

II

II

III

© Ahmad Faisal Barradah

2013

IV

Dedication

To My Beloved Parents

V

ACKNOWLEDGMENTS

First and foremost, all praises and thanks be to Allah Almighty for all his blessings and

for giving me the strength, passion, and knowledge to complete this work.

Thereafter, I would like to express my appreciation to King Fahd University of Petroleum

& Minerals (KFUPM) and Saudi Aramco EXPEC Computer Center (ECC) for their

support during this work. I would also like to express my deepest gratitude to my thesis

advisors Dr. El-Sayed M. El-Alfy and Dr. Salahadin A. Mohammed for their continuous

motivation, encouragement, untiring efforts to guide me through this work, inspiring

ideas to improve this work, and for dedicating their valuable time throughout the different

phases of this research.

I would also like to acknowledge the committee members Dr. Muhammed S. Al-

Mulhem, Dr. Moataz Ahmed, and Dr. Sajjad Mahmood for their sincere and valuable

comments to enhance this research. I would also like to thank Dr. Cheng Luo at Coppin

State University for providing the code of the Sampling algorithm.

Finally, deepest and utmost gratitude and appreciation go to my parents; Mr. Faisal

Hashim Barradah and Mrs. Samia Hussain Barradah and also to my brothers, sisters, and

friends for their love, prayers, encouragement, and endless support.

VI

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES .. IX

LIST OF FIGURES ... X

ABSTRACT ... XIII

ABSTRACT (ARABIC) ... XV

1. CHAPTER 1 INTRODUCTION .. 1

1.1. Motivation & Problem Definition ... 2

1.2. Thesis Objectives .. 5

1.3. Thesis Outline ... 6

2. CHAPTER 2 BACKGROUND ... 7

2.1. XML Model ... 8

2.1.1. Range-Encoding Scheme .. 9

2.1.2. Prime-Number Labeling Scheme .. 9

2.2. XML Query & Query Selectivity Count .. 12

2.2.1. XPath .. 12

VII

2.2.2. XQuery .. 13

2.2.3. Types of XML Queries ... 14

2.2.4. Query Selectivity Count .. 14

3. CHAPTER 3 RELATED WORK ... 17

3.1. Synopsis-Based Approaches ... 18

3.2. Histogram-Based Approaches ... 27

3.3. Statistical Approaches .. 30

4. CHAPTER 4 XML STRUCTURE-BASED SUMMERIZATION 33

4.1. Summarization Based on Prime-Number Labeling .. 33

4.1.1. SynopGenPrime Preliminaries .. 33

4.1.2. Construction ... 35

4.2. Summarization Using Fingerprinting (SynopGen).. 41

4.2.1. Construction ... 42

4.2.2. Inner Node Labeling Scheme .. 43

4.2.3. Selection of the Parameters K, B and M ... 45

4.2.4. Implementation of the Summary-Tree .. 49

5. CHAPTER 5 SELECTIVITY COUNT ESTIMATION .. 51

5.1. Selectivity Count of Linear Queries ... 52

5.2. Selectivity Count of Existential Twig Queries .. 54

5.3. Selectivity Count of Regular Twig Queries .. 54

VIII

6. CHAPTER 6 PERFORMANCE STUDY .. 57

6.1. Experimental Settings ... 57

6.2. Summary-Tree Generation Time .. 58

6.3. Estimation Error Rate and Storage Size ... 61

7. CHAPTER 7 HANDELING STORAGE LIMITATION .. 70

7.1. Pruning the Summary-Tree ... 70

7.2. Selectivity Count Estimation With Node-Count Ratio ... 71

7.2.1. Experiments ... 73

7.3. Statistical Approach for Selectivity Count Estimation ... 74

7.3.1. Regular Twig and Linear Path Queries ... 74

7.3.2. Existential Twig Queries ... 75

7.3.3. Experiments ... 77

7.4. Hybrid Approach for Selectivity Count Estimation .. 78

7.4.1. Experiments ... 81

8. CHAPTER 8 CONCLUSION AND FUTURE WORK ... 95

REFERENCES... 97

CURRICULUM VITAE ... 103

IX

LIST OF TABLES

Table 1 Selectivity count estimation techniques ... 19

Table 2: Summary-tables implementation of the summary-tree in Figure 17 50

Table 3: Some characteristics of the adopted datasets .. 58

Table 4: Summary-tree generation times and number of collisions for different datasets

and various approaches of selecting K ... 60

Table 5: Sample twig queries .. 65

Table 6: Regular twig estimates for the queries in Table 5 .. 65

Table 7: Summary generation time ... 67

Table 8: Sample queries and the Hybrid results on the XMark .. 93

Table 9: Sample twig queries and TreeSketch results on the Uniprot at SSR 0.01 93

X

LIST OF FIGURES

Figure 1: Query estimation importance: a) XML tree, b) Path query, and c) Twig query . 4

Figure 2: Example of an XML document ... 8

Figure 3: Example of range encoding scheme a) XML tree with the range encoding, b)

Simple path parent-child query, and c) Simple path ancestor-descendant query

 .. 10

Figure 4: A tree labeled with the bottom-up prime-number labeling scheme 11

Figure 5: A tree labeled with the top-down prime-number labeling scheme 11

Figure 6: a) XML tree, and b) Twig query and its corresponding XPath expression 16

Figure 7: a) XML tree with the counts of nodes at the edges, b) XSketch graph for the

tree in a, and c) edge distribution histograms .. 21

Figure 8: Count stable TreeSketch graph for the XML tree in Figure 7(a) 22

Figure 9: Path tree example: a) Sample path tree, and b) Sibling* summarization. 23

Figure 10: a) XML tree, b) Encoding table, c) Bit-Seq table, and d) PathID-freq table .. 25

Figure 11: XSeed example a) XML tree, and b) XSeed kernel .. 26

Figure 12: Example of a path count table and its corresponding bloom histogram 29

Figure 13: XML tree with the corresponding statistics .. 32

Figure 14: A sample data tree for an XML document .. 35

Figure 15: a) XML summary tree of the document, b) Leaf nodes and their prime-number

labels, and c) Inner nodes and their labels .. 36

Figure 16: Two siblings with the same IDs and different structures 42

Figure 17: The summary tree of the XML data tree in Figure 14..................................... 50

XI

Figure 18: Selectivity count of a linear query ... 53

Figure 19: Selectivity count of an existential twig query ... 55

Figure 20: a) A twig query, and b) Sub-trees that match the twig query 56

Figure 21: Count of elements having a given number of distinct children 60

Figure 22: Impact of randomly selecting K in range 3 to 50 on the summary-tree

generation time for the proposed approach ... 61

Figure 23: ER for proposed, Sampling, & TreeSketch on linear queries 67

Figure 24: ER for proposed, Sampling, & TreeSketch on existential twig queries 68

Figure 25: ER for proposed, Sampling, & Treesketch on regular twig queries 68

Figure 26: Required storage: a) Comparison of SSR for SynopTech, Sampling, and

TreeSketch algorithms, and b) Effect of XMark dataset size on the SSR for

SynopTech algorithm .. 69

Figure 27: P-C & A-D error rates for the node-factor method on XMark with different

summary sizes ... 73

Figure 28: Error rates for the extended statistical approach ... 78

Figure 29: P-C & A-D error rates on XMark using summary-delta 82

Figure 30: Gen time for Sampling, TreeSketch and Hybrid approaches on XMark 83

Figure 31: Gen time for Sampling, TreeSketch and Hybrid approaches on Uniprot (**

TreeSketch needed only SSR of 0.5 to store the summary) 83

Figure 32: Gen time for Sampling, TreeSketch & Hybrid on DBLP & Ssplays 84

Figure 33: Overall error rates for all queries on DBLP and Ssplays 86

Figure 34: P-C & A-D queries error rates for Sampling, TreeSketch and Hybrid (query-

delta) on XMark at SSR 1.7... 90

XII

Figure 35: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

XMark at SSR 0.08 .. 90

Figure 36: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

XMark at SSR 0.02 .. 91

Figure 37: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

Uniprot at SSR 0.7 ... 91

Figure 38: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

Uniprot at SSR 0.07 ... 92

Figure 39: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

Uniprot at SSR 0.01 ... 92

Figure 40: Overall error rates for all queries on XMark and Uniprot 93

XIII

ABSTRACT

Full Name : Ahmad Faisal Barradah

Thesis Title : XML Structure-Based Clustering And Its Application In Selectivity

Estimation

Major Field : Master in Computer Science

Date of Degree : December 2013

With the increasing popularity of XML and database applications, the demand for

efficient query processing is becoming very essential. The performance of XML query

optimizers depend heavily on selectivity count estimation to choose the best query

execution plan. Most of the existing estimators address the problem of linear path and

existential twig query selectivity count estimation while very few address the problem of

regular twig query selectivity count estimation. In this work, we propose and evaluate a

general selectivity count estimator based on a structural synopsis called, SynopTech, that

can estimate the selectivity counts for the three query types. We also propose two novel

approaches to generate structural summaries of XML data trees which can be used by

SynopTech for selectivity count estimation. The main idea of the first summarization

approach is to use a fingerprinting function to label nodes in the data tree and cluster

similar sub-trees to generate a summary tree. The second approach is based on clustering

the nodes using the prime-number labeling scheme to generate the summary tree .The

experimental results showed very low error rates by the proposed approach for XML

documents in four benchmark datasets with different structural characteristics including

non-uniform documents and multi-level queries. Comparing with the Sampling algorithm

and TreeSketch, two state-of-the-art algorithms for selectivity count estimation,

XIV

SynopTech achieved lower selectivity count estimation error rates on most datasets, yet

with very low memory budget. For example, for linear and existential queries, SynopTech

had perfect estimations whereas the Sampling algorithm had an overall error rate of more

than 85%. For regular twig queries, SynopTech had a maximum error rate of 0.8%

whereas the TreeSketch algorithm had more than 15% on some datasets. Moreover, we

present a scalable hybrid approach for selectivity count estimation by combining a

statistical technique with SynopTech. This hybrid approach can work under limited

storage budget but at the expense of lowering its estimation accuracy.

XV

 ملخص الرسالة

 أحمد فيصل براده :الاسم الكامل

 الاستعلامات نتقائيةبنيويا وتطبيقاته في تقدير ا XMLشجرات تقسيم :عنوان الرسالة

 علوم الحاسب التخصص:

 3102ديسمبر :تاريخ الدرجة العلمية

أداء . ويعتمدبكفاءة ضرورية جدا ، أصبحت معالجة الاستعلاماتوقواعد البيانات XML مع ازدياد شعبية تطبيقات

معظم .تنفيذ الاستعلاملبشكل كبير على تقدير الانتقائية لاختيار أفضل خطة XMLشجراتل اتالاستعلام معالجات

تقدير الانتقائية للاستعلام عن المسارات الخطية والاستعلام عن المسارات الغصينية الوجودية تعالج الموجودة الحلول

يمكنه تقدير مقدر انتقائية عام في هذه الدراسة نقترح .للمسارات الغصينية العادية يتطرق عدد قليل منها بينما

 بصمةباستخدام دالة XMLلشجرة لبنيويا لتلخيصالانتقائية لأنواع الاستعلامات الثلاث ويعتمد على ا

(fingerprint) ماثلة لتوليد شجرة تتجميع الأشجار الفرعية المأو الأعداد الأولية لترقيم أوراق شجرة البيانات و

مع خوارزميات أخرى على قواعد بيانات ذات خصائص مختلفة وتم تقيم الطريقة المقترحة ومقارنتها التلخيص.

تجريبية معدلات خطأ منخفضة جدا أظهرت النتائج الوقد ومجموعات مختلفة من الاستعلامات متعددة المستويات.

على ة مقارنة بالطرق الأخرى. ولزيادة مرونة الطريقة المقترحة للتعامل مع الحالات التي فيها قيود المقترح للطريقة

ذاكرة التخزين تم اختصار شجرة التلخيص مما أدى إلى انخفاض دقة التقدير، ولتعويض بعض الفقد الناتج تم دمجها

 لوب إحصائي لتحسين الأداء نسبيا.مع أس

1

1. CHAPTER 1

INTRODUCTION

The eXtensible Markup Language (XML) [1] is becoming increasingly popular as a

document formatting standard in various applications especially in the World-Wide Web

(WWW). It is also a de facto format for data exchange among heterogeneous systems. As

a result, vast amount of XML data is available and the demand for an efficient online

query processing is growing by the day. Abundant research has recently been directed

towards building query optimizers for XML database management systems as [2 – 8, 54].

Choosing the best possible query execution plan is what database query optimizers

attempt to achieve. Like relational query optimizers, XML query optimizers use

selectivity count estimators to estimate the size of the intermediate results to be generated

by a query execution plan. An efficient selectivity count estimator must have low CPU

cost, low memory cost, and low estimation error rate. To achieve that, a selectivity count

estimator often doesn't run against the source document, but it uses a summary structure

of the source document or some statistics generated from it.

XML queries are classified into linear (path) queries and twig queries. Twig queries are

classified further into regular and existential since their selectivity count estimations are

computed differently [9]. A number of query estimators have been proposed in the

literature but they mostly focus on path queries and/or existential twig queries. Existing

linear query selectivity count estimators can have acceptable results. However, the

2

selectivity count estimation techniques of twig queries, especially regular twig queries,

are few and can suffer from high error rate especially for extended queries with multiple

levels or when the source XML document is non-uniform [10].

The main goal of this thesis is to develop a synopsis-based technique for XML query

estimation that can work well under various structural characteristics of XML documents

even with complicated queries. Our approach is based on summarizing the XML data tree

by grouping similar structures. We propose two summarization techniques: the first one

is based on the prime-number labeling scheme and the second is inspired by the work

conducted on string pattern matching using fingerprinting. The generated summary tree

by either technique is then used for query estimation. We also propose a hybrid approach

that extends the proposed summarization technique with a statistical method to manage

the size of the generated summary tree.

1.1. Motivation & Problem Definition

Selectivity count estimation plays a major role in any query optimization model. It is an

essential component that enables the optimizer to find the best possible execution plan

that reduces the query execution time. In addition, a vast amount of XML data is

available in the web and the demand is rising for efficient online query processing such

as the Niagara system presented in [11]. For this kind of applications, the selectivity

count estimation might be of great interest to the user because it shows whether the query

needs refining before returning the full set of results matching his query.

XML query selectivity count estimation is the process of computing the expected

intermediate number of nodes in an XML document that match the given query. This

3

problem is challenging and demands an efficient solution methodology. Figure 1 is an

example where selecting an efficient query plan is crucial and may save a great deal of

the execution time. The XML document in Figure 1(a) has a single type C node which

has more than 100,001 children of type B and only one of them has a child of type A.

Assume we want to estimate the number of type A nodes that have types B and C as their

ancestors as shown in the query in Figure 1(b). If B is joined with A first, one node will

be retrieved as an intermediate result before it is joined with C. On the other hand, if C is

joined with B first, then 100,001 nodes will be produced and joined with type A nodes.

Also, consider the twig query in Figure 1(c). If this is a regular twig query, then the query

processor has to retrieve all D and F combinations that have types B and E as their

ancestors. If the processor tries to retrieve the twig part of the query first (i.e. B[/D][/F]),

more than 10
10

 nodes will be retrieved as intermediate results. This is because the type C

node has 100,000 twigs rooted at type B and each twig has 100,000 combinations of node

types D and F. In addition the type E node has a single twig rooted at type B which has

2000 combinations of types D and F. On the other hand, if the processor tries to retrieve

the linear part of the query first (i.e. E/B), a single B node will be retrieved as an

intermediate result before the 2000 combinations of D and F are retrieved. The job of the

selectivity count estimator in that case is to provide the query optimizer with enough

information about the counts of both the linear and the twig parts of the query in order to

choose the optimum query plan (the plan with the lowest storage and/or CPU cost). In

other words, all node statistics and estimates should be efficiently maintained and made

available for the query optimizer for the purpose of making accurate decisions when

selecting a query plan. From the above example, we can see that estimating the selectivity

4

Figure 1: Query estimation importance: a) XML tree, b) Path query, and c) Twig query

counts of regular twig queries can save a great deal of execution time and storage

requirements. Since a few estimators in the literature are capable of estimating the counts

of regular twig queries, we conducted our research to develop a general estimator that can

provide more accurate estimates for regular twig queries in addition to existential twig

and linear queries.

That being said, the following are some of the important qualities and characteristics that

need to be preserved and addressed when implementing a selectivity count estimation

model [9]:

 Space efficiency: the algorithm should use minimal storage for the model and its

data.

 Generality: it can be defined as the capability of the algorithm to handle different

types of queries and provide estimates for them. This is indicated by supporting both

 //

C

B

A

+100,000
…………
…

B

D D F +50,000
……….. F

B

D D F +50,000
……….. F

E

B

D D F +1,000
……… F

 C

 B

 A

 E

 B

 D
F

b) c) a)

5

path and twig queries that target the most common structures or XML axes (e.g.

parent/child, ancestor//decedent..., etc.).

 Estimation accuracy: which is normally measured by calculating the error rate

produced by the estimator.

 Time Efficiency: this can include the summary generation time, the estimation time,

and the overall time.

1.2. Thesis Objectives

In this thesis, we propose a model for selectivity count estimation that efficiently

addresses the characteristics mentioned in the previous section. The main objective of our

research is to provide a framework for more efficient and accurate selectivity count

estimation of XML queries including linear, existential and regular twig queries. To

achieve this objective, we will proceed as follows:

1) Survey of the literature: an extensive review of the existing techniques on XML

selectivity count estimation in order to identify their strengths and shortcomings.

2) Design & implementation of new algorithms: design new algorithms to summarize

XML trees and estimate the selectivity counts of various types of queries using the

summary structure. Also, implement a scalable hybrid approach for selectivity count

estimation to handle the memory budget constraints.

3) Performance study: carefully study the performance of the implemented algorithms

using real and synthetic data. Also, the algorithms and the overall framework will be

evaluated against some evaluation criteria such as storage requirements and

estimation accuracy.

6

4) Comparison: compare the performance of the proposed model with existing state-of-

the-art selectivity count estimation techniques.

1.3. Thesis Outline

The rest of this thesis is as follows: Chapter 2 gives a general background of the XML

model and the XML query processing. The related work is reviewed in Chapter 3. The

proposed summarization techniques and the selectivity count estimation algorithm are

explained in details in chapters 4 and 5, respectively. Chapter 6 includes the performance

study of our approach and the comparisons with other approaches. Chapter 7 introduces a

hybrid approach for selectivity count estimation with experimental results. Finally,

Chapter 8 concludes the thesis and outlines the future work.

7

2. CHAPTER 2

BACKGROUND

XML stands for eXtensible Markup Language [1]. It has the ability to represent

structured, semi-structured, and completely unstructured data. Figure 2 presents an

example of an XML document which is a sample taken from the Ssplays dataset [52].

The main components of an XML document are:

 Elements: An element in the XML document is represented by a start tag

“<element>” and an end tag “</element>”. An element can contain other elements,

text, or attributes. For instance, in Figure 2, every instance of the TITLE element is

enclosed between the start tag <TITLE> and the end tag </TITLE>. Also, each

instance of the TITLE element contains text such as “The Tragedy of Antony and

Cleopatra”. The instances of the PGROUP element contain two other element types,

namely PERSONA and GRPDESCR.

 Attributes: These are included in the element’s start tag and they provide additional

information about the element. For example, the PGROUP element instances have an

attribute called “id” in their start tags : <PGROUP id=”001”> and

<PGROUP id=”002”>.

 Values: They represent the data enclosed by the start and end tags of the element and

that are not other elements. For example, the value of the first PERSONAE instance

is the text “MARK ANTONY”. Attributes also have values, e.g. the value of the first

8

Figure 2: Example of an XML document

“id” attribute is “001”. The types of the values as well as the structure of the XML

document can be described using data definition languages such as the DTD [12] or XML

Schema [13].

2.1. XML Model

The XML document is usually modeled with a labeled tree structure where every node is

associated with a type or a value and a label. An edge between two nodes in the tree

<SSPLAYS>

<PLAY>

<TITLE>The Tragedy of Antony and Cleopatra</TITLE>

<PERSONAE>

<TITLE>Dramatis PERSONAE</TITLE>

<PGROUP id=”001”>

<PERSONA>MARK ANTONY</PERSONA>

<PERSONA>OCTAVIUS CAESAR</PERSONA>

<PERSONA>M.AEMILIUS LEPIDUS</PERSONA>

<PERSONA>POMPEIUS</PERSONA>

<GRPDESCR>triumvirs.</GRPDESCR>

</PGROUP>

<PGROUP id=”002”>

<PERSONA>DOMITIUS ENOBARBUS</PERSONA>

<PERSONA> VENTIDIUS</PERSONA>

<PERSONA>EROS</PERSONA>

<PERSONA>SCARUS</PERSONA>

<PERSONA>DERCETAS</PERSONA>

<PERSONA>DEMETRIUS</PERSONA>

<PERSONA>PHILO</PERSONA>

<GRPDESCR>friends to Antony.</GRPDESCR>

</PGROUP>

</PERSONAE>

</PLAY>

</SSPLAYS>

9

represents a parent-child (P-C) relationship between the two nodes. The labels on the

nodes normally describe the ordered position of the nodes in the data tree. Furthermore,

the labels in some labeling schemes can be used to describe some structural relationships

between arbitrary nodes in the tree, such as, parent-child (P-C), ancestor-descendant (A-

D), and so on. In what follows, we present some common labeling schemes.

2.1.1. Range-Encoding Scheme

This scheme is also known as containment or interval-based labeling scheme [14]. In the

range encoding scheme, every node is labeled with a 3-tuple of integers (start, end, level).

For any two nodes x and y in the tree, x is an ancestor of y iff x.start < y.start and x.end >

y.end. Moreover, if x.level = y.level -1 then x is the parent of y. Also, for an inner node x,

x.start < x.end and for a leaf node x, x.start = x.end. Figure 3(a) shows an XML tree

labeled with the range encoding scheme. This approach can identify A-D relationships

but it requires re-labeling the tree after any update (such as adding or deleting nodes). To

avoid re-labeling, Amagasa et al. [55] proposed a technique using float-point values for

start and end but it also has limitations due to the finite word length of the computer.

2.1.2. Prime-Number Labeling Scheme

The prime-number labeling scheme was first introduced by Wu et al. [15]. They proposed

bottom-up and top-down approaches to label a given XML data tree.

A) Bottom-up Scheme: In the bottom-up approach, the XML data tree is scanned using

post-order traversal and the leaf nodes are labeled with prime numbers while the inner

nodes are labeled with the products of their children’s labels. The main characteristic

of this approach is that it facilitates the identification of the ancestor-descendant

10

Figure 3: Example of range encoding scheme a) XML tree with the range encoding, b)

Simple path parent-child query, and c) Simple path ancestor-descendant query

relationships between any two nodes with a single comparison given their labels using

the divisibility property of prime numbers. In other words, for any two nodes x and y, x is

an ancestor of y if and only if label(x) mod label(y)) = 0 [15]. Figure 4 shows an example

of a tree labeled with the bottom-up prime-number labeling scheme. The problem with

this approach is that it can result in very large labels for big XML documents.

B) Top-down Scheme: In order to reduce the size of the labels, Wu et al. [15] also

introduced the top down approach where the label of a node is the product of its self-

label (the next available prime number) and its ancestors’ labels in the pre-order

traversal. Figure 5 shows an example of the top-down approach.

 A

 B

(1,10,0) A

(2,5,1) B

D

 (3,3,2)

E

 (4,4,2)

(6,9,1) C

F

 (7,7,2)

G

 (8,8,2)

 A

 D

a) b) c)

11

Figure 4: A tree labeled with the bottom-up prime-number labeling scheme

Figure 5: A tree labeled with the top-down prime-number labeling scheme

(210) A

(6) B

D

 (2)

E

 (3)

(35) C

F

 (5)

G

 (7)

(1) A

(2) B

D

 (10)

E

 (14)

(3) C

F

 (33)

G

 (39)

 1*1

 1*2 1*3

 1*3*11 1*3*13 1*2*5
 1*2*7

12

2.2. XML Query & Query Selectivity Count

The XML query is usually represented using a tree. The set of nodes in the query tree is a

subset of the set of nodes in the data tree. Furthermore, the edges in the query tree are

represented by either double forward slashes “//” between node types to reflect the

ancestor-descendant relationship between the nodes, or a single forward slash “/”

between node types to reflect the parent-child relationship between the nodes.

Several query languages exist in the literature such as XPath [16], XQuery [17], Lorel

[18] and Quilt [19]. The main purpose of the query languages is to find and retrieve the

matches of the query tree in the source XML data tree. Perhaps the most common query

languages are the XPath and XQuery and in what follows we give a brief description of

each.

2.2.1. XPath

XPath is an XML query language [16]. Its syntax is similar to the syntax used in the

UNIX operating system to access files and directories. A simple XPath expression can

be of the form //n1/n2../ni where n is a node type and the forward slashes are used to

describe the structural relationships between the node types (i.e. “/” for parent-child and

“//” for ancestor-descendant relationships). For instance, the simple path expression

(//book/title) will return all the “title” elements that have a parent of type “book”. The

wildcard “*” can also be used in the XPath expressions to indicate any node type. Also,

XPath allows both structural conditions and value predicates using brackets. Structural

conditions can represent branching paths. For example, the path expression

13

//book[author]/title involves two paths, //book/author and //book/title, and will retrieve all

the title elements that have an author element as their sibling and the element book as

their parent.

2.2.2. XQuery

The XQuery is a functional language used to query XML documents. The XQuery

expressions usually have the FLWOR (For, Let, Where, Order, Return) form [17]. The

FLWOR expression allows the user to manipulate the result of the query. The “For”

clause is composed of one or more path expressions where each expression is bound to a

variable. Each variable iterates through the nodes returned by the expression it is bound

to. The “Let” clause is used to create variables and bind them to the results from the

“For” clause. The “Where” clause is used to specify conditions over the variables in the

“Let” and “For” clauses in order to filter the results. The “Order” clause is used to sort

the results based on a variable defined in the “For” or “Let” clauses. Finally, the “Return”

clause is used to manipulate the structure of the results and is the only mandatory clause.

The following is an example of an XQuery expression:

For $x IN document(“SSplays.xml”)//PLAY

Let $title := $x/TITLE

Where count($x/ACT) > 3

Order by $title

Return $title

The above query returns all the titles for the plays that have more than 3 acts ordered by

the title.

14

2.2.3. Types of XML Queries

There are several types of XML queries. In what follows, we provide a classification of

XML queries similar to the one presented in [9].

 Linear Path Queries (LP): These are single path queries or queries that do not

contain branching paths. Both queries depicted in Figure 3(b) and Figure 3(c) are

linear path queries.

 Twig queries: These are queries that contain branching paths. The twig queries can

be further broken down into two categories:

o Existential Twig Queries (ET): Such queries are similar to the simple path

queries in the sense that they contain a single target node but they contain

some branching conditions.

o Regular Twig Queries (RT): Unlike existential twig queries, regular twig

queries involve finding and retrieving all combinations of multiple target nodes

from the XML data tree.

Note that all of the above queries can involve parent-child (P-C) or ancestor-descendant

(A-D) relationships.

2.2.4. Query Selectivity Count

Query selectivity count is the number of matches of a given query in the source XML

data tree. Chen et al. [20] definition of a twig match can be slightly modified to formally

define the selectivity count as follows:

15

Definition 1.1 (selectivity count):

Given a labeled XML data Tree Td = (Vd, Ed) and a query (twig or path) Tq = (Vq, Eq,

{/,//}), the selectivity count of Tq is the approximate number of matches c(Tq) that satisfy

the following mapping : f: Vq  Vd such that if f (u) = v for u ϵ Vq and v ϵ Vd, then

1- Label(u) = Label(v)

2- If (u, u`, /) ϵ Eq, then (f (u), f (u`)) ϵ Ed.

3- If (u, u`, //) ϵ Eq, then there is at least one linear path p in Td rooted at f(u) and reaches

f(u`) where all the edges in p ϵ Ed

The selectivity count of a simple path query is simply the count of the nodes in the data

tree matching the type of the query-target node (i.e. the node at the end of the expression)

and satisfying the structural conditions represented by the edges in the query tree.

Consider the XML queries in Figure 3(b) and Figure 3(c). Both queries have the

selectivity count of 1. This is because the element A in the data tree has a single B child

satisfying the query in Figure 3(b) and a single D descendant satisfying the query in

Figure 3(c).

For existential twig queries, only the count of the target node contributes to the query

selectivity count while the branching paths present structural conditions indicating that at

least a single occurrence of each branch should exist in the source tree. Figure 6(b) shows

an example of a twig query over the source tree in Figure 6(a). If this is an existential

twig query and D is the single target node, then the selectivity count of the query in this

case is 1 since there is only one D element whose parent has a sibling of type C.

16

Figure 6: a) XML tree, and b) Twig query and its corresponding XPath expression

Unlike existential twig queries, the counts of all branching paths contribute to the overall

query selectivity count in regular twig queries. Consider the XML query in Figure 6(b). If

it is a regular twig query, then its selectivity count is 2 since there are two C elements in

Figure 6(a) that can be matched with the single D element satisfying the structure

described by the query.

A

B

C C C

D

B

C C C

a)

B

C

D

C

b)

//B[/C]/C/D

17

3. CHAPTER 3

RELATED WORK

In the past decade, a number of selectivity count estimation techniques have been

proposed in the literature by the XML database research community. The general idea of

most of the techniques in the literature is to summarize the XML document in a way that

preserves the structural relationships between the elements and can reflect the actual or

approximate counts of those elements in the source document. Such summary structures

or synopses can be in the form of graphs or trees. Examples of these techniques can be

found in [21-26,57]. While graphs have the advantage of modeling more types of

elements such as the IDREF/ID (i.e. attributes that refer to another element’s ID value),

trees can be traversed more efficiently than graphs. In contrast, histogram-based

techniques depend on the use of statistical histograms to capture the structural and

content distributions of the source XML documents [27 - 29, 31,58]. One important

feature of histograms is that they can capture more accurate statistics when the

distribution of the XML data is not uniform [31]. Moreover, they are usually simpler

structures and easier to build than trees and graphs. Finally, statistics-based techniques

build highly summarized statistical models to represent the structure of the source XML

documents [21, 30]. Although statistical approaches are usually more storage efficient

than synopses approaches, they tend to show higher error rates with non-uniform XML

documents. In [31], the authors augmented a statistical model with histograms based on

18

an interval-based numbering scheme to reduce estimation errors when the underlying

data is skewed. Table 1 summarizes the techniques in the literature.

One thing to note is that very few techniques address the selectivity count estimation of

regular twig queries. This is also shown in the survey conducted by Sakr [10]. Also,

several techniques are proposed for XML selectivity count estimation for queries with

value predicates like [24, 32 - 36]. Since this work focuses on structural selectivity count

estimation, we only discuss [24, 33] as examples for those techniques. In what follows

we present some of the techniques in the literature.

3.1. Synopsis-Based Approaches

XSketch: Polyzotis et al. [26] proposed the XSketch technique which is based on a

generic graph synopsis model. In this model, each node corresponds to a set of identically

labeled node types in the source XML document. The synopsis graph is augmented with

edge labels that represent the backward and forward stability properties. This way, the

counts of paths that consist of backward stable edges will depend on the count of the last

node in the path expression only. This reduces the computational complexity and also

improves the estimation accuracy. In addition, a multidimensional histogram is associated

with each node type to capture the distribution of the values associated with that node

type. Consequently, the estimate is computed by combining the stability information of

the structural part of a given twig pattern and the distribution of the values which are in

the value predicates part of the same twig pattern. This technique works well with the

uniformity assumption and simple path expressions but can produce a high error rate with

twig queries [25]. A generalization of the XSketch called the fXSketch has been proposed

19

Table 1 Selectivity count estimation techniques

Reference Approach Category Supported Queries Year

Polyzotis et

al. [26]
Xsketch synopsis Linear, existential 2002

Polyzotis et

al. [25]
Twig-Xsketch synopsis

Linear, existential, and

regular 2004

Polyzotis et

al.[38]
TreeSketch synopsis

Linear, existential, and

regular 2004

Aboulnaga et

al. [21]
Path-Tree 1 synopsis Linear

2001

Alrammal et

al. [39]
Path-Tree 2 synopsis Linear, existential

2011

Li et al.[40] Path-Encoding: synopsis linear, existential 2006

Lim et

al.[59]
XPath-Learner synopsis linear, existential

2002

Zhang et

al.[41]
Xseed synopsis linear, existential

2006

Luo et al. [9] Sampling synopsis
Linear, existential, and

regular 2009

Chen et al.

[56]

Correlated Subpath

Tree
Synopsis

Linear, existential, and

regular 2001

Wu et al.

[28]
Position-Histogram histograms linear, existential

2002

Wang et

al.[29]
Bloom-Histogram histograms linear

2004

Lim et

al.[33]
CXHist histograms linear

2005

Li et al.[40] Path-order histograms linear,existential 2006

Freire et

al.[57]
StatiX histograms linear, existintial

2002

Aboulnaga et

al. [21]
markov Table statistical linear

2001

Lee et al.[30]
NodeRatio-Node-

Factor
statistical linear,existential

2004

Wang et al.

[42]

Probabilistic-

Decomposition
statistical linear,existential

2004

20

to improve the accuracy of the estimates and handle other types of queries. fXSketch is

proposed to cope with fractional stabilities by recording more details about

path/branching distributions [37].

Twig-XSketch: In order to improve the accuracy of the estimate for twig queries,

Polyzotis et al. in their later work [25] extended the XSketch synopsis to capture the path

distribution information at a finer level of detail. The idea is to store a multidimensional

histogram per synopsis node (a node in the XSketch graph) that represents the localized

edge distribution. For example, if a node n in the synopsis has two outgoing edges (n, t)

and (n, q), then the histogram Hn(c1,c2) would represent the fraction of n nodes in the data

tree that have exactly c1 children of type t and c2 children of type q. This introduces the

requirement for extra storage space to maintain the histograms along with the XSketch

graph. Figure 7(b) shows a sample XSketch graph of the tree in Figure 7(a) and Figure

7(c) shows XSketch extension to include the edge distribution histograms. For example,

the selectivity count of the query C[/G]/H can be calculated using the graph in Figure

7(b) and the histogram in Figure 7(c) as follows:

 ∑g,h |C| HC(g,h) g.h (1)

One problem with the XSketch synopses is that they are complex to construct and also

the edge histograms are kept for only a subset of the paths which leads to poor estimates

for twig queries whose paths distribution information is not stored.

TreeSketch: Polyzotis et al. [38] proposed the TreeSketch synopsis to summarize the

XML documents for the purpose of selectivity count estimation. The TreeSketch is a

summary graph that clusters the elements in the XML tree based on the count stability

21

Figure 7: a) XML tree with the counts of nodes at the edges, b) XSketch graph for the

tree in a, and c) edge distribution histograms

concept and the space budget. Nodes in the XML tree that have the same substructure and

the same count for each child and descendant belong to the same graph node. Figure 8

shows the TreeSketch graph for the XML tree in Figure 7. The main advantage of the

TreeSketch approach is that in addition to estimating the selectivities, it facilitates the

generation of the query results. One issue with this approach is that it can be very time

consuming to generate the Treesketch synopsis according to a certain space budget. Also,

the synopsis size can become large if the XML source tree exhibits any type of

irregularity in terms of elements’ structures or counts.

Path-Tree-1: Aboulnaga et al. [21] proposed two techniques to estimate the selectivity

counts of path expressions. Their first technique is based on capturing the structure of the

XML data on a path-tree. The aim is to represent the structure of the source XML tree in

a more succinct manner using the path tree. This tree contains the nodes frequencies

A (1)

B (2)

B/F

C

(3)

G (5) H (7)

B/F

B/F B/F

C HB(C)

2 1/2

1 1/2

G H HC(G,H)

2 2 2/3

1 3 1/3

a) b) c)

A 2

 B 2

C C

G

B 1

C

2

H

2

G

1

H

3

G

2

H

2

22

Figure 8: Count stable TreeSketch graph for the XML tree in Figure 7(a)

through all paths. A node in the path tree represents a path string from the root, and there

is a child node for every distinct element reachable by that path. Each node is labeled

with the type of the element reachable by that path along with the frequency of the node.

Figure 9(a) is an example of a path tree representation of an XML document. The authors

also suggested four techniques to summarize the path-tree itself in case it was larger than

the available memory. For instance, one of the methods they used to summarize the path-

tree was called the Sibling-*. The basic idea of this method is to repeatedly merge

siblings with the lowest frequencies into one node called the * node until the tree can fit

in the memory. The *-node then has the average frequencies of the merged nodes.

Moreover, all children of the merged nodes become the children of the newly created *-

node and the children with the same tag name are merged and their frequencies are added

rather than averaged as shown in Figure 9(b). In this work the authors did not address the

selectivity count estimation for twig queries.

A

B

C

G H

1 1

B

C

1 1

1

1 3 2 2

23

Figure 9: Path tree example: a) Sample path tree, and b) Sibling* summarization.

Path-Tree-2: Alrammal et al. [39] also used the path-tree model, Figure 9(a), as the basis

for selectivity count estimation. Furthermore, in their estimation system the path-trees are

generated incrementally from the source document therefore partial query selectivity

count estimates can be retrieved using the partial path-trees. Like the path-tree technique

proposed in [21], their work does not address the selectivity count estimation for regular

twig queries.

XPath-Learner: Alrammal et al. [59] proposed the XPath-learner system to estimate the

selectivity counts of XPath expressions. The XPath-Learner is similar to their earlier

work in [39] with a few modifications. The XPath-Learner is an on-line system and it

does not scan the XML document directly to collect the required statistical information

but instead it uses query feedbacks and therefore the collected statistics about the source

XML document depend on the query workload. This allows the XPath-Learner to

efficiently allocate more storage for the statistical information about more frequent

E 2

A 1

B 3 D 10 C 4

F 1 G 6 H 4

L 22 L 14

A 1

* 3 D 10

* 5

L f = 36
n = 2

* 2

a) b)

24

queries in the workload to achieve a higher estimation accuracy. Although, XPath-

Learner can support value predicates in path expressions, it does not support regular twig

queries.

Path-Encoding: Li et al. [40] proposed a path-based encoding model for XML

selectivity count estimation. Here every distinct root-leaf path is represented by a binary

integer with length k bits where k is the total number of distinct root-leaf paths. The inner

nodes are labeled by performing the binary “or” operator on their children and all IDs are

saved in an encoding table. The frequency of each path is then saved in a PthID-

frequency table which is used to estimate the selectivity count of a given query. Figure 10

shows an XML tree and its corresponding encoding table and PathID-frequency table.

They also build another table for each element tag to capture the element order

information. This table is used to estimate the selectivity counts of queries with order

axes. Moreover, they generate p-histograms and o-histograms to summarize the PathID-

frequency and element order tables respectively. To the best of our knowledge, this

technique is the first to address the selectivity counts of order-sensitive queries but the

selectivity count estimation problem for regular twig queries is not addressed in their

work.

XSeed: Zhang et al. [41] proposed the XSeed selectivity count estimation system. The

XSeed synopsis is a label-split graph called the kernel. The XSeed kernel edges are

labeled with vectors of integer pairs (p0:c0,p1:c1…pn:cn) where the i-th pair pi:ci shows

that at recursion level i there are pi elements in the XML tree that have ci children. Figure

11 shows a sample XML tree and its corresponding XSeed kernel. One of the main

contributions of their work is that they explicitly address the recursion (i.e. elements that

25

Figure 10: a) XML tree, b) Encoding table, c) Bit-Seq table, and d) PathID-freq table

share the same type with one or more child or descendant nodes) in the XML document.

They also complement the XSeed kernel with a hyper-edge table (HET) which contains

the cardinalities of some queries that are known to produce a high error rate under the

path independence assumption. Unfortunately, their work does not address the regular

twig queries.

Sampling: Luo et al. [9] proposed a sub-tree sampling approach to estimate the

selectivity counts of regular twig queries. The idea is to examine the number of nodes of

each element type starting from the first level. If the number of nodes is sufficiently

Root- Encod

A/B/C 1

A/B/D/ 2

A/B/D 3

A/F/G/ 4

Bit-Seq ID

0001 p1

0010 p2

0011 p3

0100 p4

0111 p5

Ele PathID-Frequency

B (p3,1)

F (p4,1)

C (p1,2)

D (p2,1),(p3,1)

G (p4,2)

H (p4,3)

A (p5,1)

a)

c)
b)

d)

 B (p3)

 C p(1)

 A (p5)

C p(1) D (p2) D p(3)

E p(2)

H p(4)

F (p4)

G (p4)

H p(4)
H p(4)

G (p4)

26

Figure 11: XSeed example a) XML tree, and b) XSeed kernel

large, they randomly sample a certain fraction of the nodes and their sub-trees. They also

save the root-to-sub-tree paths in the sample. On the other hand, If the number of nodes

is not large then the next level is examined for sampling. The generated sample XML tree

is then used to retrieve the selectivity count of twig queries. The main advantage of this

technique is its simplicity. In other words, samples can be generated quickly for a given

storage budget. Unfortunately, the sample tree is not always a good representation of the

source XML document especially for irregular XML data, where elements of the same

type tend to have different structures (sub-trees), and when the memory budget is limited.

Correlated Subpath Tree: Chen et al. [56] proposed a selectivity count estimation

technique for XML queries. In their work, they maintained the count statistics of the

subpaths in the XML document up to a certain length in a tree structure. Then they

captured the correlations between the subpaths with the same root using a set hashing

signature. In order to estimate the selectivity counts of twig queries, they decomposed the

a) b)

 B

B

 A

B B

D

C

D

B

 B

 A

C

D

(1:1) (1:2)

(0:0, 1:3, 1:1)

(1:1)

27

query into a set of paths stored in the CST and then combined the retrieved paths and

used their stored statistical counts to estimate the overall query selectivity count. The

CST was among the first techniques for XML query selectivity count estimation

especially for twig queries. Also, the CST can handle substring queries at the leaves. One

issue is that the CST normally consumes a large storage to achieve a reasonable

estimation accuracy. However, it is shown in [38] that the TreeSketch outperformed this

technique in terms of estimation accuracy.

3.2. Histogram-Based Approaches

Position-Histogram: Wu et al. [28] used two dimensional position-histograms to capture

the structural information of XML documents. First, they merged all XML documents

into a single root document and then they labeled the nodes using the range encoding

labeling scheme [14]. After that, they generated a 2-dimensional histogram for the nodes

that satisfy a certain predicate P of the form “element = <element name>”. In other

words, they generated a histogram for every distinct element. The x-axis of the histogram

represents the start position of the node while the y-axis represents the end position

according to the range encoding scheme. Consequently, every cell in this histogram

represents a range of start and end positions and it contains the count of the nodes

satisfying the predicate P and falling in the range [start, end]. This histogram is called the

position histogram. The ancestor descendant relationship between any two nodes can be

then identified by combining their histograms and using the fact that the start and end

ranges of any two nodes can either have no overlaps or one range is totally contained in

the other. The main issue with this approach is that it only addresses the ancestor-

28

descendant axis.

Bloom-Histogram: Wang et al. [29] proposed a selectivity count estimation technique

based on bloom-histograms. The bloom histogram is generated using a path-table that

contains all paths in the XML document and their frequencies. Unlike the path-table the

bloom histogram contains a fixed number of buckets and each bucket contains paths with

similar counts or frequencies. Thus, the bloom histogram has two columns, namely the

bloom filter which represents the set of paths in each bucket, and the count which reflects

the frequencies of the paths represented by the bloom filter. More specifically, the bloom

filter is a bit array of a fixed length m with k hash functions h1 h2 … hk. To add a new

element x, all k hash functions are applied and every bit hi(x) is turned to 1 where 1≤ i ≤

k. To query an element q, all hi(q) of a bloom filter must be 1 if q belongs to the set

represented by the filter. In this work, the authors sort the path table based on the

frequencies and then group paths with similar frequencies into buckets and the selectivity

count of a given path can be retrieved by testing the membership of the path using the

bloom filter at each bucket. Figure 12 shows an example of a path table and its

corresponding bloom-histogram. One thing to note here is that the accuracy of the

estimation is highly dependent on the selection of parameters, namely k , the number of

hash functions, and also m which is the size of the bit array. Moreover, the number of

buckets has to be chosen carefully because if the number of buckets is too small then

each bucket will contain a wider range of frequencies and the error rate will increase. On

the other hand, a large number of buckets will increase the storage requirement. Another

thing that needs careful attention is the selection of the hash functions which might

29

Figure 12: Example of a path count table and its corresponding bloom histogram

produce false positives (i.e. more than one bloom filter can test positive for the

membership of a given path). Also, the authors address only the linear path expressions in

their work.

CXHist: Lim et al. [33] proposed a machine learning technique for XML selectivity

count estimation. Their technique is based on building a query model using the PathID

and n-grams for string and substring predicates as features. Each <path, string> query is

mapped to a bucket representing the query selectivity count using the Bayesian classifier.

This is an online technique and the histogram is tuned depending on the workload and

query feedbacks. One problem with online techniques is that the estimation accuracy can

be very low for new queries. This is because they use the results (feedback) after

executing the query to tune the histograms and therefore the accuracy is improved only

for the queries that are seen (executed) earlier.

StatiX: Freire et al. [57] proposed the StatiX system for XML selectivity count

estimation. The StatiX system uses the XML Schema to capture statistics about the

source XML structure and values and then stores these statistics on histograms. This

system is composed of two main components: the XML Schema Validator and the XML

Schema Transformer. The XML Schema validator validates the XML documents against

Path Count

/A 9

/A/B 11

/A/C 39

/A/D 41

/A/E 79

/A/F 81

Bloom Filter Count

BF(/A,/A/B) 10

BF(/A/C,/A/D) 40

BF(/A/E,/A/F) 80

30

the schema and simultaneously collects elements statistics for the given schema. The

XML Schema Transformer ,the second component of StatiX, collects more detailed

statistics about the elements distribution to capture skewedness in the data. StatiX system

is used in the context of LegoDB system [59] and their experiments show highly accurate

results but for limited types of queries. For instance, StatiX does not support query

estimation for regular XML queries. Also, StatiX cannot by applied on Schema-less

XML documents.

3.3. Statistical Approaches

Markov Table: Aboulnaga et al. [21] presented a technique that is based on storing all

paths in the XML data tree on a Markov table. The purpose of this table is to summarize

the structure of the XML tree. This is done by saving all distinct paths in the data tree up

to a fixed number m ≥ 2 and their frequencies in a table structure. The selectivity counts

of paths of length ≤ 2 is directly retrieved from the table while the selectivity counts of

paths of length > 2 is estimated using the following formula:

 ∏

 (2)

The fraction

 is interpreted as the average number of elements

contained in all elements. They also present several techniques to

summarize the Markov tables. This approach provides accurate estimates for linear path

queries but it cannot estimate the selectivity counts of twig queries.

NR-NF: Lee et al. [30] proposed a statistical approach for selectivity count estimation.

Their work is based on collecting all parent-child paths in the XML data tree along with

31

the node counts and then generating two types of statistics about the nodes, namely the

node ratio NR and the node factor NF. For every parent/child path PC = P/C the node

ratio is defined as the ratio of the frequency of P in PC to the frequency of P in the data

tree (i.e. P node count). Moreover, the node factor is defined as the ratio of the frequency

of C in PC to the frequency of P in PC. The selectivity count of node C in PC becomes:

 | | (3)

Figure 13 shows an XML tree with the corresponding node statistics. For existential twig

and path queries with more than one parent-child path, they recursively decompose the

given query into multiple simple parent-child queries and then aggregate the NR and NF

statistics to estimate the size of the original query. Also, the ancestor-descendant queries

are converted into twig queries with parent-child axes. Every branch in the generated

twig query is a possible query-root to query-target node full path in the data tree. While

their approach is very efficient in terms of storage utilization, it performs poorly on

skewed (non-uniform) XML data trees. In their later work [31] they proposed the use of

histograms based on the range encoding scheme on selected basic parent/child paths in

order to improve the estimation accuracy. Both approaches do not address the regular

twig queries.

Probabilistic-Decomposition: Wang et al. [42] proposed a statistical approach for XML

selectivity count estimation. Their approach is based on saving the counts of the twigs in

the XML tree of a selected size k. The selectivity count of a given query is then

calculated by decomposing the query into smaller twigs of size k then estimating the

32

Figure 13: XML tree with the corresponding statistics

count of the query using the counts of the smaller twigs. For example, given two twigs T1

with selectivity count and T2 with selectivity count that differ only by one

edge, the selectivity count of is given by

 (4)

One issue with their approach is that it does not support ancestor-descendant queries.

Also, generating all twigs of a certain size can be time consuming.

 B

C

 A

C D D

E

H

F

G

H H

G

Path NR NF

D/E 0.5 1

B/C 1 2

B/D 1 2

G/H 1 1.5

F/G 1 2

A/B 1 1

A/F 1 1

Node Frequency

E 1

C 2

D 2

H 3

G 2

A 1

B 1

F 1

33

4. CHAPTER 4

XML STRUCTURE-BASED SUMMERIZATION

Our proposed approach, which we called SynopTech, consists of two main modules: 1)

the tree summarizer, and 2) the selectivity count estimator. In this chapter, we discuss the

first module (tree summarizer) and propose two different algorithms to implement this

module, namely SynopGenPrime and SynopGen. SynopGenPrime is based on the prime-

number labeling scheme [15] while SynopGen is based on a fingerprint hash function

used in the string pattern matching domain. The second module of SynopTech is called

SynopCalc and is discussed in the next chapter.

4.1. Summarization Based on Prime-Number Labeling

In what follows, we present some useful definitions before we discuss the details of

SynopGenPrime.

4.1.1. SynopGenPrime Preliminaries

Definition 4.1: (Leaf node label)

Every distinct path from root to leaf is assigned a prime number which is used to label the

leaf in that path. Identical paths share the same prime number.

34

Definition 4.2: (Inner node label)

Given a node n with a set of unique children C{c1, c2,…cm}; Label(n) is defined as

follows:

 1

2

(), | | 1
()

(), | | 1

m

i

i

i

Label c if C
Label n

Label c if C






 
 


 (5)

If n is the root node, Label(n) = 0.

Definition 4.3 (Summary node)

Given an XML tree T(V,E) where V is the set of edges and E is the set of nodes (vertices),

a summary node N represents a set of nodes {n1, n2…nm}, which is a subset of V, such

that Label(ni) = Label(ni+1) and sub-tree S(ni) is equivalent to sub-tree S(ni+1) for all 1 ≤ i

< m.

Observation 4.1:

Given an XML tree T(V,E), for any two nodes n1 and n2 ∈ V, the following holds:

 If the sub-trees rooted at n1 and n2 are identical , i.e. S(n1) = S(n2), then Label (n1) =

Label (n2).

This is because if S(n1) = S(n2) then S(n1) and S(n2) have the same set of root-leaf paths

and since every distinct root-leaf path is labeled with a prime number, the product of all

root-leaf path labels in S(n1) will produce the same composite number as the product of

all root-leaf path labels in S(n2) and thus Label (n1) = Label (n2).

Example: Figure 14 shows an XML data tree. Figure 15 shows the tree after

summarization with a tuple (ID,count) on each node. The table in Figure 15(b) shows the

35

Figure 14: A sample data tree for an XML document

distinct root-leaf paths and their labels while the table in Figure 15(c) shows all the inner

nodes and their labels. Note that the tables in Figure 15(b) and Figure 15(c) are only

maintained during the construction of the summary tree and they are discarded after the

summary is generated.

4.1.2. Construction

The idea of SynopGenPrime is to use a node labeling scheme and merge nodes with

identical labels to generate a summary tree. The main steps of SynopGenPrime are

outlined in Algorithm 1. It takes as input the XML data tree, Td , and returns a summary

tree, Ts , as output. SynopGenPrime traverses the data tree in post-order style starting at

the root node (level 0), line 2, and tags each unique root-to-leaf path of the XML data tree

with a unique prime number. Leaf nodes are labeled by their corresponding root-to-leaf

 B

D

F F

C

 B

E

 B

 A

D

C C E F

C C C C C E E D D C C C C C E

F F

C C E F

F

C C E F

F

D C C C

36

Figure 15: a) XML summary tree of the document, b) Leaf nodes and their prime-number

labels, and c) Inner nodes and their labels

path tags, line 5, whereas the inner nodes are labeled using Definition 4.2 by calling the

computeLabel() function, line 17.

SynopGenPrime merges sibling nodes with identical labels by the function

mergeSibilings(), line 16 (defined in Algorithm 2). This function associates with each

node a count, which represents the number of nodes merged. When two nodes are

merged, their sub-trees will be also merged. This is because when two nodes, say x and y,

are merged, they become one node, say w. Consequently, the child nodes of x and the

child nodes of y become child nodes of w. In other words, they become siblings. Then,

(393092700,2) B

(4,2) D

F
(385,2) F

 (5780775,1) B

(0,1) A

D

C E F

C C E

(2,2)

(3,2) (148225,2) (13,8) (17,5)

(5,5) (7,2) (11,2)

D

C E F

C C

(3,1) (13,2)

(5,2) (7,1) (11,1)

Path ID

/A/B/D/F 2

/A/B/D 3

/A/B/C/F/C 5

/A/B/C/F/E 7

/A/B/C/F/F 11

/A/B/C 13

/A/B/E 17

Path ID

/A/B/D 4

/A/B/C/F 385

/A/B/C 148225

/A/B 393092700

/A/B 5780775

a)

b)

c)

(385,1) F

(148225,1)

37

Algorithm 1: SynopGenPrime

Input: Td

Output: Ts

1: init(Stack S, Ts, dataGuide,level)

2: while (v ←Td.nextPreorderNode()) ≠ NULL do

3: Ts.add(v); dataGuide.add(v);

4: if isLeaf(v) then

5: v.label ← dataGuide.getLabel(v); S.push(v);

6: else if v.level ≥ level then

7: v.label ← -1; S.push(v);

8: else

9: i ← 0; done ← FALSE

10: end if

11: while !done && !S.empty() do

12: u ← S.pop()

13: if u.label ≠ -1 then

14: sibling[i] ← u; i++

15: else

16: i ← mergeSiblings(sibling, i)

17: u.label ← computeLabel(sibling, i)

18: if u.level == v.level then

19: v.label ← -1; S.push(u); S.push(v); done ← TRUE;

20: else

21: sibling[0] ← u; i ← 1

22: end if

23: end if

24: end while

25: level ← v.level

26: end while

27: i← 0

28: while !S.empty() do

29: u ← S.pop()

30: if u.label ≠ -1 then

31: sibling[i] ← u; i++

32: else

33: i ← mergeSiblings(sibling, i)

34: u.label ← computeLabel(sibling, i,)

35: sibling[0] ← u; i ← 1

36: end if

37: end while

38: return Ts

38

siblings with identical labels are merged. The process of creating new siblings and then

merging is recursively repeated until all the siblings in the sub-trees are merged.

Note that the time complexity of Algorithm 1 mainly depends on the complexity of the

merge function in line 16 whose complexity depends on the height and the maximum

number of children per node in the data tree. For instance, if the input data tree is a fully

populated K-ary tree, where K is the maximum number of children per parent, then at the

first level there are nodes and therefore the number of merges cannot exceed (K – 1).

Each node in level one has exactly K children and at most (K-1) possible child node

merges therefore the number of node merges in level 2 is at most .

Thus the number of node merges at the leaf level cannot exceed , where

h is the height of the tree, and the summation of the number of node-merges in all levels

will yield which indicates that the number of node merges cannot exceed O().

Moreover, every node-merge operation involves merging the sub-trees of the nodes being

merged. For example, every node in the first level is the root for

 ∑
 sub-tree-nodes which represents the maximum number of sub-tree-

node merges involved in every node-merge in level one. Similarly, in level 2 we have

 ∑
 sub-tree-node merges per node-merge and so on. As

a result summing up the number of sub-tree-node merges per node-merge in all levels

yields ∑
 which is in the order of O(). Consequently, the overall

complexity of Algorithm 1 is in the order of O().

39

Algorithm 2: MergeSibilings

Input: siblings, siblingCount

Output: distinctSiblingCount, updated sibling

1: i ← 1;

2: while i < siblingCount –1 && sibling[i].label > 0 do

3: j ← i + 1;

4: while j ≤ siblingCount && sibling[i].label > 0 do

5: if sibling[i].label == sibling[j].label && identicalSub-

trees(sibling[i],sibling[j]) then

6: mergeSub-trees(sibling[i], sibling[j]);

7: sibling[j].label ← –1 ;

8: end if
9: j++

10: end while
11: i++;

12: end

13: distinctSiblingCount ← removeDuplicateSiblings(sibling, siblingCount)

14: return distinctSiblingCount

Getting Next Prime: in order to get a new prime label for a unique root-leaf path, line 5

of Algorithm 1, we use the deterministic variant of Miller-Rabin algorithm [43] to

determine the next prime number which is denoted as PrimeIncrement. This algorithm is

based on the following conditions:

Let a be a positive integer and n be a prime. If n-1 = 2
q

m (q ≥ 1 and m is odd), then at

least one of following statements is true:

Although there exists many composite numbers that satisfy the above conditions,

fortunately Pomerance et al. [44] have verified that if n < = 1373653 it is sufficient to test

40

Algorithm 3: primeIncrement

Input: positive integer n

Output: primer

1. a[] = {2,3}; prime = n; q =0; m = n ; isPrime =False;

2. while !isPrime do

3. prime++

4. foreach element in a[] do

5. isPrime = False

6. while(m mod 2 == 0) do

7. m = m /2;

8. q++;

9. end while

10. x = a
m
 mod prime

11. if x ==1 then

12. isPrime = True

13. end if

14. if isPrime == False then

15. for j =0; j ≤ q-1

16. if m == -1 mod prime then

17. IsPrime = True

18. exit for

19. end if

20. x = x
2
 mod prime

21. end for

22. end if

23. end foreach

24. return prime

with a = 2 and 3 to ensure that the number being tested is definitely prime. Also,

Jaeschke [45] provided similar verifications for greater n. For instance, if n ≤

341550071728321 it is sufficient to test with a= 2, 3, 5, 7, 11, 13, and 17. This leads to

the PrimeIncremet algorithm presented in Algorithm 3.

Note that for efficiency purposes the array a[], line 1, only contains the basis 2 and 3.

This can be easily modified to cater for n greater than 1373653. Also, if the data tree has

N distinct root-to-leaf paths, then N prime numbers , P1,P2…PN-1,PN, are required to label

these paths. In the first call to Algorithm 3 the input integer n is 0 and P1 is given the

41

label 1 which is the first prime after 0. The next prime after 1 is 3 and so in the second

call Algorithm 3 will require P2 –P1, 3-1, comparisons to find the next prime. Similarly,

to label the last root-to-leaf path Algorithm 3 needs to perform at least PN –PN-1

comparisons and consequently the total number of comparisons required to label all root-

to-leaf paths is linear and cannot exceed PN – 1 which is of O(PN), where PN is the

highest prime label.

4.2. Summarization Using Fingerprinting (SynopGen)

The problem with the prime-based summarization is that the node IDs can become

extremely large for big non-uniform data trees. For example, the XMark data tree

requires primeIDs that are larger than 64 bits and sometimes larger than 128 bits.

Moreover, the reverse of Observation 4.1, i.e., if two nodes share the same labels they

share the same structures, is not necessarily true which indicates that two summary nodes

can share the same ID while having different sub-tree structures. This can be proven

using the simple example depicted in Figure 16. The Figure shows a part of an XML data

tree labeled using SynopGenPrime algorithm right before the merge operation. Note that

both “A” nodes have the same ID while having different structures. Therefore, we

propose an alternative tree summarization technique that is based on the fingerprint

function used in Karp-Rabin string search function [46]. This will drastically reduce the

size of node IDs during the construction of the summary tree.

42

Figure 16: Two siblings with the same IDs and different structures

4.2.1. Construction

Like SynopGenPrime, SynopGen uses a node labeling scheme and merges nodes with

identical labels to generate a summary tree. The main difference between the two

algorithms is that the inner nodes are labeled using a fingerprint hash function and the

root-leaf paths are labeled with a unique integer that is not necessarily prime. The main

steps of SynopGen are outlined in Algorithm 4. It takes as input the XML data tree, Td

and returns a summary tree Ts as output. SynopGen traverses the data tree in post-order

style starting at the root node (level 0), line 2, and tags each unique root-to-leaf path of

the XML data tree with a unique number using the dataGuide object initialized by the

init() function at line 1. Leaf nodes are labeled by their corresponding root-to-leaf path

tags, line 5, whereas the inner nodes are labeled using a fingerprint hash function by

calling the ComputeLabel() function at line 17. The fingerprint function needs the

parameters K, B, and M to compute the inner node labels. These three parameters are

generated by the function getKBM() at Line 1. The fingerprint hash function and the

generation of K, B, and M will be explained in subsequent subsections.

5005 A

35 B

C D

133 B

5005 A

5 7

E F

11 13

55 B

C E

91 B

5 11

D F

7 13

43

SynopGen merges sibling nodes with identical labels by the function mergeSibilings(),

line 16, presented in Algorithm 2 as explained in the previous subsection. The final tree

generated after considering all nodes in the data tree is the summary tree, Ts. Since the

fingerprint node labeling scheme cannot handle queries with ancestor-descendent (A-D)

axis, a range node labeling scheme is executed by the function rangeLabel(), line 38. In

this node labeling scheme, each node n is labeled by a tuple consisting of two numbers,

namely, n.start and n.end. These numbers are constrained such that if a node x is an

ancestor of a node y, then x.start < y.start and x.end > y.end. This can be performed by

traversing Ts in a preorder and labeling all its nodes in an increasing order starting from

any number. The first time a node n is visited, it is assigned a unique n.start label, then

when all its children are labeled, it is assigned a unique n.end label in a post-order

fashion.

Note that Algorithm 4 is similar to Algorithm 1 in terms of complexity which is O()

as explained in section 4.1.2. The difference between the two algorithms is the inner node

labeling mechanism. Also Algorithm 4 performs an additional scan of the tree in line 1 by

invoking getKBM() to compute the labeling parameters. In the next chapter we will show

how we can eliminate this scan by randomizing the selection of K.

4.2.2. Inner Node Labeling Scheme

Let F(C) denote the label of a node C. If C is a leaf node, then F(C) will be the label of

the corresponding root-to-leaf path. Otherwise, C is an inner node and it will be assigned

a label using a fingerprint function. Assume C is an inner node which has |C| distinct

children denoted as c0, c1,…,c|C|-1. Then, F(C) is calculated by the following equation:

 ∑ (| |)

 (6)

where K represents the maximum number of distinct siblings in the data tree, and B is the

size of the adopted alphabet. The computation of the values of K and B will be discussed

44

Algorithm 4: SynopGen

Input: Td

Output: Ts

1: getKBM(), init(Stack S, Ts, dataGuide,level)

2: while (v ←Td.nextPreorderNode()) ≠ NULL do

3: Ts.add(v); dataGuide.add(v);

4: if isLeaf(v) then

5: v.label ← dataGuide.getLabel(v); S.push(v);

6: else if v.level ≥ level then

7: v.label ← -1; S.push(v);

8: else

9: i ← 0; done ← FALSE

10: end if

11: while !done && !S.empty() do

12: u ← S.pop()

13: if u.label ≠ -1 then

14: sibling[i] ← u; i++

15: else

16: i ← mergeSiblings(sibling, i)

17: u.label ← computeLabel(sibling, i,K, B, M)

18: if u.level == v.level then

19: v.label ← -1; S.push(u); S.push(v); done ← TRUE;

20: else

21: sibling[0] ← u; i ← 1

22: end if

23: end if

24: end while

25: level ← v.level

26: end while

27: i← 0

28: while !S.empty() do

29: u ← S.pop()

30: if u.label ≠ -1 then

31: sibling[i] ← u; i++

32: else

33: i ← mergeSiblings(sibling, i)

34: u.label ← computeLabel(sibling, i,)

35: sibling[0] ← u; i ← 1

36: end if

37: end while

38: rangeLabel(Ts)

39: return Ts

45

shortly. If F(C) is very large, Eq. 6 can be modified to limit F(C) and by using the

modulo operator. Thus, the new equation will be as follows:

 (∑ (| |)

) (7)

where M is a prime number. Because of the modulo operator, Eq. 7 can result in

collisions (i.e. dissimilar nodes can have identical labels). Colliding nodes must not be

merged if their sub-trees are different which requires additional processing time. Hence,

it is required to minimize collision by choosing appropriate values for K, B, and M.

4.2.3. Selection of the Parameters K, B and M

Algorithm 5 shows how these parameters are determined. But since the appropriate value

of M depends on the values of B and K, and the appropriate value of B depends on the

value of K; let us first discuss how to find K followed by the determination of B and M.

A) Finding K: Earlier we defined K to be the maximum number of distinct siblings in

the data-tree. Having K less than the maximum number of siblings results in

considering two inner nodes with different sub-tree structures to be identical. Hence,

the probability of collision will increase and so will the CPU cost of SynopGen. As

shown in Algorithm 5, K is generated by first initializing K, line 1. It then traverses

the data tree in post-order, line 2. Each time it encounters a unique root-to-leaf

labeled path it assigns it a unique prime number as its label, line 8. It also labels each

leaf node with the label of its corresponding path, line 5. After labeling all the

siblings of a node it finds the number of distinct siblings, line 16. It labels each inner

node using definition 4.1, line 17. If the number of distinct children is higher than the

current value of K, it changes K to the number of the current siblings, line 16. At the

46

end of the algorithm K will be equal to the highest number of distinct siblings in the

data-tree.

B) Computing B: B in the fingerprint hash function represents the size of the alphabet.

For example, if the function were matching bit sequences then B would be 2 and if it

were matching English characters then B would be 26. In case of SynopGen, B

represents the approximate number of distinct node labels in the data tree. When

computing B, we assume that each node in the data-tree has K distinct children. In a

full K-ary tree of height h, there are at most distinct labels at level h - 1 and

 at level h – 2 and so on. Thus B is computed from:

 ∑

 (8)

C) Computing M: Consider the problem of matching bit sequences where it is required

to find a match for a given pattern V of length |V| bits in a sequence S = s0, s2,…,s|S|-1

of length |S| bits with |S| ≥ |V|. This can be achieved by comparing the fingerprint

FM(V) with every FM(S(j)), where S(j) = sj, sj+1,…,sj+|V-1| and j = 0, 1, …|S|-|V|. If

FM(V) ≠ FM(S(j)) then V ≠ S(j). However, if FM(V) = FM(S(j)), there is no guarantee

that V = S(j). A collision occurs if there exists j such that FM(V) = FM(S(j)) and V ≠

S(j), which means, |F(V) - F(S(j))| is a multiple of M. In other words, to have a

collision, ∏ | |{ | must be a multiple of M. It has been proven

by Rabin and Karp in [46] that the probability of collision, Prob(collision), is

| |
 if M

is the highest prime less than 2|V||S|
2
.To apply this to our problem, let us assume a

full K-ary tree. Since we start labeling from the leaf level upwards towards the root.

47

Algorithm 5: getKBM

Input: Td

Output: K, B, and M

1: init(Stack S, dataGuide, level, K);

2: while (v ← Td.nextPreorderNode()) ≠ NULL do

3: dataGuide.add(v)

4: if isLeaf(v) then

5: v.label ← dataGuide.getLabel(v); S.push(v);

6: else if v.level ≥ level then

7: v.label ← -1; S.push(v);

8: else

9: i ← 0; done ← FALSE;

10: end if

11: while !done && !S.empty() do

12: u ← S.pop();

13: if u.label ≠ -1 then

14: sibling[i] ← u; i++;

15: else

16: i ← distinctSiblings(sibling, i); K ← max(K, i);

17: u.label = computeLabel(sibling, i,);

18: if u.level == v.level then

19: v.label ← -1; S.push(u); S.push(v); done ← TRUE;

20: else

21: sibling[0] ← u; i ← 1;

22: end if

23: end if

24: end while

25: level ← n.level;

26: end while

27: i← 0

28: while !S.empty() do

29: u ← S.pop()

30: if u.label ≠ -1 then

31: sibling[i] ← u; i++

32: else

33: i ← distinctSiblings(sibling, i); K ← max(K, i);

34: u.label ← computeLabel(sibling, i,)

35: sibling[0] ← u; i ← 1

36: end if

37: end while

38: B ←

 ;

39: m ← (
 (

)

)

40: n ← m * K

41: M ← HighestPrime(2 * m * n
2
);

42: return [K, B, M] ;

48

the highest value for the fingerprint will be at the root. The fingerprint label of a node

corresponds to the V pattern and the space of search, S, corresponds to all K fingerprints

of the node and its siblings. To find these values roughly, we should find the highest

value at the leaf level (level h-1) and from which we find the highest value at level h - 2

and so on until we reach the root. The number of nodes at the leaf level, level h - 1, is K
h-1

 ∑

 ∑

 ∑

 (

)

 (

)

 (

)

Let m be the minimum number of bits in the highest node label and n be the number of

bits in K labels; thus, m = log2
 and n ≤ m * K. After finding n and m, we choose M

to be the highest prime number less than 2mn
2
 to get a Prob(collision) ≤

.

49

Note that Algorithm 5 does not actually perform any merge operation and every node is

visited only once, therefore the post-order scan is done in O(n) time where n is the

number of nodes in the data tree.

4.2.4. Implementation of the Summary-Tree

SynopGen stores the summary-tree in a set of summary-tables T = { , , …, | | |},

where |T| is the number of distinct types in the XML data tree. A summary-table named

 corresponds to the type ti. Each summary-table has 4 columns, namely, Start, End,

Level, and count; and is populated with the Start, End, Level, and count values of type ti

nodes in the XML data tree. The records in each summary-table are sorted in ascending

order of the Start column. The maximum size of the count field is less than or equal to

log N bits where N is the number of elements in the original data tree. The Level field is

fixed at 4-bits as the depth of XML documents rarely exceeds 64. Also we allocate 8-

bytes for each distinct element name. The total storage requirement cannot exceed the

following:

storage =(# distinct elements in data tree * 64)+(2n * log2 n)+ 4n + n log2 N (9)

Example: Figure 17(b) shows the pathIDs and Figure 17(a) shows the summary tree of

the sample XML tree shown in Figure 14. Table 2 shows the summary tables of the

summary-tree shown in Figure 17. As can be seen in the table, each summary table

corresponds to a type in the summary-tree. The records in each summary table are sorted

in ascending order of Start.

50

Figure 17: The summary tree of the XML data tree in Figure 14

Table 2: Summary-tables implementation of the summary-tree in Figure 17

Table Start End Level Count

Table Start End Level Count

TA 0 27 0 1

TB

1 15 1 2

TC

6 12 2 2

16 26 1 1

8 8 4 5

 TD

2 4 2 2

13 13 2 8

5 5 2 2

18 24 2 1

17 17 2 1

20 20 4 2

TF

3 3 3 2

25 25 2 2

7 11 3 2

TE

9 9 4 2

10 10 4 2

14 14 2 1

19 23 3 1

21 21 4 1

22 22 4 1

(16982,2) B

(74,2) D

F
(211,2) F

 (374840,1) B

(0,1) A

D

C E F

C C E

(1,2)

(2,2) (15614,2) (6,8) (7,5)

(3,5) (4,2) (5,2)

D

C E F

C C

(2,1) (6,2)

(3,2) (4,1) (5,1)

Path ID

/A/B/D/F 1

/A/B/D 2

/A/B/C/F/C 3

/A/B/C/F/E 4

/A/B/C/F/F 5

/A/B/C 6

/A/B/E 7

a)

b)

(211,1) F

(15614,1)

51

5. CHAPTER 5

SELECTIVITY COUNT ESTIMATION

In this chapter we present the proposed selectivity count estimation algorithm, SynopCalc

which takes as input a query and a summary-tree and returns as output the selectivity

count estimate of the query. SynopCalc can find the selectivity count estimation for all

types of queries, namely, linear, existential, and regular. But before we explain how

SynopCalc computes the selectivity count estimation of the three types of queries, let us

define some notations used in the rest of the chapter.

Let:

 Ts(Vs, Es) be a summary-tree where Vs and Es are the set of nodes and the set of

edges in the summary-tree respectively.

 Tq(Vq, Eq) denotes a query where Vq and Eq are the set of nodes and the set of

edges in the query respectively.

 S = {Si(Vi, Ei) : 1 ≤ i ≤ |S|} represents the set of sub-trees in Ts that match Tq

where |S| is the number of all sub-trees in S.

 Target(Si) ϵ Vi refers to the target node in Si which contains the count of matches

in Si.

The pseudo code of SynopCalc is shown in Algorithm 6. It takes as input Ts and Tq and

computes the selectivity count of Tq from Ts. It first checks what type of query Tq is and

calls either FindPathMatches function or FindTwigMatches function accordingly to find

matches in Ts and computes the selectivity count estimates, as explained in the following

52

subsections. Note that the complexity of Algorithm 6 depends on the complexity of the

selected query processing algorithm that is used to retrieve the matches from the

summary tree in lines 2 and 5. After that every match is scanned once to calculate its

selectivity count before summing up the selectivity counts of all matches to estimate the

overall query selectivity count as we will show in the following subsections. Therefore, if

the number of matches is c and the number of nodes in the query tree is M, then there are

at most cM scans which indicates that the complexity of the selectivity count estimation

part, lines 7 to 15, of Algorithm 6 is O(cM).

5.1. Selectivity Count of Linear Queries

To find the paths that match a linear query Tq in Ts, SynopCalc uses the FindPathMatches

function, line 3 in Algorithm 6. The FindPathMatches function can use any of the

existing tag-based query evaluation algorithms, such as PathStack [47,49]. For each

query match, Si, SynopCalc adds the Count of the Target(Si), to the selectivity count of

Tq, which is denoted as || ̂q||. Eq. 10 shows the equation that is used by SynopCalc, line 9

in Algorithm 6, to compute the selectivity counts of linear queries.

 || ̂ || ∑
| |
 (10)

where Count(Target(Si)) is the Count of the target node in Si.

Example: Consider the summary tables shown in Table 2 and a linear query /A/B//C

shown in Figure 18(a) where the target (output) node is C. To find the paths that match

the query the FindPathMatches() function in SynopCalc searches the summary tables A,

B, and C and returns the two paths that match the query. Figure 18(b) shows the matching

paths. SynopCalc then computes the selectivity count of the query from these two paths

53

Algorithm 6: SynopCalc

Input: Ts, Tq

Output: SelectivityCount

1: SelectivityCount ←0;

2: if Tq == “Linear” then

3: S ← FindPathMatches(Tq, Ts)

4: else

5: S ← FindTwigMatches(Tq, Ts)

6: end if
7: if Tq == “Linear” || Tq == “Existential” then

8: for all Si ϵ S do

9: SelectivityCount ← SelectivityCount + Count(Target(Si));

10: end for

11: else
12: for all Si ϵ S do

13: SelectivityCount ← SelectivityCount + twigCount(Target(Si));

14: end for

15: end
16: return SelectivityCount;

Figure 18: Selectivity count of a linear query

a) A linear query

B

C

b) Selectivity count

A (0,27,0,1)

B (1,15,1,2)

 {(8,8,4,5),

 C (6,12,2,2)
 (13,13,2,8)}

A A (0,27,0,1)

B (16,26,1,1)

 { (20,20,4,2),

C (18,24,2,1),

 (25,25,2,2)}

//A/B//C

54

using Eq. 10 as follows: () ()

 , || ̂ ||

5.2. Selectivity Count of Existential Twig Queries

To estimate the number of matches of an existential twig query, Tq, in Ts, SynopCalc uses

the FindTwigMatches function, line 5 in Algorithm 6, which can use any of the existing

tag-based twig pattern matching algorithms such as the TwigStack algorithm [48]. For

each query match in Ts, SynopCalc adds the Count of the target node, Target(Si), to || ̂ ||

similar to Eq. 10.

Example: Consider the summary tables shown in Table 2 and an existential twig query

/A/B[/C//E]/E shown in Figure 19(a). Records from the summary tables A, B, C, and E

that satisfy the query are returned by the selected twig matching algorithm, line 5, and are

depicted in Figure 19(b). The selectivity count is computed using Eq. 10 and is the sum

of the Count of the target node, E, which is 5.

5.3. Selectivity Count of Regular Twig Queries

To estimate the number of matches of a regular twig query in Ts, SynopCalc uses the

FindTwigMatches function, line 5 in Algorithm 6, which can use any of the existing tag-

based twig pattern matching algorithms such as the TwigStack algorithm [48]. For each

query match in Ts, denoted as Si, SynopCalc estimates the number of matches in Td, from:

 ∏

 ∈ {
 (11)

where is the node directly connected to n as its parent or ancestor.

55

Figure 19: Selectivity count of an existential twig query

Subsequently, SynopCalc estimates the overall selectivity count of Tq as:

 || ̂ || ∑
| |
 (12)

Example: Consider the summary tables shown in Table 2 and a regular twig query

/A/B[/D]/C//E shown in Figure 20(a). To compute the selectivity count of the query, the

FindTwigMatches function in SynopCalc will use a twig matching algorithm to search the

summary tables TA, TB, TD, and TE to return the sub-trees that match the query. These sub-

trees are depicted in Figure 20(b) and are denoted as S1, S2, and S3. Then it will compute

the selectivity count of the query from these sub-trees using Eq. 12 as follows:

twigCount(S1) = (

) (

) (

) (

) ; twigCount(S2) = (

) (

) (

)

(

) ; twigCount(S3) (

) (

) (

) (

) ; and || ̂ ||

 .

A

B

E

C

a) An existential query

A {(0,27,0,1)}

B {(1,15,1,2)}

E {(14,14,2,5)}

{(6,12,2,2)} C

E {(9,9,4,2)}

Selectivity count = 5

b) Selectivity count

E

//A/B[/C//E]/E

56

Figure 20: a) A twig query, and b) Sub-trees that match the twig query

B (1,15,1,2)

D (2,4,2,2)
C (6,12,2,2)

E (9,9,4,2)

A (0,27,0,1)

B (1,15,1,2)

D {(5,5,2,2)}
C (6,12,2,2)

A (0,27,0,1)

E (9,9,4,2)

B (16,26,1,1)

D (17,17,2,1) C (18,24,2,1)

A (0,27,0,1)

E (21,21,4,1)

 b)

B

D

E

A

a)

C

//A/B[/D]/C//E

57

6. CHAPTER 6

PERFORMANCE STUDY

In this chapter, we describe the conducted experiments to evaluate the performance of the

proposed technique, SynopTech. We used the three common evaluation measures,

namely, the summary-tree generation time, the estimation error rate, and the size of the

summary tree. We also compared its performance with that of state-of-the-art techniques

from the literature, namely, the Sampling algorithm; using the code provided to us by its

proposers [9], and the TreeSketch using our implementation of that technique as

presented in [38].

6.1. Experimental Settings

All the experiments were conducted on an Intel 2.8 GHz machine with 2GB RAM

running Windows 7 operating system and all our programs were written in C#. In our

experiments, we adopted four datasets, namely, DBLP [50], XMark [51], Ssplays [52],

and Uniprot [56]. Table 3 shows some characteristics of these datasets. These datasets

were chosen because they span a different range of structural characteristics and they are

commonly used in related work in the literature. The DBLP dataset is an example of a

real-world XML database containing publication information in the Digital Bibliography

and Library Project (DBLP) website. In this dataset, the structural difference between

elements with identical types at the same level is small. The XMark dataset is an example

of an XML synthetic database where most of its elements of the same type and which are

58

at the same level have different sets of descendent elements and consequently different

sub-tree structures. The Ssplays is another example of a real-world database containing

Shakespeare’s plays. In this dataset, most of the elements of the same type and which are

at the same level have the same set of descendent elements but with different counts. The

Uniprot dataset is also a real world database that acts as a comprehensive and freely

accessible knowledgebase of protein sequence and functional information. This dataset

shows more irregularities in elements structures than the DBLP and the Ssplays. The

queries were generated randomly by a random query generator that we implemented. For

each dataset, we generated 100 random queries of each query type as follows: 100 twig

queries consisting of only parent-child (P-C) axis, 100 twig queries consisting of only

ancestor-descendent (A-D) axis, 100 P-C linear queries, and 100 A-D linear queries.

Table 3: Some characteristics of the adopted datasets

Dataset
Size

(MB)

 Total

Elements

Unique

Elements

Max

Depth

DBLP 153 3567298 33 6

XMark 112 1666315 74 12

Ssplays 7.52 179690 22 7

Uniprot 136 2541733 70 6

6.2. Summary-Tree Generation Time

The summary-tree generation time is affected by the selected value for the parameter K.

As it can be seen from Eq. 7, the number of multiplication and addition operations in the

fingerprint function is proportional to K. In our experiments, the maximum value for K

was found to be 11 for both the DBLP and Ssplays datasets; and the corresponding

elapsed times for the generation of the summary trees were 50 seconds and 1.6 seconds,

59

respectively. The Uniprot on the other hand, had a maximum K of 28 and the elapsed

time for summary generation was 31 seconds. For the XMark dataset, the maximum

value for K was found to be 3420, which is very large, and the elapsed time for the

generation of the summary tree was around 960 seconds. In order to reduce the elapsed

time for the XMark dataset, we should use a smaller value for K; but a very small K also

increases the computation of the proposed approach because it results in more collisions,

and consequently more time will be needed to check the sub-trees of colliding nodes to

see if they can be merged or not. Therefore, we started by examining the number of nodes

with K distinct siblings for various values of K in the range 1 to 3420 (which is the

maximum). The results are as shown in Figure 21. This figure shows that there is a very

small number of nodes having 12 or more distinct siblings. So, by ignoring these nodes

and setting K to the maximum value for the remaining nodes, the generation time is

reduced significantly to less than 46 sec. We also tried other approaches for setting the

value of K, e.g., taking the average value and taking the average value after ignoring

nodes that have low counts. Although the generation time was better than the maximum

but still it was much higher than the maximum after ignoring the low-count nodes. Table

4 shows the summary-tree generation times for different values of K for various datasets.

In this table, Max and Avg represent the highest and average values for K whereas Max*

and Avg* refer to the cases with the highest and average values after ignoring the nodes

with the low counts. Table 4 also shows the number of collisions in each case. For very

small values of K, such as in Avg and Avg*, the numbers of collisions were 2172 and

14314 respectively. The number of collisions was drastically reduced when K was set to

Max, and slightly increased when K was set to Max*.

60

Figure 21: Count of elements having a given number of distinct children

Table 4: Summary-tree generation times and number of collisions for different datasets

and various approaches of selecting K

Dataset K Type collisions Elapsed Time (sec)

XMark 3420 Max 84 960

XMark 11 Max* 86 21

XMark 3 Avg 21712 359

XMark 6 Avg* 14314 322

DBLP 11 Max 0 50

Ssplays 11 Max 0 1.6

Uniprot 28 Max 111 31

To avoid the cost incurred to find the value of K, we removed the call of the getKBM

function from SynopGen and we set K to a random number between 3 and 50; and we set

the height of the data-tree to 8. Mlynkova et al. [53] in their work analyzed more than

200,000 XML documents and found that the average depth in more than 99% of them is

8. They also found that the average fan-out (children) of an element is 9. Therefore, we

believe that the numbers we chose for K and the height are reasonable according to their

findings. Figure 22 shows the elapsed time of SynopGen for different values of K

180534

51800 49256

103442

17168

5977 2454

32179

3340 5668 2712 10

1 2 3 4 5 6 7 8 9 10 11 >12

x-axis = number of distinct children

y-axis = number of elements with x distinct children

61

Figure 22: Impact of randomly selecting K in range 3 to 50 on the summary-tree

generation time for the proposed approach

between 3 and 50. As shown in the graph, when K is less than 11 the generation time

increases. This is because the number of collisions increases when K is less than the Max

or Max*, as shown in Table 34, and consequently the number of merge operations that

SynopGen needs to perform increases as well. On the other hand, as the value of K

reaches 11 (Max*) the number of collisions decreases and so does the generation time.

Moreover, as K grows larger than the Max* the generation time slightly increases. This is

because the computation time of Eq. 7 increases with the value of K.

6.3. Estimation Error Rate and Storage Size

For each of the above-mentioned datasets and the generated queries, we compared the

performance of our proposed approach with that of the Sampling and TreeSketch

approaches in terms of the percentage estimation error rate (ER) and the storage size ratio

(SSR). The (ER) measure is defined by the mean absolute relative error as:

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

T
im

e
 (

s
e
c
)

K

62

 (

 ∑

| ‖ ‖
 ‖ ̂ ‖

 |

 ‖ ‖

) (13)

where is the number of queries, and || || and || ̂ || are the actual and estimated

numbers of matches for the i
th

 query. On the other hand, SSR is given by:

 (14)

where and are the sizes of the XML data tree and the corresponding

summary tree, respectively.

The ER values of the proposed technique, the Sampling algorithm, and the TreeSketch

technique are depicted in Figure 23 to Figure 25 for linear, existential, and regular twig

queries, respectively. Figure 26(a) shows the SSRs used in the experiments by the three

algorithms. SynopTech algorithm achieved smaller SSR values than the TreeSketch

except for the Uniprot dataset where the TreeSketch has a slightly smaller SSR. This is

because in the other datasets elements with identical tags and sub-tree-structures tend to

have different sub-tree counts. Therefore, the TreeSketch would consider these elements

as non-identical and add additional nodes to the summary. On the other hand, elements

with identical tags and sub-tree-structures in the Uniprot dataset tend to have identical

sub-tree counts as well, and since the TreeSketch uses a graph to store the summary,

which is normally more succinct than a tree structure, it requires less number of nodes to

store the summary and consequently less storage for this dataset. In our experiments we

kept the SSR of all algorithms for each dataset the same except for the Uniprot dataset

where we set the SSR value for the sampling algorithm to that of the proposed algorithm

(0.07%) while keeping the TreeSketch at (0.05%) as shown in Figure 26(a).

63

As can be seen from the figures, the SynopTech approach outperformed the Sampling

approach in all types of queries and datasets. This is because at low SSR values, the size

of the sample tree was too small to capture enough structural information of the original

data tree. Also, since samples are collected randomly, the error rate on a specific query

set depends on whether the randomly selected sample tree contains the structural

information needed to satisfy the queries on that specific query set. This indicates that the

error rate on a specific query set might change every time a new sample tree is generated.

On the other hand, our approach consistently showed a very low error rate on all types of

queries and datasets especially with the DBLP and Ssplays datasets (uniform datasets),

the proposed algorithm used a memory budget of 0.005 SSR and 0.3 respectively. These

values of memory budget were too small for the Sampling approach to capture

considerable amount of representative samples from the data tree. That is why its error

rate reached around 98% whereas the worst error rate of the proposed approach was only

0.8% on the Ssplays dataset. For instance, Table 5 and Table 6 show some sample twig

queries and their regular estimates. As can be seen in Table 6 the Sampling algorithm

could not produce any estimates for Q1, Q2, and Q3 resulting in an error rate of 100% for

these queries. Also, the error rates for Q1 by the SynopTech and TreeSketch were greater

than 4%. This is because the counts of the leaf nodes “LINE” and “STAGEDIR” in the

source data tree have irregular distributions under the parent element “SPEECH”

compared to the other elements in the source data tree (e.g. “TITLE” elements under

“SCENE”). Therefore, during the summary generation both approaches could not

accurately capture this irregularity resulting in relatively high error rates for this query

compared to the overall low error rates both approaches achieved on the Ssplays dataset.

64

For Q2 on the other hand, SynopTech managed to capture the complete distribution of the

elements in the query achieving a 0% error rate while the TreeSkech showed an error rate

of 40%. This is because for the DBLP dataset the TreeSkech needed an SSR value of 0.03

to capture the accurate distribution of elements and in our experiments this value was

reduced 6 times to match the SynopTech SSR , 0.005, causing the TreeSketch to lose a

great deal of the distribution information. Moreover, although the TreeSketch

outperformed the sampling algorithm in some XMark queries, such as Q5 in Table 6, the

Sampling algorithm showed a better overall accuracy on the XMark at SSR 1.7. This is

also evident in Q4 in Table 6 where the TreeSketch error rate was 19.7% while the error

rate for the Sampling approach was only 2.8%. This is because at the SSR value of 1.7 the

sampling algorithm had enough storage space to store representative samples of the

source data tree resulting in an improved estimation accuracy. For the Uniprot dataset,

SynopeTech showed a slightly higher error rate than the TreeSketch. This is because the

TreeSketch managed to capture the complete distribution of elements at a lower SSR

value and therefore achieved an error rate of 0 % on all types of queries on that dataset.

This can be seen also in Q6 and Q7 in Table 6 where the TreeSketch had a 0% error rate

while SynopTech had a slightly higher error rate for these queries. Even though the

TreeSketch had a perfect estimation for the Uniprot dataset, SynopeTech error rate

remained below 1%. Moreover, SynopeTech managed to generate the Uniprot summary

tree more than 5 times faster than the TreeSketch and therefore this slight improvement in

the accuracy came at the expense of the summary generation time as shown in Table 7.

65

Table 5: Sample twig queries

 ID Query Dataset

Q1 //SCENE[/TITLE]/SPEECH[/LINE]/STAGEDIR Ssplays

Q2 //proceedings[/volume]/series DBLP

Q3 //PLAY[//SUBHEAD]//LINE Ssplays

Q4 //text[/emph]/bold XMark

Q5 //person[/homepage]/profile[/business]/gender XMark

Q6 //reference/source[//tissue]/strain Uniprot

Q7 //comment/subcellularLocation[//location]/topology Uniprot

Table 6: Regular twig estimates for the queries in Table 5

ID

actual

regular

count

SynopTech

estimate

SynopTech

error(%)

TreeSketch

estimate

TreeSketch

error(%)

Sampling

estimate

Sampling

error(%)

Q1 14273 13374.6 6.3 13656 4.3 0 100

Q2 1478 1478 0 874.2 40.9 0 100

Q3 47295 47295 0 48606.7 2.8 0 100

Q4 66668 65906.2 1.1 53516.9 19.7 68509.4 2.8

Q5 3189 3189 0 3212.3 0.7 3438 7.9

Q6 1443 1438.7 0.3 1443 0 1253.8 13.1

Q7 2985 2985.05 0.002 2985 0 2914 2.4

66

In summary, we showed that the SynopeTech algorithm had a high estimation accuracy

for all datasets and its error rate did not exceed 1% in any of the datasets while the

TreeSketch error rate exceeded 15% for the twig queries on the DPLP since it could not

capture the accurate distribution of elements at the SSR value of 0.005%. Moreover,

SynopeTech outperformed the other two approaches on all datasets and for all types of

queries in terms of accuracy and storage requirement. The only exception was the

Uniprot dataset where the SynopTech had a slightly higher error rate than the TreeSketch

but a faster generation time. Also, even in generally uniform datasets such as the Ssplays

and DBLP, some elements can exhibit a slight irregularity in terms of their count

distribution which can deteriorate the estimation accuracy for regular twig queries

involving such elements as shown in Table 6. One way to improve the estimation

accuracy for regular twig queries is to complement the structural synopsis with

histograms to capture irregularities in the source data trees without greatly impacting the

storage which is something we aim to study in our future work. Also, note that

SynopeTech needed more memory budget to summarize the XMark dataset than it

required with the other datasets because of its irregular structure. However, as the size of

the XMark source data tree increased the SSR needed was decreasing as depicted in

Figure 26(b). In the following chapter, we propose several techniques to handle

selectivity count estimation when the memory budget is small or limited.

67

Table 7: Summary generation time

Dataset

SynopTech

gen time

(sec)

TreeSketch

gen time

(sec)

Sampling

gen time

(sec)

Ssplays 1.7 1.1 1

DBLP 53 30.8 11.3

XMark 53.8 455 7.2

Uniprot 30.2 163 9.7

Figure 23: ER for proposed, Sampling, & TreeSketch on linear queries

XMark DBLP Ssplays Uniprot

TreeSketch 1.6 5.6 0.02 0

Sampling 0.7 52.4 70.6 4.2

SynopTech 0 0 0 0

0

10

20

30

40

50

60

70

80

E
rr

o
r

R
at

e
(%

)

XMark DBLP Ssplays Uniprot

TreeSketch 2.6 8.2 0.4 0

Sampling 1 55.8 89 10.4

SynopTech 0 0 0 0

0

10

20

30

40

50

60

70

80

90

100

E
rr

o
r

R
at

e
(%

)

(a) P-C Queries A-D Queries

68

Figure 24: ER for proposed, Sampling, & TreeSketch on existential twig queries

Figure 25: ER for proposed, Sampling, & Treesketch on regular twig queries

XMark DBLP Ssplays Uniprot

TreeSketch 1.9 18.8 0.08 0

Sampling 5.6 53.2 80.8 3.1

SynopTech 0 0 0 0

0

10

20

30

40

50

60

70

80

90

E
rr

o
r

R
at

e
(%

)

XMark DBLP Ssplays Uniprot

TreeSketch 6.3 17.7 1.1 0

Sampling 2.8 56.9 98.1 3.3

SynopTech 0 0 0 0

0

20

40

60

80

100

120

E
rr

o
r

R
at

e
(%

)

(a) P-C Queries A-D Queries

XMark DBLP Ssplays Uniprot

TreeSketch 6.2 3.3 0.3 0

Sampling 3.3 56.8 77.8 3.7

SynopTech 0.3 0.001 0.5 0.1

0

10

20

30

40

50

60

70

80

90

E
rr

o
r

R
at

e
(%

)

XMark DBLP Ssplays Uniprot

TreeSketch 4.9 15.1 2.3 0

Sampling 2.5 56.2 98.3 5.4

SynopTech 0.2 0.06 0.8 0.7

0

20

40

60

80

100

120

E
rr

o
r

R
at

e
(%

)

(a) P-C Queries A-D Queries

69

Figure 26: Required storage: a) Comparison of SSR for SynopTech, Sampling, and

TreeSketch algorithms, and b) Effect of XMark dataset size on the SSR for SynopTech

algorithm

XMark DBLP Ssplays Uniprot

TreeSketch 1.7 0.005 0.3 0.5

Sampling 1.7 0.005 0.3 0.7

SynopTech 1.7 0.005 0.3 0.7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S
S

R
 (

%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

50 100 150 200 250

SS
R

XMark dataset size (MB)

70

7. CHAPTER 7

HANDELING STORAGE LIMITATION

In this chapter we propose several techniques to handle selectivity count estimation when

the storage budget is limited. First, we explain how the summary tree generated by the

SynopGen algorithm can be reduced or pruned to fit the available storage budget. After

that, we explain our first proposed technique, node-count ratio, to estimate the selectivity

count using the pruned summary tree. Then, we explain how the statistical approach

Node-Ratio-Node-Factor (NR-NF) [30] can be extended to support regular twig queries.

Next, we present a hybrid approach for selectivity count estimation using the extended

statistical approach and our proposed structural approach, SynopTech. We also provide

the results of our experiments after the discussion of each approach and compare our

hybrid approach with the Sampling approach [9] and the TreeSketch approach [38] in

terms of scalability (storage vs. accuracy).

7.1. Pruning the Summary-Tree

The main idea of the pruning method is to keep removing the elements with the lowest

counts until the summary tree fits in the allocated storage. This is shown in Algorithm 7.

It takes a summary tree and the desired size as inputs and it outputs a reduced summary

tree. To reduce the summary tree, Algorithm 7 first generates a sorted list of all distinct

counts in the summary tree, lines 1-3. After that, it visits the nodes at each level, starting

at the lowest level moving upwards, deleting the nodes with the lowest counts until the

summary tree fits in the available storage budget, lines 4-17. Also, for each node type it

71

stores the ratio of the node count in the original summary tree to the node count in the

new summary tree, lines 18-23. For instance, if the original summary tree Ts has 50

elements of type “b” and the reduced summary tree has 25 elements of type “b” then

the node-count ratio for element type “b” is rb = 2. Note that this algorithm takes a linear

time to visit the nodes in every level therefore its complexity cannot exceed O(nlogn) for

the sort operation, line 3, where n is the number of distinct node frequency in the

summary tree which is at most the number nodes in the summary tree.

Definition 7.1 (Node-count ratio)

Given two summary trees Ts and where is generated by reducing the element

counts in Ts, the count ratio for element type n is given by:

| |

 | |
 (15)

where | | refers to the count of n nodes in Ts and | | refers to the count of n node in

 .

7.2. Selectivity Count Estimation With Node-Count Ratio

To estimate the selectivity count || ̂ || of a given query Tq rooted at element type n, we

first apply the SynopCalc algorithm explained in Chapter 5 using the reduced summary

tree to generate the initial estimate of the count of Tq in the data tree Td. We refer to

the estimate generated using the reduced tree as || ̂ || After that we multiply the

answer with the node ratio of the query root . Therefore, the estimated selectivity count

of Tq in Td is given by:

 || ̂ || || ̂ || (16)

72

Algorithm 7: Pruning

Input: Ts, size

Output: Tsr, countRatios

1: frequencies← Ts.getUniqueFrequencies(), countRatios[,]← null
2: TreeSize = Ts.size()

3: frequencies.sort

4: for all fr ϵ frequencies

5: for l = Ts.height; l < 0; l--

6: for all ni ϵ Ts[l]

7: if ni.count == fr

8: TreeSize = TreeSize - ni.size()

9: Ts.Remove(ni)

10: end if

11: if TreeSize <= size

12: Tsr = Ts

13: return Tsr

14: end if

15: end for

16: end for

17: end for

18: for all distinct nj ϵ Tsr

19: for all distinct ni ϵ Ts

20: countRatios.add(nj,

)

21: end for

22: end for

23: return countRatios

Consider the example in Figure 19, the selectivity count is generated using the summary

tree Ts and it indicates that there are 5 sub-trees rooted at “A” in the data tree Td that

match the structure of the query in Figure 19(a). If this estimate is generated using the

reduced summary tree, , then Td could have more “A” nodes with the underlying

substructure depicted in Figure 19(a). Since we know that the number of “A” elements in

Ts is reduced by

 during the generation of , we multiply the selectivity count

generated using by to estimate the number of matches in Td.

73

Figure 27: P-C & A-D error rates for the node-factor method on XMark with different

summary sizes

7.2.1. Experiments

In order to test the performance of the above method, we used the same query sets

discussed in Chapter 6 for the XMark dataset. The query sets include 100 P-C path

queries, 100 A-D path queries, 100 P-C twig queries, and 100 A-D twig queries. Figure

27 shows the impact of the storage on the accuracy using the node-count ratio method on

each query set and for all the three types of supported queries, namely linear path,

existential twig, and regular twig queries on the XMark dataset.

It can be seen that this approach produces a high error rate when the summary size is very

small. This is because the summary is generated by removing elements with low counts

from the tree and as the summary gets smaller, it fails to estimate the selectivity counts

for element types with very low or close to zero counts. For this reason, we will present a

hybrid approach that is capable of estimating the selectivity counts of element types with

1.70% 0.08% 0.02%

Regular 0.3 25.9 34

Existential 0 24.7 32.7

Linear 0 36 41.6

0

5

10

15

20

25

30

35

40

45

E
rr

o
r

ra
te

 (
%

)

1.70% 0.08% 0.02%

Regular 0.2 30.2 41.9

Existential 0 28 40.4

Linear 0 75.9 87.5

0

10

20

30

40

50

60

70

80

90

100

E
rr

o
r

ra
te

 (
%

)

(a) P-C queries (b) A-D queries

74

very low counts in the summary tree. First, we will explain the statistical approach that is

going to be used in our hybrid approach.

7.3. Statistical Approach for Selectivity Count Estimation

We implemented the technique that is based on the node ratios concept explained in [30].

Moreover, we extended this approach to make it applicable for regular twig queries since

regular twig queries are not addressed in [30]. For this purpose we store all parent-child

binary-paths along with the ratios of the parent and child nodes in the binary-path. For

example, for a binary-path “p/c” we store the ratio of the parent node p, denoted Ȑ(p,

p/c), as:

 (17)

where and are the count of p nodes in “p/c” and the count of p nodes

in the whole data tree respectively. Similarly, we store the ratio of the child node c,

denoted , as:

 (18)

7.3.1. Regular Twig and Linear Path Queries

In order to estimate the selectivity count of a regular twig or a simple path query q with k

nodes n1,n2,...nk, we use the following equation:

 || || ∏ (
 ∏

| |

)

 (19)

75

where represents the parent node of node ; | | represent the child

nodes of ; and | | represents their count.

In Eq. 19, the ratio inside the first product will estimate the number of elements under

 elements in Tq. Note that if is the query root, then and the

denominator are set to 1 since the root node has no parent. Also,

if is a leaf node, then the product of ∏
| |
 is set to 1 since a leaf node

has no children. Note that the ratios for A-D paths are calculated recursively from the

stored ratios of the binary P-C paths. In the following subsection we explain how

existential twig queries are estimated in [30] and we also explain how Eq. 19 can be used

for the same purpose.

7.3.2. Existential Twig Queries

In [30], the node factor, F, of a target node is defined as the ratio of the frequency of the

target node in a given path to the frequency of the root node in the same path. For

example, the node factor of t in a binary-path P =”r/t” is:

 (20)

Which is equivalent to the ratio inside the outer product in Eq.19. In [30] the selectivity

count of a binary-path P = “r/t” is:

 (21)

where refers to the node ratio of the root node r in P and is the node

factor of the target node t in P.

76

Two binary paths can be joined if the leaf node of one of them is of the same node type as

the root node of the other. For example, if = “ ” and = “ ”, and if and

have the same name, then and can be joined to form The node

ratio and the node factor of a node in P = are computed as follows.

 If ≥ 1 then, = and =

 . If then, and

 . The selectivity count of is then computed as:

 ‖ ‖ = (21)

For existential twig queries, the node ratio of the root node r is calculated by first

calculating the node ratio for r in every outgoing path from r and then calculating their

product.

The general selectivity count equation in [30] for a given query Q with a root node

and a target node is given by:

 ‖ ̂ ‖ = ∏
| |
 (22)

where is a path from the query root to the target node . From the above we can

see that only node factors that are in the path to the target node are involved in the

selectivity count estimation. Moreover, from the multiple paths formula we can see that

whenever the node factor is less than 1 it contributes to the new value of the node ratio

for the query root. Therefore, to estimate the selectivity counts of existential twig queries

using Eq. 19 for regular twigs and linear paths, we need to filter out the node factors that

do not contribute to the answer which are the node factors that do not fall in the path to

the target node T and at the same time larger than 1. This can be done by dividing || ||

77

by the product of the node factors meeting these conditions. Alternatively, to estimate

the selectivity counts of existential twig queries we apply Eq. 19 only on the set of nodes

M = n1, n2…nq such that for 0 < i ≤ q, ni belongs to M only if

 ∏
| |

OR

ni is in the path from the query root R to the target node T.

7.3.3. Experiments

In order to test the performance of the above approach, we used the same query sets

discussed in Chapter 6 for the XMark dataset in Table 3. The query sets include 100 P-C

path queries, 100 A-D path queries, 100 P-C twig queries, and 100 A-D twig queries.

Figure 28 shows the accuracy of the extended statistical approach on each query set and

for all the three types of supported queries, namely linear, existential twig, and regular

twig queries. Note that the statistics generated for the XMark dataset required only 1.7KB

of storage which is equivalent to SSR of 0.0014%. The figure shows that the statistical

approach gives an acceptable error rate given a very small storage budget (i.e. 1.7KB). In

the following section we present a hybrid approach for selectivity count estimation based

on the statistical approach and our proposed structural approach.

78

Figure 28: Error rates for the extended statistical approach

7.4. Hybrid Approach for Selectivity Count Estimation

We implemented a hybrid solution for selectivity count estimation using our summary

approach and the statistical approach explained in the previous section. Both approaches

are not scalable by themselves in terms of storage. In other words, although the statistical

approach requires a very small memory budget, the error rate cannot be improved if

additional space is available since this approach does not make use of this additional

space. Similarly, our summary approach requires large space for irregular data trees such

as the XMark and it cannot estimate the selectivity count if the available storage budget is

not sufficient to store the summary tree. That being said, our proposed hybrid approach

aims to take the advantage of both approaches and combine them to create a scalable

selectivity count estimation system. We propose two methods to combine the two

approaches, namely summary delta and query delta. In what follows we explain these two

methods

P-C A-D

Regular 15.30 15.90

Existential 4.20 13.00

Linear 3.20 8.80

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

E
rr

o
r

ra
te

 (
%

)

79

Summary-delta: The basic idea is to calculate the selectivity count first using the

reduced summary tree and then apply the statistical approach on the difference between

the query-root node count in the original summary tree and the reduced summary tree.

The count of the query-root node in the original summary tree is acquired using Eq. 16.

For instance, if we have a query a/b/c where the count of “a” in the original summary is

50 and 10 in the reduced summary, then we apply our summary approach on the 10 “a”

nodes existing in the reduced summary tree. After that, we apply the statistical approach

on the 40 remaining “a” nodes. Finally, we add up the answers from both approaches to

get the final selectivity count.

Query-delta: Like the summary-delta method, we first use the reduced summary tree to

generate the initial selectivity count and then compensate for the missing nodes by

applying the statistical approach. The difference is that rather than using the delta

between the reduced and actual summary trees we use the query delta. This means, after

we apply the summary approach, we check how many query-root nodes in the reduced

summary tree actually participated in producing the selectivity count estimate. After that,

we use Eq. 19 to estimate the count of the query-root nodes participating in producing the

selectivity count using the statistical approach. We then set the frequency of the query-

root in Eq. 19 to the difference between the two counts and then apply Eq. 19. Finally we

sum up the selectivity counts generated by both approaches. For example, if we have a

query a/b/c where the count of “a” in the original summary is 50 and 10 in the reduced

summary. Say after applying our summary approach on the 10 “a” nodes we found that

only 4 actually participated in generating the selectivity count. We then apply Eq. 19 on

the 50 “a” nodes which , for example, estimated that the count of “a” in the query is only

20. Then we reduce this estimate (20) by 4 since we already estimated the selectivity

80

count for these 4 nodes using the structural approach and generate the selectivity count

estimate for the 16 remaining nodes by setting the frequency of “a” to 16 in Eq. 19 and

then applying Eq. 19 on the rest of the nodes. Finally, we add up the selectivity count

generated by our summary approach on the 4 nodes with the selectivity count generated

by the statistical approach on the 16 nodes to get the final estimate. This is explained by

Algorithm 8, CalcSel, which takes as an input a reduced summary tree and a query and it

outputs the selectivity count of the input query using the reduced summary tree. In lines

2-6, CalcSel estimates the ratio of the query-root node in the input query by multiplying

the parent-child ratios of all the nodes in the query. In line 7, CalcSel estimates the count

of query-root node satisfying the query by multiplying the query-root ratio by the query-

root count in the data tree. In lines 8-9, CalcSel calls the structural component of the

hybrid system to get its estimate for the query-root elements satisfying the query and

calculates the query delta, line 9. Finally, in lines 10-25, CalcSel applies the selectivity

count estimation equation (Eq.19) on the query-delta taking into consideration the type of

the query (i.e. existential, regular or linear) to calculate and then output the estimated

query selectivity count. Note that Algorithm 8, performs two top-down linear scans of the

input query. The first scan, lines 2-6, is performed to calculate the query-root ratio, and

the second scan, lines 10-24, to estimate the selectivity count. In both scans every query

node is visited at most twice, one as a parent and another as a child to calculate its ratio

and count in the query which means that every scan requires at most 2M operations or

O(M) where M is the number of nodes in the input query. Thus, the overall complexity of

CalcSel depends on the complexity of the structural estimator SynopeCalc, line 8, and the

query processor chosen as explained in Chapter 5.

81

Algorithm 8: CalcSel

Input: Tsr, Tq,

Output: SelectivityCount

1: SelectivityCount ←1; rootRatio =1; queryRootCount = 0;

2: for all ni ϵ Tq.nodes

3: for all ni,j ϵ ni.children

4: rootRatio = rootRatio x

5: end for

6: end for

7: queryRootCount = rootRatio ()
8: StructuralSelectivity = SynopCalc(Tsr, Tq)

9: queryDelta = queryRootCount – StructuralSelectivity.rootCount

10: for all ni ϵ Tq.nodes

11: childrenRatio = 1;

12: for all ni,j ϵ ni.children

13: childrenRatio = childrenRatio

14: end for

15: if ni ==

16: = queryDelta

17: SelectivityCount = SelectivityCount childrenRatio

18: else

19: ratioVal =

20: if Tq.isExestintial() && ratioVal >= 1 && ni ∉ Tq.criticalPath

21: continue
22: else

23: SelectivityCount = SelectivityCount x ratioVal
24: end for

25: SelectivityCount = SelectivityCount + StructuralSelectivity

26: return SelectivityCount

7.4.1. Experiments

Summary-Delta Experiments: To test the performance of the summary-delta method,

we used the XMark dataset and the same query sets discussed in Chapter 6 which include

100 P-C path queries, 100 A-D path queries, 100 P-C twig queries, and 100 A-D twig

82

Figure 29: P-C & A-D error rates on XMark using summary-delta

queries. Figure 29 shows the accuracy of the summary-delta method. The figure shows

that the summary-delta approach has a higher error rate than the statistical approach

shown in Figure 28. This is because the summary-delta assumes that all missing query-

root node from the reduced summary tree can contribute to the query selectivity count

estimate which often results in overestimates. Unlike the summary delta, the query delta

rarely suffers from this issue and, as will be shown below, has a better performance than

the summary delta. Therefore, we continued our experiments with the query–delta

approach and compared it with the Sampling and TreeSketch approaches.

Query-Delta Experiments: In our experiments, we extensively tested and compared the

query delta hybrid method with the same datasets, query sets, and experimental settings

described earlier in Section 6.1. Figure 30 to Figure 33 show the summary generation

times for the three approaches (Sampling, TreeSketch, and Hybrid) on the four datasets

and for different SSR values. Note that the Sampling approach collects sample sub-trees

SSR 1.7 SSR 0.08 SSR 0.02

Regular 0.3 16.2 17.3

Existential 0 7.3 7.4

Linear 0 9.5 7.6

0

2

4

6

8

10

12

14

16

18

20

E
rr

o
r

ra
te

 (
5

)

SSR 1.7 SSR 0.08 SSR 0.02

Regular 0.2 17 21.9

Existential 0 8.8 14

Linear 0 20.8 21.9

0

5

10

15

20

25

E
rr

o
r

ra
te

 (
%

)

a) P-C queries a) A-D queries

83

Figure 30: Gen time for Sampling, TreeSketch and Hybrid approaches on XMark

Figure 31: Gen time for Sampling, TreeSketch and Hybrid approaches on Uniprot (**

TreeSketch needed only SSR of 0.5 to store the summary)

1.70% 0.08% 0.02%

TreeSketch 455 5318.564 5166.522

Sampling 7.2 5.9 5.5

Hybrid 53.8 96.5 96.1

1

10

100

1000

10000

G
en

.
ti

m
e

in
 s

ec
 (

lo
g
 s

ca
le

)

0.7% ** 0.07% 0.01%

TreeSketch 163 667 681.5

Sampling 9.7 10 9.4

Hybrid 30.2 29.7 30.9

1

10

100

1000

G
en

.
ti

m
e

in
 s

ec
 (

lo
g
 s

ca
le

)

84

Figure 32: Gen time for Sampling, TreeSketch & Hybrid on DBLP & Ssplays

randomly and it does not perform any merge operations or structural comparisons to

generate the summary tree and therefore it had the fastest generation time on all datasets.

Also, it is noted that for the DBLP and Ssplays datasets (Uniform) the TreeSketch had a

faster generation time than the Hybrid. The TreeSketch first generates the full summary

tree which is called the original summary tree (stored as a graph). Then it reduces the

summary by scanning the original summary graph level by level looking for nodes that

are candidates for merge operations which are normally nodes with similar structures

before applying the merges. During the original summary generation, the TreeSketch

needed more summary nodes and storage, hence less merge operations, to capture the

structure of the DBLP and Ssplays than what was needed by the Hybrid which managed

to generate very small summary trees to capture almost the complete structures and

distribution of elements in the source trees. This is why the TreeSketch had a faster

generation time on those datasets. Moreover, the generated original summaries by the

TreeSketch for the DBLP and Ssplays had to be reduced to match the SSR values of the

DBLP

(SSR 0.005)

SSPlays

(SSR 0.3)

TreeSketch 30.8 1.1

Sampling 11.3 1

Hybrid 53 1.7

0

10

20

30

40

50

60

G
en

.
ti

m
e

(s
ec

)

85

Hybrid (0.005 for DBLP and 0.3 for Ssplays) but since these datasets are relatively

shallow (Table 3) compared to the XMark, and also the size reduction needed was not

huge as in the cases of XMark and Uniprot, the overall generation time for the

TreeSketch remained small. On the other hand, the XMark is a deeper dataset and

therefore the process of generating merge candidates and applying merges greatly

impacted the generation time for the TreeSketch especially for small SSR values such as

0.08 and 0.02. This is also true for the Uniprot, although it is not as deep as the XMark,

the required size reduction caused more candidates generation and merge operations and

consequently a higher generation time. In fact in the XMark, the Hybrid managed to

generate the summary around 54 times faster than the TreeSketch at SSR value 0.02 and

22 times faster in the case of Uniprot at SSR value 0.01.

Uniform datasets (DBLP and Ssplays): The experiential results using the DBLP and

Ssplays datasets are shown in Figure 23 to Figure 25 while Figure 33 shows the overall

error rate on both datasets. The overall error rate represents the average error rate

achieved by each approach on all types of queries. The Hybrid used a memory budget of

0.005 SSR for the DBLP and 0.3 for the Ssplays dataset. These values of memory budget

were too small for the Sampling approach to capture considerable amount of

representative samples from the data tree. This is why its overall error rate reached

around 85.8% , Figure 33, whereas the worst overall error rate for the proposed approach

was only 0.2% on the Ssplays dataset. Also, since samples are collected randomly, the

error rate on a specific query set depends on whether the randomly selected samples

contain the structural information needed to satisfy the queries on that specific query set.

This indicates that the error rate on a specific query set might change every time a new

86

Figure 33: Overall error rates for all queries on DBLP and Ssplays

sample tree is generated. On the other hand, our approach consistently showed a very low

error rate on all types of queries. In addition the TreeSketsh error rate exceeded 15%,

Figure 25, for the twig queries on the DBLP since it could not capture the accurate

distribution of elements at the SSR value of 0.005% on the DBLP. Even though the

proposed approach outperformed the TreeSketsh on the Ssplays, the TreeSketsh accuracy

improved with the Ssplays and this is because the TreeSketsh needed an SSR of 0.4 to

capture the complete distribution of elements for the Ssplays which is a very close value

to the one used in our experiments and therefore the loss of the elements distribution data

was minimal. In the DBLP experiments on the other hand, the TreeSketsh needed an SSR

of 0.03 to capture the complete distribution data which is 6 times greater than the SSR

used by the Hybrid approach and hence, the TreeSketsh accuracy on the DBLP dataset

was worse than its accuracy on the Ssplays.

DBLP

(SSR 0.005)

Ssplays

(SSR 0.3)

TreeSketch 11.45 0.7

Sampling 55.2 85.8

Hybrid 0.01 0.2

0

10

20

30

40

50

60

70

80

90

100

E
rr

o
r

ra
te

 (
%

)

87

Irregular datasets (XMark and Uniprot): Figure 34 to Figure 39 show the error rates for

the Sampling, TreeSketch, and the Hybrid approaches on the Uniprot and XMark datasets

while Figure 40 shows the overall error rates for the three approaches on both datasets. In

this set of experiments we used different SSR values to test the scalability of the three

approaches. For the XMark dataset, the Hybrid used an SSR value of 1.7 to capture

almost the complete structure of the data tree so we set it as the maximum SSR value for

the other two algorithms. We then reduced the SSR value to 0.08 which is equivalent to

100k and then reduced it further to 0.02 which is equivalent to 20k. At the max SSR the

Hybrid approach outperformed both the Sampling and the TreeSketch approaches with an

overall error rate of 0.08%. As the storage was reduced the accuracy of the three

approaches decreased as well. At the lowest SSR the sampling algorithm had the worst

accuracy with an overall error rate of 10.4 % while the Hybrid and the TreeSketch error

rates remained below 10% with the TreeSketsh having the lowest overall error rate of

7.6%. Although, the Treesketch showed a slightly better accuracy, the Hybrid at the low

SSR values, the summary generation time for the TreeSketch at these values was too high.

In fact the Hybrid approach at the SSR value of 0.02 managed to generate the summary

around 54 times faster than the TreeSketch. Also, note that the biggest deterioration of

accuracy happened when we decreased the SSR from 1.7 to 0.08 and as we decreased the

storage further both the TreeSketch and the Hybrid had a very slight deterioration in the

error rate while the error rate for the sampling almost doubled. This is because as the

storage decreases the sampling approach cannot keep a good amount of samples to

represent the structure of the data tree while the TreeSketch and the Hybrid approaches

try to store enough structural or statistical data to compensate for the data lost during the

88

summary generation at different sizes. Also, taking a closer look at the results for the

Hybrid error rates we noticed that for some queries the error rate slightly improved as we

reduced the SSR value from 0.08 to 0.02. For example, in Q1 and Q2 in Table 8 the

statistical component of the Hybrid system had a high estimate for the query root

elements “description” and “text” and therefore the query delta was large. At the same

time the structural component of the hybrid system had a good amount of structural data

about the elements in Q1 and Q2 and produced a high selectivity count estimate resulting

in a slight overestimation for Q1 and Q2 selectivity counts by the combined Hybrid

estimator as shown in the table. On the other hand, as we reduced the storage the

structural estimator lost more structural data for the elements in Q1 and Q2 but the

statistical data remained the same and hence the selectivity count estimates decreased and

so did the error rate. This was apparent in the case of P-C linear queries where the Hybrid

achieved an error rate of 3.2% at SSR 0.08 and a slightly lower error rate of 2.8% at SSR

0.01 as shown in Figures 35(a) and 36(a).

For the Uniprot dataset the TreeSketsh managed to capture the complete distribution of

elements at an SSR value of 0.5 and therefore achieved an overall error rate of 0% at this

SSR value. The Hybrid approach on the other hand needed an SSR value of 0.7 to capture

almost the complete distribution of elements and achieved an overall error rate of 0.1% at

this SSR value. This is because in the Uniprot elements with identical types and sub-tree-

structures tend to have identical sub-tree counts as well, and since the TreeSketch uses a

graph to store the summary, which is normally more succinct than a tree structure, it

requires less number of nodes to store the summary and consequently less storage for this

dataset. In our experiments we set the maximum SSR to 0.7. The sampling overall error

rate at the maximum SSR was 3.6% which is more than three times higher than that of the

89

Hybrid. Similar to the XMark results, at the lowest SSR value the sampling had the

highest overall error rate of 22.4%, Figure 40, while both TreeSketch and Hybrid had an

error rate below 15% with the TreeSketsh achieving the lowest error rate with 12.5%.

Like in the XMark experiments, even though the TreeSketsh had a slightly lower error

rate than the Hybrid at the lowest SSR value, this came at the expense of the summary

generation time where the Hybrid managed to generate the summary 22 times faster than

the TreeSketch at this SSR value. Also, as we decreased the SSR value from 0.07 to 0.01

both the TreeSketsh and the Hybrid showed a slight deterioration on the error rate while

the error rate for the sampling more than doubled. Taking a closer look at the results we

noticed that, unlike the XMark experiments on the twig queries, the TreeSketch at the

lower SSR values showed an error rate for the existential twig queries that was higher

than that of the regular twig queries. For example, Table 9 shows two twig sample

queries with their existential and regular estimates and error rates. The TreeSketch at SSR

0.02 had a better distribution data for the elements in the non-critical paths in these

queries, namely “//reference/scope” in Q1 and “//citation//dbReference” in Q2, and since

the selectivity count estimates for existential twigs, unlike regular twigs, depend mainly

on the counts of the elements in the critical path the regular estimates for those queries

were more accurate than the existential estimates. Another thing to be noted in the

Uniprot results is that the three approaches had lower error rates on the A-D linear

queries than the P-C linear queries at the different SSR values, Figure 37 to Figure 39.

This is because it took the TreeSketch approach a long time to estimate the selectivity

counts for deep (i.e. height > 3) A-D queries at high SSR values and therefore we had to

limit the depth for A-D queries to 3 resulting in simpler queries than the ones generated

for the P-C experiments.

90

Figure 34: P-C & A-D queries error rates for Sampling, TreeSketch and Hybrid (query-

delta) on XMark at SSR 1.7

Figure 35: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

XMark at SSR 0.08

Linear Existential Regular

TreeSketch 1.6 1.9 6.2

Sampling 0.7 5.6 3.3

Hybrid 0 0 0.3

0

1

2

3

4

5

6

7

E
rr

o
r

ra
te

 (
%

)

Linear Existential Regular

TreeSketch 1.7 2.4 12.9

Sampling 6.7 4.5 4

Hybrid 0 0 0.2

0

2

4

6

8

10

12

14

E
rr

o
r

R
at

e
(%

)

a) P-C queries b) A-D queries

Linear Existential Regular

TreeSketch 1.7 2.4 12.9

Sampling 6.7 4.5 4

Hybrid 3.2 4.2 13.3

0

2

4

6

8

10

12

14

E
rr

o
r

ra
te

 (
%

)

Linear Existential Regular

TreeSketch 2.7 10.3 13

Sampling 4.3 4 11

Hybrid 8.8 12.9 15.8

0

2

4

6

8

10

12

14

16

18

E
rr

o
r

R
at

e
(%

)

a) P-C queries b) A-D queries

91

Figure 36: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

XMark at SSR 0.02

Figure 37: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

Uniprot at SSR 0.7

Linear Existential Regular

TreeSketch 1.7 2.4 12.9

Sampling 6.4 7.2 7.2

Hybrid 2.8 5.7 13.5

0

2

4

6

8

10

12

14

16

E
rr

o
r

R
at

e
(%

)

Linear Existential Regular

TreeSketch 2.7 13.1 13

Sampling 9.7 13.8 18.3

Hybrid 8.3 13.4 15.9

0

2

4

6

8

10

12

14

16

18

20

E
rr

o
r

ra
te

 (
%

)

a) P-C queries b) A-D queries

Linear Existential Regular

TreeSketch 0 0 0

Sampling 4.2 3.1 3.7

Hybrid 0 0 0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
rr

o
r

ra
te

 (
%

)

Linear Existential Regular

TreeSketch 0 0 0

Sampling 2.2 3.3 5.4

Hybrid 0 0 0.7

0

1

2

3

4

5

6

E
rr

o
r

ra
te

 (
%

)

a) P-C queries b) A-D queries

92

Figure 38: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

Uniprot at SSR 0.07

Figure 39: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on

Uniprot at SSR 0.01

a) P-C queries b) A-D queries

Linear Existential Regular

TreeSketch 9 12.5 9.3

Sampling 16.2 4.5 10.2

Hybrid 11.7 9.7 11.2

0

2

4

6

8

10

12

14

16

18

E
rr

o
r

ra
te

 (
%

)

Linear Existential Regular

TreeSketch 4.9 19.3 20.2

Sampling 9.6 8.4 15.2

Hybrid 9.6 17.1 17.7

0

5

10

15

20

25

E
rr

o
r

ra
te

 (
%

)

Linear Existential Regular

TreeSketch 9 12.3 9.3

Sampling 34 15.2 24.3

Hybrid 11.9 10.9 11.8

0

5

10

15

20

25

30

35

40

E
rr

o
r

ra
te

 (
%

)

Linear Existential Regular

TreeSketch 4.9 19.3 20.3

Sampling 17.3 11.9 31.5

Hybrid 9.6 21.3 22

0

5

10

15

20

25

30

35

E
rr

o
r

ra
te

 (
%

)

a) P-C queries b) A-D queries

93

Figure 40: Overall error rates for all queries on XMark and Uniprot

Table 8: Sample queries and the Hybrid results on the XMark

Query actual
SSR 0.08

estimate

error

rate

(%)

SSR 0.02

estimate

error

rate

(%)

Q1://description/text//keyword//emph 1150 1230.8 7 1214.3 5.6

Q2://text//keyword/emph 3794 3804.6 0.3 3795.5 0.04

Table 9: Sample twig queries and TreeSketch results on the Uniprot at SSR 0.01

Query
actual

(reg)

actual

(exist)

estimate

(reg)

error

reg

(%)

estimate

(exist)

error

(exist)

(%)

//reference[/scope]/source/strain 16259 14832 10362 36.3 8308.6 44

//citation[//dbReference]//title 45362 19389 42204.2 7 23241 19.9

SSR 1.7 SSR 0.08 SSR 0.02

TreeSketsh 3.9 7.2 7.6

Sampling 2.7 5.8 10.4

Hybrid 0.08 9.7 9.9

0

2

4

6

8

10

12

E
rr

o
r

ra
te

 (
%

)

SSR 0.7 SSR 0.07 SSR 0.01

TreeSketsh 0 12.5 12.5

Sampling 3.7 10.7 22.4

Hybrid 0.1 12.8 14.6

0

5

10

15

20

25

E
rr

o
r

ra
te

 (
%

)

a) XMark b) Uniprot

94

In summary, the experimental results showed that the Hybrid approach outperformed the

other two approaches on the uniform datasets where it required very small SSR values to

achieve an overall error rate that is close to 0% while in some cases the TreeSketch

overall error rate was more than 11% and the Sampling 85%. For irregular datasets,

although the sampling approach had a lower error rate at specific SSR values than the

Hybrid and TreeSketch, both the Hybrid and TreeSketch showed better scalability than

the sampling approach and achieved a higher accuracy at the lowest SSR values.

Moreover, the TreeSketch accuracy was slightly higher than the Hybrid approach at the

low SSR values but the summary generation time was significantly higher as we showed

earlier. That being said, we plan to continue the research to find more accurate ways to

capture the irregularities in XML data trees with minimal storage requirements. One

possibility we plan to explore is the use of histograms to capture the irregular

distributions of some or all elements in the data tree and complement the statistical and

structural data of the Hybrid system with such histograms. In the following chapter we

conclude this thesis and shed some light on the possible future extensions of this work.

95

8. CHAPTER 8

CONCLUSION AND FUTURE WORK

In this work, we proposed two summarization techniques for XML trees. The first is

based on a bottom-up prime-number labeling scheme while the other is based on a

fingerprint hash function. Based on the resulting summary tree, we developed a

selectivity count estimation algorithm that can be used with different types of XML

queries. We compared our approach with two other state-of-the-art approaches, namely,

the Sampling and the TreeSketch. In all our experiments, the proposed approach

outperformed the other two approaches in terms of estimation error rate on all datasets

except with Uniprot in which the TreeSketch was marginally better only for regular twig

queries. For instance, our technique had perfect estimation accuracy (0% error rate) for

linear and existential twig queries on all datasets while the other two approaches showed

higher error rates for these types of queries. Moreover, the worst error rate exhibited by

our approach was only 0.8% on regular twig queries while the TreeSketch error rate

reached 18.8% and the Sampling error rate reached 98% for some types of queries.

Additionally, to extend our approach for environments with memory constraints, we

proposed a hybrid approach that combines a statistical technique with our summarization

technique. We showed that in our experiments our hybrid approach always outperformed

the Sampling in terms of error rate when the storage budget is very small while the error

rate for the TreeSketch was slightly lower on irregular datasets at the expense of

significantly higher summary generation time. In fact, our approach was more than 54

96

times faster than the TreeSketch in generating the XMark summary tree and around 24

times faster in the case of the Uniprot. On the other hand, the improvement in the

TreeSketch error rate over our approach on these datasets did not exceed 2%.

As future work, we intend to continue the research in this area in order to provide a

selectivity count estimation framework for more XPath axes such as the

following/preceding axis. We also intend to examine the possibility of adding value

predicates to our selectivity count estimation framework. Moreover, we plan to explore

the use of histograms to capture the irregularities of some or all elements in the source

XML data tree with minimal storage requirement and complement the statistical and

structural data of the Hybrid system with such histograms to improve the estimation

accuracy when the storage budget is extremely limited.

97

References

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen and E. Maler, Extensible Markup

Language (XML) 1.0, Second Edition, 2000. [Online]. Available:

http://www.w3.org/TR/REC-xml.

[2] A. Fomichev, M. Grinev and S. Kuznetsov, "Sedna: A native XML DBMS," in

Proc. 32nd Conf. Current Trends in Theory and Practice of Computer Science,

2006.

[3] H. Schoning, "Tamino –A DBMS designed for XML," in Proc. Int Conf. Data

Engineering (ICDE), 2001.

[4] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. Lakshmanan, A. Nierman, S.

Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu and C. Yu, "Timber:

a native XML database," in Proc. Very Large Databases (VLDB), vol. 11, no. 4, pp.

274–291, 2002.

[5] Y. H. Chu and J. L. Yu, "The research of database query optimization based on

XML," Advanced Materials Research, vol. 546, pp. 519-525, 2012.

[6] T. L. J. Lu and C. W. Z. Bao, "Extended XML tree pattern matching:theories and

algorithms," IEEE Transactions on Knowledge and Data Engineering, vol. 23, pp.

402-416, 2011.

[7] J. Kim and S. Park, "XQuery speedup by deploying structural redundancy in

mapping XML into relations," Information and Software Technology, vol. 48, no. 1,

pp. 12-30, 2006.

[8] S.-C. Haw and C.-S. Lee, "Data storage practices and query processing in XML

databases: a survey," Knowledge-Based Systems, vol. 24, no. 8, pp. 1317-1340,

2011.

[9] C. Luo, Z. Jiang, W.-C. Hou, F. Yu and Q. Zhu, "A sampling approach for XML

query selectivity estimation," in Proc. 12th. Int Conf. Extending Database

Technology, Saint Petersburg, Russia, 2009.

[10] S. Sakr, "Towards a comprehensive assessment for selectivity estimation approaches

of XML queries," International Journal of Web Engineering and Technology, vol. 6,

98

pp. 58–82, 2010.

[11] J. F. Naughton, D. J. DeWitt, D. Maier, et al. "The Niagara Internet query system,"

IEEE Data Engineering Bulletin, vol. 24, no. 2, pp. 27-33, 2001.

[12] J. Bosak, T. Bray, D. Connolly, E. Maler, G. Nicol, C. Sperberg-McQueen, L. Wood

and J. Clark, "W3C XML Specification DTD," 1998. [Online]. Available:

http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm.

[13] D. C. Fallside, "XML Schema part 0: Primer," 2001. [Online]. Available:

http://www.w3.org/TR/xmlschema-0/.

[14] C. Zhang, J. Naughton, D. DeWitt, Q. Luo and G. Lohman., "On supporting

containment queries in relational database management systems," in Proc. Special

Interest Group on Management of Data, (SIGMOD), 2001.

[15] X. Wu, M. L. Lee and W. Hsu, "A prime number labeling scheme for dynamic

ordered XML trees," in Proc. 20th Int. Conf. Data Engineering (ICDE), 2004.

[16] J. CLARK and S. DEROSE, "XML Path Language (XPath) 1.0 W3C," 1999.

[Online]. Available: http://www.w3.org/TR/xpath.

[17] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon and M.

Stefanescu, "XQuery 1.0: An XML query," 2002. [Online]. Available:

http://www.w3.org/TR/xquery.

[18] S. Abiteboul, D. Quass, J. Mchugh, J. Widom and J. Wiener, "The Lorel query

language for semistructured data," International Journal on Digital Libraries, vol. 1,

no. 1, pp. 68-88, 1997.

[19] D. D. Chamberlin, J. Robie and D. Florescu, "Quilt: An XML query language for

heterogeneous data sources," in Proc. Web and Databases Workshop (WebDB),

2000.

[20] Z. Chen, H. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. Ng and D.

Srivastava, "Counting twig matches in a tree," in Proc. 17th Int. Conf. Data

Engineering (ICDE), 2001.

[21] A. Aboulnaga, A. Alameldeen and J. Naughton, "Estimating the selectivity of XML

path expressions for internet scale applications," in Proc. Int. Conf. Very Large

Databases (VLDB), Rome, Italy, 2001.

99

[22] M. Alrammal, G. Hains and M. Zergaoui., "Path tree: document synopsis for XPath

query selectivity estimation," in Proc. 5th Int. Conf. Complex, Intelligent, and

Software Intensive Systems (CISIS-2011), IEEE Computer Society, Seoul, Korea,

2011.

[23] N. Zhang, M. T. Ozsu, A. Aboulnaga and I. F. Ilyas, "XSeed: accurate and fast

cardinality estimation for XPath queries," in Proc. 20th Int. Conf. Data Engineering

(ICDE), 2006.

[24] N. Polyzotis and M. Garofalakis, "XSketch synopses for XML data graphs,"

Transactions on Database Systems (TODS), vol. 31, no. 3, p. 1014–1063, 2006.

[25] N. Polyzotis, M. Garofalakis and Y. Ioannidis, "Selectivity estimation for XML

twigs”," in Proc. 20th Int. Conf. Data Engineering (ICDE), 2004.

[26] N. Polyzotis and M. Garofalakis., "Statistical synopses for graph-structured XML

databases," in Proc. Special Interest Group on Management of Data (SIGMOD),

2002.

[27] Y. Wang, H. Wang, X. Meng and S. Wang, "Estimating the selectivity of XML path

expression with predicates," Advances in Web-Age Information, vol. 3129 of Lecture

Notes in Computer Science, pp. 409-418, 2004.

[28] Y.Wu, J. Patel and H. Jagadish, "Estimating answer sizes for XML queries," in

Proc. Extending Database Technology (EDBT), Prague, Czech Republic, 2002.

[29] W.Wang, H. Jiang, H. Lu and J. X. Yu, "Bloom histogram: path selectivity

estimation for XML data with updates," in Proc. Verey Large Database (VLDB) ,

2004.

[30] M. Lee, H. Li, W. Hsu and B. Ooi, "A statistical approach for XML query size

estimation," in Proc. DataX Workshop, 2004.

[31] H. Li, M. L. Lee and W. Hsu, "A histogram-based selectivity estimator for skewed

XML data," in Proc. 16th Int. Conf. Database and Expert Systems Applications,

Copenhagen, Denmark, 2005.

[32] N. Polyzotis and M. Garofalakis., "XCluster synopses for structured XML content,"

in Proc. Int. Conf. Data Engineering (ICDE), 2006.

[33] L. Lim, M. Wang and J. S. Vitter, "CXHist: An on-line classification-based

histogram for XML string selectivity estimation," in Proc. 31st Int. Conf. Very Large

100

Data Bases (VLDB), New York, 2005.

[34] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter and R. Parr, "XPathLearner: an on-

Line self-tuning markov histogram for XML path selectivity estimation," in Proc.

Very Large Databases (VLDB), 2002.

[35] S. Comai, S. Marrara and L. Tanca, "A synopsis based approach for XML fast

approximate querying," in Proc. Flexible Databases Supporting Imprecision

Uncertainty, 2006, pp. 241-265.

[36] A. M. Weiner, "Advanced cardinality estimation in the XML query graph model," in

Proc. 14th Conf. Database Systems for Business, Technology and Web,

Kaiserslautern, Germany, 2011.

[37] N. Drukh, N. Polyzotis, M. Garofalakis and Y. Matias, "Fractional XSketch

synopses for XML databases," in Proc. Database and XML Technologies, Springer,

2004, pp. 189-203.

[38] N. Polyzotis, M. N. Garofalakis and Y. Ioannidis., "Approximate XML query

answers," in Proc. Special Interest Group on Management of Data (SIGMOD),

2004.

[39] M. Alrammal, G. Hains and M. Zergaoui, "Path tree: document synopsis for XPath

query selectivity estimation," in Proc. 5th Int. Conf. Complex, Intelligent, and

Software Intensive Systems (CISIS),IEEE Computer Society., Seoul, Korea, 2011.

[40] H. Li, M. L. Lee, W. Hsu and G. Cong, "An estimation system for XPath

expressions," in Proc. 22nd Int. Conf. Data Engineering (ICDE), Atlanta, Georgia,

USA, 2006.

[41] N. Zhang, M. Ozsu, A. Aboulnaga and I. Ilyas, "XSeed: accurate and fast cardinality

estimation for XPath queries," in Proc. 20th Int. Conf. Data Engineering, 2006.

[42] C. Wang, S. Parthasarathy and R. Jin, "A decomposition-based probabilistic

framework for estimating the selectivity of XML twig queries," in Proc. Extending

Database Technology (EDBT), 2006.

[43] M. O. Rabin, "Probabilistic algorithm for testing primality," Number Theory, vol.

12, p. 128–138, 1980.

[44] C. Pomerance, J. L. Selfridge and S. S. Wagstaff Jr., "The pseudoprimes to 25 *

10^9," Mathematics of Computation, vol. 35, no. 151, p. 1003–1026, 1980.

101

[45] G. Jaeschke, "On strong pseudoprimes to several bases," Mathematics of

Computation, vol. 61, pp. 915-926, 1993.

[46] R. M. Karp and M. O. Rabin, "Efficient randomized pattern-matching algorithms,"

IBM Journal of Research and Development, vol. 31, no. 2, pp. 249-260, 1987.

[47] E. Jiao, T. W. Ling and C.-Y. Chan, "A holistic path join algorithm for path query

with not-predicates on XML data," in Proc. Database Systems for Advanced

Applications, Springer, 2005, pp. 113-124.

[48] N. Bruno, N. Koudas and D. Srivastava, "Holistic twig joins: optimal XML pattern

matching," in Proc. Special Interest Group on Management of Data (SIGMOD),

2002.

[49] J. D. M. Hachicha, "A survey of XML tree patterns," IEEE Transactions on

Knowledge and Data Engineering, vol. 25, pp. 29-46, 2013.

[50] "DBLP," [Online]. Available: http://dblp.uni-trier.de/xml/. [Accessed April 2013].

[51] "Xmark," [Online]. Available: http://www.xml-benchmark.org/. [Accessed April

2013].

[52] "Shakespeare Plays," [Online]. Available:

http://www.ibiblio.org/xml/examples/shakespeare/. [Accessed April 2013].

[53] I. Mlynkova, K. Toman and J. Pokorny, "Statistical analysis of real XML data

collections," in Proc. Special Interest Group on Management of Data (SIGMOD),

2006.

[54] L. H. Yang, M. L. Lee, W. Hsu, D. Huang and L. Wong, "Efficient mining of

frequent XML query patterns with repeating-siblings," Information and Software

Technology, vol. 50, no. 5, pp. 375-389, 2008.

[55]

T. Amagasa, M. Yoshikawa and S. Uemura, "QRS: A robust numbering scheme

for XML documents," in Proc. 19th Int. Conf. Data Engineering (ICDE), IEEE,

2003 , pp. 705-707.

[56] "Uniprot," [Online]. Available: http:// http://www.uniprot.org/. [Accessed November

2013].

102

[57] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. T. Ng, and D.

Srivastava, “Counting Twig Matches in a Tree,” In Proc. 17th Data Engineering

(ICDE), IEEE, 2001, pp. 595-604.

[58] J. Freire, J. R. Haritsa, J. R., M. Ramanath, P. Roy, and J. Siméon, “StatiX: Making

XML Count,” in Proc. Special Interest Group on Management of Data (SIGMOD),

ACM, 2002, pp. 181-191.

[59] P. Bohannon, J. Freire, J. R. Haritsa, P. Roy, and J. Siméon, “LegoDB: Customizing

relational storage for XML documents,” in Proc. Very Large Databases (VLDB),

2002, pp. 1091–1094, 2002.

103

CURRICULUM VITAE

Ahmad Faisal Hashim Barradah

Exploration Network Operations Department

Saudi ARAMCO

ARAMCO Box # 10073

Dhahran 31311, Saudi Arabia

E-mail: barradaf@aramco.com

CURRENT POSITION:

Computer Operating Systems Specialist.

PHONE : 873-1181

ENGINEERING BUILDING.

EDUCATION:

B.S. in Software Engineering , KFUPM 2004

Experience:

2006-2007 Redhat Linux administrator

2007-2008 Data Storage Specialist

2008-2010 High performance computing specialist

2010 operations technical support group lead at Saudi Aramco ECC

Projects:

 Implementing a service and system monitoring solution covering all

computing technologies in Saudi Aramco ECC datacenter.

 Redhat upgrade project and migration of company’s applications to the

new operating environment.

mailto:barradaf@aramco.com

104

 Commissioning 310 TB of high performance storage (Netapp GX).

 Developing tools to facilitate the migration of more than 500 TB of data

through SAN.

 Morphological Analyzer for Arabic

 A statistical spell checker for Arabic

Publications:

Al-Jamimi, Hamdi A., Ahmed Barradah, and Salahadin Mohammed. "Siblings

Labeling Scheme for Updating XML Trees Dynamically.", 4
th

 international

conference on Computer Engineering and Technology (ICCET), 2012

Certifications:

 ITIL V3 Foundation (2010)

 Red-Hat Certified Engineer (2008)

 Netapp Certified Data Management Administrator (2008)

 Win 2003 server Microsoft Certified Professional (2007)

 Win 2003 Network Infrastructure Microsoft Certified Professional (2007)

 Win Microsoft Certified XP Professional (2006)

 Sun Solaris 9 system Administrator (2006)

 Helpdesk Analyst (2006)

