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Medium And Long Term Investment Decisions 

Major Field : Petroleum Engineering 
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This thesis presents an investigation of the effect of production time in well placement 

optimization as well as the effect of adding well spacing constraints, and the use of 

lexicographical multi objective approach considering short, medium and long term net 

present values (NPV) as different objectives. 

Adding minimum well spacing constraints to the optimization problem is necessary 

although it affects the results. We found this effect is varying from negligible to more 

noticeable depending on the density of wells to be completed in the reservoir.  

The results of the study showed that well placement optimization results in short, medium 

and long term are affected by changing the simulated period. When short period NPV is 

used as the objective function the optimum results for medium and long term are not 

guaranteed.  

We proposed the use of lexicographic approach in well placement optimization to 

simultaneously optimize the NPVs for different suggested project life times. The results 

of this approach compared to the regular single objective optimization found to achieve a 

well configuration that ensures better results in short, medium and long term investment 
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scenarios. A drawback of this approach is that it involves sequential optimization which 

requires more function evaluation and therefore more time and computational cost. 
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ْزا انجحش ٚقذو رحقٛق عٍ ربصٛش يذح الاَزبط ٔ ربصٛش اضبفخ ششط انًسبحخ الادَٗ عهٗ عًهٛخ الاخزٛبس الايضم نًٕاقع 

الاثبس ثبلاضبفخ انٗ اسزخذاو انًجذا انهٛكسكٕقشافٙ نعًهٛخ انزحسٍٛ يزعذد الاْذاف ثبعزجبس صلاس خٛبساد اسزضًبسٚخ 

 .يزٕسظ ٔ طٕٚم انًذح, كبْذاف يخزهفخ ٔ ْٙ انخٛبس الاسزضًبس٘ قصٛش

ْزا انزبصٛش ٚزشأح يب ثٍٛ ربصٛش . اضبفخ ششط انًسبحخ الادَٗ نهجئش ضشٔس٘ سغى آَب رؤصش عهٙ َزبئظ عًهٛخ الاخزٛبس

 طفٛف لا ٚلاحع انٙ ربصٛش حقٛقٙ ٔ رنك حست عذد الاثبس ثبنُسجخ نًسبحخ انًكًُض

عُذيب ٚزى اسزخذاو انًذح انقصٛشح . اظٓشد انذساسخ اٌ َزبئظ عًهٛخ رحسٍٛ يٕاقع الاثبس ربصشد ثزغٛش يذح انًششٔع

 .كذانخ ْذففإٌ انحصٕل عهٗ يٕاقع الاثبس الايضم نهًذٖ انًزٕسظ أ انطٕٚم غٛش يضًٌٕ

اقزشحُب فٙ ْزا انعًم اسزخذاو انًجذا انهٛكسكٕقشافٙ فٙ عًهٛخ اخزٛبس يٕاقع الاثبس ثحٛش ٚزى الاخزٛبس انًُبست عهٗ 

ثًقبسَخ َزبئظ اسزخذاو ْزا انًجذا يع َزبئظ طشٚقخ انٓذف انٕاحذ . انًذٖ انقصٛش، انًزٕسظ ٔ انطٕٚم فٙ آٌ ٔاحذ

انًعٕٓدح، ٔعذَب اٌ ْزِ انطشٚقخ ًٚكٍ اٌ رؤد٘ انٙ يٕاقع اثبس افضم نكم انخٛبسد سٕاء انقصٛش أ انًزٕسظ أ 

عٛت ْزا انًجذا اَّ عًهٛخ انزحسٍٛ فّٛ رسهسهٛخ يًب ٚعُٙ صٚبدح فٙ عًهٛبد رًضٛم انًكًٍ انزٙ رؤد٘ ثذٔسْب . انطٕٚم

 .انٙ صٚبدح انٕقذ انًطهٕة
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1 CHAPTER 1 

INTRODUCTION 

The development of new fields is expensive and complicated operation, so the best 

profitable plans need to be considered. Well placement optimization is one of the field 

planning tasks that can improve the reservoir performance and the economic value of the 

project by increasing the total production. Proper wells locations enhance the sweep 

efficiency of water flooding and increase the recovery factor and thus the net present 

value (NPV). 

Optimization is a process of finding and comparing feasible solutions until no better 

solution can be achieved. Direct optimization with common stochastic optimization 

algorithms using numerical reservoir simulator as evaluation tool and NPV as objective 

function has been used for well placement problems. The optimization process requires 

thousands of function evaluations and in the case of well placement thousands of 

reservoir simulation runs are needed. This process is computationally expensive however, 

the computational power of clusters are improving and thus optimization methods in well 

placement becomes more feasible. 

Different optimization methods have been used in well placement problems, one of these 

optimization methods is a stochastic method using randomized search algorithm called 

Covariance Matrix Adaption- Evolutionary Strategy (CMA-ES). Generally stochastic 

optimization algorithms have some advantages over gradient based methods because no 

special formulation for the objective function to have derivatives is required and they are 

more likely to find the global optima (Andersson 2000). While the gradient based 
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methods require calculating the gradient vector which is a vector contains the derivatives 

of the objective function with respect to the parameters to be optimized. Other problem 

with the gradient based methods is that they are searching for the local optima rather than 

the global optima. 

Well placement optimization has been covered in the literature regarding the algorithms 

to use or how to deal with the uncertainty in the data. However, one of the issues that 

remains is that reservoir asset managers are routinely faced with the problem of deciding 

the life cycle of field development projects. This life cycle, often categorized into short, 

medium or long term, is very crucial in ensuring that the most benefit is obtained from 

the hydrocarbon field. Several external factors such as politics, uncertainty and safety 

often dictate which of these terms a company adopts. For instance, while a national oil 

company operating in a very stable society may benefit from a long-term project 

investment; a foreign company operating in politically volatile environments might 

consider short or medium term investment as its best option. Yet, perceived risks might 

fade away and companies might eventually operate their fields for long terms and vice 

versa. The problem thus becomes that of optimizing field development primarily based 

on the favored project duration (short, medium or long term) and secondarily based on 

other less favored project terms.  

1.1 Problem Statement and ThesisObjectives 

Well placement is one of the critical tasks in field development planning; proper well 

placement can significantly improve the reservoir performance and the economic gain 

from the field. Most of the previous studies that are related to well placement 

optimization have focused on the optimization algorithms performance and some helper 
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methods or how to deal with geological uncertainty in well placement problems. 

However, one of the issues that remains is that reservoir asset managers are routinely 

faced with the problem of deciding the life cycle of field development projects. 

Optimization of well placement requires objective function calculation and each function 

evaluation requires coupling the optimization tool with numerical reservoir simulator. In 

literatures researchers have used different simulation times to do their 

investigations.Table1.1 shows the various simulation times used for well placement 

optimization problems. These times range from a couple of years to tens of years. 

Table1.1: Range of the simulation time used in well placement optimization problem 

Simulation time Authors 

2.19 years (Ozdogan and Horne 2006) 

4.6 years (Gǚyagǚler,etal.2000) 

5.48 years (Bangerth, et al. 2006) 

6 years (Bellout, et al. 2012) 

20 years (Awotunde and Sibaweihi 2014) 

23 years for water injection project and 

5 and 10 years for gas injection (Badru and Kabir 2003) 

up to 50 years (Wang, et al. 2007) 
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Some authors reported that the project anticipated time will affect the result of the well 

placement problem, however they did not make an investigation of different simulation 

times (Badru and Kabir 2003; Forouzanfar, et al. 2010) 

As with any project, oil companies plan for their fields for the period that they are 

expecting to stay and operate based on the contracts, but some times and unexpectedly 

due to some political instability or lack of security, companies may decline from the 

projects earlier or reversely some companies may have renewal of the ongoing contracts. 

Therefore companies should take into account more than one scenario when they are 

planning for the field development.  

The use of multi objective optimization in well placement problems has not been reported 

in the literature except using weighted summation of the different objectives. To the best 

of our knowledge Lexicographical multi objective optimization method has not been used 

before in well placement optimization. 

The main objectives of this research are to study the effect of project life time on well 

placement optimization problem and to investigate the use of lexicographic multi 

objective optimization to simultaneously improve the economics considering different 

reservoir life periods. The research has been designed also to study the effects of adding 

minimum well spacing constraints to the optimization problem. 

1.2 Summary of theResearch Work 

As mentioned in the previous section the main objectives of this research are to study the 

effect of production time on well placement optimization problem, and to investigate the 

use of lexicographic approach for different scenarios well placement problem. Details 
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about the objective function, reservoir examples and the different cases in this work are 

presented in Chapter 3. 

Three different project periods were defined; short term, medium term and long term, and 

so three objective functions used; short term NPV (ST-NPV), medium term NPV (MT-

NPV) and long term NPV (LT-NPV) for each of the mentioned terms respectively.  

Three cases were considered in this work each has sub-cases, all of it will be applied for 

the two reservoir examples. Single objective optimization was used in the first two cases 

unlike the third case in which lexicographic multi objective optimization was used. In the 

first case no constraints were applied while in the second case a minimum well spacing 

was defined. 

Two synthetic heterogeneous reservoir examples were used the first is channel reservoir 

and the other is reservoir with a distributed permeability field. CMA-ES coupled with 

numerical reservoir simulator was used as an optimization tool. 
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2 CHAPTER 2 

LITERATURE REVIEW 

Well placement optimization has been studied by many researchers and they covered 

different aspects, using different optimization algorithms with numerical reservoir 

simulators as evaluation tool. The use of different algorithms, optimization techniques 

and helper methods has been studied by different authors. Also, the effect of the 

uncertainties in the well placement optimization has been studied and different 

approaches to deal with geological uncertainties have been suggested in the literature. 

Different ways to initialize the optimization have been investigated by researchers, and 

different objective functions have been used in the literatures as well. Some authors have 

investigated joining control optimization with the well placement optimization and others 

applied constraints on the optimization. Different ways of well indexing in well 

placement optimization problems have been studied by scholars. Optimization of location 

of vertical, horizontal and multilateral wells has been covered in the literatures. 

Following are the literature review in each of these topics. 

2.1 Different Optimization Algorithms and Helper Methods 

2.1.1 Stochastic (Non-Gradient) Methods 

Table 2.1displays some of the stochastic optimization algorithms used in well placement 

optimization by different researchers. 
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Table 2.1: Stochastic optimization algorithms used in well placement optimization 

Authors Optimization algorithm 

(BecknerB. and Song 1995; Norrena and 

Deutsch 2002) 

Simulated Annealing (SA) 

(Bittencourt and Horne 1997; Bukhamsin, 

et al. 2010; Emerick, et al. 2009; 

Guyaguler and Horne 2000; Morales, et al. 

2010; Yeten, et al. 2003) 

Genetic Algorithm (GA) 

(Bangerth, et al. 2006) Simultaneous perturbation stochastic 

approximation (SPSA), finite difference gradient 

(FDG), and very fast simulated annealing 

(VFSA) algorithms 

(Bouzarkouna, et al. 2010; Ding 2008) Covariance Matrix Adaptation – Evolution 

Strategy (CMA-ES) 

(Onwunalu and Durlofsky 2010; Wang, et 

al. 2011) 

Particle swarm optimization 

(Cheng, et al. 2012) Niche Particle Swarm Optimization (NPSO) 

(Awotunde and Sibaweihi 2014) Differential evolution and CMA-ES 

 

Bittencourt and Horne (Bittencourt and Horne 1997)showed that the performance of the 

GA optimization improved when it is hybridized with polytope algorithm and tabu search 

and they called this technique Hybrid Genetic Algorithm. 
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 Pan and Horne (Pan and Horne 1998)investigated the use of multivariate interpolation 

algorithms, Least Squares and Kriging, as proxies to reservoir simulations for well 

placement optimization problems. 

Güyagüler et al.(Gǚyagǚler, et al. 2000)proposed a hybrid genetic algorithm (HGA) in 

which the genetic algorithm (GA) is hybridized with polytope algorithm, kriging 

algorithm and neural networks. The investigation of the performance of this technique 

was done by optimizing the placement of injection wells in Pompano field in the Gulf of 

Mexico. Well placement and injection rate were optimized with net present value of the 

waterflooding project as the objective. 

From the experiments the authors  found that the number of function evaluation required 

to find optimal placement was reduced significantly using the proposed technique, HGA 

reduced the required simulation runs to less than half compared to the simple GA.  

Montes et al. (Montes, et al. 2001)studied the effects of different optimization parameters 

on the performance of the Genetic Algorithm. The parameters studied include population 

size, elitism and mutation rate. 

Ozdogan et al. (Ozdogan, et al. 2005) used the HGA (Bittencourt and Horne 1997) in 

order to develop a methodology to place wells on specified patterns called Fixed Pattern 

Approach. 

Bangerth et al.(Bangerth, et al. 2006)analyzed the performance of several optimization 

algorithms for the well placement problem. These algorithms are finite difference 

gradient (FDG), simultaneous perturbation stochastic approximation (SPSA), and very 

fast simulated annealing (VFSA) algorithms. 
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The authors used three main performance indicators for comparison of the convergence 

properties of algorithms, these indicators are: 

1- The effectiveness; which reflects how close the algorithm gets to the global 

optimum on average. 

2- The efficiency; which means the quantity of function evaluations required to 

reach the solution. 

3- The reliability; which means how often the algorithm reach the global optimum or 

close solution. 

Different conclusions were reached for single and multiple well placement. For the first 

case the authors observed that the SPSA algorithm was the most efficient algorithm in 

finding good solutions and VFSA can find even better solutions but it requires 

significantly more time to do so.  

For multiple well placement, the authors found that both SPSA and VFSA were better 

than the FDG algorithm and were more likely to find good solution. The SPSA was more 

efficient in finding good positions in fewer function evaluations, while VFSA obtained 

better solution but required more function evaluations. 

Ding(Ding 2008) presented the first use of Covariance Matrix Adaptation – Evolution 

Strategy (CMA-ES) in well placement problem. The author presented the application of 

CMAES to the problem of unconventional well placement optimization by comparing the 

CMAES to GA. The author also studied the impacts of model parameters such as 

population size and discretization steps in the optimization of well placement.  
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CAMES results were found not to be very good when the population size was small. 

However, when the population size becomes larger, significant improvements were 

obtained. Although CMAES provided generally higher values in objective function than 

the genetic algorithm, it usually requires more evaluations. The author also stated that 

possible well configurations are very limited in genetic algorithm. While in CMAES, 

well configurations are more various and he explained that it’s because CMAES is a 

continuous approach. The results showed that algorithm parameters might have a great 

impact on the optimization; CMAES can be potentially improved with good choices of 

algorithm parameters. 

Bouzarkouna et al.(Bouzarkouna, et al. 2010)tied CMA-ES with a local regression based 

meta-model in order to reduce the computational cost. Partially separated meta-models 

were built to utilize the partial separability of the objective function, so different meta-

models were built for each well or set of wells, that results in a more accurate modeling. 

The aim of using the meta-model is to replace the true objective function evaluation 

which requires reservoir simulation by cheap approximate model built based on the true 

objective function evaluations and use it throughout the optimization process to save 

evaluations time on the expensive original objective function. 

According to their results this approach cut the total number of reservoir simulations 

required to reach good results by 19- 25%. The use of the partial separability of the 

objective function resulted into a significant reduction of the reservoir simulation runs 

needed to find the optimal well placement by around 60% compared to the regular CMA-

ES. 
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Cheng et al. (Cheng, et al. 2012) investigated the use of Niche Particle Swarm 

Optimization (NPSO) for well placement problem. The idea of NPSO is to cluster the 

whole particle swarm into smaller particle swarm group then the particles of the subgroup 

conduct the evolution to achieve the target of the optimal particle in this smaller group. 

The results showed the advantage of NPSO algorithm over the Particle Swarm 

Optimization algorithm, by having earlier convergence and higher ability to find the 

global optimum solution. 

2.1.2 Gradient Based Methods 

Gradient based optimization algorithms have better computational efficiency although 

they have less probability of reaching the global optimum, since they can get stuck in the 

local optimum solution. Many approaches have been suggested to handle well placement 

optimization problems using gradient based methods. The following are a summary of 

some of the work done in this area. 

The first attempt to consider gradient-based optimization algorithm for optimization of 

well placement was made by Handels et al. 2007 (Handels, et al. 2007), in which the 

concept of pseudo wells has been used. This concept uses eight imaginary wells called 

“pseudo-wells”inthegridblocksaroundthegridblockthatcontaintheactualwell(see

Figure 2.1), this pseudo-wells have very small injection/production rates so that they have 

negligible effect on the NPV. To have the new location for the wells the gradient of the 

NPV with respect to all the pseudo-well rates is calculated and the wells in the next 

iteration should move toward the largest positive gradient of the all eight direction which 

should increase the NPV. 
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Wang et al.(Wang, et al. 2007) presented a different idea of gradient-based well 

placement optimization. In their work the optimization is initialized with an injector well 

at each grid block that does not contain a producer well (their work was to optimize the 

location of injectors while the producer location was fixed). Subsequently, the 

optimization was made by changing the injector rate to improve the NPV, if the injection 

rate of any injector in the optimization process went to zero the cost of this well will not 

be considered in NPV calculation (as it does not exist).  Therefore, at the end of the 

optimization, some wells will be eliminated and optimal well locations and number will 

be obtained. The authors made two simple cases for water injectors’ placement in 

homogeneous and heterogeneous reservoirs to test their approach in which they used a 

steepest ascent as optimization algorithm. 

Sarma and Chen (Sarma and Chen 2008) used the concept of pseudo-wells introduced by 

(Handels, et al. 2007) with different approach to obtain the gradient, the actual well rate 

is distributed between the well and its pseudo-wells based on their distance to the actual 

well location. They proposed to use continuous spatial domain (x, y) well locations 

instead of the discrete parameters (i, j) well location indices, and to obtain a continuous 

functional relationship between the objective function and the continuous well location 

parameters by numerical discretization of a modified PDE. As a result of this continuous 

functional relationship, adjoints and gradient-based optimizations algorithms can be 

applied to obtain the optimal well locations. The investigations on the efficiency and 

practical applicability of this approach were done on a few synthetic waterflood 

optimization problems. 
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Figure 2.1: The pseudo wells around the original well 
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Forouzanfar et al.(Forouzanfar, et al. 2010)suggested some improvements on the basic 

approach introduced by (Wang, et al. 2007) so that it can be applied to more practical 

problems. i.e., three-dimensional three-phase (Wang et al.’s work was done for two

dimensional problems) or problems that require optimization the location of both 

producers andinjectors(Wangetal.’soptimizationwork was only for injector locations 

only). In addition they made constraints on wellbore pressures (maximum bottomhole 

pressure in water injection wells and minimum bottomhole pressure in producing wells). 

In addition to the previously mentioned articles, other researchers proposed different 

approaches for well placement optimization using gradient-based optimization 

techniques. These include(Vlemmix, et al. 2009; Zandvliet, et al. 2008; Zhang, et al. 

2010). 

2.2 Dealing with Uncertainty in Well Placement Optimization 

Subsurface geology is one of the information that has high level of uncertainty which has 

an impact on the well placement optimization. Following is a summary for some work 

done on optimization of well placement problem under uncertainty. 

Badru and Kabir(Badru and Kabir 2003) investigated the impact of uncertainties in some 

variables such as the degree of communication between layers, kh, kv/kh and perforation 

interval in well placement optimization problem. 

Güyagüler and Horne (Güyagüler and Horne 2004)proposed an approach which can 

reflect the uncertainty in the data to uncertainty in the decision of well placement in terms 

of economic value. Their approach has the ability to consider the risk attitudes of the 

decision maker and they stated that it was computationally feasible. 
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A randomly selected realization of the reservoir properties is used whenever a specific 

well configuration was to be evaluated, and then numerical simulation with the selected 

realization is used to calculate the objective function value. Then the developed utility 

framework is used to evaluate the uncertainty in the performance forecasts when 

evaluating different well placement. 

Ozdogan and Horne (Ozdogan and Horne 2006)developed an approach to reduce the 

uncertainty and to increase the economic value that focus on the value of time-dependent 

information. In this approach, recursive probabilistic history-matching steps were 

integrated with the well-placementoptimizationbyusingtheconceptof“pseudohistory”

which is the expected response of the reservoir. The pseudohistory is generated using 

probabilistic forecasting model. 

The authors tested their approach using an example of Sequential Well Placement with 

different realizations. In their work, the hybridized genetic algorithm introduced by 

(Gǚyagǚler,etal.2000)was modified and used as the optimization tool. 

The results of their study showed that the probabilistic reservoir performance obtained 

from the reservoir can improve the subsequent well-placement decisions. Using this 

approach the relative uncertainty reduced and so the economic value increased. 

Morales et al.(Morales, et al. 2011) modified the genetic algorithm (GA) to optimize the 

well configuration under uncertainty in geological parameters. The acceptable risk level 

for the decision makers and the probable geological models is used as additional inputs. 

The application was presented using a gas condensate reservoirinQatar’sNorthFieldas

an example to optimize horizontal well placement. The authors used different 
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permeability fields to express the uncertainty and different risk factors were defined as 

well. Different well configurations were obtained when different acceptable risk factors 

were used. 

Wang et al.(Wang, et al. 2011)used retrospective optimization (RO) to handle the 

optimization problem under uncertainty for well placement. RO sequentially optimizes 

subproblems with increasing number of realizations. It does not solve all the realizations 

at every generation of the optimization algorithm, k-means clustering was used in 

selecting the realizations to be tested. 

Particle swarm optimization and simplex linear interpolation based line search were used 

as the optimization tools to test three example cases of the suggested approach. 

Their results confirmed the benefits of using the RO in comparison with comprehensive 

sampling. Within the use of RO procedure, the use of cluster sampling adds value over 

the random sampling and it is suitable for problems that contain large numbers of 

geological realizations. The authors claim that both RO and exhaustive optimization 

approach achieved the same results but RO requires much less number of simulation 

runs. 

Bouzarkouna et al.(Bouzarkouna, et al. 2012)proposed an approach for well placement 

problem with uncertainty uses already simulated well configurations in the neighborhood 

of each well configuration for the objective function evaluation. Their proposed approach 

can be combined with any optimization algorithm. However, the authors combined it 

with CMA-ES. 
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This approach was compared to the reference approach using all the possible realizations 

for each well configuration. It is shown that the proposed approach is able to reduce 

significantly the number of reservoir simulations by more than 80% for the reservoir case 

in this study. 

In addition to the summarized work this topic has been addressed by other authors such 

as (Onwunalu and Durlofsky 2010; V., et al. 2006; Yeten, et al. 2003) in which the 

optimization was performed on a fixed number of realizations. 

2.3 Well Indexing in Well Placement Problem 

Güyagüler (Güyagüler 2002)studied different indexing schemes as in Figure 2.2 for wells 

in well placement optimization and found that (i, j) indexing which represent x-y 

coordinates is the best way to handle this type of problem, because the other indexing 

schemes are discontinuous and thus make artificial noise. 
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Figure 2.2: Different well indexing scheme 
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2.4 Joint Optimization of Well Placement and Control 

Forouzanfar et al.(Forouzanfar, et al. 2010)attempted to eliminate the need to specify the 

oil production/water or gas injection rate and operational reservoir life ahead of the well 

placement optimization, by adding an initialization step to find out proper operating well 

rates for the particular operational life. After this initial stage another stage is needed in 

order to determine the optimal number of wells (including the number of producers and 

injectors), the best locations for the chosen wells and the optimal rates for these wells. In 

their work, a gradient based optimization algorithm was used. Analytical methods and 

adjoint method were used to calculate the gradient. 

Bellout et al.(Bellout, et al. 2012)proposed a joint approach that performs well control 

optimization within the process to find the optimum well placement configurations, 

instead of sequential process. In this approach, the two different optimizations are 

considered in a nested fashion. The outer loop involves a well location optimization, 

while the inner loop consists of optimizing well controls for fixed well positioning. 

In their findings, joint optimization yields a significant increase, of up to 20% in net 

present value, when compared to reasonable sequential approaches. The joint approach 

does, however, require about an order of magnitude increase in the number of objective 

function evaluations compared to sequential procedures.  

2.5 Application of Well Placement Optimization in Gas Injection and 

Gas Reservoirs 

Most of publications in well placement optimization have been done for oil reservoirs to 

optimize the location of oil producers/water injectors, but there is relatively small number 
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of researches focused on gas/gas condensate reservoirs or gas injection project. Badru 

and Kabir (Badru and Kabir 2003) applied a hybrid GA to optimize the locations of wells 

in water injection project and gas injection project as well using both horizontal and 

vertical wells. 

Morales et al.(Morales, et al. 2010)studied the well placement problem in gas condensate 

reservoirs to optimize the placement of horizontal wells. Their work was applied to the 

North Field located in Qatar. MiniVar (The Minimal Variation) modified genetic 

algorithm was used and its results compared with the conventional genetic algorithm. 

The authors observed that unlike oil reservoirs the recovery factor in gas reservoirs does 

not vary significantly, and there is higher possibility of having local optimums. Therefore 

the optimum reservoir performance is not much better than the worse case scenario, that 

makes it more difficult to obtain the best field plan. 

2.6 Objective Functions in Well Placement Optimization Problem 

Most of the well placement optimization problems in the literature used the net present 

value NPV as objective function although other objective functions were used by 

researcher such as maximizing oil recovery (Badru and Kabir 2003; Castiñeira, et al. 

2009), maximizing the numerical productivity index (PInum) and the field productivity 

index (PIfield)(Ding 2008). 

The use of multi objective optimization was presented by Awotunde and Sibaweihi 

(Awotunde and Sibaweihi 2014) incorporating NPV and VRR in solving the well 

placement optimization problem. The authors conducted their study in three phases using 

NPV, VRR and weighted sum of the NPV and the VRR respectively as the objective 
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function. The authors used a set of four weights in the third phase to describe the relative 

importance of the NPV and the VRR and they made comparison of how these weights 

affect the optimized NPV and VRR values is provided. 

In their work two evolutionary-type algorithms: the covariance matrix adaptation 

evolutionary strategy (CMA-ES) and differential evolution (DE) were used to solve the 

optimization problem. 

2.7 Adding Constraints to Well Placement Problem 

Ozdogan et al.(Ozdogan, et al. 2005)were the first to introduce geometrical constraints to 

the well placement optimization problem in which non-uniform reservoir geometry was 

considered.  

Emerick et al. (Emerick, et al. 2009)used the Genetic Algorithm to develop a tool for 

linear and nonlinear constrained well placement optimization.  In this work the objective 

was to optimize the number, locations and trajectory of production and injection wells in 

complex model grids under set of constraints. The technique used to handle this problem 

is called Genocop III which is abbreviation for Genetic Algorithm for Numerical 

Optimization of Constrained Problems. 

The constraints involved are minimum spacing for each well (minimum distance between 

wells), grid cell size and maximum length of the well. In addition to these constraints 

other conditions were imposed so that the wells would not be located in some user-

defined regions or inactive grids. 
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2.8 Initialization of Well Placement Optimization (Initial Population) 

Emerick et al.(Emerick, et al. 2009)studied two strategies to initialize the well placement 

optimization problem in order to generate the initial population of stochastic optimization 

algorithm. The first strategy is to define all the members of the initial population 

randomly,whiletheotherapproachistouseengineer’sproposedwellplacementaspart

of the initial population.  

Better results were achieved with the second technique, since it gave higher NPV when 

theengineer’sproposedwelllocationswerepartoftheininitialpopulationcomparedto

the randomly selected initial population. 

Another approach to initialize the well placement optimization algorithm has been 

studied by Emerick et al. (2009) called “quality maps”. The concept of quality maps

which is a two-dimensional representation of the reservoir responses has been introduced 

to well placement problem by (Cruz, et al. 1999) and found to be helpful in choosing well 

locations with relatively small number of reservoir simulation runs. The result showed 

that quality map helps to indicate good areas for well location, and they suggest that the 

quality map can be used to locate the wells and the optimization can be completed to 

optimize the type and number of wells only. This approach is useful when there is no 

time to execute the complete well placement optimization procedure. 

2.9 Well Placement for Horizontal and Multilateral Wells 

Bittencourt and Horne 1997 (Bittencourt and Horne 1997)were the first attempt to 

optimize both vertical and horizontal wells in which Genetic Algorithm (GA) was used as 

an optimization tool.  
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Yeten et al.(Yeten, et al. 2003)used GA with some performance acceleration techniques 

to propose a methodology to optimize the location, type and trajectory of multilateral 

wells. 

Badru and Kabir (Badru and Kabir 2003)used a hybrid GA proposed by (Güyagüler et al. 

2000) to optimize the locations of vertical and horizontal wells. This optimization was 

applied in gas injection and water injection projects.  

Ding(Ding 2008)used unconventional wells cases to investigate the use of CMA-ES in 

well placement optimization. 
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3 CHAPTER 3 

THEORETICAL BACKGROUND 

3.1 The Optimization Problem 

Optimization is a process of finding and comparing feasible solutions until no better 

solution can be found. The general optimization problem can be formulated as following: 

1 2min    ( , ,...., )nF f x x x
     

(1) 

Subject to m constraints ( ) 0ig x       i=1,2,…,m 

where 

f(x) is the objective function. 

x1, x2, …,xn are the n parameters that affect the objective function and are required to be 

optimized. 

g(x) is the set of constraint functions. 

In this work, net present value NPV was used as objective function and i,j indexing was 

used to describe wells locations, so that the well placement optimization problem can be 

expressed as: 

  1 1 2 2min  - ( , , , ,...., , )N NNPV f i j i j i j     (2) 

Subject to 



25 

 

1 2

1 2

1

1

, ,....,

, ,....,

N

N

i i i I

j j j J








 

Where 

N is the total number of wells 

i1, i2, …,iNare the N wellscells’indexinXdirection 

j1, j2, …,jNare the N wellscells’indexinYdirection 

I is the total number of cells in X direction 

J is the total number of cells in Y direction 

3.2 Multi-Objective Optimization 

Real optimization problems may contain many conflicting objectives, giving rise to the 

need for multi-objective optimization. Multi-objective optimization has been available for 

about two decades, and its application in optimization problems is continuously 

increasing. There are different methods available to handle multi-objective optimization 

problems (Andersson 2000). Figure 3.1 illustrates the different ways to handle multi-

objective problems with examples of the methods of each way.  

Four different methods for optimizing different objectives simultaneously can be 

considered based on when the user prioritize the different objectives either before, after 

or during the optimization process or never articulate any preference. One of the most 

popular ways is to combine the different objectives using weighted summation and 

applying the regular optimization. 
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A multi-objective problem is formulated by the following equation 

1         1 2   ,  ,  ,
T

kMin F x f x f x f x 
   

  
(3) 

s.t. 

x S


 

2  1 2  ,  , ,  
T

nx x x x 


 

where  

fi(x) is the i
th

objective function. 

xi is the i
th

optimization parameter. 

nS R is the parameter space  

F(x) is the vector containing all the objectives. 
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3  

  

Multi-objective 
optimization methods 

No articulation of 
preference 
information

MinMax formulation

Prior articulation of 
preference information

Weighted sum

Lexicographic approach

etc.

Progressive articulation 
of preference 
information

STEM method

Method of Steuer

etc.

Posterior articulation of 
preference information

Pareto-based approach

e-constraint method

etc 

Figure 3.1: Multi-objectives optimization methods 
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3.3 Lexicographic Approach 

One of the ways to conduct multiobjective optimization problems is by priori articulation 

ofthedecisionmaker’spreferences.Oneofthesemethodsisthelexicographicapproach.

In this approach the orders of the objective functions to be optimized have to be 

determined. These objectives have to be prioritize based on importance or the 

preferences, so that the optimization of the second objective should not negatively affect 

the results on first objective and so on. The drawback of this approach is that not all 

objectives might be considered because of the strict definition of preferences. 

The lexicographic optimization can be formulated as (Marler and Arora 2004): 

  iMin F x


,  x S


      (4) 

Subjected to 

   *

    ,  1,2, . 1 ,  1,   1,2, .,jj jF x F x j i i i k      
 

 

k is the total number of the objective functions. 

i representsafunction’spositioninthepreferenceranking. 

 *

jjF x


represents the optimum solution of the j
th

 objective function which come before 

the i
th
 objective function and found in the j

th
 iteration.  

Waltz (Waltz 1967)suggested another way for this approach in which the constraints are 

formulated as: 
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   *    j j j jF x F x    

Where, 

δj is positive tolerance determined by the user to reduce the sensitivity of the solution of 

the j
th
objective function when optimizing the less important objectives. 

3.4 CMA-ES 

In this work CMA-ES was used as optimization tool, CMA-ES has been used in well 

placement optimization by (Awotunde and Sibaweihi 2014; Bouzarkouna, et al. 2010; 

Ding 2008).  

Covariance matrix adaptation –evolutionary strategy CMA-ES (Hansen and Ostermeier 

2001) is a stochastic method for non-linear optimization problem that use Randomized 

search algorithms. In the CMA Evolution Strategy, a population of new search points 

(individuals, offspring) is generated by sampling a multivariate normal distribution. The 

basic equation for sampling the search points for generation number g +1 is: 

        1
~ 0,

g g g g

kx m C


  fork=1,……λ  (5) 

Where 

~  denotes the same distribution on the left and right side. 

  0,
g

C is a multivariate normal distribution with zero mean and covariance matrix 

C
(g)

. 

𝑥𝑘
(𝑔+1)

∈ 𝑅𝑛  is the k-th offspring (individual, search point) from generation g + 1. 
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𝑚(𝑔) ∈ 𝑅𝑛  is the mean value of the search distribution at generation g. 

𝜎 𝑔 ∈ R + isthe“overall”standarddeviationatgenerationg. 

𝐶(𝑔) ∈ 𝑅𝑛×𝑛  is the covariance matrix at generation g.  

λ≥2isthepopulationsize. 

The new mean 𝑚(𝑔+1) of the search distribution is a weighted average of µ selected 

points from the sample 𝑥1
(𝑔+1)

,……….𝑥𝜆
(𝑔+1)

 as given by: 

   1 1

:

1

g g

i i

i

m w x




 



       (6) 

while, 

1

1i

i

w




  , 1 2 0w w w      (7) 

where, 

µ ≤ λ, is the parent population size, i.e. the number of selected points. 

𝑤𝑖=1,….µ ∈ 𝑅+ is the positive weight coefficients for recombination.  

𝑥𝑖:𝜆
(𝑔+1)

 is th i
th
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…… . .𝑥𝜆
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To re-estimate the covariance matrix C
(g+1)

 using the sampled population 
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…… . .𝑥𝜆
(𝑔+1)

 the following equation can be used: 
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In this work the total number of function evaluations was set at 6000 while the population 

size (λ)wasdeterminedusing: 

(4 3 ln  ( ))floor N  

      

(9)

 

where, 

N is the problem size (the number of parameters to be optimized).  

Details about the CMA-ES parameters used in this work are available in Appendix 2. 

3.5 Different Investment Terms and Detailed Cases 

Many oil projects contracts range between 20 to 25 years (Bindemann 1999; News 2014), 

therefore we defined the investment term scenarios as following: 

 Short term, 7 years of production/injection. 

 Medium term, 25 years of production/injection. 

 Long term, production until the reach of economical limit.   

The economic constraints for wells and the field are the maximum allowed water cut and 

minimum allowed oil production per well or per field. 

Three cases were considered in this work each has sub-cases, all of them were applied to 

the two reservoir examples and each optimization run contained 5 realizations (except the 

third case) to confirm the results and to insure the global optima. The first two cases use 

single objective optimization while the third case that will use multi objective 

optimization.  In the first case, no constraints were used while in the second and the third 
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cases a minimum well spacing of five acres was used. The followings are the details 

about the cases: 

Table 3.1: Details of cases used in the research 

Case 1 (single objective optimization) 

Case 2 (single objective optimization with 

Dmin constraint) 

Sub case Objective Constraints Sub case Objective Constraints 

Case 1a ST-NPV None Case 2a ST-NPV None 

Case 1b MT-NPV None Case 2b MT-NPV None 

Case 1c LT-NPV None Case 2c LT-NPV None 

Case 3 (Lexicographic approach) 

Sub cases First objective Second objective Third objective Constraints 

Case 3a ST-NPV MT-NPV LT-NPV yes 

Case 3b LT-NPV MT-NPV ST-NPV yes 

 

3.6 Constrained Optimization 

In Case 2, a minimum well spacing (Dmin) has been defined for constrained optimization, 

so additional condition should be added to Eq. 2. In this work, we used the penalty 

method to apply these constraints. We used the method presented by Awotunde and 

Naranjo(Awotunde and Naranjo 2014), the additional conditions added to Eq. 2: 
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where 

Dmin is the required minimum distance between wellscan be and calculated from the 5 

Acres minimum well spacing Amin as: 

min
min

43560A
D


    (11) 

Ncis the number of constraints computed as: 

( 1)

2

wells wells
c

N N
N


    (12) 

Nwellsis the number of wells 

3.7 Penalty Method 

Penalty method is one of the methods that are used for constrained optimization, in which 

a positive value called “penalty” is added to the objective function for solutions that

violate the required constraints (Freund 2004). We can illustrate the concept of this 

method by the following optimization problem P: 

: min  ( )P f x


. . ( ) 0s t g x 


     (13) 
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To solve this constraint optimization problem with this method, we have to reformulate it 

as following: 

: min  ( )   ( ) P f x c p x
 

    (14) 

( ) 0 if ( ) 0
. . 

( ) 0 if ( ) 0

p x g x
s t

p x g x

  


 

 

   

The function p(x) is called a penalty function and it has zero value when the constraints 

are satisfied and positive value for any violation on the constraints. c is called the penalty 

parameter and it is a scalar with positive value increasing with the iterations as the 

optimizations progresses. 

In this work, we used the penalty method for two purposes; to apply minimum well 

spacing constraints and to conduct the lexicographic approach for multi-objective. Figure 

3.2 displays how the penalty method has been used in the lexicographic multiobjective 

optimization process for Case3a (in which STNPV was set as the most preferred 

objective). The following equations have been used to estimate the penalty function to 

apply the minimum well spacing constraint. 

,( )  a bp x g


      (15) 

where 

Da,b  is the distance between well a and well b. and ga,bcan be calculated from: 

2 2

min , , min

,

, min

 ,   

0 ,   

a b a b

a b

a b

D D if D D
g

if D D

  
 


 (16) 
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Figure 3.2: Lexicographic process for Case 3a 
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3.8 Reservoir Simulator 

Eclipse 100 reservoir simulator has been used as evaluation tool to predict the reservoir 

performance for every suggested wells placement. ECLIPSE 100 is a “fully-implicit, 

three phases, three dimensional, general purpose black oil simulator with gas condensate 

options”. 

3.9 Objective Function 

Generally, NPV has been used as objective function.Different project life times have 

been used to calculate NPVsfor short, medium and long term. Each of these NPVs were 

used as different objective functions. NPV is one of the economic yardsticks that are 

widely used to evaluate the projects and to compare them, and it represents the 

discounted net value of money that comes from a project. Table 3.2displays the 

parameters used in NPV calculations using the following formula: 

 0 1

n
i i i

n
i

revenue CAPEX OPEX
NPV

r

 



    

(17) 

where 

   i irevenue oil price oil yearly production     (18) 

CAPEX is the capital expenditures (eg. Drilling and facilities cost) 

OPEX is the operating expenditures (eg. Maintenance and lifting cost) 

r = discount rate 

n = project life time  

The following abbreviations will be used for different terms NPVs 
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 ST-NPV for short term NPV. 

 MT-NPV for medium term NPV. 

 LT-NPV for long term NPV. 

Table 3.2: Parameters used in NPV calculation 

Parameter value unit 

Drilling cost 2.5 MM$/well 

Facility cost 50 MM$ 

Water production cost 5 $/STB of produced water 

Water injection cost 10 $/STB of injected water 

Operational cost 8 $/STB of oil 

Oil price 105 $/STB of oil 

Discount rate 6 % 

 

3.10 Parameters to be Optimized 

Well placement optimization problem uses the well index as the parameter to be 

optimized and it has been stated in the literature that the best well indexing system for 

optimization is the i,j indexing (Güyagüler 2002) which represents the well x-y 

coordinates.  

The size of the optimization problem is defined by the total number of parameters which 

is in this case twice the total number of wells. In order to have various well spacing we 

used different number of wells in each example. In Example 1 there were 50 wells (30 

producers and 20 injectors) and all their locations were optimized so the number of 

parameters will be 100. While in Example 2, five wells (three producers and two 
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injectors) out of 25 wells (15 producers and 10 injectors) were considered as pre-project 

drilled and the rest were optimized with total number of parameters of 40. 

3.11 Reservoir Examples 

To investigate the mentioned cases two synthetic reservoirs were used, the first is channel 

reservoir and the other is reservoir with a distributed permeability field. Detailed 

description of the reservoir simulation models including the fluid properties and rate 

control is in Appendix 1. 

3.11.1 Reservoir Example 1 

This example is a channelized heterogeneous reservoir with an area of 3955 acres and 

200 ft thickness, discretized into 75×75×4 cells. For Example 1, all of the wells locations 

were optimized which are 30 producers and 20 injectors. Figure 3.3displays the 

permeability distribution for the four layers while Figure 3.4shows the porosity 

distribution. 

3.11.2 Reservoir Example 2 

Example 2 is a heterogeneous reservoir with an area of 3761 acres and 225 ft thickness, 

discretized into 64×64×3 cells. For this reservoir example, five wells (three producers 

and two injectors) were considered as pre-project drilled and the rest were optimized. Of 

the 25 wells in this example, only 20 will be optimized (12 producers and 8 injectors). 

Figure 3.5displays the permeability distribution for the three layers in this reservoir. 
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Figure 3.3:Permeability distribution of the reservoir in Example 1 
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Figure 3.4: Porosity distribution of the reservoir in Example 1 
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Figure 3.5: Permeability distribution of the reservoir in Example 2 
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4 CHAPTER 4 

WELL PLACEMENT OPTIMIZATION FOR 

DIFFERENT INVESTMENT OPTIONS 

In this chapter we study the effect of project life length on the well placement 

optimization problem. As described in Chapter 3, three definitions of reservoir life time 

have been used as short, medium and long term investment options and two example 

reservoirs were used. In the first case (Case 1), no constraints have been made on the 

optimization, while in the second case a five acres minimum well spacing has been used 

to constrain the problem. 

4.1 Relationship between the Three Investment Terms 

This section is to answer the question is the best well placement for a particular project 

life time is also the best for a different period?Figure 4.1 and Figure 4.2illustrates the 

relationship between the different investment terms. 

Figure 4.1 a and Figure 4.2a shows the plots of the MT-NPV and LT-NPV versus ST-

NPV, while the plots in Figure 4.1 b and Figure 4.2bshowsthe ST-NPV and LT-NPV 

versus MT-NPV. InFigure 4.1 c and Figure 4.2 c, the ST-NPV and MT-NPV are plotted 

versus the LT-NPV. 

Example1 

In Example 1, the MT-NPV and LT-NPVare highly correlated as it is observed in the 

Figure 4.1 b and 4.1 c, while their relation with ST-NPV is arbitrary. That means when 

optimizing the ST-NPV the MT-NPV and LT-NPV are not necessarily optimized, 
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butoptimizing the MT-NPV will most probably results in optimized LT-NPV and vice 

versa. Due to the relatively high number of wells and the discounting factor on the NPV, 

the MT-NPV and the LT-NPV have very close values which is obvious in the top plot of 

the figure. 

Example 2 

Figure 4.2shows that the NPVs for medium and long term are highly related. This is 

similar to our observation in Example 1.The short term NPV is not related to NPVs of the 

medium and long terms investment options. That means, that optimizing the ST-

NPVdoes notnecessarily mean that MT-NPV and LT-NPV are optimized.However, 

optimizing the MT-NPV will most probably results in optimized LT-NPV and vice versa. 
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Figure 4.1: The relationship between the three terms NPVs for Example 1 
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Figure 4.2: The relationship between the three terms NPVs for Example 2 
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4.2 Effect of Objective Function Used 

In this section we discuss how changing the objective function affected the optimization 

results in each term, and we examined whether it possible to generalize an objective 

function to be the best for all terms. 

4.2.1 Unconstrained Optimization 

First we discuss the results of unconstrained optimization (Case 1) of the two examples. 

In this case three objective functions were used ST-NPV (Case 1a), MT-NPV (Case 1b) 

and LT-NPV (Case 1c). In each of these cases five realizations were made or in other 

words five different optimization runs. The range of the results of the realizations on 

different terms NPVs when different terms were used as objective function are shown in 

Figure 4.3 and Figure 4.4 for Example 1 and 2 respectively.  

Figure 4.3 a and Figure 4.4 a show the range of ST-NPVs while Figure 4.3 b and Figure 

4.4 bpresent the range ofMT-NPVs and the resulted LT-NPVs range are presented in 

Figure 4.3 c and Figure 4.4 c. 

Example1 

As evident from Figure 4.3 the best NPVs for short term were obtained when we used 

short term as an objective function (Case 1a), the best medium term NPVs were obtained 

when we used it as an objective function (Case 1b) and the best long term NPVs were 

also obtained when we used the long term as an objective function. The values of ST-

NPV were high in Case 1a but lower in Case 1b and Case 1c.However, Case 1b and Case 

1c resulted in close results in MT-NPV and LT-NPV. This shows that the MT-NPV and 

LT-NPV are related. 



47 

 

 

Figure 4.3: The effect of objective function used in the three terms NPVs for 

unconstrained optimization in Example 1 

Example 2 
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In this example, all the three objectives resulted in almost similar range of ST-

NPVs.However, the best value was obtained when ST-NPV used as objective. The range 

of MT-NPVs and LT-NPVs were almost similar when medium and long terms were used 

as the objective while the short term as objective resulted in lower values of MT-NPVs 

and LT-NPVs as observed in Figure 4.4. 
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Figure 4.4: The effect of objective function used in the three terms NPVs for 

unconstrained optimization in Example 2 
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4.2.2 Constrained Optimization 

In this section, we present the results of constrained optimization (Case 2) for the two 

examples considered. Three objective functions were used ST-NPV (Case 2a), MT-NPV 

(Case 2b) and LT-NPV (Case 2c). In each of these cases, five realizations were made. 

The ranges of the results of the runs from different terms of NPV for different objective 

functions areshown in Figure 4.5 and Figure 4.6. Figure 4.5 a and Figure 4.6. a show the 

range of ST-NPVs while Figure 4.5 b and Figure 4.6. b present the range of MT-NPVs 

and the resulted LT-NPVs range are presented in Figure 4.5 c and Figure 4.6. c. 

Example1 

It can be seen from Figure 4.5that all the three objectives resulted in almost similar range 

of ST-NPVs, although when ST-NPVwas used as objective the results of NPVs of 

medium and long terms werelower than when the other two terms were used as the 

objectives. The range of MT-NPVs and LT-NPVs when the medium term was used as the 

objective was close to the values when the long term was used.  

Example 2 

The results of this case were very similar to the unconstrained case (Case 1) as shown in 

Figure 4.6. All the three objectives resulted in very close range of ST-NPVs while the 

best value was obtained when ST-NPVwas used as objective. The range of MT-NPVs 

and LT-NPVs were almost similar when medium and long terms were used as the 

objective while short term as objective resulted in lower values of MT-NPVs and LT-

NPVs. 
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Figure 4.5: The effect of objective function used in the three terms NPVs for 

constrained optimization in Example 1 
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Figure 4.6: The effect of objective function used in the three terms NPVs for 

constrained optimization in Example 2 
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4.3 Reservoir Performance 

In this section, we discuss the oil production profile for the best well placement results 

from different objectives for both the unconstrained and constrained cases and for each of 

the two reservoir examples. Figure 4.7 and Figure 4.8 show the reservoir performance 

results for Example 1 and Example 2 respectively.Figure 4.7 a and Figure 4.8a are for the 

unconstrained case while Figure 4.7 b and Figure 4.8 bare for the constrained case. 

Example1 

Figure 4.7 a shows the oil production profile for the unconstrained case (Case 1), while 

Figure 4.7 bshows the constrained case (Case 2). In both cases and for all the results, the 

production profile started with high production rate that fell rapidly from the beginning 

then the production stabilized for several years and declined afterward. This because at 

the first period the total production rate was higher than the total injection rate, thus the 

pressure could not stabilized till the production declined to a rate close to the injection 

rate. 

In the two cases the stabilized production period was longer for the well placement that 

resulted in the best LT-NPV than the one of the best ST-NPV. This period is longer in the 

unconstrained case (Figure 4.7 a) than in the constrained case (Figure 4.7 b). 
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Figure 4.7: Oil production profile for the best results in Example 1 
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Example 2 

In Figure 4.8 a which is for the unconstrained case (Case 1) the wells placement in which 

the best ST-NPV was obtained resulted in seven years of plateau phase of production 

(constant production rate), while this phase was durable for five years for the wells 

placement of the best MT-NPV and LT-NPV which illustrate why the results of ST-

NPVs was not very far when ST-NPV was used as objective and when MT-NPV and LT-

NPV were used. Although the well placement of the best ST-NPV resulted in longer 

plateauphase,theproductiondeclinewasmorerapidinthiscase,that’swhyithaslower

MT-NPV and LT-NPV. 

The second case (Case 2) which is represented in Figure 4.8b has the same behavior of 

Case 1. Compared to the well placement that resulted in the best MT-NPV and LT-NPV, 

the well placement that resulted in the best ST-NPV has longer plateau phase of 

production and more rapid decline afterward. 
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Figure 4.8: Oil production profile for the best results in Example 2 
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4.4 Well placement 

The Different well placements obtained from the results of the investment options are 

presented in this section for each of the reservoir examples for the unconstrained and 

constrained cases, respectively. Figure 4.9 to Figure 4.17 show the production and 

injection wells locations for the best optimization results of the different realization. The 

background of these figures is the permeability distribution of the top layer in the 

reservoir examples. 

4.4.1 Unconstrained optimization 

We start by displaying the well placement for the unconstrained case (Case 1), and it can 

be noticed in Figure 4.9 to Figure 4.13 that the locations of some producers/injectors are 

close to each other. 

Example1 

Figure 4.9 to Figure 4.11 show the well locationsobtained from the best ST-NPV, MT-

NPV and LT-NPV in Example 1.  It is observed that, in Figure 4.9 some injectors were 

completed inside the channels and some producers completed outside the channels, while 

in Figure 4.10 and Figure 4.11 the numbers of injectors completed inside the channels 

and producers completed outside the channels were smaller. It is also observed from 

these figures that the locations of some producers/injectors are close to each other. 
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Figure 4.9: Well locations obtained from the best ST-NPV for non-constrained 

optimization in Example 1X-coordinates 
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Figure 4.10: Well locations obtained from the best MT-NPV for non-constrained 

optimization in Example 1 
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Figure 4.11: Well locations obtained from the best LT-NPV for non-constrained 

optimization in Example 1 
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Example 2 

Figure 4.12 shows the well locationsobtained from the best ST-NPV and Figure 4.13 

show the well locationsobtained from the best MT-NPV and LT-NPV in unconstrained 

optimization of Example 2.  The background of this figure is the permeability distribution 

for the top layer out of three layers.This permeability distribution is different in the other 

layers. In these figures, also it can be seen that the locations of some producers/injectors 

are too close to each other and in Figure 4.13 many of injectors fall in the same grid cell 

of the reservoir model. 
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Figure 4.12: Well locations obtained from the best ST-NPV for non-constrained 

optimization in Example 2 
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Figure 4.13: Well locations obtained from the best MT-NPV&LT-NPV for 

unconstrained optimization in Example 2 
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4.4.2 Constrained Optimization 

In this part, we presentthe results for the well placement for the constrained case (Case 

2). Figure 4.14 to Figure 4.17show that the distances between the wells are larger than 

those in the unconstrained case (Case 1). 

Example1 

The well placement corresponding to the best ST-NPVis shown in Figure 4.14, while the 

corresponding to the best MT-NPV and LT-NPVis shown in Figure 4.15. In both figures, 

most of the producers are located on the right side of the reservoir while most of the 

injectors are located on the left side. It is observed that the distance between the wells is 

bigger than those in the unconstrained case.  

Example 2 

Figure 4.16 shows the well locationsobtained from the best ST-NPV and Figure 4.17 

shows the well locationsobtained from the best MT-NPV and LT-NPV in the constrained 

optimization of Example 2. Again these figures do not give the whole picture of wells 

pattern because the permeability distribution for the top layer is different from the other 

layers.  In these figures also it can be seen that the distances between the wells are bigger 

than those in the unconstrained case.For example while some injectors fall in the same 

grid cell in Case 1 (Figure 4.13), this did not happened in this case. 
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Figure 4.14: Well locations obtained from the best ST-NPV for constrained 

optimization in Example 1 
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Figure 4.15: Well locations obtained from the best MT-NPV and LT-NPV for 

constrained optimization in Example 1 
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Figure 4.16: Well locations obtained from the best ST-NPV for constrained 

optimization in Example 2 
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Figure 4.17: Well locations obtained from the best MT-NPV and LT-NPV for 

constrained optimization in Example 2 



69 

 

4.5 Effect of Adding Constraints 

Figure 4.18 and Figure 4.19shows the NPVs range for different realization when different 

investment options were used as objectives in the optimization. In addition, these figures 

contain results from both the unconstrained and constrained cases. 

Example1 

From the Figure 4.18 it is obvious that adding constraints affects the results negatively 

especially in the medium and long term (Figure 4.18 b and Figure 4.18 c), even though 

it’snecessary togiveapplicable results towellplacement problem. This effect is up to 

around 4% of the NPV of the best results. 

Example 2 

In this example the effect of adding constrained to the optimization problem was not 

severe especially in short term.This may be due to the fact that number of wells is 

relatively small or because the minimum well spacing defined can be achieved easily. But 

generally, the NPVs of the unconstrained case (Case 1) are slightly higher than the NPVs 

of the constrained case (Case 2) as evident in Figure 4.19. 
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Figure 4.18: The NPVs of the three terms for both constrained and unconstrained 

optimization in Example 2 



71 

 

 

Figure 4.19: The NPVs of the three terms for both constrained and unconstrained 

optimization in Example 2 
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4.6 Optimization Progress 

Figure 4.20 and Figure 4.21 show the progress of the optimization for the best 

realizations in Example 1 and Example 2, respectively. Figure 4.20 a and Figure 4.21a is 

for the unconstrained case (Case 1), whileFigure 4.20 b and Figure 4.21 b is for the 

constrained case (Case 2). 

Studying the optimization progress figures we observed that in Example 1 more function 

evaluations  are required to achieve the solution compared to Example 2. This may be 

due to the larger dimension of the problem, the size of the problem in Example 1 is 100 ( 

50 wells) and in Example 2 is 40 (20 wells). 

The optimization of ST-NPVrequired fewer function evaluations to find the optimum 

than the optimization of MT-NPVorLT-NPV. 
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Figure 4.20: Optimization progress for the best realizations in Example 1 
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Figure 4.21: Optimization progress for the best realizations in Example 2 
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5 CHAPTER 5 

LEXICOGRAPHIC APPROACH TO WELL 

PLACEMENT OPTIMIZATION 

In this chapter, the results of using lexicographic multiobjective on well placement 

optimization to simultaneously optimize the NPV for different investment terms are 

discussed. In lexicographical approach, the objectives should be ranked based on the 

priority of the decision makers.Here we used two different rankings, inthe first ranking 

(Case 3a) the most-desirable objective function is the ST-NPV, followed by MT-

NPVthenLT-NPV. This ranking has been reversed in Case 3b so that the LT-NPV is the 

most-desirable objective and ST-NPV is the least-desirable objective function. These 

cases have been applied to the two reservoir examples and a minimum well spacing of 5 

acres was used as constraint. 

5.1 Lexicographic Optimization Progress 

As discussed in chapter 3, the lexicographic approach is a sequential optimization 

approach with more than one step depending on the number of the objectives. In this 

research we have three objectives as stated above, so the optimization in Case3 will have 

three steps. In the first step, the optimization is made on the first objective, then in the 

second step the optimization is made on the second objective so that the value of the first 

objective should not be worse than what was acquired in the first step.In the third step, 

the optimization is made on the third objective such that the values of the first two 

objectives should not be worse than what were acquired in the first two steps. 
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5.1.1 NPV Results 

The progress of the lexicographic multi objective optimization in terms of NPVs of the 

short, medium andlong terms is described in this section. Figure 5.1 and Figure 5.2 show 

the NPVs of the three steps for Example 1 and Example 2, respectively.Figure 5.1 a and 

Figure 5.2a are for the case in which the ST-NPV is the first objective (Case 3a), 

whileFigure 5.1 b and Figure 5.2 b are for the case whenLT-NPVwas used as the first 

objective (Case 3b). 

Example 1 

It can be seen in Figure 5.1a (Case 3a) that the ST-NPV almost reached its maximum 

value in the first step because it is the first objective while the MT-NPV improved in Step 

2 and remained constant in Step 3. The LT-NPV improvement in Step 3 is 

unnoticeable.This is mainly because when MT-NPV is optimized the LT-NPV is 

optimized as well, as we discussed in Chapter 4. 

In Case 3b, although the first objective is the LT-NPV, the LT-NPV has been improved 

in Step 2 as the MT-NPV is optimized. Also the ST-NPV increased in Step 2. Generally, 

no significant improvement is seen in Step 3 because the NPVs of all the terms reached 

high values in Step 2. 
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Figure 5.1: NPVs of Case 3a and Case 3b in Example 1 
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Example 2 

In Case 3a, the ST-NPV achieved its optima from the first step as can be seen in Figure 

5.2a because it is the first objective. MT-NPV and LT-NPV improved in the second step. 

In Case 3b, there was no noticeable improvement through the steps.The optimization of 

LT-NPV in the first step resulted in near-optimalST-NPV thatcouldn’tbe increased in 

the further steps. This is observed in Chapter 4 that the range of ST-NPVsobtained from 

optimizationof different NPV terms was not significantly different.  
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Figure 5.2: NPVs of Case 3a and Case 3b in Example 2 
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5.1.2 Reservoir Performance 

In this section, we present the oil production profile obtained from the different steps of 

lexicographic multi objective well placement optimization. Figure 5.3 and Figure5.4 

show the reservoir performance results for Example 1 and Example 2, respectively.Figure 

5.3 a and Figure5.4a are for Case 3a in which the short term is used as the first objective, 

while Figure 5.3 b and Figure5.4 b are for Case 3b that has the long term as the first 

objective. 

Example 1 

Figure 5.3shows the reservoir production profile obtained from the different steps of Case 

3a (Figure 5.3 a) and Case 3b (Figure 5.3 b) in Example 1. In both cases, the later steps 

have longer stabilized production period compared to the first step but the decline 

afterward is larger. It is obvious there were no significant change in the reservoir 

performance in the third step. 

Example 2 

The reservoir production profile obtained from the different steps of Case 3a and Case 3b 

in Example 2 are shown in Figure 5.3 b and Figure5.4 b, respectively. It can be observed 

that the production did not improve significantly through the steps especially in Case 3b. 
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Figure 5.3: Production profiles results of Case3 in Example 1 
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Figure5.4: Production profiles results of Case3 in Example 2 
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5.1.3 Well Placement 

The well placements for the various steps of the lexicographical optimization are 

presented in this section for each of the reservoir examples. Figure 5.5 to Figure 5.15 

show the locations of production and injection wells obtained from the optimization in 

the different steps. The backgrounds of these figures are the permeability distributions of 

the top layers in the reservoir examples. 

Case 3a: 

In this case, the short term is optimized first followed by the medium and then the long 

term. Figure 5.5 to Figure 5.10show the well placements obtained from this case in the 

two reservoir examples. It is observed that the wells maintain the minimum distance 

because the minimum well spacing constraint is applied in all Case 3 examples. 

Example 1 

Figure 5.5 to Figure 5.7 show the well placements obtained from Example 1 in the first, 

second and third steps of Case 3a, respectively. 

Example 2 

The well placements obtained from the first, second and third step of Case 3a in Example 

1 are displayed in Figure 5.8 to Figure 5.10 respectively. These figures do not give the 

whole picture about the pattern of wells related to the permeability distribution because 

the permeability distribution is different for different layers and the background of these 

figures is that of the permeability distribution of the top layer only. 
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Figure 5.5: Well placement obtained from the first step of Case 3a in Example 1 
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Figure 5.6: Well placement obtained from the second step of Case 3a in Example 1 
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Figure 5.7: Well placement obtained from the third step of Case 3a in Example 1 
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Figure 5.8: Well placement obtained from the first step of Case 3a in Example 2 
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Figure 5.9: Well placement obtained from the second step of Case 3a in Example 2 
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Figure 5.10: Well placement obtained from the third step of Case 3a in Example 2 
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Case 3b: 

Example 1 

Figure 5.11 to Figure5.13 indicate the well locationsobtained from the optimization in 

Example 1 in the first, second and third steps of Case 3b, respectively. It is observed that 

most of oil producers are located inside the channels while most of the water injectors are 

located in the moderate permeability areas. 

Example 2 

In Example 2, the well placement obtained from the first step of Case 3b is shown in 

Figure 5.14. In this example, the NPV could not be improved in the third step because 

high NPV for long term was obtained in the second step. Figure 5.15 shows the well 

placement for the second step which maintained in the third step as well. 
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Figure 5.11: Well placement obtained from the first step of Case 3b in Example 1 
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Figure 5.12: Well placement obtained from the second step of Case 3b in Example 1 
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Figure5.13: Well placement obtained from the third step of Case 3b in Example 1 
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Figure 5.14: Well placement obtained from the first step of Case 3b in Example 2 
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Figure 5.15: Well placement obtained from the second and third step of Case 3b in 

Example 2 
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5.2 Comparison between the Results of Single and Lexicographic Multi 

Objective Well Placement Optimization 

In this section we compare the results of lexicographic multi objective optimization (Case 

3) with the best results obtained in the constrained single objective case (Case 2). Case 3a 

withST-NPV as first objective is compared to Case 2a in which ST-NPV is the only 

objective, while Case 3b in which the LT-NPV is the first objective is compared to Case 

2c that has the LT-NPV as the only objective.  

5.2.1 NPV Results 

Figure 5.16 and Figure 5.17show a comparison between the NPVs obtained from the 

lexicographical and the single objective optimization in Example 1 and Example 2 

respectively. Figure 5.16 a and Figure 5.17 a represent the comparison between Case 3a 

and Case 2a, whileFigure 5.16 b and Figure 5.17 b are to compare Case 3b with Case 2c, 

Figure 5.16 c and Figure 5.17 ccontain all of the above. 

Example 1 

The use of ST-NPV as first objective followed by optimizing the other terms (Case 3a) 

gave higher MT-NPV and LT-NPVthan the use of ST-NPV as the only objective (Case 

2a), while the value for ST-NPVremained the same as it can be seen in Figure 5.16 a. 

Optimizing MT-NPV after LT-NPV (Case 3b) led to higher values of the two terms 

compared to optimizing onlyLT-NPV (Case 2c) as shown in Figure 5.16 b. Figure 5.16 c 

illustrates that both Case 3a and Case 3b are better solutions in all terms than any of the 

single objective cases. 
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Figure 5.16: Comparison between the results of single and lexicographical multi 

objective optimization in Example 1 
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Example 2 

In Example 2, Case 3a gave higher MT-NPV and LT-NPVthan Case 2a while the 

optimum value of ST-NPV is maintained as shown in Figure 5.17 a. Case 2c gave near-

optimal NPVs for all the three terms.That is why there was no additional improvement in 

Case 3b as shown in Figure 5.17 b. 
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Figure 5.17: Comparison between the results of single and lexicographical multi 

objective optimization in Example 2 
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5.2.2 Reservoir Performance 

In this section, the production profiles obtained from the lexicographic multiobjective 

optimization cases were compared to those obtained from single objective optimization 

cases. Figure 5.18 and Figure 5.19show this comparison in Example 1 and Example 2, 

respectively. Figure 5.18 a and Figure 5.19 a represents the comparison between Case 3a 

and Case 2a, while Figure 5.18 b and Figure 5.19 b are to compare Case 3b with Case 2c. 

Figure 5.18 c and Figure 5.19 c contain all of the above. 

Example 1 

In Case 3a we observed longer stabilized production period and faster decline afterward 

compared to the production rate in Case 2 (Figure 5.18 a). Also, longer stabilized 

production obtained from Case 3b than Case 2c, but the difference was not significant 

(Figure 5.18 b). 

Example 2 

In Case 3a,a longer production plateau was observed compared to Case 2a with almost 

the same decline rate afterward as in Figure 5.19 a. The plateau phase of Case 3b was 

slightly longer than in Case 2c but the decline afterward resulted in similar NPVs as 

shown earlier in Figure 5.17. 
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Figure 5.18: Production profile obtained from single and lexicographical multi 

objective optimization in Example 1 
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Figure 5.19: Production profile obtained from single and lexicographical multi 

objective optimization in Example 2 



103 

 

6 CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

From the results and discussions, we can come up with the following conclusions: 

1. The best well placement for a specified period is not necessarily the best for a 

different period. When the optimization is made on short project life period,there 

will be lower probability to achieve the optimum NPVsof medium and long term.  

2. Although defining minimum spacing is necessary to come up with applicable 

results, it affects the results. We found that this effect varies from negligible to 

more noticeable depending on the density of wells to be completed in the 

reservoir.  

3. We observed that the optimization of ST-NPV takes fewer function evaluations to 

find the optimum compared to the optimization of MT-NPV and LT-NPV.  

4. Due to discounting of the NPV to the present time value of money, any 

production at the late life of the reservoir (e.g. after the 2
5th

 year) will not 

significantly affect the NPV. Therefore, there was no need to simulate the 

reservoir for very long period when NPV with constant oil price-index is used as 

objective function for the cases studied. 

5. The lexicographic multiobjective approach compared to the regular single 

objective optimization yielded a well configuration that ensures better results in 

short, medium and long term investment scenarios. 
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6. A drawback of this approach is that it involves sequential optimization which 

requires more function evaluations and so more time and computational costs. 

6.2 Recommendations 

Since lexicographic approach sequentially optimizes the objectives, which requires 

higher number of function evaluations, studying other types of multiobjective 

optimization methods to optimize well placement for different investment term options is 

recommended. 

NPV which has been used in this research as the objective function is a discounted value 

of money, this means earlier exploitation of the reservoir is the better in NPV term, but 

that may have an effect on the recovery factor. Therefore we recommend studying the 

effect of simulation time in well placement optimization with the use of recovery factor 

as objective function. 
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B APPENDEX A 

RESERVOIR SIMULATION MODEL 

Table B.1 displays the properties for each reservoir example used to build the reservoir 

simulation model. Figure B.1 shows the dead oil PVT data and Figure B.2 illustrates the 

relative permeability data for the reservoir fluids.Figure B.3shows the range of 

permeability values for reservoir Example 2. 
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Table B.1: Properties for reservoir simulation model 

Property Example 1 Example 2 

Reservoir size 13,125*13,125*200 ft 

(75*75*4 cells) 

12,800*12,800*225 ft 

(64*64*3 cells) 

Grid size 175*175*50 ft 200*200*75 ft 

Control rate Oil rate 3000 STB/D 

Water injection rate 3000 

STB/D 

Oil rate 1500 STB/D 

Water injection rate 3000 

STB/D 

Well economic limit Minimum oil rate 100 obpd 

Maximum water cut 97% 

Minimum oil rate 100 obpd 

Maximum water cut 97% 

Field economic limit Minimum oil rate 3000 obpd 

Maximum water cut 97% 

Minimum oil rate 3000 

obpd 

Maximum water cut 97% 

Horizontal permeability Figure 3.3 Figure 3.5 

Porosity Figure 3.4 0.27 for the top, 0.17 for 

the middle and 0.11 for the 

bottom layer 

kv/ kh 0.2 0.2 

Relative permeability Figure B.2 Figure B.2 

PVDO Figure B.1 Figure B.1 

Solubility 0.4 MSCF/STB @  

Pb =1900 psia 

0.4 MSCF/STB @  

Pb =1900 psia 

Rock compressibility 3.0E-6 psi
-1

@ 4014.7 psia 3.0E-6 psi
-1

@ 4014.7 psia 

Oil density 52.1 lb/cuft 52.1 lb/cuft 

Gas density 0.06054 lb/cuft 0.06054 lb/cuft 

Water density 62.238 lb/cuft 62.238 lb/cuft 

Water compressibility 3.13E-6 psi
-1

@ 4014.7 psia 3.13E-6 psi
-1

@ 4014.7 psia 

Water viscosity 0.31 cp 0.31 cp 

Water FVF 1.029 1.029 

Minimum BHP for 

producers 

2000 psia 2000 psia 

Maximum BHP for 

injectors 

6500 psia 6500 psia 
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Figure B.1: Dead oil PVT data 
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C APPENDEX B 

CMA-ES OPTIMIZATION PARAMETERS 

Table C.1Displays part of the optimization parameters used in this work. 

Table C.1: CMA-ES parameters 

Parameter value 

Problem size (N) 2*Nwell 

Tolerance -1E19 

Initial point variables (Xstart) random 

Upper limit (ux) The highest cell index: 

75 in example 1 

64 in example 2 

Lower limit (lx) 1 is the lowest cell index 

Standard deviation (σ) 0.3*(ux-lx) 

Number of function evaluations (Feval) 6000 

Population size (Np) 4 + 3 * log(N) 

Number of iterations (Montes, et al.) Feval/Np 

Parent number (µ) Np /2 

Number of re-evaluated for uncertainty 0.05* Np 

Uncertainty treatment threshold 0.5 

Cumulation constant for uncertainty 0.3 

Rank change cutoff 2* Np /3 

factor for increasing sigma (α) 1+2/(N+10) 

Epsilon 1E-7 

Cumulation constant for step-size (cs) (µ +2)/(N+ µ +3) 

Damping for step-size  1 + 2*max(0,sqrt((µ-1)/(N+1))-1) + cs 

Cumulation constant for covariance 

matrix 

4/(N+4) 

Learning rate for rank-one update 2 / ((N+1.3)^2+ µ) 

Learning rate for rank-mu update 2 * (µ -2+1/ µ) / ((N+2)^2+ µ) 
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