under popular encryption methods

using a text mining technique. They used Multinomial Naive Bayes (MNB) clas-

sifier for training based on the frequency distributions of IP packet lengths. They

optimized their classifier by applying a set of text mining transformations so they

achieve a higher accuracy than previous work under comparable conditions. Their

experiments show an excellent accuracy of 96% against single-hop encryption sys-

tems (e.g. SSL, OpenSSH, etc), while they got less accuracy on multi-hop systems

(e.g. Tor and JAP) with an accuracy of 20% on JAP and 2.96% on Tor. This

gives a clear indication that website fingerprinting on Tor is more challenging than

other encrypting systems.

Shi et al. [69] proposed a novel method for website fingerprinting attack by

analyzing the traffic of a victim under Tor anonymity system. They divide both

the incoming and outgoing packets into several intervals and convert these in-

26

tervals into vectors. The similarities between observed vectors and predefined

fingerprints are calculated by a given formula. The practical and theoretical eval-

uations of their results show that their method is an effective way for degrading

the anonymity of users under Tor.

Panchenko et al. [61] came up with a website fingerprinting attack on Tor and

JAP anonymity systems using Support Vector Machine (SVM) classifier. They

represented a traffic trace as a sequence of packet lengths where input and output

packets are distinguished using negative and positive values. In addition, they

injected some features in these sequences to raise the accuracy of the classifi-

cation such as size markers (whenever flow direction changes, insert the size of

packets in the interval), number markers (number of packets in every interval),

total transmitted bytes, etc. They used Weka tool [85] to fine-tune the SVM

parameters. They evaluated their method using Closed-world and Open-world

scenarios. In closed-world scenario they conducted their experiments on the same

data set of Federrath et al. [39] with 775 websites by estimating the accuracy

using a ten-fold cross validation. In open-world scenario, 5000 websites have been

chosen randomly among the top one million websites listed by Alexa [2]. Their

experimental results show that their approach improves the websites recognition

rates from 3% to 55% and in JAP and from 20% to 80% in Tor.

Cai et al. [15] proposed a new approach for achieving the highest accuracy than

previous works. They implemented string alignment using Damerau-Levenshtein

distance algorithm to compare the previously made fingerprints with the observed

27

traffic based on the features of packets’ sizes and directions. They identified web

pages with an accuracy of 87.3% in closed-world model. They also classified

websites instead of individual web pages using Hidden Markov Models (HMMs).

They claim that the recent defenses against traffic analysis over Tor are not likely

to be successful.

The most recent contribution was by Wang and Goldberg [81] where they

proposed new techniques for website fingerprinting attack. They enhanced the

accuracy of Website fingerprinting by interpreting Tor data cells as units instead

of TCP/IP packet sizes and removing Tor SENDMEs cells that provide no useful

data in order to reduce the noise. They compared the similarity between the

predefined fingerprint instances and observed traffic instances using new optimal

string alignment distance metrics (OSAD) with limited computation resources.

The results of their closed-world experiments show that their methods achieve

better accuracy rate than previous works with 91%.

In our approach we conducted website fingerprinting attack using the most

commonly used web browsers so they differ in their accuracy rate as they have

different aspects (e.g. different rendering engines, various Java Script engines,

different HTML and APIs features). Therefore, we strongly believe that these

differences between tested browsers will affect the shape of their encrypted traffic

patterns as well as the accuracy rate of website fingerprinting attack on each

browser. To the best of our knowledge, none of the existing works have taken

into consideration the fact that Tor clients may use various web browsers over

28

Tor, so that they share the same limitation in which they conducted the attack

on a single web browser (Firefox) while in ours we take into consideration the top

five web browsers. Not only that but we also investigated the root causes behind

different resistance levels of browsers while others are not.

29

CHAPTER 3

COMMONLY USED WEB

BROWSERS

The web browser becomes a crucial piece of software in modern devices from mo-

bile phones to desktop computers. It is a client-side application and is considered

as the window for internet users to the World Wide Web (WWW), so this re-

quires a good performance, high quality, and solid reliability. The first graphical

web browser that makes the WWW accessible to everyone was Mosaic [6] which

was released in 1993. Later several web browsers (e.g. Internet Explorer, Firefox,

Opera, Safari, Chrome, etc) join the race making what is commonly referred as

(browsers war) and launch an information explosion that continues to this mo-

ment. With time, these browsers have become increasingly complex over the years,

not only to parse HTML and plain text, but also to render flash, images, videos

and other complex file formats and protocols. However, increasing complexity

of modern web browsers have brought too many security vulnerabilities which

30

attract Malware authors and criminals to exploit these vulnerabilities to compro-

mise victims’ systems [57]. Currently, web users can use several web browsers to

browse the web expecting that browsing the web has consistent behavior across

different browsers. Unfortunately, this is often not the case so browsing the web

have differences which may range from minor differences to crucial functional flows

[56]. The different behaviors of browsers are due to many reasons such as various

web standards, accessibility tools, additional features and performance optimizing.

The fact that there is no published work that figure out different levels of browsers

resistances against traffic analysis attack. This indicates that the problem is more

challenging and complex due to the dynamic behavior of web environment which

is explained later. The main objective of this thesis is to investigate different

aspects of browsers’ behaviors in fetching different web objects (e.g HTML,JS ,

CSSs, image/x, etc) to find out to which extent each browser protects against

website fingerprinting attack providing that each browser allows configuring Tor

socket proxy. Therefore, in this chapter we give a detailed overview of the fac-

tors that affect the behavior of tested browsers (e.g. rendering/layout engines,

Java script engines, pipelining/parallel downloads, HTML and CSSs standards)

in order to reach the main differences that affect their various rates of privacy

protection.

31

3.1 How web browsers work?

The main functionality of web browsers is to request web resources from web

servers and display them in their windows. The formats of requested resources

are usually HTML, image/x, JS, CSSs, etc. The main objects that the browser

uses to interpret and display other web contents are the Hyper Text Markup

Language (HTML) code and Cascading Style Sheets (CSSs) [71]. The HTML and

CSS are maintained by the web standards organization called World Wide Web

Consortium (W3C) [80]. The latest versions for these two important web objects

are HTML 5 and CSSs 3 [34]. More details about HTML and CSSs are explained in

subsequent sections. The core differences behind web browsers are coming up from

their various rendering and Java Script engines which are reflected semantically

in various supports of browsers to different web technologies. The architecture

of browsers gives a clear view of how the main components of the browsers work

and how they interact with each other in order to display the requested objects

on their windows. A typical architecture of modern web browsers is presented

in Figure 3.1. It shows the main components that are used by most common

browsers.

Modern web browsers are fairly sophisticated applications comprised from sev-

eral components. The following items are the browsers components with their

main function:

� User interface (UI): It includes the main components of navigation controls

like address bar, bookmarking menu, etc.

32

Figure 3.1: Browsers’ main components [34].

� Browser engine: It represents the internal interface of browsers to manipu-

late and query the rendering engine. It is the middle component between

the UI and the rendering engine.

� Rendering/Layout engine: The main function of this component is to parse

HTML code, request web objects, and show received contents on browser

window. It displays HTML, XML and images by default but in some

browsers other types of data requires certain types of plug-ins like PDF

viewer plug-in that displays PDF format.

� Networking: This is an independent interface that performs the network

calls like web objects requests.

� User interface (UI) backend: The main function of this unit is to draw basic

widgets windows like combo boxes. It is a generic interface that uses the

operating system user interface methods.

33

� Java Script interpreter: Which is used to parse and execute JavaScript codes.

� Data storage/ Data persistence: This unit stores all sorts of requested data

on the hard disk like cookies.

3.2 Core differences between web browsers

The core reasons behind different behaviors of web browsers underlie in three main

sources. The first and most important one is the layout/rendering engine so it is

the primary source of browsers differences [20]. Its main functions are to render

and display web page objects in browser window by combining the structural

information of HTML and style information of CSSs. Each browser has its own

layout engine so it maintains the Document Object Model (DOM) that represents

fetched web page contents in a tree representation and manages the pipelining and

parallel downloads of website contents. DOM is a language-neutral platform that

allows scripts and programs to dynamically access and update its tree contents so

the result of this process is reflected to the presented web page contents. For more

details behind Document Object Model standard definition format see [79]. The

dynamism of web page elements comes from manipulating and modifying DOM

tree nodes by Java Script codes. Therefore, the same HTML/DOM and CSS for

the same web page can produce different view and traces in different browsers

based on their various JS APIs supports. More details behind layout engines are

presented in the subsequent section. The second source of browsers differences

comes from Java Script engine. Each browser has its own JS engine which results

34

in differences in browsers behaviors [20]. Interactive web pages are enriched with

many Java Script programs that create dynamic web page contents. The details

of Java Script APIs and their impacts on browser behaviors are explained later.

The third source of a variety of browsers behavior is the user interaction (e.g.,

mouse click, drag and drop, mouse hover, etc). User actions perform changes in

the DOM based on the DOM-APIs of the browsers which have different supports

across browsers. In the next sections we explain the details behind the main

sources of different traffic patterns of browsers neglecting the source caused by

user interaction as the scope of our research is to test the behavior of the browser

itself.

3.2.1 Web browsers’ rendering/layout engines

The web developers tray to build web pages to be compatible with different

browsers because the people all around the world use various web browsers. Each

browser has its own rendering engine to draw HTML and CSS website contents,

thus each browser renders each website differently. Wikipedia defines the lay-

out/rendering engine as ”a software component that takes marked up content

(such as HTML, XML,image files, etc.) and formatting information (such as

CSS, XSL, etc.) and displays the formatted content on the screen. It draws on

the content area of a window, which is displayed on a monitor or a printer” [7].

When we look at a displayed web page on different web browsers, we notice that

there are not major inconsistencies in observed screen but when it comes to trace

35

level ”traffic pattern” we observe different traffic patterns as it is validated in

empirical evaluation chapter. The rendering engine is the main component of a

browser and it explicitly decides how to turn HTML, stylesheets, and scripts into

a vibrant web page. Each rendering/layout engine behaves differently according

to how it was programmed so it has everything to do with how web pages are

generated and visualized [12]. The rendering engine does most of the work of

website retrieval as it interacts directly with networking interface, JS interpreter,

and UI backend component. Table 3.1 shows the most popular rendering engines

used by tested web browsers.

Rendering/Layout engine Browser

Blink Chrome 31.0

Gecko Firefox 26.0

Trident Internet Explorer 10

WebKit Safari 5.1

Presto Opera 12.0

Table 3.1: The recent rendering/layout engines used by tested web browsers.

When a rendering engine parses HTML code, it calls networking layer by

sending several requests to web server in order to retrieve included web page

objects. Then, it gets the responded flow contents of requested objects as it is

shown in Figure 3.2.

The figure shows the gradual processes of browser rendering engines for inter-

preting HTML code and displaying fetched web contents on the screen. First, the

HTML tags is parsed and turned to Document Object Model (DOM) tree. Then,

36

Figure 3.2: Basic flow of browser rendering engines [34].

another render tree is built with visual attributes, dimensions, and colors specified

by CSSs and visual instructions of HTML document. After that, the constructed

render tree is passed through layout process to give each node its coordinates in

order to be displayed in its prober position of browser window. The final step is

painting the render tree nodes using UI backend component [34]. In our study we

formulate the differences between browser rendering engines in terms of their sup-

port to various web features that affect browsers’ trace level rather than internal

presentation level because our focus is traffic analysis topic. More details on web

technologies that affect the shape of web browsers’ traffic patterns are explained

later in Section 3.2.3.

3.2.2 Web browsers’ JavaScript engines

Unlike static web pages that contain plain HTML document and static objects,

dynamic web pages enrich with interactive web contents. These contents do many

tasks such as an interaction between web page and users, control web browser

and alter web page contents which make web pages more like an application. To

build animated/flashy web pages, Java Script language is introduced for improving

the user interaction experience so it is a very widely used language on the web

today. JavaScript commands run automatically in web browsers to add different

37

functionalities to web pages. Brendan Eich designed JS language in 1995 to allow

non-programmers to extend web sites with client-side executable code [68]. It is an

interpreted language with Object Oriented (OO) capabilities which used mostly

by web browsers [100]. It has been standardized recently by European Computer

Manufacturers Association (ECMA) [58]. Furthermore, it is used by 97 out of 100

most popular websites worldwide [2].

Similar to rendering engine a Java Script engine is a key component of all major

web browsers and each browser has its own Java Script engine enrich with its own

features support. It is a process virtual machine for interpreting and executing JS

codes that are embedded in a web page. Each major browser supports JS code

in order to allow client-side scripting and dynamic web pages. JS code is loaded

and executed in browser side so it has a great impact in overall performance and

functionality of web browsers. The differences in functionalities introduced by web

pages are often due to various APIs JS supports employed by different browsers

[21]. Table 3.2 shows the embedded JavaScript engines corresponded to their web

browsers.

Java Script Interpreter/engine Browser

V8 Chrome 31.0

Spidermonkey Firefox 26.0

Chakra Internet Explorer 10

Nitro/SquirrelFish Safari 5.1

Carakan Opera 12.0

Table 3.2: The recent JavaScript engines used by tested web browsers.

38

However, when a web browser loads a web page, an embedded JS code is

interpreted and executed by browser JavaScript interpreter/engine. The executed

JS codes can access a set of available Application Programming Interfaces (APIs)

allowing them to do many tasks such as interacting with web page elements using

”DOM APIs”, accessing local browser data ”cookies”, communicating to remote

servers using several communication APIs, and manipulating other browser events

[10]. Therefore, we hypothesize that various browsers supports to JS generate

different traffic patterns of browsers.

A typical JS engine contains three embedded components that execute JS

codes. First, the source code is analyzed to construct a syntax tree ,that represents

the flow of the code, by parser component. Next, the syntax tree is interpreted to

execute the code by interpreter component. Finally, the run-time module provides

JS engine with different standard objects (e.g. Array, String, Math, etc) [40]. The

execution of JS codes have a great impact on both the rendering of a web page

and the traffic pattern of web browsers, because the components of JS engine are

often tied and interacted to its corresponding rendering engine [60]. Thus, Java

Script has been used by many researchers and attackers to manipulate the pattern

of the traffic for fingerprinting purposes. For example, Abbott et al. injected java

script to be executed on browser side in order to change its traffic pattern as a

signal that can be detected and associated for browser-based attacks on Tor [1].

Figure 3.3 shows possible interactions that Java Script behaves when browsing

the web which has an impact on whole traffic pattern.

39

Figure 3.3: The interactions between Java Script ,that is executed on browser,
and web page server.

A JavaScript web application is the essence of HTML page which is associated

with other resources (like CCSs, image files, etc). JS codes execution is driven

by events in web browsers like timeouts occur. Most real time JS programs are

embedded in the context of HTML page. When they are executed in browsers,

they change the HTML DOM and access browsers’ APIs which cause consider-

able challenges to the analysis and control of web browsing data [68]. JS has been

used by large fraction of all websites which allow web applications to be more

interesting, dynamic, and responsiveness. Unfortunately, these advantages of JS

come with a lot of security problems that attract the attention of academicians

and researchers to take care of. It has been discovered that there are a lot of at-

tacks that exploit the JS dynamism (e.g., accessing and modifying shared objects,

injecting malicious codes, etc). As a result, several researchers [96], [76], [51], [38],

and [22] have beeb proposed with various approaches, to monitor and prevent JS

related attacks.

40

Browser’s Java script engine is invoked from JS code embedded within HTML

documents in five primary ways [98]:

� Standalone < SCRIPT > tags that enclose JS code block and running

dynamically during HTML code parsing

� External/remote JS codes < SCRIPTSRC = ”...” > which are executed

based on the security context of relevant browser

� CSS Style-sheet expression(...) block that authorizes JS syntax in some

browsers

� Certain URL links that are specified as target for certain JS actions

� Event handlers that are attached to HTML tags such as mouse hover

In our research we take into consideration both: first and second methods that

are relevant to browser dependent actions. When JS code is called by JS engine,

it has full access to DOM. The executed JS may also further invoke new JS by

calling eval(), producing JS-invoking HTML, or configuring timers (e.g. setTime-

out and setInterval) [46]. Moreover, at run time, new HTML elements can be

created dynamically so each HTML element rises a range of JavaScript objects.

Executed JS has various interactions with same-origin document data (e.g. draw-

ing CANVASes, displaying pop-up dialog, etc). In this research we neglect JS

actions that change the page look and we focus more on JS actions that have an

impact on the shape of traffic pattern ”level trace” as our interest is traffic analysis

attack. When executing remote/external JS (e.g. < SCRIPTSRC = ”...” >, or

41

< LINKREL = ”Stylesheet”HREF = ”...” >), they might send requests and

read responses even across domains violating Same Origin Policy(SOP). Further-

more, they may send information to third party servers by spawning objects (e.g.

< IMG >,< IFRAME >,< APPLET >, etc) and read back the returned data

[98]. The external interactions of JS depend on security policies and features sup-

ports introduced by associated browser. For example, the browser that sits more

restrictions on the interaction with third-party domains, it prevents loading and

executing of possible malicious JS codes that may happen like cross-site scripting

(XSS) as it is shown in Figure 3.4.

Figure 3.4: Possible scenario of XSS attack

However, it has been noted in a Benchmarking of Modern Web Browsers [4]

that JavaScript and related technologies demands have increased on browsers

rather than servers which of course will result of different behaviors of web

browsers. A number of studies on [97] show that there are a number of users

who disable scripting languages in their browsers for security reasons which re-

42

sults in different browser compatibilities toward several web services. Moreover,

web browsers ,that is configured to use Tor system, executes the JavaScript code

through Tor circuit and the browser still anonymous [1]. Therefore, Java Scripts

in our research are enabled as we conducted all our experiments in default modes

of tested web browsers.

3.2.3 Important web contents and web technology features

Popular websites vendors design their websites for maximum compatibilities of

browsers so that the web pages are rendered correctly on modern web browsers

such as Chrome, FF, IE, etc. In order to understand how a web page is loaded

on different combinations of browsers, we need to investigate different features

of web page contents that are browser-dependent. There are three main objects

that make a web page look and behave differently across browsers which are:

HTML defines web page contents and markups, CSS defines the appearance, and

JavaScript defines the behavior. In this section we will discuss these important

contents and focus more on web technologies the that affect the traffic pattern

shapes of browsers.

First, Hypertext Markup Language (HTML) is a markup language that de-

scribes the structure and content of a document by tagging and identifying differ-

ent elements embedded in the document (e.g. text, images, JS, etc)[54]. It forms

the building blocks of all web pages and can be used to create interactive forms

[89]. In the early years of HTML language, web developers were free to design

43

web pages in the way they want so there wasn’t any organization responsible for

standardizing the language. As a result, this created too many incompatibilities

between different browsers as well as making a big challenge for web developers

to write HTML code that satisfies various browsers and even different versions of

the same browser. To solve this issue a World Wide Web Consortium (W3C) [80]

was created by a group of web developers and programmers in order to set spec-

ifications and standards to be followed by all browsers’ makers. W3C maintains

the specifications of HTML, CSS , and other web-related standards such as web

content accessibility guidelines (WCAG) and scalable vector graphics (SVG) [43].

Although browsers’ vendors use the recommended rules and guidelines of W3C

specifications, they can interpret these rules as required for their own purposes.

However, in our experimental work we relay on W3C standards for testing and

validating a lot of features that cause different traffic pattern of tested browsers.

Many HTML versions [54] have been developed over the past years. The W3C

develops HTML5 specification as a recent standard for the next generation of

HTML. With the present of this new HTML standard, old versions of HTML

standards are neglected by both web page owners and browsers manufacturers.

Recently, all major browsers support the most recent HTML standards such as

HTML 4.01, XHTML 1.1 and HTML5 [43]. The latest iteration is HTML5 and

it includes many improvements to the existing features such as adding new fea-

tures and scripting-based APIs. The Application Programming Interface (API) is

considered as the same graphical interface for user but instead of being interface

44

for human it is an interface for HTML code. It has been used by web developers

for years to be associated with HTML5 for improving a number of techniques

and put more power in developers’ hands to simplify a lot of tasks. Moreover,

it provides less dependence on plug-ins and third party software when browsing

rich media contents like introducing HTML5-based audio and video means. To-

day, web pages become much more complex referred as ”mashups” since there are

more contents and services are fetched among them from multiple sources called

third party domains. For example, some web pages present remote content from

a web page that is separated from original page called iframe. Browsers have

various security restrictions when they fetch web page contents from third party

domains so this has an impact on the retrieval behavior of that browsers. Figure

3.5 shows a web page that combines various web contents from different domains.

Figure 3.5: Common web contents that may be fetched from third party sites.
Source: http://bharathmarrivada. blogspot.com/2010/09/browser-wars-speed-
testperformance.html

Today, with the introduction of WEB 2.0, several web applications are ren-

45

dered on websites from different domains in order to fulfill end user satisfaction

[52]. As a result, a high competition between different browsers’ vendors comes

up to adopt multiple features for providing web users with better performance

and rich functionality.

Web browsers makers have a security concern about malicious objects that

might be injected by third party side. Thus, they support their browsers with

different JavaScript security policies which of course have an impact to the shape

of the traffic. There are a lot of web services introduced on web pages which

depend on Java Script to be implemented such as HTML APIs that allow web

developers to design much richer and interactive web pages. But more security

concerns have come with the new functionality available to JavaScript programs

[10]. For brevity, from our deep survey about web browsers, we hypothesize that

there are important HTML APIs that may have an impact on the stability of

browsers’ traffic patterns which are discussed in subsequent sections.

Server-Sent Events(SSE): An API that provides real-time events which

allows the server that hosts a web page to communicate back to the browser

and updates a web page with some information from the server rather than re-

peatedly requesting it [93]. SSE was developed under HTML5 as a web pushing

technology for data transmission in time interval or any time from server appli-

cation to a browser that supports this API [87]. As a result, the browser that

supports this API its retrieved web page gets updates automatically from server

side and immediately appear on user screen (e.g. news feeds, stock price updates,

46

Facebook/Twitter updates, etc) as a pushing scenario illustrated in Figure 3.6.

Figure 3.6: A process mechanism of Server-Sent Event between supporting web
browser and a server.

The logic process of Server-Sent Event technique is shown in the figure where

a handshake request is sent from a browser that support SSE to supported server.

Then, a server system responses with a handshake response as text/event-stream.

Finally, after the handshake committed between the browser and SSE service, the

SSE service may send any amount of data at any time during a connection session

[87]. However, SSE is handled directly by web browser and the user who browse

the web using such supporting browser simply has to listen for coming messages

from server side . More details behind Server-Sent Events API are given in [9].

Content Security Policy (CSP): The home page or root page of a

website provides several links to second party HTML pages so it turns links to

third party HTML pages and so on and so forth as it is shown in Figure 3.7.

A browser ,that trusts and fetches all stuff of a retrieved web page as being

legitimately part of web page security region, could has a severe problem. This is

because some possible attacks such as Cross-Site Scripting (XSS) bypass the same

47

Figure 3.7: Accessing multi level/linked web pages over the web [45].

origin policy by tricking a web page into delivering malicious code into users along

with the intended content. To solve such possible vulnerabilities, W3C proposed

an important technique called Content Security Policy (CSP) [78]. This policy is

implemented by a web page author which contains a list of domains for specifying

from where the remote contents (e.g. scripts, CSSs, media, HTML frames etc) can

be loaded and executed on a designed web page. It provides a standard HTTP

header that allows web page authors to declare approved web contents that the

browsers should be permitted to load on a fetched web page [90]. Therefore, CSP

defense can significantly mitigates the risks and attacks that can be associated

with fetched contents by whit-listing trusted sources of web page contents.

Sandbox Attribute For ”iframes”: Frame is a web feature that allows

an HTML window to be splitted into segments each segment can show different

document [91]. The iframe is an element or HTML inline frame that represents

48

a nested browsing context embedded within a retrieved web page. The remote

contents included in a retrieved web page are usually implemented by iframes that

separate those contents from the main page as it is clear in Figure 3.8.

Figure 3.8: An inline iframe element embedded within the main web page.

Some web browsers allow various web contents from different domains to com-

municate with each other by implementing several APIs communications. An

iframe element might load un-trusted contents or run malicious behavior (e.g.

auto-playing video, plug-ins, and pop-ups) [88]. Consequently, a sandbox at-

tribute is proposed which is a property that sets extra restrictions on web stuff

that can appear in the inline frame [29]. So it restricts the actions of the iframe can

take rather than on the resources that the iframe can load. However, a browser,

that supports sandbox attribute, reduces possible risks that can be associated

with iframe contents loaded from third-party and prevents a clever attacker from

injecting malicious objects within fetched contents. It loads specific frame’s con-

tents in a low environment and allows only a subset of capabilities necessary to

run inline iframes [88].

The discussion of content or structure layer of rendered web page is done so now

49

it is the time to discuss what makes it pretty using Cascading Style Sheets (CSS).

However, HTML marks various contents of the document, but it doesn’t indicate

how they are displayed. This is because the author of a web page doesn’t have

control on various devices and browsers that this web page will be displayed on.

Therefore, the exact appearance of web page elements are described in a separate

document called Cascading Style Sheet (CSS) [54]. CSS is the technology that

makes how web pages look like by giving a web browser a set of instructions

about the style of web page appearance (e.g. font sizes, colors, backgrounds,

etc). It is a style language that describes how HTML markups are styled and

presented so it describes the rendering of structured documents on various output

layouts (e.g. screen, paper, speech, etc) [43]. Therefore, various style sheets are

created by web developers to display their web page contents as they intent. The

recent version of style-sheet is CSS3 and it has several features (e.g. animation,

multiple backgrounds, transparency, specifying colors, etc). Each browser has

its own internal style sheets mechanism of specifying the way that different web

page elements appeared such as different font styles. For this reason, a web page

author creates a separate style sheet document that is embedded within HTML

document which specify the look of a web page depending on the version of a web

browser that is specified in client string of requested packets. Furthermore, the

author of a web page creates multiple style sheets which fit various output devices

(e.g. rendering on screen, printed output, and rendering aurally) [54]. However,

over time the task of figure out the differences between browsers has become more

50

complicated because of the the large-scale usage of CSSs, the ongoing evolution

of HTML standards, and the continual addition of web technologies [60]. In

our research we formulate the differences between web browsers in terms of their

support for web features that will be reflected to their behavior on traffic pattern.

Table 3.3 shows the various web technologies that affect the trace patterns of

web browsers. The browsers support for these features are tested in the empirical

evaluation chapter.

Web technology Description

Asynchronous script execution [16] The script object has an async attribute that enables
the associated elements of script to be loaded and ex-
ecuted asynchronously with other objects of loaded
page. This web technique is a part of World Wide
Web Consortium (W3C) HTML specification so the
browser that supports this feature can download and
execute JavaScript objects with other web pages ele-
ment in parallel in order to increase the performance
of page-load significantly.

Navigation Timing API [44] It is a timing API to provide a browser with mea-
surements related to TCP connection establishment
and spent time for web pages loading. It can access
to timing information related to navigation and web
page elements.

ActiveX [62] Microsoft added ActiveX into Internet Explorer to
host ActiveX controls within web pages contents. It
allows certain web pages to automatically download
scripts, execute small applications, and embed anima-
tions in a web page such as banner ads. This makes
the retrieved web page richer but that is why IE is
more vulnerable to security threats.

Table 3.3: The web technologies that have an impact the web browsing traffic
pattern.

51

The former sections demonstrated the importance of JavaScript, CSS, and

web technologies for creating highly interactive web pages. We will validate their

support and impact on browsers’ traffic patterns experimentally in the next chap-

ter. Furthermore, we will show how they make the resistances of browsers against

traffic analysis attack distinguishable from one another.

52

CHAPTER 4

WEBSITE FINGERPRINTING

ATTACK

In this chapter, we detail and show the results of a number of experiments to as-

sess the efficiency and utility of our approach. Our empirical evaluation addresses

the following research questions:

RQ1: Are there different resistance levels of website fingerprinting attack con-

ducted by popular web browsers?

RQ2: Which browser protects web users’ privacy against website fingerprinting

attack more and which browser protects less?

RQ3: What are the root causes that stand behind various resistance levels of

browsers against website fingerprinting attack?

To answer and validate these research questions empirically, we follow the fol-

lowing evaluation methodology including the experimental setup, data collection,

applied method, results and analysis, and discussion.

53

4.1 Experimental Setup

In order to investigate the protection range of browsers to the privacy of web

users over Tor, we have implemented a website fingerprinting attack. To do so, we

have collected the traffic traces and conducted several experiments using multiple

scripting codes and tools. The architectural framework for our experiments has

been set up using the software and hardware tools specified in Tables 4.1 and 4.2

below.

Tools Version

OS Windows 8

tshark 1.10.0 (SVN Rev 49790)

Google Chrome 31.0.1650.6

Firefox 26.0

Internet Explorer 10.0.9200.1638

Safari 5.1.7

Opera 12.16

Tor 3.5.2.1

Table 4.1: Software Tools.

Devices Specifications

CPU intel(R) Core(TM) Duo CPU T9600 @ 2.80 GHZ

Memory 4 GB

Ethernet Card Model 1EECD81C-907A-475B-ACF1-D106043C1F6D

Table 4.2: Specifications of hardware platform.

The communication backbone of the experiments is based on Ethernet en-

vironment of ADSL 3MB. We believe that the distinction between the retrieval

54

behaviors of browsers is difficult, since there are many factors that may affect

the shape of their traffic patterns (e.g. the content and structure of the retrieved

web pages, browser configuration, the configuration of client hardware, and net-

work conditions). Therefore, we designed and conducted our experiments in a

controlled environment in order to focus on browser-dependent factors that affect

the retrieval behavior of browsers by eliminating external factors as they will be

explained later. The experiments have been conducted on the latest stable and

available version of web browsers with their default configuration without any

installed add-ons/extensions to make sure that the observed results are browsers-

dependent. In order to evaluate the resistance levels of browsers against website

fingerprinting attack, we set up our attack platform as it is illustrated in Figure

4.1 scenario. Our attack passed through several phases to figure out the website

fingerprinting attack results on tested browsers.

The first phase is the data collection phase where we sniffed the encrypted data

trace of websites retrieved over the top five browsers based on the method specified

in Section 4.2. Second phase is the preprocessing phase where we conducted some

preprocessing steps on captured data set (e.g. remove noisy data, extract features,

etc) to be prepared for classification phase. The phases that our attack passed

through are explained in subsequent sections.

55

Figure 4.1: The various phases and an overview of our web page fingerprinting
attack scenario over Tor.

4.2 Data collection and Preprocessing Phases

Tor anonymous system is a live network with millions of daily users [64] who may

have entirely different browsers. Previous researches in website fingerprinting at-

tacks generally did not consider websites fingerprinting on different web browsers.

In this section we demonstrate how we sniffed/collected Tor anonymous data traf-

fic on the most commonly used web browsers for comparing different protections

of tested browsers against traffic analysis attack (website fingerprinting attack).

In order to create fingerprints of websites, we first established Tor network connec-

tion and configured web browsers to use Tor proxy with its default configuration

so all HTTP traffic is tunneled through default configuration of Tor. We inves-

tigated the effectiveness of our fingerprinting approach on the main pages of the

56

top 20 most visited websites ranked by Alexa statistics [2]. We selected these

websites/dataset because of their global popularity as well as their representative

to diverse activities on the WWW such as e-commerce (amazon and ebay), search

engines (google and ask), social networking (facebook and twitter), etc. The

data-set of our experiments were collected during Feb. 2014 under a closed-world

scenario. In such scenario, the attacker creates fingerprints for a list of websites

so when a victim visits certain website from a list of predefined/fingerprinted

websites, the attacker observes the victim’s trace pattern and matches it with

the list of previously fingerprinted websites in order to guess which website that

the victim visits for the sake of testing browsers protection. To automate the

browsing of websites, we wrote a python code to simulate a typical user action

like typing a URL into the address bar of the browsers. It automates each web

browser for browsing the list of 20 websites so each browser visits each website

15 times in a round-robin fashion. During the web browsing visits, we scripted

tshark, the command-line version of WireShark traffic analyzer, to capture the

real traffic packets of each visited website to be recorded in trace/log files un-

der each browser. Each trace/log file is labeled with the browser name, visited

web page, and the number of visit for further analysis. We recorded 15 log files

(packets traces) for each loaded website in the list. We repeated the automation

of websites visits on each browser and removed its cache after each website visit.

Through browsing automation process, we sat 25 seconds as a time out for each

loaded page to assure the loading of each website completely as well as for the

57

sake of consistency between tested browsers. We ended up with 1500 log trace

files for the five browsers, with (20 web pages ∗ 15 visits) per each browser. Each

trace file contains the data traffic of its visited web page (e.g. the time of sent and

received packets, the sizes of packets, the order in which the packets were sent or

received, etc). Table 4.3 lists the top 20 websites that we used for our study.

Websites’ Data Set

1 http://www.google.com 2 http://www.facebook.com

3 http://www.youtube.com 4 http://www.yahoo.com

5 http://www.baidu.com 6 http://www.en.wikipedia.org

7 http://www.ebay.com 8 http://www.live.com

9 http://www.taobao.com 10 http://www.linkedin.com

11 http://www.sina.com.cn 12 http://www.twitter.com

13 http://www.amazon.com 14 http://www.hao123.com

15 http://www.google.co.in 16 http://www.blogspot.com

17 http://www.weibo.com 18 http://www.tmall.com

19 http://www.wordpress.com 20 http://www.ask.com

Table 4.3: List of used websites for investigating the resistance levels of browsers
to website fingerprinting attack.

To prepare the data for classification phase, we did some preprocessing steps:

we removed TCP control packets (Acks and Syncs) because they reduce the per-

formance of the system and don’t add useful information in classification phase.

Moreover, we filtered only Tor packets from other non-Tor packets that might cap-

tured during traffic sniffing. Then, we extracted certain features from collected

58

traces to create a profile for each visited web page which called ”Fingerprint”. To

extract the features for classification, we built scripting program to extract the

sizes and the directions of retrieved packets that represent web pages fingerprints.

The traffic packets are stored as integers in the observed direction and recorded

as positive for outgoing packets and negative for incoming ones (e.g. 1150, −52,

1500, −638, 52, and 638 bytes). We have selected these packets features because

they reveal information about the sizes of referenced packets by a web page and

the order in which the browser issues or retrieve them.

4.3 Classification of web browsers resistances

In classification phase, the profile/trace of each website is represented as fin-

gerprint stored as a sequence of positive and negative integers. These integers

represent the sizes and directions of TCP packets generated to load website con-

tents over Tor. Then, the website traces/fingerprints are classified using Cai et

al. method described in [15]. So we calculated the similarity between websites

fingerprints using Damerau-Levenshtein distance algorithm. It figures out the

similarity between websites fingerprints by calculating the number of operations

(insertion, deletion, substitution, and transposition) that are required to transfer

trace t= (−1150, 1500, −638, 638, etc) into trace t’ = (−638, −1150, 638, 1500,

etc). Thus, the minimum number of operations to transfer trace t into trace t’ is

the more similar they are to each other so they are considered as two visits from

the same website. After the similarity distances between websites fingerprints are

59

calculated, they are classified using Support Vector Machine. As a result, we got

the different recognition rates of websites under tested browsers. Figure 4.2 shows

our fingerprinting results over tested browsers. It gives an overview of different

resistance levels of browsers against website fingerprinting attack.

Figure 4.2: The resistance rate of web browsers against website fingerprinting
attack over Tor.

Our metric in this study is the success rate of identifying websites fingerprints

or the percentage achieved to guess the identity of a website that the victim visits

correctly over popular browsers. Figure 4.2 shows the different recognition rates

of websites fingerprints that we achieved over tested browsers. The highest recog-

nition rate achieved by a browser is the least privacy protection that this browser

introduces, while the lowest recognition rate achieved by a browser is the high-

est protection it introduces against website fingerprinting attack. So the highest

recognition rate is 74% that is achieved by IE which indicates that it has the least

60

protection against website fingerprinting attack so the shape of its traffic pattern

can be monitored with the highest accuracy rate compared to other browsers. On

the other hand, the lowest recognition rate is achieved by Opera of 41.6% followed

by Safari of 53.8% which indicate that the surveillance of their traffic patterns by

attackers is more difficult so they protect more against website fingerprinting at-

tack compared to other browsers. The recognition results of Firefox and Chrome

are 70.4% and 69.6% respectively. However, the root causes behind these various

resistance levels of browsers against website fingerprinting attack are explained in

details in the subsequent sections.

61

CHAPTER 5

4. ROOT CAUSES BEHIND

DIFFERENT RESISTANCE

LEVELS OF BROWSERS

After we detected various recognition rates of browsers in website fingerprinting

attack, we figured out the main reasons behind various website fingerprinting re-

sults on Tor anonymous system. In this chapter we investigate the root causes of

different resistance levels of browsers against website fingerprinting attack. How-

ever, the differences between web browsers span a wide range of features from

visual/look level to traffic/trace level. These variations are caused by various

functionalities that are supported by different browsers. Our approach doesn’t

target internal browsers differences that don’t have an impact on the shape of their

traffic patterns such as DOM manipulation, but it targets the browser-dependent

features that affect the shape of its traffic pattern (e.g. JavaScripts, third-party

62

ads domains, performance optimization, parallel downloads, etc). Because the

web browsing traffic under Tor is anonymous/encrypted so we can’t see packets

data and their related information fields. Furthermore, we can’t observe the be-

havior of browsers on retrieving different web browsing contents. Therefore, we

turned off Tor then we carried out deep analytical study on web browsing traffic

by sufficient drill down to web pages contents level. We have done the experi-

ments on the same platform and data-set of previous experiments but on normal

traffic instead of anonymous/encrypted traffic. In this section we conducted sev-

eral fine-grained tests on browsers-dependent features and their impacts on web

browsing contents to catch the main causes that they make browsers behave dif-

ferently. The experiments are conducted based on the stable versions of browsers,

no add-ons/extensions, and without any external programs that may affect the

dependent behavior of tested browsers.

5.1 Browsers’ web technology features

Each web browser has its own associated features and traffic pattern, which make

it distinguishable from other browsers. To find out the main causes behind dif-

ferent behaviors of web browsers which resulted in various accuracies of website

fingerprinting attack, we have done several experiments to test browsers’ differ-

ences in both: their support to various web technology features and the reflection

of these features to their behavior in retrieving various web contents. We started

by testing the support of browsers to various web technologies that have an im-

63

pact on the shape of their traffic patterns using a couple of standard tools and

scripts [35], [26], and [36]. Table 5.1 shows the results of web technologies that we

compare tested browsers against. It shows the various supports of tested browsers

to popular web technologies. The sign (
√

) indicates that the browser supports the

associated feature while the sign (×) indicates that the browser doesn’t support

the associated feature.

Features Chrome FF IE Safari Opera

CSS Filter Effects
√

× × × ×

Asynchronous script execution
√ √ √ √

×

Navigation Timing API
√ √ √

× ×

ActiveX × ×
√

× ×

Native Flash blocking × × × ×
√

Cached compiled programs × × × ×
√

Table 5.1: Web technologies that affect the shape of traffic patterns of web
browsers.

We selected these features as a significant metric for browsers investigation as

they have a great impact on their traffic patterns. The main functionality of these

features and their impact on web browsing traffic patterns are explained in the

subsequent sections.

The ”Asynchronous script execution” feature [16] allows the JavaScript to be

loaded and executed asynchronously with other objects of a loaded page. So

the Opera browser that doesn’t support this feature, block all other downloads

64

when it retrieves and executes JavaScript file. Therefore, this behavior has a

great impact on the sequence order of retrieved objects and the performance of

page-load significantly as it is shown in results of section 5.2.3.

The ”Navigation Timing API” feature [44] provides a browser with accurate

measurements related to the establishment of TCP connection and the spent time

for web pages contents retrieval. It can also access to timing information related

to navigation and web page elements. Thus, Opera and Safari don’t support this

timing feature which has an impact on their traffic patterns as it is investigated

in section 5.2.3.

ActiveX feature [62] is supported by Microsoft in its Internet Explorer browser.

It hosts ActiveX controls within web pages contents. So it allows certain web

pages to automatically download scripts, execute small applications, and embed

animations in web pages such as banner ads. This allows a rich retrieval of web

pages contents but our attack shows that the highest recognition rate is achieved

under IE because of its behavior in allowing rich contents to be retrieved which

make its traffic pattern the most distinguishable than other browsers as it is shown

in the results of next sections. Native Flash blocking feature that is supported by

Opera browser which blocks flash animation contents as a result its traffic pattern

is affected as it is shown in the results. Furthermore, the ”Cached compiled

programs” feature that is supported by Opera which allows it to cache JS libraries

in its internal cache to be used again in JS contents retrieval without reloading.

Therefore, these features affect the browser-side footprint heavily when re-

65

trieving rich-contents of websites. Moreover, web technologies (e.g. ads filtering,

Flash blocking, third-party domains’ restrictions, etc) affect also the traffic pat-

terns of browsers in various levels based on their support by browser. The various

browser-dependent features and their impact on the retrieval behavior of various

web contents that are investigated in the subsequent sections.

5.2 The impact of browsers-dependent features

on their web browsing traffic patterns

When a browser sends an HTML request, the corresponding server handles the

request and delivers an HTML document to the browser. Then, the rendering

engine of the browser parses HTML doc so the embedded objects within HTML

code (e.g., images, JSs, flashes, etc) are fetched from their referenced servers. Each

web page has its own fingerprint in a term of number of various web objects. Each

browser retrieves website contents differently based on its support to different

web technology features so each browser has its own website fingerprint. The

characterization of browser features essentially involves the characterization of

various website objects (e.g. application/JavaScript, application/x-shockwave-

flash, etc) retrieved by a corresponding browser. Therefore, we have matched each

browser feature mentioned above with its relevant behavior in websites retrieval

to see its impact on browsers traffic pattern. We have done many tests to reach

the main causes behind web browsers that influence their traffic/trace patterns

66

so we have proved their impact experimentally as it is shown in the subsequent

sections.

We conducted a deep traffic analysis and aggregated analytics on real browsing

data (number of retrieved resources, content types, and other metadata) of our

fingerprinting data-set that posted in Table 4.3. All possible web content-types

that we have analyzed are posted in Table 5.2 below.

Various web pages content-types

1 text/html 2 text/css

3 text/javascript 4 text/plain

5 application/x-javascript 6 application/javascript

7 application/x-chrome-extension 8 application/json

9 application/x-shockwave-flash 10 application/x-www-form-urlencoded

11 application/ocsp-response 12 application/ocsp-request

13 application/octet-stream 14 application/x509-ca-cert

15 image/x-icon 16 image/png

17 image/webp 18 image/jpeg

Table 5.2: List of all possible web browsing content-types that we analyzed on
Web pages’ Data Set.

Thus, after we did extensive analysis on all retrieved web contents-types, we

figured out the contents-types that draw a certain traffic pattern for each browser.

From analyzed data we have characterized web browsing traffic to a number of

metrics. In this section we demonstrate some interesting metrics that are cor-

67

related to different browsers-dependent features which affect the shape of their

traffic patterns. The experimental results in Table 5.3 are conducted by several

statical analysis tests on our data-set which will be explained in details in the

subsequent sections.

Browser Name Average
JS data
flow[KB]

Number of
empty files

Average
No. third-
party
domains

Average
loading
time [Sec.]

Chrome 6845.692 23 533 27.426
Firefox 9127.72 21 493 28.394
Internet Explorer 14855.82 24 603 29.298
Safari 4172.84 22 434 19.322
Opera 517.44 67 0 12.028

Table 5.3: Characterizing traffic characteristics generated by tested web browsers.

From our experiments, we observed that each browser exhibits different pattern

on the same browsing data set. This is because each browser retrieves web pages

contents differently based on its support to various web technologies. Below are

the web content results that exhibit the variations on traffic patterns of different

browsers.

5.2.1 The impact of JavaScripts on web browsers’ traffic

patterns

JavaScript is enabled by default on all major browsers, and it was reported by

Alexa that 98 out of 100 popular websites use JavaScript [84]. Furthermore,

Michael et al. proved that JavaScript contents occupy the fraction of 25% across

all downloaded web contents [13]. Therefore, we started to analyze the behavior

68

of tested browsers on this large portion of web browsing content. Each browser

has its own JavaScript interpreter so it behaves differently in executing JavaScript

programs and it can access a set of available APIs implemented by its browser.

JavaScript code is loaded and executed on browser side so there are APIs that

JavaScripts deal with allow the scripts to communicate with remote servers [10].As

a result, loading and executing JavaScript contents have a great impact on the

shape of browsers’ traffic patterns. Our results show that different browsers’

JavaScript engines load and execute various amounts of JavaScript data as it is

shown in Figure 5.1.

Figure 5.1: The various amount of JS data flow which reflects the different be-
haviors of browsers’ JavaScript engines.

Animation on web pages is the characteristic of JavaScript behavior so the

more JS data flow in website retrieval is the larger the chance of website finger-

print/identity to be identified uniquely. As it is clear in the experimental results in

69

Figure 5.1 that IE has the largest amount of JS data flow of 14855.82 KB followed

by FF of 9127.72 KB and Chrome of 6845.692 KB. On the other hand, the least

amount of JS data is fetched by Opera of 517.44 KB followed by Safari of 4172.84

KB. During the experiments we noticed that the different supports of browsers to

various web features create different JS data flow illustrated in Figure 5.1. The

results show that IE has the largest amount of JS data flow. This is because

Microsoft provides its IE browser with the distinctive feature called (ActiveX) to

host ActiveX controls within websites contents. Thus, it allows certain web pages

to automatically execute small applications and download scripts/animations in

order to enhance user browsing experience. Moreover, IE allows all flash anima-

tion contents that are created by JavaScript Flash language (JSFL) to be loaded

as it is integrated with Adobe Flash by default. This makes retrieved websites

by IE more richer but rises possible security vulnerabilities especially the recog-

nition rate of website fingerprinting attack as we got in our experimental results

shown in Figure 4.2. So the websites fingerprints on IE are distinguished with

the highest recognition rate of 74% compared to other browsers. The behavior

of FF and Chrome in JS data flow is also reflected directly on their recognition

rate of 70.40% for FF and 69.60% for Chrome. They are approximately with the

same resistance level to website fingerprinting as they share the same security

mechanism called ”Safe Browsing” [37] that blocks all suspected JSs in order to

provide more phishing and malware protection. Safari deals with less JS data flow

because Apple maintains an updated blacklist for malicious JSs and Flashes so

70

that Safari blocks versions of JS and Flashes provided by certain websites which

place it on the second least recognition rate of website fingerprinting with 53.80%.

The least JS data flow is rendered by Opera. The reason behind is that Carakan

[47],the JS engine of Opera, brings an internal caching for compiled JS programs

so this technique is quite effective feature in typical scenario where the same JS

libraries can be reused internally without reloading it again such as a very large

JS library. Furthermore, Opera has a Flash blocking feature so these features

affect the traffic pattern of Opera and make it with the least recognition rate in

website fingerprinting attack of 41.60% as it is shown in Figure 4. However, the

results show that JS behaviors of browsers have relevant impacts on their various

resistances against website fingerprinting attack.

5.2.2 The impact of third-party loaded contents on traffic

patterns of browsers

With the development of the web and fast growing of on-line business, the web

sites appeared to be as a mixed of various web services provided from multiple

sources [86]. In our traffic analysis tests, we found that there are a lot of web

contents retrieved from different origins shown in Figure 5.2. These contents are

collected from third-party servers that are correlated to the traffic of target/first-

party server. For example, the visited web page can host several services: ad-

vertisement services from popular third-party ads servers (e.g. googleadservices

and doubleclick), analytical services that track user activity (e.g. quantserve and

71

google-analytics), and feed with contents from content distribution networks (e.g.

Limelight and Akamai). Therefore, the amount of data traffic coming from third-

party servers comprise a considerable fraction of retrieved data which have an

impact on web browsing traffic patterns of browsers. The results in Figure 5.2

shows that different numbers of third-party servers are contacted by browsers

that allow various amount of services to be retrieved based on the variety of their

security policies.

Figure 5.2: The various number of third-party servers retrieved by web browsers
which affect their web browsing traffic patterns.

The browser, that allows all data coming from third-party servers, brings a

high-value in its traffic pattern. As it is shown in Figure 5.2, that IE has the

highest portion of the number of 603 contacted third-party servers. This is because

IE allows all flash Ads contents to be loaded from third-party servers as we stated

earlier that Adobe Flash is integrated by default with IE so it doesn’t restrict

72

flash ads coming from third-party servers. That is why IE the largest target to

attackers who exploit any security vulnerabilities behind IE behavior. This factor

affects the recognition rate of IE on website fingerprinting attack. This is clear in

IE browser so while it has the highest number of retrieved third-party websites, it

also has the highest recognition rate of website fingerprinting attack of 74% which

means it has the least privacy protection compared to other browsers. Chrome

filters pop-up ads while FF has sandbox security model to limit accessing data

from other websites/third-party websites based on Same-Origin Policy (SOP) as

it is shown in Figure 5.2 that Chrome retrieves web contents from 533 third-

party servers followed by FF from 493. Safari retrieves stuff from 434 third-party

services as it blocks third-party cookies so the third-party websites that require

cookie to be enabled will be restricted. We noticed that Opera browser blocks all

data coming from third-party websites as it has strong security restrictions such

as Pop-ups blocking and cookie disabling for the sake of more security perspective.

So Opera browser blocks all third-party domains so it has the least recognition

rate of website fingerprinting attack of 41.60% which means it has the highest

privacy protection against website fingerprinting attack as it is shown in Figure

4.2. The results prove that the largest number of third-party domains retrieved

by a browser is the least privacy protection that this browser introduces. On the

other hand, the least number of third-party domains fetched by a browser is the

more privacy protection it has. We investigated the browsers’ content features

that affect the pattern of retrieved contents so the next subsections will evaluate

73

browsers’ performance features that have a great impact in the consistency of

browsers’ website visits.

5.2.3 The impact of retrieval aspects of browsers on the

consistency of their traffic patterns

When a browser requests the URL visible in its address bar, the HTML document

is retrieved with its embedded sub-resources (e.g. images, scripts, style-sheets,

flashes, etc). However, requesting each element individually by establishing sep-

arated HTTP requests causes the retrieval process to be slow and accompanied

with much traffic of TCP Acks and Syncs. To eliminate these performance is-

sues a parallel download technique was proposed to optimize the retrieval time of

websites so all browsers are permitted to open several simultaneous connections to

load website contents in parallel.So the behavior of browsers in parallel downloads

and loading time management is the main source of variations in the consistent

order of packets as it is shown in Figure 5.3. In this section we evaluated the con-

sistency between browsers’ website visits/traces/fingerprints by visiting Amazon

website 5 times with each browser and took the Average and Standard Deviation.

However, the web browsers may differ in their strategies of how they paral-

lelize the retrieval of website contents and how they optimize the loading time.

Therefore, these two features have a great impact on the stability/consistency be-

tween the lengths of website fingerprints/traces which affect the recognition rate

of website fingerprinting on different browsers. In parallel downloads we observed

74

Figure 5.3: The inconsistency between the sequence order of retrieved objects for
5 visits to the same website.

a significant parallel download issue which affect on the consistency of browser

traffic pattern extremely. The parallel download behavior of Opera differs from

other browsers because it doesn’t support || Script Image, || Script Stylesheet,

and Asyncronous script execution features explained in Table 3.3. Therefore,

when Opera retrieves an external script, it blocks all other downloads until the

script is loaded, parsed and executed. The waterfall chart in Figures 5.4 and 5.5

show the staircase pattern where there are some intervals of JSs that block Opera

from requesting website objects in parallel.

Thus, Opera does not support requesting JSs with other objects in parallel for

75

Figure 5.4: The impact of JavaScripts blocking on web browsing traffic pattern of
Opera.

the sake of security concern so this parallel download issue has a great impact on

the stability of its traffic pattern. Therefore, the misbehaving behavior of Opera

that is caused by its parallel download makes its traffic patterns the most diversity

compared to other browsers as it is shown in Standard Deviation of its websites

visits in Figure 5.6. As a result, Opera has the least recognition rate in website

fingerprinting attack compared to other browsers as shown in Section 4.3, Figure

4.2.

Different browsers implement different logic of retrieval optimization such as

when the individual requests are dispatched so this will be reflected to the sta-

bility/consistancy between the lengths of websites visits/traces. However, the

recent implementation of the W3C Navigation Timing API specification [77] that

is supported by Chrome, FF and IE add a great performance optimization to their

retrieval time. What can’t be measured it can’t be optimized so the browser that

76

Figure 5.5: The impact of JavaScripts blocking on web browsing traffic pattern of
Opera.

supports Navigation Timing feature, a major development will be added to its

functionalities. This feature provides browsers with fine-grained measurements

about real browsing timings such as (e.g. TCP connection, timing information

related to loaded elements, etc) further information behind this feature found in

[33]. The performance metrics supported by Navigation Timing optimize the re-

trieval behavior of browsers that support it which is reflected clearly to the shape

of their traffic patterns as it is illustrated in Figure 5.6. The results show that the

browsers have various average loading times and different inconsistencies between

the retrieval times of their website visits. We evaluated the consistency between

the retrieval periods of website visits by calculating the Standard Deviation of

several website visits.

Figure 5.6 shows that Opera and Safari have the largest Standard Deviation

77

Figure 5.6: The variations in retrieval time of browsers and their impact on the
consistency of web browsing traffic patterns.

across browsers as they don’t support Navigation Timing feature. So the lack

of Opera and Safari to the efficiency of this timing feature is reflected to the

consistency of their website traces as it is shown in Figure 5.6. Furthermore, this

is reflected also to their accuracy on website fingerprinting attack as it is shown

in Figure 4.2. Beside the lack of Navigation Timing feature, Opera also has the

parallel download issue mentioned above. So Opera has the highest inconsistency

between the length of its website traces compared to other browsers because of

its largest Standard Deviation value shown in Figure 5.6 which means the largest

diversity between the lengths of its website traces/fingerprints. As a result, Opera

has the least recognition rate of website fingerprinting attack compared to other

browsers as it is shown in Figure 4.2.

The consistency between website traces on IE and FF is approximately the

same as they share the support of Asynchronous script execution and Navigation

78

Timing features. For further information behind these features see Table 3.3. IE

has the most regularity between the lengths of its website traces so this behavior is

reflected to its resistance to traffic analysis attack where IE has the largest recog-

nition rate in website fingerprinting compared to other browsers as it is shown in

Figure 4.2. The consistency between website visits over Chrome is more diversity

than FF and IE. Although, they share the same features (Asynchronous script ex-

ecution and Navigation Timing) but we have noticed that in some website visits

Chrome downloads stuff from Google’s servers which are maintained periodically

(e.g. the most recent Safe Browsing list maintained by Google related to blacklist

of websites that Chrome must avoid and it is updated continuously, apps and

themes) in a form of ”application=x-chrome-extension” content-type. This be-

havior of Chrome is illustrated website retrieval in the most left part of Chrome

in waterfall chart in Figure 5.7. This behavior of Chrome makes its website visits

more inconsistency than FF and IE.

Figure 5.7: The automatic periodical loading of Chrome from Google’s servers.

The figure shows the automatic periodical updates of Chrome by Google which

79

occur continually. This distinctive behavior of Chrome affect the website finger-

printing accuracy so these updates (e.g. Safe Browsing List and themes ”CSS

filters”) are triggered in some website visits randomly.

In website fingerprinting attack the consistency or inconsistency between web-

site fingerprints/log traces have a great impact on the accuracy of website finger-

printing attack. When it comes to the classification phase the similarity between

website fingerprints is calculated using Damerau-Levenshtein distance algorithm

as it is described in Section 4.3. So this algorithm depends on matching the

integers of the traces (-1150, 1500, - 638, 638, etc) to calculate the similar-

ity between websites fingerprints. Therefore, the variations between the lengths

of traces/fingerprints has a great impact on the accuracy of website fingerprint-

ing.In data collection phase of our website fingerprinting attack we automated the

browsers for websites visits and we noticed that there are several number of web-

sites which were not visited by browsers so their log files were left empty. Figure

5.8 shows the various number of empty log files that are collected over browsers.

The characteristic of internet network is not stable as there are several network

problems that can be happened in any second either in communication medium or

server side such as DNS resolving, Server loading, etc. Because our attack is real

scenario so we left everything as it is by considering the empty log files to evaluate

the real browsing behavior of browsers. As it is shown in Figure 5.8 that there are

approximately 20 log files that are left empty under Chrome, FF, IE and Safari.

The sharing of the four browsers to this behavior indicate that it is caused by the

80

Figure 5.8: The number of empty log files collected over browsers during data
collection phase which affect the website fingerprinting accuracy of browsers.

variation of internet network conditions. Opera has a distinctive number of 67

empty log traces so this is not comparable to other browsers which we collected

their log traces on the same platform conditions and same data set. The reason

is that the results show that Opera has two significant security features that are

enabled by default which stand behind the unique behavior of Opera. The screen

shots that are captured during the automated data collection of Opera are shown

in Figure 5.9.

As it is shown in the figure that the left screen shot presents the blocked cookie

of Opera which is disabled by default. Some websites doesn’t allow to be browsed

without the enabled cookie feature of the browser so those websites were not

visited and cause the empty log files of Opera. The right screen shot illustrates

the security certificate issue which is caused by strict security behavior of Opera

to verify trusted websites. The warning dialog shows a question about website

81

Figure 5.9: The security features that caused the most empty log traces of Opera.

visit rejection or bypassing the certificate warning to visit a website which the

full security cannot be guaranteed. In this case there wasn’t not any response to

the warning dialog message trigged by Opera so the 25 seconds interval that we

set for each website visit was fired and the website wasn’t visited as a result the

log file trace left empty. To sum up, in this chapter we have conducted extensive

analysis tests to figure out the root causes that stand behind different resistance

levels of browsers against website fingerprinting attack. There are some external

factors that may affect the behavior of web browsers which will be discussed in

the subsequent sections.

5.3 Discussion

There is no any research in the literature that evaluates the behaviors and func-

tionalities of the most commonly used web browsers from traffic analysis perspec-

82

tive. The traffic patterns of browsers may change due to some network conditions

and dynamic behavior of server-side. The following subsections discuss the factors

that affect the recognition rate of web browsers in website fingerprinting attack.

5.3.1 Dynamic contents

The contents of websites may change over time so the same web page would

not have the same objects every day. For example, video website updates it-

self constantly based on the most popular viewed videos that are recommended

for its visitors. Moreover, news websites change their contents more than daily.

Therefore, these dynamic changes may reduce the recognition rate of websites

fingerprints across browsers. This impact is limited because the change will be

in some contents of a web page rather than its template/structure which may be

changed infrequently.

5.3.2 Localization

There is another factor that may reduce the recognition rate of websites finger-

prints which is known as website localization so the visits of same website may

result in different contents depending on its locality. For example, the contents of

”www.google.com.sa” is different from ”www.google.com.in” contents depends on

specified localization so in our website fingerprinting attack we have considered

localization factor. As it is shown in Figure 5.6 that the contents of the same

website is different based on its locality. Fortunately, in the Figures tow ads from

83

Google that are provided based on the interest of different localizations.

Figure 5.10: Different contents for the same website that shows website localiza-
tion.

It is worth mentioning that when Tor is used the locality is determined by the

exit relay of Tor which is selected randomly rather than by the client’s location for

the sake privacy protection (Anonymity). Therefore, when Tor is used the locality

approach affects the website fingerprinting attack results. This happens when

the locality of a target website is not specified exactly in the address bar of the

browser such as www.google.com without specifying if it is ”www.google.com.sa”

or ”www.google.com.in”. As a result, we argue that the accuracy of website

fingerprinting attack on Tor will be affected on websites that don’t specify the

locality of a target domain.

84

5.3.3 Recommendation

Our results show that the active contents such as JavaScript and CSSs features

make the web pages fingerprints more recognizable. Their impact is more obvious

in IE so it has the highest recognition rate of website fingerprinting compared

to other browsers. So we argue that the most obvious resistance against website

fingerprinting attack is to disable all active contents in web browsers. The disad-

vantage of this defense method is that many web services will be disabled but it

will protect web user privacy against traffic analysis attack substantially. These

active contents are real threat to web user privacy in anonymous web-browsing

thus anonymous systems like Tor warn its users to disable active contents in their

browsers.

85

CHAPTER 6

CONCLUSION AND FUTURE

WORK

In this thesis we investigated our web page fingerprinting attack to study various

resistances of popular web browsers by detecting their network traffic patterns

using traffic analysis. Our attack significantly outperforms previous attacks in

tow folds: First, we implemented web page fingerprinting attack on the most

commonly used web browsers which outperforms previously proposed attacks

that used only a single browser ”Firefox”. Second, we investigated the browser-

dependent features to uncover the underlying causes that stand behind different

resistances of the top five browsers. Our website fingerprinting attack can deter-

mine which web page a victim may visit with a success rate of 74%, 70.4%, 69.6%,

53.8% and 41.6% by IE, FF, Chrome, Safari and Opera respectively. From our

results we conclude that the least privacy protection can be introduced by IE as

we got the highest recognition rate compared to other browsers. FF and Chrome

86

approximately have the same resistance. The highest protection against traffic

analysis attack is introduced by Opera followed by Safari because of their own

dependent causes mentioned above. The aim of applying website fingerprinting

attack using top browsers is to empower web users with the awareness of pri-

vacy protection that would provide them with the feedback about the level of

anonymity that can be introduced by each browser and which browser that can

add adequate anonymity. In future work we plan to further investigate on more

fine-grained web pages dataset to evaluate to which range each browser protects

against websites fingerprinting attack on different websites classes (e.g. business

websites, news websites, social networking sites, Forum websites, Gallery Web-

sites, Gaming websites, Search engine sites, etc). Furthermore, a hot research

issue is that this research can be applied on more restricted mobile browsers (e.g.

Android, Dolphin, etc.) since a lot of people today use their smart devices like

mobile phones and tablets to browse internet in their daily life. Thus, their pri-

vacy can be endangered with the recent capturing tools that can eavesdrop their

traffic wirelessly. Future work should include additional features other than of

desktop browses which fit the restriction of mobile browsers in order to raise the

privacy awareness of mobile users.

87

REFERENCES

[1] Timothy G Abbott, Katherine J Lai, Michael R Lieberman, and Eric C

Price. Browser-based attacks on tor. In Privacy Enhancing Technologies,

pages 184–199. Springer, 2007.

[2] Amazon. ”Alexa website: The web information company”.

http://www.alexa.com/topsites, 2014.

[3] Erik Archambault and Craig Shue. Understanding new anonymity networks

from a user’s perspective. In Proceedings of the 2012 ACM conference on

Computer and communications security, pages 995–997. ACM, 2012.

[4] Jordan Nielson Carey Williamson Martin Arlitt. Benchmarking modern web

browsers.

[5] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Dou-

glas Sicker. Low-resource routing attacks against tor. In Proceedings of the

2007 ACM workshop on Privacy in electronic society, pages 11–20. ACM,

2007.

88

[6] Tim Berners-Lee. ”WWW FAQs: What was the first Web browser?”.

http://www.w3.org/TR/html5/forms.html, 2006.

[7] Tim Berners-Lee. ”Web browser engine”.

http://en.wikipedia.org/wiki/Layout engine, 2014.

[8] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web mixes: A sys-

tem for anonymous and unobservable internet access. In Designing Privacy

Enhancing Technologies, pages 115–129. Springer, 2001.

[9] Eric Bidelman. ”Stream Updates with Server-Sent Events”.

http://www.html5rocks.com/en/tutorials/eventsource/basics/, 2010.

[10] Nataliia Bielova. Survey on javascript security policies and their enforce-

ment mechanisms in a web browser. The Journal of Logic and Algebraic

Programming, 82(8):243–262, 2013.

[11] George Dean Bissias, Marc Liberatore, David Jensen, and Brian Neil Levine.

Privacy vulnerabilities in encrypted http streams. In Privacy Enhancing

Technologies, pages 1–11. Springer, 2006.

[12] Tim Brown. ”Type rendering: web browsers”.

http://blog.typekit.com/2010/10/21/type-rendering-web-browsers/, 2013.

[13] Michael Butkiewicz, Harsha V Madhyastha, and Vyas Sekar. Understand-

ing website complexity: measurements, metrics, and implications. In Pro-

ceedings of the 2011 ACM SIGCOMM conference on Internet measurement

conference, pages 313–328. ACM, 2011.

89

[14] Xiang Cai, Rishab Nithyanand, and Rob Johnson. New approaches to web-

site fingerprinting defenses. arXiv preprint arXiv:1401.6022, 2014.

[15] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching

from a distance: Website fingerprinting attacks and defenses. In Proceedings

of the 2012 ACM conference on Computer and communications security,

pages 605–616. ACM, 2012.

[16] Internet Explorer Dev Center. ”Asynchronous script execution”.

http://msdn.microsoft.com/en-us/library/ie/hh673524(v=vs.85).aspx, Au-

gust 2014.

[17] Darren Charters. Electronic monitoring and privacy issues in business-

marketing: The ethics of the doubleclick experience. Journal of business

ethics, 35(4):243–254, 2002.

[18] David L Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[19] Hyunyi Cho and Robert LaRose. Privacy issues in internet surveys. Social

Science Computer Review, 17(4):421–434, 1999.

[20] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. Cross-

check: Combining crawling and differencing to better detect cross-browser

incompatibilities in web applications. In Software Testing, Verification and

Validation (ICST), 2012 IEEE Fifth International Conference on, pages

171–180. IEEE, 2012.

90

[21] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. Webdiff:

Automated identification of cross-browser issues in web applications. In

Software Maintenance (ICSM), 2010 IEEE International Conference on,

pages 1–10. IEEE, 2010.

[22] Ravi Chugh, Jeffrey A Meister, Ranjit Jhala, and Sorin Lerner. Staged

information flow for javascript. In ACM Sigplan Notices, volume 44, pages

50–62. ACM, 2009.

[23] Winnie Chung and John Paynter. Privacy issues on the internet. In System

Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International

Conference on, pages 9–pp. IEEE, 2002.

[24] Roger Clarke. ”Introduction to Dataveillance and Information Pri-

vacy, and Definitions of Terms”. http://www.anu.edu.au/people/

Roger.Clarke/DV/Intro.html, 2013.

[25] Ryan Michael Craven. Traffic analysis of anonymity systems. PhD thesis,

Clemson University, 2010.

[26] creativecommons. ”community-driven project for profiling web browsers”.

http://www.browserscope.org/, 2014.

[27] Mary J Culnan. ” how did they get my name?”: An exploratory investigation

of consumer attitudes toward secondary information use. Mis Quarterly,

17(3), 1993.

91

[28] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: De-

sign of a type anonymous remailer protocol. In Security and Privacy, 2003.

Proceedings. 2003 Symposium on, pages 2–15. IEEE, 2003.

[29] Delapouite. ”<iframe> element”. https://developer.mozilla.org/en-

US/docs/Web/HTML/Element/iframe, 2014.

[30] Gurpreet S Dhillon and Trevor T Moores. Internet privacy: Interpreting key

issues. Advanced topics in information resources management, pages 52–61,

2003.

[31] Claudia Dı́az. Anonymity metrics revisited. Internat. Begegnungs-und

Forschungszentrum für Informatik, 2006.

[32] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. Technical report, DTIC Document, 2004.

[33] Sam Dutton. ”Measuring Page Load Speed with Navigation Timing”.

http://www.html5rocks.com/en/tutorials/webperformance/basics/, Octo-

ber 2013.

[34] Tali Garsiel and Paul Irish. How browsers work: Behind the scenes of

modern web browsers. Slate, 5th August, 2011.

[35] Henrik Gemal. ”community-driven project for profiling web browsers”.

http://browserspy.dk/, 2014.

92

[36] StatCounter GlobalStats. ”Browsers Statistics”.

http://gs.statcounter.com/, May 2013.

[37] StatCounter GlobalStats. ”Compatibility tables for support of HTML5 and

JSs in browsers”. https://http://caniuse.com/, 2014.

[38] Google.

[39] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static anal-

ysis for ajax intrusion detection. In Proceedings of the 18th international

conference on World wide web, pages 561–570. ACM, 2009.

[40] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website finger-

printing: Attacking popular privacy enhancing technologies with the multi-

nomial näıve-bayes classifier. 2009.

[41] Ariya Hidayat. ”JavaScript Engines: How to Compile Them”.

http://www.sencha.com/blog/javascript-engines-how-to-compile-them/,

2010.

[42] Andrew Hintz. Fingerprinting websites using traffic analysis. In Privacy

Enhancing Technologies, pages 171–178. Springer, 2003.

[43] Erik Hjelmvik. ”Detecting TOR Communication in Network Traffic”.

http://www.netresec.com/?page=Blog&month=2013-04&post=Detecting-

TOR-Communication-in-Network-Traffic, 2013.

93

[44] Brian P Hogan. Html5 and css3. Develop with Tomorrow’s Standards Today.

The Pragmatic Programmers, 2010.

[45] Colin Ihrig. ”Profiling Page Loads with the Navigation Timing

API”. http://www.sitepoint.com/profiling-page-loads-with-the-navigation-

timing-api, September 2012.

[46] Francis Jayakanth. Web servers, browsers, server - browser interaction, web

surfing. National Centre for Science Information (NCSI),Indian Institute of

Science Bangalore - 560 012, 2011.

[47] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the

html dom and browser api in static analysis of javascript web applications. In

Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, pages 59–69. ACM, 2011.

[48] JENSL. ”Carakan”. http://web.archive.org/web/20090206133936/http://my.opera.com/core/blog/2009/02/04/carakan,

February 2009.

[49] jrandom. ”I2P: A scalable framework for anonymous communication”.

http://geti2p.net/en/docs/how/tech-intro, 2014.

[50] Marc Liberatore and Brian Neil Levine. Inferring the source of encrypted

http connections. In Proceedings of the 13th ACM conference on Computer

and communications security, pages 255–263. ACM, 2006.

[51] Feng Lin. Opacity of discrete event systems and its applications. Automat-

ica, 47(3):496–503, 2011.

94

[52] Sergio Maffeis, John C Mitchell, and Ankur Taly. Isolating javascript with

filters, rewriting, and wrappers. In Computer Security–ESORICS 2009,

pages 505–522. Springer, 2009.

[53] By BHARATH MARRIVADA. ”Browser wars and End

user performance, content display impact”. http://bharath-

marrivada.blogspot.com/2010/09/browser-wars-speed-test-

performance.html, 2014.

[54] Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extend-

ing and resisting statistical disclosure. In Privacy Enhancing Technologies,

pages 17–34. Springer, 2005.

[55] Florence Maurice. HTML und CSS, volume 24578. Pearson Deutschland

GmbH, 2010.

[56] Carlo Maria Medaglia and Alexandru Serbanati. An overview of privacy and

security issues in the internet of things. In The Internet of Things, pages

389–395. Springer, 2010.

[57] Ali Mesbah and Mukul R Prasad. Automated cross-browser compatibility

testing. In Proceedings of the 33rd International Conference on Software

Engineering, pages 561–570. ACM, 2011.

[58] Bharat Mishra, Harish Singh Baghel, Manoj Patil, and Pramod Singh.

Study & analysis of various protocols in popular web browsers. Interna-

95

tional Journal of Advancements in Research and Technology, vol. 1, no. 3,

p. 8-14., 1(3):7, 2012.

[59] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebas-

tian Schrittwieser, Edgar Weippl, and FH Campus Wien. Fast and reli-

able browser identification with javascript engine fingerprinting. In Web 2.0

Workshop on Security and Privacy (W2SP).

[60] Steven J Murdoch and Robert NM Watson. Metrics for security and perfor-

mance in low-latency anonymity systems. In Privacy Enhancing Technolo-

gies, pages 115–132. Springer, 2008.

[61] Jordan Nielson, Carey Williamson, and Martin Arlitt. Benchmarking mod-

ern web browsers. In 2nd IEEE Workshop on Hot Topics in Web Systems

and Technologies. Citeseer, 2008.

[62] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.

Website fingerprinting in onion routing based anonymization networks. In

Proceedings of the 10th annual ACM workshop on Privacy in the electronic

society, pages 103–114. ACM, 2011.

[63] Paul Pardi. ”Internet Explorer Security Settings - ActiveX Controls”.

http://www.brighthub.com/internet/security-privacy/articles/1968.aspx,

May 2011.

96

[64] Andreas Pfitzmann and Marit Köhntopp. Anonymity, unobservability, and

pseudonymitya proposal for terminology. In Designing privacy enhancing

technologies, pages 1–9. Springer, 2001.

[65] Tor project. ”Tor Metrics Portal”. https://metrics.torproject.org/, 2012.

[66] Tor Project. ”Tor: Overview”. http://www.torproject.org/about/overview.html.en,

2014.

[67] Lee Rainie, Sara Kiesler, Ruogu Kang, Mary Madden, Maeve Duggan,

Stephanie Brown, and Laura Dabbish. Anonymity, privacy, and security

online. Pew Research Center, 2013.

[68] Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transac-

tions. ACM Transactions on Information and System Security (TISSEC),

1(1):66–92, 1998.

[69] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis

of the dynamic behavior of javascript programs. In ACM Sigplan Notices,

volume 45, pages 1–12. ACM, 2010.

[70] Yi Shi and Kanta Matsuura. Fingerprinting attack on the tor anonymity

system. In Information and Communications Security, pages 425–438.

Springer, 2009.

[71] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis

of keystrokes and timing attacks on ssh. In USENIX Security Symposium,

volume 2001, 2001.

97

[72] Boukari Souley and Amina S Sambo. A comparative performance analysis of

popular internet browsers in current web applications. West African Journal

of Industrial and Academic Research, 4(1):62–68, 2013.

[73] Paul F Syverson, David M Goldschlag, and Michael G Reed. Anonymous

connections and onion routing. In Security and Privacy, 1997. Proceedings.,

1997 IEEE Symposium on, pages 44–54. IEEE, 1997.

[74] taligarsiel. ”The anonymizer”. http://www.anonymizer.com/, February

2013.

[75] P. Palfrader U. Moller, L. Cottrell and L. Sassaman. ”Mixmaster protocol

version 2”. https://tools.ietf.org/html/draft-sassaman-mixmaster-03, 2004.

[76] Ellen Vanderhoven and Tammy Schellens. The role of parents, media, teach-

ers and peers in raising the awareness of privacy-issues on social networks. In

Designing Learning Futures: Digital Media & Learning Conference (DML-

2011), 2011.

[77] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher

Kruegel, and Giovanni Vigna. Cross site scripting prevention with dynamic

data tainting and static analysis. In NDSS, 2007.

[78] W3C. ”Navigation Timing”. https://dvcs.w3.org/hg/webperf/raw-

file/tip/specs/NavigationTiming/Overview.html, January 2013.

[79] W3C. ”Content Security Policy”. http://dev.w3.org/html5/spec/single-

page.html#history, 2014.

98

[80] W3C. ”Document Object Model (DOM)”. http://www.w3.org/DOM/, May

2014.

[81] W3C. ”World Wide Web Consortium”. http://www.w3.org, May 2014.

[82] Tao Wang and Ian Goldberg. Improved website fingerprinting on tor. In

Proceedings of the 12th ACM Workshop on Workshop on Privacy in the

Electronic Society, WPES ’13, pages 201–212, New York, NY, USA, 2013.

ACM.

[83] Wei Wang, Mehul Motani, and Vikram Srinivasan. Dependent link padding

algorithms for low latency anonymity systems. In Proceedings of the 15th

ACM conference on Computer and communications security, pages 323–332.

ACM, 2008.

[84] Samuel D Warren and Louis D Brandeis. The right to privacy. Harvard law

review, pages 193–220, 1890.

[85] Shiyi Wei and Barbara G Ryder. A practical blended analysis for dynamic

features in javascript. 2012.

[86] Weka. ”Weka 3: Data Mining Software in Java”.

http://www.anonymizer.com/, 2014.

[87] H Joseph Wen, Houn-Gee Chen, and Hsin-Ginn Hwang. E-commerce web

site design: strategies and models. Information management and computer

security, 9(1):5–12, 2001.

99

[88] Mike West. ”HTML 5 Server Sent Events on Glassfish 4”.

http://en.kodcu.com/2013/11/jaxrs-2-html-5-server-sent-events-on-

glassfish-4/, 2013.

[89] Mike West. ”Play safely in sandboxed IFrames”.

http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/,

2013.

[90] Wikipedia.

[91] wikipedia. ”Content Security Policy”.

http://en.wikipedia.org/wiki/Content Security Policy, May 2014.

[92] wikipedia. ”HTML element”. http://en.wikipedia.org/wiki/HTML element#Frames,

2014.

[93] wikipedia. ”Internet censorship in Iran”.

http://en.wikipedia.org/wiki/Internet censorship in Iran, May 2014.

[94] wikipedia. ”Server-sent events”. http://en.wikipedia.org/wiki/Server-

sent events, 2014.

[95] wikipedia. ”Tor (anonymity network)”.

http://en.wikipedia.org/wiki/Tor (anonymity network), 2014.

[96] wikipedia. ”wikipedia List of websites blocked in China”.

http://en.wikipedia.org/wiki/List of websites blocked in China, May

2014.

100

[97] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript in-

strumentation for browser security. In ACM SIGPLAN Notices, volume 42,

pages 237–249. ACM, 2007.

[98] Nicholas C. Zakas. ”How many users have JavaScript disabled?”.

https://developer.yahoo.com/blogs/ydn/many-users-javascript-disabled-

14121.html, 2010.

[99] Michal Zalewski. ”Browser Security Handbook, part 1”.

https://code.google.com/p/browsersec/wiki/Part1, 2009.

[100] Ye Zhu and Riccardo Bettati. Anonymity vs. information leakage in

anonymity systems. In Distributed Computing Systems, 2005. ICDCS 2005.

Proceedings. 25th IEEE International Conference on, pages 514–524. IEEE,

2005.

[101] Xiaoyu Zhuang. ”interaction between web browsers and script engines”.

2012.

101

Vitae

� Name: Taher Ali Yahya Al-shehari

� Email: taherali599@gmail.com

Taher Al-Shehari was born in 1982 at Amran, Yemen. He obtained his Bachelor of

Science (BS) degree with honors in computer science from King Khalid University

(KKU), Abha, KSA in 2007. He granted the Upper Class Honour by the rector of

KKU. He joined KFUPM as a full time graduate student to pursue the master’s

degree. He received Master of Science (MS) degree in computer science from King

Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia in

2014. He worked in several research projects include Plagiarism detection, Code

similarity detection, Geographic information system, Arabic computing, Wireless

video streaming over DDS, and Operating system fingerprinting. His research in-

terests include Plagiarism detection, Wireless video streaming, Network security

and privacy (website fingerprinting attack, traffic analysis attack, privacy protec-

tion on Tor anonymity). His research activities resulted in publications of two

conference papers one of them is IEEE international conference and other journal

paper.

102

