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It is well known that in the case of highly frequency-selective fading channels, the

Linear Equalizer (LE) can suffer significant performance degradation compared

to the Decision Feedback Equalizer (DFE). For time varying channels adaptive

equalizers are used and one of the famous adaptive algorithm is the Least Mean

Square (LMS) algorithm but it has the limitation of slow convergence. However,

there are other algorithms like Recursive Least Squares (RLS) algorithm that have

fast convergence but their high complexity limit their use. Beside these algorithms

there are heuristic approaches like Particle Swarm Optimization (PSO). Unlike

stochastic gradient algorithms, PSO is known to have fast convergence which does

not depend on the underlying structure.This dissertation proposes new ideas to

improve performance and reduce complexity of the above mentioned algorithms.
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In particular, the contributions are as follows.

First, we develop a low-complexity Adaptive Frequency Domain Decision Feed-

back Equalizer (AFD-DFE) for Single Carrier Frequency Division Multiple Access

(SC-FDMA) systems, where both the feedforward and feedback filters operate in

the frequency-domain and are adapted using the well-known block RLS algorithm.

SC-FDMA has been adopted as a multiple access technique for uplink in Long

Term Evolution (LTE) standard. Since this DFE design operation is performed

entirely in the frequency-domain, the complexity of the block RLS algorithm can be

reduced substantially when compared to its time-domain counterpart by exploiting

matrix structure in the frequency-domain. We extend our formulation to Multiple

Input Multiple Output (MIMO) SC-FDMA systems where we show that the AFD-

DFE enjoys a significant reduction in computational complexity when compared

to the frequency-domain non-adaptive DFE. Extensive simulations are carried out

to demonstrate the robustness of our proposed AFD-DFE to high Doppler and

Carrier Frequency Offset (CFO).

Second, we develop a constraint-based block Recursive Least Squares (CRLS)

for an AFD-DFE when used in an uplink SC-FDMA systems. The performance

of the CRLS algorithm is better than that of the RLS with no significant increase

in the computational complexity. Moreover, we extend our design to the Space-

Frequency Block code (SFBC) SC-FDMA system. We also show that the AFD-

DFE with CRLS not only enjoys a significant reduction in computational complex-

ity when compared to the frequency-domain non-adaptive optimum MMSE-DFE

xix



but its performance is also better than the practical MMSE DFE (the one with er-

ror decisions) and closed to the ideal MMSE DFE (the one with correct decisions).

Simulation results are carried out to demonstrate the robustness of our proposed al-

gorithm to high Doppler. To mitigate Inter-Carrier Interference (ICI) due to large

CFO, we have designed a 3-tap AFD-DFE for Single-Input Single-Output (SISO)

and SFBC SC-FDMA systems by exploiting the banded and sparse structure of

the channel. We show that the 3-tap AFD-DFE has an excellent performance as

compared to the 1-tap AFD-DFE with a low computational complexity. Further,

it is shown that we can reduce the training symbols in each SC-FDMA block that

are transmitted in the training phase with no significant performance degradation.

To further reduce the overhead blind AFD-DFE is also introduced.

Third, PSO is used for adaptive equalization. For time-varying channels,

adaptive equalizers are commonly designed based on the LMS algorithm which,

unfortunately, has the limitation of slow convergence specially in channels having

large eigenvalue spread. The eigenvalue problem becomes even more pronounced

in MIMO channels. PSO enjoys fast convergence and, therefore, its application

to the DFE merits investigation. In this work, we show that a PSO-DFE with a

variable constriction factor is superior to the LMS/RLS-based DFE (LMS/RLS-

DFE) and PSO-based LE (PSO-LE), especially on channels with large eigenvalue

spread. We also propose a hybrid PSO-LMS-DFE algorithm, and modify it to deal

with complex-valued data. The PSO-LMS-DFE not only outperforms the PSO-

DFE in terms of performance but its complexity is also low. To further reduce its

xx



complexity, a fast PSO-LMS-DFE algorithm is introduced. The system overhead

is reduced by devising a blind PSO algorithm.

Fourth, an adaptive frequency-domain equalizer for SC-FDMA system us-

ing PSO technique is proposed. The cost function used in a PSO is formulated

based on the respective structure of the equalizer, whether it is LE or a DFE. The

robustness of our proposed PSO algorithm is demonstrated on a high Doppler sce-

nario. Furthermore it is shown that the performance improves more when using

re-randomization. It is shown that the PSO based frequency domain equalizer is

more computationally efficient than its time domain counterpart.

Lastly, to increase convergence speed of the LMS algorithm,adaptive equalizer

based on Sparse LMS (SLMS) is devised.

xxi



xxii 
 

 مُلخّص الرسالة

 نفــيد إقبـــال الاســـم:                  

 خوارزمية سريعة لمعادلة انظمة الاتصال اللاسلكية ذات النطاق الترددي الواسععنوان الرسالة:           
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 2014 نيسان تاريخ الدرجة العلمية:  

معروف جيدا أنه في حالة اختيار الترددات المرتفعة في القناوات المتلاشية. المعادل الخطي يمكن أن يعاني من 
إضمحلال في الأداء بالمقارنة مع المعادل الذي يعتمد على ردود الفعل الخلفية المختارة. بالنسبة للقنوات المتغيرة مع 

الزمن, يستخدم المعادل المتكيف و من أشهر الخوارزميات المتكييفة هي خوارزميةمعدل التربيع الأقل, لكن يوجد فيها 
قصور نتيجة بطئ الألتقاء فيها. على الرغم من ذلك هناك خوارزميات مثل خوارزمية أقلتربيع متكرر لديها سرعة 

التقاء لكن التعقيد فيها يحد من استخدامها. بجانب هذه الخوارزميات هناك �ج قريبيساعد على الكشف مثل سرب 
الجسيمات الأمثل. على عكس خوارزميات الميل الأحصائية, سرب الجسيمات الأمثل يعرف بمتلاكه سرعة في الاتقاء 
و الذي لا يعتمد على البنية الأساسية. هذه الأطروحة تقدم فكرة جديدة لتطوير الأداء و تقليل التعقيد للخوارزميات 

سابقة الذكر. على وجه الخصوص المساهمات هي كالاتي. 
أولا, ودر ىلع دمتعي فيكتم لداعم انروط ددفي لمعي ةراتخلما لعفلا  مجالال الترددي و قليل التعقيد لنظام أحادي 

الناقل تقسيم متعدد الوصول,  ثأ حشرم نروددو ةيفللخا لعفلا   حشرمرودداملأا لعفلا مفي نلامعي ةي مجالال 
الترددي و متكيفان نتيجة لأستخدام صندوق خوارزمية التربيع الأقلالمتكرر. المعادل المتكيف الذي يعتمد على ردود 

الفعل المختارة استند على تقنية تعدد الوصول في الأرسال حسب معيار المدى الطويل المتطور. حيث أن عملية 
ودر لداعم ميمدصتح ةراتخلما لعفلا لفي  مجا قاطنلال الترددي, أما التعقيد في صندوق خوارزمية معدل التربيع 

يلقت نكيم رركتلما لقلفي هيرظنب هنراقن امدنع ايرهوج ه في دادتملأا مجالال الزمني من خلال استغلال البنية المصفوفية 
مجالال الترددي . لقد وسعنا صيغاتنا لنظام متعدد الوصول متعدد الخروج حيث وضحنا أن المعادل المتكيف الذي 

ودر ىلع دمتدمتي ةراتخلما ةيفللخا لعفلا تفي ليلقتلابع ولمحا تاديقعتلاسمجا عم هنراقن امدنع ةبلال الترددي الغير 
متكيف لمعادل ردود الفعل الخلفية.نإفكلذ ىلع اءا امحكاتم ةعسوم ة تفي انحترقم ةوق ةظحلالم اهذيفن مجالال الترددي 

المتكيف لمعادل ردود الفعل الخلفية في الدوبلر العالي وموازن ناقل التردد. 
ثانيا, لقد طورنا قيود بالأعتماد على التربيع الأقل المتكرر للمجال الترددي المتكيف لمعادل ردود الفعل المختارة عند 

في همادخت في لاسرلأا في يداحلأا لقانلا ماظن مجالال الترددي متعدد الوصول. الأداء في خوارزمية قيود التربيع 
الأقل المتكرر أفضل من التربيع الأقل المتكرر مع زيادة في التعقيدات المحوسبة. علاوة على ذلك لقد وسعنا تصميمنا 

في يداحلأا لقانلا ماظنل يددترلا يغارفلازمرلا قودن مجالال الترددي متعدد الوصول. مجا نأ انحضو اضيألال 
الترددي المتكيف لمعادل ردود الفعل المختارة مع قيود التربيع الأقل المتكرر لا تتمتع فقط بتقليل في التعقديات المحوسبة 
فقط و انما في أداء أفضل من أقل معدل تربيع الخطأ في المعادل لردود الفعل المختارة العملي الذي يحتوي على القرارت 
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الخاطئة. و قريبه من أقل معدل تربيع الخطأ في المعادل لردود الفعل المختارة المثالي الذي يحتوي على القرارات 
الصحيحة. نتائج المحاكاة تم ايجادها لتوضح قوة الخوارزميات التي اقترحناها لدوبلر العالي. لنقلل تشويش دخول الناقل 
نتيجة لموازن الناقل الترددي,  ثلاث انممص دقصفي فيكتملل يربان مجالال الترددي لمعادل ردود الفعل الخلفية لنظام 

و جرخلما يداحا لخدلما يدا في يداحلأا لقانل يددترلا يغارفلا زيمترلا قودنص ماظن مجالال الترددي متعدد 
الوصول من خلال استغلال النطاقات و البنية المتناثرة في القناة. ولاث ماظن نأ انحضثفي فيكتلما يربانصلا ي مجالال 

الترددي لمعادل ردود الفعل الخلفية يمتلك أداء ممتاز عند مقارنته بنفس النظام لكن أحادي الصنبور ولكن بزيادة في 
التعقيدات المحوسبة. أيضا, في بيردتلا زومر للقن نأ انناكمإب هنأ انح في يداحلأا لقانلا نم قودنص لك مجالال 
الترددي متعدد الوصول التي ترسل في مرحلة التدريب بدون وجود انخفاض في الأداء . الذي أيضا يقودنا الى تقليل 

في ةيقوف ىمع في فيكتلما ماظنلا مجالال الترددي لمعادل ردود الفعل الخلفية. 
ثالثا, سرب الجسيمات الأمثل تستخدم في المعادل المتكيف. للقنوات المتغيرة مع الزمن, المعادلات المتكيفة تصمم 

عادة بالأعتماد على خوارزمية أقل معدل تربيع, و التي للأسف لديها قصور في بطئ الإلتقاء خصوصا في القنوات التي 
. مشكلة القيمة الذاتية أصبحت أكثر وضوحا في القنوات متعدد الوصول متعدد متناثرةتكون فيها القيمة الذاتية 

الخروج. سرب الجسيمات الأمثل يتمتع بسرعة في الاتقاء و لذلك تطبيقاته في معادل ردود الفعل الخلفية المختارة ذو 
تحقيقات مميزة. في هذا العمل أظهرنا أن سرب الجسيمات الأمثل في معادل ردود الفعل الخلفية المختارة مع معامل 

الأنقباض المتغير يتفوق على أقل معدل تربيع و أقل تربيع متكرر بالأعتماد على معادل ردود الفعل الخلفية المتكررة و 
سرب الجسيمات الأمثل بالاعتماد على أقل خطأ. خصوصا في القنوات ذات القيمة الذاتية كثيرة التشتت. و اقترحنا 
أيضا خوارزمية التهجين من سرب الجسيمات الأمثل وأقل معدل تربيع و معادل ردود الفعل الخلفية المتكرر و حسنها 

لتتعامل مع البيانات ذات القيم المعقدة.سرب الجسيمات الأمثل لأقل معدل تربيع مع معادل ردود الفعل الخلفية 
المتكررة لا تتفوق فقط على سرب الجسيمات الأمثل مع معادل ردود الفعل الخلفية المتكررة في مجال الأداء ولكن 
تعقيدها أيضا أقل. و للمزيد من التقليل في التعقيد , قدمنا خوارزمية سرب الجسيمات الأمثل لأقل معدل تربيع 

لمعادل ردود الفعل الخلفية المتكرر السريعة. الفوقية في النظام تم تقليلها من خلال استنباط خوارزمية سرب الجسيمات 
الأمثل العمياء. 

رابعا, اقتراح نظام معادل النطاق الترددي المتكيف لناقل الأحادي للمجال الترددي متعدد الوصول بأستخدام تقنية 
سرب الجسيمات الامثل. اقتران التكلفة المستخدم في سرب الجسيمات الأمثل تمت صياغته بالاستناد على بنية مختصة 
للمعادل , سواءا كان المعادل الخطي و معادل ردود الفعل الخلفية المتكررة. قوة مقترحنا في خوارزمية سرب الجسيمات 

تتمثل في سيناريو الدوبلر العالي. علاوة على ذلك, انه من الواضح أن الأداء تحسنأكثر عند استخدام اعادة التوزيع 
العشوائي. مجا لداعم ىلع دامتعلأاب لثملأا تاميسلجا برس نأ حضاولا نم هنالال الترددي هو ذي كفاءة محوسبة 
في ةيرظن  مجالال الزمني . أخيرا لزيادة سرعة الألتقاء في خوارزمية أقل معدل تربيع , ينصح بستخدام معادل متكيف 

يستند على أقل معدل تربيع متناثر.  



CHAPTER 1

INTRODUCTION

1.1 Background

In communication system, band limited channel causes Inter Symbol Interference

(ISI). Due to this non ideal characteristic of the channel, signal spread in time

causing interference with the neighboring signals which limits the data rate. An-

other cause of ISI is multipath propagation in which the transmitted signal reaches

the receiver through different paths having different delays. This happens due to

reflection (from buildings), refraction (through trees ) and atmospheric effects.

Therefore, equalization is employed at the receiver to mitigate ISI and for perfect

equalization there is a need for high performance and computationally efficient

equalizers.

Consider a digital communication system in Fig.1.1 where C(z) and E(z)

represent the channel and equalizer. Furthermore, x(k) ,y(k) and n(k) denote the

input to the channel, input to the equalizer and additive noise, respectively, and
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Figure 1.1: Model of a digital communication system.

x̌(k) and x̂(k) are the output of the equalizer and the decision device, respectively.

The decision delay δ determines which symbol is detected at current instant.

Using the linear, causal, and FIR model of the channel and the equalizer, we

have

C(z) =
Nc−1∑
m=0

cmz
−m (1.1)

E(z) =
Ne−1∑
m=0

emz
−m (1.2)

G(z) = C(z)E(z) =

Ng−1∑
m=0

gmz
−m (1.3)

cm, em, gm are impulse responses of the channel, equalizer, and combined chan-

nel/equalizer, respectively, whereas Ng, Nc, Ne − 1 are their respective lengths

and Ng = Nc + Ne − 1. For perfect equalization E(z) = eφjZ−δ, i.e., G(z) is an

impulse. This is the simplest criteria, called as zero forcing criteria, but suffers

from noise enhancement problem. φ denotes the phase introduce by an equalizer.

Next, a brief overview of the equalization techniques commonly used in com-

munication systems are presented.
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1.1.1 Classification of Equalization techniques

Equalization can be classified according to the following criteria.

Coefficient adjustment

Equalizer tap weights can be fixed or adjusted adaptively. In the former case,

channel state information is needed, which is estimated by using the pilot sym-

bols whereas in the later case, training symbols are needed. There are several

algorithms to be used for adaptation, e.g., Least Mean Square (LMS), Recursive

Least Squares (RLS) and heuristic approaches like Particle Swarm Optimization

(PSO) etc. Among these algorithms, RLS and PSO are known to have fast conver-

gence and high complexity in contrast to LMS, which has slow convergence and

less complexity. To efficiently utilize the bandwidth, pilot symbols or training

sequence can be avoided by performing equalization blindly. There are differ-

ent configurations/algorithms to implement blind equalization e.g. Sato, Godard,

Benveniste-Goursat-Ruget (BGR), and Stop-and-go [2].

Structure

Structure of equalizer can be transversal, systolic, or Lattice. Mostly transversal

equalizers, also called tapped delay line equalizers, are used for their simplicity.

Criteria for error minimization

There are mainly three criteria for minimization of error, these are, peak distor-

tion or Zero Forcing (ZF), Mean Square Error (MSE) and Maximum Likelihood
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Sequence Estimation (MLSE) criteria. MLSE is implemented using Viterbi algo-

rithm and it is optimum but computationally complex, therefore it is used only

for reference whereas ZF and MSE are suboptimum. ZF has problem of noise

enhancement whereas MSE is mostly used as it takes noise into account.

Sampling

Equalizers can be symbol spaced or fractionally spaced. In symbol spaced, chan-

nel is sampled at symbol rate whereas in latter higher sampling rate is used which

depends on the pulse shaping [3]. Fractionally spaced equalizer has several ad-

vantages over symbol spaced equalizer. First, sampling at higher rates allows

timing recovery. Second, its performance is satisfactory in channels with deep

nulls. Third, perfect equalization is possible for Finite Impulse Response (FIR)

channels. Despite of these advantages, there are several disadvantages, e.g., not

all channels can be equalized [4], higher power consumption due to sampling at

higher rates, increased computational complexity.

Linearity

If a non-linear device is used within the equalizer then it is said to be a non-linear

equalizer and vice versa. A well known non-linear equalizer is Decision Feedback

Equalizer (DFE) which uses two filters, namely, Feedforward (FF) and feedback

(FB). In this equalizer the previous detected symbols are fed back to cancel out

the ISI caused by these symbols to the present symbol. The problem with DFE

is the error propagation i.e. if the decisions on past symbol are incorrect then
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it will reflect in the several symbols to follow. Longer the feedback filter length,

the longer these errors will retain in the equalizer and performance of equalizer

lowers, particularly, at low SNR [5]. Despite of the error propagation, the DFE is

used in most of the practical systems since it out performs the linear equalizer.

Time/frequency domain

Equalization can be performed in the frequency domain. The frequency domain

equalizer is computationally more efficient as compared to the time-domain equal-

izer. The frequency-domain equalizer finds its application in Orthogonal Fre-

quency Domain Multiple Access (OFDMA) and Single Carrier Frequency Division

Multiple Access (SC-FDMA) systems, which are extensively used in the uplink for

multiuser access scenarios such as the Long Term Evolution (LTE) standard [6].

Next we compared different equalizers. The symbol spaced and fractionally

space channel for comparison are shown in Fig.1.2 and Fig.1.3 respectively.
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Figure 1.2: Symbol spaced Channel.

As shown in Fig.1.4 and Fig.1.5, MLSE gives the optimum performance but
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Figure 1.3: Fractionally spaced Channel.
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Figure 1.4: Comparison of symbol spaced equalizers .

among the sub-optimal equalizers, the DFE outperforms the others. Furthermore,

performance of the fractionally space equalizer is better than its symbol spaced

counter part.
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Figure 1.5: Comparison of fractionally spaced equalizers.

1.2 Dissertation Contributions and Organiza-

tion

This dissertation is about proposing new ideas for fast algorithms which are to be

used for adaptive equalization. By ”Fast algorithms”, we mean that the algorithms

have fast convergence and processing (less number of multiplications/additions).

It is worth highlighting that the contributions of this thesis are somewhat

scattered, tackling various issues related to adaptive equalization in time and

frequency-domain. In particular, we have tried to eliminate the weaknesses of var-

ious adaptive equalization algorithms, namely, LMS, RLS and PSO, while keeping

their strengths. Therefore, instead of endeavoring to put forth a common data

model and a comprehensive literature review covering all the algorithms at once,

each chapter of this thesis is made self contained in a sense that it includes its

7



own motivation of the problem, literature review and contributions. The author is

well aware of the fact that some material is repeated in different chapters, which

was necessary in order to eliminate the need of shuffling the chapters over and

over again. By doing all this, not only flow of the thoughts are maintained but

it also facilitates the individual reading. The only exception is that the chapters

2, 3, and 5 uses a common data model, therefore, to reduce the redundancy, the

data model is presented only once in chapter 2.

In the ensuring, the main contributions of this work are summarized:

• An Adaptive Frequency Domain Decision Feedback Equalization (AFD-

DFE) is designed for a SC-FDMA system with frequency-domain feedfor-

ward and feedback filters in Chapter 2. The block RLS algorithm is used

to update both the feedforward and feedback filters as it is known for its

fast tracking/convergence properties. Here, we have shown that due to the

special structure in the matrices involved, the proposed algorithm has a low

computational complexity. Moreover, the design is extended to Multiple

Input Multiple Output (MIMO) SC-FDMA systems.

• An AFD-DFE is formulated using a constraint-based RLS for SISO and

MIMO SC-FDMA systems in Chapter 3. In frequency-domain, the channel

matrix is diagonal and we use 1-tap equalizer per subcarrier. However, due

to the carrier frequency offset, the diagonal structure of the channel matrix

is lost, and it contains most of the energy along its three main diagonals.

Therefore, by assuming banded and sparse structure of the channel matrix,
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we have extended our design to 3 taps per subcarrier AFD-DFE. We have

also shown that the reduction of the overhead can be achieved by using less

training symbols during the training phase and introduced a Blind AFD-

DFE.

• A PSO algorithm is proposed for a DFE structure in Chapter 4. To improve

the performance of the PSO algorithm, a hybrid PSO-LMS-DFE algorithm

is proposed and modified to deal with complex-valued data. The complexity

of the PSO algorithm is reduce by proposing a fast PSO-LMS algorithm. To

further reduce the system overhead a Blind PSO algorithm is also presented.

• A frequency domain PSO algorithm is proposed and formulated based on

the respective structure of the equalizer, whether it is a LE or a DFE in

Chapter 5.

• The convergence speed of the LMS depends on the number of the equalizer

taps. Lesser the taps, fast is the convergence. Since the impulse response

of the equalizer is sparse. Utilizing this property , a sparse LMS algorithm

is proposed in Chapter 6 to increase the convergence speed of the LMS

algorithm.

• Finally, Chapter 7 concludes the findings of this research and considers new

directions and future recommendations for the topic under observation.
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CHAPTER 2

ADAPTIVE

FREQUENCY-DOMAIN RLS

DFE FOR UPLINK MIMO

SC-FDMA

It is well known that in the case of highly frequency-selective fading channels, the

Linear Equalizer (LE) can suffer significant performance degradation compared to

the Decision Feedback Equalizer (DFE). In this work, we develop a low-complexity

Adaptive Frequency Domain Decision Feedback Equalizer (AFD-DFE) for Single

Carrier Frequency Division Multiple Access (SC-FDMA) systems, where both the

feedforward and feedback filters operate in the frequency-domain and are adapted

using the well-known block Recursive Least Squares (RLS) algorithm. Since this

DFE design operation is performed entirely in the frequency-domain, the com-
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plexity of the block RLS algorithm can be reduced substantially when compared

to its time-domain counterpart by exploiting matrix structure in the frequency-

domain. We extend our formulation to Multiple Input Multiple Output (MIMO)

SC-FDMA systems where we show that the AFD-DFE enjoys a significant re-

duction in computational complexity when compared to the frequency-domain

non-adaptive DFE. Finally, extensive simulations are carried out to demonstrate

the robustness of our proposed AFD-DFE to high Doppler and Carrier Frequency

Offset (CFO).

2.1 Introduction

Orthogonal Frequency Domain Multiple Access (OFDMA) is a multiple access

technique which has been adopted in many standards like European Telecommu-

nications Standards Institute Digital Video Broadcast– Return Channel Terres-

trial (ETSI DVB-RCT) [7], [8], WiFi [9] and WiMAX [10]. On the other hand,

SC-FDMA is extensively used in the uplink for multiuser access scenarios such

as the Long Term Evolution (LTE) standard [6]. SC-FDMA has an advantage

over OFDMA of having a low Peak Average Power Ratio (PAPR), which helps

in reducing cost and power consumption in mobile terminals. SC-FDMA is the

multiple access form of Single Carrier Frequency Domain Equalization (SC-FDE)

having comparable complexity and performance to that of OFDMA [11]. The

sensitivity comparison of OFDMA and SC-FDMA to Carrier Frequency Offset

(CFO) and Doppler effect has been reported in [12] where it was shown that for
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large CFO, the performance of SC-FDMA can get worse than OFDMA.

In SC-FDMA, equalization is performed after transforming the received signal

from the time-domain to frequency-domain using the Discrete Fourier Transform

(DFT). A linear equalizer can be adopted in SC-FDMA but in case of severe

frequency-selective fading channels, in which spectral nulls are present, this will

not be effective as the noise in these spectral nulls will be amplified causing signif-

icant performance degradation. Therefore, a Decision Feedback Equalizer (DFE)

is a more attractive solution in these scenarios.

There are different diversity techniques to combat multi-path fading effectively.

The most popular transmit diversity scheme with two antennas was proposed

by Alamouti [13]. Although the overall throughput is not increased but this

simple technique has certain interesting features which makes it attractive for

implementation. It is an open loop technique, i.e., it does not require Channel

State Information (CSI) at the transmitter, encoding and decoding is simple and

due to linear processing at the terminals, complexity is reduced. It achieves full

spatial diversity gain at rate 1 (i.e., full rate, as two symbol are transmitted in

two time slots) and failure of one antenna chain does not result in data loss, so it

is compatible with single antenna systems.

The scheme proposed by Alamouti is a special case of Space Time Block Codes

(STBC) [14]. Alamouti’s STBC can be applied to the 3GPP LTE uplink over two

SC-FDMA symbols and two transmit antennas. Due to single carrier transmission

from both antennas, the low PAPR property of SC-FDMA is not affected by
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signs and/or complex-conjugate operation. Unfortunately, we cannot use STBC

in SC-FDMA due to the following reason. For STBC, the coding is done in

pairs, therefore all the frames in SC-FDMA should contain an even number of

SC-FDMA symbols but this is not guaranteed in LTE system (this is called the

orphan symbol problem). In many cases, the frames contain an odd number of SC-

FDMA symbols. Moreover, in STBC it is assumed that channel remains constant

for two SC-FDMA symbols. This is not valid in case of fast varying channels and

performance degradation will result.

An alternative scheme to STBC is Space-Frequency Block Codes (SFBC) [15].

SFBC is applied within each M -point DFT block. Therefore, it does not suffer

from the problem faced by STBC when used in SC-FDMA and the number of

symbols in each frame is not required to be even. As SFBC is applied to each

SC-FDMA block, the size of the block should be even which is guaranteed in LTE

systems. One major drawback of SFBC is that the low PAPR property is affected

due to frequency inversions between successive sub-carriers [16]. Therefore, a

scheme is proposed in [17] in order to tackle the orphan symbol problem. It

uses spatial repetition on odd symbols and applies STBC on even symbols. This

scheme cannot achieve full diversity and its performance degrades at high Signal

to Noise Ratios (SNR). In [18], another approach is presented to avoid the orphan

symbol problem by applying the STBC before the M -point DFT but in some

channels its performance is not satisfactory especially at high SNR. In this work

we will use conventional SFBC.
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Several works studied the frequency-domain DFE. In [19–21], a hybrid DFE

structure is used for SC-FDE systems to perform equalization in the frequency-

domain. In hybrid DFE, the feedforward filter is implemented in the frequency-

domain while the feedback filter is realized in the time-domain. Due to frequency-

domain implementation of the feedforward filter there is a considerable reduc-

tion in complexity in a hybrid DFE as compared to its time-domain counterpart.

In [22], a hybrid DFE is developed for SC-FDMA to be applied for each user

separately. In [23], both the feedforward and feedback filters are implemented in

the frequency-domain and an iterative procedure is used to solve the causality

problem. The complexity of DFE with both filters implemented in the frequency-

domain is greatly reduced as compared to the hybrid DFE. In [1] a framework

is proposed to find the optimum weights of the frequency-domain DFE for SC-

FDMA systems and it was shown that its performance is better than Frequency

Domain LE (FD-LE) in frequency selective channels. All of the above mentioned

DFE structures are non-adaptive and require CSI at the receiver.

As equalization in SC-FDMA requires Channel State Information (CSI), which

is estimated from pilot symbols inserted in each block of data and optimum equal-

ization is used to remove channel effects. Alternatively, an adaptive equalizer can

be used which does not rely on CSI estimation and, hence, the channel estimation

overhead will be reduced. Moreover, an adaptive equalizer can also help in track-

ing time varying channels. An adaptive LE for Space Time Block Coded (STBC)

SC-FDE system is developed and extended for multiuser scenarios in [24].
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In this work, an Adaptive Frequency Domain Decision Feedback Equalization

(AFD-DFE) is designed for a SC-FDMA system. Designing a adaptive hybrid

DFE will not be an easy task and, moreover, it will be computationally prohibitive

due to the involvement of both time and frequency-domain signals. Therefore, we

propose an adaptive DFE algorithm with frequency-domain feedforward and feed-

back filters. The block RLS algorithm [5] is used to update both the feedforward

and feedback filters as it is known for its fast tracking/convergence properties,

however, it is computationally complex due to the required matrix inversion oper-

ation. Interestingly, we will show that due to the special structure in the matrices

involved, this algorithm has a low computational complexity. Moreover, the de-

sign is extended to SFBC SC-FDMA, Spatially-Multiplexed (SM) SC-FDMA and

hybrid SM-SFBC SC-FDMA systems. The AFD-DFE in SC-FDMA is compli-

cated when compared to the AFD-LE due to the iterative procedure but since

SC-FDMA transmission is confined to the uplink, where processing is done at

the Base Station (BS), the computationally heavy equalizer will be used at the

BS (where the power limitations are more relaxed than at the user terminals).

Our AFD-DFE formulation is general and does not depend on the sub-carrier

mapping techniques in SC-FDMA. Furthermore, we show that AFD-DFE is also

computationally efficient when compared to the channel-estimate-based DFE [1].

Finally, we demonstrate that AFD-DFE has superior performance to the LE and

LMS-based approaches and it is robust to Inter-Carrier Interference (ICI) caused

by high Doppler and Carrier Frequency Offset (CFO).
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In summary, the main contributions of the work are

• Adaptive RLS-based implementation of the AFD-DFE for SISO SC-FDMA.

• Extension to the MIMO (both SFBC and SM) and multi-user scenarios.

• Reduced-Complexity implementation by exploiting matrix structure.

• Demonstration of performance superiority to LE and LMS-based ap-

proaches.

• Reduced Complexity compared to the channel-estimate-based approach.

• Demonstrated robustness to CFO and Doppler.

2.2 System Description
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Figure 2.1: Block diagram of a transceiver of SC-FDMA system.

In this section, the SC-FDMA transceiver (see Fig. 2.1) is described for two

different sub-carrier mapping methods, namely, localized and interleaved. We

assumeK users and a total ofN sub-carriers withM sub-carriers for each user, i.e.,

N = KM . For the mth user, M data symbols are grouped to form a block x(m),

i.e., x(m) = [x(0)(m), x(1)(m), ..., x(M − 1)(m)]T , where T denotes the transpose

operation. An M -point DFT is applied to transform x(m) to the frequency-domain

symbol, X (m) = [X(0)(m), X(1)(m), ..., X(M − 1)(m)]T . Next, X (m) is mapped to

16



N sub-carriers according to different mapping techniques, i.e.,

S(m) = R(m)X (m) m = 1, 2, ..., K (2.1)

where R(m) is the N ×M resource allocation matrix. For example, consider the

following two choices for R(m)

R
(m)
1 = [0M×(m−1)M IM 0M×(K−m)M ]T (2.2)

R
(m)
2 =


0TM×(m−1)[

I1 0M×(K−1) I2 0M×(K−1) ... IM−1 0M×(K−1) IM
]T

0TM×(K−m)

 (2.3)

which correspond to localized and interleaved allocations for the mth user, respec-

tively. IM is M ×M identity matrix with columns I1, I2, ..., IM and 0M×M is the

M ×M all-zero matrix. Note that R(m) is orthogonal for different users, that is

R(m)TR(l) =


IM , m = l

0M×M , m 6= l

Then, the block S(m) is transformed to the time-domain, s(m), by applying an

N -point inverse DFT (IDFT)

s(m) = FH
NR

(m)FMx
(m) = FH

NR
(m)X (m) (2.4)
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where FN is an N ×N DFT matrix and H denotes the Hermitian (i.e. complex-

conjugate transpose) operation. Then, a cyclic prefix of length Lcp is inserted

where cyclic prefix matrix is defined as

C1 =

 0Lcp×(N−Lcp) ILcp

IN

 (2.5)

The transmitted signal is formed after converting the signal from parallel to serial

format, i.e., s
(m)
cp = C1s

(m). We denote the impulse response of the channel for

the mth user by h(m) = [h
(m)
0 , h

(m)
1 , ..., h

(m)
L(m)]. For elimination of ISI using cyclic

prefix, L(m) should be shorter than Lcp. At the receiver, first the cyclic prefix is

removed, i.e., y = C2ycp where C2 = [0N×Lcp IN ]. The cyclic prefix insertion at

the transmitter and removal at the receiver is equivalent to circular convolution

between the transmitted signal and the channel vectors. The received signal before

applying the N -point DFT can be expressed as

y =
K∑
m=1

s(m) ~ h(m) + n(m) (2.6)

where ~ denotes the N -point circular convolution operation and n(m) is the noise

vector. After applying an N -point DFT the received signal, (2.6) can be expressed

as

Ý =
K∑
m=1

Λ̂
(m)
R(m)X (m) + N (2.7)

where Λ̂
(m)

is a N × N diagonal matrix containing the DFT of h(m) as diago-
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nal elements, N is noise vector due to
∑K

m=1n
(m) with variance σ2

NIN . After

demapping, the mth user’s received signal can be expressed as

Y (m) = R(m)T Λ̂
(m)
R(m)X (m) + N (m) (2.8)

Let Λ(m) = R(m)T Λ̂
(m)
R(m), then Λ(m) is M ×M diagonal matrix. To simplify

the notation, we will ignore the superscript m, without loss of generality, then

(2.8) becomes

Y = ΛX + N (2.9)

2.2.1 Carrier Frequency Offset (CFO)

In the above description, perfect frequency synchronization has been assumed

between the transmitter and the receiver. However, CFO arises in practical SC-

FDMA systems due to transmitter/receiver frequency oscillators’ misalignment

and causes interference (energy leakage) from neighboring sub-carriers. Therefore,

for localized allocation, CFO results in intra-user interference while for interleaved

subcarrier allocation, CFO results in inter-user (i.e. multi-user) interference.

Let the mth user’s CFO normalized by the sub-carrier spacing, be denoted by

Ωm where 0 ≤ Ωm ≤ 0.5. Now, define a diagonal matrix to characterize the effect

of CFO as C(m) = diag([ej2πΩm×0/N ej2πΩm×1/N ... ej2πΩm×(N−1)/N ]). In this case,

the pre-DFT received signal can be expressed as

y =
K∑
m=1

C(m)(s(m) ~ h(m)) + n(m) (2.10)
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After applying the N -point DFT, the received signal is given by

Ý =
K∑
m=1

C(m)Λ̂
(m)
R(m)X (m) + N (2.11)

where C(m) is a circulant matrix with entries C(m)
p,q =

1
N

∑N−1
n=0 e

j2π(Ω(m)+p−q)n/N , p, q = 1, ..., N .

2.2.2 Fading and Doppler Effect

Another cause of ICI is the Doppler effect, which occurs due to the motion of

the user. This motion causes the channel h(m) to be time variant with each tap

h
(m)
i , i = 1, ..., L(m) being modeled as Wide Sense Stationary (WSS) narrow-band

complex Gaussian process, independent of the other taps. Hence, the amplitude

|h(m)
i | is assumed to be Rayleigh distributed, i.e.,

P (|h(m)
i |) = |h(m)

i |e−|h
(m)
i |2/2, |h(m)

i | ≥ 0 (2.12)

and its phase is uniformly distributed, i.e.,

P (∠h(m)
i ) =

1

2π
, −π ≤ ∠h(m)

i ≤ π (2.13)

The autocorrelation function of the h
(m)
i is modeled as zeroth-order Bessel function

of the first kind, i.e.,

R(n) , Jo(2πfdtsn), n = ...,−1, 0, 1... (2.14)
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where fd is the maximum Doppler frequency, ts is the sampling time and Jo is

defined as

Jo(z) ,
1

π

∫ π

0

cos(z sin θ)dθ (2.15)

The Doppler frequency fd is related to the user speed v and carrier frequency

fc as fd = vfc/c, where c is the speed of light. The Rayleigh fading channel is

generated using the famous Jake’s model.

2.3 AFD-DFE FOR SISO SC-FDMA

Let Z = diag(Y) and denote the feedforward and feedback filter coefficients in

the frequency-domain by F and B, respectively. The output of the equalizer in

frequency-domain at instant k is given by

X̌ k = ZkFk−1 + DkBk−1 (2.16)

The explicit knowledge of the filter coefficients is not needed for the development

of the adaptive solution. The decision matrix Dk is defined as follows

Dk =


diag(FMxk), for training mode

diag(FM x̂k), for decision-directed mode

Denoting Wk =
[Fk
Bk

]
. We express (2.16) as

X̌ k = [Zk Dk]Wk−1 (2.17)
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Hence, the output of the equalizer in the time-domain is x̌k = FH
M X̌ k.

2.3.1 RLS Update

We motivate the RLS algorithm as a stochastic gradient method. Let D =

[D(0) D(1) ... D(M − 1)] be the vector containing the diagonal elements of D.

The Mean Square Error (MSE) at the ith frequency bin is given as

MSE(i) = E|D(i)− X̌(i)|2 (2.18)

where E[.] stands for the expectation operation. Minimizing (2.18) for the feed-

forward filter and the feedback filter separately, results in the following updates

Fk+1(i) = Fk(i) +

(
µk+1

εk+1 + E[Y(i)∗Y(i)]

)
Y∗k+1(i){Dk+1(i)

− [Yk+1(i)Fk(i) +Dk+1(i)Bk(i)]} (2.19)

and

Bk+1(i) = Bk(i) +

(
µk+1

εk+1 + E[D∗(i)D(i)]

)
D∗k+1(i){Dk+1(i)

− [Yk+1(i)Fk(i) +Dk+1(i)Bk(i)]} (2.20)

Next, we replace E[Y(i)∗Y(i)] and E[D∗(i)D(i)] by their estimates, which for the

RLS update, are chosen to be the exponentially-weighted sample averages for some

scalar 0� λ ≤ 1. Choosing the step size as µk+1 = 1/(k + 2), the regularization
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factor as εk+1 = λk+2ε/(k+ 2), and collecting all the coefficients in one vector W ,

Equations (2.19) and (2.20) become

Wk+1 = Wk +

[
λk+2εI2M +

k+1∑
j=0

λk+1−jAH
j Aj

]−1

AH
k+1Ek+1 (2.21)

where Ak and Ek are given as

Ak =

 Zk 0

0 Dk

 (2.22)

and

Ek =

 Dk − X̌ k

Dk − X̌ k

 (2.23)

It is not convenient to find the inverse of the matrix in (2.21) as it requires us

to combine all the previous and present data to form the matrix. Therefore, we

define

Θk+1 ,

(
λk+2εI2M +

k+1∑
j=0

λk+1−jAH
j Aj

)
(2.24)

which satisfies the following recursion

Θk+1 = λΘk + AH
k+1Ak+1, Θ1 = εI2M (2.25)

Let P k+1 = Θ−1
k+1 and applying the matrix inversion lemma [5] gives

Pk+1 = λ−1[Pk − λ−1PkAH
k+1 × (I2M + λ−1Ak+1PkAH

k+1)−1Ak+1Pk] (2.26)
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where λ is the forgetting factor chosen close to 1. Finally, the RLS update is given

as

Wk+1 = Wk + Pk+1AH
k+1Ek+1 (2.27)

with Ek defined as in (2.23). Initially W0 = 0 and P0 = diag(ε−1
F IM ε−1

B IM).

2.3.2 Reduced-Complexity RLS Update

Due to the special structure in Pk+1, it turns out that no matrix inversion is

required for computing Pk+1 resulting in a significant reduction in computational

complexity.

We start by noting that the matrix Pk+1 has a diagonal structure, i.e., Pk+1 =

diag([P 1
k+1 P 2

k+1]), where P 1
k+1 and P 2

k+1 are diagonal as well. We can write

P 1
k+1 = λ−1[P 1

k − λ−1P 1
kZH

k+1(IM + λ−1Zk+1P
1
kZH

k+1)−1Zk+1P
1
k]

= λ−1[P 1
k − λ−1P 1

kZH
k+1(IM + λ−1|Zk+1|2P 1

k)
−1Zk+1P

1
k] (2.28)

Moreover, the term (IM + λ−1|Zk+1|2P 1
k)
−1 is also diagonal, therefore,

P 1
k+1 = λ−1[P 1

k − λ−1P 1
k(|Zk+1|−2 + λ−1P 1

k)
−1P 1

k] (2.29)

and the matrix inversion here is simply M scalar inversions. Similarly, as in the

case of P 1
k+1, it can be argued following the same steps for P 2

k+1 that

P 2
k+1 = λ−1[P 2

k − λ−1P 2
k(|Dk+1|−2 + λ−1P 2

k)
−1P 2

k] (2.30)
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Therefore, the final reduced-complexity RLS update has the form

Wk+1 = Wk + diag([P 1
k+1 P 2

k+1])AH
k+1Ek+1 (2.31)
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Figure 2.2: Block diagram of AFD-DFE.

The block diagram of the resulting AFD-DFE is depicted in Fig. 2.2. For a

linear equalizer, the derivation is the same except that the feedback coefficients are

set to zero. To summarize, the overall procedure for updating a frequency-domain

equalizer is as follows. The received signal is first transformed to the frequency-

domain using the DFT and the data matrix Ak is formed. The equalizer output

is calculated using (2.16) and transformed to the time-domain using an IDFT,

then decisions are made on this data to produce the equalizer output. The error

signal is generated by comparing the equalizer output with the desired response

in the frequency-domain, which is used in (2.31). First, the training mode is used

to allow the algorithm to converge and then it is switched to the decision-directed
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mode in which the equalizer uses the previous decisions to update its weights. To

prevent the algorithm from diverging, in case of fast fading channels, retraining

blocks can be used. The causality problem in (2.16) can be solved using an

iterative procedure similar to that described in [25], [26]. Note here that we have

reserved the word ’iterative’ for (2.16), which is to be solved iteratively whereas

the word ’recursive’ is used for the RLS update (2.31). The update procedure for

AFD-DFE with CRLS is shown in Table 2.1.

Table 2.1: Summary of the adaptation algorithm for AFD-DFE
Initialization:

Initialize the algorithm by setting

W0 = 0

λ is close to one

and P0 =

[
ε−1
F IM 0

0 ε−1
B IM

]
For each instant of time, k=0,1,2,...

In training mode:

(1) Update P 1
k+1 and P 2

k+1 via

P 1
k+1 = λ−1[P 1

k − λ−1P 1
k(|Zk+1|−2 + λ−1P 1

k)
−1P 1

k]

P 2
k+1 = λ−1[P 2

k − λ−1P 2
k(|X k+1|−2 + λ−1P 2

k)
−1P 2

k]

(2) Update the equalizer weights Wk+1 recursively as

Wk+1 = Wk + diag([P 1
k+1 P 2

k+1])(AH
k+1Ek+1)

In decision-directed mode:

(1) Iterate on X̌ k+1 = Zk+1Fk + Dk+1Bk

(2) Update P 1
k+1 and P 2

k+1 via

P 1
k+1 = λ−1[P 1

k − λ−1P 1
k(|Zk+1|−2 + λ−1P 1

k)
−1P 1

k]

P 2
k+1 = λ−1[P 2

k − λ−1P 2
k(|X̌ k+1|−2 + λ−1P 2

k)
−1P 2

k]

(3) Update the equalizer weights Wk+1 recursively as

Wk+1 = Wk + diag([P 1
k+1 P 2

k+1])(AH
k+1Ek+1)
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2.4 AFD-DFE FOR MIMO SC-FDMA

MIMO systems are used either to enhance the performance (spatial diversity) or

to increase the rate (spatial multiplexing) or a hybrid thereof. In the following,

we extend our AFD-DFE design to these MIMO systems.

2.4.1 AFD-DFE for SFBC SC-FDMA

An attractive technique for spatial diversity is Space-Frequency Block Code

(SFBC). For our AFD-DFE design we implement SFBC at the block level.

The block diagram of SFBC SC-FDMA is shown in Fig.(2.3). After apply-

ing the M -point DFT, the block x(m) is transformed to the frequency-domain

X (m), where X (m) = [X(0)(m), X(1)(m), ..., X(M − 1)(m)]T . After SFBC, we get

X (m)
1 = [X(0)(m),−X∗(1)(m), ..., X(M − 2)(m),−X∗(M − 1)(m)]T and X (m)

2 =

[X(1)(m), X∗(0)(m), ..., X(M − 1)(m), X∗(M − 2)(m)]T , where (·)∗ denotes the

complex-conjugate operation. After mapping and applying the N -point IDFT,

the transmitted signals from the two antennas are denoted by s
(m)
1 and s

(m)
2 cor-

responding to X (m)
1 and X (m)

2 . The transmitted signals are circularly convolved
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Figure 2.3: Block diagram of a transceiver of SFBC SC-FDMA system.

with their respective channels (due to CP insertion) and the received signal be-
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comes

y =
K∑
m=1

[s
(m)
1 ~ h(m)

1 + s
(m)
2 ~ h(m)

2 ] + n(m) (2.32)

where h
(m)
i = [h

(m)
i0 , h

(m)
i1 , ..., h

(m)
iL(m)] for i = 1, 2. After applying the N -DFT of

(2.32), the signal becomes

Ý =
K∑
m=1

[Λ̂
(m)

1 R(m)X (m)
1 + Λ̂

(m)

2 R(m)X (m)
2 ] + N (2.33)

where Λ̂
(m)

i is a N×N diagonal matrix, i.e., Λ̂
(m)

i = diag(DFT (h
(m)
i )) for i = 1, 2

and N is the noise component with variance σNIN . The received signal for the

mth user, after demapping, can be expressed as

Y (m) = R(m)T Λ̂
(m)

1 R(m)X (m)
1 +R(m)T Λ̂

(m)

2 R(m)X (m)
2 + N (m) (2.34)

Let Λ
(m)
i = R(m)T Λ̂

(m)

i R(m) for i = 1, 2, then Λ
(m)
i is M ×M diagonal matrix. To

simplify the notation we will drop the superscript m, thus (2.34) becomes

Y = Λ1X 1 + Λ2X 2 + N (2.35)

Using the odd even expansion, the odd component of (2.35) is

Yo = Λ1oX 1o + Λ2oX 2o + N o (2.36)
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and the even component is

Ye = Λ1eX 1e + Λ2eX 2e + N e (2.37)

where X io and X ie represent the odd and even components, respectively, of X i

for i = 1, 2. Denoting the odd and the even components of X as X o and X e,

respectively, we have

X 1o = X o, X 2o = X e, X 1e = −X ∗e, X 2e = X ∗o (2.38)

Consequently, (2.36) and (2.37) become, respectively, as

Yo = Λ1oX o + Λ2oX e + N o (2.39)

and

Ye = −Λ1eX ∗e + Λ2eX ∗o + N e (2.40)

Combining (2.39) and (2.40), the linear relationship [15] can be written as

Yoe =

 Yo

Y∗e

 =

 Λ1o Λ2o

Λ∗2e −Λ∗1e


 Xo

Xe

+

 No

N ∗e


, ΛX oe + N oe (2.41)
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Moreover, assuming

Λie = Λio, i = 1, 2 (2.42)

Λ becomes an Alamouti-like matrix. A matrix is said to be an Alamouti matrix

if it has the form
[

∆1 ∆2
∆∗2 −∆∗1

]
. After MMSE equalization, we get

 X̌ o

X̌ e

 = (ΛHΛ +
1

SNR
I2M)−1ΛHYoe (2.43)

where SNR is the signal-to-noise ratio at the receiver. Since Λ̃ΛH has an

Alamouti-like structure, therefore

 X̌ o

X̌ e

 =

 Φ1 Φ2

Φ∗2 −Φ∗1


 Yo

Y∗e

 (2.44)

where Φ1 and Φ2 are diagonal matrices. Alternatively, (2.44) can be written as

 X̌ o

X̌ ∗e

 =

 diag(Yo) diag(Y∗e )

−diag(Ye) diag(Y∗o )


 Υ1

Υ2


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where Υ1 and Υ2 are the vectors containing the diagonal elements of Φ1 and Φ2.

For a DFE, we have

 X̌ o

X̌ ∗e


︸ ︷︷ ︸
X̌ oe

=

 diag(Yo) diag(Y∗e)

−diag(Ye) diag(Y∗o)


 Υ1

Υ2

+

 diag(Do) 0

0 diag(D∗e)


 Ψ1

Ψ2


,ZF + DB (2.45)

whereDo andDe are X o and X e, respectively, for the training mode or frequency-

domain decisions on X̌ o and X̌ e, respectively, for the decision-directed mode. The

feedforward and feedback filter coefficients in the frequency-domain are F and B

containing the elements {Υ1,Υ2} and {Ψ1,Ψ2}, respectively. Moreover, Z is an

M×M Alamouti-like matrix containing the received symbols and D is a diagonal

matrix containing the decisions. However, these coefficients will be computed

adaptively; hence, an exact solution is not required. At the kth instant, the

output of the equalizer is given

X̌ oe,k = ZkFk−1 + DkBk−1 (2.46)

The RLS AFD-DFE recursion is given as in (2.27) with error vector as

Ek =

 Dk − X̌ oe,k

Dk − X̌ oe,k

 (2.47)
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where Dk denotes the decisions at the kth instant, i.e., Dk =
[
Do,k

D∗e,k

]
and Ak is

given as in(2.22).

Reduced-Complexity RLS AFD-DFE: It might seem that (2.27) requires

matrix inversion. However, due to the special structure of SFBC, no inversion is

required resulting in significant complexity reductions as shown below.

The matrix Pk+1 has a diagonal structure, i.e., Pk+1 = diag([P 1
k+1 P 2

k+1]),

where P 1
k+1 and P 2

k+1 are diagonal as well and P 1
k+1 is given by.

P 1
k+1 = λ−1[P 1

k − λ−1P 1
kZH

k+1(IM + λ−1Zk+1P
1
kZH

k+1)−1Zk+1P
1
k](2.48)

Now, simplifying the term (λ−1Zk+1P
1
kZH

k+1) , we get

λ−1Zk+1P
1
kZH

k+1 = λ−1P 1
kZk+1ZH

k+1

= λ−1P 1
k

 diag(Yo,k+1) diag(Y∗e,k+1)

−diag(Ye,k+1) diag(Y∗o,k+1)



×

 diag(Y∗o,k+1) −diag(Y∗e,k+1)

diag(Ye,k+1) diag(Yo,k+1)


= λ−1P 1

kdiag
[
diag(|Yo,k+1|2) + diag(|Ye,k+1|2)

]
(2.49)

Now ZH
k+1(IM +λ−1Zk+1P

1
kZH

k+1)−1Zk+1 = diag([ø ø]) , ψ1
k+1, where ø is

diagonal given as ø = (diag(|Yo,k+1|2)+diag(|Ye,k+1|2))−1 +λ−1P 1
k]
−1. It follows
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that P 1
k+1 will have the form

P 1
k+1 = λ−1[P 1

k − λ−1P 1
kψ

1
k+1P

1
k] (2.50)

Using the same approach as in the SISO case, P 2
k+1 can be expressed as follows

P 2
k+1 = λ−1[P 2

k − λ−1P 2
kψ

2
k+1P

2
k] (2.51)

where ψ2
k+1 = (|Dk+1|−2 + λ−1P 2

k)
−1. Finally, the RLS AFD-DFE recursion has

the form

Wk+1 = Wk + diag([P 1
k+1 P 2

k+1])AH
k+1Ek+1 (2.52)

where P 2
k+1 and P 2

k+1 are defined by (2.50) and (2.51), respectively. The block

diagram of the resulting AFD-DFE for SFBC SC-FDMA is depicted in Fig. 2.4.
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Figure 2.4: Block diagram of AFD-DFE for two-transmit one-receive antenna.

33



2.4.2 AFD-DFE for Spatially-Multiplexed (SM) SC-

FDMA

In this section, we will use MIMO to increase the number of users supported by the

system, i.e., spatial multiplexing. In a SM SC-FDMA scenario, multiple users use

the same frequency and time slot to transmit data. The number of antennas at the

Base Station (BS) is equal to the number of users using the same frequency and

time slots. AFD-DFE is used for joint interference cancelation and equalization

at the receiver. The system model for SM SC-FDMA is depicted in Fig. 2.5. Let
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Figure 2.5: Block diagram of a transceiver of a SM SC-FDMA system.

Nt and Nr be the number of transmit and receive antennas, respectively. The

transmission from each user can be viewed as a SISO SC-FDMA transmission

and the received signal at the rth antenna after cyclic prefix removal and before

applying the N -point DFT can be expressed as

yr =
Nr∑
t=1

K∑
m=1

s
(m)
t ~ h(m)

tr + n(m)
r , r = 1, 2, ..., Nr (2.53)
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where n
(m)
r is the noise vector at rth receive antenna. After applying an N -point

DFT, the received signal can be expressed as

Ýr =
Nr∑
t=1

K∑
m=1

Λ̂
(m)

tr R
(m)X (m)

t + N r (2.54)

where Λ̂
(m)

tr is a N × N diagonal matrix, i.e., Λ̂
(m)

tr = diag(DFT (h
(m)
tr )) and

N r is the noise vector with variance σNrIN corresponding to
∑K

m=1n
(m)
r . After

demapping, the mth user’s received signal at the rth antenna can be expressed as

Y (m)
r =

Nr∑
t=1

R(m)T Λ̂
(m)

tr R
(m)X (m)

t + N (m)
r (2.55)

Let Λ
(m)
tr = R(m)T Λ̂

(m)

tr R
(m), then Λ

(m)
tr is M ×M diagonal matrix. To simplify

the notation, we will ignore the superscript m, then (2.55) becomes

Yr =
Nr∑
t=1

ΛtrX t + N r (2.56)

Since the number of receive antennas is assumed to be equal to the number of

users transmitting using the same frequency band and time slot, hence, Nt = Nr.
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Collecting all the received SC-FDMA symbols in one vector [27], we get



Y1

Y2

...

YNr


=



Λ11 Λ21 . . . ΛNr1

Λ12 Λ22 . . . ΛNr2

...
...

. . .
...

Λ1Nr Λ2Nr . . . ΛNrNr





X 1

X 2

...

XNr


+



N 1

N 2

...

NNr


, ΛX + N (2.57)

where Λij is the frequency-domain channel matrix from the ith user’s transmit

antenna to the jth receive antenna having diagonal structure. Assuming that

the feedforward and feedback taps matrices have similar structure as the channel

matrix Λ. The output of the AFD-DFE is given as



X̌ 1

X̌ 2

...

X̌Nr


=



F1,1 F1,2 . . . F1,Nr

F2,1 F2,2 . . . F2,Nr

...
...

. . .
...

FNr,1 FNr,2 . . . FNr,Nr





Y1

Y2

...

YNr



+



B1,1 B1,2 . . . B1,Nr

B2,1 B2,2 . . . B2,Nr

...
...

. . .
...

BNr,1 BNr,2 . . . BNr,Nr





D1

D2

...

DNr


(2.58)
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where the elements F i,j and Bi,j are diagonal matrices containing the feedforward

and the feedback tap weights as diagonal elements, respectively. Next, we will

design an adaptive solution for entries of these matrices to avoid the need for the

high cost and rate overhead associated with accurate MIMO multi-user channel

estimation. The desired response Di is defined as

Di =


FMxi, for training mode

FM x̂i, for decision-directed mode

Defining Z i = diag(Y i) and the decision matrix Di = diag(Di), (2.58) becomes



X̌ 1

X̌ 2

...

X̌Nr


=

Nr∑
i=1




Z i

. . .

Z i




F1
i

...

FNr
i

+


Di

. . .

Di




B1
i

...

BNr
i




(2.59)

where F j
i and Bj

i are the vectors contains the diagonal elements of F j,i and

Bj,i, respectively. Let X̌ = [X̌ T

1 ... X̌ T

Nr
]T , F i = [F iT

1 ... F iT
Nr

]T ,Bi =

[BiT
1 ... BiT

Nr
]T and Ź i (D́i) is the diagonal matrix containing the elements

Z i(Di) on its diagonal, (2.59) can be expressed as follows

X̌ =
Nr∑
i=1

[Ź iF i + D́iBi] , ZF + DB (2.60)
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where Z = [Ź1 ... ŹNr ], F = [FT
1 ... FT

Nr
]T ,B = [BT

1 ... BT
Nr

]T and

D = [D́1 ... D́Nr ]. Now the output of the equalizer at instant k is given as

X̌ k = ZkFk−1 + DkBk−1 (2.61)

Defining the desired response vector as Dk = [DT
1,k ... DT

Nr,k]
T , then Wk, Ak

and Ek are given as in (2.31), (2.22) and (2.23), respectively.

Reduced-Complexity RLS AFD-DFE: Starting with k = 0 and using

P 1
0 = ε−1I(Nr)2M , P 1

1 is given by

P 1
1 = λ−1[P 1

0 − λ−1P 1
0ZH

1 (INrM + λ−1Z1P
1
0ZH

1 )−1Z1P
1
0]

= λ−1[ε−1I(Nr)2M − λ−1ε−1I(Nr)2MZH
1 (INrM + λ−1ε−1Z1ZH

1 )−1Z1ε
−1I(Nr)2M ]

It can easily be seen that Z1ZH
1 = [|Ź1,1|2 + |Ź2,1|2 + ... |ŹNr,1|2]. As |Ź i,1|2

has a diagonal structure therefore, |Z1|2 is diagonal matrix and (3.50) does not

require matrix inversion. Let ZH
1 (INrM +λ−1ε−1Z1ZH

1 )−1Z1 = ø be the (N2
rM×

N2
rM) block matrix, where each sub-matrix øi,j is a diagonal matrix given by

øi,j = ŹH

i,1(INrM +λ−1ε−1Z1ZH
1 )−1Źj,1. Therefore, P 1

1 has a similar structure to

that of ø with each sub-matrix P 1,(i,j) = λ−1[ε−1INrM − λ−1ε−2INrMøi,j] is also

diagonal matrix. For k = 1, we have

P 1
2 = λ−1[P 1

1 − λ−1P 1
1ZH

2 (INrM + λ−1Z2P
1
1ZH

2 )−1Z2P
1
1] (2.62)

38



where Z2P
1
1ZH

2 =
∑Nr

j=1 Źj,2(
∑Nr

i=1 Ź i,2P
1
1,(i,j)) is a diagonal matrix. Therefore,

matrix inversion in P 1
2 is simply NrM scalar inversions. For k > 1, P 1

k has similar

structure and, therefore, avoids complex matrix inversion and the same conclusion

applies to P 2
k.

2.4.3 AFD-DFE for Hybrid SM-SFBC SC-FDMA

To increase the capacity and performance, i.e. combine spatial diversity with

spatial multiplexing we integrate SFBC and SM SC-FDMA. The block diagram

is depicted in Fig. 2.6.
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Figure 2.6: Block diagram of transceiver of Hybrid SM-SFBC SC-FDMA system.

Here we have 2Nt transmit antennas for Nr receive antennas. The received

signal at the rth antenna after cyclic prefix removal becomes

yr =
Nr∑
t=1

K∑
m=1

[s
(m)
t1 ~ h(m)

tr1 + s
(m)
t2 ~ h(m)

tr2 ] + n(m)
r (2.63)

where h
(m)
tri = [h

(m)
i0 , h

(m)
i1 , ..., h

(m)
iL(m)]tr for i = 1, 2. After applying an N -DFT, the
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signal becomes

Ýr =
Nr∑
t=1

K∑
m=1

[Λ̂
(m)

tr1
R(m)X (m)

t1 + Λ̂
(m)

tr2
R(m)X (m)

t2 ] + N r (2.64)

where Λ̂
(m)

tri
is a N×N diagonal matrix, i.e., Λ̂

(m)

tri
= diag(DFT (h

(m)
tri )) for i = 1, 2

and N r is noise with variance σ2
Nr
IN . After demapping, the received signal for

the mth user at the rth antenna can be expressed as

Y (m)
r =

Nr∑
t=1

[R(m)T Λ̂
(m)

tr1
R(m)X (m)

t1 +R(m)T Λ̂
(m)

tr2
R(m)X (m)

t2 ] + N (m)
r (2.65)

Let Λ
(m)
tri = R(m)T Λ̂

(m)

tri
R(m) for i = 1, 2, then Λ

(m)
tri is M ×M diagonal matrix. To

simplify the notation we will ignore the superscript m, then (2.65)

Yr =
Nr∑
t=1

[Λtr1X t1 + Λtr2X t2 ] + N r (2.66)

Using the odd even expansion, the odd component of (2.66) is

Yro =
Nr∑
t=1

[Λtr1oX t1o + Λtr2oX t2o ] + N ro (2.67)

and the even component is

Yre =
Nr∑
t=1

[Λtr1eX t1e + Λtr2eX t2e ] + N re (2.68)

where X tio and X tie represent the odd and even components of X ti for i = 1, 2.
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Denoting odd and even component of X t as X to and X te , respectively, we have

X t1o = X to , X t2o = X te , X t1e = −X ∗te , X t2e = X ∗to (2.69)

Now, (2.67) and (2.68) become,respectively, as

Yro =
Nr∑
t=1

[Λtr1oX to + Λtr2oX te ] + N ro (2.70)

and

Yre =
Nr∑
t=1

[−Λtr1eX ∗te + Λtr2eX ∗to ] + N te (2.71)

Combining (2.70) and (2.71), the linear relationship can be written as

Yroe =

 Yro

Y∗re

 =
Nr∑
t=1


 Λtr1o Λtr2o

Λ∗tr2e −Λ∗tr1e


 X to

X te


+

 N ro

N ∗
re


,

Nr∑
t=1

(ΛtrX toe) + N roe (2.72)

Assuming Λtrie = Λtrio , i = 1, 2. Λtr becomes the Alamouti’s matrix. Collecting

all the received SC-FDMA symbols in one vector, we get



Y1oe

Y2oe

...

YNroe


=



Λ11 Λ21 . . . ΛNr1

Λ12 Λ22 . . . ΛNr2

...
...

. . .
...

Λ1Nr Λ2Nr . . . ΛNrNr





X 1oe

X 2oe

...

XNroe


+



N 1oe

N 2oe

...

NNroe


, ΛX oe + N oe (2.73)
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where Λij is the frequency-domain channel matrix from the ith user to the jth

receive antenna having an Alamouti like structure. Since Nt = 2∗Nr and assuming

that the feedforward taps matrices have similar structure as channel matrix Λ,

the output of the equalizer is given as



X̌ 1,oe

X̌ 2,oe

...

X̌Nroe


=



Υ1,1 Υ1,2 . . . Υ1,Nr

Υ2,1 Υ2,1 . . . Υ2,Nr

...
...

. . .
...

ΥNr,1 ΥNr,2 . . . ΥNr,Nr





Y1oe

Y2oe

...

YNroe



+



Ψ1,1 Ψ1,2 . . . Ψ1,Nr

Ψ2,1 Ψ2,1 . . . Ψ2,Nr

...
...

. . .
...

ΨNr,1 ΨNr,2 . . . ΨNr,Nr





D1oe

D2oe

...

DNroe


(2.74)

where Dioe is equal to X ioe in the case of the training mode and the frequency-

domain decisions on X̌ ioe in the case of the decision-directed mode, respectively.

Υi,j and Ψi,j are the Alamouti like matrices of the feedforward and diagonal

matrices of the feedback weights of the equalizer, respectively, i.e.,

Υi,j =

 Υ1
i,j Υ2

i,j

Υ2∗
i,j −Υ1∗

i,j

 , Ψi,j =

 Ψ1
i,j 0

0 −Ψ2∗
i,j

 (2.75)

Υ1
i,j, Υ2

i,j, Ψ1
i,j and Ψ2

i,j are diagonal matrices. However, the explicit solution

42



is not needed for these matrices for the adaptive solution. For the ith user, we

have

X̌ ioe =

 X̌ io

X̌ ie

 =
Nr∑
j=1

(Υi,jYjoe + Ψi,jDjoe) (2.76)

(2.76) can be rewritten as

 X̌ io

X̌ ∗i,e

 =
Nr∑
j=1

 diag(Yjo) diag(Y∗je)

−diag(Yje) diag(Y∗jo)


 F1

i,j

F2
i,j



+

 diag(Djo) 0

0 diag(D∗je)


 B1

i,j

B2
i,j


,

Nr∑
j=1

Yj
oeF i,j + Dj

oeBi,j (2.77)

where F1
i,j and F2

i,j are vectors containing the diagonal elements of Υ1
i,j and Υ2

i,j,

respectively. Similarly, B1
i,j and B2

i,j are vectors containing the diagonal elements

of Ψ1
i,j and Ψ2

i,j, respectively and F i,j = [F1T
i,j F2T

i,j ]T and Bi,j = [B1T
i,j B2T

i,j ]T . For

all users, we can write


X̌ 1oe

...

X̌Nroe

 =
Nr∑
j=1




Yj
oe

. . .

Yj
oe




F1,j

...

FNr,j

+


Dj
oe

. . .

Dj
oe




B1,j

...

BNr,j




(2.78)

43



(2.78) can be rewritten in compact form as

X̌ oe =
Nr∑
j=1

[ŹjF j + D́jBj] (2.79)

At the kth instant, we have

X̌ oe,k , ZkFk + DkBk (2.80)

where Zk = [Ź1,k ... ŹNr,k], Dk = [D́1,k ... D́Nr,k], Fk = [FT
1,k ... FT

Nr,k]
T and

Bk = [BT
1,k ... BT

Nr,k]
T Defining the desired response as Dk = [DT

1,k, ... DT
Nr,k]

T

and

Di,k =



 X io,k

X ∗ie,k

 , for training mode

X̂ ioe,k, for decision-directed mode

Now Wk, Ak and Ek are given as in (2.31), (2.22) and (2.47), respectively.

Reduced-Complexity RLS AFD-DFE: Now exploiting the special struc-

ture of SFBC matrix, it can be seen that there is no matrix inversion involved

altogether and hence complexity is significantly reduced. Starting with k = 0 and

using P 1
0 = ε−1I(Nr)2M , P 1

1 is given by

P 1
1 = λ−1[ε−1I(Nr)2M − λ−1ε−1I(Nr)2MZH

1 (INrM + λ−1ε−1Z1ZH
1 )−1Z1ε

−1I(Nr)2M ]

(2.81)

It can easily be seen that Z1ZH
1 = [|Ź1,1|2 + ...+ |ŹNr,1|2], where Ź i,kŹ

H

i,k =
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diag[|Y i
oe|2 , ..., |Y i

oe|2]. Therefore, |Zk|2 has diagonal structure and the RLS

update equation (2.81) does not require any matrix inversion. Now ZH
1 (INrM +

λ−1ε−1Z1ZH
1 )−1Z1 = ø is (Nr)

2M × (Nr)
2M matrix, with each entry øi,j =

ŹH

i,1(INrM + λ−1ε−1Z1ZH
1 )−1Źj,1 is NrM × NrM block diagonal matrix. Each

sub-matrix in øi,j is M × M block matrix, which further consists of 4 M
2
× M

2

diagonal matrices. Therefore, P 1
1 has a similar structure to that of ø with sub-

matrix P 1,(i,j) = λ−1[ε−1INrM − λ−1ε−2INrMøi,j] is NrM × NrM block diagonal

matrix. For k = 1, we have

P 1
2 = λ−1[P 1

1 − λ−1P 1
1ZH

2 (INrM + λ−1Z2P
1
1ZH

2 )−1Z2P
1
1]

(2.82)

Using simple algebra, it can be verified that

(INrM + λ−1Z2P
1
1ZH

2 )−1 =


A−1

1

. . .

A−1
Nr

 (2.83)

where Ai =
[
Ai,1 Ai,2

Ai,3 Ai,4

]
and each entry Ai,j is a diagonal matrix. Therefore, inverse

of Ai can be found using block matrix inversion [28] as follows

 A B

C D


−1

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

 (2.84)
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where all the sub-matrices A,B,C,D are diagonal, therefore, their inversions are

scalar inversions. For k > 1, P 1
k has similar structure. Moreover, for P 2

k same

reasons are valid as for the SM case.

2.5 Performance and Complexity Analysis

In this section, the Minimum Mean Square Error (MMSE), transient, steady-state,

tracking and computational complexity analyses are carried out. In the deriva-

tions, we assume that the data sequences (both transmitted data and detected

data) are independent and identically distributed (i.i.d) with zero mean, and in-

dependent of the noise. Using the optimal MMSE equalizer weights Wo found

in [23] and [1], the corresponding ith frequency bin MMSE for the LE (JL(i)) and

the DFE (JD(i)) are derived, respectively, and expressed as

JL(i) =
Nσ2

Nσ
2
x(M |Λ(i)|2σ2

x +Nσ2
N )

(σ2
x|Λ(i)|2M +Nσ2

N )2
(2.85)

and

JD(i) =
Nσ2

Nσ
2
x(M |Λ(i)|2σ2

x +Nσ2
N )

(σ2
x

∑M−1
j=0 |Λ(j)|2 +Nσ2

N )2
(2.86)

2.5.1 Transient Analysis

We start by deriving the transient behavior of the RLS AFD-DFE in a stationary

environment, assuming that the forgetting factor λ is unity. The MSE of the RLS
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AFD-DFE at instant k + 1 is given by

Jrk+1(i) = E |ξk+1(i)|2 (2.87)

The a priori estimation output error ξk+1(i) can be expressed as

ξk+1(i) = ξok+1(i) + ak+1(i) [Wo(i)−Wk(i)]︸ ︷︷ ︸
W̃k(i)

(2.88)

where Xk(i) = ak(i)Wo(i) + ξok(i), ak(i) = [Yk(i) Dk(i)] and Wk(i) =

[Fk(i) Bk(i)]T . Substituting (2.88) into (2.87) and then expending terms, we

get

Jrk+1(i) = E
∣∣ξok+1(i)

∣∣2︸ ︷︷ ︸
JD(i)

+Eak+1(i)W̃k(i)W̃
H

k (i)aHk+1(i)

+Eak+1(i)W̃k(i)ξ
o∗
k+1(i) + Eξok+1(i)W̃

H

k (i)aHk+1(i) (2.89)

We can express the second expectation in (2.89) as

Eak+1(i)W̃k(i)W̃
H

k (i)aHk+1(i) = E Tr{ak+1(i)W̃k(i)W̃
H

k (i)aHk+1(i)}

= E Tr{W̃k(i)W̃
H

k (i)aHk+1(i)ak+1(i)}

= Tr E{W̃k(i)W̃
H

k (i)aHk+1(i)ak+1(i)}

(2.90)

47



where Tr{.} is the trace of a matrix. Using the assumption that the product

W̃k(i)W̃
H

k (i) varies at a slower rate than the product aHk+1(i)ak+1(i), we can

write

EW̃k(i)W̃
H

k (i)aHk+1(i)ak+1(i) ≈ Tr{EW̃k(i)W̃
H

k (i)EaHk+1(i)ak+1(i)} (2.91)

where EaHk (i)ak(i) = RA(i) is the input correlation matrix having diagonal struc-

ture as can be seen from (2.24), i.e., RA(i) = diag([|Λ(i)|2σ2
x + N

M
σ2
N σ2

x]). Now,

to find EW̃k(i)W̃
H

k (i), we proceed by writing the normal equations

Wk(i) = Θ−1
k (i)Rk(i) (2.92)

where Rk(i) =
∑k

j=0 a
H
j (i)Xj(i). Using the values of Θk(i), Rk(i) and Xk(i) in

(2.92) and ignoring the initial conditions, W̃k(i) is given as

W̃k(i) = −Θ−1
k (i)

k+1∑
j=0

aHj (i)ξoj (i) (2.93)

Therefore, the weight-error correlation matrix is given as

EW̃k(i)W̃
H

k (i) = EΘ−1
k (i)

k+1∑
j=0

aHj (i)aj(i)Θ
−1
k (i)ξoj (i)ξ

o∗
j (i) (2.94)
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Using the assumption that ak(i), and therefore Θ−1
k (i), is independent of the noise

ξok(i), (2.94) can be expressed as a product of two expectations as follows

EW̃k(i)W̃
H

k (i) = EΘ−1
k (i)

k+1∑
j=0

aHj (i)aj(i)Θ
−1
k (i) Eξoj (i)ξ

o∗
j (i)

= JD(i) EΘ−1
k (i) (2.95)

Assuming ergodicity, we may express the ensemble-average correlation matrix of

the input of the AFD-DFE asRA(i) = 1
k
Θk(i). Hence, the weight-error correlation

matrix reduces to EW̃k(i)W̃
H

k (i) = 1
k
JD(i)R−1

A (i). Therefore, (2.90) becomes

Eak+1(i)W̃k(i)W̃
H

k (i)aHk+1(i) ≈ 1

k
JD(i)Tr{RA(i)R−1

A (i)} =
2

k
JD(i) (2.96)

The third and fourth expectations in (2.89) are zero because W̃k(i) depends

on past values of ak+1(i) and ξok+1(i). Also ak+1(i) and ξok+1(i) are statistically

independent and ξok+1(i) has zero mean. Therefore,

Jrk+1(i) = JD(i)

[
1 +

2

k

]
(2.97)

To compare the RLS AFD-DFE and LMS AFD-DFE, the MSE of LMS AFE-DFE

can be shown to be [29]

J lk+1(i) = JD(i)

[
1 + µ

1∑
j=0

rj
2− µrj

]
+

1∑
j=0

rj

(
|νj(0)|2 − µJD(i)

2− µrj

)
(1− µrj)2k

(2.98)
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where rj is the jth eigenvalue of the correlation matrix RA(i) and ν(k + 1) =

[ν0(k + 1), ν1(k + 1)]T = (I2 − µRA(i))ν(k)− µAH
k+1(i)Ek+1(i). The evolution of

J lk+1(i) with step size µ is governed by the exponential quantity (1− µrj)2k. This

clearly shows that the RLS AFD-DFE converges faster than the LMS AFD-DFE.

The simulation results support this claim.

2.5.2 Steady-State Analysis

To begin with, the update recursion (2.27) for the ith frequency bin can be written

as

Wk+1(i) = Wk(i) + Pk+1(i)aHk+1(i)ξk+1(i) (2.99)

In terms of the weight-error vector W̃k(i), we can write (2.99) as

W̃k+1(i) = W̃k(i)−Pk+1(i)aHk+1(i)ξk+1(i) (2.100)

Multiplying (2.100) by ak+1(i) from the left, we may write it in terms of a priori

estimation error ξak+1(i) and a posteriori estimation error ξpk+1(i) as follows

ak+1(i)W̃k+1(i)︸ ︷︷ ︸
ξpk+1(i)

= ak+1(i)W̃k(i)︸ ︷︷ ︸
ξak+1(i)

−ak+1(i)Pk+1(i)aHk+1(i)︸ ︷︷ ︸
‖ak+1(i)‖P

ξk+1(i) (2.101)
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where ‖ . ‖P stands for the squared-weighted Euclidean norm of a vector. Com-

bining (2.100) and (2.101) to eliminate ξk+1, we get

W̃k+1(i) + Pk+1(i)aHk+1(i) (‖ ak+1(i) ‖P)†︸ ︷︷ ︸
āk+1(i)

ξak+1(i) = W̃k(i) + Pk+1(i)aHk+1(i)

×(‖ ak+1(i) ‖P)†ξpk+1(i)

(2.102)

where (.)† represents the pseudo-inverse. Now, equating the energies (squared

Euclidean norms) of both sides of (2.102) with [Pk+1(i)]−1 as a weighting matrix,

the energy conservation relation becomes

‖ W̃k+1(i) ‖2
P−1 +āk+1(i)|ξak+1(i)|2 =‖ W̃k(i) ‖2

P−1 +āk+1(i)|ξpk+1(i)|2 (2.103)

Taking the expectation of (2.103) and using the steady-state approximations,

EPk+1(i) ≈ (1 − λ)R−1
A = P , EW̃k+1(i) = EW̃k(i) and E ‖ W̃k+1(i) ‖2

P−1=

E ‖ W̃k(i) ‖2
P−1 , we arrive at

Eāk+1(i)|ξak+1(i)|2 = Eāk+1(i)|ξpk+1(i)|2, k →∞ (2.104)

Substituting ξpk+1(i) from (2.101) into (2.104), we get

Eāk+1(i)|ξak+1(i)|2 = Eāk+1(i)|ξak+1(i)− ‖ ak+1(i) ‖P ξk+1(i)|2, k →∞ (2.105)
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which upon expansion and simplification reduces to

E ‖ ak+1(i) ‖P |ξk+1(i)|2 = 2Re(Eξa∗k+1(i)ξk+1(i)), k →∞ (2.106)

As ξk+1(i) = ξok+1(i) + ξak+1(i), (2.106) becomes

JD(i)E ‖ ak+1(i) ‖P +E ‖ ak+1(i) ‖P |ξak+1(i)|2 = 2E|ξak+1(i)|2︸ ︷︷ ︸
Jexss(i)

, k →∞ (2.107)

where Jexss(i) is the Excess Mean Square Error (EMSE). Assume that at steady-

state, ‖ ak+1(i) ‖P is independent of ξak+1(i). This condition allows us to separate

the expectation E ‖ ak+1(i) ‖P |ξak+1(i)|2 into a product of two expectations as

follows

E ‖ ak+1(i) ‖P |ξak+1(i)|2 = E ‖ ak+1(i) ‖P E|ξak+1(i)|2 (2.108)

If we replace Pk+1(i) by its assumed mean value, we obtain the approximation

E ‖ ak+1(i) ‖P≈ Tr{RP} = 2(1− λ) (2.109)

Substituting into (2.107), we get

Jexss(i) =
JD(i)(1− λ)

λ
(2.110)

52



Therefore, the MSE at the steady-state Jss(i) is given as

Jss(i) = JD(i) + Jexss(i) =
JD(i)

λ
(2.111)

2.5.3 Tracking Analysis

For time-varying channels, we will adopt a first-order random walk model for the

variation in the tap weight vector Wo
k. The model assumes that Wo

k undergoes

random variations of the form

Wo
k+1(i) = Wo

k(i) + qk+1(i) (2.112)

where qk(i) = [fL(i)qFk (i),fL(i)qBk (i)]T and fL(i) is the ith row of partial (M×L)

DFT matrix. qFk (i) and qBk (i) are the time-domain random column vectors of

length L with zero mean and correlation matrix Qt = (1 − R2(1))IL [5]. As-

suming qFk (i) and qBk (i) are independent and note that fL(i)fL(i)H = L/M , the

covariance matrix of qk(i), i = 1, ...,M , is Q = L
M

(1−R2(1))I2L.

Now, defining W̃k(i) = Wo
k(i)−Wk(i) and invoking the energy-conservation

relation leads to

‖Wo
k+1(i)−Wk+1(i) ‖2

P−1 +āk+1(i)|ξak+1(i)|2 = ‖Wo
k+1(i)−Wk(i) ‖2

P−1

+āk+1(i)|ξpk+1(i)|2 (2.113)

where ξpk+1(i) = ak+1(i)[Wo
k+1(i) −Wk+1(i)] and ξak+1(i) = ak+1(i)[Wo

k+1(i) −
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Wk(i)]. Moreover, the random walk model (2.112) allows us to relate E ‖

Wo
k+1(i)−Wk(i) ‖2

P−1 to E ‖ W̃k(i) ‖2
P−1 as follows

E ‖Wo
k+1(i)−Wk(i) ‖2

P−1 = E ‖Wo
k(i) + qk+1(i)−Wk(i) ‖2

P−1

= E ‖ W̃k(i) + qk+1(i) ‖2
P−1

= E ‖ W̃k(i) ‖2
P−1 +E ‖ qk+1(i) ‖2

P−1(2.114)

where the last step follows from the fact that Wk(i) is independent of qk+1(i) and

uses steady-state assumption. Next, taking expectation of (2.113), we get

E ‖ W̃k+1(i) ‖2
P−1 +Eāk+1(i)|ξak+1(i)|2 = E ‖ W̃k(i) ‖2

P−1 +E ‖ qk+1(i) ‖2
P−1

+Eāk+1(i)|ξpk+1(i)|2 (2.115)

Moreover, qk+1(i) is independent of Pk+1(i), so that

E ‖ qk+1(i) ‖2
P−1= Tr E{qk+1(i)HP−1qk+1(i)} = Tr{QP−1} =

1

(1− λ)
Tr{QRA}

(2.116)

Solving (2.115) as done in steady-state analysis and using (2.116), it can be shown

that in time-varying environment, the MSE of the RLS AFD-DFE is given as

Jss(i) = JD(i) +
2(1− λ)JDFE(i) + 1

(1−λ)
Tr{QR}

2− 2(1− λ)

=
JD(i)

λ
+
Tr{QR}
2λ(1− λ)

(2.117)
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2.5.4 Computational Complexity

In this section, the computational complexity of the AFD-DFE for SISO SC-

FDMA system is compared with that of the MMSE DFE [1] with perfect channel

knowledge. The computational complexity will be evaluated in terms of the total

number of real multiplications required to compute the feedforward and feedback

filter coefficients per block (one SC-FDMA block) for complex-valued data.

• First, the matrices P 1
k+1 and P 2

k+1 as given in (2.29) and (2.30), respectively,

require 13M real multiplications each, therefore, Pk+1 amounts to 26M real

multiplications.

• Second, the term Pk+1AH
k+1Ek+1 in (2.27) requires 16M real multiplications.

• Finally, 8M real multiplications are required for computing the error term

Ek+1 in (2.23).

Therefore, the total real multiplications count for the AFD-DFE is 50M . For the

MMSE DFE 20(M + 1)Nl + 2Nl + 12M real multiplications are needed, where

Nl denotes the number of iterations for each block and Nl > 1 (these iterations

are needed to solve the causality problem in (2.16) [23]). Compared with the

AFD-LE, the number of computations required to calculate the coefficients of the

AFD-DFE is doubled due to the feedback filter. Moreover, the AFD-LE does not

require iterative procedure.

Our AFD-DFE is computationally efficient in the MIMO case as well, since

the MIMO MMSE DFE requires matrix inversion [30]. The required number of
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Table 2.2: Computational complexity of the AFD-DFE and MMSE DFE
Structure Real Multiplications

SISO
AFD-DFE 50M

MMSE DFE [1] 20(M + 1)Nl + 2Nl + 12M
(with known channel)

MIMO

AFD-DFE 26N3
tM + 26N2

tM + 2NtM
MMSE DFE 8MN3

t − (20Nl)/3− 6NlN
2
t

[30](with known channel) +(62NlN
3
t )/3 + (4NlN

4
t )/3

+2N2
t + 2N3

t + (20NlNt)/3
+(20MNlNt)/3− 6MNlN

2
t +

(86MNlN
3
t )/3 + (4MNlN

4
t )/3
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Figure 2.7: Computational complexity of MMSE DFE [1] and proposed AFD-DFE
versus the number of antennas for M = 16.

real multiplications for the MIMO AFD-DFE (assuming equal number of transmit

and receive antennas) is detailed as follows.

• P 1
k+1 and P 2

k+1 requires (9N3
tM + 5N2

tM +NtM) real multiplications each,

therefore Pk+1 requires (18N3
tM + 10N2

tM + 2NtM) real multiplications.

• The error Ek+1 requires 8N2
tM real multiplications.

• Additional (8N3
tM+8N2

tM) real multiplications are needed to calculate the

equalizer weights Wk+1.
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In summary, the MIMO AFE-DFE requires (26N3
tM + 26N2

tM + 2NtM) real

multiplications. In case of the MIMO MMSE DFE, we estimate the number of

multiplications required for matrix inversion, using the approach given in [31]. Fi-

nally, Table 2.2 summarizes the real multiplications of the AFD-DFE and MMSE

DFE for complex valued data. It is clear from Fig. 2.7 that the computational

complexity of the AFD-DFE is less than that of the MMSE DFE for Nl = 4

(Nl > 4 does not give any significant improvement in the performance [23]). Note

here that we are assuming that the channel is known in case of the MMSE DFE

but in reality it needs to be estimated which will increase the complexity. Fur-

thermore, pilots will be needed to estimate the channel which will increase the

overhead.

2.6 Simulation Results

In this section, the theoretical findings are validated. Similar to an LTE system,

the carrier frequency and bandwidth are set to 2 GHz and 5 MHz, respectively.

Other simulation parameters used are M = 16 and N = 512, therefore, the max-

imum number of users that the system can support is K = 32. The modulation

scheme used is Quadrature Phase shift Keying (QPSK) and the channel is fre-

quency selective with 6-paths and each path fades independently, according to the

Rayleigh distribution. For Figs. 2.8 to 2.11, the user velocity v is taken as 3km/h.

Fig. 2.8 assumes interleaved mapping with no CFO and the signal-to-noise

ratio (SNR) is set to 20dB. As can be seen in this figure, the AFD-DFE out-
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performs the AFD-LE in this scenario where more than 18dB gain in MSE is

achieved. More importantly, both equalizers have the same convergence speed.

The computational complexity of the AFD-DFE is slightly higher than that of the

AFD-LE but when compared to the performance obtained through the use of the

AFD-DFE, this additional complexity at the base station is well justified. Also,

the figure shows that the performance of the RLS-based AFD-DFE is better as

compared to that of the LMS-based AFD-DFE in terms of convergence speed and

MSE. Only 15 iterations are needed for the RLS to converge; hence, the result-

ing complexity and latency increase due to adaptation are not significant. This

figure also depicts the theoretical curves for the three algorithms. Close agree-

ment between the theoretical findings and simulations is observed. Note that the

theoretical curve of AFD-DFE assumes perfect decisions.

0 20 40 60 80 100
−20

−15

−10

−5

0

5

iteration

M
S

E
(d

B
)

 

 

AFD−DFE with LMS

AFD−DFE with RLS

                    Simulation
                    Theory

AFD−LE with RLS

Figure 2.8: Learning curves of LE and DFE in SCFDMA system.

The Bit Error Rate (BER) performance of the AFD-DFE with RLS is shown

in Fig. 2.9. It is clear that the AFD-DFE with RLS outperforms the LMS-based

AFD-DFE and LE with known channel in terms of BER. Note here that minimal
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error propagation was observed in the AFD-DFE at low SNR unlike the MMSE-

DFE of [1] and [23] with known channel, which was due to the poor estimation

of the correlation between the transmitted data and the decisions. Furthermore,

the reliability of the proposed algorithm is increased by a judicious choice of the

initial value of the autocorrelation matrix for both the feedforward and feedback

sections. This gives the proposed algorithm similar performance to that of the

linear equalizer at low SNR’s. For the rest of this chapter we have used the

RLS-based AFD-DFE.
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Figure 2.9: Comparison of RLS AFD-DFE, LMS AFD-DFE, LE and MMSE
DFE [1]

.

Next, two mapping techniques, as defined by (2.1), are compared and the

results are reported in Fig. 2.10 which shows that the performance of interleaved

mapping is better than the localized mapping. The reason is that the performance

of the localized mapping is sub-band dependent. If a user is assigned a sub-band

which is near a deep null of the channel then the performance degrades.

CFO, Ω, is very harmful if there is a slip in frequency and, therefore, can de-
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Figure 2.10: System’s performance under CFO’s effect with Single user for two
mapping techniques.

grade the system’s performance significantly. Fig. 2.10 depicts the performance

of the system under two different CFO’s, Ω = 0 and Ω = 0.2 for a single user.

Localized mapping is more sensitive to CFO in the single user case due to in-

terference from adjacent carriers, while there is no significant performance loss

in case of interleaved mapping in worst case (Ω = 0.2). Moreover, clear gain in

the performance of AFD-DFE over LE (with perfectly known channel) in case

of Ω = 0.2, can be seen. In the ensuing simulations, the interleaved mapping

technique is used as it achieves acceptable performance which does not depend on

sub-band assigned to the user.

The effect of the CFO on the performance of the SC-FDMA system is also

investigated for three users. The same parameters used in the aforementioned

scenario are used here. For this case, the CFO’s of user 1, user 2 and user 3 is

denoted by Ω1, Ω2 and Ω3, respectively. As can be seen from Fig. 2.11, there is

no significant performance loss in the worst case i.e., Ω1 = 0.1,Ω2 = 0.2,Ω3 = 0.3

as compared to the best case i.e., Ω1 = Ω2 = Ω3 = 0, which shows the robustness
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of our AFD-DFE to CFO. The reason of good performance of the AFD-DFE is

explained next. Under CFO, the frequency-domain channel matrix is no longer

diagonal. However, the three main diagonals contain most of the channel energy.

Therefore, most of the interference will occur only between the adjacent sub-

carriers. Since, there are maximum of three users only in our simulations, these

users are not assigned adjacent carriers in the case of distributed sub-carriers

allocation. Hence, the effect of CFO is minimal. However, as the number of

users becomes large, system operating under full load condition, CFO will be

unavoidable as there will be no freedom in assigning non-adjacent sub-carriers to

the users.
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Figure 2.11: System’s performance under CFO’s effect with three users.

In addition, the effect of the user velocity (v) on the system’s performance is

shown in Fig. 2.12 and 2.13 for a single user and three users, respectively. Perfect

transmitter/ receiver oscillator’s synchronization is assumed when evaluating the

performance under Doppler effect. Three velocities are chosen for comparison i.e.

low (3 km/h), medium (30 km/h) and high (300 km/h). For the case of three

users, different velocities are assigned to the users and these are v1, v2 and v3
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for user 1, user 2 and user 3, respectively. As can be observed from these two

figures, our proposed RLS AFD-DFE is robust to the Doppler Effect; however, at

very high SNR the system’s performance deteriorates as the Doppler frequency

increases due to interference from adjacent sub-carriers. Fig. 2.14 depicts the

theoretical and simulated MSE for different user’s velocities. Slight degradation

is observed for large values of velocity. This performance degradation due to

Doppler can be mitigated using SFBC a shown next.
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Figure 2.12: Effect of user’s velocity on system’s performance with single user.
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Figure 2.13: Effect of user’s velocity on system’s performance with three users.

During the simulations of the SFBC SC-FDMA system, a 2-slot interleave

mapping is used where two consecutive sub-carriers are assigned to one user and
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this is to satisfy condition (2.42) with the assumption that the channel does not

change over two consecutive sub-carriers. SFBC is used with single user and the

effect of the users’s velocity on the system’s performance is depicted in Fig. 2.15.

In MIMO scenarios, independent 6-path Rayleigh fading channels are used for

each transmit/receive antenna pair. Fig. 2.15 shows that great improvement in

performance is obtained through the use of SFBC with 2-slot interleaving.

Finally, the performance of a two-receive antenna scenario when three users

share the same frequency band and time slot with three other different users, is
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Figure 2.15: Effect of user’s velocity on SFBC SC-FDMA system.

63



0 2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)
B

E
R

 

 
v = 3 km/h
v = 30 km/h
v = 300 km/h

Figure 2.16: Effect of user’s velocity on hybrid SM-SFBC SC-FDMA with two
receive antennas and six users.

evaluated and this is reported in Fig. 2.16. All users are assumed to be moving

with same velocities v. From the figure, it is clear that the AFD-DFE can separate

co-channel users without sacrificing performance.

2.7 Conclusion

In this work, an adaptive frequency-domain DFE is proposed for the first time

for SC-FDMA, SFBC SC-FDMA, SM SC-FDMA and hybrid SM-SFBC SFBC

SC-FDMA systems with both feedforward and feedback filters operating in the

frequency-domain. The equalizer operates without channel estimation at the re-

ceiver. The updating scheme used for the frequency-domain DFE is the RLS

algorithm. The proposed algorithm is shown to have a low complexity and this

is due to the special structure of the matrices involved in computing the weights

of the feedforward ad feedback filters in the frequency-domain. The AFD-DFE

is also more computationally efficient than non-adaptive frequency-domain DFE.
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Simulation results for a time varying frequency-selective fading channel under the

effect of high Doppler frequency and CFO on the system’s performance are con-

ducted and demonstrate the significant performance gain and robustness of the

proposed algorithm.
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CHAPTER 3

ADAPTIVE

FREQUENCY-DOMAIN

DECISION FEEDBACK

EQUALIZATION USING

CONSTRAINT-BASED RLS

FOR UPLINK SC-FDMA

The Decision Feedback equalizer is well known to outperform a Linear Equal-

izer (LE) in highly frequency-selective fading channels. In this work, we develop

a constraint-based block Recursive Least Squares (CRLS) for an Adaptive Fre-

quency Domain Decision Feedback Equalizer (AFD-DFE) when used in an up-
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link Single Carrier Frequency Division Multiple Access (SC-FDMA) systems. For

the AFD-DFE, both the feedforward and feedback filters are implemented in the

frequency-domain, therefore, the complexity of the constraint-based block RLS

can be reduced substantially when compared to its time-domain counterpart by

exploiting the matrix structure in the frequency-domain. The performance of the

CRLS algorithm is better than that of the RLS with no significant increase in

the computational complexity. Moreover, we extend our design to the Space-

Frequency Block code (SFBC) SC-FDMA system. We also show that the AFD-

DFE not only enjoys a significant reduction in computational complexity when

compared to the frequency-domain non-adaptive optimum MMSE DFE but its

performance is also better than practical MMSE DFE (the one with error deci-

sions) and close to ideal MMSE DFE (the one with correct decisions). Simulation

results are carried out to demonstrate the robustness of our proposed algorithm

to high Doppler. To mitigate Inter-Carrier Interference (ICI) due to large Car-

rier Frequency Offset (CFO), we have designed 3-tap per sub-carrier AFD-DFE

by exploiting the banded and sparse structure of the channel, for Single-Input

Single-Output (SISO) and SFBC SC-FDMA systems and show that it has an ex-

cellent performance as compared to 1-tap AFD-DFE and has a low computational

complexity . Finally, it is shown that we can reduce the training symbols in each

SC-FDMA block that are transmitted in the training phase with no significant

performance degradation. To further reduce the overhead blind AFD-DFE is also

introduced.
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3.1 Introduction

Constraint-based algorithms help in achieving the better performance by putting

some condition on the behavior of the algorithm. There are several examples of the

constraint-based algorithms like normalized LMS [32], noise-constraint LMS [33],

l0 norm constraint LMS [34] and noise-constraint diffusion LMS [35], just to name

a few. In time-domain DFE, the previous decisions are fed back but not the

present one. To ensure that the present symbol is not canceled out, the feedback

filter coefficient corresponding to that symbol is set to zero. Here, the frequency-

domain version of DFE is used, therefore, to make sure that the present symbol is

not canceled out in the feedback loop, the equalizer is constrained to follow this

action. Thus achieving performance improvement as compared to the unconstraint

AFD-DFE.

To improve reliability at the user terminal, a transmit diversity is employed

in LTE-Advanced (LTE-A) [36]. A popular two transmit diversity technique was

proposed by Alamouti [13], which has linear Maximum Likelihood (ML) decoding

complexity with full diversity gain. The Alamouti’s scheme is a special case of

Space Time Block Codes (STBC) [14]. Alamouti’s STBC can not be applied to

SC-FDMA system, since in LTE the frames contain odd number of SC-FDMA

symbols but for STBC this number should be even. Moreover, in STBC it is

assumed that the channel remains constant for two SC-FDMA symbols which

is not valid in the case of fast varying channels and consequently, performance

degradation will result. An alternative to STBC is Space-Frequency Block Codes
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(SFBC) [15]. In SFBC, the number of symbols in each frame is not necessary to be

even but when applied to a SC-FDMA system it effects the low PAPR property.

In [17] and [18], new schemes to deal with the aforementioned issues are proposed.

However, their performances degrade at high Signal-to-Noise Ratio (SNR). In [37],

an embedded SFBC technique is proposed which preserves low PAPR property

of SC-FDMA as well as Alamouti’s structure in case of Inter-Carrier Interference

(ICI).

In this work, we propose an AFD-DFE (1-tap per subcarrier) where both

the feedforward and feedback filters operate in the frequency-domain and use a

constraint-based RLS for adaptation. The block RLS algorithm [5] is used as it

is known to provide fast convergence/ tracking when compared to Least Mean

Square (LMS) algorithm. Generally the complexity of the block RLS is high due

to matrix inversion operation involved but when used in the frequency-domain,

the inversion operation is simplified due to special structure of the matrices and,

hence, a reduction in the complexity. The design is then extended to SFBC SC-

FDMA and 3-tap AFD-DFE. In previous works, 1-tap per subcarrier frequency

domain equalizer is used, which becomes highly suboptimal in presence of ICI.

Therefore, we design 3-tap per subcarrier AFD-DFE by assuming banded and

sparse structure of the channel matrix. To further improve the performance of

the AFD-DFE, a 3-tap AFD-DFE is combined with the SFBC technique. It is

also shown that the 3-tap AFD-DFE also exhibits low complexity, thanks again to

the structure of the matrices. The AFD-DFE is complex when compared to the
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AFD-LE but as we are working in uplink so the complex equalizer will be required

at the Base Station (BS), where the power limitations are more relaxed than

at the user terminals. Our designed constraint-based AFD-DFE is general and

does not depend on mapping technique used. The complexity of the constraint-

based AFD-DFE is almost similar to that of the AFD-DFE with standard RLS

(without constraint) and performance wise the former is much better. We also

demonstrated the robustness of our designed AFD-DFE to ICI due to high Doppler

and showed that in case of large Carrier Frequency Offset (CFO), the 3-tap AFD-

DFE performance is better. Furthermore, it is shown that in order to reduce the

overhead in the training phase, we can use some symbols in SC-FDMA block for

training and the rest for data without compromise of performance.

Adaptive equalization algorithms utilize a initial training sequence. However

to save resources or when sending the training symbols are not possible, it is desir-

able to use an equalizer without the aid of a training sequence. Such an equalizer

which does not utilize a training mode is known as blind equalizer. Designing

an efficient and fully blind DFE remains a challenging task due to the decision

errors in the feedback loop. Note that here we are using block DFE, which has

certain advantages to be used as blind equalizer. First, error propagation is lim-

ited to one block. Therefore, by keeping the block size small, error propagation

can be minimized. Second, in block DFE we have a problem of causality, which is

solved by using an iterative procedure discussed in chapter 2. This iterative proce-

dure gives best decisions as compared to symbol-by-symbol DFE thus minimizing
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the error propagation. These two facts are utilized to devise a Blind AFD-DFE

(BAFD-DFE).

In summary, the main contributions of this chapter are

• Adaptive constraint RLS-based implementation of the AFD-DFE for SISO

SC-FDMA.

• Extension to the SFBC scenarios.

• Reduced-Complexity implementation by exploiting matrix structure.

• Demonstration of performance superiority to LE, practical MMSE-DFE and

LMS-based approaches.

• Reduced Complexity compared to the channel-estimate-based approach.

• Demonstrated robustness to Doppler.

• Extension to 3-tap AFD-DFE for SISO and SFBC cases to combat ICI.

• Reduction of overhead by using less training symbols in training phase and

introduction of BAFD-DFE.

3.2 Recursive Least Squares with constraint

(CRLS)

Lets denote the feedforward and feedback filter coefficients in the frequency-

domain as F and B, respectively. Using the system model described in Section
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(2.2), the output of the equalizer in the frequency-domain at instant k is given by

X̌ k = ZkFk−1 + DkBk−1 (3.1)

The coefficients of the feedforward and feedback filter are F(0),F(1), ... F(M −

1) and B(0),B(1), ... B(M − 1), respectively. The explicit knowledge of the

filter coefficients is not needed for the development of the adaptive solution. The

decision matrix D is defined as

Dk =


diag(FMxk), for training

diag(FM x̂k), for decision-directed

Denoting Wk =
[Fk
Bk

]
. We express (3.1) as

X̌ k = [Zk Dk]Wk−1 (3.2)

Hence, the output of the equalizer in the time-domain is x̌k = FH
M X̌ k. Here we

will use a constraint to formulate a constraint-based least squares solution for

DFE taps to be used in SC-FDMA system. This constraint is used to cancel out

the pre and post cursers but not the desired component. To explain this, suppose

the feedback filter weights in time-domain are b0, b1, ..., bL. Since b0 corresponds

to the present symbol, which is not fed back to avoid self cancelation of the

present symbol, therefore, b0 = 0. In frequency domain, this can be translated

to
∑M−1

i=0 B(i) = 0. In the ensuing two methods are used to formulate the CRLS

72



algorithm.

3.2.1 Case 1

In this case, the frequency-domain CRLS is developed from least squares problem.

Assume we have available k + 1 realizations of the matrices {Z,D}. We collect

the desired data and received data matrices as

Π =



Z0 D0

Z1 D1

...
...

Zk Dk


(3.3)

and

D́ =



D0

D1

...

Dk


(3.4)

where Dk = [Dk(0), Dk(1), ..., Dk(M − 1)]T is a vector containing the diagonal

elements of Dk. First we will consider a combined cost function of the feedforward

and feedback filters to be minimized. The constraint-based least squares problem

for this case is given as

min
W
||D́ −ΠW ||2 subject to

M−1∑
i=0

B(i) = 0 (3.5)
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where the notation ||.||2 denotes the squared Euclidean norm of its argument. To

solve this optimization problem, we use the Lagrange multiplier method for the

general case of complex valued data. According to this method, the objective

function for the problem at hand consists of two terms, given on the right side of

the equation

J = ||D́ −ΠW ||2 + 2Re{α∗
M−1∑
i=0

B(i)} (3.6)

where α is complex valued Lagrange multiplier and asterisk denotes complex con-

jugation. As the square of Euclidean norm ||D − X̌ ||2 is real-valued function.

Therefore, real part operator, Re{.}, is applied to the second term to ensure that

the contribution to the objective function is likewise real-valued. The objective

function, J , is quadratic, as shown by expanding (3.6) into

J = D́HD́ − D́H
ΠW −WHΠHD́ + WHΠHΠW + 2Re{α∗GW} (3.7)

To find the least squares solution differentiate the objective function with respect

to weight vector W . Then follow the rule of differentiating a real-valued function

with respect to complex-valued vector [29], we get

∂J

∂W = −D́H
Π + WHΠHΠ + α∗G (3.8)

74



where G = [01×M 11×M ] and 01×M and 11×M are all zero and all ones row vector

of size M , respectively. The final solution of (3.8) becomes

W = (ΠHΠ)−1(ΠHD́ − G) (3.9)

where G = αGT . To update the least square solution (3.9) recursively, we proceed

as follows: The time updated least squares problem is given as

min
W
||D́k+1 −Πk+1W ||2 subject to

M−1∑
i=0

B(i) = 0 (3.10)

which has the following solution

Wk+1 = (ΠH
k+1Πk+1)−1(ΠH

k+1D́k+1 − Gk+1) (3.11)

To develop update scheme for the least squares solution (3.11) define Πk+1 and

D́k+1, respectively, as

Πk+1 =

 Πk

Zk+1 Dk+1

 (3.12)

and

D́k+1 =

 D́k

Dk+1

 (3.13)

Note that

ΠH
k+1Πk+1 = ΠH

k Πk + [Zk+1 Dk+1]H [Zk+1 Dk+1] (3.14)
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and

ΠH
k+1D́k+1 − Gk+1 = ΠH

k D́k − Gk + [Zk+1 Dk+1]HDk+1 − αk+1G
T (3.15)

Lets introduce the matrix

P k+1 = (ΠH
k+1Πk+1)−1 (3.16)

Then (3.11) can be written in more compact form as

Wk+1 = P k+1(ΠH
k+1D́k+1 − Gk+1) (3.17)

Putting (3.14) in (3.16), we get

P k+1 = (ΠH
k Πk + [Zk+1 Dk+1]H [Zk+1 Dk+1])−1

= (P−1
k + [Zk+1 Dk+1]H [Zk+1 Dk+1])−1 (3.18)

and

P−1
k+1 = P−1

k + [Zk+1 Dk+1]H [Zk+1 Dk+1] (3.19)

Using the matrix inversion identity [5], it can easily be shown that

P k+1 = P k − P k[Zk+1 Dk+1]Hβ[Zk+1 Dk+1]P k (3.20)
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where β = (IM + [Zk+1 Dk+1]P k[Zk+1 Dk+1]H)−1 Putting (3.20) and (3.15)

in (3.17), we get

Wk+1 =
(
P k − P k[Zk+1 Dk+1]Hβ[Zk+1 Dk+1]P k

)
(ΠH

k D́k − Gk

+[Zk+1 Dk+1]HDk+1 − αkGT )

= P kΠ
H
k D́k − P kGk︸ ︷︷ ︸
Wk

−
(
P k[Zk+1 Dk+1]Hβ[Zk+1 Dk+1]

)
×P k(Π

H
k D́k − Gk)︸ ︷︷ ︸
Wk

+P k[Zk+1 Dk+1]H

(
IM − β[Zk+1 Dk+1]P k[Zk+1 Dk+1]H

)
Dk+1 − P k+1(αk+1G

T )

(3.21)

After rearranging, we get

Wk+1 = Wk +
(
P k[Zk+1 Dk+1]Hβ

)
(Dk+1 − [Zk+1 Dk+1]Wk)

−P k+1(αk+1G
T )

= Wk + P k+1[Zk+1 Dk+1]H(Dk+1 − [Zk+1 Dk+1]Wk)

−P k+1(αk+1G
T ) (3.22)

it can easily be prove that

P k+1[Zk+1 Dk+1]H =
(
P k[Zk+1 Dk+1]Hβ

)
(3.23)
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Finally,

Wk+1 = Wk + P k+1([Zk+1 Dk+1]H(Dk+1 − [Zk+1 Dk+1]Wk)− αk+1G
T )

(3.24)

If we use the exponentially-weighted RLS, then (3.20) becomes

P k+1 = λ−1
[
P k − λ−1P k[Zk+1 Dk+1]Hβ[Zk+1 Dk+1]P k

]
(3.25)

where 0� λ ≤ 1. The multiplier αk+1 is updated according to stochastic gradient

method as

αk+1 = αk + µ

(
∂J

∂α

)∗
k

(3.26)

Differentiating (3.6) with respect to α, we get

∂J

∂α
=

(
M−1∑
i=0

B(i)

)∗
(3.27)

Therefore, (3.26), becomes

αk+1 = αk + µ

M−1∑
i=0

Bk(i) (3.28)
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3.2.2 Case 2

In this case, we motivate the RLS algorithm as simply a stochastic gradient

method. The Mean Square Error (MSE) at the ith frequency bin is given as

MSE(i) = E[|D(i)− X̌(i)|2] (3.29)

where E[.] stands for the expectation operation. Using the constraint the cost

function becomes

J = E[|D(i)− X̌(i|2] + 2Re[α∗
M−1∑
i=0

B(i)] (3.30)

Expanding the cost function and ignoring the expectation as we are using stochas-

tic gradient method, we get

J = D∗(i)D(i)−D∗(i)Y(i)F(i)−D∗(i)D(i)B(i)−F∗(i)Y∗(i)D(i)

− B∗(i)D∗(i)D(i) + F∗(i)Y∗(i)Y(i)F(i) + F∗(i)Y(i)D(i)B(i)

+ B∗(i)D∗(i)Y(i)F(i) + B∗(i)D∗(i)D(i)B(i) + 2Re[α∗
M−1∑
i=0

B(i)] (3.31)
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Minimizing (3.31) for the feedforward filter and the feedback filter separately,

results in the following updates at instant (k + 1)

Fk+1(i) = Fk(i)− µ1
k+1(i)

(
∂J

∂F(i)

)∗
k

= Fk(i) + µ1
k+1(i)Y∗k+1(i){Dk+1(i)− [YK+1(i)Fk(i) +Dk+1(i)Bk(i)]}

(3.32)

and

Bk+1(i) = Bk(i)− µ2
k+1(i)

(
∂J

∂B(i)

)∗
k

= Bk(i) + µ2
k+1(i)D∗k+1(i){Dk+1(i)− [Yk+1(i)Fk(i) +Dk+1(i)Bk(i)]}

−µ2
k+1(i)αk+1 (3.33)

where µ(i)1
k+1 and µ(i)2

k+1 are the time varying step sizes, given as

µ(i)1
k+1 =

µk+1

εk+1 + E[Y(i)∗Y(i)]
, µ(i)2

k+1 =
µk+1

εk+1 + E[D∗(i)D(i)]

Next, we replace E[Y(i)∗Y(i)] and E[D∗(i)D(i)] by their estimates, which for RLS

update, are choosen as the exponentially-weighted sample average

E[Y(i)∗Y(i)] =
1

(k + 2)

k+1∑
j=0

λk+1−jYj(i)∗Yj(i)) (3.34)

E[D(i)∗D(i)] =
1

(k + 2)

k+1∑
j=0

λk+1−jDj(i)
∗Dj(i)) (3.35)
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for some scalar 0 � λ ≤ 1. Equations (3.34) and (3.35) amount to averaging all

past regressors up to time k+1. Now choosing the step size as µk+1 = 1/(k+2) and

the regularization factor as εk+1 = λk+2ε/(k+2), and collecting all the coefficients

in one vector W , (3.32) and (3.33) become

Wk+1 = Wk +

[
λk+2εI2M +

k+1∑
j=0

λk+1−jAH
j Aj

]−1

(AH
k+1Ek+1 − αk+1G

T ) (3.36)

where Ak and Ek are given as

Ak =

 Zk 0

0 Dk

 (3.37)

and

Ek =

 Dk − X̌ k

Dk − X̌ k

 (3.38)

It is not convenient to find the inverse of the matrix in (3.36) as it requires to

combine all the previous and present data to form the matrix. Therefore, we

define

Θk+1 ,

(
λk+2εI2M +

k+1∑
j=0

λk+1−jAH
j Aj

)
(3.39)

which satisfies the following recursion

Θk+1 = λΘk + AH
k+1Ak+1, Θ0 = εI2M (3.40)
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Let Pk+1 = Θ−1
k+1 and applying the matrix inversion lemma [5] gives

Pk+1 = λ−1[Pk − λ−1PkAH
k+1 × (I2M + λ−1Ak+1PkAH

k+1)−1Ak+1Pk] (3.41)

where λ is the forgetting factor chosen close to 1. Finally the RLS update is given

as

Wk+1 = Wk + Pk+1(AH
k+1Ek+1 − αk+1G

T ) (3.42)

with Ek define as in (3.38). Initially W0 = 0 and P0 = ε−1I2M . αk is updated

according to (3.28).

As can be seen that Pk in case 2 gives a much better estimate of input covari-

ance matrix for each filter as it takes in to account the input of the feedforward

filter and feedback filter separately, therefore, its performance is better than case

1. Also the decision error does not effect the feedforward filter in case 2 unlike case

1. This claim is proved later using simulation. The computational complexity of

case 2 is also low as it does not require matrix inversion unlike case 1. Due to

these two reasons, later case will be only considered in the study.

3.2.3 Reduced-Complexity CRLS Update

Due to the special structure in Pk+1, it turns out that no matrix inversion is

required for computing Pk+1 resulting in a significant reduction in computational

complexity. Following the same procedure as done in Section (2.3.2), it can be
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shown that the final reduced-complexity CRLS update has the form

Wk+1 = Wk + diag([P 1
k+1 P 2

k+1])(AH
k+1Ek+1 − αk+1G

T ) (3.43)

and constraint is updated using (3.28). The update procedure for AFD-DFE with

CRLS is shown in Table 3.1.

3.2.4 Reduced-training AFD-DFE

Instead of usingM training symbols in one SC-FDMA block, the training overhead

can be reduced by using T training and M − T modulated symbols. Now by

introducing the iterative procedure in training mode we can interpolate the rest

of the weights. The update procedure in reduced-training mode is shown in Table

3.1. For BAFD-DFE, the algorithm is used in decision-directed mode by utilizing

stop and go blind equalization algorithm [38].

3.3 Carrier Frequency Offset (CFO) in SC-

FDMA

In the above description, perfect frequency synchronization has been assumed

between the transmitter and the receiver. However, CFO arises in practical SC-

FDMA systems due to transmitter/receiver frequency oscillators’ misalignment

and causes interference (energy leakage) from neighboring sub-carriers.

Let the mth user’s CFO normalized by the sub-carrier spacing, be denoted by

83



Table 3.1: Summary of the adaptation algorithm for AFD-DFE
Initialization:

Initialize the algorithm by setting

W0 = 0

α0 = 0

λ is close to one

and P0 =

[
ε−1
F IM 0

0 ε−1
B IM

]
For each instant of time, k=0,1,2,...

In training mode:

(1) Update αk+1 as

αk+1 = αk + µ
∑M−1

i=0 Bk(i)
(2) Update P 1

k+1 and P 2
k+1 via

P 1
k+1 = λ−1[P 1

k − λ−1P 1
k(|Zk+1|−2 + λ−1P 1

k)
−1P 1

k]

P 2
k+1 = λ−1[P 2

k − λ−1P 2
k(|X k+1|−2 + λ−1P 2

k)
−1P 2

k]

(3) Update the equalizer weights Wk+1 recursively as

Wk+1 = Wk + diag([P 1
k+1 P 2

k+1])(AH
k+1Ek+1 − αk+1G

T )

In decision-directed mode:

(1) Iterate on X̌ k+1 = Zk+1Fk + Dk+1Bk

(2) Update αk+1 as

αk+1 = αk + µ
∑M−1

i=0 Bk(i)
(3) Update P 1

k+1 and P 2
k+1 via

P 1
k+1 = λ−1[P 1

k − λ−1P 1
k(|Zk+1|−2 + λ−1P 1

k)
−1P 1

k]

P 2
k+1 = λ−1[P 2

k − λ−1P 2
k(|X̌ k+1|−2 + λ−1P 2

k)
−1P 2

k]

(4) Update the equalizer weights Wk+1 recursively as

Wk+1 = Wk + diag([P 1
k+1 P 2

k+1])(AH
k+1Ek+1 − αk+1G

T )

Ωm where 0 ≤ Ωm ≤ 0.5. Now, define a diagonal matrix to characterize the effect

of CFO as C(m) = diag([ej2πΩm×0/N , ej2πΩm×1/N , ..., ej2πΩm×(N−1)/N ]). In this case,

the pre-DFT received signal can be expressed as
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Table 3.2: Summary of the reduced-training adaptation algorithm for AFD-DFE
For each instant of time, k=0,1,2,...

In training mode:

(1) Iterate on X̌ k+1 = Zk+1Fk + Dk+1Bk with SC-FDMA block

containing T training symbols and M − T modulated data symbols

(2) Update αk+1 as

αk+1 = αk + µ
∑M−1

i=0 Bk(i)
(3) Update P 1

k+1 and P 2
k+1 via

P 1
k+1 = λ−1[P 1

k − λ−1P 1
k(|Zk+1|−2 + λ−1P 1

k)
−1P 1

k]

P 2
k+1 = λ−1[P 2

k − λ−1P 2
k(|X̌ k+1|−2 + λ−1P 2

k)
−1P 2

k]

(4) Update the equalizer weights Wk+1 recursively as

Wk+1 = Wk + diag([P 1
k+1 P 2

k+1])(AH
k+1Ek+1 − αk+1G

T )

y =
K∑
m=1

C(m)(s(m) ~ h(m)) + n(m) (3.44)

After applying the N -point DFT, the received signal is given by

Ý =
K∑
m=1

C(m)Λ̂
(m)
R(m)X (m) + N (3.45)

where C(m) is a circulant matrix with entries C(m)
p,q =

1
N

∑N−1
n=0 e

j2π(Ω(m)+p−q)n/N , p, q = 1, ..., N . It is important to note here that

the channel matrix C(m)Λ̂
(m)

has structure shown in Fig. 3.1 , which shows that

most of the energy of this matrix is in its three main diagonals. We assume that

except three main diagonals all other entries are zero and based on this structure

we formulate our three tap equalizer in the frequency-domain. After demapping,

the mth user’s received signal is Y (m) = R(m)T Ý . To simplify the notation we will
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Figure 3.1: Structure of C(m)Λ̂
(m)

(normalized) matrix.

ignore the superscript m and Y = [Y(0),Y(1), ...,Y(M − 1)]T . Now assuming

that the equalizer tap matrix has similar structure as channel matrix, i.e. we

have only three main diagonals then output of the MMSE 3-tap LE is given as



X̌(0)

X̌(1)

X̌(2)

...

X̌(M − 1)


=



F1(0) F2(0)

F1(1) F2(1) F3(1)

F1(2)
. . . . . .

. . . . . . F3(M − 2)

F1(M − 1) F2(M − 1)





Y(0)

Y(1)

Y(2)

...

Y(M − 1)


(3.46)
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where Fi(j) represents the tap of the LE. and for DFE, we can write



X̌(0)

X̌(1)

X̌(2)

...

X̌(M − 1)


=



F1(0) F2(0)

F1(1) F2(1) F3(1)

F1(2)
. . . . . .

. . . . . . F3(M − 2)

F1(M − 1) F2(M − 1)





Y(0)

Y(1)

Y(2)

...

Y(M − 1)



+



B(0)

B(1)

B(2)

. . .

B(M − 1)





D(0)

D(1)

D(2)

...

D(M − 1)


(3.47)

where Fi(j) and Bi(j) represent the tap coefficient of the feedforward and feedback

filter, respectively. However, to develop an adaptive solution for these taps, we

do not need their explicit solution. Denoting U i = [Y(i − 1) Y(i) Y(i + 1)] for

i = 1, 2, ...M − 2, U0 = [Y(0) Y(1)] and UM−1 = [Y(M − 2) Y(M − 1)], (3.47)
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can be rewritten alternatively as



X̌(0)

X̌(1)

X̌(2)

...

X̌(M − 1)


=



U0

U1

U2

. . .

UM−1





F1(0)

F2(0)

F1(1)

...

F2(M − 1)



+



D(0)

D(1)

D(2)

. . .

D(M − 1)





B(0)

B(1)

B(2)

...

B(M − 1)


(3.48)

which can be written in compact notation, at instant k, as

X̌ k = ZkFk−1 + DkBk−1 (3.49)

Defining Ak, Ek and Pk as in (3.37), (3.38) and (3.41), respectively, the RLS

update is given as in (3.43).

Reduced-Complexity 3-tap CRLS AFD-DFE: Again, we can show that

the computational complexity is significantly reduced and no matrix inversion is

required. We explain the rationale behind the complexity reduction. Starting
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with k = 0 and using P 1
0 = ε−1I3M−2, P 1

1 is given by

P 1
1 = λ−1[P 1

0 − λ−1P 1
0ZH

1 (IM + λ−1Z1P
1
0ZH

1 )−1Z1P
1
0]

= λ−1[ε−1I3M−2 − λ−1ε−1I3M−2ZH
1 (IM + λ−1ε−1Z1ZH

1 )−1Z1ε
−1I3M−2]

(3.50)

It can easily be seen that Z1ZH
1 = diag[|U0,1|2 |U1,1|2 ... |UM−1,1|2] and (3.50)

does not require matrix inversion. Now

ZH
1 (IM + λ−1ε−1Z1ZH

1 )−1Z1 =



ø0

ø1

. . .

øM−1


(3.51)

where as the entries øi, i = 1, ...,M − 2 are 3× 3 matrices and øi, i = 0,M − 1 are

2× 2 matrices given by øi = UH
i,1(1 + λ−1ε−1|U i,1|2)U i,1, i = 0, ...,M − 1. Now P 1

1

has a structure shown below.

P 1
1 =



P 1
1,0

P 1
1,1

. . .

P 1
1,M−1


(3.52)

where P 1
1,i = λ−1[ε−1Id − λ−1ε−2øi], d = 2 for i = 0,M − 1 and d = 3 for
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i = 1, ...,M − 2. Proceeding for k = 1, we have

P 1
2 = λ−1[P 1

1 − λ−1P 1
1ZH

2 (IM + λ−1Z2P
1
1ZH

2 )−1Z2P
1
1]

where Z2P
1
1ZH

2 = diag[U0,2P
1
1,0UH

0,2 U1,2P
1
1,1UH

1,2 ... UM−1,2P
1
1,M−1UH

M−1,2]

and U i,2P
1
1,iUH

i,2 is a scalar quantity, therefore, matrix inversion is just M scalar

inversions. For k > 1, P 1
k has similar structure and, therefore, avoid matrix

inversion. Moreover, for P 2
k same reasons are valid as for the 1-tap AFD-DFE

case.

3.4 Space-Frequency Block Coded (SFBC) SC-

FDMA

In this section we will discuss Embedded SFBC (E-SFBC) technique. In the

presence of CFO and high Doppler, severe ICI from adjacent carriers occurs

which destroys the Alamouti structure and results in performance degrada-

tion. Therefore, [37] proposes embedded SFBC which preserves the Alamouti

structure even when there is ICI and also this technique does not effect the

low PAPR property of SC-FDMA unlike Conventional SFBC (C-SFBC). For

design of our AFD-DFE we implement the embedded SFBC at block level.

Here we will not use the pilots and divide the block in to two. In embed-

ded SFBC, we define X (m)
1 = [X(0)(m), X(2)(m), ..., X(M − 2)(m)]T and X (m)

2 =

[X(1)(m), X(3)(m), ..., X(M−1)(m)]T i.e. X (m) is divided into two blocks. Now the
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sequence to transmit these sub-blocks will be X́ 1 =

[
X (m)

1

−X ∗(m)
2

]
and X́ 2 =

[
X (m)

2

X ∗(m)
1

]
for antenna 1 and 2, respectively. After mapping and applying N -point IDFT,

the transmitted signals from the two antennas are s
(m)
1 and s

(m)
2 corresponding

to X́ (m)

1 and X́ (m)

2 . The transmitted signals are circularly convolved with their

respective channels and the received signal, after applying the N -DFT become

Ý =
K∑
m=1

{Λ̂(m)

1 R(m)X́ 1 + Λ̂
(m)

2 R(m)X́ 2}+ N (3.53)

where Λ̂
(m)

i is a N × N diagonal matrix, i.e., Λ̂
(m)

i = diag(DFT (h
(m)
i )) for

i = 1, 2 and N is noise component with variance σNIN . The received signal for

mth user, after demapping, can be expressed as

Y (m) = R(m)T Λ̂
(m)

1 R(m)[X (m)
1 −X ∗(m)

2 ]T +R(m)T Λ̂
(m)

2 R(m)[X (m)
2 X ∗(m)

1 ]T +N (m)

(3.54)

Let Λ
(m)
i = R(m)T Λ̂

(m)

i R(m) for i = 1, 2, then Λ
(m)
i is M ×M diagonal matrix.

To simplify the notation we will drop the superscript m and write (3.54) as

Y1 = Λ11X 1 + Λ12X 2 + N 1 (3.55)

Y2 = Λ21X ∗1 −Λ22X ∗2 + N 2 (3.56)

where Λ1 = diag[Λ11 Λ22] and Λ2 = diag[Λ12 Λ21]. Combining (3.55) and (3.56)
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can be written as

Y =

 Y1

Y∗2



=

 Λ11 Λ12

Λ∗21 −Λ∗22


 X1

X2

+

 N1

N ∗
2


, ΛX 12 + N 12 (3.57)

For Alamouti structure, Λ11 = Λ22 and Λ12 = Λ21. In order to make this as-

sumption valid, we introduce reordering of the sub-carriers before mapping at the

transmitter asOX́ 1 andOX́ 2, whereO = [I1, IM/2+1, I2, IM/2+2, ...., IM/2, IM ] and

assume that the channel does not change over two consecutive sub-carriers. At

the receiver side, the reordering is done after demapping by using a matrix OT .

After MMSE equalization, we get

 X̌ 1

X̌ 2

 = (ΛHΛ +
1

SNR
I2M)−1ΛHY12 (3.58)

where SNR is the signal-to-noise ratio at the receiver. Since Λ̃ΛH has an Alamouti

like structure, therefore,

 X̌ 1

X̌ 2

 =

 Φ1 Φ2

Φ∗2 −Φ∗1


 Y1

Y∗2

 (3.59)

where Φ1 and Φ2 are diagonal matrices. Alternatively, (3.59) can be setup written
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as

 X̌ 1

X̌ ∗2

 =

 diag(Y1) diag(Y∗2)

−diag(Y2) diag(Y∗1)


 Υ1

Υ2


where Υ1 and Υ2 are the vectors containing the diagonal elements of Φ1 and Φ2.

For a DFE, we have

 X̌ 1

X̌ ∗2


︸ ︷︷ ︸
X̌ 12

=

 diag(Y1) diag(Y∗2)

−diag(Y2) diag(Y∗1)


 Υ1

Υ2

+

 diag(D1) 0

0 diag(D∗2)


 Ψ1

Ψ2


,ZF + DB (3.60)

where D1 and D2 are X 1 and X 2, respectively, for the training mode or frequency-

domain decisions on X̌ 1 and X̌ 2, respectively, for the decision-directed mode.

The feedforward and feedback filter coefficients in the frequency-domain are F =

[F(0) ... F(M − 1)]T and B = [B(0) ... B(M − 1)]T containing the elements

{Υ1,Υ2} and {Ψ1,Ψ2}, respectively. Moreover, Z is an M ×M Alamouti-like

matrix containing the received symbols and D is a diagonal matrix containing

decisions. However, these coefficients will be computed adaptively; hence, an

exact solution is not required. At the kth instant, the output of the equalizer is

given as

X̌ 12,k = ZkFk−1 + DkBk−1 (3.61)

The CRLS AFD-DFE recursion is given as in (3.42) with G =
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[01×(3M−2) 11×M ] and error vector as

Ek =

 Dk − X̌ 12,k

Dk − X̌ 12,k

 (3.62)

where Dk denotes the decisions at the kth instant, i.e., Dk =
[
D1,k

D∗2,k

]
and Ak and

Pk as in (3.37), and (3.41), respectively.

Reduced-Complexity CRLS AFD-DFE: It might seem that (3.42) re-

quires matrix inversion. However, due to the special structure of SFBC, no inver-

sion is required resulting in significant complexity reductions as shown below.

The matrix Pk+1 has a diagonal structure, i.e., Pk+1 = diag([P 1
k+1 P 2

k+1]),

where P 1
k+1 and P 2

k+1 are diagonal as well and P 1
k+1 is given by.

P 1
k+1 = λ−1[P 1

k − λ−1P 1
kZH

k+1(IM + λ−1Zk+1P
1
kZH

k+1)−1Zk+1P
1
k](3.63)

Now, simplifying the term (λ−1Zk+1P
1
kZH

k+1) , we get

λ−1Zk+1P
1
kZH

k+1 = λ−1P 1
kZk+1ZH

k+1

= λ−1P 1
k

 diag(Y1,k+1) diag(Y∗2,k+1)

−diag(Y2,k+1) diag(Y∗1,k+1)



×

 diag(Y∗1,k+1) −diag(Y∗2,k+1)

diag(Y2,k+1) diag(Y1,k+1)


= λ−1P 1

kdiag
[
diag(|Y1,k+1|2) + diag(|Y2,k+1|2)

]
(3.64)
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Now ZH
k+1(IM + λ−1Zk+1P

1
kZH

k+1)−1Zk+1 = diag([ø ø]) , ψ1
k+1, where ø is

diagonal given as ø = (diag(|Y1,k+1|2)+diag(|Y2,k+1|2))−1 +λ−1P 1
k]
−1. It follows

that P 1
k+1 will have the form

P 1
k+1 = λ−1[P 1

k − λ−1P 1
kψ

1
k+1P

1
k] (3.65)

Using the same approach as in the SISO case, P 2
k+1 can be expressed as follows

P 2
k+1 = λ−1[P 2

k − λ−1P 2
kψ

2
k+1P

2
k] (3.66)

where ψ2
k+1 = (|Dk+1|−2 + λ−1P 2

k)
−1. Finally, the RLS AFD-DFE recursion has

the form

Wk+1 = Wk + diag([P 1
k+1 P 2

k+1])(AH
k+1Ek+1 − αk+1G

T ) (3.67)

where P 1
k+1 and P 2

k+1 are defined by (3.65) and (3.66), respectively.

3.5 Carrier Frequency Offset (CFO) in SFBC

SC-FDMA

We proceed with embedded SFBC as in C-SFBC, the Alamouti structure is de-

stroyed due to ICI. For CFO, the channel matrices, Λij, in (3.57) lost their diagonal

structures. We can approximate these matrices as a banded (tridiagonal) struc-
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ture. Assuming the feedforward taps matrices have similar structure as channel

matrices, the equalized signal can be written as

 X̌ 1

X̌ 2

 =

 Φ1 Φ2

Φ∗2 −Φ∗1


 Y1

Y∗2

+

 Θ1 0

0 Θ∗2


 D1

D2

 (3.68)

where Φi is tri-diagonal matrix and Θi is diagonal matrix. D1 andD2 are X 1 and

X 2, respectively, for the training mode or frequency-domain decisions on X̌ 1 and

X̌ 2, respectively, for the decision-directed mode. However, the exact knowledge

of the equalizer taps matrices is not need for adaptive solution. Now denoting

U i = [Y(i− 2) Y(i) Y(i+ 2)] for i = 2, ...M − 3, U i = [Y(i) Y(i+ 2)] for i = 0, 1

and U i = [Y(i− 2) Y(i)] for i = M − 1,M − 2, we can write (3.68) as

X̌ =

 X̌ 1

X̌ ∗2

 =

 Z0 Z∗1

−Z1 Z∗0


 Υ1

Υ2

+

 diag(D1) 0

0 diag(D∗2)


 Ψ1

Ψ2


, ZF + DB (3.69)

whereZj = diag[U j U j+2 ... U j+M−2] for j = 0, 1. Υ1 and Υ2 (Ψ1 and Ψ2) are the

vectors containing the diagonal elements of Φ1 and Φ2 (Θ1 and Θ2). Moreover,

the feedforward and feedback filter coefficients in the frequency-domain are F and

B containing the elements {Υ1,Υ2} and {Ψ1,Ψ2}, respectively. Defining Ak, Ek

and Pk as in (3.37), (3.38) and (3.41), respectively, the RLS update is given as

in (3.43) with G = [01×(3M−2) 11×M ].

Reduced-Complexity 3-tap CRLS AFD-DFE: Now exploiting the spe-

96



cial structure of SFBC matrix, it can be seen that there is no matrix inversion in-

volved altogether and, hence, complexity reduction is significantly reduced. Start-

ing with k = 0 and using P 1
0 = ε−1I3M−4, P 1

1 is given by

P 1
1 = λ−1[P 1

0 − λ−1P 1
0ZH

1 (IM + λ−1Z1P
1
0ZH

1 )−1Z1P
1
0]

= λ−1[ε−1I3M−4 − λ−1ε−1I3M−4ZH
1 (IM + λ−1ε−1Z1ZH

1 )−1Z1ε
−1I3M−4]

(3.70)

Now

Z1ZH
1 =

 Z0Z
H
0,1 +Z∗1,1Z

T
1,1 −Z0,1Z

H
1,1 +Z∗1,1Z

T
0,1

−Z1,1Z
H
0,1 +Z∗0,1Z

T
1,1 −Z1,1Z

H
1,1 +Z∗0,1Z

T
0,1

 (3.71)

It can easily be seen that Z0Z
H
0 + Z∗1Z

T
1 = diag[|U0,1|2 + |U1,1|2 |U2,1|2 +

|U3,1|2... |UM−2,1|2 + |UM−1,1|2] is a diagonal matrix and likewise other entries

in (3.71). Therefore, Z1ZH
1 is a M × M matrix containing 4 M

2
× M

2
diago-

nal matrix. This structure allow us to easily find the inverse in (3.70). Now

ZH
1 (IM + λ−1ε−1Z1ZH

1 )−1Z1 = [ ø0 ø1
ø2 ø3

] = ø and

øi =



øi,0

øi,1

. . .

øi,M
2


(3.72)
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and the entries øi,j, j = 1, ..., M
2
− 1 are 3× 3 matrices and øi, i = 0, M

2
are 2× 2

matrices. Now P 1
1 has a similar structure as ø P 1

1 =
[
P 1

1,0 P 1
1,1

P 1
1,2 P 1

1,3

]
. Proceeding for

k = 1, we have

P 1
2 = λ−1[P 1

1 − λ−1P 1
1ZH

2 (IM + λ−1Z2P
1
1ZH

2 )−1Z2P
1
1] (3.73)

Let Z2P
1
1ZH

2 = [ ϕ0 ϕ1
ϕ2 ϕ3

] where ϕ0 = (Z0P
1
1,0 + Z∗1P

1
1,2)ZH

0 + (Z0P
1
1,1 +

Z∗1P
1
1,3)ZT

1 , which is a diagonal matrix and similarly for other entries. There-

fore, inverse in (3.73) can be found using (2.84), i.e., matrix inversion is just

scalar inversions. For k > 1, P 1
k has similar structure and for P 2

k same reasons

are valid as for the 1-tap AFD-DFE SFBC case.

3.6 Performance and Complexity Analysis

In this section, the Minimum Mean Square Error (MMSE), transient, steady-

state, tracking and computational complexity analyses are carried out. In the

derivations, we assume that the data sequences (both transmitted data and de-

tected data) are independent and identically distributed (i.i.d) with zero mean,

and independent of the noise. The optimal MMSE equalizer weights Wo for ith

frequency bin are given as [23] [1], for LE

Fo(i) =
σ2
xΛ(i)∗

σ2
x|Λ(i)|2 + N

M
σ2
N
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and for DFE

Fo(i) =
σ2
xΛ(i)∗

σ2
x

∑M−1
j=0 |Λ(j)|2 + N

M
σ2
N
, Bo(i) = −Fo(i)Λ(i) +

1

M

M−1∑
j=0

Fo(j)Λ(j))

Using these weights, the corresponding ith frequency bin MMSE for the LE (JL(i))

and the DFE (JD(i)) are derived, respectively, and expressed as

JL(i) =
Nσ2

Nσ
2
x(M |Λ(i)|2σ2

x +Nσ2
N )

(σ2
x|Λ(i)|2M +Nσ2

N )2
(3.74)

and

JD(i) =
Nσ2

Nσ
2
x(M |Λ(i)|2σ2

x +Nσ2
N )

(σ2
x

∑M−1
j=0 |Λ(j)|2 +Nσ2

N )2
(3.75)

3.6.1 Transient Analysis

We start by deriving the transient behavior of the RLS AFD-DFE in a stationary

environment, assuming that the forgetting factor λ is unity. The MSE of the RLS

AFD-DFE at instant k + 1 is given by

Jrk+1(i) = E |ξk+1(i)|2 (3.76)

The a priori estimation output error ξk+1(i) can be expressed as

ξk+1(i) = ξok+1(i) + ak+1(i) [Wo(i)−Wk(i)]︸ ︷︷ ︸
W̃k(i)

(3.77)
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where Xk(i) = ak(i)Wo(i) + ξok(i), ak(i) = [Yk(i) Dk(i)] and Wk(i) =

[Fk(i) Bk(i)]T . Substituting (3.77) into (3.76) and then expending terms, we

get

Jrk+1(i) = E
∣∣ξok+1(i)

∣∣2︸ ︷︷ ︸
JD(i)

+Eak+1(i)W̃k(i)W̃
H

k (i)aHk+1(i)

+Eak+1(i)W̃k(i)ξ
o∗
k+1(i) + Eξok+1(i)W̃

H

k (i)aHk+1(i) (3.78)

We can express the second expectation in (3.78) as

Eak+1(i)W̃k(i)W̃
H

k (i)aHk+1(i) = E Tr{ak+1(i)W̃k(i)W̃
H

k (i)aHk+1(i)}

= E Tr{W̃k(i)W̃
H

k (i)aHk+1(i)ak+1(i)}

= Tr E{W̃k(i)W̃
H

k (i)aHk+1(i)ak+1(i)}

(3.79)

where Tr{.} is the trace of a matrix. Using the assumption that the product

W̃k(i)W̃
H

k (i) varies at a slower rate than the product aHk+1(i)ak+1(i), we can

write

EW̃k(i)W̃
H

k (i)aHk+1(i)ak+1(i) ≈ Tr{EW̃k(i)W̃
H

k (i)EaHk+1(i)ak+1(i)} (3.80)

where EaHk (i)ak(i) = RA(i) is the input correlation matrix having diagonal struc-

ture as can be seen from (2.24), i.e., RA(i) = diag([|Λ(i)|2σ2
x + N

M
σ2
N σ2

x]). Now,
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to find EW̃k(i)W̃
H

k (i), we proceed by writing the normal equations

Wk(i) = Θ−1
k (i)Rk(i) (3.81)

where Rk(i) =
∑k

j=0 a
H
j (i)Xj(i). Using the values of Θk(i), Rk(i) and Xk(i) in

(3.81) and ignoring the initial conditions, W̃k(i) is given as

W̃k(i) = −Θ−1
k (i)

k+1∑
j=0

aHj (i)ξoj (i) + Θ−1
k (i)αk+1[0 1]T (3.82)

Now

|W̃k(i)| ≤ |−Θ−1
k (i)

k+1∑
j=0

aHj (i)ξoj (i)︸ ︷︷ ︸
W̃
′
k(i)

| (3.83)

Therefore, the weight-error correlation matrix of W̃
′
k(i) is given as

EW̃
′
k(i)W̃

′H
k (i) = EΘ−1

k (i)
k+1∑
j=0

aHj (i)aj(i)Θ
−1
k (i)ξoj (i)ξ

o∗
j (i) (3.84)

Using the assumption that ak(i), and therefore, Θ−1
k (i), is independent of the

noise ξok(i), (3.84) can be expressed as a product of two expectations as follows

EW̃
′
k(i)W̃

′H
k (i) = EΘ−1

k (i)
k+1∑
j=0

aHj (i)aj(i)Θ
−1
k (i) Eξoj (i)ξ

o∗
j (i)

= JD(i) EΘ−1
k (i) (3.85)
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Assuming ergodicity, we may express the ensemble-average correlation matrix of

the input of the AFD-DFE asRA(i) = 1
k
Θk(i). Hence, the weight-error correlation

matrix reduces to EW̃
′
k(i)W̃

′H
k (i) = 1

k
JD(i)R−1

A (i). Therefore,

Eak+1(i)W̃
′
k(i)W̃

′H
k (i)aHk+1(i) ≈ 1

k
JD(i)Tr{RA(i)R−1

A (i)} =
2

k
JD(i) (3.86)

The third and fourth expectations in (3.78) are zero because W̃k(i) depends

on past values of ak+1(i) and ξok+1(i). Also ak+1(i) and ξok+1(i) are statistically

independent and ξok+1(i) has zero mean. Therefore,

J ′rk+1(i) = JD(i)

[
1 +

2

k

]
≥ Jrk+1(i) (3.87)

To compare the CRLS AFD-DFE and LMS AFD-DFE, the MSE of LMS AFE-

DFE can be shown to be [29]

J ′lk+1(i) = JD(i)

[
1 + µ

1∑
j=0

rj
2− µrj

]
+

1∑
j=0

rj

(
|νj(0)|2 − µJD(i)

2− µrj

)
(1− µrj)2k

(3.88)

where rj is the jth eigenvalue of the correlation matrix RA and ν(k+1) = [v0(k+

1), v1(k+1)]T = (I2−µR(i)A)ν(k)−µAk+1(i)HEk+1(i). The evolution of J ′lk+1(i)

with step size µ is governed by the exponential quantity (1− µrj)2k. This clearly

shows that the CRLS AFD-DFE converges faster than the LMS AFD-DFE. The

simulation results support this claim.
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3.6.2 Steady-State Analysis

To begin with, the update recursion (3.42) for ith frequency bin can be written as

Wk+1(i) = Wk(i) + Pk+1(i)(aHk+1(i)ξk+1(i)− αk+1[01]T ) (3.89)

In terms of the weight-error vector W̃
′
k(i), we can write

W̃
′
k+1(i) = W̃

′
k(i)−Pk+1(i)aHk+1(i)ξk+1(i) (3.90)

Multiplying (3.90) by ak+1(i) from the left, we may write it in terms of a priori

estimation error ξak+1(i) and a posteriori estimation error ξpk+1(i) as follows

ak+1(i)W̃
′
k+1(i)︸ ︷︷ ︸

ξpk+1(i)

= ak+1(i)W̃
′
k(i)︸ ︷︷ ︸

ξak+1(i)

−ak+1(i)Pk+1(i)aHk+1(i)︸ ︷︷ ︸
‖ak+1(i)‖P

ξk+1(i) (3.91)

where ‖ . ‖P stands for the squared-weighted Euclidean norm of a vector. Com-

bining (3.90) and (3.91) to eliminate ξk+1, we get

W̃
′
k+1(i) + Pk+1(i)aHk+1(i) (‖ ak+1(i) ‖P)†︸ ︷︷ ︸

āk+1(i)

ξak+1(i) = W̃
′
k(i) + Pk+1(i)aHk+1(i)

×(‖ ak+1(i) ‖P)†ξpk+1(i)

(3.92)

where (.)† represents the pseudo-inverse. Now, equating the energies (squared

Euclidean norms) of both sides of (3.92) with [Pk+1(i)]−1 as a weighting matrix,
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the energy conservation relation becomes

‖ W̃
′
k+1(i) ‖2

P−1 +āk+1(i)|ξak+1(i)|2 =‖ W̃
′
k(i) ‖2

P−1 +āk+1(i)|ξpk+1(i)|2 (3.93)

Taking the expectation of (3.93) and using the steady-state approximations,

EPk+1(i) ≈ (1 − λ)R−1
A = P , EW̃

′
k+1(i) = EW̃

′
k(i) and E ‖ W̃

′
k+1(i) ‖2

P−1=

E ‖ W̃
′
k(i) ‖2

P−1 , we arrive at

Eāk+1(i)|ξak+1(i)|2 = Eāk+1(i)|ξpk+1(i)|2, k →∞ (3.94)

Substituting ξpk+1(i) from (3.91) into (3.94), we get

Eāk+1(i)|ξak+1(i)|2 = Eāk+1(i)|ξak+1(i)− ‖ ak+1(i) ‖P ξk+1(i)|2, k →∞ (3.95)

which upon expansion and simplification reduces to

E ‖ ak+1(i) ‖P |ξk+1(i)|2 = 2Re(Eξa∗k+1(i)ξk+1(i)), k →∞ (3.96)

As ξk+1(i) = ξok+1(i) + ξak+1(i), (3.96) becomes

JD(i)E ‖ ak+1(i) ‖P +E ‖ ak+1(i) ‖P |ξak+1(i)|2 = 2E|ξak+1(i)|2︸ ︷︷ ︸
J ′exss(i)

, k →∞ (3.97)

where J ′exss(i) is the Excess Mean Square Error (EMSE). Assume that at steady-

state, ‖ ak+1(i) ‖P is independent of ξak+1(i). This condition allows us to separate
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the expectation E ‖ ak+1(i) ‖P |ξak+1(i)|2 into a product of two expectations as

follows

E ‖ ak+1(i) ‖P |ξak+1(i)|2 = E ‖ ak+1(i) ‖P E|ξak+1(i)|2 (3.98)

If we replace Pk+1(i) by its assumed mean value, we obtain the approximation

E ‖ ak+1(i) ‖P≈ Tr{RP} = 2(1− λ) (3.99)

Substituting into (3.97), we get

J ′exss(i) =
JD(i)(1− λ)

λ
(3.100)

Therefore, the MSE at the steady-state Jss(i) is given as

J ′ss(i) = JD(i) + J ′exss(i) =
JD(i)

λ
(3.101)

3.6.3 Tracking Analysis

For time-varying channels, we will adopt a first-order random walk model for the

variation in the tap weight vector Wo
k. The model assumes that Wo

k undergoes

random variations of the form

Wo
k+1(i) = Wo

k(i) + qk+1(i) (3.102)
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where qk(i) = [fL(i)qFk (i),fL(i)qBk (i)]T and fL(i) is the ith row of partial (M×L)

DFT matrix. qFk (i) and qBk (i) are the time-domain random column vectors of

length L with zero mean and correlation matrix Qt = (1 − R2(1))IL [5]. As-

suming qFk (i) and qBk (i) are independent and note that fL(i)fL(i)H = L/M , the

covariance matrix of qk(i), i = 1, ...,M , is Q = L
M

(1−R2(1))I2L.

Now, defining Wo
k(i) −W ′

k(i) = W̃
′
k(i) and writing the energy-conservation

relation leads to

‖Wo
k+1(i)−W ′

k+1(i) ‖2
P−1 +āk+1(i)|ξak+1(i)|2 = ‖Wo

k+1(i)−W ′
k(i) ‖2

P−1

+āk+1(i)|ξpk+1(i)|2 (3.103)

where ξpk+1(i) = ak+1(i)[Wo
k+1(i) −W ′

k+1(i)] and ξak+1(i) = ak+1(i)[Wo
k+1(i) −

W ′
k(i)]. Moreover, the random walk model (3.102) allows us to relate E ‖

Wo
k+1(i)−W ′

k(i) ‖2
P−1 to E ‖ W̃

′
k(i) ‖2

P−1 as follows

E ‖Wo
k+1(i)−W ′

k(i) ‖2
P−1 = E ‖Wo

k(i) + qk+1(i)−W ′
k(i) ‖2

P−1

= E ‖ W̃
′
k(i) + qk+1(i) ‖2

P−1

= E ‖ W̃
′
k(i) ‖2

P−1 + ‖ qk+1(i) ‖2
P−1 (3.104)

where the last step follows from the fact that W ′
k(i) is independent of qk+1(i) and
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uses steady-state assumption. Next, taking expectation of (3.103), we get

E ‖ W̃
′
k+1(i) ‖2

P−1 +Eāk+1(i)|ξak+1(i)|2 = E ‖ W̃
′
k(i) ‖2

P−1 +E ‖ qk+1(i) ‖2
P−1

+Eāk+1(i)|ξpk+1(i)|2 (3.105)

Moreover, qk+1(i) is independent of Pk+1(i), so that

E ‖ qk+1(i) ‖2
P−1= Tr E{qk+1(i)HP−1qk+1(i)} = Tr{QP−1} =

1

(1− λ)
Tr{QRA}

(3.106)

Solving (3.105) as done in steady-state analysis and using (3.106), it can be shown

that in time-varying environment, the MSE of the RLS AFD-DFE is given as

J ′ss(i) = JD(i) +
2(1− λ)JDFE(i) + 1

(1−λ)
Tr{QR}

2− 2(1− λ)

=
JD(i)

λ
+
Tr{QR}
2λ(1− λ)

(3.107)

By comparing the update equations for RLS and CRLS it can be seen that the

computational complexity of CRLS AFD-DFE is same as RLS AFD-DFE.

3.7 Simulation Results

In this section, the theoretical findings are validated. Similar to an LTE system,

the carrier frequency and bandwidth are set to 2 GHz and 5 MHz, respectively.

Other simulation parameters used are M = 64 and N = 1024, therefore, the

maximum number of users that the system can support is K = 16. The modu-
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lation scheme used is Quadrature Phase shift Keying (QPSK) and the channel is

frequency selective with 12-paths and each path fades independently, according

to the Rayleigh distribution.

Fig. 3.2 depicts the performance of the AFD-DFE algorithm. As can be seen

from this figure, the best performance is obtained through the use of the AFD-

DFE with constraint for case 2, while the worst performance is obtained by the

AFD-DFE with constraint for case 1. The reason behind the good performance of

case 2 is that the input correlation matrix for the feedforward filter is unaffected

by the decision errors. This can be clearly seen from the figure that as AFD-

DFE is switched to decision-directed mode, the MSE becomes worst in case 1.

The computational complexity of the AFD-DFE (case 1) is slightly higher than

that of the AFD-LE but when compared to the performance obtained through

the use of the AFD-DFE (case 1), this additional complexity at the base station

is well justified. Also, the figure shows that the performance of the RLS-based

AFD-DFE is better as compared to that of the Constraint LMS (CLMS) based

AFD-DFE in terms of convergence speed and MSE. Only 15 iterations are needed

for the RLS to converge; hence, the resulting complexity and latency increase due

to adaptation are not significant. This figure also depicts the theoretical curves

and close agreement between the theoretical findings and simulations is observed.

Note that the theoretical curve of AFD-DFE assumes perfect decisions. For the

rest of the figures, we have used AFD-DFE for case 2. The reason of improved

performance of the CRLS as compared to the RLS can be seen from Fig. 3.3.
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Since in CRLS, b0 is more close to zero unlike RLS which ensures that the present

symbol is not being canceled out.

The BER performance of the AFD-DFE is shown in Fig. 3.4. It is clear that

AFD-DFE with CRLS outperforms the RLS-based AFD-DFE, practical MMSE

DFE and MMSE LE with known channel in terms of BER. Note here that there

in no error propagation in the AFD-DFE unlike the practical MMSE DFE of [1]

and [23]with known channel, which was due to poor estimation of the correlation

between the transmitted data and the decisions. Moreover, this figure shows that

the performance of the constraint-based RLS AFD-DFE is close to that of the

ideal MMSE DFE [1] with known channel. For the rest of the figures we have

used CRLS AFD-DFE.

In addition, the effect of the Doppler on the SC-FDMA system is reported in

figs. 3.5 and 3.6. For this scenario, speed of the user v is varied from 3 km/h to 300

km/h. As can be observed from these two figures, our proposed RLS AFD-DFE

is robust to the Doppler Effect. Fig. 3.6 depicts the theoretical and simulated

MSE for different user’s velocities.

Next, the effect of the CFO on the system performance is investigated, this

is because if there is a slip in the frequency (transmitter and receiver not any

more synchronized) then the performance degrades. Fig. 3.7 shows that the

performance of 3-tap AFD-DFE is better than that of 1-tap AFD-DFE in large

CFO, from which we can conclude that 3-tap AFD-DFE is somewhat robust to

the ICI.
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For SFBC SC-FDMA system, independent 12-path Rayleigh fading channels

are used for each transmit/receive antenna pair. Fig. 3.8 shows that performance

of E-SFBC with reordering is better than with reordering. Also E-SFBC out-

perform C-SFBC at high SNR. With CFO, 3-tap AFD-DFE is better than 1-tap

AFD-DFE as depicted in Fig. 3.9. Further, we presented the effect of number

of training symbols in one SC-FDMA block on MSE. As can be seen from Fig.

3.10 that if 25 percent of symbols in one SC-FDMA block is used for training and

rest for data during the training phase than there is no significant decrease in the

MSE. In this way we can reduce the overhead by not sending all the symbols in

SC-FDMA block as training during training mode.

Finally, we have evaluated our designed AFD-DFE in blind mode where it is

used in decision directed mode by utilizing stop and go blind equalization algo-

rithm [38]. To minimize the error propagation the block size is kept small, i.e.,

M = 16 is used. Figure 3.11 depicts that the constellation at the output of the

BAFD-DFE is better than BAFD-LE.
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Figures 3.12 and 3.13 demonstrate the convergence behavior of the BAFD-DFE

using LMS and CRLS algorithms. The residual ISI at output of the AFD-LE for

mth user is defined as the following

ISI =

∑L
i=0[|h(m)

i ? w
(m)
i |2]− |h(m)

i ? w
(m)
i |2max

|h(m)
i ? w

(m)
i |2max

(3.108)

where ? represents the convolution operation , w
(m)
i is the corresponding ith time-

domain weight of the BAFD-LE and |h(m)
i ? w

(m)
i |2max is the largest value among

all the values of |h(m)
i ? w

(m)
i |2. For the BAFD-DFE, residual ISI is given as

ISI =

∑L
i=0[|h(m)

i ? w
(m)
i + b

(m)
i |2]− |h(m)

i ? w
(m)
i + b

(m)
i |2max

|h(m)
i ? w

(m)
i + b

(m)
i |2max

(3.109)

where f
(m)
i and b

(m)
i , respectively, are the corresponding ith time-domain feedfor-

ward and feedback weights of the AFD-DFE. It can be seen from these figures

that fast convergence is obtained by the CRLS algorithm whereas lower MSE (or

residual ISI) is obtained by the LMS algorithm. The reason being that the input
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correction matrix in CRLS is effected by the decisions causing MSE (or residual

ISI) to be higher than that of the LMS. It is also worth mentioning that no further

improvement is obtained for Nl > 2 in case of BAFD-DFE.

3.8 Conclusion

In this work, a constraint RLS based adaptive DFE is entirely designed in the

frequency-domain for SC-FDMA and extended to a SFBC SCFDMA systems.

The CRLS performs better than the RLS algorithm with almost similar com-

plexity. The equalizer operates without channel estimation at the receiver. The

proposed algorithm delivers its performance at low complexity due to the spe-

cial structure of matrices involved in computing the weights of the feedforward

and feedback filters in the frequency domain. Our designed CRLS AFD-DFE

is more computationally efficient than the non-adaptive frequency-domain DFE.

Moreover, CRLS AFD-DFE outperforms the practical MMSE-DFE in terms of

BER. We also showed that less training symbols can be used during training

phase to reduce the overhead without sacrificing the performance. Simulation re-

sults demonstrate the significant performance gain and robustness of the proposed

algorithm under the severe Doppler effect. We also extend our design to 3-tap

adaptive equalizer in the frequency-domain, which has better performance than

1-tap equalizer when dealing with ICI due to CFO. Finally, blind DFE is also

introduced.
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CHAPTER 4

DECISION FEEDBACK

EQUALIZATION USING

PARTICLE SWARM

OPTIMIZATION

It is well-known that the Decision Feedback Equalizer (DFE) outperforms the

Linear Equalizer (LE) for highly-dispersive channels. For time-varying chan-

nels, adaptive equalizers are commonly designed based on the Least Mean Square

(LMS) algorithm which, unfortunately, has the limitation of slow convergence

specially in channels having large eigenvalue spread. The eigenvalue problem be-

comes even more pronounced in Multiple-Input Multiple-Output (MIMO) chan-

nels. Particle Swarm Optimization (PSO) enjoys fast convergence and, therefore,

its application to the DFE merits investigation. In this work, we show that a
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PSO-DFE with a variable constriction factor is superior to the LMS/RLS-based

DFE (LMS/RLS-DFE) and PSO-based LE (PSO-LE), especially on channels with

large eigenvalue spread. We also propose a hybrid PSO-LMS-DFE algorithm, and

modify it to deal with complex-valued data. The PSO-LMS-DFE not only out-

performs the PSO-DFE in terms of performance but its complexity is also low.

To further reduce its complexity, a fast PSO-LMS-DFE algorithm is introduced.

Finally, the system overhead is reduced by devising a blind PSO algorithm.

4.1 Introduction

The decision feedback equalizer (DFE) [39] is an effective Inter-symbol Inter-

ference (ISI) mitigation technique and can significantly outperform the linear

equalizer (LE) on highly-dispersive channels. Adaptive equalization is attrac-

tive for time-varying channels, and for this purpose, adaptive algorithms, e.g., the

Least Mean Square (LMS) and the Recursive Least Squares (RLS) [29] are widely

used. Recently, heuristic techniques applied to equalization/estimation problems,

in particular the Particle Swarm Optimization (PSO) technique, showed signif-

icant improvement over conventional algorithms [40–43]. It was shown in [43]

that the application of PSO to an adaptive linear equalizer provides fast conver-

gence compared to its LMS-based counterpart. To further explore its equalization

capabilities, this can be applied to a DFE structure.

PSO, first introduced by Kennedy and Eberhart [44], is a swarm intelligence

method and belongs to a heuristic algorithms. In PSO each particle not only act
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on its own and use its local information but it is also capable of sharing information

with other particles to form complex structure for solving multifarious problems.

The PSO is a robust algorithm with fast convergence. It is simple, very easy

to code, and has low memory requirements. It can be used to solve multi-modal,

non-differential and nonlinear problems [45]. It uses position and velocity update

equations to search for the global minimum. Each particle uses its own information

and its neighbors information to adjust its position within the search space. In

addition, the PSO works based on cooperation among the particles as opposed to

the other Evolutionary Algorithms (EA). EA is based on generic operations, that

are, selection, mutation and crossover to find the global minimum and unlike PSO

at each generation particles are replaced by new ones. In PSO, particles are active

and stay alive for the whole run, in contrast to EA. The PSO has demonstrated

its distinguished performance in many engineering applications. To mention a

few of its recent applications, it has been used in image processing [46], channel

prediction [47], and nonlinear active noise control systems [48].

The PSO is used to optimize real and continuous-valued functions in l-

dimensional space. The particles constitute the swarm, also known as population,

and move in a predefined search space. The position of each particle within the

search space represents a possible solution to the problem. Here, in the case of

adaptive equalization, the position represents the weights of the equalizer.

Despite its advantages, PSO is vulnerable to local minima, i.e., the particles

become stagnant around the global minima and may not be able to reach the
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global minimum [49]. To deal with this issue, we have introduced a hybrid of

PSO and LMS algorithms, which not only solves the problem of particles stag-

nancy but also reduces the number of computations required in PSO. Another

disadvantage of PSO is that it assumes real-valued data. In [43], the authors use

a BPSK signal with a real-valued channel impulse response. However, in reality,

we have to deal with complex numbers for pass-band transmission then the taps

weights of the equalizer become complex. To solve this issue, we have modified

the PSO algorithm to handle the complex case without increasing its complexity.

To further reduce the complexity, we have introduced the fast PSO-LMS-DFE.

Since the major complexity factor in PSO is the convolution operation required

to find the equalizer output, the PSO-LMS-DFE performs this operation in the

frequency-domain using the FFT to save on computations. Finally, blind PSO is

also introduced to avoid the training sequence.

Here, this work is extended to Multiple-Input Multiple-Output (MIMO) sce-

nario. Due to its high complexity, the most challenging task in designing the

MIMO receiver is its corresponding MIMO channel equalizer. A MIMO equalizer

has to deal with the inter symbol and the inter stream interference. Several works

proposed different methods for adaptive MIMO DFE. Among them, the Vertical

Bell Labs layered space-time (V-BLAST) architecture [50] is one of the promising

method for MIMO equalization. Computationally efficient V-BLAST techniques

have been proposed in [51–53] assuming a known channel. Its application to time

varying channels is difficult due to frequently estimation of the MIMO channel. An
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efficient adaptive MIMO equalizer based on V-BLAST and generalized DFE [54]

has been presented in [55], where the symbol detection order as well as the equal-

izer taps are updated recursively; however, this structure suffers from numeric

instability. To address this problem, a technique based on square-root factor-

ization of the equalizer input correlation matrix was proposed in [56]. However,

unlike the application of MIMO DFE to time-invariant channels, the application of

MIMO DFE to time-varying channels still requires excessive computations for the

estimation of the parameters. Another challenging problem in these techniques is

that substantial training is required when the equalizer length becomes large (as

in [57]) and therefore a large number of symbols are needed before the algorithm

converges. Algorithms based on reduced rank equalization [58] are less complex

and require less training symbols as compared to full rank equalization, while

requiring matrix inversion at each iteration. To overcome this problem, in [59]

and [60] the covariance matrix is estimated iteratively and hence matrix inversion

operation is avoided. These algorithms have a moderate complexity but unfortu-

nately require more than 150 symbols for the training phase which is not suitable

for frame-based applications, e.g., IEEE 802.11p, where the frame contains less

than 150 Orthogonal Frequency Division Multiplexing (OFDM) symbols. All of

the above mentioned techniques use the RLS algorithm which is often complex to

implement and prone to instability in a real time environment. Therefore, PSO-

based algorithms can be a substitute to the RLS-based algorithms with moderate

complexity and guaranteed stability as they do not have to calculate the inverse
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of the autocorrelation matrix of the input signal.

This work reports a detailed analysis for the adjustment of the PSO param-

eters to ensure the best performance. The superiority of the PSO algorithms is

tested on channels with different eigenvalue spreads specifically, in MIMO chan-

nels where the performance of the LMS/RLS-DFE can be very bad due to the

severe eigenvalue spread problem. Our results demonstrate the performance gain

of the proposed algorithms over conventional algorithms.

4.2 The PSO Algorithm

4.2.1 BASIC PSO

Initially, random solutions are assigned to n particles in a d-dimensional search

space. The basic PSO algorithm [45] consists of the following elements:

Particle position (pi,k): The particle position is represented by a real-valued

l-dimensional vector which is the potential solution to the problem at hand. The

particle position is the weight vector of the equalizer in our case. The position of

the ith particle at instant k is denoted by pi,k = [pi(0), pi(1), pi(2), ..., pi(l)], where

pi(l) represents the ith particle position in the lth dimension.

Particle Velocity (vi,k): The velocity is also represented by a real-valued

l-dimensional vector. The velocity of the ith particle at instant k is given as

vi,k = [vi(0), vi(1), vi(2), ..., vi(l)], where vi(l) represents the ith particle velocity in

the lth dimension.

122



Inertia weight (iw): This parameter controls the change of velocity between

successive iterations. It affects the local and global search capabilities of the

particles.

Particle or local best (pbesti,k): Each particle remembers its best position

pbesti,k. The best position is the one which results in the minimum (or maximum

depending on the problem at hand) value of the cost function.

Global best (gbestk): The best value of all the pbesti,k, i = 1, 2, ..., n is

calculated by comparing the cost function values associated with them. This is

the global best gbestk of the swarm.

Stopping criteria: The algorithm is terminated when the global minimum

(or maximum) is attained or after reaching a predefined number of iterations.

We constrain the particle velocity to avoid a possible overflow, i.e., the velocity

is restricted as vmax = vcpmax, where vc is the velocity constraint factor and pmax

is the maximum position .

The velocity update equation is given by

vi,k+1 = iwvi,k + c1 ∗ rand1 ∗ (pbesti,k − pi,k)

+ c2 ∗ rand2 ∗ (gbestk − pi,k), (4.1)

where c1 and c2 are called acceleration constants, i.e., these are the rates at which

local and global optima are achieved and randj, (j = 1, 2), is l × 1 dimension
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vector given as

randj = [rand1,j rand2,j, ... randl,j]
T (4.2)

where randl,j is a uniformly-distributed random number in [0, 1] for the lth dimen-

sion. The position update equation is given by

pi,k+1 = pi,k + vi,k (4.3)

Fig. 4.1 depicts the flow chart of the PSO algorithm.

Initialization : Initialize the swarm 

size n, particle velocity vi,k, particle 

position pi,k, inertia weight iw and 

acceleration  constants     

c1 and c2

Evaluate the cost function Ji(k) for 

each particle and determine local 

best of each particle (pbest i,k) and 

global best (gbestk) of swarm. 

Update the velocities of all 

particles  within the limits         

vmin and vmax

Update the positions of all 

particles  within the limits      

pmin and pmax

k=k+1

terminate

Stopping 

criteria 

satisfied?

No

yes

Figure 4.1: Flow chart of the particle swarm optimization algorithm.

4.2.2 PSO Variants

The PSO algorithm has many variants and the most popular ones are:
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Variable Inertia Weight: The constant inertia weight, iw, in (4.1) is de-

creased linearly at each instnt k according to [61]:

iw(k) = γiw(k − 1), (4.4)

where γ is a weighting factor that controls the diminution of iw(k).

Variable Constriction factor: The constriction factor based-PSO was first

proposed in [62] and [63] to update the particle’s velocity. Ultimately, this modifi-

cation will result in a better performance than that of a standard PSO. In order to

guarantee convergence, a time-varying constriction factor was recently proposed

for the first time in an adaptive equalization scenario [43]. In this approach, a

variable constriction factor is introduced in the velocity update equation. The

velocity update equation is given as

vi,k+1 = K(k) ∗ [vi,k + c1 ∗ rand1 ∗ (pbesti,k − pi,k)

+ c2 ∗ rand2 ∗ (gbestk − pi,k)]

and K(k) is given as

K(k) =
kc(k)

|1− Φ−
√

Φ2 − 4Φ|
, (4.5)

where Φ should be always greater than four and is defined as

Φ = c1 + c2, (4.6)
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and

kc(k) = kmin + (kmax − kmin)
iter − k
iter − 1

, (4.7)

where the variable iter is the maximum number of iterations and k is the current

iteration. As the particle gets closer to the global minimum, a lower value of

the constriction factor is used which helps in stabilizing the algorithm with fast

convergence.

Adaptive inertia weight: In this form of PSO, the inertia weight iw is

updated based on the error value and eventually will result in high speed and ef-

ficiency. The inertia weight is changed only when a better fit is found in order to

move the particle close to the optimum point. The inertia’s influence is reduced

if it does not attain the lowest estimation error. It maximizes the influence of

potentially favorable inertia directions, while minimizing the influence of poten-

tially unfavorable inertia directions. The adaptive inertia weight equation is given

by [64]

iwi
(k) =

1

(1 + e
−∆Ji(k)

S )
(4.8)

where iwi
is the inertia weight of the ith particle, ∆Ji(k) is the change in the cost

function between the current and the previous iterations, and S is the slope factor.

Using this relation will limit the inertia weight to the interval [0, 1] with mean of

0.5 which corresponds to no change in the error. It means that an increase in the

error will lead to an inertia weight to be more than 0.5 and vice versa.

In this work, PSO with variable constriction factor is used since its performance

is better than other PSO variants [43].
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4.3 Problem Formulation

Fig. 6.1 depicts the block diagram of a communication system equalized by the

DFE. We will separately formulate the problem for the SISO and MIMO cases as

 

      Channel FFF 

Decision 

device 

 

 

 
  

FBF 

Figure 4.2: Block diagram of the decision feedback equalizer.

follows.

4.3.1 SISO Case

In the SISO case, the input data x(.) is transmitted over the channel and an

additive white Gaussian Noise (n(.)) is added. The noisy version of the channel

output is denoted by y(.) which is fed into the feedforward filter of the DFE. The

Feedback Filter is fed with the output of the decision device x̂(.). Denote the

lengths of feedforward and feedback filters by Nf and Nb, respectively.

At any instant k, the states of Feedforward Filter (FFF) yk and Feedback

Filter (FBF) dk are, respectively, given as

yk = [y(k) y(k − 1) ... y(k −Nf + 1)] (4.9)

dk =


[x(k − δ − 1) ... x(k − δ −Nb)], for training

[x̂(k − δ − 1) ... x̂(k − δ −Nb)], for decision-directed

(4.10)
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where x(k − δ) is a delayed version of x(k − δ).The coefficients of the FFF and

the FBF are, respectively, defined as

fk = [fk(0) fk(1) ... fk(Nf − 1)]T , (4.11)

bk = [bk(1) bk(2) ... bk(Nb)]
T , (4.12)

and are combined in the vector

wk =

 fk
bk

 . (4.13)

The output of the equalizer in a decision-directed mode is given as

x̌(k) = [yk − dk]wk−1, (4.14)

Finally, the error signal is given as

e(k) =


x̂(k)− x̌(k − δ), for decision-directed

x(k)− x̌(k − δ), for training

(4.15)

In this work, PSO is used to search for the tap weights that minimize the Mean

Square Error (MSE). PSO is more effective when applied on the whole data but

due to non-availability of the whole data in our application, we will use a block

of data (with size N) and, hence, our objective function in every iteration is the

128



computed MSE, which is defined for the ith particle at the kth iteration as

Ji(k) =
1

N

N∑
j=1

|eji(k)|2 (4.16)

where eji(k) is the jth error of ith particle and this is obtained from (4.15).

4.3.2 MIMO Case

We will formulate the problem for two transmit and two receive antennas, which

can be extended to any number of transmit and receive antennas. In a 2 ×2 MIMO

system, independent and identically distributed data symbols x1(.) and x2(.) are

transmitted from antennas T1 and T2 over the multi-channel environment and

received by antennas R1 and R2 after being corrupted by additive white Gaussian

noises. x1(.) travels through channels h11 and h12 which are the respective impulse

responses of the channels between transmit antenna T1 and receive antennas

R1 and R2. Likewise, x2(.) travels through channels h22 and h21 which are the

respective impulse responses of the channels between transmit antenna T2 and

receive antennas R1 and R2. Hence, the received signals are not only corrupted by

channel and noise but they also interfere with one other. The signals are assumed

to be uncorrelated with each other and with the noises. The 2×2 MIMO system

is depicted in Fig. 4.3. Let the received signals be y1(.) and y2(.), and define

the vectors of transmitted samples, received symbols and decisions at instant k as
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x1(k)

x2(k)

y1(k)

y2(k)

n2(k)

n1(k)

h11

h22

h21

h12

Figure 4.3: 2× 2 MIMO system.

follows.

y(k) , [y1(k) y2(k)],

x(k) , [x1(k) x2(k)],

x̂(k − δ) , [x̂1(k − δ) x̂2(k − δ)]

The received vector yk is fed into the feedforward filter with Nf matrix taps each

of dimension 2× 2. Similarly, the decisions are fed into a feedback filter with Nb

matrix taps each of dimension 2× 2. The input to the decision device is given as

x̌(k − δ) = y(k)F 0 + y(k − 1)F 1 ...

+ y(k −Nf + 1)FNf−1 − x̂(k − δ)B0

− x̂(k − δ − 1)B1 ... − x̂(k − δ −Nb + 1)BNb−1

(4.17)

where F 0,F 1, ...,FNf−1 and B0,B1, ...,BNb−1 are the matrix coefficients of the

feedforward and feedback filters respectively. For the decision-directed mode,
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x̂(k−δ) = x(k−δ). Let us denote the first and second columns of F 0 (B0) by F 0,1

(B0,1) and F 0,2 (B0,2), respectively and likewise for other matrix coefficients of

the feedforward and feedback filters. Let W r,k,(r = 1, 2) be the vector comprised

of the rth column of matrix taps of feedforward and feedback filters at instant k

and given by.

W r,k , [F T
0,r F

T
1,r ... F

T
Nf−1,r B

T
0,r B

T
1,r ... B

T
Nb−1,r]

T , (4.18)

where (.)T represents the transpose operation. We can write (4.17) as follows.

x̌r(k) = [yk − dk]W r,k−1, (4.19)

Now,the error signal is given as

er(k) =


x̂r(k)− x̌r(k − δ), for decision-directed

xr(k)− x̌r(k − δ), for training

(4.20)

For PSO, the computed MSE is given as

Jri(k) =
1

N

N∑
j=1

|erji(k)|2, r = 1, 2 (4.21)

where e1ji(k) and e2ji(k) are the jth error samples of ith particle for x1(k) and

x2(k) respectively.
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4.4 Particle Swarm Optimization-Least Mean

Squares (PSO-LMS) Algorithm

Two key problems associated with the PSO are

• The particles may become stagnant due to the lack of finer search capabilities

in the PSO algorithm. Hence to achieve the global minimum value of cost

function might not be possible.

• PSO enjoys fast convergence but its complexity is high and its computations

depend on the size of swarm and the convolution operation required to find

the equalizer output.

For these reasons, a hybrid PSO, i.e., a combination of PSO and LMS will be

attractive in this situation. In [65] a combination of PSO and LMS is proposed to

combat the stagnation problem. In this approach, the authors modified the parti-

cle position update equation by adding the LMS gradient term which increases the

computational cost even more and the influence of LMS on PSO remains constant

throughout the iterations. The overhead is also increased due to adding scaling

factors for controlling the effect of both algorithms on the particle’s position up-

date equation. These difficulties have been overcome in this work by separately

using the two algorithms at different times i.e. LMS, with small step size, takes

over when the particles become stagnant otherwise PSO is used.

The operation of PSO-LMS algorthm is as follows. Initially, the PSO algorithm

with variable constriction factor will be used for global search to explore the search
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space and fast convergence. As the gbestk, of the particles become stagnant, the

LMS recursion is used to update the particle position to find the minimum point

locally in the search space. In this way, whenever the particles become stagnant

the LMS will give them direction towards the global minimum. If there is any

disturbance e.g. channel changes or SNR changes, then PSO will take over the

LMS since gbestk becomes disturbed.

The steps involved in the PSO-LMS algorithm are given below:

1. Initialization: At k=0, initialize positions of n particles of l dimensions

such that the coefficients pi(j), j = 1, 2, ..l of the ith particle are uniformly

distributed in the range [pmin, pmax], where pmin = −pmax. In our case,

the particle positions are the weights of the equalizer. In the same way,

initialize the velocities such that the velocity coefficients vi(j), j = 1, 2, ..l

are also uniformly distributed in the range [vmin, vmax] where vmin = −vmax

2. Cost function calculation: Calculate the Mean Square Error (MSE) for

each particle using (4.16) for SISO or (4.21) for MIMO case.

3. Local best position: For the first iteration, set the local best position

(pbesti,k) of ith article to the current particle position (pi,0) and its best

MSE Ji,best(k) to the corresponding MSE value Ji(0). For the remaining

iterations, if Ji(k) < Ji,best(k− 1), then set Ji,best(k) = Ji(k) and pbesti,k =

pi,k and continue; else set Ji,best(k) = Ji,best(k−1) and pbesti,k = pbesti,k−1

and continue.
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4. Global best position: The minimum MSE Jmin(k) among all the par-

ticles best MSE Ji,best(k), i = 1, 2, ..., n is the global best MSE Jmin,best

and the corresponding position is the global best position gbestk. For any

k > 0, if Jmin(k) < Jmin,best(k − 1) , then set Jmin,best(k) = Jmin(k) and

gbestk = pk,min where pk,min is the position of that particle correspond-

ing to Jmin,best(k) and continue; else set Jmin,best(k) = Jmin,best(k − 1) and

gbestk = gbestk−1 and continue.

5. Constriction factor update: The constriction factor is updated using

(4.5).

6. Test for stagnancy: Particles become stagnant as they get closer to the

global minimum. At this stage, the current value of the global best becomes

the same as its prior value i.e. gbestk = gbestk−1. Although the condition

to check the stagnancy is to compare the current local best positions of all

the particles with their pervious local best positions but this approach will

be computationally very heavy. Therefore, only global values are compared.

If condition of stagnancy is satisfied then go to step 9 else goto step 7.

7. Velocity update equation: Update the velocity of each particle according

to (4.5) using the current particle velocity, local best of particle pbesti,k and

global best value gbestk. Restrict the coefficients vi(l), j = 1, 2, ...d in the

range [−vmax, vmax].

8. Position update using PSO: Now update the position of each particle
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according to (4.3) using the velocity value calculated in the previous step.

Restrict the coefficients pi(j), j = 1, 2, ...d in the range [−pmax, pmax]and

goto step 10.

9. Position update using LMS: When the stagnancy test is positive then

the block LMS recursion is used to update the position of each particle. For

block LMS, we define equalizer input matrix as

Y k ,


y(k) · · · y(k −Nf + 1)

...
. . .

...

y(k +N − 1) · · · y(k +N −Nf )

 (4.22)

and the decision matrix as

Dk ,


d(k − 1) · · · d(k −Nb)

...
. . .

...

d(k +N − 2) · · · d(k +N −Nb − 1)

 (4.23)

where d(k) is the decision on the symbol x̂(k) for the decision-directed mode

and x(k) for the training mode. For simplification the delay δ is ignored.

The output of the equalizer is given as

x̌k = Y kfk−1 +Dkbk−1 (4.24)
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where

x̌k = [x̌(k) ... x̌(k +N − 1)] (4.25)

The error at output of the equalizer is given as

ek = dk − x̌k (4.26)

where

dk = [d(k) ... d(k +N − 1)] (4.27)

Now, the LMS update equation for SISO case (can easily be extended to

MIMO case) is given as

pi,k+1 = pi,k + µAT
k ei,k (4.28)

where µ is the step size and and ei,k is calculated using (6.14) for the ith

particle and Ak is given as

Ak =

 Y H
k

DH
k

 (4.29)

10. Stopping Criteria: When the maximum number of iterations is reached,

then terminate other wise, continue.

11. Instant update: Update the time instant counter as k = k + 1 and goto

step 2.
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Figure 4.4 depicts the flow chart of the PSO-LMS algorithm.

Initialization: Initialize the swarm 

size n, particle velocity v i,k, particle 

position pi,k,  constriction factor K(k)

and acceleration constants 

c1 and c2

Evaluate the cost function Ji(k) for 

each particle and determine local 

best of each particle (pbesti,k) and 

global best (gbest k) of swarm. 

Update the velocities of all 

particles  within the limits 

vmin and vmax

Update the positions of all particles  

within the limits pmin and pmax

k=k+1

terminate

Stopping 

criteria 

satisfied?

No

yesFind kc(k) and update the 

constriction factor

Is gbest k

changed?
Perform LMS recursion

No

yes

Figure 4.4: Flow chart of the PSO-LMS.

4.5 PSO-LMS-DFE For Complex-Valued Data

The PSO algorithm works on real numbers. Using PSO to find the optimum

weights for complex-valued data, will not be possible without modification. One

approach is to use PSO separately on the real and imaginary parts (or on the

magnitude and phase) or double the dimensions and use first the d dimensions for

the real part and the rest for imaginary part but this will increase the complexity.

To avoid this, we have modified the PSO algorithm as follows.

1. Let the position pi,k and the velocity vi,k of the ithe particle be complex.

At k=0, initialize m particles of l complex dimensions, such that the real
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and imaginary components of coefficients of position pi(l), j = 1, 2, ..l of

the ith particle are uniformly distributed in the range [pim,min, pim,max] and

[pre,min, pre,max] respectively, where pre,max = pim,max = pmax and pre,min =

pim,min = −pmax. In the same way, the real and imaginary components

of velocity coefficients vi(l), j = 1, 2, ..l of ith particle are also uniformly

distributed in the range [vre,min, vre,max] and [vim,min, vim,max] respectively,

where vre,max = vim,max = vmax and vre,min = vim,min = −vmax.

2. Calculate absolute value of the Mean Square Error (MSE) for each particle.

3. For comparison use the absolute value i.e. if |Ji(k)| < |Ji,best(k − 1)| for

i = 1, 2, 3, ...,m, then set Ji,best(k) = Ji(k) and pbesti,k = Pi,k and continue;

else set Ji,best(k) = Ji,best(k − 1) and pbesti,k = pbesti,k−1 and continue.

4. Similarly for the global best, if |Jmin(k)| < |Jmin,best(k − 1)| , then

set Jmin,best(k) = Jmin(k) and gbestk = pi,k,min and continue; else set

Jmin,best(k) = Jmin,best(k − 1) and gbestk = gbestk−1 and continue.

5. Update the complex velocity and complex positions of each particle by using

the velocity and particle update equations. Restrict the real and imag-

inary components of velocity coefficients ci(l), j = 1, 2, ...l in the range

[−vmax, vmax] and position coefficients pi(l), , j = 1, 2, ..., l in the range

[−pmax, pmax].

6. To test the stagnancy, if real and imaginary parts of current value of global

best is same as its prior real and imaginary parts, then use LMS; otherwise,
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use PSO.

Fig.4.5 depicts the flow chart of the PSO-LMS algorithm for complex-valued data.

Initialization: Initialize the swarm size 

n, real and imaginary components of 

particle velocity v i,k and particle 

position pi,k,  constriction factor K(k)

and acceleration constants

c1 and c2

Evaluate the absolute value of cost 

function Ji(k) for each particle and 

determine complex value of local 

best of each particle (pbest i,k) and 

global best (gbest k) of swarm. 

Update the complex velocities of all 

particles . The real and imaginary 

parts of velcities should be in the 

limits vmin and vmax

Update the complex positions of all 

particles . The real and imaginary 

parts of position should be in the limits 

pmin and pmax

k=k+1

terminate

Stopping criteria 

satisfied?

No

yes

Find kc(k) and update the 

constriction factor

Is real and 

imaginary part of 

gbestk changed?
Perform LMS recursion

No

yes

Figure 4.5: Flow chart of the PSO-LMS for complex-valued data.

4.6 Simulation Results

To test the effectiveness of the PSO algorithm when applied to a DFE for the SISO

case, we have considered two time invariant channels C1 = [1,−1.9114, .95] having

an eigenvalue spread of 635 and C2 = [0.408, 0.816, 0.408] having an eigenvalue

spread of 200. The length of the feedforward and feedback filters are 4 and 2,

respectively. We assume BPSK modulation. For the MIMO case, the channels

h11, h12, h21 and h22 are taken as three-path Rayleigh i.e. the impulse response

139



is three delta functions which are assumed to fade independently and the length

of the feedforward and feedback filters are 8 and 5, respectively. The product of

Doppler frequency, fd, and the sampling time, Ts, is taken as fdTs = 0.0001 and

the modulation scheme in this case is QPSK. The additive white Gaussian noise

is selected with signal to noise ratio of 20 dB.
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Figure 4.6: Effect of the acceleration constants (c1 and c2).
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Figure 4.7: Effect of the kmax and kmin.

4.6.1 Parameter adjustment analysis

Parameter adjustment analysis for only SISO case is presented here. A similar

analysis approach follows for the MIMO case. To have near optimum performance,
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a careful selection of the key parameters is needed. Towards this goal, we have

performed thorough experiments to find the values of 5 key parameters that give

minimum MSE, namely the data block sizeN , the population size n, the maximum

velocity vmax, the acceleration constants c1 and c2, and finally, the limits kmin and

kmax of the iteration-dependent factor kc which directly controls the constriction

factor K. Our analysis showed that these parameters do not depend on the

modulation type, channel or number of transmit and receive antennas. Hence,

once these parameters are adjusted, they are held fixed for any kind of modulation

scheme or channel and for any number of transmit and receive antennas.

The outcomes of parameter adjustment analysis are shown in Figs. 4.6-4.10.

In our experiments, we have used equal values of c1 and c2 to achieve a balance

between the local and global searches and the best value achieved is 4 as shown in

Fig. 4.6. With respect to the limits kmin and kmax, the optimum value achieved is

kmin = 4 and kmax = 6 as shown in Fig. 4.7. Fig. 4.8 shows that no improvement

in minimum MSE is obtained beyond N = 200.

As a general rule, a large population size will provide fast convergence but

there is no significant improvement beyond n = 40 as shown in Fig. 4.9. Figure.

4.10 clearly shows that with in the range of [0.01∗pmax 0.3∗pmax] the maximum

velocity of vmax = 0.2 ∗ pmax is the one that leads to the lowest MSE. For PSO-

LMS, all the parameters are the same only n = 5 is used since n > 5 does not give

significant performance gain. In a practical scenario, the different parameters

comprising the PSO algorithm have to be selected using a sensitivity analysis,
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during the training phase similar to the one done here, to be able to select the

compromised one.
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4.6.2 Performance of PSO-DFE

Here, the learning and Symbol Error Rate (SER) curves are obtained for pmax = 2

and pmin = −2, and the MSE is averaged over 20 runs. To make the comparison

fair, we used the block LMS/RLS. For LMS, the step-size µ is set to 0.025.
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Figure 4.11: Learning Curves of different algorithms for channel C1.
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Figure 4.12: Learning Curves of different algorithms for channel C2.

Figures 4.11, 4.12 and 4.13 depict the learning curves for C1, C2 and MIMO

channel, respectively. An improvement in convergence time and steady state MSE

are achieved by the PSO-DFE over the PSO-LE and LMS/RLS. The improvement

in convergence time and MSE is more pronounced in the MIMO channel which
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Figure 4.13: Learning Curves of different algorithms for MIMO channel.

has larger eigenvalue spread as shown in Fig. 4.13. The insensitivity of the PSO-

DFE to the channel’s eigenvalue spread is clear from Figs. 4.11 and 4.12. It is

also clear that PSO-LMS-DFE performs even better than PSO-DFE. Figure 4.13

also depicts that the modified PSO-LMS-DFE for complex-valued data and PSO-

LMS-DFE using two PSOs for real and imaginary part separately, have equal

performance.
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Figure 4.14: MSE curves for blind equalization.

In Fig. 4.14 the comparison of MSE curves for the case of blind equalization is

shown. For blind PSO, the error used to calculate the objective function is given
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as

e(k) = ρ− |x̌(k)|, (4.30)

where ρ is positive scalar quantity equal to E|x|4/E|x|2. Here we use a center

tapping, i.e., the center tap of the equalizer is initialized to one and remaining

taps or particle positions to uniform random number between [pmin, pmax], for each

particle. To enhance the performance of PSO, it can be combined with other blind

algorithms like Constant-Modulus Algorithm (CMA), Reduced-Constellation Al-

gorithm (RCA), Stop-and-go and Multi-Modulus Algorithm (MMA) [66–69], just

to name a few. Hence when particles become stagnant, these algorithms can be

used to update the weights of the equalizer.
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Figure 4.15: Symbol error Rate for C1.

Finally, Figs. 4.15, 4.16 and 4.17 show that the PSO-DFE achieves significantly

lower SER than PSO-LE and LMS/RLS and its performance is very close to

that of the ideal DFE (with perfect channel knowledge) even when the channel

eigenvalue spread is large. Due to the fast convergence of PSO, less training

symbols are required and hence a great reduction in the throughput overhead.
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Figure 4.16: Symbol error Rate for C2.
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Figure 4.17: Symbol error Rate for MIMO channel.

However, these benefits are achieved at a slight increase in the computational

complexity. The PSO-LMS-DFE performance is even closer to the optimum DFE

and its complexity is less than that of the PSO-DFE, which is shown in next

section. Further, the impact of the number of particles on the performance of

the PSO-LMS-DFE algorithm is depicted in Fig. 4.17. As can be seen from

this figure, by increasing the swarm size, the performance of the PSO-LMS-DFE

improves very well. This is due to the fact that the number of particles have a

great impact on the search space. As the number of particles increases, particles

will cover all the search space and therefore, PSO will easily find the potential
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solution in time varying environment.

4.7 Complexity Analysis

The PSO has an advantage over the block RLS of avoiding the matrix inversion

operation to update the weights of the equalizer. For complexity analysis of PSO,

we will count the total number of complex additions and complex multiplications

per iteration. Consider first the PSO with a variable constriction factor operating

on complex data.

1. The velocity update requires three complex multiplications and five complex

additions per particle per dimension. Multiplication with c1 and c2 in the

velocity update equation is ignored as c1 = c2 = 4, which can easily be

implemented using shift registers. Hence, for n particles of d dimensions

each, 3dn complex multiplications and 5dn complex additions are required

to update the velocity.

2. Computing the constriction factor amounts to three complex multiplications

and three complex additions ignoring the calculations due to the terms Φ,

|1 − Φ −
√

Φ2 − 4Φ|, and (kmax − kmin) as these can be calculated off-line.

In fact, we can ignore the calculations due to constriction factor as it can

be saved in a lookup table.

3. The particle update requires one complex addition.

4. Computing the output vector of the equalizer for each particle, which re-
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quires dNn complex multiplication and (d − 1)Nn complex additions for

block of size N .

5. Further Nn complex additions are required to calculate the error signal.

6. Evaluation of the MSE as given in (4.16) requires (N − 1)n complex addi-

tions. We can ignore the computations to calculate the square of error and

the reason is that PSO compares the MSE due to all the particles and picks

the one that achieves the minimum MSE so same results can be obtained

by using mean error instead of MSE.

In summary, PSO with variable constriction factor for complex valued signals

requires dNn+ 3dn+ 3 complex multiplications and (d− 1)Nn+ 5dn+ 3+(N −

1)n+Nn = dNn+ 5dn+ 3+(N − 1)n complex additions per iteration. For PSO-

LMS, the algorithms switches between PSO and LMS. The LMS requires 2dN

complex multiplications and (d − 1)N + 2d complex additions per particle [5].

Extensive simulations have been performed to calculate the number of updates

using the LMS update equation during the whole run and it has been observed

that the algorithm uses the LMS update equation for 75 out of 100 iterations on

an average. Therefore, the PSO-LMS requires 0.75(2dNn)+.25(dNn + 3dn + 3)

complex multiplications and 0.75((d−1)N+2d)n+0.25(dNn+5dn+3+(N−1)n)

complex additions per iterations. As it can be seen that complexity depends on the

number of particles which are greatly reduced in PSO-LMS. Using N = 200, d = 6,

and n = 40 for PSO (n = 5 for PSO-LMS), the PSO-LMS is 5 times faster than

PSO in terms of multiplications and 10 times faster in terms of additions.
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The convolution operation required to compute the output of the equalizer, can

be performed in the frequency-domain using the overlap-save method. This will

further reduce the complexity of PSO-LMS . In addition, rather than updating

the parameters of PSO-LMS in the time-domain, they can be adapted in the

frequency-domain. The PSO-LMS algorithm so implemented is referred to as fast

PSO-LMS and it will require three M -point FFT (IFFT) as done for fast LMS in

[29], whereM = 2N andN = d. EachM -point FFT (IFFT) requires (M/2)log2M

complex multiplications and M log2M complex additions. Now the computation of

frequency-domain output vector of equalizer for each particle requiresMn complex

multiplications and (M − 1)n complex additions. Hence, the total number of

complex multiplications and additions for fast PSO-LMS becomes 0.75(2Mn +

3(M/2)log2M)+.25(Mn+ 3(M/2)log2M + 3Mn+ 3) and 0.75(((M − 1)+M)n+

3M log2M)+0.25((M−1)n+3M log2M +5Mn+3+(M−1)n+Mn) per iteration

respectively. For M = 512 and d = N , fast PSO-LMS is 156 times faster than

PSO in terms of multiplications and 92 times faster in terms of additions. Finally,

Table 4.1 summarizes the computational complexity of the different algorithms

and Figs. 4.18 and 4.19 depict this comparison. Also, from these figures, it can

be seen that the size of N has a great impact on the computational complexity of

the different algorithms.
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Table 4.1: Computational complexity of different PSO algorithms
Algorithm Multiplications Additions

PSO dNn+ 3dn+ 3 dNn+ 5dn+ 3
+(N − 1)n

PSO-LMS 3dn/4+ 11dn/4−Nn/2
7Ndn/4 + 3/4 −n/4 +Ndn+ 3/4

Fast 5Mn/2+ 7Mn/2− 5n/4+
PSO-LMS 3(M/2)log2M 3(M/2)log2M

+3/4 +3/4
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Figure 4.18: Number of multiplications of various PSO algorithms versus block
size (N).
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Figure 4.19: Number of additions of various PSO algorithms versus block size
(N).

4.8 Conclusion

In this work, we showed how to integrate PSO with the DFE structure and demon-

strated the superior performance of the PSO-DFE with respect to the widely-used
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LMS/RLS-DFE. This improvement is more pronounced for highly-dispersive chan-

nels with large eigenvalue spread and MIMO channels. Moveover, extensive sim-

ulations were conducted to optimize the PSO design parameters. The PSO-DFE

significantly outperforms the PSO-LE and the LMS/RLS-DFE in terms of con-

vergence time and steady-state MSE. A hybrid algorithm, PSO-LMS-DFE, is also

proposed which is not only superior to the PSO-DFE in terms of performance but

also enjoys lower complexity. Further complexity reduction is achieved using the

FFT in the Fast PSO-LMS-DFE.
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CHAPTER 5

ADAPTIVE EQUALIZATION

USING PARTICLE SWARM

OPTIMIZATION FOR UPLINK

SC-FDMA

Single Carrier Frequency Division Multiple Access (SC-FDMA) has been adopted

as a multiple access technique for uplink in Long Term Evolution (LTE) standard.

In this work, an adaptive frequency-domain equalizer for SC-FDMA system using

Particle Swam Optimization (PSO) technique is proposed. Unlike stochastic gra-

dient and Recursive Least Squares (RLS) algorithms, PSO is known to have fast

convergence which does not depend on the underlying structure. The cost function

used in a PSO is formulated based on the respective structure of the equalizer,

whether it is Linear Equalizer (LE) or a Decision Feedback Equalizer (DFE). The
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robustness of our proposed PSO algorithm is demonstrated on a high Doppler

scenario. Furthermore it is shown that the performance improves more when us-

ing re-randomization. Finally, it is shown that the PSO based frequency domain

equalizer is more computationally efficient than its time domain counterpart.

5.1 Introduction

The most used algorithms for adaptive equalization to deal with time vary-

ing channels are Least Mean Square (LMS) and Recursive Least Square (RLS)

[29]. However, their performance degrade in channels having large eigenvalue

spread. Recently, Particle Swam Optimization (PSO) is used for adaptive estima-

tion/equalization problems and showed its improved performance when compared

to other conventional algorithms [40–43]. The PSO algorithm does not assume

any underlying model, therefore its performance is independent of the character-

istics of the system used. For this reason, PSO is expected to perform well in

channel with large eigenvalue spread.

In this work, PSO is used in an adaptive frequency-domain equalizer for uplink

SC-FDMA system and it is shown to have less computational complexity as com-

pared to PSO applied to adaptive time-domain equalization. More importantly,

In case of a DFE, a separate fitness functions, for feedforward and feedback filters,

are developed entirely in the frequency-domain.
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5.2 PSO-based adaptive equalization

Let the weight vector of the LE denoted by W . Using the system model described

in Section (2.2), the output of the equalizer, X̌ k, in the frequency-domain at

instant k is given by

X̌ k = ZkWk−1 (5.1)

In case of the DFE, the output of the equalizer is

X̌ k = ZkFk−1 + DkBk−1 (5.2)

where Fk−1 = [F(0)k−1,F(1)k−1, ... F(M − 1)k−1]T and Bk−1 =

[B(0)k−1,B(1)k−1, ... B(M − 1)k−1]T are the feedforward and the feedback filters

of the DFE, respectively. Note that the exact solution of these filter coefficients

is not needed in the case when using an adaptive algorithm. The decision matrix

Dk is defined as

Dk =


diag(FM(xk)), for training

diag(FM(x̂k)), for decision-directed

where x̂k is the decision on x̌k which is given as

x̌k = FH
M X̌ k (5.3)
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Finally, the error signal, ek = [ek(0), ..., ek(M − 1)]T , is given as

ek =


x̂k − xk, for training

x̂k − x̌k, for decision-directed

(5.4)

In this section, a PSO-based adaptive frequency domain equalization al-

gorithm is devised for SC-FDMA system. For this, the filter coefficients in

(5.1) and (5.2) are calculated adaptively using PSO [43]. We denote the M -

dimensional position and velocity vectors of the ith particle at instant k as

pi,k = [pi,k(0), pi,k(1), ..., pi,k(M − 1)] and vi,k = [vi,k(0), vi(1), ..., vi,k(M − 1)], re-

spectively, where pi,k(l) represents the ith particle position having velocity vi,k(l) in

the lth-dimension. Each pi,k(l) and vi,k(l) are clamped in the range [−pmax,+pmax]

and [−vmax,+vmax], respectively, where vmax = vcpmax and vc is the velocity con-

straint factor. A fitness function (cost function), discussed later, is minimized to

reach the global minimum. The local and global bests in a conventional PSO are

found as follows. For the ith particle, among all of the particle’s visited positions

up to instant k, the one that gives the lowest value of the cost function is the local

best of the ith particle denoted by pbesti,k. Similarly, for the whole swarm and

among all of the swarm’s visited positions up to instant k, the one that gives the

lowest value of the cost function is the global best of the swarm abbreviated as
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gbestk. Now, the velocity update equation is given as

vi,k+1 = K(k)[vi,k + c1 ∗ rand1 ∗ (pbesti,k − pi,k)

+ c2 ∗ rand2 ∗ (gbestk − pi,k)]

where randj = [rand0,j rand1,j, ... randM−1,j]
T , j = 1, 2 and the lth element

randl,j is uniformly-distributed number in the range [0, 1]. K(k) is the time vary-

ing constriction factor defined in [43] and c1 and c2 are the positive acceleration

constants satisfying c1 + c2 > 4. After updating (5.5), the ith particle’s position

is changed according to pi,k+1 = pi,k + vi,k.

5.2.1 Fitness Function

A PSO is more effective in off-line applications where the whole data is available;

however, our case is an on-line one therefore, instead of using the whole data,

a block of data, i.e., one SC-FDMA block is used. The fitness function (cost

function) used in the minimization procedure at the kth iteration is given as

J(k) =
M−1∑
j=0

|ek(j)| (5.5)

where ek(j) is the jth error at the kth instant and it is obtained from (5.4). Taking

the DFT, the frequency-domain version of the error is given as

Ek(l) =
M−1∑
j=0

ek(j)exp(−
√
−1 2πlj/M), l = 0, 1, ...M − 1 (5.6)
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and also

Ek = Dk − X̌ k
(5.7)

Minimizing (5.5) in the time domain is equivalent to minimizing (5.7) in the

frequency domain as (5.5) depends on
∑M−1

j=0 |ek(j)| and so does Ek. Therefore,

the absolute value of Ek will be our fitness function. As Ek = [Ek(0), ..., Ek(M−1)]

so unlike conventional PSO we define a vector of fitness functions of length M . In

other words, the value of the fitness function is different for each dimension. In

this way, instead of comparing particle positions to constitute pbesti,k for the ith

particle we find best value of each dimension and pbesti,k will be amalgamation

of each best dimension up to instant k. Similarly, gbestk is combinations of each

best dimension among all pbesti,k, i = 1, 2, ...n, where n is the swarm size.

Above fitness function is valid for LE, incase of DFE we have to find the

coefficients of both feedforward and feedback filters which is not possible by using

same fitness function, Therefore, we put constraint on feedback filter. A constraint

to cancel out the pre and post cursers but not the desired component was proposed

in [23]. We use this constraint to formulate our fitness function for DFE. The

constraint based problem for each frequency bin is given as follows

min
F(l),B(l)

|Ek(l)|2 subject to
M−1∑
j=0

Bk(j) = 0, l = 0, 1, ...M − 1 (5.8)
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Using Lagrange multiplier, we get

f(k) = |Ek(l)|2 + αk

M−1∑
j=0

Bk(j) (5.9)

Now the gradient of (5.9) with respect to F(l) and B(l) is equal to

f́(k)F(l) = Yk(l)|Ek(l)| (5.10)

f́(k)B(l) = Yk(l)|Ek(l)|+ αk (5.11)

PSO compares the fitness value of all the particles and pick the one that gives the

lowest value, as the term Yk(l) in (5.10) is commonly for all the particles so we

ignore this term and the fitness function for feedforward filter is f́(k)F(l) = |Ek(l)|,

which is same as for the linear equalizer. αk is updated according to the stochastic

gradient method,

αk+1 = αk + µ
M−1∑
j=0

Bk(j) (5.12)

where µ is the step size.

5.2.2 Re-randomization

One of the problems of the PSO is that once a gbest is found, then all particles start

to move towards it and hence become stagnant around the global minima leaving

empty spaces in the search space. In our scenario, we are using PSO not only to
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avoid providing channel information at the SC-FDMA receiver but also to track

the variation in the channel. Therefore, due to the time- varying nature of the

problem, the values of the equalizer taps are not fixed and if the particles become

stagnant in one place, the then PSO will not be able to find the plausible solution.

To tackle this issue, re-randomization is proposed. In this method, the particles

are re-randomized around gbestk after certain time instants, except during the

training phase. In the training phase, the main objective is to enable the particles

to search for the global minimum quickly. However re-randomization during this

phase, will slow down the speed of convergence of the global minimum search

process. The benefit of re-randomization is its capability to allow the particles

a higher probability of finding the best solution in time varying environments.

As such it also yields a better Bit Error Rate (BER). Re-randomization here can

be thought of retraining in RLS/LMS which is used to avoid divergence in these

algorithms. Therefore, re-randomization will not only improve the performance

but also reduce the overhead that would otherwise be required in retraining blocks

needed in RLS/LMS.

5.3 Complexity Analysis

In this section, the computational complexity of the PSO algorithm operating in

the frequency-domain (FD-PSO) is compared with PSO operating in the time-

domain (TD-PSO) for a LE (for DFE, the complexity roughly becomes twice).

The comparison is based on the total number of complex multiplications and
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additions. For the TD-PSO, the number of complex multiplications and additions

required are M2n+3Mn+3 and M2n+5Mn+(M−1)n+3, respectively [43]. In

FD-PSO, the convolution operation to find the output of the equalizer is replaced

by multiplication, therefore, in this case Mn+ 3Mn+ 3 complex multiplications

and 5Mn + 3 complex additions are required. To illustrate the computational

complexity, for M = 512, FD-PSO is 128 times faster than TD-PSO in terms of

multiplication and 103 times faster in terms of addition.

Table 5.1 summarizes the computational complexity of both algorithms.

Although the FD-PSO is computationally heavier than the frequency-domain RLS

Table 5.1: Computational complexity of PSO algorithms
Algorithm Multiplications Additions
TD-PSO M2n+ 3Mn+ 3 M2n+ 6Mn− n+ 3
FD-PSO 4Mn+ 3 5Mn+ 3

because of the number of particles, it is nevertheless still preferred to use PSO

because of its superior performance over that of the RLS. Simulation results will

substantiate this fact. Moreover, as processing is carried out in the base station

(uplink scenario), the computational complexity is not any more problematic for

the FD-PSO algorithm.

5.4 Simulation Results

In this section, the FD-PSO algorithm is tested on a LTE system with a carrier

frequency of 2GHz and a bandwidth of 5MHz. Here, the FD-PSO is implemented

using the PSO for complex-value data. Quadrature Phase Shift Keying (QPSK)
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modulation with interleaved mapping on a 3-path Rayleigh fading channel is used.

M = 512, n = 40 and the rest of the parameters are similar to those used in [43].

Figure 5.1 reports on the performance brought about by the use of the FD-PSO.

The product of Doppler frequency, fd, and the sampling time, Ts, is fdTs = 0.0001.

Almost a 2dB improvement in BER, at BER = 10−3, has been achieved by the FD-

PSO over the RLS algorithm. Moreover, it can be seen that the worst performance

is obtained by the LMS-DFE. Further the impact of number of the particles and

re-randomization is depicted in Fig. 5.2. By increasing the swarm size, we can

improve the performance of the proposed algorithm and this is due to the fact

that the particles will cover all the search space, thus allowing the PSO to easily

find the potential solution. Similarly, re-randomization prevents all the particles

from converging to a single point and thus improves performance . At a high

Doppler, the PSO performs much better than RLS as shown in Fig.5.2.
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Figure 5.1: Comparison of PSO algorithm with RLS and LMS for fdTs = 0.0001
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Figure 5.2: Effect of Doppler on PSO algorithm

5.5 Conclusion

A FD-PSO-based adaptive equalization in a SC-FDMA system is proposed in this

letter. Simulation results verified that our devised adaptive equalization scheme

has a better performance than that of RLS and LMS. Furthermore, in case of

a high Doppler, the performance of the FD-PSO algorithm can be improved by

increasing the number of particles and the use of re-randomization.
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CHAPTER 6

SPARSE LEAST MEAN

SQUARE (LMS) ALGORITHM

There are many adaptive algorithms for adaptive equalization, such as Least Mean

Squares (LMS) and Recursive Least Squares (RLS). However, these algorithms

have no particular advantage in sparse system due to no use of sparse character-

istics.

6.1 Introduction

The existing Sparse versions of the LMS are l0 norm constraint LMS (l0-LMS), l1

norm constraint LMS (l1 -LMS) and l0 norm constraint Exponentially Forgetting

Window LMS (l0-EFWLMS) [34,70,71] , with their normalized and variable step
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size versions [72]. Generally, these algorithms use the following update equation

updated tap weight vector = old tap weight vector + gradient term

+ zero attractor term (6.1)

As it can be seen that(6.1) contains an LMS update and a zero-attractor term

which is used to guarantee the sparsity by attracting the tap coefficients to zero.

These algorithms achieve the lower Mean Square Error (MSE) than the convec-

tional LMS in sparse system identification problem but suffer from slow conver-

gence because the gradient and zero-attractor terms in update equation (6.1) are

hard to balance. To achieve fast convergence, l0 Zero Attraction Projection (l0-

ZAP) algorithm is proposed in [71] but it is unable to achieve the lower MSE.

Moreover, these algorithms have higher complexity than the conventional LMS

because of an additional zero-attractor term.

Our devised Sparse LMS (SLMS) is different from the aforementioned algo-

rithms in a sense that it only updates the significant taps which reduces the

computational complexity tremendously with great performance improvement.

In adaptive equalization, one of the issue that badly effects the performance

of an equalizer is the number of the taps and decision delay required to perfectly

equalize the channel. The decision delay determines which symbol is detected at

current instant. Its value can vary from 0 to the one less than the number of total

taps. Both number of taps and decision delay significantly affects the performance

of the equalizer. Using small number of taps does not serve the purpose, on the
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other hand, large number of taps will not only increase the complexity but also

the EMSE. Hence, there always exit an optimum number of the taps that is best

balance between the performance and complexity. Moreover, for a specific length

of the equalizer there is an optimum delay which gives lower MMSE. Normally

the number of taps and decision delay are predicted based on the length of the

channel, which itself is not known at the receiver.

Our devised SLMS not only gives the sparse solution of the problem at hand

but it also gives the optimum number of the taps for a specific decision delay,

necessary to achieve the best performance. The optimum number of taps varied

with the signal-to-noise level for a specific channel.

In SLMS, first the significant taps are calculated using sparse signal recov-

ery algorithm and then only these tap weights are updated using LMS. Before

proceeding further, brief overview about the sparse signals recovery is provided.

Given the system of equation y = Hw+n, where y, H , w and n are measure-

ment vector, measurement matrix, unknown vector and noise vector, respectively,

the sparsest solution can be obtained by solving the following problem

min
ẃ
||ẃ||0 subject to ||y −Hẃ||22 ≤ ε (6.2)

where ε is chosen to bound noise in measurements. Generally, finding the optimum

solution to this problem is computationally not feasible. There are two main

approaches to find the suboptimal solution, namely, l1-norm minimization and

greedy algorithms. In l1-norm minimization, the resulting solution is not exactly
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sparse because many small entries will exit in ẃ. On the other hand, greedy

algorithms provide more control over number of non-zero entries whose locations

and values are determined iteratively. Moreover, finding the solution iteratively

matches to our application here, since LMS algorithm is also iterative. Among

the greedy algorithms, one of the widely used algorithm is Orthogonal Matching

Pursuit (OMP) [73]. It takes y, H and a certain stopping criteria as its inputs

and computes a sparse solution ẃ. Hence, OMP is denoted by ẃ = OMP(y,H ,

stopping criteria). The stopping criteria may be a predefined sparsity level or

bound on residual term, i.e., ||y −Hẃ||22.

Now, to develop SLMS, first the symbol by symbol and block equalization are

formulated as follows.

6.2 Symbol by Symbol equalization

 
( ) 

      Channel FFF 
Decision 

device 

( ) 

( ) 

( ) 
( ) 

FBF 

Figure 6.1: Block diagram of the decision feedback equalizer.

Figure 6.1 depicts the block diagram of a communication system equalized by

the DFE. We will formulate the problem for Nt transmit and Nr receive antennas

as follows.

In a Nt × Nr MIMO system, independent and identically distributed data

symbols {x1(.), x2(.), ..., xNt(.)} are transmitted from antennas T1, T2, ..., TNr ,
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respectively, over the multi-channel environment and received by anten-

nas R1, R2, ..., RNr after being corrupted by additive white Gaussian noises

{n1(.), n2(.), ..., nNr(.)}. x1(.) travels through channels h11, h12, ..., h1Nr which

are the respective impulse responses of the channels between transmit antenna

T1 and receive antennas R1, R2, ..., RNr . Likewise, x2(.) travels through chan-

nels h21, h22, ..., h2Nr which are the respective impulse responses of the chan-

nels between transmit antenna T2 and receive antennas R1, R2, ..., RNr and sim-

ilarly for other transmit antennas. Hence, the received signals are not only cor-

rupted by channel and noise but they also interfere with one other. The signals

{x1(.), x2(.), ..., xNt(.)} are assumed to be uncorrelated with each other and with

the noises.

Let the received signals be {y1(.), y2(.), ..., yNr(.)}, and define the vectors of

transmitted samples, received symbols and decisions at instant k as follows.

y(k) , [y1(k) y2(k) ... yNr(k)],

x(k) , [x1(k) x2(k) ... xNt(k)],

x̂(k − δ) , [x̂1(k − δ) x̂2(k − δ) ... x̂Nt(k − δ)]

where x̂(k − δ − 1) is a delayed version of x̂(k). At any instant k, the states of

feedforward filter (FFF) yk and feedback filter (FBF) dk are, respectively, given

as

yk = [y(k) y(k − 1) ... y(k −Nf + 1)] (6.3)
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dk =


[x(k − δ − 1) ... x(k − δ −Nb)], for training

[x̂(k − δ − 1) ... x̂(k − δ −Nb)], for decision directed

(6.4)

The received vector yk is fed into the feedforward filter with Nf matrix taps

each of dimension Nt × Nr. Similarly, the decisions are fed into a feedback filter

with Nb matrix taps each of dimension Nt×Nr. The input to the decision device

is given as

x̌(k) = y(k)F 0 + y(k − 1)F 1 ...

+ y(k −Nf + 1)FNf−1 − x̂(k − δ)B0

− x̂(k − δ − 1)B1 ... − x̂(k − δ −Nb + 1)BNb−1 (6.5)

where F 0,F 1, ...,FNf−1 and B0,B1, ...,BNb−1 are the matrix coefficients of the

feedforward and feedback filters respectively. For the decision-directed mode,

x̂(k − δ) = x(k − δ). Let us denote the columns of F 0 (B0) by F 0,1 (B0,1), F 0,2

(B0,2),...,F 0,Nr (B0,Nr) and likewise for other matrix coefficients of the feedforward

and feedback filters. Let W r,k−1,(r = 1, 2, ..., Nr) be the vector comprised of the

rth column of matrix taps of feedforward and feedback filters at instant k−1 and

given by.

W r,k−1 , [F T
0,r F

T
1,r ... F

T
Nf−1,r B

T
0,r B

T
1,r ... B

T
Nb−1,r]

T , (6.6)
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where (.)T represents the transpose operation. We can write (6.5) as follows.

x̌r(k) = [yk − dk]W r,k−1, (6.7)

Now, the error signal is given as

er(k) =


x̂r(k − δ)− x̌r(k), for decision-directed

xr(k − δ)− x̌r(k), for training

(6.8)

Now the weights will be updated according to stochastic gradient algorithm (LMS)

W r,k = W r,k−1 + µ[yk − dk]He(k) (6.9)

6.3 Block equalization

For the Block equalizer , let the block length is L. Defining the matrix of received

symbols as

Yk =


y(k) · · · y(k −Nf + 1)

...
. . .

...

y(k + L− 1) · · · y(k + L−Nf )

 (6.10)

and the decision matrix,
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Dk =


d(k − δ − 1) · · · d(k − δ −Nb)

...
. . .

...

d(k − δ + L− 2) · · · d(k − δ + L−Nb − 1)

 (6.11)

where d(k) is the decision on the symbol x̌(k) in case of decision-directed mode

and x(k) in case of training mode. The output of the equalizer is given as

x̌k = [Y k −Dk]W r,k−1 (6.12)

where

x̌k = [x̌(k) ... x̌(k + L− 1)] (6.13)

The error at output of the equalizer is

ek = dk − x̌k (6.14)

where

dk = [d(k − δ) ... d(k − δ + L− 1)] (6.15)

Defining Ak as

Ak = [Y k Dk] (6.16)
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6.4 Sparse LMS

To enhance the performance of LMS, the SLMS is developed as follows.

• Find the locations and values of the non zero taps by using the estimates of

the correlation matrices i.e.

ŵs
1 = (A1

HA1︸ ︷︷ ︸
Ryy

)−1A1
Hd1

T︸ ︷︷ ︸
Rxy

(6.17)

• Use the same locations to update the weights using LMS algorithm.

we will use the OMP algorithm to solve (6.17). The overall algorithm is explained

as following

Step 1: Find the locations of the non zero taps, LO(ŵs
1), and initial value

of the non zero taps, ŵs
1, using the estimates of the correlation matrices. Since

matrix inversion is involved in (6.17) so we will use the OMP algorithm to find

the sparsest solution of (6.17) as

ŵs
1 = OMP (A1

Hd1
T︸ ︷︷ ︸

,y

,A1
HA1︸ ︷︷ ︸
,H

, ||A1
HA1ŵ

s
1 −A1

Hd1
T ||22 ≤ ε︸ ︷︷ ︸

stopping criteria

) (6.18)

The working of OMP algorithm in step 1 is as follows.

• INITIALIZATION: Initialize the index set I0 = [ ], residual r0 = y, ŵs
1 = 0

and t = 1.

• THE tth ITERATION:
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1. Compute δi = |rht−1H(:, i)|, ∀i /∈ It−1

2. Choose mt = argmaxi δi.

3. Update It = It−1 ∪mt. i.e., the indices of the non-zeros elements are

augmented by mt.

4. Compute ŵs
1(It) = (H(:, It))

†y, where ŵs
1(It) holds the elements of ŵs

1

indexed by It.

5. Compute rt = y −H(:, It)ŵ
s
1(It), where rt is the residual error at the

tth iteration.

6. If ||Hŵs
1 − y||22 ≤ ε, exit the algorithm, else set t = t + 1 and go to

step 1.

Step 2: Recursions of LMS (k > 0): By using the known locations and

initial taps obtain from step 1, only update the corresponding weights of known

locations using (6.9).
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Figure 6.2: Impulse response of the equalizer using LMS and SLMS with L = 200
and SNR=20 dB.

Figure 6.2 depicts the impulse response of the equalizer using conventional

LMS and SLMS for a ITU vehicular A channel [74], which spans over fourteen
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symbol durations. Therefore, the ’far-away’ weights, indicated in Fig. 6.2, are not

needed, in fact these weights create interference inside the equalizer. To eliminate

this problem, the OMP algorithm is slightly modified. The OMP algorithm gives

the location of the strongest tap in first iteration if the columns of the sensing

matrix H have equal norm [75]. Now in our case, as can be seen from Fig.

6.2, that all significant taps are closely packed. Therefore, instead of finding

the maximum (step (2) in OMP) in each iteration of the OMP algorithm, the

maximum (strongest) tap is determined in the first iteration only and then for

the remaining iterations the adjacent taps are used and checked for the stopping

criteria. The overall procedure is as follows. In the first iteration, OMP gives the

location of the strongest tap, which we call as ith location. In next two iterations,

(i − 1)th and (i + 1)th locations will be selected and tested for stopping criteria

and then in 4th and 5th iterations (i − 2)th and (i + 2)th locations, respectively,

will be used and tested, until the stopping criteria is met. In this way, not only

the ’far-away’ weights are eliminated but the computationally complexity is also

reduced due to avoiding the need of finding the maximum among all taps locations

in each iteration. We termed this approach as Dominant Tap Approach (DTA).

Figure 6.2 depicts the impulse response of the equalizer using conventional LMS

and DTA. In summary, we start with large number of taps and a specific decision

delay then by using OMP, we get the optimum number of taps with a decision

delay which gives the lower MSE. In the simulation , the value of ε is set to be

equal to the noise variance, step size µ is 0.005 and δ = Nf/2.
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Figure 6.3: Impulse response of the equalizer using LMS and SLMS with dominant
tap approach, L = 200 and SNR=20 dB.

6.5 Computational Complexity

The complexity of Sparse LMS is less as compared to normal LMS due to updat-

ing the significant weights only. On the other hand, using OMP at the start will

increase the complexity of the DTA. To compare the compuational complexity,

we count the number of multiplications/additons in LMS and OMP algorithms.

The LMS algorithm requires 8M multiplication/addition [5] whereas, the OMP

algorithm requires (K + 1)(Nf + Nb)
2 + K2(3(Nf + Nb)/2 + K2/12) multiplica-

tion/addition [76], where K is the sparsity level. Figure 6.4 depicts the comparison

of the computational complexity for different values of active taps percentage (op-

timum taps by OMP / total number of taps * 100). The curve with 100 percentage

of active taps is for conventional LMS. It can be seen that at start the computa-

tional complexity of DTA is high but as the iterations progress, DTA takes over

the LMS algorithm.
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Figure 6.4: Computational Ccmparison of LMS and SLMS.

6.6 Simulation Results

We have used Nf = 140, Nb = 0 for Linear equalizer and Nf = 140, Nb = 3 for the

DFE, with ITU vehicular A channel. Binary Phase Shift Keying (BPSK) modula-

tion is used in training mode to reduce the number of involved multiplication and

additions. Fig. 6.5 depicts that there is a significant improvement in convergence

and MSE when using DTA as compared to LMS. The percentage of active taps for

DTA is 15.9 percent. l0-EFWLMS is also plotted as this algorithm achieves the

lowest MSE than previous sparse algorithms in the literature [34,70,71]. Moreover,

The performance is consistent when using DFE.

Fig. 6.6 depicts the MSE versus SNR and percentage of active taps at each

SNR. It can be seen that at low SNR, large number of taps are useless. This not

only saves on the computation but gives better performance.

In case of MIMO, the performance gain is even more produced as depicted in

Fig. 6.7. Figure also shows that using only location information in DTA also gives

improved performance. Next, in Fig. 6.8 the effect of block size L is investigated
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Figure 6.6: MSE versus SNR for SISO case with L = 200.

and it has been noted that using large block size (L = 200 in this case) only

Nf + L training signals are required.
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Figure 6.7: Comparison of LMS and SLMS for MIMO case with L = 200, SNR=20
dB.
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Next, it is shown theoretically that how large number of taps effect different

parameters. In table 6.1, theoretical values of the smallest eigenvalue, largest

eigenvalue and eigenvalue spread of the correlation matrix (R) at the input of the

equalizer, are listed for different channels. The result of this computations are

shown in Fig. 6.9 and 6.10. The theoretical MSE shown in Fig. 6.9 is calculated

as [5]

MSE =
µ ∗ noise variance ∗ trace(R)

2−mu ∗ trace(R)
+ noise variance (6.19)

and the time constant τ (which gives idea about the rate of convergence) is shown

in the Fig. 6.10 , and it is given as [5]

τi ≈
−1

2 ln(1− µ ∗ ith eigenvalue)
(6.20)

The slower rate of convergence is attained corresponding to the smallest eigen-

value. Therefore, for the Fig. 6.10, the smallest eigenvalue is used to compute the
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upper bound.

From these figures, it can be seen that large eigenvalue spread has the effect of

slowing down the rate of convergence of the adaptive equalizer and also increasing

the steady-state value of the average squared error. It is clear from these figures

that with small number of active taps, the performance degradation and conver-

gence are almost independent of eigenvalue spread. For remaining of the figures

ITU vehicular A channel is used.

The misadjustmentM provides a measure of how close the LMS algorithm is

to optimality in the MSE sense and it is given as [29]

M =
µ

2
∗ trace(R) (6.21)

Figure 6.11 depicts that the misadjustment increases with the number of active

taps. Fig. 6.12 gives the MSE dependency upon µ along with the active taps

percentage.

Table 6.1: Delay Spread of various channels for 100% active taps

Channel Min. eigenvalue Max. eigenvalue Eigenvalue spread
Uniform PDP with 11 taps 0.0132 30.1183 2277.9

Exponential PDP with 14 taps 0.0823 0.3485 4.2332
ITu vehicular A channel 0.0218 8.0400 368.8369
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CHAPTER 7

CONCLUSIONS AND FUTURE

RECOMMENDATIONS

7.1 Conclusion

In this dissertation several adaptive algorithms are proposed, in particular to

the frequency domain DFE. These algorithms are studied in detail and analysed

in various scenarios using either mathematical model or simulations. The main

contributions of this dissertation are listed below:

• An adaptive frequency-domain DFE is proposed for the first time for SC-

FDMA, SFBC SC-FDMA, SM SC-FDMA and hybrid SM-SFBC SFBC SC-

FDMA systems with both feedforward and feedback filters operating in the

frequency-domain. The equalizer operates without channel estimation at the

receiver. The updating scheme used for the frequency-domain DFE is the

RLS algorithm. The proposed algorithm is shown to have a low complexity
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and this is due to the special structure of the matrices involved in computing

the weights of the feedforward and feedback filters in the frequency-domain.

The AFD-DFE is also more computationally efficient than non-adaptive

frequency-domain DFE. Simulation results for a time varying frequency-

selective fading channel under the effect of high Doppler frequency and CFO

on the system’s performance are conducted and demonstrate the significant

performance gain and robustness of the proposed algorithm.

• A constraint RLS based adaptive DFE is entirely designed in the frequency-

domain for SC-FDMA and extended to a SFBC SCFDMA systems. The

CRLS performs better than the RLS algorithm with almost similar com-

plexity. Moreover, CRLS AFD-DFE outperforms the practical MMSE-DFE

in terms of BER. We also showed that less training symbols can be used

during training phase to reduce the overhead without sacrificing the per-

formance and introduced a blind AFD-DFE is also introduced. Simulation

results demonstrate the significant performance gain and robustness of the

proposed algorithm under the severe Doppler effect. We also extend our de-

sign to 3-tap adaptive equalizer in the frequency-domain, which has better

performance than 1-tap equalizer when dealing with ICI due to CFO.

• We showed how to integrate PSO with the DFE structure and demonstrated

the superior performance of the PSO-DFE with respect to the widely-used

LMS/RLS-DFE. This improvement is more pronounced for highly-dispersive

channels with large eigenvalue spread and MIMO channels. Moveover, ex-
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tensive simulations were conducted to optimize the PSO design parameters.

The PSO-DFE significantly outperforms the PSO-LE and the LMS/RLS-

DFE in terms of convergence time and steady-state MSE. A hybrid algo-

rithm, PSO-LMS-DFE, is also proposed which is not only superior to the

PSO-DFE in terms of performance but also enjoys lower complexity. Further

complexity reduction is achieved using the FFT in the Fast PSO-LMS-DFE.

• A FD-PSO-based adaptive equalization in a SC-FDMA system is proposed.

Simulation results verified that our devised adaptive equalization scheme has

a better performance than that of RLS and LMS. Furthermore, in case of

a high Doppler, it is shown that the performance of the FD-PSO algorithm

can be improved by increasing the number of particles and the use of re-

randomization.

• Sparse LMS algorithm is developed and shown to have fast convergence and

lower MSE as compared to the conventional LMS algorithm.

7.2 Future recommendations

Future work involves the development of substitute algorithms to the proposed

ones, e.g., the blind PSO can be combined with other existing blind algorithms like

Constant-Modulus Algorithm (CMA), Reduced-Constellation Algorithm (RCA),

Stop-and-go and Multi-Modulus Algorithm (MMA), to develop hybrid blind PSO

algorithms. Similarly, BAFD-DFE uses only stop-and-go algorithm, above men-
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tioned algorithms can be a good candidate to improve performance. Adaptive

turbo DFE equalization in the frequency domain can also be an alternative equal-

ization technique.
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