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Adaptive equalization made it possible for digital data transmission over radio

and telephone channels, as it mitigates the distortions caused by these channels.

Different algorithms have been used in adaptive equalization, e. g., the least mean

square (LMS) and the recursive least square (RLS) algorithms. Recently, particle

swarm optimization (PSO) technique was introduced and turned out to be very

effective in handling problems having non linear behaviour. Different versions of

the PSO algorithm were proposed, to name a few, the PSO using linearly time de-

creasing inertia weight (PSO-W) and the PSO using constant constriction factor

(PSO-CCF). However, these algorithms still suffer the problem of stagnation and

can become less effective in a situation when the solution hits a local minimum.

We will address such issues here. In this thesis we have implemented a new al-
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gorithm for adaptive equalization, PSO using adaptive inertia weight (PSO-AW).

A new algorithm, Hybrid Particle Swarm Optimization (HPSO), is also proposed

for adaptive equalization. In the end two new methodologies, named Local Search

(LS) and Train and Verify (T&V), are used to reduce the number of computa-

tions. PSO-AW uses adaptive inertia weights, instead of linearly decreasing iner-

tia weights, to improve the convergence rate and secure better steady state error

simultaneously. HPSO will incorporate three different techniques. These tech-

niques includes re-randomization of particles to improve the search capacity of the

swarm, second one is to introduced more socialized behaviour among particles, so

that there is less chance of getting trap in to some local minimum values. And the

third one is adaptively inertia weight assignment to the particles. This hybrid al-

gorithm secured the minimum steady state error as compared to all previously used

PSO algorithms as well as the LMS algorithm in both non-linear and linear chan-

nels. In order to complete the process with minimum number of computations, our

proposed algorithm will be incorporated with two new techniques as well, LS and

T&V. While using these techniques, although there is slight effect on convergence

rate, but the reduction in number of PSO operations is remarkable. Significant

improvements in BER and convergence rate, obtained using these algorithms. Ex-

tensive simulation results are conducted to confirm the consistency in performance

of these algorithms in different scenarios.
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CHAPTER 1

INTRODUCTION

Adaptive Channel Equalization, made it possible the efficient use of all the ra-

dio and telephone channels, as it compensate for all the distortions, added by

channel. Due to its significant importance, a productive research is carried out

which produced a very beneficiary work [1]. Adaptive equalizers are used to mit-

igate the different distortions added by the channel in to any transmitted signal,

and one of these distortions, is inter symbol interference (ISI). The main reason

for ISI is the dispersion of the signal due to multipath in time varying channels.

Adaptive equalization is used in communication systems which have high speed of

data transmission and especially when these systems do not use frequency division

multiplexing or differential modulation schemes. An equalizer is the most impor-

tant and expensive part of the demodulator for any system as it usually takes

more than 80% of the whole computation required to demodulate any signal[2],

ultimately adaptive equalization gained a lot of attraction for the research in this

field and contributed a rich body of literature in this area.
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In this chapter, we will go through the background of channel equalization and

adaptive channel equalization with their usage in different applications, then we

will turn our attention to Particle Swarm Optimization (PSO) techniques in chan-

nel equalization. There will be brief literature overview on adaptive equalization

and PSO, then main thesis contributions and thesis layout are stated.

1.1 Background of Equalization

High speed data networks and transmissions, over different channels of limited

bandwidth, for example voice bandwidth channels, have been able to meet the re-

quirements of the swiftly growing needs of different networks for communications.

The rapid use of common carrier in digital transmission has also been applied

to different technologies, like line of sight terrestrial radio and satellite commu-

nications. As these analogue channels do not have ideal behaviour, so these will

introduce different impairments is the signal which was used as a input to the

modulator. These impairments might include the statistical corruption which

may be multiplicative or additive due to thermal or any other source of noise,

like impulse noise which will make the signal fade. These different types of im-

pairments introduced by the channels are basically linear, non-linear or harmonic

distortions, and also time dispersions. In telephone lines the frequency response

of ideal channel should have constant amplitude with constant and linear phase

delay, but due to time dispersion the response of these channels will deviates from

it.
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Therefore in order to tackle all these distortions and impairments of the channel

response, Equalizers are used on the receiver side. Equalization was initially used

for the loading of coils to enhance the performance of the twisted pair telephone

cables, which is used for voice channels in telephony communication. The trans-

mitter side will take the input data in form of bits then it will encode them at

some specified signalling rate. Different modulation schemes are used on trans-

mitter, for example in case of Pulse Amplitude Modulation (PAM), in which every

signal will be mapped on a pulse amplitude. And every symbol is defined for a

specific time interval, but as these symbols are transmitted over these time dis-

persive channels, they will not remain limited to their time interval but will be

extended in the time intervals of the other symbols, and this type of distortion is

known as inter symbol interference. In any type of communication system, this

ISI is one of the major problems while retrieving back the original signal and this

impairment is the great hindrance in the way of high speed data communication

[3]. It can be stated here that equalization will be applied to any signal process-

ing device in which the main goal is to reduce this inter symbol interference. For

high speed data communication, like at a rate of more than 4800 bits per second,

over telephone voice channels, equalization will surely be required to tackle the

inter symbol interference added by these telephone channels. As due to impor-

tance of this research area, equalization, so many researches proposed some useful

literature on it, and still the research on this is continue.
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1.2 Adaptive equalization

As stated earlier that equalizers are used in the high speed data communication

networks to avoid inter symbol interference, which is caused by the time dispersive

behaviour of the channels. Still there is another problem related to characteristic

of the channel, over which data has to sent, that characteristics of these channels

are unknown and it varies with the time, so a simple equalizer at the receiver

side will not be enough to re construct the original signal and we have to take on

account this time varying behaviour of the channel. Therefore instead of equal-

ization, we used Adaptive Equalization, in which equalizer’s behaviour will vary

as the characteristics of the channel varies, here equalizer will keep on tracking

the channel. For medium speed communication networks, like up to 2400 bits

per second, conventional methodologies might work but the channels which are

used in switched telephony networks, where variation of the channels cannot be

tackled by conventional methods, adaptive equalizations is used. Now it is like a

universal rule of using adaptive equalizer in high speed data networks, more than

2400 bits per second [4].

Inter symbol interference in the channels of under water and radio links is due

to the multipath propagations on these channels, and the transmission over these

channels can be seen as a simultaneous transmission over different channels which

have different delays and amplitude and characteristics[5]. The adaptive equaliz-

ers are able to respond efficiently for this inter symbol interference in multipath

propagation, just like in the telephone voice channels. In different scenarios of
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radio channels, adaptive equalizers plays important role to cancel out the effect of

interference, jamming sources and diversity combining [6]. In almost every radio

channel we can have time varying fading, so adaptive equalizers which applied

over these channels should be able to control this issue as well. Time varying

fading is also one of the major impairment causes, and it is widely observed in

radio channels. Tropospheric microwave digital radio channels, ranges from 4 to

11 GHz, endure slow fading. Therefore in order to mitigate all these effects added

by the channels, adaptive equalizers are used [7].

1.2.1 Functionality of an Adaptive Channel Equalizer

As the name shows that the behaviour of such channel equalizers will be channel

dependent, means the filter taps of the equalizer will vary accordingly to channel

response. We will explain briefly working of a linear channel equalizer and the

cost function which is normally used to find the optimum values for the taps of

equalizer. The basic block diagram of the adaptive channel equalizer is shown in

figure 1.1. Let the input signal s(k) is passed through the channel, and some noise

v(k) is added in to it and the resultant signal will be denoted as u(k), then this

degraded signal will be passed through our adaptive equalizer, whose tap length

is M. So the vector of adaptive equalizer taps will be,

fT (k) = [f0(k) f1(k) f2(k)..... fM−1(k)]
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Figure 1.1: Set up of an Adaptive Channel Equalizer

And the input to this adaptive equalizer is u(k),

u(k) = [u0(k) u1(k) u2(k)..... uM−1(k)]

u(k) = [u0(k) u0(k − 1) u0(k − 2)..... u0(k −M + 1)]T

And at the output of the equalizer we will have the signal y(k), which can be

shown as following,

y(k) =
M−1∑

i=0

fi(k) ∗ u0(k − i) = fT (k)u(k)

Now we have to calculate the error in the recovered signal y(k) and on the basis of

this error we will vary the taps of equalizer, which is actually the adaptive nature

of such equalizers. But we cannot directly compare the output of equalizer with

the input signal, because during all the processing of the input signal, like passing

through the channel then passing through the equalizer, so there will be some

delay added in the input signal to make it a fair comparison with the recovered
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signal. We say d(k), desired response, a delayed version of the input signal, the

we have to subtract the output of equalizer from this desired response to calculate

the error term e(k). So the error signal will be,

e(k) = d(k)− y(k) (1.1)

e(k) = d(k)− fT (k)u(k)

While using this error function we have to device a way to judge the performance

of different algorithms. There are many methods which are used to find the steady

state analysis of the algorithms, such as Mean Square Error (MSE), Mean Square

Deviation (MSD) or Excessive Mean Square Error (EMSE) are commonly used

for the steady state analysis of the algorithms.

The most commonly used method, which is also used in the rest of this literature

for analysis and the comparison with our proposed algorithms, is Minimum Mean

Squared Error (MMSE). The cost or objective function of MMSE can be defined

as following [8],

J = E[e(k)2]

J = E[d(k)2 + y(k)2 − 2d(k)y(k)]

J = E[d(k)2] + E[fT (k)u(k)u(k)Tf(k)]− 2E[d(k)fT (k)u(k)]

Then we will take the gradient of the above equation and equate it to zero to find

the minimum optimum value for the taps of equalizer. We will not go in to the
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details of this whole procedure. The so far discussion was just a brief overview

of the analysis that how things work here. There are many algorithms working

currently for adaptive channel equalization, like Least Mean Square Estimation

(LMS), Recursive Least Squares (RLS) and Steepest Descent etc. A detailed

literature review on these and other algorithms has been done in next section.

There are different ways of handling the cost function for each algorithm, like

LMS will not use the expected value of the objective function rather it will use the

instantaneous values, and this is the most commonly used algorithm for channel

equalization, and we will use it as well for the comparison with our proposed

algorithms.

1.2.2 Convergence of Adaptive channel Equalizer

The exact convergence analysis of any algorithm, used for adaptive channel equal-

ization, is very difficult to comprehend, but for the algorithms like LMS etc, it can

be defined as the dependency of convergence speed on step size in algorithm. Basi-

cally the convergence of algorithm reveals the fact that how quickly any algorithm

will approach to its optimum values. And convergence speed is very important

parameter in adaptive channel equalization.

Convergence speed can be increased for any algorithm, like in LMS, steepest de-

scent etc, by assigning higher value to step size of that specific algorithm. As

nothing is free so, if we assign higher values to step size in order to get better

convergence rate, there is the chance that our algorithm will stuck in to some local
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minima and this thing will cause a higher error, of course if step size is greater

than the tracking capability of algorithm will be greater. Another parameter,

which is used for the analysis of algorithm is excess mean square error (EMSE),

is affected by step size. This EMSE will have higher values of error if filter taps

will keep roving around the optimum values of filter taps. So a trade of will be

done here between higher convergence rate with better tracking analysis and the

excess mean square error.

In Particle Swarm Optimization (PSO) algorithm, this convergence speed will not

depend on some step size, rather here it will depending on fine tuning of the pa-

rameters, which are used in this algorithm. Different parameters will be used in

different versions of PSO algorithm, and the sensitivity analysis of these will be

taken place to attain any specific convergence speed.

1.2.3 Literature review on Adaptive Equalizer

In 1928, telegraph transmission theory has been presented by Nyquist [9], in which

he made the basis of transmission of pulse over analogue and band limited chan-

nels. Least mean square (LMS), which is an adaptive filtering algorithm and

it has been in used in this research area for more than last decay and even in

present days, it was presented by Widrow and Hoff, in 1960 [10]. However, in

1960 the research on PAM systems regarding equalization in adaptive sense, was

more in theoretical knowledge of trapped delay equalizers. These equalizers are

also known as zero forcing or transversal equalizers, they performed equalization
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in presence of symbol interval tap spacing [11, 12]. Time dispersive additive wide

Gaussian noise channels, which are discussed in [13], such channels add so much

distortions to the signals, the structure and design of filter which minimize mean

square error for such channels, were proposed in [14, 15]. AS LMS showed great

satisfactory results for such research problems, so in 1960, extensive research con-

ducted in this topic which contributed productive literature [16, 17, 18]. All the

proposed methodologies in these literatures contributed highly favourable results

in field of adaptive channel equalization. After all these, abundance of research

done on the structure of the non linear receivers, and it was defined for different

optimum criteria, for example error probability etc, in [19, 20, 21]. All the research

done on this specific area, set the base for the other researchers to produce some

ground breaking results like some of the literature is [22, 23, 24, 25, 26, 27]. Due

to this fruitful research, Maximum Likelihood Sequence Estimator was proposed

in [28], in which they formed this ML estimator by viterbi algorithm [29]. Some

researchers tried to continue their research in more simpler way, by doing research

on a much more simpler sub-optimum receiver known as decision feedback equal-

izer [30, 31, 32, 33, 34, 35, 36]. There were also some research topics like linear

feedback, infinite impulse response which were the strong options to implement

the adaptive equalization but these were facing some serious issues like lack of

quadratic performance surface, which do not guarantee the stability and almost

negligible gain if we compare it with transversal equalizers. Different modulation

schemes were used like single side band (SSB), vestigial side band (VSB) etc,
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but researchers proved the superiority of the quadrature amplitude modulation

(QAM) over other modulation schemes, so this provision required the modifica-

tions in the old PAM equalizers and give them more complex structure to make

the signalling possible in the receiver of in phase [37, 38, 39, 40]. In early 1970,

different equalizers such as decision feedback and transversal filters, in which tap

spacing was less than symbol interval, were proposed in [41, 42]. And in same

decade 1970, the practical use of these equalizers were made possible by using

such equalizers in telephone lines and in military radio systems [43]. In literature

[44, 45, 46, 47], the practical advantages of such equalizers over symbol spaced

equalizers were discussed. After all the research done in this field, it was revealed

by the researchers that it is useful to use non linear decision feedback receiver,

which is also known as Anti-ISI filter, in which fractionally spaced equalizers used

as a matched filter [48, 49].

Up to 1970, the most of the literature review in the field of adaptive channel equal-

ization, was focussed in the structure of the equalizer and also the steady state

analysis of the equalizer. Research work was also done on the transient analysis of

it, but this work was less as compare to the steady state analysis, due to the diffi-

culties in it. In following literature, [50, 51, 52], the research on the convergence of

LMS algorithm in steady state analysis, for transversal equalizers, was done. The

effect of channel characteristics on the convergence rate of LMS algorithm was

also discussed in this literature. After abundance of research on LMS, different

versions of LMS such as orthogonal LMS was proposed in [53, 54]. In order to
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make a fast start up in these methods, cyclic and periodic training methods for

adaptive equalization were used [55, 56, 57]. Godard, first time described the way

of using Kalman filtering estimation method to estimate the filter taps in LMS

equalization at every symbol interval [58]. Later the method of recursive least

squares (RLS), was introduced and intense research started in this subject, and

due to this research lattice and transversal algorithms were designed, which are

presented in these literatures [59, 60, 61, 62]. Then advantage of such research was

taken by applying these algorithms, in the adaptive equalization of signal which

were sent on high frequency radio channels in which we have to track rapidly time

varying conditions of these channels [63]. So in overall an extensive research have

been done in this research area which cause the reduction in number of arithmetic

calculations but at the coast of more complex and sophisticated structures with

larger memories, but still it is the sole purpose of research to propose the methods

with their advantages and drawbacks, and it depends on the users to implement

the most suited one in their application.

1.3 Particle Swarm Optimization Algorithm

Particle swarm optimization is a newly developed algorithm which is nowadays

making its way in almost every optimization research problem. This heuristic

approach of finding optimum value for any cost function, lies under the category

of Swarm Intelligence. Kennedy and Eberhart, first proposed this algorithm [64],

they applied this algorithm initially to some simplified social model, here they
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took the mental state of mind of every individual as the position of the particle,

and each individual will posses his own mental state and attitude [65].

In this section the reasons for using PSO for adative equalization, instead of in-

stead of conventional algorithms like LMS etc, will be explained. The problem with

the previously used algorithms, for channel equalization, is that the convergence

speed of algorithms, like LMS, is too slow and it takes large number of iterations

for the solution to converge on some optimum value. Although LMS gives a stable

solution, if parameters of it are properly tuned, but still the convergence rate of

it was slow. Therefore to make the convergence rate fast, PSO was applied to

such research problems.A detailed literature review on PSO has been done in next

section.

PSO gives better solution to the problems which are multi dimensional and non

liner or non differentiable in nature. It is quite robust, fast, have lower computa-

tional cost, provides swift convergence rate with reliable solution. And due to such

abilities it has been used to solve such important research problems [66]. PSO

basically works like a ad-hoc system, where each individual particle will take the

decision on the basis of its individual observations and also modify this decision

on the account of the cooperation which it gets from the remaining particles of

the swarm. Hence every particle will take in to account these both things while

making any decision regarding the problem. As there will be so much inter com-

munication at the swarm level among particles so it will have a complex structure,

but it will be able to solve quite complex optimization problems easily. Here we

13



will just briefly explain the working of this algorithm.

This algorithm works on the basis of its population members, which collectively

known as swarm, and these particles work collectively to optimize the function,

which should be real valued, have any specific number of dimensions. Each parti-

cle in the swarm will have a specific position which is known as a potential solution

to any optimization problem in solution space. PSO will approach towards the

most optimal solution by applying specific modifications on the existing set of

solution, and these changes will be made through probabilistic and iterative mod-

ifications. Every particle will be having two basic parameters one is the position

and second one is the velocity, which decides the speed of every particle through

which it will approach to its optimum value. These both parameters are of im-

mense importance, as these should not be too fast that the particles fly out from

the solution space or they should not have smaller values that the convergence

rate will be slower. These particles will be generated randomly, and just like any

other optimization algorithm, it will be having an objective or cost function. For

channel equalization PSO will use the following cost function,

Jn(k) =
1

N

N∑

m=1

[emn(k)]
2 (1.2)

Where emn(k) represents the mth error of the nth particle, and N is input data

window size to the equalizer which is shown as u(k) in the figure 1.1. And the error

term will be calculated exactly in the same way as by equation 1.1, which is the

desired value, d(k), should be subtracted from the output of the equalizer, y(k).
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Afterwards we will apply this cost function to each and every particle, then we will

look for the minima among all the particles that will be known as global minima

or gbest. Every particle will be observed separately as well, and we will look for

its minimum value achieved so far, means every particle will have a memory and

it will also be storing the value of it before applying the cost function on it. Thus

the minimum value the minimum value so far achieved by this particle will be

known as local best or pbest. We will keep on changing the positions of particles

in such a way that they approach to an optimized value. While applying the

position and velocity updates on the particles, it has to keep under consideration

that no particle should fly out from specified range. Figure 1.2 represents the flow

diagram of the basic functionality of the PSO algorithm.

Figure 1.2: Flow chart of basic PSO Algorithm

15



The flow chart, in figure 1.2, clearly explain the basic functionality of PSO

algorithm that in start we have to define the boundaries, then randomly generation

of the particles and also make sure that particles are in specified range, then run

this algorithm for any number of specified iterations, which is totally application

dependent. Apply cost function on every particle, look for the minimum values

as specified earlier, then update the position of every particle until a stopping

criteria has arrived.

1.3.1 Literature review on PSO algorithm

Since after the introduction of this optimization technique, different variations

were introduced by many researchers in it, in order to improve its performance in

different aspects. In start, many researchers discussed the effect of inertia weights

on the performance of PSO, as velocity is multiplied by this inertia weight factor

before the velocity updating process so inertia weight actually controls the velocity

of the particles [67]. Then a new version was introduced by Clerc in [68], where a

constriction factor was used instead of inertia weight factor, and this constriction

factor used to make sure that particles should be limited to their present velocity

before updating. The main advantage of this algorithm is that it converges very

swiftly for the uni-modal problems, but for the multi-modal problems, there is

the chance that due to its swift convergence, it might trap in to some local min-

ima. One solution to get rid of this problem is to first find out all local minima

before making the decision for any global optimum value, but this procedure is
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quite time consuming and complex. To tackle this premature convergence, a new

technique was proposed in [69], here it was shown that the problem of this prema-

ture convergence can be resolved if we breed some of the particles, and this new

technique was named as Hybrid-PSO. A similar idea was proposed in [70]. In this

paper two new techniques were introduced, the combination of PSO and Genetic

Algorithms, both in parallel and in series form, and it was proved with the help

of simulation results that both these algorithms work better in order to find out

global optimum solution.

The most important thing regarding PSO, is the sensitivity analysis regard-

ing its different parameters, the proper value assignments to all its parame-

ters and if these values are properly assigned then there is very less chance

of the errors like premature convergence etc. There are many research pa-

pers, which have addressed the critical issue of parameters tuning for PSO algo-

rithm, but the most prominent research papers are proposed by Shi and Eberhart

[67, 71, 72, 73, 74, 75].

Kennedy in [76], proposed the idea of neighbourhood topology, where information

was shared by the particles with neighbours in order to enhance the search capac-

ity and get better results with better convergence rate. Here different convergence

rate were achieved by making different topologies of the neighbours, as neighbour

will share information with only specific neighbours only.

First time PSO was applied to the Neural Networks [65], after the achievement

of better results in this research field, PSO used for other applications as well.

17



Another development was proposed in PSO, which reduced the training time, is

known as Cooperative Particle Swarm Optimizer (CPSO) [77, 78]. In this method-

ology, the whole swarm will be divided in to different small swarms and each will

be solved with separate PSO. The different effects of size of the swarm was dis-

cussed in [79]. Parsopoulos and Vrahatis in 2002 [80], used PSO first time to solve

the problems which were multi objective. PSO solved many test problems which

were also multi objective and comparison of it with genetic algorithms have been

discussed by researchers as well.

PSO also performed well as hybrid with other techniques, like in [81] it was hy-

brid with genetic algorithms. PSO has another hybrid version which is based on

Levenberg-Marquardt optimizer, and while estimating six parameters, it achieved

high success rate [82]. Hybrid PSO with Cauchy mutation was proposed by Wang

in 2007 [83], and in this technique the problem of particles getting trapped in to

some local optimum was removed as in this technique particles will get closer to

the best particle in much less time or number of iterations. Due to this Cauchy

mutation best particle will lead remaining particles towards better optimum value.

Different simulation results showed that this method secured better performance

with multimodal functions. Another technique was proposed by Wei in [84], in

which he used different benchmark functions with only one dimensional mutation

operator to evade local optimum values. Along with one dimensional mutation he

used variable inertial weight and the variation in this inertial weight is based on

the diversity and the fitness of any specific particle.
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Another version of PSO was proposed by Xu in 2005, named Extended PSO

(EPSO) [85]. In this method, at each iteration while updating velocity equation

for each particle, he used global and local both best positions, as previously only

global positions were used for velocity updating process. This methodology com-

bines the best effects of both local and global best simultaneously.

A very useful paper which enlist the developments and all the applications and

resources of PSO algorithm, was presented by Eberhart and Shi in 2001 [86]. This

paper also presents all the arrays functions and the different types of it. Then

another very important modification done in [87], by making the inertia weight

as a function of improvement, any particle achieve in present iteration as com-

pare to previous one, in this research paper there are some other techniques were

proposed to overcome some critical issues related to the PSO algorithm and some

techniques of this paper will be used in our proposed algorithm. A very important

paper on this critical issue of PSO was presented by Kennedy [88]. In this paper

he describe in some informal way that true purpose of the research in PSO algo-

rithm is not to make it complicated rather to make it straightforward in such way

that it can be used in different applications without any ambiguity, and also to

do some detailed research on its essentials rather than purposing its suboptimal

methods.
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1.4 Thesis Contribution

This thesis comprises three contributions, first the implementation of a new al-

gorithm PSO-AW to adaptive channel equalization, mainly to enhance the con-

vergence rate. Second contribution is the proposed algorithm HPSO for adaptive

equalizations, mainly to improve steady state error. The third contribution is re-

garding reducing the number of computations or PSO operations, and to achieve

this two new techniques, LS and T&V, are incorporated with the proposed algo-

rithm HPSO.

First newly implemented algorithm, PSO-AW, will contribute in the sense of, im-

provement in convergence rate. In previously used PSO algorithm, one of those

exhibits better convergence rate but with degraded steady state error. And the

other one, have the ability to secure better steady state error but with slow con-

vergence rate. This newly implemented algorithm exhibits these both properties,

improved convergence rate with better steady state error. The proposed algo-

rithm will use hybrid methodology, by combining two previously used methods

along with a new methodology. In this hybrid algorithm, these all techniques

will be incorporated together in such a way that it yield improved convergence

rate by securing minimum steady state error as compare to all previously used

conventional algorithms.

This hybrid proposed algorithm achieved remarkable improvement in steady state

error as compare to previously used algorithms, for nonlinear system. These both

algorithms showed great improvement in BER with respect to LMS. Optimized
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parameters of these both algorithms will be provided as well, in order to get sta-

bilized MSE curves.

The main concern in all types of communications is to perform the functional-

ity with minimum efforts, in order to save time and power. In this thesis we

have incorporated our proposed algorithm HPSO, with two new techniques. Al-

though these techniques have slight less convergence rate as compare to PSO-AW

and HPSO, but these techniques used minimum number of steps to complete the

optimization process in much lesser time.

1.5 Thesis Layout

This thesis will consist of six chapters. In first chapter, we explained the func-

tionality of the adaptive channel equalization, and also all the reasons were stated

which brought this optimization technique alive. In this chapter we also explained

the basic functionality of the PSO algorithm, and the reason to employ this algo-

rithm over conventionally used other algorithms.

In second chapter we will clarify the origins of PSO algorithm, right from the be-

ginning when it was simulated just as a social model. In this chapter we will state

the examples through which different types of social and basic scientific optimiza-

tions problems were tackled by using PSO. PSO is the part of swarm intelligence

techniques, and in this chapter we will compare it with the genetic algorithms

which belong to evolutionary algorithms.

In third chapter we will explain the PSO algorithm, right from the scratch and
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explain it from basic level. All the modifications which have been done in PSO,

for adaptive equalization application, will also be explained. Here we will compare

the PSO with conventionally used algorithm, LMS, with the help of simulation

results.

In fourth and fifth chapter, we will explain everything about this newly imple-

mented algorithm PSO-AW and our proposed algorithm HPSO. All the reasons

which have led us to use these techniques will be explained as well. Their function-

ality with help of flow chart and equations will be explained. The comparison of

these algorithms, with all previously used PSO algorithms and LMS, will be pre-

sented with help of simulation results. Sensitivity analysis, to find the optimized

parameters for these both algorithms, will be done also. These both algorithms

will also be compared with LMS for Bit Error Rate (BER) analysis. In this whole

research everything will be proved with the help of simulations results and figures,

to strengthen our point of view.

In sixth chapter, we will state two new techniques which are used to reduce, the

number of computations, and processing time. We will make the tabular com-

parison of these techniques with respect to number of computations and values of

different parameters, for both linear and nonlinear scenarios. Final conclusion for

this thesis and future work will also be proposed in this chapter.
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CHAPTER 2

PARTICLE SWARM

OPTIMIZATION

2.1 Introduction

Particle swarm discovered by simulating a simplified social model. In this chapter

we will describe the ideas related to particle swarm optimization in provisions

of its originator, and will also review the steps of its progress, from basic social

simulation in to an optimizer. Different examples that employ this concept will

be stated as well. We will also explain the basics of particle swarm in contents of

its emergence from its root level. Then we will explain it with the help of different

evolutionary examples. The particle swarm algorithm here introduced in terms

of social and cognitive behaviour, although in engineering and computer sciences,

it has been used as a problem solving method. The first version of the particle

swarm which is presented here is designed to work in a binary search space. Later
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in this chapter we will introduce more commonly used version, which operates in

a space of real numbers.

As stated earlier that it was first introduced by Kennedy and Eberhart [66].The

roots of particle swarm optimization can be found in two main component method-

ologies. But more precisely it has ties to artificial life (A-life) in general, like fish

schooling, bird flocking and swarming theory in particular. The other related the-

ory is evolutionary computation, genetic algorithms, and evolutionary program-

ming, both have ties to it. These relationships are briefly reviewed in the chapter.

In the end we will compare PSO, which is the part of Swarm Intelligence, with

Evolutionary Algorithms(EAs), and among these all EAs, we will mainly compare

PSO with Genetic Algorithm (GA). Although there are many other evolutionary

algorithms but most commonly used technique is GA, therefore we choose this for

the comparison with PSO.

2.2 Simulating Social Behaviour

The movements in organisms like in fish school or bird flocking, have been ex-

plained by many scientists through computer simulations. Movement in organism

of bird flocking has been explained by Notably, Reynolds [89] and Heppner and

Grenander [90]. Heppner, who was a zoologist, was trying to find the basics rules

by which so many birds to flock synchronously, doing scattering and regrouping

and suddenly changing directions etc. These all scientists tried to find the insight

that local processes, which were modelled by cellular automata, might underlie
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the unpredictable group dynamics of bird social behaviour. All models depend

strongly on manipulation of inter-individual distances that is, the synchrony of

flocking behaviour was considered to be a function of the efforts of birds to main-

tain a specific and optimum distance between him and his neighbours.

It is quite obvious that some similar rules underlie animal social behaviour, which

includes herds, schools, and flocks, and also of humans. A sociobiologist E.0.

Wilson [91] has written, in the context of fish schooling, In theory each individual

members of the school can benefit by the discoveries and previous experiences of

all other members of the school during the search for the food. This advantage can

become disadvantage, whenever the food resources are unpredictably distributed

in different patches. This hypothesis or statement suggests that social sharing of

information between consecrates gives an evolutionary advantage. The fundamen-

tal development of particle swarm optimization is basically due to this hypothesis.

The model human social behaviour was one motive for development of such simula-

tion, which is obviously not similar to bird flocking or fish schooling. Abstractness

is one important difference. Physical movement of birds and fish have adjusted

to avoid predators, find food and mates, and also adjust and optimize their en-

vironmental parameters such as temperature, etc. The physical movement and

adjustment of humans also depend on cognitive or experiential variables as well.

We, human, in common practice do not walk in step and turn in at the same

time (although different researches in human this type of behaviour shows that

human are capable of it) rather, we used to change or adjust our beliefs and atti-
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tudes to comply with those of our social peers. Now in order to make a computer

simulation, a very major difference came across in the psychology of human and

birds, and that is known as collision. Any to human being can have similar beliefs

and attitude without colliding with each other, but any two birds cannot have

similar position without banging together. It seems fair, in discussing social be-

haviour of human, to map their notion of change into the fish or bird homology of

movement. This thing is persistent with the classic Aristotelians point of view for

qualitative and quantitative change as types of movement. So, rather than, mov-

ing through the three-dimensional physical space, and obviate themselves from

collisions, humans revert in abstract multidimensional space, collision-free. Infor-

mational inputs, obviously, affected by physical space, but this thing is arguably

a niggling component of psychological experience. In general, in very early age,

humans learn to avoid physical collision, but to avoid collision while navigating

in n-dimensional psychosocial space, still requires so many years of practice .

The particle swarm optimizer is probably best presented by explaining its con-

ceptual development. As mentioned above, the algorithm began as a simulation

of a simplified social environment. Therefore we will just explain the basics of

this swarm optimization and then we will explain it with the help of some social

behaviour examples and a binary model.
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2.3 Evaluate, Compare and Imitate

Adaptive Culture Model and particle swarms have been explained by the help of

a very simple sociocognitive theory. The explanation of the the process of cultural

adaptation has been done here in terms of a high-level component, which can be

viewed in the formation of different patterns among individuals and the also the

ability to solve problems, and a low-level component. Which we can say that it

is the actual or self explanatory universal behaviours of every individual, these

low-level components can be explained in terms of three pioneer principles,

• Evaluate

• Compare

• Imitate

These all will be briefly explained here.

2.3.1 Evaluate

It is the most common behavioural characteristic of living organisms, which is

tendency to evaluate. Any individual can evaluate oneself in so many ways, for

example to grade or rate itself as attractive or repulsive, as positive or negative etc.

This thing can even be found in bacterium, when they become agitated and start

running and tumbling, when the environment is poisonous. It is very common

thing in all organisms that their learning cannot occur unless they evaluate and

distinguish features of the environment that attract and also the features that
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repel, means they learn that which one is good or bad for them and so on. From

this analysis, we can say that this learning could even be explained as a change

that enables every organism to enhance or improve the average assessment of its

environment.

2.3.2 Compare

How people are used others as standard for measuring themselves, is comparison

and there are so many social theories which describe the ways that are used by

the people for this specific purpose. And also these theories explain that these

comparisons to others also serve as a kind of motivation to learn and change. It is

a very common practice in our common life, we can take the example of a school

boy who always tries to compare his own routine with the routine of his class fellow

how is a position holder in his class. In general there are many theories which

became the basis for subsequent social-psychological theories. Almost in every

phenomenon of life, we rate ourselves by the comparison with others, and this

comparison could be in evaluating our looks, personality, education, intelligence,

wealth or any other aspects of our ability or opinion.

Like these all models here in particle swarm, individuals in the adaptive culture

model compare themselves with their neighbours, but by keeping this view in mind

that the neighbour which they have chosen for the comparison should be superior

to them, if not then it is very obvious that there is no benefit in comparing.

And these standards for social behaviour, of being superior or inferior, are set by
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comparison to others. It is just like the similarity of a school boy, that he will

compare himself with the student who have a good position in class relative to

him, but not with the students whose grades are even low relative to him, so it is

like a common psychology of people.

2.3.3 Imitate

Imitation is an effective way to learn to do things and normally people think that

it is everywhere in the nature. And through research many scientists have proved

that not all animals are capable of doing real imitation, in fact, they pronounce

that only some birds, fish and humans are capable of it. There are different vari-

ations of social mimicking and learning is found among other species, but none

compare to the ability of human to copy one another. Human mimicking comprises

taking the perception of the other person, not only copy behaviour but also look

forward for the reasons and purposes of it then execute that specific behaviour

when it is suitable. For example, any individual’s utilization of an entity as a tool

may be known as individual’s attention to the entity, this second individual may

use the same entity, but might be in a different way. True imitation is mainly

essential to human sociality, and it is central to the acquirement and preservation

of the mental abilities as well.

These three principles of evaluating, comparing, and imitating, which have been

explained, may be combined, even in quite simple format to execute the computer

programs, while enabling them to acclimatize to multi-dimensional and complex

29



environmental challenges, and solve tremendously difficult problems. Our view

deviates from the cognitive viewpoint in that nothing moreover evaluation, com-

parison and imitation takes place within the individuals mind will not be found

hidden, private chambers covered inside the individual, but still it will remain in

existence in the open, it is more like a communal experience.

2.4 Examples explaining Swarm optimization

Here swarm optimization will be explained with the help of different examples.

2.4.1 Nearest neighbour velocity matching and craziness

These simulations which are quite satisfactory relied on two props: nearest neigh-

bour velocity matching and craziness. A random population of birds was gener-

ated with a location for every bird on a pixel grid and representing their velocities

by X and Y. To make our simulation reasonable we represent each bird by an

agent. Then within a loop at each iteration this program will determine the near-

est neighbour for each agent, then assign that agents X and Y velocities to the

focused agent. By applying this simple rule in program, it was observed that it

creates a synchrony of movement [68].

After running this simulation so many times it was observed that the flock rapidly

settled on a common and fixed direction. So in order to introduce some random

behaviour in our simulation, a stochastic variable called craziness was introduced.

Within a loop at each iteration some random changes were added to the velocity
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variables X and Y. This change in simulation reflects enough discrepancy into the

system to give the it an exciting and lifelike emergence, although of course these

whole variations were artificial.

2.4.2 The Cornfield Vector

To overcome the deficiencies of previous simulations here a dynamic force will be

added in to it. In which new term introduced, roost, which is known as temporary

rest place of birds, all birds will flock around it, and in programming sense it will

be a position on the pixel screen that will attract the birds until they landed there

eventually. Due to this addition, we will not be needed the variable like craziness

to introduce stochastic behaviour in simulation. And the idea of a roost was

interesting; and it raised another question which seemed even more motivating.

This flock of birds in simulation knew the exact location of roost, but in real life

it would not be the case, birds may land on any tree or telephone wire that meet

their urgent requirements. Rather in real life, birds flock try to land where there

is food. So the very next basic question will be that how do they find about it?

If you put out a bird feeder, you will see that within hours a huge number of

birds will be expected to find it, although they will not be having any previous

knowledge of its location or appearance etc. So to answer this question that how

the flock find it, there is likelihood that there might be something related to the

flock dynamics which enables members of the flock to exploit on one anothers

information.

31



Then another change has been added in simulation by defining a cornfield vector,

which is a two dimensional vector of XY coordinates on the pixel plane [92]. Then

in our simulation each agent will be programmed to calculate its present position

by following equation,

Peva =
√

(present x− 100)2 +
√

(present y − 100)2

So that at the position (100,100) the value will be zero. Each agent will remember

the best value of it so far and the coordinates which had resulted in that value.

This value will be known as pbest[] and the positions pbestx[] and pbesty[], here

it is important to mention that braces shows that these are arrays with number

of elements equal to number of birds or agents. So every agent will evaluate

its position by moving across the whole pixel space, so in this manner X and Y

velocities for every agent will be adjusted in a simple manner. If the position of

agent is on the right side of its pbestx, then its X velocity, let call it vx, will be

adjusted negatively by a random amount weight by following equation,

vx[] = vx[]− rand() ∗ p− increment

If the position of agent is on the left side of its pbestx, then rand()*p-increment

will be added to vx[]. Similarly for Y, velocities vy[] will be adjusted up and down,

depending on whether the position was above or below pbesty.

Now to introduce some social behaviour in simulation it will be programmed in
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such a way that every agent will know about the globally best position that any

other member of the flock so far have found, and also its value. This phenomenon

was introduced by simply assigning the array index of that agent with the best

value so far, to a variable called gbest, so that pbestx[gbest] will be the groups best

X position, and pbesty[gbest] will be the best Y position, and this information

will be available to every agent of flock. Again, each agents vx[] and vy[] will be

adjusted as follows, where g-increment is a system parameter.

if presentx[] > pbestx[gbest] then vx[] = vx[]− rand ∗ g − increment

if presentx[] < pbestx[gbest] then vx[] = vx[] + rand ∗ g − increment

if presenty[] > pbesty[gbest] then vy[] = vy[]− rand ∗ g − increment

if presenty[] > pbesty[gbest] then vy[] = vy[] + rand ∗ g − increment

With p-increment and g-increment will be assigned some high values, after it the

flock seemed to be sucked aggressively into the cornfield. Within some iterations

the entire flock of birds, usually 20 to 25 those, was seen to be clustered in form of

tiny circles surrounding the goal. If we assign p-increment and g-increment low

values, then flock will swirl around the goal, rationally approaching it, swinging

out steadily with making sure that subgroups will be synchronized, and eventually

landing to the target.

Now we will turn our attention from birds to a binary case.
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2.4.3 A model of Binary decision

Let we consider any set individuals and all of them will have only one simple thing

in mind, only single and fixed set of decisions to make, true/false or yes/no, these

type of decisions are known as binary decisions but these are very slight decisions

where choice of decision is not very easy. For every single decision, this simplified

individual can have only one of the two stages either in yes state, which will be

represented here by 1, or the other state will be represented by 0. As any single

individual will be surrounded by other individuals which means that any single

decision will be surrounded by other yes or no individuals, who are also trying

to make the decisions. Every individual will obviously want to make the best

choices, whether it would be no or yes [93].

Every individual will have two types of important information. The first is their

own experience of choosing that is which state has been better so far, whether yes

was more fruitful or no was. But these individual beings have second thought;

they have awareness of how the other individual beings around them have per-

formed so far. As these choices are so simple that they all know that the choices

which have been made by their neighbours so far, have found most positive and

how positive the best prototype of choices was. If these individual beings were like

people, then they also would have known that how their neighbours so far have

done by observing them and also by sharing with them about their experiences.

The likelihood that the any individual will decide yes for any of the decisions is

a function of how booming this choice has been for them in the past as compare
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to the other choice. The choice will also be affected by some social weight, al-

though there is no doubt in it that this rule is not so clear among human being.

It has been proposed by social impact theory that the binary decision by every

individual will tend to agree with the judgement held by the bulk of others and

also subjective to the strength and proximity.

Different individuals will be connected to each other according to so many differ-

ent schemes; there are two simple sociometric principles which have been used by

most particle swarm. The first conceptual thing, which connects all members of

the population with each other, is called gbest. Here it is worthy to mention that

each particle will be influenced by the overall best performance of any member

among whole population. The second parameter known as lbest, where g and l

will be used for global and local, it will create a neighbourhood for each specific

individual, which consist of its p nearest neighbours in the population and along

with itself. For example, if p = 2, then each individual i will be effected by the

best performance with in a group made up of particles i 1, i, and i + 1. Differ-

ent kind of effects can be achieved by making different neighbourhood topologies.

There are two components of theory here first one is that individual term, indi-

vidual knowledge or approach towards any behaviour, and other is social term,

which can be known as cultural approach. In many theories, these two kinds of

concepts are found and can also be seen in our decision model as the two main

things that made the changes in formula. Here strongly stated that the coexis-

tence of these two modes of awareness, that is, knowledge and awareness gained
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by the sanity through practice in the world and the knowledge gained from others,

these two skills give human the rational gain, which is also the main source of our

astuteness. There is also a third parameter which affects the individual’s decision,

besides their previous experiences and the feedback from the social environment,

is their present point regarding that specific issue. There might be the case that

current point of view regarding specific issue of any individual, may have a neg-

ative attitude but subsequent feedback from others might be positive experiences

regarding that choice, but that individual still have a negative feeling about it.

The positive feedback from others may compel that specific individual likely to

select the positive alternative, but to make that individuals general behaviour

towards the positive domain; the assessment verge would still have to be shifted

upwards. If individual is already at extreme position initially, then likelihood of

it to change is lower.

In order to make our simulation work properly, mathematically, we will introduce

a model where the likelihood of an individuals decision to be yes or no, true or

false, is a function of both social and cognitive factors [93],

P (xjd(t) = 1) = f(xjd(t− 1), vjd(t− 1), pjd, pgd)

• P (xjd(t) = 1) is the probability that individual j will choose 1, whereas

probability of making the choice zero is 1 P, for the bit at the dth site on

the bit string

• xjd (t) is the present state of the bit string d of the individual j
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• t represents the current time step, and t 1 is the previous time step

• vjd(t − 1) shows the measurement of the individuals tendency or present

probability of deciding 1

• pjd will be the best state or best choice taken so far, for example, its value

will 1 if the individuals overall best success occurred when xjd had the value

of 1 and obviously zero if it was zero

• pgd shows the social, neighbourhood, best, and again it will have the value

of 1 if the best success achieved by any member of the neighbourhood was

1 or zero in the other case

Here we can state that overall decision is stochastic and all the forces are involved

in taking any choice and it is hardly possible, or we can say impossible that any

choice taken is based only on isolated facts and effecting directly to that decision

all alone. More the randomness will make the exploration of new likelihood and

possibilities, and by reducing this randomness will obviously force the members

to settle for the best values achieved so far. So we have to create a balance among

these two modes of search so that exploration of new possibilities and convergence

in results, both should be there simultaneously.

2.5 Swarm and Particles

The swarm term used by many researchers in literature, like Millonas [94], he de-

veloped this models in such a way that it can be used in applications of artificial
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life, and expressed five basic rules of swarm intelligence. First of these rules, is

the immediacy principle, that population should be carried in easy way and time

computation. Second rule is related to quality, that every member of population

should respond to some quality factors, which will be defined in the surroundings.

Third rule is related to various responses, that the members of population should

not take their activities along extremely constricted channels. Fourth rule ensures

the stability, that population members should not vary their mode of actions each

time the surrounding change. The last rule is related to adaptability, that there

should not be stiff behaviour in any member of the population and every member

should be able to vary mode of its behaviour when it is worth to computational

cost. It is clear that fourth and fifth rules are totally two opposite concepts but

both have their own significance in specific situations.

The concepts of particle swarm optimization and all its details which have been

presented here seem to stick to all five rules. To create the relation of these rules

to all the discussion have been made so far, we proposed that the population

members will respond to the quality factors pbest and gbest. The provision of re-

sponses among pbest and gbest, will be carried out. Every population member will

change the mode of its behaviour, only when gbest will vary, so this proposition

is similar to stability. The population members are adaptive in nature because it

varies only when gbest will vary.

The term particle, which have been picked by researchers here is like a compro-

mise, as it can be said here that the population members do not have mass or
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volume, so they should have been stated as points. In this case the velocities and

accelerations, which have been used many times here, are more fittingly related

to particles instead of points, this will be appropriate even if every member have

randomly small mass or volume. Also, Reeves [95] explained system of particles

as members of clouds which models to disseminate some rules such as clouds,

fire and smoke. Therefore the tag which have been chosen here to represent this

optimization concept is particle swarm .

2.6 Swarm Intelligence

We have explained so far, particle swarm with the references of animal and human

behaviour, of both kinds social and cognitive. Particle swarm is mainly lie under

the category of swarm intelligence. In swarm intelligence there will not be any

centrally controlled mechanism, means no one will be giving the orders to anyone,

which actually happens in particle swarm, where every agent or particle will take

the decision on the basis of some local information. And the overall swarm will

be able to perform the different complex tasks which obviously cannot be done by

any individual particle, because it also requires some social interaction to perform

such complex tasks. This interaction among the particles will give the swarm a

complex structure, but this will be required in order to tackle complex optimiza-

tion functions.

The idea of swarm intelligence was also first purposed by Kennedy and Eber-

hart [64], in which they defined five basic working principles of swarm intelligence,
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and following are these five principles,

1. Proximity principle: Simple and space, all types of calculations should be

carried out by this swarm.

2. Quality principle: Swarm should vary its parameters in beneficiary way, in

order to maintain some quality factors, as environment change.

3. Diverse response principle: The swarm should not be spending too much

time during its processing at channels which are narrow.

4. Stability principle: In order to ensure the stability, swarm should not change

its behaviour every time when environment change, until its beneficial.

5. Adaptability principle: But when it is worthy enough, with respect to com-

putational price, swarm must change its behaviour.

And our PSO follows all these five principles, so we can entitled it as a intelligent

system.

2.7 Comparison between GA and PSO

A chromosome of a population in genetic algorithm is similar to a particle in

PSO, both particle and chromosome are representation of potential solution for

any given optimization problem. As in genetic algorithms, the main operators like

crossover and mutation can be implemented in different ways, similarly in PSO

different operators can also be implemented in different ways. Although these
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operators in both techniques are not the same, but still there are some similarities

depending upon the implementation of operators. This association is normally

affected by this reality that, effect of operators in genetic algorithm frequently

changes by the time.

For example if we consider crossover operator, then the effect of it can vary with

time. At the initial stages of formation a generation the population members are

randomly initialized, then by applying this operator, the new born chromosomes

may diverge in the solution space, but it is not the case every time, some new

chromosomes can get a place near the optimized solution, and it also might be

the case that some chromosomes will go out from the search space. Therefore in

the end of formation of a new generation, the population members will converge

towards the optimum solution, even if not every member, but most of them will

have almost same structures. If we use the crossover operator less then effect on

the population members of next generation will be minimum, so it means in order

to optimize our problem we have to vary the crossover probability, and we have

to keep it large in the start of simulation so that it can explore the whole search

space, and should not get stuck in some local value. As process reaches towards

end then this probability should be small so that it should converge [93].

As PSO do not have this operator, crossover, but this phenomenon is done in PSO

by making sure that each particle of search space should be accelerated stochas-

tically in the direction of its personal prior best position, so far, and also in the

direction of global best position. The behaviour like crossover operator can also
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be found in the particles of PSO, like the particles which emerge in the region

of halfway between swarms of particles and the particles which cluster around

local best positions or among consecutive global best positions. It looks like those

particles are doing exploration, even for a while, in a section that represents the

geometric mean of two prominent regions. And this geometric mean is basically

the main analogy, which makes PSO similar to the crossover operator in genetic

algorithm [96]. Normally, in genetic algorithm the crossover operator is used be-

tween arbitrarily chosen population members, which are the main reason that

the progression of any specific population member implies the exchanging of ge-

netic trait with other arbitrarily chosen population member. Whereas in PSO,

any member or particle will not swap traits with other potential particle, but its

movement will be influenced by the movement of the other particle, towards the

best positions. Hence in this way, the movement of any specific particle will be

inclined by its own prior best location and also by the global best location.

Mutation has opposite effect as compare to crossover operator in genetic algo-

rithm. Mutation will have less effect at the starting of the simulation but it will

have a very pronounced effect in the end. And the reason behind this is that in

the start population will be generated arbitrarily so at this stage even we flip a

bit, it will not alter the chromosome with greater effect as compare to that of in

the end when even a single bit flip will cause an evident change in chromosome

because at the end these chromosomes were converging towards some optimum

value, so change at this point will show some large effects. Again it all depends
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upon the requirement of the problem, to select the value of mutation rate, but

usually this rate kept small in start and high in the end of run. Now there exist

the analogy between mutation operator and the velocity of particles in PSO, as

every particle in PSO will have some specific velocity, so we can say that the

mutation like conduct is directional in PSO. In PSO the distance between the

present location of the particle and the best location of that particle, achieved so

far, is similar.

Hence this discussion proves that the effectiveness of these both techniques de-

pend on the application in which these will be used. Still PSO is better than

GA in a sense that here system is initialized by random solutions for the optima

by updating generations but no mutation or crossover, here potential solutions,

particles, fly through the problem by following the current optimum particle. The

very important advantage of PSO over GAs is that it has memory, means each

and every particle will remember the best position, means the best solution, it

has achieved so far, and also it will remember the best position or solution of the

group, known as global best. PSO is also more suitable to handle time varying

problems. PSO has another advantage over GAs, that the number of members

of population will remain fix through whole simulation, so different operators to

apply on the population will not be required, in which process might become slow.

Therefore we can say that in PSO algorithm we apply the productive collabora-

tion among particles, which is not the case of other different artificial algorithms

where the main idea is that only fittest members will survive [65].
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CHAPTER 3

BLUEPRINT OF PSO

ALGORITHM

3.1 Introduction

In this chapter, the formation of Particle Swarm Optimization algorithm from its

very early stages to its up to date changes in its basic structure, will be explained.

The algorithm of PSO was originated from basic displacement equation of physics,

so it will be explained first then there will be detailed overview about all the

changes, which were afterwards made in to it, in order to improve the simulation

results. In order to strengthen our argument we will also explain every change,

which had been made in to it, by simulation different scenarios in both linear and

non linear environment.
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3.2 From Physics to PSO

First we will give the brief idea of the algorithm of Particle swarm Optimization,

then we will show that how it has been derived from physics.

3.2.1 Basic Algorithm

As stated earlier that in PSO we generate a random potential solutions of any

optimization problem and these solutions will known as particles. Like any other

optimization problem it will be having an objective or cost function, which will be

applied on particles, afterwards we will look for the minima among all particles

that will be known as global minima or gbest. Then every particle will be analysed

separately and we will see its minimum value on all of its so far iterations, means

every particle will have a memory and it will be storing the value of it before

applying the cost function on it. This value will known as local best or pbest, and

then we will keep on changing the positions of particles in such a way that they

approach towards an optimized value.

3.2.2 Derivation of Algorithm from Displacement equa-

tion

As we all know that the displacement equation from physics as follows,

�x = �x0 + �v0t+
1

2
�at2 (3.1)
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Where �x is new displacement and x0 is previous position and v0 is previous velocity,

and here we will assume constant acceleration a overtime period t.

For the iteration version,

�x(k + 1) = �x(k) + �v(k) +
1

2
�a(k)

We will be using time index k as previous iteration and k+1 as present iteration,

and t will be the time difference of it so,

t = (k + 1)− k = 1

That shows how t eliminated from equation.

As in the start we stated that random particles will be generated, so we need to

index them. For any ith particle, the equation 3.2 will become,

�xi(k + 1) = �xi(k) + �vi(k) +
1

2
�ai(k) (3.2)

And all particles will follow the same rule.

These particles or potential solution to any given optimization problem will have

the social influence and of cognitive, self intelligence, influence, and on the basis

of these two things these all particles will decide for their future decisions. As

we are explaining it in terms of physics so we will denote this influence term by

acceleration of the particles and there would be two types of accelerations,
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• Cognitive acceleration

• Social acceleration

First for cognitive acceleration, it will be having the influence of two things, or

it is proportional to two parameters, first is its position difference from its local

best so far it has achieved, also known as pbest or �pi(k), that is �pi(k)− �xi(k) , and

second parameter is cognitive acceleration constant denoted by c1.

For social acceleration, it will be having the influence of two things as well, or

it is proportional to two parameters, first is its position difference from global

best so far whole population has achieved, also known as gbest or �gi(k) , that is

�gi(k)− �xi(k), and second parameter is the social acceleration constant denoted by

c2.

Hence the total acceleration will become,

�ai(k) = c1 ∗ (�pi(k)− �xi(k)) + c2 ∗ (�gi(k)− �xi(k))

By substituting this value in equation-3.2

�xi(k + 1) = �xi(k) + �vi(k) +
1

2
(c1 ∗ (�pi(k)− �xi(k)) + c2 ∗ (�gi(k)− �xi(k)))

In order to introduce the stochastic behaviour in the algorithm we will introduce

pseudo random numbers in each dimension with expected value of one half and

ranging from zero to one, and we will replace these random variables in equation

3.3 in place of,
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1
2
∗ c1 = c1 ∗ rand() and 1

2
∗ c2 = c2 ∗ rand()

In this case the equation-3.3 will become,

�xi(k + 1) = �xi(k) + �vi(k) + c1 ∗ rand()(�pi(k)− �xi(k)) + c2 ∗ rand()(�gi(k)− �xi(k))

Similarly we will from the velocity update equation, as all particles have to move

towards a optimal solution with a specified velocity so similar update will be done

for velocity update, and that equation will be,

�vi(k + 1) = �vi(k) + c1 ∗ rand() ∗ (�pi(k)− �xi(k)) + c2 ∗ rand() ∗ (�gi(k)− �xi(k))

If we consider previous velocities as well, which sometimes grows too larger and

our particles might flew out of bound from the domain or search space. In order to

avoid this situation a new variable named inertia weight , which will control the

position and velocity of all the particles to remain in some specified bound, will

be introduced. Hence by introducing this weight factor w in to above equations,

our velocity and position update equations will become,

Velocity update equation:

�vi(k + 1) = w�vi(k) + c1 ∗ rand() ∗ (�pi(k)− �xi(k)) + c2 ∗ rand() ∗ (�gi(k)− �xi(k))
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Position update equation:

�xi(k + 1) = �xi(k) + �vi(k + 1)

So for every iteration we will update these two equation for whole population in

each dimension.

3.3 Multidimensional PSO

We have derived PSO for only one dimension of each particle, but in most practical

cases we have to search for an optimal solution while considering many aspects of

that single solution. Therefore every single particle have to optimize itself in multi

dimensions and the update equation for our particles will be multi dimensional.

Let the ith particle have D dimensions, then it will be represented by,

Xi = (xi1, xi2, xi3, ..., xiD)

Here every particle will follow its coordinates in multi-dimensional space, which

were related to the most fit solution achieved so far. The fitness value, which have

been achieved so far, of any specific particle i, known as (pbest ), is also stored as,

Pi = (pi1, p, pi3, ..., piD) As it has been stated earlier that PSO also keeps tracks

globally, so it will also keep on calculating the most best value globally, and

that value is known as (gbest ), and also location of this value, which have been

secured by any particle in the whole population. At every iteration, PSO will keep

on varying the velocity of each and every particle in the direction of its pbest and

49



gbest, by following formula [97],

vid = w ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand() ∗ (pgd − xid), 1 ≤ d ≤ D

Here w is the inertia weight,c1 and c2 are acceleration constants, rand( ),is used

to introduce the stochastic behaviour in it, is uniformly distributed random

number between zero and one, and pid = pbest and pgd = gbest.

And position update equation will from above given detail will be,

xid = xid + vid 1 ≤ d ≤ D

3.4 Effect of different parameters on algorithm

In this section we will discuss effects of all the parameters used in PSO, like iner-

tia weight w and constants c1andc2 etc, on the performance and efficiency of the

algorithm. This discussion will give a brief idea of the basics of PSO algorithm

and effect of parameters on it. The inertia weight w here controls the momentum

expression,w ∗vid, which denotes the effect of preceding velocity of the ith particle

on its present velocity. In other words, the large value of w will make present

velocityvid large and due to this particles will search extensively in solution space

which will help to find out the new solutions in the search spaces, but it will

make the convergence rate slow. On the other hand if we keep the inertia weight
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small then momentum term in the formula will be smaller which will be useful

to discover solution in the present search space. This concludes that bigger the

inertia weight will make particles to discover more solutions in the whole solution

space, but on the cost of slow convergence rate and for smaller values of it, the

convergence rate will be higher [98].

The rate, at which particles move in the direction of their local best values, is

controlled by acceleration constantc1, andc2 is the acceleration constant which

will control the movement of particles in the direction of global best values. By

taking c1 = 0, every particle will get global experience only, which means each

and every particle will not have any cognitive control but will be effected by social

weight only, and all particles will move freely in a swarm with the less probability

to reach a global solution. If we make c2 = 0, then every particle will endure only

self experience, means it will make the decisions only by cognitive sense. The

convergence rate in this case is quite higher but there will be higher possibility

that particles will be trapped in to some local optimum value. And when c1 = c2=

0, then all particles will not be having any kind of social or cognitive experience,

and this will make the some sort of disordered movement of particles in swarm.

Therefore a trade off has to be done among these parameters. In order to make

sure that all particles should not fly out from the solution space, the velocities of

every particle will be constrained in some selected range [vmax, vmax], which will

be problem dependent. The vector of velocity for the ith particle will be shown

as,
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Vi = (vi1, vi2, vi3, ..., viD) We will give some random weight to acceleration, and

these random numbers will be produced separately, due to which particles will

move towards pbest and gbest.

So far we have explained the basic PSO algorithm, in next section we will show

some simulation results of previously used PSO algorithms and of LMS, for appli-

cation of channel equalization, then we will identify the problems in the simulation

results and propose the effective solution to those.

3.5 Modifications in PSO algorithm

As effect of different parameters on PSO algorithm has been explained, so different

changes have been made in algorithm by altering different parameters. Here we

will explain these two types of PSO algorithm, which are,

• PSO-W (using linearly decreasing inertia weight)

• PSO-CCF (using constant constriction factor)

• PSO-VCF (using variable constriction factor)

We will briefly explain these all types and in order to ensure that we will apply

changes on perfectly working algorithm, we have to implement these algorithms

first. Therefore we will implement these algorithms on any deterministic function

just to see that it is working properly.
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3.5.1 PSO-W

Here the first change in algorithm will be made, by making its inertia weight as a

function of time. This first improvement ensures that in less number of iteration,

process reach to its optimized value. The tuning of inertia weight will decide

the performance of this customized algorithm. A linearly time decreasing inertia

weight was proposed in this method [72] and it has been evaluated as well, by the

following update equation 3.3,

wn = (wi − wf ) ∗ m− n

m− 1
+ wf (3.3)

Where wi is initial weight, and wf is final weight, m is maximum number of

iterations and n is iteration variable index. Whereas position update equation

will remain the same but velocity update equation will become,

vid = wn ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand() ∗ (pgd − xid), 1 ≤ d ≤ D

xid = xid + vid 1 ≤ d ≤ D

As explained earlier that inertia weight term is used to control the effect of

velocities of previous particle on both the present velocity and the exploration of

local and global solutions in search space. Therefore it can be stated here that

the motive for using a linearly time decreasing inertia weight parameter, which is
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large values of inertia weight will be used in the start of the simulation to make

sure that the particles should discover globally the search space, and in the end

of simulation assign it smaller values to make sure that at the end of simulation

particles should explore only locally around a globally optimum value, and should

converge on it.

3.5.2 PSO-CCF

Afterwards different literature were proposed to tackle the convergence rate and

other problems of this algorithm and then instead of using inertia weight, con-

striction factor was used to make sure that PSO algorithm should converge in less

number of iterations. A basic constriction factor was anticipated in [72], which is

shown in equation 3.4,

K =
k

|2− φ−√
φ2 − 4φ| (3.4)

Where k = 2, φ = c1 + c2, and φ > 4. And our velocity update vector will

become,

vid = K [vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand() ∗ (pgd − xid)] , 1 ≤ d ≤ D

Here position update equation will remain the same. An analysis has been done

in [72], for comparison of PSO using constriction factor and using linearly time
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decreasing inertia weight. This analysis proves that the most suitable approach

is, to use PSO using constriction factor and limit the maximum velocity vmax

the variable range of the variable xmax in every dimension.

3.5.3 PSO-VCF

Many researchers started work on constriction factor, once faster convergence

rate was achieved through this method. An idea of using variable constriction

factor, instead of constant constriction factor, was proposed in [98]. This variable

constriction factor is shown in equation 3.5,

kn = kmin + (kmax − kmin) ∗ m− n

m− 1
(3.5)

Where m is the maximum number of iterations and n is variable iteration index.

The position update equation will remain same and velocity update equation is

shown in following equation,

vid = kn [vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand() ∗ (pgd − xid)] , 1 ≤ d ≤ D

We will apply these all algorithm to any deterministic function, a simple non-

linear function which is shown in equation 3.6,

f(x) = x2 (3.6)
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And the simulation result is shown in figure 3.1.
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Figure 3.1: Simulation results of PSOW, PSO-VCF and PSO-CCF using deter-
ministic function

From figure 3.1, it is evident that there is an improvement in convergence while

using PSO-CCF, although steady state error is increased but still the purpose of

getting higher convergence rate was achieved while using PSO-CCF. And with

PSO-VCF we had both, improved steady state error and better convergence rate,

at same time. Also this figure confirms that these algorithms are working properly

and we can apply these algorithms on specified application.

3.6 Comparison of simulation results of PSO

and LMS Algorithms

In order to compare the efficiency of PSO algorithm with respect to LMS algo-

rithm, we will use the application of channel equalization. We will perform the

channel equalization by first using LMS and then by using PSO, afterwards we
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will compare the different versions of PSO through this application. For PSO-W,

PSO-CCF and PSO-VCF, the optimal parameters will be, Xmin=-2, Xmax=2,

the number of particles for every run is 40, input window size N will be 200, and

number of iterations will be 500 and results will be averaged over 20 runs. For

remaining parameters, for PSO-W, Vmax=0.07Xmax, Wmin=0.6 and Wmax=1,

c1=c2=1.5. For PSO-CCF, Vmax=0.20Xmax, c1=c2=4, k=5, Vmax=0.20Xmax.

For PSO-VCF, c1 = c2 = 4, kmin = 4, kmax = 6, and vmax = 0.20xmax. For

LMS the step size will be 0.025 [98]. Two linear time-invariant channel models

are used in the simulation and are described by their following transfer functions

H1(z) = 0.2602+0.9298z1 +0.2602z2, and H2(z) = 0.408 + 0.816z1 + 0.408z2.

Simulation result comparison of LMS algorithm with PSO-W, PSO-VCF and
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Figure 3.2: MSE curves for PSO-W, PSO-CCF, PSO-VCF and LMS using H1(z)

PSO-CCF are shown in figure 3.2 and figure 3.3. It is evident from these figures

these PSO algorithms showed superior performance over LMS. If we are concerned

about convergence rate then PSO-CCF is the algorithm of choice but steady state

error is higher in this case, so it will be application dependent to choose any spe-
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Figure 3.3: MSE curves for PSO-W, PSO-CCF, PSO-VCF and LMS using H2(z)

cific algorithm.

Previously shown simulation results were using linear systems, now we will com-

pare the simulation results using non linear system which is shown in figure 3.4.

Where b1=1, b2=0.1, b3=0.05, and the channel used is H1(z) = 0.2602+0.9298z1

Figure 3.4: Nonlinear system

+0.2602z2.

Figure 3.5, shows the simulation results of comparison among these algorithms

using nonlinear system, and here we can observe that now the improvement in

steady state error is more for PSO as compare to the linear systems, which is
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Figure 3.5: MSE curves for PSO-W, PSO-CCF, PSO-VCF and LMS using non-
linear system

also due to the fact that all PSO algorithms perform better for nonlinear systems.

And in most of the cases, in practical applications, we face nonlinear conditions.

So PSO algorithms are more suitable option in such scenarios.

3.7 Conclusion

In this chapter we explained the working of PSO algorithms, right from the be-

ginning. Then we explained all the modifications, which have been done with it.

And after that we did the simulation based comparison of conventionally used al-

gorithm LMS, with the so far used PSO algorithms for adaptive equalization. We

did this comparison while using both linear time invariant channels and nonlinear

systems. And through all these simulation results it can be concluded here that

all these PSO algorithms showed better performance with respect to convergence

rate as compare to LMS, in both linear and nonlinear system.
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CHAPTER 4

IMPLEMENTATION OF PSO

ALGORITHM BY ADAPTIVE

INERTIA WEIGHT

4.1 Introduction

In this chapter, problems in all the previously used algorithms for adaptive channel

equalization will be explained, for which the convergence rate or steady state

error got effected. Then we will explain PSO algorithm with adaptive inertia

weight and then applied to real scenarios. Simulation results presented here,

showed the superiority of this algorithm over others. Since PSO more vulnerable

to instability as compare to LMS, therefore to achieve stable and best performance,

it is necessary to optimize every PSO algorithm with respect to every parameter

involved in it. Therefore a sensitivity analysis for this algorithm will be carried out.
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As steady state MSE is a good metric for ensuring the performance of algorithms

under test, but still Bit Error Rate (BER) analysis is used for comparison with

LMS.

4.2 Problems With The Conventional PSO Al-

gorithms

In conventional PSO algorithms, from the simulation results of PSO-W, PSO-VCF

and PSO-CCF provided in the previous chapter, it can be observed that it possess

a disadvantage. Which is the stagnancy of whole population around any specific

point, and due to this there is chance that it might search only in that specific

region. This will be excellent if that point is optimum one, but if that point is

local minima, then the probability that whole population will remain around that

local minimum value will be higher. Sometimes such scenarios severely damage

the results.

There are two main parameters through which the performance of any algorithm

can be evaluated, first one is convergence speed or rate and other is search capacity.

From the simulation results shown in figures-3.2, 3.3, 3.5, it can be observed that

results using PSO-W and PSO-VCF, gave better results with respect to search

capacity, but the convergence speed is slower. Whereas results achieved through

PSO-CCF, showed great enhancement in convergence rate, but the error is quite

higher which shows that the search capacity of this algorithm is not up to mark
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as compare to PSO-W and PSO-VCF. And the convergence rate of PSO-W and

PSO-VCF is less as compare to the convergence rate of PSO-CCF. Although these

all PSO algorithms showed better results, with respect to convergence rate and

search capacity, as compare to LMS.

Hence it can be stated that there is an issue of search capacity enhancement and

convergence rate, with these two PSO algorithms. Now we will explain, how these

two issues are causing the degradation in these algorithms and then their remedy

will be explained.

4.2.1 Search Capacity Enhancement, Expected Problems

and Solutions

When a new gbest is found all particles will start to move towards it in same

general direction and due to this there is the chance that some regions, other than

this new minima discovered, will be excluded from the search space. Particles

closer to gbest will tend to converge on it in very short time and then there will

be no update in their position or velocity, as they have already approached to

optimum value, so these particles will become stagnant and will not contribute

further in search. If we have very irregular surface with many local minima, then

there is the chance that particles will get trap in to some local value, and they

will never get the chance to approach toward the global optimum value.

So far the expected problems related to search capacity enhancement has been

explained, now different possible solutions will be explained for this.

62



One possible solution is, increase the acceleration coefficients. In this way the ac-

celeration will be increased and swarm will get more chance to explore the search

space. As acceleration of the particles increases, the probability that particles

will be trapped in to some local minima, will be reduced as well. Because these

particles with higher acceleration, will not settle down quickly so the chance of

getting trap in some local value will be minimized. As nothing comes free here, so

due to this increased acceleration of the particles, the swarm will take more time

to converge on some value and there will be a degradation in the performance

regarding convergence rate.

The problem of stagnancy of the particles can be minimized if different parameters

of particles can be varied after some specific number of iterations. This will have

almost similar effect as created by mutation in genetic algorithms [87]. Although

this mutation in the particles will have slight effect on the distance of particles

from gbest. Because, the effect on the particle distance caused by velocity update

equation is greater than this mutation, variation in different parameters of par-

ticles. Still it will degrade the convergence rate, which is highly undesirable for

PSO algorithms, because the main concern of this PSO algorithm to have higher

convergence rate as compare to other conventional algorithms.

The major source of degradation in search capacity is due to premature conver-

gence of the swarm. In previously proposed solution mutation done over whole

swarm of the particles, but it can be modified by changing the parameters for

only portion of the particles. This variation can be carried out for some specific
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number of the iterations. In this scenario we have to consider other issues as well,

like to keep the track of the particles in such a way that these variations will be

effected only in the start but after some time they should converge, so we have

to evaluate all of them continuously for every iteration which will increase the

number of operations, which is also not desirable.

4.2.2 Convergence Speed Enhancement, Expected Prob-

lems and Solutions

Degradation in convergence rate can be due to the higher acceleration of the

particles, in this way they explore search space extensively but on the cost of slower

convergence rate. Convergence rate also degraded due to loose conditions on the

velocity and the range of the allowed position of the particles. This increase in

convergence speed can be done by optimizing the acceleration constants or inertia

weights or constrict the search space, and this can be done by replacing all or

some of the pbest with the pbest which have the better fitness function value. By

doing this so we are actually making the search confined by only concentrating in

the area of interest. But for this method to work, we have to be sure that our area

of interest includes the optimal value, otherwise there will premature convergence

and degraded performance might happen [87]. And this evaluation has to be

tested for every iteration that our swarm still includes the area of interest of the

search space.

In this chapter we will take in to account the problem of convergence rate only,
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and our newly implemented algorithm will tackle the issue of better convergence

rate with minimum possible steady state error.

4.3 Newly Implemented PSO Algorithm using

Adaptive Inertia Weight (PSO-AW)

Some of the techniques were stated above to enhance the convergence speed of

PSO algorithm, but all of these have their own limitations. Here we are going

to implement PSO algorithm with a new mechanism for adaptive equalization

which will enhance the convergence speed of it with minimum steady state error,

as compare to previously used algorithms.

The convergence speed of the algorithm usually controlled by the speed at which

the particles move towards its best positions, if that best position is optimal for

them and these particles move towards that with more speed then obviously, the

convergence speed will be enhanced, but if that best position, which any particle

is holding, not the optimal one and the speed of particle towards that position

is still higher, then obviously it will decrease the convergence speed. Therefore

we can conclude that convergence speed can be increased if particles move more

quickly towards their best positions, and with less speed towards their non optimal

positions. And the idea about that position can be taken through the fitness

function, which has been stated in first chapter, equation- 3.3. Speed of the

particle is related to inertia weight of the particles, so in order to increase the

65



convergence rate, we have to vary the inertia weight accordingly by looking at the

fitness function of each particle in every iteration.

4.3.1 Functionality of the Algorithm

To implement above mechanism, we can adjust the inertia weight of each parti-

cle independently at each iteration, based on their new fitness evaluation, that

whether it is better than previous one or not. If a particle attained a better po-

sition, then its inertia weight should be increased or maintained but if its present

fitness is not better than previous one then there should be reduction in its inertia

weight [87]. Through this mechanism we are making sure that particles are mov-

ing towards their optimal positions with more speed and for non optimal positions

their speed is reduced. Now instead of using inertia weight, we will use adaptive

inertia weight, means inertia weight is varying adaptively according to the en-

vironment. The relation of this adaptive inertial weight is given in equation 4.1

[87],

wi(n) =
1

(1 + e
−ΔJi(n)

s )
(4.1)

Where wi(n)is the current inertia weight of the ith particle andΔJi(n) is the

difference of the fitness values of the particle from its previous one, and can be

represented by following equation 4.2, and S is used to control the expected fitness

range.

ΔJi(n) = ΔJi(n− 1)−ΔJi(n) (4.2)
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This relation of inertia weight will assign the values in the range between (0,1),

with midpoint of 0.5. If the previous fitness level was better then it will assign the

value less than 0.5, means the speed of the particle should be reduced as the new

position is not better than the previous one. And if present fitness value is better

then it will assign the value greater 0.5, which means now newly calculated position

is better than the previous one so speed of the particle should be increased. This

relation of inertia weight has been depicted in figure 4.1, for random data.

Velocity and position update equations can be shown in following equations 4.3
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Figure 4.1: Inertia Weight Assignment for Particles

and 4.4.

vid = wi(n) ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand() ∗ (pgd − xid), 1 ≤ d ≤ D(4.3)
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xid = xid + vid 1 ≤ d ≤ D (4.4)

Where wi(n) in equation 4.3, is shown in equation 4.1. So through this mechanism

we can see that when the fitness function of particles improves the speed of the

particles will be increased and it will be reduced when fitness function degraded,

so through this the convergence speed will be enhanced. We will name it as PSO-

AW. Functionality of this algorithm can be explained easily with the help of its

flow chart which is shown in figure 4.2. In the start we have to randomly generate

Figure 4.2: Flow chart of PSO-AW
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all the particles, and we have to define the boundaries of the search space in which

particles will move. It should be ensured that particles should lie in the search

space so while generating the particles this issue has to be addressed. Then the

processing will start, we have to calculate the fitness of each particle through

the objective function defined in equation 1.2. then we will check the stopping

criteria, if it meet this criteria, we will stop if not then adjust the adaptive inertia

weights of each particle. For the first iteration, obviously we will not have the

previous fitness of the particles so we will consider the adaptive inertia weight for

every particle to be 0.5, and then afterwards we will follow the previously stated

procedure. After assigning the adaptive inertia weight to whole population of the

particles, we will apply the velocity and position update equation to each particle

and this procedure will go on until we reach some stopping criteria.

4.4 Sensitivity Analysis of PSO-AW

There is the issue of stability for every PSO algorithms, means in order to get the

proper results from these algorithms, it should be tuned perfectly with respect to

every parameter involved in it. In most cases simulations will not give the desired

or expected results due to instability of PSO algorithms and the main reason

behind this instability is the values assigned to parameters involved in it are not

tuned properly. Hence similar to other PSO algorithms, there has to be a complete

sensitivity analysis of PSO-AW with respect to every parameter involve in it. And

these parameters are, number of particles, acceleration constants, window size,
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slope factor, number of taps of the equalizer and maximum allowed velocity to

particles. With the help of simulation results, we will find optimized values for

all these parameters, in order to make sure that PSO-AW should perform proper

functionality in every environment.

We will compare these optimized values of the parameters with the previously used

PSO algorithms, used parameters, in order to prove that this PSO-AW algorithm

shows better performance.

4.4.1 Effect of the Slope Factor

This parameter S, is basically the slope factor, used in equation 4.1, which is the

formula of assigning the inertia weight adaptively to the particles. This parameter

controls the expected value of the range for the values which are assigned to the

particles. If we are assigning smaller values to this parameter then the inertia

weight which has to be assigned to the particles would be taken from a smaller

range of values, which will effect the performance of particles.

As it was mentioned earlier that if the inertia weights of the particles are larger

then they will get the chance to explore more from search space and steady state

error might improve, and for less inertia weights they will not explore the whole

search space. Hence this parameter S is behaving almost in a similar way here.

If we assign S higher values then sready state error will be improved. For smaller

values of S, particles will get less chance to explore the whole search space.

Simulation results, shown in figure 4.3, present the effect of different values of
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parameter S on its MSE curves. The effect on steady state error will be more
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Figure 4.3: Effect of the slope factor, S, on Performance behaviour

pronounced if we are directly varying the values of inertia weights of the particles.

Here from the simulation results shown in figure 4.3, it is clear that this effect on

steady state error is not large. Still for the small values of S, steady state error is

increased. In this simulation MSE curves are plotted for S= 5, 20, 30 45 and 65.

But after S=45, there is not even observable change in the MSE curve and steady

state error. From here it can be concluded that 45 will be optimal value for this

parameter used in PSO-AW.

4.4.2 Effect of the Number of Particles

Number of particles are like number of potential solution in any search space. As

the number of particles increase, the chance of exploring more area of the search

space also increases, and the probability of achieving most optimum value, also

71



increases. Hence with greater number of particles we can secure better steady

state error, as more particles will search the solution space.

Number of particles also have effect on convergence rate as well. As more parti-

cles will be involved in the process of searching the optimum value, there will be

the possibility that these particles will find the optimum value in less number of

iterations by making the convergence rate higher. If less number of particles are

involved in the process then obviously it will take more iterations to converge on

some optimum value, so it is better to have larger number of particles in search

space.

The disadvantage of using large number of particles for search process is more

overhead. As process will take more time to generate the results and larger num-

ber of iterations will be required to get results. Also after some specific number

of particles, the increment in convergence speed, and improvement in steady state

error will be negligible. After that there will be not even visible effect on MSE

curves. Simulation results shown in figure 4.4, depicts the effect of number of

particles on the convergence rate and steady state error. It is evident from sim-

ulation results shown in figure 4.4, that after 30 particles there is not consider

able change, with respect to convergence rate and steady state error, in the MSE

curves. For smaller number of particles like 10 and 20, the steady state error is

-10dB and -12.5dB respectively, but with the number of particles 30, 40 and 60

we got almost the same steady state error of -16dB with same number of itera-

tions taken for convergence. As there is no considerable variation with respect to
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Figure 4.4: Effect of the Number of Particles, n, on the performance behaviour

convergence rate and steady state error after 30 particles so it can be concluded

that n=30 particles will be optimum value for this parameter.

In previously used, PSO algorithms, the optimum value for number of particles

was 40 [98]. Here in our newly implemented algorithm it takes less number of

particles to reach the desired results which shows the superior performance of this

algorithm, over conventionally used PSO algorithms. As this algorithm took less

number of particles to generate similar results so we are getting here the advantage

of fast processing as compare to conventional PSO algorithms.

4.4.3 Effect of the Acceleration Constants

The rate, at which particles move in the direction of their local best values, is

controlled by acceleration constant c1. And c2 is the acceleration constant, which

will control the movement of any particle in the direction of global best value.
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From this it can be stated that these two parameters controls the speed of the

particles, through which they move towards their best values achieved so far in the

search space. By taking c1 = 0, will make every particle to have global experience

only, which means each and every particle will not have any cognitive control but

will be effected by social weight only, and all particles will move freely in a swarm

with the less probability to reach a global solution. But if we make c2 = 0, the

every particle will endure only self experience, means it will make the decisions

only by cognitive sense.

These two parameters control both, the steady state error and also the conver-

gence speed of the particles. If we assign smaller values to these parameters then

particles will move with slow speed in the search space and explore more solu-

tions. In this way there is quite less chance that they will get trap in to some

local optimum value and therefore through this we can achieve better steady state

error. By applying this, we are making the convergence speed slower and it will

take more time by the swarm to converge on some optimum value. Hence a trade

off has to done between better steady state error and better convergence rate.

On the other hand if we assign higher values to these parameters, then particles

will move quickly and will settled down quickly on some optimum value. This will

make the convergence rate higher but there is chance of getting trap in to some

local minimum which will cause the steady state error to degrade. Therefore the

values for these parameters will be application dependent.

Simulation results, shown in figure 4.5, present the effect of different values of
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acceleration constants on its MSE curves. From the simulation results shown in
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Figure 4.5: Effect of the Acceleration Constants,c1&c2, on the performance be-
haviour

figure 4.5, it is evident that for smaller values of acceleration constants we achieve

better steady state error. For c1=c2=1.5 and c1=c2=2, the steady state error

is almost -16.5dB. And as we increase in the values of acceleration constants the

steady state error will be increased. Like for c1=c2=4 and c1=c2=5, the steady

state error is almost -14dB and for c1=c2=6 it increases to -12 dB. Hence from

these curves shown in figure 4.5, it is evident that most optimum value for these

acceleration constants is c1=c2=2.

4.4.4 Effect of the Number of Taps of Equalizer

The number of taps of adaptive equalizer is a parameter which is purely application

dependent, and any algorithm modification will have almost negligible effect on
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it. Here in PSO, for each algorithm, the number of taps of equalizer is equivalent

to the dimensions of each particle. And it required by our newly implemented

algorithm to cover more search space so higher value of number of taps should be

assigned.

Simulation results, shown in figure 4.6, present the effect of different values of

number of taps on its MSE curves. As it is also evident from the simulation
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Figure 4.6: Effect of the Number of Taps, d, on the performance behaviour

results shown in figure 4.6, that for this same application of adaptive channel

equalization, the different values of number of taps have very slight effect on

both areas of concern, steady state error and convergence rate. Hence from this

simulation result it can be stated that the optimum value for the number of taps

of adaptive equalizer will be 9.
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4.4.5 Effect of the Maximum Velocity

This parameter of maximum velocity is actually controls the maximum allowed

velocity to the particles, through which these particles move in search space. This

parameter is related to maximum allowed position to any particle, means this max-

imum allowed velocity of any particle is equal to some number times of maximum

allowed position to any particle, therefore these two parameters have combined

effect.

This maximum allowed velocity is the parameter through which particles move

towards their global optimum positions. If particles move towards their global

optimum values with higher speed then there will be the chance for these parti-

cles to search extensively around the global value and the probability of getting

better MSE will be higher. Therefore higher values of this parameter will have

productive effects on MSE curves by giving minimum steady state error with bet-

ter convergence. On other hand if we assign lower values to this parameter then

there is chance that these particles might get trap around some local minimum

values, and they will keep on searching only around that area. And due to this we

might get higher steady state error and MSE curve can also take higher number

of iterations to converge.

Simulation results, shown in figure 4.7, present the effect of different values of

maximum allowed velocity on its MSE curves. From the simulation results shown

in figure 4.7, it is evident that greater this parameter, secures minimum steady

state error. As minimum value of this parameter, Vmax=0.02Xmax, gives the
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Figure 4.7: Effect of the Maximum Allowed Velocity, Vmax, on the performance
behaviour

most degraded steady state error which is almost -12.5dB. By assigning higher

values to this parameter we get better MSE curves, with minimum steady state

error and better convergence rate. By increasing the value of this parameter after,

Vmax=0.1Xmax, there is not even noticeable effect on MSE curves. Higher values

were also tried in simulation, but those were not shown in this figure, and those

values also gave the similar results. Hence it can be concluded here that the most

optimized value for this parameter will be Vmax=0.1Xmax.

4.4.6 Effect of the Data Window Size

In most of the practical conditions we do not have the whole data at the same

time. Most of the time we get the data in form of chunks for equalization, and we

have to perform this equalization only on the subset of the data, and from that
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subset we have to find the behaviour of the incoming data. Therefore to make our

simulations more like practical conditions, this parameter will be introduced.

If we assign higher values to this parameter then we are taking more data to

observe the statistics of the complete data set, which obviously will yield the

better results in sense of steady state error. And if we assign smaller values to

this parameter then we have smaller subset of the complete data, to understand

the statistics of the complete data. And in this case we might not get better

steady state error. This parameter has also effect on convergence rate, but this

effect on convergence rate of the MSE curves, is not of great extent.

Simulation results, shown in figure 4.8, presents the effect of different values of

data window size N, on its MSE curves. From the simulation results, shown in
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Figure 4.8: Effect of the Data Window Size, N, on the performance behaviour

figure 4.8, it is evident that for smaller value of this parameter we have degraded

steady state error and also slow convergence rate. For N=50, it converges at almost
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120 iterations with steady state error of -13.5dB. As we assign higher values to

this parameter, convergence rate and steady state error, both improved. For N=

200, 300, 400, it converges after only 25 iterations with steady error of almost

-16.5dB. After N=200, if we keep on increasing the value for this parameter, it

will not have significant effect on MSE curves. So it can be concluded here that

most optimum value for this parameter is N=200.

4.5 Simulation Results of Adaptive equalization

using PSO-AW

Here the comparison of the simulation results for adaptive equalization, using

different linear channels and non linear system, at different noise levels, will be

conducted. We will compare the MSE for this newly implemented algorithm with

the previously used PSO algorithms and LMS.

4.5.1 Simulation Comparison Using Linear Channels

Same previously used two linear time-invariant channels will be adopted here as

well, described by their following transfer functions H1(z) = 0.2602+0.9298z1

+0.2602z2, and H2(z) = 0.408 + 0.816z1 + 0.408z2. The first channel H1(z) is

more stable as compare to second channel H2(z), because the second channel

have more eigenvalue spread and it cause more damage to the signal. Hence we

will make the comparison for both kind of environments. Following are the details
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of different parameters which will be used in all these algorithms. For every PSO

algorithm the optimal parameters will be, Xmin=-2, Xmax=2, the input window

size N is 200 and the number of iterations is fixed to 500. For the remaining pa-

rameters, for PSO-W, Vmax=0.07Xmax, Wmin=0.6 and Wmax=1, c1=c2=1.5

and the number of particles will be 40. For PSO-CCF, Vmax=0.20Xmax,

c1=c2=4, k=5, Vmax=0.20Xmax and the number of particles will be 40. For

PSO-VCF, c1 = c2 = 4, kmin = 4, kmax = 6, and vmax = 0.20xmax. For this

newly implemented algorithm PSO-AW, S=45, Vmax=0.1Xmax, Wmin=0.6 and

Wmax=1, c1=c2=2 and the number of particles will be 30. We found the values

of these parameters from the sensitivity analysis done in previous section. For

LMS the step size will be 0.025. And these all results will be averaged over 25

runs. The SNR for all these algorithms will be 20dB. The number of taps for

the adaptive equalizer will be 9. As it was stated earlier while explaining the

functionality of the equalizer that there will be delay of processing after signal

pass through the equalizer and in order to compare it properly with the original

signal we have to introduce a delay factor in the original signal, and the value of

this delay, D will be 11.

Figure 4.9 and 4.10 shows the simulation comparison of all these algorithms,

using first and second linear time variant channels respectively. From these two

figures 4.9 and 4.10, we can conclude that PSO-AW, showed better results as

compare to all previously used algorithms with respect to both convergence rate

and steady state error. While using, PSO-W and PSO-VCF, we achieved better
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Figure 4.9: MSE curves for PSO-W, PSO-CCF, PSO-VCF, LMS and PSO-AW
using H1(z)

steady state error only but with slow convergence rate and while using PSO-CCF

we achieved higher convergence rate but the steady state error is highly degraded

while using this algorithm. On other hand while using PSO-AW we achieved

both higher convergence rate and better steady state error simultaneously,

which proves the superior performance of this algorithm over conventional PSO

algorithms.

In order to check the proper functionality of this newly implemented algorithm,

we plotted it at different SNR values, as SNR increases the steady state error

should be improved. The simulation of PSO-AW at different SNR values, while

using H1(z), is shown in figure 4.11. From figure 4.11, it can be inferred that,

steady state error improves as SNR increase which shows that this implemented

algorithm is working properly.
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4.5.2 Simulation Comparison Using Non Linear Systems

In most of the practical conditions, especially in wireless communication systems,

channels do not behave linearly and it is more difficult to tackle the non linear

channels. It was stated earlier that all PSO algorithms work more effectively than

other conventional algorithms, for non linear channels. In fact the popularity of

PSO algorithms for any application was due to the reason that these algorithms

perform better for non linear systems. Hence in order to strengthen this state-

ment, simulation comparison has been shown in figure 4.12, of all previously used

algorithms with PSO-AW, using nonlinear system which is shown in figure 3.4,

in it b1=1, b2=0.1, b3=0.05, and the channel used is H1(z) = 0.2602+0.9298z1

+0.2602z2. It is evident from the results, shown in figure 4.12, that all PSO algo-

rithms shown better performance as compare to LMS, which shows that PSO has
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Figure 4.11: MSE curves for PSO-AW at different SNR values

better functionality in nonlinear systems. If we compare the statistics of simula-

tion results achieved from non linear systems with that of linear system, it can be

concluded that for non linear channel steady state error of PSO-AW is improved

more, almost 3 dB as compare to PSO-W. Here for non linear system, these all

PSO algorithms have better steady state error as compare to LMS and among

all these PSO-AW have the minimum steady state error of -17dB. Which shows

the better performance of all PSO algorithms than other conventional algorithms,

and it strengthens the statement of better performance of PSO algorithms in non

linear systems.
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using nonlinear system

4.6 Comparison of BER between PSO-AW and

LMS

The comparison for BER between our newly implemented algorithm PSO-AW

and LMS will be done in this section. Among all previously used conventional

algorithms like, RLS and Steepest Descent etc, LMS is the most commonly used

algorithm. Therefore to make the comparison this LMS algorithm was selected.

Also the performance of LMS algorithm is quite stable with respect to many

aspects, so if our implemented algorithm shows better performance in sense of

BER as compare to LMS, then it means it is a reasonable gain to use PSO-AW.

We will compare, with respect to BER, while using both linear time invariant

channel and nonlinear system.
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4.6.1 Comparison of BER using LTI Channel

We will use the same linear time invariant channel which has been used earlier

for the comparison of MSE curves. The transfer function of which is H1(z) =

0.2602+0.9298z1 +0.2602z2. Usually the analysis of BER curve is considered to

be like this, that as we increase the Signal to Noise Ratio (SNR) then BER should

decrease, while making the water fall curve.

Simulation results, shown in figure 4.13, present the effect of SNR on BER curve.

It is evident from the results shown in figure 4.13, that as SNR increase BER for
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Figure 4.13: BER performance of LMS and PSO-AW while using LTI channel
H1(z)

both the algorithms decreases. If we observe the comparison among these both

algorithms, the BER while using LMS at SNR=18dB, this same BER is achieved

at lower SNR=15dB while using PSO-AW. Means if we use PSO-AW and increase

the SNR up to same level of 18dB, then BER will be less as compare to LMS at
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that same SNR value. Hence it can be concluded here that while using PSO-AW,

we can have less BER at same SNR value as compare to LMS.

4.6.2 Comparison of BER using Nonlinear System

In previous subsection comparison was conducted for linear system, now we will

compare the BER performance of these both algorithms while using nonlinear

system. The same nonlinear system will be used here, which is shown in figure 3.4,

in which values of the coefficients will be b1=1, b2=0.1, b3=0.05, and the channel

used is H1(z) = 0.2602+0.9298z1 +0.2602z2.

Simulation results, shown in figure 4.14, presents the effect of SNR on BER curve.

From the simulation shown in figure 4.14, it is evident that while using PSO-AW
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Figure 4.14: BER performance of LMS and PSO-AW while using Nonlinear Sys-
tem

we got better BER at even less SNR as compare to LMS. Like the same value of
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BER was achieved, at SNR=14.5dB for PSO-AW, and for LMS we achieved this

value of BER at SNR=19dB. It can be concluded here that for nonlinear systems

as well, we achieved better BER while using PSO-AW as compare to LMS. From

these simulation results, it is also evident that for nonlinear system, we have more

improvement in BER as compare to linear system. Simulation results shown in

figure 4.13, for linear system, PSO-AW showed improvement of almost 3dB as

compare to LMS. Here in figure 4.14, it is clear for nonlinear system, PSO-AW

has more than 4dB improvement as compare to LMS. Hence these results again

proved that PSO algorithms showed better performance in nonlinear systems as

compare to conventionally used algorithms.

4.7 Conclusion

In this chapter we described the main reasons to introduce PSO-AW algorithm,

then we completely explained the working of this algorithm with the help of simu-

lation results. Complete sensitivity analysis of this newly implemented algorithm

has been performed. Then we compared all the simulation results with previously

used algorithms while using linear and nonlinear systems. Analysis with respect

to BER was also done. The main reason behind simulating this algorithm is that

while using PSO-W and PSO-VCF we achieved better steady state error but con-

vergence rate was not as quick as displayed by PSO-CCF. While using PSO-AW

we achieved the same convergence rate like we got using PSO-CCF with the same

steady state error as we secured with PSO-W and PSO-VCF. Hence in conclusion
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it can be stated that PSO-AW, provides the faster convergence rate like PSO-CCF

and improved steady state error like PSO-W and PSO-VCF. And we can secure

these both, better convergence rate and better steady state error simultaneously,

while using PSO-AW.
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CHAPTER 5

HYBRID PSO ALGORITHM

FOR ADAPTIVE

EQUALIZATION

5.1 Introduction

Previously, the PSO-AW algorithm was implemented for adaptive equalization

and it performed better than previously used algorithms. The PSO-AW algorithm

achieves a faster convergence rate but not necessarily an improved steady-state

error. Here, we propose a new algorithm that improves the steady-state error as

well.

The new hybrid PSO (HPSO) algorithm is a hybrid of three techniques, namely,

re-randomization, enhanced social effect and adaptive inertia weight for particles.

A detailed comparison of the proposed algorithm with all previous algorithms has
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been presented in this chapter. A complete sensitivity analysis of the proposed

algorithm, with respect to all parameters involved, follows the comparative study.

In the end, the BER performance is shown for both linear and nonlinear systems.

5.2 Another Eminent Issue with Previous PSO

Algorithms

In previous chapter we have stated some of the issues in conventionally used PSO

algorithms. Now we are going to propose a new algorithm, in which we have in-

troduced two newly implemented techniques, re-randomization and increase social

effect. Before introducing such techniques, we must know the problems which can

be minimized by these techniques.

In previously used PSO algorithms, when a new gbest is found all particles will

start to move towards it in same general direction and due to this there is the

chance that some regions, other than this new minima discovered, will be excluded

from the search space. Particles which are closer to gbest will tend to converge on

it in very short time and then there will be no update in their position or velocity,

as they have already approached to optimum value, so these particles will become

stagnant and will not contribute further in search. In this way we can face the

problem of stagnancy, which might cause in degrading the steady state error.

If the surface or search space in which optimization is to be carried out, have

regular shape or very less number of local minimas, then there will be no problem
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regarding this issue. On the other hand if we have very irregular surface with

many local minimas in it, then there is the chance that particles will be trapped

in to some local value.

5.3 Proposed Hybrid PSO (HPSO) Algorithm

We have simulated different PSO algorithms in previous chapters and from these

simulation results we have perceived some idea that how can we overcome the issue

of convergence rate and steady state error. And from this perceived knowledge,

while observing all the issues that might happen with PSO algorithms and their

possible solutions, we are proposing a new algorithm here. This algorithm will

try to overcome all the previously stated problems that might can occur in PSO

algorithms, to give us better steady state error with possible best convergence

rate. This hybrid PSO algorithm will use following three techniques,

• Re-randomization around new gbest

• Increased social effect while introducing a parameter lbest

• Adaptive inertia weight for the particles

This adaptive inertia weight assignment to particles is same technique which has

been implemented in previous chapter, while implanting PSO-AW. Explanation

for remaining two techniques will be given here.
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5.3.1 Re-randomization around new gbest

This technique of re-randomization will be used to overcome the issue of stagnancy

in PSO algorithms. As it was mentioned earlier, every time a new gbest is found

all particles will start to move towards it in same general direction, due to this

reason there is a chance that these particles will become stagnant. Therefore to

avoid such behaviour of the particles, we can re-randomize the particles around

gbest, every time, when a new value of the gbest is found [87]. Now if we apply

this phenomenon to the particles then the main purpose of having gbest will be

mitigated. Because we want our particles to move towards gbest, but on the same

time we do not want stagnancy around this gbest. As this re-randomization of

particles might make the convergence rate too slow, so to avoid this problem we

have to make sure that particles should not be initiated every time away from

the new gbest. Hence to avoid this issue, we will make the variance of this re-

randomization higher in the start of simulation and keep on decreasing the value

of this variance as simulation progress. Following equation 5.1, shows the formula

of variance used for the re-randomization.

variance(n) =
−A

(1 + e
−n+M

S )
+ A (5.1)

Where A is the starting value of the effectiveness of the re-randomization, M is

the midpoint, and S is the slope. Following figure 5.1 will provide more clear idea

about these parameters. The value of variable S, will decide the slope of the curve

in figure 5.1, smaller values of S will make the curve steeper and large values of
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Figure 5.1: Variance Curve for Re-randomization

S will make the transition smooth. Through this variance factor we will divide

the search for the optimal solution in two parts. First one is broad search, in

which the variance will be higher and particles will re-randomized far from gbest

to explore more. In second part, which is fine search area, the variance will be

assigned smaller values so that particles should lie near new gbest, because in

the end we want our solution to converge to some optimal value. And these two

regions will be separated by a midpoint M. Value of M will decide the duration

of these both broad and fine search regions.

Through re-randomization, particles would be given more chance to search for

the potential solutions, and there will be improvement in steady state error. As

this will decrease the convergence rate, so we used re-randomization along with

variance curve, so that the effect of it should decrease as simulation progress.
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5.3.2 Enhanced social effect with parameter lbest

There are many ways to get improvement in the optimization results, and these all

methods depend on the way we are performing the search in the swarm and how

we are updating the velocity and positions of the particles [85]. If the problem of

being trapped in local minimum value is resolved then there will be improvement

in steady state error. Eberhart and Kennedy, proposed a version of PSO which

use local information for decision making in [99]. In this research they made ring

type topology, in which only two particles are included, and they communicate

with each other only, not with the whole swarm. They proved that through this

technique, the probability that particles will be trapped in some local minimum

values is reduced. Although the convergence rate was degraded in these simula-

tion results but still it was proved that with more social effect, steady state error

can be reduced.

In this proposed algorithm we want to improve steady state error, so this previ-

ously explained idea will be useful for this purpose. Eberhart and Kennedy, in

[99], they just use this ring topology of particles for velocity and position updates.

Here we will incorporate this technique, which is topology of some specific number

of particles, with global best evaluations as well. And we will name this parameter

lbest. It operates just like gbest parameter, except it will divide the particles in

to number of sub-groups. And now particles will have to memorize three entities,

the best position achieved by any individual particle (pbest), the best position

achieved so far among whole particles (gbest) and best position achieved by par-
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ticles in these sub-groups (lbest).

Three methods were under consideration, while incorporating this lbest parameter

with our algorithm, which are following,

• Use a constant parameter just like acceleration constant, which will be

named as c3, will be multiplied with this local best update in velocity update

equation

• Use the variance parameter, which is shown in figure 5.1, and explained by

equation 5.1. And this will be multiplied with this local best update in

velocity update equation

• Use the variance parameter, which is shown in figure 5.2, and explained by

equation 5.2. And this will be multiplied with this local best update in

velocity update equation

variance(n) =
−A

(1 + e
n−M

S )
+ A (5.2)

While using the first technique of acceleration constant, this enhanced socialized

effect will remain effective throughout the process at constant rate. And it has

been stated earlier that in the end of the process we want the whole swarm to

converge on some optimum value, and if we keep it constant throughout the

process, it might will degrade the convergence rate, which is not required.

If we use the third methodology, while using the variance curve shown in figure 5.2,

then there will be no effect on the steady state error, it will remain the same like

previously used algorithms. Because if fine search will be carried out in the start
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Figure 5.2: Variance Curve

of the iterations, then there will be very minimum effect of enhanced socialized

factor on steady state error. Although it will have the good convergence rate but

still our goal to achieve better steady state error, with reasonable convergence

rate will not be achieved.

Hence the only option left here, which is used in our proposed algorithm, is to use

same variance curve which is used for the re-randomization of the particles, shown

in figure 5.1, and explained in equation 5.1. While using this variance curve, we are

ensuring that in the start of iterations, particles will have all types of interaction

with each other, both global and local. In this case there is less chance that

particles will get trap in to some local minimum values. As process proceeds, this

effect will be minimized in fine search region. All these three techniques have been

checked through simulation results and this one gave the best results.
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5.3.3 Implementation of Proposed Algorithm HPSO

The main purpose of introducing this algorithm is to secure better steady state

error with acceptable convergence rate. Hence in this proposed algorithm, we

will incorporate all previously stated three techniques. Which are adaptive iner-

tia weight assignment to the particles, re-randomization of particles around new

gbest and this enhanced social effect.

In the beginning of the iterations, we want our particles to converge swiftly. And

through previously explained knowledge, it is known that adaptive inertia weight

techniques works well for better convergence rate, and re-randomization of the

particles around gbest, usually slow down the convergence rate. Therefore in the

beginning we will ensure that this re-randomization should not be effective. Once

our MSE curve jumped to some value after which there is very small change in

error, as compare to change in the start, then we will apply this re-randomization

process. And usually it takes almost 20 to 30 iterations to secure a steady error.

Hence for this hybrid PSO (HPSO) algorithm, adaptive inertia weight assign-

ment will be effective right from the start of the iterations along with second

technique of enhanced socialized effect through variance curve. And after we

achieve steady error, re-randomization will also take part in the simulation, and

this re-randomization will also be applied through variance curve. In the start

due to effect of re-randomization and more socialized effect, our particles will be

restrained from local minimum values and after some iterations, when particles

will have more clear idea about global optimum value, the effect of these both
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techniques will be minimized. At this time our simulation will be in fine search

region where adaptive inertia weight assignment will have more influence.

Hence if these three techniques would be used as explained above, then there is

a very good chance that we can secure improvement in steady state error with

an appropriate convergence rate. Flow chart shown in figure 5.3, explains the

working of this proposed algorithm. It can be seen from the flow chart, as in the

Figure 5.3: Flow Chart of HPSO

start of iteration error will not be steady so re-randomization will be not used,
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but only adaptive inertia weight assignment and enhanced socialized affect, will

be used. As number of iterations increase, error will become steady and then all

three techniques will be used.

The velocity and position update equations will be shown in equation 5.3 and 5.4

respectively.

vid = wi(n) ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand() ∗ (pgd − xid)...

+sqrt(var()) ∗ rand() ∗ (plgd − xid), 1 ≤ d ≤ D (5.3)

xid = xid + vid 1 ≤ d ≤ D (5.4)

5.4 Sensitivity Analysis of HPSO

In order to get stable MSE curves from these algorithms, it should be tuned

perfectly with respect to every parameter involved in it. Just like other PSO

algorithms, there has to be a complete sensitivity analysis of HPSO with respect to

every parameter involve in it. And these parameters are like, number of particles,

acceleration constants, window size, midpoint of variance curve, effective value of

variance curve, number of taps of the equalizer and maximum allowed velocity to

particles. Parameter, slope factor S, will not be included here as it has almost

negligible effect on HPSO algorithm and the optimized value of this will be 45.

With the help of simulation results, we will find optimized values for all these
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parameters, in order to secure optimized results using HPSO in every environment.

We will compare these optimized values of the parameters with the previously

used PSO algorithms, in order to prove that this HPSO algorithm shows better

performance.

5.4.1 Midpoint of Variance Curve

The parameter M, is the midpoint of the variance curve, shown in figure 5.1. This

parameter separates the two regions of search, broad search region and fine search

region. This parameter will decide that for how many number of iterations, our

particles will perform the broad search throughout the search space and for how

many iterations particles will perform the fine search.

If we assign higher values to this parameter, then broad search will remain for

large number of iterations and particles will have more time to search throughout

the region, and there is the chance of getting better steady state error. But this

thing will have effects on convergence rate, and it might reduced. On the other

hand if we assign lower values to this parameter, then particles might not get the

chance of broad search region, and this will effect the steady state error.

Simulation results, shown in figure 5.4, presents the effect of different values of

this parameter M on its MSE curves. From simulation results shown in figure 5.4,

it is evident that if we assign lower values to M, steady state error is degraded.

Like for M=50 and M=100, steady state error is -15.5dB and -17dB respectively.

For values of M greater than or equal to 200, results are almost similar. After
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Figure 5.4: Effect of the Midpoint Value of Variance curve, M, on the performance
behaviour

M=200, it is not effecting the steady state error. These all were the expected

results, that increased values of M will yield improvement in steady state error

as compare to lower values of M. The convergence rate did not get effected up to

greater extent due to the variations in this parameter M. Hence with the help of

this simulation result it can be concluded here that the optimized value for this

parameter M will be 200.

5.4.2 Effective Value of Variance Curve

This parameter will decide the effective value of the broad search region, in the

variance curve, shown in figure 5.1. Through this parameter the effectiveness of

re-randomization and enhanced social effect, will be controlled.

If we assign higher values to this parameter, the particles will be re-randomized
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around gbest, with more distance, and they will get the chance to explore more

in search space. And with higher values of this parameter, there will be more so-

cialized effect among particles and they will get more clear idea about the search

space. This thing will help to improve the steady state error and will yield im-

proved results. But with more effect of broad search region, we will suppress the

effect of adaptive inertia weight, which will influence the convergence rate. If

smaller values will be assigned to this parameter, then effect of better search will

be reduced, and particles will not get the chance to search more around the regions

of gbest and our steady state error will might be degraded. Although this scenario

will have the better convergence rate because adaptive inertia weight assignment

to the particles will have more effect.

Simulation results, shown in figure 5.5, presents the effect of different values of

this parameter A on its MSE curves. Form this simulation result, shown in fig-
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Figure 5.5: Effect of Effective Value of the Variance curve, A, on the performance
behaviour
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ure 5.5, it is evident that higher values of A will yield better steady state error,

but convergence rate is reduced. On the contrary lower values of A will yield

better convergence rate but we are not getting improvement in steady state error.

Simulation result, shows that smaller values of A, like A=0.1 and A=0.5, yield

no improvement in steady state error. In this case our algorithm is acting just

like the PSO-AW algorithm, because the effect of re-randomization and enhanced

socialized effect is almost negligible. That’s why the MSE curve in this case is

almost similar to MSE curve of PSO-AW, with similar convergence rate. If we

assign A=1, then we achieved both better convergence rate and improved steady

state error. If we increase the value of this parameter more than 1 then conver-

gence rate is degraded vastly, which is not required. Hence from all this discussion

it can be concluded here that the most optimized vale for this parameter will be

1.

5.4.3 Effect of the Number of Particles

Number of particles are like number of potential solution in any search space. As

the number of particles increase, the chance of exploring more area of the search

space also increases, and the probability of achieving most optimum value, also

increases. Therefore with large number of particles we can secure better steady

state error, because more particles will search the solution space.

Number of particles also has effect on convergence rate as well. As more particles

will be involved in the process of searching the optimum value, so there will be
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the possibility that these particles will find the optimum value in short time by

making the convergence rate higher. If less number of particles are involved in

the process then it will take more time to converge on some optimum value, so it

is better to have larger number of particles in search space.

The disadvantage of using large number of particles for search process is more

overhead. As process will take more time to generate the results and larger number

of computations will be required to get results. Also after some specific number

of particles, the increment in convergence speed, and improvement in steady state

error will be negligible.

Simulation results shown in figure 5.6, depicts the effect of number of particles on

the convergence rate and steady state error. It is evident from simulation results
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Figure 5.6: Effect of the Number of Particles, n, on the performance behaviour

shown in figure 5.6, that after 30 particles there is not considerable change, with

respect to convergence rate and steady state error, in the MSE curves. For smaller
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number of particles like 5 and 20, the steady state error is degraded, but with the

number of particles 30, 40 and 60 we got almost the same steady state error of

-18.5dB with same number of iterations taken for convergence. As there is no

considerable variation with respect to convergence rate and steady state error

after 30 particles so it can be concluded here that n=30 particles will be optimum

value for this parameter.

In previously used, PSO algorithms, the optimum value for number of particles

was 40 [98]. Here in our proposed algorithm it takes less number of particles to

reach even better results which shows the superior performance of this algorithm,

over conventionally used PSO algorithms. As this algorithm took less number of

particles to generate the desired results so here we achieved the advantage of fast

processing as compare to conventional PSO algorithms.

5.4.4 Effect of the Acceleration Constants

The rate, at which particles move in the direction of their local best values, is

controlled by acceleration constant c1. And c2 is the acceleration constant, which

will control the movement of any particle in the direction of global best value.

As stated earlier that these two parameters control both, the steady state error

and also the convergence speed of the particles. If we assign smaller values to

these parameters then particles will move with slow speed in the search space

and explore more solutions. In this way there is quite less chance that they will

get trap in to some local value and therefore through this we can achieve better
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steady state error. In this case we are making the convergence speed slower and

it will take more time by the swarm to converge on some optimum value.

On the other hand if we assign higher values to these parameters, then particles

will move quickly and will settle down quickly on some optimum value. This will

make the convergence rate higher but there will be the chance of getting trap in to

some local minimum which will cause the steady state error to degrade. Therefore

the values for these parameters will be application dependent.

Simulation results, shown in figure 5.7, presents the effect of different values of

acceleration constants on its MSE curves. From the simulation results shown in
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haviour

figure 5.7, it is evident that for smaller values of acceleration constants we achieve

better steady state error. For c1=c2=1.5 and c1=c2=0.2, the steady state error

is almost -18.5dB. And as we increase in the values of acceleration constants the
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steady state error will increase. Like for c1=c2=4 and c1=c2=6, the steady state

error is almost -16.5dB and for c1=c2=6 it increases to -15dB. As we increase the

value of this parameter, convergence rate is degraded. Hence from these curves

shown in figure- 5.7, it is evident that most optimum value for these acceleration

constants is c1=c2=2.5.

5.4.5 Effect of the Number of Taps of Equalizer

The number of taps of adaptive equalizer is a parameter which is purely application

dependent, and any algorithm modification will have almost negligible effect on

it. Here in PSO, for each algorithm, the number of taps of equalizer is equivalent

to the dimensions of each particle.

Simulation results, shown in figure 5.8, presents the effect of different values of

number of taps on its MSE curves. It is evident from the simulation results shown

0 50 100 150 200 250 300 350 400 450 500
−20

−15

−10

−5

0

5

10

Iterations

M
S

E
 (d

B
)

9 taps

11 taps

7 taps 9 taps
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in figure 5.8, that for this same application of adaptive channel equalization, the

different values of number of taps have very slight effect on both areas of concern,

steady state error and convergence rate. Hence from these simulation results we

can conclude that the optimum value for the number of taps of adaptive equalizer

will be 9.

5.4.6 Effect of the Maximum Velocity

This parameter of maximum velocity is actually controls the maximum allowed

velocity to the particles, through which these particles move in search space. This

parameter is related to maximum allowed position to any particle, means this max-

imum allowed velocity of any particle is equal to some number times of maximum

allowed position to any particle, therefore these two parameters have combined

effect.

This maximum allowed velocity is the parameter through which particles move

towards their global optimum positions. If particles move towards their global

optimum values with higher speed then there will be the chance for these parti-

cles to search extensively around the global value and the probability of getting

better MSE will be higher. Therefore higher values of this parameter will have

productive effects on MSE curves by giving minimum steady state error with bet-

ter convergence. On other hand if we assign lower values to this parameter then

there is chance that these particles might get trap around some local minimum

values, and they will keep on searching only around that area. And due to this we
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might get higher steady state error and MSE curve can also take higher number

of iterations to converge.

Simulation results, shown in figure 5.9, presents the effect of different values of

maximum allowed velocity on its MSE curves. From the simulation results shown
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behaviour

in figure 5.9, it is evident that larger this parameter, secures minimum steady

state error. As minimum value of this parameter, Vmax=0.04Xmax, gives the

most degraded steady state error which is almost -17dB. By assigning higher val-

ues to this parameter we secured better MSE curves, with minimum steady state

error and better convergence rate. By increasing the value of this parameter af-

ter, Vmax=0.09Xmax, there is not even noticeable effect on MSE curves. Higher

values were also tried in simulation, but those were not shown in this figure, and

those values also deliver the similar results, so there is no use of assigning higher
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values to this parameter. Hence it can be concluded here that the most optimized

value for this parameter will be Vmax=0.09Xmax.

5.4.7 Effect of the Data Window Size

In most of the practical conditions we do not have the whole data at the same

time. Most of the time we get the data in form of chunks for equalization, and we

have to perform this equalization only on the subset of the data, and from that

subset we have to find the behaviour of the incoming data. Therefore to make our

simulations more like practical conditions, this parameter will be introduced.

If we assign higher values to this parameter then we are taking more data to

observe the statistics of the complete data set, which obviously will yield the

better results in sense of steady state error. And if we assign smaller values to

this parameter then we have smaller subset of the complete data, to understand

the statistics of the complete data. And in this case we might not get better

steady state error. This parameter has also effect on convergence rate, but this

effect on convergence rate of the MSE curves, is not of great extent.

Simulation results, shown in figure 5.10, depicts the effect of different values of

data window size N, on its MSE curves. From the simulation results, shown in

figure 5.10, it is evident that for smaller value of this parameter we have degraded

steady state error and also slow convergence rate. For N=50, it converges at almost

150 iterations with steady state error of -17.5dB. As we assign higher values to

this parameter, convergence rate and steady state error, both improved. For N=
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Figure 5.10: Effect of the Data Window Size, N, on the performance behaviour

200, 300, 400, it converges after only 25 iterations with steady error of almost

-18.5dB. At N=100 it converges after almost 80 iterations with same steady state

error. After N=100, there is no improvement in steady state error. Hence it can

be stated here, that this algorithm made the number of computation smaller as

compare to all previously used PSO algorithms. As we increase the value of N, it

will take more time, as it will use more data, which will increase the delay. Here

after N=100, if we keep on increasing the value for this parameter, there will not

be improvement in steady state error, only a small improvement in convergence

rate. Hence if we are more concerned about convergence rate the optimum value

will be N=200, otherwise with slight less convergence rate, N=100 will yield the

optimized results with minimum number of computations.
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5.5 Simulation Results of Adaptive equalization

using HPSO

Here the comparison of the simulation results for adaptive equalization, using

different linear channels and non linear system, at different noise levels, will be

conducted. We will compare the MSE for this proposed algorithm with the pre-

viously used PSO algorithms including PSO-AW and LMS.

5.5.1 Simulation Comparison Using Linear Channels

Same previously used two linear time-invariant channels will be adopted here as

well, described by their following transfer functions H1(z) = 0.2602+0.9298z1

+0.2602z2, and H2(z) = 0.408 + 0.816z1 + 0.408z2. The first channel H1(z) is

more stable as compare to second channel H2(z). Following are the details of

different parameters which will be used in all these algorithms. For every PSO

algorithm the optimal parameters will be, Xmin=-2, Xmax=2, input window size

N will be 200, and number of iterations will be 500. For remaining parameters,

for PSO-W, Vmax=0.07Xmax, Wmin=0.6 and Wmax=1, c1=c2=1.5, and the

number of particles will be 40. For PSO-CCF, Vmax=0.20Xmax, c1=c2=4, k=5,

Vmax=0.20Xmax, and the number of particles will be 40. For PSO-VCF, c1

= c2 = 4, kmin = 4, kmax = 6, and vmax = 0.20xmax. For PSO-AW, S=45,

Vmax=0.1Xmax, Wmin=0.6 and Wmax=1, c1=c2=2 and the number of par-

ticles will be 30. For this proposed algorithm HPSO, S=45, Vmax=0.09Xmax,

Wmin=0.6 and Wmax=1, c1=c2=2.5, M=200 and A=1 and the number of par-
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ticles will be 30. Values of these parameters are secured from sensitivity analysis

done in previous section. For LMS the step size will be 0.025. And these all results

will be averaged over 25 runs. The SNR for all these algorithms will be 20dB. The

number of taps for the adaptive equalizer will be 9. As it was stated earlier while

explaining the functionality of the equalizer that there will be delay of processing

after signal pass through the equalizer and in order to compare it properly with

the original signal we have to introduce a delay factor in the original signal, and

the value of this delay, D will be 11.

Figure 5.11and 5.12, shows the simulation comparison of all these algorithms, us-

ing first and second linear time variant channels respectively. From these two
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Figure 5.11: MSE curves for PSO-W, PSO-CCF, PSO-VCF, PSO-AW, LMS and
HPSO using H1(z)

figures 5.11and 5.12, we can conclude that HPSO, exhibits better performance

as compare to all previously used algorithms with respect to steady state error.

While using PSO-W and PSO-VCF, we achieved better steady state error and
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while using PSO-CCF we achieved higher convergence rate but the steady state

error is highly degraded. With PSO-AW we achieved both better convergence

rate and improved steady state error simultaneously, but still improvement was

required in steady state error and it has been achieved through HPSO. In case of

HPSO, although convergence rate is not as swift as of PSO-CCF but the steady

state error is highly improved as compare to all algorithms. Hence with slightly

less convergence rate, HPSO secured the minimum steady state error as compare

to all algorithms, for both channels.

In order to check the proper functionality of this proposed algorithm, we plot-

ted it at different SNR values, as SNR increase the steady state error should be

improved. The simulation of HPSO at different SNR values, while using H1(z),

is shown in figure 5.13. From figure 5.13, it can be inferred that, steady state
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Figure 5.13: MSE curves for HPSO at different SNR values

error improves as SNR increase which shows that this implemented algorithm is

working properly without error.

5.5.2 Simulation Comparison Using Non Linear Systems

The main reason for using PSO algorithms for any application was this, that

these algorithms perform better for non linear systems. Therefore in order to

strengthen this statement, simulation comparison has been shown in figure 5.14,

of all previously used algorithms with HPSO. And the non linear system which is

used for simulation is shown in figure 3.4, in which b1=1, b2=0.1, b3=0.05, and

the channel used is H1(z) = 0.2602+0.9298z1 +0.2602z2.

It is evident from the results, shown in figure 5.14, that all PSO algorithms

shown better performance as compare to LMS, which shows that PSO has better

functionality in nonlinear systems. There is improvement in steady state error, in
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Figure 5.14: MSE curves for PSO-W, PSO-CCF, PSO-VCF, PSO-AW, LMS and
HPSO using nonlinear system

this simulation result as well. This improvement is of 4 dB with respect to PSO-

AW, 6 dB with respect to PSO-W and PSO-VCF, and almost 9 dB improvement

with respect to LMS, which is a great improvement. Here although convergence

is not good as compare to PSO-CCF but still the improvement in steady state

error is remarkable.

If we compare the statistics of simulation results achieved from non linear systems

with that of linear systems, the improvement in steady state error for non linear

system is more. For non linear system these all PSO algorithms have better steady

state error as compare to LMS, and among all these PSO algorithms, HPSO have

the minimum steady state error of -20.5dB approximately. This is the minimum

steady state error which we have achieved so far in our whole simulations.
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5.6 BER Analysis

The comparison for BER between our proposed algorithm HPSO, PSO-AW and

LMS will be done in this section. As it has been stated earlier that, among all

previously used conventional algorithms like, RLS and Steepest Descent etc, LMS

is the most commonly used algorithm. Hence to make the comparison, this LMS

algorithm was selected.

We will compare, with respect to BER, while using both linear time invariant

channel and nonlinear system.

5.6.1 Comparison of BER using LTI Channel

We will use the same linear time invariant channel which has been used earlier

for the comparison of MSE curves. The transfer function of which is H1(z) =

0.2602+0.9298z1 +0.2602z2.

Simulation results, shown in figure 5.15, depicts the effect of SNR on BER curve.

It is evident from the results shown in figure 5.15, that as SNR increase BER of

HPSO decreases. The BER while using LMS at SNR=15dB; this same BER is

achieved at lower SNR=12.5dB while using PSO-AW and with HPSO this same

BER achieved even at lesser SNR value of 12dB. Means if we use HPSO and

increase the SNR up to same level of 15dB, then BER will be less as compare

to LMS at that same SNR value. Hence it can be concluded here that while

using HPSO, we can have less BER at same SNR value as compare to LMS and

PSO-AW as well.
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Figure 5.15: BER performance of LMS, PSO-AW and HPSO while using LTI
channel H1(z)

5.6.2 Comparison of BER using Nonlinear System

In previous subsection comparison was taken for linear system, now we will com-

pare the BER performance of these algorithms while using same nonlinear sys-

tem, which is shown in figure 3.4, in which values of the coefficients will be b1=1,

b2=0.1, b3=0.05, and the channel used is H1(z) = 0.2602+0.9298z1 +0.2602z2.

Simulation results, shown in figure 5.16, presents the effect of SNR on BER curve.

From the simulation shown in figure 5.16, it is evident that while using HPSO

we got better BER at even less SNR as compare to LMS and PSO-AW. Like the

same value of BER was achieved, at SNR=14dB for HPSO, for PSO-AW this value

of BER was achieved at 14.5dB and for LMS we achieved this value of BER at

SNR=19dB. It can be concluded here that for also nonlinear systems, we get better

BER while using HPSO as compare to LMS and PSO-AW. From these simulation
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Figure 5.16: BER performance of LMS, PSO-AW and HPSO while using Nonlin-
ear System

results, it is also evident that for nonlinear system, we have more improvement

in BER as compare to linear system. Simulation results shown in figure 5.15, for

linear system, HPSO showed improvement of 3.5dB as compare to LMS. Here in

figure 5.16, for nonlinear system, HPSO has more than 5dB improvement as com-

pare to LMS. Hence these results again proved that PSO algorithms showed better

performance in nonlinear systems as compare to conventionally used algorithms.

5.7 Conclusion

In this chapter we described the main reasons to introduce HPSO algorithm, then

we completely explained the working of this algorithm with the help of simulation

results. Simulation based comparison with previously used algorithms and BER

analysis, while using linear and nonlinear systems, also presented in this chapter.
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Sensitivity analysis of this proposed algorithm has been presented as well. The

main reason behind simulating this algorithm is following that, while using PSO-

AW we achieved better convergence rate and nominal steady state error but there

was still need to improve the steady state error. Therefore to improve the steady

state error, we introduced such techniques and incorporated them in such a way

that it will secure similar convergence rate but with improved steady state error.

Although convergence rate of HPSO was less as compare to PSO-CCF, sometimes,

but we got the large improvement in steady state error. Hence while using HPSO,

with slight less convergence rate we achieved almost 5dB improvement in steady

state error using linear channel and improvement of almost 9dB using non linear

channel, as compare to LMS.
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CHAPTER 6

COMPUTATIONALLY

EFFECTIVE ALGORITHMS

WITH CONCLUSION AND

RECOMMENDATIONS

6.1 Introduction

In this last chapter we will introduce two new methodologies, which are used to

reduce the number of computations. These methodologies are Local Search (LS)

and Train and Verify (TV). Simulation based comparison, of these both tech-

niques, with base case of PSO (PSO-W) will be presented. We will incorporate

these methods with our proposed algorithm HPSO, to observe the effect on num-

ber of computations. A tabular comparison will also be presented of all the PSO
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algorithms used so far in this research to check the performance of these algo-

rithms, with respect to minimum number of computations. BER analysis will

also be done for these both new techniques, in both linear and nonlinear systems.

In the end of this chapter conclusion will be made, based on this whole research

and future recommendation will be suggested as well.

6.2 Techniques to Reduce the Number of Com-

putations

In this section, we will introduce two new techniques to reduce the number of

computations and processing delay. Comparison of these both techniques with

base case of PSO (PSO-W) will be done. Both types of systems, linear and

nonlinear, will be used for the comparison. In order to assert that these two

techniques have minimum number of PSO operations, tabular comparison will

be done as well.

In order to calculate the performance, with respect to number of computations,

of each algorithm, we will use the following formula, stated in equation 6.1,

Np = n(N − d) ∗mc (6.1)

Where Np is the number of PSO operations, and mc is the number of iterations

required for convergence. And n is the number of particles, N is the data window
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length and d is the number of equalizer’s taps weights to be estimated. From

equation 6.1, it can be seen that number of PSO operations mainly depend on n,

number of particles, and N, data window size. Hence in order to reduce number of

PSO operations, we have to assign smaller values to these parameters. On other

hand if we assign lower values to these parameters, then there will be degradation

in performance with respect to both convergence rate and steady state error. And

this thing will increase mc which in turn will become the reason to increase the

number of PSO operations. Therefore we have to consider all these aspects while

reducing the number of PSO operations.

6.2.1 Local Search (LS)

In base case of PSO or PSO using linearly decreasing inertia weight, we assigned

the same values to both acceleration constants, c1 and c2. As first acceleration

constant c1, assign weight to local search and c2 assign weight to global search.

In base PSO case, equal weights were given to the local and global search. Here

as the name of this new technique suggests that we will assign more weight to

local search. Although it will reduce the convergence rate, but it will have less

number of PSO operations, shown in table-7.1.And the reason for this less number

of PSO operations is that we assigned smaller values to n, number of particles,

and N, data window size. Here c1 will be assigned higher weight 5.5, and c2 will

be assigned only 0.5.
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6.2.2 Train and Verify (TV)

Following are the two reasons which motivate this new methodology. In all pre-

viously used algorithms we have been using fixed data window N, and due to this

our problem might become deterministic and if the final tap weights were tested

with the complete data set, the MSE would be larger.

As the main purpose here is to reduce the number of PSO operations, and while

using LS, the convergence rate reduced and steady state error also increased.

Therefore to address these issues we use this new methodology train and verify.

In this method a fixed data window is used for Wver iterations. At the end of

Wver iterations, a new data window of length Nver > N is used to test pbest

and gbest obtained so far. These will be updated and then, a new fixed data

window is used for another Wver iterations, and so on. As in this methodology

new parameters were introduced, so following formula shown in equation- 6.2, will

be used to compute number of PSO operations for this technique.

Np = n(N − d) ∗mc +
(n(Nver − d) ∗mc)

Wver

(6.2)

6.2.3 Simulation Based Comparison using Linear System

In this section we compare these two techniques, LS and TV, with PSO-W,

which is also base case of PSO. We will be using the same previously used lin-

ear time-invariant channel, described by their following transfer function H1(z)

= 0.2602+0.9298z1 +0.2602z2. Following are the details of different parameters
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which will be used in all these algorithms. For each algorithm the optimal param-

eters will be, Xmin=-2, Xmax=2, Vmax=0.07Xmax, Wmin=0.6 and Wmax=1,

and number of iterations will be 500. For remaining parameters, for PSO-W,

c1=c2=1.5, the number of particles will be 40 and N=200. And for LS, c1=5.5

and c2=0.5, n=20 and N=100. For HPSO-TV, c1=c2=4.0, n=10 and N=50. We

found the values of these parameters from the sensitivity analysis done in previ-

ous chapters, and these all results will be averaged over 25 runs. The SNR for all

these algorithms will be 20dB. The number of taps for the adaptive equalizer will

be 9. As it was stated earlier while explaining the functionality of the equalizer

that there will be delay of processing after signal pass through the equalizer and

in order to compare it properly with the original signal we have to introduce a

delay factor in the original signal, and the value of this delay, D will be 11.

Simulation results are presented in figure 6.1.
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Figure 6.1: MSE curves for PSO using Base Case(PSO-W), T&V and LS with
H1(z)
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Figure 6.1, shows the simulation comparison of above stated two new tech-

niques with the PSO using base case, PSO-W, with same previously stated LTI

channel H1(z). It is evident that LS bears the slowest convergence rate and steady

state error is also higher. For TV, although we got the jumps in MSE curve, but

still its convergence rate is improved and it also secured the same steady state

error like PSO-W. The comparison with respect to number of PSO operations

will be described in next section, in table- 6.1. From this table we can conclude

that while using TV, we secured the minimum number of PSO operations. LS

also secured less number of PSO operations with respect to PSO-W, but the con-

vergence rate and steady state error is degraded. The main advantage which has

been secured here is that the process of adaptive equalization completed with sig-

nificantly less processing delay. The reason of this reduced processing delay, while

using LS and TV, is due to less number of particles and reduced data window

size.

6.2.4 Simulation Based Comparison using Non-Linear

System

In this section comparison will be made using nonlinear system and same LTI

chaneel, H1(z) = 0.2602+0.9298z1 +0.2602z2, will be used. And the non linear

system which is used for simulation is shown in figure 3.4. Following are the

details of different parameters which will be used in all these algorithms. For each

algorithm the optimal parameters will be, Xmin=-2, Xmax=2, Vmax=0.07Xmax,
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Wmin=0.6 and Wmax=1, and number of iterations will be 500. For remaining

parameters, for PSO-W, c1=c2=1.5, the number of particles will be 40 and

N=200. And for LS, c1=5.5 and c2=0.5, n=20 and N=100. For TV, c1=c2=4.0,

n=10 and N=50. We found the values of these parameters from the sensitivity

analysis done in previous chapters, and these all results will be averaged over 25

runs. The SNR for all these algorithms will be 20dB. The number of taps for

the adaptive equalizer will be 9. As it was stated earlier while explaining the

functionality of the equalizer that there will be delay of processing after signal

pass through the equalizer and in order to compare it properly with the original

signal we have to introduce a delay factor in the original signal, and the value of

this delay, D will be 11.

Simulation results are presented in figure 6.2.

0 50 100 150 200 250 300 350 400 450 500
−15

−10

−5

0

5

10

Iterations

M
S

E
 (d

B
)

using LS

using T&V

using base case

Figure 6.2: MSE curves for PSO using Base Case(PSO-W), T&V and LS with
Nonlinear System
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Figure 6.2, shows the simulation comparison of above stated two new tech-

niques with the PSO using base case, PSO-W, while using nonlinear system. It is

evident that LS bears the slowest convergence rate and steady state error is also

higher. For TV, although we got the jumps in MSE curve, but still its convergence

rate is improved and it also secured the same steady state error like PSO-W. The

comparison with respect to number of PSO operations will be described in next

section, in table- 6.2. From this table we can conclude that while using TV, we

secured the minimum number of PSO operations, also in nonlinear system. For

nonlinear system the reduction in number of PSO operations is more as compare

to linear system. The same advantage has been secured here as well, while using

nonlinear system, that the process of adaptive equalization completed with sig-

nificantly less processing delay. And this happened due to same reason of using

less number of particles and reduced data window size.

6.3 Proposed Hybrid Algorithm with LS and

T&V

Here we will incorporate our proposed HPSO algorithm with these two method-

ologies LS and T&V. Hybrid with LS will becomes HPSO-LS and here will

simply assign higher weight to c1 as compare to c2, rest of the algorithm will

remain same. And for Hybrid with T&V becomes HPSO-TV and here for hybrid

algorithm we will use re-randomization with variance curve shown figure 5.2.
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And the reason for using this variance curve is that in re-randomization we

are already modifying the values of pbest and in T&V we have to update

pbest and gbest after some Wver iterations as well. Therefore if variance curve

shown in figure 5.1 will be used, which has higher influence of re-randomization

in beginning, then these both will keep on varying the values of pbest due

to which there will be the chance that we get unstable MSE curves. That’s

why we will use the other variance curve in which re-randomization have

almost negligible effect in the beginning and higher influence at the end of

iterations, and at the end our particles would have settled and it will not create

instability in the MSE curves. Here also the numbers of sudden jumps are reduced.

6.3.1 Simulation Based Comparison using Linear System

Here same previously stated LTI channel has been used, H1(z) = 0.2602+0.9298z1

+0.2602z2. Following are the details of different parameters which will be used

in all these algorithms. For each algorithm the optimal parameters will be,

Xmin=-2, Xmax=2, S=45, Vmax=0.09Xmax, Wmin=0.6 and Wmax=1, M=200

and A=1 and number of iterations will be 500. For remaining parameters, for

HPSO c1=c2=2.5, the number of particles will be 30 and N=200. And for

HPSO-LS, c1=5.5 and c2=0.5, n=20 and N=100. For TV, c1=c2=4.0, n=10

and N=50. Values of these parameters are secured from sensitivity analysis done

in previous chapter. And these all results will be averaged over 25 runs. The
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SNR for all these algorithms will be 20dB. The number of taps for the adaptive

equalizer will be 9. As it was stated earlier while explaining the functionality of

the equalizer that there will be delay of processing after signal pass through the

equalizer and in order to compare it properly with the original signal we have to

introduce a delay factor in the original signal, and the value of this delay, D will

be 11.

The simulation comparison is shown figure 6.3 and the comparison of all these

algorithms with respect to number of operations is shown in table 6.1.
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Figure 6.3: MSE curves for HPSO, HPSO-LS and HPSO-T&V using H1(z)

From the simulation comparison shown in figure 6.3 and table 6.1, it is clear

that although the convergence rate of HPSO-LS and HPSO-TV is less than

HPSO but we have large reduction in number of PSO operations. For HPSO-LS,
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Table 6.1: Comparison of Parameters and Number of PSO Operation of PSO
Algorithms for Linear System

PSO-W(base case) LS TV HPSO-LS HPSO-TV HPSO
N 200 100 50 100 50 100
n 40 20 10 20 10 30
C1 1.5 5.5 4 5.5 4 2.5
C2 1.5 0.5 4 0.5 4 2.5
MSE -16 -14 -16 -17 -19 -19
mc 90 200 180 150 90 30

Wver – – 20 – 20 –
Nver – – 200 – 200 –
Np 687600 364000 75825 61500 45495 81900

%age Reduction – 47% 88.5% 91% 93% 88%

it is converging after 150 iterations and error is relatively high as compare to

HPSO. For HPSO-TV, it is converging after 90 iterations but the error is similar

to HPSO. For HPSO-TV only the convergence rate is less as compare to HPSO

but the error is same.

In table 6.1, percentage reduction in PSO operations of all algorithms with

respect to PSO using base case or PSO-W, is shown. We can conclude from

this table that if we are more concerned about the less number of operations

then HPSO-TV would be the most appropriate algorithm to used, as it showed

improvement of almost 93% as compare to PSO-W. If we are concerned about

steady state error, then both HPSO and HPSO-TV showed same results but

the convergence rate of HPSO-TV is slower as compare to HPSO. Hence in this

table the details for each algorithm has been presented, now for selecting the

appropriate algorithm will depend on user requirement.
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6.3.2 Simulation Based Comparison using Non-Linear

System

Here same previously stated nonlinear system and same LTI chaneel, H1(z) =

0.2602+0.9298z1 +0.2602z2, will be used. And the non linear system which is

used for simulation is shown in figure 3.4.. Following are the details of different

parameters which will be used in all these algorithms. For each algorithm

the optimal parameters will be, Xmin=-2, Xmax=2, S=45, Vmax=0.09Xmax,

Wmin=0.6 and Wmax=1, M=200 and A=1 and number of iterations will be

500. For remaining parameters, for HPSO c1=c2=2.5, the number of particles

will be 30 and N=200. And for HPSO-LS, c1=5.5 and c2=0.5, n=20 and N=100.

For TV, c1=c2=4.0, n=10 and N=50. Values of these parameters are secured

from sensitivity analysis done in previous chapter. And these all results will

be averaged over 25 runs. The SNR for all these algorithms will be 20dB. The

number of taps for the adaptive equalizer will be 9. As it was stated earlier while

explaining the functionality of the equalizer that there will be delay of processing

after signal pass through the equalizer and in order to compare it properly with

the original signal we have to introduce a delay factor in the original signal, and

the value of this delay, D will be 11.

The simulation comparison is shown figure 6.4 and the comparison of all these

algorithms with respect to number of operations is shown in table 6.2.
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Figure 6.4: MSE curves for HPSO, HPSO-LS and HPSO-T&V using Nonlinear
System

From the simulation comparison shown in figure 6.4 and table 6.2, it is clear

that we achieved almost similar improvements even using nonlinear system as

well. Again a large reduction in number of PSO operations has been achieved for

nonlinear system.

In table 6.2, percentage reduction in PSO operations of all algorithms with

respect to PSO using base case or PSO-W, is shown. We can conclude from

this table that if we are more concerned about the less number of operations

then HPSO-TV would the most appropriate algorithm to use, as it showed

improvement of almost 96% as compare to PSO-W, for nonlinear system. For

nonlinear system, same conclusion can be made that if we are concerned about

steady state error, then both HPSO and HPSO-TV showed same results but
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Table 6.2: Comparison of Parameters and Number of PSO Operation of PSO
Algorithms for Nonlinear System

PSO-W(base case) LS TV HPSO-LS HPSO-TV HPSO
N 200 100 50 100 50 100
n 40 20 10 20 10 30
C1 1.5 5.5 4 5.5 4 2.5
C2 1.5 0.5 4 0.5 4 2.5
MSE -15 -12 -14.5 -17 -20 -20
mc 220 290 260 230 120 40

Wver – – 20 – 20 –
Nver – – 200 – 200 –
Np 1680800 527800 131430 94300 60660 109200

%age Reduction – 68% 92% 94% 96% 93%

the convergence rate of HPSO-TV is slower as compare to HPSO. Hence in this

table the details for each algorithm has been presented, now for selecting the

appropriate algorithm will depend on user requirement.

6.4 BER Analysis

Here we will perform the comparison for BER among all PSO algorithms and

LMS. These PSO algorithms will be HPSO, PSO-AW, HPSO-LS and HPSO-TV.

All previously used conventional algorithms like, RLS and Steepest Descent etc,

LMS is the most commonly used algorithm. Therefore to make the comparison,

this LMS algorithm was selected.

We will compare, with respect to BER, while using both linear time invariant

channel and nonlinear system.
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6.4.1 Comparison of BER using LTI Channel

We will use the same linear time invariant channel which has been used earlier,

which is H1(z) = 0.2602+0.9298z1 +0.2602z2. Usually the analysis of BER curve

is considered to be like this, that as we increase SNR, BER should decrease,

while making the water fall curve.

Simulation results, shown in figure 6.5, present the effect of SNR on BER curve.

It is evident from the results shown in figure 6.5, that as SNR increase BER for
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Figure 6.5: BER performance of LMS, PSO-AW, HPSO, HPSO-LS and HPSO-TV
while using LTI channel H1(z)

both the algorithms, HPSO-LS and HPSO-TV, decreases. Comparison among

these all algorithms reveals that, the BER performance of all PSO algorithms

which have been presented so far, is better than LMS. If we compare among

PSO algorithms only, BER of these both algorithms, HPSO-LS and HPSO-TV,

is better than PSO-AW. Although these both algorithms have slight degraded

136



performance as compare to HPSO, with respect to BER, but it is adequate as

these algorithms, HPSO-LS and HPSO-TV, secured minimum number of PSO

operations. Comparison between HPSO-LS and HPSO-TV, with respect to

BER, reveals that HPSO-TV have better performance, but due to sudden jumps

in it, sometimes there might be the problem of stability in it. Hence it can

be concluded that while using HPSO-LS and HPSO-TV, we can secure almost

similar BER like PSO-AW and HPSO, with quite less number of PSO operations.

6.4.2 Comparison of BER using Nonlinear System

In previous part comparison was taken for linear system, now we will compare

the BER performance of these all algorithms while using nonlinear system. The

same nonlinear system will be used here, which is shown in figure 3.4, in which

values of the coefficients will be b1=1, b2=0.1, b3=0.05, and the channel used is

H1(z) = 0.2602+0.9298z1 +0.2602z2.

Simulation results, shown in figure 6.6, present the effect of SNR on BER curve.

Again from the simulation shown in figure 6.6, it is evident that even while using

nonlinear system, all PSO algorithms performed better than LMS, with respect

to BER. For nonlinear system we achieved almost similar results as we achieved

for linear system.HPSO-TV have better BER performance as compare HPSO-LS,

similar to linear system. Similarly these both algorithms have slight degraded

performance as compare to HPSO, with respect to BER, but it is acceptable, here
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Figure 6.6: BER performance of LMS, PSO-AW, HPSO, HPSO-LS and HPSO-TV
while using Nonlinear System

as well, as these algorithms, HPSO-LS and HPSO-TV, secured minimum number

of PSO operations. Hence, for nonlinear system as well, it can be concluded that

while using HPSO-LS and HPSO-TV, we can secure almost similar BER like

PSO-AW and HPSO, with quite less number of PSO operations.

6.5 Thesis Conclusion and Future Recommen-

dations

In this thesis we implemented a new algorithm, PSO-AW, and proposed a new

algorithm HPSO for adaptive equalization. And we implemented also two new

techniques to reduce the number of operations and both these techniques were also
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been used incorporation with our proposed algorithm HPSO. The main reason

for implementing PSO-AW was to improve the convergence rate with nominal

steady state error. And through our proposed algorithm HPSO we secured the

minimum steady state error. If we compare these both algorithms with LMS, for

steady state error, then PSO-AW secured almost similar Steady state error as

compare to PSO-W but with better convergence rate. With HPSO we secured

the minimum steady state error as compare to all previously used algorithms, for

adaptive equalization, including LMS. When we incorporate HPSO with two new

techniques, LS and TV, we secured almost similar results with quite less number

of PSO operations. Although the convergence rate for HPSO-LS is less, still the

improvement of reduction in processing delay is remarkable. All algorithms which

have been presented in this research, PSO-AW, HPSO, HPSO-LS and HPSO-TV,

exhibited better performance with respect to BER as compare to LMS. These all

simulations have been done in both, linear and nonlinear, environments. Another

fact revealed from all simulation results that improvements for nonlinear systems

were better as compare to linear systems, with respect to convergence rate, steady

state error and BER. Hence it can be stated that these all algorithms, presented

in this report, served well for the purposes.

All the contributions of this thesis report, and conclusion, has been stated. If we

observe the results incisively then, there are still problems which can be addressed

in future. Like in HPSO we achieved the minimum steady state error as compare

to all previously used algorithms but still the convergence rate of HPSO is less
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than PSO-CCF. In HPSO-TV we achieved the minimum number of operations

but the convergence rate was slower as compare to HPSO, different techniques

can be used to improve this convergence rate. And still we are facing the sudden

jumps in MSE curves of HPSO-TV, research can be done to address this issue.
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