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ABSTRACT

Full Name : Muhammad Abdul Hafeez Ansari

Thesis Title : Optimal Aggregator Bidding Strategies for Vehicle-to-Grid Using
Fuzzy Optimization

Major Field . Electrical Power

Date of Degree : November, 2013

Electric Vehicles (EV), including battery electric vehicles (BEV) and plug in hybrid
electric vehicles (PEHV), provide many advantages over the conventional internal
combustion (IC) engines, such as reduced operating cost and the potential to run on locally
connected distributed generation (DG). EVs can provide long term benefits to the
environment, EV owners, and utilities. In addition to the financial benefits, EVs can
potentially reduce air pollutants and greenhouse gas emissions. However, mass unregulated
charging of EVs can burden the conventional power grid, raise the peak demand of the
system, and seriously burden the distribution system network. Therefore, the charging of

the EVs should be somehow managed.

In the smart grid environment, the vehicle-to-grid (V2G) concept has been introduced to
increase the adoption rate of EVs while managing their impact on the power grid. Many
researchers, utilities, and governmental bodies are working to properly utilize this large
distributed energy resource. This distributed energy resource can support the grid in many
ways, such as providing regulation service, spinning reserves, emergency reserves, reactive
power support, load leveling, peak shaving, reducing emissions of thermal units, balancing

wind and solar etc.
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In this thesis, optimal bidding strategies for unidirectional V2G charging by the aggregator
are developed under different fuzzy uncertainties. A fuzzy optimization is developed for
finding the optimal bid for an aggregator. Different uncertainties are modeled using fuzzy
sets, such as ancillary service prices and ancillary service deployments. Simulations show
the benefits of these optimal fuzzy algorithms for the aggregator, EV owners, and the utility

over existing deterministic algorithms, without any uncertainties.
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CHAPTER 1

INTRODUCTION

1.1 Background

The electrical grids have been in existence for more than 100 years. Most existing electrical
infrastructures were designed to supply electrical power in a regulated environment. The
utility in a particular region owns large central generating units to supply power to the end
customers with predictable loads. The central dispatch system is facing new challenges
recently due to many factors, such as demand increase, capacity limitations, distributed and

stochastic generation, environmental concerns, and new smart grid technologies [1].

One of the newer, potentially smart, demands will come from the deployments of electric
vehicles (EV) or plug in hybrid electric vehicles (PHEV). Electric vehicles are expected to
receive mass acceptance from the public in the near future due to their promising benefits
to the environment and the vehicle owners. Figure 1-1 shows the sale of new PHEVSs in the
US from 1999 to 2011. Note that the sales increased to a peak of more than 350,000 units

during 2007 due to the incentives by the government [2].
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Figure 1-1: U.S HEV sale from 1999 to 2011. (From U.S. DOE alternative Fuels Data
Centre, http://www.afdc.energy.gov/data/tab/vehicles/data_set/10301)

There are numerous benefits that come out of the electrification of the transport system
over the traditional internal combustion engines such as lower operating costs and potential
to charge from the local renewable distributed generation. However, there are challenges
ahead of its full implementation, such as high initial cost of EVs, charging issues, limited
power capacity. In addition, if not properly controlled, EVs can create power shortages.

Some of the benefits of EVs, if properly integrated and controlled are [3], [4]:

e Reduced environmental impact due to hydrocarbon emissions
e Reduced petroleum consumption and fuel costs

e Lower operating costs

e Generated revenues

e Electrical power grid support


http://www.afdc.energy.gov/data/tab/vehicles/data_set/10301

The capital cost of the EVs is higher than the traditional vehicles. Due to the higher initial
cost, research has been conducted by utilities, governmental agencies and researchers to
determine if EVs can be utilized for additional services. Therefore, the concept of vehicle
to grid (V2G) was developed. VV2G concerns EV integration with the electrical power grid.
Studies have shown that vehicles, on average, are available idle for 90% of the day. Using
this fact, the EVs can be utilized for electricity grid support and can generate revenue for
the vehicle owner [5]. If this revenue helps offset the initial cost of EV, it will increase the
incentive to purchase an EV. The basic concepts of VV2G and the provision for energy and

ancillary service from an EV are now well defined.

The proper implementation of V2G concept is beneficial for all the participants. Utilities
will be benefiting from this controllable distributed source of energy and their operations
and controls will be improved. In addition, EV owner will generate revenues from its EV
and charge their cars at low energy price [6]. Power flow in an EV can be both
unidirectional and bidirectional, depending on the service provided by EV. With V2G, an
EV can participate in many energy markets such as regulation, spinning and non-spinning

reserves, peak energy and energy market [7], [8].

In this chapter, the basic concepts of V2G are introduced. The direct and the aggregated
bidding of the EVs capacity for the V2G implementation are explained. The different
uncertainties of the electricity market and the use of fuzzy set theory for handling them are

also explained. Finally, the objectives of this thesis are listed in the last section.



1.2  The Concept of Aggregator Bidding

The relationship between the EVs and the utility/ISO for V2G implementation can be
classified as one of two types: a direct architecture and an aggregated architecture [9]. The
direct architecture for V2G implementation is shown conceptually in Figure 1-2. It assumes
that there is a direct line of communication between the EV and the system operator. In the

direct architecture, the EV can bid and perform services during its charging.

. Conventional Ancillary
Services Communication
Lines

— Higher Bandwidth V2G

mmunication Lines

Geographically Dispersed Vehicles

Figure 1-2: Direct architecture for V2G implementation [9]

The direct architecture is conceptually simple but the infrastructure and communication
requirement is immense. There are also various drawbacks in direct architecture such as
prediction of individual EV availability, peak power capability, and market requirements.
The bidding capacity of a resource providing ancillary services in most electricity markets
should not be less than 1 MW, making the direct architecture very difficult to implement

with this market requirement [7], [10].



Aggregated architecture is more suited for V2G implementation. An aggregator is an
intermediate agent that combines a considerable amount of EVs and bid their aggregated

capacity in the market. Figure 1-3, shows the concept of aggregated architecture.

__ Conventional Ancillary Services Conventional A/S
Communication Lines Providers

__ Higher Bandwidth V2G
Communication Lines

Geographically Dispersed
Vehicles

Figure 1-3: Aggregated architecture for V2G implementation [9]

In the aggregated architecture, the aggregator can bid into the market at any time as the
collective behavior of the driving profile and the electric vehicle availability can be
predicted while the individual electric vehicle can leave the charging station as per its
requirements. The aggregated architecture overcomes the main problems of direct
architecture; the aggregation of electric vehicles can be treated like a conventional ancillary
service source and will remove the communication burden on grid system operator. The
aggregated architecture is feasible and extensible for V2G implementation from the power
system operator perspective [11]. As the individual EV can disconnect whenever the
customer desire to, he/she will also be concerned about the amount of power available in

the battery for travelling. Therefore, it is the job of the aggregator to develop bidding



strategies that will balance the EV energy needs and maximize profits by participating in

different markets during the EV availability.

1.3 Handling Uncertainties using Fuzzy Sets

In an ideal situation, electricity market bidding is done under the assumption that all the
parameters are deterministic. This is equivalent to the assumption that the forecasting of
these parameters is perfect. However, in practice, there are always errors in the forecasted
parameters [12]. There are several ways to handle the forecast uncertainty, such as fuzzy

set theory, stochastic models, and probability theory.

In this thesis, the uncertainties of the different electricity market parameters are handled
using fuzzy theory. The concept of handling uncertainties using the fuzzy set was first
introduced by Zedah, a mathematician, in 1965 [13]. The basic idea behind the fuzzy set is
quite simple. In a conventional/crisp set, an element either belongs to or does not belong
to a set. Hence the value of membership for an element is either yes or no. In the fuzzy set
theory, a degree of membership is allowed to a range over the interval [0, 1]. Thus the
membership function of fuzzy set maps each element of the universe of discourse to its
range space, which in mostly assumed to be unit interval. One major difference between
the crisp and the fuzzy values is that crisp sets have unique membership functions whereas
fuzzy sets have infinite number of membership functions that can represent it. Fuzzy
sets/logic treats the complex and ambiguous problem in a subjective way; it solves the
problem like a human thinks of it. In considering a complex problem, humans reason
approximately about its behavior, a capability that computers don’t have, and thus

maintains only a generic understanding of the problem. The fuzzy reasoning offers a good



solution when few numerical data exist and the information available is imprecise. It
provides a way to understand the system behavior by allowing one to interpolate
approximately between inputs and outputs in a logical way. Fuzzy systems can be classified
as structured numerical estimators. They define the real world problem in a linguistic way
and then define some rules based on human expertise. As they are numerically model-free
estimators and dynamic systems, they can improve the system performance for an

uncertain, imprecise, and noisy environment [14].

There is virtually no problem for which one can say the information is absolute, with no
error, uncertainty and impreciseness. Uncertain information can take many different forms.
There are uncertainties due to the complexity of the power system such as, in this work,
uncertainty due to the behavior of individual electric vehicle movements, uncertainty in the
price of the electrical energy and ancillary services, uncertainty in the electrical power load,
uncertainty in the spinning reserve requirement in the power system, and uncertainty in
deployment signals. These uncertainties arise due to the lack of sufficient data,
impreciseness and the inability to perform adequate measurement and forecasting

inaccuracies.

The problems characterized by ambiguous, uncertain and imprecise information can be
modeled by fuzzy set theory. The following are the conditions where it is suitable to

formulate problems within fuzzy framework [14]:

1. When human interaction is involved in the process.
2. When an intelligent system has to be designed based on the human expertise and

interactions (e.g. human descriptive).



3. When a system is very complex or its exact mathematical modeling is not possible
or too difficult.
4. The mathematical model is difficult to evaluate in a real time operations.

5. When the noise level is high in the data set or the data available is uncertain.

Fuzzy system can achieve robustness, tractability and lower cost solutions. Virtually all the
engineering fields can be fuzzified and defined in a fuzzy environment such as fuzzy
arithmetic, fuzzy graph theory and fuzzy probability theory etc. Moreover, applied fields
can also be fuzzified such as fuzzy neural networks, fuzzy mathematical programming and

fuzzy pattern recognition.

Momoh at el. [15], suggested a guideline on the use of fuzzy set theory for power system

problems:

1. Description of original problem: State the problem in a mathematical and linguistic
form.

2. Defining thresholds for variables: For each fuzzy variable, define the thresholds
(acceptable ranges) based on the human expertise of the system.

3. Fuzzy quantization: Memberships functions are constructed based on the threshold
values defined in step 2. The functions should be defined in a way that reflects the
change of satisfaction degree with the change in variables evaluated by experts.

4. Selection of the fuzzy operations: The fuzzy operations and reasoning should be

properly defined so that the results obtained should reflect like those of an expert.

Fuzzy set theory has been mainly applied in electrical power systems in two categories:



1. Planning: includes power system expansion planning, and long and midterm
scheduling of the system.

2. Operations: includes security assessment (dynamic and static), forecasting (price,
load, and reserves), controller designs (PSS, exciter and FACTs devices

controllers), and diagnosis (transformer and rotating equipment).

1.4 Thesis Objectives

The main aim of this research is to develop bidding algorithms for an aggregator under
different electrical power system uncertainties. With the deregulated environment of the
power system, the bidder must take into account several uncertainties in order to avoid
financial losses. These electricity market uncertainties will be dealt with in this work using

the fuzzy set theory.
The following are the major contributions of this thesis:

1. The development of a smart fuzzy-based preferred operating point (POP) selection
method. This formulation will take into account several uncertain parameters, such
as energy price, system load, and the number of hours for EV availability.

2. The development of an optimal bidding strategy for the provision of regulation in
ancillary service market considering the different power system uncertainties. The
uncertainties will be handled using the fuzzy set theory.

3. The development of an optimal coordinated bidding strategy for regulation and
spinning reserves for participation in both markets with consideration of

uncertainties.



4. The strategies are developed by using the fuzzy linear programming technique. All
developed strategies/algorithms are tested against other charging schemes

published previously and the results are compared.

1.5 Thesis Layout

This thesis consists of seven chapters. In the first chapter, the role of an aggregator as a
market participant and the basic concepts of vehicle-to-grid are explained in details. The
importance of managing EV charging is highlighted. The handling of different

uncertainties using the fuzzy set theory is also introduced.

In the second chapter, a brief literature review of the vehicle-to-grid implementation is
introduced. The literature related to the V2G concepts as part of the smart grid technologies
is presented. The work related to the bidding strategies of electric vehicles is presented and
finally the work done on handling the different uncertainties using the fuzzy set theory is

presented.

In the third chapter, the main techniques that are used in this thesis for developing the
optimal bidding strategies under different fuzzy uncertainties are explained in detail. The
fuzzy logic and the fuzzy linear programming technique are well defined in this chapter.
The fuzzy logic is used for the smart charging of electric vehicles and the fuzzy linear
programming is used for the developing the optimization strategies in the day-ahead

ancillary service market.

In the fourth chapter, the electric market overview and forecasting of electricity market

parameters is presented. The change from vertically integrated utility to the decentralized
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electricity market is explained. The roles and functions of different market participants in
this market structure are highlighted. The ancillary service market is explained in a greater
detail as the work in this thesis is directly related to the aggregator participating in the day-
ahead ancillary service market. The different market parameters are forecasted as the
aggregator is bidding in the day-ahead market, so before bidding its capacity in the
electricity market, the aggregator will try to anticipate the future values of the market to
maximize the profits. Forecasting of different electricity market parameters such as
regulation up/down prices, spinning reserves prices, and ancillary services deployments

signals are done using the autoregressive integrated moving average (ARIMA) technique.

In the fifth chapter, a smart charging algorithm for the electric vehicle charging using the
fuzzy logic technique is developed. This fuzzy logic controller combines the previously
published charging algorithms such as price-based, load-based and maximum regulation
based in a fuzzy logic frame work to take the advantage of each algorithm and the proposed
fuzzy logic algorithm is working better than the individual previous algorithms. The fuzzy
logic algorithm can also be implemented easily in the real time systems participating in the

real time electricity market.

In the sixth chapter, an optimized algorithm for the optimal aggregator bidding strategy for
regulation service using the fuzzy linear programming technique is proposed. The fuzzy
set theory is used to model the uncertainties of the forecasted data in the day-ahead

ancillary service market such as regulation prices and the regulation deployment signals.

In the seventh chapter, the algorithm proposed in chapter six is extended to include the

spinning reserves and its deployments in the formulation to make it a coordinated
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aggregator bidding strategy for the ancillary service bidding. In addition to the spinning
reserves, the different parameters related to the electric vehicles are also incorporated in
the formulation such as EVs availability, compensation factor, travel time, and trips etc.
The different EVs parameters make the formulation more realistic and are included in a
deterministic and probabilistic way. Only the electricity market parameters are handled in

a fuzzy framework.
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CHAPTER 2

LITERATURE REVIEW

Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) have become a popular
topic of research due to their promising benefits. Utilities and researchers are continuing
to develop the needed technologies for widespread use of EVs. In this chapter, a detailed
overview of research activities related to the V2G implementation is presented. The chapter
is divided into three sections. Section 2.1 presents the literature about the V2G concept.
Section 2.2 gives a summary of the optimal bidding of V2G services in different electricity

markets. In Section 2.3, uncertainty modeling using the fuzzy set theory will be surveyed.

2.1  Vehicle-to-Grid Concept

Initially, the electric vehicles were considered as a load that only burdens the power system
network [16], but the idea that EVs can be used to support the electrical grid system in a
way that is beneficial for both the EV owner and the electricity power grid was first
introduced in [17]. This leads to further development of the vehicle-to-grid (V2G) concept
later in [5], [7]. The concept of V2G is continuously developing and with the technological
advancements, researchers have implemented pilot projects for V2G [18]. In [18], different
charging approaches were suggested to be used for V2G. The V2G concept is divided into
two types; unidirectional V2G and bidirectional V2G. Unidirectional V2G is also called
load only VV2G that performs EV load control and regular V2G, in which power is injected

from grid to vehicle. Unidirectional VV2G or load only regulation is also called as V1G, in

13



some literature [19]. Some authors consider V2G as a means to deliver power from parked
vehicle to the electrical grid while G2V as a way to provide the energy to the vehicle from
the grid [9]. In bidirectional V2G, power can be transferred from vehicle-to-grid or the
other way and most authors have considered V2G as a common terminology for
bidirectional power flow. Since the introduction of the benefits of the electric vehicles,
V2G basics have been fully defined and the potential benefits in different electricity market
have been explored [5], [7], [8]. The most beneficial market for V2G service is the
regulation service market and is carefully addressed in [5]. In [7], different electricity
markets such as: base load, peak, spinning reserve and regulation, are further explored. It
was initially suggested that EVs can provide spinning reserve and regulation, however
several other works have also consider EVs to provide peak load shaving and base energy
[17], [20], [21]. Among all, regulation service is the most promising and beneficial market

for V2G. These results are confirmed in [5], [7], [22]-[25].

2.2 Vehicle-to-Grid Bidding

EVs were first introduced in the mid-19th century. The high cost, low speed and their short
range, as compared with internal combustion engines, led to their decline [26]. However,
in the last two decades, an interest in the electric vehicles has developed due to the
problems associated with internal combustion engine vehicles and its negative impact on
the environment. The concept of V2G has sparked this interest due to the potential support
of EVs to the aging power grids. Early work in this area focuses largely on the basic
concepts and simulations to show the potential benefits of EVs. One of the early studies

discusses the leveling of system loads by controlling the charging and discharging of EVs
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[27]. Researchers are still working on the ways to use the EVs for load leveling. One such
study [28] also publishes the load imposed by the EV or PHEV on the electrical grid. This
study used a historical database of the driving profiles of vehicles for predicting the parking
times. Kempton and Tomic [5], [7], [8], presents in detail the benefits of VV2G integration
and provides a detail overview of the potential revenues for different markets. They looked
extensively into several issues, such as stabilizing the electrical grid and supporting
renewable energy. They also discussed different services an EV can provide, such as
regulation service, reduction in peak load, spinning reserves and base load. In their work,
it was concluded that the regulation service has the most potential in terms of earning. In
[29], Kempton at el. performed a practical demonstration of V2G integration, providing
real time frequency regulation service in PIJM electricity market. Other studies also
confirms that EVs are well suited for regulation services [23], [24]. Brooks demonstrated
a bidirectional V2G ancillary service for EV through an aggregator. It was demonstrated
that an EV can respond to four-second regulation signal from the 1SO [30]. These studies
however, did not properly address the aggregator role, revenue structure and the different

uncertainties in the deregulated electricity market structure.

Many other studies have looked at the potential benefits of electric vehicles and V2G with
unit commitment problem. These include the charging and discharging of EVs for peak
loading shaving and load leveling. Some of these studies have also focused on reducing
the thermal unit emissions and balancing wind and solar through V2G integration [31]-
[34]. Sabir and Venayagamoorthy also considered the limitation of the parking lot for EV
charging [34]. However, these studies did not consider the aggregator and bidding

strategies. Also, the uncertainties associated with the EVs such as their availability, SOC,
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battery capacity are not considered. They considered EVs as simply a battery storage
medium. Venayagamoorthy at el. [35] and Peterson at el. [36] have developed the concept
of optimal buying and selling of bulk V2G energy. In [37], the author has investigated
different grid related support by EVs such as reactive power support, peak shaving,
emergency reserves and off grid applications. Most of the optimization work done by Sabir
atel. is based on intelligent techniques, such as particle swarm optimization. In a real power
system, it is difficult to solve the optimization with intelligent techniques as the number of
electric vehicles will be large, so does the optimization parameters. In [38], author have
considered the electric vehicles with the economic dispatch. They have considered the
charge/discharge behavior of electric vehicles and wind power, the optimization problem
is solved using particles swarm optimization. However, these studies did not investigate
the aggregator standpoint nor did they consider the uncertainties of the power system
market. Khodayar at el. [39] presents a mixed integer programming methodology to solve
the security constraint unit commitment (SCUC) problem with the aggregated PEVs as a
distributed source of bidirectional energy and volatile wind power. The main focus of the
paper is the secure operation of the power system with EVs and wind, while considering
some of the uncertainties of EVs such as their availability. Since the formulation presented
was not market-based, the uncertainties associated with the electricity market such as price

and load is not considered.

Guille and Gross [40] explored thoroughly the participation of aggregator and provides a
framework for V2G implementation. They propose the aggregator as a link between the
market participants and the utility for all types of energy markets, as well as providing the

battery charging services. They introduce the concept that aggregator can provide “package
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deals” such as battery guarantee and maintenance, as a way to attract large number of EV
owners to create an aggregation of sizable impact. The communication requirements are
also highlighted. Quinn at el. [9] mainly focuses on the effect of communication
architecture on different parameters of V2G services. They showed the importance of
aggregator for V2G services by introducing the availability factor. Without aggregator, if
an EV has a contract with the utility directly, it cannot leave for any unplanned departure
until the end of the contract period while an aggregator, with many EVs, can schedule the
capacity based on historical data, and can maintain the contracted availability for V2G
service and with this, an individual EV can leave as per the EV owner requirement, but its
revenues will be reduced. These studies however deal with the aggregator, but they do not
address any algorithms for ancillary services, bidding strategies nor with any uncertainty

of the power system.

Several other recent studies have focused on the bidirectional V2G services. One such
study was done by Han and Sezaki [41] in which optimal charging control was pursued for
each EV by using dynamic programming. This study divided the whole EV availability
time into two periods, one for charging EV and another period for regulation services. An
optimization strategy should consider both options. This study performs the optimization
for regulation service however; it does not address the regulation algorithm followed by
the individual EV. In [42], Rotering and llic proposed optimal scheduling strategy for
single EV performing regulation service, this also segregates the charging period from the
regulation period. However, one major drawback of this study is that it assumes the battery
state of charge (SOC) is unaffected by the regulation service. The bidirectional V2G has a

great potential, but with its benefits there are serious challenges in its implementation. With
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the bidirectional power flow, additional hardware is required. Many issues, such as
interconnections related problems and anti-islanding protection problems, must be
addressed [43]. Also its impact on distribution system should be investigated carefully.
Battery cell degradation due to the cyclic wear is also a significant problem with
bidirectional V2G [36], [44], [45] . Apart from the technical difficulties in using
bidirectional V2G, customers may also not allow the utility to draw power from their

batteries and they can be left stranded for their unexpected departures [46].

Vehicle to grid integration is still at the initial phase of implementation and the
bidirectional V2G integration will not be a straightforward task. The first step should be to
introduce the unidirectional VV2G; it will avoid many technical and nontechnical hitches.
There will be no need for an extra hardware and battery cycling problem will not be of
concern [47]. Additionally, unidirectional V2G can be charged by standard SAE J1772
charging stations [48]. Unidirectional V2G makes customers feel more comfortable as the
utility cannot draw energy from their batteries. The basic concepts of unidirectional V2G
regulation service are explained in [45]. It is a load-only regulation that varies the charging
of EVs around a set point called preferred operating point (POP). Reference [45] does not
explain the charging algorithms used by the EV for controlling the POP. A unidirectional
V2G aggregator charging algorithm is discussed in [49] . The algorithm controls the
charging of EVs as either on or off based on the regulation signal from the ISO/utility.
When the EV is connected, it charges the EV battery based on the rating and capacity of
the charger. While charging the EV, it also keeps track of the battery state of charge (SOC).
It does not perform any optimization and when the desired SOC is achieved, the charging

of EV is disconnected.
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A considerable amount of work in unidirectional V2G has been done by Sortomme and El-
Sharkawi. In [47], unidirectional regulation algorithm is developed; several smart charging
algorithms and their optimized algorithms are developed and compared. In this work [47],
it is assumed that electric vehicles are available during the office hours for nine-hours and
the aggregator can charge and perform bidding for ancillary service during this period.
Later this work is extended in [50] to consider the spinning reserves in the bidding strategy
in addition to the regulation service bidding. They developed the combined bidding
algorithm for both the regulation services and spinning reserves. The optimization is also
performed for the whole day and considering the unplanned departures by the electric
vehicles. The algorithms for price and system load constraint optimization are also
developed so that the customers can charge the EVs at low energy prices with price
constraints; and the power system network will not be burdened by the EVs load, if load
constraint is applied. Unlike previously suggested algorithms, the formulation presented in
their work is a linear program that can be solved by any linear program solver. The authors
have suggested a well-defined bidding structure for the aggregator, but they ignored the
different uncertainties associated with the deregulated electricity market, such as price,
load and regulation signal deployments in their bidding strategies. There are always errors
related with the forecasted quantities and these forecasting errors are not dealt with in their

work.

In [51], two optimization approaches “divided” and ”global” are proposed for participating
in the day-ahead energy market. In divided approach, an EV participates individually while
the global approach takes the benefit of EV aggregation to bid in the electricity market.

While [51] presents the basic theory of the concept, [52] presents the numerical analysis

19



supporting the ideas. The two approached are compared and the result shows the benefit of
the global approach in comparison with the divided approach. Later, a more comprehensive
work is done in [53] from an EV aggregator, participating in two types of electricity market;
day-ahead reserve market and the hour-ahead reserve market. The main objective of Bessa
et al. work is to reduce the cost of aggregator, so that it can attract more EV owner for
charging their cars, which indirectly will increase the aggregator income. The main
drawback of their work is that, they did not compare how effective their algorithm is on
the actual day of operation. They have not compared the expected and actual aggregator

Costs.

2.3 Handling Uncertainties using Fuzzy Sets

Fuzzy set theory has been applied in many diverse applications of power system network,
mainly in the fields of power system operations and planning. The main focus of the fuzzy
set theory is in the area of modeling different uncertainties and fuzzy-based intelligent
controllers. In the electrical power system, one of the subfield that is very well addressed
is the unit commitment (UC) problem with different fuzzy-based uncertainties such as load,
production cost and spinning reserves. Most of fuzzy-based UC optimization has been done
using the integer programming and intelligent techniques such as particle swarm, genetic
algorithm, simulated annealing and ant colony. Only a few deal with fuzzy linear
programming. A brief literature review related to the modeling of uncertainties using the
fuzzy set theory for the UC problem is presented here as the UC problem resembles the

optimal bidding strategy in terms of problem formulation.
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A. H. Mantawy at el. [54], [55] proposed the unit commitment solution method with fuzzy
genetic algorithm and fuzzy simulated annealing. In this work, fuzzy logic is used for
modeling the uncertainties in load demand and the spinning reserves. In [56], Saber at el.
presented fuzzy based unit commitment using simulated annealing considering the
uncertainties in the load and spinning reserve while in [57] presented adaptive fuzzy based
unit commitment problem solution with the particle swarm. The fuzzy membership
functions are applied to the weights assigned to the particle. Fuzzy theory is also applied
for modeling the uncertainties of wind and solar energies in addition to the thermal
generators scheduling problem. In [58], Liang and Jian presented their work on the
generator scheduling with the fuzzy wind and solar energy systems. They solve a
comprehensive power system network with fuzzy genetic algorithm considering the
uncertainties in fuel cost, load demand, spinning reserves requirement, available water for
pumped storage, wind speed and solar radiations. The main application of these references

is the unit commitment problem.

The application of fuzzy logic to price based unit commitment is addressed by Daneshi at
el. [59], In this paper, the UC problem is expressed as a mixed integer linear programming
with the uncertainties in the electrical market energy price that is modeled by fuzzy set
theory. The objective is to maximize the profits of the generating company under the

deregulated and uncertain environment.

Zimmermann [60], presented the way to convert a linear program into a fuzzy linear
program. The fuzzy linear programming provides a framework for solving the optimization
problems by modifying the standard linear program to include the uncertainties in the high
and low limits of the scheduled data. It converts the objective and the constraints of the
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linear program into satisfaction functions of fuzzy sets. The optimum solution is achieved
by maximization of the intersection of the satisfaction functions. In [61], Venkatesh at el.
presented fuzzy mixed integer linear programming for the unit commitment problem. In
this work, they transform the objective function and the constraints related to load demand
and spinning reserves into fuzzy objective function and fuzzy constraints while an
extension of this work is done in [62] that includes the renewable energy sources along
with the thermal generators. The uncertainties are incorporated in the objective function
and the renewable generation. The membership functions are defined for the total fuel cost

and the wind energy generator system.

In [63], electric vehicles infrastructure using the fuzzy logic controller has been proposed.
They have proposed the charging and discharging of the EVs depending on the individual
battery status and the electrical power grid status. Two controllers have been proposed in
this paper, the charging station controller and the V2G controller. This paper presents novel
work in this area, but this work deals with the controller design and does not address the
uncertainties of the power system. In addition, it is not an aggregator profit maximization

approach.

To the best of our knowledge, the uncertainties in the optimal bidding strategies of the
ancillary services using V2G have not been addressed by the fuzzy set theory. In the
deregulated market structure, it is necessary to model the different uncertainties so that the
aggregator can maximize its profits while taking into account different uncertain factors

during its optimization.
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CHAPTER 3

FUZZY LOGIC AND FUZZY LINEAR PROGRAMMING

(FLP)

The concept of fuzzy sets and fuzzy logic has been well developed in the last several
decades. The term fuzzy was first introduced by Professor Lofti Zadeh in multivalued sets
in a seminal paper ‘Fuzzy Sets’ in 1965 [64]. Multivalued logic concept was first
introduced in 1920 to deal with uncertainties in quantum mechanics. Zadeh applied the
multivalued logic to set theory and introduced the concept of fuzzy sets — sets in which
elements can belong to a particular set but with different degree. According to the fuzzy
principle, ‘everything is a matter of degree’ while in the conventional logic, everything is
bivalence (TRUE or FALSE, 1 or 0); fuzzy logic is multivalence (the fuzzy variables can
take any value from 0 to 1). Fuzzy set theory is a shift from the conventional mathematics
problem solving to more human based solving technique [65]. Over the last few decades,
the fuzzy theory has gained widespread popularity; many Japanese scientists have used the
theory of fuzzy sets in many practical applications. The fuzzy set theory has been mainly
used for two purposes: designing fuzzy logic controllers and modeling uncertainties.
Traditionally, engineers rely on mathematical models for their design. But, the more
complex the system is the less effective and the more time-consuming the mathematical
model becomes. This was the fundamental concept that provides the motivation for fuzzy

set theory formulated by Zadeh. He proposed the Principle of Incompatibility.
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Zadeh stated that [66] :

As the complexity of a system increases, our ability to make precise and yet significant
statements about its behavior diminished until a threshold is reached beyond which
precision and significance (or relevance) becomes almost mutually exclusive

characteristics.

The main reason to use the fuzzy set theory in designing the controllers or formulating the
problem is its ability to incorporate human experience, intelligence and heuristics into the

system.

This chapter introduces the concept of fuzzy logic and fuzzy linear programming that will
be applied for the aggregator bidding strategies. Fuzzy set theory is used to model the
uncertainties in concerning the electricity market. This is extremely important for the

aggregator to consider in order mitigating bidding risks.

3.1 Fuzzy Sets and Fuzzy Logic

The classical set theory was introduced by a German mathematician Georg Cantor (1845-
1918) [65]. In this theory, a universe of discourse, U, is defined for a set of objects that
have the same characteristics. A classical set is a collection of all objects/numbers that
either belong to the set or do not belong to the set. There is a definite boundary in the case
of the classical set. A classical set theory is defined by A = {x € U | P(x)} where the element
of A have the property P, and U is the universe of discourse. The characteristic function
HA(X): U-=2{0,1} is defined as ‘0’ if X is not an element of A and ‘1’ if x is an element of

A. In fuzzy set theory, the concept of characteristics function is extended to more
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generalized form, known as membership function: pa(x): U= [0, 1]. The membership
function can take any value between 0 and 1. The set which is defined by this membership
function is called a fuzzy set. In fuzzy set theory, membership is no longer ‘TRUE’ or

‘FALSE’, but a matter of degree. The degree of membership function is important.

3.2 Fuzzy Logic Controller

The fuzzy logic controller (FLC) was initially introduced as a model-free controller, based
on human knowledge only, but now the current research has advanced the fuzzy controller
models and they guarantee stability and robustness of the system. Fuzzy logic controllers
are a type of non-linear controllers. Figure 3-1 shows the block diagram of a fuzzy logic

controller. There are five main components in a fuzzy logic system.

e Fuzzification module (fuzzifier).
¢ Knowledge base.

e Rule base.

e Interface engine.

e Defuzzification module (defuzzification).

Knowledge
Base

Rule Base

A 4 A 4

. . Output
Input Scaling factor T . Defuzzification P
.. » Fuzzification Interface > . . System
Normalization Denormalization :

Figure 3-1: Typical fuzzy logic controller

A 4
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Automatic changes in the design parameters of any of the five elements create an adaptive
fuzzy controller. Fuzzy logic controller with fixed elements is called as non-adaptive fuzzy

controller. The detail of the different elements can be found in standard textbooks.

3.3 Linear Programming

Linear programming (LP or Linear optimization) can be defined as a mathematical
technique of maximizing or minimizing a linear function subject to some linear constraints.
The constraints can be equality or inequality constraints. Linear programming is always
convex and its feasible set is a convex polyhedron. Solving a linear program involves
finding a point on the edges of the feasible set where the function has the smallest or the
largest value depending on the objective of the problem. Linear programming problems
can be expressed in the canonical form as [67]:

Maximize cTx

Subject to:Ax < b,Cx =d, (3.2)

andx =0
Where x represents the vector of unknown variables to be optimized, A, b and c are vectors
of known coefficients and T is the transpose operator. The expression to be maximized or
minimized is called the objective function. The equality and inequality conditions are the
constraints which specify the convex region. Linear programming has been applied to solve
many engineering problems, such as energy, transportation, planning, scheduling,

manufacturing etc.
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3.3.1 Methods of Solving Linear Problem

There are various methods for solving a linear program depending on the problem
dimension. Some of the methods are the graphical method, simplex method, active-set
method, and interior point method. The graphical method is only valid for two dimensional
problems and the other methods are more general and can solve problems with many
variables [67]. There are also various computer software packages available for solving the

linear optimization problems, such as Matlab, ILOG, GAMS, and AIMMS.

3.4  Fuzzy Linear Programming

The fuzzy set theory is a mathematical technique that allows the modeling of imprecise or
conflicting engineering problems. The uncertainties and imprecision’s come from various
factors in the real life problems. Fuzzy linear programming is an extension of linear
programming (LP) that allows the modeling of the uncertainties in the model parameters
[14]. The linear program formulation of (3.1) can be modified to include the possible
uncertainties in the high and low limits of the schedule data. In pursuit of a fuzzy
formulation, some of the elements in the LP are reformulated as fuzzy objectives and fuzzy

constraints.

Fuzzy linear programming provides a framework for handling optimization problems. It
transforms the objectives and constraints into satisfaction functions of fuzzy sets. The
optimality is achieved by maximizing the intersection of these satisfaction functions of the
problem [60] in addition to various crisp constraint in the problem. Fuzzy optimization can

be solved by any software package that can solve regular linear optimization.
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Consider a problem comprising of number of objectives, I, and a number of constraints, J.
Let each objective be associated with a fuzzy set Z; = {u;, u5;(u;) € U;} . The subscript i
refer to the i objective function, ui is the value the i objective function and Ui is it"
objective space. 1 ; (u;) is the membership function that defines the satisfaction parameter
of the degree of closeness of the i objective to the optimal value. Similarly, let each
constraint be associated with a fuzzy set C; = {u;, u¢;(v;) € U;}. The subscript j refers to
the j™ constraint. uj is the value the j™ constraint assumes and Uj is j constraint space.
Ucj (uj) is the membership function that defines the satisfaction parameter of the degree of

closeness of the ji constraint to the optimum.
Mathematically, fuzzy optimization is stated as [60]:
Maximize A

where,

A= min{#zpﬂzz'ﬂzs' o HMzir Hew Bez) Hess ---»#Cj}

The min function determines the minimum of the satisfaction values. All the membership
functions are defined in the range of [0, 1]. During the optimization, A assumes a value that
equals the least of all the satisfaction parameters. As A is maximized, individual fuzzy
satisfaction parameters relating to objectives and constraints are consequently

optimized.
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CHAPTER 4

ELECTRICITY MARKET OVERVIEW AND

FORECASTING OF MARKET PARAMETERS

In this chapter, an overview of the electricity market, and the forecasting of different
electricity market parameters that are later used in the vehicle-to-grid (V2G) bidding, is
presented. The electricity power industry has undergone restructuring process in many
parts of the worlds in the last few decades. The level of restructuring is different in different

countries depending on the system and requirements.

With the restructuring of the power system, only the economics of the power system has
changed, the fundamental concepts and operation of the power system remains the same.
The load and the generation have to be balanced at all times in the system. To achieve this
goal in real time, several functions have been established to manage the system effectively.
In this chapter, the ancillary service market, regulation and spinning reserve, is explained.
In the last section of this chapter, forecasting of the different parameters of ancillary service
market, such as regulation service and spinning reserves prices and deployments, is

presented.

4.1 Electricity Markets

Electricity (both power and energy) is now considered as a commodity. An electricity

market is a system of trading, purchasing and selling, through bids and offers. But there
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are important differences between the electrical energy and other commodities such as
wheat and oil. These differences have reflective impacts on the rules and organization of

the electricity market. The main differences are [68]:

e The electricity energy is linked with a physical system that functions much faster
than any other market.

e The electrical energy cannot be stored on a large scale like any other commaodity.
The load and the generations must be balanced at all time, in order to avoid
mismatch in the system that can lead to the collapse of the whole electrical system.

e The electrical energy generated from one generator cannot be directed to any
particular customer. Once the power is injected into the system, it cannot be

distinguished.

There are mainly two types of electricity markets, which are further classified into different

services:

e Day Ahead Market

Day-ahead market is a kind of forward market in which hourly Locational marginal
prices (LMP) are calculated for the next day based on the demand bids, generation

offers and the scheduled bilateral transactions.

e Real Time Market (Spot Market)

Real-time market is a spot market in which current LMPs are calculated usually five-

minute intervals based on the operating conditions of the grid. The real time prices are
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updated on the independent system operator (ISO)/utility websites. Transactions are

settled hourly between the different market participants.

Within each type of market, there is a framework by each 1SO for different services such
as energy, ancillary services, and congestion managements. Based on the services, 1SO is
providing, these services are also referred as the energy market and ancillary service
market. In this thesis, the formulation for V2G bidding is simulated for day-ahead ancillary
service market. The ancillary service data is taken from the ERCOT 1SO [69] for all the
simulations. The three months data, from 21 July 2010 — 20" Oct 2010, of regulation
up/down prices, regulation deployments signals, spinning reserve prices and the spinning
reserves deployments are used. A brief overview of the ancillary service market is

explained in the next section.

4.2  Ancillary Service Market

The federal energy regulation commission (FERC) defines the ancillary services as [70]:

“Those services necessary to support the transmission of electric power from seller
to purchaser given the obligations of control areas and transmitting utilities within
those control areas to maintain reliable operations of the interconnected

transmission system”

The ancillary services are needed to support the power system network in many ways from
maintaining the voltage level in the transmission network to the reliable operation of power
system. They also keep the required level of power quality and safety. By means of these

services, we keep the load and generation in balance. In the deregulated power system
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network today, it is the duty of the independent system operator (1SO) to perform different
duties such as, balance between supply and demand, stabilizing power system, and
maintaining power quality on economic basis in a competitive environment. The different

types of ancillary services an ISO can provide in a competitive market are [70], [71]:

e Frequency control (Regulation Service)
e Spinning and non-spinning reserves

e Voltage Control

e Load following

e Black start capability

e Automatic generation control

e Grid loss compensation

e Emergency control actions

e Reactive power control

e System protection

In this thesis, the main work is focused on two types of ancillary service markets, regulation

and spinning reserve (responsive reserves) market.

4.2.1 Regulation Market

The regulation service market handles the rapid fluctuations in the power system due to
small unintended changes in the generations and loads. The regulation service tries to keep
the system frequency as close as possible to the nominal value and tries to avoid any
inadvertent interchanges with other power systems. Generating units that have high

up/down ramp rates can provide this service. The units that provide the regulation service
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should be connected to the power system; must be equipped with a governor and usually
operate under automatic generation control (AGC). The regulation service is a preventive

security measure to avoid any disturbance in the system.

4.2.2 Spinning Reserves Market

Reserves are designed to handle a large and unpredictable power shortage in the power
system that could result in destabilizing the system. Reserve service is a kind of corrective
action. Reserves services are usually divided into two categories: spinning reserves and
non-spinning reserves. The units that provide the spinning reserves must respond to any
disturbance immediately. Usually, these units are always connected to the power system
and supposed to contribute very quickly in case of disturbance. The non-spinning reserves
are not connected to the power system, but they can be brought online after short notice
and are generally slow. In some cases, the customers who agree to have their load

disconnected can also indirectly support the system reserve capacity.

4.3  Forecasting Electricity Market Parameters using ARIMA Models

In this thesis, optimal aggregator V2G bidding strategies are developed for the day-ahead
markets. In the day-ahead market, the aggregator will try to forecast the different future
(next day) market parameters. As the aggregator is bidding in the ancillary service market,
so aggregator should try to bid in the market by forecasting the ancillary service prices,
such as regulation up/down prices and spinning reserves (also called as responsive reserves
in ERCOT market) price. Also the deployment signal from the 1SO should also be
forecasted for both the regulation and spinning reserves. In this thesis, the electricity market

considered is the Electricity reliability council of Texas (ERCOT). The simulations are
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performed on a three months period, and so is the forecasting. All the prices and
deployments data are taken from the ERCOT archives. for a period of three months from

215t July, 2010 to 20% Oct, 2010 [69].

The forecasting of all the markets parameters is done using the autoregressive integrated
moving average (ARIMA) method. The ARIMA model based forecasting is done using the
Matlab Econometrics toolbox [72]. The errors in the forecasted data are calculated using
the mean absolute percentage error (MAPE). The MAPE error is given by the following

formula. It is usually expressed in percentage.

n
1

(F9)
n

t=1

A — F
Ay

(4.1)

4.3.1 Autoregressive Integrated Moving Average (ARIMA) Model

Electricity market parameters estimation is becoming increasingly important in the day-
ahead competitive market. It is necessary to estimate future quantities for developing
bidding strategies. ARIMA is a class of stochastic processes that are used to analyze time

series [73]. The general steps for forecasting using the ARIMA model are as follows [74]:
A. Model Identification

In the first step, a general ARIMA model is selected to model the data to be forecasted.
The data is modeled by inspecting the main characteristics of the data. In most markets,
the price, load, and other data to be forecasted are usually periodic. They are repetitive
daily, weekly, monthly or yearly. If f,denotes the forecasted quantity at time t, the ARIMA

formulation can be proposed as:
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P(B)f; = 0(B)e, (4.2)
where,

f: is the forecasted quantity at time t and @(B) and 6(B) are functions of backshift
operators B. @(B) is the autoregressive polynomial and 6(B) is moving average
polynomial. €, is the error term and B is the backshift operator. The functions @(B) and
6(B) can be of the form ®(B) =1-Y¢%,®,Blandlor (1—B") and 8(B) =1—
9 . 8,BL. To include the seasonality in the ARIMA model different factors depending
upon the daily(1 — @,,B%%), weekly(1 — @, ,4B°®) , monthly (1 — @,,,B72°) or yearly

can be included.

In this forecasting of different electricity market parameters, such as regulation up/down
prices, spinning reserves prices, and deployment signals; we are considering them for the
day-ahead market, so daily and weekly seasonality are considered. For example, it is
expected that the behavior of tomorrow’s noon prices to be strongly correlated with those

of today.
B. Stationary Transformation

In order to make the series stationary, a transformation of the data is necessary. In the
second step, a logarithmic transformation is usually applied to attain a more stable variance

and mean of the series.
C. Parameter Estimation

In the third step, the parameters of the functions specified in the previous steps have to be

estimated. Good estimation can be done when the data is stationary (previous step) and by
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using maximum likelihood method [73]. In statistics, maximum likelihood is a method
of estimating the parameters of a statistical model. When applied to a data set and given
a statistical model, maximum-likelihood estimation provides estimates for the model's

parameters.

In this work, matlab command ‘estimate’ is used to find estimate the parameters of the

model.

D. Model Validation

In this step, the model assumed in step A is validated on the residuals (actual quantity
minus fitted quantity, as estimated in step B. Residuals must satisfy the requirements of
white noise; constant variance, zero mean and normal distribution. These requirements can
be checked by different plots such as the autocorrelation and partial autocorrelation plots.
If the hypothesis on the residuals is validated by these plots then the model can be used for

forecasting.

In Matlab, the ‘infer’ command is used to find the residuals.

E. Forecasting Parameters

In the last step, the model that is assumed and validated is used for forecasting the different
quantities. In Matlab ‘forecast’ command is used to forecast the day-ahead quantities using

the model.

4.3.2 Forecasting of Regulation Up Prices
All the ARIMA forecasting is done using the Matlab Econometric Toolbox following the

steps highlighted in the previous section. As a sample result, the graphs of the actual and
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the forecasted regulation up prices for one week, from 4" Oct, 2010 to 10" Oct, 2010, are

shown in Figure 4-1.
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Figure 4-1: Forecasting of regulation up prices from 4™ Oct, 2010 to 10" Oct, 2010

The mean absolute percentage error of the selected week is shown in Table 4-1 and the

mean absolute percentage error (MAPE) of the whole forecasting of three months data is

shown in Table 4-2.

Table 4-1 Daily mean absolute percentage error of the selected week

Davs 4th QOct, | 5" Oct, | 6" Oct, | 7" Oct, | 8" Oct, | 9 Oct, | 10" Oct,
y 2010 2010 2010 2010 2010 2010 2010
MAPE | 10.5464 5.9326 6.4810 5.0905 4.9407 3.3448 7.69127

Table 4-2 Mean absolute percentage error of the whole forecasted period

Forecasted Period

215 July 2010 to 20'" Oct 2010

MAPE

8.326728 %
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4.3.3 Forecasting of Regulation Down Prices

The graph between the actual price and forecasted price of regulation down for week from
4™ Oct, 2010 to 10" Oct, 2010 is shown in Figure 4-2. Table 4-3 shows daily mean absolute
percentage error of the selected week while Table 4-4 shows the mean absolute percentage

error of the whole forecasted period.
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Figure 4-2: Forecasting of regulation down prices from 4™ Oct, 2010 to 10" Oct, 2010

Table 4-3 Daily mean absolute percentage error of the selected week

th

Dave | 4"Oct, | 5" Oct, | 6" Oct, | 7 Oct, | 8" Oct, | 9" Oct Cl)(():t

y 2010 | 2010 | 2010 | 2010 | 2010 | 200 | 2%
MAPE | 24.1974 | 16.2327 | 2.19316 | 1.8557 | 8.7602 | 3.3905 | 7.3936

Table 4-4 Mean absolute percentage error of the whole forecasted period

Forecasted Period

215 July 2010 to 20* Oct 2010

MAPE

9.583074%
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4.3.4 Forecasting of Responsive Reserve Prices

The graph between the actual price and forecasted price of responsive reserves for week

from 4™ Oct, 2010 to 10" Oct, 2010 is shown in Figure 4-3. Table 4-5 shows daily mean

absolute percentage error of the selected week while Table 4-6 shows the mean absolute

percentage error of the whole forecasted period.
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Figure 4-3: Forecasting of responsive reserve prices from 4" Oct, 2010 to 10" Oct, 2010

Table 4-5 Daily mean absolute percentage error of the selected week

th

oave | 470ct, | 5™ Oct, | 6 Oct, | 7 Oct, | 8% Oct, | 9 Oct, cl)(():t
y 2010 | 2010 | 2010 | 2010 | 2010 | 2000 | 2
MAPE | 104322 | 1.12529 | 54532 | 3.3702 | 34657 | 3.4180 | 1.932

Table 4-6 Mean absolute percentage error of the whole forecasted period

Forecasted Period

215 July 2010 to 20*" Oct 2010

MAPE

6.777%
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4.3.5 Forecasting of Regulation Up Deployments Signals

The graph between the actual and the forecasted regulation up deployments signals for
week from 20" Aug, 2010 to 26™ Aug, 2010 is shown in Figure 4-4. Table 4-7 shows daily
mean absolute percentage error of the selected week while Table 4-8 shows the mean

absolute percentage error of the whole forecasted period.
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Figure 4-4: Forecasting of regulation up deployments from 20" Aug, 2010 to 26™ Aug,
2010

Table 4-7 Daily mean absolute percentage error of the selected week

20th 215t 22nd 23rd 24th 25th 26th
Days Aug, Aug, Aug, Aug, Aug, Aug, Aug,
2010 2010 2010 2010 2010 2010 2010

MAPE | 31.4974 | 36.5435 | 26.6176 | 21.6537 | 23.2820 | 30.2136 | 29.9532

Table 4-8 Mean absolute percentage error of the whole forecasted period

Forecasted Period

215 July 2010 to 20'" Oct 2010

MAPE

28.4844%
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4.3.6 Forecasting of Regulation Down Deployments Signals

The graph between the actual and forecasted signals of regulation down deployments for

week from 20" Aug, 2010 to 26™ Aug, 2010 is shown in Figure 4-5. Table 4-9 shows daily

mean absolute percentage error of the selected week while Table 4-10 shows the mean

absolute percentage error of the whole forecasted period.
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Figure 4-5: Forecasting of regulation down deployments from 20" Aug, 2010 to 26™
Aug, 2010

Table 4-9 Daily mean absolute percentage error of the selected week

20t 215t 22nd 23rd 24t 25t 26t
Days Aug, Aug, Aug, Aug, Aug, Aug, Aug,
2010 2010 2010 2010 2010 2010 2010

MAPE | 35.7060 | 21.7926 | 32.0084 | 27.5211 | 23.200 | 38.1259 | 33.7908

Table 4-10 Mean absolute percentage error of the whole forecasted period

Forecasted Period

215t July 2010 to 20*" Oct 2010

MAPE

31.327847%
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4.3.7 Forecasting of Responsive Reserve Deployments Signals

The graph between the actual and forecasted signals of responsive reserves signals for week
from 20" Aug, 2010 to 26™ Aug, 2010 is shown in Figure 4-6. Table 4-11 shows daily
mean absolute percentage error of the selected week while Table 4-12 shows the mean

absolute percentage error of the whole forecasted period.
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Figure 4-6: Forecasting of responsive reserve deployments from 20" Aug, 2010 to 26"
Aug, 2010

Table 4-11 Daily mean absolute percentage error of the selected week

20th 21st 22nd 23rd 24th 25th 26th
Days Aug, Aug, Aug, Aug, Aug, Aug, Aug,
2010 2010 2010 2010 2010 2010 2010

MAPE | 22.5258 | 2.8077 24204 | 28.7277 | 97.189 5.3738 3.6176

Table 4-12 Mean absolute percentage error of the whole forecasted period

Forecasted Period

215 July 2010 to 20* Oct 2010

MAPE

2477 %
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CHAPTER S

SMART CHARGING OF ELECTRIC VEHICLES USING

ADAPTIVE FUZZY LOGIC

In this chapter, a novel smart charging algorithm based on the fuzzy logic is proposed. This
fuzzy logic algorithm takes the energy price, system load, and the number of charging
hours in a fuzzy logic framework. The proposed fuzzy logic algorithm is compared with

previous published algorithms and is proved to result in higher profits for the aggregator.

A considerable amount of work in unidirectional V2G has been done previously. In [47],
a unidirectional regulation algorithm to be followed by an EV is proposed. Several “smart”
charging algorithms were proposed in [47], [75]. These algorithms are load-only
regulation, i.e. only unidirectional V2G that controls the charging level of an electric
vehicle is considered. The charging schemes are based on the real time communication of
system load, energy price, regulation signal deployments and the charging hours of the
electric vehicles. The proposed algorithm combines the individual smart charging
algorithms in a fuzzy logic framework. The aggregator generates profits by participating
in the ancillary service market and by charging the EVs. These algorithms are simulated
over a hypothetical group of 10,000 EVs in a real electricity market, the Electric Reliability
Council of Texas (ERCOT) area. Commuter cars are used in the simulations and it is
assumed that all the EVs are available during the charging hours from 8 A.M. to 5 P.M.

The results show the benefit of the proposed fuzzy logic based charging from the
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aggregator point of view, while each algorithm has its own specific advantages that are
explained later in this Chapter. In the next section, the market algorithm assumed to be

implemented for deploying the regulation service is explained.

5.1 Regulation Service Deployment Algorithm

An EV can perform the regulation service by varying its actual charging rate above or
below its scheduled charging rate, which is called the preferred operating point (POP). The
value of the POP in the system is scheduled by the aggregator. The term POP is derived
from the ancillary service market and is the average level of the energy providing regulation
service [49], [45]. For a generator providing ancillary service, the term POP is the output
power generated by the generator while for unidirectional V2G, the POP is the power draw
level of an EV. By varying the charging rate of an EV below/above its POP, regulation
up/down capacity is provided. As a single EV has insufficient capacity for providing this
regulation service, the aggregator aggregates many EVs and bid their combined capacity
in the electricity market. The aggregator controls the charging of EVs according to the
regulation signal provided by the system operator. Regulation service deployment
algorithm was proposed by Sortomme et al. and is shown in Figure 5-1 [47]. The graphical
descriptions of different variables are shown in Figure 5-2 and Figure 5-3. The graph shown
in Figure 5-2 is very important. This is the regulation algorithm followed by all the EVs.
If the regulation signal from ISO (V) is positive, the EVs have to perform the regulation
down by increasing their charge rate according the regulation signal and their capacity. If
the regulation signal from I1SO (V) is negative, the EVs have to perform the regulation up

by decreasing their charge rate according the regulation signal and their capacity. This
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regulation algorithm is providing the regulation service by changing the EVs. The EVs
draw power according to this algorithm, this algorithm is later used for calculating the
actual power draw of EVs. Note that in order to perform the regulation service by the

aggregator, communication between the aggregator and the system operator is required.

No I Yes

h 4 Y

(V/MV)*MnAP; + POP; < CR/Ef; (V/IMV)*MxAP; + POP, < CR/ES;

No I Yes No I Yes

Y A 4 Y

PD; = (V/MV)*MnAP; e | [PDi= (VMV)*MxAP;
. pOb, PD; = CR/Ef, + POP,

PD,‘ = CRJEf,

Figure 5-1: Regulation algorithm flowchart [47]

MP;

Battery Power Draw (kW)
/
3\

Time (min)

Figure 5-2: Regulation signal around the preferred operating point [47]
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CR;

SOC;

Battery State of Charge
(kW)

Time (min)

Figure 5-3: Battery state of charge while performing regulation [47]

5.2  Smart Charging Algorithms

The regulation capacity is based on the charging rate of the EV. The charging rate is
selected by varying the POP; therefore the aggregator must schedule the value of POP
smartly to maximize the profits. Previously, price based and load based smart charging
algorithms were proposed for the EV charging [75]. However, these were not considered
for regulation capacity bidding. Later, a modified charging algorithm that tends to
maximize the regulation capacity was proposed [47]. In this chapter, a new fuzzy based
algorithm is proposed in a fuzzy logic framework to overcome the shortcoming of the
previous algorithms. The shortcoming is that if one is using the price algorithm, it will only
charge the EVs based on the system energy price regardless of the impact on the power
system. Similarly, if load algorithm is used the algorithm will not take care of on how much

energy price, the EVs are charging. Also, the previous algorithms are not as much
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beneficial as the proposed fuzzy algorithm. Figure 5-4 shows the three smart charging

algorithms suggested in [47], [75] and the one to be proposed in this chapter.

Smart
Chargers

Price Based

L.oad Based

5.2.1 Price Based Charging

MaxReg
Based

Fuzzy Logic
Based

Figure 5-4: Smart charging algorithms

The price based algorithm sets the value of the POP based on the energy price in the system.

The EVs charge more and provide more regulation down capacity when the energy price

is low. The POP is selected based on:

POP;(t) =

where,

My, = max(Pp,(to: to + 24 - 60/n))

M

M, — P(t)

=~ > MP:
Mx - Mn '

n = min(Ppa(to: to + 24 -60/n))
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5.2.2 Load Based Charging
This algorithm sets the value of the POP based on the load in the system. The EVs charge
more and provide more regulation down capacity when the load on the system is low. The

POP is selected based on:

Mx - L(t)
() = =" mp. 5.4
POP;(t) T MP; (5.4)
where,
My, = max(Lpa(to: to + 24-60/n)) (5.5)
Mln = min(LDA(tO: tO + 24‘ . 60/n)) (56)

5.2.3 Maximum Regulation (MaxReg) Based Charging
The MaxReg based algorithm sets the value of the POP based on the battery level and the
number of hours available for battery charging. The MaxReg based bids the regulation

up/down capacity during the whole charging period. The POP is selected based on:

M, — SOC;
POP(t) = ————

(5.7)
5.2.4 Proposed Fuzzy Logic Based Charging

A novel adaptive fuzzy logic based charging algorithm is proposed that combines the
features of the previous chargers in a fuzzy logic framework. Section 3.2 explains the fuzzy
logic controller and is briefly discussed here. A FLC reflects the mechanism implemented

by the humans without any complete knowledge of the control object in a mathematical
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form. Here the control system works on the set of rules defined by human’s past experience

about the system. There are five main components of a fuzzy logic controller [76]:

e Fuzzification module (fuzzifier)
e Knowledge base
e Rule base

e Interface engine

Defuzzification module (defuzzifier)

In the fuzzifier, the values of input variables are measured and it converts the crisp data
into fuzzy linguistic values. The knowledge base consists of a database and linguistic
control rule base. It provides necessary definitions for the fuzzification process such as
membership functions, fuzzy set representation, etc. The rule base is the control strategy
of the fuzzy logic system. It is usually obtained from the expert human knowledge and
expressed as a set of IF-THEN rules. The defuzzification process converts the output
variable into corresponding universe of discourse. Various techniques are used for the

defuzzification such as maximum method, height method and the centroid method [76].

Automatic changes in the design parameters of any of the above elements create an
adaptive fuzzy system. In this study, the membership function of the input and the output
variables are made adaptive in nature i.e. the universe of discourse and the membership

functions varies based on the energy price and system load inputs.

5.2.4.1 Membership Functions
The input of the fuzzy logic controllers are the energy price, system load and the charging

hour. The output of the fuzzy logic controller is the POP for the EVs. The triangular
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membership functions are assumed for every input and output variable. The membership
functions for energy price, system load and the POP will be adaptive as the universe of
discourse will change for these functions each day. Three membership functions; low (L),

medium (M) and high (H), are defined for each input/output variable.

a. Energy Price

Figure 5-5 shows the membership function of the energy price. The membership function
is made adaptive by varying the universe of discourse of energy price based on a particular

day.

Mpn P1 P2 P3 P4 Mpx

Figure 5-5: Membership function of energy price

b. System Load

Figure 5-6 shows the membership function of the system load. The membership function
is made adaptive by varying the universe of discourse of system load based on the system

load for a particular day.
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Figure 5-6: Membership function of system load

C. Charging Hours

Figure 5-7 shows the membership function for the charging hours. The charging hour is
also divided into three membership functions based on the day time. The charging hour is

divided as follows:

e HIGH: 8 AM.-11:30 A.M.
e MEDIUM: 10 AM. —-3:15 P.M.

e LOW:1:30 P.M. -5:00 P.M.

Hours

GO0AM 1000AM 11:30AM 1:30PM 315PM  500DM

Figure 5-7: Membership function of charging hours

51



d. Preferred Operating Point

Figure 5-8 shows the membership function for the output i.e. POP. The output membership
function is also made adaptive based on the maximum POP (up to which the EV can be
charged) available in the battery.

ATOP
L M H

02 04 06 08 1xMPOP

o fF———————————

Figure 5-8: Membership function of preferred operating point

5.24.2 Rule Base (Decision Matrix)

A set of rules which relate the inputs to the output variables is defined in the fuzzy rule
database. These rules are defined based on the human intelligence. The three inputs, energy
price, system load and the charging hours, result in a total of 27 rules. These rules are

shown in Table 5-1-Table 5-3.

Table 5-1 POP fuzzy value when the charging hours is LOW

Price \ Load L M H
L H H M
M H M M
H M M L
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Table 5-2 POP fuzzy value when the charging hours is MEDIUM

Price \ Load L M H
L M M L
M M M L
H L L L

Table 5-3 POP fuzzy value when the charging hours is HIGH

Price \ Load L M H
L M L L
M L L L
H L L L

5.2.4.3 Defuzzification
The most popular defuzzification method is the centroid calculation, which returns the
center of area under the curve and, therefore, is considered here for defuzzification. The

general formula for the defuzzification is taken from [76].

5.3 Simulations

The four different algorithms, price-based, load-based, MaxReg-based and the proposed
fuzzy—based, are simulated over a hypothetical group of 10,000 EVs in the ERCOT area.
The simulations are performed for the commuter cars that are available during the day time
from 8 A.M. to 5 P.M. at the workplace. It is assumed that all the EVs are available during
this nine hours period and the aggregator can potentially sell regulation services during this
period. For this study, different system data such as system load, energy price, regulation

up/down prices and regulation deployments are taken from ERCOT archives for a period
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of three months from 21 July, 2010 to 20" Oct, 2010 [69]. In this study, five minutes
resolution is considered. The day ahead load and price forecasts are generated to match the
load forecast errors in [77] for the system load, and to match the error distribution found in

[78] for the energy price.

The EVs are a hypothetical group of three different types of EVs that are available in the
market; Nissan Leaf, Mitsubishi i-MIiEV and the Tesla Model-S. Battery specification, EV
performance, and other specifications are given in [79]-[83]. Among this hypothetical
group, it is assumed that 50% of EVs are Nissan Leaf, 20% are Mitsubishi i-MIiEV and
30% are Tesla Model-S. It is also assumed that each EV has a charging efficiency of 90%.
Each EV arriving at the workplace with an SOC of greater than 95% will not participate in

the regulation service.

The aggregator profit comes from two different sources, regulation revenues and the
markup on the energy sale supplied to the customer [47]. The aggregator gets 20% of the
regulation up and down revenues and $ 0.05/kWh over the energy purchased from the
market for the EV battery charging. In this way, the aggregator is not exposed to the

variations in market energy prices and passes the energy cost to the EV owners.

5.4 Results and Discussions

The simulations are performed for each hour from 8 A.M. to 5 P.M. for the period of three
months. Comparison of charging profile for each smart charging algorithm is shown in
Figure 5-9-Figure 5-12 for Aug 2", 2010. The price and the load algorithm follow almost
the same pattern. They schedule the POP to be highest at the start of the charging period

as the system load and energy prices are low in the morning. In the afternoon, the POP
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decreases to a lower value due to the high energy price and loads. The MaxReg algorithm
keeps the POP to almost constant value during the whole charging period and sells both
regulations up and down capacity during each hour. However, the proposed fuzzy
algorithm efficiently varies the value of the POP based on the energy price, system load
and the charging hours. During initial hours it keeps the POP to nearly constant value
similar to MaxReg while during the last hours it follows the pattern of price and load

algorithms. It combines the advantages of other methods and overcome their shortcomings.

Price Algorithm
100
60
= T ——POP - Rdown
40 \ ———POP - Rup
20 — POP
0
8 9 10 11 12 13 14 15 16
Time (Hours)
Figure 5-9: Price based POP selection algorithm
Load Algorithm
100
80 ‘_\_\
> 60
= \_\ e POP - Rdown
40 e |—POP-Rup
20 POP
0

8 9 10 11 12 13 14 15 16
Time (Hours)

Figure 5-10: Load based POP selection algorithm
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MaxReg Algorithm

8 9 10 11 12 13 14 15 16
Time (Hours)

100
80
60
§ =—POP - Rdown
40 | ——POP - Rup
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0
8 9 10 11 12 13 14 15 16
Time (Hours)
Figure 5-11: MaxReg based POP selection algorithm
Proposed Fuzzy Algorithm
100
80
60
g =—POP - Rdown
40 =—=POP - Rup
20 = POP
0

Figure 5-12: Proposed fuzzy logic based POP selection algorithm

By examining the different algorithms from the aggregator point of view, the proposed

fuzzy algorithm results in the highest profits. The profit is 0.21% higher as compared to

MaxReg which increase the profit by $ 3300. The price and load algorithms performance

is not as good as MaxReg and fuzzy algorithms, in terms of aggregator profit. Table 5-4

shows the profits of aggregator for three months duration, by each algorithm.
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Table 5-4 Aggregator Profits for Three Months Period

Algorithms Price | Load | MaxReg | Proposed Fuzzy
Profits ($ 1000) | 1438.1 | 1345.72 | 1519.2 1522.5

From the power system point of view it is desirable that the EVs not burden the power
system network. It is evident from Figure 5-13 that the load based algorithm results in the
lowest peak and the proposed fuzzy based algorithm results in almost similar load as that

of load based algorithm. It can also be seen that the price based algorithm results in the

highest value of the peak load.

Peak Load Increase

a1
o

D
o

Load (MW)
S w
o o

=
o
|

o
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Price Load MaxReg Fuzzy
Charging Algorithms

Figure 5-13: Peak load increase by each algorithm

The amount of average regulation up and down capacities during each hour is shown in
Figure 5-14 and Figure 5-15, respectively. It is evident from Figure 5-14 that the price,
load and fuzzy algorithms have high regulation up during the first five hours and after hour
twelve, most of the electric vehicles are charged so the price and load algorithms bid very
low after hour twelve, while the fuzzy algorithm still bids some amount of regulation up

capacity. The MaxReg algorithm bids almost constant regulation up capacity during the
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whole charging period. The Fuzzy algorithm bids the high regulation down capacity during
the initial and middle of the charging period while the MaxReg algorithm bids almost in
every hour except for the last hour, as shown in Figure 5-15. The price and the load
algorithms follow the MaxReg algorithm pattern but bids considerable less amount. This

is evident from Figure 5-15.

Average Regulation Up

80
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2 60
= = Price
c 40
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Figure 5-14: Average regulation up capacity by each algorithm
Average Regulation Down
__60
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Figure 5-15: Average regulation down capacity by each algorithm

58



Although the main focus of this study is to generate maximum profits for the aggregator,
but it is also desirable to verify that the charging of the EVs are not done at very high
energy prices. From the EV owner perspective, the vehicle should be charged at the lowest
possible cost. Figure 5-16 shows the average price of energy per kWh for different
algorithms. The price based algorithm results in the lowest energy cost and the fuzzy based
algorithm also results in a very close cost, while the MaxReg algorithm results in the

highest energy price.
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Charging Algorithms

Energy Price ($/kWh)

Figure 5-16: Average energy price per kWh charged to EV owner

5.5 Conclusion

This chapter presents a novel adaptive fuzzy smart charging algorithm for the
unidirectional electric vehicles. Simulations are performed on a hypothetical group of
commuter EVs. Previously different algorithms were proposed for the smart charging and
each has its own specific benefits while the proposed fuzzy based algorithm combines their
benefits and generates higher revenues for the aggregator. It also results in a lower energy

price for charging the electric vehicles and the impact on the system load is reduced as
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compared with the previous algorithms. One of the main advantages of the smart chargers
is that they can be easily implemented for real time systems and the proposed fuzzy
algorithm can be easily incorporate in any previous real time system as the fuzzy logic

controllers are easy to implement and requires little or no additional hardware.
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CHAPTER 6

OPTIMAL BIDDING OF REGULATION SERVICES FOR

UNIDIRECTIONAL VEHICLE-TO-GRID USING FUZZY

LINEAR PROGRAMMING (FLP)

In the previous chapter, a fuzzy logic based smart charging algorithm was proposed that
combines previously proposed algorithms in a fuzzy logic framework and generates higher
profits for the aggregator. The proposed algorithm was equally beneficial for the electric
vehicles (EV) owner and power system; as it charges the EV at a lower cost and the load
on the power system was not much increased. However, the proposed algorithm does not
guarantee that the optimal profits for the aggregator are realized out of its available
resources. In order to achieve the maximum profits, the aggregator will have to optimize
the bidding parameters i.e. the preferred operating point (POP) and the regulation up/down

bidding capacities.

In this chapter, a novel optimal fuzzy based charging scheme is proposed that optimizes
the charging of EVs and the bidding of regulation services in the electricity market through
unidirectional V2G, considering the different electricity market uncertainties. The work
presented in this chapter is built upon that of [47]. The fuzzy set theory is used to model
the uncertainties in the forecasted data of the electricity market, namely those of regulation

up/down prices, and regulation deployment signals. The electricity market parameters are
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forecasted using the autoregressive integrated moving average (ARIMA) model presented
in chapter 4. The algorithm is simulated over the same hypothetical group of 10,000 EVs
in the real electricity market, Electric Reliability Council of Texas (ERCOT) area as used
in the last chapter. Commuter cars are used in the simulation and it is assumed that all the
EVs are available during the charging hours from 8 A.M. to 5 P.M., i.e. during office hours
only. Results show the benefit of the proposed algorithm against the deterministic

algorithm of [47] with no market uncertainty.

6.1 Regulation Algorithm

An EV can perform regulation up and down by varying its charging rate below or above
its scheduled value, or its preferred operating point (POP). This value of the POP is
scheduled by the aggregator in the system. The electric vehicles in this chapter follow the
same regulation algorithm described in the last chapter. The details can be referred to in

Section 5.1.

6.2 Optimal Charging Algorithm using Fuzzy Linear Programming

(FLP)

The regulation capacity is based on the extent of moving the actual charging rate of the
EVs above or below their assigned POPs. Therefore the aggregator must schedule the POP
smartly to maximize the profits. Previously, different smart charging algorithms were
proposed for the electric vehicles charging [47], [75], but the smart chargers were not
optimized. Along with the smart algorithms, their analogous optimal chargers were

proposed in [47]. However, these algorithms lack the modeling of the uncertainties of the
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electricity market parameters, such as price, and regulation deployments. In this chapter, a
new optimized FLP algorithm is proposed for EV scheduling. It optimizes the charging

and bidding of the EVs considering different market uncertainties.

6.2.1 Fuzzy Model - Objective
The main objective of the optimization is to generate the maximum revenues from the

regulation service by scheduling EV charging. The fuzzy objective function is defined as:
In= aZ(PregUp “Ryp + Pregpw * Rpw) + Mk Z Z(E(PDi)) 6.1)
t t i

The fuzzy set for the aggregator income is defined as:

In={[In,u,), In < In < In} (6.2)

The fuzzy set is built using the income In that defines the objective function in (6.1). The
possible values of In can be defined through the constraint within the definition of fuzzy
setin (6.2). There is a minimum value of In below which the aggregator will not be willing
to participate and the membership function is zero at that income. Also, there is an upper
value of In above which all the income is acceptable. The limits of the income will be
decided by the aggregator. In this thesis, it is assumed that the income less that 10% of the
average deterministic income [47] is not acceptable and 10% above the average
deterministic income [47] are all acceptable. Within this 10% range, above and below, all

the incomes will be acceptable with some degree depending upon the membership function.
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The membership function In in (6.2) is defined as:

0, In<In
In—In —
H1n=4m_;’ In<In<In (6.3)
1, In=1In

This function is graphically presented in Figure 6-1:
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Figure 6-1: Fuzzy model of total aggregator income

6.2.2 Fuzzy Model — Regulation Up/Down Prices
The fuzzy uncertainty model of the regulation up/down prices is developed and can be

represented as:

PregUp = {[PregUprﬂregUp]rPregUp = PregUp = regUp} (6-4)

This model is developed assuming that there is a certain regulation price below which the
aggregator will not be willing to participate. The minimum regulation prices should be such
that the aggregator is making profits after covering all its expenses. In this work, the
minimum and the maximum regulation prices are estimated using the mean absolute error
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between the forecasted and actual market data for the simulation period using an ARIMA
model. The membership function for the price of regulation up is given in (6.5) and the

graphical representation is similar to that in Figure 6-1.

( 0, PregUp = PregUp
I regUp regUp
.uregUp ) PregUp = PregUp < PregUp (65)
I regUp regUp
k 1; PregUp = PregUp

A similar fuzzy modeling is made for the regulation down prices and its membership

function as shown in (6.6) and (6.7).

Preng = {[PregDW' .ureng]v Preng < Preng < Preng} (66)
( O' Preng = Preng
Preng - Preng
Hregpw = P _p , Pregpw < Pregpw < Pregpw (6.7)
regbw ~— T'regbw
L 1’ Preng = PregDW

6.2.3 Fuzzy Model — Regulation Up/Down Deployments

The expected values of regulation deployments are calculated using the historical
deployment signals from ERCOT ISO [69]. The hourly actual averages are calculated and
the deviations from the forecasted values (obtained using ARIMA) are calculated so that
the membership functions of E,;; and E,, can be defined. The fuzzy model for E,; is

shown in (6.8) and its membership function is in(6.9).
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Ew = {[Eer :uExU]'@ SEyw < E}

1' ExU < ExU

E_Exu -
Hexy = P —L, X SEw=Ew

O' ExU = ExU

(6.8)

(6.9)

The graphical representation of the E,;; membership function is shown in Figure 6-2. The

expected regulation deployments are defined in an opposite manner to that of regulation

prices. If the expected deployments are kept low, the EVs will be available in the market

for providing the regulation service for the whole charging period. If they are charged

during the early hours, their capacities to provide regulation in the later hours will be

diminished.

HExU A

1.0

0.0

Figure 6-2: Fuzzy model of expected regulation up deployments

’ EXU

The fuzzy model for the expected regulation down deployment is similar to expected

regulation up deployment and its membership function is:
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EF';CJD = {[ExD' :uExD]'ELD < ExD < E} (610)

( 1, ExD < ELD
Exp — Exp —

Upxp =3 ==———,  Exp < Exp < Exp (6.11)
ExD - ExD

0,  Exp=Exp

6.2.4 Complete Fuzzy Linear Programming for EV Charging

As a market participant, the aggregator will strive for the maximum benefits from its V2G
assets. The aggregator profits come from the two sources: regulation service bidding and
the charging of EVs. The aggregator will get a portion of the regulation service bidding
and a fixed markup over the energy used for EV charging [47]. The uncertainties are
considered in a fuzzy set by calculating the forecasting errors in the actual and the historical
data of ERCOT ISO for the regulation up/down prices and the regulation deployments. The
membership functions of the income, regulation prices and the expected deployments have

to be translated into the fuzzy constraints. These transformations are done in (6.12) - (6.16)

1< gy = —
o = In (6.12)

=>(In—-In)-1+In<In

PregUp - PregUp

A< Uregup =

PregUp - PregUp (613)

= (PregUp - PregUp) A + PregUp < PregUp
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Subject to:

Preng - PregDW

1< Hregbw =
Preng - PregDW

= (Preng - Preng) A+ Preng < Preng

E_ xU
A< UHExy = ———
ExU_ExU

= (Exv = Eav ) - A+ Exy S By

E.p—E
AS#EXD:M
ExD_ExD

= (Exp — Exp) A+ Exp < Exp

A= min{.uln: Uregupr Kregbwr KExU» .uExD}

The complete optimal fuzzy formulation (OptFuzzy) is stated below:

Maximize A

Aggregator Income of (6.1)

Aggregator Income fuzzy constraint of (6.12)
Regulation up price fuzzy constraint of (6.13)
Regulation down price fuzzy constraint of (6.14)
Expected regulation up fuzzy constraint of (6.15)

Expected regulation down fuzzy constraint of (6.16)
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cars

Ryy(t) = Z MnAP,(t) (6.19)
i=1

cars

Ry, (£) = Zl MxAP;(t) (6.20)
MxAP,(t) < POP,(t) (6.21)
Z E(PD;(t)) + S0C;; < M, (6.22)
(MxAP;(1) + POP,(1))Ef; + SOC;; < M (6.23)
POP,(t) < MP, (6.24)
MxAP;(t) + POP,(t) < MP, (6.25)
MxAP;(t) = 0 (6.26)
MnAP;(t) = 0 (6.27)
POP;(t) =0 (6.28)
E(PD;(t)) = MxAP,(t) - Exp + POP;(t) — MnAP,(t) - Eyy (6.29)

In this fuzzy optimization, the objective is to maximize the minimum membership of the
fuzzy variables and, thus, maximize the aggregator profits. The cost of aggregator such as
charging station infrastructure cost and other running costs such as communication and

personnel are assumed to be fixed.

In order to avoid burdening the power system network with the charging of electric

vehicles, the load-constrained can be added to the optimization problem as follows:
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cars cars

Z POP(t) = 1\2 )N wp, (6.30)
i=1

Similarly, in order to limit charging at periods of high energy costs, the following constraint

can be added:

i POP,(t) = PO i MP, (6.31)

6.3 Case Study

The simulations are performed in the ERCOT area on a hypothetical group of 10,000 EVs
used by commuters. These simulations are performed for a period of three months from
215 July, 2010 to 20™ Oct, 2010 [69]. Electricity Market parameters such as energy price,
load and the regulation signal are taken from the ERCOT database for the simulation
period. All the simulations are performed in Matlab using the CVX toolbox to solve the
optimization problem [84]. The simulations are performed on the EVs at workplace from
8 A.M to 5 P.M. In this nine-hour period, the aggregator can potentially sell the regulation
service and charge the electric vehicles. In this study, five-minute-resolution signal is used
because of the available data. However, an EV can follow regulation signals of much
higher resolution [29], [30]. The day-ahead load is generated in a similar manner as

mentioned in [77].

The autoregressive integrated moving average (ARIMA) model is used to forecast the
different electricity market parameters including regulation up/down prices and the

expected regulation deployments. The hourly expected percentages of the regulation
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capacity is calculated for the historic data using the formulation presented in [47] and then
the forecast is done using ARIMA as presented in chapter 4. After forecasting the
parameters, the mean absolute error between forecasted and actual values are calculated to
incorporate these forecasting inaccuracies into the fuzzy formulation. The mean absolute

errors of the forecasted data are shown in Table 6-1.

Table 6-1 Mean absolute percentage error of forecasted quantities over simulated period

Electricity Market Parameters | MAP Errors
Regulation Up Prices 8.327 %
Regulation Down Prices 9.5831 %
Regulation Up Deployments 28.48 %
Regulation Down Deployments | 31.327 %

In this simulation study, three different kinds of EVs available in the market are considered:
Nissan Leaf, Mitsubishi i-MIiEV and Tesla Model-S. Battery specifications, EV
performance and other specifications are given in [79]-[83]. Among this hypothetical
group, it is assumed that 50% of EVs are Nissan Leaf, 20% are Mitsubishi i-MIiEV and
30% are Tesla Model-S. It is also assumed that each EV has a charging efficiency of 90%.
Each EV arriving at the workplace with an SOC of greater than 95% will not participate in
the regulation service. All the EVs that are used in these simulations can be charged from

a standard 240V supply, and it is assumed that the charger has an efficiency of 90%.

Two types of simulation studies are performed and compared: deterministic [47] and the
proposed fuzzy based. Using each algorithm, expected day-ahead aggregator profits are
obtained by evaluating the corresponding objective function. The expected profits are
calculated using the forecasted market parameters. To further assess the effectiveness of

the proposed FLP formulation, the actual aggregator profits on the bidding day are
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calculated for both the deterministic and proposed fuzzy algorithms. The actual aggregator
profits are calculated from the algorithm presented in Figure 5-1. The actual aggregator
profits are calculated using the actual (realized) market parameters, such as energy price,

regulation prices and the regulation deployments.

The aggregator profit comes from two different sources; regulation revenues and the
markup on the energy sale supplied to the customer. The aggregator gets 20% of the
regulation revenues and $0.05/kWh over the energy purchased from the market for the EV
battery charging. In this way, the aggregator is not exposed to the energy price variations.

Rather, it passes the energy cost to the EV owner.

6.4 Results and Discussion

The deterministic and the proposed fuzzy optimization are performed for three different

cases:

e With no load and price constraint in the optimization.
e With load constraint included in the optimization.

e With price constraint included in the optimization.

In the first case, there is no additional constraint for the aggregator to take care of the
system load and system energy price and is expected to result in highest profit. The load
constraint is not a problem for the aggregator as the main goal of the aggregator is to
maximize profits, not maintaining the balancing in the power system, but the system

operator can impose this limit on the aggregator to avoid the system collapse. The price
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constraint can be advantageous to the EV owner as the electric vehicles will be charging at

the lowest cost.

6.4.1 Case # 1. With no Load and Price Constraint
The deterministic and the proposed fuzzy based algorithms are run each day from 8 A.M.
to 5 P.M. daily for the period of three months. All the vehicles are assumed available during

the charging period.

6.4.1.1 Charging Profiles

The charging profiles and regulation service provided by each algorithm are compared for
15" September, 2010. This day is randomly selected. Figure 6-3 shows the regulation up
and down prices on 15" September, 2010 for the charging period. Both the prices are low
at the start of the charging period and increases in the late afternoon of the day. The POP,
regulation up capacity, and regulation down capacity by each algorithm are shown in

Figure 6-4-Figure 6-6.
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Figure 6-3: Hourly regulation service prices on 15" Sep, 2010
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The POP of the electric vehicles for 15" September, 2010 is shown in Figure 6-4. As the
prices of the regulation up/down are higher at the end of the charging period, the
deterministic algorithm sets the POP to be higher at the last three hours. Although the
fuzzy based algorithm follows the pattern of deterministic algorithm, it sets the values of
POP to a more moderate level to take advantage of the uncertainties in the forecasted values

and also bids high in the first few hours.
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Figure 6-4: POP by each algorithm on 15" Sep, 2010

The regulation up bidding capacity is shown in Figure 6-5. Both the algorithms,
deterministic and fuzzy, sets the regulation up capacity high at the end of the charging
period as the regulation up prices is high. The deterministic algorithm sets the regulation
up capacity higher than the fuzzy algorithm, but sets lowers at the starting of the charging

period.
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Figure 6-6: Regulation down by each algorithm on 15" Sep, 2010

The average regulation capacities and the average POP during the simulation period are

n Figure 6-7 - Figure 6-9. The average POP is usually set to higher values at the

end of the charging period as the prices are usually higher in the mid-day. The fuzzy
algorithm sets the average POP to be little higher at the start of the charging period while

the deterministic is a bit higher than fuzzy during the end of the charging period. The

regulation up also follows the same pattern as that of the average POP. The average
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regulation down capacity is shown in Figure 6-9. The deterministic algorithm is a little
higher than fuzzy in the initial charging hours, then in the remaining hours, fuzzy algorithm

bids higher.
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Figure 6-7: Average POP by each algorithm
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Figure 6-8: Average regulation up by each algorithm
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Figure 6-9: Average regulation down by each algorithm

6.4.1.2 Quarterly Results

The section analyzes the expected and actual profits of an aggregator for the deterministic
and proposed fuzzy based algorithms. Figure 6-10 shows the comparisons of the expected
and actual profit of an aggregator for an average day. Although the deterministic algorithms
expected profits are higher than the fuzzy algorithms, the actual profits of the fuzzy
algorithm end up higher by about 2.9% than the deterministic actual profits. This shows

the superiority of the proposed method.
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Figure 6-10: Expected and actual profits of an aggregator for an average day
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When comparing the aggregator profits on the whole simulation period of three months,
the expected aggregator profits comes out to be $ 1592k which is 3.58% more than the
expected fuzzy profits while on the actual bidding day, the fuzzy generates more profits
i.e. $ 1569k which is 3% more than the deterministic actual profits and 2.2% more than the
fuzzy expected profits. On the actual day, the fuzzy algorithm performs better than

deterministic algorithm. This is evident from Figure 6-11.
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Figure 6-11: Total expected and actual profits of an aggregator

From the EV owner perspective, it is desired to charge the EVs at low energy cost. The
average energy price per kWh of energy is shown in Figure 6-12. The fuzzy based
algorithm results in a slight reduction in price of 0.2% of that of the deterministic algorithm.
This is because in both algorithms, the energy price is taken as deterministic. This proves
that the added profits of the fuzzy algorithm come from regulation provision rather than

from EV owner increased cost; which is very desirable.
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Figure 6-12: Average price per kWh of energy charged to customers

From the power system perspective, the charging of EVs should not stress the power
system. The average peak and the peak load increase by deterministic and proposed fuzzy
algorithm is shown in Figure 6-13. The proposed fuzzy algorithm results in a slightly lower
peak and average peak load than the deterministic algorithm. This shows that the proposed

fuzzy algorithm is also supporting the power system network.
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Figure 6-13: Daily average peak and peak load increase by different algorithm due to EV
charging
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6.4.2 Case # 2: With Load Constraint

In this case, the same optimization problem is solved with an extra load constraint
mentioned in (6.30) is added to order to avoid the burdening of the power system network.
Both deterministic and proposed fuzzy optimization algorithms are simulated for the same

charging period from 8 A.M. to 5 P.M. daily for the three-month period.

6.4.2.1 Charging Profiles

The electric vehicles average POP, regulation up and regulation down capacities are shown
in Figure 6-14-Figure 6-16. The deterministic and the proposed algorithms follow the same
pattern and bid almost the same capacities for the POP and regulation up except for the
first 2-3 charging hours, in which the proposed fuzzy bids a little higher than the

deterministic as shown in Figure 6-14 and Figure 6-15.

Both the deterministic and proposed fuzzy algorithm bids the regulation down capacities
in a similar fashion and bids highest in the middle of the charging period. The proposed
fuzzy algorithms bids a little lower than the deterministic algorithm in every hour as shown

in Figure 6-16.
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Figure 6-15: Average regulation up by each algorithm with load constraint
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Figure 6-16: Average regulation down by each algorithm with load constraint

6.4.2.2 Quarterly Results
This section presents the aggregator profits for the different algorithms: deterministic and
proposed fuzzy. The expected and the actual profits for an average day is shown in Figure

6-17 while Figure 6-18 presents the total expected and actual profits of an aggregator for

the three months period.
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Figure 6-17: Expected and actual profits of an aggregator for an average day with load
constraint
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With the load constraint added in the optimization, the aggregator expects a little lower
profit than the deterministic algorithm in the day-ahead bidding while on the actual day of
bidding; the aggregator gets a little higher profit with the use of proposed fuzzy algorithm

as compares with the deterministic algorithm.
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Figure 6-18: Total expected and actual profits of an aggregator with load constraint

It is also desirable to charge the EVs at the lowest price; Figure 6-19 shows the average
price charged to EV owners their electric vehicles. The proposed fuzzy algorithm results
in 1% higher price as compared with the deterministic algorithm. The price increase by the
fuzzy algorithm is not much higher and can result due to the fact that the energy price is

considered in the formulation as a deterministic price.
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Figure 6-19: Average price per KWh of energy charged to customers with load constraint

The charging of EVs should not stress the power system. The average peak and the peak
load increase by deterministic and proposed fuzzy algorithm is shown in Figure 6-20. The
proposed fuzzy algorithm results in a slightly lower peak and average peak load than the
deterministic algorithm. This shows that the proposed fuzzy algorithm is also supporting

the power system network with load constraint also.
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Figure 6-20: Daily average peak and peak load increase by different algorithm due to EV
charging with load constraint
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6.4.3 Case # 3: With Price Constraint

In this case, the same optimization problem is solved with an extra price constraint
mentioned in (6.31) is added to order to avoid the charging of electric vehicles at higher
electricity prices. Both the optimization, deterministic and proposed fuzzy algorithm are
simulated for the same charging period from 8 A.M. to 5 P.M. daily for a period of three

months.

6.4.3.1 Charging Profiles

The charging profiles for the POP, regulation up and down capacities with the price
constraint are shown in Figure 6-21-Figure 6-23. The averages POP of the EVs are higher
for the proposed fuzzy algorithm in the first 5 hours of the charging periods. In the last 4

charging hours, the deterministic algorithm has higher value of the POP.
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Figure 6-21: Average POP by each algorithm with price constraint

The regulation up bidding capacity of the for the whole charging period is higher for the

proposed fuzzy algorithm than the deterministic algorithm as shown in Figure 6-22 while
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the regulation down capacity is higher for fuzzy algorithm in the first two charging hours
and then remains lower as shown in Figure 6-23. The POP, regulation up/down capacities

in both the deterministic and proposed fuzzy algorithm almost follows the same pattern.
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Figure 6-22: Average regulation up by each algorithm with price constraint
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Figure 6-23: Average regulation down by each algorithm with price constraint
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6.4.3.2 Quarterly Results

This section presents the aggregator profits for the different algorithms: deterministic and
proposed fuzzy. The expected and the actual profits for an average day is shown in Figure

6-24 while Figure 6-25 presents the total expected and actual profits of an aggregator for

the three months period.
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Figure 6-24: Expected and actual profits of an aggregator for an average day with price
constraint

With the price constraint added in the optimization, the aggregator expects a higher profit
than the deterministic algorithm in the day-ahead bidding and also on the actual day of
bidding, the aggregator get a considerable higher profits with the use of proposed fuzzy
algorithm as compares with the deterministic algorithm. On the actual day, the aggregator

gets 4.75% higher profits with the use of proposed fuzzy algorithm.
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Figure 6-25: Total expected and actual profits of an aggregator with price constraint

Figure 6-26 shows the average price charged to EV owners their electric vehicles. The
proposed fuzzy algorithm with the price constraints results in a lower cost. The cost is

reduced to around 4% as compared with the deterministic algorithm.
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Figure 6-26: Average price per kwWh of energy charged to customers with price constraint

The charging of EVs should not stress the power system. The peak and average peak load
increase by deterministic and proposed fuzzy algorithm is shown in Figure 6-27. The
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proposed fuzzy algorithm results in a slightly lower peak and average peak load than the
deterministic algorithm. This shows that the proposed fuzzy algorithm is also supporting

the power system network with the price constraint also.
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Figure 6-27: Daily average peak and peak load increase by different algorithm due to EV
charging with price constraint

6.5 Conclusions

In this chapter, optimal aggregator bidding strategy of regulation services for unidirectional
V2G charging is developed with different fuzzy uncertainties. A fuzzy optimization
algorithm is proposed for the optimal bidding of regulation capacities by the electric
vehicles. Different uncertainties are modeled using fuzzy sets, such as day-ahead regulation
up/down prices and deployments. Simulations are performed for the deterministic and
proposed fuzzy algorithms that show the benefits of the proposed fuzzy algorithm for the
aggregator and the EV owners by taking into account the different market uncertainties.
Different case studies were simulated with the price and load constraint to avoid the
burdening of the power system network and to charge the electric vehicles at the lower

possible cost. It is observed that the highest aggregator profits are obtained without any
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price/load constraint in the system. Addition of the load constraint in the formulation
minimized the impact of EV load on the system and is sometimes necessary for the system
security and stability while the additional of price constraint is very beneficial to the EV

owner, as EV owner cost has to pay minimum cost for each kwWh consumed.
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CHAPTER 7

COORDINATED BIDDING OF ANCILLIARY

SERVICES FOR UNIDIRECTIONAL VEHICLE-TO-

GRID USING FUZZY LINEAR PROGRAMMING (FLP)

In the previous chapter, an optimal charging strategy for electric vehicles using the fuzzy
optimization technique was proposed. The aggregator profits for different cases, with
deterministic and fuzzy optimization, were calculated considering the different
uncertainties. The proposed algorithm, fuzzy based, performed much better than the
deterministic algorithm based on the actual day of bidding. Apart from different
advantages, the algorithm proposed in the previous chapter was only for nine hour charging
period, the spinning reserves (responsive reserves) capacity was ignored, and different
uncertainties of the electric vehicles were ignored such as the EV availability, their trip

time and durations.

In this chapter, an extension of the previous chapter’s work is done. A novel optimal fuzzy
based coordinated charging scheme for unidirectional vehicle-to-grid is proposed. The
proposed algorithm optimizes the charging of EVs and the bidding of ancillary services in
the electricity market through unidirectional V2G, considering the different electricity
market uncertainties. The work presented in this chapter is built upon the work presented

in [47], [50], with the incorporation of different market uncertainties and with the
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modification of the objective function. The fuzzy set theory is used to model the
uncertainties in the forecasted data of the electricity market such as those of ancillary
services prices including regulation up/down prices and responsive reserve prices, and
ancillary services deployment signals. The electricity market parameters are forecasted
using the autoregressive integrated moving average (ARIMA) model, also mentioned in
the previous chapter, presented in chapter 4. The algorithm is simulated over the same
hypothetical group of 10,000 EVs in the real electricity market, Electric Reliability Council
of Texas (ERCQOT) area as used in the previous chapters. Commuter cars are used in the
simulation and the simulation is performed for the whole twenty four hours. It is assumed
that the battery SOC at the end of the day will be the initial SOC for batteries next day.
Additionally EVs uncertainties are also considered but not in a fuzzy logic framework.
Results show the benefit of the proposed fuzzy algorithm against the deterministic

algorithm of [50] with no market uncertainty.

7.1  Ancillary Services Algorithm

An EV can supply the ancillary service to the electrical grid by varying its charging rate
below or above its scheduled value, or its preferred operating point (POP). This value of
the POP is scheduled by the aggregator in the system. The electric vehicles in this chapter
have to follow the two algorithms, one for the regulation service and one for the responsive
reserves (spinning reserves). The regulation algorithm is the same as mentioned in the
previous chapters and shown in Figure 5-1. The details for the regulation algorithm are
explained in section 5.1. The algorithm for responsive reserve is shown in Figure 7-1. To

perform in the ancillary service market, an EV will first follow the regulation signal and
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then follow the responsive reserve signal from ISO. The calculated power draw by
following the regulation signal will be used as a reference to calculate the EV dispatch for
the responsive reserve signal. This will be the total power draw by an EV until the next
signal comes from the 1SO. Graphical descriptions of different variables are shown in

Figure 7-2.
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Figure 7-1: Responsive reserve algorithm flowchart [50]
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Figure 7-2: Ancillary service signals around the preferred operating point [50]
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7.2 Coordinated Charging Algorithm wusing Fuzzy Linear

Programming (FLP)

The ancillary service capacity is based on the extent of moving the actual charging rate of
the EVs above or below their assigned POPs. Therefore the aggregator must optimize the
value of the POP to maximize the profits. Previously, different optimized charging and
bidding algorithms were proposed for the electric vehicles [47], [50], but they mainly lack
the modeling of different uncertainties of the electricity market parameters, such as price
and ancillary service deployments. In the last chapter, an algorithm is proposed but that
algorithm bid the capacity into the market only for nine hour and different EV parameters
were not considered. In this chapter, a novel optimized FLP based coordinated bidding of
vehicle-to-grid ancillary services is proposed. It charges the electric vehicle as well as bid
the ancillary services in the electricity market for the whole day considering the different

market uncertainties.

7.2.1 Fuzzy Model - Objective

The main objective of the optimization is to generate maximum revenues from the
regulation service by scheduling EV charging. The objective function in this formulation
is different and more practical than the objective that was used in Chapter 6. Previously, it
was assumed that the aggregator revenues comes from two different sources, first from a
fixed percentage of the ancillary services revenue a, and secondly from a fixed percentage
of the energy supplied to the customer Mk. While in this chapter, a more realistic objective

function is considered i.e. the aggregator income here also comes from two sources; first
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the aggregator will take all the ancillary services revenue and second supply the energy to
the customer at a fixed rate and the variations on the fixed rate and the market energy price
will be the aggregator profit. This fixed rate is considered very low i.e. 50% of the kWh
domestic energy price (from the ISO or Utility) to attract the EV owners to charge their

cars from the aggregator charging station.

The fuzzy objective function is defined as:
In = Z ((Pregup " RUp + Preng . RDW + PRR . RR) . EVPer)

+6 > ((E®D)) Evper)

(7.1)

In this objective function, the aggregator charges fixed price to the customer and purchases
the power at market price for the energy and thus assumes the risk associated with real time

pricing. The cost function for this condition that is subtracted from the In is given by:

C= Z Z(E(FDL-)) P(t) - Ve, (7.2)

i
The fuzzy set for the aggregator income is defined as:

In={[In,u,),In < In < In} (7.3)

The fuzzy set is built using the income In that defines the objective function in (7.1). The
possible values of In can be defined through the constraint within the definition of fuzzy
set in (7.3). There is a minimum value of In below which the aggregator will not be willing

to participate and the membership function is zero at that income and an upper value of In
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above which all the income is acceptable. The same limits of In is used as that mentioned

in Section 6.2.1.

The membership function In in (7.3) is defined as:

= <mm<Tn
= = , n<In<in
1, In=>1In

This function is graphically presented in Figure 7-3:
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Figure 7-3: Fuzzy model of total aggregator income

7.2.2 Fuzzy Model - Regulation Up/Down Prices
The fuzzy uncertainty model for the regulation up and down prices is considered the same

as that mentioned in Section 6.2.4. The same fuzzy model is also used here in this chapter.

7.2.3 Fuzzy Model — Responsive Reserve Prices
The fuzzy uncertainty model of the responsive reserve prices is developed in the same way

as regulation up/down model and can be represented as:
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Prp = {[PRR'#RR];PR;R < Ppp = E} (7.5)

This model is developed assuming the same criteria that there is a certain responsive
reserve price below which the aggregator will not be willing to participate. The minimum
responsive reserve prices should be such that the aggregator is making profits after
covering all its expenses. In this work, the uncertainties of the minimum and the maximum
responsive reserve prices are estimated using the mean absolute error between the
forecasted and actual data using an ARIMA model. The membership function for the price
of responsive reserve price is given in (7.6) and the graphical representation is similar to

that shown in Figure 7-3.

(0 PusPwm
Prr — Prr —

.u'RR ==, @ S PRR S PRR (76)
|PRR _PRR
\ 1, P = Par

7.2.4 Fuzzy Model — Regulation Up/Down Deployments

The expected values of the regulation up/down deployments are calculated in a similar
fashion as mentioned in Section 6.2.3. The same models are used and the details can be

referred to the previous chapter.

7.2.5 Fuzzy Model — Responsive Reserve Deployments
The expected values of responsive reserve deployments are calculated using the historical
deployment signals from ERCOT ISO [69]. The hourly actual averages are calculated and

the deviations from the forecasted values (obtained using ARIMA) are calculated so that
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the membership functions of ExR can be defined. The fuzzy model for the ExR is shown

in (7.7) and its membership function is in (7.8).

Frr = {[Exi tpxr) Exg < Exg < Exe) (7.7)

E R - E R —_—
Hexr = Ei _ Ex ) Exr = Exr = Exg (7.8)
XR XR
\ 0, Euy>En

The graphical representation of the EXR membership function is shown in Figure 7-4. It

is similar to the membership function of the regulation up/down deployments.
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Figure 7-4: Fuzzy model of expected responsive reserves deployments

7.2.6 Complete Coordinated Fuzzy Linear Programming for EV Charging
As the aggregator is a market participant, it will strive for the maximum benefits from its
V2G assets. The aggregator profits come from the two sources: ancillary service revenues

and from the charging the EVs. The aggregator will get the whole of the ancillary revenues
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and charge the electric vehicles at a fixed rate, so that there are no variations of the price
for the EV owner. The aggregator will, at some time get the profit from this energy
variation when energy price is low in the electricity market (lower than the aggregator is
charging to EV owner) and sometimes will be at a loss when the energy price is high in the
electricity market (higher than the aggregator is charging to EV owner). In the previous
formulations presented the aggregator was getting a portion of the ancillary services

revenue and a fixed markup over the energy used for EV charging [47], [50].

Previously only deterministic algorithms were proposed [47], [50], but in this chapter
uncertainties are considered in a fuzzy set by calculating the forecasting errors in the actual
and the historical data of ERCOT ISO for the ancillary services prices and the ancillary
service deployments. The membership functions of the income, ancillary services prices
and the expected deployments have to be translated into the fuzzy constraints. These

transformations are done in (7.9) - (7.16).

A< =—=
Uin In — I_n (7.9)

=>(In—-In)-1+In<In

PregUp - PregUp

A< Uregup =
PregUp - PregUp (7.10)

= (PregUp - PregUp) A + PregUp < PregUp
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Preng - PregDW

1< Hregbw =
Preng - PregDW

= (Preng - Preng) A+ Preng < Preng

SURR = —
Prr = Prr

= (Par = Par) " A + Prg < Prg

E., —E
A< pgxy = O
ExU - ExU

= (Exw = Eav ) A+ Exy S Exy

E.,p —E
AS/"'E}CD:M
ExD_ExD

= (Exp = Eap) A+ Exp < Enp

Exr—E
AS/'LEJCR =M
ExR_ExR

= (Exr = Exg) - A + Exg < Exg

A= min{.ulm Hregupr Hregpwr URRy HEXU) HEXD) /v‘ExR}

The complete coordinated fuzzy formulation (OptcoFuzzy) is stated below:

Maximize A
Subject to:

Aggregator Income of (7.1)

100

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)



Aggregator Income fuzzy constraint of (7.9)
Regulation up price fuzzy constraint of (7.10)
Regulation down price fuzzy constraint of (7.11)
Responsive reserve price fuzzy constraint of (7.12)
Expected regulation up fuzzy constraint of (7.13)
Expected regulation down fuzzy constraint of (7.14)

Expected regulation down fuzzy constraint of (7.15)

cars

Ryp(®) = ) MnAP(t)

cars

Row(®) = ) MxAP/(t)

cars

Ry (t) = Z RsRP;(t)

Ttrip,i

z E(FDl(t)) : Compl(t) + SOCI,L' < MCi

t=1

z E(FDi(t)) -Comp;(t) + SOC;; — Trip; < M,
t

(MxAP;(1) + POP,(1)) - Comp;(1) - Ef; + SOC,; < M,
(MxAP;(t) + POP;(t)) - Comp;(t) < MP; - Avy(t)

Dep;(t)

() =1+—r "7
Comp;(t) + 1= Dep, (D)

101

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)
(7.24)

(7.25)

(7.26)



( t
1— Z Z Depi(t),  if t < Teripy
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MxAP;(t) = 0 (7.28)
MnAP(t) = 0 (7.29)
RsRP,(t) = 0 (7.30)
POP;(t) = 0 (7.31)

E(FPy(t)) = MxAP,(t) - Eyp + POP;(t) — MnAP,(t) - Epy

(7.32)
— RSRP;(t) - Exg

In this fuzzy optimization, the objective is to maximize the minimum membership of the
fuzzy variables and, thus, maximize the aggregator profits. The cost of aggregator such as
charging station infrastructure cost and other running costs such as communication and

personnel are assumed to be fixed and are considered as negligible.

The optimization formulation is constrained by the battery capacities as incorporated in
(7.21) - (7.23). Equation (7.21) constraints that the total battery charged must be less than
or equal to the battery capacity until the first commute trip. Equation (7.22) included the
energy lost while commuting the EV, the effect of driving the EV in incorporated here.
Equation (7.23) limits that the battery should not be charged before the end of the
scheduling period. The equations (7.24) - (7.25) are due to the rate limitations. Unlike the
previous chapter and other formulations [47], there is an availability factor Av;(t) that is

used. As this formulation is considered for the whole day, the EV availability and trip times
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have to be considered. If the EV in not available, EV is on a trip, then Av;(t) = 0 and that
particular EV will not participate in the bidding. If the EV is available, EV is available on
charging station, then Av;(t) = 1 and that particular EV will be available for bidding in

the market.

The driving profiles of the electric vehicles can be predicted with significant certainty if
there is a considerable number of EVs available. This must be accounted to by the
aggregator in order to ensure that the EVs always have the capacity to follow the
deployment signal from the ISO even if a certain number of EVs have unexpectedly
departed. For a large number of EVs, this is statistically predictable [50]. Equation (7.26)
and (7.27) takes care of the unexpected EV departure and the compensation factor used for
that unexpected departure. Equation (7.28) - (7.31) are related to the EV battery capacity.
The constraint in equation (7.32) shows that expected energy received is a function of the
bidding parameters i.e. POP, regulation up capacity, regulation down capacity and the

responsive reserve capacity.

In order to avoid the excess burdening the power system network with the charging of

electric vehicles, the load-constrained can be added to the optimization problem as follows:

cars cars

Z POP;(t) = 1\2) z MP; (7.33)

Similarly, in order to charge the EVs at a lower energy price, the following constraint can
be added. This constraint will be an added advantage to the aggregator as it will be charging

the EVs at time of lower energy cost.
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M, — P(t
Z POP;(t) = H Z MP; (7.34)
i=1 px pn =1

7.3 Case Study

The simulations are performed for a period of three months from 21% July, 2010 to 20"
Oct, 2010. All the simulations are done on the ERCOT area with a hypothetical group of
10,000 EVs used by commuters [69]. The system is simulated on Matlab using CVX
toolbox to solve the optimization problem [84]. Each day simulation starts at 6 A.M. in the
morning and ends at 6 A.M next day morning. The final SOC of the EVs on the simulation
day will be the initial SOC for the next day. Electricity Market parameters such as energy
price, load and the ancillary service signals are taken from the ERCOT database for the
simulation period. Ancillary service deployments are taken for five minute resolutions
because of the available data, but an EV can follow the deployment signals of much higher
resolution [29], [30]. The day-ahead load of the ERCOT system is generated in a similar

manner as mentioned in [77].

The electricity market parameters, such as ancillary service prices and deployments are
forecasted using autoregressive integrated moving average (ARIMA) model. This includes
the parameters, such as regulation up/down prices, responsive reserve prices, expected
regulation up/down deployments and expected responsive reserve deployments. The
hourly expected percentages of the ancillary service capacity is calculated for the historic
data using the formulation presented in [47], [50] and then the forecast is done using

ARIMA as presented in chapter 4. After forecasting the parameters, the mean absolute
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error between forecasted and actual values are calculated to incorporate these forecasting
inaccuracies into the fuzzy formulation. The mean absolute errors of the forecasted data

are shown in Table 7-1.

Table 7-1 Mean absolute percentage error of forecasted quantities over simulated period

Electricity Market Parameters | MAP Errors

Regulation Up Prices 8.327 %
Regulation Down Prices 9.5831 %
Responsive Reserve Prices 6.777%
Regulation Up Deployments 28.48 %

Regulation Down Deployments 31.327 %
Responsive Reserve Deployments 24.77 %

In this simulation study, the same EV data is used as mentioned in the previous chapter.
Three different kinds of EVs that are available in the market are considered: Nissan Leaf,
Mitsubishi i-MIEV and Tesla Model-S. Battery specifications, EV performance and other
specifications are given in [79]-[83]. Among this hypothetical group, it is assumed that
50% of EVs are Nissan Leaf, 20% are Mitsubishi i-MiEV and 30% are Tesla Model-S. It
is also assumed that each EV has a charging efficiency of 90%. Previously EV with SOC
greater than 95% were considered in the simulations, but in this study all the EV are
considered in the optimization problem. All the EVs that are used in these simulations can
be charged from a standard 240V supply, and it is assumed that the charger has an

efficiency of 90%.

Each EV is assigned a random driving profile from the 2009 National Household Travel
Survey data [85]. The EV commute times, morning and evening, commute durations, EV

unexpected departures probabilities and additional trips are considered in a similar manner
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as mentioned in [50]. In the previous chapter’s study, 500 driving profile were considered,

but in this study 100 EV driving profiles are considered to save the computation time.

Two types of simulation studies are performed and compared: deterministic and the
proposed fuzzy based as was done in the previous chapter. Using each algorithm, expected
day-ahead aggregator profits are obtained by evaluating the corresponding objective
function. To further assess the effectiveness of the proposed FLP formulation, the actual
aggregator profits on the bidding day are calculated for both the deterministic and proposed
fuzzy algorithms. The actual aggregator profits are calculated from the algorithm presented
in Figure 5-1 and Figure 7-1. The actual aggregator profits are calculated using the actual
bidding day market parameters such as energy price, ancillary service prices and the
ancillary service deployments while the expected profits are calculated using the proposed

FLP with forecasted market parameters.

The aggregator profit, as mentioned previously, comes from two different sources;
ancillary service revenues and from the variation between the market and fixed (to the EV
owner) energy price. The energy cost for the EV owner is fixed at $0.05/kWh. This low
cost of energy for EV charging is considered to attract the EV owner to charge their EV
form the aggregator charging infrastructure and also the EV owner will not be exposed to

the energy price variations.

7.4 Results and Discussions

The deterministic and the proposed fuzzy optimization are performed for three different

cases:
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e With no load and price constraint in the optimization.
e With load constraint included in the optimization.

e With price constraint included in the optimization.

The first case results in the highest aggregator profits as there is no additional constraint in
the optimization problem that can minimize the profits. The load constraint is not a problem
for the aggregator as the main goal of the aggregator is to maximize profits, not maintaining
the balancing in the power system, but the system operator can impose this limit on the
aggregator to avoid the system collapse. In these simulations, as the objective function is
changed, the price constraint can be advantageous to the aggregator as the EVs will be

charged when energy price is low and the EV is charged a fixed rate for the charging.

7.4.1 Case # 1: With no Load and Price Constraint

The deterministic and the proposed fuzzy based algorithms are run each day from 6 A.M.
to 6 A.M. next day for the period of three months. During this period, it is considered that
there is no difference between the weekdays and weekends. All the vehicles are assumed

to be available, as per the availability factor, during the simulation period.

7.4.1.1 Charging Profiles

The charging profiles and the ancillary services provided by each algorithm are compared
for 2" August, 2010. This day is selected because it better reflects the price variations;
prices are not much random on this day. The hourly ancillary service prices are shown in
Figure 7-5. All the prices are higher in the late afternoon. The POP and ancillary service

capacities are shown in Figure 7-6 - Figure 7-9.
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Figure 7-5: Hourly ancillary service prices for 2" Aug, 2010

The POP of the EVs are usually set to a higher value at the end of the simulation day, to
keep the EVs participate in the market for the whole day. If they are fully charged, then
they will not be able to participate later. The POP is also set at the mid of the day before

its commute time, so that the EV are charged for that particular commute.
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Figure 7-6: POP by each algorithm on 2" Aug, 2010

The regulation up capacity is highest in the afternoon, so both the algorithms bid regulation

up at the afternoon period. The deterministic algorithm bids very little regulation up while
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the fuzzy algorithm has bid almost 21 MW at 2 P.M. The regulation down capacity is
shown in Figure 7-8. Both the algorithms have the same trend. The regulation down
capacity is mostly sold at the night time while there is a local maxima at 12 P.M. in the
day. The fuzzy algorithm bids higher regulation capacity as compared with the
deterministic one. The responsive reserve capacity is sold at the end of the simulation

period to completely charge the EVs.
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Figure 7-7: Regulation up by each algorithm on 2" Aug, 2010
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Figure 7-8: Regulation down by each algorithm on 2" Aug, 2010
109



m Deterministic  ® Proposed Fuzzy

(82
o

N
o

w
o

=
o

o

Responsive Reserves (MW)
N
o

6 7 8 9 10 11 12 13 14 1516 17 18 192021222324 1 2 3 4 5
Time (Hours)

Figure 7-9: Responsive reserve by each algorithm on 2" Aug, 2010

The POP for an average day is shown in Figure 7-10. Both the algorithms almost follow
the same pattern and keep the POP to a lower value in the early six hours and in the middle
of the day set a little higher value. But both the algorithms set the POP to be highest at the
end of the simulation day i.e. 6 A.M. next day. This is because if the EV are charged at the

start of the simulation day, they will be not be able to participate in the bidding later.
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Figure 7-10: Average POP by each algorithm
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The ancillary services by the algorithms are shown in Figure 7-11 - Figure 7-13. In the
average regulation up, sometime the deterministic algorithm bids higher than the proposed
fuzzy algorithm and sometime vice versa. The average regulation down capacity is shown
in Figure 7-12. The deterministic algorithm and the fuzzy algorithm both follows the same
pattern and bids in almost every hour. In almost every hour, the proposed fuzzy algorithm
is a little higher than deterministic algorithm. As the electric vehicles make their first trip

after 8 A.M. so the regulation capacities before the 8 A.M. is usually zero.
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Figure 7-11: Average regulation up by each algorithm
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B Deterministic  ® Proposed Fuzzy
.20
S
215
[«5)
e
& 10
[<5]
@
25
2
o
% 0 T T T T T T T I- |-'I'L‘|LT. I- T T I. T T T T I-_I
o 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hours)

Figure 7-13: Average responsive reserve down by each algorithm

The responsive reserve capacity is shown in Figure 7-13. Both the deterministic and the
proposed fuzzy algorithms mainly bid the responsive reserve at the end of the charging

period to make the electric vehicles charge close to 100%.

7.4.1.2 Quarterly Results

The section analyzes the expected and actual profits of an aggregator for the deterministic

and proposed fuzzy based algorithms. Figure 7-14 shows the comparisons of the expected
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and actual profit of an aggregator for an average day. Although the deterministic algorithm
expected profits are higher than the fuzzy algorithm, the actual profits of the fuzzy
algorithm end up higher by about 6.22% than the deterministic actual profits. This shows

the superiority of the proposed algorithm.

m Expected Profits  m Actual Profits

Profits ($ 1000)
O P N W s~ OO

Deterministic Proposed Fuzzy
Charging Algorithms

Figure 7-14: Expected and actual profits of an aggregator for an average day

When comparing the aggregator profits on the whole simulation period of three months,
the expected aggregator profits comes out to be $ 444.932k which is 9.39% higher than the
expected proposed fuzzy profits while on the actual bidding day, the proposed fuzzy
generates more profits i.e. $ 357.99k which is 6.21% higher than the deterministic actual
profits and 11.2% less than the expected fuzzy profits. On the actual day, the fuzzy

algorithm performs better than deterministic algorithm. This is evident from Figure 7-15.
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Figure 7-15: Total expected and actual profits of an aggregator

From the power system perspective, the charging of EVs should not stress the power
system. The peak and the average peak load increase by deterministic and proposed fuzzy
algorithm is shown in Figure 7-16. The proposed fuzzy algorithm results in a slightly higher
peak load (about 4AMW increase), while the average peak load increase is the same as that
of deterministic algorithm. This shows that the added advantage, of aggregator using this

fuzzy algorithm is slightly burdening the power system.
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Figure 7-16: Daily average peak and peak load increase by different algorithm due to EV
charging

7.4.2 Case # 2: With Load Constraint

In this case, the same optimization problem is solved with an extra load constraint
mentioned in (7.33) is added to order to avoid the burdening of the power system network.
Both the optimization, deterministic and proposed fuzzy algorithm are simulated for the

same charging period from 6 A.M. to 6 A.M. next day for a period of three months.

7.4.2.1 Charging Profiles
The electric vehicles average POP, ancillary service capacities are shown in Figure 7-17.
The POP almost follows the same pattern as that of the previous case and bids the most at

the end of the simulation day and bids very small capacity during the day.

115



m Deterministic  ® Proposed Fuzzy

NN
[ ENG )]

[ERN
o

POP (MW)
&

o (6)]
|

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5
Time (Hours)

Figure 7-17: Average POP by each algorithm with load constraint

The ancillary services by the algorithms are shown in Figure 7-18 - Figure 7-20. In the
average regulation up, sometime the deterministic algorithm bids higher than the proposed
fuzzy algorithm and sometime vice versa. The average regulation down capacity is shown
in Figure 7-19. The deterministic algorithm and the proposed fuzzy algorithm both follows
the same pattern and bids in almost every hour. The proposed fuzzy algorithm is a little
higher than deterministic algorithm except a few hours. As the electric vehicles make their
first trip after 8 A.M. so the regulation capacities before the 8 A.M. is usually zero or very

low.
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Figure 7-18: Average regulation up by each algorithm with load constraint
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Figure 7-19: Average regulation down by each algorithm with load constraint
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Figure 7-20: Average responsive reserves by each algorithm with load constraint

The responsive reserve capacity is shown in Figure 7-20. Both the deterministic and the
proposed fuzzy algorithms mainly bid the responsive reserve at the end of the charging

period to make the electric vehicles charge close to 100% of their capacities.

7.4.2.2 Quarterly Results
This section presents the aggregator profits for the different algorithms: deterministic and
proposed fuzzy. The expected and the actual profits for an average day is shown in Figure

7-21 while Figure 7-22 presents the total expected and actual profits of an aggregator for

the three months period.
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Figure 7-21: Expected and actual profits of an aggregator for an average day with load
constraint

With the load constraint added in the optimization, the aggregator expects a little lower
profit than the algorithm without load constraint and it is evident from the figures. The
aggregator expected profits, in the day-ahead bidding, using the fuzzy algorithm is 6.21%
lower than the deterministic algorithm, while on the actual day of bidding, the aggregator
get a little higher profits using proposed fuzzy algorithm as compared with the
deterministic algorithm. The actual profits, using the proposed fuzzy algorithm, are 6.92%
higher than the deterministic algorithm. The same trend for the day-ahead expected and

actual profits comparison is evident from the total profits graph as shown in Figure 7-22.
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Figure 7-22: Total expected and actual profits of an aggregator with load constraint

The charging of EVs should not stress the power system network. The peak and the average
peak load increase by deterministic and proposed fuzzy algorithm is shown in Figure 7-23.
The proposed fuzzy algorithm results in a slightly higher peak and average peak load than
the deterministic algorithm. This shows that the proposed fuzzy algorithm is affecting the
same as that of the deterministic algorithm. There is no additional burden by the proposed

fuzzy algorithm on the power system network.
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Figure 7-23: Daily average peak and peak load increase by different algorithm due to EV
charging with load constraint

7.4.3 Case # 3: With Price Constraint

In this case, the same optimization problem is solved with an extra price constraint
mentioned in (7.34) is added to order to avoid the burdening of the power system network.
Both the optimization, deterministic and proposed fuzzy algorithm are simulated for the

same charging period from 6 A.M. to 6 A.M. next day for a period of three months.

7.4.3.1 Charging Profiles
The charging profiles for the POP, ancillary service capacities with the price constraint are
shown in Figure 7-24 - Figure 7-27. The POP behaves the same pattern as that of the

previous cases and bids most of its capacity in the last simulation hour i.e. 6 A.M.
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Figure 7-24: Average POP by each algorithm with price constraint

The ancillary services by the algorithms are shown in Figure 7-25 - Figure 7-27. In the
average regulation up, sometime the deterministic algorithm bids higher than the proposed
fuzzy algorithm and sometime vice versa similar to the previous cases. The average
regulation down capacity is shown in Figure 7-26. The deterministic algorithm and the
proposed fuzzy algorithm both follows the same pattern and bids in almost every hour. The
proposed fuzzy algorithm is a little higher than deterministic algorithm except a few hours.
As the electric vehicles make their first trip after 8 A.M. so the regulation capacities before

the 8 A.M. is usually zero or very low.
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Figure 7-25: Average regulation up by each algorithm with price constraint
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Figure 7-26: Average regulation down by each algorithm with price constraint
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Figure 7-27: Average responsive reserves by each algorithm with price constraint

The responsive reserve capacity is shown in Figure 7-27. Both the deterministic and the
proposed fuzzy algorithms mainly bid the responsive reserve at the end of the charging

period to make the electric vehicles charge close to 100% of their capacities.

7.4.3.2 Quarterly Results
This section presents the aggregator profits for the different algorithms: deterministic and
proposed fuzzy. The expected and the actual profits for an average day is shown in Figure

7-28 while Figure 7-29 presents the total expected and actual profits of an aggregator for

the three months period.
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Figure 7-28: Expected and actual profits of an aggregator for an average day with price
constraint

With the price constraint added in the optimization, the aggregator expects a higher profit
than the deterministic algorithm in the day-ahead bidding and also on the actual day of
bidding, the aggregator get a considerable higher profits with the use of proposed fuzzy
algorithm as compares with the deterministic algorithm. On the actual day, the aggregator

gets 5.74% higher profits with the use of proposed fuzzy algorithm.
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Figure 7-29: Total expected and actual profits of an aggregator with price constraint
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The charging of EVs should not stress the power system network. The peak and the average
peak load increase by deterministic and proposed fuzzy algorithm is shown in Figure 7-30.
The proposed fuzzy algorithm results in almost the same peak and average peak load as
resulted by the deterministic algorithm. This shows that there is no additional burden by

the proposed fuzzy algorithm on the power system network.
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Figure 7-30: Daily average peak and peak load increase by different algorithm due to EV
charging with price constraint

7.5 Conclusions

In this chapter, the benefits of coordinated bidding of ancillary services for unidirectional
V2G with fuzzy market uncertainties are investigated. The proposed fuzzy algorithm for
V2G is found to be more beneficial for the aggregator in terms of profits on the actual
bidding day as compared with the previous proposed deterministic algorithm. The new
objective function proposed is also beneficial for EV owner and aggregator, as the owner
is not exposed to the energy price variations and has to pay a fixed cost for charging EV,
while the aggregator can take advantage of the varying market prices by predicting the
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future values of the market. Different market uncertainties are modeled using the fuzzy set
theory such as ancillary service prices and deployments signals. Furthermore, different
cases were simulated with the load and price constraint that avoids the burdening of the

power system network and charge the electric vehicles at low price cost.
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CONCLUSIONS AND FUTURE WORK

In this thesis, optimal aggregator bidding strategies for unidirectional vehicle-to-grid using
fuzzy uncertainties is presented for the day-ahead ancillary services market. A fuzzy based
smart charger and fuzzy optimization based bidding strategies is developed for an
aggregator. Different electricity market uncertainties are incorporated using the fuzzy set
theory such as regulation prices, responsive reserve prices, regulation, and responsive
reserve deployments. The algorithms are compared with the previously published
deterministic algorithms, without the uncertainties in the bidding. The algorithms,
deterministic and proposed fuzzy, are simulated on the hypothetical group of 10,000 EVs,
operating in the real electricity market ERCOT. The electricity market data are taken from

the ERCOT ISO website for the simulation period.

First, a novel smart charging algorithm based on the fuzzy logic control is presented.
Previously different smart charging algorithms were presented in the literature, such as
price based, load based and MaxReg based smart charging algorithms. In fuzzy smart
charging, taking the advantage of fuzzy logic, previous published charging algorithms were
combined in a fuzzy logic controller. The proposed fuzzy based smart charger results in
the highest profits for the aggregator. The proposed algorithm, not only benefits the
aggregator, but also charges the EVs at lower energy cost and the impact on the power
system is also reduced. While each previous algorithm has its own specific merits, such as
the load algorithm impacts the power system lowest, but they were only targeting one

specific task.
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Second, optimal aggregator bidding of regulation service for unidirectional V2G is
developed using the fuzzy linear programming. A fuzzy optimization is proposed for the
finding the optimal bidding for the aggregator. Different electricity market uncertainties
are modeled using the fuzzy sets, such as regulation up/down prices and regulation
deployments signals. Previous published deterministic algorithm is compared with the
proposed fuzzy algorithm. The deterministic algorithm perform better than the fuzzy
algorithm for the expected profits while on the actual day of bidding, proposed fuzzy results
in higher profits than the deterministic. The actual profits are the real profits of the
aggregator and the difference between the expected and the actual profits are minimized
for the proposed fuzzy algorithm. Load and Price constraint are also simulated so that the
impact of EV charging on the grid is minimized and the EVs are charged at lower energy

price respectively.

As the EV can participate in different electricity markets, so in the last section of the thesis,
coordinated bidding of the aggregator for the ancillary services, regulation services and
responsive reserves, are investigated. The formulation presented in this chapter is an
extension of the previous work with detail modeling of ancillary service market parameters
and EVs parameters. Moreover, the objective function is also changed and the EVs are
charged at a fixed cost. The new objective function is beneficial to both EV owners and
aggregator as the owners will not be exposed to energy price variations. Different
electricity market uncertainties are modeled with the fuzzy sets. The expected and the
actual aggregator profits are compared for both the deterministic and fuzzy algorithms. On

the actual day of bidding, the fuzzy algorithms results in a higher profit as compared with
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the deterministic profits. Similar to the previous work, the simulations are also performed

with the load and price constraints.

In this thesis work, the main objective achieved is the incorporation of electricity market
uncertainties for day-ahead aggregator bidding using the fuzzy set theory. The proposed
fuzzy algorithms results in a higher profits on the actual day of bidding and generates more

profit for the aggregator as compared with the previous deterministic algorithms.

The work in this thesis can be further extended in many directions and some of them are:

e The work in this thesis has focused on unidirectional V2G bidding. In addition to
the unidirectional V2G, bidirectional VV2G for participating in the energy market
can be done.

e The different parameters related to EVs such as their availability, departure times,
trip duration and SOC reduction are dealt here in a deterministic and probabilistic
manner. They can also be fuzzified.

e The forecasting should be improved further, so that greater benefits out the

available resources can be obtained.
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