
  



I 

 

 



II 

 

 

 

 

 

 

 

 

 

 

 

© Abderezak Miftah Kedir 

2013 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 

 

 

 

 

 

 

 

 

 

 

 

 

Dedication 

To Mom and Dad 

  



IV 

 

ACKNOWLEDGMENTS 

 

Praise be to Allah the most compassionate the most merciful. I thank Allah for all the 

favors bestowed on me. Alhamdulillah! I am afraid I will not be able to express my 

deepest gratitude to all those that made this possible properly but I will give it a try. 

First I would like to express my deepest appreciation to my advisor Dr. Oualid Hammi. 

This thesis would not be possible without his guidance and support. I am truly indebted 

and thankful of the opportunity that has been given to me and the huge amount of support 

that I have received from him. I would like to thank him for helping me grow on both a 

professional and personal level. Besides, I would like to thank the iRadio Lab, University 

of Calgary for their support and assistant in the provision of the measurement data. 

I am so grateful for the research assistantship position in the Research Institute Center for 

Communication & IT Research at King Fahd University of Petroleum & Minerals. 

Special thanks go to chairman Professor Dr. Sadiq Sait and all the staff with in. 

Furthermore, I would like to thank Professor Dr. Azzedine Zerguine and Dr. Mohammad 

S. Sharawi for their insightful comments and guidance on the thesis topic and their 

constructive ideas in Advanced Radio Technologies (ART) research group.  

Moreover, I would like to thank the African community for their help and guidance in the 

day to day challenges that I encountered as a student in a multicultural environment. I 

remain thankful to the community members for the introduction and familiarization of the 

living and cultural conditions of the Kingdom. 



V 

 

The last but not the least, I would like to give my utmost gratitude to the most important 

people in my life, my family. I am humbly dedicating this work to my mom, Hadra 

Ahmed, and my dad, Miftah Kedir, who have given me everything in life by sacrificing 

theirs! May Allah give me the ability to pay back all their favors in this life and may 

Allah grant them paradise in the hereafter for raising me in good manners. My mother 

always used to tell me to get one more degree for her, and another for dad. This is for you 

mom! And my wife, Zehara Amin, one of the best things happened to me. I would like to 

thank her for her patience and encouragement during my studies. I want to extend my 

love and gratitude to her for letting me have her in my life.  

I am so happy to see this chapter of my life come to an end. As it is said when one door is 

closed another will be opened. I am wondering which door will that be.  

 

  



VI 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................................ IV 

TABLE OF CONTENTS ............................................................................................................. VI 

LIST OF TABLES ........................................................................................................................ IX 

LIST OF FIGURES ....................................................................................................................... X 

LIST OF ABBREVIATIONS .................................................................................................... XII 

ABSTRACT ............................................................................................................................... XIII 

ABSTRACT (ARABIC) ............................................................................................................. XV 

1 CHAPTER 1 INTRODUCTION ........................................................................................ 1 

1.1 Signals in Communication Systems .............................................................................................. 3 

1.2 Nonlinearity in Power Amplifiers ................................................................................................. 6 

1.3 Memory Effects .......................................................................................................................... 10 

1.4 Doherty Power Amplifier ........................................................................................................... 11 

1.5 Problem Description .................................................................................................................. 15 

1.6 Contribution ............................................................................................................................... 16 

1.7 Thesis Organization .................................................................................................................... 17 

2 CHAPTER 2 BEHAVIORAL MODELS OF RF POWER AMPLIFIERS ................... 19 

2.1 Volterra Model ........................................................................................................................... 20 

2.2 Dynamic Deviation Reduction Model ......................................................................................... 21 

2.3 Generalized Memory Polynomial Model .................................................................................... 22 

2.4 Memory Polynomial /Envelope MP Models ............................................................................... 23 

2.5 Memoryless Polynomial Model .................................................................................................. 25 



VII 

 

2.6 Wiener Model ............................................................................................................................ 26 

2.7 Hammerstein Model .................................................................................................................. 27 

2.8 Wiener-Hammerstein Model ..................................................................................................... 27 

2.9 Hammerstein-Wiener Model ..................................................................................................... 29 

2.10 Dual-branch Wiener-Hammerstein Model ................................................................................. 30 

2.11 Augmented Wiener Model ......................................................................................................... 31 

2.12 Augmented Hammerstein Model ............................................................................................... 32 

2.13 Twin-Nonlinear Two-Box (TNTB) Model ..................................................................................... 33 

2.14 PLUME Model ............................................................................................................................ 35 

2.15 Feed-forward Neural Network based Model .............................................................................. 37 

2.16 Model Comparison Summary ..................................................................................................... 38 

3 CHAPTER 3 COMPLEXITY-AWARE-NMSE “CAN” METRIC FOR DIMENTION 

ESTIMATION OF MEMORY POLYNOMIAL BASED POWER AMPLIFIERS 

BEHAVIORAL MODELS .......................................................................................................... 44 

3.1 Motivation ................................................................................................................................. 45 

3.2 Limitation of Conventional NMSE Metric ................................................................................... 46 

3.3 Proposed Complexity-Aware-NMSE Metric ................................................................................ 51 

3.4 Case of the Twin-Nonlinear Two-Box Model .............................................................................. 59 

3.5 Summary .................................................................................................................................... 63 

4 CHAPTER 4 BANDWIDTH SCALABLE BEHAVIOURAL MODELS FOR POWER 

AMPLIFIERS WITH MEMORY .............................................................................................. 64 

4.1. Motivation ................................................................................................................................. 65 

4.2. Experimental Setup .................................................................................................................... 66 

4.3. Proposed Models and Approach ................................................................................................ 70 

4.4. Benchmarking Against Conventional Models ............................................................................. 73 



VIII 

 

4.5. Summary .................................................................................................................................... 79 

5 CHAPTER 5 CONCLUSION ............................................................................................ 80 

APPENDIX - IMPEDANCE CALCULATION ........................................................................ 82 

REFERENCES............................................................................................................................. 85 

VITAE .......................................................................................................................................... 90 

 

  



IX 

 

 

LIST OF TABLES 

 

Table ‎2.1 Model comparison summary ............................................................................ 39 

Table ‎4.1 Comparison between the NMSE of the conventional and bandwidth scalable  

                models of the Doherty PA................................................................................. 75 

Table ‎4.2 Comparison between the NMSE of the conventional and bandwidth scalable      

                models of the class AB PA ............................................................................... 76 

Table ‎4.3 Number of coefficients to be updated for the conventional and the bandwidth-  

                scalable models for Doherty PA ....................................................................... 78 

Table ‎4.4 Number of parameters to be updated for the conventional and the bandwidth   

                scalable models for class AB PA ...................................................................... 79 

 

  



X 

 

LIST OF FIGURES 

Figure ‎1.1 Basic communication system ............................................................................ 2 

Figure ‎1.2‎Power‎amplifier’s‎transfer‎characteristics‎for‎small‎and‎large‎signals .............. 7 

Figure ‎1.3 Output power vs. input power of a typical power amplifier.............................. 9 

Figure ‎1.4 PA block representation .................................................................................. 10 

Figure ‎1.5 Doherty power amplifier architecture ............................................................. 12 

Figure ‎1.6 Active load modulation schematic .................................................................. 13 

Figure ‎2.1 Block diagram of the Wiener model ............................................................... 26 

Figure ‎2.2 Block Diagram of the Hammerstein model ..................................................... 27 

Figure ‎2.3 Block diagram of the Wiener-Hammerstein model ......................................... 28 

Figure ‎2.4 Block diagram of the Hammerstein-Wiener model ......................................... 29 

Figure ‎2.5 Block diagram of the dual-branch Wiener-Hammerstein model .................... 30 

Figure ‎2.6 Block diagram of the augmented Wiener model ............................................. 31 

Figure ‎2.7 Block diagram of the augmented Hammerstein model ................................... 33 

Figure ‎2.8 Block diagram of the twin-nonlinear two-box models a) forward b) reverse c)   

                  parallel............................................................................................................. 34 

Figure ‎2.9 Block diagram of the PLUME three-box model ............................................. 36 

Figure ‎3.1 Measured characteristics of the device under test. (a) AM/AM characteristics,   

                  (b) AM/PM characteristics. ............................................................................. 48 

Figure ‎3.2 Calculated NMSE versus the model’s‎parameters .......................................... 50 

Figure ‎3.3 Calculated NMSE of the memory polynomial model as a function of the   

                  model’s‎number‎of‎branches‎for‎different‎nonlinearity‎orders. ...................... 51 

Figure ‎3.4 Model complexity cost function versus its total number of coefficients. ........ 55 

Figure ‎3.5 Complexity-aware NMSE of the memory polynomial model as a function of   

                  the‎model’s‎number‎of‎branches‎for‎different‎nonlinearity‎orders. ................ 56 

Figure ‎3.6 NMSE of the memory polynomial model of the second DUT as a function of   

                  the‎model’s‎number‎of‎branches‎for‎different‎nonlinearity‎orders. ................ 58 

Figure ‎3.7 Complexity-aware NMSE of the memory polynomial model of the second   

                 DUT‎as‎a‎function‎of‎the‎model’s‎number of branches for different   

                 nonlinearity orders. .......................................................................................... 58 

Figure ‎3.8 Performance of the forward-twin nonlinear two-box model as a function of the    

                  memory‎polynomial’s‎number‎of‎branches‎and‎nonlinearity‎order.‎(a)‎NMSE,‎  

                  (b) Complexity-aware NMSE. ........................................................................ 60 

Figure ‎3.9 Performance of the forward-twin nonlinear two-box model of the second DUT   

                  as‎a‎function‎of‎the‎memory‎polynomial’s‎number‎of‎branches‎and‎  

                  nonlinearity order. (a) NMSE, (b) Complexity-aware NMSE. ....................... 62 

Figure ‎4.1 Experimental setup for the device under test [6] ............................................. 67 

Figure ‎4.2 Behavioral model extraction procedure [6] ..................................................... 69 

Figure ‎4.3 The proposed generic bandwidth-scalable two-box models. (a) generic   

                  structure, (b) application to the bandwidth scalable FTNTB model ............... 71 



XI 

 

Figure ‎4.4. Measured memoryless characteristics of the DUT for signal bandwidths of   

                  5MHz, 30MHz, and 40MHz. (a) AM/AM characteristic,  (b) AM/PM   

                  characteristic ................................................................................................... 72 

Figure A.1 Efficiency plot of Doherty and class AB power amplifiers............................ 84 

 

  



XII 

 

LIST OF ABBREVIATIONS 

 

DUT    Device Under Test 

DC    Direct Current 

ETSI    European Telecommunications Standard Institute 

FTNTB   Forward Twin Non-linear Two-box 

GaN    Gallium Nitride 

LDMOS   Laterally Diffused Metal Oxide Semiconductor 

LTE    Long Term Evolution 

LTI    Linear Time Invariant 

LUT    Look-up Table 

MP    Memory Polynomial 

NMSE    Normalized Mean Square Error 

PA    Power Amplifier 

PAPR    Peak to Average Power Ratio 

RF    Radio Frequency 

WCDMA   Wideband Code Division Multiple Access 

 



XIII 

 

ABSTRACT 

 

Full Name : Abderezak Miftah Kedir  

Thesis Title : Low Complexity Scalable Behavioral Modeling of RF Power 

Amplifiers with Memory Effects  

Major Field : Electrical Engineering 

Date of Degree : December 2013 

 

Recent emerging wireless technologies require wider and frequent changes of signal 

bandwidth. Thus, frequent model size update becomes more necessary in behavioral 

modeling of power amplifiers that are found in the transmitters of current technologies to 

keep the accuracy of the model. Moreover due to the use of wider signal bandwidth in 

recent technologies, the memory effects behavior should be handled as well. To address 

these issues, a complexity aware metric for the model size selection that takes into 

account both the complexity in terms of the model size and the system performance in 

terms of the normalized mean square error (NMSE) is proposed along with a generic 

bandwidth scalable behavioral model. While the proposed metric is suitable for the 

selection‎ of‎ the‎ model‎ dimensions‎ in‎ memory‎ polynomial‎ based‎ power‎ amplifiers’‎

behavioral models, the proposed bandwidth scalable model is suitable for addressing the 

complexity of models of power amplifiers exhibiting memory effects with frequent signal 

characteristics change. In the proposed bandwidth scalable two-box models, rather than 

updating the entire model coefficients when the signal bandwidth changes, the 

memoryless function is maintained unchanged and only the function modeling the 

dynamic distortions is updated. The model is built around state of the art two-box models, 

namely the Hammerstein model and the forward twin-nonlinear two-box model. The 
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proposed model takes advantage of the separation between static and dynamic distortions 

of the power amplifier. Experimental validations carried on two Doherty power amplifier 

prototypes illustrate the advantages of the proposed model selection technique as it 

reduces the model dimension by 60% without compromising its accuracy. The proposed 

bandwidth scalable models are verified also on two types of power amplifiers and is 

found to achieve the same performance as the conventional models with considerable 

reduction in model complexity. 
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ABSTRACT (ARABIC) 

 

 ملخص الرسالة
 

 رقدي عبدرزاق مفتاح:الاسم الكامل
 

 : النمذجة السلوكية قليلة التعقيد المتغيرة لمضخمات الطاقة اللاسلكية مع وجود آثار ذاكرة :عنوان الرسالة
 

 هندسة كهربائية التخصص:
 

 3102: ديسمبر  :تاريخ الدرجة العلمية
 

طاق ترددى أوسع و متغير بشكل متكرر. و بالتالى فإن التحديث التقنيات اللاسلكية الحديثة الناشئة تتطلب عرض ن

المستمر لحجم الأنموذج السلوكى لمضخمات الطاقة الموجودة فى أجهزة البث اللاسكلية الحديثة بات ضروريا للحفاظ 

بروز آثار على دقة الأنموذج. بالإضافة إلى ذلك ,فإن استخدام نطاقات تردد أوسع فى التقنيات الحديثة , أدى إلى 

الذاكرة التى لابد أن تؤخذ أيضا بعين الاعتبار. لمعالجة هذه القضايا, اقترح مقياس تعقيد لاختيار حجم الأنموذج, الذى 

. علاوة (NMSE)يأخذ بالاعتبار تعقيد الأنموذج من حيث الحجم, بالإضافة إلى أدائه من حيث الدقة باستخدام مقياس

ى عام متغير على حسب تغير النطاق الترددى للإشارات المرسلة. بينما المقياس على ذلك, تم اقتراح أنموذج سلوك

المقترح يصلح لاختيار أبعاد الأنموذج فى نماذج الدوال متعددة الحدود لمضخمات الطاقة, فإن الأنموذج المتغير 

لمستمر لخصائص الإشارات المقترح صالح لمعالجة تعقيد نماذج مضخمات الطاقة التى تظهر آثار الذاكرة مع التغير ا

( المتغيرة المقترحة, فبدلا من تحديث معاملات الأنموذج بشكل Two-box modelsالمرسلة. فى نماذج الصندوقين )

كامل مع تغير خصائص الإشارات, فإن الدالة عديمة الذاكرة الساكنة تبقى بلا تغيير و فقط يتم تغيير الدالة المسؤولة 

يكى. هذا الأنموذج المقترح تم بناؤه على نسق بناء نماذج الصندوقين المعروقة و المسماة عن نمذجة السلوك الدينام

(. الأنموذج المقترح the forward twin nonlinear two-box model ( و )Hammerstein model ب)

لتجريبية المقامة على يستفيد من الفصل بين التشوهات الساكنة و التشوهات الديناميكية لمضخمات الطاقة. التأكيدات ا

( تظهر مميزات أسلوب اختيار الأنموذج المقترح لأنه باستخدام هذا الأسلوب تم Dohertyمضخمى طاقة من نوع )

( بغير تأثير على دقة الأنموذج. على الجانب الآخر, فإن نماذج النطاقات الترددية %60تقليل حجم الأنموذج بنسبة )
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لتحقق منها على مضخمى طاقة مختلفين حيث أظهرت النتائج التجريبية قدرتهم على المتغيرة المقترحة قد تم أيضا ا

 الوصول إلى نفس أداء النماذج التقليدية مع انخفاض كبير في درجة التعقيد.
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1 CHAPTER 1 

INTRODUCTION 

In the last decade, the energy consumption reduction or energy saving technologies have 

been given focus with main intention to reduce the carbon dioxide (CO2) emission. The 

reduction of this emission will contribute to alleviating the global warming problem.  

The energy consumption of over millions of wireless transmitter units worldwide are 

responsible for an appreciable part of the carbon dioxide emission. Based on the 

European Telecommunications Standard Institute (ETSI) report [1], more than 90% of 

the energy consumed by wireless communication units goes to the radio units. And from 

the radio unit, around 50% to 80% of the consumption goes to the power amplifier (PA): 

around 10% to 25% for air conditioning, 5% to 15% for signal processing and the rest to 

the power supply units. Efficiency improvement in power amplifiers results a significant 

reduction of air conditioning power consumption as well. Therefore, improving the 

efficiency of the PA reduces the power consumption of radio unit since most of the 

consumption attributes to it. Thus, efficient modeling and linearization of PA is 

important. 

Moreover, the high bandwidth requirement in recent wireless communication standards 

has a significant impact on the type of PA to be used. A similar impact is eminent on the 

efficient behavioral modeling and linearization of the PA that is used in the transmitters. 

Figure ‎1.1 shows the location of the transmitter in basic communication systems.  
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In the basic communication system presented in Figure ‎1.1, the signals produced from the 

source are converted to binary sequences with efficient representation of the source 

output by the source encoder. The source encoder handles the process of converting the 

output of the source into a sequence of binary digits. The information sequence or the 

sequence of binary digits from the source encoder is passed to the channel encoder. The 

channel encoder introduces some redundancy, in a controlled manner, in the binary 

information sequence. The controlled redundancies added on the information sequence 

are useful at the receiver to overcome the noise and interference encountered in the 

transmission of the signal through the communication channel. Figure ‎1.1 is simply a 

basic representation of a communication system some details are deliberately omitted to 

keep the scope of work. 

Source & Channel 

Encoder
Transmitter Channel Reciever

Source & Channel 

Encoder

 

Figure ‎1.1 Basic communication system 

 

Then, the binary sequence data, or information sequence, will pass through the 

transmitter. The transmitter consists of the modulator, local oscillator, mixers, filters, 

isolators, power amplifier and antenna. 



3 

 

The channel, as shown in Figure ‎1.1, represents the physical medium that is used to send 

the signal from the transmitter to the receiver. In wireless communication, the physical 

channel is commonly atmospheric air. The digital demodulator processes the channel 

corrupted transmitted waveform and reduces it to a sequence that represents estimates of 

the transmitted data symbols in binary or M-array. This sequence is then passed to the 

channel decoder, which attempts to reconstruct the original information sequence from 

knowledge of the code used by the channel encoder and the redundancy contained in the 

received data. 

At the channel decoder output the source decoder reconstructs the original signal that was 

transmitted from the source. The source decoder does the reconstruction by using the 

knowledge of the source encoding method used. Finally, the source decoder produces an 

analogue signal. The difference between the reconstructed and the original signal is a 

measure of the distortion by the digital communication system. In the next section, 

general types of signals that are used in communication systems specially the ones that 

are useful for the power amplifier modeling will be presented. 

1.1 Signals in Communication Systems 

Signals in communication systems can be categorized as baseband and band-pass signals. 

The baseband signal has a non-zero value in the vicinity of the origin and negligible 

value elsewhere in the frequency domain. Conversely the band-pass signal has a non-zero 

value in the vicinity of the carrier frequency. Modulation is a process of imposing the 

source information on a band-pass signal by varying its amplitude, frequency, or phase or 

a combination of these.  
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Any physical band-pass signal can be represented by  

 ( )     [ ( )     ]    (1) 

where  ( ) is the complex envelope of the band-pass signal,         and    is 

the carrier frequency. 

 ( ) can also be represented by other formats. The real and imaginary parts of  ( ), 

  ( ) and   ( ) , are called in-phase and quadrature components, respectively,.  

 ( )    ( )     ( )      (2) 

  

  ( )    ( )    (   )   ̂( )    (   )       (3) 

 

  ( )    ̂( )    (   )   ( )    (   )     (4) 

 

Where  ̂( )  
 

  
  ( ) is the Hilbert transform of  ( ). The following steps are 

followed to deduce the equation for the baseband signal equation.  

First, the in-phase component will be multiplied by    (   ) and the quadrature 

component will be multiplied by    (   ) as such 

  ( )    (   )    ( )    (   )    (   )   ̂( )    (   )    (   )        (5) 

 

  ( )    (   )    ̂( )    (   )    (   )   ( )    (   )    (   )       (6) 
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Equivalently it can rewritten as such 

  ( )    (   )    ( )    
 (   )   ̂( )    (   )    (   )       (7) 

 

  ( )    (   )    ̂( )    (   )    (   )   ( )    
 (   )     (8) 

 

Subtracting   ( )    (   ) from   ( )    (   ) leads to: 

  ( )    (   )    ( )    (   )   ( )    
 (   )   ( )    

 (   )   (9) 

 

  ( )    (   )    ( )    (   )   ( )(   
 (   )     

 (   ))   (10) 

 

Since from trigonometry     (   )     
 (   )    

  ( )    (   )    ( )    (   )   ( )     (11) 

 

Thus, the band-pass signal can be represented as follows 

 ( )     ( )    (   )    ( )    (   )     (12) 

 

It is also possible to represent the signal  ( ) in terms of amplitude modulation  ( )  

| ( )| and phase modulation  ( )     ( ( )).  

 ( )   ( )    (     ( ))         (13) 

 

where  ( ) and  ( ) are real baseband signals. 
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From the above relationship of the complex envelope signal and band-pass signal, the 

spectrum and power of a band-pass signal and the spectrum and power of its complex 

envelope signal can be directly related. The spectrum of the band-pass signal can be 

easily acquired using the frequency translation property of a Fourier transform. 

 ( )  
 

 
[ (    )   

 (     )]            (14) 

 

Where  ( ) and  ( ) are Fourier transforms of  ( ) and  ( ), respectively. The 

relationship between the power spectral density (PSD) of the band-pass signal and the 

PSD of the complex envelope signal can be acquired from this. The PSD of  ( ) is the 

Fourier transform of the autocorrelation function of  ( ). More details can be found in 

[2]. 

The autocorrelation functions of   ( ) and   ( ) can be related as follows: 

  ( )  
 

 
   [  ( ) 

    ]           (15) 

 

The baseband signal waveforms with in phase and quadrature components that are 

presented in this section will be used to model the power amplifiers. In the next section, 

the nonlinearities of power amplifiers will be discussed. 

1.2 Nonlinearity in Power Amplifiers 

Most physical systems are nonlinear to some degree; however, it is advantageous to 

simplify physical systems into linear ones because of the availability of powerful analysis 

tools for linear systems especially for the linear time invariant (LTI) ones. Moreover, the 
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principle of superposition holds in a linear system however it does not hold for nonlinear 

systems. In the frequency domain, the output of the linear systems have the same 

frequency terms as the input signal but in nonlinear systems a number of additional 

frequency terms appear. 

The approximated linear system for the physical system may work well over a limited 

range of input signal levels. However, in a nonlinear model it is necessary to adequately 

cover all the ranges of input signal levels. For example in Figure ‎1.2 the transfer 

characteristics of a power amplifier is reported. If the input power is small, the PA can be 

modeled by the linear system but when the input power is large, the nonlinearity in the 

PA will be significant and the linear system approximation cannot be used.  

Linear 

Region

Nonlinear 

Region

Nonlinear

Region

Vin

Vout

Distortion 

due to 

nonlinearity

Small signal 

input

Large signal 

input

Small signal 

output

Large signal 

output

Modeled with 

Nonlinear 

System

Modeled with 

Linear System

 

Figure ‎1.2 Power‎amplifier’s‎transfer‎characteristics for small and large signals 
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The nonlinearity that is caused by the radio frequency (RF) PA is due to the operation of 

the amplifier near the saturation region as shown in Figure ‎1.3. The y-axis represents the 

output power of the amplifier in dBm scale and the x-axis represents the input power of 

the amplifier in dBm. In order to maintain the signal quality, the desired region for the 

power amplifier is the linear region. However, since the signal has high peak to average 

power ratio (PAPR), operating the amplifier in the linear region will lead to low average 

output power and thus low power efficiency. Since it is crucial for an RF PA to have high 

efficiency, it is commonly operated in the compression region close to saturation to have 

high efficiency and mild nonlinearity. This nonlinearity caused by operating the amplifier 

near the saturation region will create distortions and generate intermodulation products. 

This nonlinearity is typically compensated using linearization techniques. However, to 

enhance the power efficiency of the power amplifier while operating it up to the 

saturation region, Doherty power amplifier architecture is widely used in today’s wireless 

transmitters. This architecture will be briefly discussed in section 1.4. 

An RF PA is an essential component of the wireless communication system. It has the 

functionality of increasing the power level of the signal that goes to the antenna to be 

radiated out. The radiated output signal power may range from 0.2W to 2W for mobile 

devices and between 10W to 100W for base stations. 
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Figure ‎1.3 Output power vs. input power of a typical power amplifier 

 

When RF PAs are discussed, it is essential to know the type of transistor that has been 

used with their specific bias type, linearity and efficiency. On the other hand, it is needed 

to take into account the memory effects of the system as well so that to have better and 

accurate modeling of the PA when system level analysis is considered. 

An RF power amplifier is an amplifier which consists of active circuits that is commonly 

designed to deliver high output power and efficiency. The technology that is commonly 

adopted for RF power amplifiers used in wireless communications is the Laterally 

Diffused Metal Oxide Semiconductor (LDMOS). The LDMOS has very high output 

power. Although a single LDMOS has a good efficiency, Gallium Nitride (GaN) is able 

to do better [3].  In cases of signals with high peak to average power ratio used to drive 

an amplifier, Doherty architecture can be used to increase the efficiency in the 6dB back 

off region as discussed in [4]. 
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A PA can be represented with one block representation as shown in Figure ‎1.4 . The 

block representation of PA is very useful in case of system level analysis is considered 

since it shows a simplified representation with enough information for such analysis.  

 f (.)
Y(t)x(t)

 

Figure ‎1.4 PA block representation 

 

The system level analyses of PA mainly focus on the memory effects and the nonlinearity 

of the system. As the power handling capacity and bandwidth of operation of power 

amplifiers increase, memory effects become increasingly critical to the performance 

improvement and behavioral modeling of power amplifiers.  

 

1.3 Memory Effects 

One of the most important phenomena to be considered in the behavioral modeling of 

power amplifiers is the memory effects. A system is said to have memory when it cannot 

dissipate its energy instantaneously and it stores energy. A PA often shows memory 

characteristics especially in base stations high power amplifiers. A self-heating effect in 

the transistor and a long time constant in a DC bias circuit are also one of the reasons for 
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long term memory effects. However, the memory effects that is going to be discussed in 

this thesis work is the one that is caused due to the wide bandwidth of the input signal. In 

such case, it is mainly short term memory effect. 

In general, if the actual output of a system is dependent only on its actual input, then that 

system can be referred to as memoryless. If the output of a system does not only a 

function of the actual input but also a function of the past input values such that the actual 

output is influenced by the history of the input signal, then the system is considered with 

memory. The memory effects of the power amplifier as a system become more severe as 

the driving signal bandwidth increases. Recent emerging broadband technologies use 

such wideband signals that could trigger the transmitters to develop memory effects 

unlike the previous technologies that use narrow band signals for voice applications only. 

 

1.4 Doherty Power Amplifier 

The Doherty power amplifier was first proposed in 1936. The main aim of this system 

was to maintain high efficiency with input signals that have high PAPR in the range of 6 

to10 dB. Depending on the manner the transistors are biased, the PA can be classified in 

several classes, such as classes A, AB, B and C. The Doherty amplifier is a combination 

of class AB amplifier which has relatively linear characteristics and class C amplifier 

which is a nonlinear amplifier connected in specific way. It will be out of the scope of 

this thesis work to explain further different classes of operation. More details can be 

found in [4]. 
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The simplest configuration of the Doherty architecture is shown in Figure ‎1.5 which 

consists‎of‎two‎amplifiers,‎namely‎“main”‎and‎“peaking”‎amplifiers.‎The‎two‎amplifiers‎

are connected in a parallel way with a quarter wave transmission line. The quarter wave 

transmission line is used for impedance transformation. 

Power 

Splitter

Peaking Amplifier

Main Amplifier

RF in

Quarter Wave 

Transmission 

Line

R

Load

 

Figure ‎1.5 Doherty power amplifier architecture 

 

The main amplifier is biased in class AB and the peak amplifier is biased in class C. The 

role of the quarter wavelength transformer or phase compensation network is to allow the 

in phase sum on the load of the signals coming from the two active device. The splitter is 

required at the device gates to properly divide the input signal between the main amplifier 

and the peak amplifier. 

The Doherty PA operating principle is based on the active load pull concept. This 

concept is based on the principle of applying current from the second source with 
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coherent phase which have the ability to vary the reactance or resistance of the load. Such 

analysis have been presented in [5]. The Active load pull schematic has been depicted in 

Figure ‎1.6. 

 

Gen1 Gen2

I2I1

V R

 

Figure ‎1.6 Active load modulation schematic 

 

When generator 2 supplies zero current, generator 1 sees a load resistance of R. When 

generator 2 starts to supply as well as generator 1, the voltage across the load resistance R 

can be calculated as  

    [     ]         (16) 

The resistance seen by generator 1 will be as follows 

     [
     

  
]         (17) 

Similarly, the resistance seen by generator 2 will be as follows 

     [
     

  
]         (18) 
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The concept of the load modulation technique can be implemented with transistors if the 

generators are replaced by the output transconductance of the RF transistors. Therefore, 

when two transistors are connected in parallel, the impedance seen by each transistor can 

be modified using a proper biasing. The Doherty configuration results from the 

combination of two devices with different biasing.  

Before discussing the working principle of Doherty power amplifier, it is necessary to 

analyze the quarter wave transmission line characteristic impedance,    , with respect to 

the load impedance,      . This is explained in appendix. 

It is easier to understand the operation of Doherty power amplifier in two stages. The first 

stage is when the input power is not sufficient to trigger the peak amplifier to contribute 

to the output power supply. Thus in this stage the total output power is supplied by the 

carrier amplifier. In this stage, the impedance of the peak amplifier is near to infinity and 

the load is supplied from the main amplifier. 

The second stage is when the input power is sufficient to turn on the peaking amplifier 

and allow it to become saturated. Thus in this stage the load is provided with maximum 

power evenly delivered in parallel scenario by main and peaking amplifiers. 

The well-known advantages of Doherty power amplifiers are high efficiency and 

simplicity. 

High Efficiency: - The Doherty structure is based on the load pull technique using a 

quarter wavelength transmission line. This leads to high power added efficiency (PAE) in 

the 6 dB back off range of the output power. 
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Simplicity: - The load pull technique that is utilized in the Doherty amplifier is 

simple and does not involve any complex envelope control circuits. 

1.5 Problem Description 

One of the major limitations of behavioral models so far is that their parameters are valid 

for‎a‎specific‎set‎of‎operating‎conditions‎defined‎mainly‎by‎the‎signal’s‎average‎power,‎

its bandwidth, and to a lesser extent its statistics. This means that to maintain the 

accuracy and performance of a model, its parameters and/or coefficients need to be 

updated whenever the input signal characteristics change. The updating time increases as 

the number of coefficients of the model increases and the accuracy of the model is 

affected when lower model size is selected. Thus, an optimum way of selecting a model 

size becomes very important to address the need of lower model size without affecting 

the accuracy of the model. It is important to note here that as the number of coefficients 

in a model increases beyond a certain size, the additional improvement in the NMSE gets 

relatively limited. This minor NMSE enhancement is achieved at the expense of higher 

computation complexity in the model coefficients identification step. 

Moreover, as the model size or the total number of coefficients increases, the number of 

coefficients to be updated following changes of input signal characteristics will increase 

as well. This will require a huge amount of processing and it adds up to the complexity of 

the system during the linearization of power amplifiers. It can be seen from the 3rd 

Generation Partnership Project (3GPP) standard, the change of the signal characteristics 

eminent due to signal strength, quality and coverage requirements. This thesis addresses 
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the problem of model complexity arising due to the changes in the signal characteristics 

(i.e bandwidth of the signal). Part of a model is identified once and remains the same 

even if signal bandwidth characteristics change occurs. Such type of modeling is named 

as the bandwidth scalable modeling. This proposed modeling helps to alleviate the 

problem of high complexity by reducing the complexity of the system during cases where 

the signal bandwidth changes while keeping the accuracy of the model intact. 

1.6 Contribution 

This thesis in general contributes in the reduction of total number of model coefficients in 

areas of power amplifier characterization when it is driven by signals with wider 

bandwidth. The wider signals used are expected to trigger the memory effects of the 

power amplifier. The two main contribution of the thesis are mentioned below. 

1. A bandwidth scalable behavioral model structure is proposed which result in a 

significant reduction in regard to the total number of model coefficients that needs 

to be updated as compared to conventional models. This proposed model 

alleviates the complexity of the model that may rise during signal characteristic 

variation due to frequent bandwidth change in the next generation wireless 

standards such advanced long term evolution and WiMAX. 

2. A technique useful for model size selection is another contribution of the thesis. It 

is on the selection of model dimension for memory polynomial models using a 

metric that comprises both the complexity and accuracy which is named as 

complexity aware metric. The proposed complexity aware metric will make the 
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choice of a better optimum model size that considers two properties, i.e the 

complexity and the normalized mean square error.  

 

In broader sense this thesis work will contribute to the green wireless communication 

research area by reducing the amount of power dissipation of base stations front ends 

due to the reduction of complexity while keeping the performance of the system 

intact. 

 

1.7 Thesis Organization 

The thesis is comprised of five chapters. The first chapter that has been presented so far 

gives introduction about the basics of communication system, signals in communication 

systems and nonlinearity in power RF power amplifiers along with the memory effects 

that have become more significant as part of the distortion introduced by power 

amplifiers when wide band signals. Further a special type of power amplifier architecture, 

named as Doherty, is discussed because the measurement in this thesis mainly based on 

this amplifier since it becomes a widely used type of architecture in emerging wireless 

transmitters for its power efficiency and other advantages.  

In Chapter two, different models that have a suitable property to capture the memory of 

the system are discussed. The discussion starts from the Volterra series model and its 

simplified versions like the Wiener and Hammerstein models. Then, different 

combinations of these two models will be discussed either in a concatenated, parallel or 
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augmented arrangement. Furthermore, the twin nonlinear two-box model which 

comprises of a lookup table and a memory polynomial model is discussed. Then models 

such as dynamic deviation reduction model, generalized memory polynomial and Parallel 

Lookup table, Memory polynomial and Envelope memory polynomial (PLUME) model 

are presented. In addition, a new unconventional emerging modeling technique of Neural 

Network is briefly discussed. Finally the chapter is concluded by a table that summarizes 

and compares the pros and cons of different types of models that are mentioned in the 

chapter. 

In Chapter three, the newly proposed metric named as complexity aware NMSE metric is 

proposed. This chapter is organized by first indicating the limitation of the conventional 

NMSE metric, then the proposed complexity-aware metric performance is compared with 

the conventional NMSE metric. The comparisons between the conventional and proposed 

metrics are done on two types of models. Moreover, the comparison is experimentally 

validated on two types of amplifiers (i.e LDMOS and GaN) with Doherty architecture.  

In Chapter four, a bandwidth scalable behavioral model is proposed and validated. The 

proposed model is benchmarked against the conventional behavioral models. The signals 

chosen in driving the Doherty power amplifier have bandwidths of 30MHz and 40MHz 

which are able to trigger the memory effects of the power amplifier. In chapter five the 

conclusions are stated. 
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2 CHAPTER 2 

Behavioral Models of RF Power Amplifiers 

Power amplifiers have a major effect on the performance of wireless communication 

systems, which justifies the large number of studies undertaken to understand their 

behavioral and then to optimize their performance [3-64]. There are three categories of 

PA models: physical based, circuit based, and black box based or behavioral modeling. 

The behavioral models or black box approaches is going to be used in this research. 

Power amplifiers behavior can be stated as to be made of two components: static 

(memoryless) distortions and dynamic (memory effects) distortions. The dynamic 

distortions typically arise for driving signals with 10MHz and wider bandwidths. Several 

structures have been reported in the literature to model the nonlinear behavior of power 

amplifiers when driven by wideband signals [6, 7, 9, 15, 17, 20, 61]‎. These structures 

include the memory polynomial (MP) model [32] and its derivatives; Volterra model [8], 

Wiener and Hammerstein structures [6, 9], twin nonlinear two-box (TNTB) models [7], 

and three-box models such as models that merge the Hammerstein and Wiener models 

[9]. Among these models, the memory polynomial model is the most preferred as it 

achieves a trade-off between performance and complexity. It is worth mentioning that 

MP function can be used as a standalone model as it is the case in the conventional 

memory polynomial model, or in conjunction with another sub-model as it is the case in 

the twin-nonlinear two-box model [7]. Moreover, the performances of different models 
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have been evaluated based on complexity and performance in the work of F. Ghannouchi 

et al [6, 62]. 

In this chapter, the main focus is on the two-box modeling technique that is also known 

as the feed-forward block oriented [10] or modular [11] approach. The two-box model is 

mainly constructed from memoryless or static nonlinearities and dynamic subsystems. 

The flexible arrangement of this kind of block structure may lead to different models. 

The Volterra model gives us a gain in accuracy in predicting‎ the‎ power‎ amplifiers’‎

behavior but pay a lot in terms of complexity as compared to the simpler modified 

models such as Wiener [12] , Hammerstein, the combination of Wiener and Hammerstein 

and the forward twin-nonlinear two-box models. These models will be described further 

in the following sections. 

2.1 Volterra Model 

 

This model is the most general and comprehensive model. Power amplifier modeling 

using the Volterra series has the ability to capture memory effects and accuracy attributed 

by its kernels. The nonlinearity with M depth of memory is described by the Volterra 

series in discrete time waveform as follows: 

 ( )  ∑   ( )
 
          (19) 

where 

  ( )  ∑       
    

∑   (       )
   
    

∏  (    )
 
       (20) 
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where  ( ) and  ( ) are the output and input waveforms,   (       ) are the 

Volterra kernels, K is the highest number of nonlinearity order of the model, and M is 

maximum memory depth. 

The full Volterra series implementation can lead to ill-conditioned matrices during the 

stage of coefficients extraction. The general formulation in (20) becomes much more 

complex when the inverse operation is applied for the implementation of the digital 

predistortion application [13-17]. Moreover, high numbers of coefficients are needed to 

fully implement the Volterra series. There are more relevant approaches that are 

applicable for the practical problems of behavioral modeling by variation of memory 

polynomials. Some of them are described in the following sections. 

 

2.2 Dynamic Deviation Reduction Model 

 

The dynamic deviation reduction (DDR) model [8, 18, 19] adds extra freedom to truncate 

the Volterra series since it organizes the cross-terms as function of dynamics number.  

    ( )    ( )    ( ) 

where   ( ) represents the static characteristic of the system that can be expressed as a 

power series and    ( ) is a purely dynamic multi-dimensional convolution with respect 

to the dynamic deviation. 
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 where N is the maximum nonlinearity order of the model, M is the memory depth,      

are Volterra kernel of the     deviation order. 

 The nonlinear dynamics tend to fade with increasing number of orders in several power 

amplifiers. Thus, higher orders of dynamics are removed from the DDR models. This 

model has an advantage similar with that of the modified Volterra series models. In DDR, 

a separation of static nonlinearity and different order of dynamics is possible. This will 

play a significant role in driving an effective PA linearization approach. 

 

2.3 Generalized Memory Polynomial Model 

 

The generalized memory polynomial (GMP) model is an extension of the MP model with 

leading and lagging cross-terms [14]. The GMP is formulated as follows: 
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(22) 

where the  ( ) and     ( ) are the input and the generalized memory polynomial 

estimated output, respectively.   ,    and    are the nonlinearity orders for the envelope 

terms, the lagging envelope terms and the leading envelope terms, respectively.   ,    

and    are the memory depth for the signal and envelope terms, the signal and lagging 
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envelope terms and for the signal and leading envelope terms, respectively.    and    are 

the lagging and leading cross-terms indexes, respectively.          and      are the 

coefficients of the signal and envelope terms, coefficients of the signal and lagging 

envelope terms, and coefficient of the signal and leading terms, respectively. 

The GMP model, similarly with some of the reduced forms of the Volterra model, has an 

advantage on the linearity of the coefficients as it can be stated in equation (22). This 

model considers both the lagging and leading cross-terms unlike the MP models because 

the GMP introduces cross-terms. Thus, the advantage of the GMP model is that its ability 

to include the cross-term coefficients and keep the linearity of the coefficients which 

plays significant role in the stability and computational complexity of the algorithm. 

 

2.4 Memory Polynomial /Envelope MP Models 

 

The memory polynomial model is formulated from the Volterra series model pruned to 

keep only the diagonal terms and no cross-terms. The formulation of the model that is 

presented in [20] is selected. Thus, the equation of the memory polynomial model can be 

formulated as  

   ( )  ∑ ∑     (   )| (   )|
    

   
 
       (23) 

 

where  ( )  and    ( ) are the baseband complex input and output, respectively.     

are the polynomial coefficient,  K is the polynomial function order and M is the memory 

depth. 
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On a similar discussion, when the combination of  ( )| (   )|    is selected from 

pruned Volterra series, a new model named envelope memory polynomial (EMP) is 

obtained. The EMP can be formulated as follows 

    ( )  ∑ ∑     ( )| (   )|
    

   
 
       (24) 

 

where  ( ) and     ( ) are the baseband complex input and output, respectively.     

are the polynomial coefficient,  K  is the polynomial function order and M is the memory 

depth 

The EMP model is proven to be effective in predistortion applications [14, 21-31] of 

power amplifiers. Besides a low complexity behavioral models that are suitable for  

power amplifiers with memory effects have been presented in [32] and [33]. Moreover a 

compact EMP model that is suitable for weakly nonlinear power amplifiers is discussed 

in [29]. A Compact EMP model function is presented as follows 

            ( )  ∑ ∑    | (   )|
    

   
 
       (25) 

 

where  ( ) and             ( ) are the baseband complex input and output, 

respectively.     are the polynomial coefficient,  K is the polynomial function order and 

M is the memory depth 

The compact EMP takes the advantage of the dependency of power amplifier nonlinearity 

on the magnitude of the input signal. Unlike the EMP model, the compact EMP can be 

implemented in radio frequency and baseband digital predistorters with comparable 

performance with EMP. 
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2.5 Memoryless Polynomial Model 

 

The memoryless polynomial unlike the memory polynomial model can be formulated as  

                       ( )  ∑    
 ( ) 

        (26) 

 

where  ( ) is the input signal and    is the     nonlinear coefficient. 

The memoryless polynomial model is commonly implemented as look-up table (LUT). 

This is a relatively simple model where a wide range of possible amplifier inputs and 

their corresponding (complex) outputs are saved in a table so that for any given input, the 

appropriate output is found by interpolating the table entries. The LUT is given by: 

    ( )    (| ( )|)   ( )      (27) 

 

where  ( ) is the input signal and  (| ( )|) is the instantaneous complex gain of the 

PA. 

This model is widely used in modeling and predistortion of power amplifiers. The 

AM/AM and AM/PM characteristics of a power amplifier are used to construct tables. In 

[34] , multiple LUTs for different power levels are used in case of power level changes of 

the driving signals which show a faster response to such change in PA characteristics. 

The LUT is often used to implement a memoryless polynomial. However, it can be built 

by averaging the measured characteristics of the PA. 
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2.6 Wiener Model 

 

One of the modified cases of the Volterra series approach is the Wiener model. It consists 

of a linear filter (h) followed by a memoryless nonlinearity as shown in Figure ‎2.1. It has 

been studied as a general means for nonlinear system identification in [35, 36] and for 

predistortion application in transmitters [37, 38] 

h NL
x(n) y(n)

 

Figure ‎2.1 Block diagram of the Wiener model 

 

The Wiener model can be formulated as follows: 

 ( )  ∑   [∑  ( ) (   )] 
   ]  

             (28) 

 

where K is the maximum nonlinearity order, M is the memory depth,    are the 

nonlinearity polynomial coefficients of the Wiener model,  ( ) and  ( )  are the input 

and output of the model, respectively.  

The Wiener model combines memory effects and nonlinearity in a simple way. However 

the accuracy of this model is very limited for most power amplifiers. Besides, the output 

of equation (28) depends on the coefficients of  ( ) nonlinearly. This makes the 

estimation of  ( ) coefficients more difficult than that of Hammerstein models which is 

described in the next section. 
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2.7 Hammerstein Model 

 

The Hammerstein model is one of the simplified models of Volterra series with memory 

nonlinearity [36]. It is formed by using the nonlinearity function (NL) and the linear 

system (g) in such a way that the first is followed by the second as shown in the 

Figure ‎2.2. 

NL g
x(n) y(n)

 

Figure ‎2.2 Block Diagram of the Hammerstein model 

 

The Hammerstein model can be formulated as,  

 ( )  ∑  ( )[  ∑   (   ) 
   ] 

           (29) 

This memory nonlinear formulation has a property of being linear in the parameters 

 ( )  . However the formulation has a limitation in effectiveness of the predistortion. It 

has been commented in [14] that the Hammerstein and Wiener models form mutual 

inverses if their nonlinear polynomials are one to one inverses and the linear filters in 

both types of models have stable inverses. 

2.8 Wiener-Hammerstein Model 

 

The Wiener and Hammerstein models [63] can be combined by cascading the linear filter 

followed by a memoryless nonlinearity, and another linear filter.  



28 

 

h NL
X(n) y(n)

g
U(n) V(n)

 

Figure ‎2.3 Block diagram of the Wiener-Hammerstein model 

 

The formulation of the Wiener-Hammerstein model is as follows 

 ( )  ∑  (  ) (    )
 
    

      (30) 

 ( )  ∑   
 
   [ ( )]  ∑   

 
   [∑  (  ) (    )

 
    

]
 
    (31) 

where the  ( ) and  ( ) are the intermediate variables;    are the memoryles nonlinear 

coefficients of the second box;   and  (  ) are the number of taps (memory depth ) and 

the impulse response of the first filter which is located in the upstream of the nonlinear 

memoryless box, respectively. 

Therefore, the output of the Wiener-Hammerstein model is represented as follows: 

 ( )  ∑  (  )
 
    

  (    )     (32) 

Accordingly, 

 ( )  ∑  (  )
  
    

∑   
 
   [∑  (  ) (       )

  
    

]
 
   (33) 

 

The estimation of the parameters in each block of the wiener-Hammerstein is not simple 

because the model output is not linear with respect to its parameters. 
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2.9 Hammerstein-Wiener Model 

 

 

The Hammerstein-Wiener model is also a combination of the Hammerstein and Wiener 

Models such that a linear time invariant filter is preceded and followed by static 

nonlinearity [39]. 

NL h
X(n) y(n)

NL
U(n) V(n)

 

Figure ‎2.4 Block diagram of the Hammerstein-Wiener model 

 

The first box of the nonlinearity function can be represented as  

 ( )  ∑    [ ( )]
   

    
      (34) 

 

Then, the output  ( ) from the first box will be the input of the linear filter  , which can 

be formulated as such 

 ( )  ∑  ( ) (   ) 
    ∑  ( ) 

   [∑    [ (   )]
   

    
]    (35) 

 

The output of the linear filter   will be applied at the input of the second nonlinear box, 

which can be stated as follows. 

 ( )  ∑    
 
    

[ ( )]         (36) 
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Finally the Hammerstein-Wiener model can be stated as 

 ( )  ∑    
 
    

[∑  ( ) 
   [∑    [ (   )]

   
    

]]
  

   (37) 

 

Where  ( ) and  ( ) are the input and output signals of the Hammerstein-Wiener 

model, respectively.  ( ) and  ( ) represent intermediate signals that are not directly 

accessible.  

The concatenated models formulation, either Hammerstein-Wiener or Wiener-

Hammerstein, are more complex compared to Wiener and Hammerstein models. 

However the three-box cascaded models provide more generality. 

 

2.10 Dual-branch Wiener-Hammerstein Model 

 

 

The dual-branch Wiener-Hammerstein model [61] is made up of two branches that are 

connected in parallel. One of the parallel branches is a Wiener model and the other is 

Hammerstein model. The model structure is illustrated in the Figure ‎2.5. 

X(n) y(n)

NL h

NLh

 

Figure ‎2.5 Block diagram of the dual-branch Wiener-Hammerstein model 
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The dual-branch Wiener-Hammerstein model can be formulated by the summation of the 

output of each of the branches which will have a similar formulation as described in 

equations of (28) and (29) 

                ( )              ( )         ( )     (38) 

The expected advantage of this model is the nonlinear behaviors of the power amplifiers 

to be captured by either one of the model branches or both. 

 

2.11 Augmented Wiener Model 

 

The augmented Wiener model [41] is an extension of the Wiener model. It consists of a  

parallel second branch of nonlinearity with the FIR filter box of the Wiener model and 

the nonlinearity box of the wiener model is represented by a memoryless nonlinear 

functions commonly implemented or referred to LUT. The structure of this model is 

shown in Figure ‎2.6. 

X(n) y(n)U(n)

g

Memoryless 

NL Function
h

|.|
 

Figure ‎2.6 Block diagram of the augmented Wiener model 
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According to the structure the augmented Wiener model has the following formulation 

 ( )  ∑     (    )
  
    

 ∑     ( )| (    |
  
    

   (39) 

 

where     and     are the coefficients of the first and second filters indicated in 

Figure ‎2.6 as h and g, respectively.    and    are the memory depth of the first and 

second filter, respectively.  

The model’s output is  

                 ( )  ∑    
 ( ) 

        (40) 

 

where  ( ) is the input signal ,    is the kth nonlinear coefficient and  ( ) is the 

intermediate signal generated within the model as it is stated in equation (39). 

 

2.12 Augmented Hammerstein Model 

 

 

The augmented Hammerstein model [42] consists of memoryless nonlinear function and 

two filters connected in parallel as shown in the Figure ‎2.7.  
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X(n)
y(n)

V(n)

g

Memoryless

NL Function h

|.|

 
 

Figure ‎2.7 Block diagram of the augmented Hammerstein model 

 

In the augmented Hammerstein model, the memoryless nonlinear function is located as 

the first block. The output of  memoryless nonlinear function is represented as  ( ). 

 ( )  ∑    
 ( ) 

          (41) 

 

where  ( ) is the input signal ,    is the kth nonlinear coefficient and  ( ) is the 

intermediate signal generated within the model. 

 ( )  ∑     (    )
  
    

 ∑     ( )| (    |
  
    

   (42) 

 

The augmented Wiener and augmented Hammerstein models have an advantage by 

adding the second filter branch. It gives the augmented model more degrees of freedom 

in characterizing nonlinearity and memory effects of the power amplifier. 

2.13 Twin-Nonlinear Two-Box (TNTB) Model 

 

 

The Twin-Nonlinear Two-Box (TNTB) models [7] represent a family of models suitable 

for power amplifiers with memory effects. These models are obtained by combining 
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components taken from the following two classes: memoryless (or static) and dynamic 

systems. The dynamic part can be implemented as a low order memory polynomial while 

the memoryless nonlinearity can be implemented by a lookup table. 

Look-up 

Table

Memory 

Polynomial

x(n) y(n)

 

(a) 

Look-up 

Table

Memory 

Polynomial

x(n) y(n)

 

(b) 

                   

Look-up 

Table

Memory 

Polynomial
x(n)

y(n)

 

(c) 

Figure ‎2.8 Block diagram of the twin-nonlinear two-box models a) forward b) 

reverse c) parallel 

Each different TNTB model consists of a cascaded Look-up table and memory 

polynomial models. In the forward TNTB (FTNTB) model, the memory polynomial is 

placed in the downstream of the look-up table. In the reverse TNTB (RTNTB) model, the 

memory polynomial is placed in the upstream of the look-up table. The memory 
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polynomial and look-up table are placed in parallel in parallel TNTB (PTNTB) model. 

The functions and formulas of the memory polynomial and look-up table remain the 

same in all three types of TNTB models as they are described in sections 2.4 and 2.5, 

respectively. 

The identification process in twin-nonlinear two-box modes is composed of two steps. 

The process of extraction of the highly nonlinear memoryless behavior of the power 

amplifier comes first. This memoryless behavior is represented by the look-up table box. 

The second step of identification uses the intermediate output of the look-up table as 

input to the memory polynomial model in case of FTNTB model while the intermediate 

input of the look-up table considered as the output of the memory polynomial in case of 

RTNTB model. In case of the PTNTB, the output of the memory polynomial will be 

deduced by subtracting the lookup table output from the measured output signal. Then 

parameters of the memory polynomial box will be identified then after in all the three 

types of TNTB models. 

When‎ the‎ TNTB‎ model’s‎ parameter‎ identification is compared to that of the MP, it 

requires one additional step than that of MP. However, this increase in complexity is 

compensated by the low number of parameters to be used in the model. 

 

2.14 PLUME Model 

 

 

The‎ “PLUME”‎ model refers to the parallel connection of a look-up table, memory 

polynomial and envelop memory polynomial [43]. This model can be considered as an 
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extension of the parallel twin-nonlinear two-box model since an additional box of 

envelope memory polynomial is added to it.  

X(n) y(n)

LUT

MP

EMP
 

Figure ‎2.9 Block diagram of the PLUME three-box model 

 

The first box, which is represented as LUT, is a memoryless nonlinear function that was 

described in (26). The second box, which is represented as MP, is a low order memory 

polynomial function. The third box, which is indicated as EMP, is the envelop memory 

polynomial model. 

 ( )      ( )     ( )      ( )      (43) 

 

where      ,    ( ) and      are LUT model estimated output, the MP model 

estimated output and the EMP model estimated output, respectively. The formulation of 

each box is given as: 

    ( )   (| ( )|)   ( ) 

   ( )  ∑ ∑     (   )| (   )|
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    ( )  ∑ ∑     ( )| (   )|
   

    

   

    

   

 

   (44) 

where ( ) , G ,     and     are the input signal, the instantaneous gain of the LUT 

model, the coefficients of the MP model and the coefficients of the EMP model 

respectively.      and     are the nonlinearity and memory depth of the MP sub-model, 

respectively.     and      are the nonlinearity and memory depth of the EMP sub-

model, respectively. 

The PLUME model further increases the accuracy of the behavioral model when it is 

compared to that of the parallel twin-nonlinear two-box model because of the additional 

cross-terms incorporated through the addition of envelope memory polynomial function. 

While the increase in accuracy is mentioned as an advantage for the PLUME model, the 

increment of the total number coefficients are perceived as the major disadvantage. 

However, the increase in the number of coefficients can be controlled by optimum choice 

of the EMP model dimensions. The PLUME model has lower number of coefficients and 

gives a similar performance as it is compared to the GMP model. 

 

2.15 Feed-forward Neural Network based Model 

 

 

Besides models that have been discussed so far, there are also other models that use 

alternative techniques.  These models can be collectively called neural network (NN) 

based models. The neural network based models use the artificial neural network 
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information processing techniques that are currently used in wide areas of engineering. 

These techniques are inspired from the observation and study of the human mind 

neurology in the sense that how the human mind learn from observation and abstraction.  

The feed-forward-NNs act as the bases of many of the NN structures. The basic structure 

is a single input and single output feed-forward-NN uses complex input and output signal 

data. Thus, the feed-forward-NN topologies [44] lead to heavy calculation with the 

introduction of the complex weight and activation output which can be illustrated as 

follows : 

 ( ( ))  ∑     {∑         [  ∑  ( )  ]          }        (45) 

 

where                  represents the number of neurons in each layers,   is the total 

number layers.    and    are the weights and activations function in the     layer, 

respectively.  

The feed-forward-NN model identification is dependent on a selection of a suitable 

network topology and the model dimensions which are the number of layers and number 

of neurons in each layer, and the complex waveforms of phase information. 

 

2.16 Model Comparison Summary 

 

In the following table, a summary of different models is stated in comparison form 

including their advantages and disadvantages along with the formula of the models for 
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ease of reference. In all these models  ( ) and  ( ) refer‎the‎model’s‎input‎and‎output‎

waveforms, respectively. The parameters of these models were defined in the previous 

sections. 

  Table ‎2.1 Model comparison summary 

Models Formulas  Advantaged Disadvantage 

Volterra  ( )  ∑ ∑    

 

    

∑   (       )

 

    

∏  (    )
 

   

 

   

 

Excellent accuracy 

and captures 

nonlinearity and 

memory effects of a 

system. 

Highest number of 

coefficients to 

fully implement 

the model and ill 

conditioned 

matrices during 

inversion. 

DDR 

 ( )  ∑     ( )| ( )|
   

 

   

    

              ∑ ∑       (    )| ( )|
   

 

    

 

   

 

 ∑ ∑       (    ) 
 ( )| ( )|   

 

    

 

   

 

Separation of static 

nonlinearity and 

different order 

dynamics after 

model extraction. 

The model has better 

accuracy compared 

to memory 

polynomial model. 

More coefficients 

when it is 

compared with 

MP and GMP but 

less coefficients 

when compared 

with Volterra 

model. 
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Models Formulas  Advantaged Disadvantage 

GMP 

 ( )  ∑ ∑    (   )| (   )|
   

  

   

  

   

 

             ∑ ∑∑     (   )| (     )|
   

  

   

  

   

  

   

  

           ∑ ∑∑     (   )| (     )|
   

  

   

  

   

  

   

 

Cross-terms are 

included in such a 

way that the 

coefficients are 

related in a linear 

formulation. Thus, 

simple and robust 

estimation is 

possible. 

Increased number 

of coefficients, 

time consuming as 

compared to MP 

or EMP and 

unstable use in 

DPD application. 

Memory 

Polynomial 
 ( )  ∑ ∑     ( )| (   )|

   

 

   

 

   

 

Simple definition 

and low complexity 

nonlinear memory 

effects can be 

characterized 

Ill-conditioned 

matrices during 

inversion. 

LUT  ( )    (| ( )|)   ( ) 

Easy for pre-

distortion 

application and 

memoryless 

modeling. 

Cannot capture 

behavior of system 

with memory. 

Wiener  ( )  ∑  [∑  ( ) (   )]

 

   

]

  

   

 

Separation of the 

nonlinear and 

memory in simple 

way and ability to 

capture linear 

memory effects. 

Output waveform 

is nonlinearly 

related to the 

parameter to be 

estimated. 

Hammerstein  ( )  ∑  ( ) [  ∑  (   )

 

   

]

 

   

 

Separation of the 

nonlinearity and 

memory of a system 

and ease of 

identification. 

Includes only 

linear memory 

effects. 
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Models Formulas  Advantaged Disadvantage 

Wiener-

Hammerstein 
 ( )  ∑  (  )

  

    

∑  

 

   

[ ∑  (  ) (       )

  

    

]

 

 

Tractable and 

reliable since it has 

an ability to capture 

more information of 

the system. 

Complex and the 

output waveform 

is nonlinearly 

related to the 

parameter to be 

estimated. 

Hammerstein

-Wiener 

 ( )  ∑    

 

    

[∑  ( )

 

   

[∑    [ (   )]
  

 

    

]]

  

 

 

Tractable and 

reliable since it has 

an ability to capture 

more information of 

the system 

Complex and 

increase in total 

number of 

coefficients. 

Dual-branch 

Hammerstein

-Wiener 

 ( )  ∑  ( ) [  ∑  (   )

 

   

]

 

   

 

               ∑  [∑  ( ) (   )]

 

   

]

  

   

 

Combines the 

advantages of both 

the Wiener and 

Hammerstein 

models. 

Increase of model 

complexity along 

with problems of 

Wiener model 

coefficients 

nonlinearity. 

Augmented 

Wiener 

 ( )  ∑    
 (    )

  

    

 ∑    
 ( )| (    |

  

    

 

           ( )   (| ( )|) ( ) 

Ability to include 

nonlinear memory 

effects. 

Additional 

complexity when 

it is compared to 

Wiener model. 

Augmented 

Hammerstein 

 ( )  ∑     (    )

  

    

 ∑     ( )| (    |

  

    

 

             ( )   (| ( )|) ( ) 

Ability to include 

nonlinear memory 

effects. 

Additional 

Complexity when 

it is compared 

with Hammerstein 

model 

FTNTB  ( )  ∑ ∑    ( (| (   )|)   (   ))
 )

 

   

 

   

 

Separation of the 

static and memory 

effects. 

No cross-terms are 

included in the 

MP box. 
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Models Formulas  Advantaged Disadvantage 

RTNTB 
 ( )  ∑ ∑     ( )| (   )|

   

 

   

 

   

 

 ( )   (| ( )|) ( ) 

Separation of the 

static and memory 

effects.  

No cross-terms are 

included in the 

MP box. Slightly 

higher complexity 

and lower 

performance than 

that of FTNTB 

and PTNTB 

PTNTB  ( )    (| ( )|)   ( )  ∑ ∑     ( )| (   )|
   

 

   

 

   

 

Separation of the 

static and memory 

effects. Slightly 

lower complexity 

and higher 

performance than 

that of FTNTB and 

PTNTB 

No cross-terms are 

included in the 

MP box.  

PLUME 

 ( )  ∑ ∑     (   )| (   )|
   

   

   

   

   

 

 ∑ ∑     ( )| (   )|
   

    

   

    

   

 

        (|       ( )|)         ( ) 

Further enhancement 

on accuracy due to 

the addition of EMP 

as compared to 

TNTB models 

Increase in total 

number of 

coefficients but 

still lower than 

GMP 

 

In conclusion, this chapter discussed several power amplifier behavioral models. It can be 

noticed that as one move from the simple classical models to the more complex and 

advanced models of the memory polynomial, the accuracy and effectiveness of the model 

generally increase. However, the computational complexity is found to increase along 

with the increase of the accuracy of the developed models. In this thesis two-box models 

have been chosen among the different models discussed in this chapter for the 
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implementation of the bandwidth scalable behavioral models. The rationale behind this 

choice is detailed in chapter 4. 
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3 CHAPTER 3 

COMPLEXITY-AWARE-NMSE‎“CAN”‎METRIC‎FOR‎

DIMENTION ESTIMATION OF MEMORY 

POLYNOMIAL BASED POWER AMPLIFIERS 

BEHAVIORAL MODELS 

 

The memory polynomial model is widely used for the behavioral modeling of 

radiofrequency nonlinear power amplifiers having memory effects. One challenging task 

related to this model is the selection of its dimension which is defined by the nonlinearity 

order and the memory depth. This work presents an approach suitable for the selection of 

the‎model‎dimension‎in‎memory‎polynomial‎based‎power‎amplifiers’‎behavioral models. 

The proposed approach uses a hybrid criterion that takes into account the model accuracy 

and its complexity. The proposed technique was tested on two memory polynomial based 

behavioral models namely the single-box memory polynomial model and the forward 

twin-nonlinear two-box model. Experimental validation carried out using experimental 

data of two Doherty power amplifiers, built using different transistor technologies and 

tested with two different signals, illustrates consistent advantages of the proposed 

technique as it significantly reduces the model dimension without compromising its 

performance.  
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3.1 Motivation 

 

Among all the models, memory polynomial based models are commonly used since they 

achieve a reasonable trade-off between accuracy and complexity. However, even though 

they are popular, memory polynomial based models still have a major aspect that lacks 

investigation. In fact, the memory polynomial function requires the selection of its 

dimension (mainly the nonlinearity order and memory depth) and the identification of the 

corresponding coefficients. However, there is no straightforward systematic approach 

that allows for the proper selection of the model dimension. This is a critical aspect since 

over estimating the model dimension will result in additional identification and 

implementation complexity, and under estimation of the model dimensions will affect the 

accuracy of the model. 

This chapter proposes a complexity-aware normalized mean squared error (labeled 

“CAN”)‎metric‎suitable‎for the model dimension estimation in memory polynomial based 

models. The proposed metric offers a comprehensive quantification of the model 

performance as it considers both its accuracy and complexity. The CAN metric can be 

applied to find out the dimensions of the memory polynomial function in a wide range of 

models such as the conventional memory polynomial model, the envelope memory 

polynomial model, the generalized memory polynomial model, and the twin-nonlinear 

two-box model.  

In Section 3.2, the limitations of conventional NMSE metric for the model dimension 

evaluation are discussed. In Section 3.3, the complexity-aware-NMSE metric is 

introduced and its performances benchmarked against those of the NMSE metric for the 
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case of the conventional single-box memory polynomial model. In Section 3.4, the CAN 

metric is applied to determine the dimensions of the memory polynomial function in the 

forward twin-nonlinear two-box model. 

 

3.2 Limitation of Conventional NMSE Metric 

 

When driven by signals with wide bandwidths (10MHz or wider), power amplifiers 

exhibit dynamic nonlinear behavior. The Volterra series represent the most 

comprehensive model for dynamic nonlinear systems. However, this model results in an 

unrealistically high number of coefficients as the nonlinearity order and memory depth of 

the system increase. Conversely, the memory polynomial model which corresponds to the 

diagonal terms of the Volterra series is considered among the most popular models for 

dynamic nonlinear systems as it achieves an acceptable tradeoff between the model 

performance‎expressed‎in‎term‎of‎its‎accuracy‎and‎the‎model’s‎complexity‎evaluated‎in‎

terms of its number of coefficients.  

It is worth mentioning that the memory polynomial function can be used as a standalone 

model as it is the case in the conventional memory polynomial model [20], or in 

conjunction with another sub-model as it is the case in the twin-nonlinear two-box model 

[7]. The study presented in this chapter will initially focus on the conventional memory 

polynomial model, and will be extended in Section 3.4 to the case of the forward twin-

nonlinear two-box model. 
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The primary device under test (DUT) used in the experiments is a 300-Watt LDMOS 

based Doherty power amplifier designed for the 2100MHz frequency band. This DUT 

was characterized using a 40MHz WCDMA signal using a custom-built characterization 

platform [49]. First, the measured data was de-embedded to the device under test input 

and output reference planes by compensating for the attenuation between the 

measurement planes and the reference planes. Also, time alignment was performed to 

compensate for the delay between the measured input and output waveforms. The time 

aligned input and output complex baseband waveforms of the DUT were then used to 

derive its behavioral model. The measured AM/AM and AM/PM characteristics of the 

device under test reported in Figure ‎3.1 show its strong memory effects as it can be 

noticed through the significant dispersion in the AM/AM and AM/PM characteristics. 
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(a) 

 

(b) 

Figure ‎3.1 Measured characteristics of the device under test. (a) AM/AM 

characteristics, (b) AM/PM characteristics. 
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The measurement data was then processed to identify the memory polynomial based 

model of the device under test by solving the corresponding linear system as described in 

[49]. Since the model dimensions are unknown, the nonlinearity order and the number of 

branches were swept over a wide range. The nonlinearity order was varied from 3 to 12, 

while the number of branches was successively increased from 1 to 10.  

 

The performance of each of the 100 models identified was evaluated in terms of the 

normalized mean squared error metric given by: 

              (
∑ | ( )       ( )|

  
   

∑ | ( )|  
   

)     (46) 

 

where  ( ) and       ( ) are the measured and estimated waveforms at the output of the 

device under test, respectively.   is the number of samples in each of these waveforms.  

The 3D plot of the NMSE versus the model parameters (M and N) is reported in 

Figure ‎3.2. This figure shows that the NMSE improves as the number of coefficients is 

increased. Most importantly, the NMSE curve presents an asymptotic behavior for high 

nonlinearity orders and high number of branches where increasing the model dimension 

leads to minor improvement in the model accuracy. This can be clearly observed in the 

plots reported in Figure ‎3.3 in which the NMSE is plotted as a function of the number of 

branches for various nonlinearity orders. According to this figure, increasing the 

nonlinearity order beyond 9 does not improve the model performance. However, as the 
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number‎ of‎ branches‎ increases,‎ the‎model’s‎ accuracy‎ is‎ improved.‎ Thus,‎ the‎minimum‎

NMSE is obtained for a model with N=9 and M=10. This model has 90 coefficients and 

achieves an NMSE of -35.9dB.  

 

Figure ‎3.2 Calculated‎NMSE‎versus‎the‎model’s parameters 

 

 

It is important to note here that as the number of branches increases, the additional 

improvement in the NMSE gets relatively limited. However, this minor NMSE 

enhancement is‎achieved‎at‎the‎expense‎of‎higher‎computation‎complexity‎in‎the‎model’s‎

coefficients identification step. Thus, there is a need for an objective metric that will 

allow for the automated selection of the appropriate model dimensions. 
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Figure ‎3.3 Calculated NMSE of the memory polynomial model as a function of the 

model’s‎number‎of‎branches‎for‎different‎nonlinearity‎orders. 

. 

3.3 Proposed Complexity-Aware-NMSE Metric 

 

As illustrated through the results reported in Figure ‎3.3, the NMSE of the memory 

polynomial‎model‎ improves‎as‎ the‎model’s‎number‎of‎coefficients‎ increases.‎However,‎

this NMSE enhancement stagnates gradually. For example, for the considered set of 

measurements, the NMSE improves by less than 0.5dB when‎ the‎ model’s‎ number‎ of‎

branches increases from 4 to 10 for a nonlinearity order of 9 or higher. Accordingly, 

having an automated criterion that selects the model dimensions (nonlinearity order and 

memory depth) based solely on its NMSE would lead to oversized models. This means 

that the model having the best NMSE will be selected even if a slightly worse NMSE can 
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be obtained from a model with significantly less coefficients. Conversely, if the model 

dimension information is included in the model assessment criterion, it is possible to 

select the model that achieves the best tradeoff between complexity evaluated in terms of 

the‎model’s‎number‎of‎coefficients‎and‎accuracy‎expressed‎in‎terms‎of‎its‎NMSE.‎In‎this‎

work, such criterion is implemented by adding, to the conventional NMSE metric, a 

penalty‎ cost‎ function‎ that‎ takes‎ into‎ account‎ the‎model’s‎ number‎ of‎ coefficients.‎ This‎

complexity cost function is introduced to create a convexity in the model performance 

criterion since the NMSE cost function decreases while the complexity cost function 

increases‎ as‎ the‎ model’s‎ number of coefficients increases. Accordingly, using the 

proposed hybrid model performance criterion will permit the automated selection of the 

model dimension which results in the best tradeoff between complexity and accuracy. 

Thus, in order to choose the adequate memory polynomial model dimension that will 

achieve an acceptable trade-off between model accuracy and computational complexity, a 

novel criterion for the model performance evaluation is proposed. 

For this, let us consider the memory polynomial model equation of (23) which can be re-

written in a matrix form as follows: 

 ( )   ( )        (47) 

 

where  ( ) is the output complex baseband waveform of the model and  ( ) is defined 

as: 

 ( )  [      ]       (48) 

and  
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   [ (     )| (     |
    (     )| (     |   ]        

 (49) 

 

The coefficients vector    is given by: 

  [                ]
 
     (50) 

 

Accordingly, the zero-norm of the coefficients vector   is: 

‖ ‖  ∑ ∑ ‖    ‖
  

   
 
    (   )     (51) 

 

The minimization of the zero-norm is a technique that has been proposed in the literature 

for enforcing the sparsity in estimation problems [50, 51]. It is applied in this work to 

minimize the number of coefficients in the memory polynomial model. In order not to 

affect the accuracy of the model, a joint hybrid performance criterion that combines 

accuracy and complexity metrics is used. The accuracy is evaluated in terms of NMSE 

while the complexity is evaluated in terms of the number of coefficients or equivalently 

the zero-norm of the coefficients' vector  . Since the NMSE is expressed in dB, the 

weighted dB value of the zero-norm is adopted. The zero-norm and the NMSE have a 

relation such that minimizing one ends up maximizing the other. 

     (         )             (    )       (52) 

 

However, an optimum way of selecting a point of operation where both the zero-norm 

and NMSE are minimized as much as possible is needed. This is achieved only by 

developing another metric that comprises both the zero-norm and NMSE. Thus, the 
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hybrid criterion labeled complexity-aware-NMSE metric is expressed in dB and is stated 

as follows: 

                    (‖ ‖ ) 

                                              (∑∑‖    ‖
 

 

   

 

   

) 

                               (   )     (53) 

 

where the        is the normalized mean squared error expressed in dB as defined in 

Equation (46).   and   are the number of branches and the nonlinearity order of the 

model, respectively.   is a weighting factor that is used to control the relative importance 

of each of the two parameters of the CAN metric and ranging from 0 to 0.2. 

According to Equation (53) the CAN metric is made of the NMSE which reflects the 

model performance, and a model complexity cost function (       (   )) that 

depends on the total number of coefficients in the model and thus, its complexity. 

According to Equation (51),‎ the‎model’s‎ total‎ number‎ of‎ coefficients‎ is (   ). It is 

worth mentioning here that the complexity cost function only depends on the total 

number of coefficients independently of the corresponding nonlinearity order and 

memory depth even though more than one pair of nonlinearity order and memory depth 

may lead to the same total number of coefficients. The weight of the cost function in the 

CAN metric is controlled by the value of  . 

Figure ‎3.4 reports‎ the‎model’s‎ complexity‎ cost‎ function‎ versus‎ the‎ total‎ number‎ of‎ its 

coefficients and a wide range of values for  . The curves reported in Figure ‎3.4 can be 



55 

 

used to select the value of the parameter   depending on the expected range for the 

model size and the relative importance of accuracy and complexity in the considered 

application. For instance, when a model is expected to have a large number of 

coefficients as it is the case in the conventional memory polynomial model, choosing a 

low value of   will not give any significant importance to the complexity cost function in 

the CAN metric. Conversely, if the memory polynomial has a reduced number of 

coefficients, it is more appropriate to select a reduced value for  . This choice should 

also‎ take‎ into‎ account‎ the‎ admissible‎ deviation‎ between‎ the‎ model’s‎ NMSE‎ and‎ the‎

minimal NMSE that can be achieved by selecting a model with a larger number of 

parameters. In this work, an NMSE deviation of up to 0.5dB is considered acceptable. 

Thus, according to the plots of Figure ‎3.4, the value of   was set to 0.17.  

 

Figure ‎3.4 Model complexity cost function versus its total number of coefficients. 
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The CAN metric was calculated for the 100 models derived in the previous section using 

      . The results are reported in Figure ‎3.5 which shows the calculated CAN metric 

as a function of the model’s‎number‎of‎branches‎for‎different‎nonlinearity‎orders. 

 

Figure ‎3.5 Complexity-aware NMSE of the memory polynomial model as a function 

of‎the‎model’s‎number‎of‎branches‎for‎different‎nonlinearity‎orders. 

 

Comparing the CAN results of Figure ‎3.5 with the NMSE results of Figure ‎3.3, one can 

see that the curves for nonlinearity orders exceeding 9 are not superimposed anymore. 

Moreover, the CAN metric plots have a convexity that is not observable in the NMSE 

plots. Based on the CAN metric, the best performance was obtained for      and 

   , and corresponds to an NMSE of -35.5dB. This contrasts with the NMSE based 

dimension selection according to which the model dimension was found to be        

and      for an NMSE of -35.9dB. Thus, the use of the proposed complexity-aware 
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NMSE reduced the number of coefficients in the model by 60% from 90 to 36 while 

“degrading”‎the‎NMSE‎by‎only 0.4dB. 

To further validate the proposed metric and its ability to minimize the number of model 

coefficients without compromising its accuracy, a second device under test was used. The 

second DUT is a Gallium Nitride (GaN) based Doherty power amplifier designed for 

operation around 2140MHz. The detailed characteristics of this DUT are reported in [52] 

. This DUT was characterized using a long term evolution (LTE) signal having 20MHz 

bandwidth. Similarly to the validation carried out on the first DUT, several memory 

polynomial models were derived for the second DUT by sweeping the nonlinearity order 

from 3 to 12 and the number of branches from 1 to 10. For each of the identified models, 

the NMSE as well as the CAN metrics were calculated. The CAN metric was calculated 

for       . The results, reported in Figure ‎3.6 for the NMSE criterion and Figure ‎3.7 

for the CAN metric, corroborates the findings observed in the case of the first DUT. 

Indeed, according to the NMSE metric the best performance was obtained for      and 

     which resulted in a total of 90 coefficients. However, the use of the proposed 

CAN metric, the optimal parameters of the model were found to be      and    . 

The model dimensions obtained using the CAN metric led to a model having 27 

coefficients. This represents 70% reduction compared to the dimensions derived using the 

conventional NMSE metric. This significant reduction in the model complexity was 

achieved at the expense of a slight NMSE degradation from -40.6dB for the model 

having 90 coefficients to -40.1dB for the model having only 27 coefficients. 
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Figure ‎3.6 NMSE of the memory polynomial model of the second DUT as a function 

of‎the‎model’s‎number‎of‎branches‎for‎different‎nonlinearity‎orders. 

 

Figure ‎3.7 Complexity-aware NMSE of the memory polynomial model of the second 

DUT‎ as‎ a‎ function‎ of‎ the‎ model’s‎ number‎ of‎ branches‎ for‎ different‎ nonlinearity‎

orders. 
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3.4 Case of the Twin-Nonlinear Two-Box Model 

 

The proposed CAN metric can also be applied to determine the dimension of the memory 

polynomial function in two-box behavioral models. To investigate this, a 40MHz 

WCDMA signal was used to drive the amplifier. The measured input and output data  

were used to model the DUT using the forward twin-nonlinear two-box structure [7]. For 

each set of measurements, the LUT of the FTNTB model was identified once, and the 

input and output of the memory polynomial function de-embedded. Then, several 

memory polynomial functions were derived for different nonlinearity orders and memory 

depths. For this test, the nonlinearity order was swept from 1 to 5 and the number of 

branches was varied from 1 to 10. The nonlinearity order of the memory polynomial 

function was swept over a reduced range since the forward twin-nonlinear two-box 

structure inherently alleviates the need for high nonlinearity orders in the memory 

polynomial function [7]. The NMSE and CAN metrics were calculated for all model 

dimensions. The results, obtained for the first DUT, are reported in Figure ‎3.8 (a) for the 

NMSE and Figure ‎3.8 (b) for the CAN. These results are inline with those observed in the 

case of the conventional memory polynomial model. Indeed, the use of the NMSE 

criterion led to a model having 50 coefficients (     and     ) with a NMSE of -

36.0 dB. However, the use of the CAN metric resulted in a model having only 20 

coefficients (    and    ) with an NMSE of -35.7dB. This further demonstrates the 

ability of the proposed approach in automatically selecting the model dimension without 

compromising the model accuracy. In fact, for the forward twin-nonlinear two-box 



60 

 

model, a 60% reduction in the number of coefficients was obtained while the NMSE was 

degrades by less than 0.5dB. 

4  

5  

6 (a) 

7  

8 (b) 

Figure ‎3.8 Performance of the forward-twin nonlinear two-box model as a function 

of‎the‎memory‎polynomial’s‎number‎of‎branches‎and‎nonlinearity‎order.‎(a)‎NMSE,‎

(b) Complexity-aware NMSE. 
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The second DUT was also used to further validate the proposed CAN metric in the 

context of the forward twin-nonlinear two-box model. The nonlinearity order and number 

of branches of the memory polynomial function were swept from 1 to 5 and from 1 to 10, 

respectively. For each model, the NMSE and CAN metrics were calculated. According to 

the obtained results reported in Figure ‎3.9 (a) for the NMSE and Figure ‎3.9 (b) for the 

CAN metric, the use of the NMSE criterion for the model dimension selection led to a 

model having 50 coefficients with nonlinearity order     and number of branches  

  . However, the model dimension selected using the CAN criterion was 4 coefficients 

with     and    . Thus, determining the size of the forward twin-nonlinear two-

box‎ model’s‎ polynomial‎ function‎ using‎ the‎ CAN‎ metric‎ allowed‎ for‎ reducing‎ the‎

memory‎polynomial’s‎number‎of‎coefficients‎ from‎50‎ to‎4‎while‎changing‎ the‎model’s‎

NMSE from -41.1dB to -40.2dB. 
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9  

10 (a) 

11  

12 (b) 

Figure ‎3.9 Performance of the forward-twin nonlinear two-box model of the second 

DUT as a function of the‎memory‎polynomial’s‎number‎of‎branches‎and‎

nonlinearity order. (a) NMSE, (b) Complexity-aware NMSE. 
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3.5 Summary 

 

In this chapter, a complexity-aware-NMSE metric was proposed for determining the 

dimension of the memory polynomial function in power amplifiers behavioral models. 

The proposed metric takes into account both the performance of the model and its 

number of coefficients in order to select the dimension that achieves a trade-off between 

accuracy and complexity. The proposed metric was applied for the modeling, using the 

conventional memory polynomial and the forward-twin-nonlinear two-box models, of a 

two Doherty power amplifiers driven by wideband signals. The results show that, 

compared to the conventional approach that uses the NMSE, the proposed technique 

significantly reduces the model dimension while maintaining its accuracy.  
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4 CHAPTER 4 

BANDWIDTH SCALABLE BEHAVIOURAL MODELS 

FOR POWER AMPLIFIERS WITH MEMORY 

 

In this chapter, generic bandwidth-scalable behavioral modeling suitable for power 

amplifiers exhibiting memory effects is proposed. Such models are built around state of 

the art two-box models, namely the Hammerstein model and the forward twin-nonlinear 

two-box (FTNTB) model, and take advantage of the separation, in these two-box models, 

between the static and dynamic distortions of the power amplifier. In the proposed 

bandwidth-scalable two-box models, rather than updating the entire model coefficients 

when the signal bandwidth changes, the memoryless function is maintained unchanged 

and only the function modeling the dynamic distortions is updated. Experimental 

validations carried out on a Doherty and Class AB amplifier prototypes show that the 

proposed bandwidth-scalable models are able to achieve the same performance as the 

conventional models while reducing the number of coefficients to be updated following a 

change in the operating signal bandwidth by up to approximately 75% for the 

Hammerstein model and 40% for the FTNTB model. The developed models are suitable 

for emerging wireless applications where operating conditions vary rapidly. 
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4.1. Motivation 

 

Radio frequency power amplifiers are the main source of nonlinearity in wireless 

transmitters. This nonlinear behavior is unavoidable in modern applications due to the 

high peak-to-average power ratio of the used signals which will result in very low power 

efficiency in linear mode of operation.  Thus, it is important to model the nonlinear 

behavior of the power amplifier in order to predict its performance and evaluate its 

linearizability. 

Various behavioral models with two-box structures mainly built around the memory 

polynomial functions that were discussed in literature review [6]. One of the major 

limitations of the models proposed so far is that their coefficients are valid for a specific 

set‎of‎operating‎conditions‎defined‎mainly‎by‎the‎signal’s‎average‎power,‎its‎bandwidth,‎

and to a lesser extent its statistics. This means that to maintain the accuracy and 

performance of a model, its parameters and/or coefficients need to be updated whenever 

the input signal characteristics change. In [53], the reverse twin-nonlinear two-box model 

was successfully applied for the synthesis of scalable digital predistorter. In this chapter, 

a scalable behavioral model based on the forward twin-nonlinear two-box and the 

Hammerstein structures is reported. The proposed model introduces some scalability in 

behavioral models to reduce the complexity associated with the model update following a 

change in the input signal characteristics. This work exclusively focuses on bandwidth 

variations of the input signal. It exploits the separation in two-box models between the 

static and dynamic distortions and the fact that the static distortions are mainly impacted 

by‎the‎signal’s‎average‎power‎and statistics while being quasi-insensitive to the signal’s‎
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bandwidth. Thus, in the proposed bandwidth-scalable two-box models, the static 

distortions (memoryless AM/AM andAM/PM functions) are determined from 

measurements under quasi-memoryless operating condition using narrowband signals 

[64]. When the signal bandwidth is varied, the static distortions are maintained 

unchanged and only the dynamic distortions are updated. This approach is experimentally 

validated on a 300-Watt Doherty power amplifier driven by signals with up to 40MHz 

bandwidth. The results clearly show that the proposed approach significantly reduces the 

number of coefficients to be updated and leads to the same performance as the 

conventional versions of the same two-box models. 

The rest of the chapter is organized as follows: in section 4.2, the experimental setup is 

described. In Section 4.3, the proposed bandwidth scalable behavioral model is 

introduced where the static distortions and dynamic distortions are identified separately. 

In Section 4.4, the proposed model is benchmarked against the conventional 

Hammerstein and forward twin-nonlinear two-box models.  

 

4.2. Experimental Setup 

The measurements used in this chapter were performed at the intelligent RF radio 

technology (iRadio) laboratory at the electrical and computer engineering department of 

the university of Calgary, Alberta, Canada. The experimental setup used in this work is 

shown in Figure ‎4.1. The DUTs were characterized using the input and output complex 

baseband waveforms. The arbitrary waveform generator generates the RF signal that 

drives the power amplifier prototypes. The power amplifier prototypes used are the 

Doherty and Class AB. The RF output signal is collected at the other end of the DUT 
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with a vector signal analyzer (VSA). During the cases of high power amplifiers, it is 

customary to apply attenuation before it is directly connected to VSA to adjust to its input 

power requirement. Both the input generated signals and the amplified output signals are 

recorded by the data processing software loaded in a work station computer via the local 

area network (LAN) or GPIB interfaces.  

 

Figure ‎4.1 Experimental setup for the device under test [6] 

 

The first DUT used for the experimental validation is a 300-Watt Doherty power 

amplifier operating in the 2110-2170MHz frequency band. The test signals were carefully 

designed‎in‎order‎to‎solely‎observe‎the‎signal’s‎bandwidth‎effects‎on‎the‎behavior‎of‎the‎

device under test. Thus, a WCDMA digital waveform was first synthesized. This signal 

has a bandwidth of 5MHz and a PAPR of 10dB. Then, to generate test signals that only 

differ from the original signal by their bandwidths, the original waveform was sampled at 

a higher clock rate in order to increase the bandwidth of the signal while maintaining its 
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peak-to-average power ratio and its statistics unchanged. Signal bandwidths that are 6 

and 8 times wider than the original WCDMA signal were generated and used to 

characterize the device under test. 

The AM/AM and AM/PM characteristics of the device under test were measured using 

the instantaneous input and output complex baseband waveform technique. However, 

since the bandwidths involved (up to 40MHz and 200MHz for the input and output 

signals, respectively) cannot be handled by commercial vector signal analyzers, a custom 

designed transmitter and receiver chains were used [60].  

A general system identification procedure is stated in [54]. However, for the bandwidth 

scalable behavioral modeling and all the power amplifier model identification procedure 

is indicated in Figure ‎4.2. Key steps from measurement to model validation are shown. 

The first step is to get the baseband complex waveforms from the measurement setup that 

is shown in Figure ‎4.1. A delay estimation and adjustment should be handled before 

model identification so that to compensate for the propagation delay through DUT which 

introduces a mismatch between the data samples of the input and output. This mismatch 

will be represented as dispersion in the AM/AM and AM/PM characteristics which can 

be misinterpreted as memory effects. The resolution needed for the delay compensation is 

usually lower than the signal sampling rate. Thus, signal up-sampling and down-sampling 

is required during delay estimation and compensation process. The time delay 

compensated input and output signal waveforms are used in the model identification and 

performance analyzing steps. 
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Figure ‎4.2 Behavioral model extraction procedure [6] 

 

The number of coefficients of the model is also considered in the model identification 

step. This thesis work consists of a contribution in regard to choosing appropriate 

optimum model parameters by ensuring enough degree of freedom to describe the full 

range of behavior of the amplifier without affecting the performance. After choosing the 

model and the identification algorithm, the model coefficients can be extracted from 

measurement input-output data. 

The model validation stage which involves various procedures to evaluate how the model 

behaves for the intended application [55]. The models that we are going to be discussed 

in the coming sections pass through this model extraction process that is shown in 

Figure ‎4.2. The next section will further elaborate the bandwidth scalable models and 

approach. 
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4.3. Proposed Models and Approach 

 

The proposed models are inspired from the Hammerstein and the FTNTB models [6, 7, 

56]. Both of these two-box models are built using a memoryless nonlinear function, 

modeling the static distortions, followed by a cascaded function that models the dynamic 

distortions. Such architectures have one major advantage that can be beneficially used to 

build the proposed bandwidth-scalable behavioral models. Indeed, the static distortions 

and dynamic distortions are identified separately. This is an important property that 

distinguishes these models from other structures such as the memory polynomial or the 

nested look-up table models in which there is no separation between the static and 

dynamic distortions [57, 58]. Commonly, the memoryless nonlinear function modeling 

the static distortions is obtained by processing the input and output baseband waveforms 

measured for the operating signal which might have any bandwidth. However, it has been 

shown, in [59], that when the signal bandwidth gets wider, the estimated static distortions 

are‎ affected‎ by‎ the‎ presence‎ of‎ memory‎ effects‎ and‎ thus‎ the‎ “true”‎ memoryless 

characteristic of  the device under test (DUT) is that measured using a narrowband signal 

which does not emulate memory effects. Based on this, the memoryless characteristic of 

the proposed models is forced to be bandwidth independent and is not updated / 

recalculated when the bandwidth of the test signal is varied. Only the second box, which 

is used to model the dynamic distortions, is updated following changes in the signal 

bandwidth. This is a major contrast with previously reported models where the entire 

model (including both functions) needs to be updated following any changes in the 
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operating signal bandwidth. The proposed generic structure for bandwidth-scalable 

behavioral models is presented in Figure ‎4.3 (a). It is made of the cascade of bandwidth-

independent static distortions and bandwidth-dependent dynamic distortions. Figure ‎4.3 

(b) illustrates how this structure can be used to build the bandwidth-scalable FTNTB 

model. 

Bandwidth 

Independent 

Static Distortion

Input Output
Bandwidth 

Dependent 

Dynamic Distortion
 

(a) 

Bandwidth 

Independent 

Look Up Table

Input Output
Bandwidth 

Dependent 

Memory Polynomial
 

(b) 

Figure ‎4.3 The proposed generic bandwidth-scalable two-box models. (a) generic 

structure, (b) application to the bandwidth scalable FTNTB model 

 

Figure ‎4.4 represents the memoryless AM/AM and AM/PM characteristics of the device 

under test measured for the different test signals. This clearly shows that, as expected, the 

static distortions are quasi-insensitive to the signal bandwidth. The slight variations are 

mainly due to the impact of memory effects on the averaging of the measured data. 

Similar behavior is observed for the AM/PM characteristics. 
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(a) 

 

(b) 

Figure ‎4.4. Measured memoryless characteristics of the DUT for signal bandwidths 

of 5MHz, 30MHz, and 40MHz. (a) AM/AM characteristic,  (b) AM/PM 

characteristic 
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4.4. Benchmarking Against Conventional Models 

 

In this section, the performances of the proposed generic bandwidth-scalable behavioral 

models are benchmarked against the performance of their corresponding conventional 

counterparts. Thus, the proposed bandwidth-scalable Hammerstein model (where the 

static nonlinear function is made bandwidth-independent) is compared to the 

conventional Hammerstein model (where the static nonlinear function is bandwidth-

dependent). Similarly, the bandwidth-scalable FTNTB model is compared to its 

conventional version. 

First the conventional Hammerstein and FTNTB models were identified. For both 

models, the memory depth was set to 4 for the 30MHz wide signal, and 5 for the 40MHz 

wide signal. For the FTNTB model, the nonlinearity order of the memory polynomial 

function modeling the dynamic distortions was set to 5 for both signals for the first DUT 

and set 6 for both the signals for second DUT. Then, the bandwidth-scalable models 

having the same sizes as their conventional counterparts were identified. For these 

models, the static distortions characteristics used were that measured using the 5MHz test 

signal. Table ‎4.1 reports the calculated NMSE for the four models. These results show 

that for both structures (the Hammerstein and the FTNTB models), the conventional and 

the bandwidth-scalable versions lead to comparable NMSE performance for both test 

signals. This clearly shows that the proposed approach does not lead to any degradation 

in the model performance. To further investigate this, the memory depth  of  the  models  

was  varied  from 1 to 10  and  the nonlinearity order of the memory polynomial function 
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used in the FTNTB model was varied from 1 to 6. For each set of dimensions, the 

conventional and bandwidth-scalable models were derived, and the NMSE variation was 

calculated for each set of nonlinearity order and memory depth according to: 

      |                                     |    (54) 

 

where                 and                       are the NMSE calculated for the 

conventional and the bandwidth-scalable models, respectively. 

The results collected on the two DUTs show that the NMSE variations do not exceed 

0.25dB and 0.5dB for Doherty PA and Class AB PA, respectively. The NMSE results, 

shown in Table ‎4.1 and Table ‎4.2, indicate that both the conventional and bandwidth 

scalable models lead to similar performance. 

As of Table ‎4.1, the conventional Hammerstein model for the Doherty PA where the 

filter and the nonlinear boxes are identified using the 30MHz and 40MHz signals results 

in NMSE value of -32.74dB and -32.61dB, respectively. Conversely, the proposed 

bandwidth scalable Hammerstein model, where the bandwidth independent nonlinearity 

box is identified using a 5MHz signal and bandwidth dependent dynamic part is 

represented as a filter is identified using 30MHz and 40MHz signal, results in NMSE 

value of -32.68dB and -32.57dB. The average NMSE variation between the conventional 

and proposed Hammerstein modes is 0.05dB NMSE. 
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Table ‎4.1 Comparison between the NMSE of the conventional and bandwidth 

scalable models of the Doherty PA 

 Signal Bandwidth 

Models 30MHz 40MHz 

Hammerstein 
Conventional -32.74dB -32.61dB 

Bandwidth Scalable -32.68dB -32.57dB 

FTNTB 
Conventional -34.82dB -35.80dB 

Bandwidth Scalable -34.77dB -36.04dB 

 

On the other hand, the conventional FTNTB for the Doherty DUT model where the LUT 

and the memory polynomial boxes are identified both using the 30MHz and 40MHz 

signals results in NMSE value of -34.82dB and -35.80dB, respectively. However, the 

proposed bandwidth scalable FTNTB models have the NMSE value of -34.77dB and -

36.04dB when 30MHz and 40MHz signals are used respectively. The NMSE variation of 

0.05dB is observed when a 30MHz driving signal is used. However, it has been observed 

an NMSE improvement of 0.24dB for the proposed scalable model as it is compared to 

the conventional method when the DUT is driven by 40MHz signal. Therefore the 

average NMSE variation between the conventional and proposed method on based on 

FTNTB model is 0.15dB. 

As of Table ‎4.2, the conventional Hammerstein model for second DUT driven by 30MHz 

and 40MHz signals results in NMSE value of -33.6dB and -33.2dB respectively while the 

proposed bandwidth scalable Hammerstein model results in NMSE value of -33.1dB and 

-32.8dB respectively. The average NMSE variation between the conventional and 

proposed Hammerstein modes is 0.5dB NMSE. 
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Table ‎4.2 Comparison between the NMSE of the conventional and bandwidth 

scalable models of the class AB PA 

 Signal Bandwidth 

Models 30MHz 40MHz 

Hammerstein 
Conventional -33.6 dB -33.2 dB 

Bandwidth Scalable -33.1 dB -32.8 dB 

FTNTB 
Conventional -35.3 dB -35.4 dB 

Bandwidth Scalable -35.0 dB -35.4 dB 

 

Table ‎4.2 also consists of the results of FTNTB model based comparison of the 

conventional and proposed method for the class AB DUT when driven by the same 

30MHz and 40MHz signals. The FTNTB model results in the NMSE values of -35.3dB 

and -35.4dB for the 30MHz and 40MHz test signals, respectively. The scalable version of 

this model results in NMSE of -35.0dB and -35.4dB for the 30MHz and 40MHz test 

signals, respectively. This indicates that for the 40MHz signal, the proposed bandwidth 

scalable modeling technique achieves the same performance as that of the conventional 

modeling approach while for 30MHz signal 0.3dB variation is observed. The average 

variation in the NMSE value between the conventional and the bandwidth scalable based 

on the FTNTB model is 0.15dB. 

To evaluate the gain in complexity reduction achieved by using the proposed bandwidth-

scalable models, the number of coefficients to be updated in each model will be 

considered. The static nonlinear function in two-box models is commonly implemented 

using a look-up table, yet it can be considered as a polynomial function of order (K). The 

function modeling the dynamic distortions is a simple finite impulse response  (FIR) filter 
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of order  M  for Hammerstein models and a memory polynomial function of size  M × N  

for the twin-nonlinear two-box model. Herein, M represents the memory depth and N is 

the nonlinearity order of the polynomial function used in the TNTB models.  

Thus, the total number of parameters (S) of the model is 

    (  (   ))       (55) 

 

where     for the Hammerstein model 

Accordingly, in the proposed bandwidth-scalable behavioral models, the number of 

coefficients that will be updated is ( M + 1 ) for the Hammerstein model, and ( N × ( M + 

1 )) for the FTNTB model. 

Typically, K in (55) ranges between 10 and 14 for the DUTs. An average value of 12 was 

used to estimate the number of coefficients needed for the static nonlinear function of all 

models. The number of coefficients that needs to be updated once the signal bandwidth is 

changed from 5MHz to 30MHz and 40MHz are reported in Table ‎4.3 and Table ‎4.4. 

Table ‎4.3 presents a comparison between the conventional and the proposed methods in 

terms of total number of model coefficients to be updated for the Doherty PA.Based on 

the Hammerstein model, bandwidth-scalable modeling results in the reduction of 75% 

and 70.5% in total number of parameter when the DUT is driven by 30MHz and 40MHz 

signal, respectively. The reduction of 37.5% and 32.4 % in total number of coefficients to 

be updated are achieved when the bandwidth-scalable modeling is implemented on the 

FTNTB model for 30MHz and 40MHz driving signals, respectively. Thus, the average 
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total number of parameter reduction for the Hammerstein and FTNTB based bandwidth-

scalable modeling is 72.3% and 35%, respectively. 

Table ‎4.3 Number of coefficients to be updated for the conventional and the 

bandwidth-scalable models for Doherty PA 

 Signal Bandwidth 

Models 30MHz 40MHz 

Hammerstein Conventional 16 17 

Bandwidth Scalable 4 5 

FTNTB Conventional 32 37 

Bandwidth Scalable 20 25 

 

The result of a similar analysis that was carried out on the class AB DUT is presented in 

Table ‎4.4. This table shows the comparison between the conventional and proposed 

models’ total number of coefficients to be updated in the Hammerstein and the FTNTB 

models. The results based on Hammerstein models show that the proposed method 

achieves a reduction in the number parameters by 75% and 70.5% when the DUT is 

driven by 30MHz and 40MHz signals, respectively. Total reduction of 33.3% and 28.6 % 

in total number of coefficients to be updated are noticed when the bandwidth-scalable 

modeling is implemented on the FTNTB model for 30MHz and 40MHz driving signals, 

respectively. In summary, the average reduction for the Hammerstein and FTNTB based 

bandwidth-scalable modeling is 72.25% and 31% respectively.  
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Table ‎4.4 Number of parameters to be updated for the conventional and the 

bandwidth scalable models for class AB PA 

 Signal Bandwidth 

Models 30MHz 40MHz 

Hammerstein Conventional 16 17 

Bandwidth Scalable 4 5 

FTNTB Conventional 36 42 

Bandwidth Scalable 24 30 

 

 

4.5. Summary 

 

Hence, in summary the bandwidth-scalable Hammerstein model reduces the number of 

coefficients to be updated by 70% to 75%, while the complexity reduction is in the range 

of 29% to 45% for the bandwidth scalable FTNTB model. It can be seen from (55) that as 

the memory effects present in the DUT decrease, the complexity reduction gained by the 

use of the proposed bandwidth-scalable models increases. 
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5 CHAPTER 5 

CONCLUSION 

 

A complexity-aware-NMSE metric was proposed for determining the dimension of the 

memory polynomial function in power amplifiers behavioral models. The metric takes 

into account both the performance of the model and its number of coefficients in order to 

select the dimension that achieves a trade-off between accuracy and complexity. The 

proposed metric was applied for the modeling, using the conventional memory 

polynomial and the forward-twin-nonlinear two-box models, of a high power Doherty 

amplifier driven by a wideband signal. The proposed method was verified on using an 

LDMOS and a GaN based power amplifiers. The results showed that, compared to the 

conventional approach that uses the NMSE, the proposed technique reduces by up to 60% 

the model dimension while maintaining its accuracy. 

Moreover, novel bandwidth-scalable behavioral models for RF power amplifiers 

exhibiting memory effects were reported. The proposed models were implemented based 

on Hammerstein and FTNTB models. The experimental validations, that are performed 

using two DUTs, demonstrated the effectiveness of the proposed models. Indeed, they 

maintain the same performance as their conventional counterparts but with a significantly 

lower number of coefficients that need to be updated following a change in the bandwidth 

of the amplifier's drive signal. The bandwidth-scalable models set the ground for the 

development of a new class of behavioral models suitable for emerging standards and 

that can be easily adapted to variations in the input signal characteristics.  
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As a future work, the complexity aware metric technique could be extended to other 

metric in the frequency domain. One of such metrics can be the normalized average mean 

spectrum error (NAMSE). NAMSE considers the error in frequency domain between the 

measured and model output as NMSE does in the time domain. Thus, NAMSE could be 

an ideal choice to further extend to develop and validate the metric into being complexity 

aware in frequency domain. Moreover, the work of the bandwidth-scalable modeling that 

was reported in chapter 4 could be extended by applying the scalable technique on other 

models such as DDR and PLUME models. These models could be suitable because of 

their structures in separating the static and dynamic nonlinearities of the system and their 

performance. 
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Appendix - Impedance Calculation 

The impedance of quarter wave transmission line with respect to the impedance of the 

load in the Doherty power amplifier circuit is shown at the following figure. 

I2I1

Zload V2

ZTL

I0

Z1 Z0 Z2

V1

 

Applying the load modulation, 
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The quarter wave transmission line can be stated as  
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Thus, the output voltage of the main amplifier can be represented as follows 
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Assuming‎“n”‎having‎a‎value‎ranging‎from‎0‎to‎1‎in‎the‎6dB‎back‎off‎range‎in‎terms‎of‎

maximum current,        
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when we substitute the current values of    and    into the last formulation of    

   
       

       
(     (          ))    (  ) 

Efficiency enhancement is achieved when    is constant in the 6 dB back off region. 

Thus,‎it‎needs‎to‎be‎independent‎of‎‘n’.‎The‎above‎equation‎can be simplified as  
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                (  ) 

The 6 dB back off region is considered as the operation point of the Doherty power 

amplifier. The efficiency comparison plot the Doherty and class AB power amplifiers are 

presented in the Figure A.1. The solid line represented the efficiency vs input signal 

power of the Doherty while the broken line represents that of the class AB. 

 

Figure A.1 Efficiency plot of Doherty and class AB power amplifiers 
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