AUTOMATIC DIACRITICS RESTORATION FOR ARABIC TEXT

三学が

BY Omar Elsayed Shaaban

A Thesis Presented to the DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER SCIENCE

MAY, 2013

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DHAHRAN- 31261, SAUDI ARABIA DEANSHIP OF GRADUATE STUDIES

This thesis, written by **Omar S. Shaaban** under the direction of his thesis advisor and approved by his thesis committee, has been presented and accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of **MASTER OF SCIENCE IN COMPUTER SCIENCE.**

Dr. Husni Al-Muhtaseb (Advisor)

Dr. Mustafa El-Shafei (Co-Advisor)

Sayed 8/1/2014

Dr. El-Sayed El-Alfy (Member)

Dr. Wasfi Al-Khatib (Member)

Dr. Essam Eid (Member)

NC

Dr. Adel Ahmad Department Chairman

Dr. Salam A. Zummo Dean of Graduate Studies

20/2/14

Date

© Omar Shaaban 2013 Dedication

To my beloved family...

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Husni Al-Muhtaseb who has supervised this research work and guided me throughout, without whom this work would not be the same. I also thank the committee members: Dr. Mustafa Elshafei, Dr. Wasfi Al-Khatib, Dr. El-Sayed El-Alfy, and Dr. Essam Aid for their great support throughout this journey.

Some of the work behind this thesis was the byproduct of two course projects under Dr. Lahouari Gouthi (in the Advanced Artificial Intelligence course) and Dr. Sabri Mahmoud (in the Natural Language Processing course).

In addition, I would like to acknowledge the financial support of the work by the university funded project with numbers RG1104-1 and RG1104-2 for which Dr. Mustafa Elshafei is the Principal Investigator. Many thanks to the people who contributed in developing the corpus: Anas Abu-Dagga, Yousef Elarian, Sadam Al-Azani, and many others.

I would like also to thank Ms. Susan Mohammad from Arabi, an Arabic Software Solutions Company (http://www.arabinlp.com/), who has gracefully given me permission to evaluate the diacritizer developed by the company.

Special thanks for Omar Alzuhaibi who helped in evaluating my developed automatic diacritizer and manual diacritization tool and providing me with valuable feedback.

Finally yet importantly, I would like to thank Tim Buckwalter for his awesome morphological analyzer, and Pierrick Brihaye for his Java port of the former. Also, a lot of open source libraries and tools (kindly check the list in Appendix III) were extensively used throughout this research work, my personal appreciation for the people behind them.

TABLE OF CONTENTS

ACKNO	OWLEDGMENTS	1
TABLE	C OF CONTENTSV	I
LIST O	F TABLESIX	ζ
LIST O	F FIGURES	ζ
LIST O	F ABBREVIATIONSX	I
ABSTF	XACT XI	I
، الرسالة	ملخص XII	I
1 CI 1.1 1.2 1.3 1.4 1.5	HAPTER 1 INTRODUCTION 1 Diacritization in Arabic Orthography 1 Problem Statement 1 Applications of AATD 1 Contributions 1 Overview 1	2 4 5 5
2 CI	IAPTER 2 LITERATURE REVIEW	7
2.1 Ar	abic Diacritization	7
2.2 No	n-Arabic Diacritization10	D
2.3 Co	mparison1	2
2.4 PC	S Tagging & Morphological Analysis14	4
2.5 Su	mmary1	5
3 CI	IAPTER 3 CORPUS CONSTRUCTION16	5
	rpus Development Approach & Methodology1	
3.1.1	General Corpus	
3.1.2	Diacritized Corpus	
3.1.3	Rules and conventions	2

	Diacritization Assistant	23
3.2 Diad	critized Corpus Analysis	24
3.2.1	Letter-Diacritic Matrix	
3.2.2	Letter-Position-Diacritic Matrix	
3.3 Sum	nmary	
4 CH	APTER 4 AUTOMATIC DIACRITIZATION APPROACH	34
	istical Approach	
4.1.1	N-gram Extraction	
4.1.2	Diacritization Using N-grams	
4.2 The	Rule-based Approach	
4.2.1	Rule Induction	
4.2.2	Applying the rules	
4.3 The	Diacritizer	
4.3.1	Architecture	
4.3.2	Preprocessing	
4.3.3	Hybrid Diacritization	
4.3.4	Post-processing	
4.4 Sum	1mary	54
4.4 Jun	11101 y	
5 CH	APTER 5 DIACRITIZER EVALUATION	55
	APTER 5 DIACRITIZER EVALUATION	
		55
5.1 Peri	formance Metrics	55
5.1 Per l	formance Metrics Word-Error-Rate (WER)	55
5.1 Peri 5.1.1 5.1.2	formance Metrics Word-Error-Rate (WER) Diacritic-Error-Rate (DER)	 55 56 57 60
5.1 Peri 5.1.1 5.1.2 5.1.3	formance Metrics Word-Error-Rate (WER) Diacritic-Error-Rate (DER) Diacritization-Level (DL)	55
5.1 Peri 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	formance Metrics Word-Error-Rate (WER) Diacritic-Error-Rate (DER) Diacritization-Level (DL) Words-per-Second (WPS)	55
 5.1 Perf 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 Eval 	formance Metrics Word-Error-Rate (WER) Diacritic-Error-Rate (DER) Diacritization-Level (DL) Words-per-Second (WPS) Peak-Memory (PM)	55 56 57 60 61 61 61 61
 5.1 Perf 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 Eval 5.3 Res	formance Metrics Word-Error-Rate (WER) Diacritic-Error-Rate (DER) Diacritization-Level (DL) Words-per-Second (WPS) Peak-Memory (PM) Iuation Methodology	55 56 57 60 61 61 61 62 63
 5.1 Perf 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 Eval 5.3 Res	formance Metrics Word-Error-Rate (WER) Diacritic-Error-Rate (DER) Diacritization-Level (DL) Words-per-Second (WPS) Peak-Memory (PM)	55 56 57 60 61 61 61 62 63
 5.1 Perf 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 Eval 5.3 Res 5.4 Sum 	formance Metrics Word-Error-Rate (WER) Diacritic-Error-Rate (DER) Diacritization-Level (DL) Words-per-Second (WPS) Peak-Memory (PM) Iuation Methodology	
 5.1 Perf 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 Eval 5.3 Rest 5.4 Sum 6 CH 	formance Metrics	55 56 57 60 61 61 61 62 63 63 66 66

APPENDIX I SAMPLE SENTENCES FROM THE TEST SET	71
APPENDIX II TOP 1000 WORDS IN THE DIACRITIZED CORPUS	72
APPENDIX III PRIMARY FUNCTIONS	84
APPENDIX IV TOOLS USED	
APPENDIX V ARAMORPH TAGSET	
Prefixes Stems	
Prefixes Stems Suffixes	
Stems	91 92

LIST OF TABLES

Table 1 Arabic Diacritics and Taxonomy	3
Table 2 Comparison of different approaches followed by other researchers (A)	13
Table 3 Comparison of different approaches followed by other researchers (B)	14
Table 4 List of crawled websites	17
Table 5. The General Corpus Statistics	21
Table 6. The Diacritized Corpus Statistics	22
Table 7. Diacritization rules and conventions	22
Table 8 Diacritics distribution in the Diacritized Corpus	24
Table 9 Letter-diacritic distribution (A)	
Table 10 Letter-diacritic distribution (B)	27
Table 11 Letter-diacritic distribution over letter position (A)	29
Table 12 Letter-diacritic distribution over letter position (B)	
Table 13 Letter-diacritic distribution over letter position (C)	
Table 14 Letter-diacritic distribution over letter position (D)	32
Table 15: Most common POS tags	
Table 16: Extracted N-grams statistics	
Table 17: A sample of the letter-specific rules (Group A)	44
Table 18: A sample of the letter-word rules (Group B)	46
Table 19: A sample of the letter-diacritic rules (Group C)	47
Table 20: The effect of the last-letter assumption	59
Table 21: Statistics about the Validation & Test sets	62
Table 22: Accumulative performance of each method (POS first)	
Table 23: Accumulative performance of each method (Rules first)	
Table 24: Accumulative performance of each method (Word-grams first)	

LIST OF FIGURES

Figure 1: Example on AATD.	4
Figure 2: Thesis work structure	6
Figure 3. The corpus development process	19
Figure 4. The diacritization assistant	24
Figure 5 Best N-gram Sequence Search Problem	
Figure 6 Greedy Letter <i>N</i> -gram Diacritizer	40
Figure 7 Greedy Word <i>N</i> -gram Diacritizer	41
Figure 8 Greedy POS N-gram diacritizer	42
Figure 9. Rules Application Algorithm	49
Figure 10: The system architecture	52
Figure 11: Recommended sequence of diacritizers	53
Figure 12 Example of calculating WER metric.	57
Figure 13 Example of calculating DER metric.	58
Figure 14 Example of calculating DL metric	60
Figure 15: Comparison of diacritizers in terms of DER, WER, and DL	64

LIST OF ABBREVIATIONS

- AATD Arabic Automatic Text Diacritization
- ASR Automatic Speech Recognition
- ATD Automatic Text Diacritization
- **BAMA** Buckwalter's Arabic Morphological Analyzer
- **CRF** Conditional Random Fields
- **DER** Diacritic-Error-Rate
- **DL** Diacritization Level
- **DT** Diacritization Tool
- HMM Hidden Markov Models
- LDC Linguistic Data Consortium
- MADA A diacritization toolkit
- MSA Modern Standard Arabic
- NLP Natural Language Processing
- **OOV** Out-of-vocabulary
- PM Peak memory
- **POS** Part-of-Speech
- **POST** Part-of-Speech Tagging
- SAMA Standard Arabic Morphological Analyzer
- SVM Support Vector Machine
- **TTS** Text-to-Speech
- WER Word-Error-Rate
- WPS Words Per Seconds

ABSTRACT

Full Name : Omar Elsayed Mohammed Shaaban

Thesis Title : Automatic Diacritics Restoration for Arabic Text

Major Field : Computer Science

Date of Degree : May 2013

Arabic scripts consist of two primary categories: letters and diacritics. The diacritics are often omitted for convenience, as most experienced readers can easily infer the missing diacritics of a word from its context. This, however, poses a challenge to some readers, such as non-native speakers, who may not be able to infer such diacritics easily. In addition, diacritics play an important role in many Arabic Natural Language Processing (ANLP) applications, such as Automatic Speech Recognition (ASR), Automatic Language Translation (ALT), and Text-to-Speech (TTS) converters. Thus, the automatic restoration of missing diacritics is an essential step to achieve acceptable performance. Studies have approached this problem in two ways; either using machine learning (ML) algorithms or using basic rules that were derived from Arabic grammar and orthography. This thesis shows that by combining the two approaches an improved performance can be achieved.

The main contributions of the thesis are: (1) construction of a diacritized corpus, and (2) development of a hybrid diacritizer. In the first contribution, we built a fully diacritized corpus which was collected from different sources, whether already diacritized or not, covering several fields (e.g. news, literature, sports, religion). The developed corpus has more than 28,000,000 words from classical Arabic, and 3,000,000 words from Modern Standard Arabic (MSA). In the thesis, we explain the corpus construction process in details and give in-depth statistics.

The second contribution of the thesis is combining the rule-based approach with the statistical approach for automatic restoration of missing diacritics. Rules were inducted from the corpus such that they have near 100% accuracy. We use a varying number of features in the rules, such as the current letter, previous letters, next letters, stop-words, and so on. Our results show that by using these rules, the performance solidly enhances (with WER=13.8% and DER=3.5%) as compared with the mere statistical approach.

In the statistical approach, we used word-level N-grams, character-level N-grams, and POS-level N-grams that were extracted from the corpus. Then, to select the best diacritization, on each level, we used a greedy algorithm with a good heuristic that ensures optimality time-wise and accuracy-wise. This approach was built upon the results of the aforementioned rules.

ملخص الرسالة

الاسم الكامل: عمر السيد محمد شعبان

عنوان الرسالة: استعادة التشكيل آليًّا للنصوص العربية

التخصص: علوم الحاسب الآلي

تاريخ الدرجة العلمية: مايو 2013

تتكوّن الكتابة العربيّة من أحرف وعلامات للتَشكيل، وهذه الأخيرة عادةً ما تحذف للتسهيل على الكاتب، لأنّ القارئ العربيّ الخبير يستطيع بسهولة استنتاج تلك العلامات لأيّ كلمة عبر سياق النّصّ. ويستعصي هذا على القارئ المبتدئ الذي ربّما يجد صعوبةً في استنتاجها. كما تعتبر علامات التشكيل ذات أهمية بالغة لكثير من تطبيقات الحاسب الآلي اللسانية كالتّعرف الآلي على الكلام، والترجمة الآلية، ونطق النصوص المكتوبة. ولذا فمن المهم أن تُستعاد تلك العلامات عند الشروع في أي من هذه التطبيقات لتحسين أدائها. اتبعت الأبحاث المتعلقة بهذا الشمّان إحدى طريقتين: الأولى هي الطريقة الإحصائية والتي تستخدم في غالبها خوارزميات تعلم الآلة، والثانية طريقة تعتمد على قواعد مشتقة من قواعد النحو والإملاء للغة العربية. سعينا في هذه الرسالة البحثية لاتباع طريقة ثالثة تجمع بين الطريقتين السابقتين، والتي من شأنها تحسين دقة التشكيل الآلي.

نقدّم في هذه الرسالة البحثية إسهامين رئيسين: الأوّل بناء مكنز مشكل آليًا، والثاني تطوير مشكل آلي هجين يجمع بين الطريقة الإحصائية والقواعد. وقد قمنا ببناء المكنز من مصادر عدة، سواء كانت مشكلة أو غير مشكّلة، مع مراعاة التنوع في مجالات عدة كالأخبار، والرياضة، والأدب، والدين. ويحتوي هذا المكنز على أكثر من 28,000,000 كلمة من الكتب التراثية، وحوالي 3,000,000 كلمة من اللغة العربية الحديثة. ونبين في هذه الرسالة الطريقة المتبعة في بناء المكنز بشكل تفصيلي وكذلك نعرض إحصاءات شتّى مستخرجة منه. ويعتمد الإسهام الثّاني لهذه الرسالة البحثية على دمج الطريقة الإحصائية مع القواعد في نظام هجين للتّشكيل الآلي. وقد استنتجت القواعد من المكنز بحيث تضمن دقة تقترب من 100%. وتتكون كل قاعدة من عدّة خصائص، كالحرف الحالي والأحرف السّابقة واللاحقة والكلمات الوقفية وهلم جرا. وقد أثبتت النتائج المستخلصة أن استخدام هذه القواعد من المكنز بشكل ملحوظ. أما في الطريقة الإحصائية، فقمنا باستخدام سلاسل الكلمات والأحرف والوسوم المستخرجة من المكنز، ومن ثمّ قمنا باختيار أفضل تشكيل ممكن (لكل مستوى من المستويات الثلاثة) والأحرف والمكنز، ومن ثمّ قمنا باختيار أفضل تشكيل ممكن (لكل مستوى من المستويات الثلاثة) والأحرف والوسوم المستخرجة من المكنز، ومن ثمّ قمنا باختيار أفضل تشكيل ممكن (لكل مستوى من المستويات الثلاثة) باستخدام خوارزمية بحثية "نهمة"

CHAPTER 1

INTRODUCTION

Natural Language Processing (NLP) is an important field of both computer science and computational linguistics. Over decades, it has evolved marking great advancement in recent years. The importance of this field has increased due to the ubiquity of the Internet and mobile devices, which have been requiring more and more natural human-machine interactions. Some of NLP applications are intrinsically useful for pure language processing purposes, such as spell and grammatical checking and correction. However, other types of NLP applications are more useful not in themselves but as tools for more complex applications such as Automatic Speech Recognition (ASR), where a person can dictate text or issue commands to a device, and Text-To-Speech (TTS), where the device pronounces text or informs a user about certain situations [1].

In the Arabic language, most of the NLP problems depend heavily on the diacritics, which are often omitted for writer's convenience. For that reason, the automatic restoration of these diacritics is arguably a very important step in any Arabic NLP application, which is the subject of this thesis.

In this chapter, we introduce Arabic orthography in Section 1.1 from the diacritics perspective, problem statement in Section 1.2, applications of automatic diacritization in

Section 1.3, thesis contributions in Section 1.4, and lastly an overview of the thesis in Section 1.5.

1.1 Diacritization in Arabic Orthography

The Arabic alphabet consists of 28 letters; 25 of them represent consonants while the remaining three letters (Alif ¹, Waw $_{\mathcal{I}}$, and Ya'a $_{\mathcal{I}}$) represent the long vowels. These long vowels may also serve as consonants themselves, except Alif [2]. Each consonant may have a diacritization from a set of 14 different diacritical combinations, as shown in Table 1. These diacritical forms can be classified into five categories.

- The first category represents short vowels, namely Fat-h (´), Damm (´), and Kasr
 (○). For example, the consonant /b/ (中) combined with each short vowel is pronounced /ba/, /bu/, and /be/, respectively.
- 2. The second category is the syllabification marks, which consist of two diacritics, Sukoon (°), where the consonant is vowelless, and Shadda or gemination (°), where the consonant is doubled.
- 3. The third group is the double case-ending or Tanween, which is a double short vowel (ố ổ). Tanween is added at the end of a word in order for it to be pronounced with an ending /*an*/, /*on*/, or /*en*/ sounds, respectively [2].
- 4. The fourth category is the combination of the first category (short vowels) and Shadda.
- The fifth category is the combination of the third category (Tanween) and Shadda
 [3].

The diacritization of a word in Arabic is divided into two parts: the first part is contextinsensitive and is affected only by the morphology of the word. The second part is context-sensitive and can be affected by the context of the word in a sentence. The ambiguity in the meaning of a word is controlled by the former while the latter affects the ambiguity of a sentence. In automatic diacritization, statistical methods can be used for the deduction of the first part diacritics while the second part requires the knowledge of the syntactical rules.

No.	Diacritical Category	Diacritic	Example	Example's Pronunciation
1	Short Vowels	Fat-h (´)	بَ	/ba/
2		Damm (ႆ)	ب	/be/
3		Kasr ()	بُ	/bu/
4	Syllabification Marks	Sukoon (ໍ)	بْ	/b/
5		Shadda (Ó)	بّ	/bb/
6	Double Short Vowels	Tanween Fat-h (゛)	بً	/ban/
7	(Tanween)	Tanween Damm (゛)	بٌ	/bun/
8		Tanween Kasr ()	ب	/ben/
9	Shadda + Short Vowel	Shadda + Fat-h ($\stackrel{\sharp}{-}$)	ڹۘٞ	/bba/
10		Shadda + Damm ($\stackrel{s}{-}$)	بٌ	/bbu/
11		Shadda + Kasr ($\stackrel{*}{-}$)	Ļ	/bbe/
12	Shadda + Tanween	Shadda + Tanween Fat-h ($\stackrel{\sharp}{-}$)	بَّ	/bban/
13		Shadda + Tanween Damm ($\stackrel{\sharp}{-}$)	ڹٞ	/bbun/
14		Shadda + Tanween Kasr ($\stackrel{\sharp}{-}$)	ڹ	/bben/

Table 1 Arabic Diacritics and Taxonomy

1.2 Problem Statement

Automatic Text Diacritization (ATD) (aka Automatic Diacritics Restoration) is one of the NLP problems that can be viewed as an independent problem, which has its own applications, or as a complementary one to other more complex problems. This problem is often associated with Semitic languages like Arabic, Hebrew, Amharic and others. However, it is also applicable to other languages such as Latin-based, Greek, and Korean languages [4]. When the Arabic language is considered, which is the focus of this research work, diacritization is often omitted from text leaving the reader with semantic ambiguity. However, fluent readers can deduce this diacritization from the context of the word with the least discomfort. This is not the case though for novice or beginning readers who can find this task quite troublesome. ATD aims to reduce this ambiguity by inferring the word's intended diacritization as closely as possible.

The subject of this research work is to perform ATD for Arabic texts, or Automatic Arabic Text Diacritization (AATD). Specifically, the problem of AATD can be described as the process of restoring missing diacritics from undiacritized or partially diacritized text. Figure 1 (a) shows a sample input and Figure 1 (b) shows the expected output of the AATD process for this input.

خير الناس أنفعهم للناس

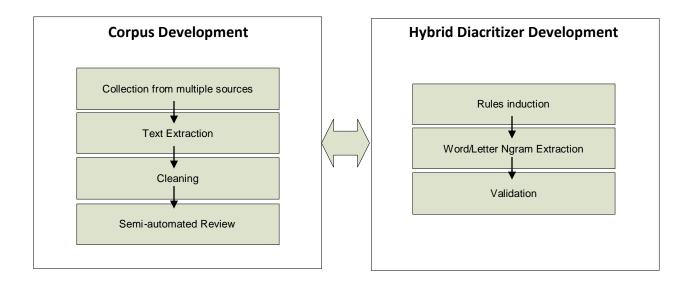
خَيْرُ النَّاسِ أَنْفَعُهُمْ لِلنَّاسِ

(a) Input

(b) Output

Figure 1: Example on AATD.

1.3 Applications of AATD


AATD, or Automatic Arabic Text Diacritization, can be beneficial both independently and as an input to other Arabic related NLP problems. By applying AATD, Arabic text ambiguity is reduced and the meaning of the text is better understood. Furthermore, having a diacritized text is an essential step in both Arabic ASR (AASR) and Arabic TTS (ATTS). In the former, most of the methods require supervised training based on a diacritized corpus and its corresponding acoustic model. Having to manually diacritize such a corpus can be unnecessarily tiresome and time-consuming step. In the later, the ATTS engine needs the full phonetic transcription of a sentence before pronouncing it, which can only be achieved if the text is fully diacritized.

1.4 Contributions

The main contributions of this thesis are:

- Construct a diacritized corpus collected from different sources covering a variety of domains.
- 2- Design a hybrid model for AATD using rules as well as statistics.
- 3- Compare the performance of the developed model to other tools in the field, objectively.
- 4- Develop tools and libraries that help in future work of the topic.

Figure 2 shows the work structure behind this thesis. The details of this structure will be discussed in the coming chapters.

1.5 Overview

The rest of this thesis is organized as follows: Chapter 2 gives a survey of prior research in this subject. Chapter 3 describes the corpus building approach while Chapter 4 describes the hybrid approach and the implemented diacritizer. Chapter 5 discuses the evaluation of the diacritizer and compares it with other available ones. Finally, the conclusion and future work are given in Chapter 6.

CHAPTER 2

LITERATURE REVIEW

The problem of automatic diacritization has been explored extensively by researchers in the last two decades, most notably for Arabic. It has been approached as an independent problem, a sub-task of other problems such as Automatic Speech Recognition (ASR), or as a by-product of other Natural Language Processing (NLP) problems such as Part-of-Speech Tagging (POST) [5]. In all three cases, several methodologies have been followed to achieve the desired level of accuracy. In most studies statistical methods have been used. In other studies, a hybrid of two or more different methods were used to maximize the accuracy.

In this survey, we review recent publications regarding this topic for the Arabic language in Section 2.1 and for other languages in Section 2.2. We also present a comparison between various diacritization methods in Section 2.3.

2.1 Arabic Diacritization

Azim [5] added acoustic features to the textual methods as an input to the diacritization problem. The author examined the effect of combining speech with existing text-based models on correcting errors made by the text-based models prediction. The author used Hidden Markov Models (HMM) for speech and Conditional Random Fields (CRF) for text. The author claimed to have achieved better performance than what was achieved using the Morphological Analysis and Disambiguation for Arabic toolkit (MADA). With case-endings, the Diacritic Error Rate (DER) was 1.6% while the Word Error Rate (WER) was 5.2%. Without case-endings, the DER was 1.0% while the WER was 3.0%.

Rashwan et al. [2] introduced a dual-mode stochastic system for Arabic diacritization of raw text. The first mode searches in a dictionary of full-form diacritized words, using A* lattice search and long-horizon *N*-gram probability estimation, for the most likely diacritization. When the word or the sequence of words is out-of-vocabulary (OOV), the second mode factorizes each word to all its possible morphological cases and searches the dictionary for each, choosing the best diacritization. The system achieved 3.1% DER and 12.5% WER.

Zitouni and Sarikaya [6] used a maximum entropy (MaxEnt) approach for restoring diacritics. This approach integrates diverse types of information such as lexical, segment-based and part-of-speech tag features. They defined the problem as a classification problem and hence used the MaxEnt classifier. Their conducted experiments on the Linguistic Data Consortium's (LDC) Arabic Treebank Part 3 showed WER 17.3% and 7.2% for case-ending and non-case-ending, respectively and a DER was 5.1% and 2.2%, respectively.

Shaalan et al. [7] used a hybrid approach of an Arabic lexicon and a diacritized corpus. First, the word is searched in the lexicon. If the word has one diacritized form, it is confirmed as the diacritization of the word. However, if the word is not found another look-up is performed with the previous and/or the next word in a bi-gram lexicon. Then, the second stage is to tag the word using the Support Vector Machine-based Part of Speech (SVM-POS) tagger and the diacritized form is then inferred. To determine the case-endings, three features were used: the POS of the word, the chunk position and the sentence position. These features were combined into an SVM model to determine the case-ending of a word. The WER achieved was 17.31% while the DER was 4.41%.

Habash et al. [8] [9] developed the MADA system which uses SVM with POS tagging system. The SVM model was built with the features extracted from Buckwalter Arabic Morphological Analyzer (BAMA). The features include noun case, verb mood, and nunation (Tanween). Their reported WER is 14.9% and DER is 4.9% with case-endings. Their claimed WER is 5.5% and DER is 2.2% without case-endings.

Elshafei et al. [10] used a Hidden Markov Models (HMM) based approach in providing a solution to the problem of automatic diacritization. This approach requires a large corpus of fully diacritized text to extract the features needed. The authors used the holy Qur'an as their training and test corpus. The features used for HMM were the sequence of undiacritized words while the hidden states were the diacritized words. In their testing experiments, the authors found the word error rate to be 4.1% which they improved to about 2.5% using a preprocessing stage and trigrams for selected number of words and articles.

Attia [11] described an Arabic diacritizer (ArabDiac) that was used for automatic Arabic phonetic transcription. This system used a hybrid model in which both statistical data and rules were employed to deduce the most appropriate diacritization of a sentence. The system operated in 4 stages. In the first stage, the plain input text is normalized by converting all numeric and acronyms to their alphabetical forms. In the second stage, a lexical analyzer gets the most likely lexical diacritization, morphemes sequence, and

identification of transliterated strings. In the third stage, a POS tagger extracts the POS tags of each word and then a syntactical analyzer infers the correct syntactic diacritization. As for transliterated strings, their diacritization is deduced based on statistical data and phonetic grammar. Finally, in the fourth stage, the phonetic transcription is generated using a phonetic concatenator that takes care of the interphonetic effects between adjacent words. According to the author's experimentations, the accuracy in the lexical level was 97% while the accuracy in the syntactical level was 88%.

2.2 Non-Arabic Diacritization

Most of the research in the field of automatic diacritization is Arabic-specific. However, some researchers have studied the same problem on other languages that exhibit similar orthography to Arabic which makes them strongly related to our subject.

Trung et al. [12] have studied the diacritization problem in Vietnamese, a language written in Roman letters along with accents that are usually omitted. The authors approached the problem as a sequential tagging using CRF and SVM where they selected features in two ways: one using letters and the other using syllables. The claimed accuracies were 91% for the former and 93% for the latter (in written language).

Atserias et al. [13] used a bigram model for Spanish to resolve ambiguity in spellchecking where a word may appear more than once in the corrections list but with different accents (or diacritics). They achieved a precision of 85% and a recall of 64%.

Javed et al. [14] studied the diacritization problem for Sindhi, which is spoken in Pakistan and parts of India. In their research, they developed a system based on WordNet structures which stores the semantic relationships between words. This system used three different corpora. The first one, called CRITICAL, was used for ambiguous critical words. The second, so-called HOMONYMY, was used for all homographic words of critical words. The third, called WNL, was used for analogical words. In their testing experiments, they claimed a word error rate of 0.71%, and a diacritic error rate of 3.39%.

Haertel et al. [15] targeted the diacritization of Semitic languages, especially Syriac. The method they used was Conditional Markov Models (CMM) which only required diacritized not-fully tagged corpus. These models were based on features (such as the suffixes and prefixes) extracted from previously diacritized words. The authors claimed a word-error-rate of 15% for Arabic and 10.5% for Syriac.

Raza [16] studied the problem for Urdu. He presented analysis and implementation of a system that performs automatic diacritization for Urdu text. The system was based on a lexicon and a corpus that was manually diacritized and POS tagged. The process of the system is as follows. First, all diacritics are removed from the text prior to its processing. After that, a POS tagger, which was trained using HMM on the corpus of bigrams and trigrams, is used to identify POS tags for each word. Then, the word and its tags are searched in the lexicon to get a diacritized version of the word. If the word and its tag are not found, the word is sent for rule-based affixation, or else a statistical diacritization module. Overall, the system achieved a maximum of 95% accuracy as per the research experiments.

2.3 Comparison

In the following tables (Table 2 and Table 3), we give a detailed comparison between different research works that address the problem of diacritization. The comparison criteria are as follows: the approach used (whether statistical or rule-based), the corpus (a standard corpus or a custom one), and evaluation metrics (WER with and without case-endings, and similarly DER with and without case endings). These metrics are explained in more details in Section 5.1.

In the table, we can see most researchers have resorted to statistical methods while only a few used rule-based methods (albeit limitedly). Some of these statistical methods are based on machine learning algorithms such as CRF and HMM, while others are based on simple word-level (or letter-level) *N*-grams.

The table also shows how the results differ greatly between the papers in terms of the word-level error rate and the diacritic-level error rate. For example, Azim [5], whose stated results were the best as far as we encountered, has reported a WER of 5.2% as opposed to a DER of 1.6%, with case-endings included. Similarly, Rashwan et al [2] reported a WER of 12.50% and a DER of 3.80%.

Although the problem is the same, it is very hard to compare these papers objectively for two reasons. First, the testing set used in each paper is different than others (with few exceptions which used LDC's Arabic Treebank). Second, although the metrics used are mostly the same, each paper has its own way of computing them. Sometimes these differences are minor and don't matter much and sometimes they are major differences and can greatly affect the performance. We have explained some of these evaluation problems in Section 5.2.

Paper ¹	Approach	Corpus	WERwithout	WERwith	DERwithout	DERwith
			CE	CE	CE	CE
Azim 2012 [5]	Statistical	LDC Arabic Treebank	3.0%	5.2%	1.0%	1.6%
Trung 2012 [12]	Statistical	Custom	NA ²	NA	NA	8.4%
Rashwan 2011 [2]	Statistical	Custom	3.10%	12.50%	1.20%	3.80%
Mahar 2011 [14]	Statistical	Custom	NA	1.13%	NA	3.39%
Haertel 2010 [15]	Statistical	LDC Arabic Treebank	NA	15.02%	NA	5.15%
Alghamdi 2010 [17]	Statistical	Kacst	26.03%	46.83%	9.25%	13.83%
Rashwan 2009 [18]	Statistical	Custom	5.70%	21.10%	NA	NA
Raza 2009 [16]	Statistical	Custom	4.80%	NA	NA	NA
Shaalan 2009 [7]	Statistical	LDC Arabic Treebank	33.51%	17.31%	7.99%	4.41%
Mohamed 2009 [19]	Statistical	LDC Arabic Treebank & Custom	5.93%	NA	NA	NA
Zitouni 2009 [20]	Statistical	LDC Arabic Treebank	7.20%	17.30%	2.20%	5.10%

Table 2 Comparison of different approaches followed by other researchers (A)

¹ Paper name is abbreviated as the last name of the first author followed by the publishing year. ² Not available.

Paper	Approach	Corpus	WER _{Without} CE	WERwith CE	DERwithout CE	DERwith CE
Roth 2008 [9]	Statistical	LDC Arabic Treebank	4.60%	13.90%	NA	NA
Schlippe 2008 [21]	Hybrid	LDC Arabic Treebank & AppTek	9.30%	13.80%	3.20%	4.90%
Habash 2007 [8]	Statistical	LDC Arabic Treebank	5.50%	14.90%	2.20%	4.80%
Elshafei 2006 [22]	Statistical	Kacst	NA	5.50%	NA	NA
Zitouni 2006 [23]	Statistical	LDC Arabic Treebank	7.90%	18.00%	2.50%	5.50%
Elshafei 2006 [24]	Statistical	Qur'an	NA	NA	NA	4.10%
Sanka 2005 [25]	Statistical	LDC Arabic Treebank	NA	19.73%	NA	NA
Attia 2005 [11]	Statistical (Mainly)	Custom	3.60%	13.50%	NA	NA
Nelken 2005 [26]	Statistical	LDC Arabic Treebank	7.33%	23.61%	6.35%	12.79%

Table 3 Comparison of different approaches followed by other researchers (B)

2.4 POS Tagging & Morphological Analysis

Part-of-Speech Tagging (POST) is the process of assigning morpho-syntactic tags to each word in a sentence [27]. The richness and complexity of Arabic can make the needed tag

set a very large one. However, researchers often prefer to use small tag sets such as the Buckwalter tag set which has 70 basic tags that can be combined to form 169 tags [27].

POS tagging can be of tremendous value to the diacritization problem. In fact, the best performing automatic diacritizers make use of POS tagging extensively (as in [5] for example as explained before). However, tagging a word does not mean it diacritical form is immediately known since words tend to have multiple diacritical forms that require a subsequent stage of disambiguation.

2.5 Summary

In this chapter, we examined prior research work in the diacritization problem. The problem has been tackled by different approaches that mainly fall under two categories: the statistical approach, and the rule-based approach. Although, many researchers have claimed to achieve remarkable results, it is difficult to verify these claims independently as they usually do not have public implemented systems.

In Chapter 4, we discuss our proposed approach and our methodology to avoid the downsides of existing approaches. But before that we describe in Chapter 3 the development process of the corpus that we will use in our research.

15

CHAPTER 3

CORPUS CONSTRUCTION

A text corpus is a large and structured set of texts. No matter what statistical method is used, the corpus remains the most essential component that cannot be relinquished [28]. Therefore, one of the primary objectives of this thesis was to build a sizable, diverse and fully-diacritized corpus which sustains an acceptable level of accuracy. In this chapter, we discuss the approach that was followed while developing the corpus. In Section 3.1, we discuss the approach in details, whereas in Section 3.2 we give some insightful analysis and detailed statistics of the corpus. Section 3.3 presents the summary of the chapter.

3.1 Corpus Development Approach & Methodology

The process of building a corpus consists of the four phases demonstrated in Figure 3. The purpose of the first phase was to collect as much text as possible from mostly Internet websites and electronic books. To achieve that, a web crawler was built to download pages and documents from websites. The downloaded files were then saved to the disk in their original format. Table 4 shows a list of 25 sites that were crawled.

In addition to the crawled websites, a special search was made for Arabic documents with the extensions PDF, EPUB, ODF, PPT, PPTX, DOC, and DOCX, which represent the most common document formats. The search was performed on Google Search Engine and produced up to 2,149 documents (although the PDF documents were excluded later on because extracting texts from such files is not always effective, especially for Arabic).

No.	Website	URL	Last Accessed
1	Aadab Magazine	http://www.adabmag.com/	25 March 2013
2	Adab Encyclopedia of Poetry	http://www.adab.com/	25 March 2013
3	Ahl Al-Lughah Forums	http://www.ahlalloghah.com/	25 March 2013
4	Al-Alukah Network	http://www.alukah.net/	25 March 2013
5	Al-Arabi Magazine	http://www.alarabimag.com/	15 April 2013
6	Al-Arabiya News Network	http://www.alarabiya.net/	25 March 2013
7	Al-Bayan Magazine	http://www.albayan.co.uk/	25 March 2013
8	Al-Bayan Newspaper	http://www.albayan.ae/	25 March 2013
9	Al-Hayat Newspaper	http://www.alhayat.com/	25 March 2013
10	Al-Jazeera News Network	http://www.aljazeera.net/	25 March 2013
11	Al-Maany Dictionary	http://www.almaany.com/	25 March 2013
12	Al-Majalla Magazine	http://www.majalla.com	25 March 2013
13	Al-Masry Al-Yuom Newspaper	http://www.almasryalyoum.co m/	25 March 2013
14	Al-Meshkat Islamic Network	http://www.almeshkat.com/	25 March 2013
15	Al-Mujtama'a Magazine	http://www.magmj.com/	25 March 2013
16	Al-Quds Newspaper	http://www.alquds.co.uk/	25 March 2013
17	Al-Sakher Forums	http://www.alsakher.com	25 March 2013
18	Al-Shamela Library	http://www.shamela.ws/	19 March 2013
19	Al-Sharq Al-Awsat Newspaper	http://www.aawsat.com/	25 March 2013
20	ArabDict Dictionary	http://www.arabdict.com/	25 March 2013
21	Dahsha Encyclopedia	http://www.dahsha.com/	25 March 2013
22	Elaph Blog	http://www.elaphblog.com/	25 March 2013
23	Elaph Online Newspaper	http://www.elaph.com/	25 March 2013
24	Saaid Al-Fawaed	http://www.saaid.net/	25 March 2013
25	Sayidaty Magazine	http://www.sayidaty.net/	25 March 2013

Table 4 List of crawled websites

In the second phase of the corpus development process, we extracted the texts from the raw files that were crawled in the first phase. To perform the extraction, we built a program based on the Apache Tika [29], which is a Java toolkit that automatically detects

and extracts texts from various document formats. After the texts were extracted by Tika, the tool separated Arabic texts from non-Arabic texts using regular expressions. Figure 3 shows the used regular expression to separate Arabic text from non-Arabic text. These extracted texts constituted what we call the General Corpus, which will be discussed in the following subsection.

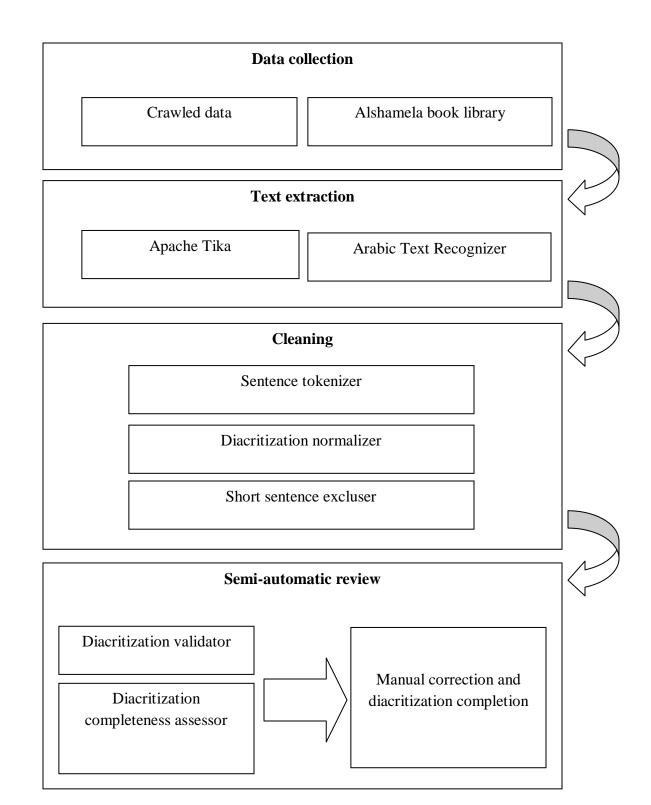


Figure 3: The corpus development process

Using the General Corpus, we separated diacritized texts from non-diacritized ones by computing the diacritization level (see Appendix III for the implementation). Diacritized texts are defined as those texts with diacritization level more than or equal to 90%. In addition, some of the texts that were collected were manually diacritized by a group of volunteers. These texts were also added to crawled texts. The result constituted the Diacritized Corpus. On this corpus we performed cleaning and verification as a third phase.

The third phase, or the cleaning phase, does the following four primary functions in sequence:

- 1. Sentence tokenization: which divides the extracted texts into sentences, based on a regular expression that is nearly 100% accurate. (See Appendix II)
- 2. Short sentences exclusion from the corpus: we assumed that any sentence with length less than 100 characters is a short one.
- 3. Cleaning the diacritization: which essentially means that certain inconsistencies are automatically corrected. One such inconsistency is the position of Tanween diacritics after the Alif letter which are often misplaced at the end of the word. The correct placement of Tanween should be on the letter preceding the Alif not the Alif itself. (See Appendix II for the function and Subsection 3.1.3 for the conventions followed)
- 4. Removal of repetitions from the corpus disregarding non-Arabic letters: this function ensures that every sentence is different from others. This is essential because many texts in the corpus contain quotes from the holy Qur'an, Hadith or other sources.

The fourth and final phase of the corpus development process involved semi-automatic validation. This validation was performed by a heuristics-based function that determines whether a word is correctly diacritized or not (for this function implementation, refer to Appendix III). When the word is marked as invalid or incompletely diacritized, we manually correct the word.

3.1.1 General Corpus

The General Corpus consists of all the texts extracted from the crawled websites. In this corpus, we ignore the diacritization of the texts, which means that this corpus have a mix of diacritized and undiacritized texts. Table 5 shows some statistics about the General Corpus. These statistics are the number of Arabic letters (6,931,210,613), the number of Arabic words (1,587,511,592), the number of unique Arabic words with diacritics (10,775,960), the number of fully diacritized words (273,558,820), the number of sentences (101,729,156) and the diacritization level (20.577%), which is the ratio of diacritized letters to the total number of letters. To the best of our knowledge, this corpus is the largest and most comprehensive one to date.

Arabic Letter Count	6,931,210,613
Arabic Word Count	1,587,511,592
Unique Arabic Word Count	10,775,960
Diacritized Word Count	273,558,820
Sentence Count	101,729,156
Diacritization Level	20.577%

 Table 5: The General Corpus Statistics

3.1.2 Diacritized Corpus

The Diacritized Corpus is the diacritized texts extracted from the general corpus plus the texts that were manually diacritized by our team. Table 6 shows some statistics collected from the Diacritized Corpus. It is important to note here that the computed diacritization level (about 99%) doesn't mean necessarily that the diacritization is incomplete. Rather, it means that the heuristics used to compute the diacritization level is not 100% accurate.

Arabic Letter Count	121,777,450
Arabic Word Count	30,169,610
Unique Arabic Word Count	427,436
Sentence Count	710,881
Diacritization Level	99.09%

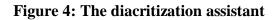
 Table 6: The Diacritized Corpus Statistics

3.1.3 Rules and conventions

In the Diacritized Corpus, we followed certain rules and conventions to make sure that the diacritization is consistent throughout. Table 7 shows these rules and conventions.

Table 7: Diacritization rules and conventions


1	<i>Shadda</i> cannot be used on its own and must be attached with another compatible diacritic.
2	Shadda always precedes other diacritics.
3	Tanween-fath always precedes the Alif.
4	Foreign words always end with sukoon.
5	Compound names are diacritized as follows: first part is diacritized as dictated by the context, and the later part is always considered genitive.


3.1.4 Diacritization Assistant

During the course of thesis work, we developed a diacritization assistant which is an editor that helps speed-up manual diacritization. Figure 4 shows a screenshot of the editor. The basic idea of this editor is to reduce the number of mouse/keyboard interactions. In normal text editors, the user needs to navigate between letters in order to add or change the diacritics for a particular letter. Then, the user presses the keys *Shift* and the diacritic simultaneously to add the diacritic.

In this tool, we eliminate the need for manual navigation. We also eliminate the need for the use of the *Shift key*. The user only needs to press the diacritic keys on the keyboard to add the diacritics. Then the editor automatically navigates to the next letter. Since some letters can have multiple diacritics such as *shadda* and *damma*, the editor intelligently waits for another diacritic when the *shadda* key is pressed. If the user needs to delete the previously added diacritic, he/she only needs to press backspace. To navigate between letters or words, he/she can use the *left* and *right* arrows or the mouse wheel.

Another important feature of this tool is the ability to navigate to the next undiacritized, partially diacritized, or invalidly diacritized word just by pressing the keys *Shift* and *Z*. This feature has two advantages: the first is ensuring the complete diacritization of the text, and the second is ensuring the validity of the text. When a word is encountered, the user can easily navigate between all possible diacritizations of the word (which are extracted from the corpus itself) in the order of their probabilities.

3.2 Diacritized Corpus Analysis

To better understand the corpus, we collected some statistics that relate to the diacritics distribution in the corpus. For example, Table 8 shows the frequency and probability (percentage) of encountering every diacritic in the corpus.

Letter	Frequency	Percentage
ॕ॑ॕ	78266	0.057%
ిం	104302	0.076%
្ខ័	149084	0.109%
ंँ	5011889	3.655%
ऺ॔ॕ	562575	0.410%
ॖ ॕ	860294	0.627%
ٝ	832857	0.607%
°	797373	0.581%
្គ	1398457	1.020%
	67241234	49.032%
ं	16029148	11.688%
Ò	22021841	16.058%
்	22041033	16.072%
ं	9054	0.007%

 Table 8 Diacritics distribution in the Diacritized Corpus

The table shows that Fat-ha is the most common diacritic followed by Sukoon and Kasra. It also shows that Shadda is almost always associated with short vowels or Tanween and seldom present on its own. This can be considered a tentative measure of how accurate the corpus is diacritized since Shadda should not be used alone.

3.2.1 Letter-Diacritic Matrix

One way to examine the corpus further is to look at the distribution of diacritics on letters. Such distribution is given in the following tables.

Letter	ీం	ఄఀ	ृ॔	ੱ ੱ	ંં	ૢૼ૾ૼ	Ó
ç	0.000%	0.000%	0.002%	0.000%	0.000%	0.000%	2.567%
Ĩ	0.000%	0.000%	0.000%	0.223%	0.000%	0.000%	0.000%
Í	0.000%	0.000%	0.000%	0.001%	0.000%	0.000%	0.081%
ۇ	0.000%	0.000%	0.000%	0.013%	0.003%	0.000%	0.229%
1	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
ئ	0.000%	0.000%	0.000%	0.000%	0.000%	0.004%	24.109%
1	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Ļ	0.023%	0.028%	0.022%	1.592%	0.537%	0.720%	0.360%
õ	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	14.394%
ت	0.020%	0.016%	0.064%	4.817%	0.181%	0.302%	0.213%
ث	0.009%	0.013%	0.008%	0.603%	0.074%	0.410%	0.237%
٦	0.040%	0.033%	0.158%	2.991%	0.379%	0.634%	0.117%
۲	0.002%	0.002%	0.005%	2.197%	1.456%	0.117%	0.168%
Ż	0.002%	0.001%	0.009%	1.122%	0.100%	0.432%	0.182%
د	0.237%	0.139%	0.194%	10.655%	1.464%	1.858%	1.656%
ذ ا	0.012%	0.006%	0.007%	1.191%	0.182%	0.563%	0.273%
ر	0.147%	0.255%	0.216%	3.581%	0.724%	0.918%	1.091%
j	0.030%	0.023%	0.093%	2.641%	0.269%	0.525%	0.428%
س	0.020%	0.003%	0.010%	1.015%	0.158%	0.367%	0.381%
ش	0.010%	0.013%	0.013%	0.520%	0.066%	0.271%	0.269%
ص	0.217%	0.127%	0.089%	2.706%	0.899%	0.499%	0.265%
ض	0.010%	0.004%	0.006%	2.005%	0.134%	0.343%	7.014%
ط	0.035%	0.011%	0.032%	1.456%	0.644%	0.566%	0.514%
ظ	0.071%	0.098%	0.076%	0.799%	0.251%	0.915%	0.590%
٤	0.000%	0.000%	0.000%	0.092%	0.005%	0.016%	0.593%
Ż	0.000%	0.000%	0.000%	0.111%	0.004%	0.045%	0.063%
ف	0.017%	0.011%	0.028%	0.824%	0.080%	0.422%	0.410%
ق	0.113%	0.213%	0.181%	1.219%	0.704%	0.798%	0.523%
اى	0.014%	0.015%	0.044%	1.602%	0.150%	0.465%	0.174%
ل	0.048%	0.085%	0.142%	5.985%	1.096%	1.433%	0.682%
م	0.027%	0.022%	0.085%	7.034%	0.393%	0.662%	0.473%
ن	0.024%	0.013%	0.026%	14.902%	0.151%	0.423%	0.403%
٥	0.000%	0.000%	0.000%	0.114%	0.030%	0.034%	0.063%
و	0.015%	0.016%	0.019%	1.091%	0.078%	0.264%	0.049%
ى	0.000%	3.390%	9.504%	12.299%	7.665%	4.022%	0.000%
ي	0.378%	0.600%	0.888%	3.803%	0.699%	1.982%	0.116%

Table 9 Letter-diacritic distribution (A)

Letter	ै	្គ	ó	ं	Ò	்	ं
۶	29.542%	47.065%	10.328%	6.056%	4.419%	0.021%	0.000%
Ĩ	0.000%	0.000%	99.497%	0.168%	0.000%	0.000%	0.112%
i	0.075%	0.035%	91.362%	4.942%	0.017%	3.486%	0.000%
ۇ	0.175%	0.254%	36.695%	18.963%	0.108%	43.559%	0.001%
1	0.000%	0.041%	0.013%	0.005%	99.939%	0.002%	0.000%
ئ	0.626%	0.486%	22.025%	11.843%	26.838%	14.068%	0.000%
١	0.000%	0.009%	59.796%	27.870%	11.840%	0.476%	0.009%
ب	0.346%	1.054%	29.672%	6.386%	38.821%	20.436%	0.003%
õ	13.645%	17.577%	27.242%	10.330%	16.789%	0.023%	0.000%
ت	0.167%	0.412%	59.611%	14.562%	9.894%	9.733%	0.009%
ث	0.418%	0.533%	45.753%	29.589%	7.219%	15.133%	0.001%
٦	0.194%	0.797%	45.243%	20.355%	13.427%	15.497%	0.136%
۲	0.218%	0.385%	57.177%	8.449%	9.842%	19.980%	0.003%
Ż	0.339%	0.451%	45.616%	12.848%	12.469%	26.430%	0.001%
د	1.912%	4.533%	32.815%	13.142%	18.133%	13.250%	0.011%
ذ	0.029%	0.419%	73.265%	5.636%	11.201%	7.216%	0.001%
ر	1.463%	3.598%	45.546%	12.136%	17.786%	12.526%	0.013%
j	0.349%	0.771%	52.957%	6.748%	24.269%	10.894%	0.004%
س	0.481%	1.588%	49.070%	12.337%	11.753%	22.816%	0.002%
ش	0.269%	1.027%	59.774%	7.886%	7.681%	22.199%	0.002%
ص	0.358%	0.549%	52.017%	8.280%	15.949%	18.042%	0.003%
ض	1.145%	3.485%	41.743%	12.728%	21.081%	10.304%	0.001%
ط	0.821%	1.062%	52.546%	10.702%	11.565%	20.044%	0.003%
ظ	0.347%	1.126%	51.397%	17.368%	15.123%	11.836%	0.003%
٤	0.478%	0.633%	65.909%	8.264%	8.478%	15.532%	0.000%
Ė	0.053%	0.108%	75.659%	6.354%	6.301%	11.303%	0.000%
ف	0.491%	0.693%	54.316%	3.928%	31.093%	7.685%	0.001%
ق	0.482%	0.354%	67.014%	10.412%	9.356%	8.628%	0.003%
ك	0.162%	0.213%	63.138%	18.271%	7.247%	8.503%	0.002%
ل	0.700%	0.878%	50.903%	7.090%	23.212%	7.741%	0.005%
م	0.599%	1.028%	40.081%	13.505%	20.376%	15.708%	0.007%
<u>ن</u>	0.355%	0.596%	21.950%	6.147%	11.017%	43.986%	0.007%
٥	0.092%	0.201%	19.095%	48.828%	28.095%	3.445%	0.000%
و	0.029%	0.044%	75.940%	1.240%	1.493%	19.721%	0.001%
ى	0.234%	0.198%	24.491%	0.072%	1.551%	36.501%	0.072%
ي	0.060%	0.057%	40.750%	14.022%	0.601%	36.026%	0.017%

Table 10 Letter-diacritic distribution (B)

3.2.2 Letter-Position-Diacritic Matrix

Another way to look at the corpus is by using what we call the "the letter-positiondiacritic matrix", which is a matrix that shows the most frequent diacritics for a particular letter in a particular position. Table 11 below shows the letter matrix for the developed corpus. For readability, we used the following abbreviations for the diacritics.

NI	Nil	F	Fat-ha
Μ	Damma	K	Kasra
S	Shadda	SF	Shadda+Fat-ha
SM	Shadda+ Damma	SK	Shadda+ Kasra
DF	Double Fat-ha	DM	Double Damma
DK	Double Kasra	Ν	Sukoun
SDF	Shadda+Double Fat-ha	SDM	Shadda+Double Damma
SDK	Shadda+Double Kasra	Rem.	Remaining

In the table, the first column represents the letter while the rest of the columns represent the position of the letter in the word. For example, the letter \check{o} in the word \check{u} would have the 1st position, and so on. In each cell, the most probably diacritics are given in a descending order. For example, in the 1st position for the letter \circ the most likely diacritic is F (or Fat-ha) with a probability of 17%, then K (or Kasra) with a probability of 14.8%, then M (or Damma) with a probability of 14% and the remaining cases occur 54.3% of the time.

Letter	1^{st}	2 nd	3 rd	4 th	5 th	6 th
ş	F=16.955	F=48.157	K=44.692	K=65.022	K=60.226	F=61.111
	K=14.765	DK=26.718	F=25.817	M=21.433	M=24.649	K=27.778
	M=14.01	DM=14.653	M=18.413	F=13.195	F=15.082	M=11.111
	Rem.=54.27	Rem.=10.472	Rem.=11.078	Rem.=0.35	Rem.=0.043	Rem.=0
Ĩ	NI=97.197	NI=99.014	NI=98.961	NI=99.523	NI=100	NI=100
	F=0.839	Rem.=0.986	F=1.038	Rem.=0.477	Rem.=0	Rem.=0
	N=0.29		Rem.=0.001			
	Rem.=1.674					
Î	F=93.753	F=83.181	F=70.347	N=47.632	F=88.421	F=93.333
	M=5.977	M=9.453	N=13.515	F=27.033	M=8.421	N=6.667
	Rem.=0.27	N=6.289	M=10.662	K=14.035	K=3.158	Rem.=0
		Rem.=1.077	Rem.=5.476	Rem.=11.3	Rem.=0	
ۇ	F=15.298	N=49.047	N=42.71	M=63.769	M=77.778	N=50
	M=14.277	M=27.234	M=41.543	K=30.132	N=22.222	F=50
	K=14.146	F=22.766	F=14.061	F=6.043	Rem.=0	Rem.=0
	Rem.=56.279	Rem.=0.953	Rem.=1.686	Rem.=0.056		
1	K=52.168	K=99.447	K=93.454	K=96.394	K=70.833	NI=100
	NI=47.198	Rem.=0.553	DK=5.529	NI=3.606	NI=29.167	Rem.=0
	Rem.=0.634		NI=0.992	Rem.=0	Rem.=0	
			Rem.=0.025			
ئ	K=15.908	K=67.998	K=87.17	K=87.992	K=87.64	K=100
	M=14.733	DF=18.032	F=6.203	F=6.997	M=7.191	Rem.=0
	F=14.579	F=9.215	M=4.95	M=4.759	F=4.944	
	Rem.=54.78	Rem.=4.755	Rem.=1.677	Rem.=0.252	Rem.=0.225	
١	NI=99.496	NI=99.962	NI=99.559	NI=99.158	NI=98.922	NI=81.11
	Rem.=0.504	Rem.=0.038	Rem.=0.441	Rem.=0.842	N=1.073	N=18.89
	** 10.00.1				Rem.=0.005	Rem.=0
Ļ	K=48.096	F=52.361	K=38.254	K=50.879	K=78.006	F=41.463
	N=27.074	K=14.721	F=29.125	M=24.625	M=13.568	M=19.512
	F=22.837	M=12.344	M=18.488	F=22.536	F=8.058	DM=14.634
*	Rem.=1.993	Rem.=20.574	Rem.=14.133	Rem.=1.96	Rem.=0.368	Rem.=24.391
õ	DM=15.516	F=22.274	F=31.197	K=64.981	K=62.852	K=75.513
	K=15.481	DF=20.659	K=19.951	M=20.681	M=29.049	M=12.244
	DK=14.912	K=17.504	DM=13.851	F=12.287	F=7.356	F=11.101
	Rem.=54.091	Rem.=39.563	Rem.=35.001	Rem.=2.051	Rem.=0.743	Rem.=1.142

 Table 11 Letter-diacritic distribution over letter position (A)

Letter	1 st	2 nd	3 rd	4 th	5 th	6 th
ت	F=80.784	F=42.745	K=32.72	K=53.593	K=78.346	K=71.429
	M=15.483	K=17.754	F=26.341	F=17.544	M=20.283	F=16.112
	K=2.891	SF=17.312	M=20.456	M=15.609	F=0.887	M=11.416
	Rem.=0.842	Rem.=22.189	Rem.=20.483	Rem.=13.254	Rem.=0.484	Rem.=1.043
ث	M=52.772	F=61.363	F=32.394	K=41.806	M=47.68	N=100
	F=41.522	SF=18.288	K=32.187	M=36.707	K=47.531	Rem.=0
	K=3.71	M=7.154	M=22.192	F=20.506	F=4.64	
	Rem.=1.996	Rem.=13.195	Rem.=13.227	Rem.=0.981	Rem.=0.149	
چ	F=73.48	F=47.329	K=33.348	K=57.569	K=65.029	F=33.333
•	M=14.863	K=20.362	F=29.442	F=21.699	M=20.571	K=33.333
	K=10.044	M=16.189	M=17.012	M=18.724	F=12.914	N=25
	Rem.=1.613	Rem.=16.12	Rem.=20.198	Rem.=2.008	Rem.=1.486	Rem.=8.334
۲	F=82.174	F=56.464	K=34.377	K=46.837	K=60.956	N=40
•	M=10.476	K=16.838	F=26.585	M=27.429	M=27.238	M=40
	K=6.62	N=11.439	M=15.6	F=24.68	F=10.873	K=20
	Rem.=0.73	Rem.=15.259	Rem.=23.438	Rem.=1.054	Rem.=0.933	Rem.=0
Ż	F=74.15	F=40.37	M=37.319	K=54.122	K=69.099	N=66.667
	M=12.127	N=24.707	K=24.528	M=26.245	M=15.451	K=16.667
	K=11.628	M=18.213	F=18.837	F=14.539	F=10.73	SF=8.333
	Rem.=2.095	Rem.=16.71	Rem.=19.316	Rem.=5.094	Rem.=4.72	Rem.=8.333
د	F=56.955	F=27.912	K=31.027	K=51.647	K=65.639	K=64.706
	M=22.596	K=20.885	F=26.158	M=23.441	M=20.336	M=9.412
	K=17.023	N=11.769	M=20.424	F=23.124	F=13.553	F=9.412
	Rem.=3.426	Rem.=39.434	Rem.=22.391	Rem.=1.788	Rem.=0.472	Rem.=16.47
Ŀ	F=77.365	F=42.741	K=22.475	K=53.338	K=68.293	K=64.706
	K=12.842	K=40.628	DK=22.185	F=24.105	F=21.138	F=23.529
	M=8.001	N=5.52	M=20.043	M=19.277	M=9.756	SK=5.882
	Rem.=1.792	Rem.=11.111	Rem.=35.297	Rem.=3.28	Rem.=0.813	Rem.=5.883
ر	F=83.372	F=35.459	K=35.845	K=50.816	K=75.072	K=86.709
	K=7.553	K=18.593	F=29.898	F=24.002	M=15.48	F=6.013
	M=7.538	SF=12.545	M=16.139	M=23.029	F=9.012	M=3.165
	Rem.=1.537	Rem.=33.403	Rem.=18.118	Rem.=2.153	Rem.=0.436	Rem.=4.113
j	F=68.84	F=33.173	K=34.025	K=61.181	K=85.556	N=38.462
	K=14.727	SF=20.629	F=30.309	F=21.277	M=7.778	SM=15.385
	M=11.977	K=18.143	M=21.315	M=13.091	F=4.444	K=15.385
	Rem.=4.456	Rem.=28.055	Rem.=14.351	Rem.=4.451	Rem.=2.222	Rem.=30.768

 Table 12 Letter-diacritic distribution over letter position (B)

Letter	1 st	2 nd	3 rd	4 th	5 th	6 th
س	F=68.968	F=30.467	K=40.398	K=57.072	K=60.691	K=42.857
	M=20.848	SF=18.918	F=27.331	F=23.551	M=23.026	F=30.612
	K=8.971	N=13.704	M=17.021	M=18.038	F=13.898	N=14.286
	Rem.=1.213	Rem.=36.911	Rem.=15.25	Rem.=1.339	Rem.=2.385	Rem.=12.245
ش	F=76.889	SF=51.787	K=35.571	K=46.275	K=53.363	F=70
	M=12.74	F=12.551	F=28.236	F=33.083	M=29.148	K=10
	K=8.594	N=12.442	N=26.766	M=14.897	F=16.143	M=10
	Rem.=1.777	Rem.=23.22	Rem.=9.427	Rem.=5.745	Rem.=1.346	Rem.=10
ص	F=88.11	SF=37.469	F=33.083	K=55.963	K=68.317	F=28.571
	K=6.273	F=14.631	K=28.397	F=23.827	M=19.802	K=28.571
	M=4.43	K=13.373	M=15.237	M=18.2	F=8.911	SF=14.286
	Rem.=1.187	Rem.=34.527	Rem.=23.283	Rem.=2.01	Rem.=2.97	Rem.=28.572
ض	F=74.489	F=27.213	K=56.294	K=47.376	K=48.23	M=50
	K=10.093	K=22.7	F=22.42	F=30.845	F=33.628	N=33.333
	M=7.314	M=13.444	M=11.713	M=19.744	M=17.699	K=16.667
	Rem.=8.104	Rem.=36.643	Rem.=9.573	Rem.=2.035	Rem.=0.443	Rem.=0
ط	F=80.459	F=28.272	F=39.906	K=49.018	K=69.935	K=81.25
	M=10.524	SF=26.142	K=24.056	N=19.181	M=17.102	F=12.5
	K=4.564	K=16.997	M=19.615	F=15.64	F=12.418	M=6.25
	Rem.=4.453	Rem.=28.589	Rem.=16.423	Rem.=16.161	Rem.=0.545	Rem.=0
ظ	F=68.383	SF=25.33	K=33.726	K=41.031	K=77.061	M=50
	M=15.159	F=21.099	F=31.475	F=38.124	M=12.545	DM=50
	K=7.17	M=19.742	M=18.369	M=18.351	F=10.394	Rem.=0
	Rem.=9.288	Rem.=33.829	Rem.=16.43	Rem.=2.494	Rem.=0	
3	F=86.741	F=54.615	F=31.198	K=58.551	K=59.124	F=48.276
	M=6.614	N=16.546	K=30.588	F=21.842	M=24.447	M=20.69
	K=6.413	K=12.231	M=19.287	M=16.914	F=15.86	K=17.241
	Rem.=0.232	Rem.=16.608	Rem.=18.927	Rem.=2.693	Rem.=0.569	Rem.=13.793
ġ	F=85.332	F=63.81	N=32.244	F=46.981	K=49.254	F=60
	M=8.158	N=16.562	K=28.38	K=35.22	M=23.881	M=40
	K=3.422	M=10.811	F=24.68	M=13.815	F=20.896	Rem.=0
	Rem.=3.088	Rem.=8.817	Rem.=14.696	Rem.=3.984	Rem.=5.969	
ف	F=52.888	F=49.028	K=48.17	K=48.507	K=66.012	M=36.667
	K=45.824	K=17.948	F=21.926	F=29.412	M=20.438	K=33.333
	M=1.049	M=12.139	M=13.55	M=20.543	F=13.26	F=16.667
	Rem.=0.239	Rem.=20.885	Rem.=16.354	Rem.=1.538	Rem.=0.29	Rem.=13.333

 Table 13 Letter-diacritic distribution over letter position (C)

Letter	1 st	2 nd	3 rd	4 th	5 th	6 th
ق	F=86.758	F=51.54	F=36.756	K=50.267	K=70.399	F=47.368
	M=8.458	M=16.866	K=23.34	F=23.339	M=17.382	M=31.579
	K=4.367	K=16.553	M=17.824	M=21.042	F=12.013	K=10.526
	Rem.=0.417	Rem.=15.041	Rem.=22.08	Rem.=5.352	Rem.=0.206	Rem.=10.527
اى	F=77.301	F=56.616	F=45.497	F=40.13	F=55.658	F=62.963
	M=17.737	M=18.649	M=28.176	K=31.58	K=30.591	M=22.222
	K=4.229	K=14.872	K=15.774	M=27.678	M=13.253	K=7.407
	Rem.=0.733	Rem.=9.863	Rem.=10.553	Rem.=0.612	Rem.=0.498	Rem.=7.408
J	F=65.178	F=31.005	K=35.428	K=38.7	K=72.553	M=27.723
	K=32.947	SF=26.124	F=29.251	F=34.74	M=15.504	F=25.743
	M=1.026	N=13.675	M=22.835	M=23.518	F=10.848	N=21.782
	Rem.=0.849	Rem.=29.196	Rem.=12.486	Rem.=3.042	Rem.=1.095	Rem.=24.752
م	F=42.724	F=43.018	N=30.838	N=41.218	N=76.06	N=74.912
,	K=36.417	M=20.7	F=30.501	F=22.361	K=8.83	F=11.661
	M=20.064	SF=11.908	K=18.517	K=19.597	M=7.852	K=7.067
	Rem.=0.795	Rem.=24.374	Rem.=20.144	Rem.=16.824	Rem.=7.258	Rem.=6.36
ن	F=75.018	SF=30.396	F=51.256	K=45.402	F=69.947	F=76.006
	M=13.605	F=30.297	K=26.993	F=41.641	K=28.024	K=22.491
	K=9.237	N=22.43	M=10.732	M=7.843	M=1.389	SF=0.621
	Rem.=2.14	Rem.=16.877	Rem.=11.019	Rem.=5.114	Rem.=0.64	Rem.=0.882
٥	F=53.246	M=41.649	M=46.022	M=47.063	M=56.046	M=80.182
	M=36.428	F=27.544	K=35.122	K=35.281	K=22.078	K=8.884
	K=9.076	K=26.849	F=17.003	F=17.102	F=20.044	F=8.428
	Rem.=1.25	Rem.=3.958	Rem.=1.853	Rem.=0.554	Rem.=1.832	Rem.=2.506
و	F=98.525	NI=51.748	NI=74.612	NI=94.107	NI=98.154	NI=84.422
	M=1.025	F=28.501	F=12.25	K=2.139	N=0.929	F=10.553
	Rem.=0.45	N=12.036	N=5.862	F=1.71	Rem.=0.917	N=4.02
		Rem.=7.715	Rem.=7.276	Rem.=2.044		Rem.=1.005
ى	NI=97.419	NI=99.729	NI=99.594	NI=99.827	NI=97.736	NI=85.714
	K=0.388	Rem.=0.271	Rem.=0.406	Rem.=0.173	SM=1.178	F=9.524
	F=0.382				SK=0.725	SK=4.762
	Rem.=1.811				Rem.=0.361	Rem.=0
ي	F=71.11	NI=40.915	NI=59.543	NI=50.425	SM=47.009	SM=53.286
	M=28.155	N=39.099	N=11.174	SM=21.8	NI=18.07	SF=17.57
	Rem.=0.735	F=11.319	F=10.993	SK=9.916	SK=15.912	SK=15.486
		Rem.=8.667	Rem.=18.29	Rem.=17.859	Rem.=19.009	Rem.=13.658

 Table 14 Letter-diacritic distribution over letter position (D)

Using this matrix, we can extract patterns (or rules) that stem from the systematic nature of Arabic. One such rule would be that when the letter [†] is encountered at the 1st position; it's most probably going to have the diacritic Fat-ha (93.8% of the time) and then the diacritic Damma (6% of the time). This means that it is very unlikely that it will have any other diacritic, which can be used to reduce errors produced by statistical methods.

3.3 Summary

In this chapter, we discussed the approach followed in the development of the diacritized corpus (which is used later in our system). The process involved four stages: collecting raw textual materials from different sources, extracting texts from those materials, cleaning the extracted text, and semi-automatic review of the text (with the help of some tools we built such as the diacritization assistant). We also examined the corpus from an analytical point-of-view and looked at the distribution of diacritics on letters and positions within words.

CHAPTER 4

AUTOMATIC DIACRITIZATION APPROACH

The problem of automatic diacritization has been extensively researched using a variety of methodologies (which are mostly statistical), as we conveyed in the literature survey (Chapter 2). Nonetheless, a few researchers have utilized the rule-based methodologies as a primary approach. In our system, we used a hybrid of the two approaches to achieve a maximal performance. In this chapter, we explicate the different methodologies that we use in our system, whether they produce full or partial diacritization. We also explain how the system combines these methods to produce the best possible diacritization.

This chapter is divided into four sections. Section 4.1 explains the statistical methods the system uses, which are made primarily of *N*-grams whether word-grams, POS-grams, or letter-grams. Section 4.2 explains the rule-based methodologies and how rules were inducted and then applied to undiacritized texts. Section 4.3 describes the hybrid approach manifested in the developed system and the way these different methodologies are combined to get the best performance. Finally, Section 4.4 gives the chapter summary.

4.1 Statistical Approach

The statistical approach is the primary one used for the diacritization problem. Statistical methods have proven to be well-performing in terms of accuracy and speed. But their performance depends heavily on the corpus used to collect statistics and build training

models. Thus, it is critical for such methods to work effectively that the corpus used is large enough and accurate enough, which we tried to build as explained in Chapter 3.

In our system, we use basic *N*-grams on three different levels: letter-grams, word-grams, and POS-grams. Letter-grams are better suited for unknown words (which may be because they are not included in the used lexicon or because they constitute foreign proper nouns). In contrast, word-grams are best suited for common phrases or expressions that usually are uniquely diacritized (which is often the case when N is larger than 2).

POS-grams are best-suited for case-endings where they perform very well, especially at simple grammatical rules such as the fact that prepositions are always followed by genitive nouns.

In this section we explain how these N-grams were extracted from the training corpus (in Subsection 4.1.1). Thereafter, we explain the diacritization algorithms used for each type of N-gram, in Subsection 4.1.2.

4.1.1 *N*-gram Extraction

There are many tools available for *N*-gram extraction on the word and letter levels. In our system, we built a customizable *N*-gram extraction tool that is more applicable to our needs. In this tool, the user can select any of the three *N*-gram types and the required value of N. He/she may also choose whether or not to include non-Arabic words, numbers, or punctuation.

Irrespective of the type of *N*-gram, the basic mechanism is the same. *N*-grams are stored in a hash table (for faster lookup). When an *N*-gram is encountered, the tool checks whether it has been previously seen or not. If seen, the frequency of the *N*-gram is incremented. Otherwise, it is added to the hash table with a frequency of 1. Once the entire corpus is read, the *N*-grams stored in the hash table are sorted by frequency and saved to disk.

In the case of letter-grams and word-grams, the *N*-gram extraction is straightforward, unlike the POS-grams, which require a more complicated way. For such grams, the POS of a word can be found from its diacritics using AraMorph [30]. However, some words can have multiple POS tags for the same diacritical form. In such cases, the tool treats all tags equally and finds all possible *N*-grams combinations. Obviously, this is not the most accurate solution since a word cannot have multiple tags in a certain context. However, the impact of such ambiguity is reduced as the corpus gets larger. (For a complete list of AraMorph's POS tags, please refer to Appendix V)

Table 15 shows the most common POS tags extracted from the corpus and their frequencies. Note that the START and END tags are implicit tags that are used to mark the start and end of a sentence, respectively.

No.	Tagged word	Frequency
1	START	4920539
2	END	4920539
3	PREP	1969259
4	VERB_PERFECT+PVSUFF_SUBJ:3MS	1735560
5	DET+NOUN+CASE_DEF_GEN	1103516
6	CONJ	969346
7	NOUN+CASE_DEF_GEN	947948
8	PREP+PRON_3MS	884465
9	NOUN+CASE_DEF_NOM	786949
10	CONJ+VERB_PERFECT+PVSUFF_SUBJ:3MS	686729
11	NOUN+CASE_DEF_ACC	613508
12	NOUN+CASE_INDEF_GEN	584100
13	PREP+PRON_1S	569504
14	NOUN	566289
15	NOUN+NSUFF_MASC_SG_ACC_INDEF	529000
16	IV3MS+VERB_IMPERFECT+IVSUFF_MOOD:I	474943
17	NEG_PART	457211
18	DET+NOUN+CASE_DEF_NOM	445821
19	NOUN+CASE_INDEF_NOM	439038
20	RELPRON	409553
21	NOUN+CASE_DEF_GEN+POSS_PRON_3MS	363953
22	ADV	338232
23	NOUN+CASE_DEF_NOM+POSS_PRON_3MS	318228
24	NOUN_PROP+CASE_DEF_NOM	311463
25	ADJ+CASE_INDEF_GEN	304795
26	ADJ+CASE_INDEF_NOM	298107
27	DEM_PRON_MS	277867
28	PREP+NOUN+CASE_DEF_GEN	269387
29	DET+NOUN+NSUFF_FEM_SG+CASE_DEF_GEN	268277
30	NOUN_PROP+CASE_DEF_GEN	268135

Table 16 shows the details of extracted *N*-grams for each type. The maximum N reached is 7 for letter-grams, 5 for word-grams and POS-grams. Beyond these limits, the system crashes because of an out-of-memory exception. In our experimentation platform, the RAM size was 8GB and these limits were the maximum that can be reached for such memory size.

Min. N Max. N **Included Group** Type N Count Ν Count **Non-Arabic** Punctuation Letter-gram 47 7 3,053,221 1 No No Word-gram 1 777,969 5 12,840,859 No No **POS-gram** 2,724 5 2,661,370 1 Yes Yes

 Table 16: Extracted N-grams statistics

4.1.2 Diacritization Using *N*-grams

Once *N*-grams are extracted, they can be used for diacritization. Finding the best diacritization for a given sentence can be reduced to a graph search problem where nodes represent *N*-grams, and edges represent connectivity between *N*-grams, as depicted by Figure 5. The complexity of a Brute-force search algorithm for such problem would be $O(C^L)$ where C is the number of unigrams, and L is the length of the sentence (letterwise, word-wise, or POS-wise); assuming of course the worst-case scenario where every unigram is connected with all others (which is not necessarily the case).

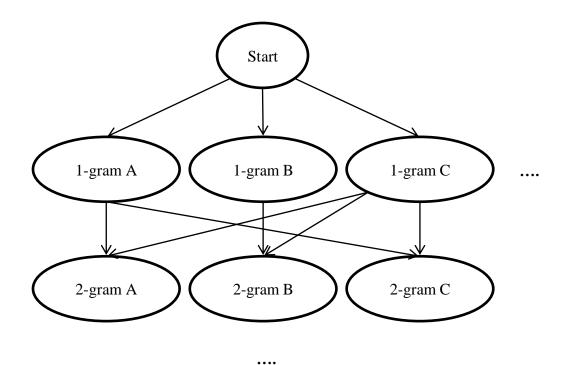


Figure 5 Best N-gram Sequence Search Problem

In our system, we chose to use the greedy approach without backtracking; i.e. once a sequence is chosen, it will never be changed. This approach is used for all three types of N-grams with slight variations, as we will explain later on.

Letter/Word Grams Search

In the case of letter grams and word grams, the search algorithm is given in Figure 6 and Figure 7. First, the *N*-grams are loaded from the disk with the predefined limits MinN, representing the minimum N to retrieve, and MaxN representing the maximum N to retrieve. Also, the user may choose to limit the *N*-grams by setting the MinFreq which represents the minimum frequency acceptable.

```
Load Letter N-grams from MinN to MaxN, Limited by MinFreq
1
2
   For each letter in GetLetters(sentence)
3
       If IsDiacritized(letter) Then Continue
4
      Set currentN = MaxN
5
      While currentN >= MinN
6
          For each possible right N-gram seq right
7
             Set currentM = MaxN
             While currentM >= MinN
8
9
                For each possible left N-gram seq left
                   If IsCompatible (seq left, seq right) Then
10
                      Set letter.Diacritization =
11 GetCombinedDiacritiztionForLetter(letter, seq right,
   seq left)
12
                      Next letter
13
                   End If
14
                Loop
             Set currentM = currentM - 1;
15
16
         Loop
          Set currentN = currentN - 1;
16
      Loop
17 Loop
```

Figure 6 Greedy Letter N-gram Diacritizer

After the data is loaded and a sentence diacritization is requested, the algorithm loops over the tokens (letter or words) and it tries to find the maximum-length *N*-gram that includes the token at hand. This *N*-gram must be compatible from right and left in order to be selected. If no such *N*-gram is found, N is decremented by 1 and the search is resumed, until N becomes less than the user-defined MinN. In such a case, the search algorithm terminates for this token and moves to the next one.

Once an *N*-gram is found, the corresponding diacritics are extracted and combined with the current token's diacritics (if they exist).

1	Load Word N-grams from MinN to MaxN, Limited by MinFreq							
2	Set Tokens = Tokenize(sentence)							
3	For each token in Tokens							
4	<pre>If GetDiacritizationLevel(token) >= 0.99 Then Continue</pre>							
5	Set currentN = MaxN							
6	While currentN >= MinN							
7	For each possible right N-gram seq_right							
8	Set currentM = MaxN							
9	While currentM >= MinN							
10	<pre>For each possible left Word N-gram seq_left</pre>							
11	<pre>If IsCompatible(seq_left, seq_right) Then</pre>							
12	<pre>Set token.Diacritization = GetCombinedDiacritiztionForToken(token, seq_right, seq_left)</pre>							
13	Next token							
14	End If							
15	Loop							
16	<pre>Set currentM = currentM - 1;</pre>							
17	Loop							
17 18	Loop Set currentN = currentN - 1; Loop							

Figure 7 Greedy Word N-gram Diacritizer

POS Grams Search

The POS-grams search (explained by Figure 8) is somewhat similar to the word/letter gram search, except that the compatibility condition between the left and the right sequences is relaxed for performance reasons. However, the sequence selected must produce one and only one diacritization. Recalling that a single diacritical form can have

multiple POS tags, similarly, a single POS tag can have multiple diacritical forms. In such a case, where there are multiple diacritical forms, the algorithm declares this token as unresolved and moves to the next one.

```
Load POS N-grams from MinN to MaxN, Limited by MinFreq
1
2
   Set Tokens = Tokenize(sentence)
3
   For each token in Tokens
4
         Set token.Tags = GetPossibleTags(token)
5
         If token.Tags.Size == 1 Then Set token.SelectedTag = 1
6
         Else Set token.SelectedTag = -1
7
   Loop
8
   For each token in Tokens
9
         If token.SelectedTag != -1 Then Continue
10
         Set currentN = MaxN
11
         Set possibleTags = {}
12
         While currentN >= MinN
13
               For each possible POS N-gram seq
14
                    add (seq, prob) to possibleTags
15
               Loop
               Set currentN = currentN - 1;
16
         Loop
17
         Set Token.SelectedTag = most probable tag
18
         Set Token.Diacritization = get case from selected tag
19 Loop
```

Figure 8 Greedy POS N-gram diacritizer

4.2 The Rule-based Approach

The need for rule-based methods to tackle the diacritization problem stems from the fact that Arabic diacritization is systematic by nature. In general, these rules can be on the lexical level, the syntactic level, or the semantic level. However, the complexity of such rules makes them computationally unfeasible. Consequently, most researchers resort to the statistical methods over the rule-based methods (as in [5], [2], and [12]).

In our system, we employ a large number of rules that were inducted automatically from the training set of the corpus. We explain this induction mechanism in Subsection 4.2.1. After, we decide which rules to use, we then apply these rules in a predefined sequence on the validation and test sets using a Hash-table-based search algorithm. The algorithm used to apply the rules is explained in Subsection 4.2.2.

4.2.1 Rule Induction

We divided the rules into three groups; the first one consists of features relating to the current letter such as the letter itself, the previous and the next letters, and the position of the current letter. In this group (Group A), diacritics are assumed to be missing and hence are not part of the feature set. Samples of "Group A" rules are shown in Table 17.

Position	PrevLetter	Letter	NextLetter	Diacritic	Hit Rate	Frequency
2	1	ل	م	்	99.735	665043
1	Ν	و	١	Ó	99.886	610636
1	N	ق	١	Ó	99.85	429363
2	ع	ل	ى	ó	99.779	408381
1	N	ك	١	ó	99.88	307931
3	ن	٥	N	்	99.356	279261
1	N	و	ĺ	Ó	99.854	229374
2	١	ل	۲	்	99.602	227992
1	N	و	ļ	Ó	99.921	221461
1	N	ĺ	ي	ó	99.917	215167
2	ق	و	ل	்	99.815	211398
2	١	ل	٤	்	99.692	205745
1	N	و	ه	ó	99.49	202982
2	ل	٥	N	்	99.942	194880
2	ļ	ل	ى	Ó	99.825	192718
2	ل	م	N	்	99.253	191102
2	ل	ĺ	ن	Ó	99.877	187423
1	N	و	م	Ó	99.8	183040
1	Ν	ف	ļ	ó	99.957	177549

 Table 17: A sample of the letter-specific rules (Group A)

In the second group (Group B), we added contextual features such as the previous word, and the next word, as shown in

Table 18. It is important to note that Word features are limited to the 1000 most common words only (also extracted from the corpus, see Appendix II). This means that if the word is not a common word, it is replaced with the empty marker "N".

Position	PrevWord	PrevLetter	Letter	NextLetter	Diacritic	Hit Rate	Frequency
1	N	N	و	١	ó	99.885	586711
2	N	١	ل	م	்	99.727	554168
1	N	N	ĺ	ن	ó	99.055	486933
2	N	ع	ل	ى	Ó	99.775	387841
1	N	N	ق	١	ó	99.842	381964
3	N	ن	٥	N	ं	99.45	262505
1	N	N	أى	١	Ó	99.882	240213
1	N	N	و	ĥ	ó	99.852	225177
1	N	N	و	ļ	ó	99.92	216608
1	N	N	ĺ	ي	ó	99.924	206619
1	N	N	و	٥	ó	99.593	197289
2	N	١	ل	۲	்	99.575	193116
2	N	ل	٥	N	ं	99.942	188532
2	N	ق	و	J	்	99.806	185933
2	N	ļ	J	ى	Ó	99.824	185368
2	N	ل	ĺ	ن	ó	99.879	183793
1	N	N	و	م	Ó	99.797	180071
1	N	N	ف	ļ	ó	99.956	174126
2	N	١	ل	٤	்	99.69	172609

 Table 18: A sample of the letter-word rules (Group B)

Finally, the third group of rules (Group C) includes diacritics as part of the feature set; excluding the current letter's diacritic which the desired output is. Samples are given in Table 19.

CurrLetter	Position	PrevLetter1	PrevDiacritic1	Diacritic	Hit Rate	Frequency
ل	2	ع	Ó	ó	93.505	730872
ي	3	ل	Ó	்	96.119	424860
و	2	ĺ	Ó	்	93.415	367240
٥	4	ي	்	<u></u>	93.294	343373
٥	2	L	ó	்	91.315	228053
و	2	ق	ó	்	98.154	225582
1	2	و	ó	<u> </u>	99.953	221418
Î	2	J	Ç	Ó	98.272	216666
i	2	و	ó	Ó	91.545	210103
م	2	ل	Ó	்	92.556	191317
1	2	ف	Ó	<u> </u>	99.98	177553
ك	3	J	Ç	ó	97.471	175756
ل	2	ć	ó	\$	99.924	175162
٥	3	ن	Č	்	91.985	156590
٥	4	J	ं	்	97.401	151707
و	3	8	ं	ó	95.329	144931
٤	2	ب	ó	்	93.601	141481
ن	2	م	ó	ै	91.706	137773
1	3	J	்	\$	99.961	127352
م	2	ث	ं	ౕఀ	99.209	126760

Table 19: A sample of the letter-diacritic rules (Group C)

4.2.2 Applying the rules

After the rules are decided, they can be applied to any test text according to the algorithm represented by Figure 9. First, the rules are retrieved from text files that were stored in the induction phase. Each text file is a table with the first row representing the features that make up the rules. Following the features are the diacritic corresponding to the rule,

the hit rate of this rule in percentage, and the frequency of encountering the rule. The rules are stored in a hash table where the key is the rule while the value is the expected diacritic.

The loading function filters the rules based on the defined limits for both the hit rate and the frequency. If the rules intended are positive rules, then the loading function will also filter rules with empty diacritics. On the other hand, if the rules intended are negative ones, then the loading function will filter rules that do not have empty diacritics.

After the rules are loaded (which usually occur at the initialization phase), the sentence is divided into letter objects each corresponding to an Arabic letter. The object contains meta-data about the letter such as the diacritic of the letter, if any, a link to previous letter, a link to the next letter, and the current word. The letters are stored in an array to be used when searching for applicable rules using the letter meta-data.

```
Load rules into rules, Limited by MinFreq, MinHitRate
1
2
   Set letters = {}
3
   For each letter in sentence
         Set letter properties (diacritic, prevLetter,
4
   nextLetter, etc...)
5
         Letters += letter
6
   Loop
7
   For each letter in letters
8
         Get rule from letter.Properties
9
         If rules contain rule Then
10
               Set letter.Diacritic = rules[rule]
11
         End If
12 Loop
```

Figure 9. Rules Application Algorithm

4.3 The Diacritizer

In this section, we give technical details about the implemented system. In Subsection 4.3.1, we take an overview of the system's architecture. In Subsections 4.3.2, 4.3.3 and 4.3.4, we explain the preprocessing, hybrid diacritization, and the post-processing phases, respectively.

4.3.1 Architecture

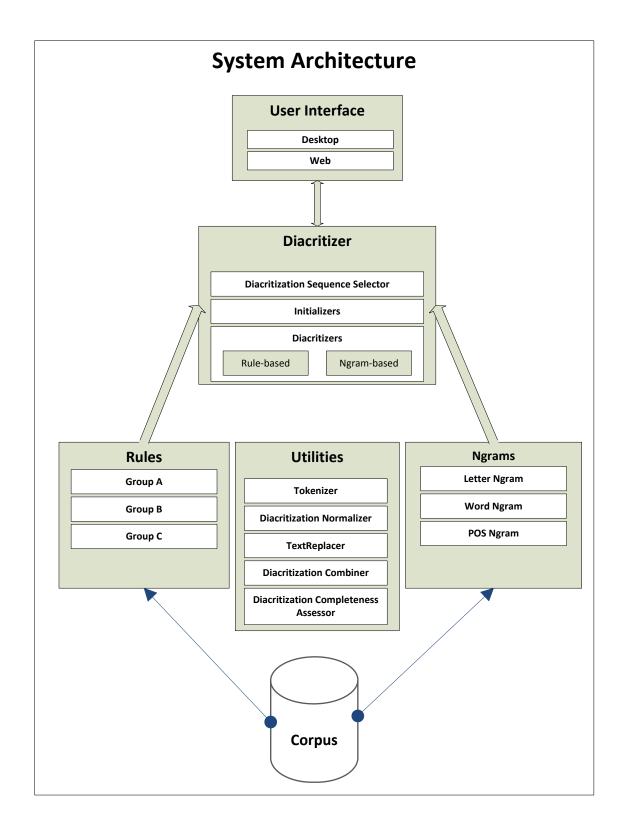
The system consists of 5 online components and one offline component, which is the corpus. The main engine, depicted in Figure 10 as the diacritizer, is the basic component which is responsible for all functionality in the preprocessing, diacritization, and post-processing phases. It receives the input text from the user interface, desktop or web, which represents the text to be diacritized. Furthermore, depending on the user options, the diacritizer interacts with the rules and *N*-grams databases. It also interacts with the

Utilities toolbox which provides useful tools such as the tokenizer (for tokenizing Arabic words), the diacritization normalizer (which removes inconsistencies from a given diacritization), and the text replacer (which helps keep the punctuation intact when performing substitution). For tools used in the development of the diacritizer, please refer to Appendix IV.

4.3.2 Preprocessing

When a text is received by the diacritizer, it performs certain preprocessing tasks before it proceeds to the diacritization phase. The diacritization of the text, if any, is normalized such that any undesirable inconsistency is resolved. Then, the text is tokenized into tokens that correspond to words or letters depending on the chosen diacritization method. If needed, the morphological analyzer will produce all the possible morphological analyses for each word to be later used by the POS-grams diacritizer.

When a user inserts the desired text, he/she can also select the diacritization methods and the order in which they are executed. This order is essential because the diacritization can be very different if the order changes. Accordingly, the system will initialize the needed diacritizers with user-defined parameters.


4.3.3 Hybrid Diacritization

Once diacritizers are initialized, the system executes them in order on the given text. The output of each diacritizer is given to the next one. Figure 11 depicts the most recommended sequence of diacritizers. As shown in the figure, we differentiate between the so-called "strict diacritizer" and the "relaxed diacritizer". The difference between the two is in the strictness of the parameters used. In a strict rule-based diacritizer, for

example, the hit rate must be more than or equal to 99.7%. On the other hand, the relaxed rule-based diacritizer has a hit rate of 98% or more.

4.3.4 Post-processing

After the output from the diacritizers is retrieved, final diacritization normalization is performed and the diacritized text is displayed to the user.

Figure 10: The system architecture

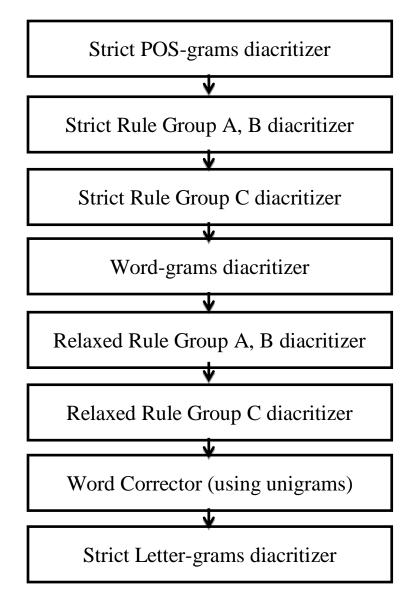


Figure 11: Recommended sequence of diacritizers

4.4 Summary

In this chapter, we explained our hybrid approach which combines statistical methods and mined rules. The first component uses *N*-grams extracted the diacritized corpus on three different levels: word-level, letter-level, and POS-level. The component uses those grams in a greedy way to find an optimal diacritization for a given sentence.

The mined rules in the second component are extracted from the corpus such that their hit rates are as close to 100% as possible. We grouped those rules into three groups: group A uses only features extracted from the current word such as the current letter, the preceding letter, and the succeeding letter. The second group, group B, adds previous words and next words as features in addition to those in group A. The third group, group C, takes the same features as group A and B but with the inclusion of known diacritics. Those rules from all groups are then applied to the sentence at hand.

In the next chapter, we evaluate each component independently as well as in complement to the other.

CHAPTER 5

DIACRITIZER EVALUATION

The evaluation phase of any implemented system is perhaps the most important as it defines the boundary between success and failure. In this chapter, we discuss our evaluation approach by defining the performance metrics that were used. Section 5.1 gives brief description of each metric and examples to demonstrate how they are computed. In Section 5.2, we explain the evaluation methodology for our system compared with other similar systems. Finally, Section 5.3 discusses the results of the diacritizer and compares it with five others.

5.1 **Performance Metrics**

There are many metrics to measure the performance of any automatic diacritizer. In broad terms, these metrics fall under two main categories: the correctness measuring metrics (such as the error rate in the produced output), and the usability measuring metrics (such as the number of words processed per second or the memory utilized). Most researchers focus primarily on the first category of metrics. Notwithstanding, the second category is as important as the first one from the end-user perspective, who could be novice Arabic learners who want to improve their Arabic skills or other researchers in the Arabic computing field. In either case, it would be extremely troublesome if the system at hand could not produce the diacritized text in convenient time.

There are five evaluation metrics that will be utilized in our system evaluation, three of which fall under the correctness metrics while the other two fall under the usability metrics. These metrics are Word-Error-Rate, Diacritic-Error-Rate, Diacritization-Level, Words-per-Second, and Peak-Memory. Following is a brief description of each metric.

5.1.1 Word-Error-Rate (WER)

Word-Error-Rate is the ratio of erroneous words to the total number of Arabic words (including or excluding case-endings) [23], as denoted by Equation 1.

 $WER = \frac{number \ of \ incorrectly \ diacritized \ words}{total \ number \ of \ words}$

Equation 1 Word-error rate (WER)

It is important to notice that words included in both the nominator and the denominator must be Arabic words. This means that no non-Arabic words are taken into consideration. Examples of non-Arabic words are English words, numbers, and punctuations. The reason for this is obvious: why include non-Arabic words or numbers in the calculation when they do not need diacritization to begin with.

An example of applying computing this metric is given in Figure 12, with case-endings (CE) ($WER_{with CE}$) and without case-endings ($WER_{without CE}$).

Original text	لكل محتهد نصيب			
Automatically diacritized text	لِکُلِّ مِحْتَهِدٍ نَصِيبٍ			
Correctly diacritized text	لِكُلِّ مُحْتَمِدٍ نَصِيبٌ			
$WER_{with CE} = \frac{2}{3} = 0.67$				
$WER_{without \ CE} = \frac{1}{3} = 0.33$				

Figure 12 Example of calculating WER me

5.1.2 Diacritic-Error-Rate (DER)

Diacritic-Error-Rate is the ratio of erroneous diacritics to the total number of Arabic letters (including or excluding case-endings) [23], as denoted by Equation 1.

 $DER = \frac{number \ of \ incorrectly \ diacritized \ letters}{total \ number \ of \ Arabic \ letters}$

Equation 2 Diacritic-error rate (DER)

In this metric also, only Arabic letters are included in the computation. An example of applying this formula is given in Figure 13.

Original text	لكل محتهد نصيب				
Automatically diacritized text	لِکُلِّ مِحْتَهِدٍ نَصِيبٍ				
Correctly diacritized text	لِكُلِّ مُحْتَهِدٍ نَصِيبٌ				
$DER_{with CE} = \frac{2}{12} = 0.17$					
$DER_{without \ CE} = \frac{1}{9} = 0.11$					

Figure 13 Example of calculating DER metric.

Another thing to note here is that, when case-endings are not considered, the denominator changes to exclude the letters that represent case-endings. This is tricky because the position of the case-endings is not always known. Some researchers assumed that case-endings are always the last letter of a word, which is obviously not true. This assumption potentially produces unreliable metric values, whether in favor of the system or against it. So, by not using this assumption, the case-endings in the test data must be manually marked, which we followed as explained in the results and discussion chapter.

Case Letter	Last Letter	DER _{with CE}	DER _{without CE}	WER _{with CE}	WER _{without CE}
Correct	Correct	No effect	No effect	No effect	No effect
Incorrect	Incorrect	No effect	No effect	No effect	No effect
Correct	Incorrect	No effect	Smaller	No effect	Potentially smaller ¹
Incorrect	Correct	No effect	Larger	No effect	Potentially larger ²

Table 20: The effect of the last-letter assumption

Table 20 examines the effect of the last-letter assumption on the calculation of metrics. As the table shows, there are 4 possibilities for the correctness of diacritics that are put on the case letter and the last letter (of a particular word). The first 2 possibilities, when both letters are diacritized either correctly or incorrectly, have no effect on any of the metrics. However, when the case letter is correctly diacritized while the last letter is not (3rd possibility), the *DER_{without CE}* will necessarily become smaller (since the number of errors is reduced by 1 when it shouldn't) and *WER_{without CE}* may potentially become smaller as well (since the word may happen to contain other incorrect diacritics). Same logic applies to the 4th possibility where the case letter is incorrectly diacritized while the last letter is correctly diacritized.

¹ The reason it is "potentially smaller" is that it depends on other diacritics. If any other diacritic is incorrect, the WER will not be affected.

² The reason it is "potentially larger" is that it depends on other diacritics. If any other diacritic is incorrect, the WER will not be affected.

5.1.3 Diacritization-Level (DL)

We introduced Diacritization-Level metric in this thesis, which measures how much of the text is diacritized. The reason for its introduction is the fact that some of the methods produce partial diacritization, albeit these methods are not used on their own but with other complementing methods. This metric is denoted by Equation 3.

 $DL = \frac{number \ of \ diacritized \ letters \ (implcitily \ or \ explcitily)}{total \ number \ of \ Arabic \ letters}$

Equation 3 Diacritization level (DL)

An example of applying this formula is given in Figure 14.

Original text	لكل بحتهد نصيب
Diacritized text	لِكُلِّ مُحْتَهِدٍ نَصِيبٌ
$DL_{with CE} = \frac{11}{2}$	$\frac{1+1}{12} = 100\%$
$DL_{without CE} =$	$\frac{8+1}{9} = 100\%$

Figure 14 Example of calculating DL metric.

In the numerator, there is no distinction between explicitly diacritized letters and implicitly diacritized ones. This means that some letters are left undiacritized (even in the most complete diacritization) because of one of three reasons.

- The first reason is that they may be silent letters (not pronounced) such as the plural suffix as in جَاؤُوا.
- The second reason is that their diacritics can easily be inferred from the context such as the definitive article (ال) as in الرّجال.
- 3. The third reason is that they may represent long vowels as in the previous two examples.

Please note that there is no direct way to count the number of implicit diacritics automatically except using heuristics.

5.1.4 Words-per-Second (WPS)

Words-per-Second metric falls under the usability measuring metrics. It measures the number of diacritized words in a second. This metric is denoted by the following formula:

$$WPS = \frac{number \ of \ diacritized \ words}{time \ taken \ is \ seconds}$$

So, if the input to the system was 100 words and the system outputted the diacritized words in 1 second, then WPS will be 100 words/second. However, if the system took 0.5 seconds for the same input, the WPS will then be 200 words/second, which is clearly much better.

5.1.5 Peak-Memory (PM)

Peal- Memory is the largest size of RAM used at any point during the processing of the input, measured in bytes. So, the smaller the PM used by a system, the better.

5.2 Evaluation Methodology

To evaluate our system, we made a clear distinction between the validation dataset that is used in the training phase to measure the performance and the test dataset that is used in the final evaluation. This distinction is important because often the text used in training phase comes from the same sources as in the training dataset, so the data would be biased towards that particular domain. Choosing the testing dataset from different sources than the validation texts is particularly important when using POS tags as an aiding factor to the diacritization process. This is because the training and testing datasets come from a pre-tagged corpus, which is not realistic scenario where real-world texts do not come pretagged.

Having this distinction in mind, we selected a number of texts from various sources and carefully diacritized them. Although these texts essentially represent MSA, they include various types of texts, such as poetry, literature, and religion. Finally, for evaluation, we gave the system the validation texts (undiacritized), and measured the evaluation metrics for the produced texts. Table 21 shows some statistics about the validation and test datasets. For sample sentences from the test set, please see Appendix I.

	Validation Set	Test Set
Arabic Letter Count	71933	77732
Arabic Word Count	15072	16242
Unique Arabic Word Count	7244	7640
Sentence Count	482	495
Diacritization Level	99.265%	99.260%

Table 21: Statistics about the Validation & Test sets

5.3 **Results & Discussion**

To evaluate the proposed system (denoted DT henceforth¹) we compared it with four other diacritizers, namely Arabi NLP [31], Mishkal, [32], AraDiac [2], and Sakhr [33]. Those companies have gracefully agreed to help us evaluate their diacritization systems, which represent the state-of-the-art in the field.

The test was performed offline for all systems and hence speed and memory metrics could not be collected. In Figure 15, we show the DER (with case-endings) for each system. Our system, DT, performs better (at 3.511%) than Arabi (at 6.557%) and Mishkal (at 11.663%) but worse than Sakhr's (at 2.905%). The results also show the WER (with case-endings) which is 13.792%, 25.768%, 39.985%, and 10.941%, respectively. Finally, the diacritization level (DL) is computed for each. While DT achieves the third highest DL (81.672%), it is still less than the ground truth (99.260%). The other three achieved 72.455% and 39.985%, respectively.

¹ Diacritization Tool

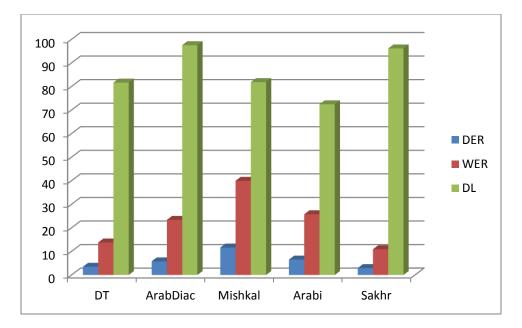


Figure 15: Comparison of diacritizers in terms of DER, WER, and DL.

During our experiments, we noticed that the performance of the diacritizer relies heavily on the order of the diacritization method used. To assess the performance gain or lack thereof of each method we calculated the same metrics after each finishes, as displayed by Table 22.

Table 22 shows how each method used affects the overall performance of the diacritization process. We can see from the table that rules play an important role in both increasing the diacritization level and reducing the error rate (whether DER or WER). Also, the word corrector, which is a unigram-based module to assess which diacritical form is closest to a given word based on the current diacritization, improves the accuracy by reducing DER and WER by almost 1%.

Order	Method	DL	DER	WER
1	Strict POS-grams	6.29%	0.355%	1.404%
2	Strict Group A-B rules	34.054%	0.481%	1.989%
3	Strict Group C rules	34.403%	0.482%	1.995%
4	Relaxed Group A-B rules	53.491%	0.803%	3.362%
5	Relaxed Group C rules	54.262%	0.828%	3.442%
6	Word-grams	65.784%	1.863%	7.703%
7	Relaxed Group A-B rules	80.649%	3.627%	14.605%
8	Word Corrector	81.691%	3.471%	13.663%

Table 22: Accumulative performance of each method (POS first)

Similarly, Table 23 and Table 24 show the same results but with different ordering. Table 23 shows the results when rules are used first while Table 24 shows the results when word-grams are used first.

Order	Method	DL	DER	WER
1	Strict Group A-B rules	34.769%	0.241%	1.041%
2	Strict Group C rules	37.763%	0.361%	1.601%
3	Strict POS-grams	40.345%	0.657%	2.802%
4	Relaxed Group A-B rules	45.227%	0.836%	3.516%
5	Relaxed Group C rules	46.734%	0.928%	3.867%
6	Word-grams	62.758%	1.99%	8.288%
7	Relaxed Group A-B rules	65.324%	2.163%	8.934%
8	Letter-grams	97.458%	11.375%	38.323%
9	Word corrector	98.825%	9.124%	33.662%

Table 23: Accumulative performance of each method (Rules first)

Table 24: Accumulative performance of each method (Word-grams first)

Order	Method	DL	DER	WER
1	Word-grams	31.974%	1.286%	5.338%
2	Strict Group A-B rules	54.997%	1.476%	6.188%
3	Strict Group C rules	57.266%	1.575%	6.65%
4	Relaxed Group A-B rules	61.073%	1.739%	7.278%
5	Relaxed Group C rules	62.092%	1.816%	7.586%
6	Strict POS-grams	63.005%	1.936%	8.041%
7	Relaxed Group A-B rules	65.584%	2.107%	8.682%
8	Letter-grams	97.448%	11.302%	38.138%
9	Word Corrector	98.806%	9.071%	33.52%

5.4 Summary

In this chapter, we discussed the followed approach to evaluate our system. This approach consists of dividing the corpus into 3 datasets: training, validation, and testing. The first two are used during the development of the diacritizer while the later dataset is used for evaluation. We compared our diacritizer (denoted as DT) with 4 other existing

systems, namely Arabi NLP [31], Mishkal, [32], AraDiac [2], and Sakhr [33]. The performance of our system shows clear edge over 3 of the 4 diacritizer when all major metrics are considered (WER, DER, and DL). Nonetheless, we show that our approach can be easily enhanced to achieve even higher accuracy and performance.

CHAPTER 6

CONCLUSION & FUTURE WORK

6.1 Conclusion

Researchers have long explored the problem of automatic diacritics restoration. The focus was primarily on statistical methods, which have proven successful to a reasonable extent. However, this accuracy, as shown by this thesis, can be further improved using mined rules that were extracted from and validated against a diacritized corpus. This approach has not been explored in the literature to the best of our knowledge.

In this thesis, we made two main contributions. The first was to build and develop a relatively large fully-diacritized corpus. The corpus was collected from various sources that constitute the major domains of MSA, which guarantees some level of balance. This corpus can be used as a benchmark by future researchers as we plan to make it publicly available.

The second contribution of the thesis was developing a diacritization system that uses a hybrid of the statistical approach and a newly introduced rule-based approach. The statistical approach used basic *N*-grams on three levels: letter-level, word-level, and POS tag-level. On the other hand, rules were mined and extracted from the developed corpus. These rules use lexical features such as the previous letter, and contextual features, such as the previous word.

The evaluation method of the system involved creating a separate test dataset (about 15,000 words) that were not used during the development of the system. Besides the conventional metrics used in the literature (i.e. the error rates WER and DER), we also introduced a new metric we call the diacritization level (DL) that measures how complete the diacritization of a sentence is. The system achieved a DER of 3.511% and a WER of 13.792% with a diacritization level of 81.672%.

6.2 Future work

In this research work, we showed how using the hybrid model can improve the results of automatic diacritization. However, there is still a large room of improvement to enhance the results even further. For example, the morpho-syntactic analyzer can be improved in both quality of results and breadth of coverage. This can affect the results positively in a great way since it will also affect the POS tagger which is an essential component of the system.

Another future work would be the further development of the corpus. Although the corpus we created was large and diverse, it still needed more review. Also, the MSA texts in the corpus need to be increased since the majority of the corpus is collected from classical Arabic texts.

The diacritized corpus can be developed in two ways. One way is by performing more validation to the texts to ensure a higher accuracy. Another way is by adding texts collected from the General Corpus after diacritizing them manually (or semi-automatically). A good way to doing this would be to extract the most common trigrams and diacritize them. Due to the gigantic size of the General Corpus, we're not able to

extract these trigrams because of memory limitations. However, this problem can be resolved by collecting partial trigrams and combining them later on.

Appendix I

Sample sentences from the test set

1	وَكَانَتِ الْمُدَّةُ الَّتِي قَضَاهَا فِي الْكَتَاتِيبِ وَجِيزَةً لَمْ يُتِمَّ حِفْظَ الْقُرْآنِ خَلَالَهَا؛ إِذْ كَانَ دَائِمَ التَّبَرُّمِ مِنْ نِظَامِ (الْكُتَّابِ)، وَلَمْ يُطِقْ أَنْ يَسْتَمَرَّ فِيه، فَالْتَحَقَ بِالْمَدْرَسَةِ الْإِخْدَادِيَّة رُغْمَ مُعَارَضَة وَالدِهِ الَّذِي كَانَ يَحْرِصُ عَلَى أَنْ يُحَفِّظَهُ الْقُرْآنِ، وَلَمْ يُوَافِقُ عَلَى الْتِحَاقِهِ بِالْمَدْرَسَةِ إِلَّا بَعْدَ أَنْ تَعَهَّدَ لَهُ (حَسَنٌ) بِأَنْ يُتِمَّ حِفْظَ الْقُرْآنِ فِي مَنْزِلِهِ.
2	اسْتُخْدِمَ فِي هَذِه الدِّرَاسَةِ الْمَنْهَجُ الْوَصْفِيُّ الْوَتَائِقِيُّ وَالْمَنْهَجُ الْوَصْفِيُّ الْتَحْلِيلِيُّ الْقَائِم عَلَى وَصْفِ الْوَاقِع وَمُعْطَيَاتِهِ مِنْ خِلَالِ الْمَصَادِرِ الْأَوَّلِيَّةِ لِلْبَحْثِ، وَمُرَاجَعَةِ الدِّرَاسَاتِ وَالْبُحُوثِ وَالْمَصَادِرِ الْأُخْرَى الَّتِي لَهَا صِلَةٌ بِمَوْضُوع الْبَحْثِ
3	آفَةُ الْمُلُوكِ سُوءُ السِّيرَةِ وَآفَةُ الْوُزُرَاءِ خُبْثُ السَّرِيرَةِ وَآفَةُ الْجُنْدِ مُخَالَفَةُ الْقَادَةِ وَآفَةُ الرَّعِيَّةِ مُخَالَفَةُ السَّادَة وَآفَةُ الرُّوَسَاءُ ضَعْفُ السِّيَاسَةِ وَآفَةُ الْعُلَمَاءِ حُبُّ الرِّيَاسَةِ وَآفَةُ الْقُضَاةِ شِدَّةُ الطَّبَعِ وَ اسْتَضْعَفُ الْخَصْمِ وَآفَةُ الْجَرِيءِ إِضَاعَةُ الْحَرْمِ وَآفَةُ الْمُنْعِمِ قُبُحُ الْمَنْ وَآفَةُ الْمُنْع التَّقَوَى وَالرَّعِيَّةُ لَا يُصْلِحُهَا إِلَّا الْعَدْلُ، فَمَنْ جَارَتْ قَضِيَّتُهُ ضَاعَتُ رَعِيَّةُ وَمَنْ
4	وَيُحَدَّدُ فِي ضَوْعِ ذَلِكَ الْمِيزَانِيَّةُ التَّقْدِيرِيَّةُ الَّتِي يَجِبُ أَنْ تُقَارَنَ بِالْمَصْرُوفَاتِ الْفِغْلِيَّةِ.
5	فَمَثَلًا الْبَيْضُ يُوضَعُ فِي أَقْفَاص أَوْ صَنَادِيقَ خَاصَّة وَكَرْتُونَاتِ وَالسَّوَائِلُ كَالْخَلِّ أَوِ الْمَشْرُوبَات في بَرَامِيلُ أَوْ زُجَاجَاتِ وَالْفَاكِهَةُ وَالْخَصْرَاوَاتَ تَجْرِي تَعْبِنَتُهَا فِي صَنَادِيقَ ذَاتِ مُوَاصَفَاتٍ خَاصَّةٍ وَالْأَغْذِيَةُ الْمَحْفُوظَةَ فَي الْعُلَبِ الصَّفِيحِ ثُمَّ تَجْرِي تَعْبِنتُهَا فِي صَنَادِيقَ مِنَ الْكُرْتُونِ الْمُقَوَّى.
6	مِنْ هُنَا كَانَتْ تَسْمِيَةُ هَذِهِ الإسْتَرَاتِيجِيَّةِ اسْتِنَادًا لِمَفَاهِيمِ عِلْمِ الْإِدَارَةِ بِبَرْنَامَجِ إِدَارَةِ الْأُصُولِ، أَيْ تِلْكَ الْإِدَارَةُ الْفَاعَلَةُ الَّتِي تُعَظِّمُ الاسْتِفَادَةَ الْقُصْوَى مِنْ هَذِهِ الْأُصُولِ بِمَا يَغُودُ بِالنَّفْعَ عَلَى الْمُجْتَمَعِ الَّذِي يُعَدُّ هُوَ الْمَاكَ الْحَقِيقِيَّ وَالنَّهَائِيَّ لِهَذِهِ الْأُصُولِ الْعَامَةِ.
7	الثَّقَافَةُ الْوَهْرَانِيَّةُ صَنَعَتْ لِلْمَدِينَةِ سُمْعَةً إِقْلِيمِيَّةً وَعَرَبِيَّةً وَحَتَّى عَالَمِيَّةً.
8	الْحِضَارَةُ كَمَا أَسْلَفْنَا قَصْرٌ عَلَى الْإِسْمَانِ دُونَ غَيْرِهِ، فَهِي َنَتَاجُ الْعَقْلِ الْبَشَرِيِّ وَالْإِرْثِ الاجْتِمَاعِيِّ لِتُرَاثِ مُتَطَوِّرٍ، وَهِيَ فِي الْوَاقع سِلْسِلَةٌ مُتَصلَةُ الْحَلَقَات، وَهُذَا مَا يُؤَكَّدُهُ السَّحِلُّ الْأَثَرِيَّ بِثَاءَ عَلَى مَا وُجِدَ مِنْ أَدَوَاتِ صُوَانِيَّةٍ مِنَّ صُنْع الْإِنْسَانِ دُفْتَتْ مَعَ مُخَلَقَاتِهِ، فَتِلْكَ الْأَدَوَاتُ فِي صِيَاغَتِهَا وَتَسْئِيلِهَا تَذَلُّ عَلَى تَطَوَّرِ ممَا الْمَاهُولِ آنَذَاكَ.
9	مِنَ الْعَادَاتِ غَيْرِ الْمُسْتَحْسَنَةِ طِبِّيًا عَادَةُ التَّقْبِيلِ في الْفَمِ، وَهِيَ أَكْثَرُ اسْتِهْجَاتًا عِنْدَمَا نَسْتَعْمِلُهَا مَعَ أَطْفَالِنَا؛ لِأَنَّهُمْ فِي سِنَّ تَصُعُبُ فِيهِ الْمُقَاوَمَةُ لِلْأَمْرَاضِ وَيُصْبِحُ مِنَ السَّهَلُ أَنْ نَنْقُلَ إِلَيْهِمُ الْأَمْرَاضَ عَنْ طَرِيقٍ هَذِهِ الْعَادَةِ السَّخِيفَةِ.
10	بِحُلُولِ رَبِيعٍ عَامِ 1915، كَانَ الْجَيْشُ فِي تَرَاجُعٍ مُسْتَمِرٍّ، وَالَّذِي لَمْ يَكُنْ دَانِمًا بِشَكْلٍ مُنَظَّمٍ ؛ بَلْ كَانَ مَنَ الْمَأْلُوفِ اتْتِشَارُ النَّهْبِ وَالْفَوْضَى أَثْنَاءَ الِالْسِحَابِ.

Appendix II

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
1	فِي	544469	28	وَ هُوَ	110878	55	أبُو	59160
2	مِنْ	500427	29	فيبه	109582	56	مَعَ	56391
3	عَلَى	408261	30	إِلَى	102243	57	وَقَدْ	55052
4	قَالَ	355779	31	أبي	93919	58	وَلَمْ	52217
5	أَوْ	324747	32	صَلَّى	92536	59	عَنِ	51877
6	عَنْ	322820	33	هَذَا	92188	60	عَبْدِ	51209
7	لَا	258999	34	إلَى	90363	61	ٳڐۜٞ	50504
8	عَلَيْهِ	252319	35	وَسَلَّمَ	84544	62	قَدْ	48681
9	أَنْ	222651	36	لِأَنَّ	83527	63	ابْنِ	46464
10	بْنِ	210091	37	فَإِنْ	83017	64	ڡؘٞڹ۠ڶؘ	45126
11	مَا	208894	38	لِأَنَّهُ	82024	65	تَعَالَى	42901
12	مْلَ	194883	39	وَلَوْ	77006	66	عِنْدَ	42875
13	کَانَ	194810	40	إنْ	76051	67	بَيْنَ	40607
14	لَمْ	191050	41	إذًا	75965	68	الَّذِي	40388
15	ذَلِكَ	174553	42	مِنَ	75350	69	وَكَانَ	37047
16	بْنُ	173596	43	مِنْهُ	72692	70	ۿؘۮؚۄ	36385
17	أَيْ	150013	44	لَوْ	72176	71	ڶؘؽؚ۠ڛؘ	36378
18	أَنَّ	141848	45	ۿؙۅؘ	71490	72	وَفِي	35399
19	بِهِ	137844	46	وَقَالَ	69263	73	عُمَرَ	35150
20	قَوْلُهُ	130618	47	كَمَا	68321	74	إِذَا	34323
21	أَنَّهُ	128419	48	فَقَالَ	68282	75	ۼؘؽڔ	34307
22	الله	127698	49	حَدَّثَنَا	66551	76	فَهُوَ	33428
23	ؿؙٛۄۜ	126754	50	حَتَّى	64002	77	فيها	33080
24	وَلَا	125047	51	بَعْدَ	63675	78	بِهَا	33063
25	وَإِنْ	120923	52	فَلَا	63077	79	يَكُونَ	33016
26	مَنْ	111560	53	ابْنُ	62650	80	بَلْ	32579
27	التَّهِ	111463	54	عَنْهُ	61855	81	كَانَتْ	32529

Top 1000 words in the diacritized corpus

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
82	يَكُنْ	31187	113	فَلَمْ	22200	144	ۼؘؽۯ	17725
83	إلَخْ	31050	114	وَهِيَ	22187	145	حَيْثُ	17595
84	فَإِنَّهُ	30403	115	بِذَلِكَ	22152	146	رَضِيَ	17553
85	ٳؘ۪ڴ	29744	116	إنْ	22130	147	عَلَيْهَا	17536
86	بْنَ	29738	117	ۼؘؽڔؚ؋	22038	148	الْمَالِ	17534
87	وَمَا	28206	118	أَخْبَرَنَا	22035	149	فَقَد	17370
88	ػؙڶٞ	27649	119	مَاتَ	21842	150	مُحَمَّدٍ	17333
89	وَهَذَا	26858	120	ٳۣڹٞ	21607	151	دُونَ	17333
90	يَجُوزُ	26474	121	بِأَنْ	21356	152	يَوْمَ	17299
91	أيْضًا	26412	122	وَإِلَّا	21069	153	ۺؘؠٛ؏ؚ	17246
92	مِنْهُمْ	26365	123	وَ	19994	154	وَإِنَّمَا	17053
93	يَقُولُ	26349	124	مَالِكٍ	19780	155	قُلْتُ	17048
94	وَمَنْ	26254	125	یَحْیَی	19778	156	بِغَيْرِ	16972
95	قَوْلِهِ	26093	126	مِمَّا	19775	157	عَبَّاسٍ	16963
96	بِمَا	26042	127	لَهَا	19687	158	كَذَلِكَ	16940
97	وَأَمَّا	25831	128	وَإِذَا	19356	159	مَالِكُ	16727
98	عَبْدُ	25826	129	عَلَيْهِمْ	19228	160	وَكَذَلِكَ	16636
99	أَهْلِ	25721	130	رَسُولُ	19205	161	وَمِنْ	16632
100	لَهُمْ	25660	131	أَحْمَدُ	19142	162	الَّتِي	15961
101	إلَيْهِ	25127	132	وَقَوْلُهُ	19059	163	ڷڹۘؠ۠ۘؠ۠	15895
102	فِيمَا	24930	133	بؚڂؘؚڵڡ۬	18883	164	قَوْلُ	15875
103	يَكُونُ	24900	134	أبيهِ	18877	165	مُحَمَّدِ	15871
104	وَقِيلَ	24860	135	یَا	18684	166	وَعَنْ	15705
105	فَإِذَا	24153	136	وَلَيْسَ	18637	167	ڬ۫ڷ	15652
106	وَاحِدٍ	23873	137	مَعَهُ	18589	168	اه	15628
107	فَإِنَّ	23546	138	لِمَا	18538	169	مُوسَى	15576
108	إِلَيْهِ	23291	139	فَلَمَّا	18056	170	رَجُلٌ	15468
109	غَيْرُ	22641	140	نَفْسِهِ	18038	171	كَذَا	15432
110	مِنْهَا	22523	141	ۺؘؠؚ۠ٵ	17954	172	وَعَلَى	15309
111	رَوَاهُ	22483	142	وَكَذَا	17840	173	بَكْرٍ	15010
112	مُحَمَّدُ	22338	143	قِيلَ	17771	174	وَذَلِكَ	14936

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
175	رَسُولَ	14674	206	جَازَ	12703	237	وَلَهُ	10789
176	ۿؚۑؘ	14466	207	بِقَوْلِهِ	12593	238	رَسُولِ	10777
177	ؾٞقَدَّمَ	14330	208	بِلَا	12531	239	كَانُوا	10754
178	رَجُلٍ	14223	209	لِمَنْ	12508	240	عَشَرَ	10700
179	الرَّحْمَنِ	14207	210	لل مَعْدِينَ	12484	241	مَرَّ	10652
180	مِنْهُمَا	14172	211	قَوْلِ	12475	242	الْأُوَّلِ	10611
181	يُقَالُ	14033	212	يَصِحُ	12312	243	وَبَيْنَ	10534
182	شاءَ	13982	213	أخرَ	12309	244	إنَّ	10533
183	حَدِيثِ	13923	214	النَّاسِ	12019	245	وَأَبُو	10519
184	أَمْ	13901	215	هُنَا	11995	246	جَاءَ	10493
185	فَلَوْ	13601	216	أرَادَ	11976	247	ڵڮؚڹ۠	10414
186	عِنْدَهُ	13575	217	حَنِيفَةً	11966	248	لِي	10399
187	هَڵ	13431	218	وَفِيهِ	11846	249	الإسْلَامِ	10391
188	نَعَمْ	13416	219	أَمَّا	11824	250	الْحَدِيثِ	10355
189	الَّذِينَ	13383	220	لَمَّا	11760	251	بَعْدَهُ	10351
190	الْمُسْلِمِينَ	13265	221	اللَّهَ	11623	252	الإِمَامُ	10312
191	النَّبِيِّ	13235	222	يَعْنِي	11611	253	الْقَاسِمِ	10297
192	للتَمِ عْ تُ	13228	223	خَرَجَ	11611	254	مَالِهِ	10269
193	أعْلَمُ	13202	224	بَيْنَهُمَا	11518	255	الإمَامِ	10258
194	أَحَدُ هُمَا	13191	225	بَنِي	11506	256	رَوَى	10250
195	عَلِيٍّ	13104	226	عُمَرُ	11391	257	بَعْضُهُمْ	10243
196	أَحْمَدَ	13102	227	أبًا	11354	258	ذَكَرَ	10232
197	بِأَنَّ	13027	228	أَنَّهَا	11354	259	حِينَ	10200
198	يَجِبُ	13017	229	اللهُ	11342	260	مِمَّنْ	10120
199	سَوَاءٌ	12984	230	ۿؙۯؘۑ۠ۯؘ؋ؘ	11234	261	الْعَبْدِ	10104
200	ٳۮ۫	12960	231	انْتَهَى	11231	262	ذَكَرَهُ	10103
201	إِبْرَاهِيمَ	12950	232	أَوْلَى	11091	263	بِأَنَّهُ	10067
202	قَالَهُ	12858	233	الْقَاحِبِي	11028	264	لِأَنَّهَا	10014
203	إنَّمَا	12851	234	قَالُوا	11024	265	أَحَدُّ	9962
204	وَابْنُ	12817	235	إِسْحَاقَ	10988	266	مَكَّةَ	9775
205	ػؙڶۧ	12706	236	فَكَانَ	10793	267	مُسْلِمٍ	9749

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
268	بَعْضُ	9688	299	إِنَّهُ	8480	330	رَجَعَ	7606
269	الثَّانِي	9687	300	أَخَذَ	8351	331	الرَّزَّاقِ	7592
270	الأرْضِ	9622	301	مِثْلُ	8348	332	سَنَةُ	7561
271	حَدَّثَنِي	9424	302	عَنْهَا	8346	333	يَدُلُّ	7516
272	رَجُلًا	9411	303	ص	8325	334	عَمْرِو	7418
273	دَخَلَ	9391	304	مُسْلِمٌ	8285	335	فَمَنْ	7411
274	عَلَيَّ	9358	305	وَجَبَ	8231	336	يَلْزَمُهُ	7394
275	ۯؘۑ۠ۮٟ	9335	306	غَيْرُهُ	8226	337	يَدِهِ	7362
276	رَحِمَهُ	9290	307	فَلَيْسَ	8218	338	ٳۮ	7361
277	ؾؚڵڬ	9281	308	المعلم	8213	339	ثَبَتَ	7360
278	فَلَهُ	9252	309	بَقِيَ	8200	340	الآخَرِ	7339
279	بَعْضِ	9244	310	يَزِيدَ	8164	341	سُلَيْمَانَ	7292
280	الْحَسَنِ	9092	311	أنَا	8163	342	وَغَيْرِهِ	7287
281	وَعَلَيْهِ	9071	312	فَهَلْ	8125	343	دَاوُدَ	7177
282	فَقَطْ	9051	313	أَقَرَّ	8052	344	بِمَعْنَى	7153
283	سَلَمَةً	9019	314	الأولَى	8023	345	الأوَّلُ	7153
284	عُثْمَانَ	8899	315	طَرِيقِ	7980	346	الصَّلَاةِ	7131
285	قَالَتْ	8894	316	وَ هُمْ	7957	347	الْمُؤْمِنِينَ	7092
286	وَاحِدٌ	8874	317	أَنَّهُمْ	7917	348	دِرْ هَمٍ	7087
287	أُخْرَى	8868	318	ڝؘڂۜ	7899	349	الشَّافِعِيُّ	7079
288	النَّبِيَّ	8697	319	أَهْلُ	7886	350	وَأَنَّهُ	7044
289	مَعْنَى	8684	320	وَلَكِنْ	7872	351	صارَ	7040
290	عَائِشَةً	8665	321	قَبْلَهُ	7864	352	سَنَةً	7019
291	وَقَعَ	8641	322	أَسْلَمَ	7819	353	ڶؚػؙڵ	6995
292	حَلَفَ	8613	323	مُطْلَقًا	7796	354	عَلِمَ	6978
293	فَمَا	8605	324	ابْنَ	7777	355	طَالِقٌ	6968
294	مِثْلَ	8603	325	بِهِمْ	7735	356	صَحِيحٌ	6968
295	لِلَّهِ	8541	326	إِنَّمَا	7704	357	وَأَنَّ	6944
296	أكْثَرَ	8497	327	لَكَ	7696	358	رَمَضَانَ	6937
297	فَيَكُونُ	8496	328	سُفْيَانَ	7694	359	بِشَيْءٍ	6925
298	يُوسُفَ	8481	329	وَرَوَاهُ	7672	360	هَؤُلَاءِ	6910

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
361	وَبِهِ	6903	392	وَذَكَرَ	6381	423	يَقُولَ	6031
362	فَحِيَ	6892	393	بِنَفْسِهِ	6378	424	ۿؙؗۨمۨ	6026
363	صَاحِبُ	6878	394	عَدَمِ	6372	425	عَمْرٍو	5975
364	بُدَّ	6855	395	بَابِ	6372	426	سَعْدِ	5964
365	النَّبِيُّ	6831	396	لَكُمْ	6345	427	أنْتَ	5937
366	يُرِيدُ	6806	397	أَنَسٍ	6325	428	جَمِيع	5916
367	إنَّهُ	6756	398	ش	6316	429	بَيْنَهُمْ	5868
368	وَأَنْ	6735	399	مَالِ	6314	430	فَعَلَيْهِ	5856
369	فَصْلٌ	6728	400	وَأَلَثَّهُ	6305	431	زادَ	5847
370	السَّلَامُ	6675	401	الْخَطَّابِ	6300	432	جَعْفَرٍ	5840
371	وَاحِدَةٍ	6654	402	لِعَدَمِ	6281	433	الْكِتَابِ	5828
372	النَّاسُ	6652	403	دِينَارٍ	6280	434	غَيْرَهُ	5826
373	سَمِعَ	6644	404	حينين	6264	435	مُعَاوِيَةً	5817
374	رُوِيَ	6625	405	يَدَيْهِ	6263	436	ڹؘ؋۠ڛؘۿ	5814
375	ۮؙڮؚۯ	6619	406	قَوْلَهُ	6235	437	سُئِلَ	5800
376	الدِّينِ	6608	407	الْعَزِيزِ	6229	438	بِهَذَا	5791
377	وَابْنِ	6599	408	حَدِيثُ	6225	439	فَأَمَّا	5780
378	وَرَوَى	6595	409	ػؘؽ۠ڡؘؘ	6225	440	عَلِيٍّ	5768
379	كَلَامِ	6590	410	وَلِأَنَّ	6217	441	حَقِّ	5725
380	عِيسَى	6585	411	الممَدِينَةِ	6217	442	فُلَانٍ	5721
381	وَغَيْرُهُ	6578	412	أوْصَى	6208	443	الرَّجُلُ	5714
382	عَنْهُمْ	6571	413	يَوْمٍ	6190	444	الْمُشْتَرِي	5710
383	الْمَلِكِ	6539	414	يَجُزْ	6178	445	يَلْزَمُ	5703
384	وَاحِدَةً	6523	415	لِذَلِكَ	6159	446	فَعَلَى	5695
385	س <u>َعِدِ</u>	6482	416	فَعَلَ	6133	447	يَوْمًا	5678
386	الْمَسْجِدِ	6476	417	الْعَبْدُ	6130	448	إِسْمَاعِيلَ	5674
387	رِوَايَةِ	6461	418	لنفسيه	6098	449	يَرْجِعُ	5654
388	لَزِمَهُ	6437	419	وَاللَّهُ	6074	450	مَثَلًا	5648
389	مَسْعُودٍ	6434	420	تَكُونَ	6060	451	المُعْنَى	5630
390	الْمَاءِ	6412	421	ؽؙڡ۠ػؚڹؙ	6039	452	وَالثَّانِي	5630
391	قُلْنَا	6389	422	رَأَى	6032	453	أَيَّامٍ	5617

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
454	أَتَى	5613	485	الْمَيِّتِ	5269	516	ٳؚڹ۠ڔؘٵۿؚۑؙؗؗؗؗ	4961
455	الْمَوْلَى	5589	486	الْحَدِيثَ	5264	517	بِنْتُ	4938
456	قَتَادَةَ	5556	487	حُرٌ	5263	518	مَرَّةً	4937
457	بِمَنْزِلَةِ	5545	488	الْمُصَنِّفِ	5251	519	يَنْبَغِي	4924
458	فَهَذَا	5517	489	بَاعَ	5241	520	قَامَ	4922
459	بِيَدِهِ	5513	490	قأت	5229	521	لَنَا	4912
460	أَكْثَرُ	5499	491	تَكُونُ	5225	522	الْحَسَنُ	4903
461	ۺؘؠ۫ۛۼ	5495	492	وَلِأَنَّهُ	5193	523	يُونُسَ	4903
462	آخَرُ	5483	493	الْبُخَارِيُّ	5190	524	الْقِيَامَةِ	4898
463	فيهم	5478	494	وَأَبِي	5174	525	شَرْحِ	4891
464	لِقَوْلِهِ	5461	495	الصَّلَاةُ	5169	526	نَحْوِ	4879
465	يَأْتِي	5443	496	بَيْنَهُ	5141	527	أُمِّ	4878
466	وَيَجُوزُ	5441	497	ٲۺ۫ۿڔٟ	5132	528	فَفِي	4870
467	عَرَفَةً	5435	498	تْحْتَ	5105	529	تَكُنْ	4864
468	شَهِدَ	5409	499	الْحُكْمِ	5105	530	الْحَارِثِ	4858
469	ثَلَاثًا	5399	500	مَالٍ	5098	531	وَكُلُّ	4836
470	حَدِيثٌ	5395	501	مِلْكِهِ	5096	532	اشْتَرَى	4815
471	الْقُرْآنِ	5376	502	ثنا	5080	533	ۅؘعِشْرِينَ	4808
472	عَثَقَ	5371	503	أَخْرَجَهُ	5066	534	وَرُوِيَ	4804
473	بِفَتْح	5366	504	مُحَمَّدٌ	5062	535	ڬؙڷ۠ۿ	4803
474	الْحَجِّ	5352	505	عَلِيُّ	5047	536	بَعْضَ	4796
475	الْبَيْعِ	5351	506	أشارَ	5043	537	عَلِيٌّ	4793
476	فقلت	5319	507	جَمِيعًا	5037	538	عَدَمُ	4789
477	أَوِ	5318	508	الْحَقِّ	5034	539	ظَاهِرٌ	4788
478	ادَّعَى	5317	509	بَأْسَ	5028	540	ٳؚڶٙؽؚڡؚۣؗؗ	4787
479	مَعْنَاهُ	5315	510	ذَهَبَ	5022	541	عَشْرَةَ	4765
480	قُتِلَ	5313	511	وَنَحْوِهِ	5018	542	الْدَّيْنِ	4749
481	فِيمَنْ	5312	512	كِتَابِ	4998	543	لَهُمَا	4749
482	يَوْمِ	5307	513	كَأَنْ	4978	544	وَيُقَالُ	4748
483	رَأَيْتُ	5292	514	وَكَانَتْ	4977	545	وَ هَلْ	4743
484	ٳڹٙٞۑ	5284	515	أَحَدٍ	4968	546	لِغَيْرِهِ	4739

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
547	أَيُّوبَ	4730	578	الْمُدَوَّنَةِ	4563	609	حَالَ	4364
548	مَالٌ	4720	579	بَيْتِ	4561	610	بَكْرِ	4361
549	نَافِعٍ	4720	580	الْحَرْبِ	4534	611	ۯؘۑ۠ۮؚ	4355
550	سُفْيَانُ	4719	581	دَاوُد	4522	612	صاحبه	4339
551	يَزِيدُ	4716	582	أَهْلَ	4520	613	الْمُصَنِّفُ	4334
552	جَعَلَ	4713	583	ڷٳڽؚت	4510	614	جِهَةِ	4332
553	عَمَّا	4705	584	وَيَكُونُ	4505	615	ظَهَرَ	4318
554	رَبِّ	4700	585	الْحَاكِمُ	4501	616	نَظَرٌ	4318
555	الأصْلِ	4698	586	صَالِحٍ	4499	617	أنْتِ	4317
556	عَبْدَ	4693	587	ۻؘعِيفٌ	4499	618	سَبَقَ	4316
557	قَتَلَ	4681	588	الصَّحِيحِ	4496	619	الْعَيْنِ	4289
558	تَرَكَ	4681	589	وَجَلَّ	4492	620	مَوْتِهِ	4288
559	أَحَدِهِمَا	4664	590	خِلَافًا	4490	621	لِغَيْرِ	4287
560	حُكْمُ	4663	591	حَقِّهِ	4486	622	نَصَّ	4257
561	يَقَعُ	4650	592	لِأَنَّهُمْ	4462	623	وَاحِدَةٌ	4246
562	الْعَقْدِ	4647	593	يُقَالَ	4455	624	وَلِهَذَا	4246
563	وَحْدَهُ	4638	594	الْمُرَادُ	4455	625	ڹؘڂۅؘ	4241
564	عَبْدًا	4638	595	فيهما	4453	626	ڬؙڹ۫ؾؙ	4219
565	ػٙؿؚؠڔٟ	4637	596	الْجُمْعَةِ	4441	627	جَابِرٍ	4217
566	الْمَوْتِ	4632	597	جَائِزٌ	4428	628	الْأَمْرِ	4214
567	عَلَيْكُمْ	4627	598	سُبْحَانَهُ	4423	629	يَصِحَّ	4207
568	عَزَّ	4620	599	الرَّجُلِ	4414	630	الْمَسْأَلَةِ	4203
569	بَعْضٍ	4619	600	خَالِدٍ	4413	631	الْمَذْهَبِ	4203
570	أُصْحَابِ	4618	601	الْوَلَدِ	4411	632	طَالِبٍ	4200
571	وَعَنْهُ	4614	602	فَقِيلَ	4409	633	أَفْضَلُ	4196
572	ۅؘۛؗ۫۫ڋ؋ٟ	4613	603	أَحَدُ	4408	634	اللمِ	4195
573	الْحَالِ	4611	604	عُرْوَةَ	4389	635	بَلَغَ	4172
574	أَلَا	4597	605	ڋۯؘؽ۠ڂٟ	4380	636	الْبَابِ	4162
575	أَمَرَ	4592	606	سِنِينَ	4380	637	الْآيَةِ	4150
576	نوَى	4588	607	؋ؘڔ۠ڠؙ	4373	638	جَمَاعَةٌ	4144
577	بِحَيْثُ	4566	608	عَلَيْكَ	4366	639	وَاحِدًا	4135

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
640	يَعْلَمُ	4127	671	يَقْتَضِي	3946	702	ػٙؿؚڔؙ	3753
641	ػؘۅ۠ڹؚ؋	4123	672	وَالْمُرَادُ	3930	703	فَقَالَتْ	3747
642	ۮؘۑ۠ڹٞ	4113	673	يَثْبُثُ	3921	704	ثَلَاثَةِ	3743
643	ثَلَاثَةً	4113	674	عَبْدٍ	3921	705	يَمْلِكُ	3743
644	الْكَلَامِ	4105	675	يَقُولُونَ	3917	706	بِقَدْرِ	3738
645	الْوَقْتِ	4093	676	ڂؘؽڔؙ	3912	707	وَأَنَا	3730
646	قَدِمَ	4088	677	مَسْأَلَةٌ	3907	708	هِشَامٍ	3727
647	وَمِنْهُ	4086	678	هُنَاكَ	3904	709	الأب	3725
648	وَفِيهَا	4085	679	أَوَّلًا	3898	710	ڛؘؠؾؚٞۮؚۄ	3720
649	يَدِ	4064	680	أَحَدًا	3898	711	لَكَانَ	3718
650	الْقَوْلِ	4063	681	مِنْكُمْ	3896	712	وَلَدِهِ	3711
651	وَاللَّهِ	4061	682	وُجِدَ	3880	713	دَرَاهِمَ	3711
652	حَصَلَ	4057	683	ثَلَاثَةُ	3879	714	سَنَةٍ	3708
653	يَخْرُ جُ	4053	684	الصَّحَابَةِ	3876	715	حَسَنٌ	3707
654	النَّاسَ	4050	685	دَارِ	3860	716	ظَاهِرُ	3704
655	أَعْثَقَ	4039	686	وَ هْبٍ	3850	717	ثَلاثَةٌ	3698
656	وَهَذِهِ	4038	687	ػٙؿؚؠڔٞٵ	3835	718	ڶؘؽؚ۠ڛؘؾۨ	3693
657	ڬؙڶٞ	4032	688	كَأَنَّهُ	3832	719	نِصْفُ	3686
658	الْوَقْفِ	4022	689	الشَّافِعِيِّ	3830	720	يَحْتَاجُ	3681
659	يَحِلُّ	4015	690	بِضَمِّ	3826	721	يَرَى	3672
660	م	4015	691	٢	3826	722	مِثْلِهِ	3671
661	ڣؘػٙڔ۠ڣؘ	4005	692	مَالًا	3806	723	ؽۺ۠ؾؘۯؘڟ۬	3665
662	ذِي	4005	693	حَقٌّ	3803	724	إِلَيَّ	3662
663	الْعَرَبِ	3999	694	ۻؘڡؚڹؘ	3802	725	عَطَاءٍ	3661
664	عَادَ	3998	695	هَكَذَا	3799	726	عُبَيْدِ	3658
665	أَحَدِ	3996	696	كَقَوْلِهِ	3796	727	عُثْمَانُ	3657
666	فَيَقُولُ	3991	697	أَخَذَهُ	3784	728	الزُّ هْرِيِّ	3656
667	مَوْلَى	3985	698	ؾؙۅؙڣؘٞؠؘ	3769	729	مِثْلَهُ	3655
668	المعلماء	3969	699	مَنْصُورٍ	3763	730	جُبَيْرٍ	3652
669	تَرَى	3959	700	بَعْدُ	3758	731	آدَمَ	3649
670	وَإِنَّ	3947	701	صاحب	3757	732	رِوَايَةٍ	3648

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
733	فَمَاتَ	3646	764	الْمَالَ	3526	795	بِسَبَب	3406
734	سَعِيدُ	3634	765	وَلَدٍ	3523	796	الْوَجْهِ	3404
735	حُكْمِ	3632	766	الْجَنَّةِ	3522	797	ؠؚڡؘػۧۛٞ؋ٞ	3403
736	آخِرِ	3620	767	الْيَمِينِ	3519	798	ر	3402
737	كَتَبَ	3620	768	ذَكَرْنَا	3518	799	الْكِتَابَةِ	3402
738	تَصِحُ	3616	769	أَصْحَابِهِ	3514	800	بَاطِلٌ	3397
739	إمَّا	3615	770	يَضْمَنُ	3513	801	وَعِنْدَ	3396
740	أَقَلَّ	3615	771	بِعَيْنِهِ	3512	802	أَوَّلِ	3394
741	عُيَيْنَة	3614	772	عِنْدَهُمْ	3497	803	إلَيْهَا	3394
742	يَدْخُلُ	3614	773	فَصَارَ	3494	804	الْمَسْأَلَةُ	3390
743	الأخَرُ	3613	774	مِتْلُهُ	3490	805	الأُخْرَى	3385
744	أَهْلِهِ	3612	775	وَجْهَانِ	3489	806	نَزَلَ	3377
745	تَجِبُ	3612	776	وَالسَّلَامُ	3486	807	الْأَصَحِّ	3376
746	وَلَمَّا	3611	777	وَمِنْهَا	3481	808	قَطَعَ	3373
747	مُتَّفَقٌ	3595	778	الزُّبَيْرِ	3478	809	شَيْخُنَا	3361
748	ڝؘڒؖڂ	3593	779	يَبْقَى	3473	810	يَدَهُ	3358
749	حَالِ	3589	780	ػؙڶٞ	3472	811	الْحَاكِمِ	3353
750	عَلَيْهِمَا	3583	781	بِنْتِ	3466	812	ڹؚڝ۠ڡؘ	3351
751	عَامِرٍ	3583	782	السَّنَةِ	3459	813	قيمتيه	3347
752	فُلَانٌ	3579	783	وَغَيْرِهِمْ	3453	814	حَاتِمٍ	3346
753	فَكَذَلِكَ	3576	784	وَجَدَ	3435	815	دَلِيلٌ	3341
754	لأ	3575	785	رَكْعَتَيْنِ	3435	816	قِيمَتُهُ	3340
755	سَقَطَ	3574	786	رَأْسَهُ	3427	817	يُكْرَهُ	3336
756	يَمِينِهِ	3573	787	قَوْمٌ	3426	818	الْحُكْمُ	3334
757	مَعَهُمْ	3569	788	يَظْهَرُ	3425	819	بَابُ	3330
758	كَلَامِهِ	3550	789	أُمَّ	3425	820	أَوَّلَ	3329
759	تَنْبِيهُ	3549	790	قَضَى	3424	821	الثَّلْثِ	3327
760	مَاجَهْ	3545	791	مَتَى	3423	822	يَحْصُلُ	3321
761	وَخَرَجَ	3540	792	عِنْدِي	3413	823	حَبِيبٍ	3318
762	وَمِنْهُمْ	3538	793	عُبَيْدٍ	3413	824	إِلَيْهَا	3308
763	رَأْسِهِ	3533	794	يُصَلِّي	3409	825	الْقَضَاءِ	3307

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
826	لِأَجْلِ	3302	857	الْبَائِعِ	3181	888	أُمِّهِ	3075
827	أخيه	3296	858	جَمِيعَ	3181	889	بَاعَهُ	3072
828	الْعِتْقِ	3295	859	بَيْعُ	3177	890	الْمُرَادَ	3071
829	ندُ ع َبَهُ	3294	860	دَفَعَ	3177	891	الْمَذْكُورِ	3070
830	بِكَسْرِ	3289	861	مِثْلِ	3174	892	مَالَ	3069
831	الْعَمَلِ	3284	862	يَمْنَعُ	3173	893	الْمُسْلِمُونَ	3057
832	فَخَرَجَ	3272	863	يُوجِبُ	3173	894	ففيبه	3050
833	الأمْرُ	3262	864	حَرَامٌ	3170	895	الْأَوْلَى	3049
834	بِنَاءً	3258	865	عِنْدَنَا	3164	896	أَوَّلُ	3046
835	لِئَلَّا	3257	866	الْمِلْكِ	3163	897	سُلَيْمَانُ	3045
836	بِدُونِ	3255	867	الْمِثْلِ	3161	898	هَارُونَ	3038
837	الْيَوْمَ	3255	868	مَعْمَرٍ	3161	899	الْمُسْلِمِ	3038
838	وَعَبْدُ	3251	869	الْوَرَثَةِ	3158	900	أأول	3037
839	صَلَاةٍ	3241	870	ۼؘؽڔؚۿٵ	3146	901	ۊؙڹ	3034
840	لَقَدْ	3241	871	فَإِنَّهَا	3139	902	مَعًا	3019
841	بِهِمَا	3238	872	ڬؙڵٙ؋	3135	903	سِيرِينَ	3017
842	قَتَلَهُ	3233	873	يَوْمَئِذٍ	3135	904	الْوَلِيدِ	3012
843	أَخْبَرَنِي	3231	874	وَأَخَذَ	3134	905	وَقَفَ	3006
844	أَرْبَعِينَ	3223	875	المُعَبْدَ	3133	906	الْمَالُ	3002
845	أَقَامَ	3219	876	إِسْمَاعِيلُ	3122	907	حَنْبَلٍ	3001
846	الْبَيْتِ	3217	877	الْأُمِّ	3118	908	عُلِمَ	2999
847	ۺؘؽؚڹؘ؋	3216	878	الْدُّنْيَا	3114	909	الْوَاحِدِ	2995
848	يَعْلَمْ	3213	879	طَلْحَةً	3108	910	يَقُومُ	2994
849	النَّرْمِذِيُّ	3208	880	الْمَتْنِ	3104	911	وَجَعَلَ	2988
850	فَقَالُوا	3204	881	يُقْبَلُ	3097	912	الْحُسَيْنِ	2985
851	فَوْقَ	3203	882	عَنْهُمَا	3097	913	وُجُوبِ	2985
852	مَوْضِعٍ	3202	883	ڝؚحَّةؚ	3096	914	ۺؘڵػٞ	2985
853	ؠؚػ۫ڵٞ	3200	884	جَوَازِ	3093	915	أُمَّ	2978
854	ثُمَّ	3198	885	رَبِيعَةً	3087	916	الْبَحْرِ	2978
855	أرَأَيْتَ	3192	886	يَحْرُمُ	3087	917	مِصْرَ	2975
856	الْحَدِيثُ	3183	887	أَحْرَمَ	3077	918	الٰذَّارِ	2974

Serial	Word	Frequency	Serial	Word	Frequency	Serial	Word	Frequency
919	أَدَّى	2973	947	شِهَابٍ	2901	975	الشَّامِ	2833
920	الشَّيْخُ	2972	948	ۊؙڔؘۑ۠ۺ	2901	976	ٳؚڷؽ۬ڬ	2832
921	الْحَكَمِ	2969	949	ثَلَاثَ	2900	977	الْحَافِظُ	2829
922	مُعَيَّنٍ	2968	950	اللَّهُمَّ	2900	978	يَأْخُذُ	2828
923	ڡؘٙؽؚڛٟ	2967	951	الْمَاءَ	2894	979	فَذَكَرَ	2826
924	وَقْتَ	2966	952	الْوَصِيَّةِ	2893	980	مَرْفُوعًا	2823
925	يُؤْخَذُ	2963	953	الْمُدَّعَى	2893	981	حِبَّانَ	2809
926	وَجْهِ	2959	954	أصْلًا	2892	982	يَتَعَلَّقُ	2808
927	ڵڮؚڹٞ	2957	955	مِلْكِ	2890	983	حَالٍ	2803
928	جَمْعُ	2955	956	إِسْرَائِيلَ	2886	984	الْمُكَاتَبِ	2784
929	مَضَى	2952	957	زِيَادٍ	2885	985	الصَّلَاةَ	2784
930	لِرَجُلٍ	2950	958	شَرَطَ	2881	986	قَوْمٍ	2782
931	عِمْرَانَ	2948	959	وَتَقَدَّمَ	2881	987	حَمَّادُ	2776
932	يَأْخُذَ	2941	960	اثْنَيْنِ	2879	988	وَإِلَى	2774
933	الْمُسَبِّبِ	2935	961	عَجَزَ	2875	989	عَمْدًا	2766
934	وَالْمَعْنَى	2933	962	بِشَرْطِ	2870	990	امْرَأَةٍ	2757
935	وَتَعَالَى	2933	963	أَلْفَ	2870	991	الثَّالِثُ	2757
936	قُصَدَ	2932	964	وَلِذَلِكَ	2868	992	وَاجِبٌ	2757
937	الثَّمَنِ	2929	965	وَسَوَاءٌ	2867	993	وَيُحْتَمَلُ	2756
938	زَيْدٌ	2924	966	سِوَى	2866	994	بِإِذْنِ	2756
939	نَحْوُ	2922	967	ؠؘۊؙ۫ڸ	2863	995	عِشْرِينَ	2751
940	ۯؙۺ۠ۮٟ	2920	968	لِكَوْنِهِ	2859	996	مَلَكَ	2750
941	قَوْلَ	2919	969	سَبِيلِ	2858	997	وَكِيعٌ	2744
942	وَقْتِ	2919	970	امْرَأَةً	2854	998	الْقَوْلُ	2740
943	بَيْعِ	2916	971	الْمُشْرِكِينَ	2840	999	ڝؘڵٲؿؙ؋	2734
944	الْبَلَدِ	2916	972	بِدَلِيلِ	2836	1000	بَعْدَهَا	2734
945	الْمَرْأَةِ	2905	973	الْبَيْعُ	2834	·		
946	قَرَأَ	2904	974	فغي	2834			

Appendix III

Primary Functions

• IsValidDiacritization:

A function used extensively to validate the diacritization of a given text using basic heuristics. One such heuristic is when two (or more) diacritics are incompatible (e.g. Sukoon with Shadda).

```
public static bool IsValidDiacritization(string word)
   {
      || Regex.Match(word, "2), RegexOptions.None).Success
       )
       return false;
       Match m = Regex.Match(word, "[1], RegexOptions.None);
       if (m.Success)
       {
       int endIndex = m.Index + m.Length;
if (!(m.Value == "'أ" || m.Value == "ئ" الأربي (endIndex >= word.Length ||
!IsArabicLetter(word[endIndex]))) && !(m.Value.EndsWith(",") && (endIn
dex >= word.Length || !IsArabicLetter(word[endIndex]))))
          return false;
       }
      return true;
   }
```

• CleanDiacritics:

A function used to clean diacritics (such as misplaced Shadda) from a text. This is important when we compare the output of our system with other ones.

```
public static string CleanDiacritics(string text)
{
    return rx_repeated_diac.Replace(
        text.Replace("i", "io")
        .Replace("io", "io")
        .Replace("io", "io")
        .Replace("oo", "oo")
        .Replace("oo", "oo")
```

• GetDiacritizedLetters

Returns the estimated number of diacritized letters (accounting for implicit diacritics). This function is primary used to calculate the diacritization level (which is simply the number of diacritized letters, returned by this function, over the total number of Arabic letters.

```
public static int GetDiacritizedLetters(string word)
        {
            int diacritized letters = 0;
            bool letter_started = false;
            int i = 0;
            Character[] Characters = Character.ParseWord(word);
            for (i = 0; i < Characters.Length; i++)</pre>
            {
                if (!Characters[i].isDiacritic)
                {
                    if (letter_started)
                    {
                        if (
                                 (i - 2 >= 0 && Characters[i -
1].c == ''' && Characters[i - 2].c == '´o') ||
                                 (i - 2 >= 0 && Characters[i -
1].c == '¿' && Characters[i - 2].c == 'ć') ||
                                (i - 2 >= 0 && Characters[i -
1].c == 'o' && Characters[i - 2].c == 'o')
                             diacritized_letters++;
                    }
                    if (Characters[i].c == '!' || Characters[i].c == 'i' || Cha
racters[i].c == 'u')
                         diacritized letters++;
                    letter started = true;
                }
                else
                {
                    if (letter_started && Characters[i].c != '´' && !(Characte
rs[i - 1].c == '!' || Characters[i - 1].c == 'i' || Characters[i -
1].c == 'ی'))
                    {
                        diacritized_letters++;
                    }
                    if (Characters[i].c != '´')
                    {
                        letter started = false;
                    }
                }
            }
```

if ($(i - 2 \ge 0) \&\& ($ (Characters[i - 1].c == ''' && Characters[i -2].c == 'ố') || (Characters[i - 1].c == 'e' && Characters[i -2].c == 'ໍ') || (Characters[i - 1].c == 'ي' && Characters[i -2].c == '\circ') || (Characters[i - 1].c == ''' && Characters[i -2].c == 'ố') || (Characters[i - 1].c == 'ی' && Characters[i -2].c == 'ố'))) diacritized_letters++; if ((word.StartsWith("الْ") || word.StartsWith("بإلْ") || word.StartsWith(ith("ال") || word.StartsWith("بإلْ") || word.StartsWith("ال")) && word.Length >= 5) diacritized letters++; else if (word.StartsWith(")) diacritized_letters += 2; else if (word.Length > 3 && word.StartsWith("J") && !Character.Par se(word[2]).isDiacritic && word[3] == 'o') diacritized_letters += 2; else if (word.Length > 5 && word.StartsWith("روال") && !Character.Pa rse(word[4]).isDiacritic && word[5] == '´') diacritized_letters += 1; else if (word.Length > 5 && word.StartsWith("بال") && !Character.Pa rse(word[4]).isDiacritic && word[5] == 'o') diacritized letters += 2; else if (word.Length > 5 && word.StartsWith("فُل") && !Character.Pa rse(word[4]).isDiacritic && word[5] == '´') diacritized_letters += 1; else if (word.Length > 5 && word.StartsWith("كُلّ) && !Character.Pa rse(word[4]).isDiacritic && word[5] == 'o') diacritized_letters += 1; if (word.Length > 4 && word.EndsWith("")) diacritized_letters += word[word.Length - 3] != ''' ? 2 : 1; else if (word.Length > 4 && word.EndsWith("زا")) diacritized letter s += 1; return diacritized_letters; }

• GetSentences

This function separates the text into a sentence array using Regular Expressions. The performance is questionable but it serves its intended purpose.

```
public static string[] GetSentences(string text)
    {
        List<string> sentences = new List<string>();
        //Regex rx = new Regex(@"(\S.+?[.!?(\r\n)])(?=\s+|$)");
    Regex rx = new Regex(@"[^.!?\s][^.!?]*(?:[.!?](?!['""]?\s|$)[^.!?]*
)*[.!?]?['""]?(?=\s|$)");
        foreach (Match match in rx.Matches(text))
        {
        string sentence = match.Value.Replace("\r\n", " ");
        sentence = sentence.Replace("\n", " ").Trim();
        for (int i = 10; i > 2; i--)
            sentence.Replace(new string(' ', i), " ");
        if (!string.IsNullOrEmpty(sentence))
            sentences.Add(sentence);
        }
        if (sentences.Count == 0) sentences.Add(text);
        return sentences.ToArray();
    }
```

Appendix IV Tools used

AraMorph

AraMorph is a morphological analyzer which was ported to Java from the Perl version developed by Tim Buckwalter on behalf of the Linguistic Data Consortium (LDC).

Usage: used in various stages of this research work including rule extraction and corpus development and the diacritization.

Website: http://www.nongnu.org/aramorph/

Apache Tika

The Apache Tika[™] toolkit detects and extracts metadata and structured text content from various documents using existing parser libraries.

Usage: used to extract text from crawled web documents (HTML and other formats).

Website: http://tika.apache.org/

Alkhalil Morpho Sys

Alkhalil Morpho Sys is a morphological analyzer. For a given word, it identifies all possible solutions with their morphosyntactic features:

Usage: used in various stages of this research work including rule extraction and corpus development.

Website: http://sourceforge.net/projects/alkhalil/

IKVM.NET

IKVM.NET is an implementation of Java for Mono and the Microsoft .NET Framework. It includes the following components:

- A Java Virtual Machine implemented in .NET
- A .NET implementation of the Java class libraries
- Tools that enable Java and .NET interoperability

Usage: converting AraMorph.NET and Akhalil to .NET.

Website: <u>http://www.ikvm.net/</u>

Appendix V AraMorph Tagset

Prefixes

Tag	Description
CONJ	Conjunction
EMPHATIC_PARTICLE	Emphatic particle
FUNC_WORD	Function word
FUT_PART	Future particle
INTERJ	Interjection
INTERROG_PART	Interrogative particle
IV1S	Imperfective 1st person singular
IV2MS	Imperfective 2nd person masculine singular
IV2FS	Imperfective 2nd person feminine singular
IV3MS	Imperfective 3rd person masculine singular
IV3FS	Imperfective 3rd person feminine singular
IV2D	Imperfective 2nd person dual
IV2FD	Imperfective 2nd person feminine dual
IV3MD	Imperfective 3rd person masculine dual
IV3FD	Imperfective 3rd person feminine dual
IV1P	Imperfective 1st person plural
IV2MP	Imperfective 2nd person masculine plural
IV2FP	Imperfective 2nd person feminine plural
IV3MP	Imperfective 3rd person masculine plural
IV3FP	Imperfective 3rd person feminine plural
NEG_PART	Negative particle
PREP	Preposition
RESULT_CLAUSE_PARTICLE	Result clause particle

Stems

Category	Description
ABBREV	Abbreviation
ADJ	Adjective
ADV	Adverb
DEM_PRON_F	Feminine demonstrative pronoun
DEM_PRON_FS	Feminine singular demonstrative pronoun
DEM_PRON_FD	Dual demonstrative pronoun
DEM_PRON_MS	Masculine singular demonstrative pronoun
DEM_PRON_MD	Masculine dual demonstrative pronoun
DEM_PRON_MP	Masculine plural demonstrative pronoun
DET	Determinative
INTERROG	Interrogative particle
NO_STEM	No stem for the word
NOUN	Noun
NOUN_PROP	Proper noun
NUMERIC_COMMA	Decimal separator
PART	Particle
PRON_1S	Personal pronoun : 1st person singular
PRON_2MS	Personal pronoun : 2nd person masculine singular
PRON_2FS	Personal pronoun : 2nd person feminine singular
PRON_3MS	Personal pronoun : 3rd person masculine singular
PRON_3FS	Personal pronoun : 3rd person feminine singular
PRON_2D	Personal pronoun : 2nd person common dual
PRON_3D	Personal pronoun : 3rd person common dual
PRON_1P	Personal pronoun : 1st person plural
PRON_2MP	Personal pronoun : 2nd person masculine plural
PRON_2FP	Personal pronoun : 2nd person feminine plural
PRON_3MP	Personal pronoun : 3rd person masculine plural
PRON_3FP	Personal pronoun : 3rd person feminine plural
REL_PRON	Relative pronoun
VERB_IMPERATIVE	Imperative verb
VERB_IMPERFECT	imperfective verb
VERB_PERFECT	Perfective verb

Suffixes

Category	Description
CASE_INDEF_NOM	Indefinite, nominative
CASE_INDEF_ACC	Indefinite, accusative
CASE_INDEF_ACCGEN	Indefinite, accusative/genitive
CASE_INDEF_GEN	Indefinite, genitive
CASE_DEF_NOM	Definite, nominative
CASE_DEF_ACC	Definite, accusative
CASE_DEF_ACCGEN	Definite, accusative/genitive
CASE_DEF_GEN	Definite, genitive
NSUFF_MASC_SG_ACC_INDEF	Nominal suffix : masculine singular, accusative, indefinite
NSUFF_FEM_SG	Nominal suffix : feminine singular
NSUFF_MASC_DU_NOM	Nominal suffix : dual masculine, nominative
NSUFF_MASC_DU_NOM_POSS	Nominal suffix : dual masculine, nominative, construct state
NSUFF_MASC_DU_ACCGEN	Nominal suffix : dual masculine, accusative/genitive
NSUFF_MASC_DU_ACCGEN_POSS	Nominal suffix : dual masculine, accusative/genitive, construct state
NSUFF_FEM_DU_NOM	Nominal suffix : dual feminine, nominative
NSUFF_FEM_DU_NOM_POSS	Nominal suffix : dual feminine, nominative, construct state
NSUFF_FEM_DU_ACCGEN	Nominal suffix : dual feminine, accusative/genitive
NSUFF_FEM_DU_ACCGEN_POSS	Nominal suffix : dual feminine, nominative, construct state
NSUFF_MASC_PL_NOM	Nominal suffix : masculine plural, nominative
NSUFF_MASC_PL_NOM_POSS	Nominal suffix : masculine plural, nominative, construct state
NSUFF_MASC_PL_ACCGEN	Nominal suffix : masculine plural, accusative/genitive
NSUFF_MASC_PL_ACCGEN_POSS	Nominal suffix : masculine plural, accusative/genitive, construct state
NSUFF_FEM_PL	Nominal suffix : feminine plural
POSS_PRON_1S	Personnal suffix : 1st person singular
POSS_PRON_2MS	Personnal suffix : 2nd person masculine singular
POSS_PRON_2FS	Personnal suffix : 2nd person feminine singular
POSS_PRON_3MS	Personnal suffix : 3rd person masculine singular
POSS_PRON_3FS	Personnal suffix : 3rd person feminine singular
POSS_PRON_2D	Personnal suffix : 2nd person common dual
POSS_PRON_3D	Personnal suffix : 3rd person common dual
POSS_PRON_1P	Personnal suffix : 1st person plural
POSS_PRON_2MP	Personnal suffix : 2ème person masculine plural
POSS_PRON_2FP	Personnal suffix : 2ème person feminine plural
POSS_PRON_3MP	Personnal suffix : 3ème person masculine plural

Category	Description
POSS_PRON_3FP	Personnal suffix : 3ème person feminine plural
IVSUFF_DO:1S	Imperfective verb direct object : 1st person singular
IVSUFF_DO:2MS	Imperfective verb direct object : 2nd person masculine singular
IVSUFF_DO:2FS	Imperfective verb direct object : 2nd person feminine singular
IVSUFF_DO:3MS	Imperfective verb direct object : 3rd person masculine singular
IVSUFF_DO:3FS	Imperfective verb direct object : 3rd person feminine singular
IVSUFF_DO:2D	Imperfective verb direct object : 2nd person common dual
IVSUFF_DO:3D	Imperfective verb direct object : 3rd person common dual
IVSUFF_DO:1P	Imperfective verb direct object : 1st person plural
IVSUFF_DO:2MP	Imperfective verb direct object : 2nd person masculine plural
IVSUFF_DO:2FP	Imperfective verb direct object : 2nd person feminine plural
IVSUFF_DO:3MP	Imperfective verb direct object : 3rd person masculine plural
IVSUFF_DO:3FP	Imperfective verb direct object : 3rd person feminine plural
IVSUFF_MOOD:I	Imperfective verb : indicative mode
IVSUFF_SUBJ:2FS_MOOD:I	Imperfective verb : subject marker, 2nd person feminine singular, indicative mode
IVSUFF_SUBJ:D_MOOD:I	Imperfective verb : subject marker, dual, indicative mode
IVSUFF_SUBJ:3D_MOOD:I	Imperfective verb : subject marker, 3rd person common dual, indicative mode
IVSUFF_SUBJ:MP_MOOD:I	Imperfective verb : subject marker, masculine plural, indicative mode
IVSUFF_MOOD:S	Imperfective verb : subjunctive/jussive mode
IVSUFF_SUBJ:2FS_MOOD:SJ	Imperfective verb : subject marker, 2nd person feminine singular, subjunctive/jussive mode
IVSUFF_SUBJ:D_MOOD:SJ	Imperfective verb : subject marker, dual, subjunctive/jussive mode
IVSUFF_SUBJ:MP_MOOD:SJ	Imperfective verb : subject marker, masculine plural, subjunctive/jussive mode
IVSUFF_SUBJ:3MP_MOOD:SJ	Imperfective verb : subject marker, 3rd person du masculine plural, subjunctive/jussive mode
IVSUFF_SUBJ:FP	Imperfective verb : subject marker, feminine plural
PVSUFF_DO:1S	Perfective verb direct object : 1st person singular
PVSUFF_DO:2MS	Perfective verb direct object : 2nd person masculine singular
PVSUFF_DO:2FS	Perfective verb direct object : 2nd person feminine singular
PVSUFF_DO:3MS	Perfective verb direct object : 3rd personmasculine singular
PVSUFF_DO:3FS	Perfective verb direct object : 3rd person feminine singular
PVSUFF_DO:2D	Perfective verb direct object : 2nd person common dual
PVSUFF_DO:3D	Perfective verb direct object : 3rd person common dual
PVSUFF_DO:1P	Perfective verb direct object : 1st person plural
PVSUFF_DO:2MP	Perfective verb direct object : 2nd person masculine plural
PVSUFF_DO:2FP	Perfective verb direct object : 2nd person feminine plural

Category	Description
PVSUFF_DO:3MP	Perfective verb direct object : 3rd person masculine plural
PVSUFF_DO:3FP	Perfective verb direct object : 3rd person feminine plural
PVSUFF_SUBJ:1S	Perfective verb subject : 1st person singular
PVSUFF_SUBJ:2MS	Perfective verb subject : 2nd person masculine singular
PVSUFF_SUBJ:2FS	Perfective verb subject : 2nd person feminine singular
PVSUFF_SUBJ:3MS	Perfective verb subject : 3rd person masculine singular
PVSUFF_SUBJ:3FS	Perfective verb subject : 3rd person feminine singular
PVSUFF_SUBJ:2MD	Perfective verb subject : 2nd person dual masculine
PVSUFF_SUBJ:2FD	Perfective verb subject : 2nd person dual feminine
PVSUFF_SUBJ:3MD	Perfective verb subject : 3rd person dual masculine
PVSUFF_SUBJ:3FD	Perfective verb subject : 3rd person dual feminine
PVSUFF_SUBJ:1P	Perfective verb subject : 1st person plural
PVSUFF_SUBJ:2MP	Perfective verb subject : 2nd person masculine plural
PVSUFF_SUBJ:2FP	Perfective verb subject : 2nd person feminine plural
PVSUFF_SUBJ:3MP	Perfective verb subject : 3rd person masculine plural
PVSUFF_SUBJ:3FP	Perfective verb subject : 3rd person feminine plural
CVSUFF_DO:1S	Imperative verb direct object : 1st person singular
CVSUFF_DO:3MS	Imperative verb direct object : 3rd person masculine singular
CVSUFF_DO:3FS	Imperative verb direct object : 3rd person feminine singular
CVSUFF_DO:3D	Imperative verb direct object : 3rd person common dual
CVSUFF_DO:1P	Imperative verb direct object : 1st person plural
CVSUFF_DO:3MP	Imperative verb direct object : 3rd person masculine plural
CVSUFF_DO:3FP	Imperative verb direct object : 3rd person feminine plural
CVSUFF_SUBJ:2MS	Imperative verb subject : 2nd person masculine singular
CVSUFF_SUBJ:2FS	Imperative verb subject : 2nd person feminine singular
CVSUFF_SUBJ:2MP	Imperative verb subject : 2nd person masculine plural

References

- [1] Wikipedia, "Natural language processing --- Wikipedia{,} The Free Encyclopedia," 2013.
 [Online]. Available: http://en.wikipedia.org/w/index.php?title=Natural_language_processing&oldid=554418471.
- [2] M. Rashwan, M. Al-Badrashiny, M. Attia, S. Abdou and A. Rafea, "A Stochastic Arabic Diacritizer Based on a Hybrid of Factorized and Unfactorized Textual Features," *Audio, Speech, and Language Processing, IEEE Transactions on*, vol. 19, no. 1, pp. 166-175, jan. 2011.
- [3] Wikipedia, "Arabic Diacritics," [Online]. Available: https://en.wikipedia.org/wiki/Arabic_diacritics.
- [4] Wikipedia, "Diacritic --- Wikipedia, The Free Encyclopedia," 16 January 2012. [Online]. Available: http://en.wikipedia.org/wiki/Diacritic. [Accessed 1 February 2012].
- [5] A. S. Azim, "Combining Speech with Textual Methods for Arabic Diacritization," 2012.
- [6] I. Zitouni and R. Sarikaya, "Arabic Diacritic Restoration Approach Based on Maximum Entropy Models," *Computer Speech & Language*, vol. 23, no. 3, pp. 257-276, 2009.
- [7] K. Shaalan, H. M. Abo Bakr and I. Ziedan, "A Hybrid Approach for Building Arabic Diacritizer," in *Proceedings of the EACL 2009 Workshop on Computational Approaches to Semitic Languages*, Athens, Greece, 2009.
- [8] N. Habash and O. Rambow, "Arabic Diacritization through Full Morphological Tagging," in Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers, Rochester, New York, 2007.
- [9] R. Roth, O. Rambow, N. Habash, M. Diab and C. Rudin, "Arabic Morphological Tagging, Diacritization, and Lemmatization Using Lexeme Models and Feature Ranking," in Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers, Stroudsburg, PA, USA, 2008.
- [10] M. Elshafei, H. Al-Muhtaseb and M. Alghamdi, "Statistical Methods for Automatic Diacritization of Arabic Text," in *Proceedings of the Saudi 18th National Computer Conference (NCC18)*, 2006.

- [11] M. Attia, "Theory and Implementation of a Large-Scale Arabic Phonetic Transcriptor, and Applications," PhD. Dissertation, RDI, Cairo, Egypt, 2005.
- [12] N. M. Trung, N. Q. Nhan and N. H. Phuong, "Vietnamese Diacritics Restoration as Sequential Tagging," in *Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2012 IEEE RIVF International Conference on,* 2012.
- [13] J. Atserias, M. Fuentes, R. Nazar and I. Renau, "Spell Checking in Spanish: The Case of Diacritic Accents," in *Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)*, Istanbul, Turkey, 2012.
- [14] J. Mahar, G. Memon and H. Shaikh, "Sindhi Diacritics Restoration by Letter Level Learning Approach," *Sindh University Research Journal (Science Series)*, vol. 43(2), p. 119–126, 2011.
- [15] R. A. Haertel, P. McClanahan and E. K. Ringger, "Automatic Diacritization for Lowresource Languages Using a Hybrid Word and Consonant CMM," in *Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics*, Stroudsburg, PA, USA, 2010.
- [16] A. Raza and S. Hussain, "Automatic Diacritization for Urdu," in *Proceedings of the Conference on Language and Technology 2010 (CLT10)*, 2010.
- [17] M. Alghamdi, Z. Muzaffar and H. Alhakami, "Automatic Restoration of Arabic Diacritics: A Simple, Purely Statistical Approach," *The Arabian Journal for Science and Engineering*, vol. 35, 2010.
- [18] M. Rashwan, M. Al-Badrashiny, M. Attia and S. Abdou, "A Hybrid System for Automatic Arabic Diacritization," in *Proceedings of the Second International Conference on Arabic Language Resources and Tools*, 2009.
- [19] E. Mohamed and S. Kübler, "Diacritization for Real-World Arabic Texts," 2009.
- [20] I. Zitouni and R. Sarikaya, "Arabic Diacritic Restoration Approach Based on Maximum Entropy Models," *Computer Speech & Language*, vol. 23, no. 3, pp. 257-276, 2009.
- [21] T. Schlippe, T. Nguyen and S. Vogel, "Diacritization as a Machine Translation Problem and as a Sequence Labeling Problem," in *Proceedings of the Eighth Conference of the Association for Machine Translation in the Americas*, 2008.
- [22] M. Elshafei, H. Al-Muhtaseb and M. Al-Ghamdi, "Machine Generation of Arabic

Diacritical Marks," in *Proceedings of the International Conference on Machine Learning; Model Technologies & Applications*, 2006.

- [23] I. Zitouni, J. S. Sorensen and R. Sarikaya, "Maximum Entropy Based Restoration of Arabic Diacritics," Stroudsburg, PA, USA, 2006.
- [24] M. Elshafei, H. Al-Muhtaseb and M. Al-Ghamdi, "Statistical Methods for Automatic Diacritization of Arabic Text," 2006.
- [25] S. Ananthakrishnan, S. Narayanan and S. Bangalore, "Automatic Diacritization of Arabic Transcripts for Automatic Speech Recognition," 2005.
- [26] R. Nelken and S. M. Shieber, "Arabic Diacritization Using Weighted Finite-State Transducers," Stroudsburg, PA, USA, 2005.
- [27] N. Habash, Introduction to Arabic Natural Language Processing, Morgan & Claypool publishers, 2010.
- [28] Wikipedia, "Text corpus," [Online]. Available: http://en.wikipedia.org/wiki/Text_corpus.
- [29] Apache, "Apache Tika," [Online]. Available: http://tika.apache.org/.
- [30] P. Brihaye, "AraMorph Project Page," [Online]. Available: http://www.nongnu.org/aramorph/english/.
- [31] "Arabi NLP Website," [Online]. Available: http://www.arabinlp.com/.
- [32] "Mishkal Diacritization Tool," [Online]. Available: http://sourceforge.net/projects/mishkal/.
- [33] "Sakhr Software," [Online]. Available: http://www.sakhr.com.
- [34] M. A. Badrashiny, "Automatic Diacritizer for Arabic Texts," 2009.
- [35] O. R. a. R. Nizar Habash, "MADA+TOKAN: A Toolkit for Arabic Tokenization, Diacritization, Morphological Disambiguation, POS Tagging, Stemming and Lemmatization," in *Proceedings of the Second International Conference on Arabic Language Resources and Tools*, Cairo, Egypt, 2009.

Vitae

Name	:	Omar Elsayed Mohammed Shaaban
Nationality	:	Egyptian
Date of Birth	:	9/22/1986
Email	:	omar.s.shaaban@gmail.com
Address	:	Khobar – Saudi Arabia

:

Academic Background

Earned B.Sc. in Software Engineering from KFUPM in 2010. Published three papers on free-riding in P2P networks, Cloud computing, and Arabic automatic diacritization. Participated in a TICET 2012 workshop for Arabic technologies and IECH 2012 higher education conference.