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 In recent years, lots of research efforts have been directed towards miniaturization 

of devices and components in order to make them portable, compact, more efficient, 

more sensitive and ultimately consume less power. These reasons, among others, propel 

the increased research interest in nanoelectromechanical system (NEMS). The impact of 

NEMS is projected to cut across all aspects of life from automotive systems and 

communication to medicine and bioengineering.  

 A part of this dissertation focuses on the optimization of some characteristics of 

ultrathin (~100 nm) polycrystalline silicon germanium (poly-SiGe) films that are suitable 

for applications as structural layers for NEMS devices including biosensors, 

nanoswitches, nanoresonators, etc.  Poly-SiGe is selected because it can be deposited at a 

lower temperature (< 450
o
C) by chemical vapour deposition technique compared to many 

other materials. In addition, the intrinsic stresses can be favourably tuned with 

germanium. For the optimization process, the grey-Taguchi approach was used to deliver 

an optimal combination of stress (43 MPa), resistivity (1.39 mΩ-cm) and deposition rate 

(0.34 nm/s) at CMOS (complementary metal oxide semiconductor) compatible deposition 

temperature of 415
o
C, silane and germane flow rates of 8 sccm and 180 sccm, 

respectively. In addition to the optimized recipe, an ‘experimental best’ recipe selected 

from the Taguchi orthogonal array was further characterized. Among the additional 

characteristics included those of chemical (boron concentration and germanium fraction), 

electrical (carrier concentration, Hall mobility and resistivity), and mechanical (surface 

roughness, elastic modulus and hardness). By using these recipes, detailed experimental 

studies of evolution of stress, resistivity and surface properties were conducted to 
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understand how the trend of the local stresses across the film thickness is influenced. It is 

shown that a large variation in the local stresses is an indication of a strain gradient 

expected in a free-standing structure.   

 Based on the ‘experimental best’ and the optimized recipes, series of ~100 nm 

and ~60 nm thick nanocantilevers were fabricated following the established procedure for 

surface micromachining. The deflections at the cantilever tips were measured from 

scanning electron microscopy and  atomic force microscopy images for a number of 

cantilevers of various dimensions (0.3 – 10 µm long and 0.3 – 1 µm wide). The average 

strain gradients are then calculated to be -0.083 ± 0.009 /µm, -0.02 ± 0.004 /µm and -0.20 

± 0.036 /µm for the cantilevers processed with    100 nm thick optimized, 100 nm thick 

experimental best and 60 nm thick experimental best recipes, respectively. The strain 

gradient of -0.02 ± 0.004 /µm, which implies a downward tip deflection of ~10 nm for 1 

µm long, 0.84 µm wide and 0.1 µm thick cantilever, is considered to be a good structural 

layer for applications in nanoswitches, nanoresonators, biosensors among others. 

Evidence from the stress and resistivity maps, for one of the films, shows that the slight 

variation in the strain gradients can be attributed to the observed stress and resistivity 

variations.  

 Finally, based on the concept of surface stresses, a new intrinsic stress model is 

proposed. The equations that describe the stress evolution at the precoalescence, 

coalescence and postcoalescence stages of film growth are derived. The models are tested 

and are found to agree with the experimental results fairly accurately.  
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ABSTRACT (ARABIC) 

الرسالةملخص   

 باباتوندي اسافا تسليم  :      الكاملالاسم 

تطويرافلام متعدد الكريستالات السليكون الجرمانيوم الرقيق جدا كطبقات إنشائية  :عنوان الرسالة : عنوان الرسالة

 (NEMSللتطبيقات الانظمة النانو الكهروميكانيكية )

 الهندسة الميكانيكية :         التخصص

 3102: مايو   العلميةتاريخ الدرجة 

 

في السنوات الأخيرة، وجهت الكثير من الجهود البحثية نحو التصغير من الأجهزة والمكونات من أجل 

جعلها محمولة، مدمجة، أكثر كفاءة، وأكثر حساسية مما يجعلها تستهلك طاقة أقل. هذه الأسباب وغيرها، دفع الى 

(. ومن المتوقع أن تشمل جميع جوانب الحياة من NEMSالكهروميكانيكية )الاهتمام المتزايد في بحوث نانو نظام 

 أنظمة السيارات والاتصالات والطب والهندسة الحيوية.

 011جزء من هذه الأطروحة يركز على التحسين من بعض الخصائص الافلام الرقيقة جدا بسماكة )~ 

( والتي يمكن استخدامها كطبقات لبناء أجهزة SiGe نانومتر( المكونة من كريستالات السليكون الجرمانيوم )بولي

(NEMS) بما في ذلك أجهزة الاستشعار، ومفاتيح نانو، نانو مرنانات، الخ.  تم اختيار البولي ،SiGe  لامكانية

( بواسطة تقنية ترسيب الأبخرة م°051 ترسيبة في درجة حرارة أقل بالمقارنة مع العديد من المواد الأخرى )>

ة. إضافة إلى ذلك، فإن الضغوط الجوهرية يمكن ضبطها بشكل إيجابي مع الجرمانيوم. تم استخدام منهج الكيميائي

 1.20سم( ومعدل الترسيب ) mΩ 0.21(، المقاومة )02MPaجراي تاجوشى لايجاد المزيج الأمثل من التوتر )

، م(°005ة متوافقة  للترسيب  )، وفي درجة حرارCMOSنانومتر / ثانية( في مكمل معدن أكسيد أشباه الموصلات 

(، على التوالي. بالإضافة إلى هذه الصفة (SCCM SCCM180) 8و جيرمن )  و بستخدام معدلات تدفق سيلاني

من بين الخصائص المقاسة الأمثل، تم اختيار أفضل وصفة تجريبية من صفيف تاجوشى لمزيد من التوصيف. 

رون والجرمانيوم آسر( والكهربائية )تركيز الناقل، قاعة التنقل الأخرى تشمل المواد الكيميائية )تركيز البو
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باستخدام هذه الوصفات،  تم عمل دراسات  والمقاومية(، والميكانيكية )خشونة السطح، ومعامل مرونة وصلابة(.

ماكة تجريبية مفصلة لتكون  التوتر، المقاومة وخصائص السطح، لفهم كيفية تأثر التوتر المحلي في كافة أنحاء س

الفيلم. وتبين أنالاختلاف الكبير في الضغوط المحلية في كافة أنحاء سماكة الفيلم هو مؤشر على التغير في درجة 

 التمدد في الهيكل القائم بذاته.

بسماكة   (nano cantileverاستنادا إلى أفضل التجارب والوصفة الأمثل،تم تصنيع  سلسلة نانو الكابولي)

نانومتر، باتباع الإجراءات االمعموا بهى في قطع الاسطح متناهي الصغر. تم قياس  01نانومتر، و~  011من ~ 

الانحنائات في اطراف نانو الكابولي  بستخدام المجهر الإلكتروني والمجهر الذري القوة لعدد من الكابولي لأبعاد 

التدرجات في التمدد  ميكرون عرضي(. ثم تم أحتساب متوسط 0-1،2ميكرون طولي و 01حتي  1،2مختلفة من )

/ ميكرون لالكابولي بسماكة  1.120±  1.31-/ ميكرون و 1.110±  1.13-/ ميكرون،  1.111±  1.182-لتكون 

نانومتر تمت معالجتها بستخدام  01نانومتر و  011نانومتر تمت معالجتها بستخدام الوصفة الأمثل، و بسماكة  011

/ ميكرون، الذي يؤدي الى  1.110±  1.13-يعتبر التدرج في التمدد  الوصفة الأفضل تجريبيا ، على التوالي.

 1.0ميكرون عرضي وسماكة  1.80ميكرومتر طولي،  و  0نانومتر ل 01انحناءطرف الكابولي من الهبوط ~ 

-nano،و  نانو مرنانات   nano-switches ميكرومتر ، ليكون طبقة هيكلية جيدة لتطبيقات مفاتيح نانو

resonators، و أجهزة الاستشعار وغيرها. الأدلة من توزيع التوتر والمقاومة،لواحد من الأفلام، يدل على أن اختلاف

 طفيف في تدرجات التمدد يمكن أن يعزى إلى الاختلافات الملحوظ  في الإجهاد و المقاومة.

الجوهرية. و تم اشتقاق المعادلات وأخيرا، استنادا إلى مفهوم الضغوط السطحية، تم اقتراح نموذجا جديدا الإجهاد 

التي تصف تطور التوتر في مرحلة ما قبل التحام، والتحام بعد التحام لمراحل نمو الفيلم. كما تم اختبار النماذج 

 ووجدت أنها تتوافق مع النتائج التجريبية بدقة إلى حد ما.
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CHAPTER 1  

INTRODUCTION 

1.1   NEMS: What and Why? 

 The impacts of microelectromechanical systems (MEMS) are large and wide 

spanning across all aspects of life from automotive systems and communication to 

medicine and bioengineering. MEMS products are found in inkjet print heads, miniature 

mechanical switches, biosensors, data storage system, wireless electronics, fiber optics, 

fluidic systems, micro fuel cells, accelerometers, gyroscopes, micromirrors, 

microactuators, and chemical pressure sensors among others [1, 2]. In the 90s, MEMS 

applications were pronounced in and largely limited to automotive industries. Today, 

however, MEMS products are moving towards consumer applications with capacity to 

incorporate intelligence into the human environment [3]. MEMS are controlling our 

communications networks, and saving lives by inflating automobile air bags [2]. They are 

traveling through human body to monitor blood pressure and deliver drugs.  

Recent estimation of the MEMS market by Yole Développement shows that an 

estimated 8 billion units of MEMS devices are manufactured globally by 2012 and that 

the MEMS market is expected to reach $5.4 billion by 2017 [4]. Based on this market 

survey, MEMS applications in cell phones, pressure sensors, inertial sensors, RF MEMS 

switches, oscillators, microdisplays, microspeakers, environmental sensors,      
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touchscreen and joysticks are expected to significantly influence the market trend in the 

next few years.  

 Although MEMS products are expanding, the desire to miniaturize them is 

proportionally growing as science of micromachining advances. Products with portable 

and compact components having low mass and low power consumption are desirable. 

Sensors with high mechanical resonance frequencies (faster response to applied forces), 

higher quality or Q-factor, and high surface-to-volume ratio are ideal for surface-based 

sensing mechanisms. These reasons, among others, propel the search for miniaturized 

devices under the concept of nanoelectromechanical system (NEMS). Indeed, both 

NEMS and MEMS are electromechanical systems. They involve the combination of 

mechanical, electrical and sometimes optical, biological or radio frequency components 

[1]. While MEMS refers to microscopic devices with a characteristic length of less than 

1mm but more than 100nm, NEMS devices have a characteristic length of about 100nm 

or less. One dimension of a typical NEMS structure is smaller than a quantum-dot 

transistor whereas that of MEMS can be as large as a strand of human hair. Bhushan [5] 

puts the dimensions of NEMS and MEMS in the right context (see Fig. 1.1). Few 

examples of NEMS applications include nanoresonators, nanoaccelerometer, a non-

volatile NEMS memory, relay and switches with carbon nanotubes among others [6].  
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Figure 1.1: Dimensions of MEMS and NEMS devices in perspective. Examples of 

MEMS/NEMS structures: a vertical single walled carbon nanotube (SWCNT), transistor 

(5nm wide and 15nm high), a carbon-nanotube-based gear, quantum-dot transistor, and 

digital micromirror device (DMD). At the extreme of these devices are a carbon (C) atom 

of 0.16nm radius and human hair of about 50-100 µm thick [5]. 

 NEMS devices are produced by micromachining using a top-down or a bottom-up 

approach [7]. The bottom-up approach may be by chemical self-assembly, chemical 

vapour deposition or hot plate techniques while the top-down approach may involve 

metallic thin films or etched semiconductor layers that are produced with the help of 

etching, scanning probe tools or with nanolithography methods. The spontaneous rise in 

the applications of NEMS is credited to the continuous improvement in the science and 
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technology of these fabrication techniques. This technology enables fabrication of large 

arrays of devices, which individually perform simple tasks, but in combination can 

accomplish complicated functions.  NEMS are increasingly applied in biosensing, DNA 

molecule detection, mass measurement (mass spectroscopy) and as microcantilevers with 

integrated sharp nanotips for STM and AFM [6]. Out of these applications, the use of 

nanocantilevers or nanoresonators for chemical, biological or medical applications has 

been the focus of many research groups. Good review articles on nanoresonators and 

biosensors have been published recently [8, 9]. 

 With a particular reference to sensing applications, several experimental and 

simulation studies have shown that by reducing the size of structural layers, the 

sensitivity of a device can be enhanced significantly [9]. Recently, Chaste et al. [10] 

realized a chemical sensor of 1.7yg (1.7x10
-24 

g) sensitivity by using 150 nm long, 1.5 nm 

diameter carbon nanotube resonators (the best reported sensitivity for nanotube based 

sensor so far). Hitherto, the best mass resolution achieved in the past for carbon nanotube 

resonators was about 200 yg [11]. For microfabricated resonators made from poly-Si 

film, a measured sensitivity of 7000 yg was already achieved [12]. For non-carbon 

nanotube based resonators (mostly silicon based), various lengths (3 µm – 3 mm), 

geometries (rectangular, triangular, single layer, composite, step-discontinuity, arrays), 

actuator/sensing methods (active piezoelectric, electric, magnetic, active 

magnetoresistive, optical, impedance, thermal noise, etc), mode types (transverse, 

torsional)  and measurement media (air, liquid, vacuum) have been explored to improve 

sensitivity [8].  



5 

 

 Recently, Witvrouw [13] conducted wide range simulations on how the sensitivity 

of poly-SiGe resonator is influenced by scaling the resonator size.  Table 1.1 shows that 

by scaling down SiGe resonator from a dimension of 4 x 300 x 10 µm
3
 to 1x0.1x0.1 µm

3
, 

as small as 112 molecules can be measured instead of 4x10
7
 molecules for the bigger 

dimension. Mass of 112 molecules is equivalent to 3 ag (3x10
-18 

g) or 1 aM of measurable 

concentration. This indicates that the detection sensitivity can be enhanced significantly 

by miniaturizing the resonator. In addition to the short lengths of the nanoresonators, 

other conditions such as low noise, cryogenic temperature and an ultrahigh vacuum 

environment favour the detection of small masses [10]. With these conditions, the energy 

dissipation that usually leads to the degradation of the resonance quality factor, and thus a 

mass sensitivity reduction, is reduced, making it possible to detect a mass change as small 

as 1 zg.  

For a nanocantilever shown in Fig. 1.2, the measure of energy dissipation or Q-

factor is evaluated from the full width at half maximum and the central frequency of the 

spectrum. The central frequency of  (so-called resonance frequency) can either be 

obtained from resonance measurement or from 


E

L

h
fo 24
 where h, L, E and ρ are the 

thickness, length, modulus and density of the resonator material, respectively. This 

equation indicates that the resonance frequency is significantly enhanced by reducing the 

length of the resonator. By estimation, the resonance frequency prior to and after the 

cantilever is loaded, the detectable mass m  can be calculated from 











22

1

11

4 off

k
m


 

where k is the cantilever stiffness and 1f  is the resonance frequency after loading. 
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Table 1.1: Expected effect of scaling on sensitivity of SiGe resonators [13]  

Material,  

size (W x L x H) 

Meff Q in air ∆M Equivalent 

# molecules 

Measurable 

concentration
* 

SiGe, 4 x 300 x 10 μm
3 

41 ng 500 1 pg 4 x 10
7 

0.3 pM 

SiGe, 3 x 100 x 2 μm
3
 1.5 ng 6100 2.4 fg 49760 1 fM 

SiGe, 1 x 1 x 0.1 μm
3
 0.34 pg 100 34 ag 1272 10 aM 

SiGe,1 x 0.1 x 0.1 μm
3
 0.03 pg 100 3 ag 112 1 aM 

 

* assuming 50nt, 200µl volume, 10% binding and 1 sensor/ test volume: 

NB: 1 pg = 1x10
-12 

g; 1 fg = 1x10
-15 

g; 1 zg = 1x10
-21 

g 

         

Figure 1.2: (a) A cantilever resonator fabricated on a substrate (b) calculation of quality- 

(Q-) factor. FWHM and fo are the full width at half maximum and the center frequency of 

the spectrum, respectively. The vertical axis represents the energy of the signal.  

 M/NEMS are driven by CMOS (complementary metal oxide semiconductor) and 

both components can be made separately and then connected together (hybrid system) or 

M/NEMS made on top of CMOS (monolithic system or the so-called MEMS-last 

approach). A survey of the current MEMS market shows that about half of these systems 

use a hybrid approach where MEMS and controlling CMOS are developed separately 
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[14]. Since this approach is modular, it has a shorter development time compared to the 

monolithic approach.  In addition, CMOS and MEMS technologies can be independently 

optimized.  However, for those systems where performance and miniaturization are of 

utmost importance, or when many interconnections are needed between M/NEMS and 

CMOS, then a monolithic integration approach becomes indispensable. In such an 

approach, parasitic bond pad size and length are virtually eliminated and assembly and 

packaging costs are lower [15]. To adopt the MEMS-last approach, it is necessary to use 

structural materials which can be tuned to a desired property at a temperature that will not 

damage the CMOS components.  

1.2  Why Polycrystalline Silicon Germanium (poly-SiGe)? 

 Quite a large array of materials has been explored as structural layers, sacrificial 

layers, contacts or interconnects for M/NEMS and many other applications. The final 

choice of materials ultimately depends on applications, economy, availability, ease of 

tuning the material properties, process compatibility, and reliability [15]. Among these 

materials are single-crystalline silicon (Si), polycrystalline Si (poly-Si), Si3N4, SiO2, 

Vanadium oxides, SiC, metals, shape memory alloy (SMA) metals, piezoelectric 

materials, diamond, polymers and high-temperature superconductive materials [16]. 

These materials possess certain unique properties that, when combined with MEMS 

technology, make them attractive for certain applications. However, most of them suffer 

a setback when considered for postprocessing in the MEMS-last approach. For examples, 

metal can creep during operation causing RF switch failures while poly-Si requires a high 

deposition temperature [17]. In addition, a high annealing temperature of 800
o
C or higher 
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is required to achieve a considerable low stress if polycrystalline silicon is to be used as a 

structural material for surface micromachined MEMS [18]. The requirement of high 

temperature annealing makes such materials unsuitable for monolithic integration with 

fabricated driving electronics (CMOS) in the MEMS-last approach.  

 In contrary, poly-SiGe can be deposited at a lower temperature compared to many 

other materials especially poly-Si, hence, physical phenomena like grain growth, changes 

in morphology with annealing, dopant activation and diffusion are expected to be less 

significant than in poly-Si [17]. Also, poly-SiGe alloys have a high melting temperature 

(>900
0
C) [19], a high tensile strength (~1.60GPa) and a high creep resistance. By 

alloying Si with germanium (Ge), the stress can be substantially reduced even at lower 

fabrication temperatures (~650
o
C or lower). Improvement in the tensile stress is 

attributed to a higher crystallinity [20] and also the higher thermal stress associated with a 

higher germanium fraction (details in chapter 6). In addition, doping poly-SiGe with 

boron further enhances deposition at significantly lower temperature (~450
o
C) 

compatible with standard CMOS resulting into low as-deposited stress and low electrical 

resistivity [21, 22].  Poly-SiGe possesses good piezoresistive properties and can easily be 

tuned by changing the doping concentration and germanium content [23, 24]. Due to the 

aforementioned characteristics, the use of poly-SiGe films has been successfully 

demonstrated in various technological applications including low frequency comb drive 

devices [25], high frequency resonators [26], bolometers [27], gyroscopes [28], resonator 

based light sensors [29], data storage devices [30], microcrystalline SiGe micromirrors  

[31]  and pressure sensors [23, 24] among others.  



9 

 

 However, Ge content must be maintained at the optimal requirement for the 

formation of poly-SiGe films because a higher Ge concentration results in less reliable 

devices. Cases of unstable GeH and Ge oxidation [32], atmospheric corrosion and 

increased surface roughness have been reported [21]. It is interesting to note that poly-

SiGe films can be obtained even at the subnanometer scale and that their properties can 

be enhanced by an optimization process. It is demonstrated in this thesis that poly-

crystalline SiGe films with good electrical and structural properties can be obtained at the 

nanometer scale.  

1.3  Objectives of the Dissertation 

 The overall objective of this dissertation is to develop a robust ~100 nm thick 

poly-SiGe structural layers with optimized stress, deposition rate and resistivity for 

applications in nanoelectromechanical devices like biosensors, nanoswitches, resonators 

and so on.  

The specific objectives are: 

 Deposition and characterization of ~100 nm thick poly-SiGe films and 

optimization of the film stress, resistivity and deposition rate, 

 Modeling stress evolution for the growth of poly-SiGe films, 

 Studying how stress, resistivity and crystallinity evolve and understanding how 

these properties are influenced by deposition parameters,  

 Fabrication of nanocantilevers / doubly clamped beams and calculating their 

strain gradients.  
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1.4  Outline of the Dissertation 

  The arrangement of the contents of this dissertation is described in the following 

paragraphs. Chapter 1 provides the general introduction to M/NEMS and discusses why 

miniaturization is not only important but also critical. It encompasses the basic 

motivations for this work which are about miniaturization of sensors and actuators vis-à-

vis fabrication at nanometer scale. Chapter 1 also briefly addresses why poly-SiGe is 

selected in spite of myriads of materials that are currently available. It also includes the 

thesis objectives. Chapter 2 presents the reviews of the literature that are most relevant to 

this study. It examines the various materials that are currently available for M/NEM 

applications. Then, a brief history of poly-SiGe research for MEMS applications is 

discussed. Herein, various developments between 2010 and 2013 are given more 

attention and appropriate references are provided. Finally, a brief review of thin film 

growth models is provided.  

 Chapter 3 examines the detailed experimental procedure designed to achieve the 

stated objectives. It discusses the deposition technique, the characterization methods and 

the experimental design. The Applied Materials Centura LPCVD tool is briefly discussed 

and characterization techniques such as SEM, AFM, XRD, RBS, TEM, SIMS, stress 

measurement, 4-point probe, Hall measurement and nanoindentation are discussed. In 

chapter 4, an improved surface stress based approach toward modeling intrinsic stresses 

in thin films is proposed. It offers an alternative approach to other stress models currently 

available in the literature. The approach is based on the concept of surface stresses where 

dome-shaped islands and hexagonal shaped grains are used. The models results are 
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compared with experimental studies of stress evolution in copper and silver films. 

Finally, surface stresses and stresses due to grain boundary formation are obtained for 

poly-SiGe films. 

 Chapter 5 is divided into 2 parts. The first part is a report of the procedure for the 

simultaneous optimization of stress, resistivity and deposition rate for LPCVD deposited 

ultrathin (100 ± 5 nm) poly-SiGe films by using the grey-Taguchi approach. The second 

part discusses how germanium fraction, boron concentration and chamber pressure 

influence the stress, deposition rate, resistivity, grain size, Hall mobility, carrier 

concentration and surface properties of ultrathin poly-SiGe films. Evidences for the film 

behaviour are supported by TEM images.  In chapter 6, studies of evolution of stress, 

resistivity and surface properties of poly-SiGe films are reported. The different behaviour 

at the postcoalescence state for 2 selected recipes is examined. The resistivity behaviour 

is discussed in term of the Hall mobility, carrier concentration and grain size. A one-

dimensional power spectral density (PSD) analysis is used to evaluate the thickness 

dependent surface properties.  

 The fabrication procedure for nanocantilevers and the techniques for measuring 

the strain gradient are presented in chapter 7. The procedure is also applicable for 

fabricating other nanostructures such as doubly clamped beams, logic, cup and lump 

mass structures. Nanocantilevers of two different thicknesses (100nm and 60nm) are 

processed following the established surface micromachining route. The cantilevers’ tip 

deflections are measured from SEM and AFM images from where the strain gradients are 

obtained. Finally chapter 8 provides the conclusions as well as the recommendations for 

further study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1   Materials for MEMS / NEMS 

 The wide range of existing M/NEMS devices is due to a huge number of materials 

currently available. In general, materials used for M/NEMS can be categorized into four 

groups: (i) metals such as Ag, Al, Au, Ni, Cr, Cu, etc., (ii) nonmetals like Si (either 

single-crystalline or polycrystalline), Ge, GaAs, SiGe, etc., (iii) polymers like 

polyimides, SU8, polydimethylsiloxane (PDMS), etc., and (iv) ceramics such as 

diamond, Si3N4, SiO2, SiC, etc. [33]. All these materials possess certain unique properties 

that, when combined with MEMS technology, make them attractive for certain 

applications. Notwithstanding, the final choice of materials ultimately depends strongly 

on the applications, cost, availability, environments, and reliability [15]. For a material to 

be used as M/NEMS structural layer, it must have low stress/strain gradient or practically 

low tensile stress with the upper layers more tensile than the bottom ones to avoid 

bending towards the substrate which may result into stiction [17]. In addition, such a 

material must have good mechanical, electrical, magnetic, piezoresistive or piezoelectric 

properties depending on the applications. As an example, for MEMS resonators and 

gyroscopes, materials for the structural layers must have high elastic moduli, small 

dimensions, low resistivities and low densities to maximize the natural frequency and 
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quality factor. For microheaters and thermal actuators, the structural materials must have 

high thermal conductivity and low thermal expansion to minimize thermal distortion. 

However, to obtain good performances for RF-MEMS switches, low pull-in voltage, low 

RF-loss, and low thermal residual stress are desired. In a past study, aluminum has been 

shown to be the most suitable material for use as a bridge material in RF-MEMS switches 

because it provides the best performance based on the above requirements [34]. It is 

however found that the application environment may change the selection criteria [35]. 

For BioM/NEMS applications, materials for the structural layers must essentially be 

biocompatible, chemically modifiable, and easy to fabricate.  The following subsections 

briefly review the categories of materials for M/NEMS applications. 

2.1.1 Metals 

 Metals like Ti, Ag, Al, Au, Ni, Cr and Cu, among others, are commonly used as 

MEMS structural materials or interconnect for a wide variety of applications. This is 

often due to their high electrical conductivity, ferromagnetic properties, optical 

reflectivity, hardness, low electrical noise, low deposition temperature, and relatively 

simple deposition techniques [17]. Although, metals do not have some of the advantages 

displayed by silicon in terms of mechanical properties, when used within their 

limitations, metals can exhibit very high degrees of reliability. Metals such as Al, Cu and 

Au are considered as excellent materials for RF-MEMS [35]. However, Al and Cu are 

very sensitive to oxygen and humidity and thus can form metal oxides making them 

unsuitable for applications in humid environment. Au, on the other hand, is chemically 

inert (noble metal) and less sensitive to thermal fluctuations due to a lower thermal 

expansion coefficient compared to Al and Cu [36]. Titanium, platinum and gold are good 
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materials for BioMEMS applications because they are biocompatible and corrosion 

resistant [37]. Platinum has been considered as a good candidate for applications in 

infrared detection due to its relatively high temperature coefficient of resistance [17]. 

  Nickel is used in MEMS applications such as gas sensors, hearing aids, 

microfluidic devices, and microlenses [17]. Its good optical properties enable the 

realization of smooth mirrors used in optical applications. In addition, its magnetic 

properties make it a suitable medium for magnetic recording or as magnetoresistive heads 

[17]. By alloying nickel with iron (nickel ferrite) or with phthalocyanine (NiPc), chlorine 

or nitrogen oxide gas sensors can be made [38]. Also, titanium and nickel have been 

combined to actuate micropumps by using the shape memory effect [39].  

 

2.1.2 Nonmetals  

 Among the most useful nonmetals for M/NEMS applications are Si, Ge and III-IV 

compounds such as SiGe, GeAs, InP, etc. Out of these, silicon has been extensive studied 

and documented because it is the fundamental material for microelectronic industries [1]. 

Si is suitable for electronic, mechanical, thermal, and optical integration. It has tensile 

yield strength of 7GPa. It is hard, brittle and deforms elastically up to a temperature of 

500°C. Its properties are independent of doping and can be single crystalline, 

polycrystalline or amorphous depending on the deposition conditions [1, 33]. 

Polycrystalline silicon (poly-Si) has been widely used to conduct electrical signals for 

actuating or sensing [17]. Indeed, poly-Si is the most commonly used structural material 

in surface micromachined devices. It is a suitable material for elastic suspensions as well 

as for resonator applications such as sensing and RF communication. Because silicon 
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exhibits relatively low energy dissipation, it resonates with high Q-values. It is suitable 

for fabricating cantilevers at micro- and nanoscales using semiconductor fabrication 

processes and it forms the major material for BioM/NEMS application [8]. Silicon 

resonators with mechanical quality factors as high as 80,000 have been reported [17]. 

Other widely known applications include accelerometers, actuators, microphones and 

pressure sensors [1]. Amorphous silicon can be used as sacrificial layer or mask layer for 

dry or wet etching in MEMS technology [40].  

 Gallium Arsenide (GaAs) is a compound semiconductor with equal number of Ga 

and As atoms. It is an excellent material for photoelectronics because of its high electron 

mobility (0.857 m
2
/Vs) which is 7 times more than that of silicon [41]. It can provide the 

best solutions for micro-optoelectronic applications with a number of material-related and 

technological advantages over silicon [42]. GaAs has been demonstrated as a base 

material for MEMS waveguide switches [43], accelerometers and tunable optoelectronic 

devices [44], a low-k RF MEMS capacitive switches and suspended microheater arrays 

among others [45]. Other III-IV compound semiconductors such as SiGe (which will be 

discussed in details later) and InP have been widely applied. 

 

2.1.3 Ceramics  

 Ceramics are inorganic, nonmetallic solids like SiC, Si3N4, SiO2, etc. They are 

used as either sacrificial or structural layer for M/NEMS applications. SiC has attractive 

properties such as good mechanical strength, high thermal conductivity, ability to operate 

at high temperatures and its extreme chemical inertness in several liquid electrolytes [46]. 

SiC has been demonstrated for the manufacture of low cost MEMS pressure sensors 
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utilizing membrane microcontact capable of operating in harsh environments with 

corrosive media and temperatures up to 900
o
C [47]. In combination with carbon, 3C 

silicon carbide (3C-SiC) folded-beam microelectromechanical resonator was recently 

fabricated and characterized [48]. 

 Silicon nitrite (Si3N4) has a strong resistance to oxidation in many etchants 

making it a superior material for masks in deep etching. Also, it possesses a high strength 

electric insulation making it suitable as a non-conducting structural material. Silicon 

oxide is often used as a sacrificial layer in micromachining processes to allow the release 

of moving or deforming mechanical elements [33].  

  

2.1.4 Polymers 

 Polymer materials such as elastomers, plastics and fibers are made up of long 

chains of organic (hydrocarbon) molecules. These materials are being actively used for 

biomedical applications and adhesive bonding [49]. Polymer materials provide many 

advantages in terms of cost, mechanical properties, and ease of processing. Elastomers, 

for example, can sustain greater degree of deformation. For applications where the 

MEMS devices are in direct contact with the elements, such as smart skins for tactile and 

flow sensing, the use of a robust material is crucial [50]. Photoresist polymers like SU8 

epoxy are used to produce masks for creating desired patterns on substrates by 

photolithography technique. Ferroelectric polymers can be used as the source of actuation 

in micro devices such as in micro pumping. Polymers with unique characteristics are used 

as coating substance for capillary tubes to facilitate effective electro-osmotic flow in 

microfluidics [50]. Thin polymer films are used as electric insulators in micro devices, 
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and as dielectric substance in micro capacitors. They are widely used for electromagnetic 

interference and radio frequency interference shielding in microsystems. Polymers are 

used for encapsulation of micro sensors and the packaging of other microsystems [49]. 

 

2.2 Brief History of Poly-SiGe Research for MEMS Applications 

 Since the first germanium point-contact transistor was invented in 1947 at the 

Bells Laboratory, growth of microelectronics and microdevices has been on the rise. The 

piezoresistive effect in Si and Ge was discovered in 1954 [51] and subsequently led to the 

development of pressure sensors, accelerometers and strain gauges [1]. The growth of a 

high quality SiGe film on a silicon substrate by molecular beam epitaxy was first 

successfully demonstrated in 1975 [52]. Further works aimed at improving the growth 

procedures as well as the film quality were the focus of the researchers at IBM and Bell 

Laboratory using both MBE and CVD deposition methods. While the properties of poly-

SiGe are similar to those of poly-Si, the growing interest in the former is largely 

attributed to its low thermal budget which is compatible with MEMS-on-CMOS 

integration [53]. Initial work on SiGe as a MEMS material was pioneered by researchers 

at the University of California (Berkeley). Further development was reported by the 

MEMS research groups at Interuniversities Microelectronic Center (imec) Belgium, UC 

Berkeley and elsewhere. A detailed discussion of SiGe MEMS research for the past few 

decades up till 1996 was reviewed by Sedky [17] which was further extended up till 

2010/2011 in the Ph.D. dissertation of Claes [54]. In both sources [17, 54], the important 

properties of poly-SiGe films, especially lower deposition temperature as compared to 

poly-Si, were emphasized as the driving force for the rapid growth in the SiGe films for 
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MEMS applications. An attempt is made in the following paragraphs to summarize 

further studies and development of SiGe based M/NEMS in the last 2 years. 

 After the classical work of Lin et al. [55], several studies were conducted to lower 

the deposition temperature of poly-SiGe films from > 550
o
C in order to enable MEMS-

CMOS integration. However, because MEMS-CMOS integration was not the initial 

target (indeed MEMS first was the approach then), earlier patents on SiGe MEMS were 

such that the SiGe structural layers were deposited by LPCVD at much higher 

temperature (650 
o
C) [56, 57]. Bhave et al. [58] were able to reduce the deposition 

temperature of 1-3µm thick SiGe to 425 
o
C using LPCVD and in-situ boron doping 

followed by thermal annealing at 600
o
C. In their work [58], they developed an RF 

resonator and improved its Q-factor from 20 - 30 k to 40 - 44 k. A detailed study of the 

influence of doping concentration and germanium content on the piezoresistivity, the 

resistivity and the temperature coefficient of resistance for CVD SiGe films deposited at 

450
o
C was reported in 2010 [23]. In a similar study, Guo et al. [59] were able to identify 

a process window that gives maximum crystallinity, minimum resistivity variation, and 

slightly tensile stress based on the electrode spacing and pressure.  To achieve this, they 

used PECVD to deposit 1.6 µm thick poly-SiGe on 400 nm thick CVD poly-SiGe films 

at a constant temperature of 450
o
C but varying silane and germane flow rates as well as 

pressure and spacing. More recently, a post deposition laser annealing technique was 

used to realize functional capacitive test structures and capacitive switches [60]. In that 

study, selective laser annealing was used to crystallize 280 nm thick PECVD amorphous 

silicon (a-SiGe) films deposited at 210 
o
C. By using 40 mJ/cm

2
 of laser energy density (in 
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air and in reduced pressure), a contact resistivity of 5.0 ×10
−7 

Ω cm
2
 and strain gradient 

of -1.6 × 10
−6 

/μm was realized.  

 A number of areas of MEMS technology such as packaging, failure due to 

electrostatic discharge (ESD) and outgassing are currently receiving attention. A proper 

packaging technology enables device reliability and prolongs the lifetime. The Ph.D. 

thesis of Claes [54] is about the development of a thin-film wafer level packaging process 

for poly-SiGe thin films. Successful attempts were made to develop MEMS structures 

with a higher and robust intrinsic electrostatic discharge (ESD) protection, which can 

reduce breakdown mechanisms and failure due to ESD [61] for capacitive based devices. 

This was achieved by smart design and process variation in which the mechanical 

stiffness (and thus the pull-in voltage) and gap spacing as well as the thickness of the 

dielectric are improved, raising voltage at failure level to a point greater than 500V. 

Although this approach reduces failure due to ESD, it is possible that such devices 

experience functionality degradation due to higher pull-in voltages and lower sensitivity 

to small voltages due to enhanced stiffness [61]. A compromise is therefore essential. 

 Outgassing is one of the biggest concerns for the thin film vacuum packaging. 

Since some gas molecules, like hydrogen, may be incorporated inside the thin films 

during the deposition process and packaging materials may outgas under certain 

conditions [62].When outgassing happens, the freed gas enters the thin film package and 

the needed vacuum is lost. Outgassing due to device and packaging materials in MEMS 

technology can substantially reduce the sensitivity (or Q factor) of these devices due to 

increased pressure as they are expected to operate under vacuum. Wang et al. [63] show, 

by using thermal desorption spectroscopy (TDS), that as-deposited SiGe can outgas large 
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quantities of hydrogen, water vapour and CO2 and that the quantity of CO2 outgassing 

correlates with the quantity of CF4 plasma used for the interface cleaning during PECVD 

SiGe deposition. While several approaches, such as sputter-deposited AlCu, sub-

atmospheric pressure chemical vapour deposited SiO2 have been suggested to seal SiGe 

surface micromachined cavities from the external gas penetration [64], the internal 

outgassing can be reduced substantially by annealing.  

 Some efforts have been made to raise the sensitivity for sensors fabricated on 

CMOS. Gonzalez et al. [65] fabricated and characterized poly-SiGe-based piezoresistive 

pressure sensors on Cu-backend CMOS using PECVD SiGe fabricated at a maximum 

temperature of 455 
o
C. A sensitivity of ~2.5 mV/V/bar was reported and, when operated 

with amplifier, the sensor exhibits sensitivity which is 64 times greater than a similar 

stand-alone sensor. No significant deterioration of the CMOS circuit after MEMS 

postprocessing was reported for this sensor. Prior to this, capacitive pressure sensors 

fabricated from 3.2 µm thick SiGe (deposited by combined CVD and PECVD) at a 

maximum temperature of 455
o
C and characterized to have a sensitivity of up to 73 fF/bar 

was reported [24]. Similarly, capacitive micromachined ultrasound transducers that were 

able to survive a normalized transmission pressure of 580 kPa at a DC voltage of 340 V 

and a break down voltage above 500 V were demonstrated [66]. The structural layers 

were made from 1.6 µm thick PECVD SiGe while the bottom electrodes were made from 

400nm thick CVD SiGe. Also, Rochus et al. [67] shows that highly sensitive MEMS-

based Xylophone Bar Magnetometers can be made from poly-SiGe films. Their design 

strategy targets the maximization of the Q-factor in a wide temperature range for 
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monolithic above-CMOS integration and packaging schemes. It is clear from the above 

that most structural layers are fabricated from poly-SiGe films of micrometer thickness.  

 

2.3  Resistivity and Surface Properties of Poly-SiGe Films 

 The performance of poly-SiGe based M/NEMS devices is influenced by the 

electrical (such as the resistivity, crystallinity and Hall mobility) and mechanical 

properties (like the stress, the strain gradient and the elastic modulus). Since these 

properties are intertwined, they are significantly influenced by the crystallinity and 

surface roughness of the films. Knowledge of the dependence of the electrical resistivity 

on the dimensions of SiGe thin films is necessary due to the need for miniaturization. For 

example, in nanoswitches a good electrical contact is necessary between the thin 

structural layer and the electrode. For a specific application, the mechanical and electrical 

properties can be modulated by appropriately tuning the deposition parameters such as 

substrate temperature, germane flow rate, the chamber pressure and diborane flow rate 

among others.  

 A few studies reported how deposition parameters influence the texture and 

crystallinity of poly-SiGe films [20, 68-69]. These studies, and many others, show that 

(111), (220) and (311) planes are the 3 significant diffraction planes in ultrathin poly-

SiGe films [55, 68-69, 70-71]. This indicates that a SiGe film can be textured if the grains 

grow predominantly along a particular plane. Such a plane is favoured with a minimal 

total free energy (surface or strain energy) which is the main driving force for grain 

growth [72]. The change in the texture is largely dependent on several conditions such as 
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growth rate, film thickness, substrate materials and orientation, nature of precursors, 

doping, and surface properties [55].  It was observed that, by incorporating more 

germanium in poly-SiGe CVD-grown films, intensities of (111) and (311) planes are 

enhanced at the expense of (220) planes [55]. For films deposited by PECVD, increased 

Ge concentration enhances intensities of (220) and (311) peaks [59, 68]. While the 

intensities ratio of the diffraction peaks have been extensively used to determine the 

texture of SiGe films, a careful comparison of the diffraction intensities with the relative 

intensities of randomly oriented powder samples of SiGe shows that the large (111) peaks 

that usually appear in most XRD measurements might not represent the dominant 

orientation [73]. Therefore, appropriate approach must be used to characterize the 

dependence of grain orientation on deposition conditions. 

 Aside crystallinity, the influence of surface morphology on the behaviour of thin 

films is of great interest for many applications in microelectronics, optics and 

micromechanics. For example, the electrical conductivity of thin films depends very 

much on surface and interface roughness, and the reliability of a Silicon MOSFET 

(metal-oxide-semiconductor field effect transistor) channel depends on the roughness of 

the gate oxide [74]. The surface morphology depends on the microscopic growth 

dynamics which is strongly influenced by the deposition conditions. Precise control of 

the morphology and the surface structure is necessary towards production of the desired 

film quality for specific applications.  

 To characterize the film morphology, techniques such as scanning electron 

microscopy (SEM) and atomic force microscopy (AFM) are often used. While these tools 

provide an estimate of the grain/crystallite size from the surface structure, only AFM is 
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suitable for an accurate determination of surface roughness.  Although, a few parameters 

such as root mean square roughness (rms) [75] and skewness (a measure of the 

asymmetry of the probability of roughness distribution) quantify a surface, the surface 

description by these parameters is often insufficient because they give information on the 

height variation only and  not on the lateral distribution of the surface features [76]. To 

quantify both the height distribution (rms roughness) and the lateral distribution and also 

the fractal dimension, a power spectral density (PSD) analysis is a viable tool. PSD 

provides valuable information on spatial frequencies of the height distribution and can be 

related to more fundamental physical quantities (such as the correlation length, fractal 

dimension and rms surface roughness) that can be measured independently. The PSD is 

calculated from the square magnitude of the coefficients of 1-D or 2-D Fourier transform 

of a digitized surface profile.  

 In most cases, since CVD deposited films are self-affine [77, 78], their surfaces 

can be described by the parameter of the roughness exponent α, together with the 

evolutions of the root-mean-square (rms) of the surface roughness σ, the autocorrelation 

length ξ, the rms local slope ρ and the fractal dimension Df  [79 – 82]. A few studies 

reported surface properties and resistivity evolution of SiGe films [77, 78]. However, a 

detailed study of the influence of deposition parameters on the surface properties of poly-

SiGe film as well as the resistivity and morphological roughness evolution are missing. 

Because the morphological roughness due to island/grain coalescence can substantially 

influence the electrical and optical properties of thin films, an in-depth understanding of 

the behaviour becomes important.  
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2.4  Thin Film Stress Models 

 One of the critical requirements for the successful application of thin films, 

including poly-SiGe, is the ability to control and reproduce the results of the 

manufacturing processes. Consequently, understanding the effects of the growth 

conditions and materials properties on the resulting residual stresses is necessary to 

fabricate low stress thin films [83]. Irrespective of the film fabrication method, the 

resulting structural layers usually exist under a state of internal stress [84 – 89] which 

might be detrimental to the functionality and structural integrity of the final devices [90, 

91].  For example, the dynamic and reliability characteristics of these layers can be 

altered due to the changes in the structural stiffness [92, 93]. Therefore, an accurate 

mathematical modeling and estimation of the magnitude of induced stress has been the 

subject of many publications.  

 Thin film stresses may develop due to thermal fluctuation or originate from 

intrinsic or extrinsic sources or a combination thereof [85, 88, 90-91, 94]. The intrinsic 

stress depends on the film microstructure, which can be controlled by the growth 

conditions and selection of appropriate materials [93]. The intrinsic stress evolution at 

precoalescence and postcoalescence stages depends on whether a material exhibits type I 

or type II behaviour [93 – 96]. Type I behaviour is observed in metals with high atomic 

mobility and high surface and grain boundary diffusivities like Au, Ag, and Cu (Fig. 2.1). 

In these metals, stresses evolve from compressive state during precoalescence through a 

coalescence tensile stress state which finally decrease and eventually become 

compressive at postcoalescence. However, metals with low atomic mobilities and low 

surface and grain boundary diffusivities exhibit type II behaviour where stresses remain 
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tensile after coalescence. Examples of these metals are Ti, W, Cr, Ni, and Fe. At high 

temperatures low mobility materials behave much like the high mobility materials 

because of enhanced diffusivity [97].   

 

 

Figure 2.1: Stress-structure evolution during film growth [96]. The vertical axis is 

residual stress measured in GPa.  

 Irrespective of the stress behaviour, the resulting stress evolution is a product of 

dynamic competition between the mechanisms of stress generation and those of 

relaxation [89]. Among the mechanisms of stress build-up are island/grain growth and 

crystallization [98], capillary-induced growth stress, island coalescence (zipping) [99], 

surface stress [100], interstitial incorporation and film-substrate reaction among others. 

Stress relaxation mechanisms may take the form of interfacial shear, viscous flow, 

morphology change (rearrangement), diffusion of atoms into the grain boundary [101], 

dislocation emission and annihilation of excess vacancies [99]. Each stress evolution is 

often accompanied by relaxation though growth interruption has been found not to affect 

Type II e.g. Ti, W, Cr 

Type I e.g. Au, Ag, Cu 
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stress behaviour because the original trend is recovered when deposition resumes as if no 

interruption was made [89]. In addition, a few studies are based on numerical modeling 

and are quite significant towards understanding the theory of stress evolution [83, 102]. 

Experimentally, stresses in thin films can be measured by various techniques including 

(synchrotron) X-ray diffraction, reflection high energy electron diffraction (RHEED), 

Raman spectroscopy, substrate curvature, acoustic resonance and the use of multi-beam 

optical stress sensors among others [93]. Curvature measurement is an alternative method 

commonly used to determine thin film stresses [103]. Laser deflectometry and capacitive 

coupling are available techniques for measuring wafer bending. Laser deflectometry 

allows the sample curvature to be measured when the reflected laser beam from the 

sample is correlated to its curvature change. 

2.4.1 Precoalescence Stress Models 

 Many mathematical models have been developed to estimate intrinsic stresses in 

thin solid films based on the three stages observed for type I behaviour. The two relevant 

models for the precoalescence stage are those of Laugier [104] and Cammarata et al. 

[100]. While the approach used by the former is based on the changes in the lattice 

constant, that of the latter relies on surface stresses. Cammarata et al. [100] modeled a 

growing island as a cylinder and then used the Laplace pressure-stress relation to 

construct a mathematical model to estimate the induced stresses. The resulting stress σ is 

given by: 
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Where ff , fi , and fh are the top, the bottom and the curved surface stresses of the island 

respectively, ho and do are the critical thickness and diameter, respectively at which the 

island is firmly attached to the substrate and h and d are the thickness and diameter, 

respectively before coalescence. β is a material dependent property which is given as β = 

(1-3ν)/(1- ν) for an elastic isotropic material where ν is the Poisson’s ratio. For elastic 

anisotropic materials, the values of β for some materials are published in Ref.[100] .   

 More recently, Guisbiers et al. [105] presented a model of intrinsic residual stress 

(Eq. 2.9) based on the size-dependent phase transitions of e-beam evaporated thin films. 

They consider the stress generated due to the volume change due to a liquid-solid phase 

transition. However, the model is only valid for the precoalescence stage and does not 

take other stages into consideration. It is therefore expected not to match accurately with 

experimental observation.     
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f is the thermal expansion coefficient of the deposited material (1/K), 
substrateT is the 

substrate temperature, f  is the dynamic viscosity of the deposited material (Pa. s) and 

mT  is the melting temperature (K) of the nanograins constituting the film calculated from  

 ,)2/1( mshapem TLT  , shape  represents the size and shape effects on the bulk melting 

temperature ,mT and  L is the characteristic length size of the nanograin and t is the 

relaxation time. Though the model overestimates the intrinsic stress, it however predicts a 

correct trend of intrinsic stresses. 
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2.4.2 Coalescence and Postcoalescence Stress Models 

 A few mathematical models describe the process of stress generation during the 

coalescence growth based on the general assumption that the driving force for islands 

coalescence is the reduction in the surface energy when a grain boundary is formed from 

neighboring islands [106 -110]. One of the earliest models was that of Hoffman [106] 

who theorized that neighbouring crystallites are strained in tension and spontaneously 

snap together to form a grain boundary when the gap between the adjacent islands 

reaches a critical value ‘d’ (see Fig. 2.2). The resulting tensile stress is 
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                     (2.3) 

where r, Es and νs are the radius of the grain, the elastic modulus and Poisson’s ratio for 

the substrate, respectively.  

(a)  (b)   

Figure 2.2: Principle of coalescence - structure of the grain island (a) before (b) after 

coalescence. 

 An obvious challenge in this model lies in the estimation of parameter d. To 

circumvent this challenge, Nix and Clemens [97] came up with two models using the 

surface energy-driven approach similar to the Griffith principle of crack propagation 

[108]. The first version is based on the elastic deformation of hexagonal grains which 

produced an upper bound stress given by: 
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where γs and γgb are free surface and grain boundary energy per unit area, respectively. In 

the second approach, it was assumed that elliptical arrays coalesced to form arrays of 

cycloidal shape. The average induced stress is given by Eq. (2.5). 
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Because the above models overestimate the induced stresses, Freund and Chason [109] 

used a rigorous theory of contact of elastic solids with cohesion to arrive at a modulus 

independent stress for a regular square array of hemispherical islands. This expression is 

given as: 
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Seel et. al. [102] considered a mechanism where islands are gradually zipped when the 

zipping process is energetically favourable. They obtained an upper stress limit given by 

Eq. (2.7). 
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Cammarata and his coworkers explored the concept of surface energy reduction due to 

coalescence to model islands zipping process. The reduction in surface stress is estimated 

from 
h

gb
f

f


2
  where 

gbf is the interfacial stress associated with the grain boundary. By 
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adding the precoalescence, coalescence and postcoalescence stresses, it was shown that 

the final stress generated in a metallic thin film of type I behaviour can be computed from 

[100]:   
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It should be noted that only the model of Cammarata et al. addresses both the 

mechanisms of precoalescence and postcoalescence stress behaviours. All other models 

consider only the coalescence stress generation. Even if only coalescence stress is 

considered, the above models generally overestimate the stresses in thin films. 
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CHAPTER 3 

EXPERIMENTAL METHODS 

 This chapter presents the deposition technique, the characterization methods and 

the experimental designs for poly-SiGe films. All the films were deposited in a PolyGen 

chamber of an Applied Materials Centura low pressure chemical vapour deposition 

(LPCVD) tool. The films were characterized by scanning electron microscopy (SEM), 

atomic force microscopy (AFM), x-ray diffraction (XRD), Rutherford backscattering 

spectroscopy (RBS), stress measurements, 4-point probe, Hall Effect measurement, and 

surface profilometry among others. Because a few numbers of experiments are included 

in this dissertation, the experiments are divided into four major categories. The first 

category is about the Grey-Taguchi optimization technique. In this case, experiments 

were designed based on L32 orthogonal array and the analyses were made following the 

optimization technique of the grey relational analysis. Details are discussed in chapter 5.  

 The second category involved parametric studies based on the optimized recipe 

where some of the most influential deposition parameters were varied. This helps to 

understand how deposition parameters and chemical compositions  influence the film 

properties such as stress, resistivity, crystallinity, Hall mobility, carrier concentration, 

grain size, elastic modulus, hardness and surface properties (such as roughness). The 

third category is about the studies of stress, resistivity and surface properties evolution. 

The evolution study was done by depositing poly-SiGe of thicknesses ranging from ~1 

nm to 200 nm on separate wafers while their properties were characterized ex-situ. The 
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last category of the experimental study is that of strain gradient measurements. About 

100nm and 60nm thick Poly-SiGe films were deposited on 200mm diameter Si(100) 

wafers, patterned with lithography, etched, vapour HF released and the strain gradients 

were measured from SEM and AFM images.  

 

3.1  Film Deposition by LPCVD 

 An Applied Materials Centura LPCVD tool, which is a component of the imec pilot 

line, is used for the deposition of the poly-SiGe films. CVD is widely used for 

technological applications and manufacturing of industrial devices. It is also very 

interesting from the fundamental point of view due to its conceptual similarities with 

other growth techniques such as electrodeposition. LPCVD is characterized by 

incorporation of fewer defects due to lower pressures, good conformation or step 

coverage but slow growth rate and high temperature dependence.  In addition, the ability 

to create films of varying stoichiometry makes CVD a unique method. Economically, 

CVD tools are affordable and its operating cost is relatively low.  They are also suitable 

for batch and semicontinuous operations.  

 The Applied Materials Centura LPCVD platform is shown in Fig. 3.1. Poly-SiGe 

films are deposited in chamber A (or PolyGen chamber) by thermal reaction of silane and 

germane in hydrogen environment. The precursors are injected by a gas delivery system, 

which is controlled by the mass flow controller (MFC), via a shower head into the reactor 

(Fig. 3.2). The substrate is heated resistively by a ceramic substrate holder and the heater 

temperature is measured by a thermocouple integrated into the chamber.  A diborane gas 
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is added in-situ as a p-type dopant to enhance the crystallinity and reduce the film 

resistivity provided the boron concentration is not higher than the equilibrium solubility 

concentration of boron in SiGe. If an n-type property is desired, a phosphine gas is often 

considered as a viable dopant. A schematic layout of the chamber A with the associated 

connections to the gas cylinders and exhaust system are shown in Fig. 3.2.  

 

Figure 3.1: Schematic diagram of Applied Materials Centura platform:  Ch A - Chamber 

A or Polygen chamber (for poly-SiGe deposition), Ch C - Chamber C or Rapid Thermal 

Process (RTP) chamber, Ch D - Metal oxide CVD (MOCVD) for high-k material, Ch F - 

Cooling chamber, LL A - Load lock A, LL B - Load lock B – adapted from [111] 
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Figure 3.2: Reactor chamber A of LPCVD and its associated connections to the 

processing gas sources for SiGe film deposition. MFC denotes mass flow controller. 

 The LPCVD tool operates on the basis of ‘deposition recipe’ and ‘sequency’. A 

deposition recipe is an algorithm that controls the deposition variables and deposition 

conditions while sequency is an algorithm that defines the path that the deposition 

process follows. A typical deposition recipe contains a specification of deposition 

parameters, gas flow rates, spacing, chamber pressure, heating time, etc. After the recipe 

is correctly written, the deposition sequency is added to the system. Then, wafers 

(maximum of 25) are placed in a cassette and then transferred to the load lock. The 

wafers are thereafter scanned and recognized by the CVD system. The tool robot arm 

picks up one wafer at a time, from the wafer cassette, and transfers it to the chamber A. 

Prior to receiving a wafer; the chamber is purged and cleaned with N2 gas. It should be 

noted that the LPCVD tool processes wafers on a one-by-one basis and not as a batch 

reactor.  
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 According to Gupta et al. [112], a possible SiGe growth mechanism consists of 

silane pyrolysis followed by surface adsorption and finally incorporation of germanium 

atoms and releasing of hydrogen gas.  The chemical equations are presented below.  

SiH4(gas)       SiH2(adsorbed) +H2(gas) 

SiH2(adsorbed)    Si(solid) + H2(gas) 

GeH4(gas) + Si(solid)    SiGe(solid)  + 2H2(gas) 

The above reactions indicate that silicon nucleates on the oxide layer before germanium 

atoms are incorporated. In order words, silicon provides nucleation sites for germanium 

atoms, which is similar to the observation of Lin et al. [55]. It should be noted that since 

CVD is a thermo-chemical process, the deposition rate can be strongly dependent on the 

deposition temperatures through the Arrhenius relationship. Therefore, for LPCVD and 

many other CVD processes, the deposition is carried out under conditions where the 

controlling factor is either transport of the reactants to the substrate surfaces or the 

reaction at the surface. Because of the low deposition temperature, it is likely that the 

current process is reaction limited. Other deposition parameters such as chamber 

pressure, hydrogen flow rate and shower head-heater spacing influence the reaction rate.  

 A typical SiGe thin film deposition follows the steps showing in Fig. 3.3. A 

blanket Si (100) wafer is selected and cleaned to remove organics / particles and some 

metals following the procedure defined in imec’s recipe (BASIC). The recipe requires 

that the wafer is put in a ‘bath’ with a mixture of NH4OH, H2O2 and deionized water at 

35
o
C with a megasonic power of 480W. It is then followed by a quick rinse in deionized 

water and HCl spiking at room temperature. While the first step removes organic and 
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metal particles, the second step removes chemical particles and prevents metal 

deposition. About 200 nm thick silicon nitride (SiN) is deposited at the back side. 

According to the imec standard procedure, this prevents contaminants from being 

transferred from Cu-contaminated to non-contaminated tools within the cleanroom (by 

removing the SiN layer before transferring the wafer to the non-contaminated tool). A 

silicon oxide layer (usually 1µm or as required) is then deposited on the front side of the 

wafer. In most applications, the oxide layer is etched to form an anchor (where structural 

layers are anchored) or actuation gap. This is followed by SiGe deposition. Prior to this, 

the oxide layer is cleaned to remove native oxide or any contaminants that might 

influence the adhesion of SiGe film to the substrate. The properties and thickness of the 

SiGe film depend on the deposition parameters. To estimate the mass/weight of the 

deposited species or the stress in SiGe films, the weight of the substrate and its radius of 

curvature are measured prior to and after SiGe deposition using Metryx Mentor and 

Flexus (stress measurement tool), respectively (details in sections 3.2 and 3.3). The actual 

mass of the deposited species and the stress in the film are obtained from the differences 

in the predeposition and postdeposition values.                         - 
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Figure 3.3: Stages in SiGe deposition process on blanket wafer  

 

3.2 Thickness, Microstructure and Surface Roughness Characterization  

As a confirmation of the weight measurement technique mentioned above, film 

thicknesses are also measured with FEI NOVA 200 scanning electron microscopy (SEM) 

by imaging the cross-section of the samples. Both the thicknesses measured by using 

Metryx mentor and those of the SEM do not differ more than ±5 nm. The SEM tool is 
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shown in Fig. 3.4(a). In addition, surface morphologies of a few films were also acquired 

by using the SEM measurement.  

The surface profiles of the films were obtained with a Multimode Digital 

Instrument atomic force microscopy (AFM) in a tapping mode (Fig. 3.4b) while the 

samples were exposed to the air. In this mode, the cantilever is oscillated close to its 

resonance frequency and its tip taps the surface only periodically, unlike in the contact 

mode where the tip is in contact with the sample. The surface topography is monitored 

through the changes in the oscillation amplitude as the tip-to-sample spacing fluctuates 

when a surface is scanned. The collected data consisted of height information on 512 x 

512 square arrays. The lateral resolutions were 4 and 10nm for 2 µm x 2 µm and 5 µm x 

5 µm area scans, respectively. The surface morphology depends on the microscopic 

growth dynamics, which is strongly influenced by the deposition conditions. From the 

AFM images, surface parameters such as roughness exponent α, root-mean-square (rms) 

of the surface roughness σ, the autocorrelation length ξ, the rms local slope ρ and the 

fractal dimension Df  [79 – 82] were extracted and analyzed.  

  

Figure 3.4: (a) FEI NOVA 200 SEM, and (b) Multimode Digital Instrument AFM tool     

(a) 
(b) 
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3.3  Characterization of Electrical and Structural Properties 

3.3.1  Film Resistivity 

 One of the most important electrical properties of a poly-SiGe thin film is its 

resistivity because it determines the conductivity as well as the carrier mobility in the 

films. Four-point probe characterization is a standard method for studying the electrical 

properties of solids and thin films. However the probe spacing has to be reduced to obtain 

expected surface sensitivity and spatial resolution [113]. An example is a KLA-Tencor 

OmniMap RS75 four-point probe showing Fig. 3.5(a). A schematic view of the 

arrangement of the probes on a thin circular sample is shown in Fig. 3.5(b). The tool 

contains four thin collinearly placed tungsten carbide wires probes which are made to 

contact the sample under test. Each of them is supported by springs on the other end to 

minimize sample damage during probing. Typically, the spacing of points is around 

635µm or more, and may depend on the application.  

 By applying current I to the outer electrodes, potential difference V can be 

measured with an ultrahigh impedance voltmeter between the two inner probes at 

different positions on the surface of the sample. The current remains constant in the 

circuit irrespective of the changes in the resistance in the material and the output voltage 

depends on the resistance changes. The depth of penetration of the current depends on the 

distance between the current probes and increases with increased separation. This offers a 

possibility of probing the film resistance at different thicknesses. In general, the depth of 

penetration is often limited to a half of the probe separation with the features close to the 
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surface having a greater impact on the current path.  For a sample of semi-infinite 

volume, a very thin layer (thickness t << s), and equal interprobe spacing s, it can be 

shown that the sheet resistivity ρ is given by: 
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According to Eq. (3.1), it should be noted that the resistivity of a thin film is independent 

of the interprobe spacing s. The sheet resistance Rs is given by the following equation: 
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where the geometric factor 
2ln


k , which is 4.53 for  a semi-infinite thin sheet. This 

value may differ for non-ideal samples.  

  

Figure 3.5: (a) KLA-Tensor OmniMap RS75 four-point probe (the inset is the measuring 

table), (b) an exaggerated view showing the arrangement of the four probes on 200mm 

diameter circular silicon wafer.  
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 In this study, a KLA-Tencor OmniMap RS75 four-point probe was used to 

measure the average film resistance. The applied current I = 2.215mA and the spacing     

s = 1.016mm. For each film, 49 points are measured, and the average resistance and 

percentage standard deviation are obtained therefrom. The percentage standard deviation 

is a measure of the uniformity in terms of film thickness and crystallinity. A lower value 

of percentage standard deviation indicates that both the film thickness and crystallinity 

are relatively uniform across the wafer. 

3.3.2   Mobility and concentration of carriers 

Aside from electrical resistance, other electronic properties such as carrier mobility 

as well as carrier density or concentration can be measured with Hall Effect. These 

properties allow an in-depth understanding of materials behaviour [114]. In theory, the 

Hall Effect is generated when a magnetic field of magnitude B is applied perpendicular to 

a moving carrier [115]. Due to the magnetic field, the moving carrier is deflected 

perpendicularly to both the magnetic field and the plane the carrier was traveling in (Fig. 

3.6a). This deflection is produced by the Lorenz force which is given by F = - qv x B, 

where q is the carrier charge (1.602×10
-19 

C). The Lorentz force introduces a potential 

difference or Hall voltage, VH, across the sample resulting in an electric field [116]. In 

semiconductors, both electrons and holes deflect to the same side of the sample due to 

opposite charges as well as opposite velocities.  

 Measurement of the Hall voltage is done following the van der Pauw technique 

illustrated in Fig. 3.6 (b). In this technique, a constant current is forced through opposing 

contacts while the Hall voltage is measured across the other two. The magnitude of the 
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Hall voltage, VH, is related to the current I traveling through the sample, the applied field 

B and the sheet density of carriers Ns by Eq. (3.3).  

s

H
qN

IB
V                                (3.3) 

 All measurements reported in this thesis are done by using a Lakeshore 7507 Hall 

Effect system at a room temperature of 20 °C. The samples are ~1cm x 1cm in dimension 

and 4 contacts are made with indium oxide powder and then backed in an oven at 380 
o
C 

for 1minute. Each of the samples is fixed to the Hall measurement probe, and then placed 

in-between two magnets. A constant current of 1.0 mA is applied across the sample while 

the Hall voltage is measured for the magnetic fields between -1 to +1 T. All errors of 

consistence are less than 0.2 %. From the Hall voltage, the carrier concentration is 

calculated. The carrier mobility is related to the resistivity ρ and carrier concentration N 

(= Ns*h) as follows: 




qN

1
                                  (3.4) 
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Figure 3.6: (a) Hall voltage VH is generated due to the Lorenz force F when a magnetic 

field B is applied across a sample of thickness h and width w, the Lorentz force and the 

coordinate system are shown (b) illustration of the van der Pauw Hall Effect 

measurement geometry and (c) scanner configuration.  

3.3.3   Determination of the crystal structure by XRD 

 X-rays are used to probe the chemical composition and crystal structure of a solid 

material. X-ray diffraction (XRD) relies on the constructive interference of X-rays 

scattering from a crystal lattice. The condition for the constructive interference, that can 

be obtained when the angle of incident beam satisfies Bragg’s law, is: 
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 sin2 hkldn                                 (3.5) 

where n is the integer number, d is the interplanar spacing and θ is the angle between 

incident beam and the crystal plane.  From Eq. (3.5) and the diffraction spectra, the 

interplanar spacing d and the lattice parameter a can be obtained. In addition, the full 

width at half maximum (FWHM) that can be directly related to the grain size can be 

extracted via Scherrer equation. A PANalytical X’Pert PRO MRD X-ray diffractometer 

(Fig. 3.7a) is an example of a diffraction tool commonly used for thin films. The film’s 

characteristics at near surface layers and the bulk can be obtained by changing the 

operating mode of the system.  

 Usually, two modes are possible: Bragg’s Brentano (BB) and glancing incidence 

XRD (GIXRD) modes. In the former, both the sample and the detector move 

simultaneously during the measurement (Fig. 3.7b). While the sample rotates at θ, the 

detector moves at 2θ and the diffracted X-rays from grains oriented parallel to the surface 

are detected. A disadvantage of this geometry is that the effective depth probed by the 

incident beam changes during scan due to changes in the angle of the incident beam. 

Also, the spectra are often dominated by the substrate effects [117] and the peaks are 

hardly recognized for the case of the ultrathin films used for this study. Ideally, the BB 

mode is often used for thick (poly) crystalline films. Because the samples are very thin  

(~100 nm), GIXRD mode is therefore used.  

 In GIXRD mode, the incident X-ray beam is fixed to very a small predetermined 

angle of incidence (so-called glancing angle) on the sample (ω) and the detector scans 2θ 

diffraction from the planes not parallel to the sample’s surface (Fig. 3.7c). This technique 

provides information from a quite thin layer and is ideally suitable for the examination of 
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a layer thickness on the order of 100 nm and less. Unlike in BB mode, the 

crystallographic plane contributing to the signal has an offset of θ - ω compared to the 

film surface i.e. the planes parallel to the surface will not diffract in GIXRD (118). In this 

study, the diffraction profiles of the films are obtained by using GIXRD and CuKα         

(λ = 0.154 nm) radiation operated at 45 kV and 40 mA. All the diffraction spectra were 

obtained in a continuous mode at a scan speed of 0.1
o
/s. The glancing incidence angle     

ω = 1
o
 was obtained by optimization and the diffraction angle was varied between         

2θ = 20
o
 and 65

 o
 in a step size of 0.02

o
.  

 

 

Figure 3.7: (a) D8 Bruker AXS X-ray diffractometer [www.bruker-axs.com], (b) basic 

geometry of Bragg-Brentano configuration and (c) GIXRD method. Note that the 

incident beam angle (ω) is fixed during GIXRD analysis and the detector scans 2θ 

degrees only.  
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Because the GIXRD configuration is asymmetrical (which implies having higher 

intensity than those obtained in BB), all the experimental spectra were converted to the 

symmetrical Bragg reflection using the James formula [118, 119]. The conversion factor 

R relates the asymmetric measured intensity Iasym to that of symmetric intensity Isym for a 

given diffraction angle θ by the following equation. 

 
 

 

1

2sin

sin
122




















sym

asym

I

I
R                                                                                  (3.6) 

On the basis of Eq. (3.6), about 10% reduction in intensity and in full-width-at-half-

maximum (FWHM) is observed at low 2θ (< 30
o
) for ω = 1

o
. The converted spectra are 

then fitted to the Lorentzian function [120] and the relevant peak parameters (such as 

height, FWHM, position and area) were obtained.  

  

3.4  Characterization of Mechanical Properties 

 In addition to good electrical and structural properties, mechanical properties (like 

the stress, elastic modulus and strain gradient) are equally important properties especially 

for successful applications in poly-SiGe NEMS devices.  

 

3.4.1  Stress Measurement Technique 

 A brief background about stress and its evolution in thin films is provided in 

section 2.4.  In this study, film stresses are measured by using a Tencor FLX-2320 which 

uses a laser of 750 nm wavelength (Fig. 3.8a). All the measurements are performed on 
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the blanket silicon substrate after the silicon oxide and backside silicon nitride films are 

deposited right before and after the SiGe film deposition. In principle, FLX-2320 

measures the changes in the radius of curvature of a substrate caused by deposition of a 

stressed thin film. From the curvature changes, the residual stress in the film can be 

calculated from the Stoney equation given by Eq. (3.7) [121].  











12f

2

ss 11

6h RR

hM
          (3.7)  

 

In Eq. (3.7), Ms is the substrate biaxial elastic modulus which is usually obtained 

from 1

s )-1(  sEM where sE , s and hs are respectively the elastic modulus, Poisson’s 

ratio and the thickness of the substrate and hf is the film thickness, R1 and R2 are the 

substrate radii before and after SiGe film deposition. Appropriate application of Eq. (3.7) 

requires the following assumptions to be valid [122]: (i) both the film thickness hf and 

substrate thickness hs are uniform, the film and substrate have the same radius R, and hf « 

hs « R; (ii) the strains and rotations of the plate system are infinitesimal; (iii) both the film 

and substrate are homogeneous, isotropic, and linearly elastic. Asumption (i) is satisfied 

because the rms roughness « hf. The other assumptions are also valid in this case. 
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Figure 3.8:(a) Tencor FLX-2320 stress measurement tool (b) substrate without a film 

with a curvature radius R1, (c) curvature radius becomes R2 upon film attachment to 

balance the influence of deposition force 

 

3.4.2  Characterization of Mechanical Properties 

 One of the most popular techniques for measuring the mechanical properties of 

solid films is nanoindentation [123]. Other methods include an ultrasonic test, a bulge test 

and beam bending [124]. In this work, nanoindentation experiments are conducted to 

evaluate the Young’s moduli and hardness of a few films by using a MTS Nano Indenter 

XP with a standard three sided pyramid diamond indenter tip (Berkovich indenter with 

tip radius <100 nm) as shown in Fig. 3.9 (a). For this method, a prescribed load is applied 

to an indenter (which is in contact with a specimen) and the depth of penetration is 

measured. At the maximum indentation depth, the load was kept constant for 10s. The 

area of contact at full load is determined by the depth of the impression (Fig. 3.9b) and 

R1 

hs 

R2 

hf 

(a) 
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the known angle or radius of the indenter. The hardness H is found by dividing the 

maximum applied load Pmax by the projected contact area A(hc). 

)(

max

chA

P
H                (3.8) 

For an ideal tip geometry, the projected contact area is given by:  

25.24)( cc hhA                                            (3.8a) 

Due to the blunting of the Berkovich indenter tip, the projected contact area can be 

estimated more accurately by using the following equation:  

28
1

4
1

2
1

832

1

1

2 ...5.24)( cccccc hChChChChhA                   (3.8b) 

Where C1 to C8 are constants and are found by fitting A to hc, other terms are described in 

Fig. 3.9. 

 

 

 

 

 

 



50 

 

 

 
 

Figure 3.9: (a) MTS Nano Indenter XP, (b) schematic illustration of the unloading 

process showing parameters characterizing the contact geometry, (c) schematic 

representation of load versus indenter displacement data for an indentation experiment. 

Pmax is the peak indentation load; hmax is the indenter displacement at peak load; hf is the 

final depth of the contact impression after unloading; and S is the initial unloading 

stiffness [123]. 

 

 The elastic modulus of each sample Es is obtained from the shape of the 

unloading curve (see Fig. 3.9c) and by considering the effective modulus of the sample 

(a) 

(b

) 

(c) 
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Eeff and that of the indenter Ei as well as the Poisson ratios s and i  for sample and 

indenter, respectively, based on the following equation. 

 
i

i

s

s

eff EEE

22 111  



           (3.9) 

where
)(2 c

eff
hA

S
E




 , the elastic contact stiffness

dh

dP
S   defines the slope of the upper 

portion of the unloading curve during initial stages of unloading by using the continuous-

stiffness measurement  (CSM) technique, and constant 034.1 . This was 

accomplished by superimposing an alternating force with known frequency, amplitude, 

and phase on the nominal applied force. This oscillating force then resulted in a 

displacement oscillation, h(ω)=h0 exp(iωt + ψ), where ω is the applied oscillation 

frequency, h0 is the amplitude, and ψ is the phase angle between the force and 

displacement signals. The displacement response of the indenter at the excitation 

frequency (~75 Hz) and the phase angle between the force and displacement were then 

measured continuously as a function of the indentation depth.  

  For the estimation of the average values for the hardness and modulus, all 

nanoindentation experiments are performed on poly-SiGe films deposited on 1µm thick 

silicon carbide (SiC) films (Fig. 3.10a). SiC is chosen because it is harder than SiGe. In 

such a case, less error is introduced during the measurement since it is easier to identify 

the point wheremodulus begins to rise due to the influence of the SiC substrate than when 

oxide layer is used.  Ten measurements are made for each film (Fig. 3.10b) and the 

Young’s moduli and hardness are evaluated. The Young’s modulus is calculated at 

indentation depth of 30-40 nm, just before the effect of the SiC layer is felt. 
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Figure 3.10: A schematic view of: (a) cross-section of poly-SiGe stack sample (b) 

distribution of 10 points for nanoindentation experiments.  

 

3.5 Other Characterization Techniques 

 A few other characterization techniques used in this work are Rutherford 

backscattering spectroscopy (RBS), Raman spectroscopy, Transmission electron 

microscopy (TEM), Veeco surface profilometry, optical microscopy, etc. 

 Rutherford backscattering spectroscopy (RBS) is a technique that is used to 

determine the structure and composition of materials by measuring the backscattering of 

a beam of high energy ions impinging on a sample [125]. In this work, the RBS technique 

is used to determine the germanium fraction in the samples.  

To quantify the relative amounts of amorphous and crystalline material in the thin 

poly-SiGe layers, Raman spectroscopy are used. Also, Raman mapping is an excellent 

way to obtain information about potential variations in crystallinity over areas of 

(a) 

(b) 



53 

 

deposited films. However, its suitability for the ultrathin samples is not guaranteed. The 

Raman technique relies on uniform bond angles and bond lengths in crystalline materials 

which results in sharp peaks. For amorphous material, there is less orderliness in its 

arrangement with a wider array of bond angles, bond energies and bond lengths. This 

non-uniformity possible states leads to a broad Raman band. It should be noted that the 

spectrum of SiGe is more complicated, and depends also on the composition of 

germanium [126].  

Transmission electron microscopy (TEM) analysis is commonly used to obtain 

crystallographic information from specimens that are thin enough to transmit electrons 

[127]. While the theory and operation of TEM are fairly simple, its most significant 

challenge is in the sample preparation. The thickness of the specimen should be a few 

nanometers for the electron beam to penetrate through. A few cross-sectional TEM 

analyses were done to examine the crystal orientation and to calculate the grain size. 

Also, the interplanar spacing is visible at high magnification.   
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CHAPTER 4 

MODELING STRESSES IN THIN FILMS 

 In this chapter, a new approach to model intrinsic stresses is proposed. The 

approach is based on the concept of surface stresses by using dome-shaped islands and 

hexagonal shaped grains as compared to the spherical and cylindrical shapes used for the 

islands and grains respectively in a few studies reported in the literature. Equations that 

describe the stress evolution at the precoalescence, coalescence and postcoalescence 

stages were derived. These models describe how stresses evolve with island / grain’s 

height and diameter, the surface stresses, the interfacial stresses and the stress due to 

grain boundary formation. For Cu films deposited on silicon substrates, intrinsic stresses 

of -200, 140 to 230 and -260 to -80 MPa were obtained for the precoalescence, 

coalescence and steady state postcoalescence stages, respectively. With a few 

assumptions, the current models give -261, 102 and -115MPa for the three stages in that 

order. 

 

4.1 Modeling  

 In this section, the approach to the proposed models, their underlying assumptions 

and the limitations are discussed.  
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4.1.1  Approach, Justification and Assumptions 

 The modeling approach is similar to that of Cammarata et al. [100] but a dome 

shape island is considered instead of cylindrical island for the precoalescence stress 

model. An evidence of the chosen shape is shown by the AFM image of Cu islands (Fig. 

4.1) during electrodeposition of Cu films on polycrystalline ruthenium with a 2 nm thick 

amorphous oxide [128]. It is evidenced from Fig. 4.1 (a) that the Cu deposition is still in 

the precoalescence stage since significantly isolated islands are observed. Other thin solid 

films may not have exactly the same shape during the initial growth stage, it is, however, 

logical to assume that this will not substantially affect the resulting stress. The isolated 

island of Fig. 4.1(b) is then modeled as a dome (Fig. 4.1c). The curved surface stress of 

the island is assumed to be uniform along the entire curved surface. This is a realistic 

assumption prior to coalescence since the whole surface is exposed to the influence of the 

incoming gas flux. Once coalescence commences, some parts of the surface will be 

converted to the grain boundary region which will reduce the area upon which the free 

surface stress acts.  
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Figure 4.1: (a) AFM image showing significantly isolated islands on oxide layer, and (b) 

AFM image of a single Cu island [128] and, (c) spherical dome shaped model of the 

island. The obvious similarity between (b) and (c) is an indication of an accurate 

assumption. The x-component of the Cartesian co-ordinate is perpendicular to the plane 

of this page. 
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        Consider the spherical dome shaped island shown in Fig. 4.1(c). The area of the 

convex surface having a radius of curvature cr   (radius of the sphere) and height   

(height of the dome), is given by hrA cz 2 . The area of the circular bottom disk (base of 

the dome) of radius r can be estimated from 
2rAxy   while cr and r  are geometrically 

related by 
h

hr
rc

2

22 
 . The volume of the dome is given by  223

6
hr

h
V 


  and the 

convex surface area can therefore be written as 
22 hrAz   .  It is assumed that the 

curved surface of the island is associated with the surface stress cf  and the interface 

between the circular bottom disk and the substrate is associated with the interface stress 

if . The surface stress is the amount of work per unit area needed to elastically stretch a 

pre-existing surface, while the interfacial stress can be considered as the work needed per 

unit area when the film-substrate interface is elastically deformed. The in-plane Laplace 

pressure rP  and the out-of-plane zP  are assumed to be generated, due to the surface 

and interface stresses, along the radial and transverse directions respectively. To 

determine the expression for rP  , a variation is conducted by changing r at constant h 

and vice versa for zP    Following the Laplace pressure–surface stress relation i.e.

dV

dA
fP  , this gives, for an island with bottom area xyA  and surface area zA : 
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 By inserting the expressions for xyA , zA  and V, the Laplace pressure can be written as: 

 
h

ffP icr

1
2                (4.3) 

22

4

hr

h
fP cz


               (4.4) 

4.1.2 Stress Generation at Precoalescence Stage 

 Following the island configuration shown in Fig. 4.1(c), the resulting stresses 

imposed by the Laplace pressure effects are ryyxx P  (assuming an in-plane 

isotropic stress state) and zzz P . The in-plane radial strain rr  induced during 

growth is related to the volumetric stresses by the Hooke’s law as 

zzyyxxrr sss  131211   where 11s , 12s  and 13s  are the elastic compliances of the 

coordinates in the x, y and z direction respectively. If the volumetric stress components 

are substituted into the expression for the radial strain, then the radial strain becomes: 

   
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For the in-plane biaxial modulus Y
ss


 1211

1
, the in-plane radial strain is: 
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                       (4.6) 

At the beginning of film growth, when island is fully attached to the substrate, the island 

is assumed to be strain free with an equilibrium in-plane lattice parameter   oorr rha ,1 
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  where a  is the bulk lattice parameter [129]. As the island grows, its critical lattice 

parameter will want to increase to   rha rr ,1  . Because the film is sticking to the 

substrate by adhesion, the substrate prevents the lattice parameter of the deposited film 

from increasing to the new value. Then, the biaxial strain rr induced in the island due 

to the substrate constraint is    rhrh rroorrrr ,,   . The intrinsic stress σ imposed by 

the substrate on the island to oppose the bi-axial strain can be estimated from the stress-

strain relation: rrY   . Therefore:  
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If 
1211

132
1

ss

s


  is a crystallographic orientation and elastic compliance dependent 

parameter as proposed by Cammarata et al. [100] , then the pre-coalescence stress is: 
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For an elastically isotropic material, 










1

31
, where v is Poisson's ratio. If Poisson's 

ratio is larger or smaller than 1/3,   will be negative or positive, respectively. For an 

elastically anisotropic material, the sign of  will depend on the elastic constants and the 

crystallographic orientation.  Equation (4.8) represents the induced intrinsic stress 

generated at the pre-coalescence stage before impingement. Comparing Eq. (4.8) to the 

pre-coalescence model of Cammarata and his coworkers (thereafter called the CTS 

model) (see Eq. 2.1), few points are worth noting. First, the thickness and diameter 
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dependent terms are coupled in our model unlike in the CTS model where they are 

separately grouped. Second, the expression in the second part of the right hand side of 

Eq. (4.8) presents a non-linear relation between the induced stress, the island thickness 

and its radius unlike in the CTS model where the relationship is inversely linearly 

proportional. Third, the CTS model requires three surface stresses, while two are 

sufficient for the current model thereby reducing the number of unknown parameters. It is 

instructive to say that both models give the values of the upper boundary for the stress 

induced at the precoalescence stage. However, results of our model are closer to the 

experimental values compared to the previous models as described in section 4.2.   

4.1.3   Stress Generation at Coalescence and Postcoalescence Stages 

 As the neighbouring islands coalesce to form grain boundaries, a surface stress 

associated with these boundaries, gbf , are formed. In this analysis, it is assumed that the 

dome shaped islands coalesce to form a regular hexagonal grain. In reality, it should be 

noted that other shapes having 3, 4, 5, or even 7 sides are also possible (Fig. 4.2a). To 

simplifying our analysis, we however assume only hexagonal grains. The hexagonal 

model of Fig. 4.2 (b) has a side length r  and height h . The parameters are denoted with 

primes to differentiate them from those of the precoalescence stage.  The central hexagon 

is considered for the subsequent analysis.     
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Figure 4.2: (a) SEM image showing grain structure of Cu film (inset is a single hexagonal 

grain) (130). Note that the grain boundaries have been etched and that other shapes are 

feasible, (b) hexagonal 

            For the hexagonal island shown in Fig. 4.2(b), the grain boundary area 

hrAgb
 6 , the surface area 2

2

33
rAxy
  and the total volume hrV  2

2

33
. Following 

the Laplace pressure–surface stress relation described previously, i.e. 
Vd
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fP
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assumed in-plane isotropy, this gives: 
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Replacing xyA , zA , gbA and V with their respective mathematical expressions, the 
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Assuming in-plane isotropy, the resulting bi-axial strain is:  
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For the in-plane biaxial modulus 
1211

1

ss
Y


 ,  the in-plane bi-axial strain is: 
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Similar to the precoalescence stress state, the extra biaxial strain induced in the grain due 

to the substrate constraint when the grain grows from its state when the grain boundary 

formation is just completed ),( impimp rh   to a new state ),( rh   is: 

),(),( rhrh xximpimpxxxx
    

The extra stress cont,  imposed by the substrate constraint on the grain due to the film 

growth from ),( impimp rh   to ),( rh    :  
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The change in strain due to the coalescence process (grain boundary formation) itself is 

the difference between Eq. (4.7) and Eq. (4.12) evaluated at the beginning and 

completion of coalescence process respectively. 
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From Eq. (4.7) we get the strain right before coalescence as: 
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From Eq. (4.11) we get the strain right after coalescence as: 
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The change in the in-plane biaxial strain due to the impingement is given as: 

),(),(, impimprrimpimprrimpxx rhrh                       (4.15) 
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The biaxial stress can be estimated from the stress-strain relation: imprrimp Y ,,    
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The total stress for a continuous film can therefore be calculated from Eq. (4.7), (4.12) 

and (4.16): 

contimpimpimpprecont rh ,,, ),(                   (4.17) 

   
r

f

hr

h
f

r

f

hh
ff

gb

oo

o
c

gb

o

iccont



























1

3
2

1

3
1

21
22,                             (4.18) 



64 

 

The stress at coalescence can be obtained from Eq. (4.18) when ),(),( impimp rhrh  and 

the actual stress induced by the coalescence process is given by Eq. (4.16). It should also 

be noted that Eq. (4.18) can be compared to only Eq. (4.8) (Cammarata et al’s model for 

a continuous film) and not to other models. This is because both Cammarata and our 

approach considered the mechanism of postcoalescence stress evolution which is clearly 

absent from other models.  

4.2  Modeling Results, Validation and Comparison 

 These models are validated with experimental results from literature and then 

compared with a few published models. For the precoalescence stage, we consider the 

stress evolution in a thin Ag(100) film deposited on a CVD oxide piezocantilever device 

as presented in Ref. (93). For silver with 37.0  [109], the values of the surface stresses 

are assumed to be mNfff fic /5.0 and mNfh /1  since the surface stresses for 

most alkaline metals are in the range of 0.2 and 1 N/m [100]. For a typical critical or lock 

down parameter of ho = 2.5nm and an impingement parameter of himp = 5nm and d = 

2.5*h for silver islands just before impingement, our precoalescence stress model gives 

about -82 MPa right  before impingement while that of  the CTS model gives about -119 

MPa. An in-situ experimental value is in the range of -20 and +20 MPa, depending on the 

growth temperature. These results and those of Cu(001) deposited on an oxidized silicon 

substrate are presented in Table 4.1. Also for Cu (001), a good agreement between 

experimental results and our model is obtained. For the choice of 2.5 as a multiplier for 

island diameter d, the diameters and heights of a series of silicon germanium islands were 
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monitored (see details in section 4.3). It was found that the diameter/height ratio 

stabilized at ~2.5 prior to coalescence. Although, silicon germanium is a semiconductor 

material, when it is deposited at higher temperature it exhibits stress evolution similar to 

those of type I materials. It is therefore expected that the ratio of island diameter/height 

will be similar to that of Cu and Ag films which are pure metal.  

 

Table 4.1: Comparison between predicted and measured compressive maximum stress 

prior to coalescence (MPa) for Ag and Cu film 

Material/ Substrate Fitting Parameters Ref. [100]  Eq. (4.8) Experiment 

Ag(100)/CVD oxide 

piezocantilever device 

                    , 

         ,           ,   

           ,       ,   

          ,  β = -0.504 

-128.6 -82 -20 to +20
a 

Cu(001)/oxidized silicon                   ,    

                 ,          

     ,       ,             ,  

β = -0.448 

-382 -213 -200
a 

a
 [Ref [131]

 b
 [Ref. [132] 
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The postcoalescence stress models are validated with three experimental results 

from literature [131, 133, 134]. For Cu;  
2/715.0 mJgb   [39], 

2/3135.1 mJs  [135], 

E=127GPa and 34.0 . We chose nmho 5.2 , oo hd *5.2  and mNff cgb /62   

similar to that of Cammarata and his coworkers, other parameters are similar to those in 

Table 4.1. Two important points are examined for comparison: (i) at the completion of 

coalescence and (ii) during a continuous film growth. When coalescence is completed 

nmhimp 13 and nmhimp 13*5.2  and h = d = 60 nm at a steady stress state [136]. The 

results for the post-coalescence stress models are presented in Table 4.2.  The predictions 

of the current models are closer to the experimental values than any of the previous 

models. Both Nix-Clemens models greatly over exaggerate the induced stress. Freud-

Chason and Seel models are much closer to the experimental values. The coalescence and 

postcoalescence models of Cammarata et al. indicate compressive stresses for both stages 

while the experiments indicate a tensile stress for the stress right after coalescence.  
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Table 4.2: Stresses at coalescence and continuous stages for Cu (001) films deposited on 

CVD silicon oxide 

S/N Model/ 

Experiment 

   

Source (s) 

Stress after complete 

coalescence (MPa) 

Stress in the   

continuous film (MPa) 

1 Nix-Clemens 1 Eq. (2), Ref. [97] 5320
 

2476 

2 Nix-Clemens 2 Eq. (3), Ref. [97] 6158
 

2866 

3 Freund-Chason Eq. (4), Ref. [109] 616 222 

4 Seel et al Eq. (5), Ref. [110] 1532 713 

5 Cammarata et al. Eq. (6), Ref. [100] -150 -346 

6 This work Eq.  (4.18) 102 -115 

7 Experiment 1              Ref. [131] 175 -107±33 

8 Experiment 2              Ref. [133]
 

230 -80 

9 Experiment 3              Ref. [134]
 

140 -260±25 

 

4.3   Parametric Studies 

 To further explore the stress behaviour at precoalescence, coalescence and 

postcoalescence stages, a few parametric studies are carried out for Cu(001) deposited on 

oxidized silicon. Figure 4.3 (a) is a comparison of the precoalescence stress changes with 

island height based on the CTC and the present models (Eq. 4.8). While both models 

show a decreasing compressive stress with increased island height, the current model 

indicates a smaller compressive stress similar to what is observed in Ref. [131].  For the 

coalescence process, the stress that is often generated depends on both the island radius 

prior to the impingement as well as the thickness changes over which the coalescence 

process takes place (see Eq. 4.16). According to Fig. 4.3(b), the stress due to the 

coalescence decreases with increased thickness and increases with island diameter at 
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impingement. The slope of the stress-thickness is higher for smaller island at 

impingement compared to bigger islands.  

 

 

 

 
 

Figure 4.3: (a) Precoalescence stress evolution (b) stress changes due to the coalescence 

process as a function of thickness change due to impingement impimp hh   (c) maximum 

stress variation with thickness at impingement imph  (d) postcoalescence stress evolution, 

ff = fg = 0.5N/m, fh= 1.6N/m, do = 2.5 nm.  
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By performing the stress computation over a few thicknesses prior to 

impingement, the maximum stresses generated during coalescence are shown in Fig. 

4.3(c). The figure clearly shows that the maximum stress generated due to zipping 

decreases with island size. This finding may account for the higher compressive stress 

observed in films with large grains compared to those of smaller grains. Also, the 

intrinsic stress becomes compressive during postcoalescence evolution and tends to 

stabilize after a certain film thickness (Fig. 4.3d). 

4.4 Application of the Current Model to Poly-SiGe Films 

 To apply the current model to poly-SiGe films, islands growth and coalescence 

processes are monitored by depositing several samples of poly-SiGe films with different 

thicknesses.  The poly-SiGe films are grown by CVD process on top of 1µm SiO2 layers 

deposited on a silicon substrate. Figure 4.4(a) and 4.4(b) are, respectively, SEM and 

AFM images of SiGe islands during the precoalescence growth stage. Furthermore, 

evolution of island diameter-to-height ratio was monitored based on both SEM and AFM 

images (Fig. 4.4c).  An interesting observation is that this ratio decreases as the film 

becomes thicker and eventually stabilizes at ~2.5 at the outset of islands coalescence. 

This implies that the diameter of an island is at least 2.5 times its corresponding height at 

precoalescence stage.   
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Figure 4.4: Poly-SiGe islands at the precoalescence growth stage (a) SEM image showing 

significantly isolated islands on SiO2 layer obtained from FEI NOVA 200 NanoSEM 

operating at about 5 kV and 600,000X (b) equivalent AFM image obtained in a tapping 

mode and processed with WSxM software [137], the inset is a typical 2D shape of a 

growing island (c) ratio of island diameter to the island height as film thickens. The blue 

background in (b) denotes the substrate surface for a precoalescence film. The continuous 

line in (c) is a B-spline fitted to the experimental data to guide for the eyes. 

(a) (b) 
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 Having shown that the precoalescence geometry of poly-SiGe film is similar to 

that of Cu, the models are then used to estimate the surface and interfacial stresses in 

CVD poly-SiGe. To the best of the authors’ knowledge, the interfacial stresses for poly-

SiGe have not been determined both experimentally and numerically. To do this we 

measured the residual stress for several poly-SiGe films of different thicknesses. The 

results obtained are shown in Fig. 4.5. The details of the experiment and the discussion of 

the stress evolution are presented in chapters 5 and 6. The free surface stress    and the 

interfacial stress    are estimated from the precoalescence data of Fig. 4.5. The 

precoalescence growth stage is considered to be the initial 40 nm of the film thickness. 

To obtain the stress values from Eq. (4.8), the value of            is chosen to be       

which is obtained from                    , assuming a linear relationship 

between Si and Ge, x being the germanium fraction in the film. The values of          and 

        are       and       [100] respectively and x = 0.87 (obtained from Rutherford 

backscattered analysis). Other values, except the lock down values, are obtained from 

Fig. 4.5:          ,            ,        ,             ,             

(point I) and         ,           ,            (point II). By solving the two 

equations derived due to point I and II simultaneously, we obtained             and 

            . The value of    is similar to the surface stress value obtained for 

amorphous silicon (1.28 – 2.0 N/m) by Hara et al. [138].  

 Following the above procedure while taking the values of          and          to 

be       and      , respectively (100), the curve surface and the interfacial stresses are 

calculated to be 1.637 and -0.234 N/m, respectively.  The value of the grain boundary 

stress is estimated from Eq. (4.18) using the above values of     and    and the 
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experimental data from points (III) and (IV) with the assumption that the island 

coalescence is completed at point (III). In this case,         ,          (point III) 

and          ,         (since the grain diameter-to-height ratio tends towards 1 or 

lower upon coalescence),            (point IV). The value of     is estimated to be 

-3.066N/m. No experimental or published value is available to confirm these results but 

they satisfy the condition for grain boundary formation:    
   

 
    The results are 

summarized in Table 4.3. 
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 Figure 4.5: Stress evolution in poly-SiGe films deposited by CVD.  
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Table 4.3: Surface and grain boundary stresses (N/m) obtained from the current model 

Material Curved surface 

stress,    

Interface 

stress,    

Grain boundary 

stress,     
   

   

 
   

SiGe (111)        -      -3.066 3.898 

SiGe (100) 1.637 -0.2342 -3.067 3.6705 

SiGe (average) 1.751 -0.3496 -3.066 3.784 

Si(100) 
*
1.28 – 2.0  - - - 

*
Ref. [138] 

 

4.5   Further Discussion of the Current Model and Experimental Results 

 In this section, we examine the differences between the results of our models and 

those of the experiments to find the mechanisms that might play a dominant role. At the 

precoalescence stage, the stresses predicted by the current model are slightly more 

compressive than those of the experiments (see Table 4.1). One of the possible reasons 

for the deviation may be due to the assumed shape of the growing islands. Indeed, dome 

is an approximate shape which may slightly differ from the real shape as well as from 

island to island. It is however interesting to note that the dome shape is more realistic 

than the cylindrical or spherical shape proposed in the previous studies as evidenced from 

the AFM image discussed earlier. Another possible reason may be associated with the 

inaccuracies in determining some fitting parameters especially ho and ro. Herein we have 

simply adopted ho = 2.5 nm similar to the choice made in Ref. [100]. A systematic 

experimental determination of the lock-in parameters may produce slightly different 
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values. We have also adopted the island diameter-to-height ratio of 2.5 as a multiplier for 

precoalescence island growth. This multiplier may not be an absolute value for the Cu 

and Ag films used for the model verification. A study of the real structural evolution in 

these films may be necessary for better results. 

 The assumption of hexagonal shaped grains and the resulting tensile stress 

obtained after islands coalesce are both fair when compared to the real shape of growing 

grains and the associated stress. However, the slightly lower tensile stress obtained from 

the experiment may be attributed to an incomplete island coalescence since the current 

model is based on a simplifying assumption of total coalescence. Because all islands do 

not grow at the same rate, the zipping process will not be instantaneous and its rate will 

differ among the growing grains. For example, it has been observed in aluminum nitride 

films that grain boundary zipping proceeds layer by layer when it is energetically 

favourable [101]. In addition, the accurate determination of the interfacial stress 

associated with the grain boundary fgb might require an extensive experiment for each 

material under consideration. However, since fc - fgb/2 > 0 is a necessary condition for a 

grain boundary to form, the assumption of fgb – 2fc = -6 N/m  may as well be justified. 

Also, the island thickness at the completion of impingement/coalescence (himp =13nm in 

the case of Cu) should be determined from SEM measurement. Such a value will be 

critical to the accurate evaluation of our model.   

 For the postcoalescence state, the stresses are slightly less compressive than most 

of the experimental results. This is probably because the current model is only dependent 

on the shape of the grain, the surface, the interfacial and the grain boundary stresses and 

not on the adatoms mobility and deposition rate. Various mechanisms that are responsible 
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for the generation of compressive stress in a postcoalescence film may explain our 

observation.  Diffusion of atoms (atomic mobility) into and out of the grain boundary is a 

popular mechanism that influences stress evolution [139].  The driving force for the 

diffusion process is attributed to a higher surface chemical potential compared to the 

chemical potential in the grain boundary [101]. The rate of atomic flow into the grain 

boundary is proportional to the concentration of adatoms on the film surface and the 

atomic transition rate between the surface and the grain boundary and ceases once 

equilibrium is attained. The compressive stress in some thin film during the post-

coalescence growth might also be due to the presence of the strain field due to the 

tendency of the islands to continue to expand [101] . 

 Finally, it is assumed that the surface, interfacial and grain boundary stress/energy 

are dependent on the material and not the growth conditions. This may require further 

investigation by performing systematic and robust experiments. Generally, the current 

approaches are based on surface stresses and they do not include other mechanisms of 

stress generation and relaxation which have been the focus of previous studies [109, 133, 

139 – 141].  It may be necessary to investigate a hybrid approach where the surface stress 

method is combined with any of the atomic-level models for more accurate results.  In 

addition, stress relaxation mechanisms may be incorporated to lower the magnitude of the 

estimated stresses. More systematic and comprehensive measurements are required to 

obtain the stress-dependent parameters for direct comparison with the model. Though the 

model is very simple, it provides a useful framework for stress evolution studies in thin 

films and predicts experimental data well.  
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CHAPTER 5 

DEVELOPMENT OF ULTRATHIN SIGE FILMS: 

OPTIMIZATION AND PARAMETRIC STUDIES 

 

 The first part of this chapter is a report a systematic procedure for simultaneous 

optimization of stress, resistivity and deposition rate of LPCVD deposited ultrathin 

(100±5nm) poly-SiGe films by using the grey-Taguchi approach. Seven process variables 

were identified as important parameters for controlling the deposition process and the 

resulting film properties, namely the deposition temperature, the silane, germane, 

diborane and hydrogen flow rate, the chamber pressure and the shower head-heater 

spacing. By using 4 different levels for each process variable, 32 unique experiments 

were defined based on an L32 orthogonal array. The optimal combination of process 

parameters was determined by applying the grey relational analysis (GRA) for multiple 

performance characteristics. The second part reports the influence of germanium fraction, 

boron concentration and chamber pressure on the stress, deposition rate, resistivity, 

carrier concentration, Hall mobility, surface properties and hardness and Young modulus 

of ultrathin poly-SiGe films.  

 

5.1   The Grey-Taguchi Multi-Response Optimization  

 One of the most widely used experimental designs for a single and multi-objective 

optimization is the Taguchi design of experiment [142]. This optimization technique has 
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been extensively applied in thin film related problems. Among them are optimization of 

LPCVD SiN film uniformity [143], engraving linewidth of iron oxide coated glass during 

lithography of photomasks [144], structure, morphology and photocatalytic performance 

of the rf-sputtered TiO2 films (145). More applications are discussed elsewhere [146 – 

151]. In spite of this wide range of applications, the critics' major argument against 

Taguchi technique is that the application of signal-to-noise ratio for data analysis lacks 

statistical basis and poses some computational challenges [152]. More recently, different 

hybrid approaches (mostly based on Taguchi technique) have been devised as alternatives 

to the classical Taguchi optimization technique. These include Taguchi and central 

composite response surface [153], CFD (computational fluid dynamics) and dynamic 

model of Taguchi [154], Taguchi and Fuzzy logic [155] and an integrated model of the 

Taguchi method, the artificial neural network (ANN), and the genetic algorithm (GA) 

[156, 157]. In this study, the Taguchi theory is used for the experimental design while the 

Grey relational analysis is then used for data analysis because of its superior performance 

(158). 

  Grey relational analysis (GRA), a subdivision of the grey relational theory, is a 

normalization-based evaluation technique commonly used for estimating an integrated 

performance index for multi-response problems [158]. It is an impact evaluation model 

that measures the degree of similarity or difference between two sequences based on the 

grade of relation [159]. Since the general grey relational theory was proposed in 1982 

[160], it has been instrumental to the solutions of complex and multivariate systems. In 

system theory, grey systems exist between white and black systems depending on how 

much the relevant information is known [158]. GRA can utilize few samples and 
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uncertainty conditions, and can be effectively applied in optimization of multiple quality 

characteristics. The grey-Taguchi approach is used here to select the best deposition 

parameters for optimal poly-SiGe thin films characteristics, taking into account the 

correlation between the multiple output responses of residual stress, deposition rate and 

sheet resistance. The step-by-step approach for determining the optimal deposition 

conditions is reported in details. Finally, the optimal deposition parameters with 

considerations of the multiple performance characteristics are obtained and validated.  

 

5.1.1 The L32 Orthogonal Array and Grey Relational Analysis  

 Having identified the seven most important deposition variables that influence the 

deposition process and the resulting film properties (Table 5.1), experiments based on 

L32 orthogonal array (O.A) were defined [142]. Subsequently, 32 films were deposited 

and characterized for thickness, stress, resistivity and deposition rate. Figure 5.1 is the 

flowchart for the experimental and grey relational analysis (GRA) as used in this study. 

 

Table 5.1: Experimental parameters and their levels 
 

 

 

 

 

 

    
*
sccm means ‘standard cubic centimetre per minute’; 

+
1 mil  = 0.0254 mm 

 

Process Variables 

 

Symbol Unit 

Parameter levels 

1 2 3 4 

Deposition temp.  T 
o
C 390 400 415 420 

SiH4 flow rate  S 
*
sccm 8 10 12 15 

GeH4 flow rate (10% in  H2) G sccm 120 140 160 180 

Chamber pressure  P Torr 60 65 70 75 

B2H6 flow rate (1% in  H2) B sccm 11 13 15 18 

Hydrogen flow rate  H sccm 500 550 600 650 

Shower head-heater spacing HH 
+
mil 400 430 470 500 
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Figure 5.1. Flow chart for the Grey-Taguchi Multi-objective Optimization process  

Begin 

Set up L32 orthogonal array via Taguchi 

experimental design 

Conduct the experimental based on the 

L32 array 

Identify and measure the properties of 

interest 

Normalize the experimental results based 

on the desired performance characteristics 

which are: RS (NB), DR (HB) and SR 

(LB) 

Estimate the Grey Relational Coefficient 

(GRC) for each experimental run 

Calculate the Grey Relational Grade and 

Grey Relational Ordering 

Analyze the experimental results using the 

GRG and ANOVA 

Select the optimal level of each process 

variable from effects plot of GRG 

Conduct a multi-objective verification 

experiments  

End 

1. Residual stress (RS) 

2. Deposition rate (DR) 

3. Sheet resistance (SR) 
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 To perform GRA, the input variables were scaled such that they were comparable 

in terms of order of magnitude, and dimensionless on a global measurement scale [160]. 

The processing of each measured output depends on the optimization requirement. The 

residual stress was of the nominal-the-better type (NB) with the nominal value chosen as 

30 MPa tensile stress, the deposition rate was of the higher-the-better type (HB) while the 

sheet resistance belonged to the lower-the-better type (LB). 30 MPa is chosen as the ideal 

residual stress as a low tensile stress is normally preferred for MEMS structural layers to 

get flat freestanding structures. A compressive stress can lead to buckling of doubly 

clamped beams which are larger than the critical length. A large tensile stress might lead 

to cracking or structural layer delamination. The appropriate normalization equations are 

given in Eqs (5.1) – (5.3) (161).   

 
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In these equations )( jyi and )( jYi
are the experimental average and the normalized value 

of the jth performance characteristic for the ith experiment, and ))(max( jyi and 

))(min( jyi  are the maximum and minimum values of )( jyi respectively, NV is the 

nominal value for the residual stress. The grey relational coefficient )( ji  is computed 

using Eq. (5.4) (162): 

)()(maxmax)()()(

)()(maxmax)()()(minmin
)(

jYjYjjYjY

jYjYjjYjY
j

iojiio

iojiioji

i








                  (5.4)   



81 

 

Where )( jYo
is the ideal normalized value of the jth performance characteristic which is 

chosen as 1. )( j is the distinguishing coefficient for adjusting the interval of       and 

is set between 0 and 1. In this case, 8.0)1(  , 15.0)2(  , and 05.0)3(  for tensile 

stress, sheet resistance and deposition rate respectively. These values reflected the degree 

of importance of the output parameters to the thin film development. Finally, by using 

Eq. (5.5) the grey relational grade (GRGi) was computed as the average of the grey 

relational coefficient corresponding to the ith experiment for each performance 

characteristic.  





jN

j

i

j

i j
N

GRG
1

)(
1

                                                (5.5)  

The GRG provides a ranking of the experimental alternatives and the closer to the ideal 

normalized value, the better [158].  

 The results of the experiments are provided in Table 5.2. The film thickness (not 

included), resistivity and deposition rate are fairly uniform for all the films deposited by 

the same recipes. The wafer-to-wafer uniformity for deposition rate is better than 3% and 

for those films that were deposited in the same batch, the uniformity is almost zero. This 

is expected because of the sophisticated LPCVD system which is used within production 

environments. The normalized average results, the grey relational coefficient, the grey 

relational grade and the ranking order for the experiments are shown in Table 5.3. Among 

the 32 experiments, experiment L20 has the highest GRG which implies the best multiple 

performance characteristics; hence, it is designated as the ‘experimental best’. 
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Table 5.2: Design layout and experimental results  

Exp 
No. 

Experimental 
layout based on 
 L32 O.A. design  

Residual stress 
(MPa) 

Deposition rate 
(nm/s) 

Sheet resistance 
(Ω/sq) 

1 2 3 1 2 3 1 2 3 

L1 T1S1G1P1B1H1HH1 -46.2 -42.9 -43.5 0.17 0.17 0.16 942 927 1058 

L2 T1S1G2P2B2H2HH2 -3.9 -10.4 -8.9 0.21 0.21 0.21 1604 833 1701 

L3 T1S1G3P3B3H3HH3 -44.9 -38.0 -35.1 0.23 0.24 0.22 High 672 *
High 

L4 T1S1G4P4B4H4HH4 -72.3 -123.4 -63.9 0.26 0.26 0.25 High High High 

L5 T1S2G1P1B2H2HH3 -161.8 -156.4 -157.8 0.13 0.13 0.13 High High High 

L6 T1S2G2P2B1H1HH4 -23.5 -34.7 -33.9 0.20 0.20 0.20 1164 839 1195 

L7 T1S2G3P3B4H4HH1 -102.0 -108.0 -97.7 0.21 0.21 0.20 High High High 

L8 T1S2G4P4B3H3HH2 -64.9 -70.1 -56.4 0.26 0.29 0.28 High High High 

L9 T2S3G1P2B3H4HH1 -179.2 -180.8 -179.8 0.15 0.15 0.15 High High High 

L10 T2S3G2P1B4H3HH2 -173.8 -165.6 -167.1 0.17 0.17 0.17 High High High 

L11 T2S3G3P4B1H2HH3 -142.0 -140.0 -144.3 0.28 0.27 0.27 354 335 384 

L12 T2S3G4P3B2H1HH4 -92.6 -79.9 -101.4 0.31 0.31 0.30 388 365 388 

L13 T2S4G1P2B4H3HH3 -268.5 -269.6 -267.9 0.16 0.16 0.15 High High High 

L14 T2S4G2P1B3H4HH4 -205.8 -209.8 -199.2 0.16 0.16 0.16 High High High 

L15 T2S4G3P4B2H1HH1 -69.9 -63.7 -73.3 0.26 0.26 0.26 High High High 

L16 T2S4G4P3B1H2HH2 -116.3 -118.0 -126.5 0.28 0.28 0.28 295 267 299 

L17 T3S1G1P4B1H4HH2 7.8 19.3 19.0 0.25 0.24 0.24 337 313 335 

L18 T3S1G2P3B2H3HH1 -32.1 -33.5 -26.5 0.28 0.27 0.28 301 295 335 

L19 T3S1G3P2B3H2HH4 8.0 -5.1 12.4 0.32 0.31 0.31 300 259 314 

L20 T3S1G4P1B4H1HH3 25.2 24.6 24.5 0.35 0.34 0.34 336 303 343 

L21 T3S2G1P4B2H3HH4 5.6 3.6 2.9 0.24 0.23 0.23 305 925 425 

L22 T3S2G1P4B2H3HH4 -31.9 -46.9 -35.3 0.28 0.28 0.28 418 376 436 

L23 T3S2G3P2B4H1HH2 2.6 3.2 5.4 0.30 0.30 0.30 967 821 976 

L24 T3S2G4P1B3H2HH1 -42.2 -39.3 -28.5 0.33 0.32 0.32 269 243 274 

L25 T4S3G1P3B3H1HH2 -125.5 -125.3 -128.8 0.20 0.20 0.20 High High High 

L26 T4S3G2P4B4H2HH1 -124.0 -121.0 -119.4 0.25 0.24 0.24 High High High 

L27 T4S3G3P1B1H3HH4 -43.4 -53.4 -49.6 0.27 0.26 0.27 197 213 216 

L28 T4S3G4P2B2H4HH3 -80.1 -75.0 -77.3 0.33 0.33 0.33 209 181 210 

L29 T4S4G1P3B4H2HH4 -186.0 -179.0 -183.2 0.19 0.19 0.19 High High High 

L30 T4S4G2P4B3H1HH3 -73.6 -77.2 -82.1 0.26 0.26 0.26 4223 393 5403 

L31 T4S4G3P1B2H4HH2 -29.1 -21.4 -24.0 0.26 0.26 0.26 432 428 438 

L32 T4S4G4P2B1H3HH1 -211.4 -216.0 -210.4 0.31 0.31 0.31 178 170 193 
 

N.B: ‘High’ denotes the measured sheet resistance that is beyond the capability range of 

the 4-point probe tool. The values are replaced with 10000 during subsequent analysis.  
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Table 5.3: Normalized average values, grey relational coefficient (GRC), grey relational 

grade (GRG) and the ranking order for the experimental runs 

Exp. 

No. 

Normalized average value Y GRC 

GRG 

Ranking 

Order RS DR SR RS DR SR 

L1 0.752 0.172 0.920 0.764 0.057 0.650 0.490 17 

L2 0.874 0.375 0.878 0.864 0.075 0.552 0.497 18 

L3 0.768 0.469 0.317 0.776 0.087 0.180 0.348 20 

L4 0.610 0.594 0.000 0.673 0.110 0.131 0.305 23 

L5 0.369 0.000 0.000 0.559 0.048 0.131 0.246 27 

L6 0.797 0.329 0.910 0.798 0.070 0.625 0.498 16 

L7 0.557 0.36 0.000 0.644 0.073 0.131 0.282 24 

L8 0.686 0.688 0.000 0.719 0.138 0.131 0.329 21 

L9 0.298 0.094 0.000 0.533 0.053 0.131 0.239 30 

L10 0.335 0.188 0.000 0.546 0.058 0.131 0.245 28 

L11 0.424 0.672 0.982 0.582 0.133 0.893 0.536 15 

L12 0.594 0.829 0.980 0.664 0.226 0.881 0.590 11 

L13 0.000 0.125 0.000 0.445 0.055 0.131 0.210 32 

L14 0.214 0.141 0.000 0.505 0.055 0.131 0.230 31 

L15 0.669 0.610 0.000 0.708 0.114 0.131 0.318 22 

L17 0.952 0.532 0.985 0.943 0.097 0.909 0.650 5 

L18 0.797 0.688 0.987 0.798 0.138 0.919 0.619 8 

L19 0.917 0.860 0.989 0.906 0.263 0.931 0.700 3 

L20 0.983 1.000 0.986 0.979 1.000 0.910 0.963 1 

L21 0.914 0.485 0.963 0.902 0.089 0.799 0.597 7 

L22 0.773 0.704 0.977 0.779 0.145 0.866 0.596 9 

L23 0.913 0.797 0.925 0.901 0.198 0.666 0.588 12 

L24 0.777 0.907 0.992 0.782 0.348 0.948 0.693 4 

L25 0.476 0.329 0.000 0.605 0.070 0.131 0.268 26 

L26 0.493 0.532 0.000 0.613 0.097 0.131 0.280 25 

L27 0.737 0.641 0.998 0.752 0.123 0.982 0.619 6 

L28 0.641 0.938 0.998 0.690 0.445 0.987 0.708 2 

L29 0.288 0.282 0.000 0.530 0.066 0.131 0.242 29 

L30 0.640 0.610 0.558 0.690 0.114 0.254 0.353 19 

L31 0.817 0.610 0.975 0.814 0.114 0.854 0.594 10 

L32 0.188 0.844 1.000 0.497 0.243 1.000 0.580 13 

Total 

      

1.124 
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5.1.2 Selection of Optimal Process Condition 

  

 The response table (Table 5.4) [142, 163] was computed with Matlab software to 

determine the effect of each process parameter on these responses. This was computed 

from the grey relational coefficient (GRC) by taking the average of each parameter at the 

same parameter level. The horizontal lines of the main effects plot (Fig. 5.2) correspond 

to the global average of the GRG (0.471). The closer the grey relational grade is to 1, the 

better is the multi-performance characteristics. From Fig. 5.2 and Table 5.4, the projected 

optimized condition is selected to be T3S1G4P2B1H1HH4. This is equivalent to the 

following deposition parameters: deposition temperature (level 3 or 415
o
C), silane flow 

rate (level 1 or 8 sccm), germane flow rate (level 4 or 180 sccm), chamber pressure (level 

2 or 65Torr), diborane flow rate (level 1 or 11sccm), hydrogen flow rate (level 1 or 500 

sccm) and shower head-heater spacing (level 4 or 500 mil). The differences between the 

maximum and the minimum values of the average GRG are calculated, tabulated and 

ranked. The most influential factor on the multi-objective performance of the films is the 

deposition temperature based on these differences. The contributions of the hydrogen and 

the heater-shower head spacing are insignificant to the overall performance 

characteristics because of their relatively small difference. Furthermore, the level of 

significance of other deposition parameters on the multi-performance characteristics can 

be seen from the ranking in Table 5.4. 

 

 


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Table 5.4: Response table for the grey relational grade 

 Average grey relational grade 

Max. -  Min. Rank  1 2 3 4 

T 0.374 0.367 0.676 0.455 0.310 1 

S 0.565 0.479 0.436 0.386 0.179 4 

G 0.393 0.389 0.498 0.591 0.203 2 

P 0.501 0.502 0.416 0.396 0.114 5 

B 0.562 0.529 0.395 0.390 0.173 3 

H 0.509 0.470 0.460 0.430 0.079 6 

HH 0.438 0.467 0.480 0.486 0.049 7 

 

N.B: Global average of the grey relational grade based on the response table = 0.466.  

Underlined values are the optimum parameter levels which result in the best performance 
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 Figure 5.2: Effects plot for grey relational grade showing the influence of parameters 

levels on the average GRG. 

 

5.1.3 Analysis of Variance (Anova) and Confirmation Test 

 The analysis of variance (ANOVA) [162, 164] was performed to investigate the 

level of significance of the process parameters on the variation of the quality 

characteristics [162]. The contribution of each of the deposition parameters on the 

combined characteristics of the residual stress, deposition rate and sheet resistance is 
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investigated. This is done by separating the total variability of the GRG, which is 

measured by the sum of squared deviations from the total mean of the grey relational 

grade, into contributions by each deposition parameter and error. The steps for ANOVA 

are given below. 

 Degree-of-freedom for each parameter of N levels is )(kdof = N – 1 = 4 -1 = 3. 

 Degree-of-freedom for the treatment )(Trdof = Total number or runs – 1 = 32-1 = 31 

 The sum of square deviation due to the experimental treatment is calculated from:

 



32

1

2
)(

i

mi GRGGRGTrSS  where iGRG  and mGRG  are the GRG for the ith 

experiment and the mean of the GRG for the 32 experiments, respectively. 

 The sum of squares deviation due to each deposition parameter k is calculated from 
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
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7

1

2
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Mk GRGGRGkSS where MGRG is the global mean of all GRG from 

Table 5.4.   

 Error due to sum of square is obtained from 

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7

1
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k
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 Degree-of-freedom due to error is calculated from 
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 The variance of the kth parameter is given by  
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kSS
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 Variance due to error  is obtained from 
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errorSS
errorV    

  The F-value is calculated from 
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errorV

kV
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 The probability- (p-) values is obtained from [165] by using the        and 

           as a numerator and a denominator respectively. 

 

 The percentage contribution of each deposition parameter (Table 5.5) gives a 

clear indication of the individual contributions to the output. The deposition temperature, 

germane flow rate and diborane flow rate contributed about 40.6, 18 and 15.2% 

respectively to the change in the stress, resistivity and deposition rate and are significant 

at 95.0% confidence level (C.L.) going by their probability (p) values. The implication of 

this finding is that more attention should be focused on temperature, germane and 

diborane flow rate if any of the film properties is to be modulated substantially.   

 

Table 5.5: Analysis of variance results for multi-performance characteristics 

 T S G P B H HH Error Total 

DOF 3 3 3 3 3 3 3 10 31 

Sum of Squares 0.5 0.138 0.224 0.088 0.189 0.025 0.012 0.048 1.124 

Variance 0.167 0.046 0.075 0.03 0.063 0.009 0.004 0.005 - 

Contribution (%) 40.6 11.3 18.0 7.1 15.2 2.0 0.94 4.7 100 

F-value 28.6,b 8.0 a,b 12.7 a,b 5.0 a,b 10.7 a,b 1.4 0.7 - - 

p-value 0.00003 0.0051 0.0009 0.022 0.001 0.299 0.573 

 

 

a,b
Significant at 

a
95% and  

b
90% confidence levels,

 
DOF = degree-of-freedom  
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After the evaluation of the optimal parameter combination, enhancement of the 

process results using the optimal parametric combination were predicted and verified. A 

multiobjective verification experiment was conducted using the optimum deposition 

parameters which are: T=415
o
C, S=8 sccm, G=180 sccm, P=65 sccm, B=11 sccm, 

H=500 sccm and HH=500mil. The projected grey relational grade was computed from: 

))()()(()()(
1

m

N

k

opmmprojected GRGkGRGGRGGRG
k

 


                                   (5.6) 

Where )()( kGRG opm  and MGRG)(  are the optimum grey relational grade for deposition 

parameter k and the global average of GRG respectively, and Nk = 7 is the number of the 

process parameter. The confirmatory experiment shows that RS increased from -43 to 

43MPa while the deposition rate increases from 0.16 to 0.34nm/s (Table 5.6). The film 

resistivity decreased from 10.18 to 1.39mΩ-cm. and the grey relational grade was 

improved by about 100% but still slightly less than the projected value. A plausible 

explanation for this is the inherent measurement error in the stress measurement tool. The 

condition for the experimental best film is also included in the table. The results of the 

optimized recipe in the context of others are shown in Fig. 5.3. 
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 Table 5.6: Results of performance measures for initial and optimal deposition parameters 

 Initial  

parameter 

Experimental 

 Best (L20) 

Optimal deposition parameter 

Predicted Experimental 

Combination level T1S1G1P1B1H1HH1 T3S1G4P1B4H1HH3 T3S1G4P2B1H1HH4 T3S1G4P2B1H1HH4 

Stress (MPa) -43 24.7 - 43 

Deposition rate (nm/s) 0.16 0.34 - 0.34 

Resistivity (mΩ-cm) 10.18 3.47 - 1.39 

Grey relational grade 0.49 0.96 1.09 1.00 
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Figure 5.3: Characteristics of the optimized film (in open circle) compared to all 

experimental data. The horizontal dash lines indicate extension of the optimized 

properties. 
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5.2 Further Characterization of the Optimized and the Experimental 

Best Films 

 Having obtained the optimized film, further characterization of its properties is 

essential to be certain of its superior characteristics over other films. Based on the XRD 

peak parameters of Fig. 5.4 (a), the optimized film is more crystalline than the 

experimental best film that was obtained from the orthogonal array experimental set-up. 

This is because the diffraction peaks corresponding to the (111), (220), and (311) planes 

for the optimized film are stronger and sharper. The value of the full-width-at-half-

maximum (FWHM) is 0.58
o
 for the optimized film compared to 1.14

o
 for the 

experimental best film indicating that the grain size in the former (~15 nm) doubles that 

of the latter (~7.5 nm) (assuming the peak width is solely a function of grain size). It 

should be noted that the absence of dual peaks for a particular diffraction plane indicates 

that the poly-SiGe alloy is homogeneous.  

 Also the resistivities of the two films (Table 5.6) confirm that the optimized film 

is more crystalline. The lower resistivity in the optimized film is justified by its higher 

carrier concentration (3.57 x 10
21 

cm
-3

 compared to 0.84 x 10
21 

cm
-3

 in the experimental 

best) and higher Hall mobility (3.76 cm
2
V

-1
s

-1
 compared to 2.04 cm

2
V

-1
s

-1
  in the 

experimental best). The Rutherford backscattering spectrometry (RBS) profiles indicate 

that the germanium concentration in the optimized film is 87% (Fig. 5.4b) compared to 

89% in the experimental best film. Surprisingly, the higher value of the latter does not 

translate to better electrical properties as indicated. The cross-sectional SEM image of 

Fig. 5.4(c) indicates a precise deposition of a 100nm thick SiGe film. Both the AFM and 

top-down SEM images show that the optimized film exhibits a cauliflower surface 

morphology where smaller grains aggregate to form larger grains (Fig. 5.4 d & e).  The 

root mean square surface roughness of the optimized film (4.2nm) is slightly lower than 

that of the experimental best film (4.6nm) indicating a high surface uniformity.  
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Figure 5.4: (a) Glancing incidence XRD spectra of the optimized film shows slightly 

sharper peaks than those of the experimental best film for (111), (220) and (311) planes,  

(b) RBS profile shows 87% Ge fraction in the optimized sample (c) cross-sectional SEM 

image (d) surface topography and (e) AFM images of the optimized film.  

(e) 

(a) (b) 

(c) (d) 

 Si 

 Ge 



93 

 

5.3 Investigation of the Influences of Germanium Fraction, Boron 

Concentration and Chamber Pressure on Some Films Properties 

 

This section describes the parametric studies conducted to examine how the 

germanium fraction, boron concentration and the chamber pressures (CP) influence the 

film resistivity, stress, deposition rate, grain size and surface properties of ultrathin poly-

SiGe films. These parameters were selected because they significantly influence the 

properties of the films (see section 5.1 for details). The resistivity and residual stress are 

among the most important characteristics of poly-SiGe thin films. The resistivity 

determines the electrical response when poly-SiGe is used as a structural layer for 

M/NEMS applications. A condition with slightly tensile stress is required for thin films if 

delamination or structural failure is to be prevented. Higher deposition rate will enhance 

fabrication of poly-SiGe based devices if the process is to be economically viable. It is 

therefore important to investigate how these characteristics change with some deposition 

parameters. Deposition temperature and other conditions were kept constant while the 

film thickness is kept at 100±5 nm. Twelve films were deposited following the process 

conditions listed in Table 5.7. Experiment No. 1- 4, 5- 8 and 9 -12 were conducted to 

study the influence of germanium fraction, boron concentration and the chamber 

pressures (CP) on the above stated properties. The chemical composition and crystal 

structure were obtained by using SIMS and XRD in the glancing incidence mode. The 

carrier concentration and mobility were determined by Hall measurement. The surface 

structures were characterized by AFM and the mechanical properties were obtained from 

nanoindentation measurements.   



94 

 

Table 5.7: Process condition for the SiGe deposition 

Exp. 

No 

Tsub  

(
o
C) 

4

4

*

SiH

GeH
 

CP 

(Torr) 
4

62

#

SiH

HB
 

H2 

(sccm) 

HH 

(mil) 

Time  

(s) 

1 415 100/8 65 11/8 500 500 550 

2 415 140/8 65 11/8 500 500 380 

3 415 180/8 65 11/8 500 500 295 

4 415 200/8 65 11/8 500 500 250 

5 415 180/8 65 12/8 500 500 290 

6   415 180/8 65 15/8 500 500 275 

7 415 180/8 65 18/8 500 500 295 

8 415 180/8 65 20/8 500 500 280 

9 415 180/8 50 11/8 500 500 415 

10 415 180/8 60 11/8 500 500 312 

11 415 180/8 70 11/8 500 500 280 

12 415 180/8 80 11/8 500 500 250 
  

   N.B: Tsub = substrate temperature, *10% GeH4 in H2, CP=chamber pressure, #1% B2H6 in H2, HH = heater-shower head spacing 

 

5.3.1   Germanium Fraction 

 As previously discussed, germanium helps to reduce deposition temperature for 

on-CMOS applications. It can substantially reduce the residual stresses by increasing the 

crystalline properties of the films. Most importantly, it can be tuned to change the strain 

gradient in free-standing cantilevers. Fig. 5.5 (a) is one of the RBS measurements for 

calculating the germanium fractions in the films. The yield tails at approximately 

channels 150, 260, 300 and 420 correspond to Si in the silicon substrate, Si in the SiO2 

layer, Si in the SiGe film and Ge in the SiGe film, respectively.  
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 Figure 5.5: (a) Example of an RBS profile for measuring germanium fraction (b) 

correlation between germane/silane flow rate ratio and the germanium fraction in the 

films. 

By calculating the Ge fractions in the other films, a good fit is obtained for 

GeH4/SiH4 ratios and the corresponding germanium fractions (Fig. 5.5b). With R
2
 = 0.98, 

the fraction of germanium can be evaluated from Ge = 0.0325*GeH4/SiH4 + 0.7969, 

assuming other deposition parameters are kept constant.  The films are quite uniform as 

evidenced by the symmetry of the Ge peak.   

 All the films are polycrystalline as revealed by the significant peak intensity of 

the (111), (220) and (311) planes (Fig. 5.6) which is consistent with most published data 

[55, 68 – 71]. From these XRD spectra, the existence of single peaks at diffraction angles 

between the expected angles for Ge and Si is noted. This implies that the layers are of a 

homogeneous material and not built out of large clusters of Ge-rich materials embedded 

in silicon or vice versa. Generally, the (111) peak is slightly broader than the other peaks 

indicating that the grains associated with this orientation are finer than others. The peaks 
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intensities for all the orientations improve with increased germanium fractions 

accompanied with a decrease in full width at half-maximum (FWHM), suggesting that 

the incorporated germanium atoms significantly enhance the grain growth and thus the 

crystalline fraction. However, the increased germanium fractions do not influence the 

peak positions. 

 

 

Figure 5.6: (a) GIXRD spectra for the films containing different germanium fractions (b) 

grain size and residual stress calculation.  
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 The influence of the germanium fraction on the carrier concentration and carrier 

mobility, resistivity, stress and deposition rate are shown in Fig. 5.7. Because of the 

increased germanium fraction, carrier scattering is reduced which evidently raises the 

carrier mobility (Fig. 5.7 a). It is instructive to state that in spite of the constant boron 

concentration (~2.20x10
21 

cm
-3

), the number of the active carriers increases to a 

maximum value of 1.4 x10
21 

cm
-3 

at a germanium fraction of 0.85. The carrier 

concentration remains relatively constant thereafter. This indicates that the amount of 

effective carrier in poly-SiGe films depends on the boron and germanium concentrations. 

While the carrier concentration remains relatively constant for 0.85 < x < 0.88, the Hall 

mobility increases from ~2.0 to ~4.2 cm
2
V

-1
s

-1
. This may be due to the increased grain 

size (Fig. 5.7 a) which leads to a reduction in the grain boundary density and possible 

defects at the grain boundaries. Generally, the low value of the Hall mobility observed in 

these samples may be attributed to the polycrystalline nature of the films and also to the 

low deposition temperature which significantly influences the crystalline fraction. The 

resistivity of the poly-SiGe film is lowered from 7.4 to 1.1 mΩcm when germanium 

fraction is increased from 0.84 to 0.88.  

 To investigate how the changes in the germanium fractions influence the grain 

size and the contribution of the grain size to the measured resistivity, the full-width-at-

half maximum (FWHM) was calculated from the XRD spectra of Fig. 5.6a. Two 

approaches were used and their results were compared.  In the first approach, the grain 

size was estimated by assuming the microstrain (or stress) as well as the instrumental 

contribution to the XRD peak width are negligible. By using the Scherrer equation (166), 

the grain size D was calculated from: D = 0.9λ/(FWHM*cosθ) where λ is the X-ray 
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wavelength and FWHM is determined in radian.  The grain size showing in Fig. 5.7(b) 

represents the average value based on the three peaks observed from the diffraction 

spectra. In the second approach, the influence of the microstrain is taken into 

consideration while the instrumental broadening Bo is assumed to be negligible. The 

grain size D and the strain   were simultaneously obtained from the following equation 

[167]:      
     

       
   

      

      
   . By plotting             against        

(Fig. 5.6 b),   and D are obtained from the slope and the intercept, respectively. The grain 

size obtained thus is shown in Fig. 5. 7 (b).  The results of the two approaches are quite 

similar except for the film with 84% Ge. Accordingly, the residual stresses do not 

contribute significantly to the peak broadening and thus not considered for calculation in 

the latter discussion. It should be noted that the residual stresses calculated from above 

approach are -1000, -174, -170 and 298 MPa for 84, 85, 87 and 88% Ge. These values 

differ from the experimental values of -178, -139, -19 and 43 MPa for the Ge fraction 

accordingly.  

From the above results, it is clear that the grain size doubles, from ~6nm to ~ 

12nm, which indicates a similar decrease in the grain boundary density. This 

consequently reduces the grain boundary defects and thus the carrier trapping and 

scattering at the grain boundaries [168]. As a result, the mobility improves (as discussed). 

Also the deposition rate doubles from 11 nm/min to 22 nm/min for the same range of 

germanium fraction. This may be due to the germanium enhanced desorption of hydrogen 

from the deposition surface [71]. 

 For the residual stresses, it is observed that the films become more tensile, 

increasing from -125 MPa to 65 MPa, as the germanium fraction is increased from 0.84 
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to 0.88 (Fig. 5.7c). This behaviour is attributed to larger grain and also to the higher 

thermal stress (about 139 MPa) associated with the higher germanium fraction. Within 

the range of germanium fraction examined, the XRD peaks show essentially no shift, 

indicating that a change in lattice constant is negligible and that it does not contribute to 

the change in the stress.  

 

0.83 0.84 0.85 0.86 0.87 0.88 0.89
0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(a)

M
o

b
il

it
y

 (
c

m
2
V

-1
s

-1
)

C
a

rr
ie

r 
c

o
n

c
e

n
tr

a
ti

o
n

  
(1

0
2

1
c

m
-3
)

Germanium fraction

 Carrier concentration  Mobility

 

 

0.83 0.84 0.85 0.86 0.87 0.88 0.89

0

2

4

6

8

10

-150

-100

-50

0

50

100

(c)

S
tr

e
s

s
 (

M
P

a
) 

R
e

s
is

ti
v

it
y

 (
m

O
h

m
-c

m
) 

Ge fraction 

 Resistivity

 

 Stress

 

Figure 5.7: Influences of germanium fractions on (a) Hall mobility and carrier 

concentration (b) grain size and deposition rates; NSI indicates ‘No influence of Strain is 

Included’, SI means ‘influence of Strain is Included’ in the calculation (c) resistivity and 

stress. Boron concentration is 2.20 x 10
21 

cm
-3 
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To complement the previous observations, two films with germanium fractions of 

0.84 (film 1) and 0.87 (film 2) are deposited and characterized with transmission electron 

microscopy (SEM). The cross-section TEM images (Fig. 5.8 a, b) indicate that the films 1 

and 2 are ~110nm and ~90nm thick, respectively. The top surfaces of the SiGe layers are 

rough (Fig 5.8 a, b). A few bright field images were taken to observe the different grains 

size (Fig. 5.8 c, d). The contrast variations seeing in the images are due to diffraction in 

the grains. Because the grains are very small, they are difficult to observe with much 

certainty. However, the grains are smaller in the film 1 than in the film 2 (10-20nm), 

which complements the grain size obtained from the XRD spectra (Fig 5.7 b) for the film 

with 87% germanium.  Also, no obvious change of grain size with depth in the layers is 

observed. This indicates that most of the grains show columnar structure across the layer, 

which is however more obvious in the film 2 than in the film 1. Such columnar structure 

results in a relatively high-compressive local stresses across the film thickness (as 

discussed in chapter 6).  The stronger peaks of the XRD spectra (Fig. 5.6 a) for the film 2 

imply larger grains or higher crystalline fraction and not due to its thickness.  

 In addition, the HR-TEM images of Fig. 5.9 and Fig. 5.10 show the lattice 

spacing in the films. Clearly, the films are polycrystalline but some fractions of 

amorphous materials are present. Distinguish between the amorphous and the crystalline 

component is difficult due to projection overlap. For the expanded view of Fig. 5.10, the 

fully crystallized and the less crystallized regions are visible. Also, the grain orientation 

and crystal lattice spacing are indicated. By calculation, the lattice spacing is found to be 

~0.3nm for the (111) plane while the lattice parameter is estimated to be ~0.5nm which is 

close to the lattice spacing for Ge (0.565nm).  
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Figure 5.8: Cross-section dark field TEM images for the films containing (a, c) 0.84 (b, 

d) 0.87 of germanium fraction 

(a) (b) 

(c) (c) 
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Figure 5.9: Cross-section dark field TEM images with lattice resolution showing the 

crystal lattice as well the crystalline and the amorphous component for the poly-SiGe 

film with germanium fraction of  (a) 0.84 - film 1 (b) 0.87 – film 2.  

 

(a) 
(b) 
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Figure 5.10: Expanded Cross-section dark field TEM images showing the crystal planes, 

inter-planar spacing ‘d’, the grain size  and  grain boundary (GB) for the film 2. The 

sample is oriented along a <110> zone axis of the substrate. Red arrows indicate {111} 

plane. 
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 Figure 5.11 shows 2 µm x 2 µm AFM images of the films deposited at different 

germanium fractions. The images show island-like morphology commonly observed in 

thin films deposited by LPCVD. Cauliflower morphology is observed at the surface of 

these films which increases in size with increased germanium fractions. The cauliflower 

surface morphology is also obvious from the SEM image of Fig. 5.11(e). To understand 

the roughening mechanism and growth behaviour of poly-SiGe films under the 

germanium influence, the scaling theory is applied. From the theory, the correlation 

functions, root mean square (rms) of the surface roughness, correlation length and scaling 

exponents of the growing films are evaluated by assuming that the rough surfaces exhibit 

self-affine and isotropic characteristics [78]. These parameters are obtained from the 

analysis of the height- height correlation function.  

 

Figure 5.11: AFM images (400 nm x 400 nm) of poly-SiGe ultrathin films grown with 

germanium fraction of (a) 0.84, (b) 0.85, (c) 0.87, and (d) 0.88, (e) equivalent SEM 

image of (b).  
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The height - height correlation function H(r) is calculated from 

 2)0()()( ZrZrH   where Z(r) and Z(0) are the surface heights at coordinate r [= (x, 

y)] and reference position (0, 0). The brackets 〈. . .〉 indicate a statistical average. Log–log 

plots of H(r) for the films deposited at varied germanium fractions are shown in Fig. 5.12 

(a). For a surface that shows a self-affine fractal behaviour on a short length scale and 

that is smooth on a long length scale, H(r) can be fitted to the following equation [77]. 

   


22 exp12)( rrH                     (5.8) 

where σ denotes the rms roughness which characterizes the vertical morphology of a 

surface, ξ is the lateral correlation length which is a measure of the lateral fluctuations of 

the surface feature which is related to the grain size [169], α is the roughness exponent 

which describes the local “jaggedness” of the topography. For the films with varied 

germanium fraction, all the corresponding H(r) follow a similar trend (Fig. 5.12 a). The 

values of α and ρ are calculated from 
 22)( rrH   at the region I where r <<  (79) and 

ρ is the average magnitude of the lateral surface slope. The parameter σ is obtained from

22)( rH at the region II where r >> . The set of roughness parameters , , α and ρ 

allows a comprehensive quantitative characterization of a random rough surface. These 

parameters are plotted against germanium fraction in Fig. 5.12 (b and c).   

 From the height-height correlation function, the correlation length has a similar 

trend with the grain size obtained from the XRD technique.  However, the grains size 

obtained from the AFM images are twice as large as those obtained from the XRD and 

TEM techniques. This difference is probably because the grain size measured from AFM 

is the surface-projected grain size due to the surface morphology of coalesced grains 

[170] while XRD and TEM provide information based on the average crystallite size 
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which is usually much smaller in comparison. Also, AFM tips are often not sharp enough 

and may distort the observed images and thus influence the calculated grain size. In 

addition, the possibility that all the grains are not perfectly columnar cannot be ruled out. 

Similar to the XRD results, exposed grain size is found to increase from 24nm to 32 nm 

when the germanium fraction is increased from 0.84 to 0.88.  

 Except for the film deposited with a germanium fraction of 0.84, it is observed 

that increased germanium fraction roughens the film surfaces (Fig. 5.12b). The increased 

rms roughness from 3.8nm to 4.8nm can be attributed to the increased grain size (see Fig. 

5.7c) or increased density of cauliflower structures (Fig. 5.11). It is interesting to know 

that the lowest rms roughness is found when germanium fraction is 0.85 at which the film 

resistivity is virtually independent of the germanium fraction (Fig. 5.7) or a point of 

transition from a largely amorphous film to a polycrystalline films (Fig. 5.6a). This may 

be a good film for applications where minimum surface roughness is a dominant 

requirement. Also, the roughness exponent α slightly increases from 0.93 to 0.97 as 

germanium fraction is increased from 0.84 to 0.88 (Fig. 5.12c). From published data, 

higher value of   (close to 1) indicates that the surface has “smooth” hills and valleys 

(Fig. 5.11) (81), which is expected for a surface diffusion dominated or surface reaction 

limited growth process (82) like LPCVD technique. Both σ and ρ have a similar trend, 

indicating that the increased germanium fraction generally increases the rms roughness of 

the films.  
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Figure 5.12: (a) Height–height correlation function H(r) (b) rms roughness and 

correlation lateral length (c) roughness exponent and lateral surface slope for 100 nm-

thick poly-SiGe films deposited under varied germanium fractions.  
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5.3.2   Boron Concentration 

 Doping poly-SiGe with boron enhances deposition at significantly lower 

temperature (~450
o
C) which is compatible with standard CMOS and often results into 

low as-deposited stress and low electrical resistivity [21, 22]. However care must be 

taken to ensure that appropriate boron concentration is added to prevent an abnormal 

behaviour where resistivity is increased at higher doping level [55].  Figure 5.13(a) shows 

a secondary-ion-mass spectroscopy (SIMS) depth analysis of the boron concentrations in 

the poly-SiGe films deposited at varied B2H6/SiH4 ratios. For all the films, the 

germanium fraction is kept at 0.87. Figure 5.13(b) shows the boron concentration in all 

the films as a function of the B2H6/SiH4 ratios. The ratio was varied from 0.015 to 0.025 

which resulted in the incorporated boron concentrations ranging between 2.4x10
21

cm
-3 

and 4.27x10
21

cm
-3

. The Figure indicates that the quantity of boron atoms incorporated 

into the film is linearly proportional to B2H6/SiH4 ratios. With R
2
 = 0.98, the 

concentration of boron in the film can be evaluated from B = 181.7*10
21

 B2H6/SiH4 - 

0.38*10
21

, provided other deposition parameters are kept constant.   

  

Figure 5.13: (a) SIMS profiles for the measured boron concentrations (b) correlation 

between B2H6/SiH4 ratios and the boron concentrations. 
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 Figure 5.14 shows how the boron concentration influences the crystallinity of 

poly-SiGe ultrathin films. The grain size decreases with an increased boron concentration 

which is indicated by the reduction in the peak intensities and an increase in the full-

width-at-half maximum of the XRD spectra (Fig. 5.14a). The decrease in the intensity is 

accompanied by a reduction in the grain size and a marginal increase in the deposition 

rate (Fig. 5.14b). The grain size is estimated in a similar way as described in section 

5.3.1. The reduction in the grain size, within the interval of the boron concentration 

examined, indicates that the boron atoms may impede the grain growth during deposition 

resulting in the shrinkage of grain [70]. This may also lead to the boron-induced 

degradation in the electrical characteristics such as the resistivity, carrier concentration 

and mobility [168] which will be discussed in the next few paragraphs. 

  A higher boron concentration does not enhance the growth rate although boron 

atoms are known to act as adsorption sites for both silicon and germanium atoms [70]. 

This is not important because the boron in poly-SiGe films is a dopant which influences 

the electronic properties and not the deposition rate.  

 

 

Figure 5.14(a) GIXRD spectra for the films containing different germanium fractions (b) 

influence of germanium fraction on the changes in the grain size and deposition rates  

20 30 40 50 60 70

2.40 x 10
21

 cm
-3

2.97 x 10
21

 cm
-3

3.57 x 10
21

 cm
-3

4.27 x 10
21

 cm
-3

(311)(220)

In
te

n
s

it
y

 (
a

.u
)

2 (degree)

(111)(a)

2 3 4 5

6

8

10

12

14

20.4

20.8

21.2

21.6

22.0

D
e
p

o
s
it

io
n

 r
a
te

 (
n

m
/m

in
)

 Grain size

Boron concentration (x 10
21

cm
-3
)

G
ra

in
 s

iz
e
 (

n
m

)

 DR



110 

 

 The amount of boron incorporated has a significant effect on electrical properties 

of as-deposited poly-SiGe films, which all exhibit p-type as identified by Hall Effect 

measurements. Figure 5.15(a) shows a significant decrease in the carrier concentration 

and in the Hall mobility as boron concentration increases. For all the films, the carrier 

concentration decreases dramatically due to the structural degradation since the boron 

concentration is greater than the optimum boron value of 4.0x10
19 

cm
-3

 (68). The excess 

boron atoms occupy the substitutional sites, instead of interstitial positions, inside the 

grains and thus obstruct electron movement across the grain boundary. Thus, the mobility 

is limited by ionized impurity scattering which dependent on the doping level. For in situ 

boron-doped poly-Si12Ge88 films deposited between 800 – 900 
o
C, Hellberg et al. [171] 

find that the boron solubility in poly-SiGe is about 4.5 x10
19 

cm
-3

. At a lower deposition 

temperature used for this study (415
o
C), the boron solubility will be slightly lower and 

may be the similar to the value obtained by Sedky et al. [68]. This implies that the boron 

atoms in these films are not fully activated because they are more than one order of 

magnitude higher than the solid solubility of boron in SiGe films. This type of films is 

often referred to as ‘highly’ or ‘heavily doped’ films. For the highest doping level of 

4.27x10
21 

cm
-3

, the effective carrier concentration drops to a value of ~4.0x10
20  

cm
-3 

which is one order of magnitude lower than the incorporated boron concentration.  

 Depending on the film resistivity and the doping level, Hall mobility may increase 

or decrease with carrier concentration. For an increase in the boron concentration from 

2.4x10
21 

to 4.27x10
21 

cm
-3

 at a constant germanium fraction of 0.87, the Hall mobility 

decreases from ~3.7 to ~2.4 cm
2
V

-1
s

-1
. The decrease in the carrier concentration and in 

the Hall mobility accounts for the observed increase in the film resistivity from 1.54 to 
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5.56 mΩcm (Fig. 15b). The increase in resistivity may also be due to the reduction in the 

grain size from 14 to 6 nm (Fig. 5.14b). For a highly doped film, the increased grain 

boundary density/trapping states will effectively enhance capture of free carriers to form 

a potential barrier which ultimately degrades the electrical properties of the films.  

 With reference to the residual stresses, it is observed that the films become less 

compressive with boron concentration. The stress value goes from -100 MPa for a film 

with boron concentration of 2.4x10
21 

cm
-3 

and stabilizes at -20 MPa at a boron 

concentration of 2.97x10
21 

cm
-3

. This might be due to film densification as a result of 

pore annihilation. 

  

Figure 5.15(a) Dependence of Hall mobility and carrier concentration on germanium 

fraction (b) resistivity and stress under the influence of varied germanium fractions. 

Boron concentration is kept at 3.57 x 10
21 

cm
-3

. 
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From the AFM images (Fig. 5.16) and the standard deviation of resistance, it 

appears that varying boron concentrations does not significantly influence the film 

surface roughness. Consequently, AFM images are obtained for the films with the 

minimum (2.40x10
21 

cm
-3

) and maximum (4.27x10
21 

cm
-3

) boron concentrations as well 

as minimum (50 Torr) and maximum (80 Torr) chamber pressures. Following the 

procedure discussed in section 5.3.1, the film surface properties are analyzed and the 

results are summarized in Table 5.8. By increasing the boron concentration from 2.4x10
21 

cm
-3

 to 4.27x10
21 

cm
-3

, the rms roughness just slightly increases from 4.18 nm to 4.63 

nm.  This difference is insignificant and may lie within the measurement accuracy. The 

roughness exponent also shows an insignificant difference. As a result, boron 

concentration is not a factor to consider if the surface roughness is to be significantly 

modulated for any application of interest.  In addition, the lateral correlation length 

reduces from ~30 nm to ~28 nm for the same increase in the boron concentration. This 

correlates well with the grain size although with lower value, as shown in Fig. 5.14. 

 

Figure 5.16: AFM images of poly-SiGe ultrathin films grown with boron concentration of  

(a) 1x10
21 

cm
-3 

(b) 4x10
21 

cm
-3

 at a constant germanium fraction of  0.87 and boron 

concentration of 3.57 x 10
21 

cm
-3

. 
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Table 5.8: Surface characteristics for the influences of boron concentration and chamber 

pressure 

Exp. 

Run 

Condition RMS roughness 

σ (nm)  

Lateral correlation 

length ζ (nm)  

Roughness 

exponent α 

5 Boron = 2.4x10
21

cm
-3

 4.18 30.48 0.95 

8 Boron = 4.27x10
21

cm
-3

 4.63 27.57 0.94 

9 Pressure = 50 4.77 28.53 0.95 

12 Pressure = 80 4.57 39.17 0.97 

 

 

5.3.3   Chamber pressure 

 A change in the chamber pressure does not significantly influence the film 

crystallinity as revealed by the similar peak intensities, FWHM for all the diffraction 

planes (Fig. 5.17a).  This implies that the grain size remains virtually unchanged within 

the pressure range considered (Fig. 5.17b).  However, a change in the trend for the carrier 

concentration is observed at a pressure of 70 Torr ((Fig. 5.17d). Below 70 Torr, the 

carrier concentration increases and then decreases thereafter. Because the change in the 

resistivity with pressure is negligible (Fig. 5.17c), Hall mobility is inversely proportion to 

the carrier concentration. In spite of similar boron concentrations in the films, this 

behaviour is expected since the quantity of the effective carriers is regulated by the boron 

concentration, silicon and germane fractions.  

 A higher pressure increases the amount of the Si and Ge precursors which 

increases the deposition rate [172]. Therefore, the deposition rate increases as the process 

pressure goes up [173]. Increasing chamber pressure influences the residual stress in two 

folds (Fig. 5.17c). Between 50 and 60 Torr, the films become slightly tensile but more 

compressive thereafter. Because the resulting grains are expected to be more conical 
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rather than columnar in shape at low pressure [127]; the films deposited at lower pressure 

are less compressive.  

 The rms roughness is not significantly affected by increasing the chamber 

pressure from 50 Torr to 80 Torr (Fig. 5.18, Table 8).  It changes from 4.77nm to 4.57 nm 

which may be due to the constant grain size (Fig. 5.14b).  
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Figure 5.17: Influence of chamber pressure on (a) GIXRD spectra (b) grain size and 

deposition rate (c) resistivity and stress (d) carrier concentration and Hall mobility 
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Figure 5.18: AFM images of poly-SiGe ultrathin films grown under chamber pressure of 

(a) 50 Torr (b) 80 Torr at a constant germanium fraction of 0.87 and boron concentration 

of 3.57 x 10
21 

cm
-3

 

5.3.4 Influence of Germanium fraction on the Elastic Moduli and 

Hardness of Poly-SiGe 

 The influence of varying germanium fractions on the modulus and hardness of 

poly-SiGe films is evaluated for 100 nm thick films using the nanoindentation experiment 

discussed in section 3.4.2.  Each point on the load-indentation depth curve (Fig. 5.19a) is 

an average of 10 repeated measurements. The load/depth versus depth (P/h - h) curve 

(Fig. 5.19b) and the modulus versus indentation depth (E-h) curve (Fig. 5.19c) are 

obtained from the load versus indentation depth (P-h) curve. For most homogeneous 

elastoplastic materials, the indentation loading curve obtained with self-similar indenter 

tips, such as Berkovich, conical, or pyramidal, are usually well described by  P = Kh
2
 

[174]. From the changes in the P/h-h relations, the indentation range containing the film 

properties without the severe effect of the substrate can be extracted. In other words, care 
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must be taken to ensure that the influence of the results by the substrate is significantly 

minimized. The selection of the critical thickness is illustrated in Fig. 5.19(b), where a 

linear portion of the P/h-h curve is obtained for the indentation depths between 10 and 40 

nm (stage II). Other regions (I, III) diverge from linearity and thus unsuitable. The critical 

point is extrapolated to the E-h curve where the modulus is selected between h = ~35 and 

h = 43 nm. The increased modulus with indentation depth up to ~10 nm (Fig. 5.19c) can 

be attributed to the transition between purely elastic to elastoplastic contact whereby the 

hardness is actually the contact pressure [175]. At the region where modulus does not 

substantially diverged or does not exhibit significant scattering, E is evaluated to be 

101.09 ± 0.81 GPa. 
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Figure 5.19:  Nanoindentation curves for a 100 nm thick poly-SiGe film deposited with 

Germanium fraction of 0.84 (a) load versus indentation depth curve, (b) P/h versus h 

curve (c) modulus versus displacement curve (d) indentation curves.  

 A plot of hardness H as a function of the indenter depth is shown in Fig. 5.20. 

Similar to the observation in the E-h curve, H increases with h up to h = ~20nm. To 

explain this observation, Tsui et al. [176] noticed that since the force of the indenter is 

compressive and acts perpendicularly to the surface, compressive strain should increase 
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the hardness by diminishing the shear stresses beneath the indenter. The average hardness 

value is selected between 40 and 50 nm, where the hardness is relatively constant, to 

eliminate the influence of the underlying substrate. The hardness value is 8.74±0.04 GPa 

for one of the samples. 

The choice of the critical position on the P/h-h and E-h curves where modulus and 

hardness were evaluated (i.e. depth of about 40% of the film thickness) is in contrary to 

the popular Buckle’s rule [177]. The rule predicts that the substrate will not significantly 

affect the mechanical properties of the top film if the indentation is less than 10% of the 

thickness of the film. This rule is, at best, a first approximation based on instruments 

using Vickers and Berkovich indenters. However, it seems not accurate for organic 

materials, metals and ceramics where indentation depth of 10-20% of film thickness is 

found to be appropriate and even numerical simulations put the depth at 33% [178]. 
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Figure 5.20: Hardness versus indentation curves for a 100nm thick poly-SiGe film 

deposited with germanium fraction of 0.84. Inset depicts the indentation curves for the 10 

locations of Fig. 5.19(a).  
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 Recently, Clifford and Seah [179] found that for layered systems with thicknesses 

below 5 μm, the 10% rule was generally invalid. They proposed that δmax < 0.012*h
2
/R is 

satisfied if the modulus is not to be influenced by the substrate. In this equation, δmax is 

the maximum or critical indentation depth, h is the film thickness and R is the indenter 

radius. However, this model cannot explain our observation. For R = 10 – 100 nm, the 

values of δmax (~1.2 – 16 nm) is within the region where surface roughness effect is 

dominant (Fig. 5.20). Therefore, evaluating the modulus and hardness at this region is not 

appropriate.  It suffices to say that the significant scattering in the E-h and H-h curves 

may be attributed to the relatively high rms roughness of these samples (see section 

5.3.3). To rule out the influence of surface morphology, the indentation depth should be 

greater than the characteristic size of the surface roughness [180]. At a low indentation 

depth of ~10 – 20nm, the z-value of the rms roughness lies within the same range as the 

depth of indentation. This implies that the full tip radius of the indenter does not come in 

contact with the film surface simultaneously within this region.   

 Following the above evaluation procedure, the elastic moduli and hardness values 

were calculated for other films. The results are shown in Fig. 5.21. Based on this Figure, 

it is observed that either the changes in the germanium fractions do not significantly 

influence the hardness and elastic modulus of poly-SiGe film or that the resolution of the 

experimental nanoindenter is larger than the changes in the mechanical properties of the 

films. By considering the error bars in Fig. 5.21, it is instructive to state that the 

differences in the values of the moduli are within the measurement error.  Theoretically, 

the modulus of poly-Si1-xGex films, x being the germanium fraction can be evaluated by 

using xGPaE
xxGeSi 41173)(

1



. This relationship is derived by taking moduli of poly-
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Si and poly-Ge as 173 and 132GPa, respectively [181], assuming that the modulus is 

linearly related to the germanium fraction. For the films deposited with germanium 

fraction of 0.84, 0.85 and 0.87, the resulting films moduli are 139, 138 and 137GPa, 

respectively. Obviously, these moduli are far higher than those measured via 

nanoindentation.  This may be because the films are very thin and their properties are still 

evolving. In addition, the calculated values are values for a poly-crystalline material 

without preferred texture. Depending on the film orientation and amorphous fraction in 

the film, smaller or higher values might occur. 
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Figure 5.21: Elastic modulus and hardness variation with germanium fraction. All the 

films contain 2.20 x10
21

cm
-3 

of boron. Both properties are not significantly influenced by 

the changes in the germanium fractions. 
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CHAPTER 6 

EVOLUTION OF STRESS, RESISTIVITY AND 

SURFACE CHARACTERISTICS OF POLY-SIGE FILMS 

  

In this chapter, detailed experimental studies of the evolution of stress, resistivity 

and surface properties of poly-SiGe films are presented. Various film thicknesses     

(~1nm – ~200 nm) are deposited by LPCVD and characterized following the techniques 

described in chapter 3.  The experimental study shows that the intrinsic stress evolves 

from a precoalescence highly compressive stress state to coalescence less compressive 

state and remains constant thereafter. Also, the film’s structural evolution goes through 

an incubation stage to a precoalescence stage (< 40 nm) over a transient stage (40-60 nm) 

and finally to a stagnation stage (> 60 nm) as evidenced by the AFM images as well as 

the Hall mobility. The surface properties were characterized by correlation length, root-

mean-square (rms) roughness, roughness exponent, dynamic exponent and fractal 

dimension.  

 

6.1 Stress Evolution 

 Two recipes of poly-SiGe films (A & B) were used for stress evolution study. 

Recipes A and B are the experimental best and optimized recipes, respectively, as 

reported in chapter 5. The films grown from these recipes are subsequently termed films 

A and B. The deposition conditions for the two films are presented in Table 6.1. For each 
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recipe, a few wafers were selected from the same wafers box and processed for various 

film thicknesses. The stress, thickness, morphology, resistivity, carrier concentration and 

Hall mobility were measured ex-situ following the procedures discussed in chapter 3. 

  Table 6.1: Deposition conditions used for evolutionary study 

Recipe Tdep  

(
o
C) 

SiH4 

(sccm) 

GeH4 

(sccm) 

CP 

(Torr) 

B2H6 

(sccm) 

H2 

(sccm) 

HH 

(mil) 

Time  

(s) 

A 415 8 180 60 18 500 470 5 - 565 

B 415 8 180 65 11 500 500 5 - 565 

Tdep = deposition temperature, CP = chamber pressure, HH = header-to-shower head spacing 

 

6.1.1 Stress Evolution Curves 

 The stress evolution curves for films A and B are shown in Fig. 6.1. The error 

bars are the standard deviations based on 5 repeated measurements. All the measured 

stresses contain both the thermal and the intrinsic stress components. Since all the films 

are deposited at a temperature of       (           ) and characterized at the room 

temperature of             ), the thermal stress component     is computed from Eq. 

(6.1). 

     
     

       
           (                 )             (6.1) 

where E,   and   denote the elastic modulus, Poisson’s ratio and thermal expansion 

coefficient, respectively. For an assumed               (obtained from the 

nanoindentation experiments discussed in section 5.3),           , 

                                        [180], the thermal stress           . 

Since the thermal expansion coefficient of poly-SiGe is higher than that of Si, the thermal 
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stress generated in the film is tensile as the substrate is cooled from the deposition 

temperature  of       to room temperature of     . Both the total and intrinsic stresses 

for the two films are shown in Fig. 6.1 (a) while the initial state of the intrinsic stress 

evolution is shown in Fig. 6.1 (b). At the initial growth states (precoalescence and 

coalescence stages), the total stress is dominated by the intrinsic stress components. 

However, the thermal stress component becomes significant during the continuous 

growth stage bringing the average stress to a tensile stress regime. Based on Fig. 6.1(a), it 

is observed that the intrinsic stresses in the films A & B evolve from an initial highly 

compressive stress regime to a less compressive stress state and stabilize thereafter. This 

behaviour differs from those of materials that exhibit Type I and type II behaviour 

(details in section 2.4). It is termed  ‘Modified Type I behaviour’ but at the compressive 

stress regime. Indeed, poly-SiGe has a high melting point, low adatom mobility or a low 

surface and grain boundary diffusivities at low temperature. In such a case, the tendency 

for adatom movement into the grain boundary is insignificant making the stress to remain 

constant as the film thickens (182). Another explanation for the constant compressive 

stress can be made on the basis of the TEM images of Fig. 5.8. The columnar nature of 

the grains is an indication that the grain size does not vary significantly across the film 

thickness. This presupposes that the film is growing faster in the longitudinal direction 

compare to the lateral dimension.     

 In both films, the phenomena leading to the initial highly compressive stress state 

have been extensively discussed in the literature. The large stress changes observed at the 

onset of film growth (Fig. 6.1b) can be attributed to the island growth and coalescence of 

the neighbouring islands as they attempt to minimize the surface energy at the expense of 



124 

 

some elastic deformations [106, 183, 184]. With island growth and coalescence, the grain 

boundary grows and an average local tensile stress is generated within a very small 

interval of time. The island precoalescence compressive stress state can also be attributed 

to the capillarity effect of the island surfaces [185], the atomic peening effect [186], the 

island shape transition and the surface stress effect [103]. It should be noted that, unlike 

for materials that exhibit Type II behaviour, the tensile stress generated during 

coalescence process for poly-SiGe film under the current processing conditions, is not 

high enough to bring the average stress in the film to a tensile stress state but it 

significantly reduces the average compressive stress state. For the films thickness of 

~40nm and greater (Fig. 6.1 b), it appears that the coalescence process is completed. 

Also, the relatively constant values of the postcoalescence stresses indicate that the film 

is in a continuous growth state. In addition, it signifies an insignificant grain grows with 

thickness as shown in the TEM images. In both films, further reduction in the 

postcoalescence compressive stress is not observed with increased thickness up to 

~200nm.  
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Figure 6.1: (a) Stress evolution curves for the films A and B (b) expanded view of the 

initial growth stage showing intrinsic stress changes during coalescence process. The 

continuous lines are guides to the eyes. The vertical lines are the error bars based on the 

standard deviation of five repeated measurements. 139 MPa indicates the offset between 

the total and the intrinsic stresses 

 

6.1.2  Stress-Thickness Evolution and Local Stresses 

 During the film deposition, it is important to note that the measured curvature K 

determines the product of the average stress in the film  and the film thickness ( fh ) 

and this can be expressed as: 

K fh                                   (6.2) 

The change in the curvature (or the stress-thickness) of the substrate prior to and after 

film deposition is a measure of the applied force, due to growth stress, on the film. It thus 

defines the extent and direction that a released structure will bend or deflect. The stress-

thickness product is sometimes called ‘force per width’ or ‘integrated stress’ in the 
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literature [103]. The stress-thickness versus thickness evolution curves for the two films 

are shown in Fig. 6.2 (a) and the initail stages of evolution are shown in Fig. 6.2 (b). It 

should be noted that a positive value of stress thickness implies a tensile mean stress 

while a negative value implies a compressive mean stress. At the onset of deposition, 

stress-thickness marginally increases and then decreases significantly. For most parts of 

the film growth process, the stress-thickness vs thickness responses are linear with the 

slopes of -111 and -247 MPa for films A and B, respectively. The values of the slopes 

denote the steady state stresses in the two films. For the range of the thickness 

considered, no significant stress relaxation is observed since the fitting lines do not 

deviate from linearity. The stress-thickness evolution curve is similar to that of poly-Ge 

film which exhibits a very weak tensile stress peak prior to coalescence [89].  In that 

paper [89], poly-Ge was deposited on oxide layer by means of electron beam evaporation 

technique at 750
o
C.The similarity between poly-SiGe and poly-Ge may be attaributed to 

the high germanium contents in the current films. 
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Figure 6.2: (a) Stress-thickness versus thickness evolution for films A and B (b) initial 

stage of stress-thickness evolution. The continuous lines in (a) are fitted to the 

experimented points.  

 To further explore the essence of the stress evolution data, the local stresses in the 

films are calculated. Essentially, the local stress denotes the instantaneous stress present 

in each discrete layer of the film during deposition. Although, the intrinsic stresses 

measured via an ex-situ approach may be less accurate than those measured in-situ, the 

former can be a good approximation by correcting for thermal stress. For simplicity, it is 

assumed that the stress in each layer develops independently of the others and that the 
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stress is confined to the direction normal to the grain boundary, which corresponds to a 

biaxial stress in a planar film [140]. The change in the local stress across the film 

thickness leads to the strain gradient that causes a released structure to bend upward or 

downward. The local stress            
 due to an added layer           can be obtained 

from Eq. (6.3). 
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where    and      are the radii of the substrate  at the film thicknesses    and      , 

respectively. Alternatively, for a stress evolution monitored on separate wafers, the local 

stresses can be estimated as follows. Given a film grown from an initial thickness      to 

a new thickness    with corresponding average stress      and    respectively, the local 

stress in the added layer           can be estimated from Eq. (6.4). 
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Equations (6.3) and (6.4) give the same results. However, while the former is applicable 

to stress evolution measurement on a single or multiple wafers, the latter is used for 

multiple wafers where the initial radii of the wafers may slightly differ. These equations 

imply that the consistency of stress-thickness of discrete layers and that of the equivalent 

whole stack must be satisfied. Eq. (6.4) is similar to               ∑            
 
    as 

derived by Chason et al. [140] where N is the number of local layers in the stack. 

 Fig. 6.3 (a) shows how the local stresses change with discrete layers in both films 

A and B. The local stresses are generally less compressive for the film A than for the film 

B except for the thin slightly tensile layers indicated in Fig. 6.3 (a). These local stresses 
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are caused by the curvature changes as more film is deposited. As a result, the values of 

local stress-thickness induced by most of the discrete layers are negative. The top layer is 

more negative for film B than for film A, which will induce more negative strain gradient 

for the film B. Similarly, for a film thickness of ~100 nm, most of the discrete layers are 

under negative stress-thickness product, and obviously, this product is less compressive 

for the film B. It will be of interest to observe a similar difference in the strain gradients 

when the cantilevers in the two wafers are finally released. Details are presented in 

chapter 7.  

0 50 100 150 200
-700

-600

-500

-400

-300

-200

-100

0

100

L
o

c
a
l 

s
tr

e
s
s
 (

M
P

a
)

Thickness (nm)

 Film A

 Film B

Zero stress level

Slightly tensile stress layer

0 20 40 60 80 100 120 140 160
-30000

-25000

-20000

-15000

-10000

-5000

0

100nm thick film

Initial layers

L
o

c
a
l 

s
tr

e
s
s
-t

h
ic

k
n

e
s
s
 (

M
P

a
-n

m
)

Thickness (nm)

 Film A

 Film B

Top layers

 

Figure 6.3: (a) Average local stresses in the discrete layers for the films A and B (b) local 

stress-thickness induced by each discrete layer. The local stress-thickness products 

induced at the top and the bottom of the films are circled. 

6.2  Resistivity Evolution in Poly-SiGe Films 

 The knowledge of the dependence of the electrical resistivity on the dimensions of 

poly-SiGe thin films is necessary due to the need for miniaturization especially for 
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NEMS applications. For example, in nanoswitches a good electrical contact is necessary 

between the thin layer and the electrode. When the lateral dimensions are scaled down to 

a length scale (<100 nm) comparable to the electronic mean free path [187], the electrical 

resistivity is influenced significantly by the scattering at the grain-boundary and at the 

surface [19, 188 – 190]. The theory of surface scattering and its influence on resistivity 

have been the subject of intense studies in the past decades [187, 188, 191 – 193]. Here, 

the resistivity evolution in both films A and B are discussed with more emphasis on the 

former.  

6.2.1 Resistivity Evolution Curve 

 Figure 6.4(a) shows how resistivity evolves for the films A and B. All 

measurements are based on 4-point probe measurements and further confirmed by the 

Hall Effect measurements. It is obvious that the resistivity evolves in a similar manner for 

the 2 films although the film A has higher resistivity for the range of thickness 

considered. The Hall mobility and the carrier concentration are shown for the film A. The 

results show that the carrier mobility increases for the first 40-80nm thick layer and 

remains constant for thicker layers. However, the carrier concentration continues to 

increase with thickness since mobility is inversely proportion to the product of resistivity 

and carrier concentration. XRD spectra for both films show higher peak intensity and a 
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narrower peak width for the film B as discussed in chapter 5. Details of the resistivity 

evolution for the film B is discussed in the next few paragraphs.   

 The evolution of the sheet resistance   , its standard deviation (STD) and the 

resistivity   for the film B is shown in Fig. 6.4 (b).The resistivity of the films shows a 

decreasing asymptotic trend with thickness similar to many thin films [190, 194, 195]. 

Three regions are identified while the film resistivity evolves. Prior to these regions 

(within the first 20 nm in this case), the value of the film resistivity ρ is beyond the upper 

measurement range limit of the 4-point probe. As shown in Fig. 6.4 (b), inset a, the film 

at this thickness is in the precoalescence stage and existed as individual islands or nuclei. 

In such a case no percolation exists in the film and consequently an electric path is not 

established. The Hall Effect measurements at this region do not give any results 

confirming the absence of percolation. Between 20 and 40 nm (regime I), initial islands 

coalescence occurs (Fig. 6.4 (b), inset b) and few paths are established among the 

clusters. The current begins to flow, and its huge increase with thickness is related to the 

increase in the electric paths becoming available as more islands are deposited and 

interconnected by percolation. This leads to a significant decrease in the average film 

resistivity from about 10 mΩ-cm to 4 mΩ-cm in a small thickness interval of a few nm. 

The sudden decrease in the resistivity can also be explained by considering the carrier 

concentration and the Hall mobility. For the ~37nm thick film, the carrier concentration 

is ~1x10
21 

cm
-3 

and the Hall mobility rose from zero to 1.497 cm
2
V

-1
s

-1
 (Fig. 6.4a). The 

increase in the Hall mobility is an indication of atomic percolation and hence a decrease 

in the resistivity.  
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 Regime I is followed by a transient region (regime II) where the resistivity is 

weakly dependent on the film thickness. The film is almost continuous as more islands 

coalesce to form grain boundaries leading to a slight decrease in ρ and in the STD (Fig 

6.4b, inset c). It is obvious from the carrier concentration and the Hall mobility that the 

transient region is partly due to the increase in these properties and also due the 3D–2D 

transition from individual islands to a continuous film similar to the observations of 

Barborini et al. [187]. In this case, the transition occurs at about 40nm which may depend 

on the exact deposition condition. At regime III (stagnation stage), the resistivity 

becomes significantly stable at ~3.5mΩ-cm. At this stage, a continuous film with 

hexagonal grains (or grains with 3, 4, 5 or more sides) is observed (Fig. 6.4b, inset d). 

The behaviour is confirmed by the Hall mobility which remains virtually unchanged at 

1.53 cm
2
V

-1
s

-1
 although a slight increase in the carrier concentration is observed. The 

slight decrease in the resistivity from 4.38 mΩ-cm at ~40 nm to 3.95 mΩ-cm at d~80 nm 

is justified by the slight increase in the Hall mobility from 1.49 cm
2
V

-1
s

-1
 to 1.53 cm

2
V

-1
s

-

1
. While ρ and STD remain almost constant after a film thickness (h) of ~60 nm, the sheet 

resistance decreases further since Rs = ρ/h.  

As will be discussed in section 6.3.3, while the grain size slightly increases, the 

rms roughness significantly increases with film thickness which may influence 

scatterings at the surface and grain boundary of the film. According to Fuchs-Sondheimer 

and Maydas-Shatzkes model [191], a competition between scattering at the surface and at 

the grain boundary contributes to the behaviour of film resistivity. Based on this model, 

Ke et al. [196] recently carried out an atomistic first-principles calculation of resistivity 

induced by atomically rough surfaces. It was shown that the resistivity increases 
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significantly due to surface roughness scattering. Also, it is established that increased 

grain size reduces resistivity due to decreased grain boundary [197]. For the insignificant 

changes in the resistivity for film thickness greater than ~60nm, it is posited that the 

increased resistivity due to increased surface roughness scattering is probably balanced 

by the decreased resistivity due to the reduced scattering as the grain size increases. Such 

an equilibrium state may be responsible for the constant Hall mobility observed. This 

mechanism has also been explored to explain the behaviour of the electrical resistivity as 

a function of thickness for continuous films [191]. 
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Figure 6.4: (a) Resistivity evolution in the films A and B, Hall mobility and carrier 

concentration in the film A (b) the evolution of the sheet resistance     its standard 

deviation (STD) and resistivity  , for the film A. The AFM images (insets) associated the 

resistivity evolution regimes with the film growth stages: (a) pre-coalescence (b) regime I 

(c) transient or regime II and (d) stagnation or regime III. The 2-D dome and 3-D 

hexagons of insets (a) and (d) are approximate models at the respective stages of 

morphology evolution. 

6.2.2  Crystallinity  

 To correlate the change in the resistivity to the film crystallinity, XRD spectra for 

some of the films were obtained and the results are shown in Fig. 6.5. While no 

diffraction peaks are observed for the films thinner than 40nm, those of 40 nm and higher 

are clearly polycrystalline as revealed by the significant peak intensities of (111), (220) 

and (311) planes. With increasing deposition time and thickness, the intensities of the 

diffraction peaks become stronger and sharper as the crystallinity increases. This is 

confirmed by the 4-point probe and the Hall Effect measurements where the resistivity of 

the 18 nm thick films is very high and those of the 40 nm and higher are significantly 

lower. The Rutherford backscattering spectrometry (RBS) profile shows that the 100 nm 

thick film has a germanium concentration of ~89%. This high germanium concentration 

enhances the crystallinity by increasing the Hall mobility at such a low deposition 

temperature (415
o
C) and small thickness.  
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Figure 6.5: XRD spectra for 18, 40, 100nm, 126 and 200nm thick poly-SiGe films. 

6.3   Evolution of Surface Properties 

 To gain insight into the surface structure, roughening mechanism and the growth 

behaviour of poly-SiGe films, a Power Spectra Density (PSD) analysis was used to 

extract a few important morphological and surface parameters such as correlation length, 

rms roughness, the fractal dimension and the scaling exponents.  

6.3.1   Application of Power Spectral Density Function  

 Figure 6.6(a-e) shows the AFM images of 5 of the 13 samples used for both the 

resistivity and surface morphology evolution studies. The influence of the film thickness on 

the surface properties of the films is shown by the PSD curves of Fig. 6.7(a). The PSD 

curves show the 3 common features of most thin films. At low spatial frequencies, all the 

curves feature a flat region where the PSD value is independent of the spatial frequency. At 

the transition region between the low and high frequency regimes, the so-called ‘knee’ is 
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observed. After the knee, a power-law roll-off response is observed. Both the low and 

medium spatial frequency regions of the PSD are expected to be highly influenced by the 

film thickness while the high frequency region is only slightly affected by the thickness. 

 

Fig. 6.6: (a) Morphological evolution of our samples as revealed by the AFM images for 

the film thickness of  <1 (b) ~1 (c) 18 (d) 60 (e) 200nm, and (f) equivalent SEM image 

for film (b). The inset is a processed image of (b). Scan size was           and the 

processed image size is              .  
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To fully appreciate the thickness-dependent surface properties of these films, the 

features of the PSD profiles are characterized with the K-correlation model (also called 

ABC model) [198] and some of the results are compared with those of the original AFM 

images. The K-correlation model allows a quantitative comparison between samples over 

large length scales and has been proven to be applicable to a large range of sample 

morphologies. For one-dimensional PSD, the K-correlation model is given as [198]: 

222 )1(

C

ABC fBAPSD



                                               (6.5) 

where A, B, and C are the adjustable model parameters and f is the spatial frequency. A is 

the value of the profile spectrum in the low-frequency limit at which the PSD values are 

frequency invariant. The quantity B determines the location of the knee and C is the 

exponent of the power-law fall-of at a higher frequency regime. To confirm the accuracy of 

the ABC model, the equivalent surface roughness σABC and the correlation length τABC, 

based on the model parameters, are computed from Eq. (6.6) [199]: 

)1(

22




CB

A
ABC




, C

BC
ABC 2

22
2

2

)1(







                                     (6.6a, b) 

Also, the surface fractal dimension Df is determined from the relation: Df = (7-C)/2 [200] 

and the results are compared with those obtained by using the grain’s perimeter - area (P-

A) relation. The P-A method is expressed by a linear relationship between log (P) and log 

(A) and the fractal dimension Di is obtained from the slope of the log-log plot [199] - see 

Fig. 6.7(b) for an example.  
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Figure 6.7: (a) 3 distinct features in the PSD curves are obtained from the AFM 

topographic images of Fig. 6.6(a-e).  The K-correlation model (represented by the 

continuous lines) excellently fit the PSD data. At the high frequency regime of the curve, 

the slopes C = -2α – 2 where α is the roughness exponent (to be discussed later), (b) 

Variation of log (P) with log (A) for 40nm-thick SiGe film which is derived from AFM 

image of Fig. 6.6(c).  

  According to the literature [169], the correlation lengths are considered to be 

corresponding to the grain size and are calculated from Eq. 6.4(b). They are similar to the 

values obtained directly from the AFM images by using the line intercept technique. For 

the intercept technique, the average grain size is found by dividing the total length of the 

lines by the total number of intersections of the grain boundaries. The longer the length of 

the intercept, the more representative the estimated grain size is expected to be. The island 

distribution, morphology and aspect ratio for Fig. 6.6 (b) are comparable to those of the 

SEM image of Fig. 6.6 (f) in which the ratio of island diameter to island height is in the 

range of 2 to 4. The correlation length of the PSD curve, for this thin film, is about 30 nm 
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which is at the top of the range of the grain size based on the SEM image (10 – 30 nm). 

The model fitting parameters, the parameters of the AFM images and the fractal dimension 

are shown in Table 6.1. Few points are worth noting from Table 6.1; (i) the rms roughness 

obtained from the AFM images (RMS) and those calculated from Eq. (6.5a) (σABC) are very 

similar, (ii) the correlation lengths (τABC) lie within the range of the grain size (D) 

estimated via the intercept method on the AFM images and, (iii) the fractal dimension Df is 

similar to Di obtained by using the P-A technique.  
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Figure 6.8: Cross-sectional line profiles of the surface structures for the AFM images of 

Fig. 6.6. The equivalent film thickness from which each scan line is made is shown. Note 

the increasing height of the structure with thickness.  
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Table 6.2: AFM parameters, surface fractal dimensions (D) and fitting parameters for   K-

correlation model  

   From AFM images  From ABC correlation model 

Thickness 

 

Deposition 

time 

 GS (av.) RMS 

 

D  A B C σABC τABC Df 

(nm) (s)  (nm) (nm)   (nm
3
) (nm)  (nm) (nm)  

            

            

            

            

            

            

            

            

NB: GS (av.) = range of grain size (average grain size), D = fractal dimension based on 

perimeter-area evaluation, RMS = root-mean-square of surface roughness 

 

 

6.3.2  Fractal Analysis  

 The fractal analysis helps to characterize the intrinsic variability/complexity of the 

surface structure [201]. A surface is fractal when the vertical roughness scales with the size 

of the measuring unit [77]. The complexity of the fractal surface can be quantified by its 

fractal dimension and its value lies between 1 and 2 for a 2D surface [202]. A fractal 

dimension is scale invariant and independent of the resolution of the AFM tool [203] 

making it an interesting surface property. The fractal dimensions of these films are 

obtained from both the PSD and the perimeter-area techniques as described above. From 

Table 6.1, the fractal dimensions for all the films are close to 1.5 and it is obvious that they 

do not vary significantly with the change in the film thickness. This is a clear indication 

that the complexity (fractal) of the surface morphology is independent of the film thickness 

[199, 201]. This is expected because the fractal dimension stabilizes at a thickness less than 
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20 monolayers (ML), independent of the type of the original surface [204]. This value is 

smaller than the minimum island thickness of our film assuming 1 ML of a SiGe film  is 

equivalent to that of Si (0.27 nm) [207]. 

 The results also show that the films exhibit self-affine fractal surfaces  in which the 

surface roughness varies with length scales [78] as shown by the PSD curves (Fig. 6.7a).  

Also, the surface structures have a Gaussian distribution with C~4 [74]. In addition, a self-

affine surface has a characteristic disordered appearance with larger “large scale structures” 

and smaller “small scale structures” [76]. This appearance is best recognized in the AFM 

images of Fig. 6.6 where relatively large islands are dominant. It is also obvious from the 

PSD curves that about 90% of the data points are found in the medium and higher 

frequency regimes.  

6.3.3  Surface Topography and Scaling Exponents 

 The 2 µm x 2 µm AFM topographs of Fig. 6.6 show islands scattered randomly on 

the substrate for the film thickness less than 1 nm. As the film thickened, the islands 

coalesce and agglomerate to form densely packed grains with a slight increase in the grain 

size (or correlation length). The cross-sectional line profiles of Fig. 6.8 show that the 

islands grow, on average, in height and insignificantly along the length although a range of 

different island sizes is visible. The very slight increase in the grain size based on the AFM 

images (Table 6.1) is due to the continuous incorporation of adatoms onto the existing film, 

resulting in feature sizes becoming larger with increasing deposition time. The increase in 

the grain size is partly responsible for the observed increase (or decrease) in the film 

crystallinity (or resistivity) as discussed in section 6.2.  
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 The rms roughness (2 < rms < 6 nm) indicates relatively smooth surfaces. The 

‘jaggedness’ (or random fluctuation) of the surface roughness at a length scale less than 

the correlation length, is described in term of the roughness exponent α [201]. The 

roughness exponent characterizes the roughness of the local surface and gives important 

information about the growth process which leads to the generation of such type of 

topography as well as the fractality of the surface. Like the fractal dimension, α can also 

be obtained directly from the slope C of the PSD curve (Fig. 6.7a). At a spatial frequency 

f >> 1/τ, Pelliccione and Lu [74] relates the PSD to f by using this expression:

22  fPSD . By comparing 
22  fPSD  with 

CfPSD  at the same frequency 

region, then α = (C – 2)/2. The average value for the films is α = 0.93 ± 0.06 which is 

within the range of values (0.7 – 0.95) reported for other experimental systems [80]. 

From previous studies, a higher value of   (close to 1) is desirable because such a surface 

appears to have “smooth” hills and valleys [81] which are seen in Fig. 6.6 & 6.9.  A 

lower value of α denotes extremely jagged or rough local surfaces. Also, the distribution 

of surface highs is Gaussian as rightly predicted by the value of parameter C (which is 

~4) [74].   

 Furthermore, the values of α show that the films exhibit self-affine fractal surfaces 

and reaches saturation at a length scale beyond the lateral correlation length [78] as 

observed from the PSD curves of Fig. 6.7(a). In addition a self-affine surface has a 

characteristic disordered appearance with larger “large scale structures” and smaller 

“small scale structures” as previously observed [76]. This appearance is best recognized 

in the AFM images of Fig. 6.6 where relatively large islands are predominant. It is also 

obvious from the PSD curves that about 90% of the data points are found in the medium 
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and higher frequency regimes. Also, α close to 1 is expected for a surface diffusion 

dominated film growth process [82] like the CVD technique used in this work. For CVD 

technique it was observed that the diffusion rate of the species in the vapor phase 

increases with reduced pressure, which implies that surface kinetic limited control is 

achieved readily only at low operating pressures [205]. 

 Also, the films can be described by the growth exponent β which characterizes the 

time-dependent dynamics of the roughening surface as well as the roughening rate during 

the film deposition. To evaluate β, the value of the rms roughness is plotted against the 

deposition time t which is then fitted to a power law (
trms   ) [79]. Figure 6.10 is a 

log-log plot of these data and shows a relatively constant roughening rate. For these 

films, β = 0.22 ± 0.01 using the rms roughness obtained from the AFM images and PSD 

analysis. This value falls between those reported (0.1 – 0.6) in the literature [74]. Another 

characteristic of surface morphology is the dynamic exponent (1/z) which is often 

evaluated by plotting the correlation length τ(t) as shown in Fig. 6.10. The data are fitted 

assuming a power law relationship zt

1

  , which results in 1/z = 0.12. These three 

exponents (α, β and z) characterize the behaviour of the surface and are related in a 

specific manner, essentially simplifying the problem of characterizing a self-affine 

surface to finding values for these exponents [74]. 
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Fig. 6.9: Root-mean-square (rms) roughness of the films grown for set of deposition 

times obtained from AFM images and PSD analysis. The lines are the best fits to a log-

log plot, which yields a growth exponent            .  

  Although scaling exponents have not been evaluated for poly-SiGe films, these 

results are similar to those of amorphous silicon deposited by hot-wire CVD [79] and 

sputtered amorphous silicon [79]. The values of the exponents observed in this study do 

not agree with the Family-Vicsek scaling hypothesis [206], which requires that β = α/z is 

satisfied. The Family-Vicsek model describes how the rms roughness and correlation 

length should scale with sampling size and time. From these results, β = α/z = 0.11which 

is lower than β = 0.20 obtained by fitting the rms roughness to a power law (Fig. 6.9). 

This implies that the scaling behaviour of poly-SiGe films, at short length scales, differs 

significantly from the global behaviour. This discrepancy can be attributed to the 
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geometrical shadowing effect [79] which has been observed to cause a breakdown of 

dynamic scaling in many other thin films deposited by sputtering, CVD or PECVD 

techniques [207].  

 During the deposition of poly-SiGe films by LPCVD for example (74), atoms of 

Si and Ge do not always approach the surface in parallel; very often they arrive at the 

surface with a distribution of trajectories. In such a case, these molecules may bounce 

around the deposition chamber numerous times before they undergo a reaction at the Si 

substrate. Therefore, the substrate experiences a molecular flux coming from a wide 

range of angles and can be represented by a cosine distribution [208]. These non-normal 

incident fluxes can lead to a shadowing effect during growth, as some of the incident 

atoms will be captured at high points on a corrugated surface at the expense of lower 

valleys on the surface, resulting in a dramatic enhancement of the surface roughness (see 

Fig. 6.6 for an example). In addition, particles can be reemitted from a surface upon 

impact if the sticking coefficient is less than unity. The particle may then deposit on the 

surface at a different location, or it may bounce around the surface more before it settles, 

which might enhance the smoothing effect. Both shadowing and reemission effects are 

inherently nonlocal because an event that occurs at one place on the surface can affect the 

surface profile a far distance away. 
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Figure 6.10: Correlation length as a function of the deposition time. The values of the 

correlation length were determined from the parameter B of the K-autocorrelation model 

calculated from Eq. 6.3(b). The data are fitted to a power law and the reciprocal of the 

dynamic exponent 1/z = 0.12. The inset shows the same data plotted on a logarithmic 

scale. 
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CHAPTER 7 

FABRICATION OF NANOCANTILEVERS AND                                             

STRAIN GRADIENTS EVALUATION  

 

This chapter reports the detailed experimental procedures for the fabrication of 

nanocantilevers and measurement of the strain gradients. The nanocantilevers are 

fabricated from ~100 nm and ~60 nm thick optimized and ‘experimental best’ recipes 

discussed in chapter 5 following the established procedure for surface micromachining 

technology. The cantilevers’ tip deflections from four different arrays of cantilevers are 

measured and the strain gradients are calculated.  The method of measuring the tip 

deflection was validated by using the AFM images of similar cantilevers. The average 

strain gradients are -0.083±0.009 /µm, -0.02±0.004 /µm and -0.20±0.036 /µm for the 

cantilevers processed with the optimized, experimental best and 60 nm thick 

experimental best recipes, respectively. The strain gradient of -0.02±0.004 /µm implies a 

downward deflection of 10nm for a 1 µm long, 0.1µm thick cantilever. This value is 

considered to be good for applications in nanoswitches, nanoresonators, and biosensors 

among others.  
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7.1  Cantilever Fabrication  

7.1.1   Photomask Layout 

 Photomasks are generally chrome coated glass lithographic templates designed to 

optically transfer patterns to wafers or other substrates for device fabrication. In the 

current case, the pattern information is created in a graphic data system and stored in a 

database, reformatted and transferred to a lithography tool, and then printed onto a layer 

of photoresist coated onto the photomask plate. The mask is therefore a stencil used to 

generate a desired pattern on the resist-coated wafers by illuminating it with Deep 

Ultraviolet (DUV) light. DUV light are generated from excimer lasers with wavelengths 

of 248 and 193nm, which allow minimum feature sizes down to 50 nm. The layout of the 

imec’s newly designed NEMS mask is shown in Fig. 7.1a. In brief, the NEMS design 

mask is 2 x 1 cm
2
 in dimension on the wafer and it is designed primarily for the 

fabrication of nanoswitches. It also consists of a few nanostructures for studying the 

mechanical properties of poly-SiGe films. Since this chapter is about fabrication and 

evaluation of strain gradient in the ultrathin films, the small area on the mask containing 

the nanocantilevers (Fig. 7.1a) is considered for the study. The expanded view and the 

top view of the SEM image of the arrays of the cantilevers are shown in Fig. 7. 1(b, c).  

The minimum length of the cantilevers is 0.3 µm while the maximum length is 10 µm. 

the widths of the cantilevers vary from 0.2µm to 1µm. A gap of 200nm separates two 

neighbouring cantilevers while the thickness is ~100nm. The detailed statistics of the 

cantilever arrays are summarized in Table 7.1.  It should be noted that the cantilevers are 
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grouped into 5 arrays (Arrays 1, 2, 3, 4 & 5) based on the number of cantilevers, the 

width and the length of each cantilevers.  

 

  

Figure 7.1: (a) The layout of imec’s newly designed NEMS mask, the location of the 

cantilevers is indicated (b) expanded view of one of the 5 families of arrays of cantilevers 

(c) equivalent SEM image of (b).  
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Table 7.1: Dimensions of the cantilevers 

Array No of cantilevers 

in the array 

Length of the 

cantilevers (µm) 

Width  

(nm) 

Gap  

(nm) 

1 19 0.3 – 7 200 200 

2 20 0.6 – 10 500 200 

3 14 1 – 9 500 200 

4 13 1 – 10 1000 200 

 

7.1.2  Fabrication Steps 

 Figure 7.2 summarizes the surface micromachining technology employed for the 

fabrication of the nanocantilevers. The microfabrication employs a one-mask, two-litho 

process. The fabrication started with clean 200 mm diameter (100) silicon wafers. First, a 

0.8µm thick HDP (high density plasma) silicon dioxide layer is deposited (Fig. 7.2a). The 

SiO2 serves as the sacrificial release layer as will be described in the following steps. To 

create 200nm wide anchors for the cantilevers (Fig. 7.2b), the SiO2 layer is patterned, 

etched and stripped. The pattern is made via lithography using the NEMS mask described 

in section 7.1.1. In this process, the SiO2 is coated with a bottom anti-reflective coating 

(BARC) of 59nm thick HMDS (hexamethyldisalizane) to enhance adhesion and prevent 

reflection. Then, a positive photoresist material of 450nm is spread uniformly on the 

HMDs. DUV light is used to transfer the pattern from the NEMS mask to the photoresist. 

The photoresist is then developed and finally dried. The layers are plasma etched in a 

deep dry etching system (DOM-FEOL). For the BARC etch, 85 sccm of CF4 + 3 sccm of 

O2 in 100 sccm of Ar are used and the etch time is 15s. To etch the SiO2 layer, 7 sccm of 
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C4F8 + 8 sccm of O2 in 160 sccm of Ar are used. The duration for the etch operation is 

120s at the rate of 0.45µm/min.  This is followed by wet strip using a Mattson tool which 

ensured that all etched particles are removed from the anchor trenches. Fig. 7.3 (a) is a 

cross-section SEM image of one of the processed wafers after oxide is etched. The image 

indicates that the etch process is fairly uniform but the oxide layer is not completely 

etched (about 160nm of oxide is not etched).  

 

Figure 7.2: Fabrication sequence of the nanomechanical cantilever: (a) 0.8 µm thick 

LPCVD SiO2  layer (b) lithographic definition of the anchor (c) LPCVD deposition of 

100nm thick poly-SiGe film (d, e) lithographic definition of the cantilever (f, g) 

Sacrificial SiO2 is removed in hydrofluoric acid. 
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Followed the strip process is the deposition of ~100nm thick poly-SiGe film (Fig. 

7.2c or d depending on whether the anchor trench is completely or partially filled) that 

would serve as the structural layers (i.e. the cantilevers). As described in section 3.1, 

poly-SiGe films are deposited using LPCVD based on the deposition recipes described in 

Table 7.2. For these films, the stress, resistivity and standard deviation of resistance are 

measured before the lithography step using the measurement techniques discussed in 

chapter 3. The wafers A, B, C & D are processed to evaluate the strain gradients in the 

‘experimental best’ recipe while E & F are chosen for the optimized recipe. Wafer G was 

processed to evaluate the strain gradient in 60nm thick film deposited with the 

experimental best recipe. Figure 7.3(b) indicates that the poly-SiGe is deposited 

conformal to the underlying topography on the etched oxide, showing good step 

coverage, although some thinning of the film occurs on the sidewalls. The patterning of 

the structural layer followed the same procedure as described earlier for SiO2 layer. 

 

Table 7.2: Deposition conditions for poly-SiGe films and some preliminary results for 

fabrication of NEMS structures  

Wafer 

ID # 

Temp 

(degC) 

SiH4 

(sccm) 

GeH4  

(sccm) 

Press 

(Torr) 

B2H6 

(sccm) 

Hydrogen  

(sccm) 

Spacing 

(mil) 

Time 

(sec) 

Stress  

(MPa) 

Thick. 

(nm) 

Dep rate 

 (nm/s) 

Resistivity 

(m-Ω/cm) 

Rs %  

std  

A 415 8 180 60 18 500 470 295 24.1 114  0.38  2.64 17.2 

B 415 8 180 60 18 500 470 295 32.8 114  0.38  2.66 18.9 

C 415 8 180 60 18 500 470 295 36.1 114  0.38  2.62 19.2 

D 415 8 180 60 18 500 470 295 47.0 115  0.38  2.66 15.2 

E 415 8 180 65 11 500 500 302 39.1 115  0.38 1.43 9.2 

F 415 8 180 65 11 500 500 302 -99.0 115  0.38  1.47 4.8 

G 415 8 180 60 18 500 470 185 64.6 60  0.36  3.08 11.0 
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Because of some differences in the properties of poly-SiGe films and those of 

SiO2, the etch requirements differ markedly. The structural poly-SiGe layers are etched 

with 200 sccm HBr at a pressure of 15 mTorr, an RF power of 300 W and 150 W at the 

top and bottom electrodes, respectively (Fig. 7.2e). These conditions were found to etch 

poly-SiGe at 0.17 µm/min. The residual photoresist, poly-SiGe film and oxide particles 

are stripped with 200 sccm oxygen stream for 220 s. The operation is carried out at a 

pressure of 30 mTorr and an RF power of 1000 W. As revealed by the X-SEM image 

(Fig. 7.3c), the poly-SiGe layer is completely etched. After the strip operation there is a 

substrate decontamination process, where the wafer backside is cleaned in a mixture of 

51% nitrite + 49% hydrogen fluoride solution. The cleaning operation (termed 

millennium clean at imec) helps to remove contaminants, usually Cu, that might have 

come in contact with the wafers during the previous processing steps. In this case, a little 

bit of the backside silicon nitride is removed during the cleaning process. 

To remove moisture from the structural layer before the wafers are processed in 

the VHF (Vapour Hydrogen Fluoride) etch tool, a rapid thermal annealing (RTA) (by 

high-power tungsten-halogen lamp irradiation) is done  at a temperature of 200 
o
C for a 

period of 4 minutes in 100% N2 environment. Lastly, the oxide layer is removed in 

Gemetec pad fume to release the SiGe nanoresonators (Fig. 7.2 f or g). The tool uses HF 

vapour (49% HF) to etch isotropically the oxide layer. Because Gemetec etches 

aggressively, a few etching conditions are tried to obtain the best parameters for a 

successful release of the cantilevers. Different etching temperatures (35 and 50
o
C), 

etching times (15, 20, 25, 30, 35, 40 mins) and etching steps (single, double and triple) 

are tried. For each condition, the water and HF flow rates are kept constant at 1 liter/min 
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and the rinsing time at 10 minutes (at the etching temperature). Etching at 35
o
C is much 

faster than at 50
o
C (due to a higher reaction with condensed water), but the chance of the 

structures sticking to the substrate is equally high [209]. To minimize stiction, all 

etchings are done at 50
o
C. The detailed operation procedure for the Gemetec can be 

found in the operating manual [210]. The chosen Gemetec etch recipe and the 

experimental procedure are summarized in the following flow chart (Fig. 7.4).   
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Figure 7.3: SEM images (a) after oxide etch for anchor definition (b) after poly-SiGe 

deposition (c) after poly-SiGe layer etch and anchor fill (d) an array of released 

cantilevers (e) top view of the released nanocantilevers (f) expanded top view of the 

released cantilevers.  

(a) (b) 

(c) 

(e) 

(d) 

(f) 
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Figure 7.4: A simple flow chart of the operating procedure of Gemetic pad fume HF 

vapour  

  One of the arrays of released cantilevers in wafer E (optimized recipe) is shown in 

Fig. 7.3 (d) while the top and the expanded top views are shown in Fig. 3 (e) and (f), 

respectively. In the array, 8 of 14 cantilevers were successfully released while the other 6 

cantilevers stuck to the substrate. Details are discussed in the following section. 
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7.2  Strain Gradient Evaluation 

 

 One of the challenges facing M/NEMS industries is to fabricate a free standing 

cantilever without any unwanted deflection [211]. In practice, however, thin films are not 

usually deposited stress free. During deposition, growth stress may emanate due to 

island/grain growth and crystallization [98] as well as island coalescence [99], surface 

stress [100], and interstitial incorporation of atoms among others. More details are 

discussed in section 2.4. Cantilever deflects due to the changes in the stress distribution 

along the growth direction causing bending moment (see section 6.1). If the stress near 

the film surface is less tensile compared to the stress at the bottom, the cantilevers will 

bend down resulting into a negative strain gradient while cantilevers with positive strain 

gradients bend up due to the increase of tensile strain with film thickness [211]. For an 

excessive deflection, cantilevers may touch the underlying substrate which might be 

detrimental to the dynamic and reliability characteristics of M/NEMS structures [90, 91]. 

Thus, the knowledge of the stress variation across thin films will help project the 

direction of the strain gradient. By extension, strain gradient will help estimate the 

maximum possible deflection during service. 

 For a cantilever, the strain gradient Г is derived from Fig. 7.5 where  is the 

radius of curvature of the cantilever,   is the angle on the circle with radius  between 

the vertical line from the point of anchor and the line connecting the middle of the circle 

with the end point of the cantilever,   is the deflection at the cantilever tip, h is the 

thickness of the structural layer and L is the length of the cantilever. The radius  varies 

with the value of the layer thickness h. A minimum strain gradient will occur at the 
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bottom of the structural layer because the radius is maximum at the bottom surface. The 

maximum strain gradient will occur on top of the film. With the average radius , the 

average strain gradient can be calculated from Eq. (7.1).  



 1


h
                          (7.1) 

Based on trigonometry: 

)]/cos(1[  L              (7.2) 

By using Power series expansion (and truncating higher order > 2), then: 




2

2L
               (7.3) 

From Eqs (7.1) and (7.3), the average strain gradient can, thus, be expressed as: 

2

21

Lh






              (7.4) 

All the strain gradients reported in this chapter are calculated by using Eq. (7.4). For a 

cantilever bending downward, the signs on and  are negative and positive for an 

upward bending cantilever. Since all the beams are bending downward, the strain 

gradients are negative.  
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Figure 7.5: Schematic diagram of a released upward bending cantilever and its associated 

strain gradient variation [212] 

7.2.1 Strain Gradients in the ~100nm-Thick Cantilevers 

 

 As expressed by Eq. (7.4), an accurate measurement of the cantilever deflection is 

essential for a reliable strain gradient result. Because of the small size of these 

cantilevers, it is challenging to find a suitable tool to accurately measure the tip 

deflection. Due to the wavelength limitation of light (400 – 700 nm) and that of the phase 

changes when light reflected from the top SiGe layer and the bottom oxide layer, Veeco 

surface profilometer, which is often used for step-height measurements, does not give an 
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accurate result. An alternative method is to measure the tip deflection from SEM images 

as demonstrated for the 4.42 µm long cantilever of Fig. 7.6 (a). In the Figure, line AB is 

located at the edge of the cantilever array where SiGe film is unaffected. This edge is 

expected to be at the same level with the top surface of the cantilever prior to HF vapour 

release. It is, therefore, chosen as the reference point for other measurements. The line 

CD is thereafter drawn parallel to the line AB at the position of the cantilever of interest. 

The deflection at the cantilever tip can thus be estimated as the distance between points E 

and F. Since the SEM image is tilted at 10
o
, the measured deflection is multiplied by 

cos(10
o
) and then converted to the actual height based on the SEM scale of measurement. 

This procedure is repeated for a few images to estimate the tip deflections. As a way of 

verifying that the cantilevers are fully released, a few of the samples are cleaved by using 

the MC600i Microcleaving system. Figure 7.6 (b) indicates that the cantilevers are 

completely released from the underlying oxide layer. The Figure also shows that the 

3.52µm long cantilever deflects by 118 nm.  The strain gradient calculated from Fig. 7.6 

(b), which is 0.019 /µm - is closely related to those of Fig. 7.6 (a). 
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Figure 7.6: (a) A method for measuring tip deflection of a cantilever based on SEM 

image (the cantilever array is made from the optimized recipe). Line AB is parallel to line 

CD, and line EF is perpendicular to line AB (b) X-SEM image after cleaving through the 

orange line similar to the one showing in (a) by the MC600i Microcleaving system. The 

cantilever array is made from the experimental best recipe. 
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 To confirm the accuracy of the deflection calculated from the SEM images, AFM 

images of two arrays are obtained at the positions similar to those of SEM images (Fig. 

7.7). The measurements are carried out with Nanoscope Multimode AFM by using the 

tapping mode. The probe is a MicroCantilever of model OMCL-AC160TS-R3 with a 

spring constant of 26 N/m and a resonance frequency of 300 kHz [213]. These 

characteristics make the cantilever stiff and help to reveal sample surface precisely and 

gently. The tip is 14 µm long and has a radius of 7 nm which enhance its aspect ratio.  

Because the AFM cantilever is stiff coupled with the tapping mode, it is assumed that no 

additional deflection is induced in the nanocantilevers during imaging. The AFM images 

are then processed with WSxM software [137].  

 Figure 7.8 (a) shows the deflection profiles of the two cantilevers as obtained 

from the AFM images. Both curves indicate that the cantilevers deflect excessively. 

Based on the tip deflections, the strain gradients are calculated by using Eq. (7.4). The 

strain gradients for the free-standing cantilevers from the arrays number 3 are shown, 

together with the strain gradients calculated from the AFM images, in Fig. 7.8 (b). The 

strain gradients obtained from the SEM images are as accurate as those of AFM 

measurements; although a slight scattering is observed in the latter. It is thus worthy of 

note that the proposed deflection measurement method does not underestimate the strain 

gradients, rather it slightly overestimates them. Hence, the strain gradients from other 

cantilevers are obtained following the same procedure. 
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Figure 7.7: SEM images of (a) array 1 (b) array 3 and the equivalent AFM images of (c) 

array 1 and (d) array 3 for the optimized film 

(a) (b) 

(d) (c) 
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Figure 7.8: Deflection profiles for 3 downward bending cantilevers, each curve is based 

on one cantilever from array no.3 based on the optimized recipe (b) strain gradients 

computed from SEM and AFM images from array no. 3. The average values and the 

corresponding standard deviations of the strain gradients are indicated. 

 Figure 7.9 are SEM images of the cantilevers obtained from the wafer D (based 

on the experimental best recipe) while the top views are shown in Fig. 10. The lengths of 

the measured cantilevers, the tip deflections and the strain gradients are summarized in 

Table 7.3. By using these values, the average strain gradient is -0.02±0.004 /µm. This 

translates to a deflection of -10nm for 1µm long, 100nm thick cantilever. In the same 

way, the SEM images and strain gradients for wafer E (using the optimized recipe) are 

shown in Fig. 7.11 and Table 7.4, respectively. The average strain gradient is calculated 

to be -0.083±0.009 /µm, which imply a downward deflection of 42nm for 1µm long, 

100nm thick cantilever.  
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Figure 7.9: Arrays of released cantilevers chosen from array no. (a) 1 (b) 2 (c) 3 and (d) 4 

for wafer D (experimental best recipe).  

(b) 

(c) (d) 

(a) 
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Figure 7.10: Top down view of the arrays of released cantilevers chosen from array no. 

(a) 1 (b) 2 (c) 3 and (d) 4 for wafer D (experimental best recipe).  

 

Table 7.3: Strain gradients for wafer D (Film A - experimental best recipe) 

Array  

No. 

No. of 

cantilevers 

Length of measured 

cantilever (µm) 

Tip deflection 

(nm) 

Strain gradient 

(1/ µm) 

  2 20 ~5.43 -0.19 -0.013 

~4.24 -0.23 -0.026 

   

   3 

  

14 

~4.59 -0.19 -0.018 

~4.08 -0.18 -0.021 

~3.63 -0.15 -0.022 

   

   4 

  

13 

~4.58 -0.19 -0.018 

~3.90 -0.17 -0.022 

~3.50 -0.14 -0.023 
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Figure 7.11: Arrays of released cantilevers chosen from array no. (a) 1 (b) 2 (c) 3 and (d) 

4 for wafer D (optimized recipe). 

  Table 7.4: Stress gradients for wafer E (Film B - optimized recipe) 

Array  

No. 

No. of  

cantilevers 

Length of measured 

cantilever (µm) 

Tip deflection 

(µm) 

Strain gradient 

(1/ µm) 

      

     2 

  

20 

3.62 -0.45 -0.069 

2.71 -0.30 -0.083 

2.16 -0.21 -0.090 

   

    3 

 

14 

3.41 -0.52 -0.089 

3.23 -0.46 -0.088 

2.57 -0.30 -0.090 

(a) (a) 

(c) 
(d) 

(b) 
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Fig. 7.12 compares the strain gradient in a pictorial format. Based on these results, 

it suffices to conclude that the strain gradient in the experimental best recipe is about 4 

times lower than those of the optimized films. The discrepancy between the strain 

gradients is anticipated because the previous study of stress evolution based on the two 

recipes (section 6.1) clearly indicates that the optimized film has a higher curvature (large 

deflection or higher stress-thickness product) compared to the experimental best recipe. 

This shows a clear relationship between the stress gradient and the strain gradient across 

the films. With the knowledge of the stress gradient, it is possible to compare relatively 

the anticipated strain gradients in different released structures. Also, the difference in the 

germanium fractions may be responsible for the observed difference in the strain 

gradients. 

 

Figure 7.12: Comparison of the strain gradients between the films deposited by using the 

experimental best and the optimized recipes 
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7.2.2   Strain Gradients in the ~60nm  Thick Cantilevers 

 The SEM images of the released 60nm-thick cantilevers are shown in Fig. 7.13.  

The cantilevers are processed along with the ~100nm thick cantilevers using the 

experimental best recipe. The strain gradients for the cantilevers are calculated based on 

the procedure earlier discussed. The results are summarized in Table 7.5. It is obvious 

that most of the cantilevers touch the substrate. Those that are free standing have an 

average strain gradient of -0.20±0.036 /µm which implies a deflection of ~100nm for 

1µm long cantilever. This is obviously high for applications where the actuation gap is 

smaller than 100 nm. The strain gradients for the ~60 nm and ~100 nm thick films are 

compared in Fig. 7.14(a). The former is about one order of magnitude higher than the 

latter. Thus far, it is clear that the strain gradient increases significantly as the structures 

are scaled down (Fig. 7.14b). In the next paragraph, it is shown that the large difference 

in the strain gradient does not translate to a difference in the Young’s modulus.  
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Figure 7.13: Arrays of released ~60 nm thick cantilevers fabricated by using the 

experimental best recipe. The arrays are chosen from column (a) 1 (b) 2 (c) 3 and (d) 4.  
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Table 7.5: Strain gradients in the ~60 nm thick cantilevers  

Array  

No. 

No. of free-standing 

Cantilevers 

Length of measured 

cantilever (µm) 

Tip deflection 

(µm) 

Strain gradient 

(1/ µm) 

 

1 

 

10 

1.15 -0.17 -0.261 

1.88 -0.36 -0.207 

1.52 -0.24 -0.213 

 

2 

 

9 

1.55 -0.28 -0.233 

1.03 -0.12 -0.226 

1.36 -0.22 -0.246 

 

3 

 

6 

1.55 -0.17 -0.148 

1.85 -0.29 -0.169 

1.99 -0.32 -0.163 

 

4 

 

5 

1.74 -0.25 -0.167 

2.12 -0.44 -0.197 

1.26 -0.14 -0.181 

 

 

 
 

Figure 7.14: (a) Comparison of strain gradients in the 100nm and 60nm thick films 

deposited with experimental best recipe (b) thickness-dependent average strain gradient. 

 

 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.00

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

-0.2±0.036

-0.02±0.004

S
tr

a
in

 g
ra

d
ie

n
t 

(


m
)

Cantilever length (m)

 100nm thick film

 60nm thick film

(a)

60 70 80 90 100

-0.24

-0.20

-0.16

-0.12

-0.08

-0.04

0.00

S
tr

a
in

 g
ra

d
ie

n
t 

(1
/

m
)

Thickness (nm)

(b)



172 

 

Since the residual stresses in the ~60 nm and ~100 nm thick films are similar and 

that the cantilevers have the same surface areas, these stresses are expected to induce 

thickness dependent deflections in the nanostructures as observed from their respective 

SEM images. From the SEM image for the 60 nm thick structure (Fig. 7.13), the 

deflections for 1.36, 1.55 and 1.85 µm long cantilevers are 0.22, 0.17 and 0.29 µm, 

respectively. In the case of 100 nm thick cantilevers, the deflections are 0.19, 0.18 and 

0.15 µm for 4.59, 4.08 and 3.63 µm long cantilevers, respectively (Fig. 7.9). By using 

classical mechanics, the vertical deflection   for a cantilever of a length L can be 

determined from 
EI

ML

3

2

  where M and E are the bending moment and the Young’s 

modulus of the film, respectively. The area moment of inertial I = bh
3
/12, where b and h 

are the width and thickness of the cantilever, respectively. The above formula implies 

that: 

3 h           (7.5) 

Equation (7.5) indicates that thickness is a critical parameter due to its cubic dependence 

and that a slight thickness variation will lead to a large deflection. Since the residual 

stresses in the structures and the surface areas are the same, then the bending moment can 

be considered equal. This implies that 

3

58

100

58

100













h

h




must hold if the moduli are actually 

equal. From the experimental data, 14.0~
58

100 



 and 15.0

3

58

100 









h

h
 which confirms that the 

moduli are similar. The slight difference in the above ratios may indicate that the 

cantilevers are actually softer and thus deflect more than the values obtained from the 
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classical mechanics. It should be noted that the thicknesses used for the calculation are 

~55 nm and ~98 nm which are based on the SEM images.  

7.2.3 Strain Gradients, Stress and Resistivity Variations  

 The variation in the microstructure through the film thickness may be a reason for 

the observed variation in the strain gradients for the two recipes considered. A few 

previous studies, such as [214], have suggested that negative gradient indicates growth of 

columnar grain through the film thickness, while positive gradient suggests decreasing 

grain size through the film thickness. Based on the TEM images of Figs 5.11 - 5.14, it is 

shown that the microstructure of the film grown with the optimized recipe has a columnar 

shape. It is thus expected that the strain gradient will be negative. The TEM images also 

justify the constant stress observed during the continuous growth.   

  It is almost impossible to manufacture arrays of cantilevers with the same strain 

gradients across a single wafer. This is often due to the variation in the film properties 

during deposition and subsequent processing steps. For instance, it may be attributed to 

the non-uniformity in thickness or variations in the germanium fraction. It is 

demonstrated that these variations often lead to a significant differences in the local stress 

and resistivity across the film. With variations in the local stresses, it is expected that the 

strain gradients will vary from point to point. By using FSM stress tool operating with a 

780 nm wavelength laser, 5 different scanning modes (1, 2, 4, 6 and 10 lines) were used 

to calculate the stress variations across the film deposited with the experimental best 

recipe. For each mode, the first scan passes through the wafer notch and then through 

180
o
/n, n (>1) is the number of lines to be scanned. For a 6-line scan for instance, the 

lines are 30
o
 apart with the first linescan passing through the notch.  
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 Figure 7.15 shows that a large stress variation is observed across the film and that 

a single scan through the notch is a good representative of the average stress in the thin 

layer. In Fig. 7.15 (a), large bow height changes are clearly observed at the wafer edges, 

with one edge more significant, for the 10-line measurement. This translates to a large 

change in the wafer curvature and hence higher stress variations at the edges (Fig. 7.15b). 

The largest variation in the curvature changes and hence the stress is found along the axis 

perpendicular to the notch axis. Consequently, the stress variation at the center is very 

minimal. The stress variations increase with the density of the scanned lines and 

interestingly, the average values are almost equal (Fig. 7.15c).  
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Figure 7.15: (a) Bow height difference along the scanned lines (b) stress map based on 10 

lines of measurement (c) dependence of stress variation on the density of mapping. Insets 

are the 3D stress map images, no. 1 to 10 denote the number of lines scanned during the 

measurement. The horizontal red line denotes the average value for the entire 

measurement.  

 

(a) 
(b) 

(c) 
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A similar resistivity variation is observed across the films (Fig.7.16). It is 

observed that the resistivity increases towards the center of the wafer. This may indicate 

that the films are thicker at the edge compared to the center. Although both films show 

similarity in the resistivity variation, the difference between the resistivity values is 

obvious.  Because of this variation, the strain gradient is expected to be affected.    
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Figure 7.16: Resistivity variation in the optimized and experimental best films. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1  Conclusions 

 Polycrystalline silicon germanium films have been used to monolithically 

integrate Micro/Nano-ElectroMechanical Systems (M/NEMS) with its driving circuitry in 

the MEMS-last approach. One of the ways by which the sensitivity, efficiency and power 

consumption of a bioresonators, nanoswitches and many other NEMS products can be 

enhanced significantly is by miniaturization of the structural components. To do this, the 

properties of poly-SiGe films must be tailored appropriately to deliver the required 

characteristics for NEMS applications. Among these are low resistivity, slightly tensile 

stress, low strain gradient and high deposition rate at a temperature that will not damage 

the CMOS layer. 

 In this dissertation, a new approach to model intrinsic stresses is proposed. The 

approach is based on the concept of surface stresses by using dome-shaped islands and 

hexagonal shaped grains as compared to the spherical and cylindrical shapes used for the 

islands and grains respectively in previous studies reported in the literature. The 

equations that describe the stress evolution at the precoalescence, coalescence and 

postcoalescence stages are derived. These models describe how stresses evolve with 

island / grain’s height and diameter, the surface stresses, the interfacial stresses and the 

stress due to grain boundary formation. For Cu films deposited on silicon substrates, 
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intrinsic stresses of -200, 140 to 230 and -260 to -80 MPa were obtained for the 

precoalescence, coalescence and steady state postcoalescence stages, respectively. With a 

few assumptions, the current models give -261, 102 and -115MPa for the three stages in 

that order. 

 Moreover, the dissertation presents a systematic procedure for the simultaneous 

optimization of residual stress, resistivity and deposition rate for CVD deposited ultrathin 

poly-SiGe films by using the grey-Taguchi optimization method. Seven process variables 

were identified as important parameters for controlling the deposition process and the 

resulting film properties, namely the deposition temperature, the silane, germane, 

diborane and hydrogen flow rates, the chamber pressure and the shower head-heater 

spacing. By using 4 different levels for each process variable, 32 unique experiments 

were defined based on L32 orthogonal array. The optimal combination of process 

parameters was determined by applying the grey relational analysis for multiple 

performance characteristics. The projected optimized process resulted in a ~100 nm thick 

poly-SiGe film with a tensile stress of 43 MPa, a very low resistivity of 1.39 mΩ-cm and 

a deposition rate of 0.34 nm/s. Further characterization shows that the film has a 

germanium concentration of 87%, a boron concentration of 2.20 x 10
21 

cm
-3

, a 

cauliflower surface morphology with a root-mean-square roughness of 4.2 nm, an elastic 

modulus of 101 GPa, a strain gradient of -8.0x10
-2 

/µm, a carrier concentration of 3.57 x 

10
21 

cm
-3

 and a Hall mobility of 3.76 cm
2
V

-1
s

-1
. The properties of the experimental best 

recipe, chosen from the L32 orthogonal array, are similar to those of the optimized 

recipe.  
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 In addition, detailed experimental studies of evolution of stress, resistivity and 

surface properties of the experimental best and the optimized poly-SiGe films are 

presented. Various film thicknesses (~1 nm – ~200 nm) were deposited by LPCVD and 

characterized. The experimental study shows that the intrinsic stress evolved from a 

precoalescence highly compressive stress state to the coalescence less compressive state 

and remains constant thereafter. One of the possible reasons for the constant stress is the 

columnar nature of the grains as evident from the TEM images.  The local stresses and 

local stress-thickness variations indicate that the curvatures of the films are negative. 

Also, the film’s structural evolution goes through an incubation stage to a precoalescence 

stage (< 40nm) over a transient stage (40 – 60 nm) and finally to a stagnation stage (> 60 

nm) as shown by the AFM images and the values of the Hall mobility. The surface 

properties were characterized by correlation length, root-mean-square (rms) roughness, 

roughness exponent, dynamic exponent and fractal dimension.  

 Finally, by using the optimized and the experimental best recipes, nanocantilevers 

were fabricated based on the established procedure for surface micromachining 

technology. The cantilevers were fabricated from ~100 nm and ~60 nm thick poly-SiGe 

films employing the new NEMS mask designed at imec, Belgium. The cantilevers’ tip 

deflections from four different arrays were measured from SEM and AFM images and 

the strain gradients were calculated therefrom. The average strain gradients are -0.083 ± 

0.009 /µm, -0.02 ± 0.004 /µm and -0.20 ± 0.036 /µm for the cantilevers processed with 

the optimized, experimental best and 60 nm thick experimental best recipes, respectively. 

The strain gradient of -0.02 ± 0.004 /µm is considered to be good for applications in 

nanoswitches, nanoresonators, biosensors among others.  
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8.2  Recommendations for  Future Studies 

 Having successfully fabricated nanocantilevers of a fairly acceptable strain 

gradient, it is necessary to optimize the process for the strain gradient specifically. 

Alternatively, the strain gradients in a few promising recipes can be obtained and 

compared to those of the optimized and the experimental best recipes. It is also important 

to incorporate a few processing steps to demonstrate the expected improved sensitivity 

for applications as bioresonators and as nanoswitches.  For these applications, the 

addition of bottom and top electrodes will make the actuation of the structures effective. 

With a good response to the actuation source, it will be possible to measure a few 

properties like modulus, resonance frequency among others from the vibrating structures. 

It is also imperative to functionalize the nanocantilevers for the purpose of detection of 

DNA or gas molecules. With this, the minimum detectable mass of DNA or gas 

molecules can be determined from the shifts in the resonance frequencies of the 

cantilevers.   It is also important to test for the reliability and life time fatigue of these 

structures. 

For the stress evolution study, a range of film thicknesses was used with an 

assumption that a subsequent layer of poly-SiGe film does not densify or change the 

properties of the previous layer(s). This will however need further investigation. The 

most accurate method is to use an in situ stress measurement technique. In such a case, 

the actual stress can be obtained.   On the stress model, a few deposition parameters such 

as the deposition rate and deposition temperature can be incorporated to account for the 

change in the deposition conditions.  
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