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Many industrial sectors built cogeneration plants to reliably secure their power supplies, 

and efficiently produce the plant demand of steam through the associated heat.  Due to 

the rise of fuel cost and tightening environmental regulations, the number of cogeneration 

plants is increasing in lieu to individual boilers and steam turbine generators. Most of the 

recent cogeneration plants are equipped with hardware-based analyzer which is a 

Continuous Emission Monitoring System (CEMS) to monitor the NOx emissions from 

the plant stack as per EPA regulations.  The CEMS is unreliable and subjected to high 

failure rates, require high capital cost, high maintenance cost, high operational cost, 

subject to long lag time, and slow response.  In this work a software-based analyzer was 

designed which is the Predictive Emission Monitoring System (PEMS) by applying 

Artificial Neural Networks (ANN) on process data collected from a cogeneration plant 

(156 MW X 2 CGTGs) equipped with CEMS for NOx monitoring.  The developed 

PEMS can be used as a reliable tool to monitor the NOx emissions and verify the existing 

CEMS readings that will be eventually demolished. By providing a relationship between 

the process variables and the emissions, PEMS will also assist in understanding the NOx 

behavior in reference to the process variations and thus enables better emission control.  
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In fact two approaches in NN were tested to develop and decide the final model based on 

the obtained performance.  Both ANFIS and FFBPNN approaches went through many 

experiments at different number of process inputs and structural design parameters.  

Throughout the entire course of experiments it was found that the FFBPNN model 

outperforms the ANFIS model.  Also, it was found increasing the number of inputs to 

ANFIS model will degrade its performance in addition to complicating the model 

structure and increasing the computational time.  However, in FFBPNN model, the 

performance enhanced slightly.  Based on that, it was concluded that FFBPNN model 

with four inputs (Load, Steam flow, Firing temperature, and A/F) shall be selected as the 

final PEMS model with the consideration of decreasing the number of inputs decreases 

the points of failure of the model. 
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 ملخص الرسالة

 

 

 علي عبدالله علي الملك:الاسم الكامل
 

في محطة  عنوان الرسالة: محلل حاسوبي لقياس تركيز إنبعاثات أكاسيد النيتروجين من المولدات التوربينية
 للطاقة زدوجالتوليد الم

 

 و التحكم هندسة النظم التخصص:
 

 هجرية5341رجب   :تاريخ الدرجة العلمية
 

 

بموثوقية للطاقة لتأمين امدادات الطاقة  زدوجالصناعية محطات التوليد المالعديد من القطاعات  أنشأت

لوقود وتشديد رتفاع تكلفة اإ بسبب. وفقةامن خلال الحرارة المر البخار المطلوب للمصنع بكفاءةوإنتاج 

مولدات في إزدياد على حساب الغلايات وال للطاقة زدوجعدد محطات التوليد المفإن الأنظمة البيئية ، 

 ليحلبجهاز ت الحديثة مزودةطات التوليد المشترك للطاقة معظم محإن . المفردةالبخارية  يةالتوربين

اثات أكاسيد النيتروجين ( لمراقبة انبع CEMS)  المستمر الانبعاثاتنظام مراقبة ب لذي يعرفاللغازات 

معدلات لعرضة وغير موثوق  )CEMS) نظاموفقا للوائح وكالة حماية البيئة . و مدخنة المصنعمن 

لوقت  العينات تأخرل عالية، و تخضع و تشغيل صيانةوتكلفة  مرتفعة مال فشل عالية، تتطلب تكلفة رأس

 حاسوبي يعرف بنظام مراقبة الإنبعاثات التنبؤي تم تصميم محللجابة. في هذا العمل ستالإطويل، و بطء 

 (PEMS  ( من خلال تطبيق الشبكات العصبية الاصطناعية )ANN  على )تم التي  العمليات بيانات

 المزودة بنظام ( مولدة توربينية 4في   ميغاواط 051للطاقة )  مزدوججمعها من محطة توليد 

)CEMS( سيتم استخدام نظام  .أكاسيد النيتروجينمراقبة ل)PEMS(  كأداة موثوقة لمراقبة انبعاثات

القائم الذي سيتم الإستغناء عنه  في نهاية  )CEMS(أكاسيد النيتروجين ولتحقق من قراءات جهاز 

  )PEMS(من خلال إيجاد علاقة بين متغيرات العمليات التشغيلية و الانبعاثات، نظام و المطاف. 

يساعد أيضا في فهم سلوك أكاسيد النيتروجين للمتغيرات في العمليات التشغيلية، وبالتالي يمكن التحكم س
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(  لتطوير و تقرير NNبالأنبعاثات بشكل أفضل. في الواقع تم اختبار نهجين في الشبكات العصبية  )

ديد من التجارب لكلا النهجين النموذج النهائي استنادا إلى الأداء التي تم الحصول عليه. تم إجراء الع

)ANFIS(  و)FFBPNN( يكلية متعددة. من خلال باستخدام مدخلات عملية بأعداد مختلفة وتصاميم ه

. أيضا ، نجد أن  )ANFIS(يتفوق على نموذج  )FFBPNN(التجارب، تبين أن أداء النموذج  جميع

إلى تعقيد هيكل النموذج وزيادة يضعف أدائها بالإضافة  )ANFIS(زيادة عدد المدخلات إلى نموذج 

تعزز الأداء قليلا. بناء على ذلك ، تم  )FFBPNN(الوقت الحسابي. وعلى عكس ذلك، في نموذج 

مع أربعة مدخلات )الحمولة ، وتدفق البخار، درجة حرارة  )FFBPNN(الأستنتاج أن نموذج 

نهائي مع الإعتبار أن خفض عدد ال )PEMS(الإحتراق، و معدل الهواء للوقود( ينبغي اختياره كنموذج 

 المدخلات يقلل من نقاط فشل النظام.
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1 CHAPTER 1 

INTRODUCTION 

Many industrial sectors built cogeneration plants to secure their power supplies reliably 

and efficiently produce the plant demand of steam through the associated heat.  Due to 

the rise of fuel cost and tightening environmental regulations, the number of cogeneration 

plants will increase in lieu to individual boilers and steam turbine generators. Most of the 

recent cogeneration plants are equipped with hardware-based analyzer which is the 

Continues Emission Monitoring System (CEMS) to monitor the NOx emissions from the 

plant stack as per EPA regulations.  The CEMS is unreliable and subjected to high failure 

rates, require high capital cost, high maintenance cost, high operational cost, subject to 

long lag time, and slow response.  In this work a software-based analyzer was designed 

which is the Predictive Emission Monitoring System (PEMS) by applying Artificial 

Neural Networks (ANN) on process data collected from cogeneration plant (156 MW X 2 

CGTGs) equipped with CEMS for NOx monitoring.  Two ANNs approaches were 

evaluated; the Feed Forward Back Propagation Neural Network (FFBPNN) and the 

Adaptive Neuro Fuzzy Inference System (ANFIS).  The developed PEMS can be used to 

verify the existing CEMS readings and used as reliable tool to monitor the NOx 

emissions. By providing a relationship between the process and the emissions, PEMS will 

also assist in understanding the NOx behavior in reference to the process variations and 

thus enables better emission control. 



2 

 

The main objective of this thesis is to develop a PEMS for NOx generated from 

Combustion Gas Turbine Generators.  The modeling approach is through applying 

ANFIS and FFBPNN systems.  The specific objectives are: 

 Critical review of the past research in the field of combustion NOx modeling. 

 Develop NOx prediction model by ANFIS using industrial process data. 

 Develop NOx prediction model by FFBPNN using industrial process data. 

 Compare the results obtained from the developed models and recommend the best 

model structure for NOx prediction.  

 

In the next sections under this introductory chapter the cogeneration technology is 

discussed.  Followed by a significant discussion on the NOX formation in combustion 

processes, highlights on the impact of NOX on environment and health, and the NOx 

measurement techniques.  In chapter 2, a literature review in the area of PEMS is 

presented at which it was found no much work have been done in developing NOX PEMS 

system in the cogeneration plants and the focus was in the boilers and furnaces.   

 

The cogeneration plant under study is discussed under chapter 3; at which brief process 

description is provided followed by detailed description of the Dry Low NOX burner (GE 

DLN-2.6).  In chapter 4, the Artificial Neural Networks is discussed with focus on 

FFBPNN and ANFIS.  Detailed NOX modeling and comparison are presented in chapter 

5.  Finally, the conclusion and future work is addressed in chapter 6.   
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1.1 Cogeneration technology 

Cogeneration first appeared in late 1880s in Europe and in the U.S.A. during the early 

years of the 20th century, when most industrial plants generated their own electricity 

using coal-fired boilers and steam-turbine generators.  Many of the plants used the 

exhaust steam for industrial processes.   

 

When  central  electric  power  plants  and  reliable  utility  grids  were  constructed  and  

the  costs  of electricity decreased, many industrial plants began purchasing electricity 

and stopped producing their own. Other factors that contributed to the decline of 

industrial cogeneration were the increasing regulation of  electric  generation,  low  

energy  costs  which  represent  a  small  percentage  of  industrial  costs, advances in 

technology such as packaged boilers, availability of liquid or gaseous fuels at low prices, 

and tightening environmental restrictions.  

 

The utilization of cogeneration started to increase after the first dramatic rise of fuel costs 

in 1973. Systems that are efficient and can utilize alternative fuels have become more 

important in the face of price rises and uncertainty of fuel supplies. In addition to 

decreased fuel consumption, cogeneration results in a decrease of pollutant emissions. 

For these reasons, governments in Europe, U.S.A.,  South East Asia and  Japan  are  

taking  an  active  role  in  the  increased  use  of  cogeneration. 
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Cogeneration is the simultaneous generation and utilization of fuel energy in different 

forms at optimum efficiency through cost-effective and environmental-friendly 

operational process. Cogeneration systems primarily generate electricity and utilize the 

associated heat to support the operation of facility processes such as steam generation. 

 

All continuous process plants such as fertilizers, petrochemicals, hydrocarbon refineries, 

paper and pulp manufacturing units, food processing, dairy plants, pharmaceuticals, sugar 

mills, etc always require uninterrupted supply of electric power and steam to sustain the 

critical operational processes.  

 

Small continuous process chemical industrial units generally depend on the grid power, 

while generating process steam through conventional fired industrial boilers. Large and 

medium scale chemical industries can implement cogeneration systems to meet their 

requirement of essential energy inputs (power and steam) and achieve better availability, 

reliability and economics of the plant operations.  

 

Due to the rise of fuel cost and tightening environmental regulations, the number of 

cogeneration plants is increasing in lieu to individual boilers and steam turbine 

generators.  Cogeneration technology uses different combinations of power and heat 

producing equipment, which are numerous.  
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A proper selection of a cogeneration system configuration, from a few basic system 

configurations described below, makes it feasible to produce first either electrical energy 

or thermal energy. (Energy Efficiency Office, 1992)  

 

  a. Steam turbine based cogeneration system 

  b. Gas turbine based cogeneration system 

  c. Combined steam/gas turbine based cogeneration system 

  d. Reciprocating engine based cogeneration system 

 

Most widely used cogeneration systems in the chemical process industrial plants are 

based on steam turbine, gas turbine or combined steam/gas turbine configurations with 

installations based on reciprocating engine configuration in moderate number. These 

configurations are widely accepted by the industries due to their proven track record and 

easy commercial availability of required equipment.  

 

All combinations of cogeneration systems are based on the First and Second Laws of 

Thermodynamics. Basic concepts of possible different configurations of cogeneration 

systems, consisting of a primary energy source, a prime mover driven electric power 

generator and arrangement to use the waste heat energy rejected from the prime mover, 

are briefly described along with the system schematic diagrams.  
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1.1.1 Steam turbine cogeneration 

This system works on the principle of Rankine cycle of heat balance. In Rankine cycle, 

the fuel is first fired in a suitable boiler to generate high-pressure steam at predetermined 

parameters. The produced steam is then expanded through a steam turbine to produce 

mechanical power, electricity and a low-pressure steam. The steam turbine could be of 

backpressure type, extraction-cum-condensed type or extraction-cum-back pressure type 

depending on different levels and parameters at which the steam is required by the 

chemical process in that particular plant. Cogeneration system with backpressure steam 

turbine is schematically represented in Figure 1. 

 

Figure 1 Backpressure steam turbine based cogeneration system 
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In a conventional fossil fuel fired power plant, maximum fuel efficiency of about 35% is 

achieved. Maximum heat loss occurs by way of the heat rejection in a steam condenser 

where a straight condensing steam turbine is used. Some improvement in the efficiency 

could be attained through extraction-cum-condensing steam turbine instead of straight 

condensing type as shown in Figure 2. The steam so extracted could be supplied to either 

process consumer or to heat the feed water before it enters into boiler. As seen from 

above, the rejected heat energy from the steam turbine is most efficiently used to meet the 

thermal energy requirement of that particular chemical process by adopting non-

condensing steam turbine based cogeneration system. The overall efficiency of around 

80-85% is achieved in this type of plant configuration. 

 

Figure 2 Extraction-cum-condensing steam turbine based cogeneration system 
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The selection of steam turbine for a particular cogeneration application depends on 

process steam demand at one or more pressure/temperature levels, the electric load to be 

driven, power and steam demand variations, essentiality of steam for process, etc. The 

steam to power ratio also plays a role in selection of the steam turbine. Generation of 

very high-pressure steam and low back pressure at steam turbine exhaust would result 

into small steam to power ratio. Smaller value of ratio would indicate the lower 

utilization value of steam for heating or process purpose. The flexibility in steam to 

power ratio can be obtained by using steam turbines with regulated extraction. 

 

Steam turbine based cogeneration systems can be fired with variety of fossil fuels like 

coal, lignite, furnace oil, residual fuel oil, natural gas or non-conventional fuels like bio-

gas, bagasse, municipal waste, husk, etc. Hence, the fuel flexibility for this type of system 

is excellent. However, this configuration is not recommended for smaller installations as 

it is more expensive and maintenance oriented. It is also not feasible to adopt this system 

if the chemical industry is located nearer to a populated area, as it becomes a major 

source of environmental pollution depending upon type of fuel used, i.e. coal, lignite or 

furnace oil. 

 

1.1.2 Gas turbine cogeneration system 

This type of system works on the basic principle of Bryton cycle of thermodynamics. Air 

drawn from the atmosphere is compressed and mixed in a predetermined proportion with 

the fuel in a combustor, in which the combustion takes place. The flue gases with a very 
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high temperature from the combustor are expanded through a gas turbine, which drives 

electric generator and air compressor. A portion of mechanical power is used for 

compression of the combustion air: the balance is converted into electric power. The 

exhaust flue gases from the gas turbine, typically at a high temperature of 480-540 °C, 

acts as a heat source from which the heat is recovered in the form of steam or hot air for 

any desired industrial application.  

 

Industrial gas turbine based power plants installed to generate only electric power operate 

at the thermal efficiency of 25-35% only depending of type and size of gas turbine. Aero 

derivative gas turbines operate at marginal higher efficiency than the conventional 

industrial heavy-duty machines. With recovery of heat in exhaust flue gases in a waste 

heat recovery boiler (WHRB) or heat recovery steam generator (HRSG) to generate the 

steam, overall plant efficiency of around 85-90% is easily achieved. As an alternative, the 

heat of exhaust flue gases can also be diverted to heat exchanger to generate hot water or 

hot air.  Figure 3 shows a schematic of Gas Turbine based cogeneration system. 
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Figure 3 Gas turbine based cogeneration system with supplementary fired WHRB 

 

Compared to steam turbine based cogeneration system, the gas turbine based 

cogeneration system is ideal for the chemical process industries where the demand of 

steam is relatively high and fairly constant in comparison to that of power demand.  

 

Gas turbine based cogeneration system gives a better performance with clean fuels like 

natural gas, or non-ash bearing or low ash bearing liquid hydrocarbon fuels like Naphtha, 
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High speed diesel, etc. Though high ash bearing hydrocarbon based fuels like fuel oil, 

crude oil or residual fuel oil can also be fired in the gas turbines, but with some inherent 

problems like frequent cleaning of gas turbine, more maintenance and spares, etc.   

 

Another major drawback is that when the demand of power drops below 80% of gas 

turbine capacity, the specific fuel consumption increases and the steam output from 

WHRB also drops. The steam output can be maintained by resorting to a supplementary 

fuel firing in WHRB. The burners for supplementary firing are generally installed in the 

exhaust flue duct provided between the gas turbine and WHRB, and are designed to 

enable WHRB to maintain full steam output even when the gas turbine is partly loaded. 

This system ensures a high flexibility in design and operation of the plant, as it is possible 

to widely vary ratio of steam to power loads without very much affecting the overall 

plant efficiency. In case of exhaust duct based supplementary firing, the fuel requirement 

is substantially reduced proportionate to additional steam generated due to presence of 

about 15% hot unburned Oxygen in exhaust flue gases.    

 

The gas turbine based cogeneration scheme with the supplementary-fired WHRB, with 

firing in duct between gas turbine and WHRB, is shown in Figure 3. If supplementary 

firing is not provided, it is becomes a simple cogeneration system consisting of gas 

turbine generator and WHRB.  
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1.1.3 Combined steam/gas based cogeneration system 

It is clear from the title of system itself that it works on the basis of combination of both 

Rankine and Bryton cycles, and hence it is called combined steam/gas turbine based 

cogeneration system. In this system, fuel energy is first utilized in operating the gas 

turbine as described in Gas turbine based cogeneration system. Waste heat of high 

temperature exhaust flue gases from the gas turbine is recovered in WHRB to generate a 

high-pressure steam. This high-pressure steam is expanded through a back-pressure 

steam turbine, or an extraction-cum-back pressure steam turbine, or an extraction-cum-

condensing steam turbine to generate some additional electric power. The low-pressure 

steam available either from the exhaust of back-pressure steam turbine or from extraction 

is supplied to the process consumer. Such combination of two cycles gives a definite 

thermodynamic advantage with very high fuel utilization factor under various operating 

conditions.  

 

When the ratio of electrical power to thermal load is high, the cogeneration plant based 

on combined cycle principle provides better results than the plant based on only back 

pressure steam turbine due to availability of additional power from steam turbine, besides 

low pressure steam, without firing of any extra fuel. If supplementary firing is resorted to 

in WHRB, as mentioned in case of Gas Turbine based system, to maintain steam supply 

during low loads on gas turbine, the operational flexibility of such plants can be brought 

nearer to extraction-cum-condensing steam turbine.  
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The process in which the demand of electricity remains very high even when the demand 

of steam is very low, then extraction-cum-condensing steam turbine can be used instead 

of back pressure steam turbine. The control concept is similar to that as mentioned above, 

except that the steam turbine generator also participates in control of electrical output. 

The process steam is controlled by steam turbine bypass valve. In case of zero process 

steam output, the control range of electrical power output is extended by allowing almost 

total steam exhaust from steam turbine to go to the condenser for that particular duration.  

 

Process steam requirements at different parameters can also be satisfied in combined 

cycle system by installing either a condensing steam turbine with double extraction, or a 

back pressure turbine with one or two extraction. 

 

Combined gas-cum-steam turbine system based cogeneration achieves overall plant 

efficiency of around 90% with optional fuel utilization. In addition to this, the combined 

cycle plants are most economical in many cases due to very low heat rates, low specific 

capital cost of gas turbine plants and availability of power from open cycle operation of 

gas turbine plant, as it requires lesser time for erection. Major drawback of this system is 

less fuel flexibility as in case of gas turbine based cogeneration system. 
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1.1.4 Reciprocating engine based cogeneration system 

In this system, the reciprocating engine is fired with fuel to drive the generator to produce 

electrical power. The process steam is then generated by recovery of waste heat available 

in engine exhaust in WHRB. The engine jacket cooling water heat exchanger and lube-oil 

cooler are other sources of waste heat recovery to produce hot water or hot air. The 

reciprocating engines are available with low, medium or high-speed versions with 

efficiencies in the range of 35 - 42 %. 

 

Generally, low speed reciprocating engines are available with high efficiencies. The 

engines having medium and high speeds are widely used for cogeneration applications 

due to higher exhaust flue gas temperature and quantity. When diesel engines are 

operated alone for power generation, a large portion of fuel energy is rejected via exhaust 

flue gases. In cogeneration cycle, practically all the heat energy in engine jacket cooling 

water and lube-oil cooler, and substantial portion of heat in exhaust gases is recovered to 

produce steam or hot water. With this, the overall system efficiency of around 65-75% is 

achieved. The system configuration is shown in Figure 4.  

 

The heat rates of reciprocating engine cycles are high in comparison to that of steam 

turbine and gas turbine based cogeneration systems. This system is particularly suitable 

for application requiring a high ratio of electric power to steam.  
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Figure 4 Reciprocating engine based cogeneration system with unfired WHRB 

 

Reciprocating engines can be fired only with hydrocarbon based fuels such as High speed 

diesel, Light diesel oil, residual fuel oils, Natural gas, etc. The engines are developed in 

which natural gas is also directly fired. In view of lower overall fuel efficiency as 

mentioned above, the system is not economically better placed compared to steam turbine 

or gas turbine based cogeneration systems, particularly where power and steam are 

continuously in demand. Further to above, diesel engines are more maintenance oriented 

and hence generally preferred for operating intermittently, or as stand by emergency 

power source. These are major drawbacks preventing widespread use of diesel engine 

based cogeneration system.  
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Similar to any other energy generation via combustion process, the cogeneration plants 

are one of the main contributors of NOx emissions to atmosphere.   

 

1.2 NOX Formation process 

Nitrogen oxides (NOx) is the total amount of nitric oxide (NO) and nitrogen dioxide 

(NO2).  The formation of NO2 results only from the subsequent oxidation of NO and 

hence the total NOx (NO + NO2) is not affected by the amount of NO2 formed and 

calculation NO is sufficient to determine the total NOx (Turns, 2000). The NO formation 

process is undergoing through four chemical mechanisms. 

 

1.2.1 Zeldovich Mechanism 

The Zeldovich mechanism produces NO by the reaction of atmospheric oxygen and 

nitrogen at elevated temperatures.  It consists of two chain reactions: 

 

                           O + N2         NO + N                   
 

                                           N + O2         NO + O                   
 

These reactions can further extended by adding the reaction: 

 

     N + OH         NO + H                           
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These reactions are called extended Zeldovich mechanism and commonly referred to as 

thermal NO because the formation rates are only significant at high temperatures more 

than 1600°C (2900°F) such as the combustion chamber in gas turbines and burners in 

boilers (Turns, 2000). 

 

1.2.2 Prompt Mechanism 

This mechanism takes into account the prompt NO formation in the primary reaction 

zone of the combustor (Fenimore, 1971).  Whereas, the hydrocarbon radicals present 

during the combustion process reacts with atmospheric nitrogen to initiate the formation 

of NO that take place through subsequent reactions.  The initiating reaction is:    

 

                        N2 + CH          HCN + N             

 

The N atom forms NO through the last two reactions of Zeldovich mechanism. The HCN 

route to NO is complex. It will undergo through subsequent reactions forming NCO then 

NH and finally N that will form NO again through the Zeldovich N atom reactions. 

 

1.2.3 Nitrous Oxide Mechanism 

This mechanism is significant at low temperature conditions that take place in lean-

premixed combustion (Turns, 2000).  This mechanism undergoes through three 

subsequent reactions:  
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       O + N2 + M         N2O + M                   

    H + NO2         NO + NH                

    O + N2O         NO + NO                

 

1.2.4 Fuel-Bound Nitrogen Mechanism 

This mechanism covers the NO formation due to burning fuel containing nitrogen.  It 

begins with pyrolysis of the nitrogen organically-bounded in the fuel to HCN that will 

undergo subsequent reactions to form NO as explained in the prompt mechanism (Toof, 

1985).  This mechanism is significant when burning fuels containing nitrogen such as 

coal. 

 

1.3 Environmental & Health Impact of NOX 

The NOx emitted from the stack is in the form of nitric oxide (NO) and nitrogen dioxide 

(NO2) which is harmful atmospheric pollutants and poisonous to livings. 

 

1.3.1 Environmental acidification 

NOx mixes with rain water and acidifies it by forming nitrous acid (HNO2) and nitric 

acid (HNO3).  This acidic rain after it falls on plats and streams, it can kill fish and 

vegetation.  Also, it accelerates the cracking of buildings. (EPA, 2011) 
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1.3.2 Stratospheric ozone depletion 

NOx reacts with ozone and free oxygen in the atmosphere that will destroy the upper-

level ozone which is required to protect against the sun ultraviolet light.  On the other 

hand, it create undesired ozone in the lower atmosphere that contribute to photochemical 

smog, visibility reduction, and global warming. (NIEHS, 2011) 

 

1.3.3 Health problems 

NOx is harmful to the respiratory system.  Firstly, it can react with ammonia, moisture, 

and other compounds to form small particles which can penetrate into the lungs and 

create or worsen respiratory complications including airway inflammation in healthy 

people or increased symptoms in people with asthma, emphysema, and bronchitis.  

Secondly, NOx reacts with atmospheric oxygen to produce ground level ozone that 

contributes to respiratory problems through the oxidation of lung tissue.  Thirdly, NO2 is 

a highly reactive gas (strong oxidizing agent) that has a suffocating odor.  It is highly 

toxic and hazardous due to its ability to delay the chemical inflammation of lungs edema.  

It can lead to headache, eye and throat irritation, chest tightness, and gradual loss of 

strength.  Moreover, it can be fatal in prolonged exposure cases where it can cause 

violent coughing, difficulty in breathing, and cyanosis. (EPA, 2011) 

 

Because of these harmful effects, various government agencies place restrictions on NOx 

emissions.  These restrictions are enforced through the Clean Air Act Amendments 

(CAAA) of atmospheric pollutants, including NOx.  In order to prove compliance with 
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these standards, combustion turbine operators must implement continues NOx monitoring 

(Hung, 1995).  The restriction on NOx emissions has led to combustion turbine 

technology enhancement for NOx control, while the associated requirement for 

continuous monitoring has led to the demand for less expensive, more efficient emissions 

monitoring technologies. 

 

1.4 NOX Measurement techniques 

There are two main technologies for monitoring NOx emissions, the hardware based 

which is the Continuous Emissions Monitoring System (CEMS) that relies on sampling 

and analyzing of the exhaust gas.  And the other is the software based which is the 

Predictive Emissions Monitoring System (PEMS) that applies mathematical algorithms 

and equations on the process parameters available in the control system (DCS) 

contributing to NOx formation. 

 

In addition to the initial cost of a CEMS, there are significant annual costs for calibration 

and maintenance.  Also, it is subject to frequent failures.  A typical CEMS installation is 

shown in Figure 5. 
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Figure 5 NOX Analyzer (Sick-Maihak model GM31) 

 

A less expensive and thus more desirable approach is to estimate NOx based on easily 

measured parameters that contribute to the NOx formation.  These parameters can 

include ambient conditions, combustion pressure, fuel-air ratio, and gas-generator turbine 

exit temperature.  A package consisting of the appropriate sensors, hardware, and 

incorporated algorithms used to calculate emissions is referred to as Predictive Emissions 

Monitoring System (PEMS).  A PEMS is lower cost, lower maintenance (less complex), 

more reliable, allow real time estimation, does not require periodic calibration using 

costly calibration gases, and can be incorporated into existing gas turbine monitoring 

system which already measure most of the appropriate parameters.    
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2 CHAPTER 2 

LITERATURE REVIEW 

This section includes a brief literature review in the area of “Predictive Emission 

Monitoring Systems” applied in combustion systems. It covers most of the papers that 

concerned with the PEMS from 1991 to 2013 in chronological order and summarized at 

the end.  

 

SPECHT (1991) described a memory-based network that provides estimates of 

continuous variables and converges to the underlying (linear or nonlinear) regression 

surface. This general regression neural network (GRNN) is a one-pass learning algorithm 

with a highly parallel structure. Even with sparse data in a multidimensional 

measurement space, the algorithm provides smooth transitions from one observed value 

to another.  The algorithmic form can be used for any regression problem in which an 

assumption of linearity is not justified.   

 

DONG and MCAVOY (1995) Discussed using neural network partial least squares ( 

NNPLS ) (Qin & McAvoy, 1992), and nonlinear principal components analysis ( NLPCA 

) (Dong & McAvoy, 1993) to build soft sensors for emission monitoring using data from 

an industrial heater. Several issues which are very important for the soft sensor approach 
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are discussed, such as variable selection, sensor validation, and missing sensor 

replacement.   

 

KAMES and KEELER (1995) Discussed the application of Pavilion's Process Insights" 

for PEMS demonstration projects on two different cement kilns for predicting SO2 and 

NO emissions. The example discussed involved predicting NOx emissions at a 221 

MMBtu/hr gas-fired boiler at Arkansas Eastman Company. The predictive model was 

initially built from data collected on approximately 120 process variables. The final 

PEMS was reduced to a set of 22 of the most important process variables as inputs and 

one output (lb NO,/MMBtu readings). The NO, emission model was installed at Arkansas 

Eastman in May, 1993, was certified via passing a Relative Accuracy Test Audit (RATA) 

one month later (June, 1993), and is now operating continuously under an operating 

permit with the Arkansas Department of Pollution Control and Ecology. This was the 

first PEMS installed on a Subpart Db boiler and done with the approval of EPA, Region 

VI in conjunction with EPA Headquarters. 

 

REIFMAN and FELDMAN (1998) Investigated the applications of two classes of 

artificial neural networks for the identification and control of discrete-time non-linear 

dynamical systems. A fully connected recurrent network is used for process 

identification, and a multilayer feed forward network is used for process control. The two 

neural networks are arranged in series for closed-loop control of oxides of nitrogen 

emissions of a simplified representation of a dynamical system. Plant data from one of 
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Commonwealth Edison’s coal-fired power plants was used for testing the approach, with 

initial results indicating that the method is feasible. However, as the number of state 

variables and control variables are increased, further work is required to determine 

whether the method remains feasible. 

 

IKONEN et. al. (2000) Used fuzzy neural networks to model the process. In distributed 

logic processors (DLP) the rule base is parameterized.  The DLP derivatives required by 

gradient-based training methods are given, and the recursive prediction error method is 

used to adjust the model parameters. The power of the approach is illustrated with a 

modeling example where NOx-emission data from a full-scale fluidized-bed combustion 

district heating plant are used. The method presented in this paper is general, and can be 

applied to other complex processes as well. 

 

AZID et. al. (2000) Applied Artificial Neural Networks (ANN) based on feed forward 

back propagation model on data taken from Lumut Power Plant to predict stack gases 

from the combustion chamber.  The prediction from Neural Network based on training 

agrees well with the data taken from CEMS. 

 

STEOHEN (2000) Used a cascading neural network to model the NOx emission in a 

coal-fired power generation plant. This type of neural network has more connections than 

that found in the layered feed forward neural network. Algorithm for training this type of 
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neural network is suggested and then it is used to build a NOx emission model for a coal 

fired power generation plant. Simulation results show the merits of this type of neural 

network. 

 

CHONG et. al. (2001) Presented the application of feed-forward multi-layered perceptron 

networks as a simplistic means to model the gaseous emissions emanating from the 

combustion of lump coal on a chain-grate stoker-fired boiler, The resultant ‘black-box’ 

models of the oxygen concentration, nitrogen oxides and carbon monoxide in the exhaust 

flue gas were able to represent the dynamics of the process and delivered accurate one-

step-ahead predictions over a wide range of unseen data. This system identification 

approach is an alternative to the mathematical modeling of the physical process, which 

although lacking in model transparency and elegance, is able to produce accurate one-

step ahead predictions of the derivatives of combustion. This has been demonstrated not 

only with data sets that were obtained from the same series of experiments (which also 

demonstrated the repeatability of the model) but also for data with a temporal separation 

of almost eight months from the training data set. 

 

ZHOU et. al. (2001) Used neural network and genetic algorithms to optimize the low 

NOx combustion on pulverized coal burned utility boiler. The NOx emission 

characteristic of a 600 MW capacity boiler operated under different conditions is 

experimentally investigated and on the basis of experimental results, the artificial neural 

network is used to describe its NOx emission property to develop a neural network based 
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model. A genetic algorithm is employed to perform a search to determine the optimum 

solution of the neural network model, identifying appropriate set points for the current 

operating conditions and the low NOx emission of the pulverized coal burned boiler is 

achieved. 

 

FERRETTI and PIRODDI (2001) proposed a neural network based strategy for the 

estimation of the NOx emissions in thermal power plants, fed with both oil and methane 

fuel.  A detailed analysis based on a three-dimensional simulation of the combustion 

chamber has pointed out the local nature of the NOx generation process, which takes 

place mainly in the burners zone.  Two different learning procedures have been 

investigated.  Both based on the external inputs to the burners and a suitable mean cell 

temperature, while using local and global NOx flow rates as learning signals.  The 

approach has been assessed with respect to both simulated and experimental data. 

 

TRONCI et. al. (2002) addressed the relevant issues associated to the development of 

neural-based software sensors for monitoring the pollutant emissions coming out from 

combustion chambers.  The objective was to prove the potential of software sensors as 

alternative monitoring systems to conventional analytical equipment. The preliminary 

results refer to a 4:8 MW power pilot plant operating at the Enel Santa Gilla Research 

Center in Cagliari, Italy. 
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KALOGIROU (2003) illustrated how Artificial Intelligence (AI) techniques might play 

an important role in modeling and prediction of the performance and control of 

combustion process. He outlined an understanding of how AI systems operate by way of 

presenting a number of problems in the different disciplines of combustion engineering. 

The various applications of AI are presented in a thematic rather than a chronological or 

any other order. Problems presented include two main areas: combustion systems and 

internal combustion (IC) engines. Combustion systems include boilers, furnaces and 

incinerators modeling and emissions prediction, whereas, IC engines include diesel and 

spark ignition engines and gas engines modeling and control. Results presented in this 

paper, are testimony to the potential of AI as a design tool in many areas of combustion 

engineering. 

 

KESGIN (2003) Used Genetic algorithm (GA) and neural network analysis to predict the 

effects of design and operational parameters on engine efficiency and NOx emissions of a 

natural gas engine. A computer program to calculate the amount of NOx emissions based 

on a reaction kinetic model is developed. The validity of this program is verified by 

measurements from a turbocharged, lean-burn, natural gas engine. Using the results from 

this program, the effects of operational and design parameters of the engine were 

investigated. Then a wide range of engine parameters are optimised using a simple GA 

regarding both efficiency and NOx emissions. Because of the large computation 

requirements especially for NOx level determination, an artificial neural network model 

based on results of these investigations is used to predict the engine efficiency and NOx 
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emissions. The results show an increase in efficiency as well as the amount of NOx 

emissions being kept under the constraint value of 250 mg/Nm3 for stationary engines. 

 

ZHOU et. al. (2003) Introduces an approach to predict the nitrogen oxides (NOx) 

emission characteristics of a large capacity pulverized coal fired boiler with artificial 

neural networks (ANN). The NOx emission and carbon burnout characteristics were 

investigated through parametric field experiments. The effects of over-fire-air (OFA) 

flow rates, coal properties, boiler load, air distribution scheme and nozzle tilt were 

studied.  On the basis of the experimental results, an ANN was used to model the NOx 

emission characteristics and the carbon burnout characteristics. Compared with the other 

modeling techniques, such as computational fluid dynamics (CFD) approach, the ANN 

approach is more convenient and direct, and can achieve good prediction effects under 

various operating conditions. A modified genetic algorithm (GA) using the micro-GA 

technique was employed to perform a search to determine the optimum solution of the 

ANN model, determining the optimal set points for the current operating conditions, 

which can suggest operators’ correct actions to decrease NOx emission. 

 

GRAZIANI et. al. (2004) Proposed a novel strategy to improve the estimation of nitrogen 

oxides emissions produced by chimneys of refineries.  In particular nonlinear models, 

obtained by using MLPs neural networks, which are being a commonly used tool in 

processing data acquired in petrochemical processes, are proposed.  The performance of 
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the proposed model with respect to both traditional heuristic models and linear models 

are described. 

 

CICCONE et. al. (2005) Developed Predictive Emission Monitoring (PEM) systems for 

four natural gas fired power generating facilities.  The systems are based on an artificial 

neural network (ANN) using the power plant operation variables to predict the nitric 

oxide (NO) portion of the exhaust emissions.  The PEM systems were trained with 

emission and operation data gathered from the facilities during normal operation.  A 

multi-layer perceptron fully-connected feed forward network with two hidden layers was 

the best architecture for all of the facilities.  The accuracy of the system was determined 

using the relative accuracy (RA) calculations from the Environment Canada EPS 1/PG/7 

report (Environment Canada, 1993). 

 

HABIB et. al. (2007) investigated numerically the problem of NOx pollution using a 

model furnace of an industrial boiler utilizing fuel gas.  Governing conservation 

equations of mass, momentum and energy, and equations representing the transport of 

species concentrations, turbulence, combustion and radiation modeling in addition to NO 

modeling equations were solved together to present temperature and NO distribution 

inside the radiation and convection sections of the boiler. The boiler under investigation 

is a 160 MW, water-tube boiler, gas fired with natural gas and having two vertically 

aligned burners.  The simulation study provided the NO distribution in the combustion 

chamber and in the exhaust gas at various operating conditions of fuel to air ratio with 
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varying either the fuel or air mass flow rate, inlet air temperature and combustion primary 

air swirl angle. In particular, the simulation provided more insight on the correlation 

between the maximum furnace temperature and furnace average temperatures and the 

thermal NO concentration. The results have shown that the furnace average temperature 

and NO concentration decrease as the excess air factor k increases for a given air mass 

flow rate. When considering a fixed value of mass flow rate of fuel, the results show that 

increasing k results in a maximum value of thermal NO concentration at the exit of the 

boiler at k = 1.2. As the combustion air temperature increases, furnace temperature 

increases and the thermal NO concentration increases sharply. The results also show that 

NO concentration at exit of the boiler exhibits a minimum value at around swirl angle of 

45°. 

 

RUSINOWSKI and STANEK (2007) Presented a method and example results of 

calculations of the neural modeling of steam boilers. Empirical models can be worked out 

based on the results of specially organized measurements or continuous measurements 

recorded in the computer system storing the operational performance. The introduction of 

operational measurement data for material and energy balances required the separation of 

stationary sub-periods of boiler operations.  For each separated sub-period of stationary 

operation thermal calculations based on DIN 1942 have been carried out. The results of 

calculations are utilized to estimate the neural model of a steam boiler.  This model 

describes the dependence of the main operational parameters of the boiler upon the flue 

gas losses and losses due to unburned combustibles. The parameters of the neural model 

have been estimated by means of the back-propagation method. 
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LIGANG et. al. (2008) proposed a novel “one-pass” neural network, generalized 

regression neural network (GRNN) to establish a non-linear model between the 

parameters of the boiler (300MW steam capacity) and the NOx emissions. The selection 

of the GRNN model’s parameter is discussed.  The results show that the GRNN model 

predicted NOx emissions much more accurate than the widely-used “iterative” BPNN 

model and the multiple linear regression model. The main advantage of the GRNN 

model, by comparing with the traditional BPNN model, consists of the certainty of the 

predictive result, simplicity in network structure, quick convergence rate and much better 

predictive accuracy, especially for the case with a very large number of training samples. 

 

SHAKIL et. al. (2008) Used dynamic neural networks to develop soft sensors for the 

NOx and O2 emission due to combustion operation in industrial boilers. A simplified 

structure for the soft sensor is obtained by grouping the input variables, reducing the 

input data dimension and utilizing the system knowledge. The principal component 

analysis (PCA) is used to reduce the input data dimension. The genetic algorithm (GA) is 

used to estimate the system’s time delays by optimizing a linear time-delay model. Real 

data from a boiler plant is used to validate the models. The performance of the proposed 

dynamic models is compared with static neural network models. The results demonstrate 

the effectiveness of the proposed models. 

 

FAST et. al. (2009) Demonstrated different utilities for industrial use of an artificial 

neural network (ANN) model for a gas turbine. The ANN model was constructed with 
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the multi-layer feed-forward network type and trained with operational data using back-

propagation. The results showed that operational and performance parameters of the gas 

turbine, including identification of anti-icing mode, can be predicted with good accuracy 

for varying local ambient conditions. Different possible applications of this ANN model 

were also demonstrated. These include instantaneous gas turbine performance estimation 

through a graphical user interface and extrapolation beyond the range of training data. 

 

SMREKAR et. al. (2009) Developed artificial neural network (ANN) models using real 

plant data for the prediction of fresh steam properties from a brown coal-fired boiler of a 

Slovenian power plant is reported. Input parameters for this prediction were selected 

from a large number of available parameters. Initial selection was made on a basis of 

expert knowledge and previous experience. However, the final set of input parameters 

was optimized with a compromise between smaller number of parameters and higher 

level of accuracy through sensitivity analysis. Data for training were selected carefully 

from the available real plant data. Two models were developed, one including mass flow 

rate of coal and the other including belt conveyor speed as one of the input parameters. 

The rest of the input parameters are identical for both models. Both models show good 

accuracy in prediction of real data not used for their training. Thus both of them are 

proved suitable for use in real life, either on-line or off-line. Better model out of these 

two may be decided on a case-to-case basis depending on the objective of their use. The 

objective of these studies was to examine the feasibility of ANN modeling for coal-based 

power or combined heat and power (CHP) plants. 
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LEI-HUA et. al. (2009) Built a soft-sensor modeling on NOx emission of power station 

boilers based on least squares support vector machines (LS-SVM). The model can predict 

NOx emission in different conditions. The comparative analysis of forecast-results 

between LS-SVM model and ANN model showed that LS-SVM has more strong 

generalization ability and higher calculation speed. 

 

FAST et. al. (2009) Used artificial neural network (ANN) to model a gas turbine. The 

ANN model was constructed with the multi-layer feed-forward network type and trained 

with operational data using back-propagation. The results showed that operational and 

performance parameters of the gas turbine, including identification of anti-icing mode, 

can be predicted with good accuracy for varying local ambient conditions. Different 

possible applications of this ANN model were also demonstrated. These include 

instantaneous gas turbine performance estimation through a graphical user interface and 

extrapolation beyond the range of training data. 

 

DAVIS and BLACK (2010) Reviewed the state-of-the-art emissions control technology 

for heavy-duty gas turbines with emphasis on the operating characteristics and field 

experience of Dry Low NOx (DLN) combustors for E and F technology machines.  Lean 

premixed DLN technology has also been demonstrated on oil fuel and is also discussed. 
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ZHENG et. al. (2010) studied NOx emissions modeling for real-time operation and 

control of a 300MWe coal-fired power generation plant is studied. A least square support 

vector regression (LS-SVR) model was proposed to establish a non-linear model between 

the parameters of the boiler and the NOx emissions. The results show that the LS-SVR 

model predicted NOx emissions with good accuracy. LS-SVR model is much more 

accurate than the GRNN model previously reported by the authors. LS-SVR model will 

be a good alternative to a neural network based model which is commonly used to 

implement the predictive emission monitoring system (PEMS).  

 

FICHET et. al. (2010) Addressed the numerical prediction of NOx emissions from gas 

turbines. Generated from Computational Fluid Dynamics (CFD), a Reactor Network 

(RN) is defined to model the NOx formation with a detailed chemistry. An optimized 

procedure is proposed to split the reactive flow field into homogeneous zones considered 

as Perfectly Stirred Reactors (PSR). Once connected together, they result in a Chemical 

Reactor Network (CRN) that yields a detailed composition regarding species and 

temperature in the combustion chamber. Sensitivity studies are then performed to 

estimate the influence of air humidity and gas turbine load on NOx predictions. The NOx 

emissions predicted are in good agreement with the measured data in terms of levels and 

trends for the case studied (a gas turbine flame tube fed with natural gas and functioning 

at a pressure of 15 bar). Finally, the RN methodology has shown to be efficient 

estimating accurately NOx emissions with a short response time (few minutes) and small 

CPU requirements. 
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EDDY and HAINING (2010) Investigated testing a CFD based NOx model over a 

variety of coal type, firing configuration and boiler size ranging from 200MWe sub-

critical to most modern 1000 MWe ultra supercritical. In most cases, the NOx estimates 

based on input data readily available from power plants were found within the range of 

measured data (with the worst estimate being 22% higher than the maximum measured 

NOx level). The CFD results also indicated some sensitivity of the NOx estimates to the 

ratio of volatile nitrogen to char nitrogen and the importance of NO reduction by char. 

However, this study showed that the locations of fuel-bound nitrogen evolution with 

respect to the stoichiometric condition within the boiler actually governed the overall NO 

emissions. 

 

FARQUAD et. al. (2010) Proposed hybrid rule extraction procedure has two phases: (1) 

Obtain the reduced training set in the form of support vectors using SVR (2) Train the 

machine leaning techniques (with explanation capability) using the reduced training set. 

Machine learning techniques viz., Classification And Regression Tree (CART), Adaptive 

Network based Fuzzy Inference System (ANFIS) and Dynamic Evolving Fuzzy Inference 

System (DENFIS) are used in the phase 2. The proposed hybrid rule extraction procedure 

is compared to stand-alone CART, ANFIS and DENFIS. Extensive experiments are 

conducted on five benchmark data sets viz. Auto MPG, Body Fat, Boston Housing, 

Forest Fires and Pollution, to demonstrate the effectiveness of the proposed approach in 

generating accurate regression rules. The efficiency of these techniques is measured using 

Root Mean Squared Error (RMSE). From the results obtained, it is concluded that when 

the support vectors with the corresponding predicted target values are used, the SVR 
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based hybrids outperform the stand-alone intelligent techniques and also the case when 

the support vectors with the corresponding actual target values are used. 

 

BARTOLINI et. al. (2010) Applied artificial neural networks (ANNs) to describe the 

performance of a micro gas turbine (MGT). In particular, they were used (i) to complete 

performance diagrams for unavailable experimental data; (ii) to assess the influence of 

ambient parameters on performance; and (iii) to analyze and predict emissions of 

pollutants in the exhausts. The experimental data used to feed the ANNs were acquired 

from a manufacturer’s test bed. Though large, the data set did not cover the whole 

working range of the turbine; ANNs and an artificial neural fuzzy interference system 

(ANFIS) were therefore applied to fill information gaps. The results of this investigation 

were also used for sensitivity analysis of the machine’s behavior in different ambient 

conditions.  

 

ELANGESHWARAN et. al. (2011) developed intelligent Predictive Monitoring 

Emission Systems (PEMS) for three distinct case studies involving traffic, gasoline fuel 

tanks and large combustion plants (LCP). The underlying theme of pollutant emissions 

exists in all three case studies whereby the gases that are monitored are NO2, unburned 

hydrocarbons, and SO2.  The datasets are collected online via database libraries, and 

consequently data preprocessing and data division are done.  Back-propagation neural 

networks (BPNN) are first used to model the emission, and then to compare, generalized 

regression neural networks (GRNN) are used. From the results it is shown that GRNN 
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models outperform BPNN algorithms for complex and nonlinear datasets, because of the 

underlying radial basis kernel transfer function. The RBF kernel has fewer numerical 

difficulties; one of it is that the kernel output is contained between 0 and 1; hence the 

solution provided by GRNN is stable, certain and localized. 

 

CHUANBAO and FUWU (2011) Described an approach for replacing the engine out 

NOx sensor with an artificial neural network (ANN) based NOx perception. A multi-

layer perception network was trained to estimate NOx concentration from engine speed, 

load, exhaust temperature, and oxidation factor information. This supervised learning was 

conducted with measured engine data. The network was validated against measured data 

that was excluded from the training data set. The paper details application of this 

technique to a heavy duty diesel engine.  

 

KHOSHHAL et. al. (2011) Investigated numerically the influence of the fuel temperature 

on NOx formation by studying the CFD modeling of NOx emission in an experimental 

furnace equipped with high temperature air combustion (HiTAC) system. The 

comparison between the predicted results and measured values have shown good 

agreement, which implies that the adopted combustion and NOx formation models are 

suitable for predicting the characteristics of the flow, combustion, heat transfer, and NOx 

emissions in the HiTAC chamber. Moreover the predicted results show that increase of 

the fuel temperature results in a higher fluid velocity, better fuel jet mixing with the 

combustion air, smaller flame and lower NOx emission. 
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YAP and KARRI (2012) Developed a two-stage emissions predictive model by 

investigating common feedforward neural network models. The first stage model 

involves predicting engine parameters power and tractive forces and the predicted 

parameters are used as inputs to the second stage model to predict the vehicle emissions. 

The following gasses were predicted from the tailpipe emissions for a scooter application; 

CO, CO2, HC and O2. Three feedforward neural network models were investigated and 

compared in this study; backpropagation, optimization layer-by-layer and radial basis 

function networks. Based on the experimental setup, the neural network models were 

trained and tested to accurately predict the effect of the engine operating conditions on 

the emissions by varying the number of hidden nodes. The selected optimization layer-

by-layer network proved to be the most accurate and reliable predictive tool with 

prediction errors of ±5%.  

 

GOBBATO et. al. (2012) Presented an experimental and computational analysis of both 

the isothermal and the reactive flow field inside a gas turbine combustor designed to be 

fed with natural gas and hydrogen. The study aims at evaluating the capability of a coarse 

grid CFD model, already validated in previous reactive calculations, in predicting the 

flow field and NOx emissions. An experimental campaign was performed on an 

isothermal flow test rig to investigate the combustion air splitting and the penetration of 

both primary and dilution air jets. These experimental data are used to validate the 

isothermal computations. The impact of combustion on the calculated flow field and on 

air splitting is investigated as well. Finally, NOx emission trend estimated by a post-

processing technique is presented. The numerical NOx concentrations at the combustor 
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discharge are compared with experimental measurements acquired during operation with 

different fuel burnt (natural gas or hydrogen) and different amount of steam injected. 

 

GUOQIANG et. al. (2012) Proposed a new combination modeling method whose 

structure consists of three components: extreme learning machine (ELM), adaptive 

neuro-fuzzy inference system (ANFIS) and PS-ABC which is a modified hybrid artificial 

bee colony algorithm. The combination modeling method has been proposed in an 

attempt to obtain good approximations and generalization performances. In the whole 

model, ELM is used to build a global model, and ANFIS is applied to compensate the 

output errors of ELM model to improve the overall performance. In order to obtain a 

better generalization ability and stability model, PS-ABC is adopted to optimize input 

weights and biases of ELM. For stating the proposed model validity, it is applied to set up 

the mapping relation between the boiler efficiency and operational conditions of a 300 

WM coal-fired boiler. Compared with other combination models, the proposed model 

shows better approximations and generalization performances. 

 

Illiyas et. al. (2013) Addressed the problem of NOx  emission using a model of furnace of 

an industrial boiler, and proposed a neural network structure for high performance 

prediction of NOx as well as O2.  The studied boiler is 160 MW, gas fired with natural 

gas, water-tube boiler, having two vertically aligned burners.  The boiler model is a 3D 

problem that involves turbulence, combustion, radiation in addition to NOx modeling.  

The 3D computational fluid dynamic model is developed using Fluent simulation 
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package.  The model provides calculations of the 3D temperature distribution as well as 

the rate of formation of the NOx pollutant, enabling a better understanding on how and 

where NOx are produced.  The boiler was simulated under various operating conditions. 

The generated data is then used for initial development and assessment of neural network 

soft sensors for emission prediction based on the conventional process variable 

measurements.  The performance of the proposed soft sensor is then evaluated using 

actual data from an industrial boiler.  The developed soft sensor achieves comparable 

accuracy to the continuous emission monitor analyzer, however, with substantial 

reduction in the cost of equipment and maintenance. 

 

Yu and Zhu (2013) Developed NOx emission characteristics and overall heat loss model 

for a 300MW coal-fired boiler by Back Propagation (BP) neural network, by which the 

functional relationship between outputs (NOx emissions & overall heat loss of the boiler) 

and inputs (operational parameters of the boiler) of a coal-fired boiler can be predicted. A 

number of field test data from a full-scale operating 300MWe boiler were used to train 

and verify the BP model. The NOx emissions & heat loss predicted by the BP neural 

network model showed good agreement with the measured. Then, BP model and the non-

dominated sorting genetic algorithm II (NSGA-II) were combined to gain the optimal 

operating parameters which lead to lower NOx emissions and overall heat loss boiler. 

The optimization results showed that hybrid algorithm by combining BP neural network 

with NSGA-II can be a good tool to solve the problem of multi-objective optimization of 

a coal-fired combustion, which can reduce NOx emissions and overall heat loss 

effectively for the coal-fired boiler. 



41 

 

In summary, through reviewing the literature you can clearly observe that most of the 

PEMS applications are on coal-fired boilers and furnaces as coal is the highest waste 

producer among the other types of fuel.  Then, the application was extended also to the 

other fuels as the environment regulations become more stringent.  Most of the papers 

used FFBPNN for modeling the PEMS.  Note that, there are only few papers about 

predicting the NOx emissions from gas turbine power plants and most of them are based 

on CFD.  In this work the PEMS will be modeled through employing ANFIS & 

FFBPNN.  

 

Table 1 is summarizing the modeling approach and application of the literature papers:  

 

Table 1  Literature Modeling Approach and Application. 

# AUTHORS YEAR ANN method Application 

1 Specht D. 1991 GRNN 
 
General 
 

2 
Dong D. & 
Mcavoy T. 

1995 NNPLS & NLPCA 
Emission monitoring on data from 
process heaters  

3 
Kames J. & Keeler 
J. 

1995 

Pavilion 
software 

(combines NN, 
FL, & DS) 

SO2 & NOx emissions prediction on 
two cement klins boilers  

4 
Reifman J. & 
Feldman E. 

1998 
FCRNN & 
MFFNN 

NOx emissions control on data from 
coal-fired power plants 
 

5 
Ikonen E., Najim 
K., & Kortela U. 

2000 FNN/DLP 

Predict stack emissions (NOx, SO2, 
& CO2) on data from fuel-fired 
combined cycle power plant 
*No details about the plant. 
*Limited data sets (24 sets with 1 
hour increment) 
*2 inputs / 1 output 
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# AUTHORS YEAR ANN method Application 

6 

 
Azid I., Ripin Z., 
Aris M., Ahmad 
A., Seetharamu K., 
& Yusoff R. 
 

2000 FFBPNN 
Predict stack emissions (NOx, SO2, 
& CO2) on data from fuel-fired 
power plant 

7 Steohen Kang Li 2000 CNN 

 
NOx emissions prediction on data 
from coal-fired power plant 
 

8 
Hao Z., Kefa C., & 
Jianbo M. 

2001 FFBPNN 

 
NOx emissions prediction on data 
from coal-fired power plant 
 

9 
Chong A., Wilcox 
S., & Ward J. 

2001 FFMLPNN 

 
CO, NOx, & O2 emissions prediction 
on data from coal fired boiler. 
 

10 Ferretti & Piroddi 2001 ??? 

 
NOx emissions estimation 
prediction on data from thermal 
power plant 
 
 

11 
Tronci S., Baratti 
R., & Servida A. 

2002 MFFNN 

 
CO, NOx, & O2 emissions prediction 
on data from pilot power plant 
furnace 
 

12 Kesgin U 2003 GA & FFBPNN 

 
Optimization of efficiency and NOx 
emissions in a natural gas engine 
 
 

13 
Zhou H., Cen K., & 
Fan J. 
 

2003 FFBPNN 

 
NOx emissions prediction on data 
from coal-fired power plant 
 
 

14 

 
Graziani S., 
Pitrone N., Xibilia 
M., & Barbalace 
N. 
 

2004 FFMLPNN 
Chimney NOx emissions prediction 
on data from refinery 
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# AUTHORS YEAR ANN method Application 

15 
Ciccone A., 
Cinnamon C., & 
Niejadlik P. 

2005 FFMLPNN 

 
NOx emissions prediction on four 
power generating facilities 
operating combined cycle natural 
gas fired Combustion Gas Turbines 
(CGT) 
 
1-North Bay: 25 MW CGT (DLN) 
    *ANN: 6-14-9-1 
    *Inputs: Fuel flow / Compr. disch. 
temp. / Comp. disch. pressure / 
Mass flow / Load / Duct burner fuel 
gas. 
 
2-Kapuskasing: 25 MW CGT (DLN) 
    *ANN: 6-14-4-1 
    *Inputs: Fuel flow / Compr. disch. 
temp. / Comp. disch. pressure / Air 
mass flow / Load / Duct burner fuel 
gas. 
   
3-Tunis: 31 MW CGT 
    *ANN:13-24-11-1 
 
4-Nipigon: 22 MW CGT 
    *ANN: 7-16-9-1 
 

16 
Habib M., Elshafei 
M., & Dajani M. 

2007 CFD 

 
NOx emissions prediction on a 
model furnace of an industrial 
boiler utilizing fuel gas. 
 

17 
Rusinowski H. & 
Stanek W. 

2007 FFPBNN 
 
Fuel losses in steam boilers 
 

18 
Ligang Z., Shuijun 
Y., & Minggao Y. 

2008 GRNN 

 
NOx emissions prediction on data 
from coal-fired power plant 
 

19 
Shakil M., Elshafei 
M., Habib M., & 
Maekli F. 

2008 FFBPNN/DRNN 

 
 
NOx emissions prediction on data 
from industrial boiler 
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# AUTHORS YEAR ANN method Application 

20 
Fast M., Assadi 
m., & De S. 

2009 FFBPNN 

 
Prediction of gas turbine 
performance on data from 
cogeneration unit. 
 
* 22 MW GT (Anti-icing) 
 
* 3 Inputs: Relative humidity / 
Ambient pressure / Ambient 
temperature.  
 
* 8 Outputs: Air mass flow / Compr. 
disch. temp. / Compr. disch. 
Pressure / Fuel flow / Turbin exhust 
temp. / Load / CO2 / Generated 
heat.  
 
* Developed GUI: Offline simulation 
for training, online condition 
monitoring for early detection of 
fault and degradation, and sensor 
validation 
 

21 
Smrekar J., Assadi 
M., Fast M., 
Kustrin I., & De S. 

2009 FFBPNN 

 
Steam properties prediction on 
data from coal-fired power plant 
boiler 
 

22 
Lei-Hua F., Wei-
Hua G., & Feng Y. 

2009 BPNN/LS-SVM 

 
NOx emissions prediction on data 
from coal-fired power plant boiler 
 

23 
Zheng L., Jia H., Yu 
S., & Yo M. 

2010 LS-SVM 

 
NOx emissions prediction on data 
from coal-fired power plant 
 

24 

 
Fichet V., 
Kanniche M., 
Plion P., & Gicquel 
O. 
 

2010 CRN (CFD) 

 
NOx emissions prediction from a 
gas turbine power plant 
 

25 
Eddy C. & Haining 
G. 

2010 CFD 

 
NOx emissions prediction on data 
from six coal-fired boilers. 
 



45 

 

# AUTHORS YEAR ANN method Application 

26 

Bartolini C., 
Caresana F., 
Comodi G., 
Pelagalli L., Renzi 
M., &  Vagni S. 

2010 
FFBPNN & 

ANFIS 

NOx emissions prediction on data 
from Micro Gas Turbines (MGT); 
100kW 
 

27 
Elangeshwaran P., 
Rosdiazli I., & 
Vijanth A. 

2011 BPNN/GRNN 

Emissions prediction on data set of 
a compilation of plant by plant for 
total emission of SO2, Nox, and 
dust. 

28 
Chuanbao Liu & 
Fuwu Yan 

2011 GRNN 

NOx emissions prediction on data 
from a diesel engine in passenger 
bus. 
 

29 
Khoshhal A., 
Rahimi M., & 
AlSairafi A. 

2011 CFD 
NOx emissions prediction on data 
from experimental furnace. 

30 
Gobbato P., Masi 
M., Toffolo A., & 
Tanzini G. 

2012 CFD 
NOx emissions prediction on a gas 
turbine combustor. 

31 
Guoqiang L., 
Peifeng N., Chao 
L., & Weiping Z. 

2012 ELM/ANFIS/ABC 
Efficiency estimation on data from a 
300 MW coal-fired boiler. 
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3 CHAPTER 3 

COGENERATION PLANT UNDER STUDY 

3.1 Process description  

 

The cogeneration plant under study is a gas turbine cogeneration system which is 

discussed and explained in section 1.2.2.  It consists of the following process equipment 

and systems:  

1. Two Combustion Gas Turbine Generators (CGTG). 

2. Two Heat Recovery Steam Generators (HRSG) with supplementary firing 

duct burners. 

3. Fuel gas system. 

4. Steam & Feed water system. 

5. Sampling system. 

6. Chemical dosing system. 

7. Make up water system. 

8. Closed cooling water system. 

9. Instrument & Service air system. 

10. Service gas system. 

11. Utility & Potable water system. 

12. Waste water collection and transfer system. 

13. Electrical System. 
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14. Emergency diesel generator (EDG). 

15. Central control room (CCR). 

The plant generates 311 MW gross power (155.5 MW X 2 CGTGs) and net steam 

capacity of 567 t/h (734 t/h with supplementary firing).  The plant is equipped with NOX 

analyzer which is the Continues Emission Monitoring System (CEMS).  The analyzer is 

insertion type measures the concentration of NOX based on its Ultra Violet absorption 

spectra.  Its measuring range is 0-150 ppmvd. 

 

Our focus will be on the combustion system at which the NOX is generated.  The CGTGs 

are equipped with Dry Low NOX (DLN) burners that significantly reduce the NOX 

concentration to 12 ppmvd.  However, during startup the NOX concentration is high and 

it reaches 130 ppmvd.  Note that, high emission operation during start up might take 30 

minutes only but might extend to one day or more depending on the readiness of the 

downstream plant.   

 

3.2 Combustion Gas Turbine Generator (CGTG)  

 

The Combustion Gas Turbine Generators (CGTGs) consist mainly of a compressor, 

combustor, and turbine.  Initially, a diffusion flame (non-premixed) flame was adapted in 

the CGTG combustors to achieve stable operation and durability.  This method was 

combined with water and steam injection to lower the high NOx emissions generated 

from such flame.  In the recent years, the environmental regulations for lowering the NOx 
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emissions have increased and this traditional way of NOx reduction is replaced with the 

new technology in combustion "DLN" Dry Low NOx.  The DLN combustors employ 

lean, pre-mixed flame to achieve low NOx levels. 

 

The GE frame 7FA + e under study is a single shaft,  high-performance, combined cycle 

gas turbine generator manufactured by General Electric with a design capacity of 155.5 

MW.  This gas turbine generator assembly as shown in Figure 6 consists of the following 

major sections Inlet Guide Vane (IGV) to control air-flowrate, 18-stages compressor, 

DLN-2.6 can-type combustors (14 each), 3-stages turbine, and exhaust to Heat Recovery 

Steam Generator (HRSG). 

 

 

Figure 6 Gas turbine generator assembly 
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3.3 GE DLN-2.6 Combustion system  

 

The combustion system is of the reverse-flow type with 14 combustion chambers (DLN-

2.6) arranged around the periphery of the compressor discharge casing as shown on 

Figure 6.  This system also includes the fuel nozzles, a spark plug ignition system, flame 

detectors, and crossfire tubes.  Each DLN–2.6 combustion system has six fuel nozzles as 

shown in Figure 7.  At these nozzles the gaseous fuel and air are fully pre-mixed.  

 

The excess air in this lean combustion cools the flame and reduces the rate of thermal 

NOX formation. Lean premixing of gaseous fuel and air prior to combustion can further 

reduce NOX emissions. This is accomplished by minimizing localized fuel-rich pockets 

(and high temperatures) within the combustion zones. 

 

Figure 7 DLN-2.6 Combustor fuel nozzles 
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In low emissions operation, 90% of the gas fuel is injected through radial gas injection 

spokes in the premixer, and combustion air is mixed with the fuel in tubes surrounding 

each of the six fuel nozzles as shown in Figure 8. 

 

Figure 8   Cap assembly-view from downstream 

 

Hot gases shown in Figure 9, generated from burning fuel in the combustion chambers, 

flow through the impingement cooled transition pieces to the turbine.  High pressure air 

from the compressor discharge is directed around the transition pieces. Some of the air 

enters the holes in the impingement sleeve to cool the transition pieces and flows into the 

flow sleeve. The rest enters the annulus between the flow sleeve and the combustion liner 

through holes in the downstream end of the flow sleeve.  This air enters the combustion 

zone through the cap assembly for proper fuel combustion.  Fuel is supplied to each 
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combustion chamber through six nozzles designed to disperse and mix the fuel with the 

proper amount of combustion air. 

 

Figure 9   DLN-2.6 Combustor 

 

Figure 10 shows a cross-section of a DLN–2 fuel nozzle.  As noted, the nozzle has 

passages for diffusion gas, premixed gas, oil, and water.  When mounted on the endcover,  

the diffusion passages of four of the fuel nozzles are fed from a common manifold, called 

the primary that is built into the endcover. The premixed passages of the same four 

nozzles are fed from another internal manifold called the secondary. The premixed 

passages of the remaining nozzle are supplied by the tertiary fuel system; the diffusion 

passage of that nozzle is always purged with compressor discharge air and passes no fuel. 
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Figure 10 DLN-2 Fuel nozzle cross-section 

 

The premixer tubes are part of the cap assembly.  The fuel and air are thoroughly mixed, 

flow out of the five tubes at high velocity and enter the burning zone where lean, low-

NOx combustion occurs.  The vortex breakdown from the swirling flow exiting the 

premixers, along with the sudden expansion in the liner, are mechanisms for flame 

stabilization.  Five nozzle/premixer tube assemblies are located on the head end of the 

combustor.  A quaternary fuel manifold is located on the circumference of the 

combustion casing to bring the remaining fuel flow to casing injection pegs (15 each) 

located radially around the casing. 
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3.3.1 DLN-2 Fuel system 

 

There are four fuel streams in DLN-2.6; Primary fuel, Secondary fuel, Tertiary fuel, and 

Quaternary fuel.  Figure 11 shows the fuel nozzles installed on the combustion chamber 

end cover and the connections for the primary, secondary and tertiary fuel systems. 

 

Figure 11 DLN-2 Combustor fuel streams 

 

Primary fuel: fuel gas entering through the diffusion gas holes in the swirler assembly of 

each of the outboard four fuel nozzles. 

 

Secondary fuel: premix fuel gas entering through the gas metering holes in the fuel gas 

injector spokes of each of the outboard four fuel nozzles. 
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Tertiary fuel: premix fuel gas delivered by the metering holes in the fuel gas injector 

spokes of the inboard fuel nozzle. 

 

The quaternary system:  injects a small amount of fuel through 15 each pegs around the 

casing into the airstream just up-stream from the fuel nozzle swirlers. 

 

The DLN-2 control system regulates the fuel distribution to the primary, secondary, 

tertiary and quaternary fuel system. The fuel flow distribution to each combustion fuel 

system is a function of combustion reference temperature and IGV temperature control 

mode. Diffusion, piloted premix and premix flame are established by changing the 

distribution of fuel flow in the combustor.  

 

The gas fuel system (Figure 17) consists of the gas fuel stop-ratio valve, primary gas 

control valve, secondary gas control valve premix splitter valve and quaternary gas 

control valve. The stop-ratio valve is designed to maintain a predetermined pressure at 

the control-valve inlet.  The primary, secondary and quaternary gas control valves 

regulate the desired gas fuel flow delivered to the turbine in response to the fuel 

command from the SPEEDTRONIC™ controls. 
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Figure 12 DLN-2.6 Fuel system control valves 

 

3.3.2 DLN-2.6 Combustion modes 

 

The DLN-2.6 combustion system can operate in several different modes.  Figure 13 

illustrates the fuel flow scheduling associated with DLN-2.6 operation. Fuel staging 

depends on combustion reference temperature and IGV temperature control operation 

mode. 

 

Figure 13 DLN-2.6 Fuel flow scheduling 
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Primary mode 

Fuel flows only to the primary side of the four fuel nozzles and generating a diffusion 

flame. Primary mode is used from ignition to 81% corrected speed. 

 

Lean-Lean mode 

Fuel flows to the primary (diffusion) fuel nozzles and single tertiary (premixing) fuel 

nozzle. This mode is used from 81% corrected speed to a pre-selected combustion 

reference temperature.  The percentage of primary fuel flow is modulated throughout the 

range of operation as a function of combustion reference temperature.  If necessary, lean-

lean mode can be operated throughout the entire load range of the turbine.  Selecting 

“lean-lean base on” locks out premix operation and enables the machine to be taken to 

base load in lean-lean. 

 

Premix transfer mode 

Transition state between lean-lean and premix modes. Throughout this mode, the primary 

and secondary gas control valves modulate to their final position for the next mode. The 

premix splitter valve is also modulated to hold a constant tertiary flow split. 
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Piloted premix mode 

 

Fuel is directed to the primary, secondary and tertiary fuel nozzles. This mode exists 

while operating with temperature control off as an intermediate mode between lean-lean 

and premix mode. This mode also exists as a default mode out of premix mode and, in 

the event that premix operating is not desired, piloted premix can be selected and 

operated to base load.  Primary, secondary and tertiary fuel split are constant during this 

mode of operation. 

 

Premix mode 

 

Fuel is directed to the secondary, tertiary and quaternary fuel passages and premixed 

flame exists in the combustor.  The minimum load for premixed operation is set by the 

combustion reference temperature and IGV position. It typically ranges from 50% with 

inlet bleed heat on to 65% with inlet bleed heat off. Mode transition from premix to 

piloted premix or piloted premix to premix, can occur whenever the combustion 

reference temperature is greater than 2200°F / 1204°C. Optimum emissions are generated 

in premix mode. 
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Tertiary Full Speed No Load (FSNL) 

 

Initiated upon a breaker open event from any load > 12.5%. Fuel is directed to the tertiary 

nozzle only and the unit operates in secondary FSNL mode for a minimum of 20 seconds, 

then transfers to lean-lean mode.   

 

Each Gas Turbine (GT) has four Gas Control Valves (GCVs) as explained in section 

2.3.1 and shown in Figure 12.  These valves are numbered as PM1, PM2, PM3 & PM4 

(PM is short form for “Pre-Mix”) as shown in Figure 14. 

 

 

Figure 14 DLN-2.6 Fuel nozzles arrangement 

 

These control valves will be opened or closed to sequentially ignite the six nozzles based 

on the load on the GT in a manner that maintains lean pre-mixed combustion and flame 
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stability.  At the beginning, only PM1 will be in service, which is called Mode 1.  Then, 

the modes will be changing as below:  

Mode2                                 PM2 

Mode3                                 PM1+PM2 

Mode4                                 PM1+PM3 

Mode5                                 PM2+PM3 

Mode6                                 PM1+PM2+PM3 

Mode6Q           PM1+PM2+PM3+PM4 

 

If you observe, the number mentioned with Mode is the sum of the numbers indicated 

with PMs.  For example, Mode3 will have PM1 and PM2. i.e., 1+2=3.  In the same way, 

Mode5 will have PM2 and PM3 in service. i.e. 2+3=5.  And the PM4 will be indicated 

with letter ‘Q’, as indicated in Mode6Q, as the PM4 is nothing but the control valve for 

Quaternary.  Below is the loading sequence shown in Figure 15: 



60 

 

 

Figure 15 DLN-2.6 Loading sequence 

 

3.3.3 DLN-2.6 Combustor NOX emissions 

 

There are two sources of NOx emissions in the exhaust of a gas turbine. Most of the NOx 

is generated by the fixation of atmospheric nitrogen in the flame, which is called thermal 

NOx.  Nitrogen oxides are also generated by the conversion of a fraction of any nitrogen 

chemically bound in the fuel (called fuel-bound nitrogen or FBN).  Thermal NOx is 

generated by a chemical reaction sequence called the Zeldovich Mechanism. This set of 

well-verified chemical reactions assumes that the generation of thermal NOx is an 
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exponential function of the temperature of the flame and a linear function of the time 

which the hot gases are at flame temperature.  The temperature profile through the CGTG 

is shown in Figure 16.  The firing temperature what GE is using is at Section B, which is 

at First stage nozzle outlet.  This temperature would be less by 38 °C from the Actual 

Combustion Temperature. 

 

 

Figure 16 Temperature profile in CGTG 
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4 CHAPTER 4 

ARTIFICIAL NEURAL NETWORKS 

Artificial intelligence (AI) systems are widely accepted as a technology offering an 

alternative way to tackle complex and illdefined problems. They can learn from 

examples, are fault tolerant in the sense that they are able to handle noisy and incomplete 

data, are able to deal with non-linear problems, and once trained can perform prediction 

and generalization at high speed. They have been used in diverse applications in control, 

robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, 

optimization, signal processing, and social/psychological sciences. They are particularly 

useful in system modeling such as in implementing complex mappings and system 

identification. AI systems comprise areas like, expert systems, artificial neural networks, 

genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more 

techniques. 

 

ANNs are collections of small individually interconnected processing units. Information 

is passed between these units along interconnections. An incoming connection has two 

values associated with it, an input value and a weight. The output of the unit is a function 

of the summed value. ANNs while implemented on computers are not programmed to 

perform specific tasks. Instead, they are trained with respect to data sets until they learn 

patterns used as inputs. Once they are trained, new patterns may be presented to them for 

prediction or classification. ANNs can automatically learn to recognize patterns in data 
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from real systems or from physical models, computer programs, or other sources. An 

ANN can handle many inputs and produce answers that are in a form suitable for 

designers. 

 

AI systems are able to learn the key information patterns within a multi-dimensional 

information domain. In addition, many of the AI systems like, neural networks are fault 

tolerant, robust, and noise immune. Data from combustion processes being inherently 

noisy are good candidate problems to be handled with AI systems. 

 

The concept of ANN analysis has been discovered nearly 50 years ago, but it is only in 

the last 20 years that applications software has been developed to handle practical 

problems. The history and theory of neural networks have been described in a large 

number of published literatures and will not be covered in this paper except for a very 

brief overview of how neural networks operate. (Kalogirou, 2003) 

 

4.1  ANN Applications 

 

ANNs are good for tasks involving incomplete data sets, fuzzy or incomplete 

information, and for highly complex and ill-defined problems, where humans usually 

decide on an intuitional basis. They can learn from examples, and are able to deal with 

non-linear problems.  Furthermore, they exhibit robustness and fault tolerance. The tasks 
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that ANNs cannot handle effectively are those requiring high accuracy and precision as in 

logic and arithmetic. ANNs have been applied successfully in a number of application 

areas. Some of the most important ones are (Nannariello, 2001): 

 

1. Function approximation. Mapping of a multiple input to a single output is established. 

Unlike most statistical techniques, this can be done with adaptive model-free estimation 

of parameters. 

 

2. Pattern association and pattern recognition. This is a problem of pattern classification.  

ANNs can be effectively used to solve difficult problems in this field, like for instance in 

sound, image, or video recognition. This task can even be made without an a priori 

definition of the pattern. In such cases, the network learns to identify totally new patterns. 

 

3. Associative memories. This is the problem of recalling a pattern when given only a 

subset clue. In such applications, the network structures used are usually complicated, 

composed of many interacting dynamical neurons. 

 

4. Generation of new meaningful patterns. This general field of application is relatively 

new. Some claims are made that suitable neuronal structures can exhibit rudimentary 

elements of creativity. 
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ANNs have been applied successfully in a various fields of mathematics, engineering, 

medicine, economics, meteorology, psychology, neurology, and many others. Some of 

the most important ones are: in pattern, sound and speech recognition, in the analysis of 

electromyographs and other medical signatures, in the identification of military targets 

and in the identification of explosives in passenger suitcases.  They have also being used 

in weather and market trends forecasting, in the prediction of mineral exploration sites, in 

electrical and thermal load prediction, in adaptive and robotic control and many others. 

Neural networks are also used for process control because they can build predictive 

models of the process from multi-dimensional data routinely collected from sensors. 

 

4.2  ANN Characteristics 

 

Neural networks obviate the need to use complex mathematically explicit formulas, 

computer models, and impractical and costly physical models. Some of the characteristics 

that support the success of ANNs and distinguish them from the conventional 

computational techniques are (Nannariello, 2001): 

 The direct manner in which ANNs acquire information and knowledge about a 

given problem domain (learning interesting and possibly non-linear relationships) 

through the ‘training’ phase. 

 Neural networks can work with numerical or analogue data that would be difficult 

to deal with by other means because of the form of the data or because there are 

so many variables. 
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 Neural network analysis can be conceived of as a ‘black box’ approach and the 

user does not require sophisticated mathematical knowledge. 

 The compact form in which the acquired information and knowledge is stored 

within the trained network and the ease with which it can be accessed and used. 

 Neural network solutions can be robust even in the presence of ‘noise’ in the input 

data. 

 The high degree of accuracy reported when ANNs are used to generalize over a 

set of previously unseen data (not used in the ‘training’ process) from the problem 

domain. 

 

While neural networks can be used to solve complex problems they do suffer from a 

number of shortcomings.  The most important of them are: 

 The data used to train neural nets should contain information, which ideally, is 

spread evenly throughout the entire range of the system. 

 There is limited theory to assist in the design of neural networks. 

 There is no guarantee of finding an acceptable solution to a problem. 

 There are limited opportunities to rationalize the solutions provided. 

 

4.3  Biological and artificial neurons 

 

A biological neuron is shown in Figure 17.  In brain, there is a flow of coded information 

(using electrochemical media, the so-called neurotransmitters) from the synapses towards 
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the axon. The axon of each neuron transmits information to a number of other neurons. 

The neuron receives information at the synapses from a large number of other neurons. It 

is estimated that each neuron may receive stimuli from as many as 10,000 other neurons. 

Groups of neurons are organized into sub-systems and the integration of these subsystems 

forms the brain. It is estimated that the human brain has got around 100 billion 

interconnected neurons. 

 

Figure 17 Biological neuron 

 

Figure 18 shows a highly simplified model of an artificial neuron, which may be used to 

stimulate some important aspects of the real biological neuron. An ANN is a group of 

interconnected artificial neurons, interacting with one another in a concerted manner. In 

such a system, excitation is applied to the input of the network. Following some suitable 

operation, it results in a desired output. At the synapses, there is an accumulation of some 

potential, which in the case of the artificial neurons is modeled as a connection weight. 

These weights are continuously modified, based on suitable learning rules. (Kalogirou, 

2003) 
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Figure 18 Artificial neuron 

 

4.4  Feed Forward Back Propagation Neural Network (FFBPNN) 

 

A schematic diagram of typical multi-layer feedforward neural network architecture is 

shown in Figure 19. The network usually consists of an input layer, some hidden layers 

and an output layer. In its simple form, each single neuron is connected to other neurons 

of a previous layer through adaptable synaptic weights. Knowledge is usually stored as a 

set of connection weights (presumably corresponding to synapse efficacy in biological 

neural systems). Training is the process of modifying the connection weights in some 

orderly fashion using a suitable learning method. The network uses a learning mode, in 

which an input is presented to the network along with the desired output and the weights 

are adjusted so that the network attempts to produce the desired output.  The weights after 

training contain meaningful information whereas before training they are random and 

have no meaning. 
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Figure 19 Multi-layer Feed Forward Neural Network  

 

Figure 20, shows how information is processed through a single node. The node receives 

weighted activation of other nodes through its incoming connections. First, these are 

added up (summation). The result is then passed through an activation function; the 

outcome is the activation of the node. For each of the outgoing connections, this 

activation value is multiplied with the specific weight and transferred to the next node. 

 

 

Figure 20 Information processing in a neural network 

 

A training set is a group of matched input and output patterns used for training the 

network, usually by suitable adaptation of the synaptic weights. The outputs are the 

dependent variables that the network produces for the corresponding input. It is important 
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that all the information the network needs to learn is supplied to the network as a data set. 

When each pattern is read, the network uses the input data to produce an output, which is 

then compared to the training pattern, i.e. the correct or desired output. If there is a 

difference, the connection weights (usually but not always) are altered in such a direction 

that the error is decreased. After the network has run through all the input patterns, if the 

error is still greater than the maximum desired tolerance, the ANN runs again through all 

the input patterns repeatedly until all the errors are within the required tolerance. When 

the training reaches a satisfactory level, the network holds the weights constant and the 

trained network can be used to make decisions, identify patterns, or define associations in 

new input data sets not used to train it.  

 

The most popular learning algorithms are the back propagation (BP) and its variants. The 

BP algorithm is one of the most powerful learning algorithms in neural networks. The 

training of all patterns of a training data set is called an epoch. The training set has to be a 

representative collection of input–output examples. BP training is a gradient descent 

algorithm. It tries to improve the performance of the neural network by reducing the total 

error by changing the weights along its gradient. The error is expressed by the root-mean-

square value (RMS), which can be calculated by: 

  
 

 
[∑∑|       |

 

  

]

 
 ⁄

 

 

where E is the RMS error, t the network output (target), and o the desired output vectors 

over all pattern p: An error of zero would indicate that all the output patterns computed 
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by the ANN perfectly match the expected values and the network is well trained. In brief, 

BP training is performed by initially assigning random values to the weight terms (wij) in 

all nodes. Each time a training pattern is presented to the ANN, the activation for each 

node, api; is computed. After the output of the layer is computed the error term, dpi; for 

each node is computed backwards through the network. This error term is the product of 

the error function, E; and the derivative of the activation function and hence is a measure 

of the change in the network output produced by an incremental change in the node 

weight values. For the output layer nodes and for the case of the logistic-sigmoid 

activation, the error term is computed as: 

 

    (       )   (     ) 

 

For a node in a hidden layer: 

 

       (     )∑      
 

 

 

In the latter expression, the k subscript indicates a summation over all nodes in the 

downstream layer (the layer in the direction of the output layer). The j subscript indicates 

the weight position in each node. Finally, the d and a terms for each node are used to 

compute an incremental change to each weight term via: 

 

      (      )      (   ) 
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The term 1 is referred to as the learning rate and determines the size of the weight 

adjustments during each training iteration. The term m is called momentum factor. It is 

applied to the weight change used in the previous training iteration, wij (old).  Both of 

these constant terms are specified at the start of the training cycle and determine the 

speed and stability of the network. 

 

In BP networks, the number of hidden neurons determines how well a problem can be 

learned. If too many are used, the network will tend to try to memorize the problem, and 

thus not generalize well later. If too few are used, the network will generalize well but 

may not have enough ‘power’ to learn the patterns well. Getting the right number of 

hidden neurons is a matter of trial and error, since there is no science to it. In general the 

number of hidden neurons (N) may be estimated by applying the following empirical 

formula 

 

  
   

 
 √   

 

where I is the number of input parameters, O is the number of output parameters and Pi is 

the number of training patterns available. 

 

The feedforward with multiple hidden slabs are very powerful to detect different features 

of the input vectors when different activation functions are given to the hidden slabs.  

This architecture shown in Figure 21 has been used in a number of engineering problems 

for modeling and prediction with very good results.   
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Figure 21 Feed Forward with multiple hidden slabs architecture 

 

The information processing at each node site is performed by combining all input 

numerical information from upstream nodes in a weighted average of the form: 

 

   ∑         
 

 

 

where     is the activation for each node and b1 is a constant term referred to as the bias. 

The final nodal output is computed via the activation function. This architecture has 

different activation functions in each slab. By referring to Figure 21, the input slab 

activation function is linear, i.e.        (where    is the weighted average obtained by 

combining all input numerical information from upstream nodes), while the activations 

used in the other slabs are: 
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Gaussian for slab 2: 

     
   

 
 

 

Tanh for slab 3: 

        (  ) 

 

Gaussian complement for slab 4: 

       
   

 
 

 

Logistic for output slab: 

 

    
 

      
 

 

Different activation functions are applied to hidden layer slabs in order to detect different 

features in a pattern processed through a network. The number of hidden neurons in the 

hidden layers may also be calculated.  However, an increased number of hidden neurons 

may be used in order to get more ‘degrees of freedom’ and allow the network to store 

more complex patterns. This is usually done when the input data are highly non-linear. It 

is recommended in this architecture to use Gaussian function on one hidden slab to detect 

features in the mid-range of the data and Gaussian complement in another hidden slab to 

detect features from the upper and lower extremes of the data. Combining the two feature 

sets in the output layer may lead to a better prediction. (Kalogirou, 2003) 
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4.5  Adaptive Neuro Fuzzy Inference System (ANFIS) 

 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) technique was originally 

presented by Jang in 1993. ANFIS is a simple data learning technique that uses Fuzzy 

Logic to transform given inputs into a desired output through highly interconnected 

Neural Network processing elements and information connections, which are weighted to 

map the numerical inputs into an output.  ANFIS combines the benefits of the two 

machine learning techniques (Fuzzy Logic and Neural Network) into a single technique. 

An ANFIS works by applying Neural Network learning methods to tune the parameters 

of a Fuzzy Inference System (FIS). There are several features that enable ANFIS to 

achieve great success (Jang, 1993), (Jang, 1995): 

 It refines fuzzy IF-THEN rules to describe the behavior of a complex system; 

 It does not require prior human expertise; 

 It is easy to implement; 

 It enables fast and accurate learning; 

 It offers desired data set; greater choice of membership functions to use; strong 

generalization abilities; excellent explanation facilities through fuzzy rules; and 

 It is easy to incorporate both linguistic and numeric knowledge for problem 

solving. 

 

Different rules cannot share the same output membership function.  The number of 

membership functions must be equal to the number of rules.  To represent the ANFIS 
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architecture, two fuzzy IF-THEN rules based on a first order Sugeno model are 

considered: 

Rule (1):                             

                    

Rule (2):                             

                    

Where: 

 x and y are the inputs, 

 Ai and Bi are the fuzzy sets, 

 fi are the outputs within the fuzzy region specified by the fuzzy rule, and 

 pi, qi, and ri are the design parameters that are determined during the training 

process. 

 

The ANFIS architecture used to implement these two rules is shown in Figure 4. In this 

figure, a circle indicates a fixed node, whereas a square indicates an adaptive node.  

ANFIS has a five-layer architecture. Each layer is explained in detail below. 
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Figure 22 ANFIS architecture 

 

In Layer 1, all the nodes are adaptive nodes. The outputs of Layer 1 are the fuzzy 

membership grade of the inputs, which are given by the following equations: 

 

         ( )           and 

 

           ( )          

 

Where x and y are the inputs to node i, and Ai and Bi are the linguistic labels (high, low, 

etc.) associated with this node function.     ( ) and      ( ) can adopt any fuzzy 

membership function.  For example, if the bell-shaped membership function is employed, 

   ( )  is given by 
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or the Gaussian membership function by 

 

   ( )     [ (
    
  

)
 

]         

 

where ai, bi, and ci are the parameters of the membership function. 

 

In Layer 2, the nodes are fixed nodes. This layer involves fuzzy operators; it uses the 

AND operator to fuzzify the inputs. They are labeled with π, indicating that they perform 

as a simple multiplier. The output of this layer can be represented as 

 

             ( )      ( )           

 

These are the so-called firing strengths of the rules. 

 

In Layer 3, the nodes are also fixed nodes labeled by N, to indicate that they play a 

normalization role to the firing strengths from the previous layer.  The output of this layer 

can be represented as 

 

       ̅   
  

     
           

 

Outputs of this layer are called normalized firing strengths. 



79 

 

 

In Layer 4, the nodes are adaptive. The output of each node in this layer is simply the 

product of the normalized firing strength and a first order polynomial (for a first order 

Sugeno model). The output of this layer is given by 

 

      ̅     ̅ (          )           

 

Where  ̅ is the output of Layer 3, and pi, qi, and ri are the consequent parameters. 

In Layer 5, there is only one single fixed node labeled with ∑. This node performs the 

summation of all incoming signals. The overall output of the model is given by 
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5 CHAPTER 5 

NOX EMISSION MODELING 

5.1  Process data analysis 

 

Initially 16 process data tags were selected, to test their influence on the NOx formation 

which are detailed on Table 2: 

 

Table 2 Process data ranges during start up. 

DATA 
START UP RANGE 

UNIT 
MINIMUM MAXIMUM 

COMPRESSOR INLET AIR FLOW 5.3 378.2 kg/s 

COMPRESSOR DISCHARGE 
TEMPERATURE 45.8 414.3 °C 

FUEL FLOW 1.8 8.1 Kg/s 

AIR/FUEL 2.7 120.1  

FIRING TEMPERATURE 46.0 1313.9 °C 

LHV 876.3 878.7 BTU/scf 

N2 8.8 8.9 mole% 

LOAD 0.4 145.6 MW 

STEAM FLOW 0.0 290.7 tons/hr 

HRSG STEAM TEMPERATURE 266.1 379.6 °C 

HRSG STEAM PRESSURE 44.4 44.7 bar 

NOx 0.8 129.5 ppmvd 

CO 1.1 792.5 ppm 

O2 12.2 20.2 mole% 

AMBIENT TEMPERATURE 29.9 42.2 °C 

RELATIVE HUMIDITY 11.9 72.4 % 
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Then about 2000 data sets with 20 seconds increment were collected for these tags during 

the startup of the CGTG (0 to 50% load).  The sensitivity of these tags and their influence 

on NOx formation was studied and analyzed.   

 

5.1.1 Sensitivity analysis 

 

Figure 23 presents the time variations of the important operating variables namely; Load 

(MW), Firing temperature (°C), Compressor discharge temperature (°C), Steam flow 

(ton/h), and Compressor inlet air flow (kg/sec).  These process variables are directly 

proportional and in harmony with the NOx formation. 

 

 

Figure 23  Process data in direct proportionality with NOX formation 
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However, the Air to Fuel ratio is inversely proportional to the NOx formation as shown in 

Figure 24: 

 

 

Figure 24  Inverse proportionality of Air/Fuel Ratio with NOx formation 

 

On the other hand, Figure 25 shows that LHV value, N2 in fuel, the HRSG steam 

temperature, and HRSG steam pressure are almost constant without significant changes 

and have no clear influence on the NOx formation.  Hence, it will be excluded from the 

PEMS model. 
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Figure 25  Constant process data with no clear influence on NOX formation 

 

Although, there is variation in the ambient temperature but there is no clear significant 

effect on the NOx formation as shown in Figure 26.  Also, the figure does not show clear 

correlation with the NOx formation for the rest of the tags.  But these tags (O2, CO, and 

Relative humidity) are added to the PEMS model as they are theoretically contributing to 

the NOx formation. 
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Figure 26  Process data with no clear correlation with NOX 

 

5.1.2 Process data correlation with NOX 

The correlation of the process data with NOx were calculated using excel correlation tool.  

The excel correlation tool is based on Pearson Product-Moment Correlation which is the 

covariance of two variables divided by the product of their standard deviations. Below is 

the correlation equation (Pearson, 1895): 

 
     

   (   )
    

 

The strength of relationship is identified based on the coefficient "ᵨ" as explained in 

Table 3: 

Table 3 Strength of relationship corresponding to correlation coefficient ρ  

Value of “ρ” Strength of relationship 

  -1.0 to -0.5 or 1.0 to 0.5  Strong 

  -0.5 to -0.1 or 0.1 to 0.5  Weak 

  -0.1 to 0.1  None or really weak 
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Table 4, lists the calculated correlation coefficient for different process variables.     

Table 4 Correlation coefficient for process variables 

CORRELATION WITH 
NOx 

(ppm) 

LOAD (MW) 0.978140044 
Fuel flow (kg/sec) 0.970637383 
Relative Humidity (%) -0.868172776 
Steam flow (ton/h) 0.853315575 
O2 (%) -0.764797893 
Firing temp (°C) 0.739775129 
Compr. Inlet air flow (kg/sec) 0.725366018 
Turbine exhaust 
temp 

(°C) 0.652710826 

Comp. disch. Temp (°C) 0.647837055 
CO (ppm) -0.541661133 

 

Based on the modeling approach used in the literature review and the above correlation 

results, the following ten inputs were selected as inputs to the PEMS model: 

1. Load (MW).  

Used for modeling by (Azid, 2000), (Ciccone, 2005), (Rusinowski, 2007), 

(Ligang, 2008), (Smrekar, 2009), (Bartolini, 2010) 

2. Fuel flow (kg/sec).  

Used for modeling by (Ikonen, 2000), (Azid, 2000), (Steohen, 2000), (Hao, 

2001), (Chong, 2001), (Zhou, 2003), (Ciccone, 2005), (Shakil, 2008) 

3. Firing temperature (°C). 

4. Compressor discharge temperature (°C).  

Used for modeling by (Ciccone, 2005) 

5. Steam flow (ton/h). 
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6. Air flow (kg/sec).  

Used for modeling by (Ikonen, 2000), (Steohen, 2000), (Hao, 2001), (Chong,  

2001), (Tronci, 2002), (Zhou, 2003), (Ciccone, 2005), (Ligang, 2008), 

(Shakil, 2008) 

7. Air to fuel ratio.  

Used for modeling by (Kesgin, 2003), (Shakil, 2008) 

8. O2 (%).  

Used in modeling by (Hao, 2001), (Chong, 2001), (Zhou, 2003), (Rusinowski, 

2007), (Ligang, 2008) 

9. CO (%). 

10. Relative humidity (%).  

Used for modeling by (Fast, 2009) 

 

5.2  ANFIS Modelling 

 

The ANFIS modeling was started with ten inputs (load, steam flow, CO, O2, fuel flow, 

compressor inlet air flow, air to fuel ratio, compressor discharge temperature, firing 

temperature, and relative humidity) but it was beyond the capability of the PC that 

indicated out of memory.  The same massage was received after reducing the inputs to 

nine; we dropped fuel flow and compressor inlet air flow as they are already represented 

by the air to fuel ratio. An excessive number of inputs not only impair the transparency of 

the underlying model, but also increase the complexity of computation necessary for 

building the model. Therefore, it is necessary to do input selection that finds the priority 
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of each candidate inputs and uses them accordingly.  Specifically, the purposes of input 

selection include: 

1.  Removal of noise or irrelevant inputs. 

2.  Removal of inputs that depends on other inputs. 

3.  Make the underlying model more concise and transparent. 

4.  Reduce the time for model construction.   

Now we will reduce the number of inputs for ANFIS modeling based on the above 

criteria and the data analysis results obtained through the trends and correlation 

coefficients.  Whereas, the compressor discharge temperature and turbine exhaust 

temperature were dropped because they are dependent on the firing temperature.  Also, 

we dropped fuel flow and compressor inlet air flow as they are already represented by the 

air to fuel ratio.  Finally, the CO was dropped as it has weak correlation (-0.5417) with 

NOx.  Therefore, the ten inputs reduced to six as listed below: 

 

1.  Load. 

2.  Steam flow. 

3.  O2. 

4.  Air to fuel ratio. 

5.  Firing temperature. 

6.  Relative humidity. 

 

The ANFIS model was designed through employing several experiments on different 

models, each model with different design settings and epoch numbers.  The performance 
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of each ANFIS model was evaluated based on the standard error produced.  Then, the 

overall comparison has identified the best ANFIS model with the optimal settings that 

developed highest predictability and least standard error. 

 

5.2.1 ANFIS model with six inputs (X*X*X*X*X*X) 

The ANFIS modeling started initially with the simple form for six inputs with 

2*2*2*2*2*2 combination of membership function numbers.  Then the ANFI 

(2*2*2*2*2*2) model was tested at different epoch trials for each membership function 

type; namely Triangular, Trapezoidal, Generalized bell, Gaussian, 2-sided Gaussian, Pi 

(π), Difference Sigmoidal, and Product Sigmoidal.  Note that, throughout the course of 

ANFIS modeling experiments it was identified that the Trapezoidal, 2-sided Gaussian, 

Difference Sigmoidal, and Product Sigmoidal membership functions are producing the 

least error among the other membership function types.  Hence, the ANFIS modeling 

discussion will be focused on those functions only.  

  

The basic ANFIS (2*2*2*2*2*2) model is assigning 2 membership functions for each of 

the four inputs, 12 functions altogether.  The generated fuzzy inference system structure 

contains 64 fuzzy rules and 496 total number of parameters.  Figure 27, shows that the 

best performance was achieved through applying the Trapezoidal membership function 

with single epoch which generated a minimum error of 0.019244. 
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Figure 27 ANFIS (2*2*2*2*2*2) model 

 

Now we will study the effect of increasing the number of membership functions assigned 

to the inputs.  We designed new ANFIS (3*3*3*3*3*3) model as detailed on Figure 28, 

at which 3 membership functions were assigned for each input of the six inputs, 18 

functions altogether.  The generated fuzzy inference system structure contains 729 fuzzy 

rules and the total number of parameters is 5175 which is obviously too large and it is 

beyond the capability of the PC that indicated out of memory.  Hence, the effect of 

increasing the number of membership functions assigned to the inputs can't be studied 

with six inputs.   

 

 

Figure 28 ANFIS (3*3*3*3*3*3) model. 

 

Number of Inputs 6

Number of Membership Functions 3*3*3*3*3*3

Training Data Set 1297

Checking Data Set 300

Number of Nodes 1503

Number of Linear Parameters 5103

Number of Nonlinear Parameters 72

Total Number of Parameters 5175

Number of Fuzzy Rules 729

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error Beyond the capability of the PC that indicates out of memory.

1- Load.  2- Steam Flow.  3- O2. 4- Air to Fuel Ratio. 5- Firing Temperature. 6- Relative Humidity.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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Now we will try to improve the ANFIS (2*2*2*2*2*2) model through studying the effect 

of increasing the number of membership functions of one input at a time.  This was 

applied on each individual input and on each trial the number of membership functions 

has been increased by one till the optimal results is sustained.  The best results from all 

these trials were attained from ANFIS (2*2*2*2*12*2) model described in Figure 29 

below.  This model assigned 12 membership functions to input#5 (Firing Temperature), 

22 functions altogether.  The generated fuzzy inference system structure contains 384 

fuzzy rules.  The Trapezoidal membership function produced the best performance at 

epoch number 1 with minimum error of 0.039804.  Note that, this error is higher than the 

error (0.019244) obtained from the basic ANFIS (2*2*2*2*2*2) model. 

 

 

Figure 29 ANFIS (2*2*2*2*12*2) model. 

 

Now we will try to improve the ANFIS (2*2*2*2*2*2) model through studying the effect 

of increasing the number of membership functions of two inputs at a time.  This was 

applied alternatively on a combination of two inputs out of the six inputs; 

(X*X*2*2*2*2), (2*X*X*2*2*2), (2*2*X*X*2*2), (2*2*2*X*X*2), (2*2*2*2*X*X), 

Number of Inputs 6

Number of Membership Functions2*2*2*2*12*2

Training Data Set 1297

Checking Data Set 300

Number of Nodes 821

Number of Linear Parameters 2688

Number of Nonlinear Parameters 88

Total Number of Parameters 2776

Number of Fuzzy Rules 384

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error 0.039804 0.062397 0.054391 0.052669 0.078196 0.060175 0.091599 0.098392 0.095334 0.091599 0.098392 0.095334

1- Load.  2- Steam Flow.  3- O2. 4- Air to Fuel Ratio. 5- Firing Temperature. 6- Relative Humidity.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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(X*2*X*2*2*2), (X*2*2*X*2*2), (X*2*2*2*X*2), (X*2*2*2*2*X), (2*X*2*2*2*X), 

(2*2*X*2*2*X), (2*2*2*X*2*X), (2*X*2*X*2*2), (2*2*X*2*X*2), and 

(2*X*2*2*X*2).  Actually, we will test the developed fifteen ANFIS models through 

increasing the assigned membership functions for the predetermined pair of inputs by one 

till the optimal results is obtained for each model.  Hence, the best model out of the 

fifteen models will be identified. 

 

Throughout the course of training and testing of these models, it was identified that the 

ANFIS (2*X*2*2*X*2) model is the best among the other combinations.  In this model, 

the number of the membership functions for input#2 (Steam Flow) and input#5 (Firing 

Temperature) is increased by one.  First we generated ANFIS (2*3*2*2*3*2) model that 

contains 14 functions altogether, 144 fuzzy rules and 1064 total number of parameters as 

shown in Figure 30.  For this structure, the Trapezoidal membership function produced 

the best performance among the others at epoch number 1 with minimum error of 

0.021058.  Note that, this error is higher than the error (0.019244) obtained from the 

basic ANFIS (2*2*2*2*2*2) model.   
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Figure 30 ANFIS (2*3*2*2*3*2) model. 

 

Then we further increased the number of membership functions to four and generated 

ANFIS (2*4*2*2*4*2) model that contains 16 functions altogether, 256 fuzzy rules and 

1856 total number of parameters as shown in Figure 31.  For this structure, the 

Trapezoidal membership function produced the best performance among the others at 

epoch number 1 with minimum error of 0.033621.  Note that, this error is higher than the 

error (0.021058) obtained from the ANFIS (2*3*2*2*3*2) model which is already higher 

than the basic ANFIS (2*2*2*2*2*2) model error. 

 

Figure 31 ANFIS (2*4*2*2*4*2) model. 

 

Number of Inputs 6

Number of Membership Functions2*3*2*2*3*2

Training Data Set 1297

Checking Data Set 300

Number of Nodes 325

Number of Linear Parameters 1008

Number of Nonlinear Parameters 56

Total Number of Parameters 1064

Number of Fuzzy Rules 144

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 6 12 21 6 12 21

Average Testing Error 0.021058 0.021058 0.021058 0.038425 0.044377 0.03446 0.03266 0.031835 0.04445 0.044341 0.032205 0.03098

1- Load.  2- Steam Flow.  3- O2. 4- Air to Fuel Ratio. 5- Firing Temperature. 6- Relative Humidity.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal

Number of Inputs 6

Number of Membership Functions2*4*2*2*4*2

Training Data Set 1297

Checking Data Set 300

Number of Nodes 553

Number of Linear Parameters 1792

Number of Nonlinear Parameters 64

Total Number of Parameters 1856

Number of Fuzzy Rules 256

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error 0.033621 0.040795 0.10772 0.043004 0.050622 0.032376 0.042214 0.036789 0.041589 0.042214 0.036789 0.041589

1- Load.  2- Steam Flow.  3- O2. 4- Air to Fuel Ratio. 5- Firing Temperature. 6- Relative Humidity.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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Therefore, increasing the number of membership functions for the ANFIS 

(2*2*2*2*2*2) model for one input or more or even all will not necessarily improve the 

model predictability nor reduce the error.  In fact, it will complicate the model, increase 

the computational time, and usually leads to model over fitting.  In fact, the best 

performance for six inputs was obtained through the basic model ANFIS (2*2*2*2*2*2) 

with an error of 0.019244.  

  

In the next section we will study the effect of reducing the number of ANFIS inputs to 

five on the ANFIS predictability.   

 

5.2.2 ANFIS with five inputs (X*X*X*X*X): 

Here we have to get rid of one input from the previous ANFIS structure.  By referring to 

the trend , it was concluded that both O2 and relative humidity have no clear correlation 

with NOx unlike the air to fuel ratio that shows inverse proportionality with NOx, and 

direct proportionality is shown by load, steam flow, and firing temperature.  Hence, we 

will test new ANFIS models by removing O2 or relative humidity alternatively from the 

inputs.  

  

We will start with removing the relative humidity from the inputs.  So, the five inputs 

will be load, steam flow, O2, air/fuel ratio, and firing temperature.  It is a good practice to 

start with the basic structure for Five inputs; ANFIS (2*2*2*2*2).   This model is 
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assigning 2 membership functions to each of the five inputs, 10 functions altogether.  The 

generated fuzzy inference system structure contains 32 fuzzy rules and 232 total number 

of parameters.  Figure 32, shows that this ANFIS model performs best with a Trapezoidal 

membership function at epoch number 6 with minimum error of 0.01848 which is lower 

than the error (0.019244) generated by the previously identified best model for six inputs 

ANFIS (2*2*2*2*2*2).  Therefore, decreasing the number of inputs not only improved 

the predictability but also decreased the complexity of computation necessary for 

building the model. 

 

 

Figure 32 ANFIS (2*2*2*2*2) model with O2. 

 

Now we will study the effect of increasing the number of membership functions assigned 

to the inputs.  We designed new ANFIS (3*3*3*3*3) model as detailed on Figure 33, at 

which 3 membership functions were assigned for each input of the five inputs, 15 

functions altogether.  The generated fuzzy inference system structure contains 243 fuzzy 

rules and 1518 total number of parameters.  The best performance attained by this 

structure is with Trapezoidal membership functions at epoch number 10 that produced an 

Number of Inputs 5

Number of Membership Functions 2*2*2*2*2

Training Data Set 1297

Checking Data Set 300

Number of Nodes 92

Number of Linear Parameters 192

Number of Nonlinear Parameters 40

Total Number of Parameters 232

Number of Fuzzy Rules 32

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 6 10 13 6 10 13

Average Testing Error 0.020657 0.020331 0.01848 0.040395 0.038921 0.044178 0.045689 0.034305 0.023238 0.045689 0.034305 0.023238

1- Load.  2- Steam Flow.  3- O2. 4- Air to Fuel Ratio. 5- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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average testing error of 0.030159.  Note that, this error is higher than the one produced 

(0.01848) with the basic ANFIS (2*2*2*2*2) model. 

  

 

Figure 33 ANFIS (3*3*3*3*3) model with O2. 

 

We further increased the number of membership functions to 4 and developed ANFIS 

(4*4*4*4*4) model which is assigning 4 membership functions to each input of the five 

inputs, 20 functions altogether.  The generated fuzzy inference system structure contains 

4^5 = 1024 fuzzy rules which is large and beyond the capability of the PC and mat lab 

program that indicated out of memory.  Hence, increasing the membership functions 

assigned to the inputs not necessarily will improve the model predictability nor reduce 

the error.  In fact, it will complicate the model, increase the computational time, and 

usually leads to model overfitting.  

  

Now we will try to improve the ANFIS (2*2*2*2*2) model through studying the effect 

of increasing the number of membership functions of one input at a time.  This was 

Number of Inputs 5

Number of Membership Functions 3*3*3*3*3

Training Data Set 1297

Checking Data Set 300

Number of Nodes 524

Number of Linear Parameters 1458

Number of Nonlinear Parameters 60

Total Number of Parameters 1518

Number of Fuzzy Rules 243

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 6 10 1 3 6 1 3 6 1 3 6

Average Testing Error 0.14842 0.030656 0.030159 0.055658 0.052861 0.10207 0.059437 0.064428 0.071873 0.13519 0.13651 0.1359

1- Load.  2- Steam Flow.  3- O2. 4- Air to Fuel Ratio. 5- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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applied on each individual input and on each trial the number of membership functions 

has been increased by one till the optimal results is sustained.  The best results from all 

these trials were attained from ANFIS (2*2*2*2*12) model described in Figure 34.  This 

model assigned 12 membership functions to input#5 (Firing Temperature), 20 functions 

altogether.  The generated fuzzy inference system structure contains 192 fuzzy rules and 

1232 total number of parameters.  The Difference Sigmoidal and Product Sigmoidal 

membership functions produced the best performance at epoch number 6 with minimum 

error of 0.019544.  Note that, this error is higher than the error (0.01848) obtained from 

the basic ANFIS (2*2*2*2*2) model. 

 

 

Figure 34 ANFIS (2*2*2*2*12) model with O2. 

 

Now we will try to improve the ANFIS (2*2*2*2*2) model through studying the effect 

of increasing the number of membership functions of two inputs at a time.  This was 

applied alternatively on a combination of two inputs out of the five inputs; (X*X*2*2*2), 

(X*2*X*2*2), (X*2*2*X*2), (X*2*2*2*X), (2*X*2*2*X), (2*2*X*2*X), 

(2*2*2*X*X), (2*X*X*2*2), (2*2*X*X*2), and (2*X*2*X*2).  Actually, we will test 

Number of Inputs 5

Number of Membership Functions 2*2*2*2*12

Training Data Set 1297

Checking Data Set 300

Number of Nodes 432

Number of Linear Parameters 1152

Number of Nonlinear Parameters 80

Total Number of Parameters 1232

Number of Fuzzy Rules 192

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error 0.027343 0.030592 0.030057 0.021938 0.022872 0.06434 0.033897 0.039795 0.019544 0.033897 0.039795 0.019543

1- Load.  2- Steam Flow.  3- O2. 4- Air to Fuel Ratio. 5- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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the developed ten ANFIS models through increasing the assigned membership functions 

for the predetermined pair of inputs by one till the optimal results is obtained for each 

model.  Hence, the best model out of the ten models will be identified. 

 

Throughout the course of training and testing of these models, it was identified that the 

ANFIS (2*X*2*2*X) model is the best among the other combinations.  In this model, the 

number of the membership functions for input#2 (Steam Flow) and input#5 (Firing 

Temperature) is increased by one.  First we generated ANFIS (2*3*2*2*3) model that 

contains 12 functions altogether, 72 fuzzy rules and 480 total number of parameters as 

shown in Figure 35.  For this structure, the Trapezoidal membership function produced 

the best performance at epoch number 1 with minimum error of 0.018564.  Note that, this 

error is higher than the error (0.01848) obtained from the basic ANFIS (2*2*2*2*2) 

model.   

 

Figure 35 ANFIS (2*3*2*2*3) model with O2. 

 

Then we further increased the number of membership functions to four and generated 

ANFIS (2*4*2*2*4) model that contains 14 functions altogether, 128 fuzzy rules and 824 

Number of Inputs 5

Number of Membership Functions 2*3*2*2*3

Training Data Set 1297

Checking Data Set 300

Number of Nodes 176

Number of Linear Parameters 432

Number of Nonlinear Parameters 48

Total Number of Parameters 480

Number of Fuzzy Rules 72

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 6 10 12 6 10 12

Average Testing Error 0.018564 0.018834 0.019052 0.030967 0.037532 0.035685 0.047867 0.023444 0.023267 0.047867 0.023444 0.023267

1- Load.  2- Steam Flow.  3- O2. 4- Air to Fuel Ratio. 5- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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total number of parameters as shown in Figure 36.  For this structure, the Trapezoidal 

membership function produced the best performance among the others at epoch number 3 

with minimum error of 0.019048.  Note that, this error is higher than the error (0.018564) 

obtained from the ANFIS (2*3*2*2*3) model which is already higher than the basic 

ANFIS (2*2*2*2*2) model error. 

 

Figure 36 ANFIS (2*4*2*2*4) model with O2. 

 

Therefore, increasing the number of membership functions for the ANFIS (2*2*2*2*2) 

model with O2 for one input or more or even all will not necessarily improve the model 

predictability nor reduce the error.  In fact, it will complicate the model, increase the 

computational time, and usually leads to model over fitting.  In fact, the best model for 

five inputs including O2 is the basic ANFIS (2*2*2*2*2) model with a generated error of 

0.01848.  

    

Similarly now we will test the ANFIS with five inputs including the relative humidity 

instead of O2.  So, the five inputs will be load, steam flow, air/fuel ratio, firing 

temperature, and relative humidity.  We started with the basic structure for Five inputs; 

Number of Inputs 5

Number of Membership Functions 2*4*2*2*4

Training Data Set 1297

Checking Data Set 300

Number of Nodes 292

Number of Linear Parameters 768

Number of Nonlinear Parameters 56

Total Number of Parameters 824

Number of Fuzzy Rules 128

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error 0.019083 0.019048 0.019311 0.022942 0.02579 0.038662 0.036729 0.028967 0.024074 0.036729 0.028967 0.024074

1- Load.  2- Steam Flow.  3- O2. 4- Air to Fuel Ratio. 5- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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ANFIS (2*2*2*2*2).   This model is assigning 2 membership functions to each of the 

five inputs, 10 functions altogether.  The generated fuzzy inference system structure 

contains 32 fuzzy rules and 232 total number of parameters.  Figure 37, shows that this 

ANFIS model performs best with a 2-Sided Gaussian membership function at epoch 

number 1 with minimum error of 0.0293 which is higher than the error (0.019244) 

generated by the previously identified best model for six inputs ANFIS (2*2*2*2*2*2).  

Therefore, the removal of O2 from the inputs degraded the performance of the ANFIS 

predictability. 

 

Figure 37 ANFIS (2*2*2*2*2) model with relative humidity. 

 

Now we will study the effect of increasing the number of membership functions assigned 

to the inputs.  We designed new ANFIS (3*3*3*3*3) model as detailed on Figure 38, at 

which 3 membership functions were assigned for each input of the four inputs, 15 

functions altogether.  The generated fuzzy inference system structure contains 243 fuzzy 

rules and 1518 total number of parameters.  The best performance attained by this 

structure is with Difference Sigmoidal and Product Sigmoidal membership functions at 

epoch number 1 that produced an average testing error of 0.10372.  Note that, this error is 

much higher than the one produced (0.0293) with the basic ANFIS (2*2*2*2*2) model.  

Number of Inputs 5

Number of Membership Functions 2*2*2*2*2

Training Data Set 1297

Checking Data Set 300

Number of Nodes 92

Number of Linear Parameters 192

Number of Nonlinear Parameters 40

Total Number of Parameters 232

Number of Fuzzy Rules 32

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error 0.056062 0.057556 0.057556 0.0293 0.054944 0.048535 0.057314 0.058709 0.063074 0.057314 0.058709 0.063074

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature. 5- Relative Humidity.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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Figure 38 ANFIS (3*3*3*3*3) model with relative humidity. 

 

We further increased the number of membership functions to 4 and developed ANFIS 

(4*4*4*4*4) model which is assigning 4 membership functions to each input of the five 

inputs, 20 functions altogether.  The generated fuzzy inference system structure contains 

4^5 = 1024 fuzzy rules which is large and beyond the capability of the PC and mat lab 

program that indicated out of memory.  Hence, increasing the membership functions 

assigned to the inputs not necessarily will improve the model predictability nor reduce 

the error.  In fact, it will complicate the model, increase the computational time, and 

usually leads to model overfitting.   

 

Now we will try to improve the ANFIS (2*2*2*2*2) model through studying the effect 

of increasing the number of membership functions of one input at a time.  This was 

applied on each individual input and on each trial the number of membership functions 

has been increased by one till the optimal results is sustained.  The best results from all 

these trials were attained from ANFIS (2*2*2*12*2) model described in Figure 39.  This 

model assigned 12 membership functions to input#4 (Firing Temperature), 20 functions 

Number of Inputs 5

Number of Membership Functions 3*3*3*3*3

Training Data Set 1297

Checking Data Set 300

Number of Nodes 524

Number of Linear Parameters 1458

Number of Nonlinear Parameters 60

Total Number of Parameters 1518

Number of Fuzzy Rules 243

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error 0.21932 0.1763 0.20225 0.14299 0.12969 0.13933 0.10372 0.11096 0.12607 0.10372 0.11096 0.12607

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature. 5- Relative Humidity.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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altogether.  The generated fuzzy inference system structure contains 192 fuzzy rules and 

1232 total number of parameters.  The Trapezoidal membership function produced the 

best performance among the others among the others at epoch number 1 with minimum 

error of 0.040684.  Note that, this error is higher than the error (0.0293) obtained from the 

basic ANFIS (2*2*2*2*2) model. 

 

Figure 39 ANFIS (2*2*2*12*2) model with relative humidity. 

 

Now we will try to improve the ANFIS (2*2*2*2*2) model through studying the effect 

of increasing the number of membership functions of two inputs at a time.  This was 

applied alternatively on a combination of two inputs out of the five inputs; (X*X*2*2*2), 

(X*2*X*2*2), (X*2*2*X*2), (X*2*2*2*X), (2*X*2*2*X), (2*2*X*2*X), 

(2*2*2*X*X), (2*X*X*2*2) (2*2*X*X*2), and (2*X*2*X*2).  Actually, we will test 

the developed ten ANFIS models through increasing the assigned membership functions 

for the predetermined pair of inputs by one till the optimal results is obtained for each 

model.  Hence, the best model out of the ten models will be identified. 

 

Number of Inputs 5

Number of Membership Functions 2*2*2*12*2

Training Data Set 1297

Checking Data Set 300

Number of Nodes 432

Number of Linear Parameters 1152

Number of Nonlinear Parameters 80

Total Number of Parameters 1232

Number of Fuzzy Rules 192

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error 0.040684 0.072238 0.053271 0.044328 0.055024 0.06434 0.052575 0.078298 0.073309 0.072575 0.078298 0.073314

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature. 5- Relative Humidity.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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Throughout the course of training and testing of these models, it was identified that the 

ANFIS (2*X*2*X*2) model is the best among the other combinations.  In this model, the 

number of the membership functions for input#2 (Steam Flow) and input#4 (Firing 

Temperature) is increased by one.  First we generated ANFIS (2*3*2*3*2) model that 

contains 12 functions altogether, 72 fuzzy rules and 480 total number of parameters as 

shown in Figure 40.  For this structure, the 2-Sided Gaussian membership function 

produced the best performance at epoch number 11 with minimum error of 0.026646.  

Note that, this error is higher than the error (0.0293) obtained from the basic ANFIS 

(2*2*2*2*2) model.   

 

Figure 40 ANFIS (2*3*2*3*2) model with relative humidity. 

 

Then we further increased the number of membership functions to four and generated 

ANFIS (2*4*2*4*2) model that contains 14 functions altogether, 128 fuzzy rules and 824 

total number of parameters as shown in Figure 41.  For this structure, the 2-Sided 

Gaussian membership function produced the best performance at epoch number 6 with 

minimum error of 0.02816.  Note that, this error is higher than the error (0.026646) 

obtained from the ANFIS (2*3*2*3*2) model. 

Number of Inputs 5

Number of Membership Functions 2*3*2*3*2

Training Data Set 1297

Checking Data Set 300

Number of Nodes 176

Number of Linear Parameters 432

Number of Nonlinear Parameters 48

Total Number of Parameters 480

Number of Fuzzy Rules 72

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 6 11 18 6 10 15 6 10 15

Average Testing Error 0.030186 0.031186 0.050104 0.034161 0.026646 0.06224 0.030456 0.028061 0.026747 0.030456 0.028061 0.026747

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature. 5- Relative Humidity.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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Figure 41 ANFIS (2*4*2*4*2) model with relative humidity. 

 

Therefore, increasing the number of membership functions for the ANFIS (2*2*2*2*2) 

model for one input or more or even all will not necessarily improve the model 

predictability nor reduce the error.  In fact, it will complicate the model, increase the 

computational time, and usually leads to model over fitting.  

 

For five inputs including O2, the best ANFIS performance was achieved through the 

basic (2*2*2*2*2) model with an average error of 0.01848 which is lower than the error 

(0.019244) generated through the identified best model for six inputs (2*2*2*2*2*2).  

Hence, reducing the number of inputs might improve the predictability of the ANFIS. 

 

For five inputs including relative humidity, the best ANFIS performance was achieved 

through (2*3*2*3*2) model with an average error of 0.026646 which is higher than the 

error (0.019244) generated through the identified best model for six inputs 

(2*2*2*2*2*2).  Therefore, the proper selection of inputs contributes with higher 

Number of Inputs 5

Number of Membership Functions 2*4*2*4*2

Training Data Set 1297

Checking Data Set 300

Number of Nodes 292

Number of Linear Parameters 768

Number of Nonlinear Parameters 56

Total Number of Parameters 824

Number of Fuzzy Rules 128

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error 0.033071 0.042936 0.042936 0.036164 0.030953 0.02816 0.038556 0.03354 0.035204 0.038556 0.03354 0.035204

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature. 5- Relative Humidity.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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influence on the ANFIS performance than reducing the number of inputs.  Note that, the 

relative humidity has negative impact on the model performance.  Next we will further 

test the effect of reducing the number of inputs on the ANFIS performance by reducing 

the number of inputs to four. 

 

5.2.3 ANFIS with four inputs (X*X*X*X): 

Here we will get rid of O2 and relative humidity as they have no clear correlation with 

NOx as shown in the trends discussed in the data analysis section.  Hence, we will test 

new ANFIS models by removing O2 and relative humidity from the inputs.   

 

We will start with the basic ANFIS (2*2*2*2) model which is assigning 2 membership 

functions for each of the four inputs, 8 functions altogether.  The generated fuzzy 

inference system structure contains 16 fuzzy rules and 112 total number of parameters.  

Figure 42, shows that this ANFIS model performs best with the Difference Sigmoidal and 

Product Sigmoidal at epoch number 28 with minimum error of 0.01841 which is lower 

than the error (0.01848) generated through the identified best model for five inputs 

(2*2*2*2*2).  Hence, decreasing the number of inputs further from six to four improved 

the predictability of the ANFIS model and simplified its structure. 
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Figure 42 ANFIS (2*2*2*2) model. 

 

Now we will study the effect of increasing the number of membership functions assigned 

to the inputs.  We designed new ANFIS (3*3*3*3) model as detailed on Figure 43, at 

which 3 membership functions were assigned for each input of the four inputs, 12 

functions altogether.  The generated fuzzy inference system structure contains 81 fuzzy 

rules and 453 total number of parameters.  The best performance attained by this 

structure is with 2-Sided Gaussian membership function at epoch number 3 that produced 

an average testing error of 0.028749.  Note that, this error is higher than the error 

(0.018473) generated by ANFIS (2*2*2*2) model.   

 

Figure 43 ANFIS (3*3*3*3) model. 

 

Number of Inputs 4

Number of Membership Functions 2*2*2*2

Training Data Set 1297

Checking Data Set 300

Number of Nodes 55

Number of Linear Parameters 80

Number of Nonlinear Parameters 32

Total Number of Parameters 112

Number of Fuzzy Rules 16

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 4 1 3 6 6 16 28 6 16 28

Average Testing Error 0.019272 0.018731 0.018487 0.035911 0.034471 0.034806 0.040336 0.020377 0.01841 0.040336 0.020377 0.01841

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal

Number of Inputs 4

Number of Membership Functions 3*3*3*3

Training Data Set 1297

Checking Data Set 300

Number of Nodes 193

Number of Linear Parameters 405

Number of Nonlinear Parameters 48

Total Number of Parameters 453

Number of Fuzzy Rules 81

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 4 1 3 6 1 6 10 1 6 10

Average Testing Error 0.15751 0.068537 0.068537 0.047738 0.028749 0.074175 0.06326 0.061957 0.060267 0.06326 0.061957 0.060267

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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We further increased the number of membership functions to 4 and developed ANFIS 

(4*4*4*4) model which is detailed on Figure 44, at which 4 membership functions were 

assigned for each input of the four inputs, 16 functions altogether.  The generated fuzzy 

inference system structure contains 256 fuzzy rules and 1344 total number of parameters.  

The best performance attained by this structure is with Difference Sigmoidal and Product 

Sigmoidal membership functions at epoch number 1 that produced an average testing 

error of 0.019568.  Note that, this error is still higher than the one produced (0.018473) 

with the ANFIS (2*2*2*2) model. 

 

Therefore, increasing the number of membership functions assigned to the inputs not 

necessarily will improve the model predictability nor reduce the error.  In fact, it will 

complicate the model, increase the computational time, and usually leads to model 

overfitting.   

 

Figure 44 ANFIS (4*4*4*4) model. 

 

Now we will try to improve the ANFIS (2*2*2*2) model through studying the effect of 

increasing the number of membership functions of one input at a time.  This was applied 

Number of Inputs 4

Number of Membership Functions 4*4*4*4

Training Data Set 1297

Checking Data Set 300

Number of Nodes 551

Number of Linear Parameters 1280

Number of Nonlinear Parameters 64

Total Number of Parameters 1344

Number of Fuzzy Rules 256

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 3 6 1 3 6

Average Testing Error 0.095001 0.091163 0.076055 0.023176 0.03586 0.13166 0.019568 0.22103 0.045583 0.019568 0.022103 0.045583

Product Sigmoidal

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal
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on each individual input and on each trial the number of membership functions has been 

increased by one till the optimal results is sustained.  The best results from all these trials 

were attained from ANFIS (2*2*2*12) model described in Figure 45.  This model 

assigned 12 membership functions to input#4 (Firing Temperature), 18 functions 

altogether.  The generated fuzzy inference system structure contains 96 fuzzy rules and 

552 total number of parameters.  The 2-Sided Gaussian membership function produced 

the best performance at epoch number 2 with minimum error of 0.017271.  Note that, this 

error is lower than the error (0.018473) obtained from ANFIS (2*2*2*2) model. 

 

Figure 45 ANFIS (2*2*2*12) model. 

 

Now we will try to improve the ANFIS (2*2*2*2) model through studying the effect of 

increasing the number of membership functions of two inputs at a time.  This was applied 

alternatively on a combination of two inputs out of the four inputs; (X*X*2*2), 

(X*2*X*2), (X*2*2*X), (2*X*X*2), (2*2*X*X), and (2*X*2*X).  Actually, we will 

test the developed six ANFIS models through increasing the assigned membership 

functions for the predetermined pair of inputs by one till the optimal results is obtained 

for each model.  Hence, the best model out of the six models will be identified. 

Number of Inputs 4

Number of Membership Functions 2*2*2*12

Training Data Set 1297

Checking Data Set 300

Number of Nodes 235

Number of Linear Parameters 480

Number of Nonlinear Parameters 72

Total Number of Parameters 552

Number of Fuzzy Rules 96

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 2 6 1 3 6 1 3 6

Average Testing Error 0.023838 0.023838 0.023838 0.021681 0.017271 0.073355 0.030917 0.037833 0.025492 0.030917 0.033158 0.025492

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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Throughout the course of training and testing of these models, it was identified that the 

ANFIS (2*8*2*8) model is the best among the other combinations.  This model which is 

detailed on Figure 46, is assigning 2 membership functions to input#1 (Load) and input#3 

(Air to Fuel Ratio) and assigning 8 membership functions to input#2 (Steam Flow) and 

input#4 (Firing Temperature), 20 functions altogether.  The generated fuzzy inference 

system structure contains 256 fuzzy rules and 1360 total number of parameters.  The best 

results obtained for this model is through using Difference Sigmoidal and Product 

Sigmoidal at epoch number 2 with an average error of 0.017642.  Note that, the ANFIS 

(2*2*2*12) model has produced lower error (0.017271).  Therefore, increasing the 

number of membership functions for two inputs will not necessarily improve the model 

predictability nor reduce the error.  In fact, it will complicate the model, increase the 

computational time, and usually leads to model overfitting.   

 

Figure 46 ANFIS (2*8*2*8) model. 

 

 

 

 

Number of Inputs 4

Number of Membership Functions 2*8*2*8

Training Data Set 1297

Checking Data Set 300

Number of Nodes 559

Number of Linear Parameters 1280

Number of Nonlinear Parameters 80

Total Number of Parameters 1360

Number of Fuzzy Rules 256

Optimization Method Hybrid

Input Combinations

Membership Functions Type

Epoch Number 1 3 6 1 3 6 1 2 6 1 2 6

Average Testing Error 0.041731 0.041731 0.041731 0.022513 0.024849 0.039723 0.02438 0.017642 0.02147 0.02438 0.017642 0.021469

1- Load.  2- Steam Flow.  3- Air to Fuel Ratio. 4- Firing Temperature.

Trapezoidal 2-sided Gaussian Difference Sigmoidal Product Sigmoidal
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5.3  FFBPNN Modelling 

 

The FFBPNN model will be developed to estimate the NOx emissions in ppm by 

applying ten inputs as determined in the correlation section.  These inputs are Load 

(MW), Steam Flow (ton/hr), Firing Temperature (°C), Air/Fuel Ratio, CO (ppm), O2 

(%), Fuel Flow (kg/s), Compressor Inlet Air Flow (Kg/s), Relative Humidity (%), and 

Compressor Discharge Temperature (°C).  We employed 1650 real process data sets; 

about 1150 sets used for training, 250 sets used for validation, and 250 sets used for 

testing.  The training function used is Levenberg-Marquardt. 

 

The FFBPNN model was designed through employing several experiments on different 

models, each model with different number of hidden neurons.  The performance of each 

FFBPNN model was evaluated at different epoch number based on the Mean Square 

Error (MSE) produced.  Then, the overall comparison has identified the best FFBPNN 

model with the optimal number of hidden neurons and epoch number at which highest 

predictability and least MSE error is achieved. 

 

5.3.1 FFBPNN with ten inputs 

 

The FFBPNN modeling started initially with 10 hidden neurons and the best performance 

was achieved at epoch number 199.  The performance was evaluated based on the MSE 
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error; it was 1.02465E-05 for training, 1.41131E-05 for validation, and 1.96918E-05 for 

testing.  Then, the experiments continued by increasing the number of hidden neurons by 

one and test it at different number of epochs by comparing the MSE errors.  Table 5, 

summarize the results for some experiments that shows that FFBPNN model with 42 

hidden neurons (10-42-1) produced the best performance at epoch number 209 with MSE 

error of 6.41128E-06 during training, 9.00293E-06 during validation, and 7.18072E-06 

during testing.  Note that, the experiments were extended till 50 hidden neurons through 

which the performance of the models was lower than the one obtained through 42 hidden 

neurons.  Therefore, increasing the number of hidden neurons of the FFBPNN model will 

improve the predictability of the model to certain extent and then if it is increased more it 

will be degraded due to overfitting. 

Table 5   FFBPNN (10 inputs) modeling results.  

 

 

Table 6, summarize the test results at different epoch numbers for the obtained best 

FFBPNN model with 42 hidden neurons.  From the data in the table, we can conclude 

that it is not necessarily increasing the number of epochs will improve the predictability 

of the model nor reduce the MSE error. 

10 15 21 25 30 35 40 42 45 46 50

199 364 337 274 152 180 129 209 305 394 267

11 28 28 26 17 23 19 32 51 68 51

MSE 1.02465E-05 7.13057E-06 8.58867E-06 1.02415E-05 7.42338E-06 9.36768E-06 1.50418E-05 6.41128E-06 5.71278E-06 5.21947E-06 8.29231E-06

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 1.41131E-05 9.64638E-06 1.34782E-05 1.64806E-05 1.66146E-05 2.04539E-05 1.91810E-05 9.00293E-06 1.12297E-05 7.16617E-06 1.08544E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 1.96918E-05 1.27657E-05 1.60803E-05 1.67403E-05 1.16697E-05 1.39868E-05 1.34248E-05 7.18072E-06 9.50054E-06 2.37352E-05 1.41622E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

Training

1-Load.  2-Steam Flow.  3-Firing Temp.  4-Air/Ratio. 5-CO. 6-O2. 7-Fuel Flow. 8-Compr. Inlet Air Flow. 9-Reliative Humidity. 10-Compr. Disch. Temp. 

Number of Inputs

Number of Outputs

Training Data Set

Validation Data Set

Testing Data Set

Validation

Testing

Number of Epoch

Training Function

10

1

1168

251

251

Levenberg-Marquardt

NoxOutput

Inputs

# of Hidden Neurons

Time (s)
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Table 6    FFBPNN (10-42-1) modeling results 

 

 

Figure 47, shows the performance of the FFBPNN model at different epochs number.  

And it was identified that the best validation performance achieved at epoch number 203.  

Note that, the training will be automatically stopped when the validation error increased 

for six consecutive iterations which occurred at epoch number 209.  

 

Figure 47    FFBPNN (10-42-1) Performance at different epochs number. 

 

14 30 55 88 150 181 209 243 264 319 347

2 4 8 13 23 28 32 37 41 50 53

MSE 8.25296E-05 2.27942E-05 2.01309E-05 1.44816E-05 1.26458E-05 8.25582E-06 6.41128E-06 6.73475E-06 7.08455E-06 6.82360E-06 5.43989E-06

Regression 1 1 1 1 1 2 1 1 1 1 1

MSE 4.15426E-05 2.46499E-05 1.61459E-04 1.57613E-05 1.61035E-05 1.01808E-05 9.00293E-06 1.64339E-05 2.51457E-05 2.34209E-05 7.13885E-06

Regression 1 1 1 1 1 2 1 1 1 1 1

MSE 1.28877E-04 2.99434E-05 1.00641E-04 3.86615E-05 1.49490E-05 1.08453E-05 7.18072E-06 1.92859E-05 2.77855E-05 1.55926E-05 2.09211E-05

Regression 1 1 1 1 1 2 1 1 1 1 1
Testing

Nox

Inputs 1-Load.  2-Steam Flow.  3-Firing Temp.  4-Air/Ratio. 5-CO. 6-O2. 7-Fuel Flow. 8-Compr. Inlet Air Flow. 9-Reliative Humidity. 10-Compr. Disch. Temp. 

Validation Data Set 285

Testing Data Set 285

Number of Inputs 10

Number of Outputs 1

Training Data Set

42# of Hidden Neurouns

1327

Levenberg-MarquardtTraining Function

Training

Validation

Number of Epoch

Output

Time (s)
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Figure 48, shows the spread of error on the data sets (training, validation, and testing) and 

its frequency.  Also, it will indicate if there are any outliers in the data. 

 

 

Figure 48    FFBPNN (10-42-1) Error Histogram. 

 

Figure 49, displays the FFBPNN model output with respect to targets for training, 

validation, and test sets.  In fact, it shows a perfect fit as all of the data sets falls along the 

45 degree line, where the network outputs equal to the targets. 
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Figure 49    FFBPNN (10-42-1) Regression test. 

 

5.3.2 FFBPNN with six inputs 

 

Here we will test the effect of reducing the number of inputs from 10 to 6 inputs.  The six 

inputs were selected as discussed in the ANFIS modeling section.  So, the six inputs will 

be load, steam flow, firing temperature, air/fuel ratio, O2, and relative humidity. 

 

The FFBPNN modeling started initially with 10 hidden neurons and the best performance 

was achieved at epoch number 62.  The performance was evaluated based on the MSE 
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error; it was E6.00469-05 for training, 4.68002E-05 for validation, and 8.19357E-05 for 

testing.  Then, the experiments continued by increasing the number of hidden neurons by 

one and test it at different number of epochs by comparing the MSE errors.  Table 8, 

summarize the results for some experiments that shows that FFBPNN model with 42 

hidden neurons (6-42-1) produced the best performance at epoch number 285 with MSE 

error of 8.68282E-06 during training, 1.05235E-05 during validation, and 1.03641E-05 

during testing.  Note that, the experiments were extended till 50 hidden neurons through 

which the performance of the models was lower than the one obtained through 42 hidden 

neurons.  Therefore, increasing the number of hidden neurons of the FFBPNN model will 

improve the predictability of the model to certain extent and then if it is increased more it 

will be degraded due to overfitting. 

 

Table 7    FFBPNN (6 inputs) modeling results 

 

 

Table 8, summarize the test results at different epoch numbers for the obtained best 

FFBPNN model with 42 hidden neurons.  From the data in the table, we can conclude 

10 15 20 25 30 35 37 40 42 45 50

62 135 103 715 178 578 253 480 285 508 102

3 8 6 52 14 52 23 47 31 54 11

MSE 6.00469E-05 4.95170E-05 4.00669E-05 1.83246E-05 3.17926E-05 1.14269E-05 1.90600E-05 1.86170E-05 8.68282E-06 1.40447E-05 6.94499E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 4.68002E-05 8.46156E-05 4.00480E-05 1.92923E-05 3.35030E-05 1.72799E-05 1.92439E-05 1.81473E-05 1.05235E-05 1.63410E-05 3.76672E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 8.19357E-05 6.29630E-05 5.09618E-05 2.95962E-05 4.50950E-05 6.11428E-05 2.11932E-05 2.67832E-05 1.03641E-05 2.78441E-05 5.32162E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

Validation

Testing

Inputs 1-Load.  2-Steam Flow.  3-Firing Temp.  4-Air/Ratio. 5-O2. 6-Reliative Humidity.

# of Hidden Neurons

Number of Epoch

Time (s)

Training

Output Nox

Number of Inputs 6

251

Testing Data Set 251

Training Function Levenberg-Marquardt

Number of Outputs 1

Training Data Set 1168

Validation Data Set
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that it is not necessarily increasing the number of epochs will improve the predictability 

of the model nor reduce the MSE error. 

 

Table 8    FFBPNN (6-42-1) modeling results 

 

 

Note that, the error generated by the network has increased as an effect of reducing the 

number of inputs to six.  Whereas, the MSE error figures were 6.41128E-06 for training, 

9.00293E-06 for validation, and 7.18072E-06 for test data sets with 10 inputs.  This has 

no effect on the FFBPNN model performance as it will be explained in details.  

  

Figure 50, shows the performance of the FFBPNN model at different epochs number.  

And it was identified that the best validation performance achieved at epoch number 279.  

Note that, the training will be automatically stopped when the validation error increased 

for six consecutive iterations which occurred at epoch number 285.  

15 28 49 79 124 147 227 285 383 702

1 3 5 8 13 16 23 31 42 52

MSE 7.88614E-05 4.42128E-05 5.64249E-05 4.81335E-05 1.41622E-05 1.41289E-05 1.20763E-06 8.68282E-06 9.90038E-06 7.92187E-06

Regression 1 1 1 1 1 1 1 1 1 1

MSE 3.49700E-05 2.32920E-05 3.49768E-05 3.46466E-05 1.55414E-05 1.34938E-05 2.14011E-05 1.05235E-05 1.51720E-05 1.68911E-05

Regression 1 1 1 1 1 1 1 1 1 1

MSE 4.18662E-05 2.51446E-04 7.06476E-05 1.58480E-04 2.48284E-05 2.01317E-05 1.24612E-05 1.03641E-05 1.94914E-05 1.80636E+05

Regression 1 1 1 1 1 1 1 1 1 1

Number of Inputs 6

Number of Outputs 1

Training Data Set 1168

Validation Data Set 251

Testing Data Set 251

Training Function Levenberg-Marquardt

Output Nox

Training

Validation

Testing

Inputs 1-Load.  2-Steam Flow.  3-Firing Temp.  4-Air/Ratio. 5-O2. 6-Reliative Humidity.

# of Hidden Neurons 42

Number of Epoch

Time (s)
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Figure 50   FFBPNN (6-42-1) Performance at different epochs number. 

 

Figure 51, shows the spread of error on the data sets (training, validation, and testing) and 

its frequency.  Also, it will indicate if there are any outliers in the data. 

 

Figure 51    FFBPNN (6-42-1) Error Histogram 
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Figure 52, displays the FFBPNN model output with respect to targets for training, 

validation, and test sets.  In fact, it shows a perfect fit as all of the data sets falls along the 

45 degree line, where the network outputs equal to the targets. 

 

Figure 52    FFBPNN (6-42-1) Regression test. 

 

5.3.3 FFBPNN with five inputs 

 

Here we will test the effect of reducing the number of inputs to 5 inputs.  These five 

inputs are load, steam flow, firing temperature, air/fuel ratio, and O2. 
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The FFBPNN modeling started initially with 10 hidden neurons and the experiments 

continued by increasing the number of hidden neurons by one and test it at different 

number of epochs by comparing the MSE errors.  Table 9, summarize the results for 

some experiments that shows that FFBPNN model with 26 hidden neurons produced the 

best performance at epoch number 408 with MSE error of 1.39550E-05 during training, 

1.68351E-05 during validation, and 1.40703E-05 during testing.  Note that, the 

experiments were extended till 50 hidden neurons through which the performance of the 

models was lower than the one obtained through 26 hidden neurons.  Therefore, 

increasing the number of hidden neurons of the FFBPNN model will improve the 

predictability of the model to certain extent and then if it is increased further it will be 

degraded due to overfitting. 

 

Table 9    FFBPNN (5 inputs) modeling results 

 

 

Table 10, summarize the test results at different epoch numbers for the obtained best 

FFBPNN model with 26 hidden neurons.  From the data in the table, we can conclude 

10 15 20 23 25 26 30 35 38 44 50

567 423 240 412 424 408 168 127 356 192 408

40 33 20 31 33 32 13 11 32 19 46

MSE 4.81321E-05 2.23387E-05 2.13876E-05 1.59504E-05 2.10691E-05 1.39550E-05 2.39399E-05 2.92468E-05 1.85602E-05 2.68353E-05 2.42241E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 4.32047E-05 2.47006E-05 2.88771E-05 2.23225E-05 1.59333E-05 1.68351E-05 4.74704E-05 4.57172E-05 1.91742E-05 2.49979E-05 3.01892E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 1.91759E-04 2.54932E-05 3.23957E-05 2.41197E-05 3.56177E-05 1.40703E-05 2.46295E-05 4.05324E-05 2.47198E-05 3.21904E-05 4.04615E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

Output Nox

Number of Inputs 5

251

Testing Data Set 251

Training Function Levenberg-Marquardt

Number of Outputs 1

Training Data Set 1168

Validation Data Set

Validation

Testing

Inputs 1-Load.  2-Steam Flow.  3-Firing Temp.  4-Air/Ratio. 5-O2.

# of Hidden Neurons

Number of Epoch

Time (s)

Training
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that it is not necessarily increasing the number of epochs will improve the predictability 

of the model nor reduce the MSE error. 

 

Table 10    FFBPNN (5-26-1) modeling results 

 

 

Note that, the error generated by the network has increased slightly as an effect of 

reducing the number of inputs to five.  Whereas, the MSE error figures were 8.68282E-

06 for training, 1.05235E-05 for validation, and 1.03641E-05 for test data sets with 6 

inputs.  This has no effect on the FFBPNN model performance as it will be explained in 

details.   

 

Figure 53, shows the performance of the FFBPNN model at different epochs number.  

And it was identified that the best validation performance achieved at epoch number 402.  

Note that, the training will be automatically stopped when the validation error increased 

for six consecutive iterations which occurred at epoch number 408.  

13 22 37 47 64 73 86 149 218 270 408

1 1 2 3 4 5 6 11 15 19 32

MSE 1.20857E-04 7.08338E-05 1.10163E-04 9.58456E-05 5.03909E-05 3.70135E-05 5.17786E-05 4.06549E-05 2.99877E-05 2.03805E-05 1.39550E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 2.40135E-04 8.25497E-05 5.60614E-05 5.29365E-05 5.48290E-05 9.60989E-05 3.89467E+05 5.22905E-05 5.40899E-05 4.91949E-05 1.68351E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 7.80445E-05 4.42150E-04 7.65049E-05 1.41740E-04 3.12766E-04 5.63260E-05 3.79554E+05 5.30453E-05 6.69341E-05 7.18287E-05 1.40703E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

Validation

Testing

26

Inputs 1-Load.  2-Steam Flow.  3-Firing Temp.  4-Air/Ratio. 5-O2.

# of Hidden Neurons

Number of Epoch

Time (s)

Training

Number of Inputs 5

Number of Outputs 1

Training Data Set 1168

Validation Data Set 251

Testing Data Set 251

Training Function Levenberg-Marquardt

Output Nox
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Figure 53    FFBPNN (5-26-1) Performance at different epochs number 

 

Figure 54, shows the spread of error on the data sets (training, validation, and testing) and 

its frequency.  Also, it will indicate if there are any outliers in the data. 

 

Figure 54    FFBPNN (5-26-1) Error Histogram 
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Figure 55, displays the FFBPNN model output with respect to targets for training, 

validation, and test sets.  In fact, it shows a perfect fit as all of the data sets falls along the 

45 degree line, where the network outputs equal to the targets. 

 

Figure 55    FFBPNN (5-26-1) Regression test 

 

5.3.4 FFBPNN with four inputs 

Here we will further reduced the number of inputs to four and study the effect on the 

performance.  These four inputs are load, steam flow, firing temperature, and air/fuel 

ratio. 
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The FFBPNN modeling started initially with 10 hidden neurons and the experiments 

continued by increasing the number of hidden neurons by one and test it at different 

number of epochs by comparing the MSE errors.  Table 11, summarize the results for 

some experiments that shows that FFBPNN model with 45 hidden neurons (4-45-1) 

produced the best performance at epoch number 743 with MSE error of 1.59912E-05 

during training, 1.79788E-05 during validation, and 2.36345E-05 during testing.  Note 

that, the experiments were extended till 50 hidden neurons through which the 

performance of the models was lower than the one obtained through 26 hidden neurons.  

Therefore, increasing the number of hidden neurons of the FFBPNN model will improve 

the predictability of the model to certain extent and then if it is increased further it will be 

degraded due to overfitting. 

 

Table 11    FFBPNN (4 inputs) modeling results 

 

 

Table 12, summarize the test results at different epoch numbers for the obtained best 

FFBPNN model with 45 hidden neurons.  From the data in the table, we can conclude 

10 15 20 25 26 30 35 37 40 45 50

108 197 90 306 635 730 487 570 551 743 759

5 11 5 21 44 53 40 48 48 70 82

MSE 6.55236E-05 5.57972E-05 5.00539E-05 4.67836E-05 1.81611E-05 1.33665E-05 1.44448E-05 1.64131E-05 2.03926E-05 1.59912E-05 2.69794E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 7.37558E-05 4.70475E-05 5.19379E-05 3.98462E-05 2.70413E-05 2.35397E-05 1.53056E-05 1.91742E-05 2.46235E-05 1.79788E-05 3.25968E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 8.39653E-05 8.89236E-05 7.40498E-05 4.81743E-05 1.95561E-05 2.92109E-05 5.27026E-05 2.47198E-05 2.83207E-05 2.36345E-05 5.09799E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

Validation

Testing

Inputs 1-Load.  2-Steam Flow.  3-Firing Temp.  4-Air/Ratio.

# of Hidden Neurons

Number of Epoch

Time (s)

Training

Number of Inputs 4

Number of Outputs 1

Training Data Set 1168

Validation Data Set 251

Testing Data Set 251

Training Function Levenberg-Marquardt

Output Nox
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that it is not necessarily increasing the number of epochs will improve the predictability 

of the model nor reduce the MSE error. 

 

Table 12    FFBPNN (4-45-1) modeling results 

 

 

Note that, the error generated by the network has increased slightly as an effect of 

reducing the number of inputs to four.  Whereas, the MSE error figures were 1.395512E-

05 for training, 1.79788E-05 for validation, and 1.40703E-05 for test data sets with 5 

inputs.  This has no effect on the FFBPNN model performance as it will be explained in 

details.  

  

Figure 56, shows the performance of the FFBPNN model at different epochs number.  

And it was identified that the best validation performance achieved at epoch number 402.  

Note that, the training will be automatically stopped when the validation error increased 

for six consecutive iterations which occurred at epoch number 408.  

18 31 51 134 198 278 354 429 454 500 743

1 3 5 13 20 28 35 43 45 50 70

MSE 9.47212E-05 9.92558E-05 6.64225E-05 5.03553E-05 4.15858E-05 3.26050E-05 1.55885E-05 1.99351E-05 1.31099E-05 2.64590E-05 1.59912E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 4.02218E-04 2.25772E-05 8.77928E-05 5.39398E-05 4.80080E-05 2.82941E-05 1.94245E-05 3.16734E-05 1.61255E-05 3.88343E-05 1.79788E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

MSE 1.96651E-04 8.58076E-05 4.31987E-05 5.06364E-05 4.16048E-05 4.27139E-05 6.02900E-04 7.61322E-05 3.13150E-05 5.50933E-05 2.36345E-05

Regression 1 1 1 1 1 1 1 1 1 1 1

Validation

Testing

45

Inputs 1-Load.  2-Steam Flow.  3-Firing Temp.  4-Air/Ratio.

# of Hidden Neurons

Number of Epoch

Time (s)

Training

Number of Inputs 4

Number of Outputs 1

Training Data Set 1168

Validation Data Set 251

Testing Data Set 251

Training Function Levenberg-Marquardt

Output Nox
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Figure 56    FFBPNN (4-45-1) Performance at different epochs number 

 

Figure 57, shows the spread of error on the data sets (training, validation, and testing) and 

its frequency.  Also, it will indicate if there are any outliers in the data. 

 

Figure 57    FFBPNN (4-45-1) Error Histogram 
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Figure 58, displays the FFBPNN model output with respect to targets for training, 

validation, and test sets.  In fact, it shows a perfect fit as all of the data sets falls along the 

45 degree line, where the network outputs equal to the targets. 

 

 

Figure 58 FFBPNN (4-45-1)  Regression test 
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5.4  Results and Discussion 

 

The results of the entire course of experiments conducted on different ANFIS models (6 

inputs, 5 inputs, and 4 inputs tested under 4 different functions and each function at 

different epoch numbers) are summarized in Table 13.  

 

Table 13    ANFIS modeling for Designing NOx PEMS 

 

 

The performance of the best ANFIS models with different number of inputs are 

compared against the target output in Figure 59. 

Number

of

 Inputs

Number of 

Membership

Functions

Type Of

Membership

Function

Number

of

Fuzzy Rules

Total Number

of

Parameters

Number

of

Epochs

Average

Testing Error

2*2*2*2*2*2 Trapezoidal 64 496 1 1.9244E-02

3*3*3*3*3*3 729 5175

2*2*2*2*12*2 Trapezoidal 384 2776 1 3.9804E-02

2*3*2*2*3*2 Trapezoidal 144 1064 1 2.1058E-02

2*4*2*2*4*2 Trapezoidal 256 1856 1 3.3621E-02

2*2*2*2*2 Trapezoidal 32 232 6 1.8480E-02

3*3*3*3*3 Trapezoidal 243 1518 10 3.0159E-02

2*2*2*2*12*2
Difference Sigmoidal

Product Sigmoidal
192 1232 1 1.9544E-02

2*3*2*2*3 Trapezoidal 72 480 1 1.8564E-02

2*4*2*2*4 Trapezoidal 128 824 3 1.9048E-02

2*2*2*2
Difference Sigmoidal

Product Sigmoidal
16 112 28 1.8410E-02

3*3*3*3 2-Sided Gaussian 81 453 3 2.8749E-02

4*4*4*4
Difference Sigmoidal

Product Sigmoidal
256 1344 1 1.9568E-02

2*2*2*12 2-Sided Gaussian 96 552 2 1.7271E-02

2*8*2*8
Difference Sigmoidal

Product Sigmoidal
256 1360 3 1.7642E-02

6

5

4
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Figure 59  ANFIS models performance in reference to target output 

 

From the above we have concluded the following: 

1. Reducing the number of ANFIS inputs will improve the predictability of the 

model, simplify its structure by making it more concise and transparent, and 

reduce the computational time. 

 

2. The proper selection of inputs is the main contributing factor with higher 

influence on the ANFIS performance than reducing the number of inputs.  

Whereas, including irrelevant inputs with weak correlation with NOx, and inputs 

that depends on other inputs will degrade the ANFIS performance, complicate 

the structure, and increase the computational time.   
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Note that, the compressor discharge temperature and turbine exhaust temperature 

were dropped because they are dependent on the firing temperature.  Also, we 

dropped fuel flow and compressor inlet air flow as they are already represented 

by the air to fuel ratio.  The CO was dropped as it has weak correlation (-0.54) 

with NOx.  On the other hand, although the correlation with NOx of O2 (-0.77) 

and relative humidity (-0.87) is strong but it was identified from the experiments 

that dropping these from the inputs improved the ANFIS predictability.  Note 

that, it was observed from the trends in the data analysis section that both O2 and 

relative humidity showed no clear correlation with NOx. 

 

3. For designing PEMS predicting NOx emissions from CGTG, it was identified 

that the optimal ANFIS model design was achieved through applying four inputs 

(load, steam flow, firing temperature, and air to fuel ratio). 

 

4. The simple ANFIS structure with only two membership functions provided the 

best performance compared to higher number of membership functions as found 

for ANFIS (2*2*2*2*2*2) and ANFIS (2*2*2*2*2) as described in Table 13. 

 

5. For four inputs, the simple ANFIS (2*2*2*2) model has developed close 

performance to the best model obtained which is ANFIS (2*2*2*12).  It was 

identified in this model that the firing temperature has high influence on the NOx 

prediction which is in compliance with the theory.  Whereas, increasing the 
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number of its assigned membership functions to 12, reduced the predictability 

error from 0.01841 to 0.017271 as shown in Table 13.  

 

The results of the entire course of experiments conducted on different FFBPNN models 

(10 inputs, 6 inputs, 5 inputs, and 4 inputs tested under different number of hidden 

neurons and epoch numbers) are summarized in Table 14. 

 

Table 14    FFBPANN modeling for Designing NOx PEMS 

Number 
Number 

of 
Number 

Computational 
time (s) 

Mean Square Error 

of 
Hidden 

Neurons 
of 

 Inputs   Epochs Training Validation Testing 

10 42 209 32 6.41128E-06 9.00293E-06 7.18072E-06 

6 42 285 31 8.68282E-06 1.05235E-05 1.03641E-05 

5 26 408 32 1.39550E-05 1.68351E-05 1.40703E-05 

4 45 743 70 1.59912E-05 1.79788E-05 2.36345E-05 

 

The performance of the best ANFIS models with different number of inputs are 

compared against the target output in Figure 60. 
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Figure 60  FFBPNN models performance in reference to target output 

 

From the above we have concluded the following: 

 

1. Reducing the number of FFBPNN inputs has no significant effect on the 

performance but it will increase the number of epochs required to develop the 

model as detailed on Table 14.  Note that, there is no significant effect on the 

computational time resulted due to the increase of epochs. 

 

2. The FFBPNN can easily adjust itself during training and adapt structures 

producing good performance with the provided data regardless of their number, 

their correlation strength with NOX, and weather they are dependent inputs or 

not.    
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3. The FFBPNN models developed with 10, 6, 5, and 4 inputs generated lower 

errors as compared to the models developed by ANFIS as detailed on Table 15 

and following regression Figures (59-65). 

 

The performance of both FFBPNN and ANFIS models were discussed in details and 

compared on the above discussion.  The modelling of both FFBPNN and ANFIS 

techniques are compared in Table 16, in terms of accuracy, modelling efforts, limitation 

on number of outputs, performance sensitivity to number and type of inputs, indication of 

highly influencing inputs, and modelling approach.  
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Table 15    Performance Comparison between FFBPNN & ANFIS models 

Inputs NN Type FFBPNN ANFIS 

Four 

Structure 45 Hidden neurons 
2*2*2*12  

membership functions 

Regression Test 0.99983 0.99901 

Maximum Absolute 
Error (MAE) 

4.92 ppmvd 9.8 ppmvd 

Mean Square Error 
(MSE) 

0.003 ppmvd 2.24 ppmvd 

Five 

Structure 26 Hidden neurons 
2*2*2*2*2  

membership functions 

Regression Test 0.99992 0.99908 

Maximum Absolute 
Error (MAE) 

4.93 ppmvd 8.73 ppmvd 

Mean Square Error 
(MSE) 

0.0014 ppmvd 2.4 ppmvd 

Six 

Structure 42 Hidden neurons 
2*2*2*2*2*2  

membership functions 

Regression Test 0.99994 0.99433 

Maximum Absolute 
Error (MAE) 

6.29 ppmvd 15.53 ppmvd 

Mean Square Error 
(MSE) 

0.001 ppmvd 2.49 ppmvd 

Ten 

Structure 42 Hidden neurons 

Very complicated 
structure beyond the 

PC and Matlab 
capability. 

Regression Test 0.99993 

Maximum Absolute 
Error (MAE) 

4.17 ppmvd 

Mean Square Error 
(MSE) 

0.0011 ppmvd 
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Table 16    Comparison between FFBPNN & ANFIS modeling 

 
FFBPNN ANFIS 

ACCURACY Excellent Fair 

MODELING EFFORTS Moderate Major 

NUMBER OF OUTPUTS No limitation Only one 

PERFORMANCE 

SENSITIVITY TO NUMBER 

& TYPE OF INPUTS 

Negligible impact Major impact 

INDECATION OF HIGHLY 

INFLUENCING INPUTS 
No Yes 

MODELING APPROACH 

Trial & error (# hidden 

neurons, # epoch, & 

inputs) 

Trial & error (Type of 

membership function, # 

membership functions, # 

epoch, & inputs) 
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Figure 61    ANFIS (4 inputs-2*2*2*12) Regression test. 

 

abs_error4=abs(Target_reg-anfis4_output); 

>> [max_abs_error4, maxpt]=max(abs_error4) 

max_abs_error4 = 

    0.0756 

maxpt = 

        1663 
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>> MSE4=mean(abs_error4.^2) 

MSE4 = 

   1.3886e-04 

 

Figure 62    ANFIS (5 inputs-2*2*2*2*2) Regression test. 

 

>> abs_error5=abs(Target_reg-anfis5_output); 

>> [max_abs_error5, maxpt]=max(abs_error5) 

max_abs_error5 = 
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    0.0674 

maxpt = 

        1664 

>> MSE5=mean(abs_error5.^2) 

MSE5 = 

   1.3851e-04 

 

Figure 63    ANFIS (6 inputs-2*2*2*2*2*2) Regression test. 
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>> abs_error6=abs(Target_reg-anfis6_output); 

>> [max_abs_error6, maxpt]=max(abs_error6) 

max_abs_error6 = 

    0.5266 

maxpt = 

        1664 

>> MSE6=mean(abs_error6.^2) 

MSE6 = 

   7.3785e-04 
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Figure 64    FFBPNN (4-45-1) Regression test. 

 

>> abs_error4=abs(Target_reg-FFBPNN4_output); 

>> [max_abs_error4, maxpt]=max(abs_error4) 

max_abs_error4 = 

    0.0380 

maxpt = 

   130 
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>> MSE4=mean(abs_error4.^2) 

MSE4 = 

   2.1905e-05 

 

Figure 65    FFBPNN (5-26-1) Regression test. 

 

>> abs_error5=abs(Target_reg-FFBPNN5_output); 

>> [max_abs_error5, maxpt]=max(abs_error5) 

max_abs_error5 = 
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    0.0381 

maxpt = 

   131 

>> MSE5=mean(abs_error5.^2) 

MSE5 = 

   1.0906e-05 

 

Figure 66    FFBPNN (6-42-1) Regression test. 
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>> abs_error6=abs(Target_reg-FFBPNN6_output); 

>> [max_abs_error6, maxpt]=max(abs_error6) 

max_abs_error6 = 

    0.0486 

maxpt = 

   131 

 

>> MSE6=mean(abs_error6.^2) 

MSE6 = 

   7.6531e-06 
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Figure 67    FFBPNN (10-42-1) Regression test. 

 

>> abs_error10=abs(Target_reg-FFBPNN10_output); 

>> [max_abs_error10, maxpt]=max(abs_error10) 

max_abs_error10 = 

    0.0322 

maxpt = 

   132 
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>> MSE10=mean(abs_error10.^2) 

MSE10 = 

   8.6909e-06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 

 

6 CHAPTER 6 

CONCLUSION 

In this thesis we developed NOx soft analyzer (PEMS) for heavy duty CGTG (155.5 

MW) during start up based on real industrial process data.  Two approaches in NN were 

tested to develop and decide the final model based on the obtained performance.  

Extensive analysis and study of the ANFIS system performance were conducted in 

reference to the number of inputs, type of inputs, number of membership function, type 

of membership function, and number of training epoch.  Also, FFBPNN system went 

through similar study in reference to the number of inputs, type of inputs, number of 

hidden neurouns, and number of training epoch 

 

Then, we discussed and compared the modeling of both FFBPNN & ANFIS systems and 

their obtained results.  Throughout the entire course of experiments it was found that the 

FFBPNN model outperforms the ANFIS model.  Also, it was found increasing the 

number of inputs to ANFIS model will degrade its performance in addition to 

complicating the model structure and increasing the computational time.  However, in 

FFBPNN model, the performance enhanced slightly as an effect of increasing number of 

inputs.  Based on that, it was concluded that FFBPNN model with four inputs (Load, 

Steam flow, Firing temperature, and A/F) shall be selected as the final PEMS model with 

the consideration of decreasing the number of inputs decreases the points of failure of the 

model.  Note that, these inputs are individual field instruments and subject to failure and 
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drifts.  Therefore, it is recommended to reduce the number of inputs to minimum and 

only primary inputs shall be included.  In fact, this model will depend on five instruments 

not four as air to fuel ration is actually a two instruments data combined as one input.  

 

The NOx formation in DLN-2.6 combustors during startup and low loads (< 50%) is still 

high and shall be closely monitored and minimized.  As future work, this model could be 

extended by collecting more data to cover the emissions at 50% to base load with and 

without supplementary firing.  The suggested additional inputs will be supplementary 

firing temperature, 6Q combustion mode switch "0 or 1", and supplementary firing 

switch "0 or 1". 
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