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NOMENCLATURE 

 

ija  =  terms in the system of equation of radial geometry 

A  = arbitrary constant in the system of equations for radial composite system 

ijb  = terms in the system of equation of radial geometry 

B  = arbitrary constant in the system of equations for radial composite system 

1B  = Formation volume factor of oil in region1of radial composite system, 

/RB STB  

2B  = Formation volume factor of oil in region2 of radial composite system, 

/RB STB  

ijc  = terms in the system of equation of radial geometry 

tc  = total compressibility, 
1psi  

C  = Wellbore storage constant, /bbl psi , or arbitrary constant in the system of 

equations for radial composite system 

D  = arbitrary constant in the system of equations for radial composite system 

F  = storativity ratio for a two region reservoir    
1 2

t tk c k c   

h  = reservoir thickness, ft  
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jI  = modified Bessel function of first kind of order j 
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Dr  = dimensionless distance in radial geometry
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r
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eDr  = dimensionless distance to outer boundary for radial geometry e
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DR  = dimensionless discontinuity radius for a two region reservoir
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w

r

r
  
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  = viscosity, cp  
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1  = hydraulic diffusivity constant for region 1 

2  = hydraulic diffusivity constant for region 2 

sp  = pressure drop due to skin, psia 
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ABSTRACT 
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Date of Degree: [December, 2013] 

 

Accurate understanding of the physics of fluid flow in a porous media is still questionable 

in the field of hydrogeology, geo-mechanics, and soil mechanics and indeed in the 

recovery of oil and gas. This topic has been researched for several decades for the said 

fields and the outcomes of these studies provide the basis for future predictions and 

decisions. The main objective of this research is to improve the physics of fluid flow in a 

porous media (petroleum reservoirs) under anomalous diffusion where‎classical‎Darcy’s‎

law fails to describe the process. 

The first equation describing fluid flow through porous media was first developed by 

Henry Darcy in 1856. The equation was developed to calculate flow rate of water through 

sand beds. The law forms the basis of estimating conductivity of sand beds which is also 

known as permeability. Darcy’s‎Law‎is‎analogous‎to‎Fick’s‎Law‎in‎diffusion‎theory‎that‎

is used to describe the normal diffusion in porous media. However there are several cases 

where the fluid flow paths are complex and diffusion occur is not normal. Several 

experimental observations are evident in literature that shows non-Fickian dispersion 

process‎in‎heterogeneous‎porous‎media‎where‎classical‎Darcy’s‎Law‎fails‎to‎describe‎the‎

process adequately. Many authors consider the use of fractional derivative as a mean to 



xvii 

 

describe the anomalous diffusion process that requires some modification in conventional 

Darcy’s‎ law.‎ In‎ this‎ research‎ we‎ propose‎ the‎ use‎ of‎ memory‎ formalisms‎ on‎ pressure‎

gradient‎term‎to‎modify‎Darcy’s‎Law.‎Fractional‎order‎derivatives‎are‎used‎to‎represent‎

the memory formalisms.  

In this study, we consider a two region radial composite reservoir that mimics a number 

of‎reservoir‎situations.‎Modified‎Darcy’s‎law‎is‎used‎to‎derive‎diffusivity‎equation‎and‎its‎

solutions are obtained in Laplace space. The pressure behavior for a two region 

composite system is modeled after incorporating the memory parameter ( ) and the 

effect of changing memory parameter on bottom hole pressure and pressure distribution 

over time is analyzed. Results show that bottom hole pressure is affected by memory 

parameter also and a larger pressure drop occurs as the value of   increases. Also 

pressure derivatives curves deviate from each other in radial flow regime in both region 1 

and 2. This will affect the calculation of permeability values from graphical analysis. 

Finally, parameters are estimated using non-linear regression (Levenberg-Marquardt 

algorithm) considering both normal and fractional diffusion.  
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  ملخص الرسالة 
 
 

 ـسـن خـانـزعيــم ح     :الاسم الكامل
 

 مركبةـية الـعاعـشـن الـكـامـمكـزئي في الــجـشار الــتـالان صياغـة   :عنوان الرسالة
 

 رولـتـبالــة ـندســـه   التخصص:
 

 3102 ديسمبر :تاريخ الدرجة العلمية
 

الفهم الفيزيائي الدقيق لتدفق الموائع خلال الأوساط المسامية في المكامن النفطيه يعترية الكثير من الغموض من جوانب عدة مثل  

كما هو الواقع أثناء عمليات استخلاص النفط والغاز. خلال العقود  التربة ميكانيكاو  الجيولوجية الميكانيكاو  الهيدروجيولوجيا

السابقه نال هذا المجال اهتمام الكثير من الباحثين في عدة حقول نفطية لإستنباط الأسس السليمة للتنبؤات والقرارات المستقبليه 

 المكامن)  المسامية الأوساطيزيائية تدفق الموائع في لتلك الحقول. لذا فإن الهدف الرئيسي لهذه الدراسة هو إضِْفاء فهماً دقيقاً لف

 في مثل هذه الحالات. Darcy ( خلال عمليات الانتشار الغير منتظم لـ تلك الموائع، حيث لايمكن تطبيق قانون النفطيه

تحديد مدى والذي يشكل المبدأ الأولي ل الرمل طبقات خلال من المياه تدفق معدل لحساب معادلة ضعتو    6581في ســنة 

من الناحية النظرية في وصف   Fickلقانون مماثل Darcyقابلية الصخور لتمرير السائل أو مايسمى النفاذية. يعتبر قانون 

 انتشارهاو معقدة السوائل تدفق مسارات فيها يكون التي الحالات من العديد هناك ولكن. المسامية الأوساط انتشار الموائع خلال

في Fick منتظما. العديد من التجارب العلمية التي أجٌريت في هذا المجال تظهر أنّ عملية انتشار الموائع لاتخضع لقانون  ليس

 إلى الكتاب من كثيرال . لقد عَمَدكاف بشكل الانشار عملية وصففي  Darcy قانون المكامن الغير متجانسة حيت يقصر أيضا

 في تالتعديلا بعضإجراء  تتطلب التيو )الغير منتظمة( الشاذة الانتشار عملية لوصف كوسيلة الجزئية المشتقات استخدام

المخزنه بالذاكره من أجل  الضغوط. لذا فإننا من خلال هذا البحث سنعمل على استخدام تدرجات Darcyالأساسي لـِ  القانون

 اطة. باستعمال المشتقات الجزئية لتمثيل ن ظم الذاكره المن Darcyتعديل قانون 

في هذه الدارسة سوف نأخذ بعين الاعتبار وجود منطقين في المكمن الشعاعي وهي الحالة التي تحُاكي العديد من المكامن النفطية 

 سلوك غرار وعلى.  Laplace spaceالمعدّل لايجاد حل لمعادلة الانتشار بطريقة  Darcyالمركبة كما سنستخدم قانون 

في المكمن المركب من منطقتين والمنوط دراسته في هذا البحث فان النظام الناتج سوف ي صاغ بعد دمج عوامل الذاكره  الضغط

(  السفلي للبئر ضغطال أنّ  هذه الدراسة نتائج ظهرت  وتأثير تغيير تلك العوامل على توزيع الضغط في قعر البئر البترولي.  (

)كما أنه ي حدث انخفاظ عالي في الضغوط بزيادة المعامل  الذاكرة ملبمعا أثريت .  كما لوحظ أيضاً انحراف منحيات (

في النظام الشعاعي المركب والذي سيؤدي بدوره إلى التأثير على  2و  6مشتقات الضغوط عن بعضها البعض في المنطقتين 

-Levenberg) خطاطات. أخيراً تم تقدير هذه العوامل باستخدام العلاقات الغير خطية حسابات النفاذيات بواسطة الم

Marquardt algorithm) .باعتبار الانتشار الطبيعي والجزئي 
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1 CHAPTER 1 

INTRODUCTION 

The flow behavior of fluids through a porous media has been of interest not only in 

petroleum industry but in the field of chemical engineering, hydrogeology, agricultural, 

soil mechanics etc. Due to the complex nature of porous media various authors were 

attracted to tackle the problems related to this topic and formulated different relations for 

studying diffusion of fluids in porous media. However all the authors based their relations 

on‎classical‎Darcy’s‎law‎and‎provided‎solutions‎for‎different‎interesting cases (Barry and 

Sposito, 1989; Kabala and Sposito, 1991; Neuman and Orr, 1993; Indelman and 

Abramovich, 1994; Steefel and Lasaga, 1994; Dewers and Ortoleva, 1994; Hu and 

Cushman, 1991; Cristakos et al., 1995; Cushman and Moroni, 2001).     

The‎classical‎theory‎of‎propagation‎of‎pressure‎and‎fluids‎is‎based‎on‎Darcy’s‎Law‎which‎

states the proportionality between the flux and pressure gradient. Darcy’s‎Law‎forms‎the‎

scientific basis of permeability of the reservoir rock. The law is comparable to‎ Fick’s‎

Law‎in‎diffusion‎so‎Darcy’s‎ law‎is‎a‎constitutive‎equation‎ in‎defining‎normal‎diffusion‎

through porous media in a petroleum reservoir. On the other hand if diffusion process is 

not‎ normal‎ i.e.‎ anomalous‎ diffusion,‎ Darcy’s‎ law‎ fails‎ to‎ describe‎ the physics of the 

process adequately and requires some modification. Some authors like Caputo relates 

anomalous diffusion process to memory i.e. diffusion process will depend upon previous 

value of pressure and flow of fluids. Hence some of the fluids behaviors in rock possess 
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properties that cannot be modeled with classical propagation theory (Bell and Nur, 1978; 

Roeloffs, 1998) and mathematical representation of these flow behaviors is still 

inadequate and requires generalization of existing flow equations. 

In this research, our focus will be on the flow behavior in radial composite reservoirs. 

Two or more regions with different fluid or rock properties combined together to form a 

composite reservoir. This consideration has been of interest in well testing where 

numerous reservoir situations mimic a composite system. A composite reservoir model 

helps in analyzing transient pressure data from acidization and injection processes, in 

reservoirs where rock or fluid property differs and geothermal reservoirs with thermal 

discontinuities (Ambastha, 1995). An oil reservoir with aquifer is considered to be an 

example of naturally composite reservoir whereas steam injection, insitu combustion, 

polymer flooding and CO2 miscible flooding create artificial composite reservoirs 

(Issaka, 1996). In simple words, composite reservoirs can be modeled more adequately in 

all reservoir cases where two regions of different either rock or fluid properties exist.  

Linear composite reservoirs may be created due to geological factors, such as faulting, 

facies changes or pinch outs. It is possible that these boundaries will resist the flow across 

them, and be partially communicating (Ambastha, 1987). In case of vertically fractured 

wells, elliptical geometry is more appropriate to model the effects of steam injection 

(Obut and Ertekin, 1987; Stanislav et al., 1987; Stanislav et al., 1992). 

1.1 Statement of the Problem 

It is evident from the literature that classical Darcy law has been used mostly for 

describing fluid flow through porous media. This law states that flux is directly 
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proportional to the pressure gradient. However there are several cases where the fluid 

flow paths are complex and diffusion occur is not normal. Several experimental 

observations are evident in literature that shows non-Fickian dispersion process in 

heterogeneous porous media where classical Darcy’s‎ Law‎ fails‎ to‎ describe‎ the‎ process‎

adequately. Many authors consider the use of fractional derivative as a mean to describe 

the‎anomalous‎diffusion‎process‎that‎requires‎some‎modification‎in‎conventional‎Darcy’s‎

law. Caputo relates anomalous diffusion to the memory formalisms, this means that 

system is affected by memory term i.e. the diffusion of fluids will depend on the previous 

value of pressure and flow of fluid. So in order to have a better representation of these 

processes, classical equations should be modified.  

One way to modify Darcy law is the use of fractional derivatives on pressure gradient 

term to represent memory formalisms. These derivatives are integro-differential operators 

that are being used in modeling transport and describing anomalous diffusion. It has been 

applied to model transport of passive tracers in turbulence. So the use of fractional 

derivatives to model memory proves out to be very useful in recent studies. 

1.2 Research Objectives 

It includes the following, 

1. To use modified classical‎ equation‎of‎ fluid‎ flow‎ through‎porous‎media‎ i.e.‎Darcy’s‎

Law in the diffusivity equation to account for anomalous diffusion.  

141.2

kh p
q r

B r

 
  

 
        (1.1) 
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where k  is‎the‎modified‎Darcy’s‎Permeability‎and‎ p is the memory affected pressure 

that is defined as: 

p
p

t









            (1.2) 

2. The partial differential equations and boundary conditions for a two region radial 

composite system will be modified to obtain new solutions. All the cases will assume 

constant rate inner boundary condition with well bore storage and skin. Three outer 

boundary conditions will be considered. These are infinite acting, no-flow and 

constant pressure.  

 

3. The analytical solutions obtained for two region radial composite system will be 

presented in Laplace space. 

 

4. After‎ incorporation‎ of‎ memory‎ formalism‎ parameter‎ α‎ in‎ constitutive‎ equations,‎ a‎

sensitivity‎ study‎will‎be‎performed‎ for‎different‎values‎of‎α.‎The Effect of memory 

parameter‎ α‎ on‎ bottom‎ hole‎ flowing‎ pressure,‎ pressure‎ drop‎ and‎ Bourdet‎ Pressure‎

derivative will be analyzed. 

 

5. A pressure transient analysis problem will be analyzed, reservoir and wellbore 

parameters‎ including‎ memory‎ parameter‎ α‎ will‎ be‎ calculated using Levenberg-

Marquardt method i.e. Non Linear Regression. 
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2 CHAPTER 2 

LITERATURE REVIEW 

2.1 Fluid Flow through Porous Media 

 

Fluid flow through porous media is the topic of interest in many fields. Its application is 

far but not limited to hydrogeology, soil engineering and chemical engineering. One of 

the most important application is the extraction of oil and gas from petroleum reservoirs, 

a resource on which world heavily depends. As long as the contrast between world oil 

supply and demand will increase, new methods will be required to make an efficient use 

of this resource. The subject of fluid flow through porous media combines fluid 

dynamics, thermodynamics, applied mathematics, chemistry and geology. The wide 

scope of this subject and involvement of difficult physical processes make the relevant 

equations perplexing.  

The understanding of the physics behind movement of fluids in a porous media is still 

questionable and a challenging task. Also movement of fluids in a porous media is not 

possible to be visualized directly under certain cases. Many authors (Biot, 1941, 1956a, 

1956b, 1973; Biot and Willis, 1957; McNamee and Gibson, 1960; Bell and Nur, 1978) 

derived different form of useful equations for diffusion of fluid and their solutions in 

many interesting cases. However most of the authors mentioned assumed empirically 

derived‎Darcy’s‎Law‎and‎formulated‎their‎equations‎of‎diffusion‎based‎on‎it.‎‎ 
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The classical equation describing the flow of fluid through porous media relating pressure 

gradient and fluid flux was formulated by Henry Darcy in 1856. This law was developed 

as a result of experiments on flow of water through sands. According to this law, flux is 

directly proportional to the pressure gradient. Although Darcy's Law (an expression of 

conservation of momentum) was determined experimentally, it has since been derived 

from the Navier-Stokes equations while considering it to be homogeneous. Darcy’s‎Law‎

has many analogies; it is comparable to Ohm's Law for the Conduction of Electricity, 

Fourier's expression for the conduction of heat or Fick's law in diffusion theory (Hubbert, 

1956). This law forms the scientific basis of permeability of the medium that remains 

constant‎with‎time‎in‎case‎of‎Darcy’s‎flow.‎ 

However‎it‎has‎been‎observed‎that‎some‎flow‎behavior‎does‎not‎follow‎the‎Darcy’s‎law‎

trend while moving through the porous media. In fact these behaviors contradict with the 

classic theory of diffusion of pressure and fluids in the porous media. These phenomena 

might cause the permeability of the system to change such as fluid may carry solid 

particles that caused pore plugging or chemical reaction with other minerals can change 

the permeability of the system. It has been experimentally proved that when a fluid flows 

through a porous medium the permeability of the matrix may be locally variable in time 

(Caputo, 2000; Iaffaldano et al., 2006; Cloot and Botha, 2006) for the several reasons 

mentioned above. 

It has been observed that modern diffusion equation fails to describe the behavior of 

subterranean water in flow through porous media. However most of the research has been 

done while considering the diffusion of flux rather than the flux of the fluid (Christakos 

et al., 1995; Mainardi et al., 1996). The main difficulty arises in computing the flux with 
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constant pressure at the boundary because of mathematical computations. So the 

diffusion of flux requires more attention and a different approach. 

In‎order‎ to‎describe‎ the‎ flow‎behavior‎of‎ fluids,‎one‎needs‎ the‎modification‎of‎Darcy’s‎

law by introducing general memory formalisms terms on the flow and pressure gradient 

as well.  Diffusion equation will also require some modification; so memory formalism 

was introduced as rheology in the fluid. These memory formalisms are defined as 

fractional derivatives (Caputo, 2006). 

2.2 Anomalous Diffusion  

 

The concept of diffusion is used in variety of sciences: physics, transport phenomena, 

biological sciences etc. Normal‎diffusion‎can‎be‎modeled‎with‎the‎help‎of‎classical‎Fick’s‎

law which states that diffusion flux is directly proportional to the negative concentration 

gradient. Not in all diffusion processes, particles distribute themselves randomly and 

uniformly. In some cases, particles exhibit complex motion and their trajectories produce 

complex objects (Afananasiev et al., 1991). In this case probability distribution of the 

particles can no longer be approximated by Gaussian distribution so cannot be modeled 

by classical‎ diffusion‎ equation‎ based‎ on‎ Fick’s‎ law.‎ Several‎ authors‎ described‎ the‎

complex situations that can be described by the use of fractional derivatives (Compte, 

1996; Benson et al., 2000; Benson et al., 2001; Del-Castillo-Negrete et al., 2003; 

Meerschaert, 2002; Metzler and Klafter, 2000).  

The common perception about diffusion is that particles move randomly in the space. 

However, if a particle is headed in one direction than there is a probability that it will 

continue in its direction for some time until this probability goes to zero (Taylor, 1921). 
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This type of diffusion can be called as anomalous diffusion in which particles move 

coherently for a longer period of time until they disperse. Anomalous diffusion can no 

longer be described by the classical diffusion equations as these processes are 

characterized by non-Gaussian probability distribution functions. However fractional 

diffusion equations provide an adequate means of describing anomalous transport.  

Reservoirs containing natural fractures possess complex geometries so the elementary 

particles moving along the fractures and porous medium will perform complex motion, 

this structure can be considered as fractal. Fractional diffusion equation for the modeling 

of fractal geometry was formulated while considering a comb like structure of the 

medium, in this case fractional temporal derivatives were used to model sub diffusion 

(slow diffusion) process (Nigmatullin, 1984). Also in a latter study, fractional advection 

diffusion equation was developed analytically for fractured aquifer considering a double 

porosity model (Barenblatt et al., 1990) whereas the order of the fractional advection 

equation depends upon the fractal dimensions of the porous medium. Various approaches 

for studying diffusion in fractal geometries have been used extensively in recent years 

(Havlin, 2002; Uchaikin, 2008; Sibatov and Uchaikin, 2009). Modeling of diffusion for 

normal‎fractals‎is‎done‎by‎considering‎Fick’s‎Law‎with‎spatially‎variable‎diffusivity;‎also‎

it has the same form of governing conventional partial differential equations and proves 

to be a better representation of anomalous diffusion (Fomin et al., 2011). 

Many experimental results have proved the presence of anomalous diffusion process 

especially in heterogeneous medium where concentration of solutes on average scale 

causes non linearity between second moment and time. Many authors use fractional 

derivatives model for diffusion of solutes in heterogeneous porous media. Erochenkova 
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and Lima use partial differential equations whose coefficients can be represented by 

random processes to model diffusion (Erochenkova & Lima, 2001). 

2.3 Fractional Derivatives and Memory Formalisms 

 

Fractional calculus is the field of mathematics which deals with the derivatives and 

integrals to non-integer orders. The fundamentals of fractional calculus were developed 

by Leibniz (1695), Liouville (1834), Riemann (1892) and others. Oliver Heaviside in 

1890s provides the basis for applying fractional calculus in the engineering field. 

Researchers have widely used fractional order derivatives to model various physical 

phenomena in the last several decades. In order to generalize the systems of differential 

equations, fractional calculus plays an important role. 

Since the appearance of fractional calculus, different authors suggested various 

definitions of fractional derivatives and integrals. Some of the most popular definitions 

are as under: 

2.3.1 Riemann-Liouville Definition 

The popular definition of fractional calculus is this which shows Rieman integral of order 

α: 

 
 

 

 
 

1

1

Γ

n t

a t n

a

f dd
D f t

n dt t





 

 
 

 
  

   
 ,      (2.1) 

where‎α‎is: 

 1n n   . 
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2.3.2 M. Caputo Definition 

The second popular definition is: 

 
 

 

 
1
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nt
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a t n
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f d
D f t
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 
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
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        (2.2) 

and‎α‎is‎defined‎as: 

 1n n   . 

2.3.3 Grünwald-Letnikove Definition 

This is another joined definition which is sometimes useful: 

      

0
0

lim 1

t a

h
j

a t
h

j

D f t h f t jh
j

 


 
 
 






 
   

 
       (2.3) 

2.3.4 Hadamard fractional integral 

J Hadamard proposes the following definition: 

 
 

 
1

  1
log

t

a t

a

t d
D f t f



 


  



  
  
  

 ,      (2.4) 

 for t a . 

 Fractional derivatives have been used previously in study of electric transmission lines 

(Heaviside, 1892), to describe ultrasonic wave propagation physics in human cancellous 

bone (Sebaa et al., 2006). A new technique for the modeling of speech signal was 

developed based on fractional integration (Khaled Assaleh and Wajdi Ahmad, 2007). 

Fractional derivatives in time can provide improve description of behavior of sound 
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waves in rigid porous materials (Fellah and Depollier, 2002). Also fractional derivatives 

are useful in modeling of different viscoelastic materials that exhibit complex elastic 

moduli (Soczkiewicz, 2002). 

Fractional order time derivative and space derivative are somewhat different in 

describing the physics of the flow. This concept is well defined and presented by Caputo 

(Caputo, 2002). If modeling of local perturbation is concerned then fractional order time 

derivative will be useful, however if variations in an infinite medium is to be captured 

then fractional order space derivatives are appropriate i.e. flow will be related to memory 

by recalling the path of pressure gradient from the beginning of the flow. 

Qinghe Wang and Dengke Tong used fractional calculus in seepage mechanics for 

development of a three-dimensional relaxation model of Non-Newtonian viscoelastic 

fluid. The exact solution for the model in an infinite acting reservoir is obtained using 

Laplace transform, Fourier sine and cosine integral transform. In this study, Stehfest 

algorithm and Gauss-Lauguerre numerical inversion techniques are used to find out the 

pressure transient trends in real space. Fluid characteristics of Non-Newtonian fluid are 

found as strong function of the order of fractional derivative. Also these effects are 

observed at the initial stage of pressure distribution curved which then merges into a 

single curve at the end (Wang and Tong, 2009). 

The fluid flow in a fractal reservoir is somewhat similar to the diffusion in a disordered 

medium or anomalous diffusion due to complex structures. A mathematical model for 

pressure‎ transient‎ analysis‎ of‎ fractal‎ reservoirs‎ is‎ proposed‎ and‎ solved‎ using‎ Green’s‎

function method (Park, et al., 1998). In this research, effective diffusion coefficient is 



12 

 

developed that represents the memory of the system. The solutions were interpreted for 

many cases and it was concluded that additional pressure drop occurs due to delay from 

diffusion. However the solutions were limited and cannot separate the two fractal 

dimensions df and dw. Park suggested a modified constant rate that is applicable to whole 

spatio-temporal ranges without wellbore storage and skin (Park et al., 2000). 

To include the effect of wellbore storage and skin in presence of memory, new 

mathematical procedures and a generalized form of bottom hole pressure for fractal 

reservoir was formulated  (Park, et al., 2001). In this paper, a new solution is derived and 

analyzed for bottom-hole pressure distribution which permits the wellbore storage and 

skin effects for fractal reservoirs. After that, a general mathematical formula is proposed 

for the analysis of pressure behavior in the case of three-dimensional anisotropic fractally 

fractured reservoirs. This formula is motivated from the fact that many fractured 

reservoirs show spatial anisotropy, i.e., spatial asymmetry. In the research, the solutions 

are obtained on the basis of fractional diffusion theory. Also with sensitivity analysis, it is 

observed that at early time less pressure drop occurs for larger dynamic fractal 

dimension.  

Mishra use fractional derivative in pressure transient analysis of fractal reservoirs with 

phase redistribution (Mishra. A. S., 2010). In this research, it was observed that due to 

slow down of diffusion, the bottom hole pressure is less affected by the formation for 

same wellbore storage compared to that of conventional reservoir. The results of this 

study are helpful in characterizing the fractal reservoirs and other properties such as 

wellbore storage and skin are compared with Chang and Yortsos methods. The 
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mathematical solution presented here is similar one recommended for pressure transient 

analysis of transient data from naturally fractured reservoir. 

2.4 Composite reservoirs 

 

In different scenarios, composite reservoir systems may exist naturally or artificially. 

These reservoirs are composed of two or more regions of different rock or fluid 

properties. One example of naturally occurring of these reservoirs is the reservoir with 

peripheral water encroachment from an aquifer. Steam flooding, in situ combustion, CO2 

miscible flooding and other enhanced oil recovery processes create an artificial 

composite system. Acid stimulation can result in change of permeability near wellbore is 

an example of composite system. A finite thickness skin region was treated as composite 

system (Wattenbarger and Ramey, 1970). Solutions for a composite reservoir considering 

finite skin i.e. damage around a well bore is also presented (Olarewaju and Lee, 1987a) 

where a damage portion was considered as inner region and rest of the reservoir as outer 

region. Reservoirs undergoing thermal recovery processes are perfect idealization for 

composite reservoirs. In this case, inner region is steam swept region where as unswept 

oil region is considered as outer region.   

Several authors studied the transient pressure behavior while considering the radial 

composite system (Guerrero, 1961; Carter, 1966; Bixel and Van Pollen, 1967; 

Eggenschwiler et al., 1980; Olarewaju and Lee, 1987b; Ambastha and Ramey, 1989). 

Most of the authors presented their solutions for a two region composite reservoirs that 

consist of an inner and outer region separated by a sharp interface. However in real 

scenarios, assumption about sharp interface is not accurate. In order to present solutions 
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more adequately, a three region composite reservoir (Onyekonwu and Ramey, 1986; 

Barua and Horne, 1987; and Ambastha and Ramey, 1992) and multi regions composite 

reservoir (Nanba and Home, 1989; Abbaszadeh-Dehghani and Kamal, 1989; Bratvold 

and Horne, 1990) models are considered.  

Figure 2.1 is a graphical representation of a two-region, radial composite reservoir. These 

inner and outer regions are separated by a discontinuity and R is the radius (or distance) 

from the center of the wellbore to the discontinuity. The regions themselves are 

homogeneous i.e. uniform in fluid and rock properties but different from each other. 

 

 

 

 

 

 

 

 

 

 

Figure  2.1: Two Region Radial Composite System         

(Courtesy Issaka, 1995) 
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2.5 Well Test Analysis 

 

Proper characterization of petroleum reservoirs is essential for prediction of accurate 

reservoir performance. Well testing is a part of formation evaluation that has a greater 

ability to find in situ reservoir conditions. In early era of well testing most of the analysis 

was done using straight line analysis proposed by Theis (1935). The semilog analysis 

became‎popular‎in‎1960’s‎and‎1970’s.‎Miller‎et‎al‎(1950)‎and‎Horner‎(1951)‎used‎middle‎

time data while Muskat (1937), Horner (1951), Matthews et al (1954) and Jones (1962) 

used late time data for straight line analysis. Type curve analysis was introduced by 

Ramey in 1970 however significant advances in this area were done by Gringarten (1979) 

and Gringarten and Bourdet (1980). Derivative analysis by Bourdet (1983) opened a new 

way of analyzing complex reservoir and well behaviors. In recent times, deconvolution 

technique significantly improves the interpretation of well test data, providing accurate 

information about reservoir and well parameters.  

From several decades, non-linear regression technique is being used to obtain the 

reservoir parameters. Nonlinear regression is also known as automated type curve 

matching. In this technique, the objective is to minimize the sum of squares of the 

difference between the observed pressure data and the model pressures. However this 

technique has disadvantage of getting trapped in local minima which is usually in the 

vicinity of initial guess. 
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3 CHAPTER 3 

MATHEMATICAL BACKGROUND 

3.1 Laplace Transforms  

 

Laplace transform is one of the most common types of transforms that is being widely 

used in physics and other engineering disciplines. Laplace transform of a piecewise 

continuous function  ( ) is denoted by  [ ( )]and defined as, 

   
0

stf t e f t dt



            (3.1) 

Laplace transform is used to solve linear ordinary differential equations. It has a variety 

of applications in various areas of science and engineering like electrical engineering, 

physics, control engineering, optics, signal processing, well test analysis and mathematics 

etc. It transforms input and outputs that are in time domain to the input and outputs that 

are in frequency domain. Laplace transformable functions must satisfy the Dirichlet 

Conditions (A. D. Poularikas, 2000): 

i.  ( ) must be piecewise continuous.  

ii.   ( ) must be exponential order which means that  ( ) must remain less than 

      as     approaches 1 where    is a positive constant and   is a real positive 

number.  
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Laplace transform has various properties but some of the most important properties that 

are used in this research are as follows: 

1. Linearity 

The Laplace transform of the linear sum of two Laplace transformable functions  ( ) 

+ ( ) is given by, 

        f t g t F z G z              (3.2) 

2. Differentiation 

If the function  ( ) is continuous and   ( ) is piecewise continuous then 

     ' 0f t zF z f             (3.3) 

In general, 

         1 1 2 20 0 . (0)
n n n n n nf t z F z z f z f f         

 
,   (3.4) 

For fractional Derivatives (special case), 

  1 (0)
d f

z F z z f
dt


 



 
  

 
       (3.5) 

Laplace transformation is an effective mathematical tool that can solve very complex 

engineering problems with ease especially in area of control and stability.  
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3.2 Application of Laplace Transforms in Well Test Analysis  

Fluid flow problems in porous media were originally solved using Fourier-Bessel series. 

After the work of Van Everdingen and Hurst in 1949, Laplace transformation was 

recognized as the powerful tool for solving complex problems in less time. Van 

Everdingen and Hurst in 1949 presented solutions for the radial diffusivity equation that 

governs fluid flow through porous media. They developed two sets of solutions for the 

diffusivity equation i.e. constant terminal pressure and constant terminal rate solutions. 

Since then some original solutions were obtained in Laplace that were not possible with 

previous methods. 

The use of Laplace transformation in pressure transient analysis is evident and has 

advantage over other techniques. Solutions can be obtained in Laplace space easily 

however numerical inversion is required to convert solutions to real time domain. 

Stehfest algorithm is mostly used today for the inversion of Laplace space to real time. 

3.3 Stehfest Algorithm 

Laplace transformation is applied for finding out solutions of diffusivity equations 

subjected to various boundary conditions. These solutions require inversion from Laplace 

space to real space. Stehfest algorithm due to its simplicity is used for the numerical 

inversion‎ of‎ Laplace‎ transform.‎ The‎ algorithm‎ was‎ developed‎ in‎ 1960’s‎ by‎ Gaver-

Stehfest. Due to its simplicity and convergence, the algorithm is widely used in 

petroleum engineering especially in pressure transient analysis.   

If a Laplace transform F(s) is available then according to Stehfest its approximate 

inversion is calculated as: 
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 
1

2 2N

i

i

ln ln
F t V P i

T T

 
  

 
          (3.6) 

where N is an even integar and its value usually lies between 4 & 20. 

3.4 Non Linear Regression 

The use of nonlinear regression algorithms in well test analysis for estimating reservoir 

and well bore parameters was introduced by Rosa and Horne (1983). Following are the 

some advantages of nonlinear regression over old techniques that make it to use widely 

today in well test analysis for parameters estimation: 

1. Nonlinear regression can interpret uninterpretable tests i.e. it can be applied for any 

possible reservoir models by generating the corresponding pressure transient solution. 

2. Nonlinear regression can analyze multirate or variable rate tests. For these types of 

variable rate tests, pressure response is calculated for a constant rate production 

drawdown test based on the reservoir model. After getting the solution, superposition 

principle is applied to compute the pressure response for an arbitrary flow rate history. 

3. The method avoids inconsistent interpretations hence the results are free from human 

bias. 

4. Nonlinear regression provides confidence estimates on answers in conjunction with 

statistical inference. 
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3.5 Levenberg-Marquardt Algorithm 

In this work, the Levenberg-Marquardt (LM) algorithm is used for nonlinear regression 

that finds out the minimum of the objective function that is expressed as the sum of 

squares of non-linear real-valued functions (Levenberg K. 1944). This technique is 

considered as a standard for non-linear least-squares problems (Mittelmann, H.D.  2004). 

The Hessian matrix H  for standard Newton inverse analysis method can be defined as 

the second derivative of the objective function. So, the Hessian of the objective function 

can be written as, 

   1 1 1T T

D M D cal measH S C S C S C d d                (3.7) 

where S  is the second derivative matrix and it can be given as, 

2

cal

T T

dS
S

  


  

  
           (3.8) 

In above equation (3.5), the Hessian matrix should be positive-definite at each iteration to 

meet the convergence; because when it is positive-definite the Newton approach yields a 

downhill direction and meet the quadratic convergence in the neighborhood of the actual 

solution . If Hessian matrix is close to singular i.e. not positive-definite then 

convergence or optimum solution may not reached.  

0 T T Ts Hs g s               (3.9) 
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In order to solve Equation (3.10) for s , we need to compute gradient and Hessian at each 

iteration,  . The gradient for the objective function defined in equation (3.6) can be 

represented as, 

     1 1T

D cal meas M prig S C d d C                   (3.10) 

where S  is the sensitivity matrix and is given as, 

cald
S







               (3.11) 

The calculation of exact Hessian is computationally expensive and takes very long time. 

The Levenberg-Marquardt method (Levenberg, 1944; Marquardt, 1963) approximates 

Hessian matrix to be equal to the diagonal matrix ( )I . So the equation becomes, 

  1 1T

LM D MH S C S C I                (3.12) 

where   is a scalar quantity that is multiplied with the identity matrix I of the Hessian 

which makes it to be always positive definite. This diagonal perturbation will shift every 

eigenvalue of the Gauss-Newton Hessian by the value of  . Any eigenvalue that is 

negative or too close to zero, becomes positive, using this diagonal perturbation. This 

also improves the condition number of matrix. This perturbation is not limited to Gauss-

Newton Hessian, but can even be applied to exact Hessian if it is close to singular. The 

Levenberg-Marquardt method is a combination of the Gauss–Newton algorithm and the 

method of steepest descent. When the current solution is far from the correct one, the 

algorithm behaves like a steepest descent method that slows the convergence rate and 
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sometimes cannot reach to the minimum point. When the current solution is close to the 

correct solution, it becomes a Gauss-Newton method. 

3.6 Analytical Solutions to Radial Composite Reservoir 

This section comprises of the analytical solutions of two region radial composite 

reservoir that was developed by Ambastha (1988) and modified later by Issaka (1996). 

The solutions are developed in Laplace space firstly without the inclusion of wellbore 

storage and skin. Following are the assumptions on which equations are derived: 

 Constant production rate at wellbore is considered. 

 The formation consists of two discontinuous regions with homogenous and 

isotropic properties on each side of the discontinuity. 

 Laminar flow of a single phase fluid with slightly but constant compressibility 

occurs in each region. 

 Gravity and capillarity effects are negligible. 

For a two region radial composite reservoir, the classical governing flow equations in 

field units can be written as follows: 

 1 1

1

1
3792.2 0t

f

cp p
r r r

r r r tk

    
      

     
,     (3.13) 

and, 

 2 2

2

1
3792.2 t

f e

cp p
r r r r or

r r r tk

    
        

     
    (3.14) 
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1p and 2p  are the pressures in region 1 and 2 respectively.   is porosity,   is viscosity 

in centipoise, tc  is the total compressibility and k  is the modified permeability. Equation 

3.13 represents the diffusivity equation for the first region that extends from the wellbore 

radius wr to fr (distance to discontinuity). On the other hand, Equation 3.14 is for the 

second region that starts from fr and ends depending upon the where the external 

boundary is located. 

After converting the above equations into dimensionless form, the classical equations are 

as follows: 

 
2

2 21 1
12

0D D
D D fD D

D D

p p
r r zr p

r r
r r

 
     

 
,      (3.15) 

and, 

 
2

2 22 2
22

D D
D D fD

D D

eD

p p
r r Fz r r r orr p

r r
  

 
  

 
      (3.16) 

Following are the initial and boundary conditions for classical diffusion equations for a 

two region radial composite reservoir: 

3.6.1 Initial Conditions 

Before any production/injection from the well takes place the whole reservoir is assumed 

to be at the uniform initial reservoir pressure, ip . In dimensionless form, initial conditions 

for two regions can be written as, 

1( , 0) 0D D Dp r t   ,         (3.17) 
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and, 

2( , 0) 0D D Dp r t            (3.18) 

3.6.2 Inner Boundary Condition 

Since‎constant‎rate‎production‎is‎assumed‎at‎well‎bore‎so‎Darcy’s‎law‎will‎be‎applicable‎

in this case and can be written as: 

1

1

1

D

D

D r

p

r



 


            (3.19) 

Since well bore storage and skin effects are not taken into account, so: 

1 ( 1)wD D Dp p r            (3.20) 

3.6.3 Interface Conditions 

A very thin film discontinuity is considered at the interface so pressure and flow rate at 

the interface (  ) will be continuous: 

1. Equal Pressure 

   1 2, ,D D D D D Dp r R t p r R t          (3.21) 

2. Equal Flux 

2 1

D D D D

D D

D Dr R r R

p p
M

r r
 

 


 
        (3.22) 

where M is the mobility ratio between region 1 and 2 and is defined as: 
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 

 
1

2

k B
M

k B




            

3.6.4 Outer Boundary Condition 

Three different boundary conditions are normally encountered in solving problems of 

diffusivity that are as follows: 

1. Infinite Acting Reservoir Boundary 

In this case well is assumed to be located at the center of porous medium of infinite radial 

extent. Also for finite reservoir, this condition is valid as it means that pressure 

disturbance generated at the well bore has not seen the outer boundary. In dimensional 

form, it can be written as follows: 

 2 , 0D Dp r t           (3.23) 

2. No-flow Reservoir Boundary 

For this condition, well is located at the center of a cylindrical reservoir of radius er with 

No-flow reservoir outer boundary. The condition is widely applicable for volumetric 

reservoir.‎‎The‎condition‎from‎Darcy’s‎Law‎is‎as‎under: 

2 0

D eD

D

D r r

p

r


 
 

 
         (3.24) 
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3. Constant Pressure Outer Boundary 

The well is assumed to be located at the center of a cylindrical reservoir of radius er and 

constant pressure is maintained at the outer boundary. This condition takes the form: 

 2 , 0D D eDp r r t           (3.25) 

The dimensionless variables used are as follow: 

1 1

1

1
( )

141.2
D i

kh
p p p

q B

 
  

 
 ,       (3.26) 

2 2

2

1
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141.2
D i

kh
p p p

q B

 
  

 
,       (3.27) 

1

1

1
( )

141.2
wD i wf

kh
p p p

q B

 
  

 
,       (3.28) 

2

1

0.00002637D

t w

t
k t

c r

 
  

 
,        (3.29) 

   
1 2

/ /t tF k c k c  ,        (3.30) 

   
1 2

/ /M k B k B  ,        (3.31) 

D

w

r
r

r
 ,          (3.32) 
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Df

w

r
r

r
 ,          (3.33) 
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and, 

e
eD

w

r
r

r
 .          (3.34) 

The solutions to Equations 3.9 & 3.10 subjected to various boundary conditions from 

Equations 3.11 to 3.19 are as under: 

     1 0 0
ˆ 0D D D fp AI r z BK r rz r      ,     (3.35) 

and, 

     2 0 0
ˆ

D D Df eDp CI r Fz DK r Fz r r r or          (3.36) 

In above equations, z is the Laplace parameter that is equivalent to time parameter in real 

space. Dimensionless pressure at the wellbore can be written from Equation 3.20 as, 

     1 0 0
ˆ 1wD Dp AI z BK z r          (3.37) 

The constants A, B, C and D are found using boundary conditions from Equations 3.19 to 

3.25. Three different sets of constants are obtained for three different outer boundary 

conditions. These constants subjected to different boundary conditions are as under: 

3.6.5 Constants for Infinite Acting Reservoir Boundary 

The constant A, B, C and D for infinite acting reservoir boundary are as under: 

    
2

3

2
1 1 2 1

 
S

A

z S K z S I z





,       (3.38) 
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    
2
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

,        (3.39) 

 0C  ,           (3.40) 

and, 

   

    

0 1 0 2
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2
1 1 2 1

 
Df DfI r z S K r z S

D

z S K z S I z






       (3.41) 

whereas S1 and S2 are, 

       1 0 1 1 0Df Df Df DfS MK r Fz I r z FK r Fz I r z  ,    (3.42) 

and, 

       2 0 1 1 0Df Df Df DfS MK r Fz K r z F K r Fz K r z  .   (3.43) 

3.6.6 Constants for No-flow Reservoir Boundary 

The constant for No-flow reservoir external boundary are: 

    
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,       (3.44) 

    
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,       (3.45) 
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and, 

       

    

1 0 2 1 0 1

3

2
3 1 1 2 1

     
eD Df eD DfI r Fz I r z S I r Fz K r z S
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


    (3.47) 

1S , 2S , 3S  and 4S are defined as, 

   1 1 4 0 3Df DfS MI r z S F I r z S  ,      (3.48) 

   2 1 4 0 3Df DfS MK r z S F K r z S  ,      (3.49) 

       3 1 1 1 1 eD Df eD DfS K r Fz I r Fz I r Fz K r Fz  ,    (3.50) 

and, 

       4 1 0 1 0eD Df eD DfS K r Fz I r Fz I r Fz K r Fz  .    (3.51) 

3.6.7 Constants for Constant Pressure Reservoir Boundary 

The constants under this condition are: 

    
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,       (3.52) 

    
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,       (3.53) 
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and, 

       
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    (3.55) 

where, 

   1 4 1 3 0Df DfS MS I r z FS I r z  ,      (3.56) 

   2 4 1 3 0Df DfS MS K r z FS K r z  ,      (3.57) 

       3 0 1 0 1eD Df eD DfS K r Fz I r Fz I r Fz K r Fz  ,    (3.58) 

and, 

       4 0 0 0 0eD Df eD DfS I r Fz K r Fz K r Fz I r Fz  .    (3.59) 

Dimensionless wellbore pressure without skin and wellbore storage is calculated from 

Equation 3.37. Stehfest Algorithm (1970) is used to obtain real well bore pressure from 

Laplace space. 

3.6.8 Well bore Storage and Skin Effect 

The solutions presented so far are without wellbore storage and skin effects. It is practical 

to add well bore storage and skin effects in final calculations to mimic the true picture of 

pressure distribution with respect to time or distance. In order to include well bore 

storage and skin into the solution, Van Everdingen and Hurst 1949 proposed a solution 
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and solved the problem as convolution integral. So the dimensionless wellbore pressure 

with skin and wellbore storage effect can be written as: 

  
ˆ

ˆ ( )
ˆ1

D
wD

D D

zp s
p z

z C z zp s




 
       (3.60) 

In above equation, ˆDp  is the dimensionless well bore pressure in Laplace space without 

wellbore storage and skin effects. 
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4 CHAPTER 4 

ANALYTICAL SOLUTIONS TO THE FRACTIONAL 

DIFFUSION EQUATION IN RADIAL COMPOSITE 

RESERVOIRS 

4.1 Classical Darcy’s Law 

The basic constitutive equation that governs the flow of fluids through porous media is 

Darcy’s‎law.‎The‎French‎civil‎engineer‎Henry‎Darcy‎formulated the famous law in 1856 

on the basis of his experiments on vertical water filtration through sand beds. Darcy 

(1856) found out the relationship that could best describe his experimental data as, 

 
h

q C
L


           (4.1) 

In the above equation‎that‎yields‎from‎Darcy’s‎experiments, q is the volumetric flow rate, 

L is the length of the sand pack, h is the difference between heights 1h  and 2h , the 

heights above the standard datum of the water in the manometers and represents 

hydraulic heads at points 1 and 2.  

However in describing the fluid flow in a petroleum reservoir it is more convenient to 

represent Darcy Law differentially in radial form with field units. The said form of the 

Darcy’s‎Law‎can‎be‎written‎as, 
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141.2

kh p
q r

B r

 
  
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           (4.2) 

In Equation 4.2, q is in STB/D, h  and r  are in ft,  is in centipoise, B  is formation 

volume factor in RB/STB, p is in psia.  

4.2 Modified Darcy’s Law 

In‎ this‎ study,‎Darcy’s‎Law‎ is‎modified‎ and‎ fractional‎ derivatives‎ are‎ used‎ to‎ represent 

memory‎formalism‎parameter.‎Modified‎Darcy’s‎Law‎can‎be‎written‎as, 

 
141.2

kh p
q r

B r

 
  
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          (4.3) 

where, 

p
p

t









          (4.4) 

k  is‎the‎modified‎Darcy’s‎permeability‎and‎its‎units‎are‎ / secmd 
 and   represents the 

memory parameter in Equation 4.4. 

4.3 Models of Fractional Diffusion 

In this research, Ambastha (1988) solution for two region radial composite reservoir is 

modified and fractional derivatives are introduced for the first time for composite 

reservoir. First the solution is obtained without wellbore storage and skin. Following are 

some of the assumptions on which the equations are derived: 

 Constant production rate at wellbore is considered. 
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 The formation consists of two discontinuous regions with homogenous and 

isotropic properties on each side of the discontinuity. 

 The front is of infinitesimal thickness and is considered stationary throughout the 

test period. 

 Laminar flow of a single phase fluid with slightly compressible fluid. 

 Gravity and capillarity effects are negligible. 

By‎ using‎ Equation‎ 4.3‎ i.e.‎ modified‎ Darcy’s‎ Law,‎ the‎ modified‎ diffusivity‎ equations‎

describing fluid flow through porous media in a two region radial composite reservoir are 

given by:      

 1 1
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1
3792.2 0t
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r r r

r r r tk

    
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,                       (4.5) 

and, 
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where,  
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,          (4.7) 

and, 

2
2
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t









.          (4.8) 

It will be easier to incorporate boundary conditions in the form of pressure drop rather 

than just pressure. So modified diffusivity equations in terms of pressure drop are as 

under: 
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and, 
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where, 
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 
  

 
,         (4.11) 

and, 

2

2

1

3792.2 t

k

c




 
  

 
.         (4.12) 

Since Equations 4.9 & 4.10 are second order in space and first order in time so generally 

it is required to have two boundary conditions and one initial condition. For radial flow, 

we usually specify boundary conditions at the wellbore (Inner boundary condition) and at 

the external radius of the reservoir (Outer boundary condition, considering the reservoir 

is circular). As we have two region radial composite reservoir so two interface conditions 

will also be present. These conditions are: 

4.3.1 Initial Conditions 

The conditions which are specified at time t=0 are termed as initial conditions. Usually in 

petroleum reservoirs it is reasonable to assume a uniform initial pressure in the reservoir. 



36 

 

For a two region composite, we assume that initial pressure in both the region is the same 

and is equal to pi. So pressure drop at time t=0 can be defined as,    

 1 , 0 0p r t   ,                       (4.13) 

and,                                                                                       

 2 , 0 0p r t                                                        (4.14) 

4.3.2 Inner Boundary Condition 

Generally the two types of inner boundary conditions are constant rate and constant 

pressure. A well is typically produced either at one of two conditions and it may have the 

effects of well bore storage. In this research, we restrict our solutions to the most 

commonly encountered inner boundary condition i.e. a well producing/injecting at 

constant rate to solve the diffusivity equations. The inner boundary for a well 

producing/injecting at constant rate is given by, 

1 24

141.2
w

wf

r r

d ppkh C
q r

B r B dt 

 
  

 
                                (4.15) 

In this study, q is taken as negative for production well whereas for injection well it is 

positive. The effect of skin that cause an additional pressure drop near the wellbore due to 

impaired permeability must be added to calculate actual pressure from diffusivity 

equation. Skin effect is always present in an oil/gas reservoir usually caused by drilling 

and completion procedures. The skin effect in terms of pressure drop is as follows,  

1

w

w

r r wf

r r

p
s r p p

r




 
   

 
                            (4.16)                                                                                   
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4.3.3 Interface Conditions 

In most of the cases, it is reasonable to assume two regions of different but uniform and 

isotropic properties. The two regions are separated by a sharp interface present between 

them and there is significant contrast in mobility and storativity of the two regions. 

However it is necessary to have continuity between pressure and flow rates as the fluid 

moves from region 1 to region 2. The interface conditions are expressed as,     

1. Equal Pressure at interface 

 

   1 2, ,f fp r r t p r r t                       (4.17)                                                                                                         

  

2. Equal Flow at interface 

2 1

f fr r r r

p p
M

r r 

    
   

    
                           (4.18)                                                                                                         

where M is the mobility ratio between region 1 and region 2. 

1

2

k

B
M

k

B





 
 
 


 
 
 

           (4.19) 

4.3.4 Outer Boundary Conditions 

Three cases are generally considered for outer boundary conditions of a reservoir. One is 

infinite acting; it means that pressure disturbance created at the wellbore is not felt at the 

outer boundary for practical distances from the wellbore at any time during the well test. 

Second case is of a closed reservoir, an example of no-flow boundary reservoir is the 

volumetric reservoir. Third outer boundary condition is of constant pressure reservoir, 

reservoirs with very strong water drive are the examples of this case.    
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Case 1: Infinite Acting Reservoir Boundary 

Pressure becomes equal to the initial reservoir pressure as the radius becomes very large 

for all time. Eventually pressure drop will be zero. It can be written as, 

 2 , 0p r t            (4.20) 

Case 2: Closed Reservoir 

Considering a cylindrical reservoir with external radius as re, for all time greater than 

zero‎from‎Darcy’s‎Law‎we‎can‎write‎the‎boundary‎condition‎as, 

2 0

er r

p

r 

 
 

 
                                                                                (4.21) 

Case 3: Constant Pressure Reservoir Boundary 

For a reservoir with strong water drive with outer radius re, constant pressure condition 

can be written as, 

 2 , 0ep r r t                                                                        (4.22)                                                

4.3.5 Laplace transformation of Initial and Boundary Conditions 

Laplace transformation of Initial and Boundary Conditions from Equation 4.13 to 

Equation 4.22 are as follows, 

4.3.5.1 Initial Conditions  

After Laplace transform, initial conditions for the two regions can be written as, 
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 1
ˆ , 0 0p r t   ,                       (4.23) 

and,                                                                                       

 2
ˆ , 0 0p r t   .                                                     (4.24) 

4.3.5.2 Inner Boundary Condition 

Rearranging Equation 4.15 to separate out pressure gradient terms from other and is 

given as, 

1

1 1

24
141.2

w

wf

r r

d pp B C
r q

r B dtkh





    
    

     
 

Applying Laplace transforms and substituting initial condition from Equation 4.23 in to 

the above equation, 

   1

1 1
ˆ ˆ ˆ ˆ, 0 , 0

w

wf wf

r r

d q
r z p z p r t C z p p r t

dr z

 



 
               

 
, 

Further simplification of the above equation will give, 

11

1

ˆ
ˆ

w

wf

r r

d p q
r C z p

dr z











 
      

 
                                                                            (4.25) 

where, 

1

141.2
B

q q
kh

 
  

 
, 

and, 
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1

3388.8C C
kh

 
  

 
 

In Laplace form, Equation 4.16 can be written as: 

 1

1 1
ˆ ˆ ˆ ˆ , 0

w

w

wf r r

r r

d
p p s r z p z p r t

dr

 





 
          

 
   ,          

Substituting initial condition from Equation 4.23 and further simplification of the above 

equation will give, 

1
ˆ

ˆ ˆ
w

w

wf r r

r r

d p
p p sz r

dr







 
     

 
        (4.26) 

4.3.5.3 Interface Conditions 

Laplace transform of interface conditions are as follows: 

1. Equal Pressure at interface 

Laplace form of Equation 4.17 can be written as, 

   1 2
ˆ ˆ, ,f fp r r t p r r t                      (4.27)                                                                                                         

2. Equal Flow at interface 

Equation 4.18 in Laplace form is as follows: 

2 1
ˆ ˆ

f fr r r r

d p d p
M

dr dr 

    
   

   
                              (4.28)                                                                                                         

4.3.5.4 Outer Boundary Conditions 

After transforming into Laplace space, three outer boundary conditions can be written as: 
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Case 1: Infinite Acting Reservoir Boundary 

Equation 4.20 in Laplace space is as under: 

 2
ˆ , 0p r t            (4.29) 

Case 2: Closed Reservoir 

Laplace transformation of Equation 4.21 will give, 

2
ˆ

0

er r

d p

dr 

 
 

 
                                                                                (4.30) 

Case 3: Constant Pressure Reservoir Boundary 

Constant pressure reservoir outer boundary in Laplace space is as under: 

 2
ˆ , 0ep r r t                                                                       (4.31) 

Taking Laplace transform of Equations 4.9 & 4.10 and applying initial conditions from 

Equations 4.23 & 4.24, 

   1

1 1 1 1

1

1 1
ˆ ˆ ˆ ˆ, 0 , 0

d d
r z p z p r t z p p r t

r dr dr

 



 
            

 
, 

Simplifying above equation, 

1

1
1

1

ˆ1
ˆ

d pd z
r p

r dr dr





 
  

 
,      

finally we have, 

 1
1 1

ˆ1
ˆ 0 f

d pd
r p r r

r dr dr


 
      

 
  .                                     (4.32) 
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Similarly for second region of radial composite system, 

 2
2 2

ˆ1
ˆ

f e

d pd
r p r r r

r dr dr


 
       

 
                                                  (4.33) 

where, 

1

1

1

z 






 , 

and, 

1

2

2

z 






  

Laplace Solutions for Equations 4.32 and 4.33 in terms of Bessel functions are as 

follows:  

     1 1 1
ˆ 0o o fp AI r BK r r r       ,                                      (4.34) 

and, 

     2 2 2
ˆ

o o f ep CI r DK r r r r                                                    (4.35) 

The constants A, B, C & D are subjected to outer boundary conditions and will vary as 

the outer boundary conditions are changed. 

Taking derivative of Equation 4.26 and incorporating inner boundary condition from 

Equation 4.17 and solving for ˆ
wfp , 

    1

1 1 1 1 1 1 1
ˆ

w w w w wf

q
Ar I r Br K r C z p

z




    


      ,                                   

Rearrangement of the above equation will give, 
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   1

1 1 1 11 2
ˆ w

wf w w

r q
p AI r BK r

Cz Cz


 


    
 

                                (4.36) 

Taking derivative of Equation 4.26 and incorporating inner boundary condition from 

Equation 4.18 and solving for ˆ
wfp , 

   

   

1 1 1 1

1 1 1 1

ˆ
wf o w w w

o w w w

p A I r sz r I r

B K r sz r K r





  

  

    
 

 
 

     (4.37)      

4.3.6 Solutions for Infinite Acting Reservoir Boundary Case 

Using Equation 4.29 in Equation 4.35 to incorporate Infinite acting outer boundary 

condition, 

   0 0CI DK     , 

and, 

0C                               (4.38) 

Using Equation 4.27 for equal pressure condition, 

       1 1 2 2o f o f o f o fAI r BK r CI r DK r                       (4.39) 

Putting value of C from Equation 4.38 in Equation 4.39, 

     1 1 2o f o f o fAI r BK r DK r           (4.40) 

Using Equation (4.28) for equal flux condition, 

       2 1 2 1 2 1 1 1 1 1f f f fCI r DK r M AI r BK r          
   

            (4.41)                               

Substituting Equation 4.30 into Equation 4.33, 
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     1 1 1 1 1 2f f fM AI r BK r F K r D         
   

    (4.42) 

Rearranging Equation 4.36, 4.37, 4.40 and 4.42 as, 

11 12 13 14 15
ˆ

wfa p a A a B a D a     ,       (4.43) 

21 22 23 24 25
ˆ

wfa p a A a B a D a     ,       (4.44) 

31 32 33 34 35
ˆ

wfa p a A a B a D a     ,       (4.45) 

and, 

41 42 43 44 45
ˆ

wfa p a A a B a D a            (4.46) 

Coefficients Descriptions 

The coefficient under infinite acting reservoir boundary are defined as, 

11 1a  ,           (4.47) 

 1

12 1 11

w

w

r
a I r

Cz 





  ,        (4.48) 

 1

13 1 11

w

w

r
a K r

Cz 





 ,        (4.49) 

14 0a  ,          (4.50) 

15 2

q
a

Cz
  ,          (4.51) 

21 1a  ,          (4.52) 

   22 1 1 1 1o w w wa I r sz r I r     
 

,      (4.53) 

   23 1 1 1 1o w w wa K r sz r K r     
 

,      (4.54) 

24 0a  ,          (4.55) 

25 0a  ,          (4.56) 
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31 0a   ,          (4.57) 

 32 1o fa I r  ,         (4.58) 

 33 1o fa K r  ,         (4.59) 

 34 2o fa K r   ,         (4.60) 

35 0a  ,          (4.61) 

41 0a   ,          (4.62) 

 42 1 1fa MI r  ,         (4.63) 

 43 1 1fa MK r   ,         (4.64) 

 44 1 2fa F K r  ,         (4.65) 

and, 

45 0a            (4.66) 

Solving Equations 4.43 to 4.46 will yield value of required pressure drop that will contain 

the memory effect. 

4.3.7 Constants for Closed Reservoir Case 

Taking derivative of Equation 4.35 and subtituting it in Equation 4.30 to incorporate No-

flow outer boundary condition, 

   2 1 2 2 1 2e eC I r D K r      , 

Simplification will give, 

 
 

1 2

1 2

e

e

K r
C D

I r




                                                       (4.67) 
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Using Equation 4.67 in Equation 4.39 and 4.41, 

   

       
 

1 1

1 2 2 1 2 2

1 2

o f o f

e o f e o f

e

AI r BK r

K r I r I r K r
D

I r

 

   



 

 
 
 
 

,                                               (4.68) 

and, 

   

       
 

1 1 1 1

1 2 1 2 1 2 1 2

1 2

f f

e f e f

e

M AI r BK r

K r I r I r K r
F D

I r

 

   



  
 

 
 
 
 

.                               (4.69) 

Rearranging Equation 4.36, 4.37, 4.68 and 4.69 as, 

11 12 13 14 15
ˆ

wfb p b A b B b D b     ,       (4.70) 

21 22 23 24 25
ˆ

wfb p b A b B b D b     ,       (4.71) 

31 32 33 34 35
ˆ

wfb p b A b B b D b     ,       (4.72) 

and, 

41 42 43 44 45
ˆ

wfb p b A b B b D b            (4.73) 

 

Coefficients Descriptions 

The coefficients description under No-flow reservoir outer boundary is as follows: 

11 1b  ,           (4.74) 

 1

12 1 11

w

w

r
b I r

Cz 





  ,        (4.75) 

 1

13 1 11

w

w

r
b K r

Cz 





 ,        (4.76) 

14 0b  ,          (4.77) 
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15 2

q
b

Cz
  ,          (4.78) 

21 1b  ,           (4.79) 

   22 1 1 1 1o w w wb I r sz r I r     
 

,      (4.80) 

   23 1 1 1 1o w w wb K r sz r K r     
 

,      (4.81) 

24 0b  ,          (4.82) 

25 0b   ,          (4.83) 

31 0b   ,          (4.84) 

 32 1o fb I r  ,         (4.85) 

 33 1o fb K r  ,         (4.86) 

       
 

1 2 2 1 2 2

34

1 2

e o f e o f

e

K r I r I r K r
b

I r

   



 
  
 
 

,    (4.87) 

35 0b  ,          (4.88) 

41 0b   ,          (4.89) 

 42 1 1fb MI r  ,         (4.90) 

 43 1 1fb MK r   ,         (4.91) 

       
 

1 2 1 2 1 2 1 2

44

1 2

e f e f

e

K r I r I r K r
b F

I r

   



 
   
 
 

,   (4.92) 

and, 

45 0b             (4.93) 
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Solving Equations 4.70 to 4.73 will yield value of required pressure drop that will contain 

the memory effect. 

4.3.8 Constants for Constant Pressure Boundary Case 

Using Equation 4.31 and substitute it in Equation 4.35 to incorporate Constant Pressure 

Outer boundary condition, 

   0 2 0 2e eCI r DK r    , 

which further simplifies to, 

 
 

0 2

0 2

e

e

K r
C D

I r




                                  (4.94)                               

Substituting the value of Equation 4.86 in Equation 4.39 and 4.41, 

   

       
 

1 1

0 2 2 0 2 2

0 2

o f o f

e o f e o f

e

AI r BK r

I r K r K r I r
D

I r

 

   



 

  
 
 
 

,                         (4.95)                               

and, 

   

       
 

1 1 1 1

0 2 1 2 0 2 1 2

0 2

f f

e f e f

e

M AI r BK r

K r I r I r K r
F

I r

 

   



  
 

 
   
 
 

                         (4.96)             

Rearranging Equation 4.36, 4.37, 4.95 and 4.96 as, 

11 12 13 14 15
ˆ

wfc p c A c B c D c     ,       (4.97) 

21 22 23 24 25
ˆ

wfc p c A c B c D c     ,       (4.98) 

31 32 33 34 35
ˆ

wfc p c A c B c D c     ,       (4.99) 

and, 
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41 42 43 44 45
ˆ

wfc p c A c B c D c            (4.100) 

Coefficients Descriptions 

For Constant pressure reservoir outer boundary, coefficients are as follows: 

11 1c  ,           (4.101) 

 1

12 1 11

w

w

r
c I r

Cz 





  ,        (4.102) 

 1

13 1 11

w

w

r
c K r

Cz 





 ,        (4.103) 

14 0c  ,          (4.104) 

15 2

q
c

Cz
  ,          (4.105) 

21 1c  ,           (4.106) 

   22 1 1 1 1o w w wc I r sz r I r     
 

,      (4.107) 

   23 1 1 1 1o w w wc K r sz r K r     
 

,      (4.108) 

24 0c  ,          (4.109) 

25 0c   ,          (4.110) 

31 0c   ,          (4.111) 

 32 1o fc I r  ,         (4.112) 

 33 1o fc K r  ,         (4.113) 

       
 

0 2 2 0 2 2

34

0 2

e o f e o f

e

I r K r K r I r
c

I r

   



  
  
 
 

,    (4.114) 

35 0c  ,          (4.115) 
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41 0c   ,          (4.116) 

 42 1 1fc MI r  ,         (4.117) 

 43 1 1fc MK r   ,         (4.118) 

       
 

0 2 1 2 0 2 1 2

44

0 2

e f e f

e

K r I r I r K r
c F

I r

   



 
  
 
 

,    (4.119) 

and, 

45 0c                         (4.120) 

Solving Equations 4.97 to 4.100 will yield value of required pressure drop that will 

contain the memory effect. 

4.4 Pressure response and its Derivatives under fractional diffusion 

Before going to inverse analysis, the basic step is the identification of the reservoir 

recognition of the reservoir model, because without defining the model, the 

corresponding reservoir and wellbore parameters cannot be estimated. 

Pressure derivative plots that were first proposed by Bourdet et al. (1983a) have become 

a standard procedure for model identification. The pressure derivative plot provides a 

simultaneous presentation of the following two sets of plots. 

   log logD DP Vs t   

   log ' logD DP Vs t   

In our case we plotted  p &  'p  instead of DP & '

DP  respectively. We are now 

applying this concept of memory formalisms for the generation of pressure and pressure 
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derivative curves suggested by Bourdet (1983). Three examples are considered for the 

generation of pressure and derivative curves. These examples mainly vary in terms of 

their outer boundary conditions and specific reservoir and well bore properties. 

Derivative  'p in this case is defined as: 

'
d p

p t
dt


   

4.5 Model Validation 

The models equations provided in literature by Ambastha (1988) are compared with 

fractional diffusion models providing alpha=0.  The model validations for different outer 

boundary conditions under different reservoir and wellbore parameters are as under: 

4.5.1 Model Verification for Infinite Acting reservoir Boundary 

Table  4.1: Reservoir and Wellbore parameters for infinite acting outer boundary condition 

Parameters Value 

1k  500 

1  0.8 

1tc  1e-5 

1  0.25 

2k  50 

2  0.8 

2tc  1e-5 

2  0.25 

fr  400 

s  2 

C  0.005 

  0 
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4.5.2 Model Verification for No-flow reservoir Boundary 

Table  4.2: Reservoir and Wellbore parameters for no-flow outer boundary condition 

Parameters Value 

1k  500 

1  0.8 

1tc  1e-5 

1  0.25 

2k  50 

2  0.8 

2tc  1e-5 

2  0.25 

fr  400 

er  1000 

s  2 

C  0.005 

  0 

Figure  4.1: Matched Pressure drop and derivative versus time for infinite 

acting outer boundary condition 
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4.5.3 Model Verification for Constant Pressure reservoir Boundary 

Table  4.3: Reservoir and Wellbore parameters for constant pressure outer boundary condition 

Parameters Value 

1k  500 

1  0.8 

1tc  1e-5 

1  0.25 

2k  50 

2  0.8 

2tc  1e-5 

2  0.25 

fr  400 

er  1000 

s  2 

C  0.005 

  0 

Figure  4.2: Matched Pressure drop and derivative versus time for no-flow 

outer boundary condition 
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4.6 Sensitivity analysis  

In this section, we perform sensitivity analysis of memory parameter for favorable and 

unfavorable mobility ratios: 

4.6.1 Example 1: Two Region Radial Composite Reservoir with infinite 

acting outer boundary condition 

In this example, we generate pressure and pressure derivatives curves for a two region 

radial composite reservoir with constant rate inner boundary condition and infinite acting 

outer boundary condition. We considered two scenarios of favorable and unfavorable 

mobility ratios i.e. when M > 1 (favorable mobility ratio) and M < 1 (unfavorable 

mobility ratio).  Wellbore storage and skin effects are also considered.  These curves are 

plotted considering the fractional diffusion models and sensitivity of memory parameter 

Figure  4.3: Matched Pressure drop and derivative versus time for constant 

pressure outer boundary condition 
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 is also being analyzed. The reservoir is initially at a pressure of 6000 psia and its 

thickness is 100 ft. A well with radius of 0.5 ft under constant production of 800 STB/D 

is considered. A logarithmic function is used to make time steps starting with time of 

about 10
-6

 and ending with about 1000 hrs with 1500 data points. Stehfest algorithm is 

used‎to‎convert‎the‎pressure‎data‎from‎Laplace‎space‎to‎real‎space‎and‎value‎of‎‘N’‎even‎

integar is taken to be 6. Typical reservoir and well bore properties used for generation of 

pressure and pressure derivatives curves for two mobility ratios are shown in Table 4.4 

and 4.5. 

It is evident from the Figure 4.4 and Figure 4.7 that bottom hole flowing pressure is 

influenced by the memory parameter . Due to large time scale, effect of memory 

parameter is not visible for early time on Cartesian plot. On the other hand, semi log plot 

in Figure 4.5 and 4.8 of bottom hole flowing pressure versus time shows that with 

increasing value of memory parameter  , pwf is becoming higher i.e. additional pressure 

drop may be due to anomalous diffusion. This effect can be compared with results 

discussed by Park (Park et al., 2001) in which they described the memory of the system 

from effective diffusion coefficient, their results show that additional pressure drops 

should occur because of the delay from diffusion. Figure 4.6 shows the pressure drop and 

pressure derivative plots for mobility ratio greater than one where as Figure 4.9 is for 

mobility ratio less than one, these distributions are plotted to see the effect of memory 

parameters. In both figures, wellbore storage period is easily identifiable by unit slope 

line. At the end of well bore storage, pressure derivative is showing radial flow regime 

for region one for  equals to zero, however it is noticed that as the value of  is 

increasing; the deviation from horizontal line is becoming more.  Each of the four lines 
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for different values of  crosses each other before the start of the radial homogeneous 

system.  The pressure derivative curve shows higher pressure drop due to value of 

mobility ratio greater than one whereas it is opposite in Figure 4.9 (Ambastha, 1988; 

Issaka, 1996). It is observed that the pressure drop is less for larger values of , then the 

pressure drop curves merges to a single one at one point. They become separated out 

once again at later stage; however at the later stage pressure drop in the reservoir is more 

for higher values of  for both cases of mobility ratio. The pressure derivative curves in 

the Figure 4.6 and Figure 4.9 are much more sensitive to the memory parameter, as there 

are strong separations between the radial flow lines for different values of . This depicts 

the values of  to be very small because in practical field data not that much deviation in 

pressure derivative line is expected from the horizontal line. 

Table  4.4: Reservoir and Wellbore parameters for two region radial composite reservoir with infinite 

acting outer boundary condition (M > 1) 

Parameters Value 

1k  500 

1  0.8 

1tc  1e-5 

1B  1.2 

1  0.25 

2k  50 

2  0.8 

2B  1.2 

2tc  1e-5 

2  0.25 

fr  400 

s  2 

C  0.005 

  0, 0.025, 0.05, 0.075 
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Figure  4.4: Bottom hole pressures versus time for M > 1 for infinite 

acting outer boundary 

Figure  4.5: Semilog plot of bottom hole pressures versus time for M > 1 

for infinite acting outer boundary  
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Table  4.5: Reservoir and Wellbore parameters for two region radial composite reservoir with infinite 

acting outer boundary condition (M < 1) 

Parameters Value 

1k  50 

1  0.8 

1B  1.2 

1tc  1e-5 

1  0.25 

2k  200 

2  0.8 

2B  1.2 

2tc  1e-5 

2  0.25 

fr  400 

s  2 

C  0.005 

  0, 0.025, 0.05, 0.075 

 

Figure  4.6: Pressure drop and pressure derivative versus time for M > 1 

for infinite acting outer boundary 
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Figure  4.7: Bottom hole pressures versus time for M < 1 for infinite 

acting outer boundary 

 

Figure  4.8: Semilog plot of bottom hole pressures versus time for M < 1 for 

infinite acting outer boundary  
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4.6.2 Example 2: Two Region Radial Composite Reservoir with No-flow 

outer boundary condition  

In this example, a two region radial composite reservoir with constant rate inner 

boundary condition and no-flow condition at the outer boundary is considered for the 

developing the graphical model of pressure and pressure derivatives. Memory effects are 

incorporated in terms of fractional derivative form. Wellbore storage and skin effects are 

also considered.  These curves are plotted considering the fractional diffusion represented 

by memory parameter . Figure 4.10, 4.11 & 4.12 shows the sensitivity of memory 

parameter   on pressure and pressure derivative plots for mobility ratio greater than one 

whereas Figures 4.13, 4.14 & 4.15 are for mobility ratio less than one, four different 

values of  are used for sensitivity analysis. The reservoir is initially at a pressure of 

6000 psia and its thickness is 100 ft. A well with radius of 0.5 ft under constant 

production of 800 STB/D is considered. A logarithmic function is used to make time 

Figure  4.9: Pressure drop and pressure derivative for M < 1 for infinite 

acting outer boundary 
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steps starting with time of about 10
-6

 and ending with about 1000 hrs with 1500 data 

points. Typical reservoir and well bore properties used for generation of pressure and 

pressure derivatives curves are shown in Table 4.2.  

The pressure distributions are obtained from the numerical inversion of the solutions 

using Stehfest Algorithm and even integer ‘N’‎is‎equal to 6 for calculations. It is observed 

that bottom hole flowing pressure is influenced by the memory parameter   from Figure 

4.10 and 4.13. Semi log plot of bottom hole flowing pressure versus time in Figure 4.11 

and Figure 4.14 shows that with increasing value of memory parameter  , pwf is 

becoming higher i.e. slower pressure drop may be due to slow diffusion. This effect was 

somewhat described by Park (Park et al., 2001) in which they presented the justification 

of the additional pressure drop due to delay in diffusion. It is noticed that all pressure 

lines for four values of  plotted in Figure 4.11 and 4.14 merge together. Comparable 

effect was described by (Wang. Q. & Tong. D., 2009) on the flow analysis of viscoelastic 

fluid with fractional order derivative in horizontal well, after that pressure drops faster for 

larger value of .  

Figure 4.12 and 4.15 shows the pressure drop and pressure derivative plots for mobility 

ratio greater than one and less than one respectively. These distributions are plotted to see 

the effect of memory parameters.  At the end of well bore storage, pressure derivative is 

showing radial flow regime for region one for  equals to zero, however it is noticed that 

as the value of  is increasing; the deviation from horizontal line is becoming more.  

Each of the four lines for different values of  crosses each other before the start of the 

radial homogeneous system.  The pressure derivative curve shows higher pressure drop 

due to the value of the mobility ratio which is greater than one, this is because the high 
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permeability value in region 1 whereas it is opposite in Figure 4.9 (Ambastha, 1988; 

Issaka, 1996). It is observed that the pressure drop is less for large values of , then the 

pressure drop curves merge to a single one at one point. They become separated out once 

again at later stage; however at the later stage pressure drop in the reservoir is more for 

higher values of  for both cases of mobility ratio. Pressure derivative in the Figure 4.12 

and 4.15 is much more sensitive to the memory parameter, as there are strong separations 

between the radial flow lines for different values of . However all the lines of pressure 

drop and pressure merges to the unit slope line as the effect of outer boundary is reached. 

It is also noticed that for all the cases pseudo steady state is reaching, it can be observed 

in Figure 4.10 and Figure 4.13 as the slope of bottom hole pressure lines are almost 

constant that means these models can be used to calculate drainage volume and it will be 

affected much by changing  values.  

Table  4.6: Reservoir and Wellbore parameters for two region radial composite reservoir with no-

flow outer boundary condition  

Parameters Value 

1k  500 

1  0.8 

1B  1.2 

1tc  1e-5 

1  0.25 

2k  50 

2  0.8 

2B  1.2 

2tc  1e-5 

2  0.25 

fr  400 

er  1000 

s  2 

C  0.005 

  0, 0.025, 0.05, 0.075 
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Figure  4.10: Bottom hole pressures versus for M > 1 for no flow outer 

boundary  

Figure  4.11: Semilog plot of bottom hole pressures versus time for M > 1 

for no-flow outer boundary  
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Table  4.7: Reservoir and Wellbore parameters for two region radial composite reservoir with no-

flow outer boundary (M < 1) 

Parameters Value 

1k  50 

1  0.8 

1B  1.2 

1tc  1e-5 

1  0.25 

2k  200 

2  0.8 

2B  1.2 

2tc  1e-5 

2  0.25 

fr  400 

er  1000 

s  2 

C  0.005 

  0, 0.025, 0.05, 0.075 

 

Figure  4.12: Pressure drop and pressure derivative versus time for M > 1 for 

no-flow outer boundary condition 
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Figure  4.13: Bottom hole pressures versus time for M < 1 for no-flow 

outer boundary 

Figure  4.14: Semilog plot of bottom hole pressures versus time for M < 1 for 

no-flow outer boundary 
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4.6.3 Example 3: Two Region Radial Composite Reservoir with constant 

pressure outer boundary condition 

This example considers a reservoir with two different regions but uniform in reservoir 

properties. A well with radius of 0.5 ft is considered in the center of the reservoir with 

constant rate production of 800 STB/D. At the outer boundary of the reservoir, constant 

pressure case is taken that is common due to the presence of strong aquifer. Two cases 

are presented i.e. for favorable and unfavorable mobility ratios. Bottom hole flowing 

pressure, pressure drop and pressure derivatives curves for first case are being plotted as 

shown in Figures 4.16, 4.17 and 4.18 whereas for the second case the plots are shown in 

Figures 4.19, 4.20 and 4.21. Wellbore storage and skin effects are also considered.  These 

curves are plotted considering the fractional diffusion and sensitivity of memory 

parameter   is also being analyzed. The reservoir is initially at a pressure of 6000 psia 

and its thickness is 100 ft. A logarithmic function is used to make time steps starting with 

Figure  4.15: Pressure drop and pressure derivative versus time for M < 1 

for no-flow outer boundary condition 
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time of about 10
-6

 and ending with about 1000 hrs with 1500 data points. Typical 

reservoir and well bore properties used for generation of pressure and pressure 

derivatives curves for the two cases are shown in Table 4.8 and 4.9.  

The pressure distributions are obtained from the numerical inversion using Stehfest 

Algorithm. It is evident from the Figure 4.16 and 4.19 that bottom hole flowing pressure 

is influenced by the memory parameter . Semi log plot of bottom hole flowing pressure 

versus time gives a more clear view which shows that with increasing value of memory 

parameter  , pwf  is becoming higher i.e. slower pressure drop may be due to slow 

diffusion (Park et al., 2001). However eventually all lines for four values of   plotted in 

Figure 4.17 and Figure 4.20, the pressure lines merge together, after that pressure drops 

faster for the larger value of  . Figure 4.18 and Figure 4.21 shows the pressure drop and 

pressure derivative plots on log-log scale for both the cases, these distributions are plotted 

to see the effect of memory parameter.  After the end of the well bore storage, radial 

homogeneous system is easily identifiable for the case   equals to zero from horizontal 

line having zero slope. It is noticed that as the value of   increases, pressure derivatives 

lines becomes deviated from horizontal line and deviation is more for large  values. The 

pressure derivative curve in Figure 4.18 shows higher pressure drop due to the value of 

the mobility ratio which is greater than one, this is because the high permeability value in 

region 1 whereas it is opposite in Figure 4.21 (Ambastha, 1988; Issaka, 1996). At initial 

stage pressure drop is slower for larger values of , then pressure drop curves merges to 

a single one at one point. It can be seen at late time that pressure drop in the reservoir is 

much more for larger values of  . Pressure derivative curves in Figures 4.18 and 4.21 

are much more sensitive to the memory parameter, as there are strong separations 
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between the radial flow lines for different values of . At late times, when boundary 

effect is reached the pressure derivative curve with   value equals to zero drops down 

and pressure drop curve flattens due to constant pressure at the boundary, theoretically 

larger time will be required for   values greater than zero to see the same effect.  

Table  4.8: Reservoir and Wellbore parameters for two region radial composite 

reservoir with constant pressure OBC 

Parameters Value 

1k  500 

1  0.8 

1B  1.2 

1tc  1e-5 

1  0.25 

2k  50 

2  0.8 

2B  1.2 

2tc  1e-5 

2  0.25 

fr  400 

er  1000 

s  2 

C  0.005 

  0, 0.025, 0.05, 0.075 
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Figure  4.16: Bottom hole pressures versus for M > 1 for constant 

pressure outer boundary (Cartesian Plot) 

 

Figure  4.17: Semilog plot of bottom hole pressures versus time for M > 1 

for constant pressure outer boundary  
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Table  4.9: Reservoir and Wellbore parameters for two region radial composite reservoir with 

constant pressure OBC 

Parameters Value 

1k  50 

1  0.8 

1B  1.2 

1tc  1e-5 

1  0.25 

2k  200 

2  0.8 

2B  1.2 

2tc  1e-5 

2  0.25 

fr  400 

er  1000 

s  2 

C  0.005 

  0, 0.025, 0.05, 0.075 

 

Figure  4.18: Pressure drop and pressure derivative for M > 1 for constant 

pressure outer boundary 
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Figure  4.19: Bottom hole pressures versus for M < 1 for constant 

pressure outer boundary (Cartesian Plot) 

 

Figure  4.20: Semilog plot of bottom hole pressures versus time for M < 1 

for constant pressure outer boundary 
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Figure  4.21: Pressure drop and pressure derivative for M< 1 for constant 

pressure outer boundary 
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5 CHAPTER 5 

RESREVOIR PARAMETER ESTIMATION 

Pressure transient analysis is mainly used to estimate the reservoir and well bore 

properties by identification of the reservoir system from the measured pressure response. 

For pressure transient analysis, a mathematical model is used that gives the same output 

pressure response of the actual reservoir system. This method is called as inverse analysis 

that has non uniqueness inherently. 

 

Each reservoir system performs differently so a unique mathematical model is required 

for every reservoir system. However, due to limitations in modeling the diffusive nature 

of the pressure response in well test analysis, only a fixed number of mathematical 

models are available for studying the reservoir system. A number of theoretical 

explanations have been given on successes of well test analysis in real field experiences. 

 

It is obvious that measured pressure data (the actual pressure response from the field) 

cannot be the same as the pressure response computed using a mathematical model 

because of the measurement errors and the simplified nature of model (Watson et al., 

1988). Nowadays measurement errors are greatly reduced by the use of advance 

electronic gauges that give accurate pressure measurements. On the other hand, modeling 

error is always present in the analysis due to simplicity and assumptions considered in 

development of a mathematical model. 
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The inconsistency between the measured pressure data (observed data) and the calculated 

pressure response from the model is intrinsic in well test analysis. These errors and non-

uniqueness due to inverse nature of the problem is inherited. Hence, the final solution of 

the inverse problem is to find the most suitable model which gives the minimum error 

between measured pressure response and model pressure. 

 

Nonlinear regression technique is being used in modern well testing for parameter 

estimation (Dastan, 2010). This technique became the standard industry practice in early 

90’s‎after‎the‎era‎of‎ type‎curves.‎Nonlinear‎regression‎is‎also‎known‎as‎automated‎type‎

curve matching. In this technique, the objective is to minimize the sum of squares of the 

difference between the observed pressure data and the model pressures. However this 

technique has disadvantage of getting trapped in local minima which is usually in the 

vicinity of initial guess. 

5.1 Parameter Estimation using Levenberg-Marquardt Algorithm 

In this section, we compute the reservoir and well bore parameters including the memory 

parameter  for three synthetic cases using Levenberg-Marquardt Algorithm. All the 

examples involved single-phase flow i.e. oil flow in the reservoir with a constant 

production well located at the center of a circular reservoir. The production of the well is 

800 STB/D for all cases. The reservoir has a thickness of 100 ft and has two regions with 

different but homogeneous properties. These properties and reservoir external boundaries 

vary for each example. In all examples, there are 1500 data points to be matched. The 

objective function used in calculating various well and reservoir parameters is L2-norm. 

Evaluating the L2-Norm (also called as sum of error squares) for each possible solution 
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requires calculating a model pressure. The results of model pressure are then used to 

compute the L2-Norm as follows: 

   
2

model i measured i

i 1

, , , t
 

tN

t

tp k s C
Error

p

N

    

Where modelp  is‎ calculated‎ from‎ the‎ user’s‎ provided‎ model measuredp  is the measured 

pressure obtained from field data and. tN  is the total number of  data points which is 

1500 for all cases. The algorithm is run for two different sets of parameters, in one case 

parameters are estimated assuming some initial guess of memory parameter and in 

second case alpha is assumed to be zero. 

5.1.1 Example 1: Two Region Radial Composite Reservoir with Infinite 

Acting Boundary Condition 

In this example, we matched the pressure data generated using a two region radial 

composite reservoir with constant rate inner boundary condition and infinite acting 

external boundary condition also considering the fractional diffusion. Forward model 

(observed data) is shown in Figure 5.1.  Wellbore storage and skin effects are also 

considered.  Forward models are generated using solutions from previous chapter 

containing memory parameter  . Also Gaussian random noise is added into the final 

model calculations to mimic the field conditions. The reservoir is initially at a pressure of 

6000 psia. A well under constant production of 800 STB/D is considered. Figure 5.2 

shows the matched pressure data with the observed data. The Final match with 

consideration of   i.e. the case as shown in Figure 5.2 considering fractional diffusion 

gave very good match to the observed data and the values are identical to true values with 
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very less value of error. However if we neglect , it can be seen that the match is not 

good. The values are far from the true values and giving a high value of error compared 

to the case considering alpha in its calculation.  So in case where anomalous diffusion is 

expected to occur, parameter estimation using normal diffusion may not give true results. 

 

 

 

  

 

 

 

 

 

Table  5.1: Estimated reservoir and well bore parameters for infinite acting case  

Parameters 
True 

Values 

Initial 

guess 

Final 

Match 
Error 

Initial 

guess 

Final 

Match  
Error 

Fractional diffusion Normal diffusion 

1k  500 560 500 

0.5798 

550 338.65 

0.6654 

2k  50 175 50 80 32.14 

fr  400 170 400 300 407.95 

s  2 3 1.99 2.5 -0.426 

C  0.005 0.059 0.005 0.06 0.0039 

  0.05 0.2 0.05 - - 

 

 

Figure  5.1: Forward Model for infinite acting case with noise 
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5.1.2 Example 2: Two Region Radial Composite Reservoir with No-

Flow Outer Boundary Condition 

In this example, we matched the pressure data generated using a two region radial 

composite reservoir with constant rate inner boundary condition and no-flow external 

boundary condition also considering the fractional diffusion. Forward model (observed 

data) is shown in Figure 5.3.  Wellbore storage and skin effects are also considered.  

Forward models are generated using solutions from previous chapter containing memory 

parameter  . Also random noise is added into the final model calculations to mimic the 

field conditions. The reservoir is initially at a pressure of 6000 psia. A well under 

constant production of 800 STB/D is considered. The Final match with consideration of 

  i.e. the case as shown in Figure 5.4 considering fractional diffusion gave very good 

match to the observed data and the values are identical to true values with very less value 

Figure  5.2: Final Matched data for infinite acting reservoir 
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of error. However if we neglect , it can be seen that the match is not good as compared 

to the parameters estimated considering . The values are far from the true values and 

giving a high value of error compared to the case considering alpha in its calculation.  So 

in case where anomalous diffusion is expected to occur, parameter estimation using 

normal diffusion may not give true results. It can also be seen that value of 
1k comes out 

to be 643 / secmd 
where as its true value is 600 / secmd 

, and skin value from inverse 

analysis came out to be 1.51 however its true value is 1.0. This shows the non-uniqueness 

that is inherent in parameter estimation from inverse analysis. Initial guesses are taken as 

random values for both the cases of fractional and normal diffusion. Figure 5.4 shows the 

matched pressure data with the observed data. The distortion in pressure drop at early 

time data is due to the presence of negative skin that cause numerical inversion problems. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.3: Forward Model for no-flow outer boundary case with noise 
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Table  5.2: Estimated reservoir and well bore parameters for no-flow outer boundary case  

Parameters 
True 

Values 

Initial 

guess 

Final 

Match 
Error 

Initial 

guess 

Final 

Match 
Error 

Fractional diffusion Normal diffusion 

1k  600 560.67 643.20 

2.439 

550 469.98 

2.565 

2k  50 31.60 55.81 60 33.24 

fr  300 83.41 301.53 250 294.94 

s  1 1.21 1.51 0.5 -0.568 

C  0.003 0.0052 0.0031 0.0055 0.0024 

er  1000 754.55 1003.27 800 990.34 

  0.05 0.0223 0.0653 - - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.4: Matched data for no-flow Outer Boundary Condition reservoir 
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5.1.3 Example 3: Two Region Radial Composite Reservoir with 

Constant Pressure Outer Boundary Condition 

In this example, we matched the pressure data generated using a two region radial 

composite reservoir with constant rate inner boundary condition and constant pressure 

external boundary condition also considering the fractional diffusion. Forward model 

(observed data) is shown in Figure 5.5.  Wellbore storage and skin effects are also 

considered.  Forward models are generated using solutions from previous chapter 

containing memory parameter . Also random noise is added into the final model 

calculations to mimic the field conditions. The reservoir is initially at a pressure of 6000 

psia. A well under constant production of 800 STB/D is considered. Figure 5.6 shows the 

matched pressure data with the observed data. Final match with consideration of alpha 

diffusion equations case as shown in Figure 5.6 gave very good match to the observed 

data and the values are identical to true values with very less value of error. However if 

we neglect alpha, it can be seen that the match is not good. The values are far from the 

true values and giving a high value of error compared to the case considering alpha in its 

calculation. Initial guesses are taken as random values for both the cases of fractional and 

normal diffusion.  
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Figure  5.5: Forward Model for Constant Pressure outer boundary case with noise 

 

Table  5.3: Estimated reservoir and well bore parameters for constant pressure outer boundary case  

Parameters 
True 

Values 

Initial 

guess 

Final 

Match 
Error 

Initial 

guess 

Final 

Match 
Error 

Fractional 

diffusion 
Normal diffusion 

1k  500 422.85 489.94 

0.351 

550 366.79 

0.386 

2k  100 217.49 98.22 75 79.13 

fr  500 25.11 503.20 350 374.07 

s  3 3.02 2.82 2.2 0.6139 

C  0.005 0.0153 0.0049 0.003 0.0044 

er  2000 1012.67 2025.74 1500 2825.41 

  0.05 0.0193 0.0480 - - 
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Figure  5.6: Matched data for Constant Pressure Outer Boundary Condition 
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6 CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This study has presented fractional diffusion models (analytical solutions) for two-region 

radial composite reservoirs. The most commonly encountered inner boundary i.e. 

constant rate production is considered. The external boundary condition can be infinite 

acting, no-flow or constant pressure. The solutions obtained include wellbore storage and 

skin effects. The ultimate goal of this research is to study transient pressure data and to 

estimate reservoir and well bore parameter in the presence of fractional diffusion. The 

effect of memory parameter  on pressure transient data has also been investigated. 

Equations for fractional diffusion have been developed for two region composite 

reservoirs. Pressure transient analysis in conjunction with these models will constitute a 

significant addition to well test analysis methods for composite reservoirs in radial 

geometry. Reservoir parameters estimated from these models will have a greater degree 

of confidence interval. In summary, we may draw following conclusions from this study: 

1. The bottom hole pressure is a function of various reservoir and well bore 

parameters. However, the memory parameter   also affects its value.   

2. Small values of  will cause noticeable effect on the pressure drop. Based on 

observed pressure transient data from real fields, we do not expect the value of 
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to be significantly greater than zero. Thus, the analysis in this work has been done 

based on a range of  from 0 to 0.075. 

3. In this study, we have developed solutions to anomalous diffusion of slightly 

compressible fluids in porous media. The solutions developed account for both 

wellbore storage and skin effects. 

4. Once the formalism proposed in this research is validated using experimental 

data, the results obtained in this research can be used for better reservoir 

description than those from normal diffusion. 

6.2 Recommendations 

Following recommendations can be made from this research: 

1. The model developed in this research defines the analytical description of 

pressure transient behavior of two region radial composite reservoir. To further 

confirm the validity of the memory formalism proposed in this study, laboratory 

experiment is required. 

2. Modified‎Darcy’s‎law‎can‎be‎used‎in‎models‎other‎than‎radial‎composite‎reservoir‎

such dual porosity, dual permeability, multilayered, hydraulically fractured 

reservoirs to see their pressure transient behavior in the presence of memory. 
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