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The main limitation of deploying/updating Received Signal Strength (RSS) based

indoor localization system is the construction of fingerprinted radio map, which

is quite a hectic and time-consuming process especially when the indoor area is

enormous and/or dynamic. Different approaches have been undertaken to reduce

such deployment/update efforts, but the performance degrades when the finger-

printing load is reduced below a certain level. In this work, we propose an indoor

localization scheme that requires very small fraction of fingerprinting load (1%

of total grid points, i.e. 2 in our case), some crowd sourced readings and plan

coordinates of the indoor environment. The 1% fingerprinting load is used only

to perturb the local geometries in the plan coordinates. Our proposed algorithm

was shown to achieve less than 5m mean localization error with 1% fingerprint-
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ing load and a limited number of crowd sourced readings, when other learning

based localization schemes pass the 10m mean error with the same information.

The performance is further improved by clustering the crowd sourced information

where the few collected fingerprints act as cluster heads.

The few location estimations together with few fingerprints help to estimate

the complete radio map of the indoor environment. The estimation of radio map

does not demand extra workload rather it employs the already available infor-

mation from the proposed indoor localization framework. The testing results for

radio map estimation show almost 50% performance improvement by using the

aforementioned information as compared to using only fingerprints.
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ملخص الرسالة

خاقان مجيد :الاسم الكامل

تحديد المواقع الداخلية و توقع الخريطة الراديوية باستخدام المحاذاة المتشعبة الغير مراقبة المعدلة هندسيا. :عنوان الرسالة

الهندسة الكهربائية التخصص:

4102مايو  :تاريخ الدرجة العلمية

تحديد الموقع بالاعتماد على قوة الإشارة المستلمة هو إنشاء بصمة الخريطة الراديوية، تحديث نظام \المحدد الرئيسي لتركيب

و هو ما يعد مستعصيا و مستنزفا للوقت خصوصا عندما تكون المساحة الداخلية كبيرة و متغيرة. لقد استعملت عدة أساليب 

في الأداء عند تقليل عدد البصمات المأخوذة عن حد التحديث، لكن الانخفاض \للتقليل من الجهود المبذولة في عملية التركيب

من عدد  %0معين. في هذا العمل،نحن نقترح طريقة لتحديد المواقع الداخلية تحتاج نسبة قليلة من عدد البصمات الكلي )

ن عدد البصمات النقاط الكلي(، بعض القراءات متعددة المصادر، إضافة إلى إحداثيات البيئة الداخلية. نسبة الواحد بالمائة م

 %0أمتار باستخدام  5تستخدم لتغيير الإحداثيات. النتائج تظهر أن الخوارزمية المقترحة تحقق خطأ في تحديد الموقع أقل من 

 01ن من البصمات المأخوذة و عدد محدود من القراءات متعددة المصادر، مقارنة بطرق أخرى تحقق نسبة خطأ أعلى م

القليل من التقديرات بالإضافة إلى القليل من البصمات يساعد على توقع الخريطة الراديوية  أمتار بنفس كمية المعلومات.

الكاملة للبيئة الداخلية. تقدير الخريطة الراديوية لا يتطلب المزيد من المعلومات المتوفرة من نظام تحديد المواقع المقترح. 

ام المعلومات السابق ذكرها لامقارنة مع استخدام البصمات عن طريق استخد %51ـظهر التجارب تحسنا في الأداء بينسبة 

 فقط.



CHAPTER 1

INTRODUCTION AND

MOTIVATION

The advent of mobile devices (e.g. laptops, personal digital assistants (PDAs),

smart phones, tablets) has aided a lot in the proliferation of location-based services

(LBS). The LBS in outdoor applications include information sharing of personal

visits (e.g. social networking), military purposes, vehicle navigation, marking

Point of Interest (POI) (e.g. restaurants, hospitals, recreational parks, malls). The

indoor applications include object detection, navigation in giant malls/buildings,

guiding disabled persons in huge indoor areas, assisting students through uni-

versity campus, etc. The localization, both indoor and outdoor, has very useful

applications especially in way finding.

The Global Positioning System (GPS) offers suitable accuracy in outdoor loca-

tion estimation applications but fails to provide satisfactory performance in indoor

environments due to unpredictability of radio propagation. The signals from GPS
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satellites become very weak while penetrating through buildings. Wireless Local

Area Networks (WLANs) infrastructure using Received Signal Strength (RSS)

has gained much importance recently over Angle-of-Arrival (AoA) and Time-

of-Arrival (ToA)/Time-Difference-of-Arrival (TDoA) techniques due to hardware

simplicity [1,2]. Some of the other techniques make use of sensory measurements

in users’ mobile phones. The schemes employing Wi-Fi fingerprinting do not re-

quire any investment cost in deploying Access Points (APs), i.e. existing installed

APs can be used for location estimation. Moreover, the mobile devices are widely

available nowadays and are equipped with Wireless Network Interface Controller

(WNIC) so there is no need for additional hardware changes. The indoor local-

ization technique, proposed later in this work, does not require additional sensors

present in the mobile phones as required by sensory measurement techniques. The

signal strength values measured by mobile devices from Wi-Fi APs are employed

in this work to perform indoor localization.

1.1 Wi-Fi based Positioning

The indirect self-positioning topology [3,4] is considered in this work, in which the

mobile unit receives signals from several APs present in the indoor area and sends

the measurement results to the central computational unit. The server/central

unit then estimates the position of the user based on the RSS measurements

received from it. The estimated position is then sent to the mobile user via some

wireless data link. The location sensing in WLANs using RSS is broadly divided

2



into three categories [3]. The brief description about these categories is following.

1. Obtaining the relationship between RSS value and position by using radio

propagation models. The range is estimated theoretically or empirically

based on the difference between the transmitted and received signals. The

locations of APs need to be known in this case. The position of the mobile

user is then estimated from the signal strength.

2. The mobile target is affiliated with a particular antenna among some group

of antennas based on maximum signal strength. Here the location of APs

(antennas) needs to be known in advance.

3. Location fingerprintng makes use of RSS values from concerned APs in the

indoor environment. The RSS readings are obtained from all the concerned

APs and stacked as a vector corresponding to a specific indoor position.

The fingerprinting/radio map contains measurement vectors at all the grid

points in the indoor environment.

The problem related with the first two options, mentioned above, is that the

signal strength follows inverse square relationship with the distance (this is true in

case of free space) and the variation of RSS values cannot be modeled as gaussian.

The path loss occurs in radio propagation due to multi-path and other factors. The

indoor environment is dynamic i.e. moving objects such as doors, windows, per-

sons, escalators, elevators, etc are the major sources of signal strength variations

in radio wave propagation. However, the third option, location fingerprinting, is

the most preferred approach since it avoids the inaccuracies which occur in case

3



of employing radio propagation models. The fingerprint database (a.k.a the radio

map) is the collection of RSS readings obtained from different APs at reference or

grid points in an indoor area. In the most traditional scenario of this method, the

localization problem is basically divided into two phases, the offline phase and the

online phase. In the offline phase, the radio map is constructed by collecting the

RSS fingerprints (a.k.a calibration data) at all grid points of the indoor environ-

ment. In the online phase, the localization requests are received and compared to

the radio map to estimate their users’ locations.

1.2 Motivation and Problems Targeted

According to the aforementioned details, the building of fingerprint database is

quite hectic and time-consuming process since one has to obtain RSS readings at

all the grid points in an indoor environment. The workload increases when the

size of the indoor area under consideration increases. Keeping in view these facts,

any efforts towards reducing the cost and workload consumed in building the radio

map while maintaining the minimum error floor are of great practical importance.

Some works [5–8] have reduced the fingerprinting load but the performance is

severely effected when fingerprints are reduced below a certain number.

In [7], some RSS readings are collected at certain positions of the indoor area

and are termed as labeled data. Localization requests are obtained in the online

stage and are called unlabeled data. The labeled and unlabeled data are then

aligned using semi-supervised manifold alignment (SMA) [9]. The positions are
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estimated by closest match in the common lower dimensional manifold. The

performance degrades when the number of fingerprints are reduced to a small

value (10% of the total grid points in the indoor environment).

In this work, we aim to further reduce the fingerprinting load (1−5%) while still

maintaining low degradation in performance. In this approach, the server collects

a considerable number of crowd sourced RSS readings from the casual visitors of

the environment. Nonetheless, we still require some very limited number of labeled

positions (fingerprints) to perturb the geometry of coordinates since there is high

symmetry in the coordinate plan. Indeed, it becomes difficult to differentiate

between the small chunk of points from one place to another in an indoor area (will

be explained in later chapters). These few fingerprints are termed as calibration

data/calibration readings. Localization requests are obtained in the online stage

and fall under the category of unlabeled data. These are the readings obtained

from users who are interested in the estimation of their locations.

Unsupervised Manifold Alignment (UMA) [10] is used to tackle the problem

of feature matching between the collected readings and the available coordinate

plan of the indoor environment. The non-bijective mapping functions transfer the

information from the readings data set to the coordinates data set. UMA does not

require any correspondence information between the data sets to align them in

the common lower dimensional manifold. The local features are learned and the

connection of local geometries are obtained to learn the mappings. The mappings

then transfer the data points to a common lower dimensional (hyper)plane. The

5



closest match between the point pairs from both sets in the common manifold

will help in estimating the locations. UMA is superior to another unsupervised

technique [11] as indicated in [10] in a sense that the complexity incurred during

local feature matching is greatly reduced as well as separate mappings are obtained

for tight alignment.

Another task in indoor localization problem involves the estimation of radio

coverage of the indoor area. The APs available in the indoor area are not accessible

at all the locations. For example, for a large indoor area such as a university

campus or an airport, the AP accessible at north side of the area may not be

accessible at the south side. This poses a need to estimate radio coverage in

an indoor environment, which helps to categorize services offered1 over Wi-Fi

networks. The estimated radio map can also be used to estimate new localization

requests directly from the map by means of much simpler algorithms like nearest

neighbor (NN) and k-nearest neighbors approaches.

1.3 Organization of the Thesis

Chapter 2 describes briefly different techniques and methodologies, related to

our work, that have been used earlier for location sensing. The chapter broadly

categorizes the techniques, which use full and partial fingerprinting map. The

importance of Wi-Fi based location fingerprinting approach, which we used, as

1These services are based on signal strength and are categorized into high data rate
services like VoIP, video calling, video streaming and low data rate services like text
chatting, browsing.
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compared to other techniques is also discussed. The chapter also briefly discusses

the unsupervised manifold alignment technique, which we used in our indoor

localization framework. It also describes the importance of radio map estimation.

Chapter 3 describes the proposed technique for indoor localization. The pro-

posed methodology makes use of novel unsupervised manifold alignment algo-

rithm, which with geometry perturbation greatly improves the localization accu-

racy. The unsupervised manifold alignment obtains the matchings between the

data sets that have same underlying correlation pattern. The data sets used to

obtain the matchings comprise of RSS readings and indoor plan coordinates. The

chapter describes the collection of the readings, formulation of the problem and

finally its solution to obtain the position estimates. It describes how geometry

perturbation greatly improves the performance. The further enhancement in per-

formance is achieved by clustering the RSS readings and coordinates data sets

considered in manifold alignment problem.

The proposed work for estimating radio map of the indoor environment is

presented in Chapter 4. It discusses the problem formulation and usage of the

results, from proposed indoor localization framework, for radio map estimation.

The proposed work makes use of very limited information (few calibration readings

and few localization requests with location estimations) to estimate the complete

radio map of the indoor environment. The collected data is treated as labeled data

and is used in conjunction with the indoor plan coordinates, which are divided into

labeled and unlabeled locations. The linear least-mean-squares estimator is then

7



employed to estimate RSS values at all the unlabeled positions. The performance

achieved here is at the expense of small amount of information.

Finally, Chapter 5 concludes the work and briefs the future trend.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, an overview on the existing works and methodologies for location

sensing is presented. The notations used throughout the thesis are depicted in

the following table. These are illustrated here for clarity since these will be used

to address specific variables in later parts of the thesis.

Table 2.1: Summary of used notations

Type of variable Notation

Scalar Italicized, lower-case (e.g. m)
Constant Italicized, upper-case (e.g. N )
Matrix Bold-face, upper-case (e.g. V)
Vector Bold-face, lower-case (e.g. v)
Set Upper-case calligraphic font (e.g. X )
ith member of a set X (vector case) Bold-face, lower-case subscript (xi)
ith member of a set X (scalar case) lower-case subscript (e.g. xi)

kth dimension of ith member of a set X lower-case (e.g. xk
(i))

Localization, especially indoor, has been under extensive research a while ago.

Despite the ability of the Global Positioning System (GPS) to provide enough

accuracy for outdoor positioning, it cannot be used in indoor environments since

it becomes difficult to cope with the technical challenges encountered due to com-
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plexity of indoor radio propagation. The positioning using the RSS of WLAN

infrastructure has gained much importance recently due to the reduced installa-

tion costs. Moreover, no changes in hardware are required since almost all the

modern mobile devices are equipped with WiFi cards (IEEE 802.11 standard [12]).

Instead of installing new Access Points (APs) in the indoor environment, existing

APs can be used for localization. The indoor positioning using WLAN RSS has

already been proven advantageous over the angle-of-arrival (AoA), time-of-arrival

(ToA)/time-difference-of-arrival (TDoA) measurement based algorithms since the

RSS readings can be obtained effortlessly. The usage of WLAN RSS for position-

ing has been stressed in [1, 2] because of its simplicity.

Some works [13–16] make use of the sensors (gyroscope, compass, accelerome-

ter and Wi-Fi adapter) present in the mobile devices. Due to the internal structure

of indoor area (people taking escalators, elevators, stairs or moving on the floor),

the readings obtained from these sensors have particular trend. These readings

actually give the idea of particular sub area in the whole area where the user

would be present. The further algorithmic development then helps to localize

users. Following sections describe these works briefly.

2.1 RSS-based WLAN Location Sensing

The indoor positioning using WLAN RSS is broadly divided into two cate-

gories. One method makes use of radio propagation models and statistical mod-

eling [17–19]. The other method deals with location fingerprinting [20–23]. The

10



former method is unreliable since radio propagation is unpredictable in indoor

environment. The location fingerprinting also has some limitations, which are

discussed in Section 2.2.

The indoor positioning using RSS fingerprinting has been widely used in re-

cent works [5, 7, 21–24]. It is based on collecting RSS fingerprints of the indoor

environment to construct the radio map. These RSS fingerprints are obtained

form APs at specific positions known as reference points [21] or grid points [24].

The RSS fingerprints follow a unique pattern in spatial domain and thus are like

human fingerprints. Indoor positioning based on location fingerprinting involves

two phases, namely the offline phase and the online phase.

1. Offline Phase

The radio or fingerprint map is obtained in the offline phase where RSS read-

ings from concerned APs are collected at each reference point in the indoor

area. Once the radio map is collected, it is stored in the database for future

reference. The physical space is discretized into N positions with a certain

fixed distance in between the positions. Fig. 2.1 shows the discretization of

the physical area into N grid points. The presence of R APs is also shown

(R = 4 in this example).

The RSS readings are obtained separately from R APs at the ith location in

an indoor area and are stacked into a vector, ci, which is represented as:

ci =

[
c
(i)
1 c

(i)
2 · · · c

(i)
R

]T
(2.1)
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Access Points

Grid Points

Figure 2.1: Discretization of Indoor Area. The number of APs shown here are 4

The radio or fingerprinting map is thus the collection of such vectors at all

the N locations of the indoor environment and is represented as:

C =





c
(1)
1

c
(1)
2

...

c
(1)
R


,



c
(2)
1

c
(2)
2

...

c
(2)
R


, · · · ,



c
(N)
1

c
(N)
2

...

c
(N)
R




(2.2)

As can be inferred from Fig. 2.1, the collection of fingerprints at all the

locations of the indoor environment is quite hectic and time consuming

process especially for enormous indoor areas (e.g. giant shopping malls,

airports and hospitals) and/or of high dynamics (e.g. moving carts, persons

and elevators in malls, moving trains in subway stations). The dynamic

nature of an indoor environment poses the need for updating this database
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after some time. This acts as the main hurdle in practical deployment of

RSS based indoor localization systems.

2. Online Phase

The online phase involves the collection of localization request(s) (RSS read-

ings measured by user(s)). The localization algorithm is then run with the

available information to estimate the position(s) of these users. The localiza-

tion algorithms usually make comparison of the online measurements with

the stored radio map.

2.2 Limitations of RSS Fingerprinting

The received signal strength (signal power) from a transmitter (Wi-Fi AP) falls

inversely with the square of the distance from it in free space. However, in real

environments, this is not the scenario. The building structure together with the

moving objects inside it act as the major source of signal strength variations.

These variations also change from one building structure to another. The cause

of these effects can be broadly classified into large scale fading (shadowing) and

small scale fading (multi-path) [25].

The large scale propagation effects cause spatial variations in RSS values. Tak-

ing care of these effects is really difficult. The path loss models should take care of

antennas and device orientations. The antennas are normally anisotropic, which

means that the power radiated/received from/to an antenna does not follow cir-

cular contours instead different power values are observed at different orientations
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of the mobile device. The presence of human bodies in between the path of the

wave makes the modeling of path loss more complex.

The small scale propagation effects occur due to multi-path and cause tem-

poral variations in RSS values. The dynamics of the indoor environment such as

moving people and objects act as the source of variation in RSS values. The RSS

values in this case varies over the distance, which is in the order of the signal wave-

length. The wavelength in case of WLANs is λ = 0.125m for 2.4 GHz operational

frequency, which decreases with higher operational frequency of 5 GHz.

The above mentioned effects make the modeling of RSS-distance relationship

difficult in real indoor environments. So, the fingerprinting approach overcomes

the spatial and temporal variations of RSS values to much extent. The spatial

variations are modeled by collecting these values on a specified grid in an indoor

environment. The accuracy increases by increasing the number of grid points1.

The temporal variations are characterized by collecting large number of time sam-

ples of these values at a grid point.

2.3 Indoor Localization Schemes in Literature

Different approaches have been undertaken for location estimation by employing

full or partial fingerprinting map. These are described as follows.

1The increase in number of grid points decrease the distance between them for the
given indoor environment. The decreased distance results in grid of finer resolution,
however, it increases the computational complexity.
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2.3.1 Indoor Localization using Full Radio Map

The following schemes employ the complete radio map of the indoor environment.

The simplest solution for localization using the radio map is to find the centroid

of the K nearest neighbors to the RSS reading of the localization request [6]. In

this case, the distance of the localization request obtained in the online stage is

computed with all the collected readings in the fingerprint database. The average

of the database grid points having theK smallest RSS distances to the localization

request is then taken and the coordinate is assigned to this localization request

and sent to its user.

Another solution proposed in [21,23] makes use of compressive sensing [26–28].

These works treat the problem as sparse i.e. the users are sparse in the spatial

domain and compressive sensing is employed for location estimation. The whole

problem is divided into two stages, namely the coarse localization stage and the

fine localization stage. In the coarse localization stage, all the fingerprints stored in

the database are clustered by using Affinity Propagation [29]. In the online phase,

the best matched clusters to a localization request are obtained by comparing the

RSS reading of this request with the obtained cluster heads. The problem then

shrinks to a smaller one which contains the subset of fingerprints inside these

best matched clusters instead of the whole radio map. In fine localization stage,

compressive sensing is employed where a sparse location vector is reconstructed

by solving an l1-norm minimization problem. The effect of device orientation is

also taken into account in [22,23].
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The problem is also treated as sparse in [24], in which the fingerprint map is

constructed by taking into account the cross-correlation information of the signals

at different APs. The locations of the users are reconstructed by solving an l1-norm

minimization problem. The cross-correlation information helps in the localization

of large numbers of users with the same number of APs. Sometimes the problem

becomes overdetermined, which can be solved by ordinary least squares. A similar

solution methodology is proposed in [30] using TDoA and compressed sensing

[26–28]. The cooperation among APs is taken into account to exploit the cross-

correlation of signals at different APs. The fingerprinting map is constructed

by making TDoA measurements on grid points throughout the indoor area. For

localization, the online TDoA measurements are compared with the stored radio

map. However, this TDoA solution is a passive localization technique, in which the

location of the mobile user is estimated without its active involvement. The main

drawback here is that extra hardware is needed for making signal measurements.

Consequently, the WLAN location sensing using RSS fingerprints is more favorable

since no investment is required in major equipment deployment for such systems

and no hardware changes are required in the mobile devices.

2.3.2 Indoor localization using Partial Radio Map

To reduce the need, cost and effort in constructing and updating full radio maps,

which is a must for all the solutions described in the previous section, another set

of solutions are employing learning methods to either estimate the radio map or
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localize using limited number of fingerprints.

One solution [8] makes use of limited number of fingerprints to estimate the

positions. Almost 200 samples of RSS readings are accumulated at each calibra-

tion location. Total 137 grid points are considered for the indoor environment.

The spacing between the points is not fixed but on average one grid point covers

19.5 m2 of the area. The interpolation function is used which gives the (x,y) coor-

dinates as the function of RSS values. The rms error is calculated for the location

estimations. The work basically describes the effect on rms error by reducing

the samples collected at a calibration position as well as lowering the number of

calibration positions. The rms error reported is 9.19 m at 10 % of the total cal-

ibration load considered initially (i.e. 14 grid points out of 137). The best value

of the rms error obtained is 3.75 m at 100 % of the total calibration load (i.e. 137

points).

Another recent example employed semi-supervised manifold alignment (SMA)

[9] to solve the localization problem in the presence of limited number of finger-

prints [5,7]. In semi-supervised localization approaches, a small percentage of the

RSS fingerprints is obtained throughout the indoor area and are termed as labeled

data (calibration information/data/readings). The RSS readings from users are

obtained in the online stage for location estimation and are called unlabeled data

(localization requests). The SMA then aligns the labeled and unlabeled data in

a common lower dimensional space. The data sets to be aligned are assumed

to have (1) stronger correlation with the neighboring points as compared to dis-
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tant points and (2) common lower dimensional correlation. The semi-supervised

manifold alignment consists of the following main steps:

1. Weight computation by Locally Linear Embedding (LLE) [31]

For the elements xi and xj in the data set X , the LLE computes weight by

min
Wij∀xj∈N (xi)

∣∣∣∣∣∣xi −
∑

xj∈N (xi)

Wijxj

∣∣∣∣∣∣
2

s.t.
∑

xj∈N (xi)

Wij = 1 (2.3)

where N (xi) is the set containing k nearest neighbors of xi. Wij = 0∀xj /∈

N (xi). The closest the point xj to xi the higher the weight assigned. The

main advantage of using LLE is that it preserves the neighborhood correla-

tion between the points.

2. Eigenvalue decomposition of the combined Laplacian matrix

After computing the weights, a combined Laplacian matrix [9] is constructed

which consists of labeled elements from both the data sets, unlabeled elements

from the first dataset and unlabeled elements from the second data set. The data

sets are formed with labeled elements (denoted by subscript l) at the top followed

by unlabeled elements (denoted by subscript u). Suppose we have data sets X

and Y . Considering Laplacian matrices LX and LY for sets X and Y respectively,

the combined Laplacian matrix LZ is of the form
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LZ =


λxL

X
ll + λyL

Y
ll λxL

X
lu λyL

Y
lu

λxL
X
ul λxL

X
uu 0

λyL
Y
ul 0 λyL

Y
uu

 (2.4)

where λx and λy are the weighting factors defined in [7]. After eigenvalue decompo-

sition of the combined Laplacian matrix, LZ , the minimum d nonzero eigenvectors

are obtained for d-dimensional embedding. The distances of the localization re-

quests in this embedding domain are computed with all the remaining embedding

and coordinates of the closest match are assigned to them. The algorithm shows

good performance even when localization requests are increased. Nonetheless,

the good performance is achieved at considerable percentage (15 − 30%) of fin-

gerprints and thus more studies are required to further reduce these percentages

while achieving similar performances.

2.3.3 Indoor Localization using Inertial Measurements

The following schemes make use of the data obtained from the sensors (such as

gyroscope, compass, accelerometer) present in the mobile phones.

For instance, in [13], the location estimation is done using unsupervised ap-

proach, where the calibration effort is taken care of by the people roaming inside

the area. The inertial sensors (such as accelerometer, gyroscope, compass and

WNIC) present in the smart phones provide measurements that aid in localiza-

tion. The readings obtained from these sensors are unique in the Wi-Fi space,

that is, when a user walks, uses an escalator or an elevator, a particular effect is

19



observed on the readings obtained from these sensors. This information helps to

point out the particular locations in an indoor area, which are called landmarks.

The information is gathered from the people who walk randomly in the indoor

area thus reporting their readings. The database is then formed using the readings

obtained from the people. In the start, the algorithm shows poor performance but

as the time passes, the algorithm converges to show good performance. This is

because the data gathered from the people in the start of the deployment process

helps to improve the location estimates thereafter. The reported accuracy of the

system is around 2 m but at the expense of gathering information from the indoor

environment with the passage of time. So this seems to be the main hurdle in

the practical deployment of such systems at large scales since the system needs to

adapt itself to the new indoor environment.

The work in [16] deals with the generation of pathways in the indoor area. The

data, here again, is gathered from the inertial sensors present in mobile phones.

They also make use of the identified landmarks in the indoor area, which are

obtained from the readings reported by users walking in the indoor area. The

reported error is around 3 m. The accuracy obtained here is at the expense of

running the algorithm for some time in the indoor area. The initial running of the

algorithm actually helps to gather the crowd sourcing information. The initial

adaptation of the algorithm to the area does not make it robust to changing

indoors structures as well as deployment in the new area since some amount of

time is required to obtain this level of accuracy.
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The work in [15] also makes use of the RSS readings obtained from users as

well as the sensory measurements in their smart phones. The RSS fingerprints

are collected from the users walking in the indoor area. Based on the collected

fingerprints, the overlapped fingerprints are merged. The stress-free floor plan

and stress-free fingerprint space are constructed from the coordinate plan and the

collected fingerprints respectively. The mapping between the spaces then help to

estimate the users’ locations. For practical deployment of the system, the users

walk in the indoor area and send their accelerometer readings as wells as the

collected RSS readings during the movement. The accelerometer readings help

in estimating the distance covered by the user. The distance considered between

the grid points is 2 m. The average localization error reported therein is 5.88 m.

This is again at the expense of gathering information in the indoor environment

initially.

The technique discussed in [14] also takes information from the inertial sensors

(accelerometer, compass and gyroscope) present in smart phones. The information

from these sensors help to estimate the motion of user. The collected readings

from sensors as well as Wi-Fi adapter then help to estimate the locations. This

work also requires much effort since users need to roam in the indoor area for

some time to collect these readings. The algorithm developed is supposed to

run in the background of the mobile phone. This puts some limitations on the

practical implementation of the system since the processes running continuously

in the background of the mobile phone will drain out its battery quickly.

21



The analysis of these techniques shows that still some time and resources are

required for the practical deployment of such systems to obtain the acceptable level

of localization accuracy. The above mentioned works need to collect information

from the inertial sensors present in smart phones, which, in fact, adds to the

additional hardware requirements. For each new indoor area, some sort of training

procedure is required, which is a bottleneck in practical implementation of such

systems.

2.4 Introduction to Unsupervised Manifold

Alignment

Unsupervised Manifold Alignment [10, 11] (UMA) is currently used in many ap-

plications in machine learning (e.g. script matching between different languages,

protein manifold alignment, image matching, pose matching between different

types of image sets). Unlike semi-supervised manifold alignment, unsupervised

manifold alignment does not require any correspondence information between the

data sets i.e. no labeling information is required. The essential step is to estimate

the similarities in local structures between the data sets without destroying local

features within the data sets.

Wang and Mahadevan proposed in [11] an unsupervised manifold alignment

algorithm, in which mapping functions α and β were computed for the two data

sets. These functions transform the elements of the two data sets to a common
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lower dimensional space by preserving the local features and matching the local

geometries simultaneously. Since the elements then reside in the common space,

so the comparison between the matching elements becomes easy. The major

drawback in Wang’s method is that the computational complexity is very high

while matching the local geometries. Assuming k neighbors per point, k! geometry

permutations should be tested for every point. Another drawback is that the

mapping functions obtained provide holistic alignment i.e. the mapping function

obtained for a set is same for all the points in that set. This causes most of the

points to map to the same locations in a lower dimensional manifold. The points

cannot be distinguished from one another. This results in making many false

matches.

The drawbacks in Wang’s methods are taken care of in [10], where the com-

plexity incurred during the matching of local features between the data sets is

greatly reduced. This reduction is done by representing the neighbor informa-

tion for the element in a set by B-spline curves [32]. The local feature matching

information between the data sets is obtained by computing enveloped areas be-

tween these curves. Then, the mappings are obtained by non-holistic alignment

as opposed to Wang’s method i.e. the separate mappings αi’s are obtained for the

concerned elements in the source set. These separate mappings help in achieving

tight manifold alignment.
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2.5 Significance of Radio Map Estimation

The WLAN coverage estimation in an indoor environment finds many useful ap-

plications. The estimation of signal strength from an AP in an indoor environ-

ment gives an idea of possible coverage throughout the region from that AP. The

estimated signal strength values help to predict performance for using different

services. For instance, VoIP services, video calling, video streaming require high

data rates, which corresponds to good signal strength. For low data rate services

like online browsing, text chatting, low signal strength values are also acceptable.

Moreover, it also helps to find replacement locations for APs in an indoor environ-

ment for good radio coverage. The placement of a new AP can be judged based

on the already available radio map. The new placement of APs can also help to

reduce the spillage of the signals outside the indoor premises. At some regions in

an indoor environment, same signal strength is observed from multiple APs. If an

AP goes down for some reason then another AP can be used to provide coverage

in that area.

2.6 Chapter Summary

This chapter describes the reason for opting RSS fingerprinting approach and

its dominance over other methods, which is obviously because of its simplicity.

However, there still exists the limitation of using RSS fingerprinting approach.

The earlier work done on the subject is categorized into techniques, which employ

full or partial fingerprinting map. This allows us to compare the performance of
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our proposed approach, which greatly reduces the workload required by previous

techniques. The unsupervised manifold alignment is also introduced briefly to

give the reader an idea of how it can be used to obtain the mapping from the

readings domain to the coordinates domain.
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CHAPTER 3

PROPOSED INDOOR

LOCALIZATION

FRAMEWORK

This chapter describes the research methodology undertaken for indoor localiza-

tion problem. A novel Unsupervised Manifold Alignment (UMA) algorithm [10]

(described later in this chapter) with geometry perturbation is used to obtain the

location estimates for localization requests. The source and destination data sets

are required by UMA. The matching between the data sets then help to localize

user(s). The following section describes the formulation of the indoor localization

problem. This is followed by the explanation of geometry perturbation, unsuper-

vised manifold alignment and the steps describing localization algorithm. Finally,

the clustering is introduced to further improve the performance.
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3.1 Problem Formulation

As described in the previous chapter, RSS fingerprints (from now on, for simplic-

ity, the term “fingerprints” will be used to indicate “RSS fingerprints” wherever

required) are used for location sensing. To build the problem, some RSS read-

ings are collected. These include few calibration readings (another name used for

fingerprints), some crowd sourced readings (RSS readings gathered from casual

users walking in the indoor area), localization request(s) (RSS readings measured

by user(s) to obtain their location(s)) and indoor plan coordinates. The main

point to note here is that very small number of fingerprints (approximately 1% of

all grid points in the indoor area, that is, 2 points in our case) are used in this

work. The collected RSS readings (calibration readings, crowd sourced readings

and localization requests) and plan coordinates of the indoor area are arranged in

the form of source and destination data sets. The unsupervised manifold align-

ment with geometry perturbation then aligns the data sets in a common lower

dimensional (hyper)plane.

As mentioned in Section 2.1, the indoor area is discretized into N grid points

or positions with some fixed distance in-between the points. The fingerprints

are obtained at these points (in our case as low as 1% of the total grid points

in the indoor area). The calibration readings or fingerprints are obtained in the

offline stage and crowd sourced readings and localization requests in the online

stage. Since very small number of fingerprints (1% i.e. 2 in our experiments)

are used for location estimations so these fingerprints can also be collected in
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the online stage by use of sniffers, which are hardware or computer programs

that log or intercept traffic over wireless or Ethernet Local Area Network (LAN).

This eliminates the workload completely, that is, the database of these very few

fingerprints can be updated continuously without the aid of manpower. Following

subsections describe the construction of source and destination data sets.

3.1.1 Source Data Set

The source data set X contains R-dimensional vectors representing the RSS read-

ings measured from R APs. The set X is constructed by concatenating the fin-

gerprints or calibration readings set C, the crowd sourced readings set O and

the localization requests set L. Note that the calibration readings are readings

obtained at known locations whereas crowd sourced readings are received from

unknown locations. Consider the calibration readings set C. Each element ci of

C is a vector of RSS measurements obtained at a known position i in the spatial

domain from R APs. In other words:

ci =

[
c
(i)
1 c

(i)
2 · · · c

(i)
R

]T
(3.1)
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We can thus describe C as:

C =
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c
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c
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c
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(3.2)

These fingerprints are obtained at f grid points, which, as indicated earlier, are

very small in number as compared to the total grid points of the indoor area under

consideration (that is, f ≪ N). Similarly, the elements present in crowd sourced

readings set O and the localization requests set L also contain RSS readings, in

vector form, from R APs. The ith element of these sets are given by, respectively,

oi =

[
o
(i)
1 o

(i)
2 · · · o

(i)
R

]T
(3.3)

li =

[
l
(i)
1 l

(i)
2 · · · l

(i)
R

]T
(3.4)

Thus, the sets O and L are described by:

O =





o
(1)
1

o
(1)
2

...

o
(1)
R


,



o
(2)
1

o
(2)
2

...

o
(2)
R


, · · · ,



o
(s)
1

o
(s)
2

...

o
(s)
R




(3.5)
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Figure 3.1: Structure of Readings Data Set X
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(3.6)

The structure of the source data set X is:

X = {c1, · · · , cf ,o1, · · · ,os, l1, · · · , lr} (3.7)

The total number of elements in set X is M = f+s+r, which is the cardinality of

this set. Figure 3.1 shows the pictorial view of this arrangement. As stated earlier,

the set X is comprised of three portions. The first portion of the set X , which

represents the calibration readings or fingerprints, is not used in unsupervised

manifold alignment but rather in perturbing the local geometries of the indoor
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Figure 3.2: Structure of Coordinates Data Set Z

plan coordinates. This will become clear in the upcoming sections.

3.1.2 Destination Data Set

The destination data set Z is formed using 2-dimensional coordinates correspond-

ing to the physical locations in the indoor area. These elements are arranged in

such a manner that the first f coordinate pairs are in correspondence with the cal-

ibration readings and remaining portion of the set contains remaining coordinates

of the indoor area. This set is represented as:

Z = {p1, · · · , pf , pf+1, · · · , pN} (3.8)

where, the ith element represents the ith coordinate pair and is given as:

pi =

 x(i)

y(i)

 (3.9)

Figure 3.2 shows the pictorial view of the coordinates data set Z. The cardinality

of the set Z is N . The main point to note here is that M ̸= N , which necessarily
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implies that (s + r) ̸= (N − f). Since the RSS readings are taken at some

coordinates so M is usually much less than N . The output of the algorithm

provides estimated positions of the last r readings or localization requests in the

set X . That is,

P̂L = {p̂l1 , p̂l2 , · · · , p̂lr} (3.10)

These estimated positions with associated RSS readings help in estimating the

radio map in the indoor area. This is described later in the thesis.

3.2 Unsupervised Manifold Alignment

Unlike its semi-supervised counterpart [9], unsupervised manifold alignment [10] is

a transfer learning technique that does not need any correspondence information

to align the data sets in a lower dimensional space. It replaces the considerable

percentage of labeled data (in our case fingerprinted RSSs) required for the semi-

supervised approach by unlabeled data (in our case crowd sourced RSSs). To

perform manifold alignment in such an unsupervised environment, the similar

correlation patterns of the source and destination data sets (i.e. the fact that

neighboring points have stronger correlation as compared to distant points) is

exploited. This assumption allows the matching of intrinsic structures between

the data sets. Instead of performing a transformation of the data sets to a common

lower dimensional space, the source data set is transformed by a non-bijective

mapping function to the destination data set. The perfect matchings are then

obtained by comparison. Following points are important while aligning the data
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sets in a common lower dimensional space.

1. Preservation of local geometries within the data sets.

2. Matching of local geometries between the data sets.

Consider our two sets, the source set X with M elements:

X = {x1, x2, · · · , xM} (3.11)

and the destination set Z with N elements:

Z = {z1, z2, · · · , zN} (3.12)

The perfect geometry matchings are obtained between these data sets by simulta-

neously preserving the local geometries. The following subsections describe these

points of aligning data for this specific application.

3.2.1 Geometry Perturbation of Destination Data Set

As stated earlier, the plan coordinates are used as destination data set in manifold

alignment problem. The important point in manifold alignment is the matching of

local geometries between both the sets, so these local geometries must be different

and hopefully unique for each locality of the data set. Since the plan coordinates

usually follow a regular pattern (i.e. they are usually represented by a grid struc-

ture with equal spacing between coordinate points) consequently, it becomes hard
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to differentiate small chunk of coordinates from one place to another in an indoor

area. Consider again the example of an indoor area shown in Figure 2.1. Figure

3.3 shows the scenario of regular geometry of plan coordinates. To resolve this

issue and create uniqueness throughout the coordinate plan local geometries, the

use of very small number of fingerprinted readings (as low as 1%, i.e. 2 points

in our case) is proposed to create a perturbation in such geometries. In other

words, the fingerprinted data is responsible only for introducing such uniqueness

throughout the coordinate plan localities. Figure 3.4 shows the idea of geometry

perturbation. By comparing Figures 3.3 and 3.4, it can be inferred that each grid

point can be represented uniquely in the spatial domain. The bold red dots in

Figure 3.4 represent the fingerprinted data. These points act as neighbors for all

other points in the indoor area. If geometry perturbation is not taken into ac-

Access Points

Grid Points

Nearest Neighbors
Destination Data Set Elements

Figure 3.3: Regular geometry of the indoor plan coordinates

count, then many false matches will occur, which results in high localization errors

as will be illustrated in experimental results shown later. This is assumed that
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Grid Points

Destination Data Set Elements
Fingeprinted Readings

Figure 3.4: Perturbed geometry of the indoor plan coordinates

this fingerprinted data (RSSs and their coordinates) is introduced as first f data

points in both the data sets. The remaining readings in set X consist of crowd

sourced information and localization requests and the remaining elements in set

Z are the remaining coordinates of the indoor plan. Let Xr and Zr represent the

remaining elements in sets X and Z respectively. These are given as:

Xr = {xf+1,xf+2, · · · ,xM} (3.13)

Zr = {zf+1, zf+2, · · · , zN} (3.14)

To create the necessary geometry perturbation required for correct matching of

geometries, the first f calibration elements are used as neighbors for all the other

elements in the respective sets and discrete distance vectors are obtained. For the
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ith element in set Xr, the discrete distance vector is as follows:

eXr
i =

[
0 ei1 · · · eif

]T
, i = 1, 2, · · · ,M − f (3.15)

where, the first entry represents the distance of the ith element with itself, which

is equal to 0, and the remaining entries represent the distance with the first f

elements in set X . Similarly, the discrete distance vectors are obtained for all the

elements in set Zr, which for the jth element in this set, can be represented as:

eZr
j =

[
0 ej1 · · · ejf

]T
, j = 1, 2, · · · , N − f (3.16)

3.2.2 Matching of Local Geometries

One very recent method to represent and match local geometries in unsupervised

manifold alignment is the use of spline curves. These spline curves can be used

to match local geometries as follows. The spline curves (which are continuous

parameterized curves) are fitted to the distance vectors eXr
i and eZr

j , which are

obtained as shown previously. So there are (M − f) curves in the source data

set Xr and (N − f) curves in destination data set Zr. The number of curves in

respective sets correspond to the cardinalities of these sets. The closeness of the

local geometry of one element in the source data set with that of the other element

in destination data set is measured by the enveloped area and gradient between

the curves. Define gXr
i and gZr

j as the curves fitted to the discrete distance vectors

corresponding to the ith element in set Xr and jth element in set Zr, respectively,
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using cubic spline interpolation [32]. The curves defined by gXr
i ’s are normalized

to 1. Similarly, the process is repeated for the curves defined by gZr
j ’s. This is

because the RSS readings are higher dimensional as compared to the coordinates.

When the discrete distance vectors are obtained from the elements in the RSS

readings set, the distance values are larger as compared to those obtained from

the elements in the coordinates data set. Normalizing to 1 helps to obtain good

closeness measure between the elements from these two sets. Also, define ∇gXr
i

and ∇gZr
j the gradients of gXr

i and gZr
j , respectively. We can thus define H as the

local geometry similarity matrix, whose i − j’s element hij (referred to as local

geometry similarity indicator) is given by:

hij =

f∫
0

(∣∣gXr
i − gZr

j

∣∣+ β
∣∣∇gXr

i −∇gZr
j

∣∣)du (3.17)

where β is a balancing constant and u is the integration variable. The integration

is solved by the Composite Simpson’s rule [32]. This creates a matrix H = [hij]

of size (M − f) × (N − f). Figure 3.5 shows the spline curves for the elements

taken from the source and destination data sets. Now we can use the similarity

indicator hij to find the best matching between Xr and Zr and hence create the

local geometry matching set D as the set of pairs as follows:

D =

{
(xi, zj) |hij = min

1≤t≤N−f
hit, andhij < η

}
(3.18)
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Figure 3.5: Cubic spline curves from the source and destination data sets, (a)
the red curve is from the source data set, and (b) the blue curves are from the
destination data set. The blue curve with square markers has higher similarity to
the red curve as compared to the other one with diamond markers

In other words, the data point zj from set Zr is considered to be matched with

point xi from set Xr, and thus are added as a matched pair (xi, zj) to D , if it has

the largest similarity (i.e. smallest hij) among all other points in Zr and hij is

below a certain threshold η. In this matching set two points xi and xi
′ might be

matched to the same coordinate zj and that some xi’s might not get any matches.

3.2.3 Manifold Alignment

After obtaining some matched pairs in set D, we have two types of elements in

the source set Xr, namely the ones that are matched to elements in destination

set Z and the ones that are not. So we have to give high weight to these matched

pairs in the alignment formulation as will be described shortly. The preservation
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of local geometries is also essential while aligning data in a lower dimensional

space. Taking these facts into account, the objective function for the unsupervised

manifold alignment formulation consists of three terms Jd, Jf and Js, which are

responsible for minimizing the inter-manifold distance, local geometry matching

between the data sets and preservation of local geometries within the data set,

respectively.

Consider an affine transformation matrix αi, which is assigned to the element

xi in Xr. The matrix αi is of dimension 2 × R, where 2 is the dimension of the

coordinates and R represents the number of access points, that is, the dimension-

ality of the element in the source (RSS readings) data set X . The term Jd contains

elements of the set Xr, which are not present in the local geometry matching set

D and is expressed as:

Jd =
∑

xi∈Xr, (xi,zj)/∈D

min
zj∈Z

∥αixi − zj∥22 (3.19)

Let zj be the element in Z that gives the lowest inter-manifold distance for xi.

Thus, we get:

Jd =
∑

xi∈Xr, (xi,zj)/∈D

(
xT
i α

T
i αixi − xT

i α
T
i zj − zTj αixi + zTj zj

)
(3.20)

Let ∇Jd denotes the gradient of Jd. We thus get:

∇Jd =
∑

xi∈Xr, (xi,zj)/∈D

(
2αixix

T
i − 2zjx

T
i

)
(3.21)
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The term Jf contains elements of set Xr, which are present in the local geometry

matching set D and is expressed as:

Jf =
∑

(xi,zj)∈D

∥αixi − zj∥22wij (3.22)

where wij is the weight computed between xi and zj by heat kernel i.e. wij =

e−
hij

2

γ . The choice of γ is described in the results section. Expanding the term as

done previously, we get

Jf =
∑

(xi,zj)∈D

(
xT
i α

T
i αixi − xT

i α
T
i zj − zTj αixi + zTj zj

)
wij (3.23)

and its gradient is:

∇Jf =
∑

(xi,zj)∈D

(
2αixix

T
i − 2zjx

T
i

)
wij (3.24)

For preservation of local geometries, neighboring information is taken into account.

So the crowd sourced information together with the localization requests serve the

purpose by getting k nearest neighbors (knn) among them for the point xi. The

last term, Js, is responsible for preservation of local geometries. This is expressed

as:

Js =
∑
xi∈Xr

∑
xj∈knn(xi)

∥αi −αj∥2F (3.25)

where knn(xi) is the set of the k nearest neighbors of xi. Minimizing this term

results in minimizing the distances of the mappings of the k nearest neighbors of
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xi to its own mapping. Expanding Js yields

Js =
∑
xi∈Xr

∑
xj∈knn(xi)

Tr
(
αiα

T
i −αiα

T
j −αjα

T
i +αjα

T
j

)
(3.26)

and its gradient is:

∇Js =
∑
xi∈Xr

∑
xj∈knn(xi)

(2αi − 2αj) (3.27)

The overall objective function to be minimized is thus the combination of the

aforementioned three terms, and is given as:

J = µdJd + µfJf + µsJs (3.28)

and its gradient is represented as:

∇J = µd∇Jd + µf∇Jf + µs∇Js (3.29)

where µd, µf and µs are weighting factors for their respective terms, which are

chosen empirically. Here µf is given the largest weight to stress on the matching

of local geometries and µd is given the least weight.

The Quasi-Newton BFGS algorithm [33] is employed to solve this nonlinear

optimization problem. The objective function along with the gradients are sup-

plied to the Quasi-Newton BFGS algorithm. The optimized values of mappings

αi’s are obtained. These mappings then transform the elements in the source

data set to the destination data set. The best matchings are then obtained by a
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mapping function, which computes the closest point pairs.

3.3 Localization Algorithm

In this section, the above tailored unsupervised manifold alignment algorithm

is applied to localize users using approximately 1% calibration readings, some

crowd sourced readings, localization requests and plan coordinates of the indoor

area. The goal is to learn the mappings αi’s described previously. The data sets

follow the assumed correlation pattern (i.e. the neighboring points have stronger

correlation as compared to distant points.). The localization algorithm consists

of the following steps:

1. Build the source and destination data sets as defined in Equations (3.7) and

(3.8) respectively.

2. Obtain the spline curve for each element in sets X and Z except for the first

f elements as described in Section 3.2.

3. The local geometry similarity matrixH is obtained by using Equation (3.17).

4. The cost function is set up as described in Section 3.2.3 Equation (3.28) and

then the Quasi-Newton BFGS algorithm is applied to obtain the optimized

transformation matrices, αi’s.

5. For localization requests (last r elements in set X ), the positions are esti-
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mated by computing the mapping function ϕ(xi),

ϕ(xi) = argmin
zj∈Z

∥αixi − zj∥2 (3.30)

zj, for which ϕ(xi) is minimum, represents the closest match. This, in fact,

is the estimated position, p̂li (see Equation (3.10)).

3.4 Testing Results

This section describes the testing of proposed scheme using the real measurements

from the 4th floor of Bahen Center, at University of Toronto, depicted in Figure 3.6,

which is the same indoor plan used in [5]. The black dots represent the 219 plan

coordinates considered in this indoor environment. The distance between each

two neighboring points is 1 m. This indoor environment is used for comparison

of the results with the previously proposed semi-supervised solutions. The indoor

area under consideration is shown in Figure 3.7 without the building layout and

APs. This plan just shows the grid points. This figure will be used to explain the

idea of clustering, which is described later in this chapter.

The data collection is done in the same way as described in [5, 7]. For testing

the algorithm as scenario independent, the crowd sourced readings and localization

requests are chosen randomly throughout the indoor environment. Only set C is

obtained in the offline stage while rest of the readings (crowd sourced information

and localization requests) are obtained in the online stage. The mean localization
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Figure 3.6: Floor plan of the indoor environment considered in testing
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Figure 3.7: Floor plan of the considered indoor environment without building
layout and APs

error (average error of all location estimations) is plotted against the variation

of different parameters. The percentage variation shown for some parameters is
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obtained by normalizing against the total number of points in the indoor area.

The curves are obtained by averaging over a large number of runs of the algorithm.

The chosen value of β is 0.1 for numerical integration and η is set at the lower 15%

of the total values in matrix H. The values of µd, µf and µs are set to 0.1, 10 and

1, respectively. The choice of γ (appearing in weight computation by heat kernel,

wij = e−
hij

2

γ ) is made by using γ = − η2

ln(0.9)
, where η is described previously. The

choice of γ makes all the values fall within 10% of the decay from maximum value

as selected by η.

For comparisons while testing, following methodologies are considered:

• The proposed unsupervised manifold alignment algorithm with geometry

perturbation.

• Unsupervised manifold alignment algorithm without geometry perturbation.

• The raw semi-supervised algorithm proposed in [5, 7] which considers the

fingerprinted readings and localization requests only and excludes the crowd

sourced information.

• A modified version of the semi-supervised algorithm in [5, 7], where the

crowd sourced readings are treated as localization requests.

• The interpolation formulation, proposed in [8], makes use of radial basis

functions. The estimated position is the function of RSS readings.

The following subsections show the effect of varying different parameters on the

mean localization error.
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3.4.1 Localization Errors of Individual Runs
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Figure 3.8: Localization error against the number of algorithm runs

Figure 3.8 depicts the localization error for individual runs of the methodolo-

gies described above for a fingerprinting load of approximately 1% (only 2 readings

in our case). The crowd sourced readings are set to 10% and the localization re-

quests are set to 7%. The figure clearly shows that the performance of the proposed

unsupervised technique with a minimal calibration load for geometry perturbation

is much better as compared to both variants of the semi-supervised approaches in

terms of the mean and variance of the localization error. The results also show

that the proposed geometry perturbation is a core point in achieving this huge

improvement in performance compared to the raw unsupervised approach, thus

proving the merits of the proposed algorithm. The performance is also better as

compared to the interpolation formulation as described in [8].
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Table 3.1: Comparison with respect to mean and variance
Algorithm Mean (m) Variance
Unsupervised without perturbation 20.24 13.45
Semi-supervised with same crowd sourced load 16.98 7.04
Interpolation Formulation using radial basis functions 12.14 13.69
Semi-supervised with no crowd sourced load 9.58 2.53
Unsupervised with perturbation 4.7 0.58

Table 3.1 summarizes the numerical comparison of the mean and variance

of the reported error trends in Figure 3.8. Clearly, our proposed scheme with

geometry perturbation significantly outperforms all other schemes at this very

low level of fingerprinting load, both in the mean and variance of the localization

error.

3.4.2 Variation of Calibration Readings (Fingerprinting

Load)

Figure 3.9 shows the performance comparison between the proposed algorithm and

the raw and modified semi-supervised algorithms against the variation of the per-

centage of fingerprinting (i.e. calibration) load. The performance is also compared

with the interpolation formulation considered in [8]. The crowd sourced informa-

tion is set to 20% and localization requests are set to 7%. The comparison shows

a much better performance for the the proposed algorithm at low percentage of

fingerprints as depicted in Figure 3.9. However, the raw semi-supervised approach

and interpolation formulation of [8] dominates at relatively higher percentage of

fingerprinting data, which is expected. Nonetheless, this does not demerit the

proposed unsupervised scheme with geometry perturbation because it is meant
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Figure 3.9: Mean localization error against the percentage of calibration readings

to operate at the least level of fingerprinting load (less than 1 %), at which it

significantly dominates by around 60 % improvement factor.

3.4.3 Variation of Crowd Sourced Information

Figure 3.10 shows the mean localization error plotted against the increasing per-

centage of crowd sourced readings for the proposed unsupervised scheme with

geometry perturbation and the modified semi-supervised algorithm. The finger-

printed readings are less than 1% and the localization is done for 15 requests (7%

of the total number of grid points). It can be observed that the error remains

approximately stable for both algorithms as the percentage of crowd sourced in-

formation is increased. This is usually expected since increasing the unlabeled

data in unsupervised learning do not usually improve the performance. This re-
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Figure 3.10: Comparison of unsupervised and semi-supervised algorithms with
same crowd sourced information

sult is very important as it means that the proposed unsupervised algorithm does

not need to wait for collecting a large number of crowd sourced readings before

to perform localization. This allows the use of real-time crowd sourced readings

(i.e. readings collected at the same time or very short time before the localization

requests) for localization, which naturally adapts the accuracy of the algorithm

to temporal variations of RSS readings.

3.4.4 Variation of Localization Requests

Figure 3.11 shows the mean localization error plotted against the increasing per-

centage of localization requests. The fingerprinting load is set to less than 1%

and the crowd sourced information is set to 10%. An almost stable trend in the

mean localization error can be observed. The same trend can also be observed

49



for the semi-supervised approaches. The result obtained from this figure is again

very important as it shows that the proposed unsupervised algorithm does not

need to collect a large number of requests to perform a better localization. It can

rather perform one localization requests as good as many without affecting the

performance.
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Figure 3.11: Mean localization error against the percentage of localization requests

3.5 Performance Improvement by Clustering

The testing results of previous section show that the performance achieved by

using unsupervised technique with geometry perturbation is less than 5 m. The

curves in Figure 3.9 show the performance in case of increasing calibration read-

ings. If by somehow the indoor localization system needs to be operated at this

range of calibration readings (which is probably less than the percentage used
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in semi-supervised approaches to obtain this level of performance), this section

describes the clustering approach considered to further improve the performance.

The data collected, as mentioned earlier, consists of RSS readings (calibration

readings or fingerprints, crowd sourced readings and localization requests) and

plan coordinates of the indoor area. The clustering of this data requires the

selection of fingerprints at regular intervals throughout the indoor area. This is

necessary to avoid the clustering errors (will be described shortly) to much extent.

The clustering of data is based on the minimum Euclidean distance criterion

as opposed to clustering by affinity propagation [29]. The clustering by affinity

propagation used in [21, 23] considers the fingerprints at all the, N , grid points.

So, in addition to the clustering, we know the corresponding coordinates also.

The two main reasons why clustering by affinity propagation [29] is not used here

are following.

1. The clustering is done independently in each of the readings data set X and

coordinates data set Z.

2. The clustered RSS readings (consist of crowd sourced readings and localiza-

tion requests) do not have any pairwise correspondence with the coordinates.

In the light of above reasons, the clusters formed in the RSS readings domain may

not overlap perfectly with the clusters in coordinates domain. The localization

performance is little worse when the size of the cluster is small since it poses more

chances of spillage of RSS reading outside the cluster. This effect and its solution

is discussed in the upcoming subsection.

51



In this work, the clustering of only crowd sourced data and localization requests

is done. The corresponding coordinates for these readings are unknown. The

localization error together with the clustering error act as the main source in

performance degradation. The idea of mismatch of the formed clusters from the

source (readings) data set to the clusters from the destination (coordinates) data

set is shown in Figure 3.12. It can be observed that some RSS readings associated

Access Points

Grid Points

Clustered Coordinates

Clustered RSS readings

Cluster Head

Figure 3.12: Pictorial demonstration of clustering error. The hollow circles repre-
sent the clustering of coordinates. The clustering of RSS readings is represented
by filled circles

with the cluster may fall outside of it. However, the clustering here helps in a

way that the localization region is constricted to much smaller area, which forces

the location estimation to be done in this area. This strictly avoids false matches

to other regions of the indoor area and the error incurred in this case is probably

less.

Moving on with the clustering approach proposed here, the calibration read-

ings set C, given by (3.2), is restated as following along with the corresponding
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coordinates:

C =





c
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1

c
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c
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(3.31)

PC =
{
pc1 ,pc2 , · · · ,pcf

}
(3.32)

For forming the clusters, the calibration readings in set C act as cluster heads.

So the number of clusters is equal to the cardinality of set C. Once the cluster

heads are selected, the Euclidean distance of each of the crowd sourced readings

is calculated from all of them. The crowd sourced reading with the minimum

distance to the ith cluster head, ci, is associated with it. Let OHi
denotes the set

containing the crowd sourced readings falling in the ith cluster. The association

of the crowd sourced reading to the ith cluster OHi
, is then defined as:

OHi
=

{
∪

oj∈O,k=i
oj|min

ck∈C
∥oj − ck∥2

}
(3.33)

The oj’s belonging to the ith cluster are thus accumulated in OHi
. Let LHi

de-

notes the set containing localization requests, which fall in the ith cluster. The

localization requests are clustered similarly by using:

LHi
=

{
∪

lj∈O,k=i
lj|min

ck∈C
∥lj − ck∥2

}
(3.34)
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The clustering of plan coordinates is also based on the minimum Euclidean dis-

tance criterion. The coordinates present in set PC are cluster heads, whereas the

remaining coordinates are clustered using:

PHi
=

{
∪

zj∈Zr,k=i
zj| min

pck
∈PC

∥zj − pck∥2

}
(3.35)

Figure 3.13 shows the clustering of plan coordinates. The number of clusters
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Figure 3.13: Clustering of the plan coordinates. The hollow circles represent the
clustering of coordinates. The clusters are identified by separate colors. The
number of clusters considered here are 4

shown here are 4, which correspond to 4 cluster heads. Figure 3.14 shows the

clustering of plan coordinates together with RSS readings. These figures show the

actual indoor plan considered for testing.

Once the clustering of coordinates and RSS readings is done independently,
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Figure 3.14: Clustering of the crowd sourced readings. The filled circles represent
the clustered RSS readings. The hollow circles represent the clustered coordinates.
The clusters are identified by separate colors. Localization requests are not shown
here. However, these are also clustered in the same way i.e. associated with the
minimum distance cluster head

the clusters corresponding to the localization requests are identified and the data

sets are built up. Note that only the clusters containing localization requests are

picked up. This has an added advantage that the algorithm does need to be run

for the whole indoor area instead it finds the mappings in only small portion of

the area. This reduces the running cost of the algorithm.

Consider user(s) in a region corresponding to the ith cluster. The ith clus-

ter contains the crowd sourced readings identified by set OHi
⊆ O, and lo-

calization requests by LHi
⊆ L. The unsupervised manifold alignment algo-

rithm with geometry perturbation described in 3.2 requires the source and des-

tination data sets be built up according to Equations (3.7) and (3.8), respec-

55



tively. Based on the ith cluster containing localization request(s), the source data

set becomes {c1, · · · , cf ,OHi
,LHi

}. Similarly, the destination data set becomes{
pc1 , · · · ,pcf ,PHi

}
. These data sets are then passed to the indoor localization al-

gorithm described in Section 3.3. The algorithm then provides position estimates

of the user(s).

Figure 3.15 describes the comparison of mean localization error for clustering

the available data as well as without clustering it. The curves shown in the figure

are obtained by several runs of the algorithm. The calibration points considered

were also varied during the testing. However, besides varying the calibration read-

ings it was made sure that the selection of these points remain regular throughout

the coordinate geometry.
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Figure 3.15: Comparison of clustering with non-clustering approach
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One of the curves, indicated in the above Figure, is plotted by combining the

crowd sourced readings and localization requests from two clusters. This results

in increased localization error as compared to picking up only one cluster. This

is due to the increased area as well as the clustering error resulting from picking

up wrong cluster. Due to the well-defined geometry of coordinates, the clusters

in the coordinates domain are also well-defined. However, for RSS readings this

is not the case. The picking up of 2 minimum distance clusters for RSS read-

ing (localization request) may not end up with 2 adjacent clusters in the spatial

domain. The localization request thus remains outside of both of the picked up

clusters if observed in the spatial domain. Thus the localization error is increased.

Figure 3.16 shows the scenario of picking up 2 minimum distance clusters, where

the localization request resides outside of these clusters.

Access Points

Grid Points

Clustered Coordinates

Clustered localization request
Cluster Head

Figure 3.16: Pictorial view of localization request residing outside of the 2 mini-
mum distance picked up clusters. The three cluster heads are shown here. Based
on the minimum distance of the localization request with the cluster heads, the
2 picked up clusters in the spatial domain are shown. The destination data set
built up here comprises of the coordinates from these clusters only
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3.5.1 Clustering by Weighted Centroid Approach

According to the aforementioned details, the clusters formed by minimum Eu-

clidean distance criterion helps to reduce the complexity of the algorithm while

achieving good performance at some percentage of calibration readings (approx.

7%). From Figure 3.15 it can be observed when the number of clusters (or equiv-

alently the calibration readings) are increased, the performance degrades (at 7%

here). This is due to the clustering errors (Note: when we have more fingerprints,

the size of cluster reduces). More of the RSS readings clustered fall outside the

coordinates clustered underneath. As mentioned earlier, clustering in the co-

ordinates domain is well defined, i.e the neighboring clusters have well defined

boundaries, whereas this is not the case in RSS domain. The proposed method to

reduce this error makes use of weighted centroid approach. In this approach, the

best two or more clusters (based on the minimum Euclidean distance criterion)

for the localization request are picked up and localization algorithm is run inde-

pendently in the picked up clusters. This process is repeated for each localization

request. Correspondingly, two or more estimated positions are obtained for each

localization request. The centroid of these estimated positions is calculated to

obtain the position estimate, p̂li , for the localization request li.

Figure 3.17 shows the trend in mean localization error as the calibration read-

ings are increased. It can be observed that by increasing the number of calibration

readings (corresponds to the number of clusters), the mean localization error is

decreased. The highest weight is given to the first best matched cluster. The best
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performance is achieved when size of the cluster reduces (at comparatively large

number of calibartion readings, i.e. 7 % readings in this case). So the clustering

with the weighted centroid approach outperforms the no clustering and regular

clustering cases.
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Figure 3.17: Comparison of the regular clustering with the weighted centroid
approach

Table 3.2 shows the numerical values of the mean localization error of the

curves plotted in Figure 3.17. Based on the numerical values, the percentage

improvement for clustering with weighted centroid approach (as compared to no

clustering case) in mean localization error is 17.3 % at just 3 % of the fingerprinting

load followed by 33.3 % at 5 % and 36.4 % at 7 % of the fingerprinting load.
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Table 3.2: Comparison of clustering variants for proposed unsupervised technique
considering calibration readings shown in Figure 3.17

1% 3% 5% 7%
Variant Mean Loc. Error (m)
No clustering 4.92 5.03 5.07 4.92
Clustering (Combining 2 clusters) 5.03 4.68 4.00 3.80
Clustering (1 cluster) 4.91 4.14 3.46 3.57
Clustering with weighted centroid (2 clusters) 4.85 4.16 3.38 3.13

3.6 Chapter Summary

This chapter describes the indoor localization scheme that employs unsupervised

manifold alignment using the environment’s plan coordinates as destination data

set. The proposed method employs some crowd sourced information and as low

as 1% fingerprinting load (only 2 fingerprints in our case) that is only used to

perturb the local geometries in the plan coordinates data set in order to make

them unique. The proposed algorithm was shown to achieve less than 5 m mean

localization error with as low as 1% fingerprinting load and limited crowd sourced

information, when the semi-supervised localization approaches achieve around 10

m mean error and worse with the same level of available information. Moreover,

testing of the algorithm using many random selections of localization requests

and crowd sourced readings shows that the algorithm is robust to changes in such

information and is thus scenario independent. The results also show that the

proposed geometry perturbation introduced to provide uniqueness in the spatial

domain is a corner stone in achieving this significant improvement compared to

the conventional unsupervised manifold alignment scheme.

The additional methodology makes use of clustering to further improve the
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performance if the system needs to be operated at some higher percentage of

fingerprints (obviously this range is low than the one used in semi-supervised

approaches for comparable performance). The clustering with weighted centroid

approach shows better performance as compared to no clustering and regular

clustering approaches.
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CHAPTER 4

RADIO MAP ESTIMATION

Chapter 3 described the solution of indoor localization problem using unsuper-

vised manifold alignment framework with geometry perturbation. The output of

the algorithm provides position estimates for the localization requests. The lo-

calization requests (RSS values) along with the corresponding position estimates

help to estimate the complete radio map of an indoor environment.

This chapter describes the construction of whole radio map from very limited

amount of information, which includes only few fingerprints, few localization re-

quests and plan coordinates of the indoor area. The estimation of radio map from

above mentioned information can be regarded as the by-product of this system

since it does not need any extra information. The following sections describe the

problem setup and solution using linear estimation.
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4.1 Estimation Problem Setup

This section describes the setting up of problem for radio map estimation. As men-

tioned earlier, for radio map estimation, the calibration readings (fingerprints),

few localization requests and plan coordinates of the indoor environment are re-

quired. The fingerprints and plan coordinates are already available. When the

system is deployed in the indoor environment, the localization requests are put

up during normal operation of the system. The position estimates for these local-

ization requests are obtained as described in Chapter 3. The following describes

the problem setup for linear estimation.

The continuous running of the indoor localization algorithm provides the po-

sition estimates for the localization requests. After successive iterations of the

algorithm, the RSS readings get accumulated at some positions. The accumulated

RSS readings are averaged at those positions after fixed number of iterations. So,

we have few positions with calibration readings (fingerprints) and few positions

with averaged RSS readings. Note that the averaged RSS readings at correspond-

ing positions may be different from the actual fingerprints at those positions. The

remaining positions do not contain any RSS readings and thus the RSS values are

estimated at those positions. Figure 4.1 represents the scenario of gathering RSS

readings after fixed number of iterations of the indoor localization algorithm. The

averaged RSS readings are appended to the calibration readings set C. So, the

calibration readings and averaged RSS readings with corresponding coordinates

are treated as labeled data in the estimation problem. Let set Ψ represents this
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Figure 4.1: Data collection through continuous running of the indoor localization
algorithm. The highlighted RSSs represent the fingerprints. The symbols ‘X’
represent the RSS readings (localization requests), which are put during successive
iterations. These all are R dimensional vectors

labeled information. This is given as:

Ψ =
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(4.1)

The first f elements in set Ψ represent the fingerprints and next b elements rep-

resent the averaged RSS readings. The cardinality of this set is (f + b), where

(f + b) ≪ N .

The coordinates corresponding to the RSS readings in set Ψ are given in set

PΨ:

PΨ =
{
pc1 , · · · ,pcf , p̂a1 , · · · , p̂ab

}
(4.2)
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The sequence of the elements in set PΨ is same as appearing in set Ψ, that is, the

first f elements are the corresponding coordinates of the calibration readings and

next b elements are the positions where accumulated RSS readings are averaged.

From equations (4.1) and (4.2), this can be inferred that the RSS readings

are known at the labeled (f + b) positions. Now, we need to estimate the RSS

values at remaining positions of the indoor environment. The estimation is done

by considering RSS readings from one AP at a time. So, the total information

from kth AP can be divided into two column vectors, vk, the vector of unknown

RSS values and uk, the vector of known RSS values. For kth AP, the labeled RSS

values, picked up from the set Ψ, are given as:

uk =

[
c
(1)
k · · · c

(f)
k a

(1)
k · · · a

(b)
k

]T
(4.3)

The size of vector uk is (f + b) × 1. There are (N − f − b) remaining positions

where RSS values corresponding to the kth AP are to be determined. So, the size

of vector vk is (N − f − b)× 1. The estimation problem is thus:

v̂k = E[vk|uk] (4.4)

The linear least-mean-squares estimator [34] is then used to solve the conditional

expectation in (4.4). This is described in the following section.

65



4.2 Linear Estimation

The solution of conditional expectation given by Equation (4.4) is hard to get in

closed form [34]. So the solution is obtained by using linear least-mean-squares

estimator described as follows. Consider RSS values from kth AP, the linear least-

mean-squares estimator of vk given uk is given as:

v̂k = Rvkuk
R−1

uk
uk

(4.5)

where, Rvkuk
and Ruk

are the covariance matrices for the readings from kth AP.

Once the matrices Rvkuk
and Ruk

are known, the RSS values at the remaining

positions can be determined. Now, the main task is to determine Rvkuk
and Ruk

.

The information available to us is labeled data as in set Ψ, their corresponding

coordinates in set PΨ and remaining coordinates of the indoor area. As mentioned

in Chapter 3, the readings and coordinates data sets used in unsupervised manifold

alignment problem, have the same underlying correlation pattern. Note that the

points closer to each other have stronger correlation as compared to distant points.

Taking this fact into account, two approaches are considered to approximateRvkuk

and Ruk
. The first approach does this approximation by heat kernel (HK) and the

second approach by Locally Linear Embedding (LLE) [31]. Rvkuk
represents the

relationship between unknown values in vector vk and known values in vector uk.

To obtain this relationship, the coordinates of the indoor plan are partitioned into

two sets i.e. one set contains the coordinates corresponding to the labeled data as
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given by Equation (4.2) and the second set contains the coordinates, where RSS

values are to be determined. The coordinates in the second set are, in fact, the

remaining coordinates of the indoor plan and are accumulated in set Q.

Q = {q1,q2, · · · ,qN−f−b} (4.6)

Ruk
represents the relationship between the knowns, that is, RSS values corre-

sponding to the kth AP as indicated by the vector uk in Equation (4.3). Following

subsections describe the approaches to approximate the matrices Rvkuk
and Ruk

.

4.2.1 Approximation by Heat Kernel

The heat kernel calculates the weight between ith and jth elements by the following

equation:

wij = e−
d2ij
γ (4.7)

where, dij is the Euclidean distance between the ith and jth elements. The elements

belong to the same set when approximating Ruk
and to different sets in case of

Rvkuk
. The value of γ chosen here is such that all the elements fall within 10 %

of the maximum Euclidean distance computed above.

Approximation of Rvkuk

The Euclidean distance, dij, is computed between the coordinates. The ith coor-

dinate pair is taken from set Q while the jth coordinate pair is taken from set PΨ.

The heat kernel given by Equation (4.7) then computes the weight between the
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unknown and known elements. The entry wvkuk
ij is the ijth entry of the matrix

Rvkuk
i.e.

Rvkuk
=



wvkuk
11 wvkuk

12 · · · wvkuk

1(f+b)

wvkuk
21 wvkuk

22 · · · wvkuk

2(f+b)

...
...

. . .
...

wvkuk

(N−f−b)1 wvkuk

(N−f−b)2 · · · wvkuk

(N−f−b)(f+b)


(4.8)

The size of this matrix is (N − f − b)× (f + b), which corresponds to the number

of elements in vk and uk.

Approximation of Ruk

The Euclidean distance of each element in vector uk is computed with all the

elements in uk. The individual entries of Ruk
are then computed from the heat

kernel given by Equation (4.7). The size of the matrix Ruk
is (f + b) × (f + b)

and it is given as:

Ruk
=



wuk
11 wuk

12 · · · wuk

1(f+b)

wuk
21 wuk

22 · · · wuk

2(f+b)

...
...

. . .
...

wuk

(f+b)1 wuk

(f+b)2 · · · wuk

(f+b)(f+b)


(4.9)

The localization requests from users are obtained randomly in the indoor area,

so the matrix Ruk
formed in Equation (4.9) from the labeled elements becomes
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singular sometimes. The regularization term is added to Ruk
to account for the

singularity, that is:

Ruk
= Ruk

+ ϵI(f+b)
(4.10)

where, ϵ is a regularization factor and I(f+b) is an (f + b)× (f + b) identity matrix.

This gives us approximations of the covariance matrices for the kth AP. After

approximating Rvkuk
and Ruk

, the linear least-mean-squares estimator given by

Equation (4.5) is used to estimate RSS values at all the positions other than the

labeled positions.

The process is repeated to get these approximations for all the R APs present

in the indoor environment. The RSS readings estimated at a position (grid point)

from all the APs are then stacked as a vector to represent the estimated fingerprint

at that position. So the estimated RSS values (estimated fingerprints) for all the

(N − f − b) positions (grid points) can be represented by the set Θ:

Θ =





v̂
(1)
1

v̂
(1)
2

...

v̂
(1)
R


,



v̂
(2)
1

v̂
(2)
2

...

v̂
(2)
R


, · · · ,



v̂
(N−f−b)
1

v̂
(N−f−b)
2

...

v̂
(N−f−b)
R




(4.11)

or, in compact form as:

Θ = {θ1,θ2, · · · ,θN−f−b} (4.12)
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where, θi represents the estimated fingerprint at the ith position or grid point.

4.2.2 Approximation by Locally Linear Embedding

The second approach considered for estimating the covariance matrices makes use

of weight computation by Locally Linear Embedding (LLE) [31]. Out of several

dimensionality reduction techniques, the LLE is used here since it strongly pre-

serves the correlation between element and its neighbors. This is consistent with

our data sets since they have the same underlying correlation pattern. Instead

of using the nearest neighbors, the labeled data indicated by Equations (4.2) and

(4.3) are used as neighbors for all the elements while approximating the covari-

ance matrices. These elements include RSS values in set Ψ and corresponding

coordinates in set PΨ. These act as neighbors while computing Rvkuk
and Ruk

.

The procedure of obtaining the approximation of these matrices is described in

the following.

Approximation of Rvkuk

ForRvkuk
, all the elements in set PΨ are used as neighbors for each element present

in set Q. The LLE then computes weight of the element qi in set Q with all its

neighbors in set PΨ by the following relation:

min
w

vkuk
ij ∀pj∈PΨ

∣∣∣∣∣∣qi −
∑

pj∈PΨ

wvkuk
ij pj

∣∣∣∣∣∣
2

s.t.
∑

pj∈PΨ

wvkuk
ij = 1

(4.13)
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where, wvkuk
ij is the weight computed by LLE between the ith and jth elements in

sets PΨ and Q, respectively. This, in fact, is the ijth entry of the matrix Rvkuk
.

As mentioned in the previous subsection, the size of this matrix is (N − f − b)×

(f + b). The structure of this matrix is same as shown by Equation (4.8) except

for the fact that weights here are computed by LLE instead of heat kernels.

Approximation of Ruk

For approximating Ruk
, each element in vector uk uses all other elements in the

same vector for computing weights by LLE, that is, for the ith element in vector

uk, the remaining (f + b)− 1 elements act as its neighbors. The weights wuk
ij ’s are

given by the following relation:

min
w

uk
ij ∀uk(j)∈uk∧(j ̸=i)

∣∣∣∣∣∣uk (i)−
∑

uk(j)∈uk∧(j ̸=i)

wuk
ij uk (j)

∣∣∣∣∣∣
2

s.t.
∑

uk(j)∈uk∧(j ̸=i)

wuk
ij = 1

(4.14)

The weight wuk
ij is the ijth entry of the matrix Ruk

. As mentioned earlier, the size

of this matrix is (f + b)× (f + b). The structure of this matrix is same as shown

by Equation (4.9) with the only difference that here the weights are computed by

LLE.

As mentioned in the previous subsection, due to the random selection of lo-

calization requests, the matrix Ruk
becomes singular most of the times. So, the

regularization term is added here also, as indicated by Equation (4.10), to account

for the singularity in matrix Ruk
. The RSS estimates for all the positions indi-
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cated in set Q are obtained by using linear least-mean-squares estimator given by

Equation (4.5).

The approximations for the matrices obtained above are used for estimating

RSS readings corresponding to the kth AP. This process is repeated for all the

APs present in the indoor environment. So, the estimated RSS values from all

the APs at a grid point represent the estimated fingerprint at that point. The

estimated fingerprints are represented in the same fashion as shown in Equations

(4.11) and (4.12).

4.3 Testing Results

This section describes the performance testing of the proposed solution for ra-

dio map estimation. As mentioned earlier, the radio map construction relies on

the data obtained from the indoor localization framework proposed in Chapter

3. This data includes few calibration readings, few localization requests with

corresponding position estimates and plan coordinates of the indoor area.

The indoor floor plan considered is same as shown in Figure 3.7. The initial

running of the indoor localization algorithm, described in Chapter 3, provides

estimated positions for few localization requests, which help in estimating the

radio map later. For performance evaluation, the root mean square (rms) error

is plotted by comparing the actual fingerprints with the estimated one. The rms

error calculation does not include the calibration readings (fingerprints) and is
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given as:

errrms =

√√√√√ b∑
i=1

(
ai − cp̂ai

)2
+

N−f−b∑
i=1

(θi − ci)
2

R× (N − f)

(4.15)

The b elements in first summation represent the few localization requests gathered

during initial running of the algorithm. ai represents the averaged RSS readings

at the ith grid point and cp̂ai represents the actual fingerprint at the same grid

point. Similarly, for the second summation in Equation (4.15), θi represents

the estimated fingerprint at the ith grid point and ci the actual fingerprint at the

same point. In the testing, comparison between semi-supervised and unsupervised

algorithms is considered along with different variations. The performance of the

proposed solution is also checked by varying different parameters. The calibration

readings and localization requests are randomly selected throughout the indoor

area. The curves shown in the following are obtained by averaging over several

runs of the algorithm.

4.3.1 Effect of varying Calibration Readings

Figure 4.2 shows the rms error plotted against the increasing percentage of cali-

bration readings (fingerprints). The localization requests considered here are 1 %.

The proposed indoor localization algorithm is run for fixed number of iterations

(1 and 10 iterations shown here). The proposed radio map estimation is done

for both the semi-supervised algorithm in [5] and proposed unsupervised indoor

localization framework in Chapter 3. Figure 4.3 shows the similar curves but for

approximation of the covariance matrices using LLE.
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Figure 4.2: RMS error plotted against the increasing percentage of calibration
readings using heat kernel approximation for covariance matrices
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Figure 4.3: RMS error plotted against the increasing percentage of calibration
readings using LLE approximation for covariance matrices
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From Figures 4.2 and 4.3, this can be observed that the proposed unsuper-

vised algorithm shows huge improvement in performance as compared to the

semi-supervised approach at only 1% of fingerprinting load, 1% of localization

requests and 1 iteration of the algorithms (1% in our case are only 2 points).

Further improvement is observed after 10 iterations of the algorithm. However,

for 10 iterations of the algorithm the performance starts to deteriorate after 3% of

the calibration readings. This corresponds to the total labeled data of 13%, that

is, almost 28 points out of total 219 points in the indoor environment considered

here. This is consistent with the results and proves the fact that the proposed un-

supervised algorithm is meant to operate at very low level of fingerprinting load.

The same effect can also be observed by varying the localization requests while

fixing the number of iterations to 1. The 10% localization requests with 1 iteration

is almost equivalent to 1% localization requests with 10 iterations since both of

them will provide almost the same number of position estimates. The comparison

of these figures also show the better performance of using LLE approximations

rather than heat kernel at low percentage of fingerprinting load.

4.3.2 Effect of including Localization Requests

Figure 4.4 shows the effect of including localization requests on rms error. The

curves plotted here are again averaged over several runs of the algorithm. The

proposed unsupervised framework for indoor localization is considered here for

radio map estimation. The curves shown here are using LLE approximations of the
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Figure 4.4: Effect of including localization requests in radio map estimation

covariance matrices. The localization requests considered are 1%. The algorithm

is run for 1 and 10 iterations. Another curve is plotted, which does not take into

account the localization requests and use only calibration readings to estimate

the radio map. The comparison of the curves show considerable improvement

in performance when localization requests are included as the labeled data for

radio map estimation. The performance improvement is really high at 1% of the

fingerprinting load. The percentage improvement in performance for 1 iteration

and 10 iterations of the algorithm is 44% and 52%, respectively, at 1% of the

fingerprinting load.
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4.3.3 Effect of using Actual Fingerprints for Labeled Data

at Estimated Positions

The indoor localization algorithm outputs position estimates for the localization

requests, which are already in some error. This leaves us with the question, how

far we are in estimating the radio map if we are not using actual fingerprints at

the concerned positions or grid points? Figures 4.5 and 4.6 (using heat kernel

and LLE approximations for covariance matrices respectively) show the compar-

ison of including localization requests and corresponding position estimates with

that of actual fingerprints at those estimated positions. The localization requests

considered here again are 1% and the indoor localization algorithm is run for 1

iteration. The comparison of the curves show that we are not far away in rms

error. The rms error, by not using actual fingerprints at concerned grid points,

falls in between 1∼2 dBm.
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Figure 4.5: Effect of using actual fingerprints for labeled data at estimated posi-
tions using heat kernel approximation for covariance matrices

1 2 3 4 5 6 7
10

11

12

13

14

15

16

17

18

19

% of calibration readings

R
M

S
 E

rr
or

 (
dB

m
)

 

 
Localization requests with corresponding position estimates
Actual fingerprints at position estimates

Figure 4.6: Effect of using actual fingerprints for labeled data at estimated posi-

tions using LLE approximation for covariance matrices

78



4.3.4 Pictorial view of Estimated RSS Readings

Figure 4.7 shows the actual RSS signal strengths measured from the first AP.

The bright colors in larger filled circles show stronger signal strengths. The color

and size of the circle also change with decreasing signal strength. The minute

dots around top right corner of the figure shows no coverage by AP 1. The
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Figure 4.7: Radio Map showing actual RSS signal strengths measured from AP 1

localization requests considered are 1% and calibration readings (fingerprints) are

also 1%. The estimated RSS signal strengths shown here consider approximation

of covariance matrices by using LLE. The signal strength map obtained by 1

iteration of the indoor localization algorithm is shown in Figure 4.8. Figure 4.9

shows the similar map but with 10 iterations of the indoor localization algorithm.

79



15 20 25 30 35 40 45 50 55 60
50

55

60

65

70

75

80

85

x−axis (m)

y−
ax

is
 (

m
)

 

 
RSS signal strengths

1st AP

Figure 4.8: Radio Map showing estimated RSS signal strengths for AP 1 (1 iter-
ation)
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Figure 4.9: Radio Map showing estimated RSS signal strengths for AP 1 (10
iterations)

80



4.4 Chapter Summary

This chapter describes the proposed methodology for radio map estimation in the

indoor environment. The calibration readings with few localization requests help

in estimating the complete radio map of the indoor environment. This results

in much better accuracy. The proposed unsupervised indoor localization frame-

work shows better performance while doing radio map estimation as compared

to the semi-supervised approach. Moreover, the performance greatly improves by

increasing the iterations to 10. The percentage improvement is around 50% in

this case at only 1% of the fingerprinting load. The comparison of using actual

fingerprints at the estimated positions is also made with the averaged RSS read-

ings at those positions. The difference of rms error around 1∼2 dBm shows that

we are not doing worse by including accumulated localization requests as labeled

data.
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CHAPTER 5

CONCLUSION AND FUTURE

WORK

5.1 Conclusion

The thesis described the important problem of indoor localization using RSS fin-

gerprints from WLAN Access Points. The proposed solution using unsupervised

manifold alignment framework with geometry perturbation almost eliminated the

workload required for practical deployment of such systems. The overall contri-

butions from this work can be summarized in the following points.

1. Proposed indoor localization framework

The collection of very small number of fingerprints together with some crowd

sourced readings, localization requests and plan coordinates of the indoor en-

vironment help in location sensing. The proposed solution shows remarkable

performance at very small number of calibration load (approximately 1%).
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The comparison with other semi-supervised techniques also shows good per-

formance. The practical deployment of proposed indoor localization system

in a new indoor environment does not require any initial setup time.

2. Performance improvement by clustering

The testing results show collection of fingerprints to a smaller number

(greater than 1% but still less than the semi-supervised schemes for same

level of performance). Further enhancement is done by using clustering ap-

proach. The clustering of data helps in performance improvement as well as

it reduces complexity of the proposed technique. The proposed clustering

solution does not need to consider the complete floor plan instead the clus-

ters containing localization requests are picked up and location estimates

are obtained.

3. Radio map estimation

The importance of radio coverage of an indoor environment motivated us to

estimate the complete radio map of the indoor environment. The proposed

solution does not need any extra information other than that of the already

available few fingerprints and few localization requests. The inclusion of

localization requests as labeled data greatly improves the performance. The

comparison of using actual fingerprints at all the labeled positions is also

made, which shows that we are doing little worse by using associated RSSs

at obtained position estimates.
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5.2 Future Work

The proposed indoor localization framework provides a way to eliminate the work-

load required to build fingerprinted databases. The practical implementation of

the algorithm is quite simple in the real environment. This is obviously at the

expense of increased localization error. This level of accuracy is specific to certain

applications like path finding to certain spot, navigation in hospitals, airports,

shopping malls. For assisting visually impaired people in the indoor area, more

accuracy is required. Following points can be considered in future work to obtain

high accuracy.

1. Inclusion of TDoA

The RSS fingerprints are unique in the Wi-Fi space. The appending of

TDoA fingerprints can make them more unique. The hybrid fingerprints

can thus be used to estimate positions at the expense of increased workload

and increased hardware requirements.

2. Inclusion of sensory measurements

The readings from inertial sensors present in smart phones can be used in

conjunction with RSS values measured by WNIC. The localization error

can be decreased but at the expense of increased complexity and initial

adaptation time required for deploying the indoor localization system in the

real environment.
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