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systems (also termed as Engineering Process Cpfardhe purposes of detecting
faults and avoiding over adjustment of the proces3dis thesis evaluates the
effectiveness of integrating SPC with EPC for bfathlt detection and control. A
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charts to process inputs and outputs or in othedsvdJoint Monitoring” of process

inputs and outputs is shown here to provide efficfault detection capabilities.
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example. The results indicated that the “Joint Ntmmg” provides earliest detection

as compared to monitoring of either inputs or otg@lone.

An example of Heating Ventilation and Air Conditing (HVAC) systems is

simulated here and used as a case study to deruengte detection capabilities of
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CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

For products, unstable process can lead to podityyuahich significantly affects
customers’ satisfaction and companies’ goodwillgdod process control has a final aim
for incorporations to achieve stable quality. Statal Process Control (SPC) and
Engineering Process Control (EPC), which have hesad in quality improvement for
decades, are the most used tools for process toiitnese two strategies focus on
different quality aspects. EPC gives sequentialstdjent in the process without finding
the assignable causes[1]. The main goal of EPG t®imnpensate for the effect of inertia
in the process and to keep the process on targ€l.rEgulates the process input in order
to minimize the deviation of output from target \ehignoring the root cause behind this
deviation. EPC techniques are extensively applrethé chemical and other processes,
where variations in process outputs are often largerrelated[2]. The benefits of using

EPC can be concluded as follows|[3]:

» EPC prevents injury to factory personnel, emissiod waste to environment,
and damage to equipment.

» EPC keeps product quality in customers’ demandiitmim cost.



» EPC enhances plant production rate at minimum cost.
» EPC makes efficiency of process operation maximaladjustment of a

controller.

EPC focuses on process regulation which assumethita is a set of manipulatable
variables that can be adjusted to compensate éodtift in process outputs and keep
the process outputs close to the desired targetsjhjpkes no attempt to identify and
remove assignable causes that impact the procddsesever, there are still some
unknown assignable causes, which can disturb theeps. When the disturbance to
the process is beyond a certain range, EPC alama& &ble to keep the system output
close to the target. Therefore, it is necessarpadply SPC to detect non-random
patterns which cause the abnormal disturbanceetpribcess. As soon as the types of
non-random patterns are identified, the correspandiot causes should be removed
to bring the process back to normal conditions.tother hand, SPC is used to
detect an assignable cause which makes the proaesé control. The main goal of
SPC is to achieve product quality by monitoring thlee certain variables of the
process in specific range[2]. SPC tools, such asrabcharts, are used to determine
the stability of process mean and variation by meag output characteristics. SPC
have had popularity for a long time worldwide iretindustries because of the

following benefits[1]:

» SPC reduces scrap and rework for improving prodifgti

» SPC prevents defects to appear in the product/gsoce



» SPC prevents unnecessary process adjustment fegzratability.
* SPC provides diagnostic information for currentisien-making.

» SPC provides information about process capability.

SPC only can help to detect the evident assigrealee that drives a process “out of
control” from “in-control” state especially in thprocesses that tends to stay on target for
relatively long period of time without continual gming adjustment. However, practical
manufacturing processes still have a tendencyalbed “inertia”, to drift away from the
target. This inertia primarily results from matérienachine, tools, machine settings,
human factors, etc. If the process is drifted afvasn the target by inertia and the extent
of drifting doesn’t exceed the control limit, SP@l presume that the process is still “in-
control” and there is no need to change the procEsis implies that an “in-control”
process is not related to whether the units it pced are acceptable or not. It is the main
blind spot of using SPC, where EPC can conqueredas previous description, SPC
and EPC, which respectively contain different conttisciplines, can supplement each
other. Therefore, integration of SPC and EPC oftarsattractive trend and option for
process control study. The need for an integrapgtomch to process control increases
when the processes designs are adopting more hifantework, especially in multi-
input multi-output (MIMO) system. Moreover, consdirom one discipline may not be
effective enough to achieve higher demands in icenmocesses[2]. The need of

combining SPC and EPC arise because of followiagaes:

EPC, in the presence of a range of disturbancgsjamy adjusts the manipulatable

process variables to keep the process outputsrget tahile ignoring the causes behind
3



the disturbances; however, its capability is liitehen the strong disturbances appear in
the system which cannot be avoided until the ugdeglcauses behind them are rectified.
SPC is instrumental in detecting such assignahieesa removal of which can relieve the
adjustment procedure of EPC. Moreover, some diahges that have a certain cause
behind them can be conquered using EPC yet atxjpense of energy and recourses.
Detection of these assignable causes using SPCmimgs the energy losses.
Furthermore, life-time of a plant, equipment or achine reduces when it is over-
adjusted using EPC; hence, timely detection andovaimof assignable cause can
increase the life-time as well. Therefore, thegnéed scheme containing SPC and EPC

should be essentially studied and applied in prakfirocess control domains.

Integration of Statistical Process Control and Bagring Process Control acquired
first attention in 1988 when [4], [5] proposed tleisncept of integration and convinced
the SPC research community that control chartsbeansed to monitor a “controlled”
system. The two schemes, their similarities, oyertantradictions, reasons behind their
isolation and the need to integrate them were veade [6] formulated the model for
integration using Shewhart and CUSUM control chastsnonitoring tools and added the
minimum mean-squared error (MMSE) EPC rule in thfaither work and, as such, they

were among initiators in the development of thiegnation technique.

All of the above researches suggested that combapgtication of both EPC and
SPC can outperform the application of either ofrth&lone in most of the cases. The
fundamental work of the above mentioned researchassfollowed by many others that

can be broadly classified into two categories basethe integration approach.
4



SPC triggered EPC

One of the popular schemes of SPC/EPC integratiwnlves triggering of EPC
controller only in case when SPC signals preseh@ssignable cause or out-of-control
signal; [7] were the earliest of many in this honavho have advocated that EPC based
process adjustments should only be triggered if 8&€cts the out-of-control state of the
system. [8] provided a concept similar to that@fljy suggesting a cost based model in
which the EPC adjustments were only supposed tadmgered through an out-of-control
signal provided by SPC based monitoring. They aagsidered the out-of-control and
in-control costs and made a handful of assumptiorsmplify the problem. A contrary
approach is to continuously use EPC for controlimg process adjustment while using
SPC for detection of assignable cause by monitoouagput or input variables of the
process. Applying EPC continuously implies loss resources, whereas EPC only
triggered by SPC in out-of-control condition amaufdr loss of quality. Therefore, [9]
proposed a scheme that takes short comings of thetlapproaches into consideration
and proposed an integrated scheme comprising TaguQbality Engineering. In the
mentioned approach SPC plays dual role; apart fremg used to search for assignable
cause, it also provides required quantities togu€hi quality loss function that estimates
the cost of associated quality loss. Meanwhile,dbst of EPC implementation for the
same instant is also calculated. Finally, EPC iy aflowed process adjustments when

cost of adjustment is less than the cost of quidisy.



I ntegration for assignable cause detection:

The most powerful approach of SPC and EPC integrainvolves continuous
adjustments using EPC and detection of assignaigecusing SPC monitoring. Several
researchers have explored different EPC technigle@yy with different control charts
for this purpose. Shewhart, Exponentially Weightddving Average (EWMA) and
Cumulative Sum (CUSUM) control charts were usedntegrated models before [10]
introduced Cumulative Score (CUSCORE) control chag SPC tools in the arena of
EPC/SPC integration. Furthermore, [11] formulatedraphical aid technique meant to
recognize the type of disturbance or assignablesecdeither shift in mean or a drift).
Later on [12] demonstrated an adaptive controehihique that is triggered by SPC
based assignable cause detection and aims atfyilemtihe changing parameters of the
disturbance and consequently adjusting the procegsd the underlying cause is
completely eliminated. Process subjected to a si@mhnging trend was considered by
[13]. It is a special case of SPC and EPC integmaith which it is insufficient to only
monitor the process that changes with time usinG.S&ktcordingly a model had been
developed that makes adjustment to the process refgelar intervals of time and the
process output itself is monitored with changingntoa limits instead of its variation
from the target value. SPC/EPC integration for ariate case was comprehensively
discussed by [14] and the associated issues haddueressed. In the mentioned study,
effects of Shewhart and CUSUM control charts onMMSE regulated system with
shifting and drifting mean disturbances had bedwrtainto account. [14] noted that
Shewhart control charts are more effective than GMSontrol charts in detecting the

6



shifts. In case of drifting disturbance with smalsope, CUSUM proves to be more
effective whereas for larger slopes Shewhart isemedficient. Moreover, it was noted
that an EPC feedback compensation mechanism a&@sout-of-control detection and
disturbs the output when suddenly assignable cesusemoved. To account for this so
called overcompensation issue, a joint monitoriogesne of Shewhart and CUSUM
charts had been used to recognize the disturbgpeeaind a cost based decision rule is
provided to decide whether the assignable causevamvill be cost efficient owing to
the fact that the overcompensation phenomenomeisdlvable and in some cases renders

the system unstable.

1.2 MOTIVATION

Although a substantial amount of research has deae in the area of integration of
SPC and EPC during last two decades yet it stdhsevery much insufficient due to
following reasons. Most of the work done by eamgearchers was based on many
unrealistic assumptions that were inevitable fonuiocing the then researchers in a
simpler way that the integration of these technsquan prove beneficial. Later on, a
handful of researchers got attracted towards tipeoggch and started to take into account
some realistic considerations as well. Some corsiddifferent types of costs associated
with different operations while others focused be time delays during various steps.
Some investigated different kinds of disturbanceshe systems that were meant to be

detected whereas others explored the detecting rgowfedifferent control charts in



integrated systems. Apart from this, there were es@spects that acquired very little

attention due to complexity and lack of foundation.

A few of the researchers in this area[15]-[17] h&wed to form a foundation for
integration of SPC/EPC in multiple input multipletput systems; however, there is a
drastic need for further research in this aspeah@wo the fact that most of the industrial

processes are MIMO with a strong coupling in betwibat can hardly be neglected.

[18] and [19] have shown that SPC, when applidd@it of the process, proves to be
quiet useful. Despite the exceptional performarfcthis method, especially in cases of
small shifts and slowly varying drifts, this apptbehas gained very little attention. There
remains a need for further exploration in this phae starting from evaluation of
effects of different EPC controllers on SPC at infsugeneralization of this concept to

MIMO systems.

In addition to this, designing of optimal time f@moving assignable causes, quality
characteristics considerations, over compensatiben@menon, effect of intelligent

controllers in integrated scheme are some of theds that need to be addressed.

Furthermore, there are very few case studies cboue in this area while most of the
researchers have stuck to numerical examples detl imssumptions for illustrating their
findings. On the contrary, case studies providath pvay for ideas to get adopted into
practices. In particular, any case study involMiig1O systems has not been carried out

in this area; however, a good amount of work hasnbdone in the area of Fault



Detection and Diagnosis[20]-[24] which can be uaed reference to conduct a good

case study in integration of multivariate SPC aR€CHor detecting assignable causes.

1.3 OBJECTIVES

Reasons mentioned in previous section have motiviite author of this research

thesis to define following objectives meant to beied out as result of this work:

* Formulation of a framework for integration of SP@I&PC for MIMO systems

by adding joint monitoring of inputs and outputdite work of [16]

» Evaluation of different EPC controllers, such agpnt Feedback and fuzzy

controllers etc., in the model of [16].

» A case study on assignable cause detection byratteg SPC and EPC in MIMO

systems using the model provided by [23], [24].

1.4 THESIS ORGANIZATION

Organization of the remainder of the thesis willdsefollows:

Chapter 2 provides detailed literature review oty the gap in recent researches
and the areas needed to be addressed relatedttptbelt is followed by a chapter on a

model formulation for integration of SPC and EPC NHMO systems. Chapter 4

9



illustrates a case study on fault detection usimggrated use of EPC/SPC in MIMO

systems. Finally chapter 5 concludes the findingbachievements of this research.

10



CHAPTER 2 LITERATURE REVIEW

Integrated control approach utilizing both EngimegiProcess Control and Statistical
Process Control can be beneficial for the procedsewever, integration of the two
isolately developed techniques requires acquaistavith both the fields along with in-
depth knowledge of recent advancements in the rated models. This chapter outlines
basics of SPC/ EPC and provides a comprehensivewewn integration of both the

complementary techniques.

2.1 STATISTICAL PROCESS CONTROL

The earliest statistical process control procedae be traced back to the work of
Shewhart [25] which began in the 1920's and regdutiethe publication of his seminal
book in 1931. Since its inception over 80 years, &C techniques have been used to
obtain significant reductions in product/processalality in the discrete manufacturing
environment. However, these SPC techniques did aulnlress real-time, automatic
correction of the output. As a result, control ergirs adopted EPC to monitor and adjust
system variability in the continuous process indusSPC techniques have been
developed for monitoring processes where the outpuiations (errors) are independent
and also the cases where they are correlated. bjeetiwve of SPC techniques is to
identify assignable or special causes of varigbdihd hence aid in elimination of these

special causes of variability that result in driyithe process out of control. The SPC

11



methodology is basically a graphical test of stiat$ hypothesis. Figure shows how SPC

keeps a process under control.

Monitor Process

Proces:
1inder

Stop the proce

A
Identify assignable cause

v

Eliminate assignable causg(s)

Figure 1: Typical Statistical Process Control Procdure

The output observations; Yare monitored and collected for a pre-determinet t
period. These observations are sequentially platettraditionally compared against 3
control limits. Any point falling outside these dool limits is considered out of control
and is used to identify assignable causes. Thesgnable causes are eliminated from the
process in order to return the process to a stattatistical control. In addition to serving
as a historical visual aid, control charts helprapen and control engineering personnel
to make objective decisions and reduce the tendemoyer-control the process. When
the output deviations are assumed to independehhamally distributed, the Shewhart,

CUSUM and EWMA control charts can easily be appf@dorocess monitoring.
12



2.1.1 Shewhart Control Chart

Dr. Walter A. Shewhart developed these control tshar the 1920's and they are
extensively used in many industries for processitaong. He developed the idea of
using past and present observations as a tool ke foture predictions about the process
being monitored. However, it is expected that thecess be in a state of statistical

control before making future predictions. The mddelthe process is
Yi=n+ & (2.1)

where Y is the observation at time,is the process mean, which is assumed to be
constant, and; is the error at time t, which is assumed to beDjf] ¢?)]. Typically the

limits of the Shewhart control chart are set a.+3

2.1.2 CUSUM Control Charts

The CUSUM control chart first proposed by Page [&6]an alternative to the
Shewhart control chart. The CUSUM control charomporates all the information in a
sequence of observations over time by plottingdimaulative sums of deviation of the

observations from target. The CUSUM control chadauthe statisticsy@leflned as

Yt—‘[

Sy = ?:1 oy (2.2)

where Y is the observation at time t, is the target value, N is the number of
observations on the process and cry is the stardkavidtion of the process. In order to
apply the CUSUM, the observations are usually assuto be independent and normally

distributed with fixed meam and constant variance CUSUM procedures for other
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types of process data are available, but not dseclig this work. The CUSUM defined
in equation 2.2 fluctuates statistically aroundt@ew the process remains under statistical
control. If the mean of Yshifts upward, then the sum increases and if teamof ¥
shifts downward, then the sum decreases. Therafomecreasing or a decreasing trend is
a sign that the process mean has shifted and ehskarthe assignable cause should be
carried out. The CUSUM technique is based on SegleRrobability Ratio Test
(SPRT). There are two methods for designing anglajg;g the CUSUM. The flrst
method is the V-mask procedure and the second wheshocalled the tabular (h and K)
CUSUM, which is gaining popularity due to its ea$aise and the increase in computer
implementations. Let {&t) be the upper one-sided tabular CUSUM for periodor
increasing mean for averages) andt)Sbe the lower one-sided tabular CUSUM for
period t (for decreasing mean for averages). Adnghg, S4(t) and $(t) are computed as

follows:

Su(¢) = max[0, (Y, — 7) — K65 + Sy(t — 1]

$,(t) = max[0, (r — ¥,) — K& + S,(t — 1)]

where K is the reference value, which is usuallysem about halfway between target
t and the out-of-control value of the meantiat is of interest. The CUSUM control

limits are set aligy where h is the decision interval.

[27] developed a combined Shewhart and CUSUM schigsatewill work for both
large and small shifts in the mean. [28] have psepoa modification to the CUSUM
called the Fast Initial response (FIR) to improlve sensitivity at process set-up in order
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to accommodate any delay in resetting the mearneotarget value after a corrective

action is applied.

2.1.3 EWMA Control Charts
The Exponentially Weighted Moving Average (EWMA)ntm! chart introduced by
Roberts [29] is a good alternative to the Shewbantrol chart for detecting small shifts.

The EWMA is a smoothing technique, and is given by:

ze=Ax; + (1 =)z

where Z= smoothed value at time t; ¥ observed value at timeltz constant, O
<1.\ is the weight given to the most recent observadion (1-A) is the weight given to
the most recent prediction. The original use of BWMA was in time series analysis,

because it is often a good predictor of the nekievaf the variable of interest x.

Unlike Shewhart and CUSUM control charts, the EWN@ntrol chart can also be
effectively used for autocorrelated data. [30] ats@gested using a combination of
Shewhart and EWMA control charts in order to idgnarge as well as small shifts in

the mean. [1] provides comprehensive coveragel tfiege control schemes.

2.1.4 Average Run Length (ARL) as a control chart performance measure

In order to compare the performance of control shahe Average Run Length
(ARL) is widely used. It is the average number b§ervations that are taken before the
control chart indicates an out-of-control conditidie optimal control strategy will aim

for a large ARL when the process is in statistaaitrol and a very small ARL when the
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process goes out of control due to the presenae aksignable cause. This approach will
ensure that the number of false alarms is minima¢rwthe process is under control.
Many researchers prefer an in-control ARL of 37@&cause this is the theoretical value

achieved by a Shewhart control chart withlignits.

ARL is associated with the probability of TYPE-IcaiiYPE-II errors. Letr be the

probability of alarm when process is in control:

a = P[Type-I Error] = P[point falls outside contiohits| process is in control]

Let B be the probability of alarm when process is outaftrol:

B = P[Type-II Error] = P[point falls inside contrlamits| process is out of control]

Therefore the in control (ARJ. and out of control (ARL) average run lengths can be

defined as:
ARLy=1/a (2.3)
ARL,=1/(1-p) (2.4)

2.2 ENGINEERING PROCESS CONTROL

Although SPC techniques are extensively used fduaton of process variability, it is

not necessarily the best method for all cases laisdd particularly true in the case of a
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drifting mean process as illustrated by [31]. EP43 lbeen effectively used for these
cases, which are common in chemical and processstines. EPC is based on control
theory, which operates in the following manner: Ptgdict the next observation on the
process, (2) Identify some other variable, which lba manipulated in order to affect the
process output and, (3) Understand the effect isf tianipulated variable in order to
determine how much control action to apply so asmiake an adjustment in the
manipulated variable at time t that is most likedyproduce an on-target value of the

process output at time t+1

Monitor Process and compute next outgut

Output

AniiAalc

Compute adjustme

v

Make adjustment to proces

Figure 2: Typical Engineering Process Control Procgure

A clear understanding of the process dynamics aadedlationship between manipulated
variable and output variable is necessary to actismpghis task. Control theory
accomplishes this task through the use of detestitnmodels, stochastic models (for

disturbance) and transfer function models. The maetpuations are proportional,

17



integral, derivative or a combination of each othidrte compensation is applied in the

form of feedback, feedforward or combination ofthot

Manipulatable Variabl

Disturbanc
Controller
’ +—’Q » Filter > Gain »{Process Outpu
A

R Forecaste ;\!:
"l Model

Senso

Figure 3: Typical Feedback Control Loop

Authors of [32] have explained various types of edetinistic control schemes.
Proportional control refers to the correction, whis proportional to the error (the

difference between actual response and target)istha
Xe = Kps(t) 2.5)

where K, is the proportional gain. Integral control reféosthe correction, which is

proportional to the time integral of the error,ttlsga
X, = K; [, ewdu (2.6)

where Kis the integral controller gain. Derivative comtrefers to the correction, which

is a measure of the rate of change of error, that i
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X, = Kp(de(t)/db) 2.7)

where I is the derivative controller gain. Proportionaldgral (PI) and Proportional-
Integral-Derivative control (PID) schemes are algdely used. These controls can be
applied in a feedback, feedforward, cascade andbi@iion of feedback and
feedforward control schemes. PID controllers bdwe dontrol action empirically on a

mixture of proportional, integral and derivativentl. A PID controller is given by
X, = Kye(®) + K, [; ewdu + Kp(de(t)/dt) (2.8)

Controllers of this kind are usually operated awtioally and employ continuous rather
than discrete measurement and adjustment. Heres tke deviation of the input from

some equilibrium to compensate for the continuasadion ¢ of the output from target.

Spectral analysis by [33% a method for dealing with autocorrelated, sefssed data
from machines, instruments or metrology system&s&hmethods are appropriate when
the sampling interval is short that the data poarts not independent as required by
Shewhart charting. They also described a minimeabxae controller (MVC), which is
designed to keep the output variance to a minimAiny automatic controller can be
tested this way to assure that gain, reset, angoptional band are adjusted correctly for
the lag time of the system. MacGregor [34] indidatechniques to model discrete
dynamic stochastic models using ARIMA time seriesdails or by a state-variable
model. The state-variable model was developed bim&a [35], which, uses state
variable models to characterize the system andsdhe optimal control problems using

dynamic programming and Kalman filtering techniques
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2.3 SPC VS EPC

As explained in the previous sections, both SPCEP@ have the goals of reducing the
process variability from target while keeping theogess stable and under control.
However, they take different routes for accomphghihe similar goals. Classically there
existed a large gulf of mistrust between statiagtisiand the process control professionals.
This was mainly due to insufficient knowledge passel by statisticians about control

systems and vice versa.

Since SPC and EPC represent two different appreattheeducing variability, it had
been a challenge to integrate or use both techsitpreprocess monitoring and control.
However, lately there has been much more intenesthis area since an effective
integration of SPC and EPC is likely to result mproved quality through further

reduction of variability.

McGregor [36] emphasized the importance of SPC/lER€yration and indicated that a
typical control engineer is inadequately trainedtl® statistical methods and data
analysis. Deshpande [37] reinforced this thoughpimposing statistical analysis classes
in addition to the traditional control engineerinlasses in the undergraduate control-
engineering curriculum. Statisticians, who are etgoé the discrete realm, have very
little knowledge of the process dynamics and ctadscontinuous control. Box [38]

stressed the need for control engineering knowleédgée traditional statistical quality

practitioner in order to reap the benefit of condoirschemes. Lack of communication is

not limited to the control engineers and statiatisi. Hoerl and Palm [39] indicated that at
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any given time, 25% to 35% of the world's most axbesl automatic control systems are
in manual mode. One compelling reason for thisiéslack of operators’ confidence in a
"black box" that makes decisions beyond their grasey seem to be comfortable with
the hands-on SPC techniques. However, with advainceschnology, this is changing

and more use of automation is occurring resultmgear lights out factories. In addition
to providing research strategies for the integrated SPC and EPC via simulation,

Messina [31] also presented the differences betv&R@ and EPC in a tabular form

shown in Table 1
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Table 1. Comparison of SPC and EPC by Messina (18P[31]

Philosophy Minimize variability by detection of Minimize variability by
and removal of process upsets adjustment of process to
counter-act process upsets
Application | Expectation of process stationarity Expectatiogaitinuous proces
Deployment drift
Level Strategic Tactical
Target Quality characteristics Process parameters
Function Detecting disturbances Monitoring setpoint
Cost Large Negligible
Focus People and Methods Equipment
Correlation None Low to High
Results Process improvement Process optimization

Comparison of these two methodologies based oneThbhdicates that SPC and EPC

have little in common; however, the later developtagroved this assumption wrong.

2.4 INTEGRATION OF SPC AND EPC

MacGregor [4] was the first who convinced the SP@munity that control charts can

be used to monitor a “controlled” system. His wdr&came the cornerstone of the
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integration of the isolated strategies. His reviefvthe schemes, their similarities,
overlap, contradictions and reasons behind theilati®n was followed by couple of

more [5], [40] reviews highlighting the need todgtate these methods. MacGregor [4]
suggested that stochastic control theory connéetsettwo fields and the application of
on-line quality control demands the integrationtieése two schemes. Palm [40] also
emphasized that SPC and APC (automatic processrotonactually form a

complementary nature in process improvement andodstrates with an example of a
continuous baking operation. Box and Kramer [5]altscussed the benefits of using

SPC methods in conjunction with a system under APC.

Vander Weilet al.[41] used the term algorithmic statistical processtrol (ASPC) for
an integrated approach devised in order to impmpaity. This approach focuses on
quality gains through appropriate process adjustraed also through identification and

elimination of root causes of variability detectgdSPC techniques.

Vander Weil and Tucker [42] discussed the scenanoshich the integration becomes
highly useful. They expressed the approach withhtekp of a case study on a batch

polymerization example.

Montgomery et. al. [6] used the famous model oinklrexperiment to explain SPC and
EPC integration and showed the potential effecegsnof this new approach especially
when assignable causes take place. It was testifjfethem that SPC is capable of
detecting assignable causes rapidly by monitorhey dutputs while EPC effectively

keeps the process on target. In their study thegstigated how the system operates
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when additional assignable causes occur. They tieedverage squared deviation from
the target as performance measure and pointed hatitthe model is robust to the
misspecification of the disturbance model. Theyobaded that integrating SPC and EPC
by applying SPC to the output deviation from tangstults in reducing overall variability

if the system experiences certain assignable causes

The so far research involving the integration oCSihd EPC can be categorized in two
basic classifications based on the roles of SPCE@ respectively in the integrated

scheme.

The first classification involves inherently staldgstems that are continuously being
monitored using SPC. EPC starts to play its rol@nocess adjustment whenever SPC
detects an out-of-control signal. Advocates of thgproach argue that there is a cost

associated with continuous adjustment and it shonatde done until needed.

The second classification involves continuous ragoih/adjustment of the process by
EPC whereas SPC is meant to monitor the systenadsignable cause. Most of the
researchers have focussed on this approach owitigetéact that most of the processes

are inherently unstable and they need continuojustmdent/regulations for stability.

Following subsections review the research done guslre above mentioned two

approaches:
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2.4.1 SPC triggered EPC and cost based approaches:

English and Case [43] were the earliest of mantyis horizon who have advocated that
EPC based process adjustments should only be teiggeSPC detects the out-of-control
state of the system. They used the SPC to moritptocess while APC (as called by
the authors) was used as a feedback filter, takongrol action whenever an out-of-

control signal was given by SPC. The drawback iis thpproach was that only

compensatory control action was taken each timalamnm was raised by SPC without

recognizing and eliminating the underlying cause.

Nembhard and Mastrangelo [7] employed the sameoappr while using the term
Integrated Process Control (IPChey stated that EPCan refer to many forms of
feedback and feedforward regulation, while S&&@ refer to many forms of monitoring
tools such as Shewhart charts and EWbharts. They utilized Proportional Integral (PI)
controller as an EPC tool in their IPC scheme whase a Moving Center-line
Exponentially Weighted Moving Average (MCEWMAQhart was used as an SPC
monitoring tool. They concluded that IR@sign develops adjustment policies to reduce
the length of the transient period, decrease theoBoontrol points and lower the

variation.

Jiang and Tsui [8] developed an economic modeBS©€ monitoring of EPC controlled
processes. They also developed an economic lossHuagerion, the Average Quality
Cost (AQC), to evaluate the performance of SPCtritamethods. The AQC and the
traditional average run length of three common S#ha@rts were investigated and

compared. They stated that when the feedback dostsoMMSE control scheme and the
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underlying process can be perfectly estimated, aimkputs of the control system are
independent, and identically distributed. When astant (step) mean shift of magnitude
u occurs, the control action can compensate the mig#inrand result into an independent
process output with a dynamic mean value. WherMNESE control scheme is applied
to AR(1) process, the means of the process outglaird and after the shift occurrence
are:
0 att <0
U= 1M att =0 (2.9)
1-Q0u att>0
It follows that the total cost of a production aydldenoted as the total quality cost)

consists of two parts: the in-control cost anddbeof control cost as:
L7 = Lin + Lout (2.10)

where L, is the in-control cost, J is the out of control cost, and: lis the total quality
cost. By assuming the adjustment cost to be néifigand averaging the total quality

cost over the entire production cycle, the AQC wlatsined from:

Ly

where ARl is the average run length when the process i®Babntrol, and L is the
average quality cost p is equal t@.1They applied the AQC criterion to compare three
common SPC charts: the Individual Shewhart Ch&tcfiart), the EWMA chart. and the
combined EWMA-Shewhart charts (ES chart), under JABRGd ARMA(l,I) processes,

They found that the AQC criterion was generally sistent with the ARL criterion
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except when the APC control action significantlynpensates the process shift. When
this happens, the performance of the control chdirlepend critically on the size of the
diagnosis cost. They concluded that the AQC cdteis generally consistent with the
ARL criterion and gives more economic informatidrart the ARL by providing an

integrated measure to evaluate the performance 8PL chart.

A contrary approach is to continuously use EPCclamtrolling or process adjustment

while using SPC for detection of assignable caysednitoring output or input variables

of the process. Applying EPC continuously impliesldss of resources, whereas EPC
only triggered by SPC in out-of-control conditiom@unts for loss of quality. Therefore,

Duffua et. al. [9] proposed a scheme that takest sloonings of both the approaches into
consideration and propose an integrated scheme rngp Taguchi’'s Quality

Engineering.

In the mentioned approach SPC plays dual role;tdpam being used to search for
assignable cause, it also provides required quesiti a TQL function that estimates the

cost of associated quality loss.

Meanwhile, the cost of EPC implementation for tlene instant is also calculated.
Finally, EPC is only allowed process adjustments ¢@st of adjustment is less than the

cost of quality loss.

This approach is illustrated by a flow chart indeling Figure 4:
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Figure 4: Model of Duffua et. al. (2004)

Park et. al. [44] proposed a frame work for setectof EPC and SPC tools based on
economic cost models with more reasonable condidesaas compared to earlier
researches. The authors considered disturbancediaghosis cost, false alarm cost and
reworking/scrapping cost while employing quadrafiess function for overall
calculations. Furthermore, in this study, the arghevaluated performances of both EPC
and SPC tools based on cost models. In additidartoulation of economic cost model,
a new performance measure parameter called ‘Long Bpected Cost’ (LREC) was
proposed which provides more realistic performameasure as compared to classically

used ‘Average Run Length’ especially in a situati@nwing infinite horizon.

LRECs of SPC/EPC integrated systems with PropatjoRroportional-Integral,
Minimum Mean Square Error controllers and EWMA moring were investigated in

different scenarios and following conclusions werawn:
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» Performance of MMSE controller is higher than that Proportional
controller.

» Changes in re-working cost have the most significarpact on the LREC
whereas disturbance cost, autoregressive and maxegage co-efficients
seldom affect the LREC.

* Variation in proportional gain and mean-shift magde alter the LREC

considerably.

Apart from the above findings a comparative stués\wrovided on the consideration of

cost in SPC and EPC integration. This comparis@umsmarized in the following table:
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Table 2. Comparison of cost based analysis in SHER?C integration.

Reference

Costs Considered

Measurement and Tools

Elsyed and

Chen (1994)

Measurement cost, False ala

cost, Cost of finding and fixing

rMQuadratic Loss Function, Expect
cost per unit sample size, Sampli

interval and control limits

Jiang and Tsu

(2000)

i Diagnosis cost, Loss cost/ unitQuadratic Loss Function, MMS

Adjustment cost, Off target cos

L controller, Average quality cost

Duffua et. al.

(2004)

Diagnosis cost, Adjustment co

Loss cost per unit

stQuadratic Loss Function

Yang and

Sheu (2007)

Non-conformity cost, Diagnosi
cost, Adjustment cost, Samplir
and testing cost, False ala

cost, Repairing cost

sMultivariate EPC/EWMA, Average

\gjuality cost and Euclidean distan

ms perform ance measure.

Kandananond | False alarm cost, loss cost p&puadratic Loss function, Expected
(2007) unit net savings

Park and Monitoring cost, AdjustmentExpected Cost per unit, Repeated
Reynolds cost, Off target cost, False alarmdjustment, Feedback adjustment,
(2008) cost EWMA

Park et. al. disturbance cost, diagnosis go®yadratic Loss function, Pl and

false alarm cost an

reworking/scrapping cost

dMMSE controllers
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2.4.2 Integration for assignable cause detection:

The most powerful approach of SPC and EPC integrainvolves continuous
adjustments using EPC and detection of assignaigecusing SPC monitoring. Several
researchers have explored different EPC technigle@yy with different control charts

for this purpose.

Shao [10] introduced Cumulative Score (CUSCORE)trobrcharts in the arena of
EPC/SPC integration as an assignable cause detetdm. The author evaluated
effectiveness of using CUSCORE charts along with $38Vicontrol technique of EPC.
CUSCORE chart monitoring had been formulated fer wgh MMSE regulated process
subjected to a linearly varying disturbance (drifthe efficiency of CUSCORE charts
had been discussed and compared with that of Siieaunch Cumulative Sum (CUSUM)
charts. It was thus shown that CUSCORE control tshautperformed Shewhart and

CUSUM charts in detecting the drifting disturbamgth different values of slope.

Shao et. al. [11] focussed on the eradication & oihthe assumptions that had always
been taken into account in all earlier SPC/EPCgnatigon research. Earlier researchers
used to assume that the SPC detects the disturlcansed by an assignable cause and
the cause is removed as soon as it is detectedevwthere should be recognition of
disturbance associated with different assignableses for the sake of correct
identification of the culprit underlying cause. Télre, a graphical aid technique was
proposed that is capable of distinguishing betwst@ft (step change) and drift (linear

change) disturbances by examining the output pettdfurthermore, a neural network
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based methodology was introduced to automate duisgnition process and to find out

underlying cause linked with the type of disturbanc

Later on, Shao et. al. [12] build on their previousrk in order to eliminate one of the
unrealistic assumptions that had continuously bisden into account during earlier
researches involving SPC and EPC integration. @enisig the roles of EPC and SPC in
integrated systems, that is, to automate adjustroémgrocess input to keep process
output on target and to monitor process outpubirtlie sake of detecting the assignable
causes, the earlier scholars had assumed thasslgnable cause is eliminated as soon as
it's detected. Shao et. al. in the mentioned sfodywulated and demonstrated an adaptive
controller technique that is triggered by SPC baassignable cause detection. This
scheme aims at identifying the changing parametetise disturbance and consequently

adjusting the process until the underlying causmmpletely eliminated.

Jiang and Tsui [45] also researched the applicatiocontrol charts on MMSE and Pl
regulated systems having continuous adjustments.t&bhnique, similar to other works,

was meant to detect assignable causes of variation.

Xie et. al. [13] noted that SPC deals with the tgdeproblems in which a process is

assumed to be under control initially and the faauSPC techniques is to detect the out-
of-control state of the process monitoring the fuaharacteristics using control charts.
Process subjected to a slowly changing trend wasidered by Xie et. al. [13] which is a

special case of SPC and EPC integration where ingsfficient to only monitor the

process that changes with time using SPC. Accolgllmgnodel had been developed that
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makes adjustment to the process after regularviaiteof time and the process output
itself is monitored with changing control limitsstead of its variation from the target
value. This model is only valid for slowly changingivariate processes in which process
adjustments are done after regular yet larger vaterof time. On the contrary the
classical engineering processes need regulatidghsrraapidly as their rate of change

with time is very high.

SPC/EPC integration for univariate case was congm&hiely discussed by Huang and
Lin [14] and the associated issues had been adutebsthe mentioned study, effects of
Shewhart and CUSUM control charts on an MMSE rdgdlaystem with shifting and

drifting mean disturbances had been taken intowadco

Huang and Lin [14] noted that Shewhart control thare more effective than CUSUM
control charts in detecting the shifts. In casalfting disturbance with smaller slope,
CUSUM proves to be more effective whereas for largepes Shewhart is more

efficient.

Moreover, it was noted that an EPC feedback congtemsmechanism affects SPC out-
of-control detection and disturbs the output wheddenly assignable cause is removed.
To account for this so called overcompensationeissu joint monitoring scheme of

Shewhart and CUSUM charts had been used to reamgmzdisturbance type and a cost
based decision rule is provided to decide whetherassignable cause removal will be
cost efficient owing to the fact that the overcomgeion phenomenon is irresolvable and

in some cases renders the system unstable.
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Treasure et. al. [46] elaborated a rather advamtedration of EPC and SPC by utilizing
Principal Component Analysis(PCA) and Subspace Mddentification(SMI). They
noted that dynamic extension to classical MSPC tjwrarlate statistical process control)
procedures such as PCA and PLS, can lead to additioumerous variables to condition
monitor. To prevent this issue, they presentedherse that, as a first step, uses the
popular subspace identification technique to idgritie process parameters that may or
may not be changing with time. Moreover, a monitgrtechnique was introduced that
integrates principal component analysis (PCA) subspace model identification (SMI)
in order to give rise to error in variable (EIV)papach. This allows significant variation
to be extracted in order to identify the state-spamatrices and to establisi @nd Q
statistics for the sake of addressing the deficemnof the earlier SMI applications.
Furthermore, it results in the reduction of numbgprocess variables to be identified
that considerably account for a deteriorating aitfaevent. Treasure et. al. [46] also
offered step-wise procedure for designing of cbuotion charts meant to diagnose

anomalous behavior of the system.

PROCESS DATA

Calculate low dimension
‘states’ of the process

STATE SPACE

Reducing the no. of variables
used in the PCA monitoring

y

SUBSPACE CONDITION

Figure 5: Model of Treasure et. al. (2004)
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Sun and Wang [47] added to the research of SPCigt#egration by considering quality
characteristics while designing parameters andrcbrimits of EWMA chart. The

process they considered for their study was assumpdssess first order dynamic model
with white noise (i.i.d.) disturbance. An MMSE cwoitler was used to regulate the
system for variation due to disturbance and inhesgstem dynamics. A linearly varying
co-related assignable cause was induced into teeermy Consequently, an EWMA
controller was optimally designed considering castsociated with monitoring, false

alarm and process adjustment for the sake of editimig assignable cause.

Tsung and Shi [18] were the first who hinted thBRICSmonitoring can be done on the
process input or control actions. They devisednes®e for univariate processes in which
they jointly monitored input and output of the peges by augmenting both of them in a

matrix.

Joint monitoring of outputs and manipulated inpuseng SPC had been considered by

Huang and Lin [14] rather in detail for the firshe after Tsung and Shi [18].

Effectiveness of applying SPC control charts omegitprocess output or the control
actions (process inputs) was also investigated synd and Kwok-leung [19] who

discussed the integration of SPC and APC by coregldMMSE regulated processes
with ARMA(1,1) disturbances. It was indicated thia¢ detection of out-of-control state
of the process is dependent on the mean shiftrpadfethe disturbance represented by
the different ARMA(1,1) parameters. Moreover, effeeness of using SPC control

charts on either process output or the controbasti(process inputs) was investigated
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using different magnitudes and patterns of meaftssbi the disturbance induced into the
system. It was showed, in general, that it is meffective to monitor control actions
using SPC for smaller shifts while output monitgrirs efficient for larger shifts.

Furthermore, it was argued that that the mean-phiftern is the key dominating factor
upon which ARL performance depends whereas it dals® depend upon the

autocorrelation structure of the process itself.

2.5 MULTIPLE INPUT MULTIPLE OUTPUT SYSTEMS

Most of the real life processes comprise multipiputs and multiple outputs. For

instance, all chemical processes, boilers, pulp@apmer manufacturing, stock exchange
etc. all have more than one inputs and outputstefbie, there had always been a need
to control systems involving more than one variabéspecially in the presence of

internal coupling among them.

2.5.1 Multivariable Engineering Process Control

Macfarlane[48] states that the beginning of redeanc Multivariable Control Systems
dates back to 1930s when Bode, Nyquist and otherlas provided corner stone for the
establishment of a huge and beautiful building aftool theory. In the initial decades
most of the work had been focused on the developofaepresentation of multivariable
systems. Later on, numerous techniques were deaelofth an aim to keep multiple-
input-multiple-output systems stable. Some of tbmmonly used control strategies for

multivariable systems are as follows:
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+ State Feedback Control
* Output Feedback Control
* Feed forward Control

* Linear Quadratic Control

» Dynamic De-coupling Control etc.

Statistical process control community and reseasctiem stochastic control turned their
attention to multivariate systems later on in ortterdevelop adjustment schemes for
keeping the multiple-input-multiple-output processen target. Tseng et al. [49]
suggested a multivariate EWMA controller for a anemulti-input and output model

which is described by the below equation:
=01+ oyi—1) (2.12)

whereo is a discount factor, yi is the output antg the target value. In addition, Del
Castillo and Rajagopal [50] proposed a MIMO douBM/MA feedback controller for

drifting processes.

2.5.2 Multivariate Statistical Process Control

Hotelling was first to propose a multivariate cohtchart in the middle of twentieth
century. Hotelling'sy2 and T Charts find numerous applications owing to the faat
they are easily implementable in multivariate peoh$. Hotelling’sT? control chart is a
direct analogue of univariate Shewh&chart and it is used to monitor the whole process
mean vector. An out-of-control condition is sigmhley hotelling’sT? control chart as

soon as the statisti’ given by the following equation exceeds the ummentrol limit.
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T =y Zyi_l}’i (2.13)

where, yis the process output ady, is the covariance matrix. The upper control limit

is selected so as to achieve desired averagemgthle

Due to the fact that Hotelling’s*Twas prone to smaller shifts in the process outputs
other univariate control charts were ultimatelyngfrmed into their multivariate counter

parts.

Healy [51] formulated the CUSUM control chart foultivariate processes using the fact
that Multivariate CUSUM can be viewed as a serifeseguential probability ratio tests.
The MCUSUM for detecting a change in the variano@sariance matrix, may be written

as
S; = max[(S;_; + a'(x; — uo) — 0.54(n)), 0] (2.14)

where A(u,) is the square root of the non-centrality parametad a = [(u; —

Ho)* X0 /A ().

Further vigorous research on multivariate CUSUM rtshawas carried out by

Hawkins[52], Crosier [53] and Pignatiello and Runfg#!] etc.

Lowry et. al. [55] devised Multivariate EWMA charfer the first time due to their
efficiency in univariate cases. The MEWMA chartposed by Lowry et. al. [55] can be
described by the below equations:

Z; = in + (I - R)Zi—l (215)
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T? = z; Y1 z; (2.16)

where | is the identity matrix, R = diag,(r2, r3, ...., ) and 0<n <1 fork =1,2,3,....p
and);! is the covariance matrix. Later on, robustness gn@s of MEWMA charts
were discussed by Testik et. al. [56] for the cagesn the data follow multivariate t and
multivariate gamma distributions. Research on MEWBt#farts has continuously gained
the attention of many researchers [44], [57]-[58Fs its formulation by Lowry et. al

[55].

One of the major concerns about applying multivarizontrol charts is its capability to
recognize the source of assignable cause of vamiator instance, a multivariate control
chart that detects the occurrence of assignablgecisupractically useless until it points
out the variable or variables that have been viEtinthis assignable cause. Owing to this
reason, some scholars have advocated the ideapbfirap univariate control charts on
each of the variable in a multivariate process. Wband Ncube [60] presented this idea
for CUSUM charts stating that p univariate CUSUMarth can be used for a process
involving p variables. Another approach is to usgpbical methods in order to diagnose
the type and source of assignable cause. Subramaawyd Houshmand [61], Fuchs and
Benjamin [62], Nottingham et. al.[63] and Francigtoal.[64] are some of the authors
who have introduced the graphical methods in teeapf multivariate statistical process
control; however, primary drawback of this techmqs that it requires interpretation of
the results by an expert. For catering this probieemy decomposition schemes have

also been proposed in the literature. Mason et.[@8] illustrated a method of
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decomposition of T statistics in order to diagnose the source ofifi shthe process
mean. This was accomplished by a series of orthedgdecomposition. Chen et. al.[66]
used the eigenfactor decomposition for the purpdseéentification of primary source of
assignable cause. Recently, Tan and Shi [67] heeé Bayesian approach in solving this
kind of problems. Finally, some of the researcljiéB—[70] have successfully applied
artificial neural networks in the above mentionesrarios in order to diagnose the

reasons behind drifting and shifting means of matiate processes.

2.5.3 Integration of Multivariate Statistical Process Cortrol and Engineering
Process Control

A lot of research had been done in the fields dtiSical Process Control and
Engineering Process Control on multiple-input-nplétioutput or multivariate systems.
Inspired by the research on integrating the SPCEH@ in univariate cases, Ling Yang
et. al. [15], [16] paved the way for integration Mllitvariate SPC and Multivariable
EPC. There had been control practices prevailingnhuitivariable systems for quite a
long time whereas, there had been tools of SPClaoe@ for multivariate cases in

complete isolation with MEPC.

Ling Yang et. al. [16] used MEWMA controller as BHEPC tool in order to observe its
integrator with three multivariate SPC control ¢eanamely, Hotelling § MEWMA
and MGWMA charts. These charts were used to detesean shift in disturbance with

different magnitudes.
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Among the above mentioned monitoring schemes lgaifiiom multivariate SPC, the
MGWMA charts proved to be the most efficient bathtérms of ARL and performance

measure for all magnitudes of shifts. The GWMA ¢tBaquations are detailed as below:

T,® = 8/'(Qi %y '8 (2.17)
where,

Qi — (qu _ qla)z + (qla _ an)Z 4o (q(i—l)a _ qia)z (218)
And g = i=a[q¥V — g D]y,

The idea of integrating MIMO systems was illustdatesing an example and simulation

study was performed to confirm consistency of thdihgs in different scenarios.

Jiang et. al. [71] proposed a MIMO process contnodel that comprises mathematical
model of the process, disturbance characterisBB€;, EPC and an adaptive controller

for parameters and set-point (target) adjustments.

According to Jiang et. al.[71], the overall systean be divided into following sub-

systems:

*  MIMO Process Sub-system: This consists of processdfithat takes inputs
(feeds), processes them and renders the outputstmagasured by the next

sub-system.
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e Measurement Sub-system: Primary purpose of thissgstem is to measure
and record the needed output quantities (also knoas quality
characteristics). Disturbance is also supposedter ¢his sub-system.

* Process Output Analysis: This sub-system applie€ &Rhniques on the
measured data acquired from the previous sub-systender to detect and-
where possible-eliminate the assignable cause.

» Parameter Integration Control Sub-system: Thisesgsbasically performs
two tasks. First is to adjust the process “mathemaltmodel” owing to
variation in inputs and second is to change thgeté&set-point provided to
EPC. These tasks are accomplished using adaptinteotiers.

* Adjustment Sub-system: EPC procedures are applezdirh to adjust the
process inputs for the sake of keeping the outfmuality characteristics) on

target.

This model is summarized in the following flow diam:

1st procedure 2nd procedure > s (K-1)-th procedure K-th procedure (K+1)-th procedure e
> > > > > >

Input .
- K-th procedure Output
- s 3 ( N e N Ve N - N —
T Parameter 5 o o 7__
sl — atput 4 4p =
g g Integration P Adjustment > MM P Measurement »> ocess Outpu > =
= Process Analysis s
= Control - ) X '
R B BN R - > Subsystem LS Gbevstem ||  Subsystem o L5 Sub-system |- }> %
8 Sub-system | Y ' g
=8 \ J \ 4 \ Y, L ) L ) g
i v
Rework & Scrap

» Matenal flow

[:] Procedure () Sub-system
S > Data flow

Figure 6: Flow Diagram of Model of Jiang et. al. (2008)
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2.6 CASE STUDIES ON INTEGRATION OF SPC AND EPC

There are very few case studies carried out inatga while most of the researchers have
stuck to numerical examples with ideal assumptfondlustrating their findings. On the

contrary, case studies provide a path way for ide@et adopted into practices.

Capilla et. al.[72] carried a case study on integgaSPC and EPC techniques in a
continuous polymerization process. The case steshyfies that the integrated application

of EPC and SPC together out classes the applicatieither of them alone.

The system taken under consideration by Capillaaktf72] is a commercial scale
polymerization that produces large amount of pokgn@he key quality characteristic
was polymer viscosity measured by Melt Index (MMhose variation with time is

dependent on temperature and was given by

VMIt = wIVIt_l + wZVIt_Z + at - Bat_l (219)

wherea; was assumed to be an independent variable hawimgah distribution with zero

mean and? variance.

Parameter estimation was performed before applyimge EPC techniques, namely,
Clarke’s Constrained Controller, Minimum Mean Sceué&rror Controller and two step
ahead forecasting controller. Performance andlgtatmbustness of the mentioned EPC
schemes were evaluated under different circumssanee without disturbance or

assignable cause, with assignable cause but wiB®Gtand with assignable cause along
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with SPC. EWMA and Shewhart charts were used as ®BIS to detect assignable

cause.

Matos et. al. [73] provide the literature with aweomprehensive case study based on a
real system. They integrated SPC and EPC in PutbRaper production industry to

come up with a multivariate applications.

In the paper and pulp production industry, BleacBadalyptus Kraft Pulp is produced in
the plant using the Elemental Chlorine Free (EQ#ec@ss. The Kraft Pulping process
comprises of two different phases, either of whidluences the final pulp quality. These
phases are the cooking process of wood chips (gtasl globules) and the pulp
bleaching. Former of the two phases contributesentorthe final quality of the paper
which is mainly measured by viscosity of the blestpulp along with other parameters.
The process inputs are temperature and concemnaigasures of various components of

a digester.

The methodology acquired by the authors is asvi@io

System Identification: System identification teadues were implemented on real time
data taken from the system on three different aonasin order to find the best fitted

model.

The Multiple-Input-Single-Output (MISO) model waksimately found out to be:
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Where yt is the deviation of viscosity from targétime t,et is the white noise sequence

and % defines the backshift operator. WLC8, SI, WLC4, T®m TemC5 and AA

represent the variables of digester 1 (D1) andstiége? (D2)

EPC Scheme: The Ridge Controller (del Castillo,208ased on a minimum variance

criterion was adopted in order to keep the prooegisut on target.

SPC Schemes: EWMA, CUSCORE and EWMAST charts wppiead on the output
quality characteristics (viscosity of the bleachpedip) and inputs (digester temperatures
and concentrations of various components) in otaeetect the assignable cause. These
charts were based on dynamic principle componealysis owing to the large amount

and auto-correlated structure of the data.

The above mentioned methodology is summarizeddriglure below:
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Figure 7: Methodology of case study by Matos et. a{2008)

Asymptotic Mean Square deviation AMSD and ARL werealuated for different
scenarios in order to testify that SPC/EPC integtabntrol outperforms the use of either

of them alone.
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CHAPTER 3 A NOVEL FRAMEWORK FOR

INTEGRATION OF MULTIVARIATE SPC AND EPC

This chapter elaborates the usefulness of integra®PC and EPC for the
multivariate cases, proposes a novel scheme dajratien and discusses its effectiveness
using a numerical example. The subsequent sulegeofi this chapter discusses the
novel scheme developed herein for integration oftivariate statistical process control
and engineering process control followed by a nicakexample elaborating the idea.
Lastly, sensitivity analysis comprising variousfshmagnitudes and EPC schemes proves

the effectiveness of the said scheme in general.

3.1 AN INTEGRATED SPC/EPC MIMO CONTROL SYSTEM

In light of the above mentioned literature survay,integrated control system model
has been proposed here. It is well establishedariterature that applying control charts
on process output yield to detection of assigna@dleses. Hotelling’s *rChart is the
simplest and the most fundamental control chartntneamonitor a system already being
regulated by EPC scheme. A short coming in applyigelling's T Chart to process
output is its inability to detect assignable cauiet appear small in magnitude on
output; for instance, a mean shift in noise culringathe output. The popular solution to

this problem is the use of rather complex contharts such as EWMA, CUSCORE or
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GWMA control charts. [19] investigated a ratherque approach i.e. to apply control

charts on process inputs instead of output.

Inspired by [19] and other researchers, we adofitoat Monitoring” of process
inputs and outputs in order to detect the assignallse in MIMO systems. As it is
argued in the subsequent sections, the proposetlothes the best way to detect
assignable causes of broader ranges. This elingiiageneed for using complex control
charts relieving engineers, who have seldom infdkpbwledge of statistical techniques,
from designing control charts. The proposed MIMGitedl system is illustrated by the

following block diagram:

Control charts (e.g. Hotelling'Ez) Control charts (e.g. HotellindEz)
A A
[}
[}
[}
[}
| Feeds Disturbance
+ !
Set- Controller/ ! -
P - computatiol + P

A
Manipulated

\4
Input

Sensor

Figure 8: Block diagram of the proposed control sytem

In the Figure 8, the process is illustrated by ddbolock that is fed through

actuator(s); data flow and material flow are reprdsd by dashed and solid lines
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respectively. As it is clear from the figure, thetmut is measured by sensor(s) and the
measured value(s) are subtracted from the set-poitdrget values in order to generate
the error. This error is used in the controller cllothat performs mathematical
calculations based on the amount of error and kuet pnathematical model in order to
adjust or manipulate the process input throughaaet(s). In the proposed scheme, the
multivariate SPC control charts (generally HotgllmT> will be enough) are employed
both at process inputs and outputs for detectisggaable causes of variation. Following
sections discuss application of the proposed schesing a simple system and shed light

on its effectiveness under different situations.

3.2 SYSTEM DESCRIPTION AND MEPC SCHEME

[74] targeted the process control problem and dised the conditions for the
stability of a process using a single EWMA (expdialy weighted moving average)
controller having taken into account a first-org@ocess/system. [75] introduced a
double EWMA controller and found it useful in ereating the deterministic drift within
the process. Furthermore, Tseng et al. suggestedltavariate EWMA controller for a
linear multi-input and output model. [50] proposad MIMO double EWMA feedback

controller for drifting processes.

For MEPC scheme, [16] consider a linear MIMO systeith m inputs ando outputs

after [76], described by the below equation:
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yi=a+ fci_1+¢&; 3.1)

where, yis a vector of dimensions (px1) comprising thepatg, o is a (px1) vector
containing the offset parameters of each outpig,a process gain matrix having p rows
and m columns,;g is an (m x1) vector comprising the values of malafable inputs,
andg; is a (px1) vector denoting the noise or procestuthances; is assumed to be

contributing in the dynamics of the system.

The offset in the output or the intercept will edated online after each iteration. For
simplicity we shall assume that the estimatg} alenoted by B is known. Lét, denote

the estimate od at i = 0, then the predicted model will be:

yi= @+ Bc;4 (3.2)

Prior to implementation of the feedback controlesale, the process (manipulatable)

input will look like:

c=B1(t—a, (3.3)

where t is the target vector. Multivariate EWMA controllproposed by [16] is

described by the following equation:
a,=a;_ 1+ w(y;— 1) (3.4)
whereo is a discount factor.

Let ap = 0 andr = O; then, the off-target amount at iterationn t& described as :
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Yi—T=Y; (3.5)

yi= (1—w) Yo+ Tist(1 — @) (gir — €i—¢-1) (3.6)

When theg; is a white noise with mean vectprand variancg’, the covariance of;

will be:

Syi = (145;2(1- (1 - @)2¢V))3 (3.7)

It is considered in control action of equation,3#&ken by EWMA controller, that
assignable cause doesn’'t exist. Therefore, the @olyrce of common cause of
disturbance is a white noise serigisthat is described by equation 3.1. Now, the
performance of this system is investigated undetitiathal assignable causes. Let us
consider that that this MIMO process model is gaitecontrolled by MEPC and that the
MSPC monitoring scheme will only report assignabkuses i.e. external changes.
Assignable causes can be rapidly detected by apiolicof MSPC control charts to the
deviation of output from target; it's consideredttkthe assignable cause takes the form of
a sustained shift in the process mean vector. Tity|gub deviation will obviously reduce
upon successful detection and eradication of eatechanges or assignable causes.
Firstly, in this paper, using MEPC scheme aloneoimipared with using MSPC together

with MEPC.

Another MEPC scheme considered in the subsequetibisef sensitivity analysis is
a direct analogue of famous Proportional Integrabnt@®ller having following

mathematical form (in discrete case):
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c(k) = Kp*e(k) + Ki*T*(c(k) — c(k-1)) (3.8)

wherec(k) is manipulatable input to the procesg)is the error between output and

the target value where&p andKi are proportional and integral gains.

3.3 HOTELLING'S T ?CHART

A counter part of univariate Shewhatis Hotelling’s T> control chart; it's used to
monitor the process mean vector. As per the mutiii multi output system established
in Sect. Ill, let us consider a white noise segie@ised in Equation 3.1) be independent
multivariate normal random vectors with mean vexiorand a common covariance
matrix };, which is non-singular. The covariance matrix ypf(denoted by’ yi), that is
given by the Equation 3.8, is calculated by meagutine deviations of; from the target
vector ¢ = 0). Moreover, an out-of-control condition is rséged by hotelling’sT?

control chart as soon as the statidifc

T =y, Zyi_lyi 3.9)

exceed the UCL at iteration i, where UCL (hl) itested so as to achieve desired

ARL. For detailed discussion on Hotelling’s chditg], [78] can be referred.
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3.4 ANUMERICAL EXAMPLE

In this example a simple case of 2 variables ha®s baken into account to elaborate
the idea of integration of MEPC and MSPC. Two iné¢ign schemes have been
demonstrated using this example. The first schemeapplication of MSPC on the output
has been elaborated using four control charts valsetfee second scheme i.e. application
of MSPC on the process input has been briefly tlhied using one control chart.
However, subsequent section considers sensitiviyyais for establishing that both of

the techniques are effective in contrasting scesari

For simplicity the example considered by Yang aheéu$l9] is taken into account
here. Let the number of production runs 100. The mean vector ef is assumed to be
on target at [0 O] for the first 20 observationsexe the white noise serigisin Equation
1 follows the bivariate normal distribution. A disbance of the form of shift having

mean vector [0.875 0] is introduced into the pixcat time = 21 i.e.
to =1[00]", 4y = [0.875 0]
Leto =0.1 and

10|, g o[L0 08

&=M1 8=

05 10l Yo =10202]

From Equation 3.2, we get, = [-1 — 1]’

For the simulation of this example, Mathwork’s Mditlhas been used. The white

noise vector has been generated by a built-in cardro&dMatlab.
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Output observations of the MIMO model described Hguation 3.1 during 100
iterations are illustrated by Figure 9 where onlyEWMA controller (given by
Equation 3.4 and 3.5) is applied. A disturbance of the form of shiftving mean vector
[0.875 O] is introduced into the process at time 21. Figure 11 illustrates the control
actions of Equatior3.5. In the absence of MSPC control charts meadetect the shift,
the control action produced by MEWMA controller aficreases to a very large extent

in order to compensate for this sustained shift.
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Figure 9: Output fluctuation of the process employing only MBEPC. A shift of

mean vector [0.875 0]’ is introduced at i = 21.

The statistics of ¥ have been illustrated in Figure 11 for the casewhich a
Hotelling's ¥ chart is applied to the deviation of outputs fribva target in addition to the

MEPC rule. Corresponding values of, Tor Hotelling’s T chart have been calculated
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using Equation 6. The calculations of [16] haverbadapted in order to insure ARLO’s

of 200; therefore, the control limit is hl = 9.2.

Figure 10: Control actions for the process when only MEPC schmee has been

applied. A shift of mean vector [0.875, 0] is intoduced at 21st iteration.
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Figure 11: T;® statistics after joint application of MEPC and a Hbtelling’s T2

chart. A shift of mean vector [0.875, 0] is introdiced at 21st iteration.

Now let us consider the case of applying MSPC an dlocess input along with
MEPC. Hotelling’sT? control chart is applied on input in the same exam@ince the
mean and covariance vectors of input are unknowme, Hotelling’s T chart is
implemented after at least 5 iterations have tgkaoe under MEPC only. Once enough
samples are available, the mean and covariancergeate determined using Matlab
built-in commands. The UCL of the chart (h4 = 109Dadjusted for AR§=200 using as
many as 500 simulations. Using MSPC at input, isvedserved that the shift was
detected on 38iteration and the performance measure was 1.22@dntrast with the

detection on 41 iteration and performance measure of 1.2590. Tiaphy of input
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variations has been shown in Figure 12. It is eideom the figure that this method is

more prone to false detection when compared wiglrié 11.

14 — 1 1 T T T T 1
12

10F-

Figure 12: Application of MSPC on input recipes

Findings, using above example, suggest that applM®SPC at input has an edge
over applying MSPC on output; however, it needbdoerified for different magnitudes

of shifts. The following section discusses the iotemnore detalil.

3.5 SENSITIVITY ANALYSIS

For comparison of the two schemes developed iniguevsection, a detailed and
general case analysis is considered here. Anreddiy cause of the form of sustained
shift is considered. The shift magnitudes of 0.8%, 1, 2 and 5 are investigated.

Hotelling’s T? control chart is applied on both output and ingiuthe process one by one.
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An in-control (zero shift) ARL (ARb) is maintained at approximately 200 by changing
the width of the control limits. For each case, S@@ulations were run, whereas, 200
iterations were done in each simulation. A susthiteft is introduced on 21iteration in
each simulation run and it's assumed that the aablg cause (sustained shift) is
removed as soon as it is detected. The out-of-cbAiRLs (ARL;S) and performance
measures (Euclidean average) are compared forthetechemes. Both AR& and PMs
are averaged for 500 simulation runs where eachlatian run comprises 200 iterations.

Summary of these simulations performed using Mataltustrated in Table 3.

Table 3: Comparison of ARLs and PMs when MSPC is ggied at Output and

Input
Shift Hotelling’s T chart at Output Hotelling’s T* chart at Input
Magnitude hl = 9.2 for ARLy; =200 h1l =10.1 for ARLy =200
ARL, PM ARL, PM
5 1.02 1.2699 17.10 1.2904
2 3.92 1.2771 18.83 1.2786
1 23.02 1.2937 36.07 1.2778
0.75 60.58 1.2843 46.34 1.2621
0.5 128.90 1.2731 59.38 1.2528
0.25 183.30 1.2521 92.30 1.2513
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In Table 3, first column shows the shift magnitubat was introduced in the output
of the process. The subsequent columns displap®ias and PMs when Hotelling&
control chart is applied on output/input of the qess. When applied on output,
Hotelling’s T2 chart detects shift faster than its applicationirgtut when the shift
magnitude is higher. However, the trend inversesvnddhe Table 3 where shift
magnitude is reduced. Furthermore, PMs of firstegod under larger shifts is better

while the PMs of second are better for smallertshif

Therefore, application of Hotelling® control chart on output is more effective than
its application on input when the shift magnitudehigher; whereas, for smaller shift
magnitudes, application of Hotelling® control chart on input shows better results than
its application at output. This finding is evideinom both ARLs and performance
measures. Hence, simultaneous application of bm¢hsthemes is recommended for

general cases.

Furthermore, detection capabilities of Hotelling’ charts (applied at input) were
investigated by using two different EPC schemesrddeer, different EPC controller
parameters were also used in order to identifyffdbtor that affects detection capabilities

of control charts in an integrated system.
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Table 4: Comparisons of ARLsS while using two different MEPC controllers

with different gains.

Shift ARL 1s of Hotelling’s T* at input | ARL1s of Hotelling’s T° at input
Magnitude along with MEWMA controller | along with Output Feedback
controller
w=0.1 =05 K=0.02, K=0.1 | K,=0.02, K=1
5 17.10 9.45 5.61 3.927
2 18.83 15.20 8.36 4.174
1 36.07 19.17 12.14 4471
0.75 46.34 24.20 14.61 4.667
0.5 59.38 25.85 18.42 5.174
0.25 92.30 29.30 22.59 6.125

It is evident from the Table 4 that detection calitglof Hotelling’s Chart at input is
directly affected by the weight of integrator tetmEPC. As the weighb was changed
from 0.1 to 0.5, the ARLs have reduced significan®imilarly, in case of Output
feedback controller, the ARLs have reduced whemgrator's gain was increased
slightly. This finding is logically consistent aselv On the contrary, in real life
examples, the integrators’ gains are kept as lowassible in order to avoid over
adjustment that often leads to failure of actuatbmswvever, there are cases where high

integrators’ gain can be bearable. Although thdifig is important in some special cases

60




but our conclusion that “Joint Monitoring” of inguind outputs is the best assignable

cause detection scheme holds in practice.

3.6 CORRECTIVE ACTION FOLLOWING ASSIGNABLE CAUSE

DETECTION

The logical subsequent step that should be follolmedssignable cause detection is
the corrective action. Corrective actions heavidpehd upon the nature of underlying
assignable causes of variations. Most of the aabigncauses of variations incur due to
some physical fault either in the process or attfgutput. For instance, actuators (that
control the input feed to the process accordingR& controller's signal) can start to
malfunction. Another common example of reason kelainm assignable can be change in
process parameters with the passage of time dwedo and tear. The most critical of all
is malfunctioning of output sensors; this affet¢te tvhole control loop and can lead the

system to undesirable conditions such as instabilit

In this section we present a corrective action sehéor such an assignable cause i.e.
a significant change in sensor's measurement atréme process output. Let us assume
in our previous example that the noise being adddbe output represents measurement
error. A mean shift in this noise vector can beeatlestimate of induction of an offset
into the sensor. Therefore, considering the sarampie we can investigate the effects of

the said corrective actions.
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The idea being proposed here is the adjustmengtpbmt or target value following
the detection of sensor offset assignable cause.niéan shift in noise vector implies
culmination of sensed output value by an amountktm magnitude of the shift. It
follows that the EPC scheme will try to bring theomgly measured value of output
closer to the target. To get rid of this situatidine target value or set point can be
adjusted by an equal amount to that of shift inrtlEasurement noise vector, assuming

that the magnitude of shift is measurable. The id@éustrated in the following figure.

Simulations were performed using the same exanifpteevious sections in order to
probe into the effects of the proposed correctigBon. As illustrated in figure, the
process input seizes to deviate as soon as thisction is applied; consequently, the
wastage of energy at the process input in leanegassignable cause uncorrected can be

avoided while keeping the process output on target.
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Figure 14: Output deviation with corrective schemen place
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CHAPTER 4 A CASE STUDY OF HEATING

VENTILATION AND AIR CONDITIONING SYSTEM

A One of the biggest energy consuming systems tti@ge are buildings. The energy
consumption of buildings accounts for more than ahéd of global energy
consumptions. Specifically, in the domain of builgh, Heating Ventilation and Air
Conditioning (HVAC) systems are the most energyscomng ones along with being top
ranked in terms of client complaints[79]. Concebesind the bulk of energy utilized in
building/construction sector have prompted the idiegreen buildings that are aimed at
least energy acquiring designs. On the other hamel of the major reasons behind losses
of energy is persistence of faults in the systeheré&fore, fault detection and isolation is
equally important in reducing energy losses. Inghstems with feedback control loop,
the controller tries to hide or compensate for thelts; however, they continue to

dissipate energy and cause reduction in the hfie of the equipment.

Numerous researchers in the area of Fault Deteiah Diagnosis (FDD) have
applied variety of techniques, most of which reguirodelling of the system[80]. Many
have come up with data driven techniques such asaNéNetworks and Principal
Components Analysis for fault detection[80]. Thare few of them who have explored
fault detection capabilities of SPC control chartisHVAC; however, their work is

limited to application of univariate control chaalisprocess outputs.
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[81] were one of the earliest to apply control ¢hdor fault detection in the field of
HVAC. They successfully applied CUSUM control clsadn Variable Air Volume
Terminal units in order to detect four kinds of lfay namely, stuck damper, stuck
cooling/heating coil, failed flow sensor and unsafiow. The work of [81] is very
motivational for HVAC solution providers; howeveat,accompanies a major issue as
well i.e. the CUSUM control limits were selectedioanual observation of trending data

instead of some automatic procedure.

[79] developed a rather comprehensive FDD approadhiVAC problem and came
up with rule based FDD techniques incorporating OMSand EWMA control charts.

Their approach improved the diagnosis capabilaesompared to previous works.

[82] have integrated SPC and Kalman Filter to defaglts in the system whereby
considering a simple SPC rule that 3 consecutivietpdalling outside 2 sigma limit

indicate fault.

[83] built on the work of [81] by eliminating twasaociated issues. They incorporated
rule based classifier for fault diagnosis and addstimation of CUSUM parameters

instead of manual selection.

[84] have also come up with an extension to thekwadr[81] by introducing fault

counter method as a fault diagnosis procedure.

This section of the paper demonstrates the effeoéigs of “Joint Monitoring” of

process inputs and outputs using multivariate ebetrarts such as Hotelling’s Eharts.
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Moreover, it is argued that they are instrumemaletecting all sorts of faults that occur

at sensors, actuators or system level.
4.1 SYSTEM MODELLING AND CONTROL

A single-duct VAV system with two thermal zonesiown in Figure 15

| Psychrometric subsystem

] Supply subsystem

* IAVAR
b BT ;
|
|
~ l ,

VAV terminal units

|

|

z Il

f » Zone 1 Zone 2

i

[ |

& b TR iy e R e e e= = =]

i I Exhaust subsystem l

| " |
- =1 ;{ 1 - |

| A .

Figure 15: Schematic Diagram of VAVAC system

The figure shows that there are four primary sutesys

I.  Psychrometric Subsystem

» It consists of chilled water coil, air filter, h@ag coil, recirculation and exhaust

air dampers, etc.
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The key component in this system is the coolinglhgacoil, where the heat

exchange between air and water takes place

Supply Subsystem

It consists of variable-duty supply fan and a neknaf air distribution ducts and

VAV terminal units.

The main purpose of this system is to regulateirttet flow of conditioned air

entering in the thermal zones.

Exhaust Subsystem

It consists of return ducts, return air diffusershaust fans etc.

This subsystem takes a part of return air and geleites it through the supply

subsystem.

Thermal Zones

Apart from the above subsystems, there are 2 iddali control zones/thermal

zZones.

Conditioned air is supplied to these zones throsgpply subsystem and the

return air coming out is extracted by exhaust ssiesy

These zones consist of internal loads (occupaigists| electronic devices etc.)

and external loads (heat from windows, walls etc.)
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According to the modelling done by [24] the norelin model of Variable Air

Volume Air Conditioning System can be expressefbisws:

X1 = aquq(x3 — x1) + azuy + az(ug — xq) (4.1)
Xz = bquy(x3 — x2) + byus + b3(ug — x1) (4.2)
. _ pr us _ xXq1uq+ xup _ _ (UA)C
X3 = [Cpa g (T, — x4) + (r BT + (1 —1r)ug xs)]_McCpc (4.3)
: +
X3 = [pr Uus (Twi - x4) + Cpa(ul + uz) (1‘ % + (1 - 1')‘Ll6 -
1
x3))|. e (4.4)
where
1 1 U,14,,
a, = , a, = ——, a; = ————
! Vzlpa ? Vzlpana 3 Vzlpacpa
1 1 U,,A,,
b; = , y = —, by = ———
szpa szpacpa szpana

Temperature of zone 2
Temperature of supply air
Temperature of chilled water

X1 TZW l Temperature of zone 1
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[ul] 'Tflal' [ flow rate of air inzone 1
Uy, LUY) flow rate of air in zone 2

U= usz| Ti/.lw _ | flowrate of chilled water
Uy Q1 Internal heat load of zone 1
usJ 0, Internal heat load of zone 2
Ue [Tt | External Temperature

The simulation test case consists of a single M4&NYAC system with two zones.
Volumes of each zones arg;\t 36nT and \,, = 90nT, respectively. The external walls
areas are A = 12nf and A, = 18nf. The portion of exhausted air equals 25% (r = .25
The external air temperature is equal t8@74f not otherwise specified. The initial inlet
chilled water temperature,Tis set to 7C. It is assumed that the initial supply air
temperature, & is equal to 1%C. The initial indoor air temperatures;Tand T, are

equal to 22C.

The disturbances related to internal heat gaindu@ng people occupancy, electric
devices, etc.) were assumed to follow a normatidigion with mean value of 500W and
variance of 200W. Moreover, External air tempemtwas simulated to vary from 27

to 33C sinusoidally over the course of 12 hours.

The feedback controller for the system was desigmgdising dynamic feedback
linearization method in order to accommodate vari@perating conditions. It was
supposed in the design that each zone’s temperatwentrolled by its respective air
flow through VAV terminal box whereas, the overalipply air temperature was
governed by the opening of chilled water valve. S&muently, three new inputs were

defined:
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41 Y1
v= |VUy|:= 5’2
V3 V3
And a decoupled, linear system is obtained asvi@io
V1 1 0 0]
y2| = [0 1 0] |V
V3 0 0 1llvs

The control inputs are given by

v1— azus— +az(Ue—x1)

th = ay(x3—x1) (4:5)
__ Va—baus— b3(ug—x1)

H2 = b1 (x3—x2) (4:6)
_ [McCpe _ _ Cpu(u1+ uz)

u3 - [(UA)L‘ U3 (Tai xg)] pr (Twi_x4) (47)

It is worth mentioning that the values of disturbasu, andus used in the calculation
of above control inputs can only be estimates fassuin the simulation to be 500 W)

whereas external air temperature disturbance isunable.

A conventional closed loop proportional control excte, described below, was
adopted and with the appropriate choice oEK1, 2, 3), the closed-loop poles of the
linearized system can be placed arbitrarily. F& $tudy, values of;kvere used as 1 for

all three loops.
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Vol = [ k2(V2 — Y2,set)

[vll kl(yl - yl,set)
Vs kB( Y3 — y3,set)

The set points for zone’s temperature and supplyeanperature were set out to be
21°C, 25C and 18C. The controller was given ample time for trantdebefore faults
were introduced into the systeRurthermore, under steady state conditions, deadsba
of 0.1°C were applied around set-points in order to awmidr-adjustments of process

inputs.
4.2 FAULT DETECTION USING HOTELLING'S T 2 CHARTS

The fault detection scheme developed in chaptee.2Joint Monitoring” of process

inputs and outputs was simulated on VAVAC systemgifllowing three faults:
» Temperature Sensor Offset (Sensor/Output Fault)
» Cooling Coil leakage (Actuator/Input Fault)
» Stuck mixing damper (System Level Fault)

In order to make the fault detection scheme moresenient for the end users, the
input and output measurements were normalized édfoe application of Hotelling’s
Control Charts. Therefore, the input observatiomsennormalized using the following

formula:

u;' = (U — i)/ o
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whereu;’ is the normalized input observation amdhe measured input observation
whereasy; andg; are the mean and standard deviation of the inpsemwations in the
data window used for calculating Hotelling’s®>. TThe output observations were

normalized by tracking their deviation from the-peint, using the following formula:

yi' = i = Ysp)/R(Y)

wherey;’ is the normalized output observation gnthe measured output observation
whereasys, andR(y) are the set-point and maximum absolute deviatioougput from
set-point. The maximum absolute deviatiB(y) is calculated based on the data window

of Hotelling’s T and is given by:

R(y) = maxlym - yspl

m=i-ntoi

Two Hotelling’'s Control chart parameters, namebtadwindow size and control
limit were to be selected for efficient detectioapabilities. The former was selected
heuristically by observing the trending data under fault condition, following the
approach of [81]. whereas the latter was selectetd on the basis of popular ARL
criterion. The system was simulated for a longqukenf time (approximately 55 hours)
without fault and the Tstatistics were recorded. Based on false alargmitity of 1%,

the control limits of outputs and inputs were céted to be 1.0 and 0.2.

Furthermore, simulations were then run for 100 @ador simulating each fault and

the fault was introduced into the system at 3066cond (59 minute).
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4.2.1 Temperature Sensor Offset Fault:

The most important and critical faults in any feach control systems are related to
sensor faults of process variables. Wrong or cudteith values of process variable, if
progressed through the control loop, can lead yetes to instability. Zone Temperature
is of such importance in our case. Therefore, gefadts in zone temperature are the

most critical faults in VAVAC systems.

Let us consider that the temperature sensor'smgadvere culminated with a random

noise as shown below:
T,m=T,+ &y

whereT, n represents measured valUe represents actual value asnglis a random
noise with mean 0 and variance 8€0during the simulation before fault. Two levels of
temperature sensor faults were introduced in thgegyin order to evaluate the detection

capabilities of the proposed method.

Firstly, a mean shift of ® and a variance of 0.25 are introduced in the
measurement noisg,. The variation of the output in this case is shownfigure 3
whereas figure 4 compares the Hotelling’sTatistics observations at output and input.
It's apparent from the figure 4 that the fault éadily detected by the both as the plotted
T? statistics go well beyond the control limits (Ga2d 1.0for inputs and outputs

respectively) after the fault is introduced.
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Figure 16: Output variations with faulty temperatur e sensor
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(3°C offset)
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Secondly, a mean shift of A and a variance of 0.85 are introduced in the
measurement noisg, The Hotelling's T statistics observations at output and input are
shown in figure 5. Close observation of figure Ba@s that such a small level of offset is

detected by the both as the plottedsTatistics exceed the control limits (illustratesi

horizontal red line) after the fault is introduced.

Hotellings T2 monitoring of inputs
T T

Hotellings T2 monitoring of outputs
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05+ 05}

| .
; Mﬂw ; JWWWWWMMMMM
6000 0 1000 2000 3000 4000 5000 6000

.
0 1000 2000 3000 4000 5000
Time (seconds) Time (seconds)

Figure 18 Comparison of T? statistics at inputs and outputs with faulty senso

(0.1°C offset)

Comparison of Hotelling’s charts at input and otitpectors reveal that two different

levels of faults were quickly and significantly deted by both control charts.

4.2.2 Cooling Coil leakage:

Another important fault in VAVAC systems is the tiag coil fouling and leakage.
When the cooling coil valve is stuck, suppose thaing coil valve position is fixed &

(0 < k <1), then the actual chilled water flow rate is

(4.8)

m, =k X m,
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A 20% leakage of coolant or chilled water from @ogl coil was simulated by
selecting k = 0.80. This is another common yetiaaiitfault in the system that the
feedback controller tries to hide by over adjusting amount of coolant or chilled water
flow. The fault was successfully detected by theppsed approach of Joint Monitoring

of inputs and outputs as illustrated below:

Hotellings T2 monitoring of inputs

Hotellings T2 monitoring of outputs 15

T2 statistics
T2 statistics
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Figure 19: Comparison of T2 statistics at inputs ad outputs with faulty valve

(actuator)
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Figure 19 depicts that the’ Btatistics’ variation at process input exceedscterol

limits as soon as the fault is introduced; Howe@rstatistics at process output remain

under control limit and thus cannot detect thetfaul

4.2.3 Stuck Mixing Damper:

Stuck mixing damper is one of the most common VAV#aQlts encountered by the
practicing engineers. Early detection can avoidulent flow that disturbs the entire
system’s pressure. The fault was simulated byisbifthe value of ‘r' from 0.5 to 0 in

state equations.

Hotellings T2 monitoring of outputs Hotellings T2 monitoring of inputs
T T T T T T
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Figure 20: T? statistics at inputs with faulty damper

In this kind of faults i.e. fault in the system igher at output nor at input), detection
capability of Hotelling’s chart at input is betti#san its capacity at output in the presence
of a good controller. Hotelling’s control chartaitput doesn’t detect this fault as the T
statistics don’t cross the control limit; howevéng control chart at input ultimately

detects the fault after approximately 500 secosdb@ F exceeds the control limit.
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4.3 CORRECTIVE ACTION FOLLOWING ASSIGNABLE CAUSE

DETECTION

The logical subsequent step that should be follolmedhult detection and diagnosis
is the corrective action. Corrective actions hagagigpend upon the nature of underlying
faults. Most of the faults incur due to some phgski@ult either in the process or at
input/output. For instance, actuators (that corttnel input feed to the process according
to EPC controller’s signal) can start to malfunctidnother common example of reason
behind a fault can be change in process parametdrdhe passage of time due to wear
and tear. The most critical of all is malfunctiogiof output sensors; this affects the

whole control loop and can lead the system to urmlde conditions such as instability.

In this section we present a corrective action sehéor such a fault i.e. a significant
shift/offset in sensor's measurement error at ttoegss output. Let us consider the first
fault as discussed in section 4.2. The output teatpee measurement was considered to

have following form:

T,m=T,+ &, (4.9)

Let us consider that the shift in mean valuepfs measureable for simplicity and

investigate the effects of the said correctiveamdiin out example.

The idea being proposed here is the adjustmengtpbst or target value following
the detection of sensor offset assignable cause.niéan shift in noise vector implies

culmination of sensed output value by an amountktm magnitude of the shift. It
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follows that the EPC or feedback control schemé twilto bring the wrongly measured

value of output closer to the target. To get rictto$ situation, the target value or set
point can be adjusted by an equal amount to thsahififin the measurement noise vector,
assuming that the magnitude of shift is measuraliterefore, the faulty measurement
will jJump to shifted setpoint whereas keeping th@ginal temperature on target as
illustrated below where red line represents origiteanperature and blue represents

measurements.
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Figure 21: Effect of corrective action to faulty masurements

A detailed case study of HVAC systems has beerepted in order to explain the
idea behind integration of the two complementahestes along with its practicality and
usefulness. Furthermore, it has been establishéuisrwork that joint monitoring of an
EPC regulated process’ outputs and inputs using BB to detection of assignable
causes in all cases. Different types of faults hbgen simulated to ensure that the

findings hold in different scenarios of faults.
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CHAPTER S5 CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

Multivariate Statistical Process Control and Engnireg Process Control are two
complementary techniques used in the area of psammsrol. EPC tries to minimize the
deviation of process from target, or in other worpievents the effect of disturbance
(common causes of variation) by manipulating pregeput. On the contrary, SPC aims
at monitoring the process for assignable causes/amfation, detecting them and
ultimately eliminating them as soon as possibleaid/es schemes of integration between
SPC and EPC had been proposed in the literatureantew to complement each other’s’

shortcomings while benefitting from their advantge

This thesis evaluates the effectiveness of usinG 8Rd EPC together for fault
detection and control. A novel scheme of integratias been proposed and evaluated in
this thesis considering Multiple-Input-Multiple-Quit (MIMO) systems. Simultaneous
application of MSPC control charts to process ig@td outputs or in other words “Joint
Monitoring” of process inputs and outputs rendeexyv efficient fault detection

capabilities.

A numerical example has been presented in ordeexigain the idea behind
integration of the two complementary schemes. leuntiore, it has been established in

this work that joint monitoring of an EPC regulatecbcess’ outputs and inputs using
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SPC leads to the earliest detection of assignaflses. Sensitivity analysis has been
performed to ensure that the findings hold in défé scenarios of assignable causes and

in the presence of different EPC controllers.

A detailed case study of HVAC systems has beerepted in order to explain the
idea behind integration of the two complementahestes along with its practicality and
usefulness. Furthermore, it has been establishéuisrwork that joint monitoring of an
EPC regulated process’ outputs and inputs using BR@s to detection of assignable
causes in all cases. Different types of faults hbgen simulated to ensure that the

findings hold in different scenarios of faults.

5.2 FUTURE WORK

Research and innovation have no bounds. There eandny directions in which this
work of integrating SPC and EPC can be extendea fiitst and foremost is the
consideration of multivariate statistics in econcahidesign of SPC/EPC integrated
models. In the economic design configuration, tR& $lays dual role of determining
whether or not EPC adjustment is needed as wélleaole to detect assignable causes of
variation. Model of [9] is very useful addition the literature but needs extension to

multivariate systems and application to real Iamples.

One of the major issues in multivariate statisiicghat they can detect assignable cause
or fault in the system but they are not capabldiafnosing it. For instance, multivariate

Hotelling’s chart can detect fault due to any sengulprit output/input but it is always
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needed to know which parameter has caused thediaaksignable cause to occur. Joint
Monitoring of inputs and outputs can be very uséfuthis regard. It can provide some

data training mechanism such as neural networkgression to learn the situation faster.

Furthermore, a complete scheme should involve ctveeactions, following
assignable cause detection and diagnosis. In othels, fault detection and diagnosis
should lead to fault isolation as well. An intenegtcorrective action example is provided
in this work; however, it needs to be formulatedheaatically in order to acquire a
more general form. Process Targeting can be integjraithin the current framework for

this purpose.

Moreover, there are numerous examples in the arefeedback control systems
where the proposed method can be evaluated. Realitiplementation of these
technigues should be considered as they seem ipplieable and easy to use than many

other data driven fault detection techniques.
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