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With the exponential growth of web content, people depend increasingly on popular 

search engines, such as Google and Yahoo, to find information on the Internet. The 

current popular search engines have a number of limitations. They cannot semantically 

understand and enrich the user‘s natural language queries easily, and they may not offer 

the results that fit the user‘s needs. These limitations are more significant and have 

additional impact in critical domains, such as health and food, where users‘ queries need 

to be well understood, enriched, and then processed to retrieve answers that match the 

users‘ demands. Searching for the right food to eat is an example of frequent queries on 

the web where people may not easily find relevant and satisfactory information. Lack of 

satisfaction may also be caused when  people have personal preferences regarding certain 

foods and when people have specific health conditions that restrict their food choices and 

encourage them to choose other foods. People‘s cultures also influence food choices and 

varieties, yet search engines are not aware of these cultural habits. These limitations of 

search engines are the main motivations for us to develop a framework that semantically 

manipulates users‘ queries and personalizes the retrieved health and nutrition information. 

Such personalized retrieval helps in reducing the risks of improper choices of food and 

nutrition. In this thesis, we present an agent-based framework that semantically 

manipulates the users‘ queries and personalizes the retrieved food and health information. 
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This thesis presents a user‘s profile ontology and further enhances and integrates food and 

health ontologies pre-constructed by domain experts. Moreover, the thesis presents all 

necessary models for the framework processes, which include the semantic query 

manipulation and results personalization. The framework has been implemented, and the 

empirical evaluations show high precision and promising results with superior user 

satisfaction. 
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 ملخص الرسالة

 

 : أحًذ عهٙ يحًذ انُضسالاسم الكامل

 

 ٔانغزائٛخ انًسزشخعخاؽبس نهًعبندخ انذلانٛخ لأسئهخ انًسزخذو ٔشخظُخ انًعهٕيبد انظحٛخ عنوان الرسالة: 

 

 عهٕو ُْٔذسخ انحبست الانٙالتخصص: 

 

 4102: يبٕٚ تاريخ الدرجة العلمية

 

ٚزضاٚذ انًحزٕٖ عهٗ يٕاقع الاَزشَذ انًٕصّعخ ثشكم يطّشد، حٛث ٚعزًذ انًسزخذيٌٕ عهٗ يحشكبد انجحث انشٓٛشح 

رهك انًحشكبد لا رفٓى أسئهخ انًسزخذو فٙ الاَزشَذ يثم خٕخم ٔٚبْٕ ٔرنك نهجحث عٍ انًعهٕيبد انًطهٕثخ سغى اٌ 

خٛذا ٔانزٙ ٚكزجٓب ثهغزّ انطجٛعٛخ، ٔكزنك لا رسزشخع انًعهٕيبد انزٙ رزُبست رًبيب يع حبخبد انًسزخذو نعذو إنًبيٓب 

انكبيم ثطجٛعخ احزٛبخبد انًسزخذو. ٔيٍ انًعهٕو أٌ انفٓى اندٛذ نلأسئهخ ٔالانًبو ثًزطهجبد انًسزخذو ٚكٌٕ أكثش أًْٛخ 

ٔ أكجش رأثٛشا فٙ انًدبلاد انحشخخ يثم انظحخ ٔ انغزاء ٔانزٙ رزطهت فٓى اسزفسبساد انًسزخذو ثشكم يزقٍ ٔيٍ ثى 

يعبندزٓب ٔاسزشخبع انًعهٕيبد انًُبسجخ نحبخبد انًسزخذو. فعهٗ سجٛم انًثبل ٚقٕو انكثٛش يٍ انًسزخذيٍٛ عهٗ 

قخ ٔرنك لأٌ انكثٛش دقٛقخ ٔيٕثّ ٚظعت انحظٕل عهٗ يعهٕيبد سزفسبس عٍ انغزاء انًُبست نٓى ٔعبدح يب لإالاَزشَذ ثب

يٍ انًسزخذيٍٛ نذٚٓى رفؼٛلاد شخظٛخ، فًثلا ٚفؼّم انجعغ رُبٔل أؽعًخ يعُٛخ ٔٚزدُتّ أؽعًخ أخشٖ، كًب أٌ نذٖ 

ٗ رنك طحٛخ يعُٛخ رقٛذ خٛبسارٓى انغزائٛخ ٔ رشدعٓى عهٗ اخزٛبس إَٔاع أخشٖ يٍ انطعبو. ثبلإػبفخ إن ب  انجعغ ظشٔف

عزُب نٕػع إؽبس نفٓى اسزفسبساد ٌ نكم يُب ثقبفخ ٔحؼبسح يخزهفخ قذ رؤثش عهٗ اخزٛبسارّ انغزائٛخ. ْزِ انزحذٚبّد شدّ ئف

ٔانزٙ رسبعذ  ٔيٍ ثى اسزشخبع انًعهٕيبد انظحٛخ ٔانغزائٛخ انزٙ رزُبست يع احزٛبخبد انًسزخذو دلانٛب   انًسزخذو فًٓب  

ّٕ  ؽبسا  إؽشٔحخ َعشع غزائٛخ انخبؽئخ. فٙ ْزِ الأخزٛبساد انعهٗ رقهٛم يخبؽش الإ ٔٚقٕو انعًٛم انزكٙ سزخذاو ئث سا  يط

ٔيٍ ثى اسزشخبع يب ُٚبسجّ يٍ  دلانٛب   نفٓى اسزفسبساد انًسزخذو فًٓب  ٔرقُٛبد انزخظٛض ت انذلانٙ ٚعهٗ رقُٛبد انٕ

انًطهٕة نحفع رفؼٛلاد انًعبَٙ(  )شجكخَٔزٕنٕخٙ ؽشٔحخ أٚؼب الأرقذّو ْزِ الأ .انًعهٕيبد انظحٛخ ٔانغزائٛخ

ٕ  انًسزخذو ٔكزنك ر   ثٕاسطخ انخجشاء فٙ انًدبلاد انًخزهفخ. يسجقب  َزٕنٕخٙ ٔانزٙ رى رعشٚفٓب ح عذد يٍ الأذي  س ٔر  ط

رخظٛض سئهخ ٔؽبس انًقزشذ كًُبرج نهفٓى انذلانٙ نلأؽشٔحخ انًُبرج انؼشٔسٚخ نعًهٛبد الإو ْزِ الأرقذّ ٔكزنك 

َزٕنٕخٙ انظحخ ٔانغزاء. ٔقذ رى أنًسزخذو ٔانًزٕافق يع اَزٕنٕخٙ انخبص ثًعهٕيبد ٚزُبست يع الأانًعهٕيبد ثًب 
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رسبْى فٙ اسزشخبع انًعهٕيبد انغزائٛخ  ٔاعذح   ب  خزجبسد انًزعذدّح َزبئدرظًٛى ٔثُبء ٔرطجٛق ْزا الإؽبس ٔأظٓشد الإ

 انًسزخذيٍٛ. سػَبانُزبئح َبنذ قذ ٔانظحٛخ انًزُبسجخ يع حبخبد انًسزخذو ٔ
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1 CHAPTER 1 

INTRODUCTION 

The number of types and sheer amount of content on the web are growing dramatically. 

At the end of 2013, the Internet hosted 510 million live websites, with 103 million 

websites added in 2013 alone. The average growth in website size is 23%  (1). People use 

popular search engines, such as Google and Bing, to locate desired information. These 

search engines are a way to navigate the expanding web. These 510 million websites have 

14.3 trillion webpages, yet only 48 billion webpages are indexed by Google, and 14 

billion webpages are indexed by Bing (1). This explosion contributes greatly to the 

challenges of finding precisely relevant information through search engines.  

A major limitation of search engines is their limited understanding of the user‘s queries. 

Current search engines use keyword-based searching rather than understanding 

semantically both users‘ queries and web source contents. They do not semantically 

manipulate the user‘s queries or enrich them with more relevant information. Queries that 

have relations between different fields are difficult to be parsed using the current search 

engines. For example, if the user types, ―What kind of fruits help people quickly recover 

from a common cold?‖ the search engine will take the query‘s keywords and look for 

documents that contain as many of these keywords as possible without identifying the 

relation between ―fruits‖ and ―common cold.‖ Furthermore, the keyword ―fruits‖ is a food 

category, and the search engines will not recognize its meaning well. 
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Meanwhile, the number of Internet users is also growing every year. A survey in 2013 

showed that more than 2.7 billion users, which is equivalent to 39% of the world‘s 

population, use the Internet (2). Users come with different needs and have different 

behaviors and interests. Capturing important users‘ preferences is not considered in the 

popular search engines, and hence users retrieve similar results regardless of their 

preferences. For example, if a user is looking for food that reduces the risk of 

cardiovascular disease, then some of the popular search engines will retrieve the result 

that shows alcohol as the first recommendation.
1
 If the user does not drink alcohol 

because of religious or other reasons, then these results do not fit that user. Each user has 

preferences and restrictions, whether they are personal, cultural, or religious.   

These limitations are obvious and have more impact when it comes to critical domains 

such as food and health, where wrong answers can lead to severe health issues. In such 

domains, people have different needs based on their heath conditions, such as diseases 

and allergies for certain foods. Each person has daily needs of nutrients, and any food 

advised should be selected based on the daily needs to maintain wellness. Current search 

engines do not consider these facts and return results without respecting the person‘s 

health status and needed nutrition.    

In the following sections, we will explain these challenges in more detail, and then we 

will present the objectives of this thesis, followed by the thesis‘ contributions to address 

these challenges. Finally, we will highlight the structure of the remaining parts of the 

thesis.  

 

 

                                                 
1
 http://www.medicaldaily.com/7-health-benefits-drinking-alcohol-247552 
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1.1 Challenges and Motivations 

After intensive literature review on recently published related work in high-impact 

journals and conferences, we highlight the following challenges that motivate us to 

develop a framework for semantically manipulating the user‘s queries and personalizing 

the retrieved health and food information.  

With the huge growth in web content, getting the relevant and accurate information 

becomes more difficult. The high speed of the Internet and the improvements of smart 

phones motivate people to use search engines, such as Google and Yahoo, more 

frequently for their daily life needs with expectations of getting accurate information. 

Figure 1 shows the results of the following query: ―What is the food that I can eat when I 

start quit smoking?‖ Google retrieved 43 million results. 

 

Figure 1 Example of User’s Query Returns Millions of Results 
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Although people depend on the popular search engines to find the required information, 

these search engines have some limitations, as discussed in the following sub-sections.  

1.1.1 First Limitation: Difficulties in Understanding User’s Queries  

Users on the web use search engines differently; some users enter keywords of their 

queries while others enter full queries in their natural language. Most popular search 

engines use the keywords to return the relevant documents. The search engines have 

difficulties in understanding the semantics of users‘ queries, as it requires semantic 

manipulation techniques to understand the concepts and relationships in users‘ queries. 

Figure 2 shows that a popular search engine cannot understand the semantics of the query: 

―I have low vitamin D, but I work during the day and I cannot stay in the sun, so what 

food I can eat?‖ This leads to irrelevant results as shown below. 

 

Figure 2 Example of User's Query That Is Not Understood Well by the Search Engine 
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1.1.2 Second Limitation: No Enrichment for User’s Queries  

Users may spend time to search for desired information and change the search keywords 

until finding that information. Figure 3 shows an example of a user‘s queries that have 

been enriched by the user until reaching the best query that returns the desired 

information. In this example, the user has tried seven times to enrich the query such that 

the desired information is precisely retrieved. The next time the user comes back to the 

search engine to look for the same information, the user has to go through the same cycle 

of enrichment. The search engine will not automatically enrich the user‘s query based on 

the user‘s preferences, and hence the user will not get the relevant results easily.  

  

 

 

Figure 3 Example Shows No Enrichments on the User's Query 
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1.1.3 Third Limitation: Results Are Not Fitting the User’s Needs 

The current search engines do not understand the users‘ needs, so the retrieved results 

may not be relevant to the user (3). We do not all share a cultural background, and each 

culture has its own tastes (4). Culture has an impact on users‘ preferences. The popular 

search engines do not personalize the retrieved information to fit users‘ exact needs and 

preferences. The example in Figure 4 shows that the search engine cannot precisely 

retrieve results that fit a user‘s needs. The user does not drink alcohol. The user enters the 

query, ―What drink can reduce the risk of cardiovascular?‖ to look for any drink that helps 

the user‘s health condition. Most of the retrieved results recommend alcohol, which does 

not fit the user‘s need. 

 

Figure 4 Example of Search Results That Do Not Fit the User's Needs 
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1.1.4 Fourth Limitation: Results Are Not Structured 

The popular search engines present the retrieved results as a list of documents: title, link, 

and snippet. Some search engines highlight the text that contains the user‘s keywords. 

This is not sufficient to help the user find useful information. The user needs to click on 

the documents in the list of results, one by one, to find if they contain the desired 

information. It is not possible for the current search engines to show the results in a 

structured way, as this requires understanding the context of the webpages and matching 

this to the context of the user‘s queries. As most web content is unstructured, its meaning 

is not machine accessible (5), in the sense that computers cannot interpret words, 

sentences, and the relationships between them. Figure 5 shows an example of a user‘s 

query, ―How many pieces of orange give me my daily need of vitamin C?‖ where the 

result is not structured such that the required information can be extracted easily (i.e., the 

user needs to dig deeply into the results to get the desired information).  

 

Figure 5 Example of Unstructured Search Results 
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1.1.5 Fifth Limitation: No Cross-Language Results 

A lot of information on the web is available in certain languages, while users typically use 

their native language to submit their queries. Hence, users do not benefit from this wealth 

of information available in different languages if they do not speak these languages. There 

are some efforts to translate the search queries and return results in different languages, 

but this has had limited success because these search engines translate word for word, 

which does not provide sufficient meaning. An example is ―Google translated search,‖ 

which was discontinued in 2013.
2
 Some websites have high quality and rich information 

that contains very important answers to many queries in a specific language. The user of a 

different language encounters a barrier to desired information if the query‘s language is 

different from the sources‘ language.  

An example is shown in Figure 6, where the English query, ―What food can give me daily 

needs of calcium?‖ returns precise and relevant results. However, if an Arabic user writes 

the same query in Arabic ―يب ْٙ الاغزٚخ انزٙ رعطُٛٙ يب احزبخّ يٍ انكبنسٕٛو ٕٚيٛب؟,‖ then most of the 

retrieved results from Arabic websites, as shown in Figure 7, are related to the importance 

of calcium to pregnant woman. Moreover, the user cannot see the precise and important 

information available on English websites. This valuable information is not visible for the 

user because of the difference between the user‘s language, Arabic, and the web sources‘ 

language, English.  

                                                 
2
 http://www.rba.co.uk/wordpress/2013/05/17/google-drops-translated-foreign-pages/ 
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Figure 6 Example of English Query with English Results 

 

 

Figure 7 Example of Arabic Query with Arabic Results 



10 

 

1.1.6 Sixth Limitation: Same Order of Results for Different Users 

Search engines retrieve the same results in the same order regardless of the user‘s needs. 

User‘s different needs should be reflected in the order of the retrieved results. Moreover, 

the search engines do not filter undesired information based on the user‘s preferences.  

Figure 8 shows an example where two users, Ahmed and Ali, enter the same query, ―How 

can I improve my memory?‖ and then get the same results. Ahmed might have some 

allergies from certain foods that have been recommended by the search engine, while Ali 

might have some food preferences. The search engine does not consider Ahmed‘s needs 

and does not filter out the foods to which Ahmed is allergic. Moreover, the search engine 

does not consider Ali‘s preferences and does not re-arrange the results and show the food 

that Ali likes first.   

 

 

  

 

 

Figure 8 Example Shows Same Results for Different Users 
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1.1.7 Seventh Limitation: No Learning of Users Preferences 

Popular search engines do not learn the user‘s preferences and do not consider the user‘s 

feedback individually in the results. Hence, they are not able to enrich the user‘s query 

with the user‘s preferences and get relevant documents. For example, if the user starts 

searching for the query, ―What kind of foods have less fat?‖ and then the user customizes 

the results to be limited to domains ending with ―.org‖ and excludes any sources 

containing the keyword ―British,‖ the user may then be satisfied with the new customized 

results, as shown in Figure 9. However, the search engine does not learn the user‘s 

preferences, and the user is required to mention explicitly the preferences for each query. 

 

 

 
Figure 9 Example of Customized Search Results 
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1.1.8 Eighth Limitation: Limited Reasoning Capabilities 

Many answers to users‘ queries may not be available directly in the indexed webpages. To 

retrieve the indirect information, the search engine needs to make the necessary reasoning 

to get the relevant results. Current search engines have limited reasoning capabilities and 

cannot reach the indirect information easily. As an example of this reasoning, when A 

implicates B and B implicates C, A should imply C where the result of the user‘s query 

requires linking A with C. Another example occurs when the information that matches the 

user‘s query requires merging two pieces of information in two different web sources. 

Figure 10 shows the results of two queries: ―I want a list of food that can improve my 

vision and contains enough calcium,‖ and, ―What are the main foods that contain calcium 

but have less sugar to accommodate diabetes?‖ The desired results require linking two 

pieces of information. The search engine looks for the existing individual keywords 

without any reasoning of the queries.   

  

 

Figure 10 Example of Limited Reasoning Capabilities 
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1.1.9 Impacts of the Limitations on Health and Nutrition Domains 

The above limitations are more important in critical domains, such as health and nutrition, 

where the users desire more relevant and precise information that matches their needs 

exactly. In such domains, the understanding and enrichment of the user‘s queries are more 

important and the return of relevant results is crucial (i.e., health advice that fits one user 

based on age, gender, and health conditions might not fit another user with different 

conditions). Moreover, some foods are acceptable in certain cultures but not in others. For 

example, if the user has a cardiovascular disease, then there are restrictions in choosing 

between grains, as shown in Figure 11. If the user uses a popular search engine to retrieve 

the results of the query, ―Which grain gives high fiber?‖ the results will include some 

grain products that should be avoided based on studies by the Mayo Clinic [6). Figure 12  

shows the retrieved results for this query using a search engine. These results do not 

match the health condition of the user and might lead to a serious impact on the user‘s 

health.  

 

Figure 11 Restrictions on Grain for Cardiovascular Disease, Source (6) 
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Figure 12 Results That Do Not Match the User’s Health Conditions 

1.2 Objectives 

In this thesis, we use the Semantic Web and personalization techniques to address some of 

the challenges and limitations of the current popular search engines with our focus on the 

food and health domains. We aim to investigate the current research status of capturing 

user preferences, semantic query manipulation, and personalization techniques that help in 

retrieving health and nutrition information that fits with users‘ needs. The objectives of 

this thesis are explained with more detail in the following sub-sections. 
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1.2.1 First Objective: Semantically Manipulating the User’s Query 

One objective of this thesis is to research how to manipulate the user‘s query, written in 

the user‘s natural language and using semantic processing techniques. Semantic 

manipulation helps in better understanding the users‘ queries, which leads to results that 

are more relevant. This requires converting the user‘s natural language query to a 

structured form query that supports reasoning.  

1.2.2 Second Objective: Capturing User’s Preferences  

The second objective of this thesis is to research the existing mechanisms for capturing 

users‘ preferences related to the food and health domains to select attributes that affect 

food choices.  

1.2.3 Third Objective: Building a Health and Food Related User’s Profile 

The third objective of this thesis is to survey the current research for representing, storing, 

and retrieving the user‘s preferences. This aims to construct an ontology-based user‘s 

profile that encapsulates the user‘s preferences in a dynamic way. This allows using these 

preferences to enrich the user‘s queries and personalize the retrieved food and health 

information. This will help in providing a smarter way to answer food and health queries 

and to recommend relevant and personalized choices of food and nutrition.  

1.2.4 Fourth Objective: Personalizing the Retrieved Results 

The fourth objective of this thesis is to survey how we can provide personalized search 

results that fit the user‘s needs. We aim to research the current personalization 

technologies that recommend relevant information to the user. This includes the 
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utilization of the user‘s profile in personalizing the retrieved health and nutrition results 

and filtering the unrelated information. 

1.2.5 Fifth Objective: Developing an Agent-Based Framework 

To handle all of these objectives, we aim to build an agent-based framework that 

semantically manipulates the user‘s queries and personalizes the retrieved food and health 

information. This includes designing, developing, modeling, and evaluating the proposed 

framework. Real-world test cases should guide in testing the implemented framework to 

show how this framework can answer queries that cannot be answered easily by the 

popular search engines.  

1.3 Thesis Contributions 

The major contributions of this thesis are as follows: 

1. Survey state-of-the-art methodologies used for semantic query manipulation and 

capturing user‘s preferences, user‘s profile representation, and results 

personalization. 

2. Propose a methodology for identifying and capturing the user‘s personal 

preferences, cultural preferences, health conditions, and religious constraints 

related to the food and health domains. 

3. Build multilingual integrated health and food ontologies and knowledgebases 

required for semantic query manipulation.  

4. Propose an ontology-based user‘s profile to represent the user‘s preferences and 

integrating the user‘s profile ontology with the domain ontologies to retrieve 

precise results. 
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5. Propose a multilingual agent-based framework for semantic query manipulation 

and result personalization.  

6. Develop algorithms for semantic query manipulation, query enrichment, and 

results personalization. 

7. Model the proposed framework‘s processes required for semantic manipulation of 

the user‘s query and result personalization. 

8. Implement the proposed framework based on scalable technologies to fit any 

domain and then prototyping it with the health and nutrition domains. 

9. Evaluate the developed framework and running different experiments to assess its 

performance and accuracy. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 presents the literature survey of 

the related work. Chapter 3 introduces the main framework for ontology-based semantic 

annotation and personalized information retrieval (OSAPIR), where this thesis focuses on 

the semantic query manipulation and personalization component of OSAPIR. Chapter 4 

presents the details of the proposed agent-based framework for semantic query-

manipulation and personalized retrieval of health and nutrition information, namely an 

agent-based-framework for semantic query manipulation and personalized information 

retrieval (ASPIR). Chapter 5 explains how we capture the user preferences related to the 

health and food domains. Chapter 6 presents the modeling of the framework processes. 

Chapter 7 describes the health, food, and user‘s profile ontologies along with the 

methodologies we followed to develop them. Chapter 8 presents the implementation 
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details of the proposed framework. Chapter 9 presents the experimental results and 

analysis. Chapter 10 concludes the thesis and highlights possible future work directions.  
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2 CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

The focus of this thesis is to develop an agent-based framework for semantic query 

manipulation and personalized retrieval of health and nutrition information. In this 

chapter, we briefly introduce the required background information about the thesis‘ topics 

and present a literature review on the related work.  

2.1 Semantic Query Manipulation 

The term query can have many uses, such as in semantic query, SQL query, and free text 

query. The input of the query in our system is a natural language question, and the output 

is a semantic representation of the question. The semantic manipulation of the user‘s 

queries involves four areas: question answering, string matching, named entity 

recognition, and query templates.  

2.1.1 Question Answering  

Question answering (QA) combines both information retrieval and natural language 

processing (NLP) fields (7). It enables the user to enter a natural language question and 

then shows the formulated answers of the user‘s question as sentences (8). QA systems 

can be great tools for the users in getting the exact information in a friendlier way. QA 

systems perform three tasks: classifying the question, retrieving the information, and 

extracting the answer (9). An important focus of our thesis is to understand the user‘s 

questions to map them to the domain ontologies and to reason based on the 
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knowledgebase. To understand the user‘s questions, we need to analyze the question‘s 

keywords and identify the question type. Some natural language processing techniques are 

used to analyze and classify the questions such as tagging, chunking, tokenization, 

stemming, and part of speech (POS) tagging.  

One technique to analyze and classify a question is to use patterns. In (9), the authors 

listed eight patterns based on questions collected by (10): functional word questions, 

when questions, who questions, why questions, how questions, and what questions. We 

show examples of first two patterns.  

- Functional word questions include all non-Wh questions except how. For 

example: ―can you list for me some good foods?‖  

- When questions include all questions start with when. The pattern for this question 

is: When (AUX) NP VP X, where AUX represents auxiliary verbs, NP represents 

noun phrases, VP represents verb phrases, and X represents combinations of other 

words, such as ―When should I eat my lunch?‖ 

2.1.2 String Matching  

String matching, also called string searching, concerns finding a specific string or set of 

strings in a large set of strings or text. Many string-matching algorithms have been 

developed that are different in the way they search for matching terms, their performance, 

and their accuracy. String matching can be done either online or offline; online string 

matching is challenging in terms of performance. In addition to forty algorithms proposed 

before 2000, a recent review of the string-matching algorithms (11) studied another fifty 

new algorithms proposed after 2000. This study classified the string-matching algorithms 

into four categories: comparison-based algorithms, deterministic-automata-based 
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algorithms, bit-parallelism-based algorithms, and constant-space-based algorithms. 

Comparison-based algorithms try to compare the given input string with the set of strings 

through scanning and comparing them bit-by-bit or using other advanced techniques. 

Deterministic-automata-based algorithms scan the text be each character and perform a 

transition on the automaton. If the scanned text reaches the final state after a certain 

character, then the match is reported with the specific start and end character locations. 

Bit-parallelism-based algorithms utilize the bit operation in a computer word for the 

number of operations that the algorithms perform. It is suitable for a nondeterministic 

automate. Constant-space-based algorithms use constants to limit the search space.  

2.1.3 Named Entity Recognition  

Named entity recognition (NER) involves classifying a certain word or element into 

predefined categories, such as a list of food or a list of diseases. The major approaches in 

NER are rule based and machine learning based. 

Rule-based approaches (12) and (13) depend on analyses of the domain and understanding 

of the questions. They involve creating patterns or regular expressions to be used in 

matching and recognizing the entity. They also involve understanding the relations and 

the context in which the entities and the relations are correlated. Pattern matching here is 

different from the pattern matching in machine learning techniques, which require the 

features to match. The pattern matching here addresses the context and text pattern. Rule-

based approaches could be combined with statistical models for big projects (14). Rule-

based approaches were implemented in many applications in different languages such as 

(15) Chinese, (16) Uighur, (17) Turkish, (18) Urdu, and (19) Arabic.  
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A different literature survey in (20) showed the machine-learning approaches created 

between 1991 and 2006. It considered the recognition of unknown elements as a major 

milestone in NER. The learning occurs in three different ways: supervised learning, semi-

supervised learning, and unsupervised learning.  

Supervised learning involves studying positive and negative examples to extract features 

and then developing rules to capture instances of a certain type. The disadvantage is that it 

is costly to develop the initial lists required for learning. Techniques used in supervised 

learning are the hidden Markov model (HMM) (21), decision tree (22), maximum entropy 

model (ME) (23), support vector machine (SVM) (24), and conditional random field 

(CRF) (25).  

Semi-supervised learning involves a small amount of supervision. The main technique 

used is bootstrapping, where initial examples, called seeds, are provided, and then the 

system searches for the statements containing these seeds and analyzes the context to 

identify clues to find similar terms that were not fed to the system. The authors of (26) 

reported results similar to those of supervised learning.  

Unsupervised learning involves clustering based on specific features such as the similarity 

of context. It depends on lexical resources, such as WordNet, and on statistical models for 

large projects. Examples of using unsupervised learning in NED are found in (27), (28), 

(29) and (30). 

2.1.4 Query Templates 

For a particular semantic domain where limited vocabularies are used, a set of question 

templates can be developed to match the majority of expected queries. Then one uses both 

natural language processing (NLP) techniques and semantic techniques to empower users 
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with the ability to ask natural questions that can be answered by matching them with the 

predefined templates (31). 

Based on natural language query (NLQ) techniques, a query template is constructed using 

natural language with some dynamic parts to be substituted with the user‘s input. An 

example of a basic template is, ―Advise me with the best … that gives me …,‖ where the 

ellipses express placeholders for specific input from the user. The query, ―Advise me with 

the best fruit that gives me Vitamin C,‖ is an instance of the previous template. There are 

more complex templates with more variables in (31). 

There are two ways to acquire a template: either defined by the system‘s owner or 

automatically driven from the user‘s input. The first method needs background on the 

most frequent questions being asked in the domain and on the exact structure of these 

questions. This method is not easy to follow because it is difficult to grasp the expected 

questions without having a huge knowledgebase of these questions. Hence, the results 

cannot be optimized. The second method is to come up with the query templates 

automatically by collecting queries and their frequency and studying their semantics (31). 

The user‘s query will be analyzed and mapped to the corresponding templates, and then 

the variable placeholders will be replaced with the user‘s input. Regular expressions are 

used to extract this information from the user‘s query. If the word has more than one 

meaning, then some techniques are used to narrow down the most likely meaning of the 

user‘s query. One way is to have a process of three stages. The first is to find the various 

meanings of the word using WordNet and then classify them into groups. The second step 

is to use the templates to match different words in the meaning tree. The third step is to 

find the right meaning of the word by analyzing the question‘s context. This process 

allows prioritizing possible meanings and removing irrelevant ones. The words within the 
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user‘s query are replaced with a group of ordered possible words that match the same 

meaning (31). 

2.1.5 Conclusion 

For question answering, we involve the NLP techniques used in QA systems to pre-

process the question and identify its parts. Then we classify the question based on the 

query templates we have defined in a semantic approach involving WordNet, the domain 

ontologies, and knowledgebase.  

For NER, we have selected rule-based approaches to identify the relations between the 

concepts. This selection is supported by our predefined questions that can be used to build 

rules for identifying the relations. We build regular expressions that determine the 

possibility of a relationship existing within the context of the user‘s question.  

For string matching, we use comparison-based algorithms as they fit our requirements. 

We tried different algorithms such as fast-search algorithms (32) to find the best match 

with our requirements, including the support of a multilingual property. We use string-

matching techniques to match the user‘s keywords with the populated concepts and 

instances from the domain knowledgebase.  

For the query template, we combine the ontology query template with a natural language 

query template to be more comprehensive. We also add the user‘s personal profile to the 

template to enrich the query and to retrieve relevant information. 

2.2 User’s Profile 

The personalization requires three main steps: collecting data about the user, creating a 

corresponding user model and then adapting the information based on the created model 
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(33). The user‘s profile or user model is a model and a representation of the user‘s 

information used for personalization. It plays a major role in collecting and storing the 

user‘s personal information and then utilizing the user‘s profile in personalizing the 

retrieved information. There are many ways to represent the user‘s profile from a simple 

text file to an ontology that is used in the Semantic Web (34). 

2.2.1 Collecting User’s Preferences 

There are different ways to collect the user preferences to be modeled in a form of a 

user‘s profile.  

The authors in (35) presented one of the first works on building a user‘s model and 

providing personalization with ontology. The proposed model follows three steps. First, 

they utilized domain ontology to catalog and classify documents into related concepts 

within the domain ontology. Then they generated a user‘s model by connecting the user‘s 

interests in each concept based on analysis of the user‘s history. Finally, they mapped the 

user‘s model represented by weighted interests in the domain ontology‘s concepts to the 

documents to personalize the related information. Although the model is promising, it is 

static and does not change as the user‘s interests change over time. Another drawback is 

that the proposed model does not capture the concept relations and ontology structure 

semantics in the calculation of the user‘s degree of interest in a certain concept.  

In (36), the authors tried to overcome the limitations in (35) and come up with another 

ontology-based user‘s model for information recommendation. The proposed model is 

based on the users‘ browsing history and captures users‘ interests based on the concepts of 

the domain ontology. It correlates the concepts so that, if the user shows interest in a 

subcategory concept, it records that the user might have interest in higher-level concepts 
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within the same hierarchy. Thus, higher-level concepts of the same interest get some 

value. The main disadvantage of the proposed approach is using a simple algorithm that 

captures the distance between the concepts only during inference. In addition, it has low 

efficiency when it comes to complex ontologies. Finally, it does not use semantic 

relations when capturing the user‘s interests. 

The authors of (37) introduced the concept of user ontology. They came up with a new 

way that includes statistical methods to capture the user‘s ontology from specific domain 

ontology. The user‘s interest model is generated based on the user ontology by assigning a 

value to all concepts and relations. The proposed model has semantics and can describe 

the user‘s interest more accurately. One drawback of this model is the lengthy learning 

curve for complex ontologies to build the user ontology and correlate the relations 

between concepts semantically. Another disadvantage of this method is the lack of 

automatic updating of the user‘s interests. 

2.2.2 Representing User’s Preferences 

There are different classifications of user models. A recent one in (38) classifies user 

models into two categories of structure, where each category has two options of content. 

The user profile contains data structure and content. The data structure is either vector 

based or semantic network based. The content is either the user‘s keywords or concepts 

driven from a knowledgebase that can be categorized. The knowledgebase source can be 

domain models developed by domain experts, a general knowledge repository developed 

by a community such as Wikipedia, web taxonomies such as ODP
3
, or ontologies. These 

knowledgebase sources can be combined for an overlay model (39). 

                                                 
3
 Open Directory Project: http://www.dmoz.org. 
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A vector-based profile represents user preferences as keywords (or concepts) with 

corresponding weight for each. The weight is given to the keyword (or concept) using 

different techniques, such as terms frequency (TF) and term frequency–inverse document 

frequency (TF.IDF). More information can be found in (40). An example of a vector-

based user profile is in MiSearch (41), where the authors proposed two different vector-

based user models based on (1) extracting concepts from the queries of the user and (2) 

extracting concepts from the snippet of the visited webpages. Each user model is 

represented by a number of vectors based on the user‘s interest category, where the 

categories and the concepts are from ODP.  

A semantic-network-based profile represents user preferences as a network that consists 

of keywords (or concepts) and their related keywords (or concepts). This model consists 

of nodes and linked nodes that represent the concept and the semantically related 

concepts. The weight is assigned to the nodes, the linked nodes, and the links between 

them. The advantage of the semantic-network-based profile over the vector-based profile 

is the ability to model the relationship between the concepts and the associated concepts. 

WordNet can be used in mapping the concepts and their associated concepts. An example 

of a semantic-network-based user profile is OntoSearch (42), which is a new user 

ontology model that aims to represent the user‘s interests accurately. Instead of having the 

concepts and taxonomic relations only, as in older approaches, the proposed user ontology 

model utilizes taxonomic relations, concepts, and nontaxonomic relations to identify the 

user‘s interests in a given domain. The authors in (42) presented statistical methods to 

develop the user ontology by inference from the domain ontology. The proposed model 

incorporates a spreading activation function into the semantic search engine to support 

personalized document retrieval. The proposed model in (42) was tested with the Google 
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Directory and ACM digital library where the experimental results showed that 

OntoSearch is effective. 

2.2.3 Acquiring User’s Profile 

There are two major categories of the methodologies used in obtaining the user‘s 

information and populating the user‘s profile: implicit and explicit.  

In the implicit method, the user‘s information and preferences are collected behind the 

scenes without obvious action from the user to determine the preferences. An example of 

the implicit method is tracking the search history of the user including the user‘s queries 

and the visited results. Some works using the implicit methods are (43), (44), (45) and 

(41). One challenge in the implicit method is the accuracy and relevancy of the inferred 

user‘s preference.  

In the explicit method, the user is asked explicitly to provide input or feedback on the 

results. This includes a form where the users specify their preferences, including what 

they like or dislike, as in (46). The explicit method also includes the relevancy feedback 

on the returned results, whether it is positive or negative, as in (47) and (48). Explicit 

input can also be modifications to the preferences that the system has learned from the 

user, as in (49), (46), and (50). Challenges in the explicit method are that many users may 

not acknowledge the time they spend filling in such forms (51) and may provide incorrect 

information in the form (52).  

2.2.4 Storing User’s Profile 

There are two approaches in storing the user‘s profile: client-side or server-side.  

The advantage of the server-side user’s profile is the ability to deploy a light client for the 

user, such as an Internet browser, reliving the client from the processing of the user‘s 
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profile, which will take part in the server. Another advantage of the server-side user‘s 

profile is the ability to infer more information by relating the user‘s profile with other 

sources. Some examples are using other profiles that share similar interests and linking 

the user‘s profile with rich knowledgebase to infer new interests. A third advantage is that 

the server can do sophisticated processing, such as processing large user‘s logs, to give 

better performance to the user. It is worth mentioning that the server-side user‘s profile 

has a scalability challenge to support a high number of users. Some examples of server-

side user‘s profiles are in (53) and (54). 

The advantage of a client-side user‘s profile is that it allows building a richer user‘s 

profile because we can gather much more information about the user. For example, a 

client-side user‘s profile allows us to monitor all browsing activities performed by the 

user and infer more accurate interests based on the user‘s behaviors. Examples of client-

side user‘s profiles are found in (43), (55), (56) and (57). Another advantage of a client-

side user‘s profile is the privacy of the user‘s information because the user‘s profile is 

stored and maintained in the user‘s machine, as discussed in (58) and (59). 

2.2.5 Conclusion 

We propose a hybrid methodology to collect the user‘s preferences based on domain 

experts, the knowledge of the domain, collected questions related to the domain, and 

conducted surveys. This will take the advantage of the domain-specific needs.  

For representing the user‘s profile, we have represented the profile as ontology-based 

since this work is related to other parts in a bigger project that is based on semantic 

ontologies. An ontology-based user‘s profile makes it easier to integrate the profile with 
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the domain ontologies and helps in reasoning the information using semantic languages 

such as SPARQL. 

For acquiring the user‘s profile, we use both explicit and implicit methods to gather the 

user‘s preferences. We derive the new preferences through analyzing the implicit input 

collected by monitoring the user‘s behavior and then confirming any conclusion with the 

user. Explicit feedback is used as well for the users who like to define their initial 

preferences. 

For storing the user‘s profile, we selected hybrid approach in which we keep the user‘s 

private information in the client and we maintain the user‘s information that is needed for 

linking with the ontology in the server. This will allow us to get the advantage of the 

server-side profile while maintaining the private information of the user in the client side. 

2.3 Personalized Retrieval  

Personalization involves returning the relevant information to the user‘s needs based on 

the user model (60). There are many applications for personalization, and there are many 

surveys in the literature about these applications, such as geographical information 

systems (GIS) (61), e-commerce (62), education (63), television, and video (64). When 

personalization is tackled, the privacy issue is raised, and there are many studies on the 

tradeoff between personalization and privacy, such as (58) and (59). 

There are three challenges in personalization: representation, learning, and ranking. For 

representation, we need to represent the user‘s interests and preferences in a compact 

user‘s profile. For learning, we need a way to learn and discover the user‘s profile from 
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the available data. For ranking, we need to match the user‘s profile with the existing 

ranking algorithms used to specify the relevancy of documents (65). 

In this section, we first define information retrieval and information filtering. Then, we 

present the related work to personalized retrieval.   

Information retrieval (IR) is defined as the ―process of identifying and retrieving 

unstructured documents containing the specific information stored in them‖ (66). 

Information retrieval deals with the complete cycle of getting the information, which 

consists of three steps: indexing documents, getting user‘s queries, and matching queries 

with the relevant documents (67). There have been many studies in the area of 

information retrieval, such as (68). Semantic information retrieval was researched and 

surveyed in papers such as (69), (70), (71), and (72) where identified semantic features 

are used in the information retrieval. More specifically, IR that uses ontology for 

retrieving the information is called ontology-based information retrieval, and it has been 

researched and surveyed in papers such as (66), (73), (74), (75), and (76). Many studies 

have classified information retrieval differently. In (77), information retrieval systems are 

put in two categories: classical, such as library systems, and web, such as search engines. 

One of the major challenges in web information retrieval is meeting the user‘s needs 

considering that webpages are heterogeneous and users‘ queries are not written well in 

most cases (77). This challenge is addressed by semantic query manipulation and 

personalization. The personalization in the context of information retrieval is called 

personalized information retrieval, personalized search engine, personalized 

recommendations, and personalization information service, as mentioned in (78). This 

thesis is part of a bigger project, as explained in Chapter  3, which addresses personalized 

information retrieval. Our work focuses on information filtering and personalization. 
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Information filtering (IF) deals with selecting or eliminating a set of the matched 

documents. The major characteristics of information filtering are the dynamism of the 

document set, the long-term nature of the information need, the required profile for 

information filtering, and the delegation of the information selection (79). Figure 13 

shows how information filtering returns different results for different users.  

 

Figure 13 Information Filtering 

Personalized retrieval can be achieved by enriching the user‘s query and filtering and 

ranking the retrieved results. Below we discuss these topics.  

2.3.1 Query Enrichment 

Users might not be able to use representative keywords to search and locate the desired 

information (38). As a result, query enrichment, also called query expansion and query 
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adaptation, enriches the user‘s query with extra keywords to retrieve relevant results (80). 

Query enrichment implicates the weight and significance of the keywords. There are 

different techniques for query enrichment, as classified in (38) into six categories based 

on two factors: whether the enrichment is based on the user (user-focused) and whether 

the enrichment is implicit or explicit. The six categories are listed below. 

The first category is query enrichment based on processing the user‘s profile implicitly: 

selecting the expansion keywords from the user‘s profile. An example is in (55), where 

the process starts by identifying the related documents from the user‘s profile repository 

that contain similar query keywords. Then the documents are re-ranked based on these 

keywords using weighting schema for modified term frequency (TF). Top documents are 

then selected, and their keywords are sorted based on document frequency (DF) weighting 

schema. Finally, the top four keywords are selected as expansion keywords and used in 

the query enrichment. Another example is in (81), where the user uses defined tags, and 

these tags are used in the query expansion. A statistical model for tags is created and used 

to identify the relevant keywords from the user‘s profile. Other examples of systems and 

applications that use this technique can be found in (49) and (57). 

The second category is query enrichment based on implicit pseudo-relevancy feedback: 

selecting the expansion keywords from top relevant results and their snippet. This 

involves the full cycle of retrieving the results of the user‘s query and then expanding the 

query by selecting the keywords from top relevant results. Examples of systems and 

applications that use this technique can be found in (82), (83), (84), and (85). The author 

of (86) mentioned two disadvantages of the pseudo-relevancy feedback technique. First, it 

adds overhead to the system by performing two search rounds for each query to get the 

expansion keywords first and then to retrieve the relevant documents to the expanded 
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query. Second, the first cycle brings the expansion keywords and depends on the 

assumption that the returned documents are relevant, which is not always guaranteed.   

The third category is query enrichment based on processing the user‘s usage logs 

implicitly: selecting the expansion keyword from the usage logs including previous 

queries and the visited result. An example is in (86), where the author expanded the query 

by using a machine learning technique to identify the similarities between the user‘s logs 

and the queries. The author addressed the two disadvantages of pseudo-relevancy 

feedback by using a snippet of the document to know how relevant the retrieved 

document was and limited the selection to the snippets that exceeded a certain threshold to 

assure the relevancy. Other examples of systems and applications that use this technique 

can be found in (44), (87), and (88). 

The fourth category is query enrichment based on implicit global analysis: selecting the 

expansion keywords from a thesaurus (e.g., WordNet, a source of knowledge, Wikipedia, 

or a big corpus based on co-occurrence statistics). The user‘s query is expanded with 

other semantically related keywords. TF-IDF is used frequently in this technique to 

determine the weight and importance of the expansion keywords along with a defined 

threshold that limits the selection to the top relevant keywords. Global analysis is not user 

focused because the user is not involved in the query-enrichment process. Examples of 

systems and applications that use this technique can be found in (89), (90), (91), and (92).   

The fifth category is query enrichment based on explicit relevancy feedback: selecting the 

expansion keywords based on the explicit feedback provided by the user on the retrieved 

result relevancy. The user is asked to provide feedback on the returned result. The 

feedback can be either positive or negative, which corresponds to relevant or irrelevant 

results. The expanded query is then used to retrieve the positive rated results and filter out 
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the negative rated results. Examples of systems and applications that use this technique 

can be found in (93) and (94). 

The sixth category is query enrichment based on explicit interactions with the user: 

selecting the expansion keywords based on interactions with the user by showing the user 

a candidate set of expansion keywords suggested by the system and then having the user 

select the appropriate one. An important step in this technique is that the system first 

produces a ranked list of keywords to be re-evaluated by the user where these keywords 

are related to the user‘s query. This technique emphasizes users and their role to expand 

the query. Examples of systems and applications that use this technique can be found in 

(95), (96), and (97). In (96), the author mentioned that the interaction technique is more 

efficient than other automatic techniques, but it depends on presented user interface and 

human judgment, which varies based on the user knowledge of the domain. 

Both techniques, implicit pseudo-relevancy feedback and global analysis, are not user 

focused, as they do not depend on any user feedback or profile. The other four techniques 

are user focused, as they depend on some sources of user information. 

2.3.2 Results Filtering  

Filtering results is a major milestone in retrieving personalized results. It helps in 

returning only the results relevant to the user‘s needs and filtering out the irrelevant ones. 

Different techniques are used in results filtering.  

In (98), the filtering techniques were classified into three categories. The first is content-

based filtering, which involves analyzing each item to assess what is interesting to the 

user based on the user‘s profile (99) (100) (101) (102). The second is collaborative-based 

filtering, which involves collecting opinions from people to direct the user to similar 
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opinions (103) (104) (105) (106) (107) (108) (109) (110) (111) (112) (113) (114). The 

third is the hybrid approach, which combines the content-based and collaborative-based 

approaches (115) (116) (117) (118).  

Another classification is found in (59), where the authors have similar classifications to 

the one in (98), but they further classified the collaborative-based filtering into two 

categories: traditional collaborative-based filtering and model-based collaborative 

filtering. The model-based collaborative filtering is classified further into four categories. 

The first is item-based collaborative filtering, which involves an offline process to build 

an item similarity matrix based on the item information (103) (104) (105). The second is 

cluster-based collaborative filtering in either user-based clustering or item-based 

clustering (106) (107) (108). The third category is association and sequence rule-based 

approaches, which discover patterns for the association and sequence of items (109) (110) 

(111) (112). The fourth is graph theoretic approaches, which transform collaborative 

filtering rating data into a directed graph where users are represented as nodes and edges 

represent the predicted users (113) (114). In addition, (59) looks at different aspects to 

classify these techniques, such as individual versus collaborative, reactive versus 

proactive, user versus item information, memory based versus model based, and client 

side versus server side. 

2.3.3 Results Ranking 

Most of ranking functions used in web search results are trained using machine learning 

algorithms. This training is done either through collecting explicit feedback from the users 

judging the relevancy of specific results or through implicit feedback by analyzing users‘ 



37 

 

clicks and click-through data. Thus, the search results improvement is generic and not 

specific to a certain user who has some interests (65). 

In (119), the authors proposed a new technique that improves the semantic search by 

assigning a weight to different semantic relationships. In addition, the number of 

meaningful relationships between resources and keywords is taken into account as well as 

the coverage of the keywords. The use of this information results in getting more accurate 

results to the user. The proposed technique has been tested with real-world data and found 

to be more accurate than previous ranking models.  

In (120), the authors used a naming authority to connect an identifier (URI) to the source 

that has the authority to assign that identifier. The notion of naming authority can be 

generalized to other identifier schemes to establish a connection to the provenance of the 

identifier, such as a person or an organization. The authors derive a naming authority 

matrix from a given dataset and use the PageRank algorithm to determine rankings for 

sources. After that, another algorithm is used to rank individual identifiers based on the 

values assigned by their sources. The proposed method is schema independent, requires 

no manual input, and has applications in search, query processing, reasoning, and user 

interfaces over integrated datasets. This work demonstrates a set of scalable algorithms 

for ranking over a general model of structured data collected from an open, distributed 

environment based on the notion of naming authority. The authors adapted the general 

model to accept RDF and import the intricacies of RDF data from the web. In comparison 

to plain PageRank on a node-link graph representation of RDF, the proposed methods 

exhibit similar runtime properties while improving the quality of the calculated rankings. 

Compared to other methods that require manual input by a domain expert to specify 

schema weights, the proposed method derives rankings for all identifiers in the dataset 
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automatically. The methods were tested on real-world web datasets that contained 1.1 

billion data items from 6.5 million web sources. The experiment provides evidence for 

improving the quality of the rankings with a user study of 36 participants. 

In (121), the authors proposed a unique architecture for a personalized semantic search 

engine (PSSE). A PSSE is a crawler-based search engine that enables multi-crawlers to 

collect resources from both semantic and traditional web resources. The system learns the 

users‘ interests and preferences automatically from the web usage data and uses these data 

to rank the results. The ranking and final score of the search result is calculated using the 

traditional link analysis, content analysis, and weighted user profile. 

In (65), the authors proposed a new approach for personalizing the results of web searches 

for a specific user. The new model indicates the relevancy of documents for specific users 

when they provide a certain query. The model has an input, which is a compact user 

profile that will be used to generate user-specific search results. Users‘ profiles are 

captured and trained using their search history over a long period. This approach uses 

probabilistic models for predicting the relevancy of documents to specific users on a 

certain query. Using one discrete variable for each document to specify the topic of the 

document, there is a preprocessing step using a text-based classifier to identify the topic 

of each document. This is using human-generated ontology provided by the Open 

Directory Project (ODP, dmoz.org). This preprocessing step helps in calculating 

personalization ranking quicker when taking the user‘s query. In addition, for each user 

there is a variable stating the type of documents the user is looking for using the query 

and the user‘s history. The probabilistic model was experimented in (65) on with 

historical search data from thousands of users of the major search engine, Bing, by using 

the queries and search result clicks to build long-term user profiles for the users‘ interests. 
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This profile is used to calculate the relevancy of the query based on the user‘s history. The 

authors found some improvements in retrieval performance for queries with high 

ambiguity and major improvements for acronym queries. Although the proposed approach 

is simple as it is using topics to indicate relevancy, there is little computational overhead 

caused by the preprocessing step to calculate the topics for all documents and then 

recalculating the probability of relevancy for each user using the user‘s profile. This 

approach uses a compact user profile, which is a topic-based profile. The capturing and 

learning of the profiles are based on a user‘s long-term search history. 

2.3.4 Conclusion 

For query enrichment, we use a hybrid technique that combines the implicit processing of 

the user‘s profile with the global analysis based on the domain ontologies and explicit 

feedback. The motivation behind the hybrid technique is to overcome the limitations of 

these techniques by combining them and giving more weight to the user to imply the 

expanded query. Second, we integrated this with health and food domain ontologies to 

take advantage of their knowledgebase.  

For filtering the results, we use the content-based filtering technique as our work is based 

on a defined ontology and knowledgebase for food and health. Furthermore, the user‘s 

profile is ontology based and associated with the domain ontology.  

We combine different techniques to rank the results based on the user‘s profile and on 

related information from the domain ontologies and knowledgebase. Furthermore, we 

consider the frequency of the results between specific concepts. The higher frequency of a 

certain predicate in a different data sources indicates that this information is more 

trustable. Therefore, we give it more weight.   
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2.4 Agent-Based Framework for Health and Nutrition Information 

In this section, we define agents and frameworks and then define the scope of the health 

and nutrition information on which we focus in our research. After that, we research work 

related to this area.  

There are many definitions and descriptions of software agents in the literature. Many of 

these definitions are listed in (122), such as, ―Agents are computational systems that 

inhabit some complex, dynamic environment, and sense and act autonomously to realize a 

set of goals or tasks.‖ We go with a simple and comprehensive definition of agent as a 

software entity that has certain objectives, works autonomously in a specific environment, 

and collaborates with other agents (123). 

2.4.1 Scope of Health and Nutrition Information  

Health is defined by the World Health Organization (WHO) as "a state of complete 

physical, mental, and social well-being and not merely the absence of disease or 

infirmity," as mentioned in the broader sense in 1964 (124). Health care or medical care 

as mentioned in Oxford English Dictionary
4
 is related to diagnosing, treating and 

preventing diseases. The human body consists of body parts, such as eyes, a nose, and 

ears, and these parts perform body functions, such as vision, smelling and hearing.   

Food is any consumed, eaten, drunk, or injected element by the body that provides 

nutritional value, comes normally either from plant or from animal, and consists of a 

number of nutrients, such as minerals, fats, proteins, carbohydrates, and vitamins.
5
 The 

human body consumes food and produces energy to grow and maintain life. 

                                                 
4
 http://www.oxforddictionaries.com/ 

5
 http://global.britannica.com/EBchecked/topic/212568/food 
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Nutrition focuses on food‘s impact on the human body. By consuming the right food, we 

can avoid some health issues. The diet arranges what food to eat and its quantity to keep 

the body healthy. There are two types of health professionals: (1) dietitians or nutritionists 

(the common name) who deal with human nutrition and meal planning and (2) clinical 

nutritionists who deal with the effect of nutrition on clinical diseases and the relation 

between with nutrition and drugs (125). 

In our research, we limit the health aspects on the relations between diseases, body parts, 

and body functions with food and its nutrients. We deal with nutritionists to validate the 

results of our research. We have selected the health and nutrition domains for our case 

study due to their importance, the demand of the users and experts in this field, and the 

limited research in this area. 

2.4.2 Related Systems 

In (126), the authors studied the major challenges in health information system and 

retrieval (HIS/HIR) queries. More challenges were addressed in assessing the sources and 

quality of the health information the users find and act on. They concluded that there is an 

urgent need to research theoretical and practical HIS/HIR from the consumers‘ point of 

view. The authors stated that health care systems are becoming more patient centric, and 

consumers are controlling their own personal health choices. Finally, the authors 

recommended having a mechanism for joint efforts between consumers, providers, and 

decision makers to help achieve personalized health care. The authors did not consider 

any related cultural or lingual aspects of the user, and this personalization needs further 

detailed research. 



42 

 

2.4.2.1 HealthFinland  

In (127), the authors present HealthFinland, which semantically publishes and retrieves 

health information. Its objective was to provide citizens with reliable, up-to-date, and 

relevant health information on the web by mixing resources from governmental, non-

governmental, business, and other sources. It handles the user‘s point of view by 

addressing the challenge of finding content using basic vocabularies compared to 

technical medical terminology and the difficulties in retrieving relevant information from 

several sites. To resolve this, they developed an intelligent semantic portal for retrieving 

and presenting contents from health-interest perspectives. The limitation of this approach, 

as noted in the future work section, is to address the personalization based on user‘s 

profile information.  

2.4.2.2 Personalized Health Information Retrieval System (PHIRS) 

In (128), the authors addressed the challenge faced by consumers when seeking health 

information on the Internet. They proposed a personalized health information retrieval 

system (PHIRS) to recommend health information for consumers. The system consists of 

four modules:  

(1) The user-modeling module is responsible for getting the user‘s preference and 

related health interests.  

(2) The automatic quality-filtering module identifies the quality of the retrieved health 

information.  

(3) The automatic text difficulty-rating module helps classify the retrieved health 

information into two classes: professional or patient educational materials.  
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(4) The user profile-matching module customizes the retrieved health information to 

match the individual‘s needs.  

The authors conducted an initial test and showed that the results can assist health 

information consumers with a simple search that retrieves relevant information. The 

authors conclude that the initial test result shows that the evaluated pattern of semantic 

features in professional and consumer health is not enough. They suggest combining some 

surface features, such as structure, tense, and voice, with the used pattern and semantic 

features to help identify the text difficulty of health information, i.e. the use of technical 

and medical terms. Therefore, the limitation of this work is not having enough features to 

help identify relevant health information as well as not having sufficient testing for the 

proposed solution. The personalization here did not touch on the culture or language of 

the user.  

2.4.2.3 CarePlan 

In (129), the authors presented a new system, CarePlan, which generates customized 

patient-specific health care plans automatically. To determine the best clinical care plan, 

they utilized (1) the patient‘s medical personal profile, (2) up-to-date medical knowledge, 

(3) clinical pathways that are institution-specific, and (4) a personalized educational 

health care program. They came up with a new Semantic Web framework that allows for 

the synthesis of heterogeneous operational and medical information and knowledge 

resources and renders the technical basis for a services-oriented architecture to generate 

and orchestrate patient-specific health care plans. The authors concluded with sharing 

their belief that the Semantic Web will be the future way to get intensive knowledge and 

validate health care decisions, though it will face many challenges. The limitation of this 
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approach is the lack of the full implementation details as well as the food and nutrition 

information related to the patient. The personalization in this approach focuses on 

educational health information and does not talk about the culture or language of the user. 

2.4.2.4 NOESIS System 

In (130), the authors proposed NOESIS, a new adaptive searching mechanism using 

innovative technologies to obtain, use, and manipulate medical information. The authors 

highlighted that medical knowledge is inherently complex and uncertain and that medical 

experts may provide different interpretations for symptoms because all of them also 

depend on a given context and most of the interpretations are established by statistical 

utilization. So it is necessary to capture a whole knowledge to understand and take care of 

patients with cardiovascular diseases adequately. For this reason, the authors proposed a 

system aiming at being a valuable instrument for cardiologic medical information 

retrieval from heterogeneous, distributed medical databases that mediate medical 

decisions regarding critical health conditions. The proposed adaptation features generate a 

personalized searching process for the users depending on the information stored in their 

personal profiles. The approach is lacking the use of the Semantic Web as it adds much 

into such complex heterogeneous data sets and helps with the inference of the relevant 

information to the user. The personalization search approach does not consider the culture 

or language of the user. 

2.4.2.5 MedSIFTER Model 

In (131), the authors highlighted the explosive growth in number of information sources 

and that users now can access a wide variety of health information from the web. 

However, information that may be potentially relevant to individual users remains highly 
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scattered, and users frequently have to dig and aggregate information from multiple sites. 

The authors introduced MedSIFTER, a proposed trusted model, as a one-stop-shop access 

point to personalized health and medical information. The model centralizes personal 

information management to facilitate specific information aggregation tasks of individual 

clients. It employs group query mixing and noise query mixing to hide users‘ profiles 

from external eavesdroppers. Experiments were conducted to demonstrate trade-off levels 

between retrieval performance and the degree of privacy preservation in the proposed 

query mixing strategies. This trade-off did not consider personalization from the user‘s 

culture or language point of view. 

2.4.2.6 Cobot System 

In (132), the authors described a mixed initiative socio-semantic conversational search 

and recommendation system for finding health information. They argued that users could 

do a live conversation about their health issues by using the proposed system. Then the 

collaboration mode would bring relevant users into the same conversation and provide 

context-based recommendations related to the conversation subject. The authors then 

illustrated the power of their search, which returns relevant search directly or via other 

users without using the conventional search engines, which they believed often confuse 

and frustrate users. The recommendation was based on the social context, not on 

personalization factors. Moreover, the personalized culture and language were not 

mentioned.   

2.4.3 Criteria for Evaluation 

We list below some criteria we have selected to compare the above systems.  



46 

 

2.4.3.1 Query Manipulation Criteria.  

We have set the following criteria to evaluate the used techniques for query manipulation 

in the related systems: 

- Query type: the accepted types of user‘s queries, such as question or semantic 

- Query natural language scope: the scope of accepted natural language, such as free 

text and controlled text 

- Query processing method: the way it processes the query, such as NLP 

- Query templates usage: whether or not it uses any type of query templates  

2.4.3.2 User’s Profile Criteria.  

We have set the following criteria to evaluate the used techniques for a user‘s profile in 

the related systems: 

- Profile existence: whether or not it has a user‘s profile  

- Culture preferences inclusion: whether or not it has a user‘s culture preference  

- Profile representation: how it represents the user‘s profile 

- Profile location: where it stores the profile 

2.4.3.3 Personalized Retrieval Criteria.  

We have set the following criteria to evaluate the used techniques for personalizing the 

retrieved results in the related systems: 

- Query enrichment: whether or not it enriches the user‘s query  

- Result filtering: the methodology used in filtering the results 

- Result ranking: the way it ranks the results 
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2.4.3.4 Framework Criteria.  

We have set the following criteria to evaluate the used techniques for the framework in 

the related systems: 

- Agent-based: whether or not it is agent based  

- Ontology support: whether or not it is semantic based and supports ontologies  

- Domain dependent: whether it is domain dependent or is open for any domain 

- Multilingual: whether or not it is multilingual  

2.4.4 Comparison 

In the following sections, we compare the reviewed systems with regard to the criteria we 

have defied in the previous section.  

2.4.4.1 Query Manipulation Criteria 

TABLE 1 shows the comparison results based on the query manipulation criteria. 

TABLE 1 Comparing the Related Systems on the Query Manipulation Criteria 

 

System/Criterion Query type Query natural 

language scope 

Query 

processing 

methods 

Query 

template 

usage 

Health-Finland Question Controlled text NLP No 

PHIRS Question Controlled text String matching No 

CarePlan Question Free text NLP No 

NOESIS Question Controlled text String matching No 

MedSIFTER Question Controlled text String matching No 

Cobot Chatting Controlled text String matching No 
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Our analysis of the comparison is that the current systems do limited query processing by 

using only one technique, either NLP or string matching. They do not use the query 

template for processing the questions or retrieving the answers. Therefore, with these 

limitations we are motivated to develop semantic query manipulation that utilizes 

multiple-query processing techniques and uses the query template in matching the user‘s 

query with the domain ontologies and knowledgebase to retrieve relevant answers to the 

user.   

2.4.4.2 User’s Profile Criteria.  

TABLE 2 shows the comparison results based on the user‘s profile criteria. 

TABLE 2 Comparing the Related Systems on the User‘s Profile Criteria 

 

System/Criterion Profile 

existence 

Culture 

preference 

inclusion 

Profile 

representation 

Profile 

location 

HealthFinland No N/A N/A N/A 

PHIRS Yes No Text Server 

CarePlan Yes No XML Server 

NOESIS Yes No XML Server 

MedSIFTER Yes No Text Server 

Cobot No N/A N/A N/A 

 

As shown in TABLE 2, we find that the culture aspect of the user is not addressed and the 

ontology is not used to represent the user profile. In addition, all of the compared systems 

store the profile on the server without addressing the privacy issues. These limitations 
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motivate us to develop a framework that addresses personalization with respect to the 

user‘s culture and privacy using an ontology-based user‘s profile such that a great deal of 

reasoning can be done easily.  

2.4.4.3 Personalized Retrieval Criteria.  

TABLE 3 shows the comparison results based on the personalized retrieval criteria. 

TABLE 3 Comparing the Related Systems on the Personalized Retrieval Criteria 

 

System/Criterion Query 

enrichment 

Result filtering Result 

ranking 

HealthFinland No N/A Relevancy 

PHIRS No Content based Relevancy 

and profile 

CarePlan No Content based Relevancy 

NOESIS No Content based Relevancy 

and profile 

MedSIFTER No Content based Relevancy 

and profile 

Cobot No Collaborate 

based 

Relevancy 

 

Our conclusion from the comparison above is that the query enrichment is not used in the 

related systems. The results ranking techniques used in these systems do not consider all 

aspects of the user‘s profile, and the used result filtering techniques are limited. These 

limitations motivate us to invest in query enrichment, as it is a major milestone in 

personalization, filter the results using all aspects of the profile, and rank the results with 

respect to the relevancy by giving more weight to user feedback.  
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2.4.4.4 Framework Criteria.  

TABLE 4 shows the comparison results based on the predefined criteria for the 

framework. 

TABLE 4 Comparing the Related Systems on the Framework Criteria 

 

System/Criterion Agent-based Ontology 

support 

Domain 

dependent 

Multilingual 

HealthFinland No Yes Yes Yes 

PHIRS No No Yes No 

CarePlan No Yes Yes No 

NOESIS No No Yes No 

MedSIFTER No No Yes No 

Cobot No Yes Yes No 

 

Our conclusion from the above comparison is that the evaluated systems are not agent 

based but are domain dependent, limiting their scalability. Moreover, the majority of the 

evaluated systems are monolingual, and thus they will not be useful for the users of other 

languages. We are heavily motivated to develop an agent-based multilingual framework 

that can fit any domain and help in retrieving relevant results based on semantic query 

manipulation and personalized retrieval. 

2.4.5 Conclusion 

Based on this survey, there is lack of cultural- and lingual-based personalization for the 

health, food, and nutrition domains that will help in giving better recommendations to 

users. Hence, we extend the current approaches by building a framework for a cross-
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cultural and cross-lingual multi-agent recommendation tool having an ontology-based 

user‘s profile to retrieve relevant health and nutrition information.  
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3 CHAPTER 3 

FRAMEWORK FOR ONTOLOGY-BASED SEMANTIC 

ANNOTATION AND PERSONALIZED INFORMATION 

RETRIEVAL (OSAPIR) 

This chapter introduces the main framework for ontology-based semantic annotation and 

personalized information retrieval (OSAPIR), where this thesis focuses on the semantic 

query manipulation and personalization component of OSAPIR. This thesis research work 

is a part of project No.10-INF1381-04 supported by King Abdulaziz City for Science and 

Technology (KACST) through the Science & Technology Unit at King Fahd University 

of Petroleum & Minerals under the National Science, Technology and Innovation Plan 

(NSTIP). The aim of the project is to build a semantic retrieval portal for health and 

nutrition information.  

3.1 Introduction 

Web content is growing exponentially, which brings many challenges in accessing the 

information. Meanwhile, users‘ demands to find relevant information have increased. 

Most people use the traditional search engines to locate information, such as Bing, 

Google, and Yahoo. Not all users are satisfied with the current search engines because 

they do not find the search results relevant to their needs. This is obvious when they 



53 

 

search for critical information, such as health and nutrition, where they desire more 

relevant and precise information than they can get through traditional search engines 

selected from trusted sources. 

3.1.1 Multilingual Web Content 

Although most web content is presented in English (56%), there is still a great amount of 

content in other languages.
6
  Traditional web access to cross-lingual content is only 

possible if websites are translated into the desired language. There is a lack of explicit 

mechanisms to reconcile automatically information expressed in different languages. This 

leads to situations in which data expressed in a certain language are not easily accessible 

to speakers of other languages. The Semantic Web offers a great opportunity to make web 

information broadly accessible, independent of culture and native language. 

3.1.2 Cross Domains 

Many different knowledge experts are working in their area of expertise not only 

independently, but in isolation.  Such nonintegrated knowledge, when searched with 

current search engines, can answer users‘ questions with no relation or semantic 

understanding between domains. The Semantic Web can play a very important role by 

providing understanding and the semantics of a given domain. We are motivated by the 

requirement of semantically integrating the knowledge from heterogeneous domains. This 

cross-domain integrated knowledge should enable us to answer users‘ questions referring 

to multiple domains by semantically understanding the query and reasoning the answer 

based on the relations among the domains.  

                                                 
6
 http://www.netz-tipp.de/sprachen.html 
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3.1.3 Relevancy  

Search engines crawl web content and create indices that are used to retrieve the results 

for users‘ search queries. The users write their queries using natural language, while the 

current search engines are keyword-based. This leads to a challenge to understand users‘ 

queries correctly. Moreover, users might not be able to express all their needs explicitly 

while the search engines are limited to the provided query to bring the matched results. 

Because user‘s needs are different, the relevancy of the retrieved results varies from user 

to user. This leads to a challenge to get the relevant and personalized information based 

on the user‘s needs. The Semantic Web addresses relevancy by semantic understanding of 

the users‘ queries and reasoning on the annotated web sources based on the integrated 

domain ontologies. Moreover, personalization technologies help in understanding the 

users‘ needs better, which can support semantically enriching the queries and retrieving 

personalized results. This raises the challenges of semantically manipulating the users‘ 

queries, reasoning, and annotating web content based on the domain ontologies.   

3.1.4 Framework 

Some domains are quite critical to users, such as the health and food domains. 

Information retrieval in these areas makes these challenges even more obvious. There is a 

need to have an integrated infrastructure that handles these challenges. An infrastructure 

in the form of a framework with support of the Semantic Web and personalization 

technologies will help the web developers to develop semantic applications for different 

domains.  

A framework is a software platform for developing an application for a given platform. 

Generally, frameworks provide an application programmable interface (API) for 
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accessing its components, whereas the framework itself serves as pillars for building up 

the application so developers do not have to do everything from scratch. A framework 

may also include additional software libraries and other programs used in the software 

development process. Therefore, these are considered basic requirements for any common 

framework for development. 

We propose a framework for ontology-based semantic annotation to retrieve personalized 

information (OSAPI). Below, we present the proposed framework to handle multilingual 

cross-domain web content and that can be easily adapted to any domain, such as the 

health and food domains. We start with discussing the requirements of such a framework, 

show the proposed framework architecture, and briefly describe each component of the 

framework.  

3.2 Requirements 

We aim to build a multilingual cross-domain personalized Semantic Web search 

framework that can adapt to any domain, such as the health and food domains. Below we 

present the requirements for such a Semantic Web search framework.  

1) The framework should be applicable to any domain with minimal customization.  

2) The framework should support multilingual needs with respect to ontologies, Web 

sources, knowledgebases, and user‘s queries. 

3) The framework should facilitate cross-domain integration of ontologies and 

knowledgebases. 

4) The framework should support acquiring and annotating web sources in 

heterogonous formats. 
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5) The framework should provide a mechanism to decide the trust level of the 

acquired web sources. 

6) The framework should generate standard semantic annotation formats for the 

acquired web sources based on the domain ontologies.  

7) The framework should semantically manipulate the user‘s queries.  

8) The framework should provide reasoning capabilities for answering user‘s queries. 

9) The framework should capture and model the user‘s preferences.  

10) The framework should personalize the retrieved results.  

11) The framework should support a standard ontology representation format.  

12) The framework should provide the required ontology management services to 

achieve the desired objectives (i.e., alignment of ontologies from different 

domains and languages). 

3.3 Proposed Framework 

Based on an intensive literature review and discussions among the project team members 

including the consultants, we propose an ontology-based semantic annotation and 

personalized information retrieval (OSAPIR) framework that addresses the above 

requirements. The proposed framework is able to adapt to any domain by defining the 

domain ontologies, lexical resources, trust level, and seed web sources. Furthermore, the 

framework supports multilingual needs regarding ontologies, web sources, and users‘ 

queries. Figure 14 shows the architecture of the proposed OSAPIR framework.  
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Figure 14 Architecture of OSAPIR Framework 

There are three dimensions of the requirements that work together to achieve the 

framework‘s objectives. First, users‘ queries need to be semantically understood 

according to the domain ontologies. The retrieved results from the knowledgebase should 

be personalized based on users‘ needs. Second, the web content needs to be annotated 

according to the domain ontologies to populate the knowledgebase. Third, the cross-

domain ontologies and knowledgebase need to be managed in an efficient and effective 

way. As a result, the proposed framework is divided into three major components: data 

acquisition and semantic annotation, ontology management, and semantic query 

manipulation and personalization. Below is a brief description of each component. 
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3.3.1 Data Acquisition and Semantic Annotation Component 

The main goal for this component is to collect and annotate the contents of multilingual 

web sources based on the predefined domain ontologies. This component consists of two 

major layers: the acquisition layer and the semantic annotation layer.  

The acquisition layer consists of multiple data integration tasks for collecting data from 

web sources related to the targeted domains. The data collected from web sources are then 

used by the annotation layer for semantic enrichment. The acquisition layer is configured 

to collect data from specific websites based on certain criteria such as trust level or 

predefined seed websites. The relevant web sources are collected based on their relevancy 

to the domain ontologies. This layer supports processing of all common web document 

formats such as HTML, XML, PDF, Office Word, and multimedia. 

The semantic annotation layer annotates the acquired web sources based on the domain 

ontologies and the predefined cross-domain integration. Moreover, it provides multiple 

mechanisms to perform automated annotations for semi-structured (i.e., tables) and 

unstructured (i.e., paragraphs) web sources. This layer produces embedded annotation 

inside the web document using standard annotation languages such as RDFa, 

Microformat, and Microdata. It can also produce stand-alone annotation using standard 

annotation languages such as RDF, N3, and Turtle. More elaboration about this 

component can be found in (133).  

3.3.2 Ontology Management Component 

The ontology management component takes care of managing the network of 

heterogonous ontologies and knowledgebases required by the OSAPIR framework (i.e., 

integration model for cross-domain and/or multilingual ontologies). It also provides 
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different ontologies management tasks for information processing (i.e., mapping of 

various ontologies for more efficient sharing and reuse). This component can process any 

standard ontology representation language. It also provides API interfaces to access the 

ontologies by two other components of the proposed framework and provides reasoning 

capabilities on the knowledgebase to allow semantic answering of the users‘ queries. 

More elaboration about this component can be found in (134).  

3.3.3 Semantic Query Manipulation and Personalization Component  

This component is used to interface with the end user and capture and model the user‘s 

preferences into a user‘s profile. It semantically manipulates the multilingual user‘s 

queries and enriches them with more information from the user‘s profile. This component 

interacts with the ontology management component for query reasoning based on the 

domain ontologies and knowledgebase. Moreover, it personalizes the retrieved results and 

captures the user‘s interactions to enhance the user‘s profile and provide answers that are 

more relevant. This component is the main focus of this thesis, and more elaboration 

about the details of this component will be highlighted in the upcoming chapters. 
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4 CHAPTER 4 

AGENT-BASED-FRAMEWORK FOR SEMANTIC-QUERY-

MANIPULATION AND PERSONALIZED INFORMATION 

RETRIEVAL (ASPIR) 

The proposed framework in this chapter represents one component of the OSAPIR 

framework introduced in Chapter  3, which aims to help users find relevant information 

that fits their needs. The architecture of the main framework is composed of three major 

components. The first is the semantic query manipulation and personalization component, 

the focus of this thesis, which takes care of representing the user‘s preferences, 

understanding the user‘s queries semantically, and personalizing the retrieved 

information. The second is the ontology management component, which takes care of 

representing and managing the domain ontologies. The third is the data acquisition and 

semantic annotation component, which takes care of determining trusted web sources and 

annotating the information based on the predefined domain ontologies. In the following 

sections, we highlight the main requirements for the semantic query manipulation and 

personalization framework, namely the agent-based-framework for semantic-query-

manipulation and personalized information retrieval (ASPIR). Then we show the 

architecture of the ASPIR framework followed by detailed explanations of each agent in 

the ASPIR framework.  
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4.1 Framework Requirements 

Usually, we need a framework to abstract the functionalities of a system. The main 

requirements of a semantic query manipulation and personalized information retrieval 

framework are that it should: 

1) capture and model the user‘s preferences; 

2) semantically manipulate the user‘s query; 

3) enrich the query with the user‘s preferences; 

4) personalize the retrieved results; 

5) support multilingual use; 

6) be domain independent; and 

7) support building a friendly interface.  

4.2 Framework Architecture 

We propose a framework for the semantic query manipulation and personalized 

information retrieval system that meets the requirements mentioned in Section  4.1. The 

proposed framework is agent based, whereby the agent helps in adapting to the user‘s 

needs and learns the user‘s preferences (135). An agent is a software entity that has 

certain objectives, works autonomously in a specific environment, and collaborates with 

other agents (123). As there is much agent interaction, using agents is advised to utilize 

the well-established and efficient agent communication mechanisms that ease 

communication complexities (136). Moreover, agent-based modeling adds to the 

information retrieval system the following three advantages (137): 
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(1) Adaptability: agent can monitor the user‘s behavior to learn the user‘s preferences, 

to understand the user‘s needs, and to update the user‘s profile.  

(2) Initiative: agent can proactively return the relevant information depending on the 

user‘s needs and observe any variation in the information sources.  

(3) Collaborative: agents can collaborate with each other to share the information. 

The proposed framework consists of: (1) the interface agent, which handles the user‘s 

interactions, (2) user‘s profile agent, which captures and manages the user‘s preferences, 

(3) semantic query manipulation agent, which manipulates the user‘s query, and (4) 

personalized retrieval agent, which personalizes the retrieved results. Figure 15 shows the 

ASPIR architecture followed by the details of each agent in the framework. 

 

Figure 15 Architecture of the ASPIR Framework 
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4.3 Interface Agent 

The interface agent is the endpoint from the user‘s perspective that allows the user to 

create a profile. It accepts the user‘s queries, formulates and shows the personalized 

results, and then monitors the user‘s explicit and implicit behaviors that reflect the user‘s 

feedback on the results.  

The interface agent needs to interact with the user to get the user‘s input and display the 

retrieved results. The input could be the preferences entered explicitly by the user, which 

will be forwarded to the user‘s profile agent to update the user‘s profile. The input could 

be also the user‘s queries, which will be forwarded to the semantic query manipulation 

agent for semantic manipulation. The semantic query manipulation agent will 

communicate back to the user if there is a need to revise the user‘s queries, get any 

missing information, or correct the spelling. Moreover, the interface agent displays the 

user‘s profile and formulates the personalized results to the user. Finally, it monitors the 

user‘s interactions on the retrieved results and forwards these interactions to the user‘s 

profile agent to infer new preferences. Figure 16 shows the functionalities of the interface 

agent followed by more emphasis on three major functionalities, namely: 

1) collecting the user‘s preferences;  

2) monitoring the user‘s behaviors; and  

3) formulating the personalized results. 
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Figure 16 Interface Agent Functions 

4.3.1 Collecting the User’s Preferences 

One of the major functionalities of the interface agent is to collect the user‘s preferences 

by asking the user explicitly to fill out a form. The preferences are defined based on a 

methodology, as will be explained in Chapter  5. The preferences are then sent to the 

user‘s profile agent to create a new profile or to update an existing one. The user can 

always access the profile‘s form and update it. Moreover, the user can prioritize the 

preferences to give more weight to the important ones from the user‘s perspective. We 

will give more details about the prioritizing in Section  4.4. Given a user um and set of X 

preference elements pem1, pem2, …, pemx ε PEm where the user can define a value for each 

preference vpem1, vpem2, …, vpemx and associate a weight for each preference wpem1, 
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wpem2, …, wpemx, the value of the preference depends on the nature of the preference, 

such as a ―milk‖ value for an ―allergy‖ preference.  The value of the preference‘s weight 

varies from 0 to 1 based on the user‘s assessment of how a certain preference can 

influence the food choice. The possible options for these weights are: very important 

(w=1.00), important (w=0.75), neutral (w=0.50), not important (w=0.25), and not 

applicable (w=0.00). The weight of each preference is based on the user‘s inputs and used 

in the results filtering as discussed in Chapter  5. It shows that the initial weights are based 

on a survey conducted to prioritize the results.  

4.3.2 Monitoring the User’s Behaviors 

Another major functionality of the interface agent is to monitor the user‘s behaviors and 

interactions on the retrieved results. To capture their preferences, users can fill out a form 

to create a profile for their preferences, but most users do not spend the time to fill out 

such forms (51). The interactions with the retrieved results will be logged and then 

analyzed to deduce new preferences and update the user‘s profile. This helps in enriching 

the user‘s queries and better personalizing the retrieved results.  

The user‘s interactions with the results can be either explicit or implicit. The explicit 

interactions are captured by asking users about their feedback on the results. Given a user 

um who types a query Q1 that has been processed and results Y are retrieved, the results 

consist of n number of predicates P1, P2, …., Pn ε P. Each predicate in the results comes 

from a certain web source D1, D2, ….., Dn. Also, each predicate contains a number of 

RDF terms RT1, RT2,…,RTp. RDF terms are part of the knowledgebase and are domain 

dependent. For example, in the food and health domains, ―apple‖ is an RDF term found in 

the domain knowledgebase. We use Boolean functions to represent the captured explicit 
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feedback, where a Boolean function has two possibilities: true or false. The explicit 

feedback measures are listed below. 

- For measuring the overall satisfaction of the results, an example question is, ―Are 

you satisfied with the retrieved results?‖ This measure is represented by a Boolean 

value of the function: satisfiedResult(U1, Q1, P). The value of the function will be 

reflected in future searches.  

- For identifying the predicates that should be filtered out from the results, an 

example question is, ―Which predicate should be filtered out?‖ This measure is 

represented by a Boolean value of the function: filterPredicate(U1, Q1, Px) to filter 

out the predicate Rx. For example, the result contains five predicates. Four of them 

are satisfied, while one is not satisfied. Then the user marks the unsatisfied 

predicate to be filtered out. 

- For identifying if a certain predicate should be re-ordered and displayed first in the 

results, an example question is, ―Which predicate should be shown first?‖ This 

measure is represented by a Boolean value of the function: 

showPredicateFirst(U1, Q1, Px) for the predicate Px. For example, the result 

contains eight predicates, which are ordered and sorted. The user thinks that the 

fifth predicate should be shown first. The user then marks the fifth predicate to be 

shown first for similar queries.  

- For identifying the data sources that the user trusts more, an example question is, 

―Which data source do you trust more?‖ This measure is represented by a Boolean 

value of the function: trustSourceMore(U1, Q1, Dy) for the data source Dy. For 

example, the result contains a number of predicates that come from three different 
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sources. The user believes that a particular source is more trusted than the other 

two sources. The user marks this source.  

- For identifying the RDF terms that the user likes and that could be added to the 

query for enrichment, an example question is, ―What terms within the result 

should be added to the query?‖ This measure is represented by a Boolean value of 

the function: likesTerm(U1, Q1, RTz) for the RDF term RTz of the result. For 

example, there are different terms within the results such as ―apple‖ and 

―diabetes‖ in the statement, ―An apple is good for diabetes.‖ The user believes that 

the term ―apple‖ should be added to the query. The user then marks ―apple.‖  

- For identifying the RDF terms that should be taken out from the query for 

enrichment, an example question is, ―What terms within the result should be taken 

out from the query?‖ This measure is represented by a Boolean value of the 

function: dislikesTerm(U1, Q1, RTz) for the RDF term RTz of the result. For 

example, there are different terms within the results such as ―sugar‖ and 

―diabetes‖ in the statement, ―People with diabetes should be careful when taking 

sugar.‖ The user believes that the term ―diabetes‖ should be taken out from the 

query. The user then marks ―diabetes.‖ 

Meanwhile, the user‘s implicit interactions can be captured by monitoring the user‘s 

behaviors regarding the results. Given a user U1 who types a query Q1 that has m terms 

QT1, QT2, …., QTm ε Q1, the query is processed and then the results P are retrieved. The 

results consist of n number of predicates P1, P2, …., Pn ε P. Each predicate comes from a 

certain data source D1, D2, ….., Dn. Also, each predicate contains a number of RDF terms 

RT1, RT2, …, RTp. The user can click on a particular result and visit it staying for a certain 

time in the visited predicate. The visit duration is denoted as VD1. We use numeral, 
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Boolean. and array functions to represent the implicit measure. A Boolean function has 

two possibilities: true or false, the numeral function has number as value, while the array 

function is taking an array of inputs. The implicit measures are listed with examples. 

- Logging the query terms to identify the frequently asked query‘s terms is 

represented by an array function queryTerms(U1, Q1, QT) to log the terms of the 

query. 

- Logging the clicks on a particular predicate to measure the visit frequency of the 

visited predicate is represented by a Boolean function resultClicked(U1, Q1, Px) to 

log the clicks on a particular predicate Px.  

- Logging the time spent in visiting a particular predicate to measure the possibility 

of preferring the visited predicate is represented by a numeral function 

resultVisitDuration(U1, Q1, Px, VD1) to log the time spent VD1 in visiting the 

predicate Px. 

- Logging whether the user prints a particular predicate to measure the possibility of 

preferring the printed predicate is represented by a Boolean function 

resultPrinted(U1, Q1, Px) to log the printing of the predicate Px.  

- Logging whether the user bookmarks a particular predicate to measure the 

possibility of preferring the bookmarked predicate is represented by a Boolean 

function resultBookmarked(U1, Q1, Px) to log the bookmarking of the predicate Px.  

- Rating a particular predicate to measure the possibility of preferring the rated 

predicate is represented by a numeral function resultRated(U1, Q1, Px) to log the 

rating of the predicate Px. We use star to represent the rating where we have the 

following interpretations for the star ratings shown in TABLE 5. 
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TABLE 5 Star Ratings Details  

 

Star rating Weight Details 

5 stars 1.00 Very interested 

4 stars 0.75 Interested 

3 stars 0.50 Neutral 

2 stars 0.25 Mildly interested 

1 star 0.0 Not very interested 

 

All explicit and implicit feedback is collected and sent to the user‘s profile agent for 

further processing to infer new preferences, to update the user‘s profile, and then to 

personalize the results. More details on how we use these measures are in Section  4.4 

4.3.3 Formulating the Personalized Results 

Another major functionality of the interface agent is to formulate the retrieved results. It 

formulates the semantic results that are retrieved from the personalized retrieval agent to 

show the results in a user-friendly interface. It shows the personalized results with the 

associated explicit feedback controls that are explained in Section  4.3.2.  

We show the results in small boxes called semantic widget boxes. These include a set of 

results within the same relation based on a certain semantic query. The advantage of 

having such a way of representing the results is the flexibility of showing any set of 

results in any location on the screen. Another advantage of using the semantic widget box 
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is the ability to reuse these boxes in different result screens based on the user‘s question. 

This helps in avoiding extra effort to rebuild these boxes.  

The content of the semantic widget box can be general information that fits any domain. 

For example, the user‘s profile widget box shows the profile information related to the 

retrieved results. Another example of general boxes is the manipulated query widget box, 

which shows how the query is manipulated and annotated. An example of the domain-

dependent widget box is the positive relation widget box, which shows the results with 

positive relations between two different terms, such as ―good food‖ for ―diabetes.‖ A final 

example is the abstract answer widget box, which summarizes the whole results. For 

example, if the user asks, ―Is apple good for diabetes?‖ then the abstract answer widget 

box could show, ―Yes, apple is good for diabetes based on 4 sources as shown in details 

below.‖ 

The expected result of any query is represented in a template. The results template is 

associated with semantic queries and contains three ordered lists of semantic widget 

boxes: the left semantic widget boxes list, center semantic widget boxes list, and right 

semantic widget boxes list. Each list can contain as much as needed of the semantic 

widget boxes based on the matched results template. Within each list, the semantic widget 

boxes are ordered so that they are shown in the result page with the same order. The result 

page is divided into three columns, left, center, and right, where each column is associated 

with the corresponding list: left semantic widget boxes list, center semantic widget boxes 

list, and right semantic widget boxes list. Figure 17 illustrates the results screen and shows 

the distribution of the semantic widget boxes. Given the result template RT that contains 

three lists of semantic widget boxes SWB_LEFT, SWB_CENTER, and SWB_RIGHT ϵ 

RT represented as following: 
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SWB1-L, SWB2-L, …… SWBm-L for m semantic widget boxes ε SWB_LEFT 

SWB1-C, SWB2-C, …… SWBm-C for n semantic widget boxes ε SWB_CENTER 

SWB1-R, SWB2-R, …… SWBo-R for o semantic widget boxes ε SWB_RIGHT 

 

Figure 17 Distribution of Semantic Widget Boxes in the Results Page 

The widget boxes can further shifted by the user to be more flexible with the user‘s 

preferences. The results template is then updated with the desired order of the results 

based on the user‘s interests.  
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4.4 User’s Profile Agent 

The user‘s profile agent manages the user‘s profile. More details on modeling the user‘s 

preferences and representing the user‘s profile are presented in Chapter  5 and Section  7.5. 

It logs the user‘s interaction with the results and then infers new preferences and updates 

the user‘s profile. It also helps the semantic query manipulation and enrichment agent to 

enrich the user‘s queries with more information from the user‘s preferences. In addition, it 

helps the personalized retrieval agent to personalize the results with information from the 

user‘s profile. The user‘s profile agent can also get feeds from external profile-related 

embedded systems, sensors, and web services. These functions are shown in Figure 18. 

One major function of the user‘s profile agent is to learn and infer new preferences based 

on the user‘s interactions and behaviors. The preferences can be learned by analyzing the 

user‘s interactions log, which contains the user‘s interactions. The logs functions are 

summarized in TABLE 6 and are based on the functions mentioned in Section  4.3.2. 

 

Figure 18 User's Profile Agent Functions 
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TABLE 6 User's Interactions Log Functions 

 

Function Description  

QueryTermFrequency(U1,QT1) Getting the frequency of a term QT1 in the 

user U1 queries  

RDFTermLikeScore(U1,RT1) Getting the like score of an RDF term RT1 in 

results clicked by the user U1 

SourceTrustScore(U1,S1) Getting the trust score for data source S1 from 

the user U1 perspective 

ResultLikeScore(U1,P1,Q1) Getting the like score of a result predicate P1 

for the user U1 when entered the query Q1  

 

Below, we explain each function with more details.  

QueryTermFrequency(U1,QT1) measures the frequency of certain words in the user‘s 

queries where: QueryTermFrequency(U1,QT1)= Function(queryTerms(U1, Q1, QT)). 

The function returns the count of a specific query term repeated in the user‘s queries. The 

higher frequency of a certain word in the user‘s queries indicates that this word is more 

important to the user and hence can be used to enrich the queries. Figure 19 shows a 

representation of the user‘s term frequencies.   
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Figure 19 Example of Terms Frequency 

RDFTermLikeScore(U1,RT1) measures if the user likes a certain RDF term when the user 

browses the results. Its function combines different measures taken while the user 

interacts with the results to create a score for the RDF term. Below we show how we 

calculate the score of a particular RDF term.  

RDFTermLikeScore(U1,RT1) = Function( like(U1, Qm, RT1), dislike(U1, Qm, RT1)) = (1- 

dislike(U1, Qm, RT1)) * like(U1, Qm, RT1)  

where the RDF term liked and disliked in query Qm. and the maximum value of the 

function is limited to 1.  

SourceTrustScore(U1,S1) considers if the user rated the source previously as a trusted 

source and gives it more weight if so. Then it sorts the results based on the maximum 

score.  

SourceTrustScore(U1,S1) = function(trustMore(U1, Q1, S1)) = ∑ trustMore(U1, Q1, S1) 

ResultLikeScore(U1,R1,Q1) combines different interactions by the user such as explicit and 

implicit feedback such as printing, bookmarking, clicking, and visit durations. Below is 

the equation for this function: 
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ResultLikeScore(U1,R1,Q1) = Function(filter(U1, Q1, R1), showFirst(U1, Q1, R1), 

resultClicked(U1, Q1, R1), resultVisitDuration(U1, Q1, Rx, VD1), resultPrinted(U1, Q1, R1), 

resultBookmarked(U1, Q1, R1)) =  (1-filter(U1, Q1, R1)*(10* showFirst(U1, Q1, R1) + 

0.25* resultClicked(U1, Q1, R1) + 0.25* resultPrinted(U1, Q1, R1) + 0.25 * 

resultBookmarked(U1, Q1, R1) + 0.125 * resultVisitDuration(U1, Q1, Rx, VD1)) 

4.5 Semantic Query Manipulation Agent 

The semantic query manipulation agent is required to manipulate semantically, enrich, 

and process the user‘s queries. It interacts with different agents to process the user‘s 

queries. It interacts with the interface agent to acquire the user‘s query to manipulate it 

through different steps. Moreover, the user‘s query might miss some information that 

needs to interact with the interface agent to revise the query. After the query is 

manipulated, the semantic annotated query is sent to the personalized retrieval agent. The 

semantic query manipulation functions are shown in Figure 20. 

 

Figure 20 Semantic Query Manipulation Agent Functions 
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We present the required steps of the semantic query manipulation. After getting the user‘s 

query, we first identify the query‘s language because each language has its own syntax, 

linguistic characteristics, and way of processing. Then we tokenize the query into tokens 

(terms) and check the correct spelling of the query using the spell checker and synonyms 

manager services, which check the term spelling and provide synonyms for any term.  

After that, we do part-of-speech (POS) analysis to identify which term is a verb, which 

term is a noun, and so on. Then the query is classified into the appropriate question type 

using the lookup words dictionary services. Lookup words dictionary is a repository for 

the predefined terms that help in recognizing the stop-words, the question types, the 

relations between terms, and other predefined names. It is a multilingual dictionary that 

contains a list of terms for each language to be used in looking up and finding the 

matching terms. The question type is required to decide how the answer will be 

formulated. 

Next, we identify the measurement keywords within the terms of the query. We look for 

(1) numbers that represent quantities, (2) measurement units, and (3) other measurement 

means such as serving sizes in the food and health domain. An example of the question is, 

―What food can provide me 100 mg of calcium?‖ For measurement units and 

measurement means, we use the lookup words dictionary, which contains predefined 

keywords to compare terms with.  

After that, noise words are filtered using lookup words dictionary‘s list of noise words, 

such as do, does, an, the, etc. This helps in limiting the processing to only the words that 

could be related to the domain ontology.  

Then we identify the terms related to the domain ontology through the named entity 

recognition techniques. The agent interacts with the domain ontology manager to get a 



77 

 

populated list of all ontologies‘ concepts and knowledgebases‘ instances. It determines 

whether the query term is a concept or an instance and gets the semantic information for 

the identified term.   

Next, we use a morphological analysis tool to get the root of the remaining words, which 

will help us in correlating the remaining terms. After that, we identify the possible 

relations between these terms using the lookup words dictionary to match it with the pre-

defined relationship terms. We then identify other terms that are defined in the repository, 

such as the terms that mean the user is asking for their daily needs. An example is, ―What 

food can provide me enough calcium?‖  

After that, we check the terms that we could not match. For this, we use techniques such 

as context analysis, pattern, and synonymous to identify the nearest match. The agent also 

gets the synonyms of the terms from the spell checker and synonyms manager to match 

them with the terms of the user‘s query.  

Ambiguity could happen in the previous steps, such as when the term ―cholesterol‖ is 

classified as both nutrition and disease. Another example is when we identify two 

relations when we have only two concepts or instances and only one of these relations is 

correct. For this, we analyze the context of the query, use the pattern for the previously 

known cases, and get weighted named entity recognition to judge on the most likely 

correct match.  

Then we match the identified terms with the best query template using the query and 

result templates repository services. The query template models the possible input from 

the user with the respective semantic queries and the expected results. The query and 

result templates repository stores the query templates. If there is no template that can be 

matched with the user‘s query, then the agent revises the query using the user‘s profile 
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first. If the user‘s query is still not matching any query template, then the agent interacts 

with the user to receive for more information.  

The user‘s profile is retrieved from the user‘s profile agent for two reasons: to revise the 

query and to enrich the query with more information about the user. Finally, a semantic 

annotation of the query is produced and sent to the personalized retrieval agent. Figure 21 

illustrates these steps graphically. 

 

Figure 21 Semantic Query Manipulation Steps 
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Since we are not doing natural language processing (NLP), we must define specific query 

templates to scope the user‘s queries and match them to the related ontologies. Query 

templates, in our research, represent all expected queries from the user, define the 

concepts that could be extracted from the user‘s query, correlate different ontologies that 

are required to answer the query, and finally specify the answer template for each query. 

Matching the user‘s query to the predefined query templates is not binary  matching; it is 

more complicated. Identifying the concepts and relations within the user‘s query that are 

related to the domain ontology is not sufficient to match them with any query template. 

We try to fill the most appropriate query template concepts and relations, which were 

identified in the query-processing phase. However, there are some cases where we have 

incomplete information and hence we need to depend on other sources to fill the query 

template. After getting all what we can extract from the query, we get aid from the 

domain ontology to detect the missing information based on what is found. Then we look 

at the user profile, if any, and fill in the missing information from the profile properties. 

Finally, we can go back to the user and ask explicitly for more information to match the 

query template. 

Figure 22 outlines the algorithm used for query template matching. It takes threshold as 

input to return the best matched query above that threshold. So, even if there is no query 

template matching 100%, it will return the best matched based on the threshold. 
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ALGORITHM   matchTemplate 

  

Input QSTP Question Type 

SN Array of identified Semantic Name Entities 

OT Array of identified other terms 

thrSM Threshold for matching Semantic Name Entities 

thrOT Threshold for matching other terms 
 

  

Output QRTM Matched query template (if any) 
 

  

1 Initiate: 

QRTMS Array of defined query templates 

QRTM Query template (set empty be default) 

CMOT Similarity score for Other Terms 

CMSN Similarity score for Semantic Name Entities 

CMOTS Array for Similarity scores for Other Terms on all Query Templates 

CMSNS Array for Similarity scores for Name Entities on all Query Templates 

CRSP1 Arrays of the correct spellings of a term (temporary holder) 

OT Array of identified other terms 

QRTM Query template 

NeedRevise Boolean of default False (determine if the query needs revising with the user) 
 

  

2 Set x =1  

3 Loop For each QRTMx ϵ QRTM where 1 ≤ x ≤ n (for each query template QRTMx in n templates) 

4.1 CMOT = compare(OT, QRTMx) - returns the similarity for OT 

4.2 CMSN = compare(SN, QRTMx) - returns the similarity for SN 

4.3 Push CMOT to CMOTS array 

4.4 Push CMSN to CMSNS array 
 

5 End Loop 

6 Set iOTMax = index (getMaxScore(CMOTS)) 

7 Set sOTMax = score(CMOTS(iOTMax)) 

8 Set iSMMax = index (getMaxScore(CMSMS)) 

9 Set sSMMax = score(CMSMS(iSMMax)) 

10 If (sSMMax ≥ thrSM and sOTMax ≥ thrOT and iOTMax = iSMMax ) 

11         QRTM = QRTMS(iSMMax) 

12 Else 

13         Sort(CMSNS)  

14         Sort(CMOTS) 

15         Set y = 1  

16         Loop for each CMSNy ϵ CMSNS where 1 ≤ y ≤ o (where there are o objects in CMSNS) 

1.1 Loop for each CMOTz ϵ CMOTS where 1 ≤ z ≤ p (where there are p objects in CMSNS) 

16.2     If(score(CMSNy) ≥ thrSM and score(score(CMOTz) ≥ thrOT and y = z) 

16.3           QRTM = QRTMS(y) 

16.5    End If 

16.6   End Loop 

16.7 End Loop 
 

17 End If 

1 Return QRTM 

19 End 

 
 

Figure 22 Outline for Template Matching Algorithm (matchTemplate) 
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4.6 Personalized Retrieval Agent 

The Personalized Retrieval Agent is required to personalize the retrieved results.  It gets 

the annotated query from the semantic query manipulation agent and then identifies the 

results template that defines the expected results of the query. It then retrieves and 

personalizes the semantic result before sending it to the interface agent, where it is 

formulated for the end user.  The personalized retrieval agent functions are shown in 

Figure 23. 

 

Figure 23 Personalized Retrieval Agent Functions 

The personalized retrieval agent communicates with different agents to process the user‘s 

annotated query and personalizes the retrieved results. First, it receives the annotated 

query from the semantic query manipulation agent. It then enriches the query based on the 

user‘s profile.  After that, it determines the appropriate results template that matches the 

annotated query. The results template determines the semantic queries needed to be 
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reasoned to get all the expected results. After that, the semantic results are post-processed 

to determine if there are any conflicts or possibilities for aggregating similar results, and 

then ranks and sorts them after getting the user‘s preferences from the user‘s profile agent. 

Finally, the results are personalized and sent to the portal agent to show them to the user. 

The steps are illustrated in Figure 24. 

 

Figure 24 Results Personalization Steps 

We go through the results personalization steps in more detail. First, the selection of the 

results template is correlated to the query template. Each query template corresponds to a 

results template. The query template defines the possible input from the query, and the 

results template defines the expected output results. The result template contains a list of 
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semantic queries that need to be reasoned by the domain ontology manager, which 

provides a number of services, such as reasoning and executing the semantic queries. The 

domain ontology manager sends the output as semantic results in RDF format.  

Next, the conflicts between results are determined. In the Semantic Web, any relation in 

the statement in the web source is represented as a triple <subject, predicate, object>. 

Each record in the results has RDF terms and relations between each two terms. This is 

represented in RDF by the triple <subject, predicate, object> denoted <S, P, O>. We 

define a conflict if two results have an inverse relationship between the same terms. After 

that, the agent aggregates similar results. Then we get the user‘s profile and filter the 

results based on the user‘s interactions with previous results. For example, if the user 

trusts a particular source more, then we show the results from that source first. We rank 

the results based on the user‘s preferences and then sort them based on the results‘ 

aggregation and user‘s preferences as modeled in the below function.   

Sort(results) = f(aggregated results, user’s preferences) 

We give more weight to the aggregated results where the same relation is repeated in 

more web sources. Also, we give weight to the user‘s preferences to sort them first. Then 

the personalized results are sent to the interface agent to display them. More details are 

offered in Chapter  6. 
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5 CHAPTER 5 

CAPTURING USER’S PREFERENCES RELATED TO 

FOOD AND HEALTH  

Our research objectives are to manipulate semantically the user‘s query and then 

personalize the results in the domains of nutrition, food, and health. The user‘s profile 

represents the user‘s preferences. In the following sections, we first analyze and capture 

the user‘s preferences and then propose a user‘s profile that represents these preferences. 

Therefore, one milestone in constructing the user‘s profile is to capture the user‘s food 

preferences and health conditions. This will help in answering the user‘s queries with 

more relevant results based on the user‘s personal preferences, health condition, culture, 

religion, etc.  

5.1 Methodology 

To capture the user‘s preferences, we start with some motivation questions that help in 

driving the attributes of the user‘s preferences. Second, we analyze and study the answers 

of the motivation questions to identify the attributes that affect the user‘s choices and 

preferences. For this, we first classify the identified attributes into categories of attributes, 

then we study the relationship between these attributes and see whether it is possible to 

combine them or resolve any conflict between them. We propose to give priority and 
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weight for each attribute to capture the influence of these attributes on the user. Figure 25 

illustrates the methodology to capture the user‘s preferences. 

 

Figure 25 Methodology to Capture User’s Preferences 

5.2 Motivation Questions 

We start this section by raising questions that help in identifying the attributes affecting 

the user‘s food choices and preferences.   

- Why do we like a specific food to eat? 

- Why do we avoid a certain food? 

- What attributes could we extract from the answers for the first two questions? 

- Is there any relation between these attributes? (e.g., Is there any relation between 

the locations or culture with regard to the food preferences?) 

- Can these attributes be combined?  

Collect 
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- Do these attributes conflict with each other? 

- Is there an order or weight for these attributes?  

- Are we committed to our culture and religion when it comes to food preferences? 

(e.g., Is it ok to try new food in a new culture?)   

- Are we committed to health constraints when it comes to food? 

- Are we considering the daily nutrition needs when we choose the food?  

- How can we know and learn others‘ food preferences and constraints? Are they 

written somewhere? 

5.3 Attributes Affecting the Choice of Foods 

To study how we prefer a specific food and do not prefer another, we also need to study 

the attributes that influence our food choices. To come up with these attributes, we 

analyze the answers to the previous questions. Then we classify these attributes into four 

categories: personal preferences, health conditions, cultural preferences, and religion 

restrictions. Below is a detailed explanation for each category followed by other attributes 

that could be considered in future work.   

5.3.1 Personal Preferences 

Many people prefer certain foods while disliking other foods with and without reasons in 

mind. There are many examples of the possible reasons for preferring or avoiding some 

food such as the taste, look, color, and smell of the food. And then sometimes we do not 

know why we like or dislike a certain food, as it might be a personal habit, such as when 

we do not eat a certain food while children and then we get used to avoiding it. 
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5.3.2 Health Condition Constraints 

Health conditions can restrict some food or limit their quantity while encouraging other 

food. Examples include relations between some diseases and certain foods. Some foods 

can help in preventing or treating diseases, such as eating oranges to help treat the ‗flu. 

There are also food allergies that can cause serious impact on people‘s health. Another 

example is when a woman is pregnant and she is advised to eat healthy foods that contain 

vitamins, minerals, and so on. 

Other health attributes can be the health goals, daily needs, and commitment to a sport or 

diet program limiting food choices. A health goal can drive someone‘s daily food 

program, such as in reducing weight. There are many food programs to lose weight, and 

they specify different food types and quantity on daily or meal-by-meal basis. Having a 

health goal can restrict many types of food and motivate taking other types.  

5.3.3 Cultural Preferences 

Different cultures come with different customs and traditions. Culture, location, and 

language are correlated when we talk about culture. Our focus in this thesis is on 

including specific aspects of culture related to food selection, such as (1) what food is 

acceptable in a certain culture and what food is not acceptable; (2) what food is preferred 

in a certain culture and what food is not preferred; (3) what popular nutrition is used by a 

certain culture; and (4) what recipes are commonly used by a certain culture. As an 

example from Saudi Arabian culture, Saudis prefer eating rice that comes in different 

colors and flavors, such as red, white, or brown, and normally it is cooked with meat, fish, 

or chicken.  
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The relationship between food and culture also shows when we recommend foods across 

different cultures, which may involve different measurements and different recipes. 

Certain foods are substituted with other foods in different cultures, as are food 

combinations, the timing of meals, eating certain foods at certain events, and finally the 

different names cultures give to the same foods. 

People‘s culture can be correlated to their location, both original and new. A person‘s 

location of origin is a factor, as is how rigidly that person follows their food culture. This 

can be determined by monitoring the person‘s interaction and behaviors with food 

recommendations. That same person‘s current location and how open he or she is to the 

different foods in the new location could also be inferred from reactions with the food 

recommendations. For example, a Muslim Saudi woman greatly influenced by her place 

of origin visits Japan and does not eat sushi or other Japanese food. For another example, 

a different Muslim Saudi is not highly influenced by his place of origin, and when visiting 

Japan he tries many Japanese foods. 

Another way is to look at the relation between food and culture is to consider the time 

dimension. Some foods are preferred at breakfast, while others are preferred at lunch and 

dinner. Many restaurants, for example, offer appropriate foods based on the time of the 

day. This will restrict the food choices available. Also, there are some special days, an 

issue of both culture and date, when the offered food is different. A good example is the 

month of Ramadan, which for most Muslims has its unique foods. Therefore, we can take 

an example of Muslims‘ culture of food during the Hijri month of Ramadan, when 

Muslims fast throughout the entire month. However, we cannot say this about the Muslim 

culture in general as it is different from location to location. This shows how time and 

location have different effects on culture. Not all foods eaten in Ramadan are used in 
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other months. Let us say the preference for such foods during Ramadan is high, while it is 

lower in other months. 

5.3.4 Religious Constraints 

Some religions have food restrictions so it is important to capture these constraints to 

avoid inappropriate food advices. As an example, in the Islamic religion alcohol and pork 

are prohibited, so it is not acceptable to recommend any food that contains alcohol or pork 

to Muslims. There are other examples from other religions as well.  

5.3.5 Other Attributes 

We know of other attributes that could be considered, but we do not have data to support 

them at this time. We defer them to future work. Below is the summary of two attributes 

with examples.  

The first attribute is the current climate condition where different foods are good for 

different seasons. Climate affects food choices, such as summer fruits and winter fruits 

and preferring cold food and drink, such as ice cream and cold water, in the summer while 

preferring a cup of coffee or tea in the winter.  

A second attribute is a person‘s financial state, where a budget may restrict expensive 

foods.  

5.4 Relations between the Attributes 

Choosing the right food thus depends on many attributes that sometimes conflict with 

each other. For example, someone who has diabetes may like sweet food. Would this 

person give the health condition or personal preferences the priority? Maybe in this 

example it is wise to give the health condition the priority. However, there are cases that 
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are more complex where conflicts that are more difficult could happen between different 

attributes. We try to analyze the relations between these attributes and highlight the 

possibilities of conflicts and combinations between them.  

5.4.1 Combinations 

Some attributes could be combined without conflicts. A good example is when healthy 

people eat what they like while maintaining a quantity limit and a balance between 

different foods for good nutrition while exercising. Only the person knows how to 

combine these attributes in the best way, and that is why we give the user the flexibility to 

define priorities in these attributes.  

5.4.2 Conflicts 

Conflicts between the attributes can abound and the possibilities are high. A good 

example is when a person committed to a diet program is invited to a wedding reception 

serving heavy food. This is well-known conflict in some cultures such as Saudi Arabia. 

The challenge is how to deal with this conflict, and we think it is difficult to automate a 

process to resolve such conflicts. That is why we need to analyze these attributes and 

prioritize them based on each person‘s preferences and priorities.  

5.4.3 Order and Weight 

Based on our analysis in the previous sections, the user should prioritize the attributes that 

affect the choice of foods. People are responsible for their choices, especially in the 

lifestyle and food they want to eat. The proposed approach is to give users different 

attributes that affect their food choices so they can prioritize them based on their own 

judgment. Then we calculate a weight for each attribute by combining their preferences 
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and priorities to come up with a recommendation equation that helps us to recommend the 

best food for them, as follows:  

Given attributes A1, A2, A3, …. , Am 

Given priorities P1, P2, P3, …., Pn 

Given weights W1, W2, W3, ….., Wk 

Users are given the attributes (A1, A2, A3, …., Am), and then they select the 

priorities for each one (P1, P2, P3, …., Pn). After that, the system calculates the weight for 

each attribute as follows: W1 = 1 / P1, W2 = 1 / P2, W3 = 1 / P3, ……., Wk = 1 / Pn 

The weights are used once for ranking the results in a combination with other factors that 

will be discussed in personalizing the results. 

5.5 Survey on the Attributes and Their Priorities 

We conducted a survey to determine the attributes that affect the user‘s food choices and 

their priorities to establish a base line and default attributes with their order and weights. 

We first created a survey form with all the questions in the survey and published it online. 

A month passed while people filled out the form, following a link that collected their 

responses. We studied the responses to determine possible attributes and their rank. This 

helped us in determining the default weight for each attribute.  

The developed survey was sent to a collection of people from which we have collected 

responses from 142 professionals living in Saudi Arabia ranging in age from 25 to 45 

years. They stated they used the Internet and popular search engines daily to find 

information. They spoke English as second language. They responded with ranking the 
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attributes in the survey and suggesting additional attributes. The responses are 

summarized in TABLE 7. 

TABLE 7 Responses for Survey on the Attributes and Their Priorities 

 

  Scale and Responses 
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1 Personal preferences 67 26 15 16 18 

2 Health condition and/or restrictions 76 31 8 0 27 

3 Cultural-based preferences and/or restrictions 38 29 18 21 36 

4 Religion-based preferences and/or restrictions 58 34 23 3 24 

 

Based on the results, we can say the health condition is the most important attribute that 

affects the food choices for those who answered the survey, followed by personal 

preferences, religion restrictions, and finally cultural preferences.  

5.6 Learning the Attributes from the User’s Behaviors 

We have identified the possible attributes that could affect food choices in the previous 

sections. We then need to learn and capture these attributes for food preferences from the 

user. We have different ways to know the user preferences. One way is to give users a 
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form to fill out and let them express what they prefer and prioritize these attributes. 

Another way is to let the system learns users‘ preferences based on their interactions with 

the system. For example, the system might observe that the user always selects recipes 

that contain tomatoes, and then the system could conclude that the user likes tomatoes. 

User will be asked to review and confirm such conclusions about their food preferences. 

We also give users the chance to prioritize these preferences so that ASPIR can give them 

better recommendations.  
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6 CHAPTER 6 

MODELING OF THE FRAMEWORK PROCESSES 

This chapter presents the details of models used to represent the framework processes. 

This includes the models used for the annotated knowledgebase, semantic predicates, 

query, retrieved results, user‘s interactions with the results, user‘s profile, query 

enrichment, results conflict resolution, and personalization. 

6.1 Modeling of the Knowledgebase and Predicates 

We use the notation H to represent the set of A health conditions and the notation F to 

represent the set of B foods. We use the notation D to represent the set of N data sources 

that are annotated in the knowledgebase, where each data source contains predicates with 

relations between the health conditions and foods. Next, we show the model used for the 

annotated knowledgebase.  

H = {ha | ha is a health condition, a = 1, 2, ……, A} 

F = {fb | fb is a food, b = 1, 2, ……, B} 

D={dn|dn is a data source, n=1,2,…,N} 

We use the notation S to represent the set of I subjects and the notation O to 

represent the set of J objects, while the notation P represents the set of K predicates. Each 

data source dn contains a set    
 of annotated predicates in the knowledgebase. The 

predicates are the relations between the subject and the object. For example, if, ―An apple 

is good for diabetes,‖ is a statement in the data source, then the subject is ―apple,‖ the 
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object is ―diabetes,‖ and the predicate is ―is good for.‖ The predicates can be categorized 

into two groups: positive predicates denoted as P
+
 and negative predicates denoted as P

-
. 

In the domains of food and health, examples of the positive predicates are: ―has positive 

effect on,‖ ―treats,‖ and ―prevents.‖ Examples of negative predicates are: ―has negative 

effect on‖ and ―causes.‖ We use the notation R to represent all relations between the 

subject set S and the object set O where every ordered pair (si, oi) in R corresponds to a set 

of predicates Pi that is a subset of P. Next, we show the model used for predicates.  

S={si|si is a subject, i=1,2,…,I} 

O={oj|oj is an object, j=1,2,…,J} 

   
             is a predicate from the data source dn , k=1,2,…,K} 

    {    |                                                             

         } 

P= ⋃    

   
 +

={    |        
 ,      is a positive predicate} 

   
 - 

={    |        
 ,      is a negative predicate} 

R = {(si, oi) | si is related to oi by      in dn , k=1,2,…,K, n=1,2,…,N} 

6.2 User’s Profile Model 

We use the notation U to represent the set of M users as follows:  

U = {um |um is a user, m=1,2,…,M }. 
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We use the notation UPm to represent the user‘s profile for the user um, which consists of 

five parts: (1) preference elements, notated as PEm, (2) the cultural preference of the user, 

notated as CPm, (3) the values of the profile‘s basic information, notated as VBIm, (4) the 

data source satisfaction evaluated by the user, notated as DSm, and (5) the preferred 

predicates based on the user‘s interactions, notated as PPm. We explain and model each 

one of these five parts below.  

First, each user‘s profile contains a set of preferred elements where each user likes and 

dislikes certain foods and has a specific health condition. We use the notation PEm to 

represent the set of X preferred elements that belong to either the health condition domain 

H or food domain F. We use the notation VPEm to represent a function that sets the value 

of each preferred element. It ranges from -1, which means it is not preferred, 0, the default 

value that has no opinion, and +1, which means it is preferred. We use the notation WPEm 

to represent a function that determines the weight of each preferred element. It ranges 

from 0 to 1, which reflects the importance of each preferred element. We use the notation 

wvpemx to represent a function that determines the total weight for each preferred element 

by multiplying the weight and the value of the preferred element. Below is the model for 

the preferred elements. 

PEm = {pemx , x = 1, 2, ….., X, pemx is preference element for the user um} 

PEm  H  F 

VPEm: function for value of the preference element pem 

VPEm: PEm  {-1, 0, 1} 

WPEm: function for weight of preference element pem 

WPEm: PEm  [0, 1] 
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WPEm(pemx) = wpemx 

wvpemx: function to calculate the total weight for each preference element pex for 

user um 

wvpemx= wpemx . vpemx  

Second, each user‘s profile contains a set of culture preference where each user belongs to 

a certain culture corresponding to some food preferences. We use the notation CP to 

represent a set of C culture preferences. The culture preference in our context is related to 

the preference of food F. For example, CPcb represent the cultural c preference, such as 

Saudi, for the food b, such as rice. Each user um can have a cultural preference notated by 

CPm, which is part of CP. We use the notation VCPm to represent a function that 

determines the value of the cultural preference. It ranges from 0 to 1. If the user belongs 

to a specific culture, then the value is 1. If the user does not belong to that culture, then 

the value is 0. We use the notation WCPm to represent a function that determines the 

weight of the cultural preference. It ranges from 0 to 1, and the value of the weight 

reflects how important the cultural preferences are to the user and how they affect the 

user‘s choice of foods. For example, if a Saudi person visits Japan and does not eat sushi 

and other Japanese foods and likes to have only Saudi food, then the Saudi culture has 

great influence on the user‘s food choices. However, if the user has less influence from 

the Saudi culture, then the user will be open to trying many Japanese foods. Below is the 

model for the user‘s preferred culture.  

CP = {CPcb | CPcb is the cultural preference value of culture c on food b such that 

c = 1, 2, …C cultures, b = 1, 2, …. B foods}  

CPm  CP, is the culture preference for the user Um 



98 

 

VCPm: function for value of the culture preference CPm 

VCPm: CPm  {-1, 0, 1} 

WCPm: function for the weight of culture preferences for user Um 

WCPm: CPm  [0, 1] 

Third, each user‘s profile contains a set of basic information about the user, such as 

weight, length, and blood type. We use the notation BI to represent a set of E variables for 

the basic information. We use the notation VBIm to represent a function that determines 

the constant values of the basic information BIm, which are set by the user um. Below is 

the model for the user‘s basic information.  

BI={bie|bie is a variable for basic information, e=1,2,…,E} 

bi1= height , bi2= weight , ….etc 

VBIm= {VBImbi| VBImbi is the constant value of  the basic information variable bii 

set by the user um} 

Fourth, we use the notation DS to represent a function for the user‘s explicit satisfaction 

on a specific data source. Each user has different viewpoint about the data sources, and 

this leads to different levels of satisfaction. The values of the function DS range from -1, 

which means the user is not satisfied with the data source, 0, which is the default neutral 

value, and +1, which indicates high satisfaction about the data source. Below is the model 

for the data source satisfaction.  

DSm is the data-source satisfaction function for the user um 

DSm= {DS(dk, um) |dk D , umU, dk is a data source that has been evaluated by 

um} 

DS: (dk, um)  {-1,0, 1} 
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DS (dk, um) = dskm 

     {

                                                       
                                                     
                                                           

 

Fifth, we use the notation PPm to represent the set of preferred predicates for the user um, 

which is the union of all weighted predicates based on the user‘s interactions. More 

elaboration on the preferred predicates will be discussed when we talk about the user‘s 

interaction with the results in Section  6.3.  

Finally, the user‘s profile UPm is the union of the five parts: preference elements PEm, the 

cultural preference of the user CPm, the value of the profile‘s basic information VBIm, the 

data source satisfaction evaluated by the user DSm, and the preferred predicates based on 

the user‘s interactions PPm. Below is the model for the user‘s profile. 

UPm  is the user profile set for the user um 

UPm = PEm CPm  VBIm  DSm  PPm 

6.3 User’s Interactions Modeling 

Users interact with the results, and we capture both explicit and implicit interactions. We 

have eight measures, four explicit and four implicit. The first explicit measure is the data 

source satisfaction DSm, which was explained in Section  6.2. The remaining seven 

measures are related to the resulting predicates. The explicit ones are rating the result, 

marking a certain result to show first, and marking a specific result to be filtered out. The 

implicit measures are the time of visiting a certain result, clicks on a certain result, and 

printing and bookmarking a specific result. We use the notation g to represent these seven 

measures. We use two functions to represent the user‘s interactions with the results. We 
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use the notation WPPg to represent a function that determines the weight of each measure 

g. It ranges from 0 to 1 based on the measure‘s rank and user‘s priority. For example, if 

printing the result is not important to the user, then the value will be 0. We use the 

notation VPPg to represent a function that determines the value of each measure g. It 

ranges from 0 to 1, where 0 means the user does not show interest and 1 means the user 

shows the interest in the result. We use the notation wp to represent a function that 

calculates the weight for each predicate by adding all seven measures in addition to the 

eighth measure, the data source satisfaction, and then dividing their sum by 8. Based on 

the predicate type, we give either a positive sign for the positive predicates or a negative 

sign for the negative predicates. We use the notation PPm to represent the set of preferred 

predicates for the user um, which is the union of all weighted predicates based on the 

user‘s interactions. Below is the model for the user‘s interactions with the results.  

VPPg (um,                   
[0,1], g=1,2,…,7 

WPPg(um) = wppmg [0,1], g=1,2,…,7 

wp: function which determines the weight of a predicate 

         
 

{
 
 

 
  

 
       ∑                  

 

 

   

              
                   

  

 
       ∑                  

 

   

               
                   

 

PPm= ⋃        

6.4 User’s Query Model 

A user can have many queries. We use the notation Qm to represent set of L queries 

performed by the user um. The notation Qml represents a query l that is performed by the 
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user um and contains a set of W words where we use the notation qmlw to represent a word 

w in the query Qml. The words that concern us should belong to either the annotated 

knowledgebase of the food and health domains or the possible relations between them 

notated by predicates. For any word in the query that is not matched with the 

knowledgebase and relations, we use synonyms to match. If no synonym matches, then 

we ask the user either to clarify the word or use an alternative one. Finally, if we are not 

able to match it, then we show that the query has no results. Below is the model for the 

query.  

Qm = {Qml | Qml is query for user um , l=1,2,…,L number of queries for user um} 

Qml = {qmlw| qmlw is a word in the query Qml , qmlwHFP, w =1,2,…W number 

of words in query qmi for user um} 

6.5 Query Enrichment Model 

In query enrichment, we find the set of words that we can add to enrich the query based 

on the user‘s profile. We use the notation    
  to represent the additional words used to 

enrich the query Qml, which was performed by the user um. These additional words are 

retrieved from the user‘s profile, specifically the set of X preference elements of the user 

pemx. We use only the top preference elements that have weight, notated by wvpemx, more 

than a specific threshold . We use the notation    
    to represent the enriched query, 

which is the union of the user‘s query Qml and the additional words    
  that have high 

weight in the user‘s profile. Below is the model for the query enrichment.  

   
  = {pemx| pemx  PEmx, wvpemx≥, is a constant (threshold), x= 1,2,…,X} 
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6.6 Retrieved Results Modeling 

After the semantic manipulation of the user‘s query, the query is reasoned and the results 

are retrieved. The results are a set of predicates that come from different data sources and 

correspond to subjects, food, objects, and health conditions. We use the notation PRQml to 

represent the set of T predicate results after reasoning the query Qml for the user um. These 

predicates are a subset of the annotated predicates P in the knowledgebase. We use the 

notation SRQml to represent the set of V subject results after reasoning the query Qml for 

the user um. These subjects are a subset of the annotated subjects S in the knowledgebase. 

We use the notation ORQml to represent the set of Z object results after reasoning the 

query Qml for the user um. These objects are a subset of the annotated objects O in the 

knowledgebase. Below is the model for the retrieved results.  

PRQml = {pt|  pt P,  pt is given after the process of query Qml for the user um, 

t=1,2,…,T} 

SRQml = {sv|  sv S,  sv is given after the process of query Qml for the user um , 

v=1,2,…,V} 

ORQml = {oz|  oz O,  oz is given after the process of query Qml for the user um , 

z=1,2,…,Z} 

6.7 Results Conflict Resolution Modeling 

The retrieved results can conflict. For example, a conflict happens if we find both 

statements, ―An apple has positive effect on diabetes,‖ and, ―An apple can increase the 

risk of diabetes.‖ We define below a function CF for determining conflicts and a function 

CFR for resolving the conflicts and a set NCFPij to hold the un-conflicted predicates.   
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We use the notation CF to represent a function that determines whether there is a conflict 

in the retrieved predicates that relate a subject si with an object oi. The function cfij 

corresponds to all ordered pairs of (si, oi ) from R between a subject si and an object oj. 

The possible values of the function CF are 0, -1, and +1. The value of the function cfij is 0 

if there is at least one positive predicate that is a member from the set    
  and one negative 

predicate that is member of the set    
  between the subject si and the object oj. The value 

of the function cfij equals +1 if all predicates between the subject si and the object oj are 

positive and are a subset of    
 . The value of the function cfij equals -1 if all predicates 

between the subject si and the object oj are negative and are a subset of    
 . We show 

below the model for the function CF. 

CF: function to find the conflicts between different predicates 

CF: R  {0,+1, -1} 

CF (si, oj) = cfij 

     {

                
                     

                
                        

                         
              

     

 

We use the notation RCF to represent a function that resolves any conflict between the 

predicates that relate a subject si with an object oi if a conflict is found by the function CF. 

We define the function rcfij for all ordered pairs of (si, oi ) between a subject si and an 

object oi from R. The function RCF can have one of three values 0, +1, or -1. The value is 

based on the value of the function CF and the function WP, which is used for the 

predicate weight based on the user‘s interaction as explained in Section  6.3. We use the 

notation        
to represent the total value of the weighted predicates between the subject 

si with the object oi that the user interacts with previously. This means that the preferred 
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predicates from previous user‘s interactions will take on more weight when it comes to 

conflict resolution. Below, we show the model of the function        
  

       
= ∑                 

 

As explained in Section  6.3, the sign of the individual values of          
 is based on the 

type of predicate (i.e., whether it is positive or negative). The summation of all predicates 

of a certain subject and a certain object would be either positive if all predicates are 

positive or negative if all predicates are negative. The summation will be 0 if the positive 

and negative predicates are equal. In addition to that, the user‘s interactions are weighted 

and affect the calculation of the summation by adding more positive or negative strength.  

If there is a conflict determined by the value 0 of the function cfij, then the function RCF 

is used to resolve the conflict in the predicate‘s subject si and object oi, and we determine 

the value of the function rcfij.   

The function WP helps in finding the difference between the number of positive and 

negative predicates. If cfij equals 0, then rcfij equals 0 if the number of positive predicates 

equals the number of negative predicates in Pii. The function rcfij equals +1 if the number 

of positive predicates is more than the number of negative predicates in Pij. The function 

rcfij equals -1 if the number of negative predicates is more than the number of positive 

predicates in Pij. 

RCF: function for resolving the conflict  

RCF: R  {0,+1, -1} 

RCF (si, oj) = rcfij 

      {
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We use the notation NCFPij to represent a set of conflict-free predicates between a subject 

si and an object oi. Next, we explain each function and set in more details. NCFPij consists 

of all positive predicates if cfij or rcfij equals to +1 while NCFPij consists of all negative 

predicates if cfij or rcfij equals to -1. NCFPij is empty set if rcfij equals to 0 which means 

there is a conflict that cannot yet be resolved and then we cannot show conflicted results. 

Below, we show the model for the non-conflicted predicates set NCFPij. 

       {

         
                                      

         
                                            

                                                                  

 

6.8 Results Personalization Model 

We use the notation Y to represent the set of conflict-free predicates determined in 

Section  6.7. After the conflicts between the predicates are resolved, the results are 

personalized based on the user‘s needs.  

First, we calculate the number of occurrences of each predicate in the results within the 

data sources. We use the notation Yij to determine the number of predicates between a 

subject si and an object oi. A higher frequency of certain predicates in a different data 

source indicates that this information is more trustable. Therefore, we give it more weight.  

We use the notation WY to represent a function that determines the weighted occurrence 

for each predicate. The value of the function WY ranges from 0 to 1, where 0 means that 

there is no occurrence for the predicate in the results Y and 1 means the predicate has the 

maximum occurrence. We calculate the value of the WYij, which determines the 

occurrence of predicates between a subject si and an object oi, by dividing the number of 

occurrences of all predicates between si and oj by the maximum number of occurrences of 
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all predicates in the results, as noted by Max Y. For example, we have results of four 

predicates, the first occurred three times, the second occurred four times, the third is 

occurred two times, and the fourth occurred one time. So the weight for the first predicate 

is 3/4, the second predicate is 4/4 (or 1), the third predicate is 2/4 (1/2), and the fourth is 

1/4. The model for predicate occurrences is: 

Y: {NCFPij}  {0, 1, 2, ….} 

Yij = |NCFPij| , i=1,2,…,I  ,  j=1,2,….,J 

WY: NCFP  [0,1] 

WYij= 
     

       
  

After finding the occurrences of the predicates, we find the total weight for each 

predicate. We use the notation WPRij to represent the function that determines the total 

weight for each predicate. The value is calculated by adding the preference weight of the 

same predicate WPij, the occurrence of the predicate within the results WYij, the culture 

preference weight WCPi, and the preferred elements whether they are in the subject, food, 

WVPEi, or in the object, health, WVPEj. Finally, we sort the results based on the 

calculated total weight. Below is the model for predicate weight used in the results 

personalization.  

WPRij= WPij + WYij +WCPi + WVPEi + WVPEj  
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7 CHAPTER 7 

HEALTH, FOOD, AND USER’S PROFILE ONTOLOGIES 

This chapter introduces the processes used to develop the domain ontologies and the 

user‘s profile ontology. The user‘s profile ontology is based on the user‘s preferences 

identified in Chapter  5, and it is integrated with the domain ontologies for semantic 

manipulation of the user‘s queries. It is used for query enrichment and results 

personalization.  

The Semantic Web brings the Internet from ―web of documents‖ to ―web of data,‖ where 

the linked data empower the computers with the ability to provide better services, such as 

reasoning and inferring. Semantic Web technologies help in building data stores on the 

web, creating vocabularies, and providing rules to deal with data. Some examples of the 

technologies used by linked data are resource description framework (RDF), simple 

protocol and RDF query language (SPARQL), and ontology web language (OWL) (138).  

Ontology is a formal representation of knowledge in a network of concepts within a 

certain domain using a shared terminology for the types, properties, and relationships 

between the domain‘s concepts
7
. The main components of ontologies are: 

- concepts: similar to classes in object-oriented programming (OOP);  

- instances: similar to objects in OOP; 

- attributes: which are part of concept; 

- attribute values: which are the values of the attributes and part of the instance; 

- subjects: can be concepts, instances, attributes, or attribute values; 

                                                 
7
 http://en.wikipedia.org/wiki/Ontology_(information_science) 
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- objects: can be concepts, instances, attributes, or attribute values; 

- predicate: relation between a subject and an object; and 

- triple: the subject-predicate-object. 

RDF is a triple consisting of a subject, predicate, and object. Any SPARQL query 

comprises a number of triples where the query reasoning engine matches the triples of the 

SPARQL query with the stored RDF triples in the knowledgebase created during the 

annotation process. Therefore, a SPARQL query is performed on a RDF dataset that is 

built based on the annotated web sources. 

In (139), the authors presented a methodology to design and develop a Semantic Web 

search engine to provide accurate results for domain-specific searches. Precise 

information is retrieved by utilizing the mapping technique between classes and instances. 

Therefore, the number of search results is reduced along with the search time. The 

proposed methodology is highly scalable and can fit any domain by providing the 

required input from the relevant RDF documents to add any domains into the search 

coverage.  

Querying ontologies can take many shapes, and the literature shows too many ways to 

query ontologies. One category of these is based on graphical user interface (GUI), which 

provides the ability to navigate and explore an ontology or query an ontology using either 

templates or a formal ontology query language, such as SPARQL. One famous platform 

for querying ontology is Protégé, which is used by experts in ontology query language 

(SPARQL). Another platform eases the semantic search in ontology, such as KIM, and 

provides a mechanism to query by using predefined templates. As a result, the users will 

be directed to certain search criteria based on the templates without the need to know the 

details of the ontology (140). 
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We explain the development cycle for the multilingual cross-domain ontologies for food, 

nutrition, and health. First, we define the requirements for each domain. Second, we 

investigate the existing related ontologies and summarize their limitations with respect to 

the requirements. Third, we explain how we used the introduced processes to fulfill the 

requirements. Then we describe the developed ontologies for the food, nutrition, and 

health domains. Finally, we describe the user‘s profile ontology and the integration with 

the domain ontologies.  

7.1 Introduction 

Ontology is a formal representation of knowledge in a network of concepts within a 

certain domain using a shared terminology for the types, properties, and relationships 

between the domain‘s concepts. Different ontologies are developed for different domains 

by the domain experts to fulfill certain objectives.  

An ontology serves a single domain, while some applications need to use ontologies from 

different domains to integrate different information sources. Moreover, there could be 

several ontologies developed for the same domain due to different languages, cultures, 

expertise, and purposes. Therefore, there is a need to integrate existing ontologies to 

capture cross-domain knowledge.  

As mentioned in the framework chapter, we need to plug domain ontologies into the 

framework. Ontologies help annotation in having standard references for the acquired 

knowledge. Thus, web sources can be structured in knowledgebases based on the domain 

ontologies. These knowledgebases are used in the semantic manipulation of the user‘s 

queries to return relevant results. 
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Our objective is to apply the proposed framework to build a multilingual Semantic Web 

search application for the food, nutrition, and health domains, as they are critical domains. 

This will help the community in providing food recommendations based on the user‘s 

health conditions. To provide such capabilities, we need integrated ontologies between 

different domains such as food, nutrition, and health. In addition, we want to use the 

knowledge discovered in one language to for people using different languages. Such 

ontologies that satisfy these requirements do not exist. Therefore, we were challenged to 

develop these ontologies by creating, integrating, and reusing some of the existing 

ontologies to meet our requirements. Next, we present the processes we have followed in 

developing these ontologies. 

7.2 Ontology Development Processes 

There are different methodologies to develop ontologies such as METHONTOLOGY 

(16), Uschold and King (52), and On-to-Knowledge (47). We introduce four processes 

below that use some of the existing methodologies. We use these processes to develop 

multilingual cross-domain ontologies for the food, nutrition, and health domains. The 

processes are described in the following tables with their inputs, outputs, and possible 

methodologies that can be followed in each.  
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TABLE 8 Domain Ontology Development Process 

 

Process no. 1 

Process name Domain ontology development 

Description To develop or reuse certain domain ontology that satisfies the 

application requirements 

Input Application requirements 

Output Domain ontology 

Methodologies - Reuse a single existing domain ontology as is. 

- Reuse multiple heterogeneous domain ontologies as 

they are. Some existing methodologies are Fusion and 

Composition (141). 

- Extend existing domain ontology.  

- Build domain ontology from scratch. Some existing 

methodologies are TOVE, ENTERPRISE, and 

METHONTOLOGY (141).  
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TABLE 9 Cross Domain Ontologies Development Process 

 

Process no. 2 

Process name Cross-domain ontologies development 

Description To have integrated cross domain ontologies 

Input Different domains ontologies  

Output Integrated cross-domain ontologies 

Methodologies - Reuse an existing integration between different 

domain ontologies as is. 

- Extend an existing integration between different 

domain ontologies (i.e., add additional integration 

points). 

- Build an integration between different domain 

ontologies from scratch (merge ontologies into one 

ontology, create an integration ontology, and link the 

ontologies with relationship). 
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TABLE 10 Multilingual Ontologies Development from Multiple Ontologies Process 

 

Process no. 3 

Process name Multilingual ontologies development from multiple 

monolingual ontologies 

Description To have integrated multilingual ontologies based on multiple 

monolingual ontologies 

Input Multiple monolingual domain ontologies  

Output Integrated multilingual domain ontologies using either one-to-

one mapping or agnostic ontology acting as a bridge between 

the existing ontologies 

Methodologies - Automatically align the monolingual ontologies (e.g., 

using translation service, mediator like Wikipedia).  

- Manually align the monolingual ontologies. 

- Semi-automatically align the monolingual ontologies 

(human guided) (i.e., partially automatic and partially 

manual). 
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TABLE 11 Multilingual Ontologies Development from Single Ontology Process 

 

Process no. 4 

Process name Multilingual ontologies development from single monolingual 

ontology 

Description To have integrated multilingual ontologies starting from a 

single monolingual ontology 

Input Single monolingual domain ontology 

Output Integrated multilingual domain ontologies using either one-to-

one mapping or agnostic ontology acting as a bridge between 

the existing ontologies 

Methodologies - Option-1: (create different ontology for each culture) 

o Use a domain ontology development process to 

create another monolingual domain ontology.  

o Use multilingual ontologies development from 

multiple monolingual ontologies process to align 

the two monolingual domain ontologies. 

- Option-2: (enrich the existing ontology or replicate it) 

o Automatically translate the input monolingual 

domain ontology into a new language. 

o Manually translation the input monolingual 
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domain ontology. 

o Semi-automatically translate the input 

monolingual domain ontology (human guided).  

 

7.3 Ontology Development Cycle 

To develop the domain ontologies, the requirements need to be captured from the 

objective and intended use. Then related existing ontologies are surveyed and assessed as 

to whether  they meet the requirements. Finally, we explain how we follow the introduced 

processes. 

7.3.1 Requirements 

We aim to provide answers to questions related to food, nutrition, and health domains. 

Some examples of these questions are: ―Is an apple good for people with heart diseases?‖ 

―How much honey can be taken by a diabetes patient?‖ ―What are the health benefits of 

eating pineapple?‖ and, ―What are the fruits that contain the daily needed quantity of 

calcium?‖ To answer such questions, there is a need to have integrated ontologies for 

different domains: food, nutrient, health (diseases, body parts, body functions), and 

recipe. Moreover, to answer queries in a different language, the system and ontologies 

should support a multilingual property. To answer queries that require aggregation of 

information, we need to have multilevel ontologies. To achieve high relevancy and 

coverage, we need to use ontologies that have comprehensive and rich vocabularies. To 

make effective use of the annotation, ontologies‘ concept names should be unique and 

self-contained.   
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One of the most used and richest knowledgebases for food and nutrition is the U.S. 

Department of Agriculture (USDA) database. The USDA (18) schema is used as a main 

guide to develop the core ontology. Foods are gathered into 25 groups according to the 

USDA classification. There are 146 classes of nutrition. The relation between food and 

nutrition is based on 100g of food containing a specific amount of nutrition. We will use 

the USDA as a base for our ontologies selection, and hence we need to assure the 

alignment possibility for any ontology with the USDA.  

7.3.2 Related Ontologies 

Based on the criteria discussed above, we have considered related ontologies for food, 

nutrition, and health. In the next sections, we will present a short description about each 

one with respect to the requirements given before. 

7.3.2.1 Semantic Diet Ontologies  

Evan Patton developed a project called Semantic Diet to help people to eat healthier. 

Patton provided a set of ontologies related to food and nutrition based on the USDA 

database. We have used these ontologies as a base to build and extend food and nutrition 

ontologies. Semantic Diet has a main ontology with one concept related to nutrition and 

two concepts related to food. The two food concepts are based on two USDA food tables: 

food items and food groups. Semantic Diet has other ontologies: recipes, units for 

measurements, food serving size, and nutritional guidelines. TABLE 12 shows Semantic 

Diet ontologies with their corresponding number of instances. 
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TABLE 12 Semantic Diet Ontologies 

 

Ontology Number of instances 

Recipe 124  

Food groups 100  

Units for measurements 65  

Common measures for foods 118,791  

Nutrient 2,847,367  

Nutritional guidelines 136  

 

One advantage of Semantic Diet ontologies is that they are built based on the USDA 

database, which is used in many semantic applications. Another advantage is that they 

integrate food concepts with nutrition concepts with one property of 100gm.  

A disadvantage of Semantic Diet ontologies is that they are flat and shallow ontologies 

with one to two levels only. This will limit the aggregation at the ontology level. Another 

limitation is that Semantic Diet ontologies are available in English only. Moreover, many 

foods contain similar names, which make them difficult to use as-is for annotation. 

Finally, Semantic Diet ontologies lack synonyms, which leads to limited coverage during 

annotation. 
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7.3.2.2 International Classification of Diseases (ICD-10) Ontology  

The ICD10 ontology is a formalization in OWL-DL of the International Classification of 

Diseases (10th ed.), published by the World Health Organization (WHO) in 2004. It is 

considered a standard tool for health management and other clinical purposes and is 

utilized to track the occurrence and frequency of diseases and illnesses
8
. 

ICD10 is huge ontology consisting of 14,502 concepts of diseases and health care 

procedures, which provides a huge vocabulary set. Although the ontology is available in 

the English language, the translations are available for the vocabularies of ICD10 in 

different languages such as Arabic. Having a wide vocabulary set and availability of 

vocabularies in different languages is a positive aspect of the ontology. 

The ontology is designed to categorize diseases and health issues based on the various 

types of health and important records. The ontology is hierarchical in nature and classifies 

all these concepts into many levels, such that the concepts are not self-explanatory unless 

a complete parent hierarchy is observed to understand the actual vocabulary for a set of 

concepts. Moreover, the ontology uses the technical names of diseases and does not have 

embedded synonyms. Such ontology makes the text processing less effective as more 

work is required to map the ontology concepts to the text being annotated.  

7.3.2.3 Human Disease Ontology  

The Disease Ontology (DO) is an open-source ontology for the integration of biomedical 

data associated with human disease. Terms in DO ontology are well defined and use 

standard references. These terms are linked to well-established, well-adopted 

                                                 
8
 http://www.who.int/classifications/icd/en/ 
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terminologies that contain disease and disease-related concepts such as SNOMED, ICD-9 

and ICD-10, MeSH, and UMLS. 

DO ontology represents a comprehensive knowledge base of 8043 inherited, 

developmental and acquired human diseases. Each concept has a reference for most 

common health related ontologies with different synonyms or alternative names for the 

same concept. It is very useful for semantic annotation for two reasons: self-contained 

names used for each concept and a rich set of synonyms for each concept. For those 

reasons, we have selected this ontology for our test case for semantic annotation of 

disease concepts. 

The only limitation of the DO ontology is related to multilingual support since it is only 

provided with English names only.  

7.3.2.4 AGROVOC Ontologies  

AGROVOC provides ontologies with a rich vocabulary that covers different areas of the 

Food and Agriculture Organization (FAO) of the UN, such as food and nutrition. It 

contains more than 32,000 concepts and supports different languages such as Arabic, 

Chinese, Czech, English, French, German, Hindi, Hungarian, Italian, Japanese, Korean, 

Lao, Persian, Polish, Portuguese, Russian, Slovak, Spanish, Thai, and Turkish.  

AGROVOC uses the standard RDF format to represent their linked dataset. 

The main advantage of the AGROVOC is the multilingual support that includes 22 

languages with four languages under development. The second advantage is the way 

AGROVOC organizes its concepts in a hierarchy supporting multilevel concepts. Another 

advantage for AGROVOC is its support of synonyms in different ways for any concept 

within the ontologies.  
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One of the major limitations of AGROVOC ontologies is the lack of USDA alignment, 

which limits its integration with other ontologies that have relations with other domains.  

7.3.2.5 FOODS Ontology  

The FOODS ontology contains nine main concepts: regional cuisine, dishes, ingredients, 

availability, nutrients, nutrition-based diseases, preparation methods, utensils, and price. 

Food concepts are divided into three main categories: beverages, plant-based food, and 

animal-based food. Each food category contains deeper levels of concepts. The nutrition 

concept is categorized into six concepts: carbohydrates, proteins, vitamins, fats, minerals, 

and water. The ontologies are used as part of a system to answer questions raised by users 

based on their profiles and relationships between the ontology concepts. 

The advantages of the FOODS ontology are the integration between food, nutrition, and 

disease. The ontology is a very useful for annotation since it was built for computer 

processing.   

The FOODS ontology contains a shallow hierarchy of concepts with two or three levels 

only. The ontology contains only an English version with no synonym. It is not aligned 

with the USDA food database. With that limitation, we did not consider this ontology as a 

basis for our system.  

7.3.2.6 PIPS Ontologies 

The Personalized Information Platform for Life & Health Service (PIPS) (141) provides 

multiple ontologies related to food, nutrition, clinical record, recipe, menu, and person. 

These ontologies contain 261 concepts and two object properties. Foods are gathered into 

13 groups: vegetables, fruits, grain products, special nutrition, beverages, sea foods, egg 

products, oils and fats products, meat, soups and sauces, sugar products, nuts and seeds, 
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and milk products. The nutrition ontology contains a different grouping of foods based on 

the different use of food. 

 

TABLE 13 PIPS Ontologies 

 

Ontology Number of concepts Object properties 

Food 180 2 

Nutrition 18 3 

Recipe  8 4 

Menu  7 3 

Clinical record 14 4 

Profile  3 4 

 

 

The advantages of PIPS ontologies are the integration between provided ontologies. 

Moreover, the naming of concepts is usable for animations. The PIPS ontologies are 

provided with English labels only and are without synonyms. Ontology resources are not 

linked to external entities such as the USDA food database. The hierarchy levels of the 

ontologies concepts are shallow. 

7.3.3 Comparison and Limitations  

To decide which of those ontologies we should use, we developed a comparison table 

based on hard and soft criteria. The first hard criterion for food and nutrition is the 

alignment to the USDA food and nutrition database. The second hard criterion is the 

usability of those ontologies for annotation with respect to naming schema and uniqueness 
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for concept labels. Other criteria are considered soft and can be handled using the 

approaches described before. 

TABLE 14 Food and Nutrition Ontologies 

 

Ontologies USDA 

alignment 

Multi-level Richness Multilingual Usability 

Semantic 

Diet  

Yes Low Low No Low 

PIPS No Low Low No High 

FOODS No High Low No High 

AGROVOC  No High Low Yes High 

 

TABLE 15 Health Ontologies 

 

Ontology Link to other 

references 

Multi-Level Richnes

s 

Multilingua

l 

Usability 

ICD-10 no med low limited low 

Human 

disease  

Yes High High No High 
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7.3.4 Ontology Development Cycle to Fulfill the Requirements  

In this section, we show what ontologies were used from the above choices and why. We 

show what modifications were done and how by explaining the steps as per the 

approaches already discussed. We show also that some ontologies had to be created 

because we did not find existing ontologies that fulfilled the requirements.  

7.3.4.1 Food Ontology.  

Based on the hard rules, we have selected the Semantic Diet food ontology only because it 

provides the two hard rules of being aligned with the USDA food database and being 

useful for annotation. The limitation for this ontology is the hierarchy levels and lack of a 

multilingual property. For hierarchy levels, we have extended the ontology with four to 

five levels, as needed, in addition to the two levels provided by the initial Semantic Diet 

ontology. The multilingual property is achieved by adapting process number 3 to produce 

a multilingual ontology that covers English and Arabic languages at this stage. We 

maintain the same integration with nutrition concepts. 

7.3.4.2 Nutrition Ontology 

Similar to food, we have selected nutrition ontology provided by Semantic Diet as an 

initial ontology. The Semantic Diet nutrition ontology contains only one concept with 146 

distinct nutrition elements with instances for all food instances. We have extended the 

ontology to many levels to capture the aggregation of nutrients in the same group. The 

multilingual property is achieved by adapting the process number 3 to produce a 

multilingual ontology that covers English and Arabic languages at this stage. We maintain 

the same integration with food concepts. 
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7.3.4.3 Recipe Ontology 

Similar to food and nutrition, we have selected recipe ontology provided by Semantic Diet 

as an initial ontology. The Semantic Diet recipe ontology contains only one concept 

without any instances. We have extended the ontology to many levels to capture the 

aggregation of recipes in the same group. The multilingual property is achieved by 

adapting the process number 3 to produce a multilingual ontology that covers English and 

Arabic languages at this stage.  We maintain the same integration with food concepts. 

7.3.4.4 Disease Ontology 

We have adapted the human disease ontology (DO) because it is the most useful of our 

choices for annotation. The multilingual property is achieved by adapting the process 

number 3 to produce a multilingual ontology that covers English and Arabic languages at 

this stage. We defined different interaction with food and nutrition concepts. 

7.3.4.5 Body part and body function ontologies 

Since we did not find suitable ontologies that cover concepts related to the human body, 

either functions, systems, or parts, we used some information about the human body and 

built a primitive ontology to cover those two concepts. 

7.4 Health and Food Ontologies Description 

We went through different ontologies throughout the development cycle of the whole 

framework implementation. We chose different ontologies and then gave precedence to 

one or the other based on different facts that directly affect the effectiveness of the 
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process. Mostly text processing is the area that drove the focus on keeping the best 

ontology in terms of the right vocabulary and more search space for text mapping.  

7.4.1 Disease Ontology  

The ontology for disease is the human disease ontology. We choose this ontology because 

its concepts are self-contained concepts, unlike the ICD10 (WHO). Having self-contained 

concepts is more suitable when text processing as the concept is independent of the parent 

concepts and is meaningful enough to map to the contextual words during the text 

processing. In general, the human disease ontology is a comprehensive vocabulary that is 

hierarchical in structure. For the description of ontologies in terms of metrics, it has 8,685 

concepts. It holds 15 properties, and the maximum depth of the concepts is 14. On 

average, there are three child concepts for each concept, while the maximum number of 

child concepts is 80. 

 

Figure 26 Disease Ontology 
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7.4.2 Food Ontology  

The ontology for food is adapted from Semantic Diet as they based their ontology on the 

USDA database for food items and classifications of the food groups. The ontology is 

available in English, so we added the translation of the ontology into Arabic to have a test 

case of multilingual support. This ontology is just one main concept of FoodItem and all 

the food items instances belonging to it, which are 9,000. The classification of FoodItem 

is handled through FoodGroup concept. 

 

Figure 27 Food Ontology 
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7.4.3 Nutrition Ontology  

The nutrition ontology is taken from Semantic Diet and is based on the USDA database. 

Since the USDA database hold information about the nutrients for food items, the 

ontology acquires the same relations between food ontology. Similarly, we provided the 

Arabic translation for nutrients. 

Figure 28 Arabic Food Ontology 
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Figure 29 Nutrition Ontology 

7.4.4 Body Function and Body Part Ontologies  

These are small, self-created ontologies for the proof of the concept. Any available 

ontology could be adopted, but, unfortunately, no comprehensive ontology was available 

for body functions or body parts. These are small ontologies with 60 instances for body 

functions and 163 for body parts. 
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Figure 30 Body Part Ontology 

 

Figure 31 Body Function Ontology 

7.4.5 Integration Ontology  

The integration ontology is the upper layer ontology that integrates the health ontologies 

(disease, body parts, body functions) with food- (food item and nutrient) related 

ontologies. It is done through using the commonly known relations among the domains, 

which will  allow us to capture and reason information following the used relations. 
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Figure 32 Integration Ontology 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 33 Integrated Health Ontology 
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TABLE 16 Summary of Developed Ontologies 

 

Ontology Number of Concepts Number of Instances 

Food 1 8648 

Nutrition 182 225 

Recipe  1 806 

Disease 7277 5491 

Body part 1 163 

Body function 1 60 

Profile  1 0 

Integration 4 NA 

USDAFood (for 

reference) 

1 15100 

FoodGroup 613 15100 

 

7.5 User’s Profile Ontologies 

The user‘s profile represents what the user likes and dislikes. It is needed for 

personalizing the recommendations. It can be represented in different ways, such as in a 

keywords profile, which assigns the keyword with weight based on the user‘s preferences. 

More details of different ways are found in (10). We have selected representing the profile 

as an ontology because this work is related to other parts in a bigger project, which are 

based on semantic ontologies. Representing the profile as ontology makes it easier to 

integrate with the health and nutrition domains‘ ontologies and helps in reasoning the 

information using semantic languages such as SPARQL.  
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Initially, we collect the user profile, which contains the food preference, health conditions, 

culture, and economic status, using a form. The profile is updated by an analysis of the 

interactions of the user with the results, which improves the future results. For example, 

when the user always selects a specific food from the results the profile is updated to 

show that the user likes this specific food. We use the ontology concept to represent the 

profile and for use in the semantic search. Figure 36 shows the details of the user‘s profile 

ontology and divides it into four parts. The first part contains the basic information of the 

user such as name and gender. The second part contains the basic health information of 

the user such as blood type and body mass index (BMI). The third part contains the 

medical record information of the user such as diseases and whether the user is pregnant. 

The fourth part contains the user‘s usage statistics information such as older searches and 

visited links. The relationship between two concepts is shown as a dashed arrow and that 

refers to the ―triple‖ quality in RDF terms (12). 

7.5.1 Religion Ontology  

We had a need to create religion ontology to map the profile, health, and food ontologies 

to the related religion properties. The religion ontology depends on the other developed 

domain ontologies and contains properties shared and relations with these ontologies. 

Hence, we create a religion ontology as a new ontology to answer questions related to 

food preference with regard to the user‘s religion. Figure 34 shows the religion ontology. 
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Figure 34 Religion Ontology 

7.5.2 Culture Ontology  

We had a need to create a culture ontology to map the profile, health, and food ontologies 

to the related culture properties. The culture ontology depends on the other developed 

domain ontologies and contains properties shared and relations with these ontologies. 

Hence, we create a culture ontology as a new ontology to answer questions related to food 

preference with regard to the user‘s culture. Figure 35 shows the culture ontology. 
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Figure 35 Culture Ontology 

7.5.3 User’s Profile Ontology  

We have created a new profile ontology based on food and health ontologies. The mix 

between personal information and specialized food and health information motivates 

creating a specific profile ontology that can help in personalizing the food and health 

information. We did not find a suitable ontology that covers both sides. The ontology is 

linked with disease ontology, body part ontology, body function ontology, food ontology, 

nutrition ontology, and recipe ontology. Figure 36 shows the user‘s profile ontology. 
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Figure 36 User’s Profile Ontology 
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8 CHAPTER 8 

IMPLEMENTATION: HEALTH AND FOOD DOMAIN 

CASE STUDY 

In this chapter, we show the details of the development of the proposed framework on 

health and food domains. We start with a motivation scenario, then a requirements 

analysis, the design, and then the implementation details.  

8.1 Motivation Scenario 

To realize the importance of implementing the proposed framework, we show a 

motivation scenario. In this scenario, Ali is 40-year-old patient with diabetes. In the 

culture Ali lives in, he is invited to Iftar, dinner, in Ramadan, the month where Muslims 

fast during the day and eat after sunset. He needs health advice and to know what food he 

should take during these dinners. He will pass on this advice to his relatives and friends to 

have them prepare the appropriate food for him when he is goes to the dinner. He opens 

the ASPIR SYSTEM using his iPad, where he has a profile with some basic information. 

He checks his nutrition requirements based on his health and medical information to guide 

his relatives when they prepare his meals. He types in ASPIR SYSTEM, ―What food is 

suitable for me?‖ ASPIR SYSTEM recognizes that his profile does not have enough 

information about Ali. ASPIR SYSTEM asks Ali some questions to narrow down his 

question and give him the right advice. It asks him about his weight; Ali answers with 
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100kg. It asks him about his height; Ali answers 170 centimeters. It asks him about his 

blood type; Ali answers with A+. It asks Ali if he has an electronic medical record; Ali 

enters some identification information to retrieve his medical record and medical history. 

ASPIR SYSTEM finds out that he has diabetes. After getting enough information, ASPIR 

SYSTEM gives Ali healthy advice for his food. It starts analyzing his query to generate an 

annotated query that is ready for reasoning. The query is then enriched with the profile 

information. Then ASPIR SYSTEM searches the knowledgebase for relevant results and 

personalizes the results based on Ali‘s profile. Ali interacts with the results, and ASPIR 

SYSTEM monitors his interactions to refine his profile.   

8.2 Requirements Analysis 

We have analyzed the requirements for the ASPIR framework to design and then 

implement the framework. The main requirements of the framework are: 

- user submits query and gets semantic personalized results; 

- user creates and manages the personal profile; 

- user accesses the system from different platforms (mobile, desktop); 

- user gets results from trusted sources; 

- user‘s feedback on the results is captured (explicitly or implicitly); and 

- system supports multilingual queries and provides results based on query‘s 

language. 

This addresses the needs of reliable, semantically integrated, and personalized health and 

nutrition information with multilingual and cultural support. TABLE 17 shows the 

benefits and supporting features of the developed system. 
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TABLE 17 Benefits and Supporting Features 

 

Benefits Supporting Features 

A user wants to get trusted health and 

food information.   

Find trusted health and food 

information.  

A user wants recommendations based on 

his or her profile.   

Personalize search results and 

recommendation.  

A user can write queries in any 

understood way without being restricted 

to certain keywords.   

Semantically processed user queries.  

A user can get results from different 

domains related to any query.  

Provide results from multiple domains 

related to health, food, nutrition, 

diseases, etc.  

A user can search in any language and 

any culture.   

Support different languages and 

different cultures.  

 

8.2.1 Use Cases and Sequence Diagrams 

Figure 37 shows the use case diagram based on the collected diagrams. It contains two 

actors, the end user and the translator, and six use cases: register, manage profile, search, 

navigate results, use user‘s profile, and provide feedback. It includes some use cases from 

the other two components mentioned in Chapter  3. 
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Figure 37 Use Case Diagram 

Next, we explain each use case in a separate sub-section.  

8.2.1.1 “Search” Use Case 

TABLE 18 shows the specification of the ―search‖ use case. It describes the use case 

showing the preconditions, post-conditions, and other related information. 

  

 uc Use Case Model

Semantic Query Manipulation and Personalization

Component

Semantic Query Manipulation and Personalization

Component

Search

End User

Nav igate Results

Manage Profile

Register
Data Acquisition and Semantic Annotation Component

Ontology Management Component

Prov ide 

Feedback

Data Acquisition and 

Semantic Annotation Use 

Cases

Ontology Management Use 

Cases

Use User's Profile

Translator

«include»

«include»
«extend»

«extend»

«extend»



140 

 

TABLE 18 ―Search‖ Use Case Specification 

 

Description: This use case performs search on the knowledgebase 

based on the query and displays the matching result. 

Preconditions: The user has logged in into the system; otherwise the 

user is considered as anonymous. 

Post conditions: The results of the user‘s query are presented, if any; 

otherwise it shows no result. 

Frequency of use: High. 

Actor(s) End user, Translator. 

Normal course of events: 1. User enters the query in the query box. 

2. System annotates the query.  

3. System gets the user‘s profile. 

4. System enriches the query with the user‘s profile.  

5. System matches the annotated query with the 

corresponding query template. 

6. System executes the matched query template.  

7. System  refines the result based on the user‘s profile. 

8. System displays the result on the user‘s screen. 

Alternative courses: None. 

Extends: None. 
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Exceptions: No result is found. Message is shown to the user. 

Includes: Navigate result: Use user profile. 

 

Figure 38 shows the sequence diagram of the ―search‖ use case and its interactions with 

other use cases and objects. 

 

Figure 38 Sequence Diagram for “Search” Use Case 
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8.2.1.2 “Register” Use Case 

TABLE 19 shows the specification of the ―register‖ use case. It describes the use case 

showing the preconditions, post-conditions, and other related information. 

TABLE 19 ―Register‖ Use Case Specification 

 

Description: This use case allows the user to register in the system 

and creates a user‘s profile with the entered values. 

Preconditions: User selects the registration screen. 

Post conditions: A user‘s profile is created with the corresponding values 

entered by the user.  

Frequency of use: Medium. 

Actor(s) End User. 

Normal course of events: 1. User enters the information in the registration form. 

2. System verifies the user‘s input. 

3. System creates the  user‘s profile and notifies the 

user. 

Alternative courses: None. 

Extends: None. 

Exceptions: User already defined. Duplicate profile for the same 

user is not allowed. Message is shown to the user. 



143 

 

Includes: None. 

 

Figure 39 shows the sequence diagram of the ―register‖ use case and its interactions with 

other use cases and objects. 

 

Figure 39 Sequence Diagram for “Register” Use Case 

 

8.2.1.3 “Manage User’s Profile” Use Case  

TABLE 20 shows the specification of the ―manage user‘s profile‖ use case. It describes 

the use case showing the preconditions, post-conditions, and other related information. 
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TABLE 20 ―Manage User‘s Profile‖ Use Case Specification 

 

Description: This use case allows the user to update his or her 

profile.  

Preconditions: User already is logged in.  

Post conditions: User profile is updated according to the user‘s entered 

values. 

Frequency of use: Medium. 

Actor(s) End user. 

Normal course of events: 1. User enters the information in the profile‘s screen. 

2. System verifies the user‘s input. 

3. System updates the user‘s profile and notifies the 

user. 

Alternative courses: None. 

Extends: None. 

Exceptions: None. 

Includes: None. 
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Figure 40 shows the sequence diagram of the ―Manage user‘s profile‖ use case and its 

interactions with other use cases and objects. 

 

Figure 40 Sequence Diagram for “Manage User’s Profile” Use Case 

8.2.1.4 “Navigate Results” Use Case  

TABLE 21 shows the specification of the ―navigate results‖ use case. It describes the use 

case showing the preconditions, post-conditions, and other related information. 
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TABLE 21 ―Navigate Results‖ Use Case Specification 

 

Description: This use case allows the user to navigate through the 

retrieved results.  

Preconditions: Search result is displayed on the screen.  

Post conditions: User‘s profile is updated according to the user‘s 

navigation.  

Frequency of use: High 

Actor(s) End user. 

Normal course of events: 1. User reacts with the results. 

2. System adds the user activities in the activity log. 

Alternative courses: 1. User enters explicit feedback on the search result.  

2. System stores user feedback using ―provide 

feedback‖ use case.  

Extends: Search. 

Exceptions: None. 

Includes: Provide feedback. 
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Figure 41 shows the sequence diagram of the ―navigate results‖ use case and its 

interactions with other use cases and objects. 

 

Figure 41 Sequence Diagram for “Navigate Results” Use Case 

8.2.1.5 “Use User’s Profile” Use Case 

TABLE 22 shows the specification of the ―use user‘s profile‖ use case. It describes the 

use case showing the preconditions, post-conditions, and other related information. 
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TABLE 22 ―Use User‘s Profile‖ Use Case Specification 

 

Description: This use case fetches the user‘s profile from persistent 

store and returns it into the preferred format. 

Preconditions: User is logged in.   

Post conditions: The requested user profile is returned according to the 

user‘s requested format.  

Frequency of use: High. 

Actor(s) None. 

Normal course of events: 1. The requested user‘s profile comes from ―search‖ 

use case.  

2. System fetches the user‘s profile from the persistent 

store. 

3. System transforms the user‘s profile as per the 

requested format. 

4. System returns the user‘s profile to ―search‖ use 

case. 

Alternative courses: None. 

Extends: Search. 

Exceptions: The requested user‘s profile does not exist or the 

requested format is invalid. Message is shown to the 
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user. 

Includes: None. 

 

Figure 42 shows the sequence diagram of the ―use user‘s profile‖ use case and its 

interactions with other use cases and objects. 

 

Figure 42 Sequence Diagram for “Use User’s Profile” Use Case 

8.2.1.6 “Provide Feedback” Use Case  

TABLE 23 shows the specification of the ―provide feedback‖ use case. It describes the 

use case showing the preconditions, post-conditions, and other related information. 

 

TABLE 23 ―Provide Feedback‖ Use Case Specification 

 

Description: This use case stores the explicit user feedback during 

the navigation on search results. 

Preconditions: User is logged in.   
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Post conditions: The explicit feedback is stored and the user‘s profile is 

updated.  

Frequency of use: Low. 

Actor(s) None. 

Normal course of events: User gives explicit feedback during search ―result 

navigation‖ use case.  

Alternative courses: ―Navigate result‖ use case sends the feedback to be 

stored. 

Extends: System stores the feedback into persistent store. 

Exceptions: None. 

Includes: Navigate result. 

 

Figure 43 shows the sequence diagram of the ―provide feedback‖ use case and its 

interactions with other use cases and objects. 

 

Figure 43 Sequence Diagram for “Provide Feedback” Use Case 
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8.3 Design 

We use the model-view-controller (MVC)9 design pattern for the web part of the system. 

The user‘s interactions are handled by the controller, which dispatches the requests to 

different models. Each model corresponds to a Java server page (JSP), which renders the 

webpage and shows it to the user. Figure 44 presents the MVC model used to handle the 

user‘s Web requests. 

 

Figure 44 MVC Design of the System 

For the query processing, ―SearchAction‖ class receives the user‘s query and dispatches 

the call to ―UserContext‖ class to check if the user is authenticated. If so, it retrieves the 

user‘s profile and transforms it into the shape of an instance of ―CreateProfileForm‖ class. 

                                                 
9
 

https://en.wikibooks.org/wiki/Computer_Science_Design_Patterns/Model%E2%80%93view%E2%80%93c

ontroller 
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After loading the user‘s profile, ―SearchAction‖ dispatches the call to the 

―UserQueryProcessor,‖ which does the tasks required to process the query semantically. It 

then formulates an instance of the class ―ProcessedUserQuery,‖ which contains the 

processed semantic information of the query, such as the concepts and relations that are 

found in the query. The query is then dispatched to ―QuestionTemplateManager,‖ which 

matches the user‘s query to the nearest query template. Figure 45 shows the class diagram 

for classes needed for query processing.  

 

Figure 45 Query Processing Class Diagram 

To reason the query, we deal with reasoning engine, which provides reasoning templates. 

Out of the reasoning templates, we create templates and widgets that correspond to a 

single semantic query. The templates are based on the question type, relations, and 

concepts founded in the user‘s query. Each template contains a number of widgets. 
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―QBox‖ class is a notation for the reasoning template. We create the required number of 

templates based on the queries‘ varieties. For example, ―ListPositiveQBox‖ class 

represents the food list that has a positive relationship with a certain disease. This class 

corresponds to ―WidgetListPositive‖ class, which is used to post-process and filter the 

results based on the user‘s profile.  Figure 46 presents the class diagrams for the required 

classes in the results personalization. It shows only a few examples of the widgets and 

templates, while we have many templates that represent different relations and question 

types.  

 

Figure 46 Results Personalization Class Diagram 
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Figure 47 Class Diagram 

Figure 47 shows the class diagram that consists of these different classes: 

- User Profile: contains the information about the user. 

- Visited Search Results: contains the information about the visited results. 

- Visit Activities: logs the activities the user does when visiting the result. 

- Search History: logs the user‘s queries and annotated queries for future use. 

- Domain: saves the domains of the ontology 

- Ontology Properties: represents the ontology properties and their values. 

- Ontology: describes the domain ontologies. 
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- Knowledgebase: saves the annotated information. 

- Annotated item: represents a single annotated item. 

- Web resources: documents the web resources used in the annotation. 

- Trusted websites: ranks the web sources based on their trust level. 

- Query template: saves the template used in query manipulation. 

8.4 Tools and Programming Languages Used 

Below are the technical specifications of the developed software.  

8.4.1 Hardware and Software Interfaces 

The hardware interfaces of the system are handled by the underlining operating system. 

The system is developed using Java virtual machine, which is a machine-independent 

platform. The developed application utilizes the Java platform for hardware interface 

functionality that can work under deferent hardware such as a PC, handheld assistance, 

and mobile phones that support Java Virtual Machine. The software interfaces are 

described in the following: 

- The software is designed to run on Java Virtual Machine with the JBoss
10

 

Application Server. 

- The software is designed to run on the Apache
11

 Tomcat web server 6.0.18. 

- The software accesses mySQL
12

 database for the following features: 

o adding and updating the user‘s query history; 

o storing the visited results; 

                                                 
10

 http://www.jboss.org/ 
11

 http://tomcat.apache.org/ 
12

 http://www.mysql.com/ 
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o storing query templates; and 

o maintaining user‘s action and activity logs. 

- Ontology OWL and store tools are used to access the domain ontologies. 

8.4.2 Programming Languages 

The programming languages used to build the system include:   

- Java Enterprise Edition (JAVA EE:): which is a part of the Java Platform for 

developing and running distributed multi-tier architecture Java applications, based 

largely on modular software components running on an application server. 

- Hyper Text Markup Language (HTML) and Extensible Markup Language (XML): 

which are the predominant markup languages for webpages. They provide the 

means to describe the structure of text-based information in a document and to 

supplement that text with interactive forms, embedded images, and other objects. 

- JavaScript: A client-side scripting language used to create dynamic web content 

and user interface. 

8.4.3 Development Tools 

The development tools used in the system include: 

- Apache Tomcat 6.0.18 Server: Apache Tomcat is a Servlet container developed by 

the Apache Software Foundation (ASF). Tomcat implements the Java Servlet and 

the JavaServer Pages (JSP) specifications from Sun Microsystems and provides a 

"pure Java" HTTP web server environment for Java code to run in. 

- ECLIPSE J2EE
13

: Eclipse is a toolkit designed for the creation of complex 

projects, providing fully dynamic web application utilizing Enterprise Java Beans 

                                                 
13

 https://www.eclipse.org 
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(EJBs). This consists of EJB tools, CMP, data mapping tools, and a universal test 

client designed to aid testing of EJBs. 

- Jena
14

: Jena is a Java framework for building Semantic Web applications. Jena 

provides a collection of tools and Java libraries to help you to develop the 

Semantic Web and linked-data apps, tools, and servers. 

- Log4J
15

: Apache Log4j is a Java-based logging API. It allows the developer to 

control which log statements are output with arbitrary granularity. It is fully 

configurable at runtime using external configuration files. 

8.4.4 Semantic Web Tools 

The Semantic Web tools used in the software include: 

- TopRaid Composer Ontology Editor
16

: which is used to represent the ontology. 

TopRaid Composer is an enterprise-class modeling environment for developing 

Semantic Web ontologies and building semantic applications. Fully compliant 

with W3C standards, Composer offers comprehensive support for developing, 

managing, and testing configurations of knowledge models and their instance 

knowledgebases. TopRaid Composer is the leading industrial-strength RDF editor 

and OWL ontology editor, as well as the best SPARQL tool on the market. 

- OWLIM reasoning
17

: which is used to reason the semantic queries. OWLIM is the 

most scalable semantic repository. It includes triple store, an inference engine, and 

the SPARQL query engine. It is packaged as a storage and inference layer (SAIL) 

for the Sesame RDF database. OWLIM uses the TRREE engine to perform RDFS, 

                                                 
14

 http://jena.apache.org/ 
15

 http://logging.apache.org/log4j/ 
16

 http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/ 
17

 https://confluence.ontotext.com/display/OWLIMv43/OWLIM-Lite+Reasoner 
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OWL DLP, OWL Horst reasoning, and OWL 2 RL. The most expressive language 

supported is OWL 2 RL, containing RDFS. OWLIM offers configurable reasoning 

support and performance. 

- Sesame RDF Store: it is used to store the semantic annotated data. Sesame is an 

open-source framework for querying and analyzing RDF data. Sesame's API 

differs from comparable solutions in that it offers a stackable interface through 

which functionality can be added and the storage engine is abstracted from the 

query interface [1].  

8.5 Implementation Details 

A web-based system has been developed to implement the proposed framework. The 

semantic techniques are used for reasoning and semantic storage, such as OWLIM
18

 and 

Sesame RDF.
19

 Semantic techniques are integrated with Java J2EE, HTML, and 

JavaScript technologies to show the user-friendly front end. The multi-agent framework 

JADE
20

 is used to communicate between the agents in addition to AgentOWL,
21

 which is 

an agent library that supports the RDF/OWL model based on the Jena framework. A Java 

spell-checking library is used in addition to WordNet
22

 for synonyms.  

8.5.1 Snapshots 

Figure 48, Figure 49, and Figure 50 show the snapshot screens of the implemented 

system.  

                                                 
18

 https://www.ontotext.com/owlim 
19

 http://www.openrdf.org/ 
20

 http://jade.tilab.com/ 
21

 http://ups.savba.sk/~misos/AgentOWL/doc/ 
22 

http://wordnet.princeton.edu 
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Figure 48 Portal Main Screen Snapshot 

 

Figure 49 Example of the Results Page  
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Figure 50 User profile screen snapshot 
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8.5.2 Agents Implementation 

We use JADE
23

 to implement the backend communications between agents to facilitate 

communication and benefit from the agent-based modeling.  JADE is considered 

middleware providing a platform and an API for developing agent-based systems. Once 

the agent is created, it is registered in the JADE Directory Facilitator (DF) to 

communicate with the rest of the agents. The JADE DF facilitates finding agents and 

provides an idea about the services provided by the agent, which can help another agent in 

achieving its goal. This is called Yellow Pages service in JADE DF. An agent may not 

have previous knowledge about the other agents.  Figure 51 gives an idea of how JADE is 

a middle layer to get agents to talk with each other.  

 

Figure 51 JADE Layer 

The following JADE packages and classes were used:  

- Jade.core package: which contains Agent class, the main class in the framework. 

This class is extendable to the main class of each agent.  

- Behavior class: which is under the jade.core.behaviours package. This class takes 

care of the agent‘s tasks and determines the behavior and functions of the agent. The 

main advantage of this class is the concurrent execution of multiple instances.  

                                                 
23

 http://jade.tilab.com/ 
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- jade.lang.acl package: which is involved in the communication between agents 

using Agent Communication Language, which is implemented with reference to the 

Foundation for Intelligent Physical Agents (FIPA) standard specifications.
24

  

- jade.domain package: which is involved in agent management activities defined in 

the FIPA standard and specifically an agent management system (AMS) agent that 

controls the agent platform, and directory facilitator (DF) agents provide directory 

for the agent services.  

The AMS agent plays a major role in controlling the access and the use of agents. There is 

only one instance of AMS in a single-agent platform. The AMS provides other services 

such as life-cycle service and managing a directory that contains agent identifiers (AID) 

and agent state. Any agent should enroll itself with AMS, which provides the agent with 

an ID called AID. Agent communication channel (ACC), also called the message 

transport system, controls all communications between the agents within a platform and 

from external platforms. Figure 52 shows FIPA architecture. 

 

Figure 52 FIPA Specification, Source (141]) Figure 2 

                                                 
24

 http://www.fipa.org/ 
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We have used different agent operations through defining different agents for various 

behaviors:  

- RequestAgent: which extends Behavior class involved in sending one request only. 

An example is when the interface agent sends the user‘s query to the semantic query 

manipulation agent. In this case, a new instance of this class is created when the 

user‘s interface agent receives new query.  

- ReplyAgent: which extends CyclicBehavior class, a child of Behavior class with the 

advantage that it is alive while the program is alive, and this helps in listening to the 

events. The normal Behavior object is limited and executed one time only when 

requested. ReplyAgent provides services for other agents.  

8.5.3 Query and Result Templates Implementation 

Query templates are used to match the user‘s query after the semantic query manipulation 

process. The query templates define the input, the query, and the expected output, the 

results. We define these templates based on the analysis of the domain ontologies and 

knowledgebase.  

We have used several ontologies, including health condition, which has three childhood 

diseases, body part, and body function. Then we have food, nutrition, recipe, user‘s 

profile, and culture. User‘s profile and culture are used to enrich the query. We also have 

support ontologies for serving size, which is related to food items, and daily needs, which 

is related to nutrition.  

We also define a set of relations between different ontologies. TABLE 24, TABLE 25, 

TABLE 26, TABLE 27, TABLE 28, TABLE 29, and TABLE 30 show the defined 

relations and some examples of English and Arabic terms that are used for queries. We 
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use the lookup dictionary to match with user‘s input. We have seven relations defined: has 

positive effect, has negative effect, causes, prevents, treats, contains, and details.  

TABLE 24 Definition of the Relation: HAS_POSTIVE_EFFECT 

 

Relation name HAS_POSTIVE_EFFECT  

Relation between (1) Food-Health Condition, (2) Nutrient-Health 

Condition, (3) Recipe-Health Condition 

Examples of English terms improve, strength, suit 

Examples of Arabic terms ُٚبست, ٚكفٙ, ٚفٛذ 

 

TABLE 25 Definition of the Relation: HAS_NEGATIVE_EFFECT 

 

Relation name HAS_NEGATIVE_EFFECT  

Relation between (1) Food-Health Condition, (2) Nutrient-Health 

Condition, (3) Recipe-Health Condition 

Examples of English terms worsen, destroy, go bad 

Examples of Arabic terms  ,ٚفسذٚسٛئ, ٚؼش  
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TABLE 26 Definition of the Relation: CAUSES 

 

Relation name CAUSES  

Relation between (1) Food-Disease, (2) Nutrient-Disease, (3) Recipe-

Disease 

Examples of English terms cause, lead to, result 

Examples of Arabic terms ٚسجت, ٚؤد٘, ُٚزح 

 

TABLE 27 Definition of the Relation: PREVENTS 

 

Relation name PREVENTS  

Relation between (1) Food-Disease, (2) Nutrient-Disease, (3) Recipe-Disease 

Examples of English terms prevent, stop, block 

Examples of Arabic terms ٕٚقف, ٚسزجعذ, ٚزدُت 

 

TABLE 28 Definition of the Relation: TREATS 

 

Relation name TREATS  

Relation between (1) Food-Disease, (2) Nutrient-Disease, (3) Recipe-Disease 

Examples of English terms treat, attend to, nurse 

Examples of Arabic terms ٘ٔٚعبنح, ٚشفٙ, ٚذا 
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TABLE 29 Definition of the relation: CONTAINS 

 

Relation name CONTAINS 

Relation between (1) Food-Recipe, (2) Nutrient- Recipe, (3) Nutrient-Food 

Examples of English terms contain, include, have 

Examples of Arabic terms ٚحزٕ٘  ,ٚزكٌٕ يٍ ,ٚشزًم 

 

TABLE 30 Definition of the Relation: DETAILS 

 

Relation name DETAILS 

Relation between (1) Recipe-Food, (2) Recipe-Nutrient, (3) Food-Nutrient 

Examples of English terms ingredient, components 

Examples of Arabic terms يكَٕبد ,يحزٕٚبد 

 

Questions are classified into three categories: LIST-questions, IS-questions, and 

QUANTITY-questions. The question type is important as it leads to the correct way to 

answer the query. TABLE 31, TABLE 32, and TABLE 33 show the defined questions 

with some trigger words for English and Arabic. To identify the question type, we take 

the first two terms in the query and compare them with the defined list of terms for each 

question type.  
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TABLE 31 Definition of LIST-Questions 

 

Question type LIST-question  

Examples of English terms what, list, which 

Examples of Arabic terms يبرا, عذد, أ٘, يب 

Expected output Lists items that match the question criteria 

 

TABLE 32 Definition of IS-Questions 

 

Question type IS-question  

Examples of English terms do, is, are, can 

Examples of Arabic terms ْم, أنٛس  

Expected output Confirms by yes or no based on the question criteria 

 

TABLE 33 Definition of QUANTITY-Questions 

 

Question type QUANTITY-question  

Examples of English terms how, how much 

Examples of Arabic terms كى, ثكى  

Expected output Returns the quantity based on the question criteria 
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TABLE 34 Examples of Query and Result Templates 

 

Template name Input Output 

LIST_FOOD_PREVENTS_DISEASE Question type (LIST), 

Relation (prevents), 

Disease 

Food (optional) 

List (Food, prevents, 

Disease) 

LIST_FOOD_CAUSES_DISEASE Question type (LIST), 

Relation (causes), 

Disease, Food 

(optional) 

List (Food, causes, 

Disease) 

IS_FOOD_TREATS_DISEASE Question type (IS), 

Relation (treats), 

Disease, Food 

Yes/No (Food, treats, 

Disease) 

LIST_FOOD_DETAILS Question type (LIST), 

Relation (details), 

Food 

List (Nutrition, details, 

Food) 

IS_FOOD_CONTAINS_NUTRITION  Question type (IS), 

Relation (contains), 

Food, Nutrition 

Yes/No (Food, 

contains, nutrition) 
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After we defined the domain ontologies, the possible relations between concepts and 

instance, and finally the categories of the question types, TABLE 34 shows some 

examples of the query and result templates. These templates are used to match the user‘s 

query and then return the results.  
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9 CHAPTER 9 

EXPERIMENT AND ANALYSIS 

In this chapter, we show first a complete example of the whole system and the 

experimental results of different experiments.  

9.1 Complete Example 

The objective of this experiment is to run a complete example to test the following: 

 The semantic query understanding in detail 

 The transformation of the semantic information  

 The results retrieval (non-personalized) 

 The user‘s profile 

 The query enrichment 

 The personalized retrieval (filtering and ranking) 

We show a complete example where the user enters a query, and then the query is 

semantically manipulated. Then we show how the system retrieves the results in two 

scenarios, one with a user‘s profile and the other without a user‘s profile. The query is 

entered in English, ―What food can help in preventing diabetes?‖ and in Arabic, ― ْٙ يب

  ‖.الأؽعًخ انزٙ رسبعذ عهٗ ردُت انسكش٘؟
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9.1.1 Query Manipulation Example 

The semantic query manipulation process has a number of steps, as shown in TABLE 35. 

For part-of-speech tagging, we use English and Arabic taggers based on the Stanford Log-

linear Part-Of-Speech Tagger,
25

 which is based on the notations of the Penn Treebank 

P.O.S. Tags
26

 in addition to some notations used for Arabic language, such as DTNN, 

which means the noun starts with ―ال‖ ―al―.
27

 TABLE 36 shows the descriptions of the 

used tags.  

TABLE 35 Example of Semantic Query Manipulation 

 

Input 

Query 

What food can help in preventing 

diabetes? 

رسبعذ عهٗ ردُت انسكش٘؟يب ْٙ الأؽعًخ انزٙ   

Step 1: Language detection 

Input What food can help in preventing 

diabetes? 

 يب ْٙ الأؽعًخ انزٙ رسبعذ عهٗ ردُت انسكش٘؟

Output (LANGUAGE: English) (LANGUAGE: Arabic)  

Step 2: Terms tokenizing  

Input What food can help in preventing 

diabetes? 

 يب ْٙ الأؽعًخ انزٙ رسبعذ عهٗ ردُت انسكش٘؟

Output What, food, can, help, in, 

preventing, diabetes, ? 

 ,ردُت ,عهٗ ,رسبعذ ,انزٙ ,الأؽعًخ ,ْٙ ,يب

 انسكش٘

                                                 
25

 http://nlp.stanford.edu/software/tagger.shtml 
26

 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html 
27

 http://nlp.stanford.edu/software/parser-arabic-faq.shtml 
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Step 3: Spell checking 

Input What, food, can, help, in, 

preventing, diabetes, ? 

 ,ردُت ,عهٗ ,رسبعذ ,انزٙ ,الأؽعًخ ,ْٙ ,يب

 ؟ ,انسكش٘

Output Null (i.e., all words are spelled correctly) 

Step 4: Part of speech (POS) tagging 

Input What, food, can, help, in, 

preventing, diabetes, ? 

 ,ردُت ,عهٗ ,رسبعذ ,انزٙ ,الأؽعًخ ,ْٙ ,يب

 انسكش٘

Output What/WDT food/NN can/MD 

help/VB in/IN preventing/VBG 

diabetes/NN 

 WP/انزٙ DTNN/الأؽعًخ WP ْٙ/PRP/يب

 NN/ردُت IN/عهٗ VBP/رسبعذ

 DTNN/انسكش٘

Step 5: Question type classification 

Input What, food يب, ْٙ  

Output  List question (―what‖ belongs to pre-defined list of list question type) 

Step 6: Measurement identification 

Input What, food, can, help, in, 

preventing, diabetes, ? 

 ,ردُت ,عهٗ ,رسبعذ ,انزٙ ,الأؽعًخ ,ْٙ ,يب

 انسكش٘

Output Null (i.e., no measurement quantity, no measurement unit ) 

Step 7: Noise words removal 

Input What, food, can, help, in, 

preventing, diabetes, ? 

 ,ردُت ,عهٗ ,رسبعذ ,انزٙ ,الأؽعًخ ,ْٙ ,يب

 انسكش٘

Output food, help, preventing, diabetes انسكش٘ ,ردُت ,رسبعذ  ,الأؽعًخ 

Step 8: Semantic named entity recognition  

Input food, help, preventing, diabetes انسكش٘ ,ردُت ,رسبعذ  ,الأؽعًخ 
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Output Food (concept: FOOD), diabetes 

(instance: DISEASE: DIABETES) 

 انسكش٘ ,(concept: FOOD) الأؽعًخ

(instance: DISEASE: DIABETES) 

Step 9: Morphological analysis 

Input <VB>help, <VBG>preventing <VB>رسبعذ, <VB>ردُت 

Output help, prevent خُت ,سعذ 

Step 10: Relation identification  

Input help, (preventing, prevent) (سعذ ,رسبعذ) , (خُت ,ردُت) 

Output help (relation: POSITIVE), 

preventing (relation: PREVENT) 

 ردُت ,(relation: POSITIVE) رسبعذ

(relation: PREVENT) 

Step 11: Defined terms identification  

Input Null (no remaining words) 

Output Null (no other term identified) 

Step 12: Non-identified terms processing (using context, patterns, synonymous) 

Input Null (no remaining words) 

Output Null (no post processing terms found) 

Step 13: Ambiguity resolution (using context, patterns, weighted ENR) 

Input What food can help in preventing 

diabetes?, Food (concept: FOOD), 

diabetes (instance: DISEASE: 

DIABETES), help (relation: 

POSITIVE), preventing (relation: 

PREVENT) 

 ,يب ْٙ الأؽعًخ انزٙ رسبعذ عهٗ ردُت انسكش٘؟

 انسكش٘ ,(concept: FOOD) الأؽعًخ

(instance: DISEASE: DIABETES), 

 ردُت ,(relation: POSITIVE) رسبعذ

(relation: PREVENT) 

Output Food (concept: FOOD), diabetes الأؽعًخ (concept: FOOD), ٘انسكش 
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(instance: DISEASE: DIABETES), 

preventing (relation: PREVENT) 

(instance: DISEASE: DIABETES), 

 (relation: PREVENT) ردُت

Step 14: Query template matching 

Input (concept: FOOD), (instance: DISEASE: DIABETES), (relation: PREVENT) 

Output (template: TEMPLATE_LIST_FOOD_PREVENTS_DISEASE) (instance: 

DISEASE: DIABETES) 

Semantic 

query 

output 

(LANGUAGE: English) (LANGUAGE: Arabic) 

(template: LIST_FOOD_PREVENTS_DISEASE), (instance: DISEASE: 

DIABETES) 

 

TABLE 36 Part-of-Speech Tags with Their Descriptions 

 

Tag Description English example Arabic example 

WDT Wh-determiner What  

NN Noun, singular or mass Food, diabetes ردُت 

MD Modal Can  

VB Verb, base form Help  

IN Preposition or subordinating conjunction In ٗعه 

VBG Verb, gerund or present participle Preventing  

WP Wh-pronoun  انزٙ ,يب 

PRP Personal pronoun  ْٙ 

VBP Verb, non-3rd person singular present  رسبعذ 

DTNN Noun, starts with "al" for Arabic terms  انسكش٘ ,الأؽعًخ 
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In the next section, we show the detailed steps of retrieving the results in two options: 

with and without a user‘s profile.  

9.1.2 Results Retrieval without User’s Profile Example 

The user can use the system without a profile, but this scenario will show that the user 

will miss many features such as query enrichment and personalized retrieval. The search 

results come in a semantic representation, as we show the SPARQL query executed in 

Figure 53. The semantic results are shown in Figure 54.  

 

Figure 53 SPARQL Semantic Query 
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Figure 54 Semantic Results 

We render the semantic results and show them to the user in a user-friendly way even if 

the user has no profile. Figure 55 shows the results based on the limited dataset we have. 

The retrieved results have seven records, three for the same fact, which are collected 

together, and three single ones. We show on the left the facets for each food group and 

food item. Facets are used to help the user to explore or filter the results based on the 

user‘s needs. Users are motivated to create a profile to benefit from the personalization 

techniques we provide. If the users have a profile they can mark their preferred food and 

the system automatically learns their preferences through explicit and implicit feedback.  
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Figure 55 Results without Personalization 

 

9.1.3 Results Retrieval with User’s Profile Example (Personalized Retrieval)  

The user can use the system with a profile to show the advantage of using the profile in 

many things, such as query enrichment and personalized retrieval. For a simple 

experiment, for example, the user likes coffee and does not like grain. Coffee will take 

first place in the recommendation, while grain is pushed to the end. Figure 56 shows the 

personalized result the user retrieves and the ability to enhance the profile. 
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Figure 56 Results with Profile 

 Moreover, if users use an Arabic query they will get similar results in their own language, 

as shown in Figure 57. 
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Figure 57 Arabic Personlized Results 

 

9.2 String-Matching Experiment 

We tested the accuracy of 23 string-matching algorithms. We took one term from the 

knowledgebase, an instance of a concept, and tried different variations of the term and 

other unrelated terms. We have tested both English and Arabic terms to select the 

appropriate string-matching algorithm that fits both language.  
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In the experiment, we have one input term from the user‘s query and one indexed term 

from the domain ontologies knowledgebase. We observe how each string-matching 

algorithm correlates both the input term and the indexed term. We do this by using a 

normalized version of Levenshtein distance metric,
28

 which measures the distance 

between the input term and the indexed term. For example, the Levenshtein distance 

between ―fitting‖ and ―getting‖ is 2 since there are two characters not matching. The 

Levenshtein distance metric is represented mathematically using the following formula
29

:  

 

Where  is an indicator function that equals 0 when  and equals 1 

otherwise. The lowest value of the Levenshtein distance is the difference between the two 

strings‘ sizes, while the highest value is the length of the string with more characters. 

Hence, the distance equals 0 if the two strings are exactly equal. 

We use the normalized form of Levenshtein distance where we divide the calculated value 

per the above equation by the number of characters of the indexed term to make the lower 

limit is 0 and the upper limit 1. This helps us when comparing different algorithms with 

various words that have different sizes. Below is the equation we use for calculating the 

normalized Levenshtein distance:  

      
                           

           

         
 

                                                 
28

 http://www.levenshtein.net/ 
29

 http://en.wikipedia.org/wiki/Levenshtein_distance 
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where i is the indexed term and j is the input term. The complement is with 1. If the new 

value is 0, that means it is not matched while it is 1; that means it matches.  

The implemented algorithms
30

 are compared in TABLE 37 for the indexed term ―انزفبحخ‖, 

which is the Arabic label of the ―apple‖ in the domain ontologies and knowledgebase.   

 

TABLE 37 String-Matching Algorithms Peformance 

 

Algorithm/input term ثشرقبنخ رفبحزٙ رفبحخ Result 

BlockDistance 0.000 0.000 0.000 N 

ChapmanLengthDeviation 0.714 0.857 1.000 N 

ChapmanMatchingSoundex 0.000 0.000 0.000 N 

ChapmanMeanLength 0.093 0.100 0.107 N 

ChapmanOrderedNameCompoundSimilarity 0.500 0.333 0.143 Y 

CosineSimilarity 0.000 0.000 0.000 N 

DiceSimilarity 0.000 0.000 0.000 N 

EuclideanDistance 0.000 0.000 0.000 N 

JaccardSimilarity 0.000 0.000 0.000 N 

Jaro 0.707 0.663 0.000 Y 

JaroWinkler 0.707 0.663 0.000 Y 

Levenshtein 0.714 0.429 0.429 YN 

MatchingCoefficient 0.000 0.000 0.000 N 

MongeElkan 1.000 0.667 0.286 Y 

NeedlemanWunch 0.857 0.643 0.714 YN 

                                                 
30

 http://www.coli.uni-saarland.de/courses/LT1/2011/slides/stringmetrics.pdf 
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OverlapCoefficient 0.000 0.000 0.000 N 

QGramsDistance 0.625 0.235 0.111 Y 

SmithWatermanGotoh 1.000 0.667 0.286 Y 

SmithWatermanGotohWindowedAffine 1.000 0.667 0.286 Y 

SmithWaterman 1.000 0.667 0.286 Y 

Soundex 0.000 0.000 0.000 N 

[TagLinkToken_Tr_0.3] 0.343 0.248 0.429 N 

LetterPairSimilarity 0.800 0.545 0.167 Y 

 

We ran the experiment on Arabic text as it indicates how powerful the algorithm is. We 

observe that few of the algorithms did a good job for Arabic text. These are marked with 

―Y‖ where we chose the best one to use in our query manipulation. In addition to 

Levenshtein distance, other measures and tools that give the results of these measures 

include Java libraries. Examples include Simmetrics,
31

 which is an open-source Java-

based library for similarity metric techniques, and Second String,
32

 which is another open-

source Java-based library for approximate string-matching techniques. Figure 59, Figure 

60, and Figure 61 show the experimental examples run using Simmetrics and Second 

String. In these two implementations, 1 means it is matching, while 0 means it is not 

matching. Figure 58 shows all the metrics equal to 1 when we pass two exact strings.  

 

                                                 
31

 http://sourceforge.net/projects/simmetrics/ 
32

 http://secondstring.sourceforge.net/ 
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Figure 58 String Matching for Two Exact Strings 
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Figure 59 String-Matching Experiment for First Term 



185 

 

 

Figure 60 String-Matching Experiment for Second Term 
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Figure 61 String-Matching Experiment for Third Term 

 

9.3 Query Understanding Experiment 

Responses to a total of 453 questions were collected from various sources, such as domain 

experts, users via surveys, and different health consumer websites. The questions were 
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categorized based on the existing terms related to the health and food domain ontologies. 

TABLE 38 shows the classifications of these questions. 

TABLE 38 Question Classifications 

 

Question category 

Question type Total per 

category Yes/No List Quantity 

Food centric  37 59 19 115 

Nutrition centric  34 31 22 87 

Recipe centric  21 27 16 64 

Disease centric  29 37 19 85 

Body part centric  23 15 9 47 

Body function centric  28 19 8 55 

Total 172 188 93 453 

 

Figure 62 shows the distribution of the questions based on their category.  
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Figure 62 Distribution of the Question Categories 

Figure 63 shows the distribution of the questions based on the question category and 

question type. Most of the list questions are food centric.  

 

Figure 63 Distribution of the Questions Based on Category and Type 
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The first experiment is to measure the understanding of the questions semantically. For 

this, we have manually annotated the questions to identify the number of the related terms 

to the food and health domains in the questions. We use this for measuring the 

performance of the question understanding. The performance is measured by precision, 

recall, and F-measure. The precision measures the accuracy of the results and can be 

calculated by dividing the correct identified terms by the total of correct and incorrect 

ones. The recall measures the coverage of the understanding and can be calculated by 

dividing the correct identified terms by the total terms found manually. F-measure can be 

calculated using the following equation (142): 

 

 

We show the average measures in the performance chart in Figure 64. 

Figure 65 shows the precision, recall, and F-measure line chart across all questions‘ 

categories. We observe that they are related and that the more precision we have the 

higher the recall and then the higher the F-measure value.  

 

 

 

TABLE 39 shows the performance of the question understanding. The results show a high 

precision of 90%, which is required in such a domain to get an accurate understanding of 
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the questions. The coverage is 76%, which leads to a need to get more knowledgebases 

for the domain ontologies with richer concepts. 

We show the average measures in the performance chart in Figure 64. 

Figure 65 shows the precision, recall, and F-measure line chart across all questions‘ 

categories. We observe that they are related and that the more precision we have the 

higher the recall and then the higher the F-measure value.  

 

 

 

TABLE 39 Questions Understanding Performance 

 

Question category 

Measure 

Precision Recall F-measure 

Food centric  0.92 0.86 0.89 

Nutrition centric  0.90 0.78 0.84 

Recipe centric  0.84 0.64 0.73 

Disease centric  0.91 0.77 0.83 

Body part centric  0.91 0.81 0.86 

Body function centric  0.91 0.72 0.80 
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Question category 

Measure 

Precision Recall F-measure 

Average 0.90 0.76 0.83 

 

 

Figure 64 Performance Chart 

 

Figure 65 Precision, Recall, and F-Measure Line Chart 
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9.4 Multilingual Retrieval Experiment 

The second experiment is to measure the multilingual capability to retrieve data that were 

annotated in a different language from the user query language. A set of a hundred Arabic 

questions was processed, and the retrieved results were checked manually. TABLE 40 

shows the performance of the cross-lingual retrieval for each question category. The 

results also show a high precision of 86%, which means that we could retrieve a good 

percentage of multilingual results from different sources by understanding the user‘s 

question in any language. 
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TABLE 40 Performance of Cross-Lingual Retrieval 

 

 Question category 

Number of 

questions 

Total results Valid results Precision 

Food centric  28 290 245 0.84 

Nutrition centric  19 187 164 0.88 

Recipe centric  13 195 174 0.89 

Disease centric  21 214 192 0.90 

Body part centric  8 90 73 0.81 

Body function centric  11 112 96 0.86 

Total 100 Average 0.86 

 

Figure 66 shows the performance of cross-lingual questions in understanding. It shows the 

highest precision in the disease-centric questions and the lowest in the body parts-centric 

questions.  
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Figure 66 Performance of Cross-Lingual Questions 

9.5 Query Enrichment Experiment 

The third experiment is to test the questions‘ semantic enrichment by creating multiple 

profiles with different values. The enrichment is then done manually and compared with 

the enrichment done by the system. First, we measure if the system can enrich the 

question in the expected way that matches the user‘s profile. Then we measure the 

satisfaction by getting more relevant results if questions are enriched.  

Initial results are promising. Here is an example of the question enrichment. We 

submitted two questions and retrieved the results with enrichment and without 

enrichment. We submitted the query, ―List the food that has positive impact on diabetes.‖ 

In the first case where no enrichment is involved, the result is generic and fits any user. In 
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the second case where enrichment is used, milk is not recommended while tomato is 

recommended for the user because the user‘s profile shows an allergy to milk, no 

preferences for some fruits, such as apples and oranges, and preferences for vegetables. 

The fact that the query enrichment is subjective motivates us to publicize our work and 

collect more feedback targeting the individual‘s preferences.  

9.6 Advantages of Semantic Query Manipulation Experiment 

The objective of this experiment is to investigate the additional value of the proposed 

semantic manipulation of the query over the keyword-based traditional information 

retrieval system.  

9.6.1 Annotated Documents Dataset  

We have crawled 102,537 documents scattered through 96 trusted websites. Out of these 

documents, we have selected the richest documents that contain integrated information 

about all the domains of food, nutrition, and health. These documents have at least two 

semantic relations between concepts belonging to the three domains. We found 9,852 

documents that have at least two semantic relations, which is equivalent to 9.60% of the 

crawled documents, and that is because that most of the documents have only concepts 

related to the three domains without relations.  TABLE 41 shows the statistics of the top 

ten crawled websites. 
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TABLE 41 Top Ten Crawled Websites 

 

No. Websites URL # Doc 

1 US Food and Drug Administration www.fda.gov  523 

2 Centers for Disease Control and Prevention www.cdc.gov  319 

3 Saudi Medical Journal www.smj.org.sa  1,253 

4 Service of the National Library of Medicine www.pubmed.gov  729 

5 New England Journal of Medicine www.nejm.org  582 

6 Medscape Continuing Medical Education www.medscape.com  356 

7 American Medical Association www.ama-assn.org  3,682 

8 American Society of Health System Pharmacists www.ashp.com  4,253 

9 US National Institutes of Health www.nih.gov  259 

10 Arab Center of Nutrition www.acnut.com  853 

 

TABLE 42 and  

Figure 67 show the distribution of the selected 9,852 documents that have at least two 

semantic relations in terms of how many relations exist in these documents.  

 

http://www.fda.gov/
http://www.cdc.gov/
http://www.smj.org.sa/
http://www.pubmed.gov/
http://www.nejm.org/
http://www.medscape.com/
http://www.ama-assn.org/
http://www.ashp.com/
http://www.nih.gov/
http://www.acnut.com/
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TABLE 42 Distribution of Selected Documents Based on Number of Relations 

 

Number of relations Number of documents 

more than 5 157 

5 316 

4 586 

3 4,075 

2 4,718 

 

 
 

Figure 67 Distribution of Selected Documents Based on Number of Relations 
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9.6.2 Question Dataset Annotations 

We have annotated the 453 questions by two annotators, and TABLE 43 shows the result 

of the contingency between the two annotations. 

TABLE 43 Contingency results for the Two Annotators 

 

  Annotator – 1 

  Food Nutrition Disease Recipe Body 

part 

Body 

function 

Marginal 

sum 

A
n
n
o
ta

to
r 

- 
2

 

Food 170 4 5 3 1 0 183 

Nutrition 3 40 4 1 3 0 51 

Recipe 1 3 120 2 1 1 128 

Disease 7 6 4 197 5 2 221 

Body 

part 

4 1 1 4 55 1 

66 

Body 

function 

5 3 2 1 6 25 

42 

Marginal 

sum 190 57 136 208 71 29 691 

We first calculate that the observed percentage agreement is Pr(a), which is the total 

number of agreements on different entities divided by the total annotations:  

Pr(a) = (170+40+120+197+55+25)/691 = 0.8784 
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Then we calculate the probability of random agreement (Pr(e)), which is the total number 

of random agreement probabilities for each entity (e.g., Pr(e)food). For each entity, we 

calculate its random agreement probabilities by multiplying the total annotated entities of 

the entity (e.g., food, by each annotator divided by the total annotations). Thus: 

- Pr(e)food = 183 /691 * 190 /691 = 0.0728 

- Pr(e)nutrition = 51 /691 * 57 / 691 = 0.0061 

- Pr(e)recipe = 128 /691 * 136/691 = 0.0365 

- Pr(e)disease = 221 /691 * 208 / 691 = 0.0963 

- Pr(e)body part = 66 /691 *  71 /691 = 0.0098 

- Pr(e)body function = 42 /691 * 29 /691 = 0.0026 

Pr(e)= 0.0728 + 0.0061 + 0.0365 + 0.0963 + 0.0098 + 0.0026 = 0.2240 

Then we calculate Cohen's kappa coefficient,
33

 which measures the agreement between 

the two annotations using the formula: 

 

where k  = 0.8784 – 0.2240 / (1 – 0.2240) = 0.8433. 

This means the two annotators agree on 84% of the annotations. The remaining 16% 

disagreement is due to different interpretation of the questions terms. For example, if 

there is a question, ―What can improve cholesterol?‖ then the cholesterol might be 

categorized as nutrition or disease.  

                                                 
33

 http://en.wikipedia.org/wiki/Cohen's_kappa 
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9.6.3 Question Dataset Annotations Analysis 

In this section, we want to analyze the agreed-upon annotations of the collected 453 

questions to identify the distributions of each entity in the questions. This is done by 

categorizing the questions into English and Arabic questions, and then tokenizing the 

questions to find the number of tokens in each question. After that, we find the name 

phrases in the questions. Next, we apply the agreed-upon annotations to find the 

distribution of each entity in the question data set. TABLE 44 show the distributions.  

TABLE 44 Queries Distributions 

 

Category Percentage 

from total 

Noun 

Phrases 

Total English queries Arabic queries 

Count Percentage Count Percentage 

Questions --- 453 353 77.92% 100 22.08% 

Tokens --- 2,533 1,863 73.55% 670 26.45% 

Noun phrase --- 873 521 59.68% 352 40.32% 

Food  19.47% 170 112 65.88% 58 34.12% 

Recipe  4.58% 40 29 72.50% 11 27.50% 

Nutrition  13.75% 120 86 71.67% 34 28.33% 

Disease  22.57% 197 139 70.56% 58 29.44% 

Body part  6.30% 55 37 67.27% 18 32.73% 

Body function 2.86% 25 18 72.00% 7 28.00% 
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We notice that the noun phrases in Arabic questions are more numerous than the noun 

phrases in English questions because of Arabic‘s characteristics, which use more nouns. 

The column that shows the percentage from total noun phrases determines the minimum 

recall percentage if we have random selection and assignment of each noun phrase to a 

certain category (e.g., the probability of assigning any noun phrase to food category is 

19.47%). We should mention that the remaining percentage is 30.47%, which means that 

the probability of having a noun phrase that could not be assigned to the six categories 

(food, nutrition, recipe, disease, body part, and body function) is 30.47%. These noun 

phrases, which are not assigned to the pre-defined categories, might be relations or 

unknown phrases.  

9.6.4 Semantic Query Manipulation with the Traditional Information 

Retrieval System 

The semantic query manipulation adds the following features to the query: 

- F1: Missing and implicit terms 

- F2: Ontology‘s vocabulary that matches the user‘s keyword 

- F3: Language representation of the user‘s native language query 

For example, if the user asks, ―What food can help diabetes?‖ then the semantic 

manipulation of the user‘s query contains: 

- (Disease, is-a, Diabetes) 

- (Food?, has-positive-effect, Diabetes) 

The semantic query understanding includes the following tasks: 

- T1: Named entity recognition: includes virtual term attributes (like color in 

―green apple‖) 
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- T2: Relation recognition: includes injection of missing or implicit terms 

(virtual term entity) 

- T3: Need recognition: includes type of question and type of answer 

9.6.5 Experiment Scenarios 

In our experiment, we ran three different scenarios: 

1- Run the user‘s natural language query as-is in the traditional information retrieval 

system.  

2- Enrich the user‘s query with the additional features (F1, F2, and F3) and then 

rewrite the user‘s query with the enrichments. Next, run the enriched query in the 

traditional information retrieval system.  

3- Enrich the user‘s query with the additional features (F1, F2, and F3) and then 

produce a SPAQL query with the enrichment. Next, run the SPARQL-enriched 

query on the annotated documents using a semantic reasoner.  

9.6.6 Experiment Steps 

We have the following steps in our experiment:  

1- We have run the semantic query manipulation process on the 453 user‘s queries, 

which gave us the following: 

a. Enriched semantic queries;  

b. Rewritten enriched queries in natural language;  

c. SPARQL-enriched queries; 

d. Name entities related to food and health domains; 

e. Relations related to the domain; and 
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f. Question type and expected answer type. 

2- We indexed the 9,852 related documents using the traditional information retrieval 

system.  

3- We correlated the 9,852 annotated documents to the 453 queries semi-

automatically by finding the documents that contain the identified named entities 

related to food and health domains (4b) using the traditional information retrieval 

system with the Boolean relation (AND). We found 2,386 documents related to 

the 453 queries.  

4- We annotated the 2,386 documents using the OSAPIR system. 

5- We ran the 453 queries as-is using the traditional information retrieval system on 

the 2,386 documents. 

6- We ran the rewritten enriched 453 queries (4b) using the traditional information 

retrieval system on the 2,386 documents. 

7- We ran the SPARQL-enriched queries (4c) using the OSAPIR system on the 2,386 

annotated documents. 

8- We compared the results of step 5 and step 6 to identify the improvements of the 

semantic query manipulation and enrichment over the traditional query 

manipulation (keyword-based) by comparing the calculated precision, recall, and 

F-measure for each.  

9- We compared the results of step 6 and step 7 to measure the advancement of the 

OSAPIR system with the semantic query manipulation and enrichment over the 

traditional system with query enrichment by comparing the calculated precision, 

recall, and F-measure for each.  



205 

 

9.6.7 Experiment Execution 

In this experiment, the idea is to evaluate the advantage of the semantic query 

manipulation over the traditional information retrieval system and then to compare the 

OSAPIR system with the traditional information retrieval system, which relies on general 

search terms or keywords in the document to find the resulting documents for the user 

query.  We select Lucene
34

 for our experiment as a traditional information retrieval 

system. The experiment is performed with respect to the relevancy of the results.  

9.6.8 Experiment Results 

TABLE 45, TABLE 46, and TABLE 47 show the collected results of the experiment from 

both systems: the Lucene system without query enrichment, the Lucene system with 

query enrichment, and finally the OSAPIR system with query enrichment.   

TABLE 45 Lucene System Performance without Query Enrichment 

 

Measure  Precision Recall F-measure 

Minimum 0.17 0.29 0.22 

Maximum 0.94 1.00 0.97 

Average 0.45 0.60 0.50 

Standard deviation 0.180 0.194 0.173 

 

                                                 
34

 http://lucene.apache.org/ 
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TABLE 46 Lucene System Performance with Query Enrichment 

 

Measure  Precision Recall F-measure 

Minimum 0.47 0.42 0.44 

Maximum 1.00 1.00 1.00 

Average 0.65 0.74 0.69 

Standard deviation 0.113 0.124 0.107 

 

 

TABLE 47 OSAPIR System Performance with Query Enrichment 

 

Measure Precision Recall F-measure 

Minimum 0.75 0.50 0.60 

Maximum 1.00 1.00 1.00 

Average 0.90 0.87 0.88 

Standard Deviation 0.070 0.114 0.075 
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9.6.9 Experiment Analysis 

The performance of Lucene without query enrichment is low when compared to the same 

experiment after submitting rewritten queries based on the semantic query manipulation. 

Both precision and recall were improved with the query enrichment. Moreover, the 

OSAPIR system outperforms Lucene even with query enrichment because the semantic 

annotations better correspond to the semantic query manipulation. For example, adding 

the implicit relationship between terms improves the precision and recall of the OSAPIR 

system. Moreover, Lucene achieves 100% recall for five queries, while OSAPIR achieves 

twenty-three queries. OSAPIR also achieves twenty-four queries with 100% precision, 

while Lucene did not reach 100% precision for all queries.  
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10 CHAPTER 10 

CONCLUSION AND FUTURE WORK  

In this thesis, we surveyed state-of-the-art methodologies in capturing users‘ preferences. 

Then we proposed a methodology for identifying and capturing the user‘s personal and 

cultural preferences, health conditions, and religious constraints related to the food and 

health domains. In addition, we studied the current research in users‘ profile 

representation. We proposed an ontology-based user‘s profile to represent the user‘s 

preferences, and we built multilingual integrated health and food ontologies and the 

knowledgebase required for semantic query manipulation. Then we integrated the 

ontology-based user‘s profile with the domain ontologies to retrieve precise results. In this 

thesis, we investigated the personalization methodologies that help customize the 

retrieved results to match the user‘s needs. We utilized the user‘s profile ontology to 

personalize the retrieved health and food information from the knowledgebase. We 

proposed in this thesis a multilingual agent-based framework for semantic query 

manipulation and result personalization, namely the agent-based-framework for semantic-

query-manipulation and personalized information retrieval (ASPIR). We also modeled the 

processes in the framework for semantic query manipulation and personalization. We 

have implemented and evaluated the framework and the results show high precision and 

promising results with superior user satisfaction.  

As a future work, we can capitalize on the power of agents that can be proactive and 

provide recommendation and advice to users without asking or querying. The agent can 

sense the time of the day and the weather in addition to the location and then advice the 
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user with appropriate recommendations. Furthermore, collaborative-based filtering is a 

future direction, and it requires publicity of the developed work. There are trade-offs 

between keeping the health and food information private and sharing it with other users. 

Another future direction is to test the framework on other domains to validate its 

scalability. Finally, we would work on publicizing the framework to help the community 

with better health and nutrition advice.  
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