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Thesis Title : Reliability Analysis of C-130 Turboprop Engine Components Using 

Artificial Neural Network. 

Major Field : Aerospace Engineering. 

Date of Degree : Jumada' I, 1434H - March, 2013G 

 

In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than 

thirty years of local operational field data were used for failure rate prediction and 

validation. The Weibull regression model and the Artificial Neural Network model 

including (feed-forward back-propagation, radial basis neural network, and multilayer 

perceptron neural network model); will be utilized to perform this study. For this 

purpose, the thesis will be divided into five major parts. First part deals with Weibull 

regression model to predict the turbine general failure rate, and the rate of failures that 

require overhaul maintenance. The second part will cover the Artificial Neural Network 

(ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. 

The MATLAB package will be used in order to build and design a code to simulate the 

given data, the inputs to the neural network are the independent variables, the output is 

the general failure rate of the turbine, and the failures which required overhaul 

maintenance. In the third part we predict the general failure rate of the turbine and the 

failures which require overhaul maintenance, using radial basis neural network model on 

MATLAB tool box. In the fourth part we compare the predictions of the feed-forward 

back-propagation model, with that of Weibull regression model, and radial basis neural 

network model. The results show that the failure rate predicted by the feed-forward  



xiv 

 

back-propagation artificial neural network model is closer in agreement with radial basis 

neural network model compared with the actual field-data, than the failure rate predicted 

by the Weibull model. By the end of the study, we forecast the general failure rate of the 

Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and 

six categorical failures using multilayer perceptron neural network (MLP) model on 

DTREG commercial software. The results also give an insight into the reliability of the 

engine turbine under actual operating conditions, which can be used by aircraft operators 

for assessing system and component failures and customizing the maintenance programs 

recommended by the manufacturer. 
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 الرسالةص ملخ

 
 

 عوض الله حسين قطانن بنزار  الاسم الكامل:
 

باستخدام الشبكات  031-لسيتحليل الموثوقية في مكونات المحرك المروحي التربيني لطائرة ا ' عنوان الرسالة:
 'الإصطناعية  العصبيه

 
 هندسة الطيران والفضاء التخصص:

 
 م.3103 -هـ 0131 :تاريخ الدرجة العلمية

 
مر  نرنش كررلة لول يرد مرارت    031-تربينات محرر   طراةرا السريعطال في الأ وتنبؤ تحليل تم ،في هذه الدراسة

 وترم  لررر مر  رنرري  عامرا  ميدانيره لأ هبيانرات تكرليليخدام فقد تم اسرتهذه العملية والتحقق م  نحة التحليل,  لإتمامو

نرطناعية الإ العنربية اتونموذج الكربل باستخدام التحليل الوابلي,نحدار ج الإنموذوهي:  علميةم عدا نماذج ااستخد

              رترررررداد ذات الانتكررررار الإ الأماميررررةالتلذيررررة  كرررربلاتبمررررا فررررري ذلرررر    باسررررتعمال العديررررد مرررر  الخوار ميررررات 

propagation-backforward -eedF  ,الكرررعاعي الأسرررا  بدالرررة نرررطناعيةالإ العنررربية الكررربلة         

adial basis neural networkR  ,المستكرررعر المتعررردد الطبقرررات  erceptronultilayer pM  )             

نحردار باسرتخدام تحليرل الإ تقسيم الأطروحة إلر  خمسرة زار ائ رةيسرية   يتنراول الار ئ الأولتم فقد  ل ذا اللرض, و

 الأعطرال اللتري تتطلرص عامره, و التري تتطلرص نريانة الأعطرال ةفي حال التوربينات نموذج وايبل للتنبؤ بنسبة زعطال

خوار ميرات  بطريقرة(  ANN  النرناعية الكبلة العنربية  بحث استخدام نماذجتم الا ئ الراني  فيو  ةكامل اعمر

مرر  زاررل بنررائ وتنررميم  MATLABاسررتخدام ح مررة  وتررملررتعلم  لقاعرردا لرتررداد  نتكررار الإالأماميررة ذات الإالتلذيررة 

تمرل المتليرات المسرتقلة ، والنرواتج تمررل ت إل  الكبلة العنبية المدخن حيث ز  ،لمحالاا البيانات الميدانية برنامج

تررم اسررتخدام فرري الارر ئ الرالررث عمرررا كرراملة  الترري تتطلررص  عطررال العامررة فرري التوربينررات ، و الأعطررالمعرردل لأ

لتوقش المعدل العام لأعطال التوربينات, والأعطرال الكعاعي  الأسا  بدالة نطناعيةالإ العنبية خوار ميات الكبلة

              MATLABضررررم  ح مررررة  هسررررتعانة بنمرررروذج الكرررربلة العنرررربية المبرمارررربالإ ,كرررراملةالترررري تتطلررررص عمرررررا 

كرربلات التلذيررة  خوار ميررات وللتحقررق مرر  نررحة النترراةج, تررم فرري الارر ئ الرابررش عمررل مقارنررة علميررة برري  مخراررات
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مرش  ,الكرعاعي الأسرا  بدالرة نرطناعيةالإ العنربية و خوار ميات طريقة الكربلة ,رتداد نتكار الإذات الإ الأمامية

 بيةـالعنر بلاتـوبنرائ  عليره, فقرد إتضر  مر  خرنل هرذه المقارنرة ز  الكر  ليـنموذج الإنحدار باستخدام التحليرل الوابر

 الأعطال  مقارنة بنموذج التحليل الوابلي  مرات لعدد الفعلية النتااةج لمحالاا الفاةقة القدرا لدي ا اللإنطناعية

قسرام رةيسرية  لسرتة ز 103-السري وربينرات محرلرات طراةراتنرني  الأعطرال الكراةعة لتب نراقموفي ن اية هذا الا ئ 

المستكررعر المتعرردد الطبقررات علرر  ح مررة البرنررامج التاررار  وبإسررتخدام خوار ميررات الكرربلات العنرربية بطريقررة 

DTREG ,بالإضرافة , تم توقرش معردل الأعطرال التري تتطلرص نريانة عامرة, و الأعطرال اللتري تتطلرص عمررا كراملة

 لأعطال الست الكاةعة 

 راـات طاةـمحرلمادية لتوربينات ـبة في مدى الإعتــائ نظرا راقـإعطيمل  ة, ـاةج هذه الدراسـم  خنل نتو, وزخيرا

 الوحردات عردد معرفرة خرنل , م  نيانةال لتخطيط ليل الفعلية ، واستخدام ا لأداهـتحت ظرو  التك  103-سيال 

 مون  ب ا م  قبل الكرلة المننعة و تخنيص برامج النيانة ال, الأعطالحالة  في للبدي المطلوص توفرها
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CHAPTER 1  

INTRODUCTION 

Modern aircraft engines are very complex machines. They provide the necessary thrust 

for the aircraft to fly. Therefore, the safety of an aircraft greatly depends on the reliability 

of its engine. Engine turbine extracts energy from a flow of expanding combustion gas, 

and converts the gaseous energy to mechanical energy in the form of shaft power to drive 

the propeller, compressor, and all engine accessories. A large mass of air must be 

supplied to the turbine in order to produce the necessary power. This extreme high 

temperature, pressure, and velocity air mass may contain sand and dust which will cause 

a catastrophic damage to aircraft turbine and engine. So preventive maintenance and 

continuous monitoring of engines are essential measures to increase both reliability and 

aircraft safety.  

There are various conventional regression models that can be applied to predict the 

failure of equipment and systems; however, there has been a growing interest lately in the 

application of artificial neural networks (ANN), which have outperformed regression 

models. The ability of neural networks to model multivariate problems without making 

complex dependency assumptions among the input variables is an advantage over 

statistical method. Moreover, neural networks extract the implicit nonlinear relationships 

among the complex input data gathered from many maintenance records through a 

learning process from the training data. The objective of this research is to build a neural 
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network model to predict the general Lockheed C-130 engine turbine failure rate and the 

failures which required overhaul maintenance, based on local environment. The results of 

the ANN model are also compared by the predictions of the Weibull regression model, 

and radial basis neural network model. Also to enhance maintenance planning, we will 

model all engine turbine failures including general failure, failure which required 

overhaul maintenance and, six categorical failures classified by reasons of failure using 

Multilayer Perceptron Neural Network (MLP) model on DTREG commercial software. 

The rest of this paper is organized as follows. Section II reviews the literature on Weibull 

distribution and artificial neural network. Following a description of the failure data, and 

its mortality characteristics, Weibull distribution analysis was modeled, and validated by 

Windchill quality solution software as discussed in Section III. Section IV describes the 

ANN approach including BP neural network analysis, which compared with Weibull 

regression and RB NN model. Finally to enhance maintenance planning, we modeled 

most frequent turbine failures, using Multilayer Perceptron Neural Network (MLP) on 

DTREG software. The conclusions and future work are discussed in section V. 
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1.1 Lockheed C-130 Engine 

Since the Lockheed C-130 Engine turbine are used as a test model for the analysis, it 

would be appropriate to introduce the function and layout of the system before 

proceeding with a description of our work. The airplane is powered by four constant 

speeds T-56 Turboprop engines. Complete engine consists of a gas turbine power unit 

connected by an extension shaft and supporting structure to reduction gear assembly to 

the engine propeller which creates the required thrust. The power section has a        

single-entry 14 stages axial-flow compressor, a set of 6 combustion chambers of  

through-flow type, and a 4-stage turbine. Mounted on the power section is an accessories 

drive assembly and components of the engine fuel, ignition, and control systems as 

shown in Figure  1-1. [1,2,3,4]. 

 

Figure 1-1 T-56 Turboprop engines 
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Inlet air enters the compressor and progressively compressed through the 14 stages 

compressors. The compressed air - at approximately 125PSI, 315ºC (600ºF) - flows 

through a diffuser into the combustion section. Fuel is injected into the combustion 

chambers, mixed with air and burned, increasing the temperature and thereby the energy 

of gases. The hot gases pass through the turbine causing it to rotate and drive the 

compressor, propeller, and engine accessories. The gases after expanding through the 

turbine flow out a tailpipe as presented in Figure  1-2. The reduction gear assembly 

contains a reduction gear train, engine starter, an A.C generator, a hydraulic pump, and 

oil pump. The reduction gear train is in two stages providing an overall reduction of 

13.54 to 1 between engine speed of 13,820 RPM and propeller shaft speed of 1,021 RPM. 
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Power Planet General Characteristics    

- Type: Turboprop. 

- Compressor: 14 stages axial flow. 

- Combustors: 6 cylindrical flow-through. 

- Turbine: 4 stages. 

- Fuel type: JP8, 2412 pounds per hour per engine. 

- Oil system: 2 systems (1 each for power section and reduction gearbox). 

- Maximum power output: 4,300 SHP per engine. 

- Overall pressure ratio: 14.5:1. 

- Power-to-Weight ratio: 2.75:1 (SHP/lb). 

 
Figure 1-2 Schematic of power section air flow 
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1.2 Lockheed C-130 Engine Turbine 

The turbine system is a 4-stages turbine, designed to extract the gas energy directed from 

the combustion chamber at extreme high pressure and temperature - maximum turbine 

inlet temperature (TIT) of 1077ºC at Take-off power limited to 5 minutes, 1010ºC 

maximum continuous operation and, 932ºC recommended cruise power - developing 

11000 Hp of mechanical energy to drive the compressor, propeller, and engine 

accessories. As we mentioned in the introduction part, the turbine section is the most 

affected area by thermal distress, sulfidation and sand ingestion. The turbine system 

consists of many components, some of the man turbine components: turbine inlet casing, 

vane and seal support, turbine vane casing, four stages of turbine stator, four stages of 

turbine rotor, thermocouples and rear bearing support, as presented in Figure  1-3. [5].   

To simplify our modeling we will deal with the engine turbine as a single unit.  
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Figure 1-3 Turbine Unit Assemblies 



8 

 

1.3 Statement Problem 

Lockheed C-130 is widely operated in desert environments in our region, and often 

encounters sand and dust erosion, which have been known to create a number of 

operating problems for the power plant. The engine turbine is most affected by sand and 

dust ingestion, as it works under extreme temperate and pressure conditions. Operating in 

such erosive – ingestion of sand, dust or dirt - and corrosive – salt laden environments - 

will result in wearing of the blade leading edges and trailing edge root, causing airfoils 

changing shape, and may lead to structural failure Figure  1-4. 

Engine turbines operating in such harsh environments are known to suffer from the 

following: 

 Reduction in air mass flow. 

 A clog or block cooling air passages, turbine wheels, and the thermocouples. 

 Reduction in stall margin. 

 Increased probability of unscheduled engine rundown. 

 Loss of turbine efficiency. 

 Turbine vane burn-through. 

 Increased turbine materials temperature causing shorter service life Figure  1-5. [6].   

 Intensive increase in turbine temperature during engine startup. 

 Turbine sulfidation. Figure  1-6. [6]. 

Preventive maintenance and continuous monitoring of engines are essential measures to 

increase both reliability and aircraft safety. Maintenance Planning Document (MPD) 

prepared by the manufacturer is the main document that is used by aircraft operators in 
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developing their maintenance programs for a particular type of aircraft. MPD sets 

minimum maintenance requirements for the aircraft. Each operator should customize 

MPD based upon its own operating conditions, environment, maintenance capabilities, 

practices, and rules of the local regulatory authority. Most of the operators usually use the 

inspection or replacement intervals mean time between failures as recommended by the 

manufacturer in their maintenance program as long as they do not conflict with local 

regulations. Once an engine reaches the serviceability limit for overhaul, according to 

U.S. Federal Aviation Regulations (FAR), the engine must be removed from the aircraft 

for overhaul. Reference to maintenance Technical Order book (T.O) the life time limit for 

Lockheed C-130 Engine turbine overhaul maintenance is (6000) operational hours, but 

unfortunately the actual overhaul maintenance is way much than this limit (2500) hours 

due to local environment mentioned above. The time taken to reach this failure is 

measured by the associated total operational time (T.T), and the time since overhauled 

(TSO). Manufacturer recommendations are based on the test data. Even the most faithful 

and rigorous testing will fail to precisely simulate all field conditions. On the other hand, 

field data capture the operating and environmental stresses associated with the actual 

usage conditions. It is quite likely that there would be variations between the field 

reliability data and manufacturer reliability test results. Usage of field data allows for 

more accurate predictions of reliability performance of the components. This enables the 

operators to develop appropriate inspection or replacement programs, and spare part 

plans based on their own operating and environmental conditions, which will results in 

decreasing maintenance cost and minimizing flight delays and cancellations due to 

unexpected failures. Analysis of failure data for the fielded systems is also very important 



10 

 

to manufacturers because the information received from the field gives a true measure of 

product performance and it points out the areas of improvements to refine the product by 

design changes. 

However  there  is a  limited  number  of  studies  on  the  fielded systems  because  of  

in-service  failure  data may be incomplete due to lost information, and  often  more  

difficult to obtain. However this problem is less problematic in large aviation 

organizations, which usually operate with strict data reporting requirements. 

Hence methods presented in this study can be used to assess the   failure   characteristics 

of   any   system   or   component   and to customize   the manufacturer recommended 

maintenance program; it will prove the way for further discussions and investigations, 

especially in our unique operating and environmental conditions. 
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Figure 1-4 Effects of sand ingestion and sulfidation on the T-56 Turbine 
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Figure 1-5 Effect of temperature on T-56 turbine blade materials 

 

 

Figure 1-6 Effect of temperature on sulfidation 
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1.4 Objectives 

The main objective of this study is to accurately model the failure rate of            

Lockheed C-130 engine turbine system, based on a history of data collected from a local 

maintenance facility by feed-forward back-propagation MATLAB code, and to compare 

it with that of Weibull regression model, and radial basis neural network on MATLAB 

tool box, to ensure a reliable data which can be utilized for maintenance planning based 

on the local environment. The Three models are constructed for two cases. The first case 

is for general turbine failure. The second case is for turbine failures that required 

overhaul maintenance. 

Finally, to give an insight into the reliability of the engine turbine in our desert 

environment, which can be used by aircraft operators for assessing system and 

component failures and customizing the maintenance programs recommended by the 

manufacturer, all engine turbine failures including general failure, turbine failures that 

required overhaul maintenance, and six categorical classified reasons of failure are 

forecasted by Multilayer Perceptron neural network (MLP) model on DTREG program. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Weibull Distribution 

Weibull distribution was originally derived in 1928 by R. A. Fisher and L. H. C. Tippett 

[7]. Their, derivation became known to researchers who were familiar with          

extreme-value theory. In 1939 a Swedish scientist, Waloddi Weibull, derived the same 

distribution with which his name has been associated in recent years. This derivation 

came about as the result of an analysis of breaking-strength data and can be found in [8], 

Weibull also related published papers [9], and [10], illustrates several examples of the 

distribution's practical value in analyzing various types of data. Further [11] Weibull 

explained the reasoning of the Weibull distribution through the phenomenon of the 

weakest link in the chain, [12].  

Zaretsky proposed a generalized Weibull-based methodology for structural life prediction 

that uses a discrete-stressed volume approach. They applied this methodology to 

qualitatively predict the life of a rotating generic disk with circumferentially placed holes 

as a function of the various Weibull parameters [13]. Al-Garni studied the failure rate in 

many aviation industry fields with a focus on aircraft components and systems by using 

both two and three parameters Weibull [14]. His new approach was to study and calculate 

the reliability analysis not only on the component level, but also at the system level. 
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Through his study, he focused on a lot of maintenance issues and procedures that would 

promote and enhance the reliability of studied system by concluding his researches with 

some practical recommendation related to the maintenance practices, and customizing the 

maintenance programs recommended by the manufacturer. He also used the Weibull 

model, Mixture model, and phased bi-Weibull model for modeling the failure of the 

aircraft air-conditioning/cooling pack under a customer-use environment at the 

component level. The results indicate that the water separator is the component with the 

most observed failures. Dirt contamination is identified as the most frequently occurring 

failure type for the water separator. The rate of occurrence of failures for the system 

indicates no trend and is almost constant. This is likely due to weather conditions in the 

region. Results also point out that the failures occur at a higher rate than that estimated by 

the manufacturer [15]. Tozan et al. [16,17] Used simple and mixture Weibull methods for 

forecasting the failure rate distribution of Boeing 737 aircraft Auxiliary Power Unit 

(APU) oil pumps. He found that the method can make quantitative trades between 

scheduled and unscheduled maintenance or non-destructive inspection and replacement, 

The method also help in determining the age at which an operating part in an aircraft 

system should be replaced with a new one for various cost ratio. The results were in close 

agreement with the real data indicating the validity of the Weibull model, and it is 

demonstrated that the mixture Weibull model is more accurate in predicting the failure 

rate of APU oil pumps than simple Weibull model. Anwar. K. Shaikh et al. [18] studied 

the reliability of some rotating equipment that is used in oil and gas field, two parameters 

Weibull was utilized in his study. Further in [19] He studied the reliability analysis of 

airplane tires using the Weibull analysis method to determine reliability of a variety of 
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machine elements and systems. The data of time to failures of aircraft tires have been 

used. Also he has demonstrated that Weibull could be utilized in calculating the 

reliability of an assembly of rotating parts subjected to fatigue failure. The fatigue life 

distribution of each individual component in the assembly is considered to be Weibull 

distributed. They found that this method is quite an accurate method of determining mean 

time between failures (MTBF), and also provide fairly accurate reliability 

characterization [20]. Samaha et al [21]. Studied the utilization of Weibull to predict the 

failure of some equipment based on history of data to give an indication of the 

component failure mechanism. He has also demonstrated that Weibull could be utilized 

in calculating the number of future failures according to the mean time between failures 

(MTTF).  Erwin with assistance from NASA used Weibull model in aging and predicting 

the life of aircraft engine structures including critical rotating components like high 

pressure turbine blades, fan, and compressors, [22]. Lewis et al [23,24]. Used regression 

based analysis which will be basically used in this study. 

2.2 Artificial Neural Network (ANN) 

Earlier, in 1943, McCulloch and Pitts presented a neural computing model called the 

MCP neuron [25]. In the paper they tried to explain how the brain could produce complex 

patterns from a connection of basic neurons. They formed a logical calculus of neural 

network. A network consists of number of neurons and properly set synaptic connections 

that can compute any computable function. They gave a simple model of such a neuron 

that consisted of a collection of inputs and a single output. The inputs were either 

excitatory (+1) or inhibitory (-1). The function for the neuron weights and sums the 
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results to produce either a +1 or a -1. The arrangement of neuron in his case maybe 

represented as a combination of a logic function. The most important type feature of this 

type of neuron is the concept of the threshold. If the net input to a particular neuron is 

greater than the specified threshold by the user, then the neuron fires.  Logic circuits are 

found to use this type of neuron extensively. Later, D.O. Hebb in 1949 theorized that 

learning occurred in brains when synapses and neurons fire repeatedly which in a way 

'trains' the network to recognize the same stimulus when it occurs again [26]. Hebb 

proposed that the connectivity of the brain is continually changing as an organism learns 

different functional tasks, and that neural assemblies are created a change. The concept 

behind the Hebb theory is that if two neurons are found to be active simultaneously the 

strength of connection between the two neurons should be increased. The concept is 

similar to that of correlation matrix learning. Moreover, Rosenblatt introduced 

perceptions. In perceptions network the weights on the connection paths can be adjusted. 

A method of iterative weight adjustment can be used in perception net [27]. The 

perception net is found to converge if the weights obtained allow the net to produce 

exactly all the training inputs and target output vector pairs. Later, Widrow and Hoff 

introduced (ADALINE), abbreviated from Adaptive Linear Neuron uses a learning rule 

called as Least Mean Square (LMS) rule or Delta rule [28]. This rule is found to adjust 

the weights so as to reduce the difference between the net input to the output and the 

desired output. The convergence criteria in this case are the reduction of mean square 

error to a minimum value. This delta rule for a single layer can be called a precursor of 

the back propagation net used for multi-layer nets. The multi-layer extension of Adaline 

formed the Madaline. In 1982, John Hopfield’s introduced new concept networks, 
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Hopfield showed how to use “Using spin glass “type of model to store the information in 

dynamically stable networks, [29]. His work paved the way for physicists to enter neural 

modeling, thereby transforming the field of neural networks.  Three years later, Parker 

back propagation net paved its way into neural networks, [30]. This method propagates 

the error information at the output units back to the hidden units using generalized delta 

rule. This net is basically a multilayer, feed foreword net trained by means of back 

propagation. Back propagation net emerged as the most popular learning algorithm for 

the training for multilayer perceptions (MLP) networks and has been the workhouse for 

many neural network applications. This approach is what we are going to utilize in this 

study since it has proven its power in many fields especially in engineering and it is one 

of the approaches that is widely used in industry. As a result Broomhead and Lowe 

developed Radial Based Functions (RBF) neural network [31] and [32], This is also a 

multilayer net that is quiet similar to the back propagation net, which was developed from 

an exact multivariate interpolation [33], and has attracted a lot of interest since its 

conception. There are a number of significant differences between RBF and MLP 

networks. That the RBF network has one hidden layer while MLP network has one or 

more hidden layers, the hidden and output layer nodes of the RBF network are different 

while the MLP network nodes are usually the same throughout, and RBF networks are 

locally tuned while MLP networks construct a global function approximation. This thesis 

also looks at RBF neural network for back propagation ANN validation, and MLP neural 

network for multiple categorical failures analysis. 

Al-Garni utilized the back propagation approaches to predict the failure of some 

equipment, [14,15]. The number of input and output layers and neurons played a 
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significant role in the accuracy of the prediction. Selecting the right structure of the 

network was one of the challenges in the study in order to come up with an optimum 

model with good parameters that would lead to a reliable prediction of the failure. In [14] 

He modeled the prediction failure rate for Folkker F-27 tires using neural network 

utilizing the back propagation algorithm as a learning rule. The comparison between the 

neural model and the Weibull model shows that the failure rate predicted by the ANN is 

closer in agreement with the real data than the failure rate predicted by the Weibull 

model. Furthermore, Al-Garn and Ahmad Jamal et al. [34] used the same method to 

predicting the failure rate for Boeing 737 tires.  The results show that the failure rate 

predicted by the artificial neural network is closer in agreement with the actual data than 

the failure rate predicted by the Weibull model. The same results were obtained by   

Amro M. et al. [35] in predicting the failure of the Boeing 737 engine for both general 

and corrosion cases. Kutsurelis utilized ANNs as a forecasting tool to study their ability 

in predicting the trend of some stock markets indices, [36]. Accuracy of the back 

propagation algorithm which used to train the network was compared against a traditional 

forecasting method and multiple linear regression analysis. From his study, it was 

concluded that neural networks do have the capability to forecast financial markets, and if 

properly trained, the individual investor could benefit from the use of this forecasting 

tool. Soumitra proposed a model that could be implemented at aircraft maintenance, 

repair, and overhaul (MRO), [37]. He focused on many applications that could be 

facilitated by the artificial neural network. His main concept was to feed all aircraft 

original equipment manufacturer manual (OEM) data to the network. By doing so, he can 

estimate the probability at the point and the extent of damage caused in an aircraft with a 
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better accuracy. Abd Kadir et al. [38] used ANN to calculate and predict the remaining 

useful life (RUL) of rotating machinery. He implemented his study on bearings life by 

utilizing feed-foreword neural network, the study compared results from both ANN and 

Weibull model with a conclusion of better prediction analysis from the artificial neural 

network model. Ranjan Ganguli et al. [39] used physics-based model and neural networks 

of the helicopter rotor in forward flight to analyze the impact of selected faults on rotor 

system behavior.  The results show that the neural network can detect and quantify both 

single and multiple faults on the blade from noise-contaminated simulated vibration and 

blade response test data. 
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CHAPTER 3  

WEIBULL METHODOLOGY 

3.1 Lockheed C-130 Engine Turbine Failure Time Data 

A group of data collected from a local aviation facility, will be analyzed. Data represent 

time to failure of Lockheed C-130 aircraft engine turbines. Because of the huge fleet, the 

maintenance facility used to install the turbines randomly to service any required engine. 

The selected data represents the maintenance tracking history of 14 randomly selected 

turbines over a period of 37 years regardless of the installed engine or aircraft, and the 

selected turbines has the largest history of failure record. The data were recorded in two 

forms, total operation time in hours to a general failure (T.T), and operation time in hours 

between turbine overhaul maintenance (TSO).  The turbine total time is the turbine 

accumulated operating hours for any newly installed turbine and represents turbine life, 

while (TSO) is a period of operating hours between each turbine overhaul maintenance, 

and it reset at every turbine overhaul maintenance action. 

The Failure data defined, whenever possible any type of turbine component failure, 

which required a replacement or turbine overhaul maintenance according to the 

manufactures standards and recommendation as in the maintenance manual, regardless of 

failure type, and it does not includes any planned inspection or removals. Also due to the 

complexity of the turbine system, we will deal with the engine turbine as a single unit. 
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Finally, the Lockheed C-130 is widely operates in desert, encountering high temperature 

sandy environments, leading to turbine failure is a major concern. Therefore, to give an 

insight into the reliability of the engine turbine under actual operating conditions, turbine 

failures data was divided into six categories, based on reasons of failure and its 

consequences, to failures which effect structure, performance, failure causing leaks, 

failure caused by foreign object damage (FOD), failure effecting other maintenance, and 

failure with reason not mentioned. 

In aviation maintenance, there are usually two indices for maintenance tracking program, 

which are: the operational flight time (the time from starting up the engine till shut 

down), and cycles (the number of engine starts). In this study we will discuss modeling 

the failure rate in terms of turbine operating time. However  there  are  limited  numbers  

of  study  on  the  fielded systems  because  in-service  failure  data  are  often  more  

difficult  to  obtain.  The objective of this study is to assess the reliability characteristics 

of Lockheed C-130 aircraft turbine system which is subjected to the effected 

environment. The way the aviation facility maintains and supports their fleets is rather 

sensitive information. To respect the sentiments, their names are not disclosed. 

3.2 Mortality Characteristics 

Determining the age at which an operating part in an aircraft should be replaced with a 

new part has always been a problem. The age for such a planned replacement should 

depend on the time-to-failure distribution of the part, the relative costs of an in-service 

failure, and a planned replacement. There are two conditions required to make planned 
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replacement worthwhile. The first is that the planned replacement of a part must cost less 

than an unexpected or unscheduled replacement. The second condition is that the failure 

characteristics of the part must display wear out. This can be better understood by 

examining the mortality characteristics of parts as shown in Figure  3-1. The descending 

curve indicates burn-in characteristic in which the failure rate decreases over time; it is 

what occurs during the early life of a population of units. This first period is known as an 

infant mortality period. The horizontal curve represents constant random characteristic 

which indicates that failure rate remains constant over time. Therefore, planned 

replacement has no advantage in these cases. The rising curve indicates wear out, i.e. 

increasing failure rate with time. Such units with age-related failure rate may be 

candidates for planned replacement [15].  

Using Weibull models and Artificial Neural Network in forecasting a maintenance 

planner can make quantitative trades between scheduled and unscheduled maintenance or 

non-destructive inspection and replacement. The method also helps determining the age 

at which an operating part should be replaced with a new part. Taking in account the 

sensitivity of maintenance cost information, in this stage we will only analyzes the time 

to failure data, leaving the cost of maintenance open for further research. 
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Figure 3-1 Tree types of mortality characteristics 
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3.3 Weibull Failure Distribution Model  

In reliability engineering Weibull probability analysis is widely used in processing and 

interpreting life data. It can model wide range of life distributions products. It has been 

used in aerospace engineering as one of the decision making tools to identify and 

eliminate unexpected part failures to provide an optimal maintenance strategy, 

particularly in wear out characteristic failure, where an aging mechanism is involved with 

increasing failure rate [40]. The advantage of the Weibull model is the ability to provide 

reasonably accurate failure analysis and forecast, with relatively small samples. It can 

utilize the data as first failure emerges and dictate appropriate action before more failures 

is generated. In addition, an easy interpretation of the distribution parameters to the 

failure rates and mortality curve concept.  

There are many models for the Weibull distribution like the two-parameter model, three 

parameters model, mixture model and phase-bi model. In this study we will focus on the 

two parameters Weibull model. The Weibull distribution can be characterized by a failure 

rate function λ (t) of the form [18,41,42]. 

1

( ) 0, 0, 0
t

t t




  
 



 
    

      (3.1) 

The reliability function R(t) which indicates the probability of surviving beyond a given 

time t can be derived from this failure rate function as follows: 
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A cumulative function F(t) to the reliability function can be defined as: 
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    Equation (3.3) can be rewritten as: 

  
 

   ( )
     (

 

 
)
 

      (3.4) 

 ( ) is known as cumulative distribution function (CDF) and indicates the probability 

that a failure occurs before time t. 

Where: 

        t = time, which is in our case the operating engine hours. 

          = Weibull slope (the slop of the failure line on the Weibull chart). Also refer as a 

shape parameter. It indicates whether the failure rate is increasing, constant, or 

decreasing. Practically,  <1 indicates that the part has a decreasing failure rate and 

implies infant mortality. This can be caused by a variety of factors, including design 

flaws, disassembly, and poor quality control.  =1 indicates a constant failure rate and 

implies random failures. In this case, one can suspect random events such as maintenance 
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errors, human errors, and foreign object damage (FOD).   >1 indicates an increasing 

failure rate. The most common causes of failures in this range are corrosion, erosion, 

fatigue and cracking. 

         = scale parameter. The value of η is equal to the number of cycles (operating 

engine hours) at which 63.2% of the parts have failed. To derive this number, substitute   

for the time t  into (3.3). And calculate the cumulative failure function [43]: 

 ( )       [ (
 

 
)
 

]       (  )         (     ). 

The function R(t) is normally used when reliabilities are being computed, and the 

function F(t) is normally used when probabilities are being computed. 

Various approaches are used in fitting the Weibull model to the failure data. In this thesis, 

the cumulative distribution function F(t) is transformed as follows so that it appears in the 

familiar form of a straight line equation as follows [44,45]: 

By taking two natural logarithms Eq (3.4) will take the form: 

  [   ( )]  [ (
 

 
)
 

] 

     [   ( )]    [ (
 

 
)
 

] 

  {  [
 

   ( )
]}     ( )     ( )    (3.5) 
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Eq (3.5) has a linear form of            Where: 

    [  (
 

   ( )
)]          

    ( )        (3.6) 

            

      ( )  

Eq (3.5) represent a straight line with a slope of β, and intercept c on the 

Cartesian x, y coordinates Eq (3.6). So the plot of   [  (
 

   ( )
)] against   ( )  

will be straight line with slope of   . 

By calculating the slope of the straight line and the y-intercept point on the graph, the 

parameters   and   can be determined. 

3.4 Fitting the Weibull Model to the Data 

After arranging the failure data  in  ascending  order,  the  probability  distribution 

function  ( ) can  be  substituted  by  its  estimate using  the median rank formula      

(the number in the middle of the data set). The most common approximation used for 

median ranking is that due to Benard. The i
th

 rank value is given by [42,43,46]: 

 (  )  
     

     
                            (3.7) 

Where i is the failure number and N is the sample size. Linearization of straight line          

Eq         , can be fitted to the experimental data  (  ) for                .    
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By performing the linear regression analysis using linearly transformation of straight line 

Eq, the parameters   and   can be determined. 

Before start fitting the model to the failure data, we need to define some important 

statistical characteristics that are widely used in reliability calculations: 

Mean Time To Failure (MTTF): Measures the average time between failures with the 

modeling assumption that the failed system is not repaired. Reliability increases as the 

MTTF increases [47]. 

An Average (median) life (      ): the life by which half of the units will survive. 

MTTF =   Γ (1+ 
 

 
 ),       (3.8) 

Where Γ is the Gamma function evaluated at the value of (1+ 
 

 
 ).The gamma function is 

defined as: 

 Γ(x) =(x-1) Γ(x-1) 

(    )    (    )
(
 

 
)
                                       (3.9) 

3.4.1 Weibull Analysis of general turbine failure data (T.T) 

In this part the general turbine failure data (T.T) of Lockheed C-130 turbine will be 

analyzed. By using (MS Excel) which has been programmed to calculate and fit the data 

on a Weibull plot. 

Table A- 1, Appendix A, shows the main calculations to fit general turbine failure data 

(T.T) to the Weibull model using equations (3.1 to 3.7). 

file:///C:/Users/NIZAR/Desktop/references.docx
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Table  3-1 and Table  3-2 show regression statistics summary output for the C-130 general 

turbine failure data (T.T).  

The result index of fit, R =0.989 (almost 99%), indicating a very strong linear fit to data, 

thus supporting the hypothesis that the data came from a Weibull distribution. For this 

high index for the goodness of fit, the two parameters Weibull will be adequate to give us 

a trend of the failure with a good fit. In addition,   {  [
 

   ( )
]} versus    (  ) is plotted in 

Figure  3-2. 

Table 3-1 Weibull result of C-130 general turbine failure data (T.T) 

SUMMARY OUTPUT 

Regression Statistics 

Multiple R (index of fit) 0.989338178 

R Square 0.97879003 

Adjusted R Square 0.978561966 

Standard Error 0.182003823 

Observations 95 

 

 

Table 3-2 C-130 general turbine failure data (T.T) statistics 

 
Coefficients 

Standard 
Error 

t Stat 
Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 
-17.1472 0.2538 -67.5700 -17.6512 -16.6433 -17.6512 -16.6433 

ln(Turbine(T.T)) 
1.9228 0.0294 65.5113 1.8645 1.9810 1.8645 1.9810 

Beta(Shape Parameter)= 1.92 
      

Alpha(Characteristic Life)= 7465.32 
      



31 

 

 

An assessment of Weibull parameters of the turbine general failure data (T.T) indicates 

that, the straight line equation of Linear (predicted     (  (  (   ( ))))) is: 

                  

Using equation (3.5), shape parameter (slope of the line) β = 1.92 is greater than one 

(β>1) which reflects an increasing failure rate over time. The  most  common  causes  of 

failures  in  this  range  are  corrosion,  erosion,  fatigue cracking, etc. Since the 

component exhibits wear out failure pattern, a hard time maintenance action which 

involves planned replacement or overhaul program is required. The replacements 

involving such failure rates that increase with time can be scheduled and hence can be 

modeled to develop the prediction pattern of the failure rates. 

y = 1.9228x - 17.147 
R² = 1 
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ln(Turbine(T.T )) Line Fit  Plot 
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Linear (Predicted ln(ln(1/(1-F(t)))))

Figure 3-2 Weibull plot for C-130 general turbine failure data 
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As mentioned,        ( ) , which means that: 

Scale parameter       (
 

 
)     (

 

 
)      (

         

       
)          (hours), 

which indicates that about 63 percent of the Turbines has failed up to that time. 

To support the previous (MS Excel) Weibull programed output, I did further analysis 

using "Windchill Quality Solution" commercial software, it provides the life data analysis 

tools necessary to predict failure behavior of data gathered from all phases of a product’s 

life, track reliability growth, analyze product degradation, plan product testing 

procedures, calculate optimal maintenance periods, and perform warranty forecasting in 

one, powerful statistical package [48]. 

 Table  3-3 shows a comparison between Weibull analysis done by "Windchill Quality 

Solution" software and (MS Excel) Weibull programmed. Which indicate high quality 

result. 

Table 3-3 comparison between (MS Excel) Weibull program and "Windchill Quality Solution" software for     

C-130 general turbine failure data (T.T) 

(MS Excel) Weibull output ."Windchill Quality Solution" output 

Multiple R (index of fit) 0.989338178 Multiple R (index of fit) 0.989360 

R Square 0.97879003 R Square 0.978834 

Beta(Shape Parameter) 1.922759422 Beta(Shape Parameter) 1.967766 

Alpha(Characteristic Life) 7465.32048 Alpha(Characteristic Life) 7417.277301 

 

The Figure  3-3 to Figure  3-9 shows the Weibull analysis for the C-130 general turbine 

failure data using. "Windchill Quality Solution" software: 
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Figure 3-3 General failure rate vs. Time of C-130 Turbine 

(Hours) 
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Figure 3-4 Probability of C-130 general turbine failure data (T.T) 

(Hours) 
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Figure 3-5 Reliability vs. Time of C-130 general turbine failure 

(Hours) 
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Figure 3-6 Unreliability vs. Time of C-130 general turbine failure 

(Hours) 
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Figure 3-7 PDF plot of C-130 general turbine failure 

Time (Hours) 
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Figure 3-8 β vs. η contour plot of C-130 general turbine failure 
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Figure 3-9 β vs. η 3D plot of C-130 general turbine failure 
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3.4.2 Goodness-of-Fit Test for general turbine failure data (T.T) 

The goodness of fit describes how well it fits a set of observations. Measures of goodness 

of fit typically summarize the discrepancy between observed values and expected values 

under the model in question. The test consists of statistic computations based on sample 

of failure times. Then compare it with a critical value obtains from a table of such   

values [41]. The test compares the distribution function with uniform distribution 

function of the empirical sample, to calculate the maximum distance between the 

theoretical and empirical functions. If this distance exceeds a certain value, which 

depends only on the sample size, we say that the sample does not fit the Weibull method. 

Kolmogorov-Simirnov (KS) goodness of fit test is widely used in this practice. The 

advantage of KS test is its flexibility where it can be used with variable of distributions at 

a small sample [49]. 

 There are several computational methods for the KS. First, sort the data. Then 

establish the assumed distribution (null hypothesis) and estimate its parameters. Then, 

obtain both the theoretical (assumed CDF) distribution (  ) as well as the empirical (  ) 

at each data point. Since KS is a distance test, we need to find the maximum distance    

|   -  )| between the theoretical and empirical distributions, by two basic functions 

defined in equation (3.10) 

   (  )    (    )    (  ).                               (3.10) 

  (  ) is the assumed cumulative distribution function evaluated at   , and   (  ) is the 

empirical distribution function obtained by the proportion of the data smaller than    in 

the data set size n. 
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  (  )  
 

 
                                (3.11) 

Then, define: D+ =    -    and D- =     -   -1 for every data point   . The KS statistic is: 

 D = Maximum of all D+ and D- (≥ 0); for i = 1... n     (3.12) 

If the maximum KS departure between the assumed CDF and empirical distributions is 

small, then the assumed CDF will likely be correct. But if this discrepancy is "large" then 

the assumed    is likely not the underlying data distribution. Using equations (3.10), 

(3.11), and (3.12). 

Table A- 2, Appendix A, Shows calculation for KS tests with the following sample of 

calculations for Row 1 in:       

    ( )       [ (
 

 
)
 

]       [ (
 

       
)
    

]           

    ( )  
   

  
                                            

                    

At the end, from Table A- 2, Appendix A,  

Max D+ = 0.09346, Max D- = 0.09346, Sample size N= 95,  

The critical value (CV) for KS test can be calculated using (3.13): 

   
    

√ 
     where (N) is the sample size.   (3.13) 

CV= 0.1395 

Since max D+ = 0.09346 < CV = 0.1395   ⇒            the sample is accepted. 
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3.4.3 Weibull Analysis of failure which required overhaul maintenance 

(T.S.O) 

After analyzing the general Lockheed C-130 failure rate, we will demonstrate Weibull 

analysis for turbine failures which required overhaul maintenance (T.S.O). Following the 

same procedures, by using (MS Excel) program to calculate and fit the data on a Weibull 

plot. Table A- 3, Appendix A, shows the main calculations for fitting the data to the 

Weibull model. 

Using an Excel spread sheet, Table  3-4 and Table  3-5, show regression analysis output 

and statistics for the failure data given in Table A- 3, Appendix A. 

 

Table 3-4 Weibull result of C-130 failures required overhaul maintenance (T.S.O) 

SUMMARY OUTPUT 

Regression Statistics 

Multiple R (index of fit) 0.991197463 

R Square 0.982472411 

Adjusted R Square 0.982283942 

Standard Error 0.165451829 

Observations 95 
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y = 1.6413x - 12.71 
R² = 1 
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Table 3-5 C-130 failures required overhaul maintenance (T.S.O) statistics 

 
Coefficients 

Standard 
Error 

t Stat 
Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 
-12.71044 0.16904 -75.19284 -13.04611 -12.37476 -13.04611 -12.37476 

ln(Turbine(T.T)) 
1.64133 0.02273 72.20056 1.59619 1.68648 1.59619 1.68648 

Beta(Shape Parameter)= 
1.64 

      

Alpha(Characteristic Life)= 
2307.62 

      

Out of the Weibull regression for the C-130 failures which required overhaul 

maintenance (T.S.O), the analysis based on the result index of fit, R = 0.99 (99%), shows 

a strong linear fit to data, reflects the quality of the Weibull distribution. In addition, 

     [   ( )]  versus    (  ) is plotted in Figure  3-10. 

Figure 3-10 Weibull plot for C-130 failures required overhaul maintenance (T.S.O) 
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The same procedures used in general turbine failure analysis where implemented, as 

follow: 

 Using equation (3.5). Shape parameter (slope of the line) β = 1.64 is greater than 

one (β>1) which reflects an increasing failure rate over time. The  most  common  causes  

of failures  in  this  range  are  corrosion,  erosion,  fatigue cracking, etc. So hard time 

maintenance action involves overhaul program is required.  

 Scale parameter            (hours), which indicate that about 63 percent of 

the turbines has failed up to that time. References to C-130 Technical Order Book (T.O), 

manufacturer recommended overhaul maintenance program every 6000 hours interval to 

reduce in-service failure. During my investigation, I found that the engine shop specialist 

based on they experience, used to do overhaul maintenance every 2500 hours. 

Unfortunately; - based in our calculation - overhaul maintenance should be done every 

(2300) turbine operating hours, this actually about 62% less than what is recommended 

by the manufacturer - 6000 hours -, due to local environment. 

It is clear that the C-130 turbine failure rate experiences a failure rate higher than 

manufacturer's designed, which is based on overlap of designed-in strength and expected 

operational load. The C-130 can operate in unprepared runways and rough and dirt strips. 

The runways at these areas are surrounded by deserts and known for its harsh weather 

conditions and sand storms. 
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To uphold the previous analysis, Table  3-6 shows a comparison between Weibull 

analysis done by "Windchill Quality Solution" software and (MS Excel) Weibull 

programmed. 

Table 3-6 Comparison between (MS Excel) Weibull program and "Windchill Quality Solution" software for     

C-130 failures required overhaul maintenance (T.S.O). 

(MS Excel) Weibull output "Windchill Quality Solution" output 

Multiple R (index of fit) 0.991197463 Multiple R (index of fit) 0.991237 

R Square 0.982472411 R Square 0.982552 

Beta(Shape Parameter) 1.641333694 Beta(Shape Parameter) 1.673426 

Alpha(Characteristic Life) 2307.615007 Alpha(Characteristic Life) 2293.157439 

 

The Figure  3-11 to Figure  3-17 shows the Weibull analysis for the C-130 failures 

required overhaul maintenance (T.S.O) data using. "Windchill Quality Solution" 

software: 
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Figure 3-11 Failures required overhaul maintenance (T.S.O) rate vs. Time of C-130 Turbine 

(Hours) 
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Figure 3-12 Probability of C-130 turbine failures required overhaul maintenance (T.S.O) 

(Hours) 
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Figure 3-13 Reliability vs. Time of C-130 turbine failures required overhaul maintenance (T.S.O) 

(Hours) 
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Figure 3-14 Unreliability vs. Time of C-130 turbine failures required overhaul maintenance (T.S.O) 

(Hours) 
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Figure 3-15 PDF plot of C-130 turbine failures required overhaul maintenance (T.S.O) 

Time (Hours) 
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Figure 3-16 β vs. η contour plot of C-130 turbine failures required overhaul maintenance (T.S.O) 
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Figure 3-17 β vs. η 3D plot of C-130 turbine failures required overhaul maintenance (T.S.O) 
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3.4.4 Goodness-of-Fit Test of failure which required overhaul maintenance 

(T.S.O) 

Following same procedure, the goodness of fit for the C-130 turbine failures required 

overhaul maintenance (T.S.O) Table A- 4, Appendix A, shows the KS goodness of fit test 

calculations, indicating that the sample does fit to the Weibull method. 

From Table A- 4, Appendix A, 

Max D+ = 0.07946 

Max D- = 0.07946 

Sample size N= 95,  

The critical value CV for KS test for data of size 95 = 0.1395 

Since max D+ = 0.07946 < CV = 0.1395    ⇒        the sample is accepted. 
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CHAPTER 4  

ANN METHODOLOGY 

4.1 Introduction  

Artificial neural networks represent a type of non-linear structure computational system 

based on the how the brain performs computations. An Artificial Neural Network is an 

information processing system that has certain performance characteristics in common 

with biological neural networks [50]. The aim of ANNs is to mimic human brain ability 

to adapt to changing circumstances and the current environment, so it can identify and 

learn correlated patterns between input data and corresponding target values. This 

depends on being able to learn from events that have happened in the past and to be able 

to apply this to future situation. It is a gross simplification of real biological networks of 

the brain neurons. The human brain contains about 100 billion neurons (neuron cells), 

interconnected in a complex manner via synapses (junctions between axons and 

dendrites), thus constituting a network. An ANN is a collection of neurons that are 

arranged in specific formations. The structure of the simple single layer ANN is shown in 

Figure  4-1 
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Figure 4-1 A simple Artificial Neural Network 

 

Figure  4-1 shows a simple ANN with two input neurons (      ) and one output neuron 

( ). The inter-connection weights are given by          . The number of neurons in the 

input layer corresponds to the number of parameters that are presented to the network as 

inputs. In the single layer net there is a single layer of weight interconnections. The same 

is true for the output layer.  

Neural-network analysis is not limited to a single output, and neural nets can be trained to 

build neuron models with multiple outputs. A typical multi-layer artificial neural network 

comprises an input layer, one or more hidden (intermediate) layer of neurons, local   

memory, activation functions, and an output layer. The inputs carry the weighted output 

of the directly connected neurons. The incoming information of a neuron is processed by 

the associated non-linear activation function (such as a log-sigmoid function). The output 

is then distributed to other neurons as inputs [51]. 
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A three-layer ANN is shown in Figure  4-2, and a simplified block diagram representation 

in Figure  4-3. The activity of neurons in the input layer represents the raw information 

that is fed into the network. The activity of neurons in the hidden layer is determined by 

the activity of the input neurons and the connecting weight between the input and hidden 

units. The neurons in the hidden layers are responsible primarily for feature extraction, to 

provide increased dimensionality and accommodate such tasks as classification and 

prediction. They can implement arbitrary complex input/output mapping or decision 

surface separating different patterns. Similarly, the behavior of the output units depends 

on the activity of the neurons in the hidden layer and the connecting weight between the 

hidden and output layers. 

  

 

Figure 4-2 a three layer Artificial Neural Network 

 

 

Figure 4-3 A Block diagram representation of a three layer ANN 
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The multi-layer artificial neural network provides an increase in computational power 

over a single layer neural network. Many capabilities of neural networks, such as 

nonlinear functional approximation, Learning, generalization, etc. are in fact performed 

due to the nonlinear activation function of each neuron. In addition, the ability to deal 

with incomplete information especially in situations where it is not possible to define the 

rules or steps that lead to the solution of a problem. 

ANN has become a technical folk legend. Among the most popular hardware 

implementations are Hopfield, Multilayer Perception, Self-organizing Feature Map, 

Learning Vector Quantization, Radial Basis Function, Cellular Neural, Adaptive 

Resonance Theory (ART) networks, Counter Propagation networks, Back Propagation 

networks, and Neo-cognitron, etc. [52]. 

4.2 ANN Working Methodology 

A typical ANN operation starts with the training stage. This stage is conducted using 

various training data sets that include the respective inputs and the corresponding desired 

outputs. The initial network connection weights are set to equal small random numbers. 

After the network is properly trained, the recall stage starts. In this stage, a set of test data 

is applied to the network. Afterward, the performance of the network is analyzed. This 

performance depends on various factors such as the statistical soundness of the training 

data set, the structure and size of the network, the initial network weights, the learning 

strategy, and input variables. 
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4.3 Back-Propagation Algorithm 

In this study, the most popular algorithm which is the back-propagation algorithm is 

utilized to train the network. Back-Propagation (BP) is a systematic method for training 

multi-layer ANNs. It has a mathematical foundation that is strong and highly practical. 

The BP algorithm is the most common technique for training a supervised neural 

network, [53,54]. The BP algorithm is the simplest and well known for its good 

performance. It is a multi-layer forward network using extend gradient-descent based 

delta-learning rule, commonly known as back propagation (of error) rule. BP provides a 

computationally efficient method for changing the weights in a feed-forward network, 

with differentiable activation function units, to learn a training set of input-output. The 

back propagation ANN algorithm concept is based on a gradient descent algorithm that is 

used to continually adjust the network weights to maximize performance, being a 

gradient descent method it minimize the total squared error of the output computed by the 

net, and it is trained by supervised learning method. The aim of the network is to train the 

net to achieve a balance between the ability to respond correctly to the input patterns that 

are used for training and the ability to provide a good responses to the input that are 

similar. [50]. 

BP process could be divided into two segments, which are the forward-propagation and 

the back-propagation. Before beginning training, some small random numbers are usually 

used to initialize each weight on each connection. BP requires preexisting training 

patterns, and involves a forward-propagation step followed by a back-propagation step. 

The forward-propagation step begins by sending the input signals through the nodes of 
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each layer. Transforming the incoming signals to an output signal is accomplished by an 

activation function which could be a log-sigmoid function or any other function depends 

on the structure and the nature of the network. This process repeats until the signals reach 

the output layer and an output value is calculated. The back-propagation step calculates 

the error by comparing the calculated and target outputs. New sets of weights are 

iteratively calculated by modifying the existing weights based on these error values until 

a minimum overall error, or global error, is obtained. The mean-square error (MSE) is 

usually used as a measure of the global error. [55]. Figure  4-4 shows ANN with            

log-sigmoid function, and Figure  4-5 shows the basic concept of the back-propagation 

algorithm. 

 

 

Figure 4-4 ANN With log-sigmoid activation function 
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Figure 4-5 Basic concept of the back-propagation algorithm 

 

In the following, we will demonstrate the basic mathematical equations that describe the 

fundamental concept of the back-propagation algorithm [56,57]. 

  = normalized     ,           where   1< d ≤ M   (4.1) 

     ∑      
   
    ,          where   m  ≤ k  ≤ N  + n  (4.2) 

   =  (    ) ,                     where   m  < k ≤ N + n   (4.3) 

  =     ,          where   1 ≤ s  ≤ n   (4.4) 

Where the function in Eq (4.3), is usually the following log-sigmoidal function: 

 (    )   
 

        
     (4.5) 

Where m is the number of inputs to the network, n is the number of outputs of the neural 

network, and    represents the actual inputs to the network (which have to be normalized 

and then initially stored in x
j
 ). The non-linear activation function f (    ) in Eq. (4.5) is a 

log-sigmoid function. It determines the relation between the inputs and outputs of a node 

and a network. There are some other functions like hyperbolic function, cosine function, 

and linear functions. The log-sigmoid activation function is easy to differentiate and 
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applied to the input and squashes the output into the ranges from 0 to 1, Figure  4-6. N is a 

constant, which represents the number of intermediate neurons in the neural network. It 

can be any integer as long as it is not less than m. The value of N +m determines how 

many neurons are there in the network (if we include the inputs as neurons). W is the 

weight matrix in each layer, whose size depends on the number of neurons in the 

corresponding adjacent layers of neural network.     are the elements of the weight 

matrix. The term    is called the “activation level” of the neuron, and    is the output 

from the neural network. The significance of these equations is illustrated in Figure  4-7, 

which shows the connection in the network. 

 

 

Figure 4-6 Log-sigmoid activation functions 
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Figure 4-7 Network design for BP 

There are     circles, representing all the neurons in the network, including the input 

neurons. The first m circles are copies of the inputs         . …,     they are included as 

a part of the vector x only as a way of simplifying the notation. Every other neuron is the 

network such as neuron number k, which calculates net
k
 and x

k
, takes input from every 

cell that precedes it in the network. Even the last output cell, which generates O
s
, takes 

input from other output cells, such as the one whose output is O
s
−1. 

4.4 BP ANN Training Performance 

In this section, MATLAB code was used to build the BP ANN to model the failure rate of 

Lockheed C-130 aircraft engine Turbines for the two cases, general turbine failures and 

turbine failures which require overhaul maintenance action. The input to the neural 

network is time in hours, and the output is the failure rate corresponding to that time.     
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In our modeling of each two cases, we will test and compare a set ANN configuration as 

follow: 

1)  Two input m = 2, one output n = 1, and four intermediate neurons N =4. -(2,4,1) 

configuration-. 

2) Three input m = 3, one output n = 1, and six intermediate neurons N =6. -(3,6,1) 

configuration-. 

3) Four input m = 4, one output n = 1, and eight intermediate neurons N =8. -(4,8,1) 

configuration-. 

4) Four input m = 4, one output n = 1, and ten intermediate neurons N =10. -(4,10,1) 

configuration-. 

5) Four input m = 4, one output n = 1, and twenty intermediate neurons N =20. -(4,20,1) 

configuration-. 

While Learning rate, and the moment is constant (LR=0.2), and (MOM=0.05). Method 

was adopted, such as that used by Al-Garni. [37]. 

The non-linear activation function log-sigmoidal function Eq (4.5), which is the most 

suitable function to serve the purpose of our problem, is utilized. Failure rates are 

predicted using the forward-pass calculation of Eq (4.1) to (4.4). The back-propagation 

technique [58] was used to train the neural network with the scope of minimizing the sum 

squared error given by: 

      ∑[ ( )   ( )]       (4.6) 
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Where F(t) is the actual failure of the component (input to the network), and O(t) is the 

calculated failure of the component (output of the network). The initial error is high 

because the weights are assigned randomly and the number of passes is usually high. 

Throughout the training process, this error decreases and converges to minimum value. 

Training the back-propagation of the network starts first by selecting the next training 

pair from the training set and applying the input vector to the network input terminal, 

during this stage, we initialize the weights, and some small random values are assigned. 

The second step is to calculate the output of the network using Eq (4.1) to (4.3), forward 

pass. The first and second steps are the forward pass while steps three and four are the 

reverse pass. The third step in training is calculation of the error, which is the difference 

between the network output and desired output. In the fourth step, the weights of the 

network are adjusted to minimize the error. Finally, the four steps are repeated for each 

vector in the training set, until an acceptable error for the whole set is reached. For    

and   , the resultant weight matrices are    and    . 

These steps can easily be understood by the flow chart shown in Figure  4-8. 
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Figure 4-8 Flow chart of neural-network algorithm 

 

4.5 Radial Basis Function (RBF) Neural Networks 

Radial Basis Function (RBF) neural network model on MATLAB tool box will be used 

to evaluate our BP ANN model. RBF is essentially a nearest neighbor type of classifier, 

where the activation of a hidden unit is determined by the distance between the input 

vector and the early prototype vector which will be learned and tested from [59].         



66 

 

The basic idea of RBF is that a predicted target value of an item is likely to be about the 

same as other items that have close values of the predictor variables, Figure  4-9.  

 

Figure 4-9 Radial Basis Function (RBF) neural networks 

 

The RBF technique used herein for the anomaly detection is an extension of the standard 

RBF to form a statistical model of nominal data. As new data enters into the anomaly 

detection system, it is compared with the RBF model. If it falls within the boundaries 

defined by the model, then it is considered as a nominal data; otherwise, the data is 

considered as anomalous. The approach is generic and has been applied to a variety of 

problems, including advanced military aircraft subsystems [60]. A key requirement for 

RBF is appropriate selection of the radial basis function and the order of the statistics of 

the model. From this perspective, a radial basis function for anomaly detection is chosen 

as: 

    (4.7) 

Where the parameter     (   ); and μ and     are the center, and  th
 central moment of 

the data set, respectively.  
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From a sampled time series data under the nominal condition, the mean  μ  and the central 

moment     are calculated as: 

  (4.8) 

The distance between any vector x and the center μ is obtained as: 

   (4.9) 

Hence, at the nominal condition, the radial basis functions       ( ). For different 

anomalous conditions, the parameters, μ and θ, are kept fixed; and the radial basis 

function      is evaluated from the data set under the (possibly anomalous) condition at 

the slow time scale. Then, the anomaly measure at the  th
 epoch is defined as a distance 

function. 

      (4.10) 

The neurons in the hidden layer contain Gaussian transfer functions Figure  4-10, whose 

outputs are inversely proportional to the distance from the center of the neuron.  

 
Figure 4-10 Gaussian transfer functions 
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RBF networks have three layers Figure  4-11: 

Input layer – There is one neuron in the input layer for each predictor variable. In the 

case of categorical variables, N-1 neurons are used where N is the number of categories. 

The input neuron (or processing before the input layer) standardizes the range of the 

values by subtracting the median and dividing by the interquartile range. The input 

neurons then feed the values to each of the neurons in the hidden layer.  

Hidden layer – This layer has a variable number of neurons (the optimal number is 

determined by the training process). Each neuron consists of a radial basis function 

centered on a point with as many dimensions as there are predictor variables. The spread 

(radius) of the RBF function may be different for each dimension. The centers and 

spreads are determined by the training process. When presented with the x vector of input 

values from the input layer, a hidden neuron computes the Euclidean distance of the test 

case from the neuron‘s center point and then applies the RBF kernel function to this 

distance using the spread values. The resulting value is passed to the summation layer.  

Summation layer – The value coming out of a neuron in the hidden layer is multiplied 

by a weight associated with the neuron (             in this figure) and passed to the 

summation which adds up the weighted values and presents this sum as the output of the 

network.  
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The following parameters are determined by the training process:  

1. The number of neurons in the hidden layer.  

2. The coordinates of the center of each hidden-layer RBF function.  

3. The radius (spread) of each RBF function in each dimension.  

4. The weights applied to the RBF function outputs as they are passed to the 

summation layer. 

 

Figure 4-11 RBF Network Architecture 

 

4.6 BP ANN Analysis of general turbine failure data (T.T) 

In this part the general turbine failure data (T.T) of Lockheed C-130 turbine will be 

analyzed. The MATLAB programing language will be used in order to build and design a 

code to simulate the failure data using "Feed-forward back-propagation" ANN algorithm.  

Table B- 1, Appendix B, shows the main calculation for the turbine general failure data 

(T.T), with different BP network structures in comparison to Weibull regression and RB 

ANN. 
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The comparison of all five BP ANN configuration structures is presented in the       

Figure  4-12, Figure  4-13, Figure  4-14, Figure  4-15, and Figure  4-16. The average 

percentage differences of the Turbines general failures rate with that of the actual 

Turbines general failure data are found to be 25.64%, 5.22%, 4.01%, 1.53%, and 0.96%, 

for the (2,4,1), (3,6,1), (4,8,1), (4,10,1), and (4,20,1) ANN configuration structures 

respectively. Table  4-1 shows the percentage error for all BP ANN configurations 

compared with actual data. 

Table 4-1 General turbine failure (T.T) percentage error compared to actual data 

Curve Mean Percentage Error (compared to F(t)) 

ANN (2,4,1) 25.64% 

ANN (3,6,1) 5.22% 

ANN (4,8,1) 4.01% 

ANN (4,10,1) 1.53% 

ANN (4,20,1) 0.96% 

 

We found out from several literatures - 15000 iterations -, that the number of neuron and 

layers are the most significant parameters that will drastically affect our calculation. For 

BP ANN having two, three, and four input. It is evident from the percentage differences 

that the ANN results improve as the number of inputs increase but the model with more 

than four inputs does not bring drastic improvement in results from that of four inputs. 

Therefore, four inputs ANN model have been adopted. 

Furthermore, the analysis was also extended to study the effect of the number of 

intermediate neurons in case of the ideal "four" inputs ANN structure, as shown in the 

Figure  4-14, Figure  4-15, and Figure  4-16. The percentage differences for eight, ten, and 
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twenty, intermediate neurons came out to be 4.01%, 1.53%, and 0.96%, respectively.      

It is obvious from the percentages that little improvement has been achieved by 

increasing the number of neurons beyond "twenty" at the expense of more complexity in 

the network and program execution time. Hence, twenty intermediate neurons are 

selected for the analysis. The ANN model of the present study uses a single intermediate 

layer of neurons, since single hidden / intermediate layer is commonly used and gives 

reasonable results [14]. 

So in our circumstances the (4,20,1) structure, which is basically having four neurons for 

the input layer, twenty neurons for the hidden layer, and a single output layer with one 

neuron, is the optimum for minimizing the sum squared error Eq (4.6). The ANN 

architecture employed is shown in Figure  4-17. The sizes of the weight matrices   , and 

   are 20x4 and 1x20 respectively. 

Finally, the back-propagation algorithm provides an approximation to the trajectory in 

weight spaced computed by the method of steepest descend [52]. In back-propagation 

networks, the weight change is in a direction that is a combination of a current gradient 

and the previous gradient. This approach is beneficial when some training data are very 

different from a majority of the data. Based on that concept, a small training rate is used 

in order to avoid a major disruption of the direction of learning when there is unusual pair 

of training pattern. Minimizing the learning rate causes smaller changes to the synaptic 

weights in the network from iteration to the next, and the smoother will be the trajectory 

in weight spaces, keeping in mind that this is achieved at the cost of a slower rate of 

learning – several hours in our case -. On the other hand, if we make the leaning rate 
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parameter too large, to speed up the rate of learning, this will result in larger changes to 

the synaptic weights and the network will be unstable. So by using try and error method, 

we found that learning rate of 0.2 is the most optimum. Finally increasing the momentum 

to the weight caused the convergence to be faster. The main purpose of the momentum is 

to accelerate the convergence of error propagation algorithm. This method makes the 

current weights adjustment with a fraction of recent weights adjustment. Also by using 

try and error method, the most optimum momentum set was 0.05. All network parameters 

are listed in Table  4-2. 

 

 

Figure 4-12 Comparison of general turbine failure rate predicted by using (2, 4, 1) ANN structure, Weibull and actual failure 

rate against time 

F (t) 

Time (Hours) 
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Figure 4-14 Comparison of general turbine failure rate predicted by using (4, 8, 1) ANN structure, Weibull and actual failure 

rate against time 

 

 

 

 

 

 

Figure 4-13 Comparison of general turbine failure rate predicted by using (3, 6, 1) ANN structure, Weibull and actual failure 

rate against time 

F (t) 

Time (Hours) 

F (t) 

Time (Hours) 
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Figure 4-15 Comparison of general turbine failure rate predicted by using (4, 10, 1) ANN structure, Weibull and actual failure 

rate against time 

Figure 4-16 Comparison of general turbine failure rate predicted by using (4, 20, 1) ANN structure, Weibull and actual failure 

rate against time 

F (t) 

Time (Hours) 

F (t) 

Time (Hours) 
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Figure 4-17 ANN (4, 20, 1) Architecture 

 

Table 4-2 General turbine failure (T.T) Major network parameters 

Parameters 

Network architecture (4, 20, 1) 

Network leaning rate 0.2 

Network momentum constant 0.05 
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Figure 4-18 Comparison of turbine failure which required overhaul maintenance (T.S.O) predicted by using (2, 4, 1) ANN 

structure, Weibull and actual failure rate against time 

4.6.1 BP ANN Analysis of turbine failure which required overhaul 

maintenance (T.S.O) 

After analyzing the general Lockheed C-130 failure rate, we will demonstrate the ANN 

analysis for turbine failures which required overhaul maintenance (T.S.O). Following the 

same procedures, by using MATLAB programming language using "Feed-forward back-

propagation" algorithm, Table B- 2, Appendix B, shows the main calculation for the 

turbine failure which required overhaul maintenance (T.S.O) with different BP network 

structures in comparison to Weibull regression and RB ANN. 

In same manners, the comparison of all five ANN configuration structures is presented in 

Figure  4-18, Figure  4-19, Figure  4-20, Figure  4-21, and Figure  4-22. 

 

 

 

 

F (t) 

Time (Hours) 
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Figure 4-19 Comparison of turbine failure which required overhaul maintenance (T.S.O) predicted by using (3, 6, 1) ANN 

structure, Weibull and actual failure rate against time 

 

 

 

 

 

 

 

Figure 4-20 Comparison of turbine failure which required overhaul maintenance (T.S.O) predicted by using (4, 8, 1) ANN 

structure, Weibull and actual failure rate against time 
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F (t) 

Time (Hours) 
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Figure 4-21 Comparison of turbine failure which required overhaul maintenance (T.S.O) predicted by using (4, 10, 1) ANN 

structure, Weibull and actual failure rate against time 

Figure 4-22 Comparison of turbine failure which required overhaul maintenance (T.S.O) predicted by using (4, 20, 1) ANN 

structure, Weibull and actual failure rate against time 

F (t) 

Time (Hours) 

F (t) 

Time (Hours) 
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Table  4-3 shows the percentage error for all ANN configurations compared to actual data. 

Table 4-3 Turbine failure which required overhaul maintenance (T.S.O) percentage error compared to actual 

data 

Curve Mean Percentage Error (compared to F(t)) 

ANN (2,4,1) 6.85 % 

ANN (3,6,1) 4.51 % 

ANN (4,8,1) 1.51 % 

ANN (4,10,1) 1.00 % 

ANN (4,20,1) 0.84 % 

 

From the table above, it can be clearly observed that ANN with (4, 20, 1) configuration 

has the most accurate output. The network training is drastically improved with minimum 

change to the network structure, while modifying other parameters like the learning rate 

and momentum constant did not indicate any noticeable effect on the accuracy of the 

network output. All network parameters for turbine failures which required overhaul 

maintenance are listed in Table  4-4. 

 

Table 4-4 Turbine failure which required overhaul maintenance (T.S.O) Major network parameters 

Parameters 

Network architecture (4, 20, 1) 

Network leaning rate 0.2 

Network momentum constant 0.05 
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4.7 Model Adequacy and Comparison 

Model adequacy is an important part to examine whether the fitted model is in agreement 

with the observed data. To assist our model validation, we have used the radial basis 

neural network model on MATLAB tool box to simulate both engine turbine general 

failure data and turbine failure which required overhaul maintenance. An informal visual 

assessment has been adopted by comparing each of the Weibull regression, and BP ANN 

MATLAB structures output, with the radial basis neural network model on MATLAB 

tool box and actual field data. 

4.7.1 General turbine Failure Data (T.T) model Adequacy and Comparison  

To evaluate my previous analysis, the  

Table B- 1, Appendix B, and Table  4-5, show a comparison between Weibull regression, 

(4,20,1) BP ANN MATLAB output, and radial basis neural network model on MATLAB 

tool box - which gives negligible average error of (7.54E-16 %) - in relation to actual 

data. Figure  4-23 shows that the BP ANN MATLAB code with (4, 20, 1) structure, 

comes in close agreement with radial based ANN tool box in relation to the actual data. 

In other hand, Weibull regression showed a significant error when compared to the neural 

network method, and has proven, that ANN is more responsive to changes in the failure 

rate and predicts the failure rate better than the Weibull regression. 
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Table 4-5 Comparison between general turbine failure (T.T) rate predicted by Weibull, (4, 20, 1) BP ANN, RB 

ANN with actual failure 

Curve Mean Percentage Error (compared to F(t)) 

Weibull 18.20 % 

BP ANN (4,20,1) 0.96% 

Radial based ANN 7.54E-16 

 

 

 

 

Finally, increasing dependence on artificial neural network (ANN) model leads to a key 

question, will the ANN models provide accurate and reliable predictions in relation to the 

observe data. For that owing to space limitation, a representative set of general turbine 

failures and failures which required overhaul maintenance data (T.T) will be presented to 

construct the model validation. From the collected data a set of (66 series) about 70% was 

used for training of the BP ANN model and the remaining, about 30% were used for 

Figure 4-23 Comparison between General turbine failure data (T.T) predicted by using Weibull, (4, 20, 1) ANN structure, RB 

ANN and actual failure rate against time 

F (t) 

Time (Hours) 
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model validation, method was adopted such as that used by Al-Garni. [37]. Training and 

validating set selected randomly, as the optimum structure of the model (4,20,10) is 

determined by default conditions in MATLAB software and trial and error procedure. 

Table  4-6, shows the twenty nine points about (30%) validation data and the related error 

of each point in relation to actual data. 

Table 4-6 General turbine failure (T.T) Validation Data 

-------------------------------------------------------------------- 

No Target Calculation Error (%) 

-------------------------------------------------------------------- 
1.0        0.00734       -0.00301        141.047 

2.0        0.03878        0.03916          0.959 

3.0        0.10168        0.09868          2.950 

4.0        0.16457        0.16260          1.197 

5.0        0.19602        0.19769          0.854 

6.0        0.27987        0.27041          3.380 

7.0        0.29036        0.28116          3.168 

8.0        0.32180        0.32695          1.599 

9.0        0.34277        0.34149          0.373 

10.0        0.37421        0.37034          1.035 

11.0        0.38470        0.37928          1.409 

12.0        0.39518        0.38764          1.909 

13.0        0.40566        0.39476          2.687 

14.0        0.52096        0.51918          0.343 

15.0        0.54193        0.54295          0.188 

16.0        0.56289        0.56323          0.060 

17.0        0.57338        0.57113          0.391 

18.0        0.63627        0.63924          0.467 

19.0        0.65723        0.66207          0.736 

20.0        0.66771        0.67237          0.697 

21.0        0.68868        0.68827          0.059 

22.0        0.72013        0.72206          0.268 

23.0        0.76205        0.75941          0.347 

24.0        0.79350        0.78958          0.494 

25.0        0.80398        0.80178          0.275 

26.0        0.85639        0.85327          0.365 

27.0        0.87736        0.87723          0.014 

28.0        0.96122        0.96300          0.185 

29.0        0.98218        0.97888          0.336 

-------------------------------------------------------------------- 

Average Error (%) = 0.96028 
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Figure  4-24 shows the BP ANN model results of the 70% trained general turbine failure 

training data, and Figure  4-25 shows the 30% general turbine failure tested data. 

 
Figure 4-24 The BP ANN model results of general turbine failure (T.T) training data 

 

 
Figure 4-25 The BP ANN model results of general turbine failure (T.T) validation data 
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Figure  4-24 and Figure  4-25 show an excellent agreement between the trained values, and 

the validation sample in relation to the actual failure data. This proves that the model is 

capable of predicting, with very good accuracy the failure rate of general turbine failures. 

Also, in the Figure  4-26, and Figure  4-27, MATLAB code was used to determine the 

equivalent dispersion coefficient, a descriptive statistic which measures dispersion and 

used to make comparisons within and between data sets, using back-propagation 

approach, which shows a very good symmetry between Actual data and predicted data, 

with average error of 2.43 %. 

 

Figure 4-26 Equivalent dispersion coefficient of general turbine failure data (T.T) 

 

 

 

http://en.wikipedia.org/wiki/Statistical_dispersion
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Figure 4-27 Equivalent dispersion coefficient of general turbine failure data (T.T)  

 

4.7.2 Turbine failure which required overhaul maintenance (T.S.O) model 

Adequacy and Comparison  

The same approach is used to evaluate turbine failure which required overhaul 

maintenance (T.S.O) BP ANN analysis, Table B- 2, Appendix B, and Table  4-7 show a 

comparison between Weibull regression, (4,20,1) BP ANN MATLAB output, and radial 

basis neural network model on MATLAB tool box - which gives negligible average error 

of (1.09E-15 %) - in relation to actual data. 
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Table 4-7 Comparison between turbine failure which required overhaul maintenance (T.S.O) average error 

predicted by Weibull, (4, 20, 1) BP ANN, and RB ANN with actual failure 

Curve Mean Percentage Error (compared to F(t)) 

Weibull 16.55 % 

BP ANN (4,20,1) 0.84 % 

Radial based ANN 1.09E-15 % 

 

Figure  4-28 also, represents the advantage of the neural network in predicting more 

accurate data compared to Weibull model. That BP ANN MATLAB code with (4, 20, 1) 

structure, shows close agreement with radial based ANN tool box in relation to the actual 

data, rather than Weibull regression. 

 

 

 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
0

1

3
0

2

4
5

6

4
9

8

6
4

7

8
5

7

1
0

2
6

1
0

8
8

1
1

4
3

1
2

6
2

1
4

2
7

1
6

1
5

1
6

6
1

1
7

1
9

1
8

7
1

1
9

6
9

1
9

9
4

2
1

0
8

2
2

0
1

2
3

1
4

2
4

3
2

2
4

5
8

2
5

6
9

2
7

8
1

2
8

0
0

2
9

7
4

3
0

8
6

3
1

8
2

3
2

6
8

3
6

5
1

3
7

7
6

4
0

7
2

Actual

"Weibul

ANN (4,20,1)

R.B ANN

Figure 4-28 Comparison between turbine failure which required overhaul maintenance (T.S.O) predicted using Weibull, 
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Following the same approach to construct model validation, Table  4-8 Turbine failure 

which required overhaul maintenance (T.S.O) validation data, shows the twenty nine 

points about 30% validated data and the related error of each point in relation to actual 

data. The   Figure  4-29, and Figure  4-30, illustrate a representative set of turbine failures 

which required overhaul maintenance data (T.S.O) for a set of randomly selected 70% 

training points and 30% validating points of the (4,20,10) BP ANN model structure, 

which indicate an excellent agreement between the trained values, and the tested sample 

in relation to the actual failure data, which prove its capability of prediction. 
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Table 4-8 Turbine failure which required overhaul maintenance (T.S.O) validation data 

-------------------------------------------------------------------- 

No Target Calculation Error (%) 

-------------------------------------------------------------------- 
1.0        0.00734        0.00331         54.920 

2.0        0.01782        0.01535         13.854 

3.0        0.02830        0.02914          2.978 

4.0        0.03878        0.03900          0.554 

5.0        0.13312        0.13129          1.375 

6.0        0.15409        0.15897          3.168 

7.0        0.18553        0.18948          2.128 

8.0        0.22746        0.22660          0.381 

9.0        0.31132        0.30982          0.481 

10.0        0.33229        0.33692          1.396 

11.0        0.35325        0.35796          1.333 

12.0        0.41614        0.41082          1.279 

13.0        0.47904        0.48242          0.707 

14.0        0.48952        0.49292          0.694 

15.0        0.50000        0.50122          0.244 

16.0        0.54193        0.54259          0.122 

17.0        0.55241        0.55001          0.434 

18.0        0.61530        0.61454          0.125 

19.0        0.62579        0.62819          0.384 

20.0        0.64675        0.64492          0.283 

21.0        0.68868        0.68732          0.198 

22.0        0.74109        0.74337          0.308 

23.0        0.80398        0.80828          0.535 

24.0        0.81447        0.81617          0.210 

25.0        0.84591        0.84479          0.133 

26.0        0.86688        0.86522          0.191 

27.0        0.91929        0.92443          0.559 

28.0        0.92977        0.93067          0.096 

29.0        0.97170        0.96868          0.310 

-------------------------------------------------------------------- 

Average Error (%) = 0.81170 
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Figure 4-29 The BP ANN model result of turbine failure which required overhaul maintenance (T.S.O) training 

data 

 
 

 
Figure 4-30 The BP ANN model result of turbine failure which required overhaul maintenance (T.S.O) testing 

data 
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Also, Figure  4-31 and Figure  4-32 determine the equivalent dispersion coefficient using 

back-propagation approach, which indicate a very good symmetry between Actual data 

and predicted data, with average error of 1.50476 %. 

 
Figure 4-31 equivalent dispersion coefficient of turbine failure which required overhaul maintenance (T.S.O) 

 
Figure 4-32 equivalent dispersion coefficient of turbine failure which required overhaul maintenance (T.S.O) 
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4.8 Multilayer Perceptron Neural Network 

The turbine components are replaced due to many reasons. As we concluded in 

examining the mortality characteristics of C-130 turbine components, Page 29. The 

values of β come out to be more than 1, which indicates an increasing failure rate over 

time.  The most common causes of failures in this range are corrosion, erosion, fatigue, 

cracking, worn out, etc. The replacements involving such failure rates that increase with 

time can be scheduled and hence can be modeled to develop the prediction pattern of the 

failure rates. Maintenance records for the Lockheed C-130 Engine turbine were reviewed 

in detail. This enabled the determination of whether a field removal was a confirmed 

failure or a "no-fault- found", thus eliminating false removals in the data. A total of 235 

confirmed failures were observed for all turbines. Few items have failed sufficient often.  

Table  4-9 presents the common failures and replacement causes of Lockheed C-130 

turbine for the whole fleet of airplanes with total number and percent contribution of each 

failure category. 

Table 4-9 Common C-130 turbine failure and replacement causes 

No. Component failure and replacement causes 
Total 

No. % 

1 General failures 95 41.28 

2 Failures required overhaul maintenances 57 24.26 

3 Structures failures 51 21.70 

4 Failures due to other maintenance 17 7.23 

5 Failures caused Performance reduction 7 
2.98 

6 Leaks failures 4 
1.70 

7 Failures caused by Foreign object damage (FOD) 1 
0.43 

8 Reason not mentioned 1 
0.43 

TOTAL 235 100 
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To enhance maintenance planning, we will model all above C-130 engine turbine failures 

and replacement causes, using Multilayer Perceptron Neural Network (MLP) model on 

well-known DTREG commercial predictive modeling software [61]. DTREG software 

builds classification and regression Decision Trees Neural, and Multilayer Perceptron 

Neural Networks, Support Vector Machine, Gene Expression programs, Discriminant 

Analysis and Logistic Regression models that describe data relationships and can be used 

to predict values for future observations. It also has full support for time series analysis. It 

analyzes data and generates a model showing how best to predict the values of the target 

variable based on values of the predictor variables. DTREG can create classical, 

singletree models and also Tree-Boost and Decision Tree Forest models consisting of 

ensembles of many trees. It includes a full Data Transformation Language (DTL) for 

transforming variables, creating new variables and selecting which rows to analyze [62]. 

One of the classification/regression tools available in DTREG is MLP neural networks, 

like the standard MLP; DTREG-MLP consist of units arranged in layers [63]. Each layer 

is composed of nodes and in the fully connected network -considered here- each node 

connects to every node in subsequent layers. Each MLP is composed of a minimum of 

three layers consisting of an input layer, one or more hidden layers and an output layer. A 

typical three layer network is shown in Figure  4-33. 
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Figure 4-33 A perceptron network with three layers 

Input layer – distributes the inputs to subsequent layers. Input nodes have linear 

activation functions and no thresholds. A vector of predictor variable values  (     ) is 

presented to the input layer. The input layer standardizes these values by subtracting the 

median and dividing by the interquartile range and distributes the values to each of the 

neurons in the hidden layer. In addition to the predictor variables, there is a constant input 

of 1.0, called the bias that is fed to each of the hidden layers; the bias is multiplied by a 

weight and added to the sum going into the neuron. 

Hidden Layer – The hidden unit nodes have nonlinear activation functions. Hence, each 

signal feeding into anode in a subsequent layer has the original input multiplied by a 

weight     -with a threshold added-, and the resulting weighted values are added together 

producing a combined value   . The weighted sum     is fed into a transfer function σ, 

that may be linear or nonlinear (hidden units), which outputs a value   . The outputs from 

the hidden layer are distributed to the output layer. When there is more than one hidden 

layer, the output from one hidden layer is fed into the next hidden layer and separate 

weights are applied to the sum going into each layer. 
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Output layer – Arriving at a neuron in the output layer, the value from each hidden layer 

neuron is multiplied by a weight    , and the resulting weighted values are added 

together producing a combined value   . The weighted sum     is fed into a linear transfer 

function, σ, which outputs a value   . The y values are the outputs of the network. If a 

regression analysis is being performed with a continuous target variable, then there is a 

single neuron in the output layer, and it generates a single y value. For classification 

problems with categorical target variables, there are N neurons in the output layer 

producing N values, one for each of the N categories of the target variable. 

The network diagram shown in Figure  4-34 is a full-connected, three layers, feed forward 

perception neural network. For nearly all problems, one hidden layer is sufficient. Two 

hidden layers are required for modeling data with discontinuities such as a saw tooth 

wave pattern. Using two hidden layers rarely improves the model, and it may introduce a 

greater risk of converging to local minima. One of the most important characteristics of a 

multilayer perceptron network is the number of neurons in the hidden layer. If an 

inadequate number of neurons are used, the network will be unable to model complex 

data, and resulting in poor fit. 

If too many neurons are used, the training time may become excessively long, and, 

worse, the network may over fit the data. When over fitting occurs, the network will 

begin to model random noise in the data. The result is that the model fits the training data 

extremely well, but it generalizes poorly to new, unseen data. Validation must be used to 

test for this. 
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DTREG includes an automated feature to find the optimal number of neurons in the 

hidden layer, and it will build models using varying numbers of neurons and measure the 

quality using either "cross validation" or "hold-out data not used for training". This is a 

highly effective method for finding the optimal number of neurons, but many models 

must be built, and each model has to be validated. [63]. 

 

Figure 4-34 Typical three layer multilayer perceptron neural network 

 

In Figure  4-34, the training data consist of a set    training pattern (     ) where P 

represents the pattern number. The,    corresponds to the N-dimensional input vector of 

the P
th

 training pattern and    corresponds to the M-dimensional output vector from the 

trained network for the P
th

 pattern. The input to the J
th

 hidden unit      ( ) is expressed 

as [63]: 

   (4.11) 
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With the output activation for the  th
 training pattern,   ( ) being expressed by: 

       (4.12) 

The nonlinear activation is typically chosen to be the log-sigmoid function 

     (4.13) 

In Eq (4.11) and (4.12), the N input units are represented by the index K and     (J, K) 

denotes the weight connecting the K
th

 input unit to the J
th

   hidden unit. 

The overall performance of the MLP is measured by the mean square error MSE 

expressed by: 

   (4.14) 

Where: 

     (4.15) 

   Corresponds to the error for the P
th

 pattern and    is the desired output for the P
th

 

pattern. This is also allows the calculation of the napping error for the i
th 

output unit to be 

expressed by: 

    (4.16) 

With the i
th

 output for the P
th

 training pattern expressed by: 

  (4.17) 
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In (4.17),     (   ) represents the weight from the input nodes to the output nodes and 

    (   ) represents the weight from the hidden nodes to the output nodes. 

There are several issues involved in designing and training a multilayer perceptron 

network:  

1. Selecting how many hidden layers to use in the network. 

2. Deciding how many neurons to use in each hidden layer. 

3. Finding a globally optimal solution that avoids local minima. 

4. Converging to an optimal solution in a reasonable period of time. 

5. Validating the neural network to test for over fitting. 

A full-connected, three layers, feed forward, perceptron neural network with one hidden 

layer will be considered in this work since these networks have been shown to 

approximate any "Categorical" function [64,65]. The hidden layer consists of two 

neurons as the DTREG calculated optimal size, and has Logistic activation function. For 

the actual three layers MLP, all of the inputs are connected directly to all of the outputs, 

and the output unit has linear activations. To find the optimal number of neurons, 

network size evaluation was performed using a "4-fold cross-validation" option. 

Table  4-10 shows all MLP network architecture and Figure  4-35 shows DTREG 

determined relative importance of variables.  
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Table 4-10 MLP Neural network architecture 

Layer Neurons Activation Min. Weight Max. Weight 

Input 8 
Pass-through 

-- -- 

Hidden (1) 2 Logistic -1.975e+001 1.664e+001 

Output 1 Linear 1.586e-001 5.206e-001 

 

 

Figure 4-35 Relative importance of variables 

 

Table  4-11 shows Training data results summary, and Table  4-12 shows Validation data 

results summary. 
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Table 4-11 MLP Training data result summary 

Performance MLP ANN 8:2:1 

Mean target value for input data 6435.15 

Mean target value for predicted values 6435.15 

Variance in input data 1.3804e+007 

Residual (unexplained) variance after model fit 5.3296e-025 

Proportion of variance explained by model 100 % 

Correlation between actual and predicted 1.0 

Maximum error 1.819e-012 

MSE (Mean Squared Error) 5.3296e-025 

MAE (Mean Absolute Error) 4.2372e-013 

MAPE (Mean Absolute Percentage Error) 3.4044e-014 

Table 4-12 MLP Validation data results summary 

Performance MLP ANN 8:2:1 

Mean target value for input data 12871.95 

Mean target value for predicted values 12871.95 

Variance in input data 0.8525 

Residual (unexplained) variance after model fit 1.3442e-024 

Proportion of variance explained by model 100 % 

Correlation between actual and predicted 1.0 

Maximum error 1.819e-012 

MSE (Mean Squared Error) 1.3442e-024 

MAE (Mean Absolute Error) 7.3896e-013 

MAPE (Mean Absolute Percentage Error) 5.7409e-015 
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From MLP options a Time Series model has been selected to forecast future failures, in 

the way that the error between the predicted value of the target variable and the actual 

value is as small as possible. The primary difference between time series models and 

other types of models is that lag values of the target variable are used as predictor 

variables. DTREG provides automatic generation of lag variables, it includes a built-in 

validation system that builds a model using the first observations in the series and then 

evaluates (validates) the model by comparing its forecast to the remaining observations at 

the end of the series, we specify about a third of the data -32 observations- for validating 

Time Series model. DTREG will build a model using only the observations prior to these 

held-out observations, it will then use that model to forecast values for the observations 

that were held out. 

Figure 4-36, Figure 4-37, Figure 4-38, and Figure 4-39 show the quality of the validated 

and predicted values. 
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Figure 4-36 Actual versus predicted values of time 

 

 

Figure 4-37 Time Series value of time 
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Figure 4-38 Time Series trend for time 

 

 

Figure 4-39 Time Series prediction error for time 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

In this study, more than thirty years of local operational field data were used to predict 

and validate the failure rate of the Lockheed C-130 Engine turbine with respect to time    

- in hours - of general turbine failures and failures which required overhaul maintenance, 

using both Weibull regression and Artificial Neural Network models.  Field data is highly 

desirable for aircraft operators because it inherently captures the operational and 

environmental stresses  associated with actual  usage  conditions  which  are  not  always  

possible to accurately simulate in tests conducted by the manufacturer. The main 

disadvantage of the field data is incomplete or lost information. But this problem is less 

and can be overcome in large aviation organization level which usually operates with 

strict data reporting requirements. Hence methods presented in this study can be used to 

assess the failure characteristics of any system or component and customize the 

manufacturer recommended maintenance program through appropriate inspection, 

replacement, and spare part plans based on the organization unique operational and 

environmental conditions. 

For the Weibull analysis, the data was fitted into the model using two parameters, a good 

straight line fit to the transformed data support the validity of the Weibull model. The 

goodness of fit (GOF) test was performed to all data to check the applicability of the 

Weibull to the data. Results of the Weibull analysis showed a strong level of reliability 

when compared to the actual failure data. Furthermore a validation of our MS Excel 
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spreadsheet format of Weibull analysis in comparison to "Windchill Quality Solution" 

software indicate a very high quality result, and provide quite accurate method of 

determining mean time between failures, and fairly accurate reliability characterization. 

The resulting parameters indicate that the engine turbine has an increasing failure rate 

over time which makes a planned replacement policy worthwhile. The  most  common  

causes  of failures  in  this  range  are  corrosion,  erosion,  fatigue, and cracking. Since 

the component exhibits wear out failure pattern, a hard time maintenance action which 

involves planned replacement and overhaul program is required. The replacements 

involving such failure rates that increase with time can be scheduled and hence can be 

modeled to develop the prediction pattern of the failure rates. General turbine failure rate 

experiences a failure rate higher than that manufacturer estimated, and overhaul 

maintenance should be done in 62% less turbine operating hours than what is 

recommended by the manufacturer, due to the operation in high erosive, hot desert 

environment. Thus a revision in monitoring and inspection program recommended by 

manufacturer and devising means to decrease the ingestion load acting on the system are 

likely needed.  

For the ANN analysis, the network was designed with different architecture and 

parameters to ensure reliable results and strong agreement with actual failure data. All 

parameters were tweaked and adjusted to study the effect of each single element on the 

behavior of the network; it was evident that the network configuration has a crucial 

impact on the network performance.  
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A comparative study shows that four input neural network model, performs much better 

with lesser percentage difference from the actual date than three and two input models, 

and twenty  intermediate  neurons give much reasonable accuracy than lesser number of 

intermediate neurons as also verified by visual inspection. With the fact that such 

comparative analysis finds its applications in various technical and non-technical fields, 

the results cannot be generalized for all.  Finally ANN outputs showed an excellent level 

of reliability with respect to minimizing the sum squared error, and can be used to 

schedule a preventive policy for C-130 turbine failures and overhaul requirements 

corresponding to an optimal level of turbine reliability.     

To evaluate my MATLAB programed ANN analysis, a further radial based ANN 

analysis were used and gave a negligible average error in relation to actual data.  A 

comparison between ANN MATLAB code output, and radial basis neural network model 

on MATLAB tool box shows that ANN MATLAB code with structure of four neurons 

input layer, twenty neurons of single hidden layer, and a single output layer with one 

neuron, comes in close agreement with radial based ANN tool box in relation to the 

actual data.  

From the comparison between ANN and Weibull regression models in the present 

application, it can be conducted that ANN model predicts better than the Weibull 

regression model for both cases, general failure, and failures require overhaul 

maintenance. Also it has proven that ANN is more responsive to changes in the failure 

rate and predicts the failure rate better than the Weibull regression, especially in the 
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erosion failure case, in which the actual data for the failure has a sharper change of slope 

in respect to time.  

Finally, to enhance maintenance planning, we have modeled general turbine failures, 

failures which required overhaul maintenance, and six categorical failures classified by 

reasons of failure and its consequences, which are:  failures effecting structure, failure 

degrading performance, failure causing leaks, failure caused by foreign object damage 

(FOD), failure effecting other maintenance, and Failure with reason not mentioned, using 

Multilayer Perceptron Neural Network (MLP) model on DTREG commercial software. 

The results gave an insight into the reliability of the engine turbine under actual operating 

conditions, which can be used by aircraft operators for assessing system and component 

failures, and to schedule a preventive policy for turbine component replacement 

corresponding to an optimal level of turbine reliability [66], which assists in determining 

logistic support for a specified planning horizon, using MLP prediction [67]. 

Hence turbine is subjected to extreme contaminating loads at almost constant rate which 

exceed its design strength. Under these conditions, the option to reduce the failure rate 

may be to curtail the sand ingestion by some devices such as sand separator or Titanium 

Nitride (TiN) coating blade which extend turbine on wing time by up to 150% in dusty 

and sandy environments [6]. Figure  5-1. Also to exercise restrict hot weather and erosive 

environment maintenance and operational procedures, as recommended by the 

manufacturer.    
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Figure 5-1 Erosion Evaluation of TiN coating turbine airfoils 

To further utilize this work and to better adapt it to support maintenance strategies, there 

are several points that can be investigated: 

 The application of this work could be extended into many areas where failure 

prediction becomes a dilemma. The prediction of failure rate for any component can be 

calculated using the same approach mentioned in this work. The key is to have an 

accurate failure history in order to come up with reliable calculations. 

 Analyzing the effect of environmental factors in the reliability of the engine 

turbine, by categorizing the failure data gathered from the field by the season. As it is 

well known that cold season has major effects in leaks failures, and hot season has a 

major effects in performance reduction failures. 
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 Investigating and comparing different ANN schemes would yield to valuable 

information on the best scheme for a particular failure type. As example using 

Probabilistic (PNN) and General Regression Neural Networks (GRNN).  

 Using hybrid approaches, which are a combination of ANN with other techniques 

like expert systems, Fuzzy logic and Genetic Algorithm (GA) to make such analysis. 

 Based on the results presented in this work, an optimization procedure could be 

developed for an efficient preventive maintenance plan, taking into account the 

preventive maintenance time, as well as repair time. Based on the manufacturer 

acceptable reliability values, the downtime for maintenance could be minimized without 

compromising the safety of the flight. 

 The optimum replacement age in flight hours can be calculated for various (cost 

of in-service failure to cost of planned replacement) ratios. If the cost for an unplanned 

failure is very high compared to a planned replacement, then beta greater than 1 is easy to 

handle on a predictive replacement basis.  However, if the cost of an unplanned failure is 

approximately equal to a planned replacement then it is advised to run the component to 

failure.  If the failures modes are due to chance failure (β=1) or infant mortality (β<1), 

then the component should run to failure for any ratio of costs. 

 This study can be a great tool for spare part inventory planning. Having accurate 

failure predictions figures will reduce cost and enhance aircraft availability. The other 

benefit is to avoid over stocking which in turns decreases the warehouse storage 

capability. 
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Appendix A 

Table A- 1 Weibull analysis for C-130 general turbine failure data (T.T) 

Turbine 
(T.T) 

"hours" 

Rank 
(i) 

Median Ranks 
F(t) 

1/(1-F(t)) ln(ln(1/(1-F(t)))) ln(Turbine(T.T )) 
Predicted 

ln(ln(1/(1-F(t)))) 
CDF 

562.9 1 0.00734 1.00739 -4.91107 6.33310 -4.97018 0.00692 

1088.20 2 0.01782 1.01814 -4.01847 6.99228 -3.70274 0.02435 

1169.70 3 0.02830 1.02913 -3.55051 7.06450 -3.56388 0.02793 

1261.50 4 0.03878 1.04035 -3.23003 7.14006 -3.41860 0.03223 

1310.90 5 0.04927 1.05182 -2.98536 7.17847 -3.34474 0.03465 

1343.50 6 0.05975 1.06355 -2.78697 7.20303 -3.29751 0.03630 

1511.70 7 0.07023 1.07554 -2.61978 7.32099 -3.07071 0.04533 

1915.3 8 0.08071 1.08780 -2.47507 7.55763 -2.61571 0.07051 

1942.6 9 0.09119 1.10035 -2.34732 7.57178 -2.58850 0.07238 

2088.6 10 0.10168 1.11319 -2.23282 7.64425 -2.44916 0.08274 

2347.70 11 0.11216 1.12633 -2.12894 7.76119 -2.22431 0.10250 

2586.30 12 0.12264 1.13978 -2.03378 7.85798 -2.03820 0.12214 

2901.80 13 0.13312 1.15357 -1.94590 7.97309 -1.81689 0.15001 

2973.6 14 0.14361 1.16769 -1.86417 7.99753 -1.76989 0.15663 

3173.60 15 0.15409 1.18216 -1.78773 8.06262 -1.64473 0.17557 

3206.10 16 0.16457 1.19699 -1.71586 8.07281 -1.62514 0.17871 

3332.40 17 0.17505 1.21220 -1.64799 8.11145 -1.55085 0.19109 

3427.20 18 0.18553 1.22780 -1.58366 8.13950 -1.49692 0.20054 

3650.60 19 0.19602 1.24381 -1.52245 8.20265 -1.37550 0.22331 

3730.20 20 0.20650 1.26024 -1.46404 8.22422 -1.33402 0.23158 

3732.9 21 0.21698 1.27711 -1.40814 8.22494 -1.33263 0.23186 

3749.90 22 0.22746 1.29444 -1.35450 8.22948 -1.32390 0.23364 

3751.50 23 0.23795 1.31224 -1.30292 8.22991 -1.32307 0.23380 

3969.10 24 0.24843 1.33054 -1.25321 8.28629 -1.21466 0.25681 

4055.40 25 0.25891 1.34936 -1.20520 8.30780 -1.17330 0.26607 

4066.60 26 0.26939 1.36872 -1.15875 8.31056 -1.16800 0.26728 

4116.70 27 0.27987 1.38865 -1.11374 8.32281 -1.14446 0.27269 

4222.20 28 0.29036 1.40916 -1.07005 8.34811 -1.09580 0.28414 

4615.70 29 0.30084 1.43028 -1.02758 8.43722 -0.92447 0.32749 
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4780.00 30 0.31132 1.45205 -0.98623 8.47220 -0.85722 0.34580 

4902.90 31 0.32180 1.47450 -0.94593 8.49758 -0.80841 0.35954 

4912.70 32 0.33229 1.49765 -0.90660 8.49958 -0.80457 0.36064 

4948.10 33 0.34277 1.52153 -0.86817 8.50676 -0.79076 0.36460 

5074.00 34 0.35325 1.54619 -0.83058 8.53188 -0.74245 0.37870 

5160.30 35 0.36373 1.57166 -0.79377 8.54875 -0.71002 0.38837 

5218.50 36 0.37421 1.59799 -0.75769 8.55997 -0.68846 0.39489 

5289.90 37 0.38470 1.62521 -0.72229 8.57355 -0.66233 0.40289 

5342.10 38 0.39518 1.65338 -0.68752 8.58337 -0.64345 0.40873 

5351.10 39 0.40566 1.68254 -0.65334 8.58506 -0.64021 0.40973 

5661.60 40 0.41614 1.71275 -0.61971 8.64146 -0.53176 0.44432 

5839.8 41 0.42662 1.74406 -0.58660 8.67245 -0.47218 0.46401 

6167.9 42 0.43711 1.77654 -0.55397 8.72711 -0.36707 0.49981 

6205.00 43 0.44759 1.81025 -0.52178 8.73311 -0.35554 0.50381 

6222.90 44 0.45807 1.84526 -0.49001 8.73599 -0.35000 0.50574 

6606.80 45 0.46855 1.88166 -0.45862 8.79585 -0.23490 0.54645 

6612.90 46 0.47904 1.91952 -0.42760 8.79678 -0.23313 0.54709 

6910.30 47 0.48952 1.95893 -0.39690 8.84077 -0.14854 0.57767 

6927.7 48 0.50000 2.00000 -0.36651 8.84328 -0.14371 0.57943 

6956.90 49 0.51048 2.04283 -0.33640 8.84749 -0.13562 0.58238 

6996.6 50 0.52096 2.08753 -0.30655 8.85318 -0.12468 0.58637 

7019.10 51 0.53145 2.13423 -0.27693 8.85639 -0.11851 0.58862 

7290.10 52 0.54193 2.18307 -0.24753 8.89427 -0.04567 0.61533 

7392.70 53 0.55241 2.23419 -0.21831 8.90825 -0.01880 0.62521 

7449.60 54 0.56289 2.28777 -0.18925 8.91592 -0.00405 0.63063 

7453.20 55 0.57338 2.34398 -0.16034 8.91640 -0.00312 0.63097 

7475.10 56 0.58386 2.40302 -0.13156 8.91933 0.00252 0.63305 

7538.5 57 0.59434 2.46512 -0.10288 8.92778 0.01876 0.63902 

7642.20 58 0.60482 2.53050 -0.07427 8.94144 0.04503 0.64868 

7654.30 59 0.61530 2.59946 -0.04573 8.94302 0.04807 0.64980 

7781.50 60 0.62579 2.67227 -0.01722 8.95950 0.07976 0.66143 

8141.60 61 0.63627 2.74928 0.01128 9.00474 0.16674 0.69317 

8226.90 62 0.64675 2.83086 0.03978 9.01516 0.18678 0.70042 
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8368.8 63 0.65723 2.91743 0.06832 9.03227 0.21966 0.71225 

8448.70 64 0.66771 3.00946 0.09691 9.04177 0.23793 0.71878 

8453.60 65 0.67820 3.10749 0.12559 9.04235 0.23905 0.71918 

8472.00 66 0.68868 3.21212 0.15438 9.04452 0.24323 0.72067 

8477.60 67 0.69916 3.32404 0.18331 9.04518 0.24450 0.72112 

8596.80 68 0.70964 3.44404 0.21240 9.05915 0.27134 0.73064 

8792.20 69 0.72013 3.57303 0.24170 9.08162 0.31456 0.74580 

8828.40 70 0.73061 3.71206 0.27124 9.08573 0.32246 0.74855 

8843.30 71 0.74109 3.86235 0.30105 9.08742 0.32570 0.74968 

8844.5 72 0.75157 4.02532 0.33118 9.08755 0.32596 0.74977 

8985.70 73 0.76205 4.20264 0.36166 9.10339 0.35641 0.76026 

9104.70 74 0.77254 4.39631 0.39256 9.11655 0.38171 0.76887 

9162.90 75 0.78302 4.60870 0.42392 9.12292 0.39396 0.77301 

9183.3 76 0.79350 4.84264 0.45582 9.12514 0.39824 0.77445 

9311.70 77 0.80398 5.10160 0.48831 9.13903 0.42494 0.78335 

9406.20 78 0.81447 5.38983 0.52148 9.14912 0.44435 0.78975 

9476.70 79 0.82495 5.71257 0.55542 9.15659 0.45871 0.79444 

9540.4 80 0.83543 6.07643 0.59024 9.16329 0.47159 0.79862 

9654.20 81 0.84591 6.48980 0.62606 9.17515 0.49439 0.80592 

9699.30 82 0.85639 6.96350 0.66304 9.17981 0.50335 0.80877 

9757.30 83 0.86688 7.51181 0.70135 9.18577 0.51481 0.81238 

10004.7 84 0.87736 8.15385 0.74122 9.21081 0.56296 0.82724 

10155.30 85 0.88784 8.91589 0.78291 9.22575 0.59169 0.83586 

10330.2 86 0.89832 9.83505 0.82678 9.24283 0.62452 0.84547 

10388.50 87 0.90881 10.96552 0.87328 9.24845 0.63534 0.84857 

10618.60 88 0.91929 12.38961 0.92301 9.27036 0.67746 0.86039 

10761.00 89 0.92977 14.23881 0.97681 9.28368 0.70308 0.86734 

10791.90 90 0.94025 16.73684 1.03589 9.28655 0.70859 0.86881 

11787.30 91 0.95073 20.29787 1.10211 9.37478 0.87823 0.90988 

11895.5 92 0.96122 25.78378 1.17858 9.38392 0.89580 0.91365 

11956.20 93 0.97170 35.33333 1.27112 9.38901 0.90558 0.91570 

12270.40 94 0.98218 56.11765 1.39313 9.41495 0.95546 0.92572 

12873.50 95 0.99266 136.28571 1.59224 9.46293 1.04772 0.94222 
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Table A- 2 KS GOF test for general turbine failure data (T.T) 

ROW Hours            D+ D- 

1 562.9 0.00692 0.01042 0.00000 0.00350 0.00692 

2 1088.2 0.02435 0.02083 0.01053 -0.00352 0.01383 

3 1169.7 0.02793 0.03125 0.02105 0.00332 0.00688 

4 1261.5 0.03223 0.04167 0.03158 0.00944 0.00065 

5 1310.9 0.03465 0.05208 0.04211 0.01743 -0.00745 

6 1343.5 0.03630 0.06250 0.05263 0.02620 -0.01633 

7 1511.7 0.04533 0.07292 0.06316 0.02759 -0.01783 

8 1915.3 0.07051 0.08333 0.07368 0.01283 -0.00318 

9 1942.6 0.07238 0.09375 0.08421 0.02137 -0.01183 

10 2088.6 0.08274 0.10417 0.09474 0.02143 -0.01200 

11 2347.7 0.10250 0.11458 0.10526 0.01208 -0.00276 

12 2586.3 0.12214 0.12500 0.11579 0.00286 0.00635 

13 2901.8 0.15001 0.13542 0.12632 -0.01459 0.02369 

14 2973.6 0.15663 0.14583 0.13684 -0.01080 0.01979 

15 3173.6 0.17557 0.15625 0.14737 -0.01932 0.02820 

16 3206.1 0.17871 0.16667 0.15789 -0.01205 0.02082 

17 3332.4 0.19109 0.17708 0.16842 -0.01401 0.02267 

18 3427.2 0.20054 0.18750 0.17895 -0.01304 0.02159 

19 3650.6 0.22331 0.19792 0.18947 -0.02539 0.03384 

20 3730.2 0.23158 0.20833 0.20000 -0.02324 0.03158 

21 3732.9 0.23186 0.21875 0.21053 -0.01311 0.02133 

22 3749.9 0.23364 0.22917 0.22105 -0.00447 0.01258 

23 3751.5 0.23380 0.23958 0.23158 0.00578 0.00222 

24 3969.1 0.25681 0.25000 0.24211 -0.00681 0.01471 

25 4055.4 0.26607 0.26042 0.25263 -0.00565 0.01344 

26 4066.6 0.26728 0.27083 0.26316 0.00356 0.00412 

27 4116.7 0.27269 0.28125 0.27368 0.00856 -0.00100 

28 4222.2 0.28414 0.29167 0.28421 0.00753 -0.00007 

29 4615.7 0.32749 0.30208 0.29474 -0.02541 0.03275 

30 4780 0.34580 0.31250 0.30526 -0.03330 0.04054 
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31 4902.9 0.35954 0.32292 0.31579 -0.03662 0.04375 

32 4912.7 0.36064 0.33333 0.32632 -0.02730 0.03432 

33 4948.1 0.36460 0.34375 0.33684 -0.02085 0.02776 

34 5074 0.37870 0.35417 0.34737 -0.02454 0.03133 

35 5160.3 0.38837 0.36458 0.35789 -0.02379 0.03048 

36 5218.5 0.39489 0.37500 0.36842 -0.01989 0.02647 

37 5289.9 0.40289 0.38542 0.37895 -0.01747 0.02394 

38 5342.1 0.40873 0.39583 0.38947 -0.01289 0.01925 

39 5351.1 0.40973 0.40625 0.40000 -0.00348 0.00973 

40 5661.6 0.44432 0.41667 0.41053 -0.02766 0.03380 

41 5839.8 0.46401 0.42708 0.42105 -0.03693 0.04296 

42 6167.9 0.49981 0.43750 0.43158 -0.06231 0.06823 

43 6205 0.50381 0.44792 0.44211 -0.05589 0.06170 

44 6222.9 0.50574 0.45833 0.45263 -0.04740 0.05310 

45 6606.8 0.54645 0.46875 0.46316 -0.07770 0.08329 

46 6612.9 0.54709 0.47917 0.47368 -0.06792 0.07340 

47 6910.3 0.57767 0.48958 0.48421 -0.08808 0.09346 

48 6927.7 0.57943 0.50000 0.49474 -0.07943 0.08469 

49 6956.9 0.58238 0.51042 0.50526 -0.07196 0.07711 

50 6996.6 0.58637 0.52083 0.51579 -0.06554 0.07058 

51 7019.1 0.58862 0.53125 0.52632 -0.05737 0.06231 

52 7290.1 0.61533 0.54167 0.53684 -0.07366 0.07848 

53 7392.7 0.62521 0.55208 0.54737 -0.07312 0.07784 

54 7449.6 0.63063 0.56250 0.55789 -0.06813 0.07273 

55 7453.2 0.63097 0.57292 0.56842 -0.05805 0.06255 

56 7475.1 0.63305 0.58333 0.57895 -0.04971 0.05410 

57 7538.5 0.63902 0.59375 0.58947 -0.04527 0.04955 

58 7642.2 0.64868 0.60417 0.60000 -0.04451 0.04868 

59 7654.3 0.64980 0.61458 0.61053 -0.03521 0.03927 

60 7781.5 0.66143 0.62500 0.62105 -0.03643 0.04038 

61 8141.6 0.69317 0.63542 0.63158 -0.05775 0.06159 

62 8226.9 0.70042 0.64583 0.64211 -0.05458 0.05831 

63 8368.8 0.71225 0.65625 0.65263 -0.05600 0.05962 
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64 8448.7 0.71878 0.66667 0.66316 -0.05211 0.05562 

65 8453.6 0.71918 0.67708 0.67368 -0.04210 0.04549 

66 8472 0.72067 0.68750 0.68421 -0.03317 0.03646 

67 8477.6 0.72112 0.69792 0.69474 -0.02320 0.02638 

68 8596.8 0.73064 0.70833 0.70526 -0.02231 0.02538 

69 8792.2 0.74580 0.71875 0.71579 -0.02705 0.03002 

70 8828.4 0.74855 0.72917 0.72632 -0.01938 0.02224 

71 8843.3 0.74968 0.73958 0.73684 -0.01009 0.01283 

72 8844.5 0.74977 0.75000 0.74737 0.00023 0.00240 

73 8985.7 0.76026 0.76042 0.75789 0.00016 0.00237 

74 9104.7 0.76887 0.77083 0.76842 0.00196 0.00045 

75 9162.9 0.77301 0.78125 0.77895 0.00824 -0.00594 

76 9183.3 0.77445 0.79167 0.78947 0.01722 -0.01503 

77 9311.7 0.78335 0.80208 0.80000 0.01873 -0.01665 

78 9406.2 0.78975 0.81250 0.81053 0.02275 -0.02077 

79 9476.7 0.79444 0.82292 0.82105 0.02847 -0.02661 

80 9540.4 0.79862 0.83333 0.83158 0.03472 -0.03296 

81 9654.2 0.80592 0.84375 0.84211 0.03783 -0.03618 

82 9699.3 0.80877 0.85417 0.85263 0.04540 -0.04387 

83 9757.3 0.81238 0.86458 0.86316 0.05221 -0.05078 

84 10004.7 0.82724 0.87500 0.87368 0.04776 -0.04644 

85 10155.3 0.83586 0.88542 0.88421 0.04956 -0.04835 

86 10330.2 0.84547 0.89583 0.89474 0.05037 -0.04927 

87 10388.5 0.84857 0.90625 0.90526 0.05768 -0.05669 

88 10618.6 0.86039 0.91667 0.91579 0.05628 -0.05540 

89 10761 0.86734 0.92708 0.92632 0.05974 -0.05898 

90 10791.9 0.86881 0.93750 0.93684 0.06869 -0.06803 

91 11787.3 0.90988 0.94792 0.94737 0.03803 -0.03749 

92 11895.5 0.91365 0.95833 0.95789 0.04469 -0.04425 

93 11956.2 0.91570 0.96875 0.96842 0.05305 -0.05272 

94 12270.4 0.92572 0.97917 0.97895 0.05345 -0.05323 

95 12873.5 0.94222 0.98958 0.98947 0.04736 -0.04725 

MAX= 0.09346 0.09346 
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Table A- 3 Weibull analysis for C-130 failures required overhaul maintenance (T.S.O) 

Turbine 
(TSO) 

Rank 
(i) 

Median Ranks 
F(t) 

1/(1-F(t)) ln(ln(1/(1-F(t)))) ln(Turbine(T.T)) 
Predicted 

ln(ln(1/(1-F(t)))) 
CDF 

100.9 1 0.00734 1.00739 -4.91107 4.61413 -5.13711 0.00586 

177.20 2 0.01782 1.01814 -4.01847 5.17728 -4.21280 0.01470 

277.10 3 0.02830 1.02913 -3.55051 5.62438 -3.47896 0.03037 

301.50 4 0.03878 1.04035 -3.23003 5.70877 -3.34044 0.03480 

350.80 5 0.04927 1.05182 -2.98536 5.86022 -3.09187 0.04440 

368.40 6 0.05975 1.06355 -2.78697 5.90917 -3.01152 0.04803 

456.00 7 0.07023 1.07554 -2.61978 6.12249 -2.66138 0.06747 

472.3 8 0.08071 1.08780 -2.47507 6.15761 -2.60374 0.07132 

475.7 9 0.09119 1.10035 -2.34732 6.16479 -2.59197 0.07214 

497.7 10 0.10168 1.11319 -2.23282 6.21000 -2.51776 0.07747 

507.90 11 0.11216 1.12633 -2.12894 6.23028 -2.48446 0.07999 

562.90 12 0.12264 1.13978 -2.03378 6.33310 -2.31570 0.09398 

646.60 13 0.13312 1.15357 -1.94590 6.47173 -2.08817 0.11654 

704.8 14 0.14361 1.16769 -1.86417 6.55791 -1.94671 0.13302 

846.40 15 0.15409 1.18216 -1.78773 6.74099 -1.64622 0.17533 

857.30 16 0.16457 1.19699 -1.71586 6.75379 -1.62522 0.17870 

881.60 17 0.17505 1.21220 -1.64799 6.78174 -1.57934 0.18626 

984.70 18 0.18553 1.22780 -1.58366 6.89234 -1.39781 0.21897 

1026.30 19 0.19602 1.24381 -1.52245 6.93372 -1.32990 0.23241 

1029.30 20 0.20650 1.26024 -1.46404 6.93663 -1.32511 0.23339 

1085.0 21 0.21698 1.27711 -1.40814 6.98934 -1.23861 0.25158 

1088.20 22 0.22746 1.29444 -1.35450 6.99228 -1.23377 0.25263 

1117.50 23 0.23795 1.31224 -1.30292 7.01885 -1.19016 0.26227 

1131.00 24 0.24843 1.33054 -1.25321 7.03086 -1.17046 0.26672 

1142.70 25 0.25891 1.34936 -1.20520 7.04115 -1.15356 0.27058 

1169.70 26 0.26939 1.36872 -1.15875 7.06450 -1.11523 0.27952 

1249.80 27 0.27987 1.38865 -1.11374 7.13074 -1.00652 0.30614 

1261.50 28 0.29036 1.40916 -1.07005 7.14006 -0.99122 0.31004 

1310.90 29 0.30084 1.43028 -1.02758 7.17847 -0.92818 0.32650 

1343.50 30 0.31132 1.45205 -0.98623 7.20303 -0.88786 0.33737 

1427.30 31 0.32180 1.47450 -0.94593 7.26354 -0.78855 0.36524 

1511.70 32 0.33229 1.49765 -0.90660 7.32099 -0.69425 0.39313 
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1576.50 33 0.34277 1.52153 -0.86817 7.36296 -0.62536 0.41437 

1614.80 34 0.35325 1.54619 -0.83058 7.38697 -0.58596 0.42683 

1636.60 35 0.36373 1.57166 -0.79377 7.40038 -0.56395 0.43388 

1640.30 36 0.37421 1.59799 -0.75769 7.40263 -0.56025 0.43508 

1661.30 37 0.38470 1.62521 -0.72229 7.41536 -0.53937 0.44184 

1698.70 38 0.39518 1.65338 -0.68752 7.43762 -0.50282 0.45383 

1706.60 39 0.40566 1.68254 -0.65334 7.44226 -0.49521 0.45635 

1718.90 40 0.41614 1.71275 -0.61971 7.44944 -0.48342 0.46026 

1769 41 0.42662 1.74406 -0.58660 7.47817 -0.43627 0.47610 

1790.3 42 0.43711 1.77654 -0.55397 7.49014 -0.41662 0.48277 

1870.80 43 0.44759 1.81025 -0.52178 7.53412 -0.34443 0.50768 

1915.30 44 0.45807 1.84526 -0.49001 7.55763 -0.30585 0.52121 

1942.60 45 0.46855 1.88166 -0.45862 7.57178 -0.28262 0.52943 

1968.80 46 0.47904 1.91952 -0.42760 7.58518 -0.26063 0.53725 

1991.10 47 0.48952 1.95893 -0.39690 7.59644 -0.24214 0.54386 

1992.7 48 0.50000 2.00000 -0.36651 7.59725 -0.24082 0.54433 

1993.70 49 0.51048 2.04283 -0.33640 7.59775 -0.24000 0.54462 

2007.4 50 0.52096 2.08753 -0.30655 7.60460 -0.22876 0.54865 

2088.60 51 0.53145 2.13423 -0.27693 7.64425 -0.16367 0.57217 

2107.50 52 0.54193 2.18307 -0.24753 7.65326 -0.14889 0.57754 

2112.50 53 0.55241 2.23419 -0.21831 7.65563 -0.14500 0.57896 

2115.10 54 0.56289 2.28777 -0.18925 7.65686 -0.14298 0.57969 

2200.90 55 0.57338 2.34398 -0.16034 7.69662 -0.07771 0.60356 

2248.60 56 0.58386 2.40302 -0.13156 7.71806 -0.04252 0.61648 

2292.6 57 0.59434 2.46512 -0.10288 7.73744 -0.01071 0.62818 

2314.30 58 0.60482 2.53050 -0.07427 7.74686 0.00475 0.63387 

2347.70 59 0.61530 2.59946 -0.04573 7.76119 0.02827 0.64252 

2419.30 60 0.62579 2.67227 -0.01722 7.79123 0.07758 0.66063 

2432.30 61 0.63627 2.74928 0.01128 7.79659 0.08637 0.66385 

2435.00 62 0.64675 2.83086 0.03978 7.79770 0.08819 0.66452 

2440.3 63 0.65723 2.91743 0.06832 7.79988 0.09176 0.66583 

2458.00 64 0.66771 3.00946 0.09691 7.80710 0.10362 0.67017 

2489.80 65 0.67820 3.10749 0.12559 7.81996 0.12472 0.67788 

2557.50 66 0.68868 3.21212 0.15438 7.84679 0.16875 0.69390 
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2569.30 67 0.69916 3.32404 0.18331 7.85139 0.17631 0.69663 

2738.20 68 0.70964 3.44404 0.21240 7.91506 0.28081 0.73398 

2774.40 69 0.72013 3.57303 0.24170 7.92819 0.30237 0.74155 

2780.70 70 0.73061 3.71206 0.27124 7.93046 0.30609 0.74285 

2783.50 71 0.74109 3.86235 0.30105 7.93146 0.30774 0.74343 

2793.3 72 0.75157 4.02532 0.33118 7.93498 0.31351 0.74544 

2799.50 73 0.76205 4.20264 0.36166 7.93720 0.31715 0.74671 

2864.30 74 0.77254 4.39631 0.39256 7.96008 0.35471 0.75968 

2885.70 75 0.78302 4.60870 0.42392 7.96752 0.36693 0.76385 

2973.6 76 0.79350 4.84264 0.45582 7.99753 0.41617 0.78044 

3066.60 77 0.80398 5.10160 0.48831 8.02832 0.46672 0.79704 

3067.90 78 0.81447 5.38983 0.52148 8.02875 0.46742 0.79727 

3086.40 79 0.82495 5.71257 0.55542 8.03476 0.47728 0.80045 

3106.6 80 0.83543 6.07643 0.59024 8.04128 0.48799 0.80388 

3158.70 81 0.84591 6.48980 0.62606 8.05792 0.51529 0.81253 

3181.70 82 0.85639 6.96350 0.66304 8.06517 0.52720 0.81625 

3249.30 83 0.86688 7.51181 0.70135 8.08619 0.56171 0.82686 

3253.5 84 0.87736 8.15385 0.74122 8.08749 0.56383 0.82750 

3267.60 85 0.88784 8.91589 0.78291 8.09181 0.57092 0.82965 

3559.4 86 0.89832 9.83505 0.82678 8.17735 0.71132 0.86954 

3599.50 87 0.90881 10.96552 0.87328 8.18855 0.72970 0.87438 

3650.60 88 0.91929 12.38961 0.92301 8.20265 0.75284 0.88033 

3668.60 89 0.92977 14.23881 0.97681 8.20757 0.76092 0.88237 

3693.90 90 0.94025 16.73684 1.03589 8.21444 0.77220 0.88519 

3775.60 91 0.95073 20.29787 1.10211 8.23631 0.80810 0.89393 

3969.1 92 0.96122 25.78378 1.17858 8.28629 0.89014 0.91244 

3979.00 93 0.97170 35.33333 1.27112 8.28879 0.89422 0.91331 

4072.10 94 0.98218 56.11765 1.39313 8.31191 0.93219 0.92114 

4655.60 95 0.992662474 136.2857143 1.592241604 8.445826075 1.15198 0.95776 
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Table A- 4 KS GOF test for turbine failures required overhaul maintenance (T.S.O) 

ROW Hours            D+ D- 

1 100.9 0.00586 0.01042 0.00000 0.00456 0.00586 

2 177.2 0.01470 0.02083 0.01053 0.00614 0.00417 

3 277.1 0.03037 0.03125 0.02105 0.00088 0.00932 

4 301.5 0.03480 0.04167 0.03158 0.00687 0.00322 

5 350.8 0.04440 0.05208 0.04211 0.00768 0.00230 

6 368.4 0.04803 0.06250 0.05263 0.01447 -0.00461 

7 456 0.06747 0.07292 0.06316 0.00545 0.00431 

8 472.3 0.07132 0.08333 0.07368 0.01201 -0.00236 

9 475.7 0.07214 0.09375 0.08421 0.02161 -0.01207 

10 497.7 0.07747 0.10417 0.09474 0.02669 -0.01726 

11 507.9 0.07999 0.11458 0.10526 0.03459 -0.02527 

12 562.9 0.09398 0.12500 0.11579 0.03102 -0.02181 

13 646.6 0.11654 0.13542 0.12632 0.01887 -0.00977 

14 704.8 0.13302 0.14583 0.13684 0.01281 -0.00382 

15 846.4 0.17533 0.15625 0.14737 -0.01908 0.02797 

16 857.3 0.17870 0.16667 0.15789 -0.01203 0.02081 

17 881.6 0.18626 0.17708 0.16842 -0.00917 0.01784 

18 984.7 0.21897 0.18750 0.17895 -0.03147 0.04002 

19 1026.3 0.23241 0.19792 0.18947 -0.03450 0.04294 

20 1029.3 0.23339 0.20833 0.20000 -0.02505 0.03339 

21 1085 0.25158 0.21875 0.21053 -0.03283 0.04105 

22 1088.2 0.25263 0.22917 0.22105 -0.02346 0.03157 

23 1117.5 0.26227 0.23958 0.23158 -0.02268 0.03069 

24 1131 0.26672 0.25000 0.24211 -0.01672 0.02461 

25 1142.7 0.27058 0.26042 0.25263 -0.01017 0.01795 

26 1169.7 0.27952 0.27083 0.26316 -0.00869 0.01636 

27 1249.8 0.30614 0.28125 0.27368 -0.02489 0.03246 

28 1261.5 0.31004 0.29167 0.28421 -0.01837 0.02583 

29 1310.9 0.32650 0.30208 0.29474 -0.02442 0.03177 

30 1343.5 0.33737 0.31250 0.30526 -0.02487 0.03211 
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31 1427.3 0.36524 0.32292 0.31579 -0.04232 0.04945 

32 1511.7 0.39313 0.33333 0.32632 -0.05980 0.06682 

33 1576.5 0.41437 0.34375 0.33684 -0.07062 0.07753 

34 1614.8 0.42683 0.35417 0.34737 -0.07266 0.07946 

35 1636.6 0.43388 0.36458 0.35789 -0.06930 0.07599 

36 1640.3 0.43508 0.37500 0.36842 -0.06008 0.06666 

37 1661.3 0.44184 0.38542 0.37895 -0.05643 0.06290 

38 1698.7 0.45383 0.39583 0.38947 -0.05799 0.06435 

39 1706.6 0.45635 0.40625 0.40000 -0.05010 0.05635 

40 1718.9 0.46026 0.41667 0.41053 -0.04359 0.04973 

41 1769 0.47610 0.42708 0.42105 -0.04901 0.05504 

42 1790.3 0.48277 0.43750 0.43158 -0.04527 0.05119 

43 1870.8 0.50768 0.44792 0.44211 -0.05976 0.06557 

44 1915.3 0.52121 0.45833 0.45263 -0.06288 0.06858 

45 1942.6 0.52943 0.46875 0.46316 -0.06068 0.06627 

46 1968.8 0.53725 0.47917 0.47368 -0.05808 0.06357 

47 1991.1 0.54386 0.48958 0.48421 -0.05427 0.05964 

48 1992.7 0.54433 0.50000 0.49474 -0.04433 0.04959 

49 1993.7 0.54462 0.51042 0.50526 -0.03421 0.03936 

50 2007.4 0.54865 0.52083 0.51579 -0.02782 0.03286 

51 2088.6 0.57217 0.53125 0.52632 -0.04092 0.04585 

52 2107.5 0.57754 0.54167 0.53684 -0.03588 0.04070 

53 2112.5 0.57896 0.55208 0.54737 -0.02687 0.03159 

54 2115.1 0.57969 0.56250 0.55789 -0.01719 0.02180 

55 2200.9 0.60356 0.57292 0.56842 -0.03064 0.03514 

56 2248.6 0.61648 0.58333 0.57895 -0.03315 0.03754 

57 2292.6 0.62818 0.59375 0.58947 -0.03443 0.03871 

58 2314.3 0.63387 0.60417 0.60000 -0.02970 0.03387 

59 2347.7 0.64252 0.61458 0.61053 -0.02793 0.03199 

60 2419.3 0.66063 0.62500 0.62105 -0.03563 0.03958 

61 2432.3 0.66385 0.63542 0.63158 -0.02844 0.03228 

62 2435 0.66452 0.64583 0.64211 -0.01869 0.02242 

63 2440.3 0.66583 0.65625 0.65263 -0.00958 0.01320 
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64 2458 0.67017 0.66667 0.66316 -0.00350 0.00701 

65 2489.8 0.67788 0.67708 0.67368 -0.00080 0.00420 

66 2557.5 0.69390 0.68750 0.68421 -0.00640 0.00969 

67 2569.3 0.69663 0.69792 0.69474 0.00128 0.00190 

68 2738.2 0.73398 0.70833 0.70526 -0.02565 0.02872 

69 2774.4 0.74155 0.71875 0.71579 -0.02280 0.02576 

70 2780.7 0.74285 0.72917 0.72632 -0.01369 0.01654 

71 2783.5 0.74343 0.73958 0.73684 -0.00385 0.00659 

72 2793.3 0.74544 0.75000 0.74737 0.00456 -0.00193 

73 2799.5 0.74671 0.76042 0.75789 0.01371 -0.01119 

74 2864.3 0.75968 0.77083 0.76842 0.01116 -0.00875 

75 2885.7 0.76385 0.78125 0.77895 0.01740 -0.01510 

76 2973.6 0.78044 0.79167 0.78947 0.01122 -0.00903 

77 3066.6 0.79704 0.80208 0.80000 0.00504 -0.00296 

78 3067.9 0.79727 0.81250 0.81053 0.01523 -0.01326 

79 3086.4 0.80045 0.82292 0.82105 0.02247 -0.02060 

80 3106.6 0.80388 0.83333 0.83158 0.02945 -0.02770 

81 3158.7 0.81253 0.84375 0.84211 0.03122 -0.02958 

82 3181.7 0.81625 0.85417 0.85263 0.03792 -0.03638 

83 3249.3 0.82686 0.86458 0.86316 0.03772 -0.03630 

84 3253.5 0.82750 0.87500 0.87368 0.04750 -0.04618 

85 3267.6 0.82965 0.88542 0.88421 0.05577 -0.05456 

86 3559.4 0.86954 0.89583 0.89474 0.02630 -0.02520 

87 3599.5 0.87438 0.90625 0.90526 0.03187 -0.03089 

88 3650.6 0.88033 0.91667 0.91579 0.03634 -0.03546 

89 3668.6 0.88237 0.92708 0.92632 0.04471 -0.04394 

90 3693.9 0.88519 0.93750 0.93684 0.05231 -0.05165 

91 3775.6 0.89393 0.94792 0.94737 0.05399 -0.05344 

92 3969.1 0.91244 0.95833 0.95789 0.04589 -0.04545 

93 3979 0.91331 0.96875 0.96842 0.05544 -0.05511 

94 4072.1 0.92114 0.97917 0.97895 0.05803 -0.05781 

95 4655.6 0.95776 0.98958 0.98947 0.03182 -0.03171 

MAX= 0.07946 0.07946 
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Table B- 1 ANN analysis for C-130 general turbine failure data (T.T) with different BP ANN structures, RB 

ANN and Weibull regression 

Turbine 
(T.T) 

Rank 
(i) 

Median 
Ranks 

F(t) 

Normalize 
T.T 

(Hours) 

ANN  
(2,4,1) 

ANN 
(3,6,1) 

ANN 
(4,8,1) 

ANN 
(4,10,1) 

ANN 
(4,20,1) 

Weibull 
Radial 
Based 
ANN 

562.9 1 0.00734 0.00000 -0.06171 0.00534 0.01061 0.00336 -0.00301 0.00692 0.00734 

1088.20 2 0.01782 0.04267 -0.00369 0.02022 0.02693 0.02368 0.01916 0.02435 0.01782 

1169.70 3 0.02830 0.04929 0.00387 0.02527 0.03501 0.0335 0.02911 0.02793 0.0283 

1261.50 4 0.03878 0.05675 0.01159 0.03221 0.04468 0.04338 0.03916 0.03223 0.03878 

1310.90 5 0.04927 0.06076 0.01538 0.03646 0.05346 0.05192 0.04833 0.03465 0.04927 

1343.50 6 0.05975 0.06341 0.01774 0.03944 0.06194 0.0597 0.05721 0.03630 0.05975 

1511.70 7 0.07023 0.07707 0.02817 0.0564 0.07667 0.07031 0.06795 0.04533 0.07023 

1915.3 8 0.08071 0.10986 0.0451 0.09533 0.09951 0.08592 0.08097 0.07051 0.08071 

1942.6 9 0.09119 0.11207 0.04614 0.09726 0.10605 0.09238 0.08922 0.07238 0.09119 

2088.6 10 0.10168 0.12393 0.05227 0.10526 0.11494 0.10135 0.09868 0.08274 0.10168 

2347.70 11 0.11216 0.14498 0.06751 0.1099 0.12395 0.11278 0.10942 0.10250 0.11216 

2586.30 12 0.12264 0.16436 0.08828 0.11044 0.13068 0.12382 0.12028 0.12214 0.12264 

2901.80 13 0.13312 0.18999 0.1239 0.11619 0.13917 0.13686 0.13309 0.15001 0.13312 

2973.6 14 0.14361 0.19582 0.13258 0.12038 0.14457 0.14487 0.1422 0.15663 0.14361 

3173.60 15 0.15409 0.21207 0.1563 0.13879 0.15525 0.15629 0.15416 0.17557 0.15409 

3206.10 16 0.16457 0.21471 0.15998 0.14269 0.1621 0.16433 0.1626 0.17871 0.16457 

3332.40 17 0.17505 0.22497 0.17362 0.15988 0.17403 0.17509 0.17337 0.19109 0.17505 

3427.20 18 0.18553 0.23267 0.18306 0.17448 0.18591 0.18556 0.18349 0.20054 0.18553 

3650.60 19 0.19602 0.25082 0.20277 0.21123 0.20575 0.19965 0.19769 0.22331 0.19602 

3730.20 20 0.20650 0.25728 0.20918 0.22402 0.21801 0.21047 0.2077 0.23158 0.2065 

3732.9 21 0.21698 0.25750 0.20939 0.22444 0.22584 0.21954 0.21505 0.23186 0.21698 

3749.90 22 0.22746 0.25888 0.21074 0.22709 0.23416 0.22907 0.22273 0.23364 0.22746 

3751.50 23 0.23795 0.25901 0.21087 0.22734 0.24133 0.23823 0.22973 0.23380 0.23795 

3969.10 24 0.24843 0.27669 0.22838 0.25743 0.25742 0.25258 0.24458 0.25681 0.24843 

4055.40 25 0.25891 0.28370 0.23593 0.267 0.26618 0.26347 0.25467 0.26607 0.25891 

4066.60 26 0.26939 0.28461 0.23695 0.26813 0.27155 0.27223 0.26182 0.26728 0.26939 

4116.70 27 0.27987 0.28868 0.24166 0.27292 0.27775 0.28161 0.27041 0.27269 0.27987 

4222.20 28 0.29036 0.29725 0.25243 0.2815 0.28511 0.29197 0.28116 0.28414 0.29036 

4615.70 29 0.30084 0.32921 0.30413 0.30322 0.3003 0.30935 0.30313 0.32749 0.30084 

4780.00 30 0.31132 0.34256 0.32968 0.31321 0.31087 0.32082 0.31591 0.34580 0.31132 

Appendix B 
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4902.90 31 0.32180 0.35254 0.34892 0.32311 0.32187 0.33102 0.32695 0.35954 0.3218 

4912.70 32 0.33229 0.35334 0.35043 0.32401 0.32962 0.33797 0.33375 0.36064 0.33229 

4948.10 33 0.34277 0.35621 0.35584 0.32739 0.33927 0.3455 0.34149 0.36460 0.34277 

5074.00 34 0.35325 0.36644 0.37413 0.34124 0.35431 0.35555 0.3524 0.37870 0.35325 

5160.30 35 0.36373 0.37345 0.38552 0.35224 0.36825 0.36456 0.36185 0.38837 0.36373 

5218.50 36 0.37421 0.37818 0.39254 0.36025 0.381 0.37288 0.37034 0.39489 0.37421 

5289.90 37 0.38470 0.38398 0.40033 0.37058 0.39433 0.38174 0.37928 0.40289 0.3847 

5342.10 38 0.39518 0.38822 0.40541 0.37838 0.4062 0.39025 0.38764 0.40873 0.39518 

5351.10 39 0.40566 0.38895 0.40624 0.37974 0.41545 0.3978 0.39476 0.40973 0.40566 

5661.60 40 0.41614 0.41417 0.42547 0.42528 0.43479 0.41361 0.41069 0.44432 0.41614 

5839.8 41 0.42662 0.42865 0.4303 0.44602 0.44532 0.42568 0.42254 0.46401 0.42662 

6167.9 42 0.43711 0.45530 0.43772 0.46713 0.45475 0.44082 0.43828 0.49981 0.43711 

6205.00 43 0.44759 0.45831 0.43908 0.46827 0.45891 0.44949 0.44628 0.50381 0.44759 

6222.90 44 0.45807 0.45977 0.43981 0.46875 0.46283 0.4579 0.4539 0.50574 0.45807 

6606.80 45 0.46855 0.49095 0.46806 0.47609 0.47134 0.47351 0.47114 0.54645 0.46855 

6612.90 46 0.47904 0.49145 0.46871 0.47627 0.47672 0.48177 0.47865 0.54709 0.47904 

6910.30 47 0.48952 0.51560 0.50578 0.49357 0.49087 0.49593 0.49397 0.57767 0.48952 

6927.7 48 0.50000 0.51702 0.50814 0.49519 0.49945 0.50455 0.502 0.57943 0.5 

6956.90 49 0.51048 0.51939 0.51211 0.49806 0.50935 0.51339 0.51041 0.58238 0.51048 

6996.6 50 0.52096 0.52261 0.5175 0.50229 0.52052 0.52242 0.51918 0.58637 0.52096 

7019.10 51 0.53145 0.52444 0.52055 0.50485 0.53155 0.53098 0.52751 0.58862 0.53145 

7290.10 52 0.54193 0.54646 0.55442 0.54347 0.55478 0.54599 0.54295 0.61533 0.54193 

7392.70 53 0.55241 0.55479 0.56496 0.56062 0.56966 0.5569 0.55374 0.62521 0.55241 

7449.60 54 0.56289 0.55941 0.57012 0.57033 0.58175 0.56651 0.56323 0.63063 0.56289 

7453.20 55 0.57338 0.55970 0.57043 0.57094 0.59102 0.57441 0.57113 0.63097 0.57338 

7475.10 56 0.58386 0.56148 0.57228 0.57468 0.6003 0.58278 0.57955 0.63305 0.58386 

7538.5 57 0.59434 0.56663 0.57722 0.58543 0.6099 0.59244 0.58921 0.63902 0.59434 

7642.20 58 0.60482 0.57506 0.58411 0.60243 0.61911 0.60345 0.60013 0.64868 0.60482 

7654.30 59 0.61530 0.57604 0.58483 0.60434 0.62535 0.61146 0.60815 0.64980 0.6153 

7781.50 60 0.62579 0.58637 0.59159 0.62326 0.63266 0.62332 0.61983 0.66143 0.62579 

8141.60 61 0.63627 0.61562 0.61026 0.66261 0.6427 0.6425 0.63924 0.69317 0.63627 

8226.90 62 0.64675 0.62255 0.61658 0.66932 0.64947 0.65271 0.6497 0.70042 0.64675 

8368.8 63 0.65723 0.63408 0.63011 0.67964 0.6587 0.66444 0.66207 0.71225 0.65723 
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8448.70 64 0.66771 0.64057 0.6396 0.68552 0.66782 0.67434 0.67237 0.71878 0.66771 

8453.60 65 0.67820 0.64097 0.64023 0.68589 0.6753 0.68238 0.6801 0.71918 0.6782 

8472.00 66 0.68868 0.64246 0.64263 0.6873 0.68386 0.69092 0.68827 0.72067 0.68868 

8477.60 67 0.69916 0.64292 0.64338 0.68774 0.6924 0.69933 0.69599 0.72112 0.69916 

8596.80 68 0.70964 0.65260 0.66079 0.69776 0.7071 0.71053 0.70767 0.73064 0.70964 

8792.20 69 0.72013 0.66847 0.69467 0.71869 0.72691 0.7234 0.72206 0.74580 0.72013 

8828.40 70 0.73061 0.67141 0.70145 0.72331 0.73836 0.73282 0.73092 0.74855 0.73061 

8843.30 71 0.74109 0.67262 0.70426 0.72528 0.74849 0.74187 0.73907 0.74968 0.74109 

8844.5 72 0.75157 0.67272 0.70449 0.72544 0.75762 0.75066 0.74677 0.74977 0.75157 

8985.70 73 0.76205 0.68419 0.73145 0.74609 0.77314 0.7626 0.75941 0.76026 0.76205 

9104.70 74 0.77254 0.69386 0.75355 0.76578 0.78614 0.77415 0.77128 0.76887 0.77254 

9162.90 75 0.78302 0.69858 0.76377 0.77594 0.79548 0.7843 0.78107 0.77301 0.78302 

9183.3 76 0.79350 0.70024 0.76722 0.77955 0.80274 0.79344 0.78958 0.77445 0.7935 

9311.70 77 0.80398 0.71067 0.78709 0.80245 0.81281 0.80527 0.80178 0.78335 0.80398 

9406.20 78 0.81447 0.71835 0.79929 0.81888 0.82115 0.8162 0.81277 0.78975 0.81447 

9476.70 79 0.82495 0.72408 0.80687 0.83052 0.82861 0.82638 0.82292 0.79444 0.82495 

9540.4 80 0.83543 0.72925 0.81259 0.84036 0.83601 0.83621 0.8328 0.79862 0.83543 

9654.20 81 0.84591 0.73849 0.82017 0.85587 0.84537 0.84733 0.84416 0.80592 0.84591 

9699.30 82 0.85639 0.74216 0.8223 0.86117 0.85316 0.85625 0.85327 0.80877 0.85639 

9757.30 83 0.86688 0.74687 0.82441 0.86722 0.86197 0.86534 0.86266 0.81238 0.86688 

10004.7 84 0.87736 0.76697 0.82782 0.88298 0.87946 0.87969 0.87723 0.82724 0.87736 

10155.30 85 0.88784 0.77920 0.82863 0.88314 0.89392 0.89087 0.88857 0.83586 0.88784 

10330.2 86 0.89832 0.79341 0.83222 0.88406 0.90948 0.90229 0.90003 0.84547 0.89832 

10388.50 87 0.90881 0.79814 0.83456 0.88472 0.91928 0.91019 0.90836 0.84857 0.90881 

10618.60 88 0.91929 0.81683 0.85102 0.8856 0.93442 0.92207 0.92002 0.86039 0.91929 

10761.00 89 0.92977 0.82840 0.86699 0.88585 0.94386 0.93127 0.92928 0.86734 0.92977 

10791.90 90 0.94025 0.83091 0.87095 0.88688 0.94884 0.93776 0.93617 0.86881 0.94025 

11787.30 91 0.95073 0.91177 0.97942 0.95403 0.96164 0.96071 0.95592 0.90988 0.95073 

11895.5 92 0.96122 0.92056 0.98161 0.95627 0.96539 0.9676 0.963 0.91365 0.96122 

11956.20 93 0.97170 0.92549 0.98243 0.95687 0.96977 0.97392 0.96947 0.91570 0.9717 

12270.40 94 0.98218 0.95101 0.98902 0.95724 0.98235 0.98367 0.97888 0.92572 0.98218 

12873.50 95 0.99266 1.00000 1.06258 0.99894 1.01531 0.99799 0.99352 0.94222 0.99266 

Average Error (%) = 25.64% 5.22% 4.01% 1.53% 0.96% 18.20 % 7.54E-16 
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Table B- 2 ANN analysis for C-130 failures required overhaul maintenance (T.S.O) with different BP ANN 

structures, RB ANN and Weibull regression 

Turbine 
(T.T) 

Rank 
(i) 

Median 
Ranks 

F(t) 

Normalize 
T.T 

(Hours) 

ANN  
(2,4,1) 

ANN 
(3,6,1) 

ANN 
(4,8,1) 

ANN 
(4,10,1) 

ANN 
(4,20,1) 

Weibull 
Radial 
Based 
ANN 

100.9 1 0.00734 0.00000 0.00318 0.00829 0.00734 0.00734 0.00734 0.00586 0.00734 

177.20 2 0.01782 0.01675 0.00644 0.01472 0.01782 0.01782 0.01782 0.01470 0.01782 

277.10 3 0.02830 0.03869 0.01149 0.03493 0.02830 0.02830 0.02830 0.03037 0.02830 

301.50 4 0.03878 0.04404 0.01714 0.04166 0.03878 0.03878 0.03878 0.03480 0.03878 

350.80 5 0.04927 0.05487 0.03308 0.05673 0.04927 0.04927 0.04927 0.04440 0.04927 

368.40 6 0.05975 0.05873 0.04010 0.06245 0.05975 0.05975 0.05975 0.04803 0.05975 

456.00 7 0.07023 0.07796 0.08152 0.09145 0.07023 0.07023 0.07023 0.06747 0.07023 

472.3 8 0.08071 0.08154 0.08970 0.09666 0.08071 0.08071 0.08071 0.07132 0.08071 

475.7 9 0.09119 0.08229 0.09140 0.09774 0.09119 0.09119 0.09119 0.07214 0.09119 

497.7 10 0.10168 0.08712 0.10224 0.10452 0.10168 0.10168 0.10168 0.07747 0.10168 

507.90 11 0.11216 0.08936 0.10712 0.10757 0.11216 0.11216 0.11216 0.07999 0.11216 

562.90 12 0.12264 0.10143 0.13097 0.12269 0.12264 0.12264 0.12264 0.09398 0.12264 

646.60 13 0.13312 0.11981 0.15523 0.14118 0.13312 0.13312 0.13312 0.11654 0.13312 

704.8 14 0.14361 0.13259 0.16195 0.15129 0.14361 0.14361 0.14361 0.13302 0.14361 

846.40 15 0.15409 0.16368 0.16197 0.17336 0.15409 0.15409 0.15409 0.17533 0.15409 

857.30 16 0.16457 0.16607 0.16246 0.17526 0.16457 0.16457 0.16457 0.17870 0.16457 

881.60 17 0.17505 0.17141 0.16255 0.17973 0.17505 0.17505 0.17505 0.18626 0.17505 

984.70 18 0.18553 0.19404 0.17715 0.20297 0.18553 0.18553 0.18553 0.21897 0.18553 

1026.30 19 0.19602 0.20317 0.18953 0.21437 0.19602 0.19602 0.19602 0.23241 0.19602 

1029.30 20 0.20650 0.20383 0.19056 0.21523 0.20650 0.20650 0.20650 0.23339 0.20650 

1085.0 21 0.21698 0.21606 0.21247 0.23201 0.21698 0.21698 0.21698 0.25158 0.21698 

1088.20 22 0.22746 0.21677 0.21386 0.23301 0.22746 0.22746 0.22746 0.25263 0.22746 

1117.50 23 0.23795 0.22320 0.22703 0.24228 0.23795 0.23795 0.23795 0.26227 0.23795 

1131.00 24 0.24843 0.22616 0.23329 0.24660 0.24843 0.24843 0.24843 0.26672 0.24843 

1142.70 25 0.25891 0.22873 0.23876 0.25036 0.25891 0.25891 0.25891 0.27058 0.25891 

1169.70 26 0.26939 0.23466 0.25137 0.25903 0.26939 0.26939 0.26939 0.27952 0.26939 

1249.80 27 0.27987 0.25224 0.28582 0.28396 0.27987 0.27987 0.27987 0.30614 0.27987 

1261.50 28 0.29036 0.25481 0.29018 0.28743 0.29036 0.29036 0.29036 0.31004 0.29036 

1310.90 29 0.30084 0.26566 0.30604 0.30139 0.30084 0.30084 0.30084 0.32650 0.30084 

1343.50 30 0.31132 0.27282 0.31416 0.30998 0.31132 0.31132 0.31132 0.33737 0.31132 
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1427.30 31 0.32180 0.29122 0.32769 0.33006 0.32180 0.32180 0.32180 0.36524 0.32180 

1511.70 32 0.33229 0.30975 0.33631 0.34870 0.33229 0.33229 0.33229 0.39313 0.33229 

1576.50 33 0.34277 0.32397 0.34517 0.36338 0.34277 0.34277 0.34277 0.41437 0.34277 

1614.80 34 0.35325 0.33238 0.35290 0.37266 0.35325 0.35325 0.35325 0.42683 0.35325 

1636.60 35 0.36373 0.33717 0.35833 0.37823 0.36373 0.36373 0.36373 0.43388 0.36373 

1640.30 36 0.37421 0.33798 0.35933 0.37919 0.37421 0.37421 0.37421 0.43508 0.37421 

1661.30 37 0.38470 0.34259 0.36543 0.38481 0.38470 0.38470 0.38470 0.44184 0.38470 

1698.70 38 0.39518 0.35080 0.37804 0.39536 0.39518 0.39518 0.39518 0.45383 0.39518 

1706.60 39 0.40566 0.35254 0.38097 0.39768 0.40566 0.40566 0.40566 0.45635 0.40566 

1718.90 40 0.41614 0.35524 0.38570 0.40135 0.41614 0.41614 0.41614 0.46026 0.41614 

1769 41 0.42662 0.36624 0.40671 0.41706 0.42662 0.42662 0.42662 0.47610 0.42662 

1790.3 42 0.43711 0.37091 0.41625 0.42406 0.43711 0.43711 0.43711 0.48277 0.43711 

1870.80 43 0.44759 0.38859 0.45279 0.45179 0.44759 0.44759 0.44759 0.50768 0.44759 

1915.30 44 0.45807 0.39836 0.47161 0.46761 0.45807 0.45807 0.45807 0.52121 0.45807 

1942.60 45 0.46855 0.40435 0.48218 0.47735 0.46855 0.46855 0.46855 0.52943 0.46855 

1968.80 46 0.47904 0.41010 0.49150 0.48668 0.47904 0.47904 0.47904 0.53725 0.47904 

1991.10 47 0.48952 0.41500 0.49875 0.49458 0.48952 0.48952 0.48952 0.54386 0.48952 

1992.7 48 0.50000 0.41535 0.49925 0.49515 0.50000 0.50000 0.50000 0.54433 0.50000 

1993.70 49 0.51048 0.41557 0.49955 0.49550 0.51048 0.51048 0.51048 0.54462 0.51048 

2007.4 50 0.52096 0.41858 0.50366 0.50034 0.52096 0.52096 0.52096 0.54865 0.52096 

2088.60 51 0.53145 0.43641 0.52390 0.52863 0.53145 0.53145 0.53145 0.57217 0.53145 

2107.50 52 0.54193 0.44056 0.52787 0.53514 0.54193 0.54193 0.54193 0.57754 0.54193 

2112.50 53 0.55241 0.44165 0.52889 0.53686 0.55241 0.55241 0.55241 0.57896 0.55241 

2115.10 54 0.56289 0.44222 0.52942 0.53776 0.56289 0.56289 0.56289 0.57969 0.56289 

2200.90 55 0.57338 0.46106 0.54672 0.56739 0.57338 0.57338 0.57338 0.60356 0.57338 

2248.60 56 0.58386 0.47153 0.55761 0.58419 0.58386 0.58386 0.58386 0.61648 0.58386 

2292.6 57 0.59434 0.48120 0.56929 0.60002 0.59434 0.59434 0.59434 0.62818 0.59434 

2314.30 58 0.60482 0.48596 0.57570 0.60796 0.60482 0.60482 0.60482 0.63387 0.60482 

2347.70 59 0.61530 0.49329 0.58638 0.62032 0.61530 0.61530 0.61530 0.64252 0.61530 

2419.30 60 0.62579 0.50901 0.61193 0.64712 0.62579 0.62579 0.62579 0.66063 0.62579 

2432.30 61 0.63627 0.51187 0.61681 0.65196 0.63627 0.63627 0.63627 0.66385 0.63627 

2435.00 62 0.64675 0.51246 0.61782 0.65297 0.64675 0.64675 0.64675 0.66452 0.64675 

2440.3 63 0.65723 0.51362 0.61982 0.65494 0.65723 0.65723 0.65723 0.66583 0.65723 
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2458.00 64 0.66771 0.51751 0.62650 0.66147 0.66771 0.66771 0.66771 0.67017 0.66771 

2489.80 65 0.67820 0.52449 0.63842 0.67298 0.67820 0.67820 0.67820 0.67788 0.67820 

2557.50 66 0.68868 0.53935 0.66234 0.69600 0.68868 0.68868 0.68868 0.69390 0.68868 

2569.30 67 0.69916 0.54195 0.66619 0.69972 0.69916 0.69916 0.69916 0.69663 0.69916 

2738.20 68 0.70964 0.57903 0.70901 0.74056 0.70964 0.70964 0.70964 0.73398 0.70964 

2774.40 69 0.72013 0.58698 0.71620 0.74629 0.72013 0.72013 0.72013 0.74155 0.72013 

2780.70 70 0.73061 0.58836 0.71744 0.74721 0.73061 0.73061 0.73061 0.74285 0.73061 

2783.50 71 0.74109 0.58897 0.71799 0.74761 0.74109 0.74109 0.74109 0.74343 0.74109 

2793.3 72 0.75157 0.59113 0.71993 0.74897 0.75157 0.75157 0.75157 0.74544 0.75157 

2799.50 73 0.76205 0.59249 0.72116 0.74981 0.76205 0.76205 0.76205 0.74671 0.76205 

2864.30 74 0.77254 0.60671 0.73475 0.75787 0.77254 0.77254 0.77254 0.75968 0.77254 

2885.70 75 0.78302 0.61141 0.73967 0.76044 0.78302 0.78302 0.78302 0.76385 0.78302 

2973.6 76 0.79350 0.63071 0.76270 0.77244 0.79350 0.79350 0.79350 0.78044 0.79350 

3066.60 77 0.80398 0.65113 0.79045 0.79098 0.80398 0.80398 0.80398 0.79704 0.80398 

3067.90 78 0.81447 0.65142 0.79084 0.79130 0.81447 0.81447 0.81447 0.79727 0.81447 

3086.40 79 0.82495 0.65548 0.79637 0.79596 0.82495 0.82495 0.82495 0.80045 0.82495 

3106.6 80 0.83543 0.65991 0.80227 0.80143 0.83543 0.83543 0.83543 0.80388 0.83543 

3158.70 81 0.84591 0.67135 0.81648 0.81717 0.84591 0.84591 0.84591 0.81253 0.84591 

3181.70 82 0.85639 0.67640 0.82214 0.82476 0.85639 0.85639 0.85639 0.81625 0.85639 

3249.30 83 0.86688 0.69124 0.83624 0.84844 0.86688 0.86688 0.86688 0.82686 0.86688 

3253.5 84 0.87736 0.69216 0.83700 0.84994 0.87736 0.87736 0.87736 0.82750 0.87736 

3267.60 85 0.88784 0.69526 0.83943 0.85499 0.88784 0.88784 0.88784 0.82965 0.88784 

3559.4 86 0.89832 0.75933 0.89017 0.92738 0.89832 0.89832 0.89832 0.86954 0.89832 

3599.50 87 0.90881 0.76813 0.90203 0.93083 0.90881 0.90881 0.90881 0.87438 0.90881 

3650.60 88 0.91929 0.77935 0.91885 0.93413 0.91929 0.91929 0.91929 0.88033 0.91929 

3668.60 89 0.92977 0.78330 0.92504 0.93521 0.92977 0.92977 0.92977 0.88237 0.92977 

3693.90 90 0.94025 0.78886 0.93378 0.93680 0.94025 0.94025 0.94025 0.88519 0.94025 

3775.60 91 0.95073 0.80679 0.96049 0.94428 0.95073 0.95073 0.95073 0.89393 0.95073 

3969.1 92 0.96122 0.84928 0.99742 0.98931 0.96122 0.96122 0.96122 0.91244 0.96122 

3979.00 93 0.97170 0.85145 0.99843 0.99258 0.97170 0.97170 0.97170 0.91331 0.97170 

4072.10 94 0.98218 0.87189 1.00858 1.02451 0.98218 0.98218 0.98218 0.92114 0.98218 

4655.60 95 0.99266 1.00000 1.19151 1.09364 0.99266 0.99266 0.99266 0.95776 0.99266 

Average Error (%) = 6.85 4.51 1.51 1.00 0.84 16.55 % 1.09E-15 
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- Airline Transport Pilot. 
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- Flight Safety Officer. 
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