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Fuzzy Optimization 
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Electric Vehicles (EV), including battery electric vehicles (BEV) and plug in hybrid 

electric vehicles (PEHV), provide many advantages over the conventional internal 

combustion (IC) engines, such as reduced operating cost and the potential to run on locally 

connected distributed generation (DG). EVs can provide long term benefits to the 

environment, EV owners, and utilities. In addition to the financial benefits, EVs can 

potentially reduce air pollutants and greenhouse gas emissions. However, mass unregulated 

charging of EVs can burden the conventional power grid, raise the peak demand of the 

system, and seriously burden the distribution system network. Therefore, the charging of 

the EVs should be somehow managed. 

In the smart grid environment, the vehicle-to-grid (V2G) concept has been introduced to 

increase the adoption rate of EVs while managing their impact on the power grid. Many 

researchers, utilities, and governmental bodies are working to properly utilize this large 

distributed energy resource. This distributed energy resource can support the grid in many 

ways, such as providing regulation service, spinning reserves, emergency reserves, reactive 

power support, load leveling, peak shaving, reducing emissions of thermal units, balancing 

wind and solar etc. 
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In this thesis, optimal bidding strategies for unidirectional V2G charging by the aggregator 

are developed under different fuzzy uncertainties. A fuzzy optimization is developed for 

finding the optimal bid for an aggregator. Different uncertainties are modeled using fuzzy 

sets, such as ancillary service prices and ancillary service deployments. Simulations show 

the benefits of these optimal fuzzy algorithms for the aggregator, EV owners, and the utility 

over existing deterministic algorithms, without any uncertainties. 
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ملخص الرسالة    

 
 
 

 محمد عبدالحفيظ انصاري :الاسم الكامل

 

دام المركبات الكهربائية  باستخالاستراتيجيات المثلى الذكية للمزايدة في عن طريق متنظيم شحن  عنوان الرسالة:

 طريقة من المركبة إلى الشبكة.

 

 هندسة كهربائية التخصص:

 

 م3102: نوفمبر تاريخ الدرجة العلمية

 

 

( و المركبات  الكهربائية الهجينة ذات القابس BEV( متضمنا بطاريات المركبة الكهربائية )EVالمركبات الكهربائية )

(PEHVلديها فؤائد كثيرة مقا )( رنة مع المحركات داخلية الإحتراق التقليديةIC و من هذه الفؤائد تقليل كلفة التشغيل )

(. المركبات الكهربائية بإمكانها منح منافع على المدى DGو المجهود التشغيلي المولدات التوزيعية المربوطة محليا )

جو و كما تساهم بشكل كبير في التقليل من ملوثات الالبعيد للبيئة و مالكيها و المستخدمين. علاوة على المنافع المالية, 

من إنبعاثات الغازات الدفيئة. بالرغم من ان ثقل الشحن الغير منتظم لهذه المركبات قد يشكل عبئا على شبكة الطاقة 

أنها تشكل بالتقليدية وهي حقيقةً ترفع من ذروة الطلب على الطاقة الكهربائية في شبكة النظام التوزيعية, نستطيع القول 

 عبئ على النظام الكهربائي التقليدي, لذلك توجب ان تدار عملية شحن هذه المركبات بطريقة ما.

 

(  لرفع معدل الإعتماد المركبات الكهربائية اثناء V2Gالشبكة ) –الى  -في بيئة الشبكة الذكية قدم مصلح من المركبة 

و المستخدمين  و الهيئات الحكومية يعملوا على الإستفادة بشكل إدارة تأثيرها على شبكة الطاقة. كثير من الباحثين 

صحيح من المصدر الكبير للطاقة التوزيعية. مصدر الطاقة التوزيعية من الممكن أن يدعم الشبكة بعدة طرق منها, توفير 

لفعالة الطاقة غير االخدمات التنظيمية و إحتيطات من وحدات التوليد وهي في حالة التشغيل و إحتيطات الطوارئ و دعم 

دية( و تسوية الأحمال و تنعيم الذروة و خفض الإنبعاثات من الوحدات الحرارية و موازنة انتاج الطاقة المولدة من  )الرَّ

 الرياح و الطاقة الشمسية ...إلخ.

 

اسطة منظم الشحن ( أحادي الإتجاه بوV2Gفي هذه الرسالة, تم تطوير إستراتيجيات المزايدة المثلى للشحن بتقنية الـ )

تحت درجات متفاوتة من الضبابية )درجات من عدم الموثوقية( الذكية. تم تطوير درجات الضبابية الذكية المُثلى من 

أجل الحصول على المزايدة للمنظم )للمجمع(. تم تمثيل درجات عده من الضبابيات الذكية مختلفة عدة عوامل في النظام 

ل أسعار الكهرباء للخدمات المساندة و الإشاراة اللازم ارسالها للمركبات المربوطة بالشبكة بحاجة لأن نتوقعها جيداً , مث

لتحديد نسبة تزويد المركبة من الخدمات المساندة التي تمت المزايدة بها. المحاكاة أظهرت الفؤائد من هذه الخوارزميات 

بات الكهربائية و الفائدة من وجود الخوارزميات الضبابية المثلى لمنظم شحن المركبات )للمجمع( و لمالكي الـمرك

 بدرجة من الضبابية على نفس الخوارزميات مع فرضنا عدم وجود أي درجة من الضبابية.
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1 CHAPTER 1 

INTRODUCTION 

1.1 Background 

The electrical grids have been in existence for more than 100 years. Most existing electrical 

infrastructures were designed to supply electrical power in a regulated environment. The 

utility in a particular region owns large central generating units to supply power to the end 

customers with predictable loads. The central dispatch system is facing new challenges 

recently due to many factors, such as demand increase, capacity limitations, distributed and 

stochastic generation, environmental concerns, and new smart grid technologies [1]. 

One of the newer, potentially smart, demands will come from the deployments of electric 

vehicles (EV) or plug in hybrid electric vehicles (PHEV). Electric vehicles are expected to 

receive mass acceptance from the public in the near future due to their promising benefits 

to the environment and the vehicle owners. Figure 1-1 shows the sale of new PHEVs in the 

US from 1999 to 2011. Note that the sales increased to a peak of more than 350,000 units 

during 2007 due to the incentives by the government [2]. 
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Figure 1-1: U.S HEV sale from 1999 to 2011. (From U.S. DOE alternative Fuels Data 

Centre, http://www.afdc.energy.gov/data/tab/vehicles/data_set/10301) 

 

There are numerous benefits that come out of the electrification of the transport system 

over the traditional internal combustion engines such as lower operating costs and potential 

to charge from the local renewable distributed generation. However, there are challenges 

ahead of its full implementation, such as high initial cost of EVs, charging issues, limited 

power capacity. In addition, if not properly controlled, EVs can create power shortages. 

Some of the benefits of EVs, if properly integrated and controlled are [3], [4]: 

 Reduced environmental impact due to hydrocarbon emissions 

 Reduced petroleum consumption and fuel costs 

 Lower operating costs 

 Generated revenues 

 Electrical power grid support 

http://www.afdc.energy.gov/data/tab/vehicles/data_set/10301


3 

 

The capital cost of the EVs is higher than the traditional vehicles. Due to the higher initial 

cost, research has been conducted by utilities, governmental agencies and researchers to 

determine if EVs can be utilized for additional services. Therefore, the concept of vehicle 

to grid (V2G) was developed. V2G concerns EV integration with the electrical power grid. 

Studies have shown that vehicles, on average, are available idle for 90% of the day. Using 

this fact, the EVs can be utilized for electricity grid support and can generate revenue for 

the vehicle owner [5]. If this revenue helps offset the initial cost of EV, it will increase the 

incentive to purchase an EV. The basic concepts of V2G and the provision for energy and 

ancillary service from an EV are now well defined. 

The proper implementation of V2G concept is beneficial for all the participants. Utilities 

will be benefiting from this controllable distributed source of energy and their operations 

and controls will be improved. In addition, EV owner will generate revenues from its EV 

and charge their cars at low energy price [6]. Power flow in an EV can be both 

unidirectional and bidirectional, depending on the service provided by EV. With V2G, an 

EV can participate in many energy markets such as regulation, spinning and non-spinning 

reserves,  peak energy  and energy market [7], [8]. 

In this chapter, the basic concepts of V2G are introduced. The direct and the aggregated 

bidding of the EVs capacity for the V2G implementation are explained. The different 

uncertainties of the electricity market and the use of fuzzy set theory for handling them are 

also explained. Finally, the objectives of this thesis are listed in the last section. 
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1.2 The Concept of Aggregator Bidding 

The relationship between the EVs and the utility/ISO for V2G implementation can be 

classified as one of two types: a direct architecture and an aggregated architecture [9]. The 

direct architecture for V2G implementation is shown conceptually in Figure 1-2. It assumes 

that there is a direct line of communication between the EV and the system operator. In the 

direct architecture, the EV can bid and perform services during its charging. 

 

Figure 1-2: Direct architecture for V2G implementation [9] 

 

The direct architecture is conceptually simple but the infrastructure and communication 

requirement is immense. There are also various drawbacks in direct architecture such as 

prediction of individual EV availability, peak power capability, and market requirements. 

The bidding capacity of a resource providing ancillary services in most electricity markets 

should not be less than 1 MW, making the direct architecture very difficult to implement 

with this market requirement [7], [10]. 
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Aggregated architecture is more suited for V2G implementation. An aggregator is an 

intermediate agent that combines a considerable amount of EVs and bid their aggregated 

capacity in the market. Figure 1-3, shows the concept of aggregated architecture. 

 

Figure 1-3: Aggregated architecture for V2G implementation [9] 

 

In the aggregated architecture, the aggregator can bid into the market at any time as the 

collective behavior of the driving profile and the electric vehicle availability can be 

predicted while the individual electric vehicle can leave the charging station as per its 

requirements. The aggregated architecture overcomes the main problems of direct 

architecture; the aggregation of electric vehicles can be treated like a conventional ancillary 

service source and will remove the communication burden on grid system operator. The 

aggregated architecture is feasible and extensible for V2G implementation from the power 

system operator perspective [11]. As the individual EV can disconnect whenever the 

customer desire to, he/she will also be concerned about the amount of power available in 

the battery for travelling. Therefore, it is the job of the aggregator to develop bidding 
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strategies that will balance the EV energy needs and maximize profits by participating in 

different markets during the EV availability. 

1.3 Handling Uncertainties using Fuzzy Sets 

In an ideal situation, electricity market bidding is done under the assumption that all the 

parameters are deterministic. This is equivalent to the assumption that the forecasting of 

these parameters is perfect. However, in practice, there are always errors in the forecasted 

parameters [12]. There are several ways to handle the forecast uncertainty, such as fuzzy 

set theory, stochastic models, and probability theory. 

In this thesis, the uncertainties of the different electricity market parameters are handled 

using fuzzy theory. The concept of handling uncertainties using the fuzzy set was first 

introduced by Zedah, a mathematician, in 1965 [13]. The basic idea behind the fuzzy set is 

quite simple. In a conventional/crisp set, an element either belongs to or does not belong 

to a set. Hence the value of membership for an element is either yes or no. In the fuzzy set 

theory, a degree of membership is allowed to a range over the interval [0, 1]. Thus the 

membership function of fuzzy set maps each element of the universe of discourse to its 

range space, which in mostly assumed to be unit interval. One major difference between 

the crisp and the fuzzy values is that crisp sets have unique membership functions whereas 

fuzzy sets have infinite number of membership functions that can represent it. Fuzzy 

sets/logic treats the complex and ambiguous problem in a subjective way; it solves the 

problem like a human thinks of it. In considering a complex problem, humans reason 

approximately about its behavior, a capability that computers don’t have, and thus 

maintains only a generic understanding of the problem. The fuzzy reasoning offers a good 
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solution when few numerical data exist and the information available is imprecise. It 

provides a way to understand the system behavior by allowing one to interpolate 

approximately between inputs and outputs in a logical way. Fuzzy systems can be classified 

as structured numerical estimators. They define the real world problem in a linguistic way 

and then define some rules based on human expertise. As they are numerically model-free 

estimators and dynamic systems, they can improve the system performance for an 

uncertain, imprecise, and noisy environment [14]. 

There is virtually no problem for which one can say the information is absolute, with no 

error, uncertainty and impreciseness. Uncertain information can take many different forms. 

There are uncertainties due to the complexity of the power system such as, in this work, 

uncertainty due to the behavior of individual electric vehicle movements, uncertainty in the 

price of the electrical energy and ancillary services, uncertainty in the electrical power load, 

uncertainty in the spinning reserve requirement in the power system, and uncertainty in 

deployment signals. These uncertainties arise due to the lack of sufficient data, 

impreciseness and the inability to perform adequate measurement and forecasting 

inaccuracies. 

The problems characterized by ambiguous, uncertain and imprecise information can be 

modeled by fuzzy set theory. The following are the conditions where it is suitable to 

formulate problems within fuzzy framework [14]: 

1. When human interaction is involved in the process. 

2. When an intelligent system has to be designed based on the human expertise and 

interactions (e.g. human descriptive). 
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3. When a system is very complex or its exact mathematical modeling is not possible 

or too difficult. 

4. The mathematical model is difficult to evaluate in a real time operations. 

5. When the noise level is high in the data set or the data available is uncertain.  

Fuzzy system can achieve robustness, tractability and lower cost solutions. Virtually all the 

engineering fields can be fuzzified and defined in a fuzzy environment such as fuzzy 

arithmetic, fuzzy graph theory and fuzzy probability theory etc. Moreover, applied fields 

can also be fuzzified such as fuzzy neural networks, fuzzy mathematical programming and 

fuzzy pattern recognition. 

Momoh at el. [15], suggested a guideline on the use of fuzzy set theory for power system 

problems: 

1. Description of original problem: State the problem in a mathematical and linguistic 

form. 

2. Defining thresholds for variables: For each fuzzy variable, define the thresholds 

(acceptable ranges) based on the human expertise of the system.  

3. Fuzzy quantization: Memberships functions are constructed based on the threshold 

values defined in step 2. The functions should be defined in a way that reflects the 

change of satisfaction degree with the change in variables evaluated by experts. 

4. Selection of the fuzzy operations: The fuzzy operations and reasoning should be 

properly defined so that the results obtained should reflect like those of an expert. 

Fuzzy set theory has been mainly applied in electrical power systems in two categories: 
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1. Planning: includes power system expansion planning, and long and midterm 

scheduling of the system. 

2. Operations: includes security assessment (dynamic and static), forecasting (price, 

load, and reserves), controller designs (PSS, exciter and FACTs devices 

controllers), and diagnosis (transformer and rotating equipment). 

1.4 Thesis Objectives 

The main aim of this research is to develop bidding algorithms for an aggregator under 

different electrical power system uncertainties. With the deregulated environment of the 

power system, the bidder must take into account several uncertainties in order to avoid 

financial losses. These electricity market uncertainties will be dealt with in this work using 

the fuzzy set theory. 

The following are the major contributions of this thesis:  

1. The development of a smart fuzzy-based preferred operating point (POP) selection 

method. This formulation will take into account several uncertain parameters, such 

as energy price, system load, and the number of hours for EV availability.  

2. The development of an optimal bidding strategy for the provision of regulation in 

ancillary service market considering the different power system uncertainties. The 

uncertainties will be handled using the fuzzy set theory. 

3. The development of an optimal coordinated bidding strategy for regulation and 

spinning reserves for participation in both markets with consideration of 

uncertainties. 
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4. The strategies are developed by using the fuzzy linear programming technique. All 

developed strategies/algorithms are tested against other charging schemes 

published previously and the results are compared. 

1.5 Thesis Layout 

This thesis consists of seven chapters. In the first chapter, the role of an aggregator as a 

market participant and the basic concepts of vehicle-to-grid are explained in details. The 

importance of managing EV charging is highlighted. The handling of different 

uncertainties using the fuzzy set theory is also introduced.  

In the second chapter, a brief literature review of the vehicle-to-grid implementation is 

introduced. The literature related to the V2G concepts as part of the smart grid technologies 

is presented. The work related to the bidding strategies of electric vehicles is presented and 

finally the work done on handling the different uncertainties using the fuzzy set theory is 

presented. 

In the third chapter, the main techniques that are used in this thesis for developing the 

optimal bidding strategies under different fuzzy uncertainties are explained in detail. The 

fuzzy logic and the fuzzy linear programming technique are well defined in this chapter. 

The fuzzy logic is used for the smart charging of electric vehicles and the fuzzy linear 

programming is used for the developing the optimization strategies in the day-ahead 

ancillary service market. 

In the fourth chapter, the electric market overview and forecasting of electricity market 

parameters is presented. The change from vertically integrated utility to the decentralized 
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electricity market is explained. The roles and functions of different market participants in 

this market structure are highlighted. The ancillary service market is explained in a greater 

detail as the work in this thesis is directly related to the aggregator participating in the day-

ahead ancillary service market. The different market parameters are forecasted as the 

aggregator is bidding in the day-ahead market, so before bidding its capacity in the 

electricity market, the aggregator will try to anticipate the future values of the market to 

maximize the profits. Forecasting of different electricity market parameters such as 

regulation up/down prices, spinning reserves prices, and ancillary services deployments 

signals are done using the autoregressive integrated moving average (ARIMA) technique. 

In the fifth chapter, a smart charging algorithm for the electric vehicle charging using the 

fuzzy logic technique is developed. This fuzzy logic controller combines the previously 

published charging algorithms such as price-based, load-based and maximum regulation 

based in a fuzzy logic frame work to take the advantage of each algorithm and the proposed 

fuzzy logic algorithm is working better than the individual previous algorithms. The fuzzy 

logic algorithm can also be implemented easily in the real time systems participating in the 

real time electricity market. 

In the sixth chapter, an optimized algorithm for the optimal aggregator bidding strategy for 

regulation service using the fuzzy linear programming technique is proposed. The fuzzy 

set theory is used to model the uncertainties of the forecasted data in the day-ahead 

ancillary service market such as regulation prices and the regulation deployment signals. 

In the seventh chapter, the algorithm proposed in chapter six is extended to include the 

spinning reserves and its deployments in the formulation to make it a coordinated 
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aggregator bidding strategy for the ancillary service bidding. In addition to the spinning 

reserves, the different parameters related to the electric vehicles are also incorporated in 

the formulation such as EVs availability, compensation factor, travel time, and trips etc. 

The different EVs parameters make the formulation more realistic and are included in a 

deterministic and probabilistic way. Only the electricity market parameters are handled in 

a fuzzy framework. 

Equation Chapter 2 Section 1 
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2 CHAPTER 2 

LITERATURE REVIEW 

Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) have become a popular 

topic of research due to their promising benefits. Utilities and researchers are continuing 

to develop the needed technologies for widespread use of EVs. In this chapter, a detailed 

overview of research activities related to the V2G implementation is presented. The chapter 

is divided into three sections. Section 2.1 presents the literature about the V2G concept. 

Section 2.2 gives a summary of the optimal bidding of V2G services in different electricity 

markets. In Section 2.3, uncertainty modeling using the fuzzy set theory will be surveyed. 

2.1 Vehicle-to-Grid Concept  

Initially, the electric vehicles were considered as a load that only burdens the power system 

network [16], but the idea that EVs can be used to support the electrical grid system in a 

way that is beneficial for both the EV owner and the electricity power grid was first 

introduced in [17]. This leads to further development of the vehicle-to-grid (V2G) concept 

later in [5], [7]. The concept of V2G is continuously developing and with the technological 

advancements, researchers have implemented pilot projects for V2G [18]. In [18], different 

charging approaches were suggested to be used for V2G. The V2G concept is divided into 

two types; unidirectional V2G and bidirectional V2G. Unidirectional V2G is also called 

load only V2G that performs EV load control and regular V2G, in which power is injected 

from grid to vehicle.  Unidirectional V2G or load only regulation is also called as V1G, in 
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some literature [19]. Some authors consider V2G as a means to deliver power from parked 

vehicle to the electrical grid while G2V as a way to provide the energy to the vehicle from 

the grid [9]. In bidirectional V2G, power can be transferred from vehicle-to-grid or the 

other way and most authors have considered V2G as a common terminology for 

bidirectional power flow. Since the introduction of the benefits of the electric vehicles, 

V2G basics have been fully defined and the potential benefits in different electricity market 

have been explored [5], [7], [8]. The most beneficial market for V2G service is the 

regulation service market and is carefully addressed in [5]. In [7], different electricity 

markets such as: base load, peak, spinning reserve and regulation, are further explored. It 

was initially suggested that EVs can provide spinning reserve and regulation, however 

several other works  have also consider EVs to provide peak load shaving and base energy 

[17], [20], [21]. Among all, regulation service is the most promising and beneficial market 

for V2G. These results are confirmed in [5], [7], [22]–[25]. 

2.2 Vehicle-to-Grid Bidding  

EVs were first introduced in the mid-19th century. The high cost, low speed and their short 

range, as compared with internal combustion engines, led to their decline [26]. However, 

in the last two decades, an interest in the electric vehicles has developed due to the 

problems associated with internal combustion engine vehicles and its negative impact on 

the environment. The concept of V2G has sparked this interest due to the potential support 

of EVs to the aging power grids. Early work in this area focuses largely on the basic 

concepts and simulations to show the potential benefits of EVs. One of the early studies 

discusses the leveling of system loads by controlling the charging and discharging of EVs 
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[27]. Researchers are still working on the ways to use the EVs for load leveling. One such  

study [28] also publishes the load imposed by the EV or PHEV on the electrical grid. This 

study used a historical database of the driving profiles of vehicles for predicting the parking 

times. Kempton and Tomic [5], [7], [8],  presents in detail the benefits of V2G integration 

and provides a detail overview of the potential revenues for different markets. They looked 

extensively into several issues, such as stabilizing the electrical grid and supporting 

renewable energy. They also discussed different services an EV can provide, such as 

regulation service, reduction in peak load, spinning reserves and base load. In their work, 

it was concluded that the regulation service has the most potential in terms of earning. In 

[29], Kempton at el. performed a practical demonstration of V2G integration, providing 

real time frequency regulation service in PJM electricity market. Other studies also 

confirms that EVs are well suited for regulation services [23], [24]. Brooks demonstrated 

a bidirectional V2G ancillary service for EV through an aggregator. It was demonstrated 

that an EV can respond to four-second regulation signal from the ISO [30]. These studies 

however, did not properly address the aggregator role, revenue structure and the different 

uncertainties in the deregulated electricity market structure. 

Many other studies have looked at the potential benefits of electric vehicles and V2G with 

unit commitment problem. These include the charging and discharging of EVs for peak 

loading shaving and load leveling. Some of these studies have also  focused on reducing 

the thermal unit emissions and balancing wind and solar through V2G integration [31]–

[34]. Sabir and Venayagamoorthy also considered the limitation of the parking lot for EV 

charging [34]. However, these studies did not consider the aggregator and bidding 

strategies. Also, the uncertainties associated with the EVs such as their availability, SOC, 
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battery capacity are not considered. They considered EVs as simply a battery storage 

medium. Venayagamoorthy at el. [35] and Peterson at el. [36] have developed the concept 

of optimal buying and selling of bulk V2G energy. In [37], the author has investigated 

different grid related support by EVs such as reactive power support, peak shaving, 

emergency reserves and off grid applications. Most of the optimization work done by Sabir 

at el. is based on intelligent techniques, such as particle swarm optimization. In a real power 

system, it is difficult to solve the optimization with intelligent techniques as the number of 

electric vehicles will be large, so does the optimization parameters. In [38], author have 

considered the electric vehicles with the economic dispatch. They have considered the 

charge/discharge behavior of electric vehicles and wind power, the optimization problem 

is solved using particles swarm optimization. However, these studies did not investigate 

the aggregator standpoint nor did they consider the uncertainties of the power system 

market. Khodayar at el. [39] presents a mixed integer programming methodology to solve 

the security constraint unit commitment (SCUC) problem with the aggregated PEVs as a 

distributed source of bidirectional energy and volatile wind power. The main focus of the 

paper is the secure operation of the power system with EVs and wind, while considering 

some of the uncertainties of EVs such as their availability. Since the formulation presented 

was not market-based, the uncertainties associated with the electricity market such as price 

and load is not considered. 

Guille and Gross [40] explored thoroughly the participation of aggregator and provides a 

framework  for V2G implementation. They propose the aggregator as a link between the 

market participants and the utility for all types of energy markets, as well as providing the 

battery charging services. They introduce the concept that aggregator can provide “package 
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deals” such as battery guarantee and maintenance, as a way to attract large number of EV 

owners to create an aggregation of sizable impact. The communication requirements are 

also highlighted. Quinn at el. [9] mainly focuses on the effect of communication 

architecture on different parameters of V2G services. They showed the importance of 

aggregator for V2G services by introducing the availability factor. Without aggregator, if 

an EV has a contract with the utility directly, it cannot leave for any unplanned departure 

until the end of the contract period while an aggregator, with many EVs, can schedule the 

capacity based on historical data, and can maintain the contracted availability for V2G 

service and with this, an individual EV can leave as per the EV owner requirement, but its 

revenues will be reduced. These studies however deal with the aggregator, but they do not 

address any algorithms for ancillary services, bidding strategies nor with any uncertainty 

of the power system. 

Several other recent studies have focused on the bidirectional V2G services. One such 

study was done by Han and Sezaki [41] in which optimal charging control was pursued for 

each EV by using dynamic programming. This study divided the whole EV availability 

time into two periods, one for charging EV and another period for regulation services. An 

optimization strategy should consider both options. This study performs the optimization 

for regulation service however; it does not address the regulation algorithm followed by 

the individual EV. In [42], Rotering and Ilic proposed optimal scheduling strategy for 

single EV performing regulation service, this also segregates the charging period from the 

regulation period. However, one major drawback of this study is that it assumes the battery 

state of charge (SOC) is unaffected by the regulation service. The bidirectional V2G has a 

great potential, but with its benefits there are serious challenges in its implementation. With 
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the bidirectional power flow, additional hardware is required. Many issues, such as 

interconnections related problems and anti-islanding protection problems, must be 

addressed [43]. Also its impact on distribution system should be investigated carefully. 

Battery cell degradation due to the cyclic wear is also a significant problem with 

bidirectional V2G [36], [44], [45] . Apart from the technical difficulties in using 

bidirectional V2G, customers may also not allow the utility to draw power from their 

batteries and they can be left stranded for their unexpected departures [46]. 

Vehicle to grid integration is still at the initial phase of implementation and the 

bidirectional V2G integration will not be a straightforward task. The first step should be to 

introduce the unidirectional V2G; it will avoid many technical and nontechnical hitches. 

There will be no need for an extra hardware and battery cycling problem will not be of 

concern [47]. Additionally, unidirectional V2G can be charged by standard SAE J1772 

charging stations [48]. Unidirectional V2G makes customers feel more comfortable as the 

utility cannot draw energy from their batteries. The basic concepts of unidirectional V2G 

regulation service are explained in [45]. It is a load-only regulation that varies the charging 

of EVs around a set point called preferred operating point (POP). Reference [45] does not 

explain the charging algorithms used by the EV for controlling the POP. A unidirectional 

V2G aggregator charging algorithm is discussed in [49] . The algorithm controls the 

charging of EVs as either on or off based on the regulation signal from the ISO/utility. 

When the EV is connected, it charges the EV battery based on the rating and capacity of 

the charger. While charging the EV, it also keeps track of the battery state of charge (SOC). 

It does not perform any optimization and when the desired SOC is achieved, the charging 

of EV is disconnected. 
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A considerable amount of work in unidirectional V2G has been done by Sortomme and El-

Sharkawi. In [47], unidirectional regulation algorithm is developed; several smart charging 

algorithms and their optimized algorithms are developed and compared. In this work [47], 

it is assumed that electric vehicles are available during the office hours for nine-hours and 

the aggregator can charge and perform bidding for ancillary service during this period. 

Later this work is extended in [50] to consider the spinning reserves in the bidding strategy 

in addition to the regulation service bidding. They developed the combined bidding 

algorithm for both the regulation services and spinning reserves. The optimization is also 

performed for the whole day and considering the unplanned departures by the electric 

vehicles. The algorithms for price and system load constraint optimization are also 

developed so that the customers can charge the EVs at low energy prices with price 

constraints; and the power system network will not be burdened by the EVs load, if load 

constraint is applied. Unlike previously suggested algorithms, the formulation presented in 

their work is a linear program that can be solved by any linear program solver. The authors 

have suggested a well-defined bidding structure for the aggregator, but they ignored the 

different uncertainties associated with the deregulated electricity market, such as price, 

load and regulation signal deployments in their bidding strategies. There are always errors 

related with the forecasted quantities and these forecasting errors are not dealt with in their 

work. 

In [51], two optimization approaches ”divided” and ”global” are proposed for participating 

in the day-ahead energy market. In divided approach, an EV participates individually while 

the global approach takes the benefit of EV aggregation to bid in the electricity market. 

While [51] presents the basic theory of the concept, [52] presents the numerical analysis 
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supporting the ideas. The two approached are compared and the result shows the benefit of 

the global approach in comparison with the divided approach. Later, a more comprehensive 

work is done in [53] from an EV aggregator, participating in two types of electricity market; 

day-ahead reserve market and the hour-ahead reserve market. The main objective of Bessa 

et al. work is to reduce the cost of aggregator, so that it can attract more EV owner for 

charging their cars, which indirectly will increase the aggregator income. The main 

drawback of their work is that, they did not compare how effective their algorithm is on 

the actual day of operation. They have not compared the expected and actual aggregator 

costs. 

2.3 Handling Uncertainties using Fuzzy Sets 

Fuzzy set theory has been applied in many diverse applications of power system network, 

mainly in the fields of power system operations and planning. The main focus of the fuzzy 

set theory is in the area of modeling different uncertainties and fuzzy-based intelligent 

controllers. In the electrical power system, one of the subfield that is very well addressed 

is the unit commitment (UC) problem with different fuzzy-based uncertainties such as load, 

production cost and spinning reserves. Most of fuzzy-based UC optimization has been done 

using the integer programming and intelligent techniques such as particle swarm, genetic 

algorithm, simulated annealing and ant colony. Only a few deal with fuzzy linear 

programming. A brief literature review related to the modeling of uncertainties using the 

fuzzy set theory for the UC problem is presented here as the UC problem resembles the 

optimal bidding strategy in terms of problem formulation. 



21 

 

A. H. Mantawy at el. [54], [55] proposed the unit commitment solution method with fuzzy 

genetic algorithm and fuzzy simulated annealing. In this work, fuzzy logic is used for 

modeling the uncertainties in load demand and the spinning reserves. In [56], Saber at el. 

presented fuzzy based unit commitment using simulated annealing considering the 

uncertainties in the load and spinning reserve while in [57] presented adaptive fuzzy based 

unit commitment problem solution with the particle swarm. The fuzzy membership 

functions are applied to the weights assigned to the particle. Fuzzy theory is also applied 

for modeling the uncertainties of wind and solar energies in addition to the thermal 

generators scheduling problem. In [58], Liang and Jian presented their work on the 

generator scheduling with the fuzzy wind and solar energy systems. They solve a 

comprehensive power system network with fuzzy genetic algorithm considering the 

uncertainties in fuel cost, load demand, spinning reserves requirement, available water for 

pumped storage, wind speed and solar radiations. The main application of these references 

is the unit commitment problem. 

The application of fuzzy logic to price based unit commitment is addressed by Daneshi at 

el. [59], In this paper, the UC problem is expressed as a mixed integer linear programming 

with the uncertainties in the electrical market energy price that is modeled by fuzzy set 

theory. The objective is to maximize the profits of the generating company under the 

deregulated and uncertain environment.  

Zimmermann [60], presented the way to convert a linear program into a fuzzy linear 

program. The fuzzy linear programming provides a framework for solving the optimization 

problems by modifying the standard linear program to include the uncertainties in the high 

and low limits of the scheduled data. It converts the objective and the constraints of the 
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linear program into satisfaction functions of fuzzy sets. The optimum solution is achieved 

by maximization of the intersection of the satisfaction functions. In [61], Venkatesh at el. 

presented fuzzy mixed integer linear programming for the unit commitment problem. In 

this work, they transform the objective function and the constraints related to load demand 

and spinning reserves into fuzzy objective function and fuzzy constraints while an 

extension of this work is done in [62] that includes the renewable energy sources along 

with the thermal generators. The uncertainties are incorporated in the objective function 

and the renewable generation. The membership functions are defined for the total fuel cost 

and the wind energy generator system. 

In [63], electric vehicles infrastructure using the fuzzy logic controller has been proposed. 

They have proposed the charging and discharging of the EVs depending on the individual 

battery status and the electrical power grid status.  Two controllers have been proposed in 

this paper, the charging station controller and the V2G controller. This paper presents novel 

work in this area, but this work deals with the controller design and does not address the 

uncertainties of the power system. In addition, it is not an aggregator profit maximization 

approach. 

To the best of our knowledge, the uncertainties in the optimal bidding strategies of the 

ancillary services using V2G have not been addressed by the fuzzy set theory. In the 

deregulated market structure, it is necessary to model the different uncertainties so that the 

aggregator can maximize its profits while taking into account different uncertain factors 

during its optimization. 

Equation Chapter 3 Section 1  
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3 CHAPTER 3 

FUZZY LOGIC AND FUZZY LINEAR PROGRAMMING 

(FLP) 

The concept of fuzzy sets and fuzzy logic has been well developed in the last several 

decades. The term fuzzy was first introduced by Professor Lofti Zadeh in multivalued sets 

in a seminal paper ‘Fuzzy Sets’ in 1965 [64]. Multivalued logic concept was first 

introduced in 1920 to deal with uncertainties in quantum mechanics. Zadeh applied the 

multivalued logic to set theory and introduced the concept of fuzzy sets – sets in which 

elements can belong to a particular set but with different degree. According to the fuzzy 

principle, ‘everything is a matter of degree’ while in the conventional logic, everything is 

bivalence (TRUE or FALSE, 1 or 0); fuzzy logic is multivalence (the fuzzy variables can 

take any value from 0 to 1). Fuzzy set theory is a shift from the conventional mathematics 

problem solving to more human based solving technique [65]. Over the last few decades, 

the fuzzy theory has gained widespread popularity; many Japanese scientists have used the 

theory of fuzzy sets in many practical applications. The fuzzy set theory has been mainly 

used for two purposes: designing fuzzy logic controllers and modeling uncertainties. 

Traditionally, engineers rely on mathematical models for their design. But, the more 

complex the system is the less effective and the more time-consuming the mathematical 

model becomes. This was the fundamental concept that provides the motivation for fuzzy 

set theory formulated by Zadeh. He proposed the Principle of Incompatibility. 
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Zadeh stated that [66] : 

As the complexity of a system increases, our ability to make precise and yet significant 

statements about its behavior diminished until a threshold is reached beyond which 

precision and significance (or relevance) becomes almost mutually exclusive 

characteristics. 

The main reason to use the fuzzy set theory in designing the controllers or formulating the 

problem is its ability to incorporate human experience, intelligence and heuristics into the 

system. 

This chapter introduces the concept of fuzzy logic and fuzzy linear programming that will 

be applied for the aggregator bidding strategies. Fuzzy set theory is used to model the 

uncertainties in concerning the electricity market. This is extremely important for the 

aggregator to consider in order mitigating bidding risks. 

3.1 Fuzzy Sets and Fuzzy Logic 

The classical set theory was introduced by a German mathematician Georg Cantor (1845-

1918) [65]. In this theory, a universe of discourse, U, is defined for a set of objects that 

have the same characteristics. A classical set is a collection of all objects/numbers that 

either belong to the set or do not belong to the set. There is a definite boundary in the case 

of the classical set. A classical set theory is defined by A = {x ∈ U | P(x)} where the element 

of A have the property P, and U is the universe of discourse. The characteristic function 

µA(x): U{0,1} is defined as ‘0’ if x is not an element of A and ‘1’ if x is an element of 

A. In fuzzy set theory, the concept of characteristics function is extended to more 
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generalized form, known as membership function: µA(x): U [0, 1]. The membership 

function can take any value between 0 and 1. The set which is defined by this membership 

function is called a fuzzy set. In fuzzy set theory, membership is no longer ‘TRUE’ or 

‘FALSE’, but a matter of degree. The degree of membership function is important. 

3.2 Fuzzy Logic Controller 

The fuzzy logic controller (FLC) was initially introduced as a model-free controller, based 

on human knowledge only, but now the current research has advanced the fuzzy controller 

models and they guarantee stability and robustness of the system. Fuzzy logic controllers 

are a type of non-linear controllers. Figure 3-1 shows the block diagram of a fuzzy logic 

controller. There are five main components in a fuzzy logic system. 

 Fuzzification module (fuzzifier). 

 Knowledge base. 

 Rule base. 

 Interface engine. 

 Defuzzification module (defuzzification). 

 

Figure 3-1: Typical fuzzy logic controller 
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Automatic changes in the design parameters of any of the five elements create an adaptive 

fuzzy controller. Fuzzy logic controller with fixed elements is called as non-adaptive fuzzy 

controller. The detail of the different elements can be found in standard textbooks. 

3.3 Linear Programming 

Linear programming (LP or Linear optimization) can be defined as a mathematical 

technique of maximizing or minimizing a linear function subject to some linear constraints. 

The constraints can be equality or inequality constraints. Linear programming is always 

convex and its feasible set is a convex polyhedron. Solving a linear program involves 

finding a point on the edges of the feasible set where the function has the smallest or the 

largest value depending on the objective of the problem. Linear programming problems 

can be expressed in the canonical form as [67]: 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑,
𝑎𝑛𝑑 𝑥 ≥ 0

 (3.1) 

Where x represents the vector of unknown variables to be optimized, A, b and c are vectors 

of known coefficients and T is the transpose operator. The expression to be maximized or 

minimized is called the objective function. The equality and inequality conditions are the 

constraints which specify the convex region. Linear programming has been applied to solve 

many engineering problems, such as energy, transportation, planning, scheduling, 

manufacturing etc. 
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3.3.1 Methods of Solving Linear Problem 

There are various methods for solving a linear program depending on the problem 

dimension. Some of the methods are the graphical method, simplex method, active-set 

method, and interior point method. The graphical method is only valid for two dimensional 

problems and the other methods are more general and can solve problems with many 

variables [67]. There are also various computer software packages available for solving the 

linear optimization problems, such as Matlab, ILOG, GAMS, and AIMMS. 

3.4 Fuzzy Linear Programming 

The fuzzy set theory is a mathematical technique that allows the modeling of imprecise or 

conflicting engineering problems. The uncertainties and imprecision’s come from various 

factors in the real life problems. Fuzzy linear programming is an extension of linear 

programming (LP) that allows the modeling of the uncertainties in the model parameters 

[14]. The linear program formulation of (3.1) can be modified to include the possible 

uncertainties in the high and low limits of the schedule data. In pursuit of a fuzzy 

formulation, some of the elements in the LP are reformulated as fuzzy objectives and fuzzy 

constraints. 

Fuzzy linear programming provides a framework for handling optimization problems. It 

transforms the objectives and constraints into satisfaction functions of fuzzy sets. The 

optimality is achieved by maximizing the intersection of these satisfaction functions of the 

problem [60] in addition to various crisp constraint in the problem. Fuzzy optimization can 

be solved by any software package that can solve regular linear optimization. 
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Consider a problem comprising of number of objectives, I, and a number of constraints, J. 

Let each objective be associated with a fuzzy set 𝑍𝑖 = {𝑢𝑖 , 𝜇𝑍𝑖(𝑢𝑖) ∈ 𝑈𝑖} . The subscript i 

refer to the ith objective function, ui is the value the ith objective function and Ui is ith 

objective space. 𝜇𝑍𝑖(𝑢𝑖) is the membership function that defines the satisfaction parameter 

of the degree of closeness of the ith objective to the optimal value. Similarly, let each 

constraint be associated with a fuzzy set 𝐶𝑗 = {𝑢𝑗 , 𝜇𝐶𝑗(𝑢𝑗) ∈ 𝑈𝑗}. The subscript j refers to 

the jth constraint. uj is the value the jth constraint assumes and Uj is jth constraint space. 

𝜇𝐶𝑗(𝑢𝑗) is the membership function that defines the satisfaction parameter of the degree of 

closeness of the jth constraint to the optimum. 

Mathematically, fuzzy optimization is stated as [60]: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜆 

where, 

𝜆 = 𝑚𝑖𝑛{𝜇𝑍1, 𝜇𝑍2, 𝜇𝑍3, … , 𝜇𝑍𝑖 , 𝜇𝐶1, 𝜇𝐶2, 𝜇𝐶3, … , 𝜇𝐶𝑗} 

The min function determines the minimum of the satisfaction values. All the membership 

functions are defined in the range of [0, 1]. During the optimization, λ assumes a value that 

equals the least of all the satisfaction parameters. As λ is maximized, individual fuzzy 

satisfaction parameters relating to objectives and constraints are consequently 

optimized.Equation Chapter 4 Section 1  
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4 CHAPTER 4 

ELECTRICITY MARKET OVERVIEW AND 

FORECASTING OF MARKET PARAMETERS 

In this chapter, an overview of the electricity market, and the forecasting of different 

electricity market parameters that are later used in the vehicle-to-grid (V2G) bidding, is 

presented. The electricity power industry has undergone restructuring process in many 

parts of the worlds in the last few decades. The level of restructuring is different in different 

countries depending on the system and requirements. 

With the restructuring of the power system, only the economics of the power system has 

changed, the fundamental concepts and operation of the power system remains the same. 

The load and the generation have to be balanced at all times in the system. To achieve this 

goal in real time, several functions have been established to manage the system effectively. 

In this chapter, the ancillary service market, regulation and spinning reserve, is explained. 

In the last section of this chapter, forecasting of the different parameters of ancillary service 

market, such as regulation service and spinning reserves prices and deployments, is 

presented. 

4.1 Electricity Markets 

Electricity (both power and energy) is now considered as a commodity. An electricity 

market is a system of trading, purchasing and selling, through bids and offers. But there 
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are important differences between the electrical energy and other commodities such as 

wheat and oil. These differences have reflective impacts on the rules and organization of 

the electricity market. The main differences are [68]: 

 The electricity energy is linked with a physical system that functions much faster 

than any other market.  

 The electrical energy cannot be stored on a large scale like any other commodity. 

The load and the generations must be balanced at all time, in order to avoid 

mismatch in the system that can lead to the collapse of the whole electrical system. 

 The electrical energy generated from one generator cannot be directed to any 

particular customer. Once the power is injected into the system, it cannot be 

distinguished. 

There are mainly two types of electricity markets, which are further classified into different 

services: 

 Day Ahead Market 

Day-ahead market is a kind of forward market in which hourly Locational marginal 

prices (LMP) are calculated for the next day based on the demand bids, generation 

offers and the scheduled bilateral transactions.  

 Real Time Market (Spot Market) 

Real-time market is a spot market in which current LMPs are calculated usually five-

minute intervals based on the operating conditions of the grid. The real time prices are 
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updated on the independent system operator (ISO)/utility websites. Transactions are 

settled hourly between the different market participants. 

Within each type of market, there is a framework by each ISO for different services such 

as energy, ancillary services, and congestion managements. Based on the services, ISO is 

providing, these services are also referred as the energy market and ancillary service 

market. In this thesis, the formulation for V2G bidding is simulated for day-ahead ancillary 

service market. The ancillary service data is taken from the ERCOT ISO [69] for all the 

simulations. The three months data, from 21st July 2010 – 20th Oct 2010, of regulation 

up/down prices, regulation deployments signals, spinning reserve prices and the spinning 

reserves deployments are used. A brief overview of the ancillary service market is 

explained in the next section. 

4.2 Ancillary Service Market 

The federal energy regulation commission (FERC) defines the ancillary services as [70]: 

“Those services necessary to support the transmission of electric power from seller 

to purchaser given the obligations of control areas and transmitting utilities within 

those control areas to maintain reliable operations of the interconnected 

transmission system” 

The ancillary services are needed to support the power system network in many ways from 

maintaining the voltage level in the transmission network to the reliable operation of power 

system. They also keep the required level of power quality and safety. By means of these 

services, we keep the load and generation in balance. In the deregulated power system 
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network today, it is the duty of the independent system operator (ISO) to perform different 

duties such as, balance between supply and demand, stabilizing power system, and 

maintaining power quality on economic basis in a competitive environment. The different 

types of ancillary services an ISO can provide in a competitive market are [70], [71]: 

 Frequency control (Regulation Service) 

 Spinning and non-spinning reserves 

 Voltage Control 

 Load following 

 Black start capability 

 Automatic generation control 

 Grid loss compensation 

 Emergency control actions 

 Reactive power control 

 System protection 

In this thesis, the main work is focused on two types of ancillary service markets, regulation 

and spinning reserve (responsive reserves) market. 

4.2.1 Regulation Market 

The regulation service market handles the rapid fluctuations in the power system due to 

small unintended changes in the generations and loads. The regulation service tries to keep 

the system frequency as close as possible to the nominal value and tries to avoid any 

inadvertent interchanges with other power systems. Generating units that have high 

up/down ramp rates can provide this service. The units that provide the regulation service 
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should be connected to the power system; must be equipped with a governor and usually 

operate under automatic generation control (AGC). The regulation service is a preventive 

security measure to avoid any disturbance in the system.  

4.2.2 Spinning Reserves Market 

Reserves are designed to handle a large and unpredictable power shortage in the power 

system that could result in destabilizing the system. Reserve service is a kind of corrective 

action. Reserves services are usually divided into two categories: spinning reserves and 

non-spinning reserves. The units that provide the spinning reserves must respond to any 

disturbance immediately. Usually, these units are always connected to the power system 

and supposed to contribute very quickly in case of disturbance. The non-spinning reserves 

are not connected to the power system, but they can be brought online after short notice 

and are generally slow. In some cases, the customers who agree to have their load 

disconnected can also indirectly support the system reserve capacity. 

4.3 Forecasting Electricity Market Parameters using ARIMA Models  

In this thesis, optimal aggregator V2G bidding strategies are developed for the day-ahead 

markets. In the day-ahead market, the aggregator will try to forecast the different future 

(next day) market parameters. As the aggregator is bidding in the ancillary service market, 

so aggregator should try to bid in the market by forecasting the ancillary service prices, 

such as regulation up/down prices and spinning reserves (also called as responsive reserves 

in ERCOT market) price. Also the deployment signal from the ISO should also be 

forecasted for both the regulation and spinning reserves. In this thesis, the electricity market 

considered is the Electricity reliability council of Texas (ERCOT). The simulations are 



34 

 

performed on a three months period, and so is the forecasting. All the prices and 

deployments data are taken from the ERCOT archives. for a period of three months from 

21st July, 2010 to 20th Oct, 2010 [69]. 

The forecasting of all the markets parameters is done using the autoregressive integrated 

moving average (ARIMA) method. The ARIMA model based forecasting is done using the 

Matlab Econometrics toolbox [72]. The errors in the forecasted data are calculated using 

the mean absolute percentage error (MAPE). The MAPE error is given by the following 

formula. It is usually expressed in percentage. 

𝑀 =
1

𝑛
∑|

𝐴𝑡 − 𝐹𝑡
𝐴𝑡

|

𝑛

𝑡=1

 (4.1) 

4.3.1 Autoregressive Integrated Moving Average (ARIMA) Model 

Electricity market parameters estimation is becoming increasingly important in the day-

ahead competitive market. It is necessary to estimate future quantities for developing 

bidding strategies. ARIMA is a class of stochastic processes that are used to analyze time 

series [73]. The general steps for forecasting using the ARIMA model are as follows [74]: 

A. Model Identification 

In the first step, a general ARIMA model is selected to model the data to be forecasted. 

The data is modeled by inspecting the main characteristics of the data. In most markets, 

the price, load, and other data to be forecasted are usually periodic. They are repetitive 

daily, weekly, monthly or yearly. If 𝑓𝑡denotes the forecasted quantity at time t, the ARIMA 

formulation can be proposed as: 



35 

 

𝛷(𝐵)𝑓𝑡 = 𝜃(𝐵)𝜖𝑡 (4.2) 

where, 

𝑓𝑡 is the forecasted quantity at time t and 𝛷(𝐵) and 𝜃(𝐵) are functions of backshift 

operators 𝐵. 𝛷(𝐵) is the autoregressive polynomial and 𝜃(𝐵) is moving average 

polynomial. 𝜖𝑡 is the error term and 𝐵 is the backshift operator. The functions 𝛷(𝐵) and 

𝜃(𝐵) can be of the form 𝛷(𝐵) = 1 − ∑ 𝛷𝑙𝐵
𝑙𝛷

𝑙=1 and/or (1 − 𝐵𝑙) and 𝜃(𝐵) = 1 −

∑ 𝜃𝑙𝐵
𝑙𝜃

𝑙=1 . To include the seasonality in the ARIMA model different factors depending 

upon the daily(1 − 𝛷24𝐵
24), weekly(1 − 𝛷168𝐵

168) , monthly (1 − 𝛷720𝐵
720) or yearly 

can be included. 

In this forecasting of different electricity market parameters, such as regulation up/down 

prices, spinning reserves prices, and deployment signals; we are considering them for the 

day-ahead market, so daily and weekly seasonality are considered. For example, it is 

expected that the behavior of tomorrow’s noon prices to be strongly correlated with those 

of today. 

B. Stationary Transformation 

In order to make the series stationary, a transformation of the data is necessary. In the 

second step, a logarithmic transformation is usually applied to attain a more stable variance 

and mean of the series. 

C. Parameter Estimation 

In the third step, the parameters of the functions specified in the previous steps have to be 

estimated. Good estimation can be done when the data is stationary (previous step) and by 
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using maximum likelihood method [73]. In statistics, maximum likelihood is a method 

of estimating the parameters of a statistical model. When applied to a data set and given 

a statistical model, maximum-likelihood estimation provides estimates for the model's 

parameters. 

In this work, matlab command ‘estimate’ is used to find estimate the parameters of the 

model. 

D. Model Validation 

In this step, the model assumed in step A is validated on the residuals (actual quantity 

minus fitted quantity, as estimated in step B. Residuals must satisfy the requirements of 

white noise; constant variance, zero mean and normal distribution. These requirements can 

be checked by different plots such as the autocorrelation and partial autocorrelation plots. 

If the hypothesis on the residuals is validated by these plots then the model can be used for 

forecasting. 

In Matlab, the ‘infer’ command is used to find the residuals. 

E. Forecasting Parameters 

In the last step, the model that is assumed and validated is used for forecasting the different 

quantities. In Matlab ‘forecast’ command is used to forecast the day-ahead quantities using 

the model. 

4.3.2 Forecasting of Regulation Up Prices 

All the ARIMA forecasting is done using the Matlab Econometric Toolbox following the 

steps highlighted in the previous section. As a sample result, the graphs of the actual and 

http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Statistical_model
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the forecasted regulation up prices for one week, from 4th Oct, 2010 to 10th Oct, 2010, are 

shown in Figure 4-1. 

 

Figure 4-1: Forecasting of regulation up prices from 4th Oct, 2010 to 10th Oct, 2010 

 

The mean absolute percentage error of the selected week is shown in Table 4-1 and the 

mean absolute percentage error (MAPE) of the whole forecasting of three months data is 

shown in Table 4-2. 

Table 4-1 Daily mean absolute percentage error of the selected week 

Days 
4th Oct, 

2010 

5th Oct, 

2010 

6th Oct, 

2010 

7th Oct, 

2010 

8th Oct, 

2010 

9th Oct, 

2010 

10th Oct, 

2010 

MAPE 10.5464 5.9326 6.4810 5.0905 4.9407 3.3448 7.69127 

 

Table 4-2  Mean absolute percentage error of the whole forecasted period 

Forecasted Period 21st July 2010 to 20th Oct 2010 

MAPE 8.326728 % 
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4.3.3 Forecasting of Regulation Down Prices 

The graph between the actual price and forecasted price of regulation down for week from 

4th Oct, 2010 to 10th Oct, 2010 is shown in Figure 4-2. Table 4-3 shows daily mean absolute 

percentage error of the selected week while Table 4-4 shows the mean absolute percentage 

error of the whole forecasted period. 

 

Figure 4-2: Forecasting of regulation down prices from 4th Oct, 2010 to 10th Oct, 2010 

 

Table 4-3  Daily mean absolute percentage error of the selected week 

Days 
4th Oct, 

2010 

5th Oct, 

2010 

6th Oct, 

2010 

7th Oct, 

2010 

8th Oct, 

2010 

9th Oct, 

2010 

10th 

Oct, 

2010 

MAPE 24.1974 16.2327 2.19316 1.8557 8.7602 3.3905 7.3936 

 

Table 4-4  Mean absolute percentage error of the whole forecasted period 

Forecasted Period 21st July 2010 to 20th Oct 2010 

MAPE 9.583074% 
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4.3.4 Forecasting of Responsive Reserve Prices 

The graph between the actual price and forecasted price of responsive reserves for week 

from 4th Oct, 2010 to 10th Oct, 2010 is shown in Figure 4-3. Table 4-5 shows daily mean 

absolute percentage error of the selected week while Table 4-6 shows the mean absolute 

percentage error of the whole forecasted period. 

 

Figure 4-3: Forecasting of responsive reserve prices from 4th Oct, 2010 to 10th Oct, 2010 

 

Table 4-5  Daily mean absolute percentage error of the selected week 

Days 
4th Oct, 

2010 

5th Oct, 

2010 

6th Oct, 

2010 

7th Oct, 

2010 

8th Oct, 

2010 

9th Oct, 

2010 

10th 

Oct, 

2010 

MAPE 10.4322 1.12529 5.4532 3.3702 3.4657 3.4189 1.932 

 

Table 4-6  Mean absolute percentage error of the whole forecasted period 

Forecasted Period 21st July 2010 to 20th Oct 2010 

MAPE 6.777% 
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4.3.5 Forecasting of Regulation Up Deployments Signals 

The graph between the actual and the forecasted regulation up deployments signals for 

week from 20th Aug, 2010 to 26th Aug, 2010 is shown in Figure 4-4. Table 4-7 shows daily 

mean absolute percentage error of the selected week while Table 4-8 shows the mean 

absolute percentage error of the whole forecasted period. 

 

Figure 4-4: Forecasting of regulation up deployments from 20th Aug, 2010 to 26th Aug, 

2010  

 

Table 4-7  Daily mean absolute percentage error of the selected week 

Days 

20th 

Aug, 

2010 

21st 

Aug, 

2010 

22nd 

Aug, 

2010 

23rd 

Aug, 

2010 

24th 

Aug, 

2010 

25th 

Aug, 

2010 

26th 

Aug, 

2010 

MAPE 31.4974 36.5435 26.6176 21.6537 23.2820 30.2136 29.9532 
 

Table 4-8  Mean absolute percentage error of the whole forecasted period 

Forecasted Period 21st July 2010 to 20th Oct 2010 

MAPE 28.4844% 
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4.3.6 Forecasting of Regulation Down Deployments Signals 

The graph between the actual and forecasted signals of regulation down deployments for 

week from 20th Aug, 2010 to 26th Aug, 2010 is shown in Figure 4-5. Table 4-9 shows daily 

mean absolute percentage error of the selected week while Table 4-10 shows the mean 

absolute percentage error of the whole forecasted period. 

 

Figure 4-5: Forecasting of regulation down deployments from 20th Aug, 2010 to 26th 

Aug, 2010 

 

Table 4-9  Daily mean absolute percentage error of the selected week 

Days 

20th 

Aug, 

2010 

21st 

Aug, 

2010 

22nd 

Aug, 

2010 

23rd 

Aug, 

2010 

24th 

Aug, 

2010 

25th 

Aug, 

2010 

26th 

Aug, 

2010 

MAPE 35.7060 21.7926 32.0084 27.5211 23.200 38.1259 33.7908 
 

Table 4-10  Mean absolute percentage error of the whole forecasted period 

Forecasted Period 21st July 2010 to 20th Oct 2010 

MAPE 31.327847% 
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4.3.7 Forecasting of Responsive Reserve Deployments Signals 

The graph between the actual and forecasted signals of responsive reserves signals for week 

from 20th Aug, 2010 to 26th Aug, 2010 is shown in Figure 4-6. Table 4-11 shows daily 

mean absolute percentage error of the selected week while Table 4-12 shows the mean 

absolute percentage error of the whole forecasted period. 

 

Figure 4-6: Forecasting of responsive reserve deployments from 20th Aug, 2010 to 26th 

Aug, 2010 

 

Table 4-11  Daily mean absolute percentage error of the selected week 

Days 

20th 

Aug, 

2010 

21st 

Aug, 

2010 

22nd 

Aug, 

2010 

23rd 

Aug, 

2010 

24th 

Aug, 

2010 

25th 

Aug, 

2010 

26th 

Aug, 

2010 

MAPE 22.5258 2.8077 2.4204 28.7277 97.189 5.3738 3.6176 
 

Table 4-12  Mean absolute percentage error of the whole forecasted period 

Forecasted Period 21st July 2010 to 20th Oct 2010 

MAPE 24.77 % 

Equation Chapter 5 Section 1 
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5 CHAPTER 5 

SMART CHARGING OF ELECTRIC VEHICLES USING 

ADAPTIVE FUZZY LOGIC 

In this chapter, a novel smart charging algorithm based on the fuzzy logic is proposed. This 

fuzzy logic algorithm takes the energy price, system load, and the number of charging 

hours in a fuzzy logic framework. The proposed fuzzy logic algorithm is compared with 

previous published algorithms and is proved to result in higher profits for the aggregator. 

A considerable amount of work in unidirectional V2G has been done previously. In [47], 

a unidirectional regulation algorithm to be followed by an EV is proposed. Several “smart” 

charging algorithms were proposed in [47], [75]. These algorithms are load-only 

regulation, i.e. only unidirectional V2G that controls the charging level of an electric 

vehicle is considered. The charging schemes are based on the real time communication of 

system load, energy price, regulation signal deployments and the charging hours of the 

electric vehicles. The proposed algorithm combines the individual smart charging 

algorithms in a fuzzy logic framework. The aggregator generates profits by participating 

in the ancillary service market and by charging the EVs. These algorithms are simulated 

over a hypothetical group of 10,000 EVs in a real electricity market, the Electric Reliability 

Council of Texas (ERCOT) area. Commuter cars are used in the simulations and it is 

assumed that all the EVs are available during the charging hours from 8 A.M. to 5 P.M. 

The results show the benefit of the proposed fuzzy logic based charging from the 
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aggregator point of view, while each algorithm has its own specific advantages that are 

explained later in this Chapter. In the next section, the market algorithm assumed to be 

implemented for deploying the regulation service is explained. 

5.1 Regulation Service Deployment Algorithm  

An EV can perform the regulation service by varying its actual charging rate above or 

below its scheduled charging rate, which is called the preferred operating point (POP). The 

value of the POP in the system is scheduled by the aggregator. The term POP is derived 

from the ancillary service market and is the average level of the energy providing regulation 

service [49], [45]. For a generator providing ancillary service, the term POP is the output 

power generated by the generator while for unidirectional V2G, the POP is the power draw 

level of an EV. By varying the charging rate of an EV below/above its POP, regulation 

up/down capacity is provided. As a single EV has insufficient capacity for providing this 

regulation service, the aggregator aggregates many EVs and bid their combined capacity 

in the electricity market. The aggregator controls the charging of EVs according to the 

regulation signal provided by the system operator. Regulation service deployment 

algorithm was proposed by Sortomme et al. and is shown in Figure 5-1 [47]. The graphical 

descriptions of different variables are shown in Figure 5-2 and Figure 5-3. The graph shown 

in Figure 5-2 is very important. This is the regulation algorithm followed by all the EVs. 

If the regulation signal from ISO (V) is positive, the EVs have to perform the regulation 

down by increasing their charge rate according the regulation signal and their capacity. If 

the regulation signal from ISO (V) is negative, the EVs have to perform the regulation up 

by decreasing their charge rate according the regulation signal and their capacity. This 
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regulation algorithm is providing the regulation service by changing the EVs. The EVs 

draw power according to this algorithm, this algorithm is later used for calculating the 

actual power draw of EVs. Note that in order to perform the regulation service by the 

aggregator, communication between the aggregator and the system operator is required. 

 

Figure 5-1: Regulation algorithm flowchart [47] 

 

Figure 5-2: Regulation signal around the preferred operating point [47] 
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Figure 5-3: Battery state of charge while performing regulation [47] 

 

5.2 Smart Charging Algorithms 

The regulation capacity is based on the charging rate of the EV. The charging rate is 

selected by varying the POP; therefore the aggregator must schedule the value of POP 

smartly to maximize the profits. Previously, price based and load based smart charging 

algorithms were proposed for the EV charging [75]. However, these were not considered 

for regulation capacity bidding. Later, a modified charging algorithm that tends to 

maximize the regulation capacity was proposed [47]. In this chapter, a new fuzzy based 

algorithm is proposed in a fuzzy logic framework to overcome the shortcoming of the 

previous algorithms. The shortcoming is that if one is using the price algorithm, it will only 

charge the EVs based on the system energy price regardless of the impact on the power 

system. Similarly, if load algorithm is used the algorithm will not take care of on how much 

energy price, the EVs are charging. Also, the previous algorithms are not as much 
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beneficial as the proposed fuzzy algorithm. Figure 5-4 shows the three smart charging 

algorithms suggested in [47], [75] and the one to be proposed in this chapter. 

 

Figure 5-4: Smart charging algorithms 

 

5.2.1 Price Based Charging 

The price based algorithm sets the value of the POP based on the energy price in the system. 

The EVs charge more and provide more regulation down capacity when the energy price 

is low. The POP is selected based on: 

 𝑃𝑂𝑃𝑖(𝑡) =
𝑀𝑥 − 𝑃(𝑡)

𝑀𝑥 −𝑀𝑛
𝑀𝑃𝑖 (5.1) 

where, 

 𝑀𝑝𝑥 = 𝑚𝑎𝑥(𝑃𝐷𝐴(𝑡0: 𝑡0 + 24 ∙ 60/𝑛)) (5.2) 

 𝑀𝑝𝑛 = 𝑚𝑖𝑛(𝑃𝐷𝐴(𝑡0: 𝑡0 + 24 ∙ 60/𝑛)) (5.3) 
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5.2.2 Load Based Charging 

This algorithm sets the value of the POP based on the load in the system. The EVs charge 

more and provide more regulation down capacity when the load on the system is low. The 

POP is selected based on: 

 𝑃𝑂𝑃𝑖(𝑡) =
𝑀𝑥 − 𝐿(𝑡)

𝑀𝑥 −𝑀𝑛
𝑀𝑃𝑖 (5.4) 

where, 

 𝑀𝑙𝑥 = 𝑚𝑎𝑥(𝐿𝐷𝐴(𝑡0: 𝑡0 + 24 ∙ 60/𝑛)) (5.5) 

 𝑀𝑙𝑛 = 𝑚𝑖𝑛(𝐿𝐷𝐴(𝑡0: 𝑡0 + 24 ∙ 60/𝑛)) (5.6) 

5.2.3 Maximum Regulation (MaxReg) Based Charging 

The MaxReg based algorithm sets the value of the POP based on the battery level and the 

number of hours available for battery charging. The MaxReg based bids the regulation 

up/down capacity during the whole charging period. The POP is selected based on: 

𝑃𝑂𝑃𝑖(𝑡) =
𝑀𝑐𝑖 − 𝑆𝑂𝐶𝑖

𝐻
 (5.7) 

5.2.4 Proposed Fuzzy Logic Based Charging 

A novel adaptive fuzzy logic based charging algorithm is proposed that combines the 

features of the previous chargers in a fuzzy logic framework. Section 3.2 explains the fuzzy 

logic controller and is briefly discussed here. A FLC reflects the mechanism implemented 

by the humans without any complete knowledge of the control object in a mathematical 
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form. Here the control system works on the set of rules defined by human’s past experience 

about the system. There are five main components of a fuzzy logic controller [76]: 

 Fuzzification module (fuzzifier) 

 Knowledge base 

 Rule base 

 Interface engine 

 Defuzzification module (defuzzifier) 

In the fuzzifier, the values of input variables are measured and it converts the crisp data 

into fuzzy linguistic values. The knowledge base consists of a database and linguistic 

control rule base. It provides necessary definitions for the fuzzification process such as 

membership functions, fuzzy set representation, etc. The rule base is the control strategy 

of the fuzzy logic system. It is usually obtained from the expert human knowledge and 

expressed as a set of IF-THEN rules. The defuzzification process converts the output 

variable into corresponding universe of discourse. Various techniques are used for the 

defuzzification such as maximum method, height method and the centroid method [76]. 

Automatic changes in the design parameters of any of the above elements create an 

adaptive fuzzy system. In this study, the membership function of the input and the output 

variables are made adaptive in nature i.e. the universe of discourse and the membership 

functions varies based on the energy price and system load inputs. 

5.2.4.1 Membership Functions 

The input of the fuzzy logic controllers are the energy price, system load and the charging 

hour. The output of the fuzzy logic controller is the POP for the EVs. The triangular 
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membership functions are assumed for every input and output variable. The membership 

functions for energy price, system load and the POP will be adaptive as the universe of 

discourse will change for these functions each day. Three membership functions; low (L), 

medium (M) and high (H), are defined for each input/output variable. 

a. Energy Price 

Figure 5-5 shows the membership function of the energy price. The membership function 

is made adaptive by varying the universe of discourse of energy price based on a particular 

day. 

 

Figure 5-5: Membership function of energy price 

 

b. System Load 

Figure 5-6 shows the membership function of the system load. The membership function 

is made adaptive by varying the universe of discourse of system load based on the system 

load for a particular day. 
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Figure 5-6: Membership function of system load 

 

c. Charging Hours 

Figure 5-7 shows the membership function for the charging hours. The charging hour is 

also divided into three membership functions based on the day time. The charging hour is 

divided as follows: 

 HIGH: 8 A.M. – 11:30 A.M. 

 MEDIUM: 10 A.M. – 3:15 P.M. 

 LOW: 1:30 P.M. – 5:00 P.M. 

 

Figure 5-7: Membership function of charging hours 
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d. Preferred Operating Point 

Figure 5-8 shows the membership function for the output i.e. POP. The output membership 

function is also made adaptive based on the maximum POP (up to which the EV can be 

charged) available in the battery. 

 

Figure 5-8: Membership function of preferred operating point 

 

5.2.4.2 Rule Base (Decision Matrix) 

A set of rules which relate the inputs to the output variables is defined in the fuzzy rule 

database. These rules are defined based on the human intelligence. The three inputs, energy 

price, system load and the charging hours, result in a total of 27 rules. These rules are 

shown in Table 5-1-Table 5-3. 

Table 5-1  POP fuzzy value when the charging hours is LOW 

Price \ Load L M H 

L H H M 

M H M M 

H M M L 
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Table 5-2  POP fuzzy value when the charging hours is MEDIUM 

Price \ Load L M H 

L M M L 

M M M L 

H L L L 
 

Table 5-3  POP fuzzy value when the charging hours is HIGH 

Price \ Load L M H 

L M L L 

M L L L 

H L L L 

 

5.2.4.3 Defuzzification 

The most popular defuzzification method is the centroid calculation, which returns the 

center of area under the curve and, therefore, is considered here for defuzzification. The 

general formula for the defuzzification is taken from [76]. 

5.3 Simulations  

The four different algorithms, price-based, load-based, MaxReg-based and the proposed 

fuzzy–based, are simulated over a hypothetical group of 10,000 EVs in the ERCOT area. 

The simulations are performed for the commuter cars that are available during the day time 

from 8 A.M. to 5 P.M. at the workplace. It is assumed that all the EVs are available during 

this nine hours period and the aggregator can potentially sell regulation services during this 

period. For this study, different system data such as system load, energy price, regulation 

up/down prices and regulation deployments are taken from ERCOT archives for a period 
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of three months from 21st July, 2010 to 20th Oct, 2010 [69]. In this study, five minutes 

resolution is considered. The day ahead load and price forecasts are generated to match the 

load forecast errors in [77] for the system load, and to match the error distribution found in 

[78] for the energy price. 

The EVs are a hypothetical group of three different types of EVs that are available in the 

market; Nissan Leaf, Mitsubishi i-MiEV and the Tesla Model-S. Battery specification, EV 

performance, and other specifications are given in [79]–[83]. Among this hypothetical 

group, it is assumed that 50% of EVs are Nissan Leaf, 20% are Mitsubishi i-MiEV and 

30% are Tesla Model-S. It is also assumed that each EV has a charging efficiency of 90%. 

Each EV arriving at the workplace with an SOC of greater than 95% will not participate in 

the regulation service. 

The aggregator profit comes from two different sources, regulation revenues and the 

markup on the energy sale supplied to the customer [47]. The aggregator gets 20% of the 

regulation up and down revenues and $ 0.05/kWh over the energy purchased from the 

market for the EV battery charging. In this way, the aggregator is not exposed to the 

variations in market energy prices and passes the energy cost to the EV owners. 

5.4 Results and Discussions  

The simulations are performed for each hour from 8 A.M. to 5 P.M. for the period of three 

months. Comparison of charging profile for each smart charging algorithm is shown in 

Figure 5-9-Figure 5-12 for Aug 2nd, 2010. The price and the load algorithm follow almost 

the same pattern. They schedule the POP to be highest at the start of the charging period 

as the system load and energy prices are low in the morning. In the afternoon, the POP 
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decreases to a lower value due to the high energy price and loads. The MaxReg algorithm 

keeps the POP to almost constant value during the whole charging period and sells both 

regulations up and down capacity during each hour. However, the proposed fuzzy 

algorithm efficiently varies the value of the POP based on the energy price, system load 

and the charging hours. During initial hours it keeps the POP to nearly constant value 

similar to MaxReg while during the last hours it follows the pattern of price and load 

algorithms. It combines the advantages of other methods and overcome their shortcomings. 

 

Figure 5-9: Price based POP selection algorithm 

 

Figure 5-10: Load based POP selection algorithm 
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Figure 5-11: MaxReg based POP selection algorithm 

 

 

Figure 5-12: Proposed fuzzy logic based POP selection algorithm 

 

By examining the different algorithms from the aggregator point of view, the proposed 

fuzzy algorithm results in the highest profits. The profit is 0.21% higher as compared to 

MaxReg which increase the profit by $ 3300. The price and load algorithms performance 

is not as good as MaxReg and fuzzy algorithms, in terms of aggregator profit. Table 5-4 

shows the profits of aggregator for three months duration, by each algorithm. 
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Table 5-4  Aggregator Profits for Three Months Period 

Algorithms Price Load MaxReg Proposed Fuzzy 

Profits ($ 1000) 1438.1 1345.72 1519.2 1522.5 

 

From the power system point of view it is desirable that the EVs not burden the power 

system network. It is evident from Figure 5-13 that the load based algorithm results in the 

lowest peak and the proposed fuzzy based algorithm results in almost similar load as that 

of load based algorithm. It can also be seen that the price based algorithm results in the 

highest value of the peak load. 

 

Figure 5-13: Peak load increase by each algorithm 

 

The amount of average regulation up and down capacities during each hour is shown in 

Figure 5-14 and Figure 5-15, respectively. It is evident from Figure 5-14 that the price, 

load and fuzzy algorithms have high regulation up during the first five hours and after hour 

twelve, most of the electric vehicles are charged so the price and load algorithms bid very 

low after hour twelve, while the fuzzy algorithm still bids some amount of regulation up 

capacity. The MaxReg algorithm bids almost constant regulation up capacity during the 
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whole charging period. The Fuzzy algorithm bids the high regulation down capacity during 

the initial and middle of the charging period while the MaxReg algorithm bids almost in 

every hour except for the last hour, as shown in Figure 5-15. The price and the load 

algorithms follow the MaxReg algorithm pattern but bids considerable less amount. This 

is evident from Figure 5-15. 

 

Figure 5-14: Average regulation up capacity by each algorithm 

 

 

Figure 5-15: Average regulation down capacity by each algorithm 
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Although the main focus of this study is to generate maximum profits for the aggregator, 

but it is also desirable to verify that the charging of the EVs are not done at very high 

energy prices. From the EV owner perspective, the vehicle should be charged at the lowest 

possible cost. Figure 5-16 shows the average price of energy per kWh for different 

algorithms. The price based algorithm results in the lowest energy cost and the fuzzy based 

algorithm also results in a very close cost, while the MaxReg algorithm results in the 

highest energy price. 

 

Figure 5-16: Average energy price per kWh charged to EV owner 

5.5 Conclusion 

This chapter presents a novel adaptive fuzzy smart charging algorithm for the 

unidirectional electric vehicles. Simulations are performed on a hypothetical group of 

commuter EVs. Previously different algorithms were proposed for the smart charging and 

each has its own specific benefits while the proposed fuzzy based algorithm combines their 

benefits and generates higher revenues for the aggregator. It also results in a lower energy 

price for charging the electric vehicles and the impact on the system load is reduced as 
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compared with the previous algorithms. One of the main advantages of the smart chargers 

is that they can be easily implemented for real time systems and the proposed fuzzy 

algorithm can be easily incorporate in any previous real time system as the fuzzy logic 

controllers are easy to implement and requires little or no additional hardware. 

Equation Chapter 6 Section 1  
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6 CHAPTER 6 

OPTIMAL BIDDING OF REGULATION SERVICES FOR 

UNIDIRECTIONAL VEHICLE-TO-GRID USING FUZZY 

LINEAR PROGRAMMING (FLP) 

In the previous chapter, a fuzzy logic based smart charging algorithm was proposed that 

combines previously proposed algorithms in a fuzzy logic framework and generates higher 

profits for the aggregator. The proposed algorithm was equally beneficial for the electric 

vehicles (EV) owner and power system; as it charges the EV at a lower cost and the load 

on the power system was not much increased. However, the proposed algorithm does not 

guarantee that the optimal profits for the aggregator are realized out of its available 

resources. In order to achieve the maximum profits, the aggregator will have to optimize 

the bidding parameters i.e. the preferred operating point (POP) and the regulation up/down 

bidding capacities. 

In this chapter, a novel optimal fuzzy based charging scheme is proposed that optimizes 

the charging of EVs and the bidding of regulation services in the electricity market through 

unidirectional V2G, considering the different electricity market uncertainties. The work 

presented in this chapter is built upon that of [47]. The fuzzy set theory is used to model 

the uncertainties in the forecasted data of the electricity market, namely those of regulation 

up/down prices, and regulation deployment signals. The electricity market parameters are 
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forecasted using the autoregressive integrated moving average (ARIMA) model presented 

in chapter 4. The algorithm is simulated over the same hypothetical group of 10,000 EVs 

in the real electricity market, Electric Reliability Council of Texas (ERCOT) area as used 

in the last chapter. Commuter cars are used in the simulation and it is assumed that all the 

EVs are available during the charging hours from 8 A.M. to 5 P.M., i.e. during office hours 

only. Results show the benefit of the proposed algorithm against the deterministic 

algorithm of [47] with no market uncertainty.  

6.1 Regulation Algorithm  

An EV can perform regulation up and down by varying its charging rate below or above 

its scheduled value, or its preferred operating point (POP). This value of the POP is 

scheduled by the aggregator in the system. The electric vehicles in this chapter follow the 

same regulation algorithm described in the last chapter. The details can be referred to in 

Section 5.1. 

6.2 Optimal Charging Algorithm using Fuzzy Linear Programming 

(FLP)  

The regulation capacity is based on the extent of moving the actual charging rate of the 

EVs above or below their assigned POPs. Therefore the aggregator must schedule the POP 

smartly to maximize the profits. Previously, different smart charging algorithms were 

proposed for the electric vehicles charging [47], [75], but the smart chargers were not 

optimized. Along with the smart algorithms, their analogous optimal chargers were 

proposed in [47]. However, these algorithms lack the modeling of the uncertainties of the 
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electricity market parameters, such as price, and regulation deployments. In this chapter, a 

new optimized FLP algorithm is proposed for EV scheduling. It optimizes the charging 

and bidding of the EVs considering different market uncertainties. 

6.2.1 Fuzzy Model - Objective 

The main objective of the optimization is to generate the maximum revenues from the 

regulation service by scheduling EV charging. The fuzzy objective function is defined as: 

 𝐼𝑛 =  𝛼∑(𝑃𝑟𝑒𝑔𝑈𝑝 ∙ 𝑅𝑈𝑝 + 𝑃𝑟𝑒𝑔𝐷𝑤 ∙ 𝑅𝐷𝑤) + 𝑀𝑘∑∑(𝐸(𝑃𝐷𝑖))

𝑖𝑡𝑡

 (6.1) 

The fuzzy set for the aggregator income is defined as: 

 𝐼�̃� = {[𝐼𝑛, 𝜇𝐼𝑛], 𝐼𝑛 ≤ 𝐼𝑛 ≤ 𝐼𝑛} (6.2) 

The fuzzy set is built using the income 𝐼𝑛 that defines the objective function in (6.1). The 

possible values of 𝐼𝑛 can be defined through the constraint within the definition of fuzzy 

set in (6.2). There is a minimum value of 𝐼𝑛 below which the aggregator will not be willing 

to participate and the membership function is zero at that income. Also, there is an upper 

value of 𝐼𝑛 above which all the income is acceptable. The limits of the income will be 

decided by the aggregator. In this thesis, it is assumed that the income less that 10% of the 

average deterministic income [47] is not acceptable and 10% above the average 

deterministic income [47] are all acceptable. Within this 10% range, above and below, all 

the incomes will be acceptable with some degree depending upon the membership function. 
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The membership function 𝐼𝑛  in (6.2) is defined as: 

 𝜇𝐼𝑛 =

{
 
 

 
 

0, 𝐼𝑛 ≤ 𝐼𝑛

𝐼𝑛 − 𝐼𝑛

𝐼𝑛 − 𝐼𝑛
, 𝐼𝑛 ≤ 𝐼𝑛 ≤ 𝐼𝑛

1, 𝐼𝑛 ≥ 𝐼𝑛

 (6.3) 

This function is graphically presented in Figure 6-1: 

 

Figure 6-1: Fuzzy model of total aggregator income 

6.2.2 Fuzzy Model – Regulation Up/Down Prices 

The fuzzy uncertainty model of the regulation up/down prices is developed and can be 

represented as: 

 𝑃𝑟𝑒𝑔𝑈𝑝̃ = {[𝑃𝑟𝑒𝑔𝑈𝑝, 𝜇𝑟𝑒𝑔𝑈𝑝], 𝑃𝑟𝑒𝑔𝑈𝑝 ≤ 𝑃𝑟𝑒𝑔𝑈𝑝 ≤ 𝑃𝑟𝑒𝑔𝑈𝑝} (6.4) 

This model is developed assuming that there is a certain regulation price below which the 

aggregator will not be willing to participate. The minimum regulation prices should be such 

that the aggregator is making profits after covering all its expenses. In this work, the 

minimum and the maximum regulation prices are estimated using the mean absolute error 
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between the forecasted and actual market data for the simulation period using an ARIMA 

model. The membership function for the price of regulation up is given in (6.5) and the 

graphical representation is similar to that in Figure 6-1. 

 𝜇𝑟𝑒𝑔𝑈𝑝 =

{
 
 

 
 

0, 𝑃𝑟𝑒𝑔𝑈𝑝 ≤ 𝑃𝑟𝑒𝑔𝑈𝑝

𝑃𝑟𝑒𝑔𝑈𝑝 − 𝑃𝑟𝑒𝑔𝑈𝑝

𝑃𝑟𝑒𝑔𝑈𝑝 − 𝑃𝑟𝑒𝑔𝑈𝑝
, 𝑃𝑟𝑒𝑔𝑈𝑝 ≤ 𝑃𝑟𝑒𝑔𝑈𝑝 ≤ 𝑃𝑟𝑒𝑔𝑈𝑝

1, 𝑃𝑟𝑒𝑔𝑈𝑝 ≥ 𝑃𝑟𝑒𝑔𝑈𝑝

 (6.5) 

A similar fuzzy modeling is made for the regulation down prices and its membership 

function as shown in (6.6) and (6.7). 

 𝑃𝑟𝑒𝑔𝐷�̃� = {[𝑃𝑟𝑒𝑔𝐷𝑤, 𝜇𝑟𝑒𝑔𝐷𝑤], 𝑃𝑟𝑒𝑔𝐷𝑤 ≤ 𝑃𝑟𝑒𝑔𝐷𝑤 ≤ 𝑃𝑟𝑒𝑔𝐷𝑤} (6.6) 

 𝜇𝑟𝑒𝑔𝐷𝑤 =

{
 
 

 
 

0, 𝑃𝑟𝑒𝑔𝐷𝑤 ≤ 𝑃𝑟𝑒𝑔𝐷𝑤

𝑃𝑟𝑒𝑔𝐷𝑤 − 𝑃𝑟𝑒𝑔𝐷𝑤

𝑃𝑟𝑒𝑔𝐷𝑤 − 𝑃𝑟𝑒𝑔𝐷𝑤
, 𝑃𝑟𝑒𝑔𝐷𝑤 ≤ 𝑃𝑟𝑒𝑔𝐷𝑤 ≤ 𝑃𝑟𝑒𝑔𝐷𝑤

1, 𝑃𝑟𝑒𝑔𝐷𝑤 ≥ 𝑃𝑟𝑒𝑔𝐷𝑤

 (6.7) 

 

6.2.3 Fuzzy Model – Regulation Up/Down Deployments 

The expected values of regulation deployments are calculated using the historical 

deployment signals from ERCOT ISO [69]. The hourly actual averages are calculated and 

the deviations from the forecasted values (obtained using ARIMA) are calculated so that 

the membership functions of 𝐸𝑥𝑈 and 𝐸𝑥𝐷 can be defined. The fuzzy model for 𝐸𝑥𝑈 is 

shown in (6.8) and its membership function is in(6.9). 
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 𝐸𝑥�̃� = {[𝐸𝑥𝑈 , 𝜇𝐸𝑥𝑈], 𝐸𝑥𝑈 ≤ 𝐸𝑥𝑈 ≤ 𝐸𝑥𝑈} (6.8) 

 𝜇𝐸𝑥𝑈 =

{
 
 

 
 

1, 𝐸𝑥𝑈 ≤ 𝐸𝑥𝑈

𝐸𝑥𝑈 − 𝐸𝑥𝑈

𝐸𝑥𝑈 − 𝐸𝑥𝑈
, 𝐸𝑥𝑈 ≤ 𝐸𝑥𝑈 ≤ 𝐸𝑥𝑈

0, 𝐸𝑥𝑈 ≥ 𝐸𝑥𝑈

 (6.9) 

The graphical representation of the 𝐸𝑥𝑈 membership function is shown in Figure 6-2. The 

expected regulation deployments are defined in an opposite manner to that of regulation 

prices. If the expected deployments are kept low, the EVs will be available in the market 

for providing the regulation service for the whole charging period. If they are charged 

during the early hours, their capacities to provide regulation in the later hours will be 

diminished. 

 

Figure 6-2: Fuzzy model of expected regulation up deployments 

 

The fuzzy model for the expected regulation down deployment is similar to expected 

regulation up deployment and its membership function is: 
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 𝐸𝑥�̃� = {[𝐸𝑥𝐷, 𝜇𝐸𝑥𝐷], 𝐸𝑥𝐷 ≤ 𝐸𝑥𝐷 ≤ 𝐸𝑥𝐷} (6.10) 

 𝜇𝐸𝑥𝐷 =

{
 
 

 
 

1, 𝐸𝑥𝐷 ≤ 𝐸𝑥𝐷

𝐸𝑥𝐷 − 𝐸𝑥𝐷

𝐸𝑥𝐷 − 𝐸𝑥𝐷
, 𝐸𝑥𝐷 ≤ 𝐸𝑥𝐷 ≤ 𝐸𝑥𝐷

0, 𝐸𝑥𝐷 ≥ 𝐸𝑥𝐷

 (6.11) 

6.2.4 Complete Fuzzy Linear Programming for EV Charging 

As a market participant, the aggregator will strive for the maximum benefits from its V2G 

assets. The aggregator profits come from the two sources: regulation service bidding and 

the charging of EVs. The aggregator will get a portion of the regulation service bidding 

and a fixed markup over the energy used for EV charging [47]. The uncertainties are 

considered in a fuzzy set by calculating the forecasting errors in the actual and the historical 

data of ERCOT ISO for the regulation up/down prices and the regulation deployments. The 

membership functions of the income, regulation prices and the expected deployments have 

to be translated into the fuzzy constraints. These transformations are done in (6.12) - (6.16) 

 
𝜆 ≤ 𝜇𝐼𝑛 =

𝐼𝑛 − 𝐼𝑛

𝐼𝑛 − 𝐼𝑛

⇒ (𝐼𝑛 − 𝐼𝑛) ∙ 𝜆 + 𝐼𝑛 ≤ 𝐼𝑛

 (6.12) 

 

𝜆 ≤ 𝜇𝑟𝑒𝑔𝑈𝑝 =
𝑃𝑟𝑒𝑔𝑈𝑝 − 𝑃𝑟𝑒𝑔𝑈𝑝

𝑃𝑟𝑒𝑔𝑈𝑝 − 𝑃𝑟𝑒𝑔𝑈𝑝

⇒ (𝑃𝑟𝑒𝑔𝑈𝑝 − 𝑃𝑟𝑒𝑔𝑈𝑝) ∙ 𝜆 + 𝑃𝑟𝑒𝑔𝑈𝑝 ≤ 𝑃𝑟𝑒𝑔𝑈𝑝

 (6.13) 
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𝜆 ≤ 𝜇𝑟𝑒𝑔𝐷𝑤 =
𝑃𝑟𝑒𝑔𝐷𝑤 − 𝑃𝑟𝑒𝑔𝐷𝑤

𝑃𝑟𝑒𝑔𝐷𝑤 − 𝑃𝑟𝑒𝑔𝐷𝑤

⇒ (𝑃𝑟𝑒𝑔𝐷𝑤 − 𝑃𝑟𝑒𝑔𝐷𝑤) ∙ 𝜆 + 𝑃𝑟𝑒𝑔𝐷𝑤 ≤ 𝑃𝑟𝑒𝑔𝐷𝑤

 (6.14) 

 
𝜆 ≤ 𝜇𝐸𝑥𝑈 =

𝐸𝑥𝑈 − 𝐸𝑥𝑈

𝐸𝑥𝑈 − 𝐸𝑥𝑈

⇒ (𝐸𝑥𝑈 − 𝐸𝑥𝑈) ∙ 𝜆 + 𝐸𝑥𝑈 ≤ 𝐸𝑥𝑈

 (6.15) 

 
𝜆 ≤ 𝜇𝐸𝑥𝐷 =

𝐸𝑥𝐷 − 𝐸𝑥𝐷

𝐸𝑥𝐷 − 𝐸𝑥𝐷

⇒ (𝐸𝑥𝐷 − 𝐸𝑥𝐷) ∙ 𝜆 + 𝐸𝑥𝐷 ≤ 𝐸𝑥𝐷

 (6.16) 

 𝜆 = 𝑚𝑖𝑛{𝜇𝐼𝑛, 𝜇𝑟𝑒𝑔𝑈𝑝, 𝜇𝑟𝑒𝑔𝐷𝑤, 𝜇𝐸𝑥𝑈, 𝜇𝐸𝑥𝐷} 
(6.17) 

The complete optimal fuzzy formulation (OptFuzzy) is stated below: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜆 (6.18) 

Subject to: 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 𝐼𝑛𝑐𝑜𝑚𝑒 𝑜𝑓  (6.1) 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 𝐼𝑛𝑐𝑜𝑚𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (6.12) 

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑝 𝑝𝑟𝑖𝑐𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (6.13) 

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑤𝑛 𝑝𝑟𝑖𝑐𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (6.14) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑝 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (6.15) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑤𝑛 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (6.16) 
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 𝑅𝑈𝑝(𝑡) = ∑𝑀𝑛𝐴𝑃𝑖(𝑡)

𝑐𝑎𝑟𝑠

𝑖=1

 (6.19) 

 𝑅𝐷𝑤(𝑡) = ∑ 𝑀𝑥𝐴𝑃𝑖(𝑡)

𝑐𝑎𝑟𝑠

𝑖=1

 (6.20) 

 𝑀𝑥𝐴𝑃𝑖(𝑡)  ≤ 𝑃𝑂𝑃𝑖(𝑡) (6.21) 

 ∑𝐸(𝑃𝐷𝑖(𝑡)) + 𝑆𝑂𝐶𝐼,𝑖 ≤ 𝑀𝑐𝑖

𝑡

 (6.22) 

 (𝑀𝑥𝐴𝑃𝑖(1) + 𝑃𝑂𝑃𝑖(1))𝐸𝑓𝑖 + 𝑆𝑂𝐶𝐼,𝑖 ≤ 𝑀𝑐𝑖 (6.23) 

 𝑃𝑂𝑃𝑖(𝑡) ≤ 𝑀𝑃𝑖 (6.24) 

 𝑀𝑥𝐴𝑃𝑖(𝑡) + 𝑃𝑂𝑃𝑖(𝑡) ≤ 𝑀𝑃𝑖 (6.25) 

 𝑀𝑥𝐴𝑃𝑖(𝑡) ≥ 0 (6.26) 

 𝑀𝑛𝐴𝑃𝑖(𝑡) ≥ 0 (6.27) 

 𝑃𝑂𝑃𝑖(𝑡) ≥ 0 (6.28) 

 𝐸(𝑃𝐷𝑖(𝑡)) = 𝑀𝑥𝐴𝑃𝑖(𝑡) ∙ 𝐸𝑥𝐷 + 𝑃𝑂𝑃𝑖(𝑡) − 𝑀𝑛𝐴𝑃𝑖(𝑡) ∙ 𝐸𝑥𝑈 (6.29) 

 

In this fuzzy optimization, the objective is to maximize the minimum membership of the 

fuzzy variables and, thus, maximize the aggregator profits. The cost of aggregator such as 

charging station infrastructure cost and other running costs such as communication and 

personnel are assumed to be fixed. 

In order to avoid burdening the power system network with the charging of electric 

vehicles, the load-constrained can be added to the optimization problem as follows: 
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 ∑𝑃𝑂𝑃𝑖(𝑡) =
𝑀𝑥 − 𝐿(𝑡)

𝑀𝑥 −𝑀𝑛
∑𝑀𝑃𝑖

𝑐𝑎𝑟𝑠

𝑖=1

𝑐𝑎𝑟𝑠

𝑖=1

 (6.30) 

Similarly, in order to limit charging at periods of high energy costs, the following constraint 

can be added: 

 ∑𝑃𝑂𝑃𝑖(𝑡) =
𝑀𝑥 − 𝑃(𝑡)

𝑀𝑥 −𝑀𝑛
∑𝑀𝑃𝑖

𝑐𝑎𝑟𝑠

𝑖=1

𝑐𝑎𝑟𝑠

𝑖=1

 (6.31) 

6.3 Case Study 

The simulations are performed in the ERCOT area on a hypothetical group of 10,000 EVs 

used by commuters. These simulations are performed for a period of three months from 

21st July, 2010 to 20th Oct, 2010 [69]. Electricity Market parameters such as energy price, 

load and the regulation signal are taken from the ERCOT database for the simulation 

period. All the simulations are performed in Matlab using the CVX toolbox to solve the 

optimization problem [84]. The simulations are performed on the EVs at workplace from 

8 A.M to 5 P.M. In this nine-hour period, the aggregator can potentially sell the regulation 

service and charge the electric vehicles. In this study, five-minute-resolution signal is used 

because of the available data. However, an EV can follow regulation signals of much 

higher resolution [29], [30]. The day-ahead load is generated in a similar manner as 

mentioned in [77]. 

The autoregressive integrated moving average (ARIMA) model is used to forecast the 

different electricity market parameters including regulation up/down prices and the 

expected regulation deployments. The hourly expected percentages of the regulation 
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capacity is calculated for the historic data using the formulation presented in [47] and then 

the forecast is done using ARIMA as presented in chapter 4. After forecasting the 

parameters, the mean absolute error between forecasted and actual values are calculated to 

incorporate these forecasting inaccuracies into the fuzzy formulation. The mean absolute 

errors of the forecasted data are shown in Table 6-1. 

Table 6-1  Mean absolute percentage error of forecasted quantities over simulated period 

Electricity Market Parameters MAP Errors 

Regulation Up Prices 8.327 % 

Regulation Down Prices 9.5831 % 

Regulation Up Deployments 28.48 % 

Regulation Down Deployments 31.327 % 

 

In this simulation study, three different kinds of EVs available in the market are considered: 

Nissan Leaf, Mitsubishi i-MiEV and Tesla Model-S. Battery specifications, EV 

performance and other specifications are given in [79]–[83]. Among this hypothetical 

group, it is assumed that 50% of EVs are Nissan Leaf, 20% are Mitsubishi i-MiEV and 

30% are Tesla Model-S. It is also assumed that each EV has a charging efficiency of 90%. 

Each EV arriving at the workplace with an SOC of greater than 95% will not participate in 

the regulation service. All the EVs that are used in these simulations can be charged from 

a standard 240V supply, and it is assumed that the charger has an efficiency of 90%. 

Two types of simulation studies are performed and compared: deterministic [47] and the 

proposed fuzzy based. Using each algorithm, expected day-ahead aggregator profits are 

obtained by evaluating the corresponding objective function. The expected profits are 

calculated using the forecasted market parameters. To further assess the effectiveness of 

the proposed FLP formulation, the actual aggregator profits on the bidding day are 
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calculated for both the deterministic and proposed fuzzy algorithms. The actual aggregator 

profits are calculated from the algorithm presented in Figure 5-1. The actual aggregator 

profits are calculated using the actual (realized) market parameters, such as energy price, 

regulation prices and the regulation deployments. 

The aggregator profit comes from two different sources; regulation revenues and the 

markup on the energy sale supplied to the customer. The aggregator gets 20% of the 

regulation revenues and $0.05/kWh over the energy purchased from the market for the EV 

battery charging. In this way, the aggregator is not exposed to the energy price variations. 

Rather, it passes the energy cost to the EV owner. 

6.4 Results and Discussion  

The deterministic and the proposed fuzzy optimization are performed for three different 

cases: 

 With no load and price constraint in the optimization. 

 With load constraint included in the optimization. 

 With price constraint included in the optimization. 

In the first case, there is no additional constraint for the aggregator to take care of the 

system load and system energy price and is expected to result in highest profit. The load 

constraint is not a problem for the aggregator as the main goal of the aggregator is to 

maximize profits, not maintaining the balancing in the power system, but the system 

operator can impose this limit on the aggregator to avoid the system collapse. The price 
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constraint can be advantageous to the EV owner as the electric vehicles will be charging at 

the lowest cost. 

6.4.1 Case # 1: With no Load and Price Constraint 

The deterministic and the proposed fuzzy based algorithms are run each day from 8 A.M. 

to 5 P.M. daily for the period of three months. All the vehicles are assumed available during 

the charging period. 

6.4.1.1 Charging Profiles 

The charging profiles and regulation service provided by each algorithm are compared for 

15th September, 2010. This day is randomly selected. Figure 6-3 shows the regulation up 

and down prices on 15th September, 2010 for the charging period. Both the prices are low 

at the start of the charging period and increases in the late afternoon of the day. The POP, 

regulation up capacity, and regulation down capacity by each algorithm are shown in 

Figure 6-4-Figure 6-6. 

 

Figure 6-3: Hourly regulation service prices on 15th Sep, 2010 
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The POP of the electric vehicles for 15th September, 2010 is shown in Figure 6-4. As the 

prices of the regulation up/down are higher at the end of the charging period, the 

deterministic algorithm sets the POP to be higher at the last three hours.  Although the 

fuzzy based algorithm follows the pattern of deterministic algorithm, it sets the values of 

POP to a more moderate level to take advantage of the uncertainties in the forecasted values 

and also bids high in the first few hours. 

 

Figure 6-4: POP by each algorithm on 15th Sep, 2010 

 

The regulation up bidding capacity is shown in Figure 6-5. Both the algorithms, 

deterministic and fuzzy, sets the regulation up capacity high at the end of the charging 

period as the regulation up prices is high. The deterministic algorithm sets the regulation 

up capacity higher than the fuzzy algorithm, but sets lowers at the starting of the charging 

period. 

0

20

40

60

80

100

8 9 10 11 12 13 14 15 16

P
O

P
 (

M
W

)

Time (Hours)

Deterministic Proposed Fuzzy



75 

 

 

Figure 6-5: Regulation up by each algorithm on 15th Sep, 2010 

 

 

Figure 6-6: Regulation down by each algorithm on 15th Sep, 2010 

 

The average regulation capacities and the average POP during the simulation period are 

shown in Figure 6-7 - Figure 6-9. The average POP is usually set to higher values at the 

end of the charging period as the prices are usually higher in the mid-day. The fuzzy 

algorithm sets the average POP to be little higher at the start of the charging period while 

the deterministic is a bit higher than fuzzy during the end of the charging period. The 

average regulation up also follows the same pattern as that of the average POP. The average 
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regulation down capacity is shown in Figure 6-9. The deterministic algorithm is a little 

higher than fuzzy in the initial charging hours, then in the remaining hours, fuzzy algorithm 

bids higher. 

 

Figure 6-7: Average POP by each algorithm 

 

 

Figure 6-8: Average regulation up by each algorithm 
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Figure 6-9: Average regulation down by each algorithm 

6.4.1.2 Quarterly Results 

The section analyzes the expected and actual profits of an aggregator for the deterministic 

and proposed fuzzy based algorithms. Figure 6-10 shows the comparisons of the expected 

and actual profit of an aggregator for an average day. Although the deterministic algorithms 

expected profits are higher than the fuzzy algorithms, the actual profits of the fuzzy 

algorithm end up higher by about 2.9% than the deterministic actual profits. This shows 

the superiority of the proposed method. 

 

Figure 6-10: Expected and actual profits of an aggregator for an average day 
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When comparing the aggregator profits on the whole simulation period of three months, 

the expected aggregator profits comes out to be $ 1592k which is 3.58% more than the 

expected fuzzy profits while on the actual bidding day, the fuzzy generates more profits 

i.e. $ 1569k which is 3% more than the deterministic actual profits and 2.2% more than the 

fuzzy expected profits. On the actual day, the fuzzy algorithm performs better than 

deterministic algorithm. This is evident from Figure 6-11. 

 

Figure 6-11: Total expected and actual profits of an aggregator 
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Figure 6-12: Average price per kWh of energy charged to customers 

 

From the power system perspective, the charging of EVs should not stress the power 

system. The average peak and the peak load increase by deterministic and proposed fuzzy 

algorithm is shown in Figure 6-13. The proposed fuzzy algorithm results in a slightly lower 

peak and average peak load than the deterministic algorithm. This shows that the proposed 

fuzzy algorithm is also supporting the power system network. 

 

Figure 6-13: Daily average peak and peak load increase by different algorithm due to EV 

charging 
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6.4.2 Case # 2: With Load Constraint 

In this case, the same optimization problem is solved with an extra load constraint 

mentioned in (6.30) is added to order to avoid the burdening of the power system network. 

Both deterministic and proposed fuzzy optimization algorithms are simulated for the same 

charging period from 8 A.M. to 5 P.M. daily for the three-month period.  

6.4.2.1 Charging Profiles 

The electric vehicles average POP, regulation up and regulation down capacities are shown 

in Figure 6-14-Figure 6-16. The deterministic and the proposed algorithms follow the same 

pattern and bid almost the same capacities for the POP and regulation up except for the 

first 2-3 charging hours, in which the proposed fuzzy bids a little higher than the 

deterministic  as shown in Figure 6-14 and Figure 6-15. 

Both the deterministic and proposed fuzzy algorithm bids the regulation down capacities 

in a similar fashion and bids highest in the middle of the charging period. The proposed 

fuzzy algorithms bids a little lower than the deterministic algorithm in every hour as shown 

in Figure 6-16. 
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Figure 6-14: Average POP by each algorithm with load constraint 

 

 

Figure 6-15: Average regulation up by each algorithm with load constraint 
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Figure 6-16: Average regulation down by each algorithm with load constraint 

6.4.2.2 Quarterly Results 

This section presents the aggregator profits for the different algorithms: deterministic and 

proposed fuzzy. The expected and the actual profits for an average day is shown in Figure 

6-17 while Figure 6-18 presents the total expected and actual profits of an aggregator for 

the three months period. 

 

Figure 6-17: Expected and actual profits of an aggregator for an average day with load 

constraint 
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With the load constraint added in the optimization, the aggregator expects a little lower 

profit than the deterministic algorithm in the day-ahead bidding while on the actual day of 

bidding; the aggregator gets a little higher profit with the use of proposed fuzzy algorithm 

as compares with the deterministic algorithm. 

 

Figure 6-18: Total expected and actual profits of an aggregator with load constraint 

 

It is also desirable to charge the EVs at the lowest price; Figure 6-19 shows the average 

price charged to EV owners their electric vehicles. The proposed fuzzy algorithm results 

in 1% higher price as compared with the deterministic algorithm. The price increase by the 

fuzzy algorithm is not much higher and can result due to the fact that the energy price is 

considered in the formulation as a deterministic price. 

 

1200

1250

1300

1350

1400

1450

1500

1550

Deterministic Proposed Fuzzy

P
ro

fi
ts

 (
$

 1
0

0
0

)

Charging Algorithms

Expected Profits Actual Profits



84 

 

 

Figure 6-19: Average price per kWh of energy charged to customers with load constraint 

 

The charging of EVs should not stress the power system. The average peak and the peak 

load increase by deterministic and proposed fuzzy algorithm is shown in Figure 6-20. The 

proposed fuzzy algorithm results in a slightly lower peak and average peak load than the 

deterministic algorithm. This shows that the proposed fuzzy algorithm is also supporting 

the power system network with load constraint also. 

 

Figure 6-20: Daily average peak and peak load increase by different algorithm due to EV 

charging with load constraint 
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6.4.3 Case # 3: With Price Constraint 

In this case, the same optimization problem is solved with an extra price constraint 

mentioned in (6.31) is added to order to avoid the charging of electric vehicles at higher 

electricity prices. Both the optimization, deterministic and proposed fuzzy algorithm are 

simulated for the same charging period from 8 A.M. to 5 P.M. daily for a period of three 

months. 

6.4.3.1 Charging Profiles 

The charging profiles for the POP, regulation up and down capacities with the price 

constraint are shown in Figure 6-21-Figure 6-23. The averages POP of the EVs are higher 

for the proposed fuzzy algorithm in the first 5 hours of the charging periods. In the last 4 

charging hours, the deterministic algorithm has higher value of the POP. 

 

Figure 6-21: Average POP by each algorithm with price constraint 
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the regulation down capacity is higher for fuzzy algorithm in the first two charging hours 

and then remains lower as shown in Figure 6-23. The POP, regulation up/down capacities 

in both the deterministic and proposed fuzzy algorithm almost follows the same pattern. 

 

Figure 6-22: Average regulation up by each algorithm with price constraint 

 

 

Figure 6-23: Average regulation down by each algorithm with price constraint 
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6.4.3.2 Quarterly Results 

This section presents the aggregator profits for the different algorithms: deterministic and 

proposed fuzzy. The expected and the actual profits for an average day is shown in Figure 

6-24 while Figure 6-25 presents the total expected and actual profits of an aggregator for 

the three months period. 

 

Figure 6-24: Expected and actual profits of an aggregator for an average day with price 

constraint 
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Figure 6-25: Total expected and actual profits of an aggregator with price constraint 

 

Figure 6-26 shows the average price charged to EV owners their electric vehicles. The 

proposed fuzzy algorithm with the price constraints results in a lower cost. The cost is 

reduced to around 4% as compared with the deterministic algorithm. 

 

Figure 6-26: Average price per kWh of energy charged to customers with price constraint 
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proposed fuzzy algorithm results in a slightly lower peak and average peak load than the 

deterministic algorithm. This shows that the proposed fuzzy algorithm is also supporting 

the power system network with the price constraint also. 

 

Figure 6-27: Daily average peak and peak load increase by different algorithm due to EV 

charging with price constraint 
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price/load constraint in the system. Addition of the load constraint in the formulation 

minimized the impact of EV load on the system and is sometimes necessary for the system 

security and stability while the additional of price constraint is very beneficial to the EV 

owner, as EV owner cost has to pay minimum cost for each kWh consumed. 

Equation Chapter 7 Section 1 
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7 CHAPTER 7 

COORDINATED BIDDING OF ANCILLIARY 

SERVICES FOR UNIDIRECTIONAL VEHICLE-TO-

GRID USING FUZZY LINEAR PROGRAMMING (FLP) 

In the previous chapter, an optimal charging strategy for electric vehicles using the fuzzy 

optimization technique was proposed. The aggregator profits for different cases, with 

deterministic and fuzzy optimization, were calculated considering the different 

uncertainties. The proposed algorithm, fuzzy based, performed much better than the 

deterministic algorithm based on the actual day of bidding. Apart from different 

advantages, the algorithm proposed in the previous chapter was only for nine hour charging 

period, the spinning reserves (responsive reserves) capacity was ignored, and different 

uncertainties of the electric vehicles were ignored such as the EV availability, their trip 

time and durations. 

In this chapter, an extension of the previous chapter’s work is done. A novel optimal fuzzy 

based coordinated charging scheme for unidirectional vehicle-to-grid is proposed. The 

proposed algorithm optimizes the charging of EVs and the bidding of ancillary services in 

the electricity market through unidirectional V2G, considering the different electricity 

market uncertainties. The work presented in this chapter is built upon the work presented 

in [47], [50], with the incorporation of different market uncertainties and with the 
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modification of the objective function. The fuzzy set theory is used to model the 

uncertainties in the forecasted data of the electricity market such as those of ancillary 

services prices including regulation up/down prices and responsive reserve prices, and 

ancillary services deployment signals. The electricity market parameters are forecasted 

using the autoregressive integrated moving average (ARIMA) model, also mentioned in 

the previous chapter, presented in chapter 4. The algorithm is simulated over the same 

hypothetical group of 10,000 EVs in the real electricity market, Electric Reliability Council 

of Texas (ERCOT) area as used in the previous chapters. Commuter cars are used in the 

simulation and the simulation is performed for the whole twenty four hours. It is assumed 

that the battery SOC at the end of the day will be the initial SOC for batteries next day. 

Additionally EVs uncertainties are also considered but not in a fuzzy logic framework. 

Results show the benefit of the proposed fuzzy algorithm against the deterministic 

algorithm of [50] with no market uncertainty. 

7.1 Ancillary Services Algorithm 

An EV can supply the ancillary service to the electrical grid by varying its charging rate 

below or above its scheduled value, or its preferred operating point (POP). This value of 

the POP is scheduled by the aggregator in the system. The electric vehicles in this chapter 

have to follow the two algorithms, one for the regulation service and one for the responsive 

reserves (spinning reserves). The regulation algorithm is the same as mentioned in the 

previous chapters and shown in Figure 5-1. The details for the regulation algorithm are 

explained in section 5.1. The algorithm for responsive reserve is shown in Figure 7-1. To 

perform in the ancillary service market, an EV will first follow the regulation signal and 
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then follow the responsive reserve signal from ISO. The calculated power draw by 

following the regulation signal will be used as a reference to calculate the EV dispatch for 

the responsive reserve signal. This will be the total power draw by an EV until the next 

signal comes from the ISO. Graphical descriptions of different variables are shown in 

Figure 7-2. 

 

Figure 7-1: Responsive reserve algorithm flowchart [50] 

 

 

Figure 7-2: Ancillary service signals around the preferred operating point [50] 
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7.2 Coordinated Charging Algorithm using Fuzzy Linear 

Programming (FLP)  

The ancillary service capacity is based on the extent of moving the actual charging rate of 

the EVs above or below their assigned POPs. Therefore the aggregator must optimize the 

value of the POP to maximize the profits. Previously, different optimized charging and 

bidding algorithms were proposed for the electric vehicles [47], [50], but they mainly lack 

the modeling of different uncertainties of the electricity market parameters, such as price 

and ancillary service deployments. In the last chapter, an algorithm is proposed but that 

algorithm bid the capacity into the market only for nine hour and different EV parameters 

were not considered. In this chapter, a novel optimized FLP based coordinated bidding of 

vehicle-to-grid ancillary services is proposed. It charges the electric vehicle as well as bid 

the ancillary services in the electricity market for the whole day considering the different 

market uncertainties.  

7.2.1 Fuzzy Model - Objective 

The main objective of the optimization is to generate maximum revenues from the 

regulation service by scheduling EV charging. The objective function in this formulation 

is different and more practical than the objective that was used in Chapter 6. Previously, it 

was assumed that the aggregator revenues comes from two different sources, first from a 

fixed percentage of the ancillary services revenue 𝛼, and secondly from a fixed percentage 

of the energy supplied to the customer 𝑀𝑘. While in this chapter, a more realistic objective 

function is considered i.e. the aggregator income here also comes from two sources; first 
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the aggregator will take all the ancillary services revenue and second supply the energy to 

the customer at a fixed rate and the variations on the fixed rate and the market energy price 

will be the aggregator profit. This fixed rate is considered very low i.e. 50% of the kWh 

domestic energy price (from the ISO or Utility) to attract the EV owners to charge their 

cars from the aggregator charging station. 

 The fuzzy objective function is defined as: 

𝐼𝑛 =  ∑((𝑃𝑟𝑒𝑔𝑈𝑝 ∙ 𝑅𝑈𝑝 + 𝑃𝑟𝑒𝑔𝐷𝑤 ∙ 𝑅𝐷𝑤 + 𝑃𝑅𝑅 ∙ 𝑅𝑅) ∙ 𝐸𝑉𝑃𝑒𝑟)

𝑡

+ 𝛽∑∑((𝐸(𝑃𝐷𝑖)) ∙ 𝐸𝑉𝑃𝑒𝑟)

𝑖𝑡

 

(7.1) 

In this objective function, the aggregator charges fixed price to the customer and purchases 

the power at market price for the energy and thus assumes the risk associated with real time 

pricing. The cost function for this condition that is subtracted from the 𝐼𝑛 is given by: 

 𝐶 =  ∑∑(𝐸(𝐹𝐷𝑖)) ∙ 𝑃(𝑡) ∙ 𝐸𝑉𝑝𝑒𝑟
𝑡𝑖

 (7.2) 

The fuzzy set for the aggregator income is defined as: 

 𝐼�̃� = {[𝐼𝑛, 𝜇𝐼𝑛], 𝐼𝑛 ≤ 𝐼𝑛 ≤ 𝐼𝑛} (7.3) 

The fuzzy set is built using the income 𝐼𝑛 that defines the objective function in (7.1). The 

possible values of 𝐼𝑛 can be defined through the constraint within the definition of fuzzy 

set in (7.3). There is a minimum value of 𝐼𝑛 below which the aggregator will not be willing 

to participate and the membership function is zero at that income and an upper value of 𝐼𝑛 
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above which all the income is acceptable. The same limits of 𝐼𝑛 is used as that mentioned 

in Section 6.2.1. 

The membership function 𝐼𝑛  in (7.3) is defined as: 

 𝜇𝐼𝑛 =

{
 
 

 
 

0, 𝐼𝑛 ≤ 𝐼𝑛

𝐼𝑛 − 𝐼𝑛

𝐼𝑛 − 𝐼𝑛
, 𝐼𝑛 ≤ 𝐼𝑛 ≤ 𝐼𝑛

1, 𝐼𝑛 ≥ 𝐼𝑛

 (7.4) 

This function is graphically presented in Figure 7-3: 

 

Figure 7-3: Fuzzy model of total aggregator income 

7.2.2 Fuzzy Model - Regulation Up/Down Prices 

The fuzzy uncertainty model for the regulation up and down prices is considered the same 

as that mentioned in Section 6.2.4. The same fuzzy model is also used here in this chapter. 

7.2.3 Fuzzy Model – Responsive Reserve Prices 

The fuzzy uncertainty model of the responsive reserve prices is developed in the same way 

as regulation up/down model and can be represented as: 
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 𝑃𝑅�̃� = {[𝑃𝑅𝑅, 𝜇𝑅𝑅], 𝑃𝑅𝑅 ≤ 𝑃𝑅𝑅 ≤ 𝑃𝑅𝑅} (7.5) 

This model is developed assuming the same criteria that there is a certain responsive 

reserve price below which the aggregator will not be willing to participate. The minimum 

responsive reserve prices should be such that the aggregator is making profits after 

covering all its expenses. In this work, the uncertainties of the minimum and the maximum 

responsive reserve prices are estimated using the mean absolute error between the 

forecasted and actual data using an ARIMA model. The membership function for the price 

of responsive reserve price is given in (7.6) and the graphical representation is similar to 

that shown in Figure 7-3. 

 𝜇𝑅𝑅 =

{
 
 

 
 

0, 𝑃𝑅𝑅 ≤ 𝑃𝑅𝑅

𝑃𝑅𝑅 − 𝑃𝑅𝑅

𝑃𝑅𝑅 − 𝑃𝑅𝑅
, 𝑃𝑅𝑅 ≤ 𝑃𝑅𝑅 ≤ 𝑃𝑅𝑅

1, 𝑃𝑅𝑅 ≥ 𝑃𝑅𝑅

 (7.6) 

7.2.4 Fuzzy Model – Regulation Up/Down Deployments 

The expected values of the regulation up/down deployments are calculated in a similar 

fashion as mentioned in Section 6.2.3. The same models are used and the details can be 

referred to the previous chapter. 

7.2.5 Fuzzy Model – Responsive Reserve Deployments 

The expected values of responsive reserve deployments are calculated using the historical 

deployment signals from ERCOT ISO [69]. The hourly actual averages are calculated and 

the deviations from the forecasted values (obtained using ARIMA) are calculated so that 
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the membership functions of ExR can be defined. The fuzzy model for the ExR is shown 

in (7.7) and its membership function is in (7.8). 

 𝐸𝑥�̃� = {[𝐸𝑥𝑅, 𝜇𝐸𝑥𝑅], 𝐸𝑥𝑅 ≤ 𝐸𝑥𝑅 ≤ 𝐸𝑥𝑅} (7.7) 

 𝜇𝐸𝑥𝑅 =

{
 
 

 
 

1, 𝐸𝑥𝑅 ≤ 𝐸𝑥𝑅

𝐸𝑥𝑅 − 𝐸𝑥𝑅

𝐸𝑥𝑅 − 𝐸𝑥𝑅
, 𝐸𝑥𝑅 ≤ 𝐸𝑥𝑅 ≤ 𝐸𝑥𝑅

0, 𝐸𝑥𝑅 ≥ 𝐸𝑥𝑅

 (7.8) 

The graphical representation of the ExR membership function is shown in Figure 7-4.  It 

is similar to the membership function of the regulation up/down deployments.  

 

Figure 7-4: Fuzzy model of expected responsive reserves deployments 

 

7.2.6 Complete Coordinated Fuzzy Linear Programming for EV Charging 

As the aggregator is a market participant, it will strive for the maximum benefits from its 

V2G assets. The aggregator profits come from the two sources: ancillary service revenues 

and from the charging the EVs. The aggregator will get the whole of the ancillary revenues 
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and charge the electric vehicles at a fixed rate, so that there are no variations of the price 

for the EV owner. The aggregator will, at some time get the profit from this energy 

variation when energy price is low in the electricity market (lower than the aggregator is 

charging to EV owner) and sometimes will be at a loss when the energy price is high in the 

electricity market (higher than the aggregator is charging to EV owner). In the previous 

formulations presented the aggregator was getting a portion of the ancillary services 

revenue and a fixed markup over the energy used for EV charging [47], [50]. 

Previously only deterministic algorithms were proposed [47], [50], but in this chapter 

uncertainties are considered in a fuzzy set by calculating the forecasting errors in the actual 

and the historical data of ERCOT ISO for the ancillary services prices and the ancillary 

service deployments. The membership functions of the income, ancillary services prices 

and the expected deployments have to be translated into the fuzzy constraints. These 

transformations are done in (7.9) - (7.16). 

 
𝜆 ≤ 𝜇𝐼𝑛 =

𝐼𝑛 − 𝐼𝑛

𝐼𝑛 − 𝐼𝑛

⇒ (𝐼𝑛 − 𝐼𝑛) ∙ 𝜆 + 𝐼𝑛 ≤ 𝐼𝑛

 (7.9) 

 

𝜆 ≤ 𝜇𝑟𝑒𝑔𝑈𝑝 =
𝑃𝑟𝑒𝑔𝑈𝑝 − 𝑃𝑟𝑒𝑔𝑈𝑝

𝑃𝑟𝑒𝑔𝑈𝑝 − 𝑃𝑟𝑒𝑔𝑈𝑝

⇒ (𝑃𝑟𝑒𝑔𝑈𝑝 − 𝑃𝑟𝑒𝑔𝑈𝑝) ∙ 𝜆 + 𝑃𝑟𝑒𝑔𝑈𝑝 ≤ 𝑃𝑟𝑒𝑔𝑈𝑝

 (7.10) 
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𝜆 ≤ 𝜇𝑟𝑒𝑔𝐷𝑤 =
𝑃𝑟𝑒𝑔𝐷𝑤 − 𝑃𝑟𝑒𝑔𝐷𝑤

𝑃𝑟𝑒𝑔𝐷𝑤 − 𝑃𝑟𝑒𝑔𝐷𝑤

⇒ (𝑃𝑟𝑒𝑔𝐷𝑤 − 𝑃𝑟𝑒𝑔𝐷𝑤) ∙ 𝜆 + 𝑃𝑟𝑒𝑔𝐷𝑤 ≤ 𝑃𝑟𝑒𝑔𝐷𝑤

 (7.11) 

 
𝜆 ≤ 𝜇𝑅𝑅 =

𝑃𝑅𝑅 − 𝑃𝑅𝑅

𝑃𝑅𝑅 − 𝑃𝑅𝑅

⇒ (𝑃𝑅𝑅 − 𝑃𝑅𝑅) ∙ 𝜆 + 𝑃𝑅𝑅 ≤ 𝑃𝑅𝑅

 (7.12) 

 
𝜆 ≤ 𝜇𝐸𝑥𝑈 =

𝐸𝑥𝑈 − 𝐸𝑥𝑈

𝐸𝑥𝑈 − 𝐸𝑥𝑈

⇒ (𝐸𝑥𝑈 − 𝐸𝑥𝑈) ∙ 𝜆 + 𝐸𝑥𝑈 ≤ 𝐸𝑥𝑈

 (7.13) 

 
𝜆 ≤ 𝜇𝐸𝑥𝐷 =

𝐸𝑥𝐷 − 𝐸𝑥𝐷

𝐸𝑥𝐷 − 𝐸𝑥𝐷

⇒ (𝐸𝑥𝐷 − 𝐸𝑥𝐷) ∙ 𝜆 + 𝐸𝑥𝐷 ≤ 𝐸𝑥𝐷

 (7.14) 

 
𝜆 ≤ 𝜇𝐸𝑥𝑅 =

𝐸𝑥𝑅 − 𝐸𝑥𝑅

𝐸𝑥𝑅 − 𝐸𝑥𝑅

⇒ (𝐸𝑥𝑅 − 𝐸𝑥𝑅) ∙ 𝜆 + 𝐸𝑥𝑅 ≤ 𝐸𝑥𝑅

 (7.15) 

 𝜆 = 𝑚𝑖𝑛{𝜇𝐼𝑛, 𝜇𝑟𝑒𝑔𝑈𝑝, 𝜇𝑟𝑒𝑔𝐷𝑤, 𝜇𝑅𝑅 , 𝜇𝐸𝑥𝑈, 𝜇𝐸𝑥𝐷, 𝜇𝐸𝑥𝑅} 
(7.16) 

The complete coordinated fuzzy formulation (OptcoFuzzy) is stated below: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜆 (7.17) 

Subject to: 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 𝐼𝑛𝑐𝑜𝑚𝑒 𝑜𝑓  (7.1) 
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𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 𝐼𝑛𝑐𝑜𝑚𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓  (7.9) 

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑝 𝑝𝑟𝑖𝑐𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (7.10) 

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑤𝑛 𝑝𝑟𝑖𝑐𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (7.11) 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑝𝑟𝑖𝑐𝑒 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (7.12) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑝 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (7.13) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑤𝑛 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (7.14) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑤𝑛 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 (7.15) 

 𝑅𝑈𝑝(𝑡) = ∑𝑀𝑛𝐴𝑃𝑖(𝑡)

𝑐𝑎𝑟𝑠

𝑖=1

 (7.18) 

 𝑅𝐷𝑤(𝑡) = ∑ 𝑀𝑥𝐴𝑃𝑖(𝑡)

𝑐𝑎𝑟𝑠

𝑖=1

 (7.19) 

 𝑅𝑅(𝑡) = ∑ 𝑅𝑠𝑅𝑃𝑖(𝑡)

𝑐𝑎𝑟𝑠

𝑖=1

 (7.20) 

 ∑ 𝐸(𝐹𝐷𝑖(𝑡)) ∙ 𝐶𝑜𝑚𝑝𝑖(𝑡) + 𝑆𝑂𝐶𝐼,𝑖 ≤ 𝑀𝑐𝑖

𝑇𝑡𝑟𝑖𝑝,𝑖

𝑡=1

 (7.21) 

 ∑𝐸(𝐹𝐷𝑖(𝑡)) ∙ 𝐶𝑜𝑚𝑝𝑖(𝑡) + 𝑆𝑂𝐶𝐼,𝑖 − 𝑇𝑟𝑖𝑝𝑖 ≤ 𝑀𝑐𝑖

𝑡

 (7.22) 

 (𝑀𝑥𝐴𝑃𝑖(1) + 𝑃𝑂𝑃𝑖(1)) ∙ 𝐶𝑜𝑚𝑝𝑖(1) ∙ 𝐸𝑓𝑖 + 𝑆𝑂𝐶𝐼,𝑖 ≤ 𝑀𝑐𝑖 (7.23) 

 𝑅𝑠𝑅𝑃𝑖(𝑡)  ≤ 𝑃𝑂𝑃𝑖(𝑡) − 𝑀𝑛𝐴𝑃𝑖(𝑡) (7.24) 

 (𝑀𝑥𝐴𝑃𝑖(𝑡) + 𝑃𝑂𝑃𝑖(𝑡)) ∙ 𝐶𝑜𝑚𝑝𝑖(𝑡)  ≤ 𝑀𝑃𝑖 ∙ 𝐴𝑣𝑖(𝑡) (7.25) 

 𝐶𝑜𝑚𝑝𝑖(𝑡) = 1 +
𝐷𝑒𝑝𝑖(𝑡)

1 − 𝐷𝑒𝑝𝑖(𝑡)
 (7.26) 
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 𝐸𝑉𝑃𝐸𝑅(𝑡) =

{
 
 

 
 1 −∑∑𝐷𝑒𝑝𝑖(𝑡)

𝑖

𝑡

𝑡=1

, 𝑖𝑓 𝑡 < 𝑇𝑡𝑟𝑖𝑝,𝑖

1 − ∑ ∑𝐷𝑒𝑝𝑖(𝑡)

𝑖

𝑡

𝑡=𝑇𝑡𝑟𝑖𝑝

,   𝑖𝑓 𝑡 ≥ 𝑇𝑡𝑟𝑖𝑝,𝑖

 (7.27) 

 𝑀𝑥𝐴𝑃𝑖(𝑡) ≥ 0 (7.28) 

 𝑀𝑛𝐴𝑃𝑖(𝑡) ≥ 0 (7.29) 

 𝑅𝑠𝑅𝑃𝑖(𝑡) ≥ 0 (7.30) 

 𝑃𝑂𝑃𝑖(𝑡) ≥ 0 (7.31) 

 
𝐸(𝐹𝑃𝑖(𝑡)) = 𝑀𝑥𝐴𝑃𝑖(𝑡) ∙ 𝐸𝑥𝐷 + 𝑃𝑂𝑃𝑖(𝑡) − 𝑀𝑛𝐴𝑃𝑖(𝑡) ∙ 𝐸𝑥𝑈

− 𝑅𝑠𝑅𝑃𝑖(𝑡) ∙ 𝐸𝑥𝑅 
(7.32) 

 

In this fuzzy optimization, the objective is to maximize the minimum membership of the 

fuzzy variables and, thus, maximize the aggregator profits. The cost of aggregator such as 

charging station infrastructure cost and other running costs such as communication and 

personnel are assumed to be fixed and are considered as negligible.  

The optimization formulation is constrained by the battery capacities as incorporated in 

(7.21) - (7.23). Equation (7.21) constraints that the total battery charged must be less than 

or equal to the battery capacity until the first commute trip. Equation (7.22) included the 

energy lost while commuting the EV, the effect of driving the EV in incorporated here. 

Equation (7.23) limits that the battery should not be charged before the end of the 

scheduling period. The equations (7.24) - (7.25) are due to the rate limitations. Unlike the 

previous chapter and other formulations [47], there is an availability factor 𝐴𝑣𝑖(𝑡) that is 

used. As this formulation is considered for the whole day, the EV availability and trip times 
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have to be considered. If the EV in not available, EV is on a trip, then 𝐴𝑣𝑖(𝑡) = 0 and that 

particular EV will not participate in the bidding. If the EV is available, EV is available on 

charging station, then 𝐴𝑣𝑖(𝑡) = 1 and that particular EV will be available for bidding in 

the market.  

The driving profiles of the electric vehicles can be predicted with significant certainty if 

there is a considerable number of EVs available. This must be accounted to by the 

aggregator in order to ensure that the EVs always have the capacity to follow the 

deployment signal from the ISO even if a certain number of EVs have unexpectedly 

departed. For a large number of EVs, this is statistically predictable [50]. Equation (7.26) 

and (7.27) takes care of the unexpected EV departure and the compensation factor used for 

that unexpected departure. Equation (7.28) - (7.31) are related to the EV battery capacity. 

The constraint in equation (7.32) shows that expected energy received is a function of the 

bidding parameters i.e. POP, regulation up capacity, regulation down capacity and the 

responsive reserve capacity. 

In order to avoid the excess burdening the power system network with the charging of 

electric vehicles, the load-constrained can be added to the optimization problem as follows: 

 ∑𝑃𝑂𝑃𝑖(𝑡) =
𝑀𝑙𝑥 − 𝐿(𝑡)

𝑀𝑙𝑥 −𝑀𝑙𝑛
∑𝑀𝑃𝑖

𝑐𝑎𝑟𝑠

𝑖=1

𝑐𝑎𝑟𝑠

𝑖=1

 (7.33) 

Similarly, in order to charge the EVs at a lower energy price, the following constraint can 

be added. This constraint will be an added advantage to the aggregator as it will be charging 

the EVs at time of lower energy cost. 
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 ∑𝑃𝑂𝑃𝑖(𝑡) =
𝑀𝑝𝑥 − 𝑃(𝑡)

𝑀𝑝𝑥 −𝑀𝑝𝑛
∑𝑀𝑃𝑖

𝑐𝑎𝑟𝑠

𝑖=1

𝑐𝑎𝑟𝑠

𝑖=1

 (7.34) 

7.3 Case Study 

The simulations are performed for a period of three months from 21st July, 2010 to 20th 

Oct, 2010. All the simulations are done on the ERCOT area with a hypothetical group of 

10,000 EVs used by commuters [69]. The system is simulated on Matlab using CVX 

toolbox to solve the optimization problem [84]. Each day simulation starts at 6 A.M. in the 

morning and ends at 6 A.M next day morning. The final SOC of the EVs on the simulation 

day will be the initial SOC for the next day. Electricity Market parameters such as energy 

price, load and the ancillary service signals are taken from the ERCOT database for the 

simulation period. Ancillary service deployments are taken for five minute resolutions 

because of the available data, but an EV can follow the deployment signals of much higher 

resolution [29], [30]. The day-ahead load of the ERCOT system is generated in a similar 

manner as mentioned in [77]. 

The electricity market parameters, such as ancillary service prices and deployments are 

forecasted using autoregressive integrated moving average (ARIMA) model. This includes 

the parameters, such as regulation up/down prices, responsive reserve prices, expected 

regulation up/down deployments and expected responsive reserve deployments. The 

hourly expected percentages of the ancillary service capacity is calculated for the historic 

data using the formulation presented in [47], [50] and then the forecast is done using 

ARIMA as presented in chapter 4. After forecasting the parameters, the mean absolute 
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error between forecasted and actual values are calculated to incorporate these forecasting 

inaccuracies into the fuzzy formulation. The mean absolute errors of the forecasted data 

are shown in Table 7-1. 

Table 7-1  Mean absolute percentage error of forecasted quantities over simulated period 

Electricity Market Parameters MAP Errors 

Regulation Up Prices 8.327 % 

Regulation Down Prices 9.5831 % 

Responsive Reserve Prices 6.777% 

Regulation Up Deployments 28.48 % 

Regulation Down Deployments 31.327 % 

Responsive Reserve Deployments 24.77 % 

 

In this simulation study, the same EV data is used as mentioned in the previous chapter. 

Three different kinds of EVs that are available in the market are considered: Nissan Leaf, 

Mitsubishi i-MiEV and Tesla Model-S. Battery specifications, EV performance and other 

specifications are given in [79]–[83]. Among this hypothetical group, it is assumed that 

50% of EVs are Nissan Leaf, 20% are Mitsubishi i-MiEV and 30% are Tesla Model-S. It 

is also assumed that each EV has a charging efficiency of 90%. Previously EV with SOC 

greater than 95% were considered in the simulations, but in this study all the EV are 

considered in the optimization problem. All the EVs that are used in these simulations can 

be charged from a standard 240V supply, and it is assumed that the charger has an 

efficiency of 90%. 

Each EV is assigned a random driving profile from the 2009 National Household Travel 

Survey data [85]. The EV commute times, morning and evening, commute durations, EV 

unexpected departures probabilities and additional trips are considered in a similar manner 
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as mentioned in [50]. In the previous chapter’s study, 500 driving profile were considered, 

but in this study 100 EV driving profiles are considered to save the computation time. 

Two types of simulation studies are performed and compared: deterministic and the 

proposed fuzzy based as was done in the previous chapter. Using each algorithm, expected 

day-ahead aggregator profits are obtained by evaluating the corresponding objective 

function. To further assess the effectiveness of the proposed FLP formulation, the actual 

aggregator profits on the bidding day are calculated for both the deterministic and proposed 

fuzzy algorithms. The actual aggregator profits are calculated from the algorithm presented 

in Figure 5-1 and Figure 7-1. The actual aggregator profits are calculated using the actual 

bidding day market parameters such as energy price, ancillary service prices and the 

ancillary service deployments while the expected profits are calculated using the proposed 

FLP with forecasted market parameters. 

The aggregator profit, as mentioned previously, comes from two different sources; 

ancillary service revenues and from the variation between the market and fixed (to the EV 

owner) energy price. The energy cost for the EV owner is fixed at $0.05/kWh. This low 

cost of energy for EV charging is considered to attract the EV owner to charge their EV 

form the aggregator charging infrastructure and also the EV owner will not be exposed to 

the energy price variations. 

7.4 Results and Discussions  

The deterministic and the proposed fuzzy optimization are performed for three different 

cases: 
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 With no load and price constraint in the optimization. 

 With load constraint included in the optimization. 

 With price constraint included in the optimization. 

The first case results in the highest aggregator profits as there is no additional constraint in 

the optimization problem that can minimize the profits. The load constraint is not a problem 

for the aggregator as the main goal of the aggregator is to maximize profits, not maintaining 

the balancing in the power system, but the system operator can impose this limit on the 

aggregator to avoid the system collapse. In these simulations, as the objective function is 

changed, the price constraint can be advantageous to the aggregator as the EVs will be 

charged when energy price is low and the EV is charged a fixed rate for the charging.  

7.4.1 Case # 1: With no Load and Price Constraint 

The deterministic and the proposed fuzzy based algorithms are run each day from 6 A.M. 

to 6 A.M. next day for the period of three months. During this period, it is considered that 

there is no difference between the weekdays and weekends. All the vehicles are assumed 

to be available, as per the availability factor, during the simulation period. 

7.4.1.1 Charging Profiles 

The charging profiles and the ancillary services provided by each algorithm are compared 

for 2nd August, 2010. This day is selected because it better reflects the price variations; 

prices are not much random on this day. The hourly ancillary service prices are shown in 

Figure 7-5. All the prices are higher in the late afternoon. The POP and ancillary service 

capacities are shown in Figure 7-6 - Figure 7-9. 
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Figure 7-5: Hourly ancillary service prices for 2nd Aug, 2010 

 

The POP of the EVs are usually set to a higher value at the end of the simulation day, to 

keep the EVs participate in the market for the whole day. If they are fully charged, then 

they will not be able to participate later. The POP is also set at the mid of the day before 

its commute time, so that the EV are charged for that particular commute. 

 

Figure 7-6: POP by each algorithm on 2nd Aug, 2010 

 

The regulation up capacity is highest in the afternoon, so both the algorithms bid regulation 

up at the afternoon period. The deterministic algorithm bids very little regulation up while 
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the fuzzy algorithm has bid almost 21 MW at 2 P.M. The regulation down capacity is 

shown in Figure 7-8. Both the algorithms have the same trend. The regulation down 

capacity is mostly sold at the night time while there is a local maxima at 12 P.M. in the 

day. The fuzzy algorithm bids higher regulation capacity as compared with the 

deterministic one. The responsive reserve capacity is sold at the end of the simulation 

period to completely charge the EVs. 

 

Figure 7-7: Regulation up by each algorithm on 2nd Aug, 2010 

 

 

Figure 7-8: Regulation down by each algorithm on 2nd Aug, 2010 
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Figure 7-9: Responsive reserve by each algorithm on 2nd Aug, 2010 

 

The POP for an average day is shown in Figure 7-10. Both the algorithms almost follow 

the same pattern and keep the POP to a lower value in the early six hours and in the middle 

of the day set a little higher value. But both the algorithms set the POP to be highest at the 

end of the simulation day i.e. 6 A.M. next day. This is because if the EV are charged at the 

start of the simulation day, they will be not be able to participate in the bidding later. 

 

Figure 7-10: Average POP by each algorithm 
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The ancillary services by the algorithms are shown in Figure 7-11 - Figure 7-13. In the 

average regulation up, sometime the deterministic algorithm bids higher than the proposed 

fuzzy algorithm and sometime vice versa. The average regulation down capacity is shown 

in Figure 7-12. The deterministic algorithm and the fuzzy algorithm both follows the same 

pattern and bids in almost every hour. In almost every hour, the proposed fuzzy algorithm 

is a little higher than deterministic algorithm. As the electric vehicles make their first trip 

after 8 A.M. so the regulation capacities before the 8 A.M. is usually zero. 

 

Figure 7-11: Average regulation up by each algorithm 
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Figure 7-12: Average regulation down by each algorithm 

 

 

Figure 7-13: Average responsive reserve down by each algorithm 

 

The responsive reserve capacity is shown in Figure 7-13. Both the deterministic and the 

proposed fuzzy algorithms mainly bid the responsive reserve at the end of the charging 

period to make the electric vehicles charge close to 100%. 

7.4.1.2 Quarterly Results 

The section analyzes the expected and actual profits of an aggregator for the deterministic 
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and actual profit of an aggregator for an average day. Although the deterministic algorithm 

expected profits are higher than the fuzzy algorithm, the actual profits of the fuzzy 

algorithm end up higher by about 6.22% than the deterministic actual profits. This shows 

the superiority of the proposed algorithm. 

 

Figure 7-14: Expected and actual profits of an aggregator for an average day 

 

When comparing the aggregator profits on the whole simulation period of three months, 

the expected aggregator profits comes out to be $ 444.932k which is 9.39% higher than the 

expected proposed fuzzy profits while on the actual bidding day, the proposed fuzzy 

generates more profits i.e. $ 357.99k which is 6.21% higher than the deterministic actual 

profits and 11.2% less than the expected fuzzy profits. On the actual day, the fuzzy 

algorithm performs better than deterministic algorithm. This is evident from Figure 7-15. 
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Figure 7-15: Total expected and actual profits of an aggregator 

 

From the power system perspective, the charging of EVs should not stress the power 

system. The peak and the average peak load increase by deterministic and proposed fuzzy 

algorithm is shown in Figure 7-16. The proposed fuzzy algorithm results in a slightly higher 

peak load (about 4MW increase), while the average peak load increase is the same as that 

of deterministic algorithm. This shows that the added advantage, of aggregator using this 

fuzzy algorithm is slightly burdening the power system. 
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Figure 7-16: Daily average peak and peak load increase by different algorithm due to EV 

charging 

7.4.2 Case # 2: With Load Constraint 

In this case, the same optimization problem is solved with an extra load constraint 

mentioned in (7.33) is added to order to avoid the burdening of the power system network. 

Both the optimization, deterministic and proposed fuzzy algorithm are simulated for the 

same charging period from 6 A.M. to 6 A.M. next day for a period of three months. 

7.4.2.1 Charging Profiles 

The electric vehicles average POP, ancillary service capacities are shown in Figure 7-17. 

The POP almost follows the same pattern as that of the previous case and bids the most at 

the end of the simulation day and bids very small capacity during the day.  
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Figure 7-17: Average POP by each algorithm with load constraint 

 

The ancillary services by the algorithms are shown in Figure 7-18 - Figure 7-20. In the 

average regulation up, sometime the deterministic algorithm bids higher than the proposed 

fuzzy algorithm and sometime vice versa. The average regulation down capacity is shown 

in Figure 7-19. The deterministic algorithm and the proposed fuzzy algorithm both follows 

the same pattern and bids in almost every hour. The proposed fuzzy algorithm is a little 

higher than deterministic algorithm except a few hours. As the electric vehicles make their 

first trip after 8 A.M. so the regulation capacities before the 8 A.M. is usually zero or very 

low.  
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Figure 7-18: Average regulation up by each algorithm with load constraint 

 

 

Figure 7-19: Average regulation down by each algorithm with load constraint 
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Figure 7-20: Average responsive reserves by each algorithm with load constraint 

 

The responsive reserve capacity is shown in Figure 7-20. Both the deterministic and the 

proposed fuzzy algorithms mainly bid the responsive reserve at the end of the charging 

period to make the electric vehicles charge close to 100% of their capacities.  

7.4.2.2 Quarterly Results 

This section presents the aggregator profits for the different algorithms: deterministic and 

proposed fuzzy. The expected and the actual profits for an average day is shown in Figure 

7-21 while Figure 7-22 presents the total expected and actual profits of an aggregator for 

the three months period. 
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Figure 7-21: Expected and actual profits of an aggregator for an average day with load 

constraint 

 

With the load constraint added in the optimization, the aggregator expects a little lower 

profit than the algorithm without load constraint and it is evident from the figures. The 

aggregator expected profits, in the day-ahead bidding, using the fuzzy algorithm is 6.21% 

lower than the deterministic algorithm, while on the actual day of bidding, the aggregator 

get a little higher profits using proposed fuzzy algorithm as compared with the 

deterministic algorithm. The actual profits, using the proposed fuzzy algorithm, are 6.92% 

higher than the deterministic algorithm. The same trend for the day-ahead expected and 

actual profits comparison is evident from the total profits graph as shown in Figure 7-22. 
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Figure 7-22: Total expected and actual profits of an aggregator with load constraint 

 

The charging of EVs should not stress the power system network. The peak and the average 

peak load increase by deterministic and proposed fuzzy algorithm is shown in Figure 7-23. 

The proposed fuzzy algorithm results in a slightly higher peak and average peak load than 

the deterministic algorithm. This shows that the proposed fuzzy algorithm is affecting the 

same as that of the deterministic algorithm. There is no additional burden by the proposed 

fuzzy algorithm on the power system network. 
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Figure 7-23: Daily average peak and peak load increase by different algorithm due to EV 

charging with load constraint 

7.4.3 Case # 3: With Price Constraint 

In this case, the same optimization problem is solved with an extra price constraint 

mentioned in (7.34) is added to order to avoid the burdening of the power system network. 

Both the optimization, deterministic and proposed fuzzy algorithm are simulated for the 

same charging period from 6 A.M. to 6 A.M. next day for a period of three months. 

7.4.3.1 Charging Profiles 

The charging profiles for the POP, ancillary service capacities with the price constraint are 

shown in Figure 7-24 - Figure 7-27. The POP behaves the same pattern as that of the 

previous cases and bids most of its capacity in the last simulation hour i.e. 6 A.M. 
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Figure 7-24: Average POP by each algorithm with price constraint 

 

The ancillary services by the algorithms are shown in Figure 7-25 - Figure 7-27. In the 

average regulation up, sometime the deterministic algorithm bids higher than the proposed 

fuzzy algorithm and sometime vice versa similar to the previous cases. The average 

regulation down capacity is shown in Figure 7-26. The deterministic algorithm and the 

proposed fuzzy algorithm both follows the same pattern and bids in almost every hour. The 

proposed fuzzy algorithm is a little higher than deterministic algorithm except a few hours. 

As the electric vehicles make their first trip after 8 A.M. so the regulation capacities before 

the 8 A.M. is usually zero or very low.  
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Figure 7-25: Average regulation up by each algorithm with price constraint 

 

 

Figure 7-26: Average regulation down by each algorithm with price constraint 
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Figure 7-27: Average responsive reserves by each algorithm with price constraint 

 

The responsive reserve capacity is shown in Figure 7-27. Both the deterministic and the 

proposed fuzzy algorithms mainly bid the responsive reserve at the end of the charging 

period to make the electric vehicles charge close to 100% of their capacities.  

7.4.3.2 Quarterly Results 

This section presents the aggregator profits for the different algorithms: deterministic and 

proposed fuzzy. The expected and the actual profits for an average day is shown in Figure 

7-28 while Figure 7-29 presents the total expected and actual profits of an aggregator for 

the three months period. 
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Figure 7-28: Expected and actual profits of an aggregator for an average day with price 

constraint 

 

With the price constraint added in the optimization, the aggregator expects a higher profit 

than the deterministic algorithm in the day-ahead bidding and also on the actual day of 

bidding, the aggregator get a considerable higher profits with the use of proposed fuzzy 

algorithm as compares with the deterministic algorithm. On the actual day, the aggregator 

gets 5.74% higher profits with the use of proposed fuzzy algorithm. 

 

Figure 7-29: Total expected and actual profits of an aggregator with price constraint 
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The charging of EVs should not stress the power system network. The peak and the average 

peak load increase by deterministic and proposed fuzzy algorithm is shown in Figure 7-30. 

The proposed fuzzy algorithm results in almost the same peak and average peak load as 

resulted by the deterministic algorithm. This shows that there is no additional burden by 

the proposed fuzzy algorithm on the power system network. 

 

Figure 7-30: Daily average peak and peak load increase by different algorithm due to EV 

charging with price constraint 

7.5 Conclusions  

In this chapter, the benefits of coordinated bidding of ancillary services for unidirectional 

V2G with fuzzy market uncertainties are investigated. The proposed fuzzy algorithm for 

V2G is found to be more beneficial for the aggregator in terms of profits on the actual 

bidding day as compared with the previous proposed deterministic algorithm. The new 

objective function proposed is also beneficial for EV owner and aggregator, as the owner 

is not exposed to the energy price variations and has to pay a fixed cost for charging EV, 

while the aggregator can take advantage of the varying market prices by predicting the 
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future values of the market. Different market uncertainties are modeled using the fuzzy set 

theory such as ancillary service prices and deployments signals. Furthermore, different 

cases were simulated with the load and price constraint that avoids the burdening of the 

power system network and charge the electric vehicles at low price cost. 
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CONCLUSIONS AND FUTURE WORK 

In this thesis, optimal aggregator bidding strategies for unidirectional vehicle-to-grid using 

fuzzy uncertainties is presented for the day-ahead ancillary services market. A fuzzy based 

smart charger and fuzzy optimization based bidding strategies is developed for an 

aggregator. Different electricity market uncertainties are incorporated using the fuzzy set 

theory such as regulation prices, responsive reserve prices, regulation, and responsive 

reserve deployments. The algorithms are compared with the previously published 

deterministic algorithms, without the uncertainties in the bidding. The algorithms, 

deterministic and proposed fuzzy, are simulated on the hypothetical group of 10,000 EVs, 

operating in the real electricity market ERCOT. The electricity market data are taken from 

the ERCOT ISO website for the simulation period. 

First, a novel smart charging algorithm based on the fuzzy logic control is presented. 

Previously different smart charging algorithms were presented in the literature, such as 

price based, load based and MaxReg based smart charging algorithms. In fuzzy smart 

charging, taking the advantage of fuzzy logic, previous published charging algorithms were 

combined in a fuzzy logic controller. The proposed fuzzy based smart charger results in 

the highest profits for the aggregator. The proposed algorithm, not only benefits the 

aggregator, but also charges the EVs at lower energy cost and the impact on the power 

system is also reduced. While each previous algorithm has its own specific merits, such as 

the load algorithm impacts the power system lowest, but they were only targeting one 

specific task. 



129 

 

Second, optimal aggregator bidding of regulation service for unidirectional V2G is 

developed using the fuzzy linear programming. A fuzzy optimization is proposed for the 

finding the optimal bidding for the aggregator. Different electricity market uncertainties 

are modeled using the fuzzy sets, such as regulation up/down prices and regulation 

deployments signals. Previous published deterministic algorithm is compared with the 

proposed fuzzy algorithm. The deterministic algorithm perform better than the fuzzy 

algorithm for the expected profits while on the actual day of bidding, proposed fuzzy results 

in higher profits than the deterministic. The actual profits are the real profits of the 

aggregator and the difference between the expected and the actual profits are minimized 

for the proposed fuzzy algorithm. Load and Price constraint are also simulated so that the 

impact of EV charging on the grid is minimized and the EVs are charged at lower energy 

price respectively. 

As the EV can participate in different electricity markets, so in the last section of the thesis, 

coordinated bidding of the aggregator for the ancillary services, regulation services and 

responsive reserves, are investigated. The formulation presented in this chapter is an 

extension of the previous work with detail modeling of ancillary service market parameters 

and EVs parameters. Moreover, the objective function is also changed and the EVs are 

charged at a fixed cost. The new objective function is beneficial to both EV owners and 

aggregator as the owners will not be exposed to energy price variations. Different 

electricity market uncertainties are modeled with the fuzzy sets. The expected and the 

actual aggregator profits are compared for both the deterministic and fuzzy algorithms. On 

the actual day of bidding, the fuzzy algorithms results in a higher profit as compared with 
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the deterministic profits. Similar to the previous work, the simulations are also performed 

with the load and price constraints. 

In this thesis work, the main objective achieved is the incorporation of electricity market 

uncertainties for day-ahead aggregator bidding using the fuzzy set theory. The proposed 

fuzzy algorithms results in a higher profits on the actual day of bidding and generates more 

profit for the aggregator as compared with the previous deterministic algorithms. 

The work in this thesis can be further extended in many directions and some of them are: 

 The work in this thesis has focused on unidirectional V2G bidding. In addition to 

the unidirectional V2G, bidirectional V2G for participating in the energy market 

can be done. 

 The different parameters related to EVs such as their availability, departure times, 

trip duration and SOC reduction are dealt here in a deterministic and probabilistic 

manner. They can also be fuzzified. 

 The forecasting should be improved further, so that greater benefits out the 

available resources can be obtained. 
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