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In this research, the problem of complex valued finite impulse response FIR wave-

field extrapolation filter design is considered as a linear complimentarity problem

(LCP). LCP is not an optimization technique as there is no objective function to

optimize, however, quadratic programming, one of the applications of LCP, can

be used to find an optimal solution for the 1-D FIR wavefield extrapolation filter.

Quadratic programs are an extremely important source of applications of LCP,

in fact, several algorithms for quadratic programs are based on LCP. This work

shows the efforts that are being made to convert the FIR wavefield extrapolation

filter design problem into a quadratic program and then finally, to an equivalent

linear complimenatarity problem. There are two families of algorithms available

to solve for the LCP: a direct (pivoting based) algorithms, and b indirect (iter-
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ative) algorithms . In this study, the LCP has been solved by a direct, Lemke′s

algorithm, and indirect, Fisher-Newton algorithm. In the explicit depth extrap-

olation process, FIR wavefield extrapolation filters are used recursively. Hence,

the challenge is to design these filters with smallest possible length while keeping

passband error as small as possible. To achieve the above design constraints, the

problem of designing a 1-D FIR wavefield extrapolation filter has also been studied

via L1 error approximation approach.

Performance of 1-D FIR extrapolation filters designed by the proposed methods has

been tested by extrapolating the challenging 2-D SEG/EAGE salt velocity model.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Increasing demand for oil and decreasing availability of hydrocarbon deposits are

the motivating forces behind the quest to explore and map the earth structure.

Oil and natural gas are normally found in what we call reservoir rocks. These

reservoirs can be identified by processing seismic reflection data in which seismic

imaging is an important step that improves lateral resolution to obtain accurate

map of the earth structure [1, 4–26]. One way to perform seismic imaging is

through a technique called wavefield extrapolation [1–5, 27–31]. There exist vari-

ous extrapolation methods and among them is the so called explicit depth wave-

field extrapolation (referred afterwards as wavefield extrapolation) [19,20,32–34].

This extrapolation method uses finite impulse response (FIR) filters (named af-

terwards as extrapolators) that require specific design characteristics. Seismic

imaging quality depends upon robust imaging process and thereby on the quality

1



of the designed FIR wavefield extrapolation filters. This method relies on the

assumption that the earth is an acoustic media. It can be used to image two-

dimensional(2-D) data sets using one-dimensional(1-D) filters. It can also be used

to image three-dimensional(3-D) seismic data sets but with the use of 2-D FIR

extrapolation filters [3, 35, 36]. The main goal of this research work is to design

1-D FIR wavefield extrapolation filters, to image 2-D seismic reflection data, with

efficient computational design time that can accommodate higher seismic wave-

field propagating angles with small passband error, and leads to stable seismic

images. The imaging process can be described in the following terms:

• Recording the upward traveling waves at the earth surface.

• Using the recorded waves as initial conditions for the wavefield governed by

the wave-equation and, thus, propagating the wave backward using wavefield

extrapolation filters in reverse time to the reflector locations.

1.2 Thesis Contributions

In this thesis, it will be shown that the problem of designing such filters can be

described and solved using Linear Complementarity problem (LCP). Additionally,

such extrapolation filters can be designed via L1 error approximation. These

designed filters are shown to provide stable seismic images with comparable, if

not slightly better, seismic imaging results. Both proposed design techniques show

efficient designs. These filters are used to extrapolate the 2-D benchmark synthetic
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seismic data set known as the Society of Extrapolation Geophysicists/European

Association of Geoscientists and Engineers(SEG/EAGE) salt model [4] .

1.3 Thesis Organization

This thesis is organized as follows: chapter 2, describes seismic imaging as a

filtering process. In chapter 3, the design problem is formulated via LCP. In

chapter 4, L1 error approximation in the context of FIR wavefield extrapolation

filter will be shown. Finally the topic is concluded with the future work suggestions

in chapter 5.
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CHAPTER 2

SEISMIC IMAGING AS A

FILTERING PROCESS

2.1 Introduction

Seismic imaging is the end result of the explicit depth extrapolation process in

which the recorded seismic signal at the earth surface u(x, t, z = 0) is propagated

back in reverse time to its reflector locations [2,3,27]. Explicit depth extrapolation

is attractive due to its computational simplicity and efficiency. One of the advan-

tage of this technique is its explicit filtering that resembles convolution [2, 27, 34]

and can be implemented efficiently. In explicit depth extrapolation, short length

FIR extrapolation filters are desirable to avoid strong lateral velocity variations

in a heterogeneous media while, on the other hand, long FIR extrapolation filters

are required to yield accurate extrapolation by accommodating higher propagating

angles. Since explicit extrapolators are used recursively in extrapolation process,
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the challenge is to design short length FIR extrapolation filter that can cover

wider propagating angles while keeping the passband error as small as possible.

To understand seismic imaging as a filtering process, it would be interesting to

analyze the wavefield governed by wave equation to find origin of such filters.

2.2 One-dimensional extrapolation filters

Assuming that the earth is two-dimensional(2-D) and modeled as an acoustic

medium, we can describe the propagating wavefield u(x, t, z) using the following

hyperbolic wave equation [1, 32]:

∂2u

∂x2
+
∂2u

∂z2
=

1

c2

∂2u

∂t2
, (2.1)

where t represents the time variable, z denotes the depth axis, x is the lateral

spatial axis and c is the average velocity.

The 2-D Fourier transform of the wavefield u(x, t, z) with respect to x and t is

given by [3]:

U(Kx,Ωt, z) =

∞∫
−∞

∞∫
−∞

u(x, t, z) ej(Kxx − Ωtt) dxdt, (2.2)

where Kx and Ωt are the analog wavenumber and angular frequency, respectively.

In light of (2.2), the Fourier transform of the wave equation in (2.1) will produce:

∂2U(Kx,Ωt, z)

∂z2
+

(
Ω2
t

c2
−K2

x

)
U(Kx,Ωt, z) = 0, (2.3)
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where equation (2.3) is a second order homogeneous differential equation. It has

a well known solution given by:

U(Kx,Ωt, z) = Ae
jz

√
Ω2
t

c2
−K2

x +Be
−jz

√
Ω2
t

c2
−K2

x . (2.4)

The positive exponent refers to an upgoing propagation wavefield while the neg-

ative exponent refers to a downward propagation wavefield. Only the upward

traveling wavefield is considered here, hence, the solution coefficient B of the

downgoing wavefield is set to zero, i.e., B = 0. Hence (2.4) becomes:

U(Kx,Ωt, z) = Ae
jz

√
Ω2
t

c2
−K2

x . (2.5)

To determine the coefficient A of the upward traveling wavefield, the inverse

Fourier transform of U(Kx,Ωt, z) is:

u(x, t, z) =

∞∫
−∞

∞∫
−∞

U(Kx,Ωt, z) e
j(Kxx+Ωtt)dKxdΩt, (2.6)

where (2.5) yields:

u(x, t, z) =

∞∫
−∞

∞∫
−∞

Ae
jz

√
Ω2
t

c2
−K2

x ej(Kxx+Ωtt)dKxdΩt. (2.7)

Comparing (2.6) and (2.7) at z = 0 yields:

A = U(Kx,Ωt, 0). (2.8)
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Equation (2.8) shows that initial condition for solving (2.1) is simply the seismic

wavefield recorded at depth z = 0, i.e, u(x, t, z = 0) which is what is recorded

in the field. Thus, given the initial conditions at z = zo, the wavefield can be

extrapolated from depth z = z0 to depth z = z0 + ∆z, where ∆z is the depth

sampling interval, using the following equation:

U(Kx,Ωt, z0 + ∆z) =


U(Kx,Ωt, z0)e

jz

√
Ω2
t

c2
−K2

x if |Ωt| > c|Kx|

or

U(Kx,Ωt, z0)e
−z

√
K2

x−
Ω2
t

c2 if |Ωt| ≤ c|Kx|.

(2.9)

It is interesting to observe that (2.9) can be written as:

U(Kx,Ωt, zo + ∆z) = U(Kx,Ωt, zo)Hd(Kx,Ωt). (2.10)

where:

Hd(Kx,Ωt) =


e
jz

√
Ω2
t

c2
−K2

x if |Ωt| > c|Kx|

or

e
−z

√
K2

x−
Ω2
t

c2 if |Ωt| ≤ c|Kx|.

(2.11)

Hd(Kx,Ωt) is known as the seismic frequency-wavenumber depth extrapolator.

This is a 2-D filter in the (Ω − Kx) domain where it shows a complex-valued

function with a passband |Ωt|
c

> Kx, while in the stopband it is simply a real

exponentially decaying function. Figure 2.1 shows the Ω − Kx response of an

ideal 2-D extrapolation filter. In practice, the wavefield is presented in sampled

form, so by defining ∆t as the temporal sampling, ∆x as the horizontal spatial
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(a) (b)

Figure 2.1: (a) Magnitude response of the desired 2-D extrapolation filter, and
(b) phase response of the desired 2-D extrapolation filter

sampling, ∆z as the depth sampling interval, kx as the digital wavenumber

counterpart of Kx and ω as the digital angular frequency counterpart of Ωt,

the extrapolation operation is carried out using digital filter whose frequency

wavenumber (ω − kx) response is given by:

Hd

(
ejkx , ejw

)
= ej

∆z
∆x

√
∆x2

∆t2
w2

c2
−k2

x . (2.12)

The ideal frequency-wavenumber response given by (2.12) corresponds to an all-

pass filter. For a single angular frequency wo, it becomes a 1-D filter given by:

Hd

(
ejkx
)

= e
j ∆z

∆x

√
∆x2

∆t2
w2
o

c2
−k2

x = ejb
√
k2
c−k2

x , (2.13)

where b = ∆z
∆x

and kc = ∆x
∆t

∆ω
c

. As shown in figure 2.2, Hd

(
ejkx
)

is a complex

valued function with even symmetry, which can be realized by a non-causal FIR

digital filter with complex valued impulse response h[n] of even symmetry. Hence,
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(a) (b)

Figure 2.2: (a) Magnitude and (b) phase response of the ideal 1-D extrapolation
filter

the wavenumber response of a wavefield extrapolation 1-D FIR filter can be written

as (2.14) [3, 28]:

H
(
ejkx
)

=

N+1
2∑

n=0

(2− δ [n])h [n] cos (nkx) . (2.14)

These FIR filters are used to obtain seismic images based on extrapolation of seis-

mic wavefields from a depth step to another, where the velocities of the subsurface

layers vary vertically but more importantaly horizontally.

Such extrapolation filters are frequency-velocity dependent, thus to take care of

lateral velocity variations, depth extrapolation is done in the spatial domain by

convolving a seismic wavefiled with a set of pre-designed FIR extrapolation filters.

At the same time, this puts a constraint that the length of the FIR filter should

be as small as possible, when the subsurface material varies strongly in the lateral

direction. This will additionally maintain a low complexity implementation cost,

which in turn imposes a problem of obtaining FIR extrapolation filters with high

passband wavenumber response errors that can cause the extrapolation process
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to be unstable. These design challenges require novel and robust filter design

techniques.

2.3 Subsurface Image

Without loss of generality, in this work, the proposed designs of the FIR extrap-

olation filters are going to be tested to perform post stack explicit depth w − x

extrapolation. First depending on data attributes that is, frequency and velocity,

a set of 1-D FIR extrapolation filters will be designed and stored in a lookup

table. For each designed 1-D FIR filter, half of the coefficients of such filters are

stored due to even symmetry. The explicit depth w − x post stack extrapolation

algorithm can be described as follows [1, 3, 5, 31,32]:

1. Given a stacked seismic data (the wavefield) u(t, x, z = 0), Fourier transform

it with respect to t to obtain U(w, x, z = 0).

2. At certain depth interval zo (starting from z = 0), select the first frequency

sample and corresponding velocity value.

3. Calculate the filter cutoff kc, depending on frequency-velocity value, select

the proper predesigned extrapolation filter form the look-up table.

4. Perform convolution at the current depth to move to the next depth interval

z = zo + ∆z.

5. Repeat the process for all frequency values.
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Figure 2.3: Example of a 1-D FIR w − x extrapolation filter requirements. (a)
A noncausal spatial impulse response (operator) with even symmetry and (b) a
short-length FIR w − x extrapolation filter coefficients for accuracy. Due to the
heterogeneity within a layer, the velocity can also vary horizontally. At every
lateral position, a new filter is used to perform extrapolation on the data from
one depth level to another one. Within the filter length, the medium is assumed
to be homogeneous. (c) Accurate magnitude wavenumber response and (d) an
accurate passband phase response [1].

6. Iterate the extrapolation algorithm for all depth intervals

After applying the extrapolation algorithm to the maximum depth, sum across

frequencies to generate final subsurface image. This process is called the imaging

principle [1,3,5,31,32]. For the very first time, Holdberg [27] in 1988, introduced

explicit depth extrapolation and since then the problem became a filter design

problem. Figure 2.3 summarizes the design requirements of the 1-D FIR extrapo-

lation filter and depth extrapolation process. Performance of seismic extrapolation

filter designed by any technique can be judged based on: a) the length of FIR
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extrapolation filter, b) error in magnitude passband, c) accommodation of higher

propagating angles in the wavenumber response of small extrapolation filters, and

finally, d) the phase error in the passband . There exit many techniques [1–5,27–31]

to design such filters that offer certain advantages and disadvantages over one an-

other.

In 1988, Holberg [27], who introduced the explicit depth w−x extrapolation tech-

nique based on FIR filters, describes a least-squares method for designing explicit

wavefield extrapolation filters. These designed filters can lead to unstable extrap-

olation processes.

FIR wavefield extrapolation filters can be designed by using Taylor series method

[32]. In this approach, coefficients of an FIR extrapolator can be realized by

comparing N coefficients of the FIR filter with N terms of the Taylor series ap-

proximation of Fourier transform of the desired filter. The resultant extrapolation

filters tends to be unstable since wavefield energy grows uncontrollably during the

extrapolation process [1, 3, 32]. In 1991, Hale [2], proposed a modification of the

Taylor series method to produce stable seismic images. He introduced the idea

that for extrapolator with N number of coefficients, only N − p coefficients are

matched with Taylor series approximation of the desired filter’s Fourier transform

and remaining p degree of freedom should be used to force amplitude response to

zero especially in evanescent region. Though the resultant extraplotaor will al-

ways result in stable images, however, it cannot accommodate higher propagating
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angles, since it attenuates higher wavenumbers. Hence, a large number of coef-

ficients are required to accommodate wavefields with higher propagating angles,

which in turn degrade the performance in an inhomogeneous medium.

Karam et.al [28] suggested to design of complex-valued filters, such as 1-D wave-

field extrapolation filters, using an extended version of the Park-McClellan algo-

rithm [37]. Under certain conditions, the designed filters will be optimal in the

min-max sense for the set of extremal points. If not, it will be optimal with re-

spect to a subset of the whole defined set of extremal points. The optimal design

algorithm proved to be efficient in terms of memory and speed of convergence and

can result in equiripple responses. However, the FIR wavefield extrapolation filter

designed by this method can introduce numerical artifacts in migrated sections

and could lead to unstable images [1, 28].

In [29], the author showed that weighted least square optimization technique with

smoothed model functions is capable to produce FIR wavefield extrapolation fil-

ters that lead into practically stable seismic images. Such an optimization method

lacks simplicity as well as requires matrix inversion.

Mousa et.al [3] used projection onto convex sets (POCS) to design FIR extrapo-

lation operators. FIR extrapolation filters designed by this techniques satisfy all

designed constraints but the design algorithm is computationally very costly. A

modified version of POCS (called MPOCS) was proposed to further reduce the

design time and further enhance the wavenumber responses. The designed fil-
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ters [3] were applied to the challenging 2-D SEG/EAGE synthetic data [4] and

resulted in stable image of the data with a computational cost reduction of 80%,

when compared with the most expensive and accurate seismic imaging technique,

namely, the phase shift plus interpolation [1, 3, 31].

In an attempt to reduce the implementation cost, sparse FIR extrapolation filters

were recently introduced by Mousa [5]. The design relies on further modifying

the work in [31] to zero out very small filter coefficients. In addition, an effort

to reduce the implementation cost by designing sparse FIR extrapolation filters,

the author [31] proved that such filters are not naturally sparse. In [5], author

formulated the design problem via L1 norm and then zero out the coefficients

with smaller magnitudes. Designed sparse extrapolators were used to image the

data based on the SEG/EAGE salt velocity model. Simulation results showed

that proposed algorithm is almost as accurate as PSPI while at the same time

reducing the implementation cost.

2.4 Summary

In this chapter, the origin of seismic wavefield extrapolation filters described,

assuming that earth is a 2-D acoustic model. The procedure to obtain final sub-

surface image was discussed, in details, based on the explicit depth ω− x extrap-

olation. Next chapter describes mathematical structure of LCP. It will be shown

that extrapolation filters can be formulated as a LCP and will result in stable

seismic images.
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CHAPTER 3

DESIGN OF

ONE-DIMENSIONAL FIR

WAVEFIELD

EXTRAPOLATION FILTER

VIA LINEAR

COMPLIMENTARITY

PROBLEM APPROACH
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3.1 Introduction

As stated in Chapter 2, there exist several techniques to design FIR extrapola-

tion filters such as those listed in [1–5,27–31]. The need to obtain more accurate

images of the subsurface requires additional investigation of the techniques and

methodologies to design such FIR filters. In this chapter, an alternative new way

of designing FIR extrapolation filters is introduced, where the problem will be

formulated as a Linear Complimentatrity Problem (LCP). LCP is not an opti-

mization technique but it unifies the linear and quadratic programs as well as

bi-matrix games [38–42]. It will be shown that FIR extrapolation filters can be

designed via LCP in the context of Quadratic Programming. There exist mainly

two families of algorithms available to solve LCP: a) direct (pivoting based)

b) indirect (iterative) methods [38, 39, 43–50]. The mathematical literature indi-

cates that the LCP can be found as early as 1940 [39]. It has also been called

the “composite problem”, the “Fundamentla Problem” and the “Complementary

Pivot problem” [39]. Cottle proposed the current name “Linear Complimenta-

rirty Problem” in 1965 [39]. Applications of the LCP theory exist in many fields

including Engineering, Economics, etc [38, 39]. For the first time, LCP had been

explicitly stated by Du Val in 1940 [39]. His paper, part of algebraic geometry lit-

erature, used a problem of the form (q,M), where q is a vector and M is a square

matrix in n dimensional space, to find the least element of the linear inequality

system q + Mz ≥ 0, z ≥ 0. Du Val proved that a unique solution exists when

Matrix M has special properties [38,39].

16



In the context of quadratic programming, the LCP can be found in Hildreth’s

work [39], Barankin and Dorfman [38, 39]. The LCP problems also appeared in

the paper by Frank and Wolfe [38, 39]. All these papers make use of the classical

work by Kuhn and Tucker and the Master’s Thesis of Karush [38,39].

The synthesis of linear programming, quadratic programming and bimatrix games

as instances of the ”fundamental problem” was presented in Cottle and Dantzig

[39]. The LCP in terms of complementary cones is represented by Sainelson,

Thrall and Wesler [39]. Murty enlarged the topic of complementary cones signifi-

cantly in 1972 [38]. Nuseirat [51,52] tested the performance of LCP in the context

of the linear phase FIR filter design problem.

In this work the LCP approach has been extended to the complex phase FIR wave-

field extrapolation filter. Lemke (direct method) [38, 39] and Fisher-Newton(in-

direct method) [43] algorithms are used to solve the resulted LCP. For better

understanding of the reader the most robust and computationally efficient the

Lemke′s algorithm [38, 39] is discussed in detail via homotopy theory (See Ap-

pendix Chapter A).
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3.2 The design of LCP based FIR extrapolation

filters

Recall that the ideal 1-D extrapolation filter (2.2) can be given by:

Hd

(
ejkx
)

= ejb
√
K2

c−k2
x . (3.1)

SinceHd

(
ejkx
)

is a complex valued symmetric function, it can be realized by a non-

causal symmetric FIR filter with complex impulse response h[n]. Its wavenumber

response can be given by:

H
(
ejkx
)

=

N−1
2∑

n=0

(2− δ [n])h [n] cos (nkx) . (3.2)

Equation (3.2) can be written as:

H
(
ejkx
)

=
M∑
n=0

a(n) cos (nkx) , (3.3)

where:

M =
N − 1

2
, N is odd

a(0) = h(0)

a(n) = 2h(n), n 6= 0.

a(n) is complex in nature but LCP only deals in a finite-dimensional real vector

space. Thus, LCP can only be applied to the problem given by (3.3) by converting
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it into two real approximation problems such as:

H
(
ejkx
)

=
M∑
n=0

[ar(n) + jai(n)] cos (nkx)

=
M∑
n=0

ar(n) cos (nkx) + j
M∑
n=0

ai(n) cos (nkx)

= Hr

(
ejkx
)

+ jHi

(
ejkx
)
.

(3.4)

If Hd = Hdr + jHdi is the ideal wavenumber response, then ar(n) and ai(n) can

be recovered by solving:

Hl

(
ejkx
)

=
M∑
n=0

al(n) cos (nkx) , l = r, i. (3.5)

where r and i stands for real and imaginary, respectively. Now, applying

wavenumber grid
{
kxp|1 ≤ p ≤ L

}
(3.5) can be written in the following matrix

form:

Hl = Cal, l = r, i, (3.6)
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where

C =



1 cos(kx1) . . . cos(Mkx1)

. . . . . .

. . . . . .

1 cos(kxk) . . . cos(Mkxk)

. . . . . .

. . . . . .

1 cos(kxL) . . . cos(MkxL)



, a =



a(0)

a(1)

.

.

.

a(M − 1)

a(M)



.

Since LCP solves for a vector ≥ 0, then {al, l = r, i} has to be written as a

difference of two positive vectors:

al = al
+ + al

−, l = r, i

al
+ ≥ 0

al
− ≥ 0

(3.7)

Using equation (3.6), {Hl, l = r, i} can be written as:

Hl = C

[
al

+ al
−

]

=

[
C −C

] al
+

al
−


= Bxl, l = r, i,

(3.8)
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where

B =

[
C −C

]
, x =

 a+
l

a+
l

 .
Since Hd = Hdr + jHdi is the ideal wavenumber response, thus the error vector

{El, l = r, i} will be

El = Bxl −Hdl , l = r, i. (3.9)

The problem of finding {al, l = r, i} can be formulated by minimizing the

squared error:

Minimize ε(xl) = El
τEl

Subject to

|El| ≤ δ, l = r, i,

(3.10)

where δ is the tolerance scheme. The objective function in (3.10) can be written

as:

ε(xl) = El
τEl,

= (Bxl −Hdl)
τ (Bxl −Hdl) ,

=
(
xl
τBτ −Hτ

dl

)
(Bxl −Hdl) ,

= xl
τBτBxl − xl

τBτHdl −Hτ
dl

Bxl + Hτ
dl

Hdl ,

= xl
τBτBxl − 2xl

τBτHdl + Hτ
dl

Hdl .

ε(xl) =
1

2
xl
τQxl − xl

τR + Hτ
dl

Hdl , l = r, i,

(3.11)
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where x ∈ R2M+2 and Q = 2BτB is symmetric and semi-positive definite matrix,

R = 2BτHdl
.

The linear constraints in problem (3.10) can be written in a compact form as

follows

|El| ≤ δ

|Bxl −Hd| ≤ δ B

−B


︸ ︷︷ ︸

A

xl ≤

 Hd + δ

−Hd + δ


︸ ︷︷ ︸

b

, l = r, i.

(3.12)

Finally, the minimization problem (3.10) becomes:

Minimize f(xl) =
1

2
xl
τQxl − xl

τR + Hτ
dl

Hdl , l = r, i

Subject to

Axl ≤ b

xl ≥ 0

(3.13)

The Kuhn-Tucker necessary conditions for the above quadratic programs (3.13)

(see Appendix Chapter A) are that there must exist vectors u ∈ R2M+2, v ∈ R2L,

λ ∈ R2L such that:

−R + Qx + Aτλ− u = 0,

Ax + v = b,

u ≥ 0, v ≥ 0, x ≥ 0, λ ≥ 0, uτx = 0, vτλ = 0.

(3.14)
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Clearly, this can be written as:

 u

v

 ≡
 −R

b

+

 Q Aτ

−A 0


 x

λ

 ,

u ≥ 0, v ≥ 0, x ≥ 0, λ ≥ 0, uτx = 0, vτλ = 0.

(3.15)

The minimization problem (3.10) represents a LCP. In a compact form LCP for

the problem (3.10) can be written as

z−Mw = q,

z ≥ 0, w ≥ 0, zτw = 0,

(3.16)

where

M =

 Q Aτ

−A 0

 , z =

 y

v

 , w =

 x

u

 , q =

 −R

b

.

If Q is a semi-definite positive matrix then M is also a semi-definite positive

matrix. Thus, the problem of designing 1-D FIR wavefield extrapolation filter is

an example of semi-definite LCP. There are many algorithms available to solve

semi-definite LCP including Lemke’s algorithm and Fisher-Newton algorithm [38,

39,43–50]. As stated in [39,51] that if Q is positive semi definite and x is the K-T

point of (3.16) then x is the optimal feasible point of (3.16).
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3.2.1 Design Algorithm

1. Select the filter length N , cutoff kc as well as tolerance scheme δ.

2. Formulate matrices Hd, B as well as E based on equations (3.1), (3.8) and

(3.9).

3. Formulate matrices Q, R, A and vector b according to equations (3.11) and

(3.12).

4. Formulat Matrix M and vector q based on equation (3.16).

5. Solve the problem (3.16) to get the filter coefficients.

The summary of the proposed, LCP based, algorithm for designing the f −x FIR

extrapolation digital filters is shown in figure 3.1.
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Figure 3.1: LCP based work flow of the algorithm to design f − x FIR wavefield
extrapolation filters.
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3.3 Simulation Results

In this section, a set of design examples is provided of different 1-D FIR wavefield

extrapolation filter for decaying parameter b = 0.2, a cutoff, kc = 0.25 and various

lengths (N = 25, 35). The objective is to show various designs using LCP-Lemke

and LCP Fisher-Newton algorithms, the modified Taylor series [2] and MPOCS [3].

Figure 3.2 and 3.3 show the magnitude and phase performance as well as error in

passband of an FIR wavefield extrapolation filter with N = 25 and N = 35 for

cutoff kc = 0.25 and decaying parameter b = 0.2.
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Figure 3.2: (a)Magnitude and (b) phase response of 1-D extrapolation filter de-
signed by LCP-Lemke, LCP-Fisher, the modified Taylor series [2] and MPOCS [3]
(c) and (d) show the passband magnitude and phase errors, respectively.

26



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized k
x

Magnitude spectrum

| H
(e

jk
x )

|

 

 

Ideal
LCP−Lemke−35
LCP−Fisher−35
Modified Taylor Series 35
MPOCS 35

(a)

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

∠
 H

(e
jk

x )

Normalized k
x

Phase spectrum

 

 

Ideal
LCP−Lemke−35
LCP−Fisher−35
Modified Taylor Series 35
MPOCS 35

(b)

0 0.05 0.1 0.15 0.2 0.25
−5

0

5

10

15
x 10

−3

Normalized k
x

Passband magnitude spectrum error

| H
d(e

jk
x )

|−
| H

(e
jk

x )
|

 

 
LCP−Lemke−35
LCP−Fisher−35
Modified Taylor Series 35
MPOCS 35

(c)

0 0.05 0.1 0.15 0.2 0.25
−5

0

5

10

15
x 10

−3

∠
 H

d(e
jk

x )
−

∠
 H

(e
jk

x )

Normalized  k
x

Passband phase spectrum error

 

 

LCP−Lemke−35
LCP−Fisher−35
Modified Taylor Series 35
MPOCS 35

(d)

Figure 3.3: (a)Magnitude and (b) phase response of 1-D extrapolation filter
designed by LCP-Lemke and LCP-Fisher , the modified Taylor series [2] and
MPOCS [3] (c) and (d) show the passband magnitude and phase errors, respec-
tively.

Clearly, such designs will result in stable seismic images, as will be seen in

the next section. MPOCS [3] and the modified Taylor series [2] produces small

passband error but attenuates wavefields propagating with higher angles. On

the other hand, LCP approach accommodates higher propagating angles and at

the same time LCP-Lemke design generally show less wavenumber errors, when

compared to those errors of LCP-Fisher designed filters. This will be reflected

on the imaged SEG/EAGE salt data in the next section. In addition, the LCP-
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Table 3.1: Comparison of CPU (core-i5) design time for designing 1-D FIR ex-
trapolation filter with 25 and 35 coefficients designed via LCP-Lemke and LCP-
Fisher-Newton algorithms
Method Coefficients Iterations CPU design time(s)
LCP-Lemke 25 None 0.062
LCP-Fisher 25 10 1.295
Mod. Taylor Series 25 None 0.869
MPOCS 25 89 0.1872
LCP-Lemke 35 None 0.078
LCP-Fisher 35 10 2.2
Mod. Taylor Series 35 None 2.959
MPOCS 35 85 0.2340

Lemke’s algorithm outperforms Fisher-Newton method, the modified Taylor series

[2] and MPOCS [3] in the computational design time. Table 3.1 shows the design

computational time for the filters in figure 3.2 and 3.3.

3.4 Application to SEG/EAGE Salt Model

For the purpose of studying the effectiveness of the proposed LCP 1-D FIR extrap-

olation filters, the famous challenging SEG/EAGE salt velocity model is extrap-

olated via FIR wavefield extrapolation filters designed by LCP. The SEG/EAGE

salt model [4] contains smoothly varying velocities and is composed of 1048 depth

samples for 1024 traces each (see figure 3.4). The zero offset section for salt

model (see figure 3.5) generated by finite difference method contains 3001 time

samples for 1024 traces each [1,4,5]. The sampling parameters for the salt model:

∆z = 2m, ∆x = 10m and ∆t = 0.002s and maximum frequency fmax = 45Hz.

To properly extrapolate this zero-offset data, 7000 1-D FIR extrapolation filters

are pre-designed and stored in a look-up table. Final subsurface image has been
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Figure 3.4: Shows the SEG/EAGE salt velocity model. Velocity changes from
minimum value 1,500 m/s that correspond to the acoustics speed in water repre-
sented by black color to maximum value 4,500 m/s that correspond to the acoustics
speed in salt represented by white color.

obtained by following the procedure described in chapter 2.
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Figure 3.5: Shows the zero-offset section of the SEG/EAGE Salt Model, generated
based on finite difference method [4]. Performance of LCP has been tested on this
data set.

Figure 3.6 and 3.7 show the wavenumber response of such filters (with 25 and

35 coefficients, respectively) designed via Lemke and Fisher-Newton algorithm.

The errors between the wavenumber magnitude and phase responses of extrapola-

tion filters designed via LCP-Lemke and LCP-Fisher algorithms indicate that the

extrapolation filters designed via Fisher-Newton algorithm have highpass band

magnitudes which will effect the final subsurface image. However, this can be

observed that these errors are reduced when N was incresed from 25 to 35.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Set of designed f − x FIR extrapolation filters in the frequency
wavenumber domain with N = 25(a) and (b) show the magnitude and phase re-
sponses of Lemke’s algorithm, (c) and (d) show the magnitude and phase responses
of Fisher’s algorithm, (e) and (f) show error between the frequency wavenumber
responses for the magnitude and phase responses, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Set of designed f − x FIR extrapolation filters in the frequency
wavenumber domain with N = 35(a) and (b) show the magnitude and phase re-
sponses of Lemke’s algorithm, (c) and (d) show the magnitude and phase responses
of Fisher’s algorithm, (e) and (f) show error between the frequency wavenumber
responses for the magnitude and phase responses, respectively.
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Figure 3.8: Extrapolated SEG/EAGE salt model using Lemke algorithm with
25-coefficients.

Figure 3.8 shows subsurface image that has been produced by extrapolating

SEG/EAGE salt velocity model using extrapolation filters with 25-coefficients

designed via LCP-Lemke method, wheres figure 3.9 shows the same data extrap-

olated but with LCP-Fisher-Newton method (N = 25)
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Figure 3.9: Extrapolated SEG/EAGE salt model using Fisher-Newton algorithm
with 25-coefficients.
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Figure 3.10: Extrapolated SEG/EAGE salt model using Modified Taylor Series [2]
with 25-coefficients.
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Figure 3.11: Extrapolated SEG/EAGE salt model using Modified Projection Onto
Convex Sets (MPOCS) [3] with 25-coefficients.

It can be observed that extrapolation filters designed via the LCP-Lemke algo-

rithm and Fisher-Newton method produce much better subsurface image than the

modified Taylor series [2] and modified projection onto convex sets (MPOCS) [3].

Fisher-Newton method produce ghost effects of the salt dome in the final image,

due to the high passband wavenumber response of extrapolation filters designed

via LCP-Fisher Newton method, when compared with those of the LCP-Lemke

ones.
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Figure 3.12: Extrapolated SEG/EAGE salt model using Lemke algorithm with
35-coefficients.

Figures 3.12 and 3.13 clearly show that the subsurface images generated by

using FIR extrapolation filters with 35 coefficients are of better quality than sub-

surface images generated by using extrapolation filters with only 25 coefficients.

This improvement in quality is because by increasing the number of filter coeffi-

cients, the passband wavenumber response errors have decreased.
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Figure 3.13: Extrapolated SEG/EAGE salt model using Fisher-Newton algorithm
with 35-coefficients.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Details of an area with different dips (lateral position of 7500−9750m
and depth of 1200− 1800m) using (a) MPOCS [3] (N = 25) (b) Modified Taylor
Series [2] (N = 25) (c) LCP-Lemke (N = 25), (d) LCP-Fisher (N = 25), (e)
LCP-Lemke (N = 35), (f) LCP-Fisher (N = 35)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: Details of an area with steep dips on the left flank of the salt model
(lateral position of 6000−8000m and depth of 1800−2800m) using (a) MPOCS [3]
(N = 25) (b) Modified Taylor Series [2] (N = 25)(c) LCP-Lemke (N = 25), (d)
LCP-Fisher (N = 25), (e) LCP-Lemke (N = 35), (f) LCP-Fisher (N = 35)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Details of a structurally challenging sub-salt area (lateral position of
6500 − 8500m and depth of 3400 − 4000m) using (a) MPOCS [3] (N = 25) (b)
Modified Taylor Series [2] (N = 25)(c) LCP-Lemke (N = 25), (d) LCP-Fisher
(N = 25), (e) LCP-Lemke (N = 35), (f) LCP-Fisher (N = 35)
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3.5 Summary

In this chapter, it was shown that the seismic wavefield extrapolation filter can

be formulated as LCP. Performance of two LCP algorithms, Lemke and Fisher-

Newton method, was tested. The quality of subsurface images generated by using

these filters shows that with 25 coefficients, the LCP Lemke outperforms the LCP

Fisher-Newton method while at the same time both LCP algorithms produce

better seismic images, when compared to those generated by MPOCS [3] and the

modified Taylor series [2]. However, with 35 coefficients both LCP algorithms

produce comparable results.

42



CHAPTER 4

ONE DIMENSIONAL

WAVEFIELD

EXTRAPOLATION FILTER

VIA L1 ERROR

APPROXIMATION

4.1 Introduction

As described in Chapter 3, 1-D seismic FIR wavefield extrapolation filters designed

via linear complimentarity problem approach can accommodate higher propagat-

ing angles but some of the filters have high error especially at cutoff and it is

desirable to produce such filters with small errors to obtain better practically sta-
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ble seismic images. Since amplitude distribution given by L1 norm will tend to

have very small residuals, thus, to deal with high passband error, the design prob-

lem of 1-D wavefield extrapolation filter is studied via L1 error approximation.

A comparison analysis is shown between both developed methods, LCP and L1

error approximation. The design of such filters via L1 norm was proposed in [5]

for the purpose of obtaining sparse filter coefficients. In this chapter, the problem

will be reformulated to obtain sparse error between the ideal and approximated

FIR wavefield extrapolation filter.

4.2 Problem Formulation

Formulation via L1 error approximation is stated as follows. Again, recall that

the 1-D extrapolation filter’s wavenumber response can be given by:

H
(
ejkx
)

=
M∑
n=0

(2− δ [n])h [n] cos (nkx) , (4.1)

where h[n] is the impulse response of the 1-D FIR extrapolation filter. After

discretizing the Kx to be Kxi , (i = 1, ..., L), (4.1) can be written as following

matrix form

H
(
ejkxi

)
= Ch, i = 1, ..., L, (4.2)

44



where

C =



1 cos(kx1) . . . cos(Mkx1)

. . . . . .

. . . . . .

1 cos(kxk) . . . cos(Mkxk)

. . . . . .

. . . . . .

1 cos(kxL) . . . cos(MkxL)



, h =



h(0)

h(1)

.

.

.

h(M − 1)

h(M)



. (4.3)

The design problem of 1-D FIR wavefield extrapolation filter coefficients is to find

h such that

min
h
‖Ch−Hd‖1, (4.4)

where Hd

(
ejkxi

)
= ejb

√
K2

c−k2
xi is the desired wavenumber response. Basically,

L1 error approximation attempts to obtain sparse difference between Hd (2.2)

and H
(
ejkx
)

as given by (4.4). Approximating error via L1 (4.1) can have few

large significant value which are expected to appear at the cutoff. However, in

the context of FIR wavefield extrapolation filter, the performance of L1 norm

can be improved by emphasizing more weights on passband wavenumbers, when

compared to the stopband as:

min
h
‖W(Ch−Hd)‖1, (4.5)
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where W =

 Wp 0

0 Ws

 is the diagonal weighting matrix. If Wp and Ws are

passband and stopband weights, respectively, then Wp ≥ Ws. In the case of FIR

extrapolation filter design, Wp = 10 and Ws = 1. Simulation results will show

that L1 error approximation approach offers advantage to tackle the problem of

high passband error of the FIR wavefield extrapolation filter.

4.2.1 Design Algorithm

1. Select the filter length N and cutoff kc.

2. Formulate matrices Hd, C and W based on equations (2.2), (4.3) and (4.5).

3. Solve the L1 norm problem in (4.5) to get the filter coefficients.

The proposed, L1 error approx. based, algorithm for designing the f − x FIR

extrapolation digital filters is shown in figure 4.1:

Figure 4.1: L1 error approximation based work flow of the algorithm to design
f − x FIR wavefield extrapolation filters.

4.3 Simulation Results

In this section, a set of design examples is provided of different 1-D FIR wavefield

extrapolation filter for decaying parameter b = 0.2, a cutoff, kc = 0.25 and various
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lengths (N = 25, 35). The objective is to show various designs using L1 error

approximation and L1 norm.

Figure 4.2 and 4.3 show the magnitude and phase performance as well as error

in passband of an FIR wavefield extrapolation filter with N = 25 and N = 35

designed via L1 error approximation, LCP-Lemke and L1 norm [5] approaches for

cutoff kc = 0.25 and decaying parameter b = 0.2.
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Figure 4.2: (a)Magnitude and (b) phase response of 1-D extrapolation filter de-
signed by L1 error approximation with and without weights, LCP-Lemke and L1

norm [5] approach, (c) and (d) show the passband magnitude and phase errors,
respectively.
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Figure 4.3: (a)Magnitude and (b) phase response of 1-D extrapolation filter de-
signed by L1 error approximation with and without weights, LCP-Lemke and L1

norm [5] approach, (c) and (d) show the passband magnitude and phase errors,
respectively.
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This can be observed that amplitude distribution of the error vector given

by L1 error approximation tend to close to zero. Figure 4.2 and 4.3 show trade

off between LCP-Lemke and L1 error minimization (4.4) and L1 norm [5], based

on passband error and accommodation of higher propagating angles. Since L1

error approximation method attenuates some of the higher propagating angles,

thus this method can effect subsurface image in the heterogeneous media with

strong lateral velocity variations. However, in the context of accommodating

wider angles, performance of the L1 error approximation (4.5) becomes better by

emphasizing more weights on passband wavenumbers, Wp ≥ Ws (4.5). It is clear

from the presented examples that weighted L1 error approximation (4.5) offers

solution to the problem of high passband error as well as accommodate the higher

propagating angles. On the other hand, it can be seen that LCP-Lemke and

L1 norm [5] accommodates wider propagating angles at the expense of passband

error.

4.4 Application to SEG/EAGE Salt Model

The effectiveness of the proposed L1 error approximated FIR extrapolation filters

has been studied by extrapolating the challenging SEG/EAGE salt velocity model

and results are compared with L1 norm method [5].
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Set of designed f − x FIR extrapolation filters in the frequency-
wavenumber domain with N = 25 (a) and (b) show the magnitude and phase
responses of L1 error approximation (c) and (d) show the magnitude and phase
responses of weighted L1 error approximation and (e) and (f) show the magnitude
and phase responses of L1 norm [5], respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Set of designed f − x FIR extrapolation filters in the frequency-
wavenumber domain with N = 35 (a) and (b) show the magnitude and phase
responses of L1 error approximation (c) and (d) show the magnitude and phase
responses of weighted L1 error approximation and (e) and (f) show the magnitude
and phase responses of L1 norm [5], respectively.
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Figure 4.6: Extrapolated SEG/EAGE salt model using L1 error approximation
with 25-coefficients.
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Figure 4.7: Extrapolated SEG/EAGE salt model using weighted L1 error approx-
imation with 25-coefficients.
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Figure 4.8: Extrapolated SEG/EAGE salt model using L1 norm [5] with 25-
coefficients.
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Figure 4.9: Extrapolated SEG/EAGE salt model using L1 error approximation
with 35-coefficients.
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Figure 4.10: Extrapolated SEG/EAGE salt model using weighted L1 error ap-
proximation with 35-coefficients.
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Figure 4.11: Extrapolated SEG/EAGE salt model using L1 norm [5] with 35-
coefficients.

Figures 4.6-4.8 show the subsurface image that has been produced by extrapo-

lated SEG/EAGE salt velocity model using FIR extrapolation filters (N = 25) de-

signed by L1 error approximation, weighted L1 error approximation and L1 norm

, whereas figure 4.9 -4.11 show the same data extrapolated but with (N = 35).

These methods lead to stable images but it can be observed that image quality

of SEG/EAGE salt model produced by L1 error approximation is better than

L1 norm [5] method. This is because FIR extrapolation filters designed by L1

error approximation have the least passband wavenumber response error, when

compared to L1 norm method [5].
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Details of an area with different dips (lateral position of 7500−9750m
and depth of 1200− 1800m) using (a) L1 error norm (N = 25), (b) L1 error norm
(N = 35), (c) weighted L1 error norm (N = 25), (d) weighted L1 error norm
(N = 35) and (e) L1 norm [5] (N = 25), (f) L1 norm [5] (N = 35)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Details of an area with steep dips on the left flank of the salt model
(lateral position of 6000− 8000m and depth of 1800− 2800m) using (a) L1 error
norm (N = 25), (b) L1 error norm (N = 35), (c) weighted L1 error norm (N = 25),
(d) weighted L1 error norm (N = 35) and (e) L1 norm [5] (N = 25), (f) L1 norm [5]
(N = 35)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Details of a structurally challenging sub-salt area (lateral position of
6500− 8500m and depth of 3400− 4000m) using (a) L1 error norm (N = 25), (b)
L1 error norm (N = 35), (c) weighted L1 error norm (N = 25), (d) weighted L1

error norm (N = 35) and (d) L1 norm [5] (N = 25), (e) L1 norm [5] (N = 35).
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4.5 Summary

As described in chapter 2, small wavenumber errors are one of the design require-

ment for FIR extrapolation filters. Since L1 norm is known to give a solution

with values close to zero. In this chapter, above property of L1 norm has been

exploited by formulating the design problem of 1-D FIR extrapolation filter via L1

error approximation. The Performance comparison of the L1 error approximation

method with LCP and L1 norm [5] shows that it offer small passband error at

the cost of attenuating some of the higher propagating angles. However, L1 error

approximation not only offers small error in the passband but also accommodate

wider propagating angles by emphasizing more weights on passband wavenumbers

Wp ≥ Ws (4.5). It is interesting to note that in [5], author applied L1 norm on

the solution vector to get sparse solution while here, L1 norm is enforced on the

error vector to get insignificant error values, i.e., values close to zero.
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CHAPTER 5

CONCLUSION AND FUTURE

WORK

In this research work, the problem of complex-valued Finite Impulse Re-

sponse(FIR) wavefield extrapolation filter design is considered as a linear com-

plimentarity problem (LCP). LCP is not an optimization technique as there is

no objective function to optimize, however, quadratic programming, one of the

applications of LCP, can be used to find optimal solution for 1-D FIR wavefield

extrapolation filter. The design problem is formulated via quadratic program-

ming and then equivalent semi-definite LCP form is obtained by applying the

Kuhn Tucker conditions. There are basically two families to solve semi-definite

LCP: a) direct algorithms b) indirect algorithms. Lemke (direct) and Fisher-

Newton method (indirect) have been tested for the resulted LCP. Being direct,

Lemke’s algorithm is the most robust and computationally efficient when com-

pared to Fisher-Newton method. Both result in stable seismic images. This was
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shown for SEG/EAGE salt velocity model, however some of the designed extrap-

olators needed to be stabilized. At the same time, the LCP-Lemke was producing

more stable images, while the LCP-Fisher was producing ghost events on the

SEG/EAGE salt images.

To deal with laterally varying velocity, one of the challenge in designing FIR

wavefield extrapolator is to keep passband error as small as possible with small-

est possible filter length. To deal with passband error, L1 error approximation

approach is introduced. The idea is to find sparse error between the ideal and

approximated FIR extrapolator. Presented examples in chapter 4 show that with

weighted L1 error approximation approach produce small magnitude and phase

error as well as accommodate wavefields propagating with high angles. The seis-

mic images of the 2-D SEG/EAGE model were, therefore, stable and better with

those obtained via L1 norm [5].

5.1 Future Work

Following are the important suggestions to further extending the developed the-

ories of LCP and L1 error approximation in the context of seismic wavefield ex-

trapolation.
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5.1.1 Efficient LCP Solvers

It has been shown that the design of 1-D FIR wavefield extrapolation filters is an

example of a semi-definite LCP. There exit many algorithms to solve semi-definite

LCP including Lemke’s algorithm. In the FIR wavefield extrapolation filter

case, one has to solve for the filter coefficient but also for slack variables. It is

suggested to make a modification in Lemke algorithm such that it terminates

after finding filter coefficients.

The disadvantage of LCP is that it can not exploit the matrix properties in the

case of 2-D filters. Modifications should be made in LCP structure so that it can

be applied to design 2-D filters.

5.1.2 Optimal tradeoff between different norms

Holdberg [27] looked into the problem of seismic wavefield extrapolation filter via

the L2 norm. Though the designed extrapolation filters cover wider angles, they

introduce high errors especially at the cutoff. Hence, this method can only be

used for smaller depths. While on the other hand, designed extrapolation filters

via L1 error approximation without weights (4.4) offer less passband error, so the

extrapolation filters designed via this method can extrapolate wavefield for larger

depths but on the cost of attenuating the higher propagating angles. Depending

upon different requirements, one can find optimal trade off between L2 and L1
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error approximation that sacrifices a slightly higher error to include wider angles.
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APPENDIX A

LINEAR COMPLIMENTARITY

PROBLEM

The latter details are gathered from [38, 39, 53] to provide better understanding

about the mathematical structure of LCP as well as its solver, Lemke the path

following algorithm, and Kuhn Tucker conditions.

A.1 Mathematical Structure of LCP

The Linear Complimentarity Problem deals with finding a vector in finite dimen-

sional real vector space that satisfies certain inequalities. Specifically, given a

vector q ∈ Rn and a Matrix M ∈ Rnxn, the linear complimentarity problem finds
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a vector z ∈ Rn such that [39]:

z ≥ 0

q +Mz ≥ 0

zτ (q +Mz) = 0


, (A.1)

or shows that no such vector z exists. The linear complimentarity problem, ab-

breviated as LCP, sometimes denoted by the pair (q,M).

A.2 Source Problems

The Linear Complimentarity Problem is not an optimization technique but it uni-

fies the linear, quadratic programs as well as bi-matrix game problems. Quadratic

programs are extremely important source of application for the LCP. There are

several highly effective algorithms for solving Quadratic programs that are based

on the LCP. A significant number of applications in engineering and physical

sciences including the journal bearing problem, the elastic-plastic torsion prob-

lem and filter design problem etc lead to convex quadratic programming which is

equivalent to the linear complimentarity Problem.

A.2.1 Application to Quadratic Programming

A quadratic program is an mathematical optimization problem having a quadratic

objective function subject to linear constraints. A significant number of appli-

cations in engineering including filter design problem lead to convex quadratic
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programming which is extremely important source of application of the linear

complimentarity problem. A quadratic program can be written as [38,39]

Minimize cτx+
1

2
xτQx

Subject to Ax ≤ o

x ≥ 0,

(A.2)

where

c ∈ Rn, symmetric matric =Q ∈ Rnxn, A ∈ Rmxn, b ∈ Rm.

The case Q = 0 give rise to a linear program. If objective function is convex then

Q is semidefinite positive and the sufficient Kuhn-Tucker conditions for global

optimal solution of the quadratic program are that there must exist vectors u ∈

Rn,v ∈ Rm,and λ ∈ Rm such that [38,39]:

c+Qx+ Aτλ− u = 0

Ax+ v = b

u ≥ 0, v ≥ 0, x ≥ 0, λ ≥ 0, uτx = 0, vτλ = 0,

(A.3)

clearly, this can be written as

 u

v

 ≡
 c

b

+

 Q Aτ

−A 0


 x

λ


u ≥ 0, v ≥ 0, x ≥ 0, λ ≥ 0, uτx = 0, vτλ = 0.

(A.4)
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Quadratic program is therefore an example of the linear complimentarity problem

(q,M) where

q =

 c

b

 , and M =

 Q Aτ

−A 0

 .

Example:

Minimize − 8x1 − 16x2 + x2
1 + 4x2

2

Subject to x1 + x2 ≤ 5

x1 ≤ 3

x1 ≥ 0

x2 ≥ 0,

The above program can be written as:

Minimize cτx+
1

2
xτQx

Subject to Ax ≤ 0

x ≥ 0,

where

c =

 −8

−16

 , Q =

 2 0

0 8

 , A =

 1 1

1 0

 , b =

 5

3

 .
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The LCP form of the given quadratic program is as follows

M =

 Q Aτ

−A 0

 =



2 0 1 1

0 8 1 0

−1 −1 0 0

−1 0 0 0


, q =

 c

b

 =



−8

−16

5

3


.

An direct Lemke ’s algorithm has been applied to solve (q,M), which produces

following results

x =

 3

2

 Minimum value = −31

A.3 Algorithms

Mathematicians over the period of time have developed many direct and indirect

methods [39,43] to solve semi-definite LCP. In pivoting (direct) methods, Lemke′s

algorithm is the most robust algorithm. In 1968 Lemke proved that if M is semi-

definite positive, then Lemke′s algorithm finds an linear complimentarity solution

or shows that no solution exits.

A.3.1 Homotopy Approach

Lemke algorithm can be explained in different ways [38, 39, 53] and homotopy

approach is one of these. In path following that is homotopy approach, we start

with another system to which we already know the answer. Usually, this is a

particular system that has an obvious solution. We then take this simple system
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and mathematically bend it into the original system. While bending the system

we carefully watch the solution, as it also bends from the obvious solution into

the solution we seek. This bending notion underlies a key idea of the homotopy

concept.

The homotopy system for LCP:

Given q and M , first choose a positive vector d ∈ Rn such that d+ q > 0.

Then consider the following linear complimentarity

z = d+ q +Mx

z ≥ 0, , x ≥ 0, , zτx = 0,

(A.5)

clearly, (A.5) has a trivial solution x = 0.where z = d+ q.

Now define homotopy

Ht = min {xi, zi} = 0, i = 1, ...n (A.6)

for z ≡ (1 − t)d + q + Mx, we see that (A.6) is precisely equivalent to the LC

problem

zτx = 0, x ≥ 0, z ≥ 0

where

z ≡ (1− t)d+ q +Mx (A.7)
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At t = 0, notice that the trivial LC (A.5) with trivial solution x = 0 is obtained,

whereas when t = 1, we have the original LC (A.1).

(A.7) provides the homotopy system for our procedure. Lemke’s algorithm oper-

ates on it and generates a path starting from (x, t) = (0, 0). The path will either

diverge to infinity or reach t = 1. If path reaches t = 1,then the lemke algorithm

obtains a solution to the LC (A.1)

A.3.2 Lemke the path following Algorithm

Lemke′s method traces the path starting from (x, t) = (0, 0) of the homotopy

Ht = min {xi, zi} = 0, i = 1, ...n (A.8)

where

z ≡ (1− t)d+ q +Mx (A.9)

To avoid degeneracies a regularity condition is required:

For each (x, t) in the path, at least n−1 of the variables x,z are greater than zero.

The above condition will be much more clear at the end of this section. To develop

Lemke′s algorithm, the system (A.9) can be restated as

Iz −Mx+ td = d+ q

x ≥ 0, z ≥ 0

zτx = 0

(A.10)
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where I is the identity matrix. This system will turn out to be very convenient,

and to understand it let us first analyze the requirement that for i, zixi = 0.

To build understanding about Lemke′s algorithm, it is necessary to understand

the concept of zero set.

Zero set:

we call term xi the complement of zi, and vice versa. Clearly, there are n pairs of

complementary variables, and by (A.8) either xi = 0 or zi = 0 or possibly both.

This is, at least one of the two complementary variables xi = 0 or zi = 0 must be

equal to zero, and this holds for all n pairs.

At any step Lemke′s algorithm for each i designates either xi = 0 or zi = 0 to be

zero throughout that step. Explicitly,there is a zeros set at step k

Bk = {u1, u2, u3, ...un}

where ui is a set to either xi = 0 or zi = 0. Throughout the entire step k Lemke′s

algorithm requires that all ui = 0. To reiterate, on step k, ui is set equal to xi or

zi and ui = 0 throughout that step.

The zero set is the key to Lemke′s algorithm. To understand it,call wi the com-

plement of ui. If ui ≡ xi, then wi ≡ zi, and conversely. Because ui is in the zero

set, it must be zero throughout the step, however, the wi can be zero or positive.
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In particular,given Bk,notice (A.10) can be expressed as the n× (n+ 1) system

Akw + td = d+ q

w ≥ 0, t ∈ R1

(A.11)

where for i = 1, ...n if

ui ≡ xi = 0

then

wi ≡ zi, Aki ≡ ei

and if

wi ≡ zi = 0

then

wi ≡ xi, Aki ≡ −Mi

Here Aki is the ith column of Ak. The column ei (a 1 in the ith position and zeros

elsewhere) is associated with wi ≡ zi and −Mi is associated with wi ≡ xi.

The procedure to execute one step of Lemke′s algorithm is presented next.

Step k:

On step k we are at a point (xk, tk) and the zero set Bk is given. Also, a distin-

guished variable wl is specified such that wl = 0. Thus at (xk, tk) the variables

ui = 0, i = 1, ..., n, because these variables are in the zero set and also wl = 0.

From Bk we obtain the corresponding (A.11). More ever, at (xk, tk) there are
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already n+ 1 variables at zero, so by regularity condition

wi > 0, i 6= l

This means that distinguished variable wl can be increased in (A.11) by adjusting

the other wl, i 6= l and t.

Now in (A.11) increase wl and suppose that for some positive wl a variable wj

becomes zero. The point where that occurs is (xk+1, tk+1) and we start the next

step, k+ 1. Thus increase wl in (A.11) until some variable wj hits zero, and that

starts the next step, k + 1.

For step k + 1 the new zero set Bk+1 is formed as follows. The variable wj that

just hits to zero goes into the zero set and its complement uj comes out. All other

variables that were in Bk remain in Bk+1. Thus Bk+1 is the same as Bk except

the variable that hit zero goes in and its complement comes out. More over,the

complement of wj becomes the new distinguished variable that is to be increased.

In brief, the variable that hits zero enters the zero set. Its complement both comes

out and is the new distinguished variable to be increased.

From the new Bk+1 we can form the corresponding (A.11). Then increase the

new distinguished variable just as before. The process continues in this manner.
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Summary of Lemke′s algorithm:

Step 0

Initially,(x0, t0) = (0, 0),B0 = {x1, ..., xn}.Increase t from zero in the system

z + td = d+ q

z ≥ 0, t ∈ R1

(A.12)

• If t can be increased to 1, the x = 0,z = q ≥ 0, is an LC solution.

• Otherwise, some zi becomes zero in (A.12) for t = t1. Let (x1, t1) = (0, t1),

wl = xi be the distinguished variable and

B1 = {x1, ..., xl−1, zl, xl+1, ..., xn}

Go to step 1.

Step k, k ≥ 0

Let (xk, tk) be the current point, wl the distinguished variable and Bk = u1, ..., un

the zero set. Set u1 = ... = un = 0. Then (A.12) becomes

Akw + td = d+ q

w ≥ 0, t ∈ R1

(A.13)

where Ak and w are defined by (A.11). Increase wl from zero in (A.13).

• If t becomes equal to 1, terminate. We have an LC solution at hand.
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• If wl increase to infinity in (A.13), terminate. We have path diverging to

infinity.

• otherwise,some wj becomes zero in (A.13) when wl = w̄l

Let (xk+1, tk+1) be the new point corresponding to wl = w̄l, the complement of wl

be the distinguished variable, and Bk+1 = u1, ..., uj−1, wj, ul+1, ..., un.

Go to step k + 1.

Repeat this process until t = 1 or the path diverges to infinity. Observe that as wl

increased from (xk, tk), only one variable can hit zero. By regularity condition, at

least n−1 variables must be positive. All n variables in the zero set remain zero,so

ui = 0, i = 1, ..., n. If two or more wj hit zero at once, there would be n − 2 or

fewer variables positive. Consequently, as we increase wl, only one variable can

hit zero.

Example:

Let

q =

 −2

−1

 M =

 2 1

−1 3

 d =

 3

2


Then the system z = (1− t)d+ q +Mx is

z1 − 2x1 − x2 + 3t = 1

z2 − x1 − 3x2 + 2t = 1
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Step 0. (x0, t0) = (0, 0, 0).B0 = {x1, x2}.The system A0w + td = d+ q is

z1 = 1− 3t

z2 = 1− 2t

we increase t to t1 = 1
3
.Then (x1, t1) = (0, 0, 1

3
),the distinguished variable variable

is x1 and B1 = {z1, x2}.

Step 1. The system A1w + td = d+ q is

− 2x1 + 3t = 1

z2 + x1 + 2t = 1

we increase x1 to x2
1 = 1

7
.Then (x2, t2) = (1

7
, 0, 3

7
),the distinguished variable vari-

able is x2 and B1 = {z1, z2}.

Step 2. The system A2w + td = d+ q is

t = x2 +
3

7

x1 =
1

7
+ x2

Increase x2 to x3
2 = 4

7
,so that (x3, t3) = (5

7
, 4

7
, 1).The point (5

7
, 4

7
) is an LC solution.

For more in-depth knowledge of linear complementarity problem and its solution

please see [38,39]
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APPENDIX B

CONVEXITY AND K-T

CONDITIONS

B.1 Convex Set

convexity is the fundamental concept int the theory of optimization.

consider any two points x1, x2 ∈ Rn. The line segment between them is described

by the point

w = θx1 + (1− θ)x2 (B.1)

As θ varies between 0 and 1. Convex sets have the property that the line segment

connecting any two points in the set. Mathematically, a set C ⊂ Rn is convex if

x1, x2 ∈ C (B.2)
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implies that

w = θx1 + (1− θ)x2 ∈ C for any θ, 0 ≤ θ ≤ 1 (B.3)

Some familiar properties of convex sets are as follows

B.1.1 Theorem: 1

If C is a convex set and α is a real number, the set

αC = {x|x = αc, c ∈ C} (B.4)

B.1.2 Theorem: 2

If C and D are convex sets, the set

C +D = {x|x = c+ d, c ∈ C, d ∈ D} (B.5)

B.2 The KUHN-TUCKER Conditions

Consider the following non-linear program problem that seeks an optimal x∗

maxf(x)

subject to

gj(x) ≥ 0, j = 1, ..., r

hj(x) = 0, j = 1, ..., s

(B.6)

80



A maximization can always be transformed into minimization by multiplying the

objective function by -1.

If x∗ is the optimal point then there must exit a vector λ ∈ Rr

λ ≥ 0 (B.7)

and a vector µ ∈ Rs such that

∇f(x∗)τ +
r∑
j=1

λj∇g(x∗)τ +
s∑
j=1

µj∇h(x∗)τ = 0

λjgj(x
∗) = 0, j = 1, ..., r

(B.8)

Observe that since x∗ is optimal point, x∗ also satisfies

g(x∗) ≥ 0

h(x∗) = 0

(B.9)

These equations are collectiviley known as K-T conditions.
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