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THESIS ABSTRACT

NAME: Naveed Igbal

TITLE OF STUDY: Fast Equalization Algorithms for Wide Band Wireless
Communication Systems

MAJOR FIELD: Electrical Engineering

DATE OF DEGREE: April 2014

It is well known that in the case of highly frequency-selective fading channels, the
Linear Equalizer (LE) can suffer significant performance degradation compared
to the Decision Feedback Equalizer (DFE). For time varying channels adaptive
equalizers are used and one of the famous adaptive algorithm is the Least Mean
Square (LMS) algorithm but it has the limitation of slow convergence. However,
there are other algorithms like Recursive Least Squares (RLS) algorithm that have
fast convergence but their high complexity limit their use. Beside these algorithms
there are heuristic approaches like Particle Swarm Optimization (PSO). Unlike
stochastic gradient algorithms, PSO is known to have fast convergence which does
not depend on the underlying structure.This dissertation proposes new ideas to

improve performance and reduce complexity of the above mentioned algorithms.

xXviil



In particular, the contributions are as follows.

First, we develop a low-complexity Adaptive Frequency Domain Decision Feed-
back Equalizer (AFD-DFE) for Single Carrier Frequency Division Multiple Access
(SC-FDMA) systems, where both the feedforward and feedback filters operate in
the frequency-domain and are adapted using the well-known block RLS algorithm.
SC-FDMA has been adopted as a multiple access technique for uplink in Long
Term FEvolution (LTE) standard. Since this DFE design operation is performed
entirely in the frequency-domain, the complexity of the block RLS algorithm can be
reduced substantially when compared to its time-domain counterpart by exploiting
matrix structure in the frequency-domain. We extend our formulation to Multiple
Input Multiple Output (MIMO) SC-FDMA systems where we show that the AFD-
DFFE enjoys a significant reduction in computational complexity when compared
to the frequency-domain non-adaptive DFE. Ezxtensive simulations are carried out
to demonstrate the robustness of our proposed AFD-DFE to high Doppler and
Carrier Frequency Offset (CFO).

Second, we develop a constraint-based block Recursive Least Squares (CRLS)
for an AFD-DFE when used in an uplink SC-FDMA systems. The performance
of the CRLS algorithm is better than that of the RLS with no significant increase
in the computational complexity. Moreover, we extend our design to the Space-
Frequency Block code (SFBC) SC-FDMA system. We also show that the AFD-
DFFE with CRLS not only enjoys a significant reduction in computational complez-

ity when compared to the frequency-domain non-adaptive optimum MMSE-DFE

Xix



but its performance is also better than the practical MMSE DFE (the one with er-
ror decisions) and closed to the ideal MMSE DFE (the one with correct decisions).
Stmulation results are carried out to demonstrate the robustness of our proposed al-
gorithm to high Doppler. To mitigate Inter-Carrier Interference (ICI) due to large
CFO, we have designed a 3-tap AFD-DFE for Single-Input Single-Output (SISO)
and SFBC SC-FDMA systems by exploiting the banded and sparse structure of
the channel. We show that the 3-tap AFD-DFE has an excellent performance as
compared to the 1-tap AFD-DFE with a low computational complexity. Further,
it is shown that we can reduce the training symbols in each SC-FDMA block that
are transmitted in the training phase with no significant performance degradation.
To further reduce the overhead blind AFD-DFFE is also introduced.

Third, PSO 1is used for adaptive equalization. For time-varying channels,
adaptive equalizers are commonly designed based on the LMS algorithm which,
unfortunately, has the limitation of slow convergence specially in channels having
large eigenvalue spread. The eigenvalue problem becomes even more pronounced
in MIMO channels. PSO enjoys fast convergence and, therefore, its application
to the DFE merits investigation. In this work, we show that a PSO-DFE with a
variable constriction factor is superior to the LMS/RLS-based DFE (LMS/RLS-
DFE) and PSO-based LE (PSO-LE), especially on channels with large eigenvalue
spread. We also propose a hybrid PSO-LMS-DFE algorithm, and modify it to deal
with complex-valued data. The PSO-LMS-DFE not only outperforms the PSO-

DFFE in terms of performance but its complexity is also low. To further reduce its



complexity, a fast PSO-LMS-DFE algorithm is introduced. The system overhead
15 reduced by devising a blind PSO algorithm.

Fourth, an adaptive frequency-domain equalizer for SC-FDMA system us-
ing PSO technique is proposed. The cost function used in a PSO s formulated
based on the respective structure of the equalizer, whether it is LE or a DFE. The
robustness of our proposed PSO algorithm is demonstrated on a high Doppler sce-
nario. Furthermore it is shown that the performance improves more when using
re-randomization. It is shown that the PSO based frequency domain equalizer is
more computationally efficient than its time domain counterpart.

Lastly, to increase convergence speed of the LMS' algorithm,adaptive equalizer

based on Sparse LMS (SLMS) is devised.
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CHAPTER 1

INTRODUCTION

1.1 Background

In communication system, band limited channel causes Inter Symbol Interference
(ISI). Due to this non ideal characteristic of the channel, signal spread in time
causing interference with the neighboring signals which limits the data rate. An-
other cause of ISI is multipath propagation in which the transmitted signal reaches
the receiver through different paths having different delays. This happens due to
reflection (from buildings), refraction (through trees ) and atmospheric effects.
Therefore, equalization is employed at the receiver to mitigate ISI and for perfect
equalization there is a need for high performance and computationally efficient
equalizers.

Consider a digital communication system in Fig.1.1 where C(z) and E(z)
represent the channel and equalizer. Furthermore, z(k) ,y(k) and n(k) denote the

input to the channel, input to the equalizer and additive noise, respectively, and
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Figure 1.1: Model of a digital communication system.

Z(k) and z(k) are the output of the equalizer and the decision device, respectively.
The decision delay ¢ determines which symbol is detected at current instant.

Using the linear, causal, and FIR model of the channel and the equalizer, we

have
C(z) = Z Cmz ™ (1.1)
E(z) = ez_ emz " (1.2)
G(z) =C(2)E(z) = i gmz ™ (1.3)

Cm, €m, gm are impulse responses of the channel, equalizer, and combined chan-
nel/equalizer, respectively, whereas N,, N., N. — 1 are their respective lengths
and N, = N, + N, — 1. For perfect equalization E(z) = e¥Z7° ie., G(z) is an
impulse. This is the simplest criteria, called as zero forcing criteria, but suffers
from noise enhancement problem. ¢ denotes the phase introduce by an equalizer.

Next, a brief overview of the equalization techniques commonly used in com-

munication systems are presented.



1.1.1 Classification of Equalization techniques

Equalization can be classified according to the following criteria.

Coefficient adjustment

Equalizer tap weights can be fixed or adjusted adaptively. In the former case,
channel state information is needed, which is estimated by using the pilot sym-
bols whereas in the later case, training symbols are needed. There are several
algorithms to be used for adaptation, e.g., Least Mean Square (LMS), Recursive
Least Squares (RLS) and heuristic approaches like Particle Swarm Optimization
(PSO) etc. Among these algorithms, RLS and PSO are known to have fast conver-
gence and high complexity in contrast to LMS, which has slow convergence and
less complexity. To efficiently utilize the bandwidth, pilot symbols or training
sequence can be avoided by performing equalization blindly. There are differ-
ent configurations/algorithms to implement blind equalization e.g. Sato, Godard,

Benveniste-Goursat-Ruget (BGR), and Stop-and-go [2].

Structure

Structure of equalizer can be transversal, systolic, or Lattice. Mostly transversal
equalizers, also called tapped delay line equalizers, are used for their simplicity.

Criteria for error minimization

There are mainly three criteria for minimization of error, these are, peak distor-

tion or Zero Forcing (ZF), Mean Square Error (MSE) and Maximum Likelihood



Sequence Estimation (MLSE) criteria. MLSE is implemented using Viterbi algo-
rithm and it is optimum but computationally complex, therefore it is used only
for reference whereas ZF and MSE are suboptimum. ZF has problem of noise

enhancement whereas MSE is mostly used as it takes noise into account.

Sampling

Equalizers can be symbol spaced or fractionally spaced. In symbol spaced, chan-
nel is sampled at symbol rate whereas in latter higher sampling rate is used which
depends on the pulse shaping [3]. Fractionally spaced equalizer has several ad-
vantages over symbol spaced equalizer. First, sampling at higher rates allows
timing recovery. Second, its performance is satisfactory in channels with deep
nulls. Third, perfect equalization is possible for Finite Impulse Response (FIR)
channels. Despite of these advantages, there are several disadvantages, e.g., not
all channels can be equalized [4], higher power consumption due to sampling at

higher rates, increased computational complexity.

Linearity

If a non-linear device is used within the equalizer then it is said to be a non-linear
equalizer and vice versa. A well known non-linear equalizer is Decision Feedback
Equalizer (DFE) which uses two filters, namely, Feedforward (FF) and feedback
(FB). In this equalizer the previous detected symbols are fed back to cancel out
the ISI caused by these symbols to the present symbol. The problem with DFE

is the error propagation i.e. if the decisions on past symbol are incorrect then



it will reflect in the several symbols to follow. Longer the feedback filter length,
the longer these errors will retain in the equalizer and performance of equalizer
lowers, particularly, at low SNR [5]. Despite of the error propagation, the DFE is

used in most of the practical systems since it out performs the linear equalizer.

Time/frequency domain

Equalization can be performed in the frequency domain. The frequency domain
equalizer is computationally more efficient as compared to the time-domain equal-
izer. The frequency-domain equalizer finds its application in Orthogonal Fre-
quency Domain Multiple Access (OFDMA) and Single Carrier Frequency Division
Multiple Access (SC-FDMA) systems, which are extensively used in the uplink for
multiuser access scenarios such as the Long Term Evolution (LTE) standard [6].

Next we compared different equalizers. The symbol spaced and fractionally

space channel for comparison are shown in Fig.1.2 and Fig.1.3 respectively.

Impulse response
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Figure 1.2: Symbol spaced Channel.

As shown in Fig.1.4 and Fig.1.5, MLSE gives the optimum performance but
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Figure 1.3: Fractionally spaced Channel.
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Figure 1.4: Comparison of symbol spaced equalizers .

among the sub-optimal equalizers, the DFE outperforms the others. Furthermore,
performance of the fractionally space equalizer is better than its symbol spaced

counter part.
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Figure 1.5: Comparison of fractionally spaced equalizers.

1.2 Dissertation Contributions and Organiza-
tion

This dissertation is about proposing new ideas for fast algorithms which are to be
used for adaptive equalization. By ”Fast algorithms”, we mean that the algorithms
have fast convergence and processing (less number of multiplications/additions).

It is worth highlighting that the contributions of this thesis are somewhat
scattered, tackling various issues related to adaptive equalization in time and
frequency-domain. In particular, we have tried to eliminate the weaknesses of var-
ious adaptive equalization algorithms, namely, LMS, RLS and PSO, while keeping
their strengths. Therefore, instead of endeavoring to put forth a common data
model and a comprehensive literature review covering all the algorithms at once,

each chapter of this thesis is made self contained in a sense that it includes its



own motivation of the problem, literature review and contributions. The author is
well aware of the fact that some material is repeated in different chapters, which
was necessary in order to eliminate the need of shuffling the chapters over and
over again. By doing all this, not only flow of the thoughts are maintained but
it also facilitates the individual reading. The only exception is that the chapters
2, 3, and 5 uses a common data model, therefore, to reduce the redundancy, the
data model is presented only once in chapter 2.

In the ensuring, the main contributions of this work are summarized:

e An Adaptive Frequency Domain Decision Feedback Equalization (AFD-
DFE) is designed for a SC-FDMA system with frequency-domain feedfor-
ward and feedback filters in Chapter 2. The block RLS algorithm is used
to update both the feedforward and feedback filters as it is known for its
fast tracking/convergence properties. Here, we have shown that due to the
special structure in the matrices involved, the proposed algorithm has a low
computational complexity. Moreover, the design is extended to Multiple

Input Multiple Output (MIMO) SC-FDMA systems.

e An AFD-DFE is formulated using a constraint-based RLS for SISO and
MIMO SC-FDMA systems in Chapter 3. In frequency-domain, the channel
matrix is diagonal and we use 1-tap equalizer per subcarrier. However, due
to the carrier frequency offset, the diagonal structure of the channel matrix
is lost, and it contains most of the energy along its three main diagonals.

Therefore, by assuming banded and sparse structure of the channel matrix,



we have extended our design to 3 taps per subcarrier AFD-DFE. We have
also shown that the reduction of the overhead can be achieved by using less
training symbols during the training phase and introduced a Blind AFD-

DFE.

A PSO algorithm is proposed for a DFE structure in Chapter 4. To improve
the performance of the PSO algorithm, a hybrid PSO-LMS-DFE algorithm
is proposed and modified to deal with complex-valued data. The complexity
of the PSO algorithm is reduce by proposing a fast PSO-LMS algorithm. To

further reduce the system overhead a Blind PSO algorithm is also presented.

A frequency domain PSO algorithm is proposed and formulated based on
the respective structure of the equalizer, whether it is a LE or a DFE in

Chapter 5.

The convergence speed of the LMS depends on the number of the equalizer
taps. Lesser the taps, fast is the convergence. Since the impulse response
of the equalizer is sparse. Utilizing this property , a sparse LMS algorithm
is proposed in Chapter 6 to increase the convergence speed of the LMS

algorithm.

Finally, Chapter 7 concludes the findings of this research and considers new

directions and future recommendations for the topic under observation.



CHAPTER 2

ADAPTIVE
FREQUENCY-DOMAIN RLS
DFE FOR UPLINK MIMO

SC-FDMA

It is well known that in the case of highly frequency-selective fading channels, the
Linear Equalizer (LE) can suffer significant performance degradation compared to
the Decision Feedback Equalizer (DFE). In this work, we develop a low-complexity
Adaptive Frequency Domain Decision Feedback Equalizer (AFD-DFE) for Single
Carrier Frequency Division Multiple Access (SC-FDMA) systems, where both the
feedforward and feedback filters operate in the frequency-domain and are adapted
using the well-known block Recursive Least Squares (RLS) algorithm. Since this

DFE design operation is performed entirely in the frequency-domain, the com-
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plexity of the block RLS algorithm can be reduced substantially when compared
to its time-domain counterpart by exploiting matrix structure in the frequency-
domain. We extend our formulation to Multiple Input Multiple Output (MIMO)
SC-FDMA systems where we show that the AFD-DFE enjoys a significant re-
duction in computational complexity when compared to the frequency-domain
non-adaptive DFE. Finally, extensive simulations are carried out to demonstrate
the robustness of our proposed AFD-DFE to high Doppler and Carrier Frequency

Offset (CFO).

2.1 Introduction

Orthogonal Frequency Domain Multiple Access (OFDMA) is a multiple access
technique which has been adopted in many standards like European Telecommu-
nications Standards Institute Digital Video Broadcast— Return Channel Terres-
trial (ETSI DVB-RCT) [7], [8], WiFi [9] and WiMAX [10]. On the other hand,
SC-FDMA is extensively used in the uplink for multiuser access scenarios such
as the Long Term Evolution (LTE) standard [6]. SC-FDMA has an advantage
over OFDMA of having a low Peak Average Power Ratio (PAPR), which helps
in reducing cost and power consumption in mobile terminals. SC-FDMA is the
multiple access form of Single Carrier Frequency Domain Equalization (SC-FDE)
having comparable complexity and performance to that of OFDMA [11]. The
sensitivity comparison of OFDMA and SC-FDMA to Carrier Frequency Offset

(CFO) and Doppler effect has been reported in [12] where it was shown that for
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large CFO, the performance of SC-FDMA can get worse than OFDMA.

In SC-FDMA, equalization is performed after transforming the received signal
from the time-domain to frequency-domain using the Discrete Fourier Transform
(DFT). A linear equalizer can be adopted in SC-FDMA but in case of severe
frequency-selective fading channels, in which spectral nulls are present, this will
not be effective as the noise in these spectral nulls will be amplified causing signif-
icant performance degradation. Therefore, a Decision Feedback Equalizer (DFE)
is a more attractive solution in these scenarios.

There are different diversity techniques to combat multi-path fading effectively.
The most popular transmit diversity scheme with two antennas was proposed
by Alamouti [13]. Although the overall throughput is not increased but this
simple technique has certain interesting features which makes it attractive for
implementation. It is an open loop technique, i.e., it does not require Channel
State Information (CSI) at the transmitter, encoding and decoding is simple and
due to linear processing at the terminals, complexity is reduced. It achieves full
spatial diversity gain at rate 1 (i.e., full rate, as two symbol are transmitted in
two time slots) and failure of one antenna chain does not result in data loss, so it
is compatible with single antenna systems.

The scheme proposed by Alamouti is a special case of Space Time Block Codes
(STBC) [14]. Alamouti’s STBC can be applied to the 3GPP LTE uplink over two
SC-FDMA symbols and two transmit antennas. Due to single carrier transmission

from both antennas, the low PAPR property of SC-FDMA is not affected by
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signs and/or complex-conjugate operation. Unfortunately, we cannot use STBC
in SC-FDMA due to the following reason. For STBC, the coding is done in
pairs, therefore all the frames in SC-FDMA should contain an even number of
SC-FDMA symbols but this is not guaranteed in LTE system (this is called the
orphan symbol problem). In many cases, the frames contain an odd number of SC-
FDMA symbols. Moreover, in STBC it is assumed that channel remains constant
for two SC-FDMA symbols. This is not valid in case of fast varying channels and
performance degradation will result.

An alternative scheme to STBC is Space-Frequency Block Codes (SFBC) [15].
SFBC is applied within each M-point DFT block. Therefore, it does not suffer
from the problem faced by STBC when used in SC-FDMA and the number of
symbols in each frame is not required to be even. As SFBC is applied to each
SC-FDMA block, the size of the block should be even which is guaranteed in LTE
systems. One major drawback of SFBC is that the low PAPR property is affected
due to frequency inversions between successive sub-carriers [16]. Therefore, a
scheme is proposed in [17] in order to tackle the orphan symbol problem. It
uses spatial repetition on odd symbols and applies STBC on even symbols. This
scheme cannot achieve full diversity and its performance degrades at high Signal
to Noise Ratios (SNR). In [18], another approach is presented to avoid the orphan
symbol problem by applying the STBC before the M-point DFT but in some
channels its performance is not satisfactory especially at high SNR. In this work

we will use conventional SFBC.
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Several works studied the frequency-domain DFE. In [19-21], a hybrid DFE
structure is used for SC-FDE systems to perform equalization in the frequency-
domain. In hybrid DFE, the feedforward filter is implemented in the frequency-
domain while the feedback filter is realized in the time-domain. Due to frequency-
domain implementation of the feedforward filter there is a considerable reduc-
tion in complexity in a hybrid DFE as compared to its time-domain counterpart.
In [22], a hybrid DFE is developed for SC-FDMA to be applied for each user
separately. In [23], both the feedforward and feedback filters are implemented in
the frequency-domain and an iterative procedure is used to solve the causality
problem. The complexity of DFE with both filters implemented in the frequency-
domain is greatly reduced as compared to the hybrid DFE. In [1] a framework
is proposed to find the optimum weights of the frequency-domain DFE for SC-
FDMA systems and it was shown that its performance is better than Frequency
Domain LE (FD-LE) in frequency selective channels. All of the above mentioned
DFE structures are non-adaptive and require CSI at the receiver.

As equalization in SC-FDMA requires Channel State Information (CSI), which
is estimated from pilot symbols inserted in each block of data and optimum equal-
ization is used to remove channel effects. Alternatively, an adaptive equalizer can
be used which does not rely on CSI estimation and, hence, the channel estimation
overhead will be reduced. Moreover, an adaptive equalizer can also help in track-
ing time varying channels. An adaptive LE for Space Time Block Coded (STBC)

SC-FDE system is developed and extended for multiuser scenarios in [24].
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In this work, an Adaptive Frequency Domain Decision Feedback Equalization
(AFD-DFE) is designed for a SC-FDMA system. Designing a adaptive hybrid
DFE will not be an easy task and, moreover, it will be computationally prohibitive
due to the involvement of both time and frequency-domain signals. Therefore, we
propose an adaptive DFE algorithm with frequency-domain feedforward and feed-
back filters. The block RLS algorithm [5] is used to update both the feedforward
and feedback filters as it is known for its fast tracking/convergence properties,
however, it is computationally complex due to the required matrix inversion oper-
ation. Interestingly, we will show that due to the special structure in the matrices
involved, this algorithm has a low computational complexity. Moreover, the de-
sign is extended to SFBC SC-FDMA, Spatially-Multiplexed (SM) SC-FDMA and
hybrid SM-SFBC SC-FDMA systems. The AFD-DFE in SC-FDMA is compli-
cated when compared to the AFD-LE due to the iterative procedure but since
SC-FDMA transmission is confined to the uplink, where processing is done at
the Base Station (BS), the computationally heavy equalizer will be used at the
BS (where the power limitations are more relaxed than at the user terminals).
Our AFD-DFE formulation is general and does not depend on the sub-carrier
mapping techniques in SC-FDMA. Furthermore, we show that AFD-DFE is also
computationally efficient when compared to the channel-estimate-based DFE [1].
Finally, we demonstrate that AFD-DFE has superior performance to the LE and
LMS-based approaches and it is robust to Inter-Carrier Interference (ICI) caused

by high Doppler and Carrier Frequency Offset (CFO).
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In summary, the main contributions of the work are

Adaptive RLS-based implementation of the AFD-DFE for SISO SC-FDMA.

Extension to the MIMO (both SFBC and SM) and multi-user scenarios.

Reduced-Complexity implementation by exploiting matrix structure.

Demonstration of performance superiority to LE and LMS-based ap-

proaches.

Reduced Complexity compared to the channel-estimate-based approach.

Demonstrated robustness to CFO and Doppler.

2.2 System Description

M-Point N-point cP CP N-Poin Sub-carriel Equali M-point

- - - oint ub-carrier qualiza- poi

—> carrier DFT > . ) | > - > -
mappin : insertio removal DF demapping tion IDFT

Figure 2.1: Block diagram of a transceiver of SC-FDMA system.

In this section, the SC-FDMA transceiver (see Fig. 2.1) is described for two
different sub-carrier mapping methods, namely, localized and interleaved. We
assume K users and a total of IV sub-carriers with M sub-carriers for each user, i.e.,
N = KM. For the m™ user, M data symbols are grouped to form a block (™,
ie., ™ = [2(0)™ z(1)™ .. z(M — 1)™]7 where T denotes the transpose
operation. An M-point DFT is applied to transform x(™ to the frequency-domain

symbol, X™ = [X(0)™), X (1)), ... X (M — 1)™]T. Next, X is mapped to
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N sub-carriers according to different mapping techniques, i.e.,

S = RM™Mxm =12 .. K (2.1)

where R™ is the N x M resource allocation matrix. For example, consider the

following two choices for R™

Rﬁm) = [Onrx(m-1)sr Tar Onrs(x—mynr) (2.2)
Of/lx(m—l)
(m) _ T
Ry” = [11 Onrx(x—1) L2 Onrx(x—1y - Tavr—1 Onrs(r—1) IM] (2.3)
L OEX(Kfm) i

which correspond to localized and interleaved allocations for the m*" user, respec-
tively. Iy is M x M identity matrix with columns I, I, ..., I); and O,/ is the

M x M all-zero matrix. Note that R™ is orthogonal for different users, that is

I —1
RmTRO _ ) M "

Orscnss m # 1

Then, the block 8™ is transformed to the time-domain, s, by applying an

N-point inverse DFT (IDFT)

s™ = FERM™F 2™ = FERM x (™ (2.4)
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where F'y is an N x N DFT matrix and H denotes the Hermitian (i.e. complex-
conjugate transpose) operation. Then, a cyclic prefix of length L., is inserted

where cyclic prefix matrix is defined as

C, = (2.5)

The transmitted signal is formed after converting the signal from parallel to serial
format, i.e., sggl) = C,s"). We denote the impulse response of the channel for
the m' user by h™ = [R™ n{™, h(L”(%)] For elimination of ISI using cyclic
prefix, L(m) should be shorter than L.,. At the receiver, first the cyclic prefix is
removed, i.e., y = Cay,, where Cy = [Oyxr,, In]. The cyclic prefix insertion at
the transmitter and removal at the receiver is equivalent to circular convolution
between the transmitted signal and the channel vectors. The received signal before

applying the N-point DFT can be expressed as

=

y=3 s @Rt 4 (2:6)

m=1

where ® denotes the N-point circular convolution operation and n(™ is the noise
vector. After applying an N-point DFT the received signal, (2.6) can be expressed

as

K
Y=Y A"RMx™ L N (2.7)
m=1

where A(m) is a N x N diagonal matrix containing the DFT of h™ as diago-
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nal elements, A is noise vector due to Zfl:l n(™ with variance 0% Iy. After

demapping, the m!”" user’s received signal can be expressed as
Yo — RemT AT Rlm) yr(m) o Afm) (2.8)

Let A™ = R(m)TA(m)R(m), then A™ is M x M diagonal matrix. To simplify
the notation, we will ignore the superscript m, without loss of generality, then
(2.8) becomes

V=AX+N (2.9)

2.2.1 Carrier Frequency Offset (CFO)

In the above description, perfect frequency synchronization has been assumed
between the transmitter and the receiver. However, CFO arises in practical SC-
FDMA systems due to transmitter/receiver frequency oscillators’ misalignment
and causes interference (energy leakage) from neighboring sub-carriers. Therefore,
for localized allocation, CFO results in intra-user interference while for interleaved
subcarrier allocation, CFO results in inter-user (i.e. multi-user) interference.

Let the m*" user’s CFO normalized by the sub-carrier spacing, be denoted by
Q,, where 0 < ,, < 0.5. Now, define a diagonal matrix to characterize the effect
of CFO as C"™ = diag([e/2™m*O/N ei2mQmx1/N - pi2nQmx(N=1)/NT) " Ip this case,

the pre-DF'T received signal can be expressed as

K
y=)Y_ C"™(s" @h™)+ntm (2.10)

m=1
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After applying the N-point DFT, the received signal is given by

’

K
Y= cmA"RMx + N (2.11)

m=1

where €™ is a circulant matrix with  entries C%) =

% ZT]:/;Ol ej27r(§l(m)+p*61)n/N7 D,q = 1,..., N.

2.2.2 Fading and Doppler Effect

Another cause of ICI is the Doppler effect, which occurs due to the motion of
the user. This motion causes the channel h™ to be time variant with each tap

W oi=1, ., L(m) being modeled as Wide Sense Stationary (WSS) narrow-band

7

complex Gaussian process, independent of the other taps. Hence, the amplitude

\hﬁ””\ is assumed to be Rayleigh distributed, i.e.,
PR = (B2 R > 0 (2.12)
and its phase is uniformly distributed, i.e.,
P(Lh™) = —, —x < B <n (2.13)

The autocorrelation function of the hz(m) is modeled as zeroth-order Bessel function

of the first kind, i.e.,

R(n) = J,2r fatsn), n=..,—1,0,1.. (2.14)
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where f; is the maximum Doppler frequency, t, is the sampling time and 7, is

defined as

To(2) = 1 /07r cos(zsin 0)db (2.15)

T

The Doppler frequency fy is related to the user speed v and carrier frequency
fe as fqa = vf./c, where c is the speed of light. The Rayleigh fading channel is

generated using the famous Jake’s model.

2.3 AFD-DFE FOR SISO SC-FDMA

Let Z = diag(y) and denote the feedforward and feedback filter coefficients in
the frequency-domain by F and B, respectively. The output of the equalizer in

frequency-domain at instant k is given by
.Xv'k =Z.Fi_1+ DB, (2.16)

The explicit knowledge of the filter coefficients is not needed for the development

of the adaptive solution. The decision matrix Dj, is defined as follows

diag(Fyxy), for training mode
Dy =

diag(Fy&y), for decision-directed mode

Denoting Wy, = [;ﬂ We express (2.16) as

X, =2, DiWi (2.17)
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Hence, the output of the equalizer in the time-domain is &} = FJ\I})E' k-

2.3.1 RLS Update

We motivate the RLS algorithm as a stochastic gradient method. Let D =
[D(0) D(1) ... D(M — 1)] be the vector containing the diagonal elements of D.

The Mean Square Error (MSE) at the i frequency bin is given as

MSE(i) = E|D(i) — X (i)|? (2.18)

where E[.] stands for the expectation operation. Minimizing (2.18) for the feed-

forward filter and the feedback filter separately, results in the following updates

Fenr@ =7l + (gt ) Vi D)
— DA + Den ()B)]) 219
and
Buali) = Bili) + () D D)

= et () Fr(d) + Dy (1) Bi(0)]} (2.20)

Next, we replace E[)(i1)*Y(i)] and E[D*(i)D(i)] by their estimates, which for the
RLS update, are chosen to be the exponentially-weighted sample averages for some

scalar 0 < A < 1. Choosing the step size as pr1 = 1/(k + 2), the regularization
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factor as e, 1 = A*2¢/(k +2), and collecting all the coefficients in one vector W,

Equations (2.19) and (2.20) become

-1

k1
Win = Wi+ [ WPy + Y MY ARAL AL Ern (2.21)
=0
where Ay, and &, are given as
Z., 0
Ay = (2.22)
0 D,
and _
Dy — X
E = (2.23)
D; — X,

It is not convenient to find the inverse of the matrix in (2.21) as it requires us
to combine all the previous and present data to form the matrix. Therefore, we

define

k+1
Ok+1 = ()\kJrQGIzM + Z )\kﬂ_jAfAj) (2.24)

J=0

which satisfies the following recursion
@kJrl = /\@k —+ AkH+1Ak+1, @1 = €I2M (225)
Let Pj11 = O, and applying the matrix inversion lemma [5] gives

Pri1 = >\71['Pk - A’I’PkAkHH X (I2M + )\71Ak+1'PkAkH+1)71Ak+1'Pk] (2.26)
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where \ is the forgetting factor chosen close to 1. Finally, the RLS update is given
as

Wi = Wi + Pet Ay En (2.27)

with &, defined as in (2.23). Initially Wy = 0 and Py = diag(ez Inr 5 Inr).

2.3.2 Reduced-Complexity RLS Update

Due to the special structure in Py, it turns out that no matrix inversion is
required for computing Py resulting in a significant reduction in computational
complexity.

We start by noting that the matrix P, has a diagonal structure, i.e., Py =

diag([Py.y Pi,1]), where P; ., and P, are diagonal as well. We can write

Pllc—f—l = )\—1[P11€ - A_lplchkHH(IM +)‘_1Z/~c+1Pich/k;Hﬂ)_1Zl~c+1p/rlc]

= AUPL- A PLER (I + A2 PP T 20 Pl (2:29)

Moreover, the term (I, + A7 21| P;)~" is also diagonal, therefore,

Py = MNP = AP 2| + APy P (2.29)

and the matrix inversion here is simply M scalar inversions. Similarly, as in the

case of P} 41, it can be argued following the same steps for P 41 that

Piy = MNPL = AP D + AT P TP (2.30)
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Therefore, the final reduced-complexity RLS update has the form

Wi = Wi +diag([P,1€+1 PzHDAkHHSkH (2.31)

Xy

~"\ e DFT

Adaptive j
R Form | 2}, | Feedforward k
= data > filler —> IDFT &+
tri
matrix f’ k—1 Y
Form
decision
matrix
Adaptive
Feedback | D,
filter <«
Bi_1

Figure 2.2: Block diagram of AFD-DFE.

The block diagram of the resulting AFD-DFE is depicted in Fig. 2.2. For a
linear equalizer, the derivation is the same except that the feedback coefficients are
set to zero. To summarize, the overall procedure for updating a frequency-domain
equalizer is as follows. The received signal is first transformed to the frequency-
domain using the DFT and the data matrix Ay is formed. The equalizer output
is calculated using (2.16) and transformed to the time-domain using an IDFT,
then decisions are made on this data to produce the equalizer output. The error
signal is generated by comparing the equalizer output with the desired response
in the frequency-domain, which is used in (2.31). First, the training mode is used
to allow the algorithm to converge and then it is switched to the decision-directed
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mode in which the equalizer uses the previous decisions to update its weights. To
prevent the algorithm from diverging, in case of fast fading channels, retraining
blocks can be used. The causality problem in (2.16) can be solved using an
iterative procedure similar to that described in [25], [26]. Note here that we have
reserved the word 'iterative’ for (2.16), which is to be solved iteratively whereas
the word 'recursive’ is used for the RLS update (2.31). The update procedure for

AFD-DFE with CRLS is shown in Table 2.1.

Table 2.1: Summary of the adaptation algorithm for AFD-DFE
Initialization:

Initialize the algorithm by setting
Wy =0
A is close to one

6;_—1IM 0
0 EglIM

and Po =
For each instant of time, £=0,1,2,...
In training mode:
(1) Update P, and Pj_ ., via
Pl = A\ [PL— AP 2|+ A P} P
Ph, = AP A TP (X 4 AP P
(2) Update the equalizer weights Wy, recursively as
Wi = Wi + dz’ag([P,i,H Pi+1D<AkH+15k+l)
In decision-directed mode:
(1) Tterate on Xpyy = Zi1 Fr + Dis1 By
(2) Update P, and P;_ ., via
Pl = A U[PL - A PY( 2]t A PP
P2, = APE - XU P&y A PP
(3) Update the equalizer weights Wy 1 recursively as
Wii1 = Wi+ diag([Pry, P (AL Expa)
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2.4 AFD-DFE FOR MIMO SC-FDMA

MIMO systems are used either to enhance the performance (spatial diversity) or
to increase the rate (spatial multiplexing) or a hybrid thereof. In the following,

we extend our AFD-DFE design to these MIMO systems.

2.4.1 AFD-DFE for SFBC SC-FDMA

An attractive technique for spatial diversity is Space-Frequency Block Code
(SFBC). For our AFD-DFE design we implement SFBC at the block level.
The block diagram of SFBC SC-FDMA is shown in Fig.(2.3). After apply-
ing the M-point DFT, the block ™ is transformed to the frequency-domain
X where ™ = [X(0)0™, X(1)™, ..., X(M — 1)™]T. After SFBC, we get
XM = [X(0)™, —x*(1)m, X (M — 2)m —X*(M — 1)™]T and x{™ =
(X (D)™, X*(0)m) ., X(M — 1) X*(M — 2)™]7  where (-)* denotes the
complex-conjugate operation. After mapping and applying the N-point IDFT,
)

the transmitted signals from the two antennas are denoted by ng) and sém cor-

responding to X §m> and X g’”). The transmitted signals are circularly convolved

Sub- N- |5 P
carrier [—¥» point —¥» insertion
mapping IDFT N .
V- Y M| X
! Point L»| sFaC ]r CP |y point [ »| Subcarier | qrpol ) Buali | | gny |
DFT Sub- N-| 52 - removal DFT demapping zation IDFT
carrier —» point —»| . Crt'
mapping IDFT insertion

Figure 2.3: Block diagram of a transceiver of SFBC SC-FDMA system.

with their respective channels (due to CP insertion) and the received signal be-
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comes

K
y=> [s\" @h™ + 58" ® Y] + (2.32)

m=1
where hz(m) = [hgg”),hz({”), ...,hgf()m)] for i = 1,2. After applying the N-DFT of
(2.32), the signal becomes
A (m)
Y=Y [A"R™x™ + A" R™x{V] + N (2.33)
m=1

~

where Afm) is a N x N diagonal matrix, i.e., Agm) = diag(DFT(h(m))) fori=1,2

i
and N is the noise component with variance oaIy. The received signal for the

m* user, after demapping, can be expressed as

Y = RmT R plm) a(m) . gEmT R gm0 4 Arm) (2.34)

Let Az(m) = R(m)TAZ(»m)R(m) for i = 1,2, then Agm) is M x M diagonal matrix. To

simplify the notation we will drop the superscript m, thus (2.34) becomes
V=AX+MX+ N (2.35)
Using the odd even expansion, the odd component of (2.35) is

yo = Aloxlo + AZOXQO _'_No (236)
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and the even component is

ye :A16X16+A2€X2€ +Ne

(2.37)

where X;, and X;. represent the odd and even components, respectively, of X;

for ¢ = 1,2. Denoting the odd and the even components of X as X, and X,

respectively, we have

Xlo:Xo; X20:X67 Xle:_X:7 XQG:X*

o

Consequently, (2.36) and (2.37) become, respectively, as

yo = A10X0+A20Xe +No

and

ye - _AICX: +A2€XZ+N€

(2.38)

(2.39)

(2.40)

Combining (2.39) and (2.40), the linear relationship [15] can be written as

yo Alo A20 Xo No
yoe = = +
A% A, —A%, X, N*
é AXoe +Noe (241)
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Moreover, assuming

Aie = Ay, i=1,2 (2.42)

A becomes an Alamouti-like matrix. A matrix is said to be an Alamouti matrix

if it has the form [ﬁ% _AAQT } After MMSE equalization, we get

X,
= (A"A+

1 —1AH
‘;E‘ SNRIQM) A yoe (243)

e

where SNR is the signal-to-noise ratio at the receiver. Since AA has an

Alamouti-like structure, therefore

Xo i)1 ¢)2 yo

(2.44)
A?e q); _(I)T y:

where ®; and ®, are diagonal matrices. Alternatively, (2.44) can be written as

X, diag(Y,) diag(Y¥) Y,

o
o %

—diag(Ye) diag(Yy) T,
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where Y1 and Y5 are the vectors containing the diagonal elements of ®; and ®,.

For a DFE, we have

X, diag(Y,) diag(Y?) 1, diag(D,) 0 U,
= +
X, —diag(Y.) diag(Y;) | | Yo 0 diag(D;) | | ¥y
206
£ZF + DB (2.45)

where D, and D, are X, and X, respectively, for the training mode or frequency-
domain decisions on X, and X, respectively, for the decision-directed mode. The
feedforward and feedback filter coefficients in the frequency-domain are F and B
containing the elements {Y1, Yo} and {W¥, Wy}, respectively. Moreover, Z is an
M x M Alamouti-like matrix containing the received symbols and D is a diagonal
matrix containing the decisions. However, these coefficients will be computed
adaptively; hence, an exact solution is not required. At the k™ instant, the

output of the equalizer is given

Koo = Z1F i1+ DBy (2.46)

The RLS AFD-DFE recursion is given as in (2.27) with error vector as

Ep = ’ (2.47)
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where D), denotes the decisions at the k' instant, i.e., D) = [giﬂ and A;, is

given as in(2.22).

Reduced-Complexity RLS AFD-DFE: It might seem that (2.27) requires

matrix inversion. However, due to the special structure of SFBC, no inversion is
required resulting in significant complexity reductions as shown below.
The matrix P4 has a diagonal structure, i.e., Pry1 = diag([Py;  Pi.1)),

where P, 41 and P 41 are diagonal as well and P, 41 1s given by.

Pl = MN'[Pi-NTPLE!, (I + N 211 PLEL, ) 20 P (248)

Now, simplifying the term (A\™*Z,, P, Z1.,) , we get

N2 P2y = NP2 2,
Lon | diag(Vortr)  diag(Ye )
— )\_ Pk
~diag(YVers1) diag(Yy 1)
diag(Yy 1) —diag(Yy 1)

X
diag(YVerr1) diag(Yors1)

= A\ 'Pdiag [diag(|yo,k+1|2) +diag<|ye,k+1|2)} (2.49)

Now Z/ (Ing + A 24 PLZ[L )T 211 = diag([¢ @) £ 4., where @ is

diagonal given as @ = (diag(|Voxs1|?) +diag(|Vers1/?)) " +A"1PL] L. Tt follows
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that P, will have the form

Plchrl = NP, - )\_1P11c¢11g+1pilc] (2.50)

Using the same approach as in the SISO case, Pz 41 can be expressed as follows

PZH = X' [P} - A‘lPitbiHPi] (2.51)

where 7., = (|Dyi1| 72 + A7LP7)~!. Finally, the RLS AFD-DFE recursion has
the form

Wit = Wy + diag([P};  Pio)) AL Erm (2.52)

where P, and P}, are defined by (2.50) and (2.51), respectively. The block

diagram of the resulting AFD-DFE for SFBC SC-FDMA is depicted in Fig. 2.4.

N}f—{ rearranging H DFT }47

oe,k

Yo Adaptive - j‘j
yk — >3] Form Zk Feedforward . Xk k
| oxponsion "] data > filter rearranging IDET o= L 5
matrix Tk'—l v
y ek .
.' Form
decision
matrix
Adaptive
Feedback | D k
filter
Bi—1
Y

Figure 2.4: Block diagram of AFD-DFE for two-transmit one-receive antenna.
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2.4.2 AFD-DFE for Spatially-Multiplexed (SM) SC-

FDMA

In this section, we will use MIMO to increase the number of users supported by the
system, i.e., spatial multiplexing. In a SM SC-FDMA scenario, multiple users use
the same frequency and time slot to transmit data. The number of antennas at the
Base Station (BS) is equal to the number of users using the same frequency and
time slots. AFD-DFE is used for joint interference cancelation and equalization

at the receiver. The system model for SM SC-FDMA is depicted in Fig. 2.5. Let

A
X, Sub- ! Vi X
M-Point ; N-point cp cP N-Point Sub-carrier M-point | X1
—> > carrier —» . ) > » poin
DFT mapping IDFT insertion removal DFT demapping > IDFT
m
£
o
5
2
=}
Y Xy
SUI_)' CcP CP N-Point Sub-carrier M-point
carrier insertion removal DFT demapping ) IDFT
mappin

Figure 2.5: Block diagram of a transceiver of a SM SC-FDMA system.

N; and N, be the number of transmit and receive antennas, respectively. The
transmission from each user can be viewed as a SISO SC-FDMA transmission
and the received signal at the r** antenna after cyclic prefix removal and before

applying the N-point DFT can be expressed as

N, K
yT:ZZS)Em)@hE;n)+n£m)7 r = 1727.”’]\]74 (253)
t=1 m=1
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where n{™ is the noise vector at r* receive antenna. After applying an N-point

DFT, the received signal can be expressed as

N, K
Y, =Y S AVRMAM 4 N, (2.54)

t=1 m=1

where Agn) is a N x N diagonal matrix, i.e., A,E;n) = dmg(DFT(hg”))) and
N, is the noise vector with variance oa- Iy corresponding to 25:1 n!™. After

demapping, the m'" user’s received signal at the r'* antenna can be expressed as

Ny
Y =3 RWTAT R x4 A (2.55)
t=1

Let A;i” ) = R(m)TAE;n)R(m), then AET )is M x M diagonal matrix. To simplify

the notation, we will ignore the superscript m, then (2.55) becomes
Ny
Vo= ApX 4N, (2.56)
t=1

Since the number of receive antennas is assumed to be equal to the number of

users transmitting using the same frequency band and time slot, hence, Ny = N,.
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Collecting all the received SC-FDMA symbols in one vector [27], we get

yl All A21 cee AN,«l Xl Nl
y2 A12 A22 s AN,«Q X2 NZ
= +
yNT AlNT AQNT <. ANTNT XNT NNT
£ AX+N (2.57)

where A;; is the frequency-domain channel matrix from the i user’s transmit
antenna to the j* receive antenna having diagonal structure. Assuming that
the feedforward and feedback taps matrices have similar structure as the channel

matrix A. The output of the AFD-DFE is given as

21 Fipn Fia ... Fin, Vi
22 Fo1 Fao ... Fan, Yo
X'NT Fnoa Fno2 - Fnon, YN,
B, Bip ... Bin, D,
By1 By ... Ban, D,
+ (2.58)
By,1 Bwn,2 ... By.n, Dy,
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where the elements F, ; and B, ; are diagonal matrices containing the feedforward
and the feedback tap weights as diagonal elements, respectively. Next, we will
design an adaptive solution for entries of these matrices to avoid the need for the
high cost and rate overhead associated with accurate MIMO multi-user channel

estimation. The desired response D; is defined as

Fyx;, for training mode

D, =

Fy&;, for decision-directed mode

Defining Z; = diag(Y;) and the decision matrix D; = diag(D;), (2.58) becomes

(2.59)

where F7 and B! are the vectors contains the diagonal elements of F;; and
B, respectively. Let X = [zf'lT XﬁT]T, F.o=[Fr . Ful'B =

B ... BY]' and Z, (D;) is the diagonal matrix containing the elements

Z,(D;) on its diagonal, (2.59) can be expressed as follows

Nr
X = > [2F +DB|2ZF+DB (2.60)

i=1
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where Z = (£, ... Zy], F = [FI .. Fu'B = B .. By ] and

D = [’D1 ’bNT]. Now the output of the equalizer at instant £ is given as
X = Z:.Fi1+ DBy (2.61)
Defining the desired response vector as Dy = [D7, .. D} ,]”, then Wy, Ay

and & are given as in (2.31), (2.22) and (2.23), respectively.

Reduced-Complexity RLS AFD-DFE: Starting with £ = 0 and using

Pj = e 'I(n,)2n, Py is given by

Pl = MNP, - \T'PZE(Iyny + N 2P ZE) T Z P

= AN e T v — AN e T ZY (Ivon + A e 202 T Zve T (e

It can easily be seen that Z1Z7 = [| 21,2+ | 221+ ... [Zn.4]7. As |Zi4)?
has a diagonal structure therefore, | Z|? is diagonal matrix and (3.50) does not
require matrix inversion. Let Z% (Iy y+A e ' Z,Z7)"1Z, = g be the (N2M x
NZ2M) block matrix, where each sub-matrix @;; is a diagonal matrix given by

L H
i1

0, =Z,1(Inrum +)\_1e_1ZIZ{I)_1Z"j71. Therefore, P} has a similar structure to

that of ¢ with each sub-matrix Py ; ;) = A e "Iy — A e 2Ty, 09, 5] is also

diagonal matrix. For £ = 1, we have

Py, = MNP - AN'"PiZ](Iny+ N 'Z.P1Z])'Z,P]  (2.62)
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where Z,P1Z = ZN’” Zo(0N 1ZMP (i.j)) is a diagonal matrix. Therefore,

matrix inversion in Pj is simply N, M scalar inversions. For k > 1, P}, has similar

structure and, therefore, avoids complex matrix inversion and the same conclusion

- 2
applies to Py.

2.4.3 AFD-DFE for Hybrid SM-SFBC SC-FDMA

To increase the capacity and performance, i.e. combine spatial diversity with

spatial multiplexing we integrate SFBC and SM SC-FDMA. The block diagram

is depicted in Fig. 2.6.

s,

Sub- N-

carrier —» p

carrier —» point —»|
mapping IDFT
X, M-
—>» Point (% SFBC
DFT Sub- N- 51,

mapping IDFT

oint —»

S,

Sub- N-

carrier —»{ point —»| i
mapping IDFT
Xne[ V-
—>» Point » SFBC Sy,
DFT Sub- N-

carrier —»{ point —»|
mapping IDFT

CpP
insertion
T yI N M -%I
CP | | point | »| Subcarrier | Jjorpn| | —»| point —»
removal DFT demapping IDFT
CP
insertion
m
Qo
[=4
)
g
=
=]
cP
nsertion K Y
N- . M- X
CP L 5l point || Subcarmer | | qepc | —>| point —>
removal DFT demapping IDFT
CcP
nsertion

Figure 2.6: Block diagram of transceiver of Hybrid SM-SFBC SC-FDMA system.

Here we have 2N; transmit antennas for NV, receive antennas. The received

signal at the r*" antenna after cyclic prefix removal becomes

Z Z Stl ) @ htT1 + Stg @ htTQ ] (m) (263)

t=1 m=1

where h{™ = [A5Y B\

g e

 Rim)

iL(m)

]tr for i = 1,2. After applying an N-DFT, the
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signal becomes

N, K
% A (m) m m N (m) m m
yT - Z Z[Ath R( )Xlgq : + Atrz R( )X7E2 )] +NT (264)
t=1 m=1

where ]Xi::) is a N x N diagonal matrix, i.e., ‘/AXEZL) = dz’ag(DFT(hEZL))) fori=1,2
and N, is noise with variance O'/Q\/TI ~. After demapping, the received signal for

the m'" user at the r** antenna can be expressed as

Nr
Y = S IROTAIROOAY + ROTATROX A N (2.65)
t=1

Let A,Ej?? = R(m)T_/A\i:Z)R(m) for i = 1,2, then AEZL) is M x M diagonal matrix. To

simplify the notation we will ignore the superscript m, then (2.65)

N,

yT = Z[Atﬁxh + A't'I‘QXtQ] +Nr (266)

t=1
Using the odd even expansion, the odd component of (2.66) is

N,

yro - Z[Atrloxtlo + AtT%Xth] + Nro (267)

t=1
and the even component is

N,

Vi =D A Xy, + Ay, X ] N, (2.68)

t=1

where X, and X, represent the odd and even components of Xy, for i = 1, 2.
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Denoting odd and even component of X', as X;, and X, , respectively, we have

tho:Xt()’ Xt%ZXte? the:_xrﬁ7 Xth:X:O (269)

Now, (2.67) and (2.68) become,respectively, as

N,
yT'O - Z[AtT10Xt0 + Atr2oxte] +N’TO (270)
t=1
and
N’r
Vo= [FAuw X+ A, X1 ]+ N, (2.71)
t=1

Combining (2.70) and (2.71), the linear relationship can be written as

Y, N Avry A, X, Nro
yroc = = Z +
y:e =1 A:rge _A;fkrle Xte N:e
Ny
é Z(Atrxtoe) + N”'oe (272)
t=1

Assuming Ay, = Ay, @ =1,2. Ay, becomes the Alamouti’s matrix. Collecting

all the received SC-FDMA symbols in one vector, we get

yloe All A21 cee Aer Xloe Nloe
Ve, A Az ... A X3, No,.
= -
yN’roe A]-N’r AQN’V‘ ttt AN’V‘NT XN’V‘oe NNTOE
2 AX, + N, (2.73)
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where A;; is the frequency-domain channel matrix from the i user to the ;"
receive antenna having an Alamouti like structure. Since V; = 2% N, and assuming
that the feedforward taps matrices have similar structure as channel matrix A,

the output of the equalizer is given as

Xl,oe Tl,l Tl,? e TI,NT yloe
X9 e Yor Yo1 ... Yan, RZW
XN, Yn.1 T2 N,.N, YN, o
lIll 1 \111,2 \Ill,Nr Dloe
Wy Wy ... Wy, D,,,
+ (2.74)
qlNr,l \IINT,Q A \PNT,NT DN”‘OE

where D; _is equal to X; _ in the case of the training mode and the frequency-

7;06 ioe
domain decisions on X;,, in the case of the decision-directed mode, respectively.
Y,; and ¥,;; are the Alamouti like matrices of the feedforward and diagonal

matrices of the feedback weights of the equalizer, respectively, i.e.,

T§ Y2, wl. 0
7.] 7/"] ,L’-]
2% 1% 2%
Y, —Yi; 0 v
Til’j, Tij? \Illlj and \IJZQJ are diagonal matrices. However, the explicit solution
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is not needed for these matrices for the adaptive solution. For the i

have

.XV‘Z‘ Nr
toe = Z(Ti,jyjoe + \Ill ]’D]oe)
X’.ie j=1

(2.76) can be rewritten as

x| i diag(y;,) diag(¥;,) | | Fi;
X, = —diag(Y;,) diag(y;,) | | Fi
|| diea@a) 0 B

0 diag(D},) B,

lI>

Z)’ J+DIB

where F; ; ! and Fi; 2 are vectors containing the diagonal elements of Tl

user, we

(2.76)

(2.77)

and Y?

’Lj’

respectively. Similarly, B;j and B?j are vectors containing the diagonal elements

of \Il1 and P2

1,57

all users, we can write

Xloe 3;‘(7)6 flv.j Djoe
N

=> L+
j=1

XNT oe y‘(j)e TNT 7j Dj

oe
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respectively and F,; = [F;+ F;:]" and B;; = [B}} Bi]". For

(2.78)



(2.78) can be rewritten in compact form as
N,
Xoe =Y [2,F;+ DB (2.79)
j=1
At the k' instant, we have
Koo & Z1F1 + DBy (2.80)

where Zk = [Zl,k ZNT,k]a ’Dk = [’15171g ’IﬁNr,k]a -7:k = [fr{’k j:'}\}mk]T and

B = [B?k Bﬁmk]T Defining the desired response as Dy, = [D{k, D%ﬁk]T
and
(
X,k
, for training mode
D=9 | a1,
X ioe ks for decision-directed mode

\

Now Wy, A and &, are given as in (2.31), (2.22) and (2.47), respectively.

Reduced-Complexity RLS AFD-DFE: Now exploiting the special struc-

ture of SFBC matrix, it can be seen that there is no matrix inversion involved
altogether and hence complexity is significantly reduced. Starting with £ = 0 and

using P} = e Iy, 2m, P is given by

P =X\"e "I e — AN e T e ZY I + X e 202 T Zie T (2]
(2.81)

It can easily be seen that 2, Z% = [|Z, 112+ ...+ |Zx,1?], where szZf{k =
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diag|Y..)? ..., |Y..|]*]. Therefore, | Z.|? has diagonal structure and the RLS
update equation (2.81) does not require any matrix inversion. Now Z(Iy s +
Mtz 2012 = ¢ is (N,)?M x (N,)2M matrix, with each entry @;; =

H
i1

Z (In,ar + )\*16*1212{1)*12']»71 is N,.M x N,M block diagonal matrix. Each

sub-matrix in @, ; is M x M block matrix, which further consists of 4 % X %

diagonal matrices. Therefore, P7 has a similar structure to that of g with sub-
matrix Py ;) = A e My — A e 2y, i) is N, M x N, M block diagonal

matrix. For k£ = 1, we have

P, = NP - 2P ZY Iy + 212, P12 2, P

(2.82)

Using simple algebra, it can be verified that

(I + NP2, P12 = (2.83)

-1
ANT

Ain A . . . .
where A; = [ A A_’j} and each entry A, ; is a diagonal matrix. Therefore, inverse

of A; can be found using block matrix inversion [28] as follows

-1

A B (A— BD-'C)™! —(A—BD™'C)"'BD™!
_ (2.84)

C D —D~'C(A— BD™10)! (D—CA™'B)™!
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where all the sub-matrices A, B, C, D are diagonal, therefore, their inversions are
scalar inversions. For k > 1, P,i has similar structure. Moreover, for Pi same

reasons are valid as for the SM case.

2.5 Performance and Complexity Analysis

In this section, the Minimum Mean Square Error (MMSE), transient, steady-state,
tracking and computational complexity analyses are carried out. In the deriva-
tions, we assume that the data sequences (both transmitted data and detected
data) are independent and identically distributed (i.i.d) with zero mean, and in-
dependent of the noise. Using the optimal MMSE equalizer weights W° found
in [23] and [1], the corresponding i*" frequency bin MMSE for the LE (J;(i)) and
the DFE (Jp()) are derived, respectively, and expressed as

_ Nodo2(MIAG) 0% + No)
T (AP + Nog)?

(i) (2.85)

and
_ Nojo2(MIA()[?02 + No)
(0230 A2 + Nodp)?

Jp(i) (2.86)

2.5.1 Transient Analysis

We start by deriving the transient behavior of the RLS AFD-DFE in a stationary

environment, assuming that the forgetting factor A is unity. The MSE of the RLS
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AFD-DFE at instant k£ + 1 is given by

Ji(i) = B & (8] (2.87)

The a priori estimation output error &11(7) can be expressed as

Ser1(i) = 611 (1) + aria (1) V(1) — Wi (i)] (2.88)

-~

Wi (7)

where X (1) = ap())W°(i) + £(1), ar(i) = [Vk(i) Di(i)] and Wyg(i) =
[Fr(i) Br(i)]T. Substituting (2.88) into (2.87) and then expending terms, we

get

Tn() = Bl ()] +Ear ()W), ()al, (i)

JIp (i)

+Ear (YWi()E0 () + B, (DWW (Dafl, (i) (2:80)

We can express the second expectation in (2.89) as

Eak“(i)vvk(i)VVkH(i)akHH(i) = E Tr{ak+1(i)wk(i>wkH(i)akH+1(i)}
= F TT{Wk( )Wk (¢ )a’k+1( i)ag1(7)}
= Tr E{VNVk( )Wk ( )ak+1( )ak—l-l(i)}

(2.90)
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where Tr{.} is the trace of a matrix. Using the assumption that the product
Wk(z)ka (i) varies at a slower rate than the product aj’ ;(i)aj;1(i), we can

write
EW (i)W, ()l ()ar1 (i) = Tr{EW ()W), () Bal’.,())ax (i)} (2.91)

where Fall (i)ai(i) = R(i) is the input correlation matrix having diagonal struc-
ture as can be seen from (2.24), i.e., R4(i) = diag([|[A(1)]*02 + &0, 02]). Now,

~ ~H
to find EW (i)W, (i), we proceed by writing the normal equations
Wi (i) = O, (i) Ry (7) (2.92)

where Ry(i) = Y% a(i)X;(i). Using the values of ©4(i), Ry(i) and X, (i) in

7j=0""7

(2.92) and ignoring the initial conditions, Wy(i) is given as

k+1

Wili) = =6;1(0) Y _ a7 ()& (0) (2.93)

Therefore, the weight-error correlation matrix is given as

k+1

EW,(i)) W, (i Z a; O, (1)&7(1)€5" () (2.94)
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Using the assumption that a (i), and therefore ©,' (i), is independent of the noise

€2(7), (2.94) can be expressed as a product of two expectations as follows

k+1

EW(OW () = E6;'(0)Y al!()a;()6;" (1) BE0)E6)

= Jp(i) B, (i) (2.95)

Assuming ergodicity, we may express the ensemble-average correlation matrix of
the input of the AFD-DFE as R.4(i) = 1O (i). Hence, the weight-error correlation

matrix reduces to EVVk(z)lA/\//kH(@) = 1Jp(i)R;'(i). Therefore, (2.90) becomes

H

Ean(YWe(i)W (1al, (1) ~ ~Jp()Tr{Ra()RZ (i)} = 2 Jp(i)  (2.96)

k k

The third and fourth expectations in (2.89) are zero because Wy(i) depends
on past values of aj41(7) and &, (7). Also ax41(¢) and &7, (i) are statistically

independent and &}, (7) has zero mean. Therefore,

1 (6) = Jp(i) {1 + %] (2.97)

To compare the RLS AFD-DFE and LMS AFD-DFE, the MSE of LMS AFE-DFE

can be shown to be [29]
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where r; is the j" eigenvalue of the correlation matrix R4(i) and v(k + 1) =
wo(k+ 1), 01 (k+ 1)) = (I — pRA(>1))v (k) — p AL (1)Ex11 (7). The evolution of
Ji.1(7) with step size p is governed by the exponential quantity (1 — pr;)?*. This
clearly shows that the RLS AFD-DFE converges faster than the LMS AFD-DFE.

The simulation results support this claim.

2.5.2 Steady-State Analysis

To begin with, the update recursion (2.27) for the i* frequency bin can be written

as

Wit1(i) = Wi (i) + P (Dagy; (1) () (2.99)

In terms of the weight-error vector Vvk(z), we can write (2.99) as
Wi (i) = Wili) = P (D)8 (64 (1) (2.100)

Multiplying (2.100) by as.1(7) from the left, we may write it in terms of a priori

estimation error £}, (i) and a posteriori estimation error & _ (i) as follows

et (Wit (1) = @t (DW(0) = @i (Pt (01 () §ea () (2:101)

Z+1(i) £§+1(i) lags1 ()P
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where || . ||p stands for the squared-weighted Euclidean norm of a vector. Com-

bining (2.100) and (2.101) to eliminate &1, we get

Wi (i) + Pria(i)aghy (i) (| arn (i) |p)] €1 (G) = Wi(i) + Pra(iafl, (i)

v~

ap+1(9)

X (|| @area(i) 1p) €L (4)

(2.102)

where (.)7 represents the pseudo-inverse. Now, equating the energies (squared
Euclidean norms) of both sides of (2.102) with [Py, 1(7)] ™! as a weighting matrix,

the energy conservation relation becomes

| Wiesr() 1+ s (1€ () =1 Wili) [ +aen (L, 6P (2.103)

Taking the expectation of (2.103) and using the steady-state approximations,
EPii(i) = (1 = VR = P, EWii(i) = EWL(i) and E | Wia(i) |%.=

E | Wh(i) 1%, we arrive at

B2 ()€1 (1)) = B (1), (D)7, & — oo (2.104)

Substituting &7, (i) from (2.101) into (2.104), we get

Bt ()61 (1)) = Ears1 (0)[€541 (1) = | @rsa(d) lp Eean (D)%, k — 00 (2.105)
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which upon expansion and simplification reduces to
E || ag41() [lp [x1(0) ] = 2Re(EE, (1)6k11 (i), b — oo (2.106)
As 1 (1) = €241(4) + &2 4(7), (2.106) becomes

Ip()E || a1 (i) lp +E [| arsr (i) e €542 (0" = 2 EI€ (), k — oo (2.107)
—_——

Jeass (Z)

where J,.5(7) is the Excess Mean Square Error (EMSE). Assume that at steady-
state, || ar+1(7) ||p is independent of &, (7). This condition allows us to separate
the expectation E || ar11(2) [|p |1 (2)]* into a product of two expectations as

follows

E || ar1(i) llp 160 (D = E || aw (i) [lp EI&E ()] (2.108)
If we replace Pj.1(i) by its assumed mean value, we obtain the approximation
E | api1(i) |lp~ Tr{RP} =2(1 - \) (2.109)

Substituting into (2.107), we get

Jp()(1 =)

Jexss@.) = \

(2.110)
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Therefore, the MSE at the steady-state Jys(4) is given as

(2.111)

2.5.3 Tracking Analysis

For time-varying channels, we will adopt a first-order random walk model for the
variation in the tap weight vector Wj. The model assumes that W} undergoes

random variations of the form

a1 (i) = W(i) + qpp1(7) (2.112)

where q, (i) = [£,(0)qk (i), f.(1)qg2(i)]T and f(4) is the i*" row of partial (M x L)
DFT matrix. qf (i) and g2(i) are the time-domain random column vectors of
length L with zero mean and correlation matrix Q, = (1 — R*(1))I; [5]. As-
suming qi (i) and g? (i) are independent and note that f, (i)f,(i)? = L/M, the
covariance matrix of g (i),7 =1,..., M, is Q = £(1 — R*(1)) 1.

Now, defining W (i) = Wi (i) — Wi(i) and invoking the energy-conservation

relation leads to

W31 (6) = Wi (i) lp+ +ara (g O = | Wi (0) = Wi(i) [

T (), OF  (2.113)

where & (1) = app1(0)[Wii1(1) — Wi (1)) and & (i) = apr (1) Wiy (4) —
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Wi (i)]. Moreover, the random walk model (2.112) allows us to relate E ||

0 1(1) = Wi(i) |51 to E | Wy(i) |-, as follows

E | W (i) = Wi(i) 5o = E || W) + @i (i) — Wi(0) |5
= E | Wi(i) + @1 () |5

= E WD) 31 +E || @1 () [[p-1(2.114)

where the last step follows from the fact that Wy (4) is independent of g, (¢) and

uses steady-state assumption. Next, taking expectation of (2.113), we get

E || Wit (i) |300 +Ear ()€, = E || Wi(i) |30 +E || @i () |5

+Eay1(8)I67 4 ()] (2.115)

Moreover, g, () is independent of Pj1(7), so that

Tr{QR}

(2.116)

Bl @1 (0) Ip-r= Tr B{@a ()P qens (0} = Tr{QP ™} = 7=

Solving (2.115) as done in steady-state analysis and using (2.116), it can be shown

that in time-varying environment, the MSE of the RLS AFD-DFE is given as

2(1 = N)Jprp(i) + ooy Tr{QR}

Jss(i) = JD(Z)_I_ 2—2(1—)\)
_ Jpli) | Tr{QR}
- 1), TriaR) (2.117)
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2.5.4 Computational Complexity

In this section, the computational complexity of the AFD-DFE for SISO SC-
FDMA system is compared with that of the MMSE DFE [1] with perfect channel
knowledge. The computational complexity will be evaluated in terms of the total
number of real multiplications required to compute the feedforward and feedback

filter coefficients per block (one SC-FDMA block) for complex-valued data.

e First, the matrices P}, and P}, as given in (2.29) and (2.30), respectively,
require 13M real multiplications each, therefore, Py, amounts to 26 M real

multiplications.
e Second, the term ’PkHAkHHE k+1 10 (2.27) requires 16 M real multiplications.

e Finally, 8M real multiplications are required for computing the error term

Err1 in (2.23).

Therefore, the total real multiplications count for the AFD-DFE is 50M. For the
MMSE DFE 20(M + 1)N; + 2N; 4+ 12M real multiplications are needed, where
N, denotes the number of iterations for each block and N; > 1 (these iterations
are needed to solve the causality problem in (2.16) [23]). Compared with the
AFD-LE, the number of computations required to calculate the coefficients of the
AFD-DFE is doubled due to the feedback filter. Moreover, the AFD-LE does not
require iterative procedure.

Our AFD-DFE is computationally efficient in the MIMO case as well, since

the MIMO MMSE DFE requires matrix inversion [30]. The required number of
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Table 2.2: Computational complexity of the AFD-DFE and MMSE DFE

Structure Real Multiplications
SISO AFD-DFE 50M
MMSE DFE [1] 20(M + 1)N; + 2N, + 12M
(with known channel)
AFD-DFE 96NPM + 26NZM + 2N, M
MIMO MMSE DFE SMN? — (20M,)/3 — 6N, N2
[30](with known channel) | +(62N;N?)/3 + (4N;N})/3
+2N? + 2N? + (20N,N,) /3
+(20MN,N,) /3 — 6M N, N2+
(86 M N,N?)/3 + (AMN,N})/3

x10°

-
IS

—#— MIMO MMSE DFE
—©— MIMO AFD-DFE

= =
o N
T T

©
T

No. of real Multiplications

No. of antennas (Nl)

Figure 2.7: Computational complexity of MMSE DFE [1] and proposed AFD-DFE
versus the number of antennas for M = 16.

real multiplications for the MIMO AFD-DFE (assuming equal number of transmit

and receive antennas) is detailed as follows.

° P,f;ﬂ and Pi+1 requires (IN2M +5N2M + N; M) real multiplications each,

therefore Py requires (18 NP M + 10N2M + 2N, M) real multiplications.
e The error €, requires SN2M real multiplications.
e Additional (8N?M +8N?2M) real multiplications are needed to calculate the

equalizer weights Wy 1.
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In summary, the MIMO AFE-DFE requires (26 N2 M + 26 N2 M + 2N; M) real
multiplications. In case of the MIMO MMSE DFE, we estimate the number of
multiplications required for matrix inversion, using the approach given in [31]. Fi-
nally, Table 2.2 summarizes the real multiplications of the AFD-DFE and MMSE
DFE for complex valued data. It is clear from Fig. 2.7 that the computational
complexity of the AFD-DFE is less than that of the MMSE DFE for N; = 4
(N; > 4 does not give any significant improvement in the performance [23]). Note
here that we are assuming that the channel is known in case of the MMSE DFE
but in reality it needs to be estimated which will increase the complexity. Fur-
thermore, pilots will be needed to estimate the channel which will increase the

overhead.

2.6 Simulation Results

In this section, the theoretical findings are validated. Similar to an LTE system,
the carrier frequency and bandwidth are set to 2 GHz and 5 MHz, respectively.
Other simulation parameters used are M = 16 and N = 512, therefore, the max-
imum number of users that the system can support is K = 32. The modulation
scheme used is Quadrature Phase shift Keying (QPSK) and the channel is fre-
quency selective with 6-paths and each path fades independently, according to the
Rayleigh distribution. For Figs. 2.8 to 2.11, the user velocity v is taken as 3km /h.

Fig. 2.8 assumes interleaved mapping with no CFO and the signal-to-noise

ratio (SNR) is set to 20dB. As can be seen in this figure, the AFD-DFE out-
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performs the AFD-LE in this scenario where more than 18dB gain in MSE is
achieved. More importantly, both equalizers have the same convergence speed.
The computational complexity of the AFD-DFE is slightly higher than that of the
AFD-LE but when compared to the performance obtained through the use of the
AFD-DFE, this additional complexity at the base station is well justified. Also,
the figure shows that the performance of the RLS-based AFD-DFE is better as
compared to that of the LMS-based AFD-DFE in terms of convergence speed and
MSE. Only 15 iterations are needed for the RLS to converge; hence, the result-
ing complexity and latency increase due to adaptation are not significant. This
figure also depicts the theoretical curves for the three algorithms. Close agree-
ment between the theoretical findings and simulations is observed. Note that the

theoretical curve of AFD-DFE assumes perfect decisions.

Simulation
— — — — Theory

1
\J

AFD-DFE with LMS

AFD-LE with RLS
AFD-DFE with RLS

-15R

~ o

.
20 40 60 80 100
iteration

Figure 2.8: Learning curves of LE and DFE in SCFDMA system.

The Bit Error Rate (BER) performance of the AFD-DFE with RLS is shown
in Fig. 2.9. It is clear that the AFD-DFE with RLS outperforms the LMS-based

AFD-DFE and LE with known channel in terms of BER. Note here that minimal
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error propagation was observed in the AFD-DFE at low SNR unlike the MMSE-
DFE of [1] and [23] with known channel, which was due to the poor estimation
of the correlation between the transmitted data and the decisions. Furthermore,
the reliability of the proposed algorithm is increased by a judicious choice of the
initial value of the autocorrelation matrix for both the feedforward and feedback
sections. This gives the proposed algorithm similar performance to that of the

linear equalizer at low SNR’s. For the rest of this chapter we have used the

RLS-based AFD-DFE.

BER

) —O— Interleaved AFD-DFE with RLS, Q=0
—#— Interleaved AFD-DFE with LMS, Q=0

10'6 Interleaved LE with known channel, Q=0

—e— Interleaved MMSE DFE with known channel, Q=0

0 5 10 15 20
SNR(dB)

Figure 2.9: Comparison of RLS AFD-DFE, LMS AFD-DFE, LE and MMSE
DFE [1]

Next, two mapping techniques, as defined by (2.1), are compared and the
results are reported in Fig. 2.10 which shows that the performance of interleaved
mapping is better than the localized mapping. The reason is that the performance
of the localized mapping is sub-band dependent. If a user is assigned a sub-band
which is near a deep null of the channel then the performance degrades.

CFO, €, is very harmful if there is a slip in frequency and, therefore, can de-
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BER

—#— Localized AFD-DFE, Q=0
10| == Localized AFD-DFE, Q=0.2

—O— Interleaved AFD-DFE, Q=0

|| =¥ Interleaved AFD-DFE, Q=0.2

Interleaved LE with known channel, Q=0.2

0 5 10 15 20
SNR(dB)

Figure 2.10: System’s performance under CFO’s effect with Single user for two
mapping techniques.

grade the system’s performance significantly. Fig. 2.10 depicts the performance
of the system under two different CFO’s, {2 = 0 and 2 = 0.2 for a single user.
Localized mapping is more sensitive to CFO in the single user case due to in-
terference from adjacent carriers, while there is no significant performance loss
in case of interleaved mapping in worst case (2 = 0.2). Moreover, clear gain in
the performance of AFD-DFE over LE (with perfectly known channel) in case
of 2 = 0.2, can be seen. In the ensuing simulations, the interleaved mapping
technique is used as it achieves acceptable performance which does not depend on
sub-band assigned to the user.

The effect of the CFO on the performance of the SC-FDMA system is also
investigated for three users. The same parameters used in the aforementioned
scenario are used here. For this case, the CFO’s of user 1, user 2 and user 3 is
denoted by 1, €25 and (23, respectively. As can be seen from Fig. 2.11, there is
no significant performance loss in the worst case i.e., ; = 0.1, =0.2,Q3 = 0.3

as compared to the best case i.e., ; = Q9 = Q23 = 0, which shows the robustness
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of our AFD-DFE to CFO. The reason of good performance of the AFD-DFE is
explained next. Under CFO, the frequency-domain channel matrix is no longer
diagonal. However, the three main diagonals contain most of the channel energy.
Therefore, most of the interference will occur only between the adjacent sub-
carriers. Since, there are maximum of three users only in our simulations, these
users are not assigned adjacent carriers in the case of distributed sub-carriers
allocation. Hence, the effect of CFO is minimal. However, as the number of
users becomes large, system operating under full load condition, CFO will be
unavoidable as there will be no freedom in assigning non-adjacent sub-carriers to

the users.

—o—Q,=0,7Q,0
100 0,70,70,=02
—4—0,70.1,0,702,0,=03

0 5 10 15 20
SNR(dB)

Figure 2.11: System’s performance under CFO’s effect with three users.

In addition, the effect of the user velocity (v) on the system’s performance is
shown in Fig. 2.12 and 2.13 for a single user and three users, respectively. Perfect
transmitter/ receiver oscillator’s synchronization is assumed when evaluating the
performance under Doppler effect. Three velocities are chosen for comparison i.e.
low (3 km/h), medium (30 km/h) and high (300 km/h). For the case of three
users, different velocities are assigned to the users and these are vy, vy, and v3
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for user 1, user 2 and user 3, respectively. As can be observed from these two
figures, our proposed RLS AFD-DFE is robust to the Doppler Effect; however, at
very high SNR the system’s performance deteriorates as the Doppler frequency
increases due to interference from adjacent sub-carriers. Fig. 2.14 depicts the
theoretical and simulated MSE for different user’s velocities. Slight degradation
is observed for large values of velocity. This performance degradation due to

Doppler can be mitigated using SFBC a shown next.

10°

—6— v=3km/h
- v=30km/h
10 ¢ —o— v=300km/h |5

107}

10°F

BER

107

10°F

10°F

107

0 5 10 15 20
SNR(dB)

Figure 2.12: Effect of user’s velocity on system’s performance with single user.

10

107
107}

107

BER

10°F

1050 —— v1:v2:v3:3km/h
—— v1:v2:v3:300Im/h
1075 L v1:3km/h,v2:30km/h,v3:300kmlh

10"

0 5 10 15 20
SNR(dB)

Figure 2.13: Effect of user’s velocity on system’s performance with three users.

During the simulations of the SFBC SC-FDMA system, a 2-slot interleave
mapping is used where two consecutive sub-carriers are assigned to one user and
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Figure 2.14: Theoretical and simulated MSE of RLS AFD-DFE as a function of
user’s velocity.

this is to satisfy condition (2.42) with the assumption that the channel does not
change over two consecutive sub-carriers. SFBC is used with single user and the
effect of the users’s velocity on the system’s performance is depicted in Fig. 2.15.
In MIMO scenarios, independent 6-path Rayleigh fading channels are used for
each transmit/receive antenna pair. Fig. 2.15 shows that great improvement in
performance is obtained through the use of SFBC with 2-slot interleaving.
Finally, the performance of a two-receive antenna scenario when three users

share the same frequency band and time slot with three other different users, is

10°

T T T
——&— 2-slot interleaving,v=3km/h
—— 2-slot interleaving,v=30km/h

—%— 2-slot interleaving v=300km/h| |
1-slot interleaving,v=3km/h

107

10°F

BER

10 ¢

107

10°

0 2 4 6 8 10 12
SNR(dB)

Figure 2.15: Effect of user’s velocity on SFBC SC-FDMA system.
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Figure 2.16: Effect of user’s velocity on hybrid SM-SFBC SC-FDMA with two
receive antennas and six users.

evaluated and this is reported in Fig. 2.16. All users are assumed to be moving
with same velocities v. From the figure, it is clear that the AFD-DFE can separate

co-channel users without sacrificing performance.

2.7 Conclusion

In this work, an adaptive frequency-domain DFE is proposed for the first time
for SC-FDMA, SFBC SC-FDMA, SM SC-FDMA and hybrid SM-SFBC SFBC
SC-FDMA systems with both feedforward and feedback filters operating in the
frequency-domain. The equalizer operates without channel estimation at the re-
ceiver. The updating scheme used for the frequency-domain DFE is the RLS
algorithm. The proposed algorithm is shown to have a low complexity and this
is due to the special structure of the matrices involved in computing the weights
of the feedforward ad feedback filters in the frequency-domain. The AFD-DFE

is also more computationally efficient than non-adaptive frequency-domain DFE.

64



Simulation results for a time varying frequency-selective fading channel under the
effect of high Doppler frequency and CFO on the system’s performance are con-
ducted and demonstrate the significant performance gain and robustness of the

proposed algorithm.
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CHAPTER 3

ADAPTIVE
FREQUENCY-DOMAIN
DECISION FEEDBACK
EQUALIZATION USING

CONSTRAINT-BASED RLS

FOR UPLINK SC-FDMA

The Decision Feedback equalizer is well known to outperform a Linear Equal-
izer (LE) in highly frequency-selective fading channels. In this work, we develop
a constraint-based block Recursive Least Squares (CRLS) for an Adaptive Fre-

quency Domain Decision Feedback Equalizer (AFD-DFE) when used in an up-
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link Single Carrier Frequency Division Multiple Access (SC-FDMA) systems. For
the AFD-DFE, both the feedforward and feedback filters are implemented in the
frequency-domain, therefore, the complexity of the constraint-based block RLS
can be reduced substantially when compared to its time-domain counterpart by
exploiting the matrix structure in the frequency-domain. The performance of the
CRLS algorithm is better than that of the RLS with no significant increase in
the computational complexity. Moreover, we extend our design to the Space-
Frequency Block code (SFBC) SC-FDMA system. We also show that the AFD-
DFE not only enjoys a significant reduction in computational complexity when
compared to the frequency-domain non-adaptive optimum MMSE DFE but its
performance is also better than practical MMSE DFE (the one with error deci-
sions) and close to ideal MMSE DFE (the one with correct decisions). Simulation
results are carried out to demonstrate the robustness of our proposed algorithm
to high Doppler. To mitigate Inter-Carrier Interference (ICI) due to large Car-
rier Frequency Offset (CFO), we have designed 3-tap per sub-carrier AFD-DFE
by exploiting the banded and sparse structure of the channel, for Single-Input
Single-Output (SISO) and SFBC SC-FDMA systems and show that it has an ex-
cellent performance as compared to 1-tap AFD-DFE and has a low computational
complexity . Finally, it is shown that we can reduce the training symbols in each
SC-FDMA block that are transmitted in the training phase with no significant
performance degradation. To further reduce the overhead blind AFD-DFE is also

introduced.
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3.1 Introduction

Constraint-based algorithms help in achieving the better performance by putting
some condition on the behavior of the algorithm. There are several examples of the
constraint-based algorithms like normalized LMS [32], noise-constraint LMS [33],
lo norm constraint LMS [34] and noise-constraint diffusion LMS [35], just to name
a few. In time-domain DFE, the previous decisions are fed back but not the
present one. To ensure that the present symbol is not canceled out, the feedback
filter coefficient corresponding to that symbol is set to zero. Here, the frequency-
domain version of DFE is used, therefore, to make sure that the present symbol is
not canceled out in the feedback loop, the equalizer is constrained to follow this
action. Thus achieving performance improvement as compared to the unconstraint
AFD-DFE.

To improve reliability at the user terminal, a transmit diversity is employed
in LTE-Advanced (LTE-A) [36]. A popular two transmit diversity technique was
proposed by Alamouti [13], which has linear Maximum Likelihood (ML) decoding
complexity with full diversity gain. The Alamouti’s scheme is a special case of
Space Time Block Codes (STBC) [14]. Alamouti’s STBC can not be applied to
SC-FDMA system, since in LTE the frames contain odd number of SC-FDMA
symbols but for STBC this number should be even. Moreover, in STBC it is
assumed that the channel remains constant for two SC-FDMA symbols which
is not valid in the case of fast varying channels and consequently, performance

degradation will result. An alternative to STBC is Space-Frequency Block Codes
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(SFBC) [15]. In SFBC, the number of symbols in each frame is not necessary to be
even but when applied to a SC-FDMA system it effects the low PAPR property.
In [17] and [18], new schemes to deal with the aforementioned issues are proposed.
However, their performances degrade at high Signal-to-Noise Ratio (SNR). In [37],
an embedded SFBC technique is proposed which preserves low PAPR property
of SC-FDMA as well as Alamouti’s structure in case of Inter-Carrier Interference
(ICT).

In this work, we propose an AFD-DFE (1-tap per subcarrier) where both
the feedforward and feedback filters operate in the frequency-domain and use a
constraint-based RLS for adaptation. The block RLS algorithm [5] is used as it
is known to provide fast convergence/ tracking when compared to Least Mean
Square (LMS) algorithm. Generally the complexity of the block RLS is high due
to matrix inversion operation involved but when used in the frequency-domain,
the inversion operation is simplified due to special structure of the matrices and,
hence, a reduction in the complexity. The design is then extended to SFBC SC-
FDMA and 3-tap AFD-DFE. In previous works, 1-tap per subcarrier frequency
domain equalizer is used, which becomes highly suboptimal in presence of ICI.
Therefore, we design 3-tap per subcarrier AFD-DFE by assuming banded and
sparse structure of the channel matrix. To further improve the performance of
the AFD-DFE, a 3-tap AFD-DFE is combined with the SFBC technique. It is
also shown that the 3-tap AFD-DFE also exhibits low complexity, thanks again to

the structure of the matrices. The AFD-DFE is complex when compared to the
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AFD-LE but as we are working in uplink so the complex equalizer will be required
at the Base Station (BS), where the power limitations are more relaxed than
at the user terminals. Our designed constraint-based AFD-DFE is general and
does not depend on mapping technique used. The complexity of the constraint-
based AFD-DFE is almost similar to that of the AFD-DFE with standard RLS
(without constraint) and performance wise the former is much better. We also
demonstrated the robustness of our designed AFD-DFE to ICI due to high Doppler
and showed that in case of large Carrier Frequency Offset (CFO), the 3-tap AFD-
DFE performance is better. Furthermore, it is shown that in order to reduce the
overhead in the training phase, we can use some symbols in SC-FDMA block for
training and the rest for data without compromise of performance.

Adaptive equalization algorithms utilize a initial training sequence. However
to save resources or when sending the training symbols are not possible, it is desir-
able to use an equalizer without the aid of a training sequence. Such an equalizer
which does not utilize a training mode is known as blind equalizer. Designing
an efficient and fully blind DFE remains a challenging task due to the decision
errors in the feedback loop. Note that here we are using block DFE, which has
certain advantages to be used as blind equalizer. First, error propagation is lim-
ited to one block. Therefore, by keeping the block size small, error propagation
can be minimized. Second, in block DFE we have a problem of causality, which is
solved by using an iterative procedure discussed in chapter 2. This iterative proce-

dure gives best decisions as compared to symbol-by-symbol DFE thus minimizing
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the error propagation. These two facts are utilized to devise a Blind AFD-DFE
(BAFD-DFE).

In summary, the main contributions of this chapter are

e Adaptive constraint RLS-based implementation of the AFD-DFE for SISO

SC-FDMA.
e Extension to the SFBC scenarios.
e Reduced-Complexity implementation by exploiting matrix structure.

e Demonstration of performance superiority to LE, practical MMSE-DFE and

LMS-based approaches.
e Reduced Complexity compared to the channel-estimate-based approach.
e Demonstrated robustness to Doppler.

e Extension to 3-tap AFD-DFE for SISO and SFBC cases to combat ICI.

e Reduction of overhead by using less training symbols in training phase and

introduction of BAFD-DFE.

3.2 Recursive Least Squares with constraint

(CRLS)

Lets denote the feedforward and feedback filter coefficients in the frequency-

domain as F and B, respectively. Using the system model described in Section
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(2.2), the output of the equalizer in the frequency-domain at instant & is given by

.Xv'k =Z.Fr_1+Di.B._y (31)

The coefficients of the feedforward and feedback filter are F(0), F(1), ... F(M —
1) and B(0),B(1), ... B(M — 1), respectively. The explicit knowledge of the
filter coefficients is not needed for the development of the adaptive solution. The

decision matrix D is defined as

diag(Fyay), for training
D, =

diag(Fy&y), for decision-directed

Denoting W), = [;ﬂ We express (3.1) as

X.=[Z2, DIWi (3.2)

Hence, the output of the equalizer in the time-domain is &, = F ﬁ/\? k. Here we
will use a constraint to formulate a constraint-based least squares solution for
DFE taps to be used in SC-FDMA system. This constraint is used to cancel out
the pre and post cursers but not the desired component. To explain this, suppose
the feedback filter weights in time-domain are b, by, ..., by. Since by corresponds
to the present symbol, which is not fed back to avoid self cancelation of the
present symbol, therefore, by = 0. In frequency domain, this can be translated

to SM 1 B(i) = 0. In the ensuing two methods are used to formulate the CRLS
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algorithm.

3.2.1 Casel

In this case, the frequency-domain CRLS is developed from least squares problem.
Assume we have available k& + 1 realizations of the matrices {Z,D}. We collect

the desired data and received data matrices as

Zy Dy

zZ2, D,

and

D

where Dy, = [D(0), D(1), ..., De(M — 1)]7 is a vector containing the diagonal
elements of D;,. First we will consider a combined cost function of the feedforward
and feedback filters to be minimized. The constraint-based least squares problem

for this case is given as

M—-1

s ) , N
I%HH’D IIWI||* subject to ;B(@) 0 (3.5)
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where the notation ||.||> denotes the squared Euclidean norm of its argument. To
solve this optimization problem, we use the Lagrange multiplier method for the
general case of complex valued data. According to this method, the objective
function for the problem at hand consists of two terms, given on the right side of
the equation
M-1
J = ||D —OW|* + 2Re{a” > B(i)} (3.6)
i=0
where « is complex valued Lagrange multiplier and asterisk denotes complex con-
jugation. As the square of Euclidean norm ||D — X||? is real-valued function.
Therefore, real part operator, Re{.}, is applied to the second term to ensure that

the contribution to the objective function is likewise real-valued. The objective

function, J, is quadratic, as shown by expanding (3.6) into

J=D"'D-D 1IW - W'D+ WI'TIW + 2Re{a"GW}  (3.7)

To find the least squares solution differentiate the objective function with respect
to weight vector W. Then follow the rule of differentiating a real-valued function

with respect to complex-valued vector [29], we get

0J

o mH HyyH ¥
s = D T+ W'+ oG (3.8)
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where G = [01xy  1ixas] and 01y and 114y, are all zero and all ones row vector

of size M, respectively. The final solution of (3.8) becomes

w = (1) Y11 D - g) (3.9)

where G = aG*. To update the least square solution (3.9) recursively, we proceed

as follows: The time updated least squares problem is given as

M-1
min | Dys1 — Iy W subject to Z; B(i) =0 (3.10)

which has the following solution
Wi = (I The) (I Dry — G (3.11)

To develop update scheme for the least squares solution (3.11) define Il ; and

D11, respectively, as

11,
I, = (3.12)
Zi1 Drp
and
. D,
DBpyr — (3.13)
Dy
Note that
O I = T + (240 D] (261 Dl (3.14)
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and

H1€1+115k+1 —Gp1 = HkH'Dk —Gi + (21 D) Dy — ap i GT o (3.15)

Lets introduce the matrix

Py = (TG M) ™ (3.16)

Then (3.11) can be written in more compact form as

Wi = Prp (M Dii — Ginr) (3.17)

Putting (3.14) in (3.16), we get

P, = (I +[Z0 Dea)?[Zesr Dra))™

= (P,'+[Zi1 Dint)"[Zes1 D)) (3.18)

and

P, =P +[Zvn Den)"[Zen1 Diyl] (3.19)

Using the matrix inversion identity [5], it can easily be shown that

Py =Py — P21 Dia]"BlZ1i1 Diya]Pu (3.20)
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where ,3 = (IM + [Zk+1 Dk+1]Pk[Zk+1 Dk+1]H)_1 Putting (320) and (315)

in (3.17), we get

Wi = (Pr—PiZi1 Din]"BZ1i1 D) Pr) (IE D, — G,
+H 2k Dk+1]HDk+1 - OékGT)

= PUL'D. — PGy — (P21 Dint]"BIZ11 Dis)
Wi,
x Py(I{ Dy, — Gi) +Pi[ 2111 Dia]”
V‘\;k
(IM - 5[Zk+1 Dk+1]Pk[Zk+1 Dk+1]H) Dji1 — Pk+1(04k+1GT)

(3.21)

After rearranging, we get

Wit = Wit (PilZii1 Dia]”B) (Disr — (21 iyt )W)
—Pk+1(04k+1GT)
= Wi+ Pir1[Zii1 D] (Dir — [Ze1 Dei)Wh)

—Pj 1 (a1 GT) (3.22)

it can easily be prove that

Pi[Zr1 D)™ = (PilZryn Diria]"B) (3.23)

7



Finally,

Wii1 = Wi+ Pri([Zri1 D) (Disr — [Zk41 Dirt)Wh) — 1 GT)
(3.24)

If we use the exponentially-weighted RLS, then (3.20) becomes
Piyy =N [Py = X'P[Z11 Dia]"B[Zri1 Diaa] Pi (3.25)

where 0 < A < 1. The multiplier a1 is updated according to stochastic gradient

method as

OJ\"
Opy1 = O + M (@) (326)
k

Differentiating (3.6) with respect to a, we get
aJ M-1 *
- (202 B<z>> (3.27)

Therefore, (3.26), becomes

M-1

Q1 = g+ Y Bili) (3.28)
=0
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3.2.2 Case 2

In this case, we motivate the RLS algorithm as simply a stochastic gradient

method. The Mean Square Error (MSE) at the i frequency bin is given as
MSE(i) = E[|D(i) — X (i)|?] (3.29)

where F[.] stands for the expectation operation. Using the constraint the cost

function becomes
M—1
= E[|D(i) — X(i]’] + 2Re[a* ) _ B(i (3.30)
=0

Expanding the cost function and ignoring the expectation as we are using stochas-

tic gradient method, we get

Jo= D(0)D(i) = D*()Y()F (i) = D*(0)D()B(i) — F*(1)V* (1) D(7)
= B(0)D*()D(@) + F (@)Y ()Y (@) F (@) + F ()Y () D(0)B(7)

+ B*(i)D*())Y(i)F (i) + B*(i)D*(i)D(i)B(i) + 2Re[* Z B(i)] (3.31)
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Minimizing (3.31) for the feedforward filter and the feedback filter separately,

results in the following updates at instant (k + 1)

Feali) = 7= ikald (5755,
= Fl0) + pha@VE O Den ) ~ D DF(D) + Dena DB

(3.32)

and

Bl = B0 = i) (557 ).
= Bu) + iDL O Der(9) ~ Dha(F0) + Dess DB}

12 (Do (3.33)

where p(i);,, and p(i);, are the time varying step sizes, given as

2 _ Hk+1
" e + E[D*(3)D(i))]

1 Hk+1
LT e E[Y(i)Y(i)]

p(t) (i)

Next, we replace E[Y(i)*YV(i)] and E[D*(i)D(i)] by their estimates, which for RLS

update, are choosen as the exponentially-weighted sample average

k+1
BV = gy AR 0) (3.34)
o
BIDGDO)] = gy 2 X D50 Dy(0) (3.35)
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for some scalar 0 < A < 1. Equations (3.34) and (3.35) amount to averaging all
past regressors up to time k+1. Now choosing the step size as pp1 = 1/(k+2) and
the regularization factor as €11 = A+2¢/(k+2), and collecting all the coefficients

in one vector W, (3.32) and (3.33) become

k+1 -1
Wit = Wi+ [ XDy + Y N ATA L (A £t — a1l GT) (3.36)

j=0

where Ay and &, are given as

Z, 0
A = (3.37)
0 D,
and
D, — X,
Ep = (3.38)
D, — X,

It is not convenient to find the inverse of the matrix in (3.36) as it requires to
combine all the previous and present data to form the matrix. Therefore, we
define

k+1
Oks1 = (A’”%IQM + ) A AY Aj) (3.39)

J=0

which satisfies the following recursion

Oyr1 = Oy + AkH+1Ak+1, OO0 = elayy (340)
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Let Pj11 = O;, and applying the matrix inversion lemma [5] gives

Pk—l—l = >\_1[’Pk - /\_I’PkAkHJrl X (I2M + )\_lAk+1‘PkA£+1)_1Ak+1’Pk] (341)

where A is the forgetting factor chosen close to 1. Finally the RLS update is given
as

Wi = Wi+ Proi (A1 €k — 1 GT) (3.42)

with &}, define as in (3.38). Initially Wy = 0 and Py = € 'I5y;. ay is updated
according to (3.28).

As can be seen that Py in case 2 gives a much better estimate of input covari-
ance matrix for each filter as it takes in to account the input of the feedforward
filter and feedback filter separately, therefore, its performance is better than case
1. Also the decision error does not effect the feedforward filter in case 2 unlike case
1. This claim is proved later using simulation. The computational complexity of
case 2 is also low as it does not require matrix inversion unlike case 1. Due to

these two reasons, later case will be only considered in the study.

3.2.3 Reduced-Complexity CRLS Update

Due to the special structure in Py, it turns out that no matrix inversion is
required for computing Py resulting in a significant reduction in computational

complexity. Following the same procedure as done in Section (2.3.2), it can be
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shown that the final reduced-complexity CRLS update has the form

Wi =W + diag([P,lgH Pz+1]>(AkH+1gk+1 - akHGT) (3-43)

and constraint is updated using (3.28). The update procedure for AFD-DFE with

CRLS is shown in Table 3.1.

3.2.4 Reduced-training AFD-DFE

Instead of using M training symbols in one SC-FDMA block, the training overhead
can be reduced by using T training and M — T modulated symbols. Now by
introducing the iterative procedure in training mode we can interpolate the rest
of the weights. The update procedure in reduced-training mode is shown in Table
3.1. For BAFD-DFE, the algorithm is used in decision-directed mode by utilizing

stop and go blind equalization algorithm [38].

3.3 Carrier Frequency Offset (CFO) in SC-

FDMA

In the above description, perfect frequency synchronization has been assumed
between the transmitter and the receiver. However, CFO arises in practical SC-
FDMA systems due to transmitter/receiver frequency oscillators’ misalignment
and causes interference (energy leakage) from neighboring sub-carriers.

Let the mt" user’s CFO normalized by the sub-carrier spacing, be denoted by
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Table 3.1: Summary of the adaptation algorithm for AFD-DFE
Initialization:

Initialize the algorithm by setting
W, =0
ag =20
A is close to one

6;_—1IM 0
0 EEIIM

and Po =
For each instant of time, £=0,1,2,...
In training mode:
(1) Update g1 as
Qi1 =+ 1Yy Bil(i)
(2) Update P, and P}, via
Pl = \[PL - AL 24| + A P P
P2, = A [P} = A P& 2 4+ A PR P
(3) Update the equalizer weights Wy recursively as
Wi = Wi+ diag([Pyy, Pi) (AL Er — apnGT)
In decision-directed mode:
(1) Tterate on Xpyy = Zi1 Fr + Dis1 By
(2) Update a1 as
Qi1 =+ 1Y Bili)
(3) Update P;_, and Pj_, via
Pl = AP AL 20+ A PP
P2, = A\ [P} — AP @[+ A PR P
(4) Update the equalizer weights Wy recursively as
Wi = Wi+ diag([Pyy; Pi) (AL Er — apnGT)

Q,, where 0 < Q,, < 0.5. Now, define a diagonal matrix to characterize the effect
of CFO as C™ = diag([e/?m >IN i2mQmx1/N _ei2mQmx(N=1)/NT) " this case,

the pre-DFT received signal can be expressed as
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Table 3.2: Summary of the reduced-training adaptation algorithm for AFD-DFE
For each instant of time, k=0,1,2,...

In training mode:
(1) Tterate on Xpyq = Zp1Fr + Dipi Bi with SC-FDMA block
containing 7" training symbols and M — T" modulated data symbols
(2) Update a1 as

it = g+ p Y iny " Bl(i)
(3) Update Py, and Pj_; via

Pl = A\ [PL— A PL( 2|7+ A P} P

Pl = VP, AP [ 4 AP P
(4) Update the equalizer weights Wy, recursively as

Wi = Wi +diag([Py,,  Pi (AL Ern — arnGT)

K
Y= ZC’ (8™ @ h(™) 4 n™ (3.44)

m=1

After applying the N-point DFT, the received signal is given by
N (m)
y=> cmATRMx™ 4+ N (3.45)
m=1

where €™ is a  circulant matrix = with  entries CS,Z) =
* LS L er2n @™ tp=ain/N 0y ¢ = 1,...N. It is important to note here that
the channel matrix C(m)A(m) has structure shown in Fig. 3.1 , which shows that
most of the energy of this matrix is in its three main diagonals. We assume that
except three main diagonals all other entries are zero and based on this structure
we formulate our three tap equalizer in the frequency-domain. After demapping,

the m!" user’s received signal is Y™ = R™TY. To simplify the notation we will
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6

6
4
column 4

Figure 3.1: Structure of C(m)f&(m)(normalized) matrix.

ignore the superscript m and Y = [Y(0),Y(1),..., (M — 1)]7. Now assuming
that the equalizer tap matrix has similar structure as channel matrix, i.e. we

have only three main diagonals then output of the MMSE 3-tap LE is given as

EUREECEX I »©
X(1) Fi(1) Fa(l) Fs(1) y(1)
X2 |= F(2) - Y(2)
F3(M —2)
X(-1) | FM=1) F(M =1 |y )
(3.46)
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where F;(j) represents the tap of the LE. and for DFE, we can write

F1(0)  F2(0)

Fi(1) Fa(1) Fs(1)

Fi(2)

F3(M —2)

B(M — 1)

where F;(j) and B;(j) represent the tap coefficient of the feedforward and feedback

filter, respectively. However, to develop an adaptive solution for these taps, we

do not need their explicit solution. Denoting U; = [Y(i — 1) Y(i) Y (i + 1)] for

1=1,2,..M

)=

87

— 2, Uy = [Y(0) Y(1)] and Upr_1 = [Y(M —2) Y(M —1)], (3.47)



can be rewritten alternatively as

U,

U,

U

D(M —1)

F1(0)
F2(0)

Fi(1)

which can be written in compact notation, at instant k, as

)Ek = Z,Fi1 + DBy

(3.49)

Defining Ay, £ and Py as in (3.37), (3.38) and (3.41), respectively, the RLS

update is given as in (3.43).

Reduced-Complexity 3-tap CRLS AFD-DFE: Again, we can show that

the computational complexity is significantly reduced and no matrix inversion is

required. We explain the rationale behind the complexity reduction. Starting
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with k& = 0 and using Pj = € I3y, o, P17 is given by

P} = MNP, - AP 2Ty + NP2 P2 Z P
= )\71[6711’3]\4,2 - )\7167113]\4,23{](1’]\4 + /\71671212{1)7131671_[3]\4,2]

(3.50)

It can easily be seen that Z,Z1 = diag[|{Uo.|* [Ur1|* ... [UM—_11]?] and (3.50)

does not require matrix inversion. Now

Do
?1
ZlIy+2tetz 212, = (3.51)

Br—1

where as the entries @;,7 =1, ..., M — 2 are 3 X 3 matrices and @;,7 = 0, M — 1 are
2 x 2 matrices given by ¢; = UM (1+ A"t U |*)U;1,i=0,..., M — 1. Now P}

has a structure shown below.

)
I

(3.52)

where P}, = A ' Iy — At 2], d = 2 fori = 0,M — 1 and d = 3 for
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t=1,....,.M — 2. Proceeding for kK = 1, we have

P, =)\"'[P] - \'PiZY (I, + VN2, P12 2, P

where Z,P1 2] = diag[Uo 2Py UL, U2P1 UY, . Uy 1Py UL )
and Lli72PiiUfQ is a scalar quantity, therefore, matrix inversion is just M scalar
inversions. For k£ > 1, P,lC has similar structure and, therefore, avoid matrix
inversion. Moreover, for P} same reasons are valid as for the 1-tap AFD-DFE

case.

3.4 Space-Frequency Block Coded (SFBC) SC-

FDMA

In this section we will discuss Embedded SFBC (E-SFBC) technique. In the
presence of CFO and high Doppler, severe ICI from adjacent carriers occurs
which destroys the Alamouti structure and results in performance degrada-
tion. Therefore, [37] proposes embedded SFBC which preserves the Alamouti
structure even when there is ICI and also this technique does not effect the
low PAPR property of SC-FDMA unlike Conventional SFBC (C-SFBC). For
design of our AFD-DFE we implement the embedded SFBC at block level.
Here we will not use the pilots and divide the block in to two. In embed-
ded SFBC, we define X{™ = [X(0)(™), X(2)™ _ X(M — 2)(™]7 and X" =

(X (1), X(3)m™) X (M —1)t™]T ie. X is divided into two blocks. Now the
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. (m) . (m)
sequence to transmit these sub-blocks will be X' = [ f{l*(m)} and Xy = [ X2m>}
2

for antenna 1 and 2, respectively. After mapping and applying N-point IDFT,

(m)

the transmitted signals from the two antennas are s; )

(m :
and s, ’ corresponding

to X i’") and X ;m). The transmitted signals are circularly convolved with their

respective channels and the received signal, after applying the N-DFT become

K
Y =S {A"R™WE, + AR A} + N (3.53)
m=1

~

where Afm) is a N x N diagonal matrix, i.e., A = dmg(DFT(hEm))) for

(3
i = 1,2 and NV is noise component with variance on-Iy. The received signal for

h

m!" user, after demapping, can be expressed as

Y = REVTA™ Rem (M) _ qermnT o RemT ATV Rlm) () sy Afm)
(3.54)
Let A" = R™TA™ R for i = 1,2, then AU™ is M x M diagonal matrix.

To simplify the notation we will drop the superscript m and write (3.54) as
Vi=AnX +ApX, + N, (3.55)

Vo =AnX] — Ap X5+ N, (3.56)

where Ay = diag[Ay; Ag] and Ay = diag[A1s Agi]. Combining (3.55) and (3.56)
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can be written as

Y1
y p—
Y;
A Ap X1 M
= +
Ayp Ay | | X2 2
£ AXp+ Ny, (3.57)

For Alamouti structure, A;; = Asy and A = Ay, In order to make this as-
sumption valid, we introduce reordering of the sub-carriers before mapping at the
transmitter as OX; and OX"Q, where O = [I1, Injo11, Lo Inijo2, - Inige, ] and
assume that the channel does not change over two consecutive sub-carriers. At
the receiver side, the reordering is done after demapping by using a matrix O” .

After MMSE equalization, we get

= (A"A +

. SNRIQM)—qu12 (3.58)

where SNR is the signal-to-noise ratio at the receiver. Since AA has an Alamouti

like structure, therefore,

Xl ¢1 (§2 yl
- (3.59)

X ¢, - Y

where ®; and ®, are diagonal matrices. Alternatively, (3.59) can be setup written
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as

X, diag(Y1) diag(Ys;) Y,

X, —diag(Ys) diag(Y7) Y,

where Y1 and Y5 are the vectors containing the diagonal elements of ®; and ®,.

For a DFE, we have

X, diag(Y1) diag(Y3) 1, diag(D,) 0 U,
= +
X, ~diag(¥) diag(Y;) | | Y2 0 diag(D3) | | ¥,
-’212
£ZF + DB (3.60)

where D7 and D, are X'; and X5, respectively, for the training mode or frequency-
domain decisions on X; and X, respectively, for the decision-directed mode.
The feedforward and feedback filter coefficients in the frequency-domain are F =
[F(0) ... F(M — 1)]" and B = [B(0) ... B(M — 1)]” containing the elements
{Y1, Y5} and {¥, W, }, respectively. Moreover, Z is an M x M Alamouti-like
matrix containing the received symbols and D is a diagonal matrix containing
decisions. However, these coefficients will be computed adaptively; hence, an
exact solution is not required. At the k' instant, the output of the equalizer is
given as

XlQ,k =Z.Fi_1+D.Bi_; (361)

The CRLS AFD-DFE recursion is given as in (3.42) with G =
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[0130—2) 1ixnm] and error vector as

D, — A?IQ,k
EL = (3.62)
D, — Xu,k

where D;, denotes the decisions at the k" instant, i.e., Dy = [g;:] and A, and

Py as in (3.37), and (3.41), respectively.

Reduced-Complexity CRLS AFD-DFE: It might seem that (3.42) re-

quires matrix inversion. However, due to the special structure of SFBC, no inver-
sion is required resulting in significant complexity reductions as shown below.
The matrix P4 has a diagonal structure, i.e., Pry1 = diag([Py;  Pi.ql),

where Pj,; and P .1 are diagonal as well and Pj, is given by.

Py = MNP = 2P 2 (T + 37 Z2en Py 2 )™ 2600 Py (3.63)

Now, simplifying the term (A\™*Z, ., P, Z1.,) , we get

N2 P2l = NP2 Z,

L diag(YVi k1)  diag(Ys 1)
—~diag(YVors1) diag(Yig,1)

diag(Y1 11) —diag(Ys 1)
X

dmg(y2,k+1) dmg(yLkH)
— \"'Pldiag [diag(|Y1 1 ]?) + diag(|Vai1]?)] (3.64)
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Now Z{L (Ing + AN Zp 0 PLZ]L ) 204 = diag([@ @]) £ 4., where @ is
diagonal given as @ = (diag(|YV1x41/?) +diag(|YVaps1|?)) L+ AP~ Tt follows

that P, 41 will have the form

Plchrl = )\71[P]1€ - /\*1Pi¢i+1pi} (3-65)

Using the same approach as in the SISO case, P can be expressed as follows

Piﬂ = )‘71[132 - )‘71P2¢i+1pﬂ (3-66)

where Y7, = (|Dy1|72 + AL P7)~!. Finally, the RLS AFD-DFE recursion has

the form

Wi = Wy + diag([Pry, P{)) (AL Ern — e GT) (3.67)

where P,_; and Pj_; are defined by (3.65) and (3.66), respectively.

3.5 Carrier Frequency Offset (CFO) in SFBC

SC-FDMA

We proceed with embedded SFBC as in C-SFBC, the Alamouti structure is de-
stroyed due to ICI. For CFO, the channel matrices, A;;, in (3.57) lost their diagonal

structures. We can approximate these matrices as a banded (tridiagonal) struc-
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ture. Assuming the feedforward taps matrices have similar structure as channel
matrices, the equalized signal can be written as

Xl (I)l (I)z y1 @1 0 D1

X, ¢, —®) Y3 0 ©, D,
where ®; is tri-diagonal matrix and ®;, is diagonal matrix. D, and D, are X'; and
X5, respectively, for the training mode or frequency-domain decisions on X, and
X5, respectively, for the decision-directed mode. However, the exact knowledge
of the equalizer taps matrices is not need for adaptive solution. Now denoting
U =Yi-2)YiE) Y@i+2)|fori=2,..M-3U;,=[Y(iE) Y(i+2)] fori=0,1

and U, = [Y(i —2) Y(i)] for i = M — 1, M — 2, we can write (3.68) as

. Xl ZO T Tl dZCLg(Dl) O \Ill
X = = +
X, ~Zy Zj | | T 0 diag(D3) | | ¥
£ ZF+ DB (3.69)

where Z; = diag[U; U ... Uj o] for j = 0,1. Xy and Yy (¥; and W,) are the
vectors containing the diagonal elements of ®; and ®, (0, and ©,). Moreover,
the feedforward and feedback filter coefficients in the frequency-domain are F and
B containing the elements {1, Yo} and {¥y, ¥y}, respectively. Defining Ay, &
and Py as in (3.37), (3.38) and (3.41), respectively, the RLS update is given as
in (3.43) with G = [01xi30m—2) Llixm]

Reduced-Complexity 3-tap CRLS AFD-DFE: Now exploiting the spe-
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cial structure of SFBC matrix, it can be seen that there is no matrix inversion in-
volved altogether and, hence, complexity reduction is significantly reduced. Start-

ing with & = 0 and using P§ = ¢ 'I3y,_4, P] is given by

Pl = MNPy AP Z Iy + N2 P 2 Z,Py)
= AN e ' sprg — N e sy JZH (T + XN 2 2 T Z e )

(3.70)

Now

o ZoZ{\+ Z,Z1, -Zo Z{\+ Z},Z,
Z, 2] = (3.71)

~Z\.\ 2+ 25,27, 21,21\ + Z5,Z],
It can ecasily be seen that ZoZY + ZiZ1 = diag[[Uo1|* + [U11]* [U21]* +
Us1|?... [Urr21]* + [Ur—11]%] is a diagonal matrix and likewise other entries
in (3.71). Therefore, Z;Z{ is a M x M matrix containing 4 % x & diago-
nal matrix. This structure allow us to easily find the inverse in (3.70). Now

ZHTy+ N\ telZ, 201z, = (209 = ¢ and
1 1 B2 B3

Di 0

B = (3.72)
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and the entries @, ;,7 =1, ..., % — 1 are 3 x 3 matrices and @;,7 = 0, % are 2 X 2

1 1
P, Py,

. Proceeding for
P, P%s] &

matrices. Now P} has a similar structure as ¢ P} = [

k =1, we have
Py, = MNP - \'PiZI(Iy + N 2P 2T 2, P (3.73)

Let Z,P1Z] = [£08] where @, = (ZoP), + ZiP1,)Z + (Z,Py, +
Z*{P%S)ZIT, which is a diagonal matrix and similarly for other entries. There-
fore, inverse in (3.73) can be found using (2.84), i.e., matrix inversion is just
scalar inversions. For k > 1, P} has similar structure and for P} same reasons

are valid as for the 1-tap AFD-DFE SFBC case.

3.6 Performance and Complexity Analysis

In this section, the Minimum Mean Square Error (MMSE), transient, steady-
state, tracking and computational complexity analyses are carried out. In the
derivations, we assume that the data sequences (both transmitted data and de-
tected data) are independent and identically distributed (i.i.d) with zero mean,
and independent of the noise. The optimal MMSE equalizer weights W° for i

frequency bin are given as [23] [1], for LE
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and for DFE

a2 A(i)* ol FeAG iM_l}—o -
o2 SOG4+ Ko, (4) (7) ()+szo ()AG))

Fo(i) =
Using these weights, the corresponding i*" frequency bin MMSE for the LE (J;,(i))

and the DFE (Jp(7)) are derived, respectively, and expressed as

5,0 = NP MIA P + No)
= T2 AG)PM + N2, )2

(3.74)

and

_ Nodo2(M|AG) 0% + No)

B (3.75)
(022 5= MG+ Nog)?

Jp(7)

3.6.1 Transient Analysis

We start by deriving the transient behavior of the RLS AFD-DFE in a stationary
environment, assuming that the forgetting factor A is unity. The MSE of the RLS

AFD-DFE at instant k£ + 1 is given by

ra(t) = E [Era (1) (3.76)

The a priori estimation output error &1 1(7) can be expressed as

Eer1(i) = §141 (1) + arpa (i) W°(0) — Wi (i)] (3.77)

g

Wi (4)
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where Xp(i) = ar(i)W°(i) + &(i), ar(i) = [Ve(i) Di(i)] and Wy(i) =
[Fr(i) Bi(i)]¥. Substituting (3.77) into (3.76) and then expending terms, we

get

H

T = Ele )] +Baya ()Wi(i)Wy (i)al,, (i)
Jp(4)

+ B (VW)€ () + BEL ()W, (Dally (i) (3.78)

We can express the second expectation in (3.78) as

H

Bayy (YWr()W,, (all (i) = E Tr{aw(i))Wi(i )Wk (D)ai’ (0)}
= F TT{Wk( )Wk ( )ak+1(2)ak+l(i>}
= Tr E{Wk( )Wk (¢ )ak+1( i)ay1(7)}

(3.79)

where Tr{.} is the trace of a matrix. Using the assumption that the product
~ ~H
Wi(i)W, (i) varies at a slower rate than the product aj’ (i)a;1(7), we can

write
EW (i)W, (Dall,,()ax1 (i) = Tr{EW (i)W, () Bal’,,())ar (i)} (3.80)

where Fall(i)a;(i) = R(i) is the input correlation matrix having diagonal struc-

ture as can be seen from (2.24), i.e., Ra(i) = diag([|A(i)|?02 + £o3  o2]). Now,
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~ o~ H
to find EW,. (i)W, (i), we proceed by writing the normal equations

Wi (i) = O, (i) Ry (4) (3.81)

where Ry, (i) = Y% a¥(i)X;(7). Using the values of ©4(i), Ry(i) and X4 (i) in

J=0""

(3.81) and ignoring the initial conditions, W(i) is given as

k+1
Wili) = =6,1() 3l §6) + O a0 1" (382)
Now
W)l <1-6:16) 3_ o (D€6) | (3.83)
W) i

—~
Therefore, the weight-error correlation matrix of W, (i) is given as

EW, ()W, (i) = EO (1) S a (i)a, ()0 (1) ()€ (i) (3.84)

Jj=0

Using the assumption that ay(i), and therefore, ©, (), is independent of the

noise £(7), (3.84) can be expressed as a product of two expectations as follows

k+1
—~/H . ki

EW()W, (i) = EO.'(0) Y afl(a;()0 (i) EE)E ()

= Jp(i) EO, (i) (3.85)
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Assuming ergodicity, we may express the ensemble-average correlation matrix of
the input of the AFD-DFE as R4(i) = 104(i). Hence, the weight-error correlation

matrix reduces to EW;(Z)W;H(Z) = 1Jp(i)R;' (i). Therefore,

—~H .

Bas ()WL 0)W, ()afln(i) = 1 Io()Tr{RAGRZ ()} = ~Joli) (356

The third and fourth expectations in (3.78) are zero because VNVk(z) depends
on past values of ayy1(7) and &, (i). Also apy1(i) and & (i) are statistically

independent and &7, (7) has zero mean. Therefore,

) = Jof0) 1+ 2] 2 ) (387

To compare the CRLS AFD-DFE and LMS AFD-DFE, the MSE of LMS AFE-

DFE can be shown to be [29]

where r; is the j™ eigenvalue of the correlation matrix R4 and v(k+1) = [vo(k +
1), v1(k+1)]" = (I, — pR(i) a)v(k) — t Ak 41 (1) Exy1(i). The evolution of Ji', (i)
with step size u is governed by the exponential quantity (1 — ur;)?*. This clearly

shows that the CRLS AFD-DFE converges faster than the LMS AFD-DFE. The

simulation results support this claim.
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3.6.2 Steady-State Analysis

To begin with, the update recursion (3.42) for i*" frequency bin can be written as

Wiei1(i) = Wi (i) + Prya(6)(@g 11 (1) €xs1 (1) — a1 [01]7) (3.89)

—~/
In terms of the weight-error vector W, (i), we can write

W1 (i) = Wi(i) = Pror(Dally (1) (i) (3.90)

Multiplying (3.90) by ax41(¢) from the left, we may write it in terms of a priori

estimation error £, (i) and a posteriori estimation error &, (i) as follows

@ (YW1 (1) = @i (VW) — @ (VP (Dall, () &) (391)

O] Eiya(0) llak+1()ll»

where || . ||p stands for the squared-weighted Euclidean norm of a vector. Com-

bining (3.90) and (3.91) to eliminate &1, we get

Wi (1) + Praa(Datl (1) (| e (0) 19) €81 (0) = Wi(i) + Pra(i)al, (i)

-~

ap+1(9)

% (Il a1 (i) 12) €04 (4)

(3.92)

where (.)7 represents the pseudo-inverse. Now, equating the energies (squared

Euclidean norms) of both sides of (3.92) with [Py41(i)]”" as a weighting matrix,
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the energy conservation relation becomes

I Wia(0) [3os +x1 (D)[€841 (0)[2 =l Wi(0) 31+ (DIEL, ()2 (3.93)

Taking the expectation of (3.93) and using the steady-state approximations,
—~ —~/ ./
EPa(i) = (1= NRY =P, EW; (i) = EW,(i) and E | Wi ,(i) [[3-1=

E | VNV;C(Z) 1%, we arrive at
Bt (0)|€5 11 () = B (D167, (), k — o0 (3.94)
Substituting &7, (i) from (3.91) into (3.94), we get

Ea1(8) |81 (D) = Barr ()|6511(0)— | @rsa (i) e &1 (D)*, k=00 (3.95)
which upon expansion and simplification reduces to
E || @ars1(i) [lp 16641 ()" = 2Re(BE (1)€r (i), b — o0 (3.96)
As 1 (1) = £241 (1) + &L (7), (3.96) becomes

Tp()E || ar1(i) lp +E || ara(d) Ip 165 ()1 = 2 EIG L ()], k — 00 (3.97)
———

Jewss(9)

where J/, .

(¢) is the Excess Mean Square Error (EMSE). Assume that at steady-

state, || @r41(7) || is independent of &, (¢). This condition allows us to separate
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the expectation E || ap11(2) [|p |1 (¢)]* into a product of two expectations as

follows

E || i1 (i) llp 16842 (D = E || awa (i) [lp Elgi ()]

(3.98)

If we replace Py 1(i) by its assumed mean value, we obtain the approximation

E || apsr(i) [[p~ Tr{RP} = 2(1 = A)

Substituting into (3.97), we get

Therefore, the MSE at the steady-state J5(4) is given as

Jp (1)

TL0) = Tpli) + Jipli) = 2

3.6.3 Tracking Analysis

(3.99)

(3.100)

(3.101)

For time-varying channels, we will adopt a first-order random walk model for the

variation in the tap weight vector Wj. The model assumes that W} undergoes

random variations of the form

1 (1) = Wi(i) + qyq (9)
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where q,.(i) = [£.(1)gk (i), £..())gP(i)]T and f (i) is the i*" row of partial (M x L)
DFT matrix. qf (i) and g?(i) are the time-domain random column vectors of
length L with zero mean and correlation matrix Q, = (1 — R*(1))I; [5]. As-
suming qi (i) and g? (i) are independent and note that f, (i) f,(i)¥ = L/M, the
covariance matrix of g, (i),i =1,..., M, is Q = £(1 — R*(1))I5y.

Now, defining Wy (i) — W.(i) = W;(z) and writing the energy-conservation

relation leads to

Wi (@) = Wit () 151+ (DISEa (0 = [l Wiia(6) = Wi(i) [I5-

TP (3.103)

where &4, (1) = ars1 (DWW (1) = Wi ()] and G4, (1) = arn ()WE () —
W.(i)].  Moreover, the random walk model (3.102) allows us to relate E ||

0 () = WD) |51 to B | Wy(i) [ as follows
+ P P

E | WLi()) = Wi(i) |20 = B W) + @y (i) — Wi(i) |5
= E| W)+ qp10) 15

= B W) 51 + || gea () [0 (3.104)

where the last step follows from the fact that W (i) is independent of g, (i) and
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uses steady-state assumption. Next, taking expectation of (3.103), we get

N/ . — . a . N/ . .
E | Wia() -+ +EBana()IEa(OF = E | Wi(i) [ +E || @y () -1

+Eay 1 (1) |61 ()] (3.105)

Moreover, gq,,4(¢) is independent of Pj1(7), so that

E || @1 (i) [1p-2= T7 E{@r1 ()P qpis (1)} = Tr{QP ™'} =

T R

(1 — )\) T’{Q A}
(3.106)

Solving (3.105) as done in steady-state analysis and using (3.106), it can be shown

that in time-varying environment, the MSE of the RLS AFD-DFE is given as

2(1 = N)Jprp(i) + goTr{QR}
2—2(1—\)

Jo(i) = Jp(i) +

Jp(i)  Tr{QR}
A 21— N

(3.107)

By comparing the update equations for RLS and CRLS it can be seen that the

computational complexity of CRLS AFD-DFE is same as RLS AFD-DFE.

3.7 Simulation Results

In this section, the theoretical findings are validated. Similar to an LTE system,
the carrier frequency and bandwidth are set to 2 GHz and 5 MHz, respectively.
Other simulation parameters used are M = 64 and N = 1024, therefore, the

maximum number of users that the system can support is K = 16. The modu-
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lation scheme used is Quadrature Phase shift Keying (QPSK) and the channel is
frequency selective with 12-paths and each path fades independently, according
to the Rayleigh distribution.

Fig. 3.2 depicts the performance of the AFD-DFE algorithm. As can be seen
from this figure, the best performance is obtained through the use of the AFD-
DFE with constraint for case 2, while the worst performance is obtained by the
AFD-DFE with constraint for case 1. The reason behind the good performance of
case 2 is that the input correlation matrix for the feedforward filter is unaffected
by the decision errors. This can be clearly seen from the figure that as AFD-
DFE is switched to decision-directed mode, the MSE becomes worst in case 1.
The computational complexity of the AFD-DFE (case 1) is slightly higher than
that of the AFD-LE but when compared to the performance obtained through
the use of the AFD-DFE (case 1), this additional complexity at the base station
is well justified. Also, the figure shows that the performance of the RLS-based
AFD-DFE is better as compared to that of the Constraint LMS (CLMS) based
AFD-DFE in terms of convergence speed and MSE. Only 15 iterations are needed
for the RLS to converge; hence, the resulting complexity and latency increase due
to adaptation are not significant. This figure also depicts the theoretical curves
and close agreement between the theoretical findings and simulations is observed.
Note that the theoretical curve of AFD-DFE assumes perfect decisions. For the
rest of the figures, we have used AFD-DFE for case 2. The reason of improved

performance of the CRLS as compared to the RLS can be seen from Fig. 3.3.
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Since in CRLS, by is more close to zero unlike RLS which ensures that the present
symbol is not being canceled out.

The BER performance of the AFD-DFE is shown in Fig. 3.4. It is clear that
AFD-DFE with CRLS outperforms the RLS-based AFD-DFE, practical MMSE
DFE and MMSE LE with known channel in terms of BER. Note here that there
in no error propagation in the AFD-DFE unlike the practical MMSE DFE of [1]
and [23]with known channel, which was due to poor estimation of the correlation
between the transmitted data and the decisions. Moreover, this figure shows that
the performance of the constraint-based RLS AFD-DFE is close to that of the
ideal MMSE DFE [1] with known channel. For the rest of the figures we have
used CRLS AFD-DFE.

In addition, the effect of the Doppler on the SC-FDMA system is reported in
figs. 3.5 and 3.6. For this scenario, speed of the user v is varied from 3 km/h to 300
km/h. As can be observed from these two figures, our proposed RLS AFD-DFE
is robust to the Doppler Effect. Fig. 3.6 depicts the theoretical and simulated
MSE for different user’s velocities.

Next, the effect of the CFO on the system performance is investigated, this
is because if there is a slip in the frequency (transmitter and receiver not any
more synchronized) then the performance degrades. Fig. 3.7 shows that the
performance of 3-tap AFD-DFE is better than that of 1-tap AFD-DFE in large
CFO, from which we can conclude that 3-tap AFD-DFE is somewhat robust to

the ICI.
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Figure 3.2: Learning curves of AFD-LE and AFD-DFE in SCFDMA system with
user velocity v = 3 Km/h and SNR of 20 dB.
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Figure 3.4: Comparison of various equalizers with user velocity v = 3 Km/h
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Figure 3.5: Effect of velocity on system’s performance
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Figure 3.6: Theoretical and simulated MSE of RLS AFD-DFE as a function of

user’s velocity.
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Figure 3.7: SC-FDMA system’s performance
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For SFBC SC-FDMA system, independent 12-path Rayleigh fading channels
are used for each transmit /receive antenna pair. Fig. 3.8 shows that performance
of E-SFBC with reordering is better than with reordering. Also E-SFBC out-
perform C-SFBC at high SNR. With CFO, 3-tap AFD-DFE is better than 1-tap
AFD-DFE as depicted in Fig. 3.9. Further, we presented the effect of number
of training symbols in one SC-FDMA block on MSE. As can be seen from Fig.
3.10 that if 25 percent of symbols in one SC-FDMA block is used for training and
rest for data during the training phase than there is no significant decrease in the
MSE. In this way we can reduce the overhead by not sending all the symbols in
SC-FDMA block as training during training mode.

Finally, we have evaluated our designed AFD-DFE in blind mode where it is
used in decision directed mode by utilizing stop and go blind equalization algo-
rithm [38]. To minimize the error propagation the block size is kept small, i.e.,
M = 16 is used. Figure 3.11 depicts that the constellation at the output of the

BAFD-DFE is better than BAFD-LE.
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107}
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Figure 3.8: Comparison of E-SFBC and C-SFBC with user’s velocity v = 3 Km/h
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Figure 3.9: E-SFBC SC-FDMA System’s performance under CFO’s effect with
user velocity v = 300 Km/h
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Figure 3.10: Number of training symbols in SC-FDMA block vs MSE (v = 3
Km/h)
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Figures 3.12 and 3.13 demonstrate the convergence behavior of the BAFD-DFE

using LMS and CRLS algorithms. The residual ISI at output of the AFD-LE for

h

m! user is defined as the following

R e wl™ P = R« w (™
IST = oMo (3.108)

where x represents the convolution operation , wz(m) is the corresponding i** time-

domain weight of the BAFD-LE and |h{™ % w{™|2,__ is the largest value among

)

all the values of |h\™ xw\™|2. For the BAFD-DFE, residual ISI is given as

_ Siloll™ xw™ + 0] = | w4 b
ISI = T ™ 4 5 (3.109)

maxr

where fl-(m) and bl(-m), respectively, are the corresponding i*" time-domain feedfor-
ward and feedback weights of the AFD-DFE. It can be seen from these figures
that fast convergence is obtained by the CRLS algorithm whereas lower MSE (or

residual ISI) is obtained by the LMS algorithm. The reason being that the input
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Figure 3.11: Constellation diagram, SNR= 20dB
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Figure 3.12: MSE convergence curves, SNR= 20dB
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Figure 3.13: Residual ISI convergence curves,SNR= 20dB
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correction matrix in CRLS is effected by the decisions causing MSE (or residual
IST) to be higher than that of the LMS. It is also worth mentioning that no further

improvement is obtained for N; > 2 in case of BAFD-DFE.

3.8 Conclusion

In this work, a constraint RLS based adaptive DFE is entirely designed in the
frequency-domain for SC-FDMA and extended to a SFBC SCFDMA systems.
The CRLS performs better than the RLS algorithm with almost similar com-
plexity. The equalizer operates without channel estimation at the receiver. The
proposed algorithm delivers its performance at low complexity due to the spe-
cial structure of matrices involved in computing the weights of the feedforward
and feedback filters in the frequency domain. Our designed CRLS AFD-DFE
is more computationally efficient than the non-adaptive frequency-domain DFE.
Moreover, CRLS AFD-DFE outperforms the practical MMSE-DFE in terms of
BER. We also showed that less training symbols can be used during training
phase to reduce the overhead without sacrificing the performance. Simulation re-
sults demonstrate the significant performance gain and robustness of the proposed
algorithm under the severe Doppler effect. We also extend our design to 3-tap
adaptive equalizer in the frequency-domain, which has better performance than
1-tap equalizer when dealing with ICI due to CFO. Finally, blind DFE is also

introduced.
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CHAPTER 4

DECISION FEEDBACK
EQUALIZATION USING
PARTICLE SWARM

OPTIMIZATION

It is well-known that the Decision Feedback Equalizer (DFE) outperforms the
Linear Equalizer (LE) for highly-dispersive channels. For time-varying chan-
nels, adaptive equalizers are commonly designed based on the Least Mean Square
(LMS) algorithm which, unfortunately, has the limitation of slow convergence
specially in channels having large eigenvalue spread. The eigenvalue problem be-
comes even more pronounced in Multiple-Input Multiple-Output (MIMO) chan-
nels. Particle Swarm Optimization (PSO) enjoys fast convergence and, therefore,

its application to the DFE merits investigation. In this work, we show that a
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PSO-DFE with a variable constriction factor is superior to the LMS/RLS-based
DFE (LMS/RLS-DFE) and PSO-based LE (PSO-LE), especially on channels with
large eigenvalue spread. We also propose a hybrid PSO-LMS-DFE algorithm, and
modify it to deal with complex-valued data. The PSO-LMS-DFE not only out-
performs the PSO-DFE in terms of performance but its complexity is also low.
To further reduce its complexity, a fast PSO-LMS-DFE algorithm is introduced.

Finally, the system overhead is reduced by devising a blind PSO algorithm.

4.1 Introduction

The decision feedback equalizer (DFE) [39] is an effective Inter-symbol Inter-
ference (ISI) mitigation technique and can significantly outperform the linear
equalizer (LE) on highly-dispersive channels. Adaptive equalization is attrac-
tive for time-varying channels, and for this purpose, adaptive algorithms, e.g., the
Least Mean Square (LMS) and the Recursive Least Squares (RLS) [29] are widely
used. Recently, heuristic techniques applied to equalization/estimation problems,
in particular the Particle Swarm Optimization (PSO) technique, showed signif-
icant improvement over conventional algorithms [40-43]. It was shown in [43]
that the application of PSO to an adaptive linear equalizer provides fast conver-
gence compared to its LMS-based counterpart. To further explore its equalization
capabilities, this can be applied to a DFE structure.

PSO, first introduced by Kennedy and Eberhart [44], is a swarm intelligence

method and belongs to a heuristic algorithms. In PSO each particle not only act
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on its own and use its local information but it is also capable of sharing information
with other particles to form complex structure for solving multifarious problems.

The PSO is a robust algorithm with fast convergence. It is simple, very easy
to code, and has low memory requirements. It can be used to solve multi-modal,
non-differential and nonlinear problems [45]. It uses position and velocity update
equations to search for the global minimum. Each particle uses its own information
and its neighbors information to adjust its position within the search space. In
addition, the PSO works based on cooperation among the particles as opposed to
the other Evolutionary Algorithms (EA). EA is based on generic operations, that
are, selection, mutation and crossover to find the global minimum and unlike PSO
at each generation particles are replaced by new ones. In PSO, particles are active
and stay alive for the whole run, in contrast to EA. The PSO has demonstrated
its distinguished performance in many engineering applications. To mention a
few of its recent applications, it has been used in image processing [46], channel
prediction [47], and nonlinear active noise control systems [48].

The PSO is used to optimize real and continuous-valued functions in [-
dimensional space. The particles constitute the swarm, also known as population,
and move in a predefined search space. The position of each particle within the
search space represents a possible solution to the problem. Here, in the case of
adaptive equalization, the position represents the weights of the equalizer.

Despite its advantages, PSO is vulnerable to local minima, i.e., the particles

become stagnant around the global minima and may not be able to reach the
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global minimum [49]. To deal with this issue, we have introduced a hybrid of
PSO and LMS algorithms, which not only solves the problem of particles stag-
nancy but also reduces the number of computations required in PSO. Another
disadvantage of PSO is that it assumes real-valued data. In [43], the authors use
a BPSK signal with a real-valued channel impulse response. However, in reality,
we have to deal with complex numbers for pass-band transmission then the taps
weights of the equalizer become complex. To solve this issue, we have modified
the PSO algorithm to handle the complex case without increasing its complexity.
To further reduce the complexity, we have introduced the fast PSO-LMS-DFE.
Since the major complexity factor in PSO is the convolution operation required
to find the equalizer output, the PSO-LMS-DFE performs this operation in the
frequency-domain using the FF'T to save on computations. Finally, blind PSO is
also introduced to avoid the training sequence.

Here, this work is extended to Multiple-Input Multiple-Output (MIMO) sce-
nario. Due to its high complexity, the most challenging task in designing the
MIMO receiver is its corresponding MIMO channel equalizer. A MIMO equalizer
has to deal with the inter symbol and the inter stream interference. Several works
proposed different methods for adaptive MIMO DFE. Among them, the Vertical
Bell Labs layered space-time (V-BLAST) architecture [50] is one of the promising
method for MIMO equalization. Computationally efficient V-BLAST techniques
have been proposed in [51-53] assuming a known channel. Its application to time

varying channels is difficult due to frequently estimation of the MIMO channel. An
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efficient adaptive MIMO equalizer based on V-BLAST and generalized DFE [54]
has been presented in [55], where the symbol detection order as well as the equal-
izer taps are updated recursively; however, this structure suffers from numeric
instability. To address this problem, a technique based on square-root factor-
ization of the equalizer input correlation matrix was proposed in [56]. However,
unlike the application of MIMO DFE to time-invariant channels, the application of
MIMO DFE to time-varying channels still requires excessive computations for the
estimation of the parameters. Another challenging problem in these techniques is
that substantial training is required when the equalizer length becomes large (as
in [57]) and therefore a large number of symbols are needed before the algorithm
converges. Algorithms based on reduced rank equalization [58] are less complex
and require less training symbols as compared to full rank equalization, while
requiring matrix inversion at each iteration. To overcome this problem, in [59]
and [60] the covariance matrix is estimated iteratively and hence matrix inversion
operation is avoided. These algorithms have a moderate complexity but unfortu-
nately require more than 150 symbols for the training phase which is not suitable
for frame-based applications, e.g., IEEE 802.11p, where the frame contains less
than 150 Orthogonal Frequency Division Multiplexing (OFDM) symbols. All of
the above mentioned techniques use the RLS algorithm which is often complex to
implement and prone to instability in a real time environment. Therefore, PSO-
based algorithms can be a substitute to the RLS-based algorithms with moderate

complexity and guaranteed stability as they do not have to calculate the inverse
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of the autocorrelation matrix of the input signal.

This work reports a detailed analysis for the adjustment of the PSO param-
eters to ensure the best performance. The superiority of the PSO algorithms is
tested on channels with different eigenvalue spreads specifically, in MIMO chan-
nels where the performance of the LMS/RLS-DFE can be very bad due to the
severe eigenvalue spread problem. Our results demonstrate the performance gain

of the proposed algorithms over conventional algorithms.

4.2 The PSO Algorithm

4.2.1 BASIC PSO

Initially, random solutions are assigned to n particles in a d-dimensional search
space. The basic PSO algorithm [45] consists of the following elements:

Particle position (ka): The particle position is represented by a real-valued
[-dimensional vector which is the potential solution to the problem at hand. The
particle position is the weight vector of the equalizer in our case. The position of
the ¢ particle at instant & is denoted by p; , = [pi(0), pi(1), pi(2), ..., pi(1)], where
pi(1) represents the i’ particle position in the /" dimension.

Particle Velocity (v;x): The velocity is also represented by a real-valued
l-dimensional vector. The velocity of the i** particle at instant k is given as
vi g = [0;(0),v;(1),v:(2), ..., v;(1)], where v;(l) represents the i’ particle velocity in

the [** dimension.
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Inertia weight (i,,): This parameter controls the change of velocity between
successive iterations. It affects the local and global search capabilities of the
particles.

Particle or local best (pbest,): Each particle remembers its best position
pbest, ;.. The best position is the one which results in the minimum (or maximum
depending on the problem at hand) value of the cost function.

Global best (gbest,): The best value of all the pbest,;,i = 1,2,...,n is
calculated by comparing the cost function values associated with them. This is
the global best gbest, of the swarm.

Stopping criteria: The algorithm is terminated when the global minimum
(or maximum) is attained or after reaching a predefined number of iterations.

We constrain the particle velocity to avoid a possible overflow, i.e., the velocity
is restricted as Uyer = VePmaz, Where v, is the velocity constraint factor and p,,qz
is the maximum position .

The velocity update equation is given by

Vgl = wVix + c1*xrand; * (pbeSti,k - pi,k)

+ ¢y xrand, x (gbest, —p,; ), (4.1)

where ¢; and ¢y are called acceleration constants, i.e., these are the rates at which

local and global optima are achieved and rand;, (j = 1,2), is [ x 1 dimension
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vector given as

rand; = [rand,; randsj, ... rand;;]" (4.2)

where rand ; is a uniformly-distributed random number in [0, 1] for the /" dimen-

sion. The position update equation is given by

Pikt1 = Pij T Vik (4.3)

Fig. 4.1 depicts the flow chart of the PSO algorithm.

Initialization : Initialize the swarm
size n, particle velocity vik, particle
position pix, inertia weight iw and
acceleration constants
crand c2

Evaluate the cost function Ji(k) for
each particle and determine local K=k+1
best of each particle (pbestix) and
global best (gbest) of swarm.
Update the velocities of all
particles within the limits
Vimin @nd Vmax
No
Update the positions of all Stopping
particles within the limits criteria
Pmin @and pmax satisfied?

l yes

terminate

Figure 4.1: Flow chart of the particle swarm optimization algorithm.

4.2.2 PSO Variants

The PSO algorithm has many variants and the most popular ones are:
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Variable Inertia Weight: The constant inertia weight, i,, in (4.1) is de-

creased linearly at each instnt & according to [61]:

i (k) = yiw(k — 1), (4.4)

where 7 is a weighting factor that controls the diminution of 7, (k).

Variable Constriction factor: The constriction factor based-PSO was first
proposed in [62] and [63] to update the particle’s velocity. Ultimately, this modifi-
cation will result in a better performance than that of a standard PSO. In order to
guarantee convergence, a time-varying constriction factor was recently proposed
for the first time in an adaptive equalization scenario [43]. In this approach, a
variable constriction factor is introduced in the velocity update equation. The

velocity update equation is given as

Vigr1 = K(k) x [vix, + ¢ xrand; x (pbestu€ — Dik)

+ ¢y *xrand; * (gbest, — p; )]

and K (k) is given as
ke(k)

K(k)= , 4.5
(%) 1 — P — /P2 — 49| (4:5)

where ® should be always greater than four and is defined as
P = C1 + Ca, (46)
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and

iter — k

kc k) = kmin kma:c - kmzn IR 4.7
(K) = b + yiter — (@7)

where the variable iter is the maximum number of iterations and k is the current
iteration. As the particle gets closer to the global minimum, a lower value of
the constriction factor is used which helps in stabilizing the algorithm with fast
convergence.

Adaptive inertia weight: In this form of PSO, the inertia weight i, is
updated based on the error value and eventually will result in high speed and ef-
ficiency. The inertia weight is changed only when a better fit is found in order to
move the particle close to the optimum point. The inertia’s influence is reduced
if it does not attain the lowest estimation error. It maximizes the influence of
potentially favorable inertia directions, while minimizing the influence of poten-
tially unfavorable inertia directions. The adaptive inertia weight equation is given

by [64]

hw, (k) = ﬁ (4.8)

where i,,, is the inertia weight of the i’* particle, AJ;(k) is the change in the cost
function between the current and the previous iterations, and S is the slope factor.
Using this relation will limit the inertia weight to the interval [0, 1] with mean of
0.5 which corresponds to no change in the error. It means that an increase in the
error will lead to an inertia weight to be more than 0.5 and vice versa.

In this work, PSO with variable constriction factor is used since its performance

is better than other PSO variants [43].
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4.3 Problem Formulation

Fig. 6.1 depicts the block diagram of a communication system equalized by the

DFE. We will separately formulate the problem for the SISO and MIMO cases as

Figure 4.2: Block diagram of the decision feedback equalizer.

follows.

4.3.1 SISO Case

In the SISO case, the input data z(.) is transmitted over the channel and an

additive white Gaussian Noise (n(.)) is added. The noisy version of the channel

output is denoted by y(.) which is fed into the feedforward filter of the DFE. The

Feedback Filter is fed with the output of the decision device Z(.).

lengths of feedforward and feedback filters by Ny and N, respectively.

Denote the

At any instant k, the states of Feedforward Filter (FFF) vy, and Feedback

Filter (FBF) dj, are, respectively, given as

yp=[y(k) ylk—1) .. y(k—Ny+1)]

(k=0 —1) ... 2(k — 0 — Np)], for training

>

[
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(k—0—1) ... 2(k— 38 — Ny)], for decision-directed

(4.9)

(4.10)



where z(k — ¢) is a delayed version of x(k — §).The coefficients of the FFF and

the FBF are, respectively, defined as

Fo=1fe0) fu(l) . fuNy=D)]",

br = [be(1) be(2) ... be(No)]T,

and are combined in the vector

T

by,

wp =

The output of the equalizer in a decision-directed mode is given as

(k) =y, — dip]wy,

Finally, the error signal is given as

(k) — @(k —¢), for decision-directed
e(k) =

x(k) — z(k — 9), for training

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

In this work, PSO is used to search for the tap weights that minimize the Mean

Square Error (MSE). PSO is more effective when applied on the whole data but

due to non-availability of the whole data in our application, we will use a block

of data (with size N) and, hence, our objective function in every iteration is the

128



computed MSE, which is defined for the i*" particle at the k' iteration as

N
1
Ji(k) = < > lesi(k))? (4.16)
j=1
where e;;(k) is the j error of i particle and this is obtained from (4.15).

4.3.2 MIMO Case

We will formulate the problem for two transmit and two receive antennas, which
can be extended to any number of transmit and receive antennas. In a 2 x2 MIMO
system, independent and identically distributed data symbols z1(.) and xs(.) are
transmitted from antennas T1 and T2 over the multi-channel environment and
received by antennas R1 and R2 after being corrupted by additive white Gaussian
noises. x1(.) travels through channels hy; and hjy which are the respective impulse
responses of the channels between transmit antenna T1 and receive antennas
R1 and R2. Likewise, x5(.) travels through channels hyy and hg; which are the
respective impulse responses of the channels between transmit antenna T2 and
receive antennas R1 and R2. Hence, the received signals are not only corrupted by
channel and noise but they also interfere with one other. The signals are assumed
to be uncorrelated with each other and with the noises. The 2x2 MIMO system
is depicted in Fig. 4.3. Let the received signals be yi(.) and y,(.), and define

the vectors of transmitted samples, received symbols and decisions at instant k as
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T_» | f

x1(k) yi(k)
j h22 T

x2(k) T ya(k)

na(k)

Figure 4.3: 2 x 2 MIMO system.

follows.

y(k) = (k) wa(k)],

8
—~

2y
~

(1>

[21(k)  zo(K)],

S
—~
&
|
[«%)
S~—
(>

[21(k = 0)  Z2(k = 0)]

The received vector y,, is fed into the feedforward filter with N; matrix taps each
of dimension 2 x 2. Similarly, the decisions are fed into a feedback filter with NN,

matrix taps each of dimension 2 x 2. The input to the decision device is given as

+ y(k — Nf + ]-)FNf—l — i%(k — 6>B0
—#(k—6—1)B; .. —a@(k—6— Ny+1)By,_,

(4.17)

where Fo, Fy,..., Fy, 1 and By, By, ..., By, 1 are the matrix coefficients of the

feedforward and feedback filters respectively. For the decision-directed mode,
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Z(k—9) = x(k—J). Let us denote the first and second columns of Fy (By) by F
(Bo1) and Foo (Byp2), respectively and likewise for other matrix coefficients of
the feedforward and feedback filters. Let W, ,,(r = 1,2) be the vector comprised
of the r* column of matrix taps of feedforward and feedback filters at instant k

and given by.
W, 2[F,, Fi, .. Fy ., By, B, .. By .|, (4.18)
where (.)T represents the transpose operation. We can write (4.17) as follows.
i (k) =y,  — di]Wi k1, (4.19)

Now,the error signal is given as

Z.(k) — &.(k — §), for decision-directed

x.(k) — &.(k — §), for training

For PSO, the computed MSE is given as

N
1
Jri(k) = NZ lersi(R)?, r=1,2 (4.21)
j=1

where ey;;(k) and eq;;(k) are the j™ error samples of i" particle for x1(k) and

xo(k) respectively.
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4.4 Particle Swarm Optimization-Least Mean

Squares (PSO-LMS) Algorithm

Two key problems associated with the PSO are

e The particles may become stagnant due to the lack of finer search capabilities
in the PSO algorithm. Hence to achieve the global minimum value of cost

function might not be possible.

e PSO enjoys fast convergence but its complexity is high and its computations
depend on the size of swarm and the convolution operation required to find

the equalizer output.

For these reasons, a hybrid PSO, i.e., a combination of PSO and LMS will be
attractive in this situation. In [65] a combination of PSO and LMS is proposed to
combat the stagnation problem. In this approach, the authors modified the parti-
cle position update equation by adding the LMS gradient term which increases the
computational cost even more and the influence of LMS on PSO remains constant
throughout the iterations. The overhead is also increased due to adding scaling
factors for controlling the effect of both algorithms on the particle’s position up-
date equation. These difficulties have been overcome in this work by separately
using the two algorithms at different times i.e. LMS, with small step size, takes
over when the particles become stagnant otherwise PSO is used.

The operation of PSO-LMS algorthm is as follows. Initially, the PSO algorithm

with variable constriction factor will be used for global search to explore the search
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space and fast convergence. As the gbest,, of the particles become stagnant, the
LMS recursion is used to update the particle position to find the minimum point
locally in the search space. In this way, whenever the particles become stagnant
the LMS will give them direction towards the global minimum. If there is any
disturbance e.g. channel changes or SNR changes, then PSO will take over the
LMS since gbesty becomes disturbed.

The steps involved in the PSO-LMS algorithm are given below:

1. Initialization: At k=0, initialize positions of n particles of | dimensions
such that the coefficients p;(j),j = 1,2, ..l of the i** particle are uniformly
distributed in the range [pmin,Pmaz), Where Pmin = —Pmaz. In our case,
the particle positions are the weights of the equalizer. In the same way,
initialize the velocities such that the velocity coefficients v;(j),j = 1,2, ..l

are also uniformly distributed in the range [Umin, Vmaz| Where Upin = —Vmaz

2. Cost function calculation: Calculate the Mean Square Error (MSE) for

each particle using (4.16) for SISO or (4.21) for MIMO case.

3. Local best position: For the first iteration, set the local best position
(pbest, ) of i'" article to the current particle position (p;,) and its best
MSE J; pest(k) to the corresponding MSE value J;(0). For the remaining
iterations, if J;(k) < Jipest(k — 1), then set J; pest (k) = Ji(k) and pbest, ; =
P, and continue; else set J; pest (k) = Jipest(k—1) and pbest, , = pbest, ;. _,

and continue.
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. Global best position: The minimum MSE J,,;,(k) among all the par-
ticles best MSE J;pest(k), i = 1,2,...,n is the global best MSE Jpin pest
and the corresponding position is the global best position gbest,. For any
k >0, if Jpin(k) < Jminpest(k — 1), then set Joinpest(k) = Jmin(k) and
gbest, = py .., where p; ..., is the position of that particle correspond-
ing to Jiinpest(k) and continue; else set Joipest(kK) = Jminpest(k — 1) and

gbest, = gbest,_, and continue.

. Constriction factor update: The constriction factor is updated using

(4.5).

. Test for stagnancy: Particles become stagnant as they get closer to the
global minimum. At this stage, the current value of the global best becomes
the same as its prior value i.e. gbest, = gbest,_,. Although the condition
to check the stagnancy is to compare the current local best positions of all
the particles with their pervious local best positions but this approach will
be computationally very heavy. Therefore, only global values are compared.

If condition of stagnancy is satisfied then go to step 9 else goto step 7.

. Velocity update equation: Update the velocity of each particle according
to (4.5) using the current particle velocity, local best of particle pbest, ; and
global best value gbest,. Restrict the coefficients v;(l),7 = 1,2, ...d in the

range [—Umaz, Vmaz|-

. Position update using PSO: Now update the position of each particle
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according to (4.3) using the velocity value calculated in the previous step.

Restrict the coefficients p;(7),j = 1,2,...d in the range [—Pimaz, Pmaz)and

goto step 10.

9. Position update using LMS: When the stagnancy test is positive then
the block LMS recursion is used to update the position of each particle. For

block LMS, we define equalizer input matrix as

y(k) o y(k— Np+1)
Y, 2 ; ; (4.22)
yk+N—-1) - y(k+N —Ny)
and the decision matrix as
d(k—1) d(k — Ny)
D, 2 ; ; (4.23)
dk+N-2) -+ dk+N—-N,—1)

where d(k) is the decision on the symbol Z(k) for the decision-directed mode
and z(k) for the training mode. For simplification the delay ¢ is ignored.

The output of the equalizer is given as

@p =Y fp 1 + Dby (4.24)
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10.

11.

where

& = [z(k) ... @(k+ N —1)] (4.25)
The error at output of the equalizer is given as

where

d, = [d(k) .. d(k+N—1)] (4.27)

Now, the LMS update equation for SISO case (can easily be extended to

MIMO case) is given as

Pips1 = Pip + LA € (4.28)

where f is the step size and and e; is calculated using (6.14) for the i

particle and Ay, is given as

YH
A= | " (4.29)
Dy

Stopping Criteria: When the maximum number of iterations is reached,

then terminate other wise, continue.

Instant update: Update the time instant counter as k = k£ + 1 and goto

step 2.
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Figure 4.4 depicts the flow chart of the PSO-LMS algorithm.

Initialization: Initialize the swarm
size n, particle velocity vik, particle
position pik, constriction factor Kik)

and acceleration constants
crand cz

Evaluate the cost function Ji(k) for

each particle and determine local

best of each particle (pbestix) and
global best (gbestx) of swarm.

k=k+1

Stopping

Perform LMS recursion criteria

?

Find kc(k) and update the
constriction factor

Update the velocities of all
particles within the limits =N
Vmin @nd Viax

Update the positions of all particles
within the limits pmin and pmax

terminate

Figure 4.4: Flow chart of the PSO-LMS.

4.5 PSO-LMS-DFE For Complex-Valued Data

The PSO algorithm works on real numbers. Using PSO to find the optimum
weights for complex-valued data, will not be possible without modification. One
approach is to use PSO separately on the real and imaginary parts (or on the
magnitude and phase) or double the dimensions and use first the d dimensions for
the real part and the rest for imaginary part but this will increase the complexity.

To avoid this, we have modified the PSO algorithm as follows.

1. Let the position p,, and the velocity v;; of the ithe particle be complex.

At k=0, initialize m particles of | complex dimensions, such that the real
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and imaginary components of coefficients of position p;({),j = 1,2,..l of
the ' particle are uniformly distributed in the range [Dim.min, Dimmaz) and
[Dre,mins Premaz) Tespectively, where premaz = Pimymaz = Pmaz a0d Dremin =
Dimmin = —DPmaz- 10 the same way, the real and imaginary components
of velocity coefficients v;(1),7 = 1,2,..l of i'" particle are also uniformly
distributed in the range [Vremin, Ureimaz) and [Vim mins Vim,maz| Tespectively,

where Ure,maz = Vim,maz = Umax and Ure,min = Vim,min = —Umaz-
. Calculate absolute value of the Mean Square Error (MSE) for each particle.

. For comparison use the absolute value i.e. if |J;(k)| < |Jipest(k — 1)| for
i=1,2,3,...,m, then set J; e (k) = J;(k) and pbest, ; = P;; and continue;

else set Jipest(k) = Jipest(k — 1) and pbest, ; = pbest,, ; and continue.

. Similarly for the global best, if |[Jnin(k)| < |Jminpest(k — 1)| , then
set Jminpest(k) = Jmin(k) and gbest, = p,; ..., and continue; else set

Iminpest(B) = Jminpest (kK — 1) and gbest, = gbest,_; and continue.

. Update the complex velocity and complex positions of each particle by using
the velocity and particle update equations. Restrict the real and imag-
inary components of velocity coefficients ¢;(1),7 = 1,2,...1 in the range
[—Umaz, Umaz] and position coefficients p;(1),,7 = 1,2,..., in the range

[_pmazv pmax] .

. To test the stagnancy, if real and imaginary parts of current value of global

best is same as its prior real and imaginary parts, then use LMS; otherwise,
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use PSO.

Fig.4.5 depicts the flow chart of the PSO-LMS algorithm for complex-valued data.

Initialization: Initialize the swarm size
n, real and imaginary components of
particle velocity vik and particle
position pik, constriction factor K(k)
and acceleration constants
crand c2

|

Evaluate the absolute value of cost
function Ji(k) for each particle and
determine complex value of local k=k+1
best of each particle (pbestix) and
global best (gbestx) of swarm.

topping criteria

Perform LMS recursion satisfied?

constriction factor

I

Update the complex velocities of all Update the complex positions of all
particles. The real and imaginary particles. The real and imaginary
parts of velcities should be in the parts of position should be in the limits

limits Vmin and Vmax pminand pmax

Figure 4.5: Flow chart of the PSO-LMS for complex-valued data.

‘ Find ke(k) and update the ‘

4.6 Simulation Results

To test the effectiveness of the PSO algorithm when applied to a DFE for the SISO
case, we have considered two time invariant channels C'1 = [1, —1.9114, .95] having
an eigenvalue spread of 635 and C2 = [0.408,0.816,0.408] having an eigenvalue
spread of 200. The length of the feedforward and feedback filters are 4 and 2,
respectively. We assume BPSK modulation. For the MIMO case, the channels

hi1, hi2, hoy and hoo are taken as three-path Rayleigh i.e. the impulse response
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is three delta functions which are assumed to fade independently and the length
of the feedforward and feedback filters are 8 and 5, respectively. The product of
Doppler frequency, f;, and the sampling time, T}, is taken as f;T, = 0.0001 and
the modulation scheme in this case is QPSK. The additive white Gaussian noise

is selected with signal to noise ratio of 20 dB.

PSO-LE C2

PSO-LE C1

PSO-DFE C2

MSE(dB)
1
&

PSO-DFE C1

15 2 25 3 35 4 45 5
cl(=c2)

Figure 4.6: Effect of the acceleration constants (¢; and ¢g).

10

PSO-LE C1
PSO-LE C2

PSO-DFE C1

_15 . . . .
13 (2.4) 35 (4.6) (6.7 (6.8)

‘min’ max

Figure 4.7: Effect of the k.., and k.

4.6.1 Parameter adjustment analysis

Parameter adjustment analysis for only SISO case is presented here. A similar
analysis approach follows for the MIMO case. To have near optimum performance,
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a careful selection of the key parameters is needed. Towards this goal, we have
performed thorough experiments to find the values of 5 key parameters that give
minimum MSE, namely the data block size N, the population size n, the maximum
velocity Umae, the acceleration constants ¢; and co, and finally, the limits k,,,;, and
kmaz Of the iteration-dependent factor k. which directly controls the constriction
factor K. Our analysis showed that these parameters do not depend on the
modulation type, channel or number of transmit and receive antennas. Hence,
once these parameters are adjusted, they are held fixed for any kind of modulation
scheme or channel and for any number of transmit and receive antennas.

The outcomes of parameter adjustment analysis are shown in Figs. 4.6-4.10.
In our experiments, we have used equal values of ¢; and ¢y to achieve a balance
between the local and global searches and the best value achieved is 4 as shown in
Fig. 4.6. With respect to the limits k,,;, and k4., the optimum value achieved is
Kmin = 4 and k., = 6 as shown in Fig. 4.7. Fig. 4.8 shows that no improvement
in minimum MSE is obtained beyond N = 200.

As a general rule, a large population size will provide fast convergence but
there is no significant improvement beyond n = 40 as shown in Fig. 4.9. Figure.
4.10 clearly shows that with in the range of [0.01%pyae 0.3 % Pnar) the maximum
velocity of vee = 0.2 % s 1S the one that leads to the lowest MSE. For PSO-
LMS;, all the parameters are the same only n = 5 is used since n > 5 does not give
significant performance gain. In a practical scenario, the different parameters

comprising the PSO algorithm have to be selected using a sensitivity analysis,
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during the training phase similar to the one done here, to be able to select the

compromised one.
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4.6.2 Performance of PSO-DFE

Here, the learning and Symbol Error Rate (SER) curves are obtained for py,q. = 2
and p,;, = —2, and the MSE is averaged over 20 runs. To make the comparison

fair, we used the block LMS/RLS. For LMS, the step-size u is set to 0.025.
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iteration
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Figure 4.11: Learning Curves of different algorithms for channel C'1.
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Figure 4.12: Learning Curves of different algorithms for channel C2.

Figures 4.11, 4.12 and 4.13 depict the learning curves for C'l, C2 and MIMO
channel, respectively. An improvement in convergence time and steady state MSE
are achieved by the PSO-DFE over the PSO-LE and LMS/RLS. The improvement

in convergence time and MSE is more pronounced in the MIMO channel which
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Figure 4.13: Learning Curves of different algorithms for MIMO channel.

has larger eigenvalue spread as shown in Fig. 4.13. The insensitivity of the PSO-
DFE to the channel’s eigenvalue spread is clear from Figs. 4.11 and 4.12. It is
also clear that PSO-LMS-DFE performs even better than PSO-DFE. Figure 4.13
also depicts that the modified PSO-LMS-DFE for complex-valued data and PSO-
LMS-DFE using two PSOs for real and imaginary part separately, have equal

performance.
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Figure 4.14: MSE curves for blind equalization.

In Fig. 4.14 the comparison of MSE curves for the case of blind equalization is

shown. For blind PSO, the error used to calculate the objective function is given
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as

e(k) = p — [z(k)], (4.30)

where p is positive scalar quantity equal to E|x|'/FE|z|?>. Here we use a center
tapping, i.e., the center tap of the equalizer is initialized to one and remaining
taps or particle positions to uniform random number between [ppin, Pmaz], for each
particle. To enhance the performance of PSO, it can be combined with other blind
algorithms like Constant-Modulus Algorithm (CMA), Reduced-Constellation Al-
gorithm (RCA), Stop-and-go and Multi-Modulus Algorithm (MMA) [66-69], just
to name a few. Hence when particles become stagnant, these algorithms can be

used to update the weights of the equalizer.
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Figure 4.15: Symbol error Rate for C'1.

Finally, Figs. 4.15, 4.16 and 4.17 show that the PSO-DFE achieves significantly
lower SER than PSO-LE and LMS/RLS and its performance is very close to
that of the ideal DFE (with perfect channel knowledge) even when the channel
eigenvalue spread is large. Due to the fast convergence of PSO, less training

symbols are required and hence a great reduction in the throughput overhead.
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Figure 4.17: Symbol error Rate for MIMO channel.

However, these benefits are achieved at a slight increase in the computational
complexity. The PSO-LMS-DFE performance is even closer to the optimum DFE
and its complexity is less than that of the PSO-DFE, which is shown in next
section. Further, the impact of the number of particles on the performance of
the PSO-LMS-DFE algorithm is depicted in Fig. 4.17. As can be seen from
this figure, by increasing the swarm size, the performance of the PSO-LMS-DFE
improves very well. This is due to the fact that the number of particles have a
great impact on the search space. As the number of particles increases, particles

will cover all the search space and therefore, PSO will easily find the potential
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solution in time varying environment.

4.7 Complexity Analysis

The PSO has an advantage over the block RLS of avoiding the matrix inversion
operation to update the weights of the equalizer. For complexity analysis of PSO,
we will count the total number of complex additions and complex multiplications
per iteration. Consider first the PSO with a variable constriction factor operating

on complex data.

1. The velocity update requires three complex multiplications and five complex
additions per particle per dimension. Multiplication with ¢; and ¢, in the
velocity update equation is ignored as ¢; = c¢o = 4, which can easily be
implemented using shift registers. Hence, for n particles of d dimensions
each, 3dn complex multiplications and 5dn complex additions are required

to update the velocity.

2. Computing the constriction factor amounts to three complex multiplications
and three complex additions ignoring the calculations due to the terms &,
|1 — ® — V&2 — 4®|, and (kmaee — Kmin) as these can be calculated off-line.
In fact, we can ignore the calculations due to constriction factor as it can

be saved in a lookup table.
3. The particle update requires one complex addition.

4. Computing the output vector of the equalizer for each particle, which re-

147



quires dNn complex multiplication and (d — 1)Nn complex additions for

block of size N.

5. Further Nn complex additions are required to calculate the error signal.

6. Evaluation of the MSE as given in (4.16) requires (N — 1)n complex addi-
tions. We can ignore the computations to calculate the square of error and
the reason is that PSO compares the MSE due to all the particles and picks
the one that achieves the minimum MSE so same results can be obtained

by using mean error instead of MSE.

In summary, PSO with variable constriction factor for complex valued signals
requires dNn + 3dn + 3 complex multiplications and (d — 1)Nn + 5dn + 3+(N —
1)n+ Nn = dNn+ 5dn+ 3+(N — 1)n complex additions per iteration. For PSO-
LMS, the algorithms switches between PSO and LMS. The LMS requires 2d /N
complex multiplications and (d — 1)V + 2d complex additions per particle [5].
Extensive simulations have been performed to calculate the number of updates
using the LMS update equation during the whole run and it has been observed
that the algorithm uses the LMS update equation for 75 out of 100 iterations on
an average. Therefore, the PSO-LMS requires 0.75(2dNn)+.25(dNn + 3dn + 3)
complex multiplications and 0.75((d — 1) N 4 2d)n+0.25(dNn+5dn+3+(N —1)n)
complex additions per iterations. As it can be seen that complexity depends on the
number of particles which are greatly reduced in PSO-LMS. Using N = 200,d = 6,
and n = 40 for PSO (n = 5 for PSO-LMS), the PSO-LMS is 5 times faster than
PSO in terms of multiplications and 10 times faster in terms of additions.
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The convolution operation required to compute the output of the equalizer, can
be performed in the frequency-domain using the overlap-save method. This will
further reduce the complexity of PSO-LMS . In addition, rather than updating
the parameters of PSO-LMS in the time-domain, they can be adapted in the
frequency-domain. The PSO-LMS algorithm so implemented is referred to as fast
PSO-LMS and it will require three M-point FFT (IFFT) as done for fast LMS in
[29], where M = 2N and N = d. Each M-point FFT (IFFT) requires (M /2)loga M
complex multiplications and Mlogs M complex additions. Now the computation of
frequency-domain output vector of equalizer for each particle requires Mn complex
multiplications and (M — 1)n complex additions. Hence, the total number of
complex multiplications and additions for fast PSO-LMS becomes 0.75(2Mn +
3(M/2)loga M )+.25(Mn + 3(M/2)logeM + 3Mn + 3) and 0.75(((M — 1)+M)n +
3Mlogo M )+0.25((M — 1)n+3Mloge M +5Mn+ 3+(M — 1)n+ Mn) per iteration
respectively. For M = 512 and d = N, fast PSO-LMS is 156 times faster than
PSO in terms of multiplications and 92 times faster in terms of additions. Finally,
Table 4.1 summarizes the computational complexity of the different algorithms
and Figs. 4.18 and 4.19 depict this comparison. Also, from these figures, it can
be seen that the size of N has a great impact on the computational complexity of

the different algorithms.
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Table 4.1: Computational complexity of different PSO algorithms

Algorithm | Multiplications Additions
PSO dNn + 3dn + 3 dNn + 5dn + 3
+(N —1)n
PSO-LMS 3dn/4+ 11dn/4 — Nn/2
TNdn/4+3/4 | —n/4+ Ndn + 3/4
Fast 5Mn/2+ TMn/2 — 5n/4+
PSO-LMS | 3(M/2)loga M 3(M/2)logo M
+3/4 +3/4
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Figure 4.18: Number of multiplications of various PSO algorithms versus block
size (V).
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Figure 4.19: Number of additions of various PSO algorithms versus block size
(N).

4.8 Conclusion
In this work, we showed how to integrate PSO with the DFE structure and demon-

strated the superior performance of the PSO-DFE with respect to the widely-used
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LMS/RLS-DFE. This improvement is more pronounced for highly-dispersive chan-
nels with large eigenvalue spread and MIMO channels. Moveover, extensive sim-
ulations were conducted to optimize the PSO design parameters. The PSO-DFE
significantly outperforms the PSO-LE and the LMS/RLS-DFE in terms of con-
vergence time and steady-state MSE. A hybrid algorithm, PSO-LMS-DFE, is also
proposed which is not only superior to the PSO-DFE in terms of performance but

also enjoys lower complexity. Further complexity reduction is achieved using the

FFT in the Fast PSO-LMS-DFE.
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CHAPTER 5

ADAPTIVE EQUALIZATION
USING PARTICLE SWARM
OPTIMIZATION FOR UPLINK

SC-FDMA

Single Carrier Frequency Division Multiple Access (SC-FDMA) has been adopted
as a multiple access technique for uplink in Long Term Evolution (LTE) standard.
In this work, an adaptive frequency-domain equalizer for SC-FDMA system using
Particle Swam Optimization (PSO) technique is proposed. Unlike stochastic gra-
dient and Recursive Least Squares (RLS) algorithms, PSO is known to have fast
convergence which does not depend on the underlying structure. The cost function
used in a PSO is formulated based on the respective structure of the equalizer,

whether it is Linear Equalizer (LE) or a Decision Feedback Equalizer (DFE). The
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robustness of our proposed PSO algorithm is demonstrated on a high Doppler
scenario. Furthermore it is shown that the performance improves more when us-
ing re-randomization. Finally, it is shown that the PSO based frequency domain

equalizer is more computationally efficient than its time domain counterpart.

5.1 Introduction

The most used algorithms for adaptive equalization to deal with time vary-
ing channels are Least Mean Square (LMS) and Recursive Least Square (RLS)
[29]. However, their performance degrade in channels having large eigenvalue
spread. Recently, Particle Swam Optimization (PSO) is used for adaptive estima-
tion /equalization problems and showed its improved performance when compared
to other conventional algorithms [40-43]. The PSO algorithm does not assume
any underlying model, therefore its performance is independent of the character-
istics of the system used. For this reason, PSO is expected to perform well in
channel with large eigenvalue spread.

In this work, PSO is used in an adaptive frequency-domain equalizer for uplink
SC-FDMA system and it is shown to have less computational complexity as com-
pared to PSO applied to adaptive time-domain equalization. More importantly,
In case of a DFE, a separate fitness functions, for feedforward and feedback filters,

are developed entirely in the frequency-domain.
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5.2 PSO-based adaptive equalization

Let the weight vector of the LE denoted by WW. Using the system model described
in Section (2.2), the output of the equalizer, X}, in the frequency-domain at

instant k is given by

Xy = Z Wi (5.1)

In case of the DFE, the output of the equalizer is

/Yv'k =Z.Fi_1+DpBi_ (52)

where Fj; = [FO)—1, F(Dp—1, ... F(M — 1)4]7 and Bp, =
[B(0)r_1,B(1)g_1, ... B(IM —1);_1]T are the feedforward and the feedback filters
of the DFE, respectively. Note that the exact solution of these filter coefficients

is not needed in the case when using an adaptive algorithm. The decision matrix

D, is defined as

diag(Fy(xy)), for training
Dy =

diag(Fy (&), for decision-directed

where &, is the decision on &, which is given as

&, = FlI X, (5.3)
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Finally, the error signal, e, = [e(0), ..., e (M — 1)]7, is given as

&) — xy, for training

e, = (5.4)
&), — @&y, for decision-directed

In this section, a PSO-based adaptive frequency domain equalization al-
gorithm is devised for SC-FDMA system. For this, the filter coefficients in
(5.1) and (5.2) are calculated adaptively using PSO [43]. We denote the M-
dimensional position and velocity vectors of the i particle at instant k as
Pis = [Pix(0),pik(1), .., pir(M — 1)] and v = [v;(0), v;(1), ..., v (M — 1)], re-
spectively, where p; 1. (1) represents the 7' particle position having velocity v; x(1) in
the [""-dimension. Each p; (1) and v; (1) are clamped in the range [~ Pmaz; +Pmaz)
and [—Umaz, +Umaz|, TESpectively, where vyap = UePmae and v, is the velocity con-
straint factor. A fitness function (cost function), discussed later, is minimized to
reach the global minimum. The local and global bests in a conventional PSO are
found as follows. For the ' particle, among all of the particle’s visited positions
up to instant k, the one that gives the lowest value of the cost function is the local
best of the i particle denoted by pbest, ;. Similarly, for the whole swarm and
among all of the swarm’s visited positions up to instant k, the one that gives the

lowest value of the cost function is the global best of the swarm abbreviated as
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gbest,. Now, the velocity update equation is given as

Vipr1 = K(k)[vix + c xrand, « (pbest,; —p, ;)

+ ¢y xrand, * (gbest; — pzkz)]

where rand; = [randy; randy;, ... randy_1;)%, j =1,2 and the I"* element
rand, j is uniformly-distributed number in the range [0, 1]. K (k) is the time vary-
ing constriction factor defined in [43] and ¢; and ¢, are the positive acceleration
constants satisfying ¢; + ¢ > 4. After updating (5.5), the i particle’s position

is changed according to p, ;.1 = P;  + Vik-

5.2.1 Fitness Function

A PSO is more effective in off-line applications where the whole data is available;
however, our case is an on-line one therefore, instead of using the whole data,

a block of data, i.e., one SC-FDMA block is used. The fitness function (cost

function) used in the minimization procedure at the k' iteration is given as

ORI (55)

where e;(j) is the j error at the k' instant and it is obtained from (5.4). Taking

the DFT, the frequency-domain version of the error is given as

E(l) = i ex(j)exp(—v/—1 2nlj /M), 1 =0,1,..M — 1 (5.6)

Jj=0

[asry
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and also

Er =Dy — Xy, (5.7)

Minimizing (5.5) in the time domain is equivalent to minimizing (5.7) in the
frequency domain as (5.5) depends on ij\/i61 lex(j)| and so does . Therefore,
the absolute value of £, will be our fitness function. As & = [&(0), ..., Ex(M —1)]
so unlike conventional PSO we define a vector of fitness functions of length M. In
other words, the value of the fitness function is different for each dimension. In
this way, instead of comparing particle positions to constitute pbest, ; for the ith
particle we find best value of each dimension and pbest, , will be amalgamation
of each best dimension up to instant k. Similarly, gbest,, is combinations of each
best dimension among all pbest, ,, i = 1,2,...n, where n is the swarm size.
Above fitness function is valid for LE, incase of DFE we have to find the
coefficients of both feedforward and feedback filters which is not possible by using
same fitness function, Therefore, we put constraint on feedback filter. A constraint
to cancel out the pre and post cursers but not the desired component was proposed
in [23]. We use this constraint to formulate our fitness function for DFE. The

constraint based problem for each frequency bin is given as follows

M—-1
| , o )
Juin &) subject to jZOBk(])—O,l—O,l,...M 1 (5.8)
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Using Lagrange multiplier, we get

M—-1

FR) = & +ar Y Bi(j) (5.9)

j=0

Now the gradient of (5.9) with respect to F(I) and B(l) is equal to

’

FR)Fa) = Ve(D)]E(1)] (5.10)

f(B)sa) = VuDIED)] + ay (5.11)

PSO compares the fitness value of all the particles and pick the one that gives the
lowest value, as the term Y (1) in (5.10) is commonly for all the particles so we
ignore this term and the fitness function for feedforward filter is f (k) roy = &),
which is same as for the linear equalizer. oy is updated according to the stochastic
gradient method,
M-1
Q1 = o + Z By.(5) (5.12)

J=0

where p is the step size.

5.2.2 Re-randomization

One of the problems of the PSO is that once a gbest is found, then all particles start
to move towards it and hence become stagnant around the global minima leaving

empty spaces in the search space. In our scenario, we are using PSO not only to
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avoid providing channel information at the SC-FDMA receiver but also to track
the variation in the channel. Therefore, due to the time- varying nature of the
problem, the values of the equalizer taps are not fixed and if the particles become
stagnant in one place, the then PSO will not be able to find the plausible solution.
To tackle this issue, re-randomization is proposed. In this method, the particles
are re-randomized around gbest; after certain time instants, except during the
training phase. In the training phase, the main objective is to enable the particles
to search for the global minimum quickly. However re-randomization during this
phase, will slow down the speed of convergence of the global minimum search
process. The benefit of re-randomization is its capability to allow the particles
a higher probability of finding the best solution in time varying environments.
As such it also yields a better Bit Error Rate (BER). Re-randomization here can
be thought of retraining in RLS/LMS which is used to avoid divergence in these
algorithms. Therefore, re-randomization will not only improve the performance
but also reduce the overhead that would otherwise be required in retraining blocks

needed in RLS/LMS.

5.3 Complexity Analysis

In this section, the computational complexity of the PSO algorithm operating in
the frequency-domain (FD-PSO) is compared with PSO operating in the time-
domain (TD-PSO) for a LE (for DFE, the complexity roughly becomes twice).

The comparison is based on the total number of complex multiplications and
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additions. For the TD-PSO, the number of complex multiplications and additions
required are M?*n+3Mn+3 and M*n+5Mn—+ (M —1)n+3, respectively [43]. In
FD-PSO, the convolution operation to find the output of the equalizer is replaced
by multiplication, therefore, in this case Mn + 3Mn + 3 complex multiplications
and 5Mn + 3 complex additions are required. To illustrate the computational
complexity, for M = 512, FD-PSO is 128 times faster than TD-PSO in terms of
multiplication and 103 times faster in terms of addition.

Table 5.1 summarizes the computational complexity of both algorithms.

Although the FD-PSO is computationally heavier than the frequency-domain RLS

Table 5.1: Computational complexity of PSO algorithms

Algorithm | Multiplications Additions
TD-PSO | M?*n+3Mn+3 | M?n+6Mn —n+ 3
FD-PSO AMn + 3 5Mn + 3

because of the number of particles, it is nevertheless still preferred to use PSO
because of its superior performance over that of the RLS. Simulation results will
substantiate this fact. Moreover, as processing is carried out in the base station
(uplink scenario), the computational complexity is not any more problematic for

the FD-PSO algorithm.

5.4 Simulation Results

In this section, the FD-PSO algorithm is tested on a LTE system with a carrier
frequency of 2GHz and a bandwidth of 5MHz. Here, the FD-PSO is implemented
using the PSO for complex-value data. Quadrature Phase Shift Keying (QPSK)
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modulation with interleaved mapping on a 3-path Rayleigh fading channel is used.
M =512, n = 40 and the rest of the parameters are similar to those used in [43].

Figure 5.1 reports on the performance brought about by the use of the FD-PSO.
The product of Doppler frequency, fy, and the sampling time, Ty, is f47 = 0.0001.
Almost a 2dB improvement in BER, at BER = 1073, has been achieved by the FD-
PSO over the RLS algorithm. Moreover, it can be seen that the worst performance
is obtained by the LMS-DFE. Further the impact of number of the particles and
re-randomization is depicted in Fig. 5.2. By increasing the swarm size, we can
improve the performance of the proposed algorithm and this is due to the fact
that the particles will cover all the search space, thus allowing the PSO to easily
find the potential solution. Similarly, re-randomization prevents all the particles
from converging to a single point and thus improves performance . At a high

Doppler, the PSO performs much better than RLS as shown in Fig.5.2.
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Figure 5.1: Comparison of PSO algorithm with RLS and LMS for f;7s = 0.0001
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Figure 5.2: Effect of Doppler on PSO algorithm

5.5 Conclusion

A FD-PSO-based adaptive equalization in a SC-FDMA system is proposed in this
letter. Simulation results verified that our devised adaptive equalization scheme
has a better performance than that of RLS and LMS. Furthermore, in case of
a high Doppler, the performance of the FD-PSO algorithm can be improved by

increasing the number of particles and the use of re-randomization.
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CHAPTER 6

SPARSE LEAST MEAN

SQUARE (LMS) ALGORITHM

There are many adaptive algorithms for adaptive equalization, such as Least Mean
Squares (LMS) and Recursive Least Squares (RLS). However, these algorithms
have no particular advantage in sparse system due to no use of sparse character-

istics.

6.1 Introduction

The existing Sparse versions of the LMS are ly norm constraint LMS (lo-LMS), [,
norm constraint LMS (l; -LMS) and [y norm constraint Exponentially Forgetting

Window LMS (lo-EFWLMS) [34,70,71] , with their normalized and variable step
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size versions [72]. Generally, these algorithms use the following update equation

updated tap weight vector = old tap weight vector + gradient term

+ zero attractor term (6.1)

As it can be seen that(6.1) contains an LMS update and a zero-attractor term
which is used to guarantee the sparsity by attracting the tap coefficients to zero.
These algorithms achieve the lower Mean Square Error (MSE) than the convec-
tional LMS in sparse system identification problem but suffer from slow conver-
gence because the gradient and zero-attractor terms in update equation (6.1) are
hard to balance. To achieve fast convergence, ly Zero Attraction Projection (Io-
ZAP) algorithm is proposed in [71] but it is unable to achieve the lower MSE.
Moreover, these algorithms have higher complexity than the conventional LMS
because of an additional zero-attractor term.

Our devised Sparse LMS (SLMS) is different from the aforementioned algo-
rithms in a sense that it only updates the significant taps which reduces the
computational complexity tremendously with great performance improvement.

In adaptive equalization, one of the issue that badly effects the performance
of an equalizer is the number of the taps and decision delay required to perfectly
equalize the channel. The decision delay determines which symbol is detected at
current instant. Its value can vary from 0 to the one less than the number of total
taps. Both number of taps and decision delay significantly affects the performance

of the equalizer. Using small number of taps does not serve the purpose, on the
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other hand, large number of taps will not only increase the complexity but also
the EMSE. Hence, there always exit an optimum number of the taps that is best
balance between the performance and complexity. Moreover, for a specific length
of the equalizer there is an optimum delay which gives lower MMSE. Normally
the number of taps and decision delay are predicted based on the length of the
channel, which itself is not known at the receiver.

Our devised SLMS not only gives the sparse solution of the problem at hand
but it also gives the optimum number of the taps for a specific decision delay,
necessary to achieve the best performance. The optimum number of taps varied
with the signal-to-noise level for a specific channel.

In SLMS, first the significant taps are calculated using sparse signal recov-
ery algorithm and then only these tap weights are updated using LMS. Before
proceeding further, brief overview about the sparse signals recovery is provided.

Given the system of equation y = Hw-+mn, where y, H, w and n are measure-
ment vector, measurement matrix, unknown vector and noise vector, respectively,

the sparsest solution can be obtained by solving the following problem

5<e (6.2)

min |||y subject to ||y — Hw
w

where ¢ is chosen to bound noise in measurements. Generally, finding the optimum
solution to this problem is computationally not feasible. There are two main
approaches to find the suboptimal solution, namely, /;-norm minimization and

greedy algorithms. In /;-norm minimization, the resulting solution is not exactly
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sparse because many small entries will exit in @w. On the other hand, greedy
algorithms provide more control over number of non-zero entries whose locations
and values are determined iteratively. Moreover, finding the solution iteratively
matches to our application here, since LMS algorithm is also iterative. Among
the greedy algorithms, one of the widely used algorithm is Orthogonal Matching
Pursuit (OMP) [73]. It takes y, H and a certain stopping criteria as its inputs
and computes a sparse solution . Hence, OMP is denoted by wb» = OMP(y,H,

stopping criteria). The stopping criteria may be a predefined sparsity level or

bound on residual term, i.e., ||y — Hw|[3.

Now, to develop SLMS, first the symbol by symbol and block equalization are

formulated as follows.

6.2 Symbol by Symbol equalization

n(k) @ *(k — &) x(k — &)
x(k) N y ™~ Decision
NI FFF device
A

FBF

Figure 6.1: Block diagram of the decision feedback equalizer.

Figure 6.1 depicts the block diagram of a communication system equalized by
the DFE. We will formulate the problem for N, transmit and N, receive antennas
as follows.

In a Ny x N, MIMO system, independent and identically distributed data
symbols {z1(.),z2(.),...,zn,(.)} are transmitted from antennas 73,75, ..., T,,
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respectively, over the multi-channel environment and received by anten-
nas Ry, Ry, ..., Ry, after being corrupted by additive white Gaussian noises
{n1(.),n2(.),...,nn.(.)}. z1(.) travels through channels hjq,his,..., A1y, which
are the respective impulse responses of the channels between transmit antenna
Ty and receive antennas Ry, Ra, ..., Ry,. Likewise, xo(.) travels through chan-
nels hoy, hoo, ..., hon, which are the respective impulse responses of the chan-
nels between transmit antenna 75 and receive antennas Ry, Ry, ..., Ry, and sim-
ilarly for other transmit antennas. Hence, the received signals are not only cor-
rupted by channel and noise but they also interfere with one other. The signals
{z1(.),22(.), ..., zn,(.)} are assumed to be uncorrelated with each other and with
the noises.

Let the received signals be {yi(.),y2(.),...,yn,.(.)}, and define the vectors of

transmitted samples, received symbols and decisions at instant & as follows.

y(k) = (k) walk) . yn.(F)],
z(k) 2 [n1(k) wo(k) . zn (k)]
&(k—0) 2 [i1(k—10) do(k—10) ... in(k—20)]

where &(k — 0 — 1) is a delayed version of &(k). At any instant k, the states of
feedforward filter (FFF) y, and feedback filter (FBF) dj, are, respectively, given

as

yp=ylk) ylk—-1) .. y(k—N;y+1)] (6.3)
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[x(k—0—1) .. x(k— 06— N,)],for training
di = (6.4)

[@(k—0—1) .. &(k—0— Nyp)], for decision directed

The received vector y,, is fed into the feedforward filter with /Ny matrix taps
each of dimension N, x N,. Similarly, the decisions are fed into a feedback filter
with NV, matrix taps each of dimension N, x N,. The input to the decision device

is given as

&(k) = y(k)Fo+y(k —1)F; ...
+y(k— Ny +1)Fy,_1 — &(k — 0) By

—&@(k—6—1)By ... —&(k—06—N,+1)By,_1 (6.5)

where Fo, Fy,..., Fiy, 1 and By, By, ..., By, 1 are the matrix coefficients of the
feedforward and feedback filters respectively. For the decision-directed mode,
Z(k —0) = x(k — ). Let us denote the columns of Fy (By) by Fo1 (Boa), Fos
(Bo2),.--,Fon, (Bon,) and likewise for other matrix coefficients of the feedforward
and feedback filters. Let W, ,_1,(r = 1,2,..., N,) be the vector comprised of the
rth column of matrix taps of feedforward and feedback filters at instant k£ — 1 and

given by.

W, = [Fg, Fi, .. Fy, _,, Bg, B, .. By, ], (6.6)
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where (.)7 represents the transpose operation. We can write (6.5) as follows.

Jvir(k?) = [yk: — dk]WT,k—l7 (67)

Now, the error signal is given as

Z.(k —9) — Z.(k), for decision-directed
(k) = (6.5)

x.(k —9) — Z,.(k), for training

Now the weights will be updated according to stochastic gradient algorithm (LMS)

Wr,k = Wr,k—l + ,u[yk - dk]He(k) (69)

6.3 Block equalization

For the Block equalizer , let the block length is L. Defining the matrix of received

symbols as

y(k) o y(k =Ny +1)

Y, = : : (6.10)
ylk+L—1) -+ ylk+L—Ny)

and the decision matrix,
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dk—6—1) - d(k — 6 — N,)

Dy,

(6.11)

dk—0+L—2) - d(k—56+L—N,—1)

where d(k) is the decision on the symbol &(k) in case of decision-directed mode

and x(k) in case of training mode. The output of the equalizer is given as

Zr=[Y: — DJW. (6.12)

where

B = [2(k) ... @(k+L—1)] (6.13)

The error at output of the equalizer is

where
dp =dk—=9) .. dlk—56d+L—1)] (6.15)
Defining A, as
A, =Y Dy (6.16)
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6.4 Sparse LMS

To enhance the performance of LMS, the SLMS is developed as follows.

e Find the locations and values of the non zero taps by using the estimates of

the correlation matrices i.e.

W)= (A" A Ad (6.17)
Ryy Ray

e Use the same locations to update the weights using LMS algorithm.

we will use the OMP algorithm to solve (6.17). The overall algorithm is explained
as following

Step 1: Find the locations of the non zero taps, LO(w7]), and initial value
of the non zero taps, W}, using the estimates of the correlation matrices. Since
matrix inversion is involved in (6.17) so we will use the OMP algorithm to find

the sparsest solution of (6.17) as

W} = OMP(A"dy", A" Ay, [| A Ay} — A "dy |5 < e) (6.18)
éy LH stoppin;rcriteria

The working of OMP algorithm in step 1 is as follows.

e INITTALIZATION: Initialize the index set Iy = [ |, residual ro = y, w] =0

and t = 1.

e THE t'* ITERATION:
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1. Compute 6; = |r \H(:,1)|, Vi & I,_,

2. Choose m; = argmax; 6;.

3. Update I; = I;_1 Umy. i.e., the indices of the non-zeros elements are
augmented by my.

4. Compute w;(I;) = (H(:, I;))'y, where w5 (I;) holds the elements of @}
indexed by 1.

5. Compute ry =y — H(:, I;)w](I;), where 7; is the residual error at the

tth iteration.

6. If ||Hw; — y||3 < ¢, exit the algorithm, else set ¢ = ¢ + 1 and go to

step 1.

Step 2: Recursions of LMS (k > 0): By using the known locations and
initial taps obtain from step 1, only update the corresponding weights of known

locations using (6.9).

— SLMS
0.8 LMS ||

061

0.4r

il . , lf,:r.. .

Amplitude

far-away tap weights
-0.8 y
0

.
50 100 150
Tap index

Figure 6.2: Impulse response of the equalizer using LMS and SLMS with L = 200
and SNR=20 dB.

Figure 6.2 depicts the impulse response of the equalizer using conventional
LMS and SLMS for a ITU vehicular A channel [74], which spans over fourteen
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symbol durations. Therefore, the 'far-away’ weights, indicated in Fig. 6.2, are not
needed, in fact these weights create interference inside the equalizer. To eliminate
this problem, the OMP algorithm is slightly modified. The OMP algorithm gives
the location of the strongest tap in first iteration if the columns of the sensing
matrix H have equal norm [75]. Now in our case, as can be seen from Fig.
6.2, that all significant taps are closely packed. Therefore, instead of finding
the maximum (step (2) in OMP) in each iteration of the OMP algorithm, the
maximum (strongest) tap is determined in the first iteration only and then for
the remaining iterations the adjacent taps are used and checked for the stopping
criteria. The overall procedure is as follows. In the first iteration, OMP gives the
location of the strongest tap, which we call as i*" location. In next two iterations,
(i —1)™ and (i + 1) locations will be selected and tested for stopping criteria
and then in 4" and 5™ iterations (i — 2)™" and (i + 2)" locations, respectively,
will be used and tested, until the stopping criteria is met. In this way, not only
the 'far-away’ weights are eliminated but the computationally complexity is also
reduced due to avoiding the need of finding the maximum among all taps locations
in each iteration. We termed this approach as Dominant Tap Approach (DTA).
Figure 6.2 depicts the impulse response of the equalizer using conventional LMS
and DTA. In summary, we start with large number of taps and a specific decision
delay then by using OMP, we get the optimum number of taps with a decision
delay which gives the lower MSE. In the simulation , the value of ¢ is set to be

equal to the noise variance, step size p is 0.005 and 6 = Ny/2.
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Figure 6.3: Impulse response of the equalizer using LMS and SLMS with dominant
tap approach, L = 200 and SNR=20 dB.

6.5 Computational Complexity

The complexity of Sparse LMS is less as compared to normal LMS due to updat-
ing the significant weights only. On the other hand, using OMP at the start will
increase the complexity of the DTA. To compare the compuational complexity,
we count the number of multiplications/additons in LMS and OMP algorithms.
The LMS algorithm requires 8 M multiplication/addition [5] whereas, the OMP
algorithm requires (K + 1)(Ny + N,)* + K2(3(Ny + N,)/2 + K?/12) multiplica-
tion/addition [76], where K is the sparsity level. Figure 6.4 depicts the comparison
of the computational complexity for different values of active taps percentage (op-
timum taps by OMP / total number of taps * 100). The curve with 100 percentage
of active taps is for conventional LMS. It can be seen that at start the computa-
tional complexity of DTA is high but as the iterations progress, DTA takes over

the LMS algorithm.
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Figure 6.4: Computational Ccmparison of LMS and SLMS.

6.6 Simulation Results

We have used Ny = 140, N;, = 0 for Linear equalizer and Ny = 140, N}, = 3 for the
DFE, with ITU vehicular A channel. Binary Phase Shift Keying (BPSK) modula-
tion is used in training mode to reduce the number of involved multiplication and
additions. Fig. 6.5 depicts that there is a significant improvement in convergence
and MSE when using DTA as compared to LMS. The percentage of active taps for
DTA is 15.9 percent. lo-EFWLMS is also plotted as this algorithm achieves the
lowest MSE than previous sparse algorithms in the literature [34,70,71]. Moreover,
The performance is consistent when using DFE.

Fig. 6.6 depicts the MSE versus SNR and percentage of active taps at each
SNR. It can be seen that at low SNR, large number of taps are useless. This not
only saves on the computation but gives better performance.

In case of MIMO, the performance gain is even more produced as depicted in
Fig. 6.7. Figure also shows that using only location information in DTA also gives

improved performance. Next, in Fig. 6.8 the effect of block size L is investigated
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Figure 6.5: Comparison of LMS and SLMS for SISO case with L = 200, SNR=20
dB.
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Figure 6.6: MSE versus SNR for SISO case with L = 200.

and it has been noted that using large block size (L = 200 in this case) only

Ny + L training signals are required.

LMS-DFE

DTA-DFE with only location information
DTA-DFE

MSE(dB)
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d
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I Lkl MW%W»‘WWJ e
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Figure 6.7: Comparison of LMS and SLMS for MIMO case with L = 200, SNR=20
dB.
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Figure 6.8: Effect of block size (MIMO case), SNR=20 dB.

Next, it is shown theoretically that how large number of taps effect different
parameters. In table 6.1, theoretical values of the smallest eigenvalue, largest
eigenvalue and eigenvalue spread of the correlation matrix (R) at the input of the
equalizer, are listed for different channels. The result of this computations are
shown in Fig. 6.9 and 6.10. The theoretical MSE shown in Fig. 6.9 is calculated
as [5]

p* noise variance x trace(R)

MSE = 2 — mu * trace(R)

+ noise variance (6.19)

and the time constant 7 (which gives idea about the rate of convergence) is shown
in the Fig. 6.10 , and it is given as [5]

—1

< 6.20
2 In(1 — p *ith eigenvalue) (6.20)

T;

The slower rate of convergence is attained corresponding to the smallest eigen-

value. Therefore, for the Fig. 6.10, the smallest eigenvalue is used to compute the
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upper bound.

From these figures, it can be seen that large eigenvalue spread has the effect of
slowing down the rate of convergence of the adaptive equalizer and also increasing
the steady-state value of the average squared error. It is clear from these figures
that with small number of active taps, the performance degradation and conver-
gence are almost independent of eigenvalue spread. For remaining of the figures
ITU vehicular A channel is used.

The misadjustment M provides a measure of how close the LMS algorithm is

to optimality in the MSE sense and it is given as [29]
_H
M = 5 trace(R) (6.21)

Figure 6.11 depicts that the misadjustment increases with the number of active
taps. Fig. 6.12 gives the MSE dependency upon p along with the active taps

percentage.

Table 6.1: Delay Spread of various channels for 100% active taps

Channel Min. eigenvalue | Max. eigenvalue | Eigenvalue spread
Uniform PDP with 11 taps 0.0132 30.1183 2277.9
Exponential PDP with 14 taps 0.0823 0.3485 4.2332
ITu vehicular A channel 0.0218 8.0400 368.8369
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Figure 6.9: MSE versus active tap percentage for various channels, SNR=20 dB.

6000 T T T T T T T T

5000 -

4000

3000 -

Time Constant (1)

2000 -

1000 -

/

0 L L L L L L L L
10 20 30 40 50 60 70 80 90 100

active taps (%)

Figure 6.10: Time constant 7 versus active tap percentage, SNR=20 dB.
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Figure 6.11: Theatrical maladjustment, SNR=20 dB.
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CHAPTER 7

CONCLUSIONS AND FUTURE

RECOMMENDATIONS

7.1 Conclusion

In this dissertation several adaptive algorithms are proposed, in particular to
the frequency domain DFE. These algorithms are studied in detail and analysed
in various scenarios using either mathematical model or simulations. The main

contributions of this dissertation are listed below:

e An adaptive frequency-domain DFE is proposed for the first time for SC-
FDMA, SFBC SC-FDMA, SM SC-FDMA and hybrid SM-SFBC SFBC SC-
FDMA systems with both feedforward and feedback filters operating in the
frequency-domain. The equalizer operates without channel estimation at the
receiver. The updating scheme used for the frequency-domain DFE is the

RLS algorithm. The proposed algorithm is shown to have a low complexity
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and this is due to the special structure of the matrices involved in computing
the weights of the feedforward and feedback filters in the frequency-domain.
The AFD-DFE is also more computationally efficient than non-adaptive
frequency-domain DFE. Simulation results for a time varying frequency-
selective fading channel under the effect of high Doppler frequency and CFO
on the system’s performance are conducted and demonstrate the significant

performance gain and robustness of the proposed algorithm.

A constraint RLS based adaptive DFE is entirely designed in the frequency-
domain for SC-FDMA and extended to a SFBC SCFDMA systems. The
CRLS performs better than the RLS algorithm with almost similar com-
plexity. Moreover, CRLS AFD-DFE outperforms the practical MMSE-DFE
in terms of BER. We also showed that less training symbols can be used
during training phase to reduce the overhead without sacrificing the per-
formance and introduced a blind AFD-DFE is also introduced. Simulation
results demonstrate the significant performance gain and robustness of the
proposed algorithm under the severe Doppler effect. We also extend our de-
sign to 3-tap adaptive equalizer in the frequency-domain, which has better

performance than 1-tap equalizer when dealing with ICI due to CFO.

We showed how to integrate PSO with the DFE structure and demonstrated
the superior performance of the PSO-DFE with respect to the widely-used
LMS/RLS-DFE. This improvement is more pronounced for highly-dispersive

channels with large eigenvalue spread and MIMO channels. Moveover, ex-
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tensive simulations were conducted to optimize the PSO design parameters.
The PSO-DFE significantly outperforms the PSO-LE and the LMS/RLS-
DFE in terms of convergence time and steady-state MSE. A hybrid algo-
rithm, PSO-LMS-DFE, is also proposed which is not only superior to the
PSO-DFE in terms of performance but also enjoys lower complexity. Further

complexity reduction is achieved using the FFT in the Fast PSO-LMS-DFE.

A FD-PSO-based adaptive equalization in a SC-FDMA system is proposed.
Simulation results verified that our devised adaptive equalization scheme has
a better performance than that of RLS and LMS. Furthermore, in case of
a high Doppler, it is shown that the performance of the FD-PSO algorithm
can be improved by increasing the number of particles and the use of re-

randomization.

Sparse LMS algorithm is developed and shown to have fast convergence and

lower MSE as compared to the conventional LMS algorithm.

7.2 Future recommendations

Future work involves the development of substitute algorithms to the proposed

ones, e.g., the blind PSO can be combined with other existing blind algorithms like

Constant-Modulus Algorithm (CMA), Reduced-Constellation Algorithm (RCA),

Stop-and-go and Multi-Modulus Algorithm (MMA), to develop hybrid blind PSO

algorithms. Similarly, BAFD-DFE uses only stop-and-go algorithm, above men-

183



tioned algorithms can be a good candidate to improve performance. Adaptive
turbo DFE equalization in the frequency domain can also be an alternative equal-

ization technique.
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