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Conventionally, IC testing and speed characterization is carried out using very 

expensive Automatic Test Equipments (ATEs). Built-in-self-test (BIST) techniques can 

also be used as a low-cost solution for at-speed testing. However, BIST may require some 

modification of the circuit under test (CUT) to coup with the pseudo random nature of the 

test vectors (what is known as test points insertion).  Also, speed characterization can’t be 

directly carried out by BIST. Other low-cost testing and speed characterization methods 

are needed especially for developers of circuit IPs in small companies and universities. In 

this thesis, a special purpose test and characterization processor (TACP) for IC testing and 

speed characterization has been developed, implemented and tested. The processor utilizes 

specially developed test support circuitry (TSC) which is fabricated on the chip containing 

the IPs under test. The TSC, in coordination with the off-chip stand-alone TACP processor, 

receives test data serially, re-format them, apply them to IPs under test, reformat the test 

results and send it serially to the test processor. The TSC also include a configurable clock 

generator which is controlled by the TACP. By controlling the testing frequency and test 

patterns application, the IPs can be characterized to find their maximum frequency of 

operation. A proof-of-concept implementation was realized using two FPGA boards; one 

for the processor and the other to emulate the chip that contains IPs and on-chip circuitry. 

Also, a complete user interface tool has been developed allowing the user to write, load 

and administer his/her test program, download test data and receive the test results through 

a standard PC.  
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 ملخص الرسالة

 الرحمن عبد الولي الأغبريعمران عبد  : الاسم الكامل

 تصميم معالج خاص باختبار الدوائر المتكاملة و توصيف سرعتها : عنوان الرسالة

 هندسة حاسوب : التخصص

 م2102ديسمبر  : تاريخ الدرجة العلمية

 

 جدا   لفةمكوتوماتيكية اختبار أأجهزة استخدام تعتمد على تقليدية  بطرق ICلدوائر الإلكترونية الرقمية ا توصيف سرعة يتم اختبار و

Automatic Test Equipments (ATEs) . يمكن أيضا استخدام دوائر الفحص التلقائي(BIST ) كحلول قليلة

عشوائي لكن استخدامها يتطلب تعديلات في الدائرة المراد اختبارها لتتلائم مع طريقة التوليد ال. باختبارات السرعة العاليةلتقوم التكلفة 

حاجة ناك هتوصيف السرعة.  للاستخدامها مباشرة من أجكما أنها غير مصممة . و تعرف أيضا بإضافة نقاط أختبار(الاختبار )لسلاسل 

في الشركات الصغيرة  Circuit IPsالمبتكرة الرقمية الدوائر  بتكريخاصة لم ،الدوائرتوصيف سرعة ختبار و لاأقل كلفة أخرى لطرق 

 A Specialالدوائر الإلكترونية توصيف  اختبار وتصميم و تطبيق و اختبار معالج خاص بتم  ،الرسالةفي هذه و الجامعات. 

Purpose Test and Characterization Processor (TACP) المعالج يستخدم دائرة إلكترونية أخرى مساندة .

ا و توصيف المطلوب إختباره الرقمية يتم دمجها و تصنيعها في رقاقة إلكترونية مع الدوائربحيث صممت خصيصا لتسهيل عمله، 

تلم بيانات الإختبار و تس -(الغير مصنوع معها في نفس الرقاقة الإلكترونية)بالتنسيق مع المعالج المستقل  -سرعتها. الدائرة المساندة 

. Seriallyالطريقة التسلسلية ب ترسلها للمعالج ثمب النتائج يترتز و بعد ذلك تقوم بتطبقها على الدائرة المطلوب إختبارها ثمتعيد ترتيبها 

يتحكم به المعالج.  Configurable Clock Generator (CCG)ترددات قابل للضبط  فيها أيضاالدائرة المساندة 

ه. تم يعندما يقوم المعالح بتطبيق بيانات الإختبار مع التحكم بالتردد يمكن توصيف الدائرة و إيجاد أعلى سرعة يمكن أن تعمل علف

 Field Programmable Gate Arrayالقابلة للبرمجة الدوائر الرقمية إثبات هذا المفهوم بتطبيقه عمليا باستخدام 

(FPGA)  .حيث تم تصميم المعالج على واحدة منها و تم عمل محاكاة للدائرة المساندة مع بعض الدوائر للإختبار في واحدة أخرى ،

 ب.بكتابة برنامج إختبار و إدخال بيانات الإختبار و قراءة النتائج عبر الحاسو لمستخدم امل يسمح لمتكحاسوبي برنامج تم تصميم  كما
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CHAPTER 1 

 

INTRODUCTION 

 

 

Developers of circuit intellectual properties (IPs) in universities and small companies need to 

silicon-prove their IPs. Unfortunately, automatic test equipments (ATEs) that can handle Giga-

Hertz testing are very expensive making them beyond the reach of many universities and IP 

developers in small companies. ATEs are best suited for testing thousands of chips of the same 

design, however, they are not practical for developers who prototype and verify only several 

number of different circuit IPs. 

In this thesis, a special purpose processor that can test and characterize prototypes of circuit IPs 

has been developed. These IPs are fabricated along with a special test support circuitry (TSC) on 

the same chip. The processor is a part of the low-cost testing and characterizing platform 

introduced in [1]. The processor is designed and implemented on an FPGA board. To verify the 

processor’s operation, the rest of the platform has also been implemented. The support circuitry 

with some IPs are emulated on another FPGA board. A graphical user interface tool was 

implemented to write programs and control executing them on the processor. Many successful 

programs were successfully run. 
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1.1 Circuit IPs 

Circuit intellectual property is a reusable unit of logic, cell, or chip layout design. It is also called 

IP for simplicity. It is used as building blocks within larger designs. IPs are licensed either as soft 

IPs which are a synthesizable hardware-description language modules or as hard IPs which are 

layout macros [2]. 

IP-based design promise large productivity gains. Many IPs are used and integrated with other 

circuitries to work together as a single system. IP-based design has a very short time-to-market 

development cycle because it reuses existing IPs to build larger designs. IPs have rapidly become 

the cornerstone of the SoC industry [3, 4, 5]. In SoC, pre-designed and pre-verified hardware and 

software blocks can be combined on chips for many different applications. 

Many researchers in universities and small companies are developing new IPs but they face a 

huge problem when they try to market them. Unfortunately, IPs cannot be marketed unless silicon-

proven with specific performance numbers (Maximum frequency of operation, maximum 

throughput, maximum latency, average power, etc.).  Moreover, fabricating an IP prototype is 

relatively cheap, testing and characterizing it on the other hand could be very costly. Developing 

a cost-effective solution would enable circuit designers to prototype, test and characterize their IPs 

at the operational speeds. 

1.2 IC Testing 

Testing is a manufacturing step that ensures that each of the fabricated physical devices 

(integrated circuits or ICs), has no manufacturing defect(s). Testing also characterizes the 

fabricated ICs by determining their maximum operating frequency (called speed or frequency 

binning). 
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Verification, on the other hand, is a predictable testing that comes before fabrication in all 

phases of the IC design flow used to prove the correctness of the design. Functional simulation and 

timing simulation are examples of verification methods. 

Design for Testability (DFT) 

To facilitate the test process, modification on the synthesized design is suggested to get a 

testable design. Design for testability (DFT) methods were developed and became a standard phase 

after the synthesis phase in the IC design flow. In this phase, all storage elements inside the IC are 

replaced with scan cells which are connected and forms multiple shift registers (i.e. scan chains). 

Thus, the IC can be set directly into a specific state by shifting in stimulus to all storage elements. 

Additional test points may be inserted to improve the observeability and controllability of the 

design in case a pseudo random pattern generator is used to generate the test vectors (as the case 

with BIST). 

Testing Principle 

Figure 1.1 illustrates the basic principle of digital testing with ATEs. Test patterns are applied 

to the IC, and then test responses are captured and compared with stored expected responses. The 

circuit is considered good if the responses match. The quality of the tested circuit will depend upon 

the thoroughness of the test vectors that are usually generated using Automatic Test Pattern 

Generation (ATPG) techniques. The test vector itself usually has two parts; the first is applied to 

the IC inputs, and the other part is shifted into the scan chain of the IC under test to change its 

storage elements values and therefore force the IC to a specific state. 
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Figure 1.1 : Principle of testing with ATEs: apply test patterns, capture responses and compare them with 

expected ones.. 

Characterization Process 

Characterization is to determine the exact limits of device operating values: What is the 

maximum frequency the design can operate on with no errors? How much power does it consume? 

In this thesis, the main concern is speed characterization. To do that, the IC clock frequency is set 

initially at minimum value, and then at-speed testing of the IC is administered by applying stimuli 

and comparing the test results with expected ones. If the test result is OK, the frequency is increased 

and the test is done again and again. The test continues until reaching the maximum frequency or 

getting a difference between the test result and the expected results. Figure 1.2 illustrates this 

process. 

In at-speed testing, part of the stimulus is shifted into the scan chain while the rest is used as 

primary inputs. Thus, the stimulus length is equal to the scan chain length plus the number of 

primary inputs while the result vector length is equal to the scan chain length plus the number of 

primary outputs. Testing is done by applying two clock cycles at a specific frequency. The first 
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clock pulse results in new stimulus which is applied with the next clock pulse. This way a transition 

delay fault can be discovered which indicates that the frequency has to be decremented. 

 
Figure 1.2 : Characterization process: test the IP under different frequencies to find out the maximum. 

1.3 Thesis Organization 

The next chapter contains a literature survey on test and characterization methods and multi-

cycle processors. The platform overview is explained in chapter three. Chapter four contains the 

complete design of the TACP and its components in details. The implementation of the platform 

is presented in chapter four with a discussion about the ASIC emulation problems. Experimental 

results are presented and discussed in chapter six followed by conclusions and references. Several 

appendices that summarize the TACP instruction set and provide user tutorials on the different 

software tools developed are provided at the end.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

This chapter includes literature survey about IC test processors and other testing and 

characterizing methods. The survey shows the contribution of the testing platform on the IC testing 

and characterizing field. The last section in the chapter introduces the multi-cycle processor 

architecture that are needed to build the testing processor. 

2.1 Digital circuit prototyping 

Developers of circuit IPs need to prove the functional correctness of their IPs and to characterize 

their performance (speed and power). There are two main methods for verifying new circuit IPs 

functionality and performance; simulation-based verification with very detailed process and device 

models in what is called virtual prototyping, and through physical prototyping by either using 

FPGA implementation or via fabrication with a silicon foundry. 

Virtual Prototyping 

One way to prove the correctness of an IP is virtual prototyping. Virtual prototyping tools 

attempt to capture the effects of all physical parameters (process and otherwise) through modeling. 

Virtual prototypes are used to faithfully represent the ‘‘product-to-be’’, so as to be able to simulate 
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its features, performances, functionality and usage before the real product is actually built [6]. 

Virtual prototyping is just simulation-based verification software that is more accurate than 

traditional simulations. The existing virtual prototype software costs high and is not practical for 

testing circuit IPs. Furthermore, it is still a simulation that cannot be compared with a silicon-

proven chip. 

Physical Prototyping 

Chip fabrication is the most trusted and accepted method of verification, since it reveals the 

actual performance of the circuit being prototyped. Fabricated chips would achieve the highest 

performance but they would require very expensive automatic testing equipments (ATEs) to test 

and characterize their performance at their operational speeds (called at-speed testing). 

Automatic test equipments (ATEs) are standalone devices that can be used to test digital 

designs. They have many advantages such as digital and analog test capability, high-current pin 

protections and high-speed test execution. They also has disadvantages such as they are very 

expensive and require an accurate setup. Agilent, Advantest and Teradyne are example of 

companies that provide these machines. The ATEs mainly detects failures due to manufacturing 

defects, aging, environment effects and others [7] and helps manufacturers to maintain their 

manufacturing tools. They are not practical for prototyping IPs of universities researchers and 

small companies because of their high cost. 

BIST-based test processors 

Built-in self-test (BIST) is the primary test methodology which reduces dependency on external 

Automatic Test Equipment (ATE). It is a circuitry that is designed and integrated on the chip with 
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the circuit under test (CUT). It has many components as shown in the simple block diagram in 

Figure 2.1. The test pattern generator (TPG) generates test patterns to be applied to the circuit 

under test (CUT). The analyzer retrieves the responses, updates responses signature and compares 

the signature with a good CUT signature to detect fault. 

 
Figure 2.1 : Basic BIST Architecture Block Diagram. 

Test pattern generators (TPG) is the main component that affect the test process. It could be 

deterministic or pseudorandom (i.e. requires a seed to start the pattern random generation). In the 

deterministic way a ROM could be used to store good test vectors that covers most faults. These 

good vector usually are generated using automatic test pattern generator (ATPG). However, this is 

too expensive in the chip area. Another way is to use a counter on the circuit input to generate all 

permutations. This is not practical if inputs number is large [8].  For pseudorandom TPGs, Linear 

feedback shift register (LFSR) is a well-known example of TPGs that needs a small hardware. 

Figure 2.2 show a 4-bit LFSR and the sequences that it can generate. It randomly generates all 4-

bit permutations (except the sequence that has all zeros). Another successful TPG idea is to use 

LFSR with a small ROM that stores some test patterns that are not covered by LFSR. This called 

the mixed-mode testing in which the pseudo-random testing is followed by a deterministic testing 

approach. General-LFSR is presented and well explained in [9] to be used instead of LFSR. 

GLFSR is the general form of LFSR, MISR. It can generate higher randomness test vectors so the 

fault can be discovered with fewer patterns. Using GLFSR for a mixed-mode testing approach is 

presented in [10] to investigate its performance. It starts by pseudo-random test while a controller 
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counts the generated test vectors. When the counter reaches a predefined number, it starts the 

deterministic test. 

 
Figure 2.2 : A 4-bit linear feedback shift register (LFSR) which is used as a test pattern generator (TPG). 

A BIST-Based test processor is presented in [11] that contains linear feedback shift register 

(LFSR), signature analyzer and RAMs. The LFSR is programmable and can set user seed for every 

test set. The processor uses LFSR to generate random numbers and apply them to the circuit under 

test (CUT). Then, it compress the responses to generate the signature and store them in its RAM 

to be sent later to computer to compare them with a signature of a good CUT. Other RAMs is used 

to store the seeds, test length and the polynomial. 

It is not practical to test the circuit using all 2n combinations. Many researches are done on 

selecting the best seeds that can cover most faults. Test length affects the testing time. High fault 

coverage cannot be achieved within an acceptable test length. Reseeding is a technique which has 

been proposed to solve this problem. A heuristic approach is presented in [12] that come of a small 

leads to very small number of seeds, short test sequences and almost complete fault coverage. 

Based on that approach, [13] proposes and simulate an external test processor architecture. 

In general, BIST test quality depends on signature analysis that can detect more than 99% of 

faults. This coverage percentage decreases with the increasing of the complexity of the design. 
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BIST-based test processors achieve fault coverage for memory cores better than complex design 

such as microprocessors and IP cores. BIST also adds an overhead area for each CUT since it is 

included in the chip that contains the CUT. Some researchers proposed efficient utilization of area 

by using one BIST to test multiple components in SoC [14]. They used a microcode-based 

controller to control one BIST to test multiple RAM cores for SoC system. 

In summary, BIST is a good random test method that require a reasonable area. It can reach to 

100% fault coverage for some designs and more than 90% in average but also requires modification 

of the CUT in order to achieve the high fault coverage. 

Software-based testing 

Software-based self-testing strategy is a proposed for complex designs that cannot be tested 

perfectly using BIST techniques such as system-on-chip (SoC). System-on-chip consists of many 

heterogeneous embedded modules such as RAMs, processors, IPs, etc. There is a need for special 

test processor designed on the chip to test all its components for these reasons; some of these 

components could be black boxes and not designed for testability. In addition, the controllability 

and observability become more limited with the increase of the complexity of the design. Also, 

most of SoC components are not connected to the ASIC pins and cannot be tested by external 

testers. 

Trying to utilize BIST-based testing for SoC, researchers in [15] suggest using BIST-based 

testing strategy for testing processor IPs by generating random instructions. This way, they achieve 

a good fault coverage with a minimum area and without the need for scan chain insertion into the 

processor under test. 
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 Researchers in [16] remark the fact that most SoC has at least one processor core. They suggest 

utilizing existing processors and use a subset of their instruction set for testing purposes. They also 

suggest mutual self-test of processors that can do hardware- and software-based test strategy in 

which the following possibilities are considered; one processor is made active and tests the other 

passive processor at the logic block level via scan-chains(hardware-based testing). Then both 

processors are made active one of them test the other using valid op-code, valid data and functional 

inputs (software-based testing). Also the processor can provide active March test for a memory 

block. In addition, one of the test processors can work as a watchdog that monitor the chip 

correctness at normal operation. 

In most cases, the test processor in SoC generates the test vectors. Some researchers suggest 

connecting the SoC to large external RAM that holds the test program, data and expected responses 

[17]. This way the RAM could be considered as an external ATE but the test process is controlled 

by the chip. 

The test processor in [18] is a 16-bit RISC processor and supported by a scan controller that is 

connected to all components scan chains in the chip. It can support bus tests, functional tests, scan 

testing and act as a watchdog in normal operation. 

Low-cost FPGA-Based testers 

FPGA is also used in many testing platforms to present a standalone low-cost tester. An FPGA 

holds the tester, software to control the tester and the chip under test which is usually put on a 

daughter board that is connected to the FPGA board. This platform is good for functional testing. 

It can also do at-speed testing but at low speeds (not more than few hundred MHz) [19, 20, 21, 22, 

23]. FPGAs are also used as a verification method to prototype ASIC designs [21]. 
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An FPGA-based functional tester to test SoC is presented in [22] . An automatic software tool 

in a host PC prepares a compressed test set and a decompression logic. Then, the compressed test 

set is downloaded into SRAM on the FPGA-board and the decompression logic is downloaded into 

the FPGA. The FPGA reads, decompresses the test set from the RAM, sends them to the DUT and 

captures the responses. 

SRAM testing platform is presented in [20]. It is consist of FPGA board (i.e. Xilinx Virtex 4) 

connected to slave board accommodates SRAM under test. The FPGA executes a special March-

C testing algorithm using a MicroblazeTM  micro-processor that could detect specific SRAM faults. 

FPGA-based test platform is presented in [19]. It is consist of FPGA board (Xilinx Spartan 3) 

connected to slave board that accommodates the DUT. The platform uses three SRAMs to store 

timing data, test patterns and responses. There are a PC software to read timing data and test files 

and send them to SRAMs. A state machine on the FPGA manages all operations. 

In the work presented in [23], a new multiplier architecture is designed, implemented, fabricated 

and then used as a DUT for the presented FPGA-based testing platform. 

An on-chip and at-speed tester for memories is presented in [24]. The presented patent platform 

can do at-speed testing and characterizing of multiple memories. It consists of two parts; the 

centralized flow controller and the localized signal generator. The centralized flow controller 

consists of memory, processor and a user interface. The localized signal generator is to be included 

with the memory under test in an integrated circuit. It has also a clock generator, characterization 

circuit and a phase lock loop (PLL). The memory stores some memory test algorithms and the test 

program that use these algorithms. The testing starts by receiving an execute signal indicating the 

memory type and the storing test operations. 
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That platform is excellent since it can do testing and characterizing. However, it is dedicated 

for memories only and cannot be generalized because it depends on specific stored testing 

algorithms.  

2.2 Multi-cycle processors 

Processor architecture can be single-cycle in which each instruction is executed in one cycle 

(i.e. Clock Per Instruction (CPI) = 1) or multi-cycle in which the instruction is executed in multiple 

cycles (i.e. CPI > 1). Multi-cycle architecture is suitable for our work because it can deal with 

variable data size. Instructions of variable data size are needed to send test data, receive test results 

and compare results. 

Microcode is a simple well-known processor architecture that allows multi-cycle instructions. 

It has the ability to add and remove instructions with relatively less effort. It consists of three parts; 

data path, sequencer and control store. The sequencer is the control unit that fetches low-level 

microinstructions from a control store and derives the appropriate control signals as well as micro-

program sequencing information from each microinstruction. The data path is controlled by these 

control signals. Control store is a ROM and stores microinstructions of all instructions. Each entry 

reflects all the signal values at specific clock. In the data path all operations and data manipulations 

are performed. It may contain registers, shifters, ALUs, or any combinational and sequential 

circuits. Data path is controlled by control signals coming from the selected entry of the control 

store. A good view of microcode history is presented in [25]. It discusses the evolution of 

microcode from its introduction to its decline and to its likely resurgence in custom computing 

machines and reconfigurable computing. 
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CHAPTER 3 

 

OVERVIEW OF THE PROPOSED TEST AND 

CHARACTERIZATION PLATFORM 

 

 

This chapter gives an overview of the targeted test and characterization platform [1] and 

describes its components in details. Figure 3.1 shows the general architecture of the test and 

characterization platform. Unlike many previous techniques which either use a test circuit that is 

entirely on-chip with the device under test or entirely off the DUT’s chip, the new method uses a 

hybrid approach. Also, unlike the approach in [20] where voltage and clock controllers are 

integrated on the DUT’s chip while the test controller could be off-chip, this  method provides a 

general way for applying stimuli and capturing results with fixed interfaces (i.e. the same test 

controller can be used to test and characterize any circuit). Also, unlike the approach in [20] no 

BIST circuitry is required. The test controller (TACP) can be implemented on an ASIC or a Field-

Programmable Gate Array (FPGA). The TACP could be interfaced to a PC for receiving test 

instructions and data and sending the test results. The TACP’s on-chip support circuitry provides 

the fixed interface (Figure 3.3) to the TACP and the controlled clock source for the IUTs. All 

interfaces use serial data communications to save I/O pins [1]. 
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Figure 3.1 : The Proposed Platform: PC, Test Processor on FPGA board, and Support Circuitry On Chip. 

3.1 The TACP Support circuitry (TSC) 

The TACP support circuitry (TSC), shown in Figure 3.2, performs the following functions: 

 Port Selection: The proposed method supports testing and characterization of unlimited 

number of IPs on the prototype chip. Each IP could also have several input/output ports for 

different purposes (functional I/Os and scan I/Os). The TSC provides a mean to select a 

specific port to apply/receive test data to/from. 

 Serial-to-Parallel and Parallel-to-Serial data conversion (SERDES): To have fixed logic 

interfaces between the TACP and the prototype chip all data communications are serial. As 

such, the TSC converts the received serial test data to parallel data to be applied to the IUT. 

It also converts back the captured test results from parallel form to serial form. 

 Controlled Clock Source: All data transfer between the TACP and the prototype chip and 

functional characterization is carried out using the TACP relatively low frequency clock to 

ease the design of the interface. For speed characterization, a high speed digitally controlled 

oscillator is provided as part of the TSC. The user can increase/decrease this oscillator 

frequency and use it for at speed testing of his/her IP(s). 

 

Figure 3.2 shows a block diagram of the TSC. The main components are the configurable clock 

generator, the port selection block, test application ports (TAPs), and test result ports (TRPs). 
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Figure 3.2 : Block diagram of the TACP Support Circuitry (TSC) to be placed on the prototype chip. 
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TSC Fixed interface 

Figure 3.3 shows the interface between the TACP and the prototype chip. This interface is fixed 

and will not change with any chip being tested or characterized. Whatever the number of IPs to be 

tested and whatever the number of inputs each IP has, the interface is fixed and does not change. 

The interface has twenty pins as depicted in Figure 3.3. Data is moved serially. The transition of 

the test data happens while the strobe signal is high which works as a shift signal for the serial data.  

 
Figure 3.3 : The fixed interface between TACP and TSC. 

 TCLK_in: The processor clock operates the TSC to synchronize it with the processor. 

 TCLK_out: The same processor clock loops back for de-skewing purpose. 

 Strobe_in_PMask: Strobe signal for scanning in the port selection bits. 

 PS_Mask_Data_in: Port selection input stream. 

 PS_Mask_Data_out: Port selection output stream used for loop back testing purposes. 

 Strobe_in_TData: Strobe signal for scanning in test data. 

 Test_Data_in: Test data input stream. 

 Test_Data_out: Test data output stream used for loop back testing purposes. 
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 CLK_Sel: Selects the clock source for testing; either the TACP TCLK or the on-chip 

HFCLK. 

 AaC_TD: Apply-and-capture signal that prompt the TSC to apply two cycles of the 

selected clock to the selected IUT and capture the result. 

 Strobe_out_TR: Strobe to read out test result. 

 TResult_out: Test result output stream. 

 HFCLK_Meas_Req: A request to measure the selected frequency on the chip. 

 HFCLK_Meas_ACK: An acknowledgement indicates finishing the frequency 

measurement process. 

 Strobe_in_CLK_CR: Strobe to input the control word of the on-chip clock generator. 

 CLK_CW_in: Control word input stream. 

 Strobe_out_CLK_FR: Strobe to read out the measured frequency register. 

 CLK_FR_out: Measured frequency register output stream. 

3.1.1 The Configurable Clock Generator 

As mentioned before, the regular test clock is coming from the TACP which is off-chip. This 

clock is kept at a moderate frequency (50~100 MHz). Hence no special high-frequency 

transceivers or signal traces are required. This eases the design of the interface and keeps its cost 

to a minimum. At the same time this clock is adequate for scanning in/out the test data/results and 

performing functional characterization of the IUTs. Frequency characterization, however, requires 

a clock source that can be configured to produce a high-frequency clock. This configurable source 

is placed on the prototype chip and dubbed the Configurable Clock Generator. This generator, as 

illustrated in Figure 3.4, is made up of a frequency measuring circuit (FMC), Figure 3.5 and 

Figure 3.6, a clock frequency control register, Figure 3.7, and a clock selection and application 

circuit, Figure 3.8. 
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Figure 3.4 : The configurable clock generator. 

3.1.2 The Frequency Measuring Circuit (FMC) 

The FMC, simply counts the number of high-frequency clock cycles within a certain period and 

puts the result in a shift register that would be shifted out by the TACP using the 

Strobe_out_CLK_FR strobe signal and through the CLK_FR_out pin. The measurement period is 

specified by the TACP as the difference between activating the measurement request 

(HFCLK_Meas_Req) and deactivating the request. When the FMC is done it activates the 

acknowledgement signal (HFCLK_Meas_ACK) which remains high till a new measurement 

request is received. The detailed design of the FCM including its controller’s state diagram and its 

operation is shown in Figure 3.5 and Figure 3.6. The user can control the accuracy of the 

measurement by having a longer measurement period. To get the frequency the following formula 

is used: 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  
𝐹𝑅 × 𝑇𝐴𝐶𝑃 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑙𝑒𝑛𝑔𝑡ℎ (𝐶𝑦𝑐𝑙𝑒𝑠)
 



 

20 

 

 
Figure 3.5 : The frequency measuring Circuit (FCM). 

3.1.3 The Clock Selection and Application Circuit (CSaAC) 

The clock selection and application circuit (CSaAC), Figure 3.7, is responsible for selecting the 

required test clock (based on the CLK_Sel input signal from the TACP) and applying exactly two 

pulses of that clock to the selected TAP/TRP ports (in response to a strobe on the AaC input). The 

TACP triggers the CSaAC by setting the AaC signal to high for at least two cycles of the selected 

clock (Sel_CLK). The CSaAC will produce exactly two pluses of the selected clock for each AaC 

pulse, but in order for this circuit to fire again, the AaC signal must be reset for at least two cycles 

of the selected clock. The clock gating circuit ensures that the two pulses applied are complete with 

no glitches by enabling the output clock when the selected clock is low. The only constraint for 

this circuit is that the sum of the clock inverter delay, the FF’s clock to Q delay and the clock-

gating AND gate delay is less than the width of the negative pulse of the selected clock. Also, due 

to the required synchronization of the AaC input with the selected clock (3 FF synchronizer is 

used), the output clock pulses will have a latency of 3 cycles of the selected clock. The TACP takes 

care of all these issues by applying the AaC signal for two TCLK_in cycles (TCLK_in frequency 

is always ≤ than the selected clock frequency) and then resetting it for two more cycles before 

setting it again (in case of successive apply and capture commands). 
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Figure 3.9 shows logic simulation results of the CSaAC with unit gate delays. Figure 3.9 (a) 

shows how the circuit functions correctly when the AaC pulse is at least two cycles of Sel_CLK 

and the so is the reset time in between AaC pulses. When the AaC pulse is less than two cycles or 

the reset time in between pulses is less than two cycles, the circuit fails, as shown in Figure 3.9 (b) 

and Figure 3.9 (c), respectively. 

 
Figure 3.6 : The state diagram of the control unit of the frequency measuring circuit (FMC). 

 

 
Figure 3.7 : The Clock Frequency Control Register. 
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Figure 3.8 : The Clock Selection and Application Circuit. 

3.1.4 The Port Selection Block 

This block is responsible for selecting a specific test application/test result port to deliver the 

strobes, test clock and input test data to or receive test results from. The user can select a single 

input/output port or two ports (one input and one output). To make this block general yet with a 

fixed interface to the TACP, it is made up by cascading a basic cell as shown in Figure 3.10. The 

selection mask is loaded serially through the PS_Mask_Data_in input using the Strobe_in_PMask 

strobe signal. The TACP supports variable length selection mask (up to 216 bits). The port 

selection mask is also read out through PS_Mask_Data_out for testing the selection chain. 

 
Figure 3.9 : Logic Simulation Results for the CSaAC [1]. 
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Figure 3.10 : The Port Selection Circuitry. 

3.1.5 The Test Application/Result Ports (TAP/TRP) 

There are two types of test application/result ports as was illustrated in Figure 3.2. The first 

type, shown in Figure 3.11 (a) and Figure 3.11 (b), are used for applying and capturing primary 

inputs/outputs of an IUT. These are similar to boundary scan ports and are made of shift registers 

for scanning in/out the test data/results and parallel-load registers for applying/capturing the test 

data/results.  As Figure 3.11 shows, each TAP (or TRP) is made of a cascaded number of identical 

cells equal to the port's data width. The shift registers use the TCLK_in and the application/capture 

registers use the selected apply and capture clock (CLK_Out). The CLK_Out clock is also used 

for the IUT's internal registers. For the TRP, the TACP needs to apply at least one TCLK_in cycle 

(to load the test results into the shift register) before activating the Strobe_out_TR signal to read 

out the results.  
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IP designers may also need to use full-scan designs in addition to/or instead of boundary-scan. 

This requires making all or part of the internal Flip Flops scanable (forming one long scan chain).  

Such scan chains could be used for debugging/diagnostics of an IUT internal circuitry or to fully 

test a sequential circuit which is difficult to do using only primary inputs/outputs. Special 

TAP/TRP scan ports were developed for scan chain inputs/outputs of IUTs, as shown in 

Figure 3.12. These ports have to be used (i.e. selected) in pairs where data is shifted through the 

chain when either the Strobe_in_TR or the Strobe_out_TR signals is activated. The TCLK_in, 

Scan_En and CLK_Out signals are made available for the internal scan FFs of the IUT. Regular 

TAP/TRP ports are used for non-scan primary inputs and outputs of the IUT. The TACP 

instructions support shifting test data in, shifting test results out, or simultaneous shifting in and 

out of test data and results, respectively. 

      
         (a) k-bits wide test application port (TAP).                 (b) l-bits wide test results port (TRP). 

Figure 3.11 : Test application port (TAP) and test results port (TRP). 
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Figure 3.12 : Scan test application/result ports. 

3.2 User Interface Software 

This software enables the user to fully control the testing process. It provides the user with 

complete interfaces for writing and editing programs, downloading program and test data to 

memories, uploading programs, test data and test results from memories, reading register contents, 

sending control signals to reset registers, reset program execution, set a break point, edit the value 

of an address registers, start or stop running the current program. 

Any communication media can be used; Ethernet, USB or serial port (i.e. UART port). The user 

interface and the test processor can are communicating through a serial cable. A communication 

protocol is proposed to be implemented in both sides. The protocol take care of downloading and 

uploading from memories. It also forwards control signals from the user to the processor. It gives 

a high level of abstraction to facilitate the processor design and the user interface design.  
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Interface Protocol 

The user interface has to implement the user interface protocol which will be also implemented 

on TACP (a hardware version). The protocol defines 19 commands as listed and described in 

Table 3.1. They are categorized into four groups; loading registers commands, downloading to 

memories commands, uploading form memories requests and control commands. The 

communication unit is the packet. The user sends variable-size packets each packet starts with type 

byte that defines the packet type and length. A graphical representation of the implemented 

protocol structure is depicted in Figure 3.13. 

 
Figure 3.13 : Packet type list. Each packet starts with flags defining a command and determines packet size.  
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Table 3.1: Communication protocol - the available user commands with their codes. 

Class No. Command Description 
L

o
ad

in
g

 

1 Load rx counter Set a new value to the receiving counter. 

2 Load tx counter Set a new value to the transmitting counter. 

3 Load PCRead Set the instruction memory reading address register. 

4 Load PCWrite Set the writing address of the instruction memory. 

5 Load DCRead Set the reading address of the test-data memory. 

6 Load DCWrite Set the writing address of the test-data memory. 

7 Load RCRead Set the reading address of the test-result memory. 

8 Load RCWrite Set the writing address of the test-result memory. 

9 Load BP Set new value to the break point register. 

D
o
w

n
lo

ad
 

10 Receive inst. 
Receives instructions and stores them in the instruction 

memory. The count is determined by the receiving counter. 

11 Receive test data 
Receives test-data and stores them in test-data memory. 

Received data size is determined by the receiving counter. 

U
p
lo

ad
 

12 Request inst. 
Requests to read data from instruction memory. Data size is 

determined by the transmitting counter. 

13 Request test data 
Requests to read data from test-data memory. Data size is 

determined by the transmitting counter. 

14 Request test result 
Requests to read data from test-result memory. Data size is 

determined by the transmitting counter. 

15 Request registers Requests reading all register contents. 

C
o
n
tr

o
l 16 Single Step Sends a single-step control signal to execute one instruction. 

17 Run Sends a run control signal to execute the rest of the program. 

18 Reset Sends a reset control signal that clear all processor registers. 

19 Stop Sends a stop control signal to stop the program execution. 

 

3.3 Test and Characterizing Processor (TACP) 

This Thesis focuses on the test and characterization processor (TACP). The test processor 

executes the program written and downloaded by the user through the user interface software. It is 

supported with memories and user communication unit. The processor can select an IP on the chip, 

send test data to IP inputs or scan chain, apply test data and read the captured results back from IP 

outputs on the chip. It can also set, decrease or increase the frequency of testing clock on the chip. 



 

28 

 

It has the ability to compare the results with the expected results and store the comparison in 

memory. 

TACP consists of the processor, user communication unit, memories and memory multiplexer. 

Figure 3.14 shows the TACP which is a special purpose processor associated with memories and 

a user communication unit. It runs programs from its memory and produces the appropriate test 

signals to TSC on the chip. The user communication unit enables the user to access memories and 

read register contents. 

 
Figure 3.14 : TACP main components. 

Processor 

The processor is a microcode architecture that consists of sequencer and data path. The 

sequencer is the control unit of the processor that sequences the micro instruction execution. It 

only has five components; address register, comparator, incrementer and two multiplexers.  

The control store is a ROM that stores all control signals for all execution cycles. Each entry 

contains the states of all data path control signals and info about the next address. In each clock 

cycle, the sequencer selects on entry that controls the data path and determine the next micro 

instruction address. 
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The data path contains all components that is needed to execute the instructions and controlled 

by the control signals from the control store. The data path components are as follows: 

 Test data shift register (TD): It shifts the test data out to the TSC. At the same time it shifts 

the old test data in that are coming from the TSC (returned back). 

 Test result shift register (TR): It shifts the test result in from the TSC. 

 Selection mask shift register (SM): It shifts in the old selection mask coming from the 

TSC. SM and TD are used as a loop back checkers. 

 Measured frequency shift register (FR): It shifts in the corresponding FR in the TSC. Its 

value indicates the measured frequency. 

 Frequency control word shift register (CW): It shifts out the frequency control word to 

the corresponding FR in the TSC. 

 User counter (UC): it is a 32-bit register that can be decremented, incremented, loaded from 

memory, stored in memory or loaded by immediate value. It is assigned with a zero flag so 

the user can use JZ and JNZ instructions that branches according to that flag. The ability to 

load store this register make it possible to use it for multiple counters. 

 Addressing multiplexers: These multiplexers controls the new value that should be stored 

in address registers. An address register can be loaded with immediate value,or incremented. 

 Enumerating multiplexer: The user can read the contents of some registers by sending a 

request containing the register number. The enumerating multiplexer outputs the selected 

register value as a response to the user request. 

 Instruction Register: Holds the current executing instruction opcode. 

 Stack register: The processor supports calling subroutines. It uses the bottom of the 

instruction memory as a stack to push/pop program counter. 

 Break point register: The program execution stop if the program counter match the break 

point register. 

 Flags. 

Memories 

The platform also contains memories to store instruction, data and results.  To facilitate memory 

management, three independent memories are suggested as shown in Figure 3.15. Each memory 

has two 16-bit address ports one of them is a writing port. 

 Instruction memory: It stores the program and the stack.  

 Test data memory: It is used for test data and expected result.  

 Test result memory: It is used for the test result and comparison result.  
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Figure 3.15 : The three memories. Each memory has four inputs and four outputs. 

User Communication Unit 

User communication unit implements a hardware version of the user interface protocol that has 

the 19 commands mentioned earlier in Table 3.1. A graphical representation of the implemented 

protocol structure is depicted in Figure 3.13. The user communication unit has these components: 

 Communication media unit: This unit deals with the communication physical details and 

totally depends on the communication media type. For each communication media (i.e. 

UART, USB, Ethernet, etc.) there is a different version. This unit simply converts signals 

(bits) to bytes and vice versa to facilitate the protocol implementation that only deals with 

packets and bytes. 

 Receiving Transmitting state machines: The protocol is designed in hardware as two finite 

state machines (FSMs). 

 Receiving counter: The receiving counter is used with variable length packets to count 

down received instructions and data. 

 Transmitting counters: The transmitting counter is used to count the data sent to the user. 

 Addressing multiplexers: Accessing memories requires incrementing address registers. 

The user can also set a direct value to any address register. These multiplexers manage 

modifying the address registers. 

 Flags: Flags supports the state machine by storing the encoding of the current user 

command.  
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CHAPTER 4 

 

DESIGN OF THE TEST AND CHARACTERIZATION 

PROCESSOR  

 

 

In this chapter, the implemented design of test and characterization processor (TACP) is 

illustrated in details. The chapter starts by discussing some main instructions design. Then the 

TACP top level diagram is illustrated showing its components. Then each component has its own 

block and subcomponents illustrated in details and so on. The block diagram of each component 

is viewed and followed by its signals definitions. Each signal appears in this chapter has its unique 

name so signals can be matched between figures. If two signal appears in many figures and have 

exactly the same name that means these signals are connected together. The last section in this 

chapter illustrates the design of the four main instructions. The explanations are supported by 

flowchart and micro instructions. 

4.1 Instruction Design and Microinstructions 

Thirty three instructions are designed. They can be distinguished into five groups. They are 

listed in Table 4.1 with their names and opcodes. Appendix A, page 115 has the detailed 

descriptions of all instructions, their parameters and their micro-instruction 
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Table 4.1: Instructions and their opcodes 

      

 Testing Instructions opcode  Branch Instructions opcode 

1 SendSelectionMask 28 19 JCompareError 08 

2 SendTestData 29 20 JCompareCorrect 09 

3 ReadResult 23 21 Jump 11 

4 ApplyAndCapture 01 22 Call 02 

5 Load_DCRead 13 23 Return 26 

6 Load_RCRead 15    

7 Load_RCWrite 16  Counter Instructions opcode 

8 ClearTestDataRegister 35 24 Load_UserCounter_value 18 

9 ResetCompareFlag 24 25 Load_UserCounter_Mem 17 

10 Compare 03 26 Store_UserCounter 33 

   27 INC_UserCounter 07 

 Frequency Instructions opcode 28 DEC_UserCounter 05 

11 SetFrequencyControlWord 30 29 JNZ 10 

12 SendFrequencyControlWord 27 30 JZ 12 

13 MeasureFrequency 20    

14 ReadFrequencyRegister 22  Others Instructions opcode 

15 INC_CW 06 31 Stop 32 

16 DEC_CW 04 32 Nop 21 

17 SetHFClock 31 33 Fetch 00 

18 ResetHFClock 25    

 

 Testing instructions: The processor needs instructions to send test vectors to the chip, apply 

them and read test result back. This involves memory addressing instructions to control 

reading and storing location in memory. 

 Frequency control instructions: The processor needs instructions to control the frequency 

on the chip, measure, increase, decrease it and read the measured frequency from the chip. 

 Counter instructions: The processor needs counters to do loops. For instance, it is required 

to repeat the test with different frequencies until getting compare error. Only one counter 

register is designed. However, its value can be stored in temporary memory and reloaded 

again. This allows using the counter register for multiple times in the same program.  

 Branching instructions: the processor design allows loops, calling subroutines and 

conditional/unconditional branching. It uses the instruction memory as stack starting from 

the bottom.  

 Other instructions: such as stop executing the program, NOP. 

The most important instructions are explained in the following sub sections. 
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4.1.1 SendSelectionMask instruction design 

The on-chip circuitry has multiple IUTs. Each IUT has multiple ports. Each port has an enable 

bit in the selection register that can be set using this instruction. The circuit decodes the selected 

port number. SendSelectionMask instruction decodes a selected port number. It has two zero-based 

parameters, the selection window length and the selected port number. For example, suppose we 

have for IUTs each IUT has three ports and the ports are serialized as depicted in Figure 4.1. 

SendSelectionMask B, 3 selects port number four by sending a 12-bit stream 0000000000100, 

SendSelectionMask B, 7 selects port eight 000010000000 and so on. 

 
Figure 4.1 : Four IUTs, each has three ports, each port has a serial number. 

To select more than one port at a time, the instruction has to be called multiple times with 

different window lengths. SendSelectionMask B, 7 followed by SendSelectionMask 6, 0 results in 

sending 0000001_000010000000. The latest sent 12-bits are 0000001_00001 which means 

selecting ports 0 and 6. 

The microinstruction and flowchart of the instruction is show in Figure 4.2. The instruction 

starts by loading instruction parameters. It increments the  program counter PC twice to load two 

bytes from instruction memory to the lower part of the 32-bit register CR. Then it loads another 

two bytes to the higher part of CR register. It then increment the program counter PC for the fifth 

time to have the second parameter, the selected port number. After then the instruction loops and 

decrements CR until it reach zero. The selection mask circuitry outputs one when CR equals the 

selected port number, otherwise it outputs zero. 
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Figure 4.2 : SendSelectionMask microinstructions and flow chart. 

4.1.2 SendTestData instruction design 

SendTestData instruction reads data from test data memory and sends them as one serial 

bitstream with strobe signal to TSC. Load_DCRead instruction needs to be invoked before start 

sending to determines data address. It has two parameters, the number of bytes and the number of 

bits minus three. It always sends three bits at least. For example, SendTestData 0, 3 load one byte 

from test data memory sends six bits, SendTestData 5, 5 load 6 bytes and send eight bits from each, 

SendTestData 3, 0 load 4 bytes and sends six bits from each. 

Figure 4.3 shows the micro instructions and flowchart of this SendTestData associated by clock 

number to show the concurrent microinstructions. It starts by loading four bytes to CR, then it 

loads TD register, set number of bits in WC register, and increments DCRead. There are two nested 
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loops, the inner loop sends bits to TSC while the outer loop load bytes from memory. The algorithm 

is designed to generate a continuous bitstream with no stops between bytes. 

 
Figure 4.3 : SendTestData microinstructions and flow chart. 

Figure 4.4-a shows a simulation of calling SendDataInstruction with the parameters 1 and 5. 

This means to read two bytes from the memory and to send eight bits from each byte. The 

simulation shows that the strobe stay high for sixteen clock cycles. The test data (i.e. 97 and D5) 

are sent in this period through the Test_Data_in output pin. Figure 4.4-b shows another 

implementation of the instruction with the parameters 1 and 2. This will read two bytes from the 

memory and send five bits from each byte. 
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Figure 4.4 : Simulation of the instruction SendTestData 

4.1.3 ReadResult instruction design 

ReadResult instruction sends strobe signal to TSC and receives the test result. It stores the 

received bytes in test result memory. Load_RCWrite instruction needs to be invoked to determine 

the memory location. It has two parameters the number of bytes to be stored in memory and the 

number of bits per byte. For example ReadResult 3, 4 reads 20 bits and stores them as four bytes 

in test result memory four bits in each. 

Figure 4.5 below shows microinstructions and flowchart of ReadResult. It starts by loading CR 

with 32 bit value to be used by the outer loop and indicates the number of bytes. The inner loop 

sends strobe and shifts in test results coming from TSC to TR register. WC register is used as 

number of bits and a counter for the inner loop. 
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Figure 4.5 : ReadResult microinstructions and flow chart. 

4.1.4 Compare instruction design 

Compare instruction compares (i.e. XORing) between test data memory block and test result 

memory block and stores results in test result memory.  The addresses needs to be determined by 

invoking instructions Load_DCRead, LoadRCRead, and Load_RCWrite. The instruction affects 

CF flags. It makes CF high when it detects a discrepancy. Figure 4.6 shows microinstructions and 
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flowchart. The instruction keeps incrementing addresses and stores the compare results into test 

result memory. 

 
Figure 4.6 : Compare microinstructions and flow chart. 

4.2 TACP Top Level Design 

The TACP black box is depicted in Figure 4.7 showing pin names that represents the interfaces 

with the user interface and with the test support circuitry (TSC). TACP is connected to the user 

interface through two serial pins rx and tx. It is then connected to the TSC through 19 pins (5 inputs 

and 14 outputs). In addition, it may be connected to additional external control signals such as 

reset, run and single-step that the user can access them directly if needed. 
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Figure 4.7 : TACP design top view and its subcomponents. 

4.3 User Communication Unit 

The communication protocol defines interchanging information rules between the user and the 

TACP processor. The communication unit implements the protocol at the TACP side while the 

user interface software implements the protocol at the user side. There are nineteen commands the 

user could issue each has its unique byte code, as listed and described in Table 3.1. 

The user communication unit is attached with UART module that deals with physical 

communication issues through the COM serial port. The communication protocol circuitries 

include two state machines to control the receiving and transmitting operations with the user, 16-

bit down-counter for receiving, 16-bit down-counter for transmitting, memory addressing 

multiplexing circuitries, break point register, previous-byte register and flags. The communication 

unit receives and responds to user commands through the UART module, Figure 4.8. It can reach 

memory, registers and other components. 
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Figure 4.8 : Communication protocol connected to UART module. 

4.3.1 UART module 

The UART module does the physical communication between the user and the processor. It 

uses COM port for communication. The communication speed is fixed and can be controlled by 

setting the CLOCK_DIVIDE parameter according to Table 4.2 below. The table comes from the 

equation CLOCK_DIVIDE =
clock rate

4×baud rate
=

50∗106

4×baud rate
. The chosen baud rates are the standard baud 

rates of the COM port. The implemented version works at 57600 baud rate which has the least 

error margin as it is shown in Table 4.2, row 7. 

Table 4.2: Communication protocol – UART communication speed. 

 CLOCK_DIVIDE Baud Error 

1 10417 1200 0.667 

2 5208 2400 0.333 

3 2604 4800 0.167 

4 1302 9600 0.083 

5 651 19200 0.041 

6 325 38400 0.520 

7 217 57600 0.013 

8 108 115200 0.506 
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UART module is located at the middle between the user and the processor. It does the physical 

communication so it corresponds to the COM driver on the user PC.  

UART module has two state machines for receiving and transmitting bits with the user side. It 

receives bytes from the COM port serially and sends them with a receive strobe with each byte to 

the communication protocol. It also takes bytes from the communication protocol and sends them 

serially while rising a transmission busy signal. Figure 4.8 shows a black box of UART module 

that uses the 15-pin serial communication port. 

 
Figure 4.9 : The UART module input/output diagram. 

 rx: the received bit from the serial port. 

 tx: the transmitted bit to the serial port. 

 tx_byte:  Byte to be transmitted to the user interface through the UART module. 

 transmit: The communication protocol module has to set this signal high when it needs to 

transmit a byte to the user interface. 

 rx_byte: The received byte from the user interface through the UART module. 

 received: The UART module sets this signal high whenever it finishes receiving a byte. 

 rcv_error:  This bit indicates if there is an error on receiving the current byte. 

 is_transmitting: The UART module sets this signal high when it is transmitting a byte to 

indicate that the transmitting line is busy. When the protocol intends to send a byte, it has to 

wait until is_transmitting becomes low. 

 clk: it has to be 50 MHz clock signals so the UART module can work as illustrated in 

section 4.3.1, page 40 and Table 4.2, page 40. 

 reset: resets the transmitting/receiving state machines of the UART module. 
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4.3.2 Communication flags 

The receiving state machine starts its work by receiving one of the known type-byte. Each type-

byte represents a user command and has its unique control bits as shown in Table 4.3. When the 

receiving state machine receives a valid type-byte, its bits are decoded to eighteen flags that 

controls the transmitting and receiving state machines, Figure  4.10. 

 
Figure  4.10 : Decoding the received type-byte to eighteen flags. 

The flags decoder has three inputs rx_byte,  rx_IDLE_no_rcv and state_tx_IDLE: 

 rx_IDLE_no_rcv: indicates that the the receiving state machine is at state IDLE and no 

byte is received. It is used as a clear signal for all flags. 

 state_tx_IDLE: indicates that the transmitting FMS is at IDLE state. 

 rx_byte: The received byte from the user interface through the UART module. It has the 

following bits which are mentioned in Table 4.3. 

o rx_bits_index: three bits reserved for indexing as shown in Table 4.3. 

o rx_bit_load: this bit indicates that the user is sending two bytes to be loaded to one 

of the nine registers (i.e. rx counter, tx counter, BP, PCRead, DCRead, RCRead, 

PCWrite, DCWrite or RCWrite) according to Table 4.3. 

o rx_bit_control: this bit indicates that the user is sending a control signal. There are 

four control signals as shown in Table 4.3: single-step, run, reset and stop. 
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o rx_bit_byte1st: this bit set the receiving FSM to state_byte1st which indicates 

receiving the first byte of a register contents. It is also used if a control signal will 

be received. 

o rx_bit_mem_write: this bit the moves the receiving state machine to state_LOOP. 

It indicates that the user is writing data either to instruction memory or to test-data 

memory. 

o rx_bit_request: this bit indicates that the user is requesting on of the four available 

requests shown in Table 4.3 (i.e. reading data from one of the three memories or 

reading the contents of the enumerated registers). 

The output of the circuitry is decoded flags which are explained in the following: 

 rx_flag_load: This flag indicates that the user is sending two bytes to be loaded to one of 

the nine registers (i.e. rx counter, tx counter, BP, PCRead, DCRead, RCRead, PCWrite, 

DCWrite or RCWrite) according to Table 4.3. 

 rx_flag_load_rx_counter: the current context is loading new value to rx counter. 

 rx_flag_load_tx_counter: the current context is loading new value to tx counter. 

 rx_flag_load_PCRead: the current context is loading new value to PCRead, the instruction 

memory reading address register. 

 rx_flag_load_PCWrite: the current context is loading new value to PCWrite, the 

instruction memory writing address register. 

 rx_flag_load_DCWrite: the current context is loading new value to DCWrite, the test-data 

memory writing address register. 

 rx_flag_load_RCRead: the current context is loading new value to RCRead, the test-result 

memory reading address register. 

 rx_flag_load_DCRead: the current context is loading new value to DCRead, the test-data 

memory reading address register. 

 rx_flag_load_RCWrite: the current context is loading new value to RCWrite, the test-

result memory writing address register. 

 rx_flag_load_BP: the current context is loading new value to BP_reg, the break point 

register. 

 rx_flag_request_inst: the user requests reading from instruction memory. 

 rx_flag_request_td: the user requests reading from test-data memory. 

 rx_flag_request_tr: the user requests reading from test-result memory. 

 rx_flag_mem_write_inst_td: if it is high indicates that the user requests writing test-data. 

If it is low, indicates that the user requests writing instructions. 

 rx_flag_SingleStep: a control flag which is raised for one clock cycle only. It asks the 

processor to execute the current instruction. 
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 rx_flag_Run: a control flag which is raised for one clock cycle only. It sets the RunF flag 

which give the processor a green light to continue executing all program instructions. 

 rx_flag_Reset: This control flag send a reset signal to all registers in the processor. 

 rx_flag_Stop: This control signal resets the RunF flag and therefore stop running the current 

program. It starts the single-step mode in which the user controls when to execute the next 

instruction. 

4.3.3 Previous received byte register 

Prev_rx_byte register saves the current received byte. It is used to combine two consecutive 

received bytes and forms a 16-bit word as shown in Figure 4.11. This 16-bit word can be loaded 

at once to any 16-bit register. It is useful for receiving addresses and loading counters. 

 
Figure 4.11 : Combining previous received byte with the current received byte to form a 16-bit word. 

 rx_2bytes: the latest received two bytes. 

 rx_bytes: the latest received byte. 

4.3.4 Transmitted byte multiplexers 

Three multiplexers to determine which data line is connected to the user response byte. User 

can request one of the four available requests; reading data from one of the three memories or 

reading the contents of the enumerated registers. 

 
Figure 4.12 : tx_byte multiplexers. 
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 TestResult_b: the 2nd data port of test result memory accessed by the address port RCRead. 

 TestData_a: the 1st data port of test data memory accessed by the address port DCWrite. 

 Instruction_a: the 1st data port of instruction memory accessed by address port PCWrite. 

 rx_flag_Request_inst, rx_flag_Request_td , rx_flag_Request_tr: explained in page 43. 

 tx_byte:  Byte to be transmitted to the user interface through the UART module. 

4.3.5 Receiving state machine (rx_FSM) 

The receiving state machine receives and implements the user commands stated in Table 4.3. 

Command codes are designed in such a way to facilitate the hardware design of the transmitting 

and receiving state machine. 

Table 4.3: Communication protocol - the available user commands with their codes. 

No. class Command code Code 
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index 

[2:0] 

1 
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Load rx counter 18 00011000    1 1 000 

2 Load tx counter 19 00011001    1 1 001 

3 Load PCRead 1A 00011010    1 1 010 

4 Load PCWrite 1B 00011011    1 1 011 

5 Load DCRead 1C 00011100    1 1 100 

6 Load DCWrite 1D 00011101    1 1 101 

7 Load RCRead 1E 00011110    1 1 110 

8 Load RCWrite 1F 00011111    1 1 111 

9 Load BP 9F 10011111 1   1 1 111 

10 

D
o
w

n
 

lo
ad

 Receive inst. 20 00100000   1   000 

11 Receive test data 21 00100001   1   001 

12 

U
p
lo

ad
 Request inst. 40 01000000  1    000 

13 Request test data 41 01000001  1    001 

14 Request test result 42 01000010  1    010 

15 Request registers 53 01010011  1  1  011 

16 

C
o
n
tr

o
l Single Step 90 10010000 1   1  000 

17 Run 91 10010001 1   1  001 

18 Reset 92 10010010 1   1  010 

19 Stop 93 10010011 1   1  011 
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Figure 4.13 shows its FSM diagram. It starts in the IDLE state waiting for receiving the type-

byte from the UART module. If the type-byte indicates a memory write, it goes to LOOP state, 

starts receiving, storing bytes and decrements the receiving counter until it reaches zero. If the 

type-byte indicates a control signal or loading register, it goes to the 1st BYTE state. On this state, 

if the type-byte indicates a control signal, it returns to the IDLE state directly. If it is a loading 

command, it waits for receiving a byte and goes to the 2nd BYTE to receive another byte to form a 

complete 16-bit word. It then loads the 16-bit value to the register specified by the type-byte and 

return to the IDLE state. Finally, if the type-byte indicates a request for reading memories or 

registers, the receiving state machine stay in IDLE state and trigger the transmitting state machine 

to handle the request. The receiving state machine is a 2-bit state machine. Its circuitry is shown 

Figure 4.14. 

 
Figure 4.13 : Receiving state machine FSM diagram. 
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Figure 4.14 : Receiving state machine circuitry. 

 rx0 and rx1: These are two flip-flops to store the FSM current state. 

 rx_flag_load: This flag indicates that the current context is loading to a register. 

 received: indicates that a byte has been received by the UART module. 

 rx_count!=0: indicates that the receiving counter has a non-zero value. 

 rx_bit_byte1st: this bit indicates whether the current context is receiving a control signal 

or loading the lower byte to a 16-bit register. 

 rx_bit_mem_write: indicates that the current context is loading to memory. 

 rx_IDLE_no_rcv: the receiving state machine is at state IDLE and no byte is received now. 

 rx_IDLE_received: the receiving state machine is at state IDLE and a new byte is received 

now. 

 state_BYTE1st_received: the state machine is at state BYTE1st and a new byte is received. 

 state_BYTE2nd_received: FSM is at state BYTE2nd and a new byte is received. 

 state_LOOP_received: the state machine is at state LOOP and a new byte is received. 

4.3.6 Transmitting state machine (tx_FSM) 

The transmitting state machine responds to the user requests and sends him the requested 

information. There are four types of requests. This includes three read requests from the three 

memories. The fourth one is a request to send all enumerated register and flag values to the user. 

The transmitting state machine is triggered by the receiving state machine. It has three states. It 

starts with the IDLE state and waits until it is triggered and receives a request, then it moves to the 

BUSY state. Then, the state machine loops in the BUSY state waiting until the transmission line 
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become free, then it moves to the TRANSMIT state. In the transmit state it decrements the 

transmitting counter and loops while the transmitting line is free. When the state machine reaches 

the TRANSMIT state, a byte will be transmitted, the transmitting line will become busy again and 

the state machine will return beck to the BUSY state. At any state, if the transmitting counter 

reaches zero it return directly to the IDLE state. 

 
Figure 4.15 : transmitting state machine sends test result and register values to the user. 

The transmitting state machine is a 2-bit FSM. Its circuitry is shown in Figure 4.16. 

 
Figure 4.16 : transmitting state machine circuitry and the transmit signal. 

 is_transmitting: indicates whether the transmitting line is busy or not. 

 rx_IDLE_received: the receiving state machine is at IDLE state and a new byte is received. 

 tx_count!=0: indicates that the transmitting counter has a non-zero value. 

 rx_bit_request: this bit indicates that the user is requesting. 

 new_tx_request: start the transmitting process if it is not busy with a previous request. 

 state_tx_IDLE: indicates that the transmitting state machine is at IDLE state. 

 state_BUSY: indicates that the transmitting state machine is at BUSY state. 

 transmit: indicates that there is a byte ready to be transmitted to the user interface. 
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4.3.7 Break point register 

The break point register enables the user to stop running the program at specific point. It stores 

the instruction address where the program execution has to stop. The break point register circuitry 

includes a comparator between the break point register and the program counter, Figure 4.17. The 

comparator result named BreakF, is ORed later with the stop control signal to the processor to stop 

the program execution. 

 
Figure 4.17 : Break point register circuitry and BreakF flag. 

 rx_flag_load_BP: indicates that the context is loading to the break point register. 

 rx_2bytes: 16-bit value to be loaded to the break point register. 

 state_BYTE2nd_received: indicates that the 16-bit value is received and ready. 

 PCRead_reg: the program counter. 

 BreakF: the break point flag, it is the comparator result between BP and PCRead. 

4.3.8 Receiving counter 

The receiving counter is a down counter used for downloading instructions or test-data from the 

user interface to the corresponding memory. The user has to initialize the counter value before the 

downloading request to determine the number of bytes to be downloaded. The counter circuitry 

contains a zero flag that indicates whether the counter reaches zero, Figure 4.18. 
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Figure 4.18 : The receiving counter and its circuitry. 

 rx_flag_load_rx_counter: is loading value to rx counter. 

 state_BYTE2nd_received: indicates that 16-bit value has been recieved. 

 rx_2bytes: the latest received two bytes. 

 state_LOOP_received: the receiving context is downloading to memory and a new byte is 

received. 

 rx_count!=0: indicates that the receiving counter has a non-zero value. 

4.3.9 Transmitting counter 

This down counter is used by the transmitter to upload a specific number of bytes to the user. 

The user has to set its value and also to initialize the memory address before the uploading request. 

The counter is decremented and the address is incremented automatically with each sent byte. The 

circuitry also contains a zero flag for the counter, Figure 4.19. 

 
Figure 4.19 : The transmitting counter and its circuitry. 
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 state_BYTE2nd_received: indicates that the receiving FSM has received 16-bit. 

 rx_flag_load_tx_counter: indicates that the user requests loading value to tx counter. 

 state_tx_IDLE: indicates that the transmitting FMS is at IDLE state. 

 rx_2bytes: the latest received two bytes. 

 transmit: rises when the user is requesting and the transmitter is ready for transmission. 

 tx_count!=0: indicates that the transmitting counter has a non-zero value. 

4.3.10 Communication Error Flag 

Error flag is a communication flag that accumulates the UART module receiving errors. It 

reflects communication error for each sending operation. It is cleared with each new user 

command, Figure 4.20. 

 
Figure 4.20 : Error flag circuitry. 

 recv_error:  indicates if there is an error on receiving the current byte. This signal is coming 

from the UART module. 

 rx_IDLE_received: the idle transmitting state clear the flag. 

 recv_error_reg: the accumulated recv_error for a complete command. 

4.3.11 PCWrite circuitry 

PCWrite is the first instruction memory address port which is a write/read port. PCWrite 

circuitry allows the user to load to the PCWrite register. The register is also incremented when the 

user reads/writes from instruction memory. Write enable signal is also raised when writing to 

instruction memory. The circuitry is shown in Figure 4.21. 
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Figure 4.21: PCWrite circuitry in the communication protoocol. 

 PCWrite_reg: The old value of the PCWrite register. 

 rx_2bytes: the latest received two bytes. 

 state_BYTE2nd_received: indicates that the receiving FSM has completed receiving 16-

bit. 

 rx_flag_load_ PCWrite: indicates that the user requests loading value to PCWrite. 

 transmit: indicates that the UART module starts transmitting a byte to the user. 

 rx_flag_request_inst: indicates that the current context is reading from instruction 

memory. 

 state_LOOP_received: the state machine is at state LOOP and a new byte is received. 

 rx_flag_mem_write_inst_td: if it is low, the writing bytes will be to instruction memory. 

 PCWrite: The new value to be stored in the PCWrite register. 

 WE_Instruction: the write-enable pin of the instruction memory. 

4.3.12 PCRead circuitry 

PCRead is the second test result memory address port which is a read only port. The PCRead is 

the program counter register. PCRead circuitry in the protocol can load new value to the register. 

This will enable the user to put an arbitrary value directly to the PCRead register to set the program 

execution point or even to restart the program. The circuitry is shown in Figure 4.22. 
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Figure 4.22 : PCRead circuitry in the communication protoocol. 

 rx_2bytes: the latest received two bytes. 

 PCRead_reg: The old PCRead register value. 

 state_BYTE2nd_received: rises once the receive-state-machine receives 16-bit value. 

 rx_flag_load_PCRead: indicates that the user requests loading new value to PCRead. 

 PCRead: The new value of PCRead register. 

4.3.13 DCWrite circuitry 

DCWrite is the first test data memory address port which is a write/read port. Using the protocol, 

DCWrite can be incremented or loaded. It is loaded by the user but incremented when the user 

read/write from test-data memory. Write enable signal also raised when the user write to test-data 

memory. The circuitry is shown in Figure 4.23. 

 
Figure 4.23 : DCWrite circuitry in the communication protoocol. 

 rx_2bytes: the latest received two bytes. 

 DCWrite_reg: The old DCWrite register value. 

 state_BYTE2nd_received: rises once the receive-state-machine receives 16-bit value. 

 rx_flag_load_ DCWrite: indicates that the user requests loading value to DCWrite. 

 transmit: indicates that the UART module starts transmitting a byte to the user. 

 rx_flag_request_td: indicates that the current context is reading from test data memory. 
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 state_LOOP_received: the state machine is at state LOOP and a new byte is received. 

 rx_flag_mem_write_inst_td: if it is high, the writing bytes will be to test data memory. 

 DCWrite: The new DCWrite register value. 

 rx_flag_request_td: a flag raises when the user requests reading test-data. 

 WE_TestData: set the write enable pin of the test-data memory. 

4.3.14 RCRead circuitry 

RCRead is the second test result memory address port which is a read only port. The user can 

read from test-result momory and RCRead register holds the reading address. The user can load 

this register using the protocol before requesting test result. When the protocol start transmitting 

the test result, RCRead is incremented with each sent byte. The RCRead circuitry is shown in 

Figure 4.24. 

 
Figure 4.24 : RCRead circuitry in the communication protoocol. 

 RCRead_reg: The old RCRead register value. 

 rx_2bytes: the latest received two bytes. 

 state_tx_IDLE: indicates that the transmitting FMS is at IDLE state. 

 transmit: indicates that the UART module starts transmitting a byte to the user. 

 rx_flag_request_tr: a flag raises when the user requests reading test result. 

 RCRead: The new RCRead register value. 

4.3.15 DCRead circuitry 

DCRead is the second test data memory address port which is a read only port. PCRead circuitry 

allows only loading new values to PCRead, Figure 4.25. 
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Figure 4.25 : DCRead circuitry in the communication protoocol. 

 rx_2bytes: the latest received two bytes. 

 DCRead_reg: The old DCRead register value. 

 state_BYTE2nd_received: rises once the receive-state-machine receives 16-bit value. 

 rx_flag_load_DCRead: a flag raises when the user requests loading new value to DCRead. 

 DCRead: The new DCRead register value. 

4.3.16 RCWrite circuitry 

RCWrite is the first test result memory address port which is a write/read port. RCWrite circuitry 

allows just loading new values to RCWrite, Figure 4.26. 

 

Figure 4.26 : RCWrite circuitry in the communication protocol. 

 rx_2bytes: the latest received two bytes. 

 RCWrite_reg: The old RCWrite register value. 

 state_BYTE2nd_received: rises once the receive-state-machine receives 16-bit value. 

 rx_flag_load_RCWrite: a flag raises when the user requests loading new value to RCWrite. 

 RCRead: The new RCWrite register value. 

4.4 Memories 

There are three identical dual port RAMs: instruction memory, test data memory, and test result 

memory. Each is connected with two address registers; one write/read register and one read 

register. There is one write enable signal for each memory, Figure 4.27. Each memory has four 

inputs, four outputs, clock and reset signal. 
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Figure 4.27 : Memories and address registers. Each memory has four inputs and four outputs. Each 

memory has two address registers; one write/read register and one read only register. 

4.5 Memory Multiplexer 

The TACP processor and the communication protocol both are accessing the memories. 

Obviously, some multiplexers are needed for the shared address ports, write enable, and data-in 

ports. Those needed multiplexers are shown in Figure 4.28. 

 
Figure 4.28 : Memory multiplexer circuitry manage memory access between the data path and the protocol. 
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IsProcessing Circuitry 

The memories multiplexers are controlled by IsProcessing signal. When IsProcessing is high, it 

allows the processor to access memory. When it is low, it allows the protocol to access memory. 

This signal ensures that the processor is not executing an instruction when the protocol accessing 

memory, Figure 4.29. 

 
Figure 4.29 : Memory multiplexer circuitry manage memory access from the TACP data path and the communication 

protocol to the memories. 

4.6 TACP Processor 

The processor connected to memory to read instructions and test data, store test results, and 

modify address register contents, Figure 4.30. It is connected to the user communication unit to 

receive user control signals and requests for reading register contents and responds to them. The 

processor is connected to TSC to do testing and read the results. 
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Figure 4.30 : Processor top diagram. 

The processor is designed using microcode architecture which consists of a sequencer, control 

store, and data path, Figure 4.31.  

 
Figure 4.31 : Processor components: sequencer, control store, and data path. 
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 AaC: apply and capture signal. 

 CF_IsNotEqual: control flag connected to the sequencer reflects the compare flag status. 

 CLK_CW_in: control word shift register output. This signal is used for shifting out the 

control word register to the chip. It is used with the associated strobe signal 

Strobe_out_CLK_CR. 

 CLK_FR_out: frequency register bit coming from the chip. It has to be shifted to FR 

register when Strobe_out_CLK_FRis high. 

 CLK_Sel: a signal is sent to the chip to indicate that the testing mode is at-speed testing. 

 control_store_entry: each entry represents all microinstructions to be executed in the 

current clock cycle. It consists of selection, control signals and branch address. 

 CR_IsZero: control signal connected to the sequencer reflects the CR counter zero flag. 

 DCRead: data counter to be connected to the second address port of the test data memory. 

 DCRead_reg, PCRead_reg, RCRead_reg, RCWrite_reg: address ports of memories. 

 HFCLK_Meas_ACK: the acknowledge signal is coming from the chip to indicate that the 

frequency measuring circuit is ready to start measuring. 

 HFCLK_Meas_Req: request to the chip to start measuring the chip frequency. 

 Instruction_a, Instruction_b, TestData_b, TestResult_a, TestResult_b: data out ports of 

memories. 

 IsStopInstruction: indicates that the processor is currently executing the stop instruction. 

 mAddress: the current micro address which is the control store ROM address. 

 Master_GND: a ground signal is sent from TACP to the chip. 

 OpCode: control signal reflects the current instruction opcode. It is connected to IR register. 

 PCRead: program counter to be connected to the second instruction memory address port. 

 ProcessorBusy: indicates whether the processor is currently executing an instruction. This 

signal is used to prevent contention on writing to memories by the processor and the 

communication unit. 

 PS_Mask_Data_in: a signal is used for sending port selection mask to the chip. It is used 

with the associated strobe signal Strobe_in_PMask. 

 PS_Mask_Data_out: return back bit from the chip used for verification. When the port 

selection mask is sent using the PS_Mask_Data_in, the old port selection mask is returned 

back through this pin. 

 Push: indicates that the processor is writing to the stack in the instruction memory. This 

signal is used to prevent contention between the processor and the communication unit. 

 RCRead: result counter to be connected to the second test result memory address port. 

 RCWrite: result counter to be connected to the first address port of the test result memory. 

 RegisterOutput: one byte gets one of data path registers according to RegSelect. This bus 

signals is used to read data path info to the user. 
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 reset: the processor reset signal is sent to the chip. 

 RegSelect: determines which register the user is currently read. 

 SPWrite: stack pointer to be connected to the first address port of the instruction memory. 

 Stack_in: pushed stack data. To be connected to data in port of the instruction memory. 

 Strobe_in_CLK_CR: indicates shifting out the control word register. 

 Strobe_in_PMask: indicates shifting out the port selection mask. 

 Strobe_in_TData: indicates shifting out the test data register. 

 Strobe_out_CLK_FR: indicates shifting in the frequency register. 

 Strobe_out_TR: indicates shifting in the test result. 

 Test_Data_in: a signal is used for shifting out the test data register to the chip. It is used 

with the associated strobe signal Strobe_in_TData. 

 Test_Data_out: return back bit from the chip used for verification. When the test data is 

sent using the Test_Data_in, the old test data is returned back through this pin. 

 TestResult_in: To be connected to data in port of the test result memory. 

 TResult_out:  the test result bit coming from the chip. It is associated with the strobe 

Strobe_out_TR 

 UC_IsZero: control signal connected to the sequencer reflects the user counter zero flag. 

 WC_IsZero: control signal connected to the sequencer reflects the WC counter zero flag. 

 WE_TestResult: the write enable pin of the test result memory. 

 DP Status Signals: a collection of 45 signals that are coming from the sequencer to control 

the data path. those signals are as shown in Table 4.4. 

 

4.6.1 The sequencer 

Sequencer and control store are shown on Figure 4.32. Sequencer has five components: 

 Micro-address incrementer (variable size = a bits). 

 Micro-address multiplexer (fixed size = 2-input multiplexer). 

 Micro-address register (variable size = a bits). 

 Selection 0 comparator (variable size = a bits). 

 Control multiplexer (variable size = 𝑙𝑜𝑔2𝑑 bits, d = number of control signals).  

Unlike other components in the sequencer, the control multiplexer size changes according to 

the number of control signals. This number comes from the number of signals that causes 

conditional branching and used as micro-instructions. Clearly, it changes when editing the 
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instruction set. Special algorithm is developed to generate the HDL code of the control multiplexer. 

Other sequencer components are parameterizable and their HDL code could be fixed. Figure 4.29 

shows the sequencer and its control multiplexer that has a variable size. 

 
Figure 4.32 : The sequencer and the control store. 

4.6.2 The control store 

The control store consists of ROM and two decoders, Figure 4.32. The ROM width, height, and 

contents vary with each edition of the instruction set. Each instruction is consists of one or more 

control store entries. Each entry represents all micro-instructions that should be executed in the 

same clock cycle. The entry consists of the control multiplexer selection bits followed by the status 

signals to be sent to the data path, and ends by the branch address which consists of opcode and 

micro-code, Figure 4.33. the sequencer to datapath signals are listed in Table 4.4. 
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Figure 4.33 : Control store entry consists of selection, status signal, and branch address. 

 

Table 4.4: Sequencer to data path signals (micro-instructions signals) 

No. Signal name Description 

1 ClearTD Clear test data counter 

2 ClearTR Clear test result counter 

3 Decrement_CR Decrement the general counter CR. 

4 Decrement_WC Decrement the word counter WC. 

5 DEC_CW Decrement frequency control word CW register. 

6 DEC_SP Decrement the stack pointer SP. 

7 DEC_UC Decrement the user counter UC. 

8 Increment_DC 
Increment the test data counter, i.e. the DCRead 

register. 

9 Increment_PC Increment the program counter, i.e. the PCRead register. 

10 Increment_RCRead 
Increment the second test result address register, i.e. the 

RCRead register. 

11 Increment_RCWrite 
Increment the first test result address register, i.e. the 

RCWrite register. 

12 INC_CW Increment frequency control word CW register. 

13 INC_UC Increment the user counter UC. 

14 Load_CR_High_Instruction2 Load 16 bits to the highest part of the general register. 

15 Load_CR_Low_Instruction2 Load 16 bits to the lowest part of the general register. 

16 Load_CW_Instruction2 Load 16 bits to the frequency control word regiser CW. 

17 Load_DC_Instruction2 
Load 16 bits to the test data counter, i.e. the DCRead 

register. 

18 Load_IR_Instruction 
Load 8 bits from instruction memory to the instruction 

register IR. 

19 Load_PC_Instruction2 
Load 16 bits to the program counter register IR from 

instruction memory. 

20 Load_RCRead_Instruction2 
Load 16 bits to the second test result memory address 

register. 

21 Load_RCWrite_Instruction2 
Load 16 bits to the first test result memory address 

register. 

22 Load_TD_TestData 
Copy a byte from test data memory to test data register 

TD. 
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23 Load_UC_High Load 16 bits to the highest part of the user counter. 

24 Load_UC_Low Load 16 bits to the lowest part of the user counter. 

25 Load_UC_TR1 
Copy a byte from the test result memory to the first part 

of the user counter. 

26 Load_UC_TR2 
Copy a byte from the test result memory to the second 

part of the user counter. 

27 Load_UC_TR3 
Copy a byte from the test result memory to the third part 

of the user counter. 

28 Load_UC_TR4 
Copy a byte from the test result memory to the fourth 

part of the user counter. 

29 Load_WC_Instruction 
Load 8 bits from instruction memory to word counter 

WC. 

30 Pop1 Pops 8 bits from the stack to the PrevParam_b register. 

31 Pop_PC2 

Pops 8 bits from the stack and combine them with 

PrevParam_b then copy the formed 16 bits to the 

program counter PCRead. 

32 Push_PC1 
Push the lowest part of the program counter PCRead to 

the stack. 

33 Push_PC2 
Push the highest part of the program counter PCRead to 

the stack. 

34 ResetBusy Reset the processor busy flag. 

35 ResetCF Reset the compare flag CF. 

36 ResetHFClock Reset the high frequency clock selection flag SF. 

37 SetBusy Set the processor busy flag. 

38 SetHFClock Set the high frequency clock selection flag SF. 

39 Shift_TestData Shift the test data register TD out to the chip. 

40 Store_TestResults_Compare 
Store the result of comparing test result with expected 

results. 

41 Store_TestResults_TR 
Store the test result register TR in the test result 

memory. 

42 Store_UC1 
Store the first byte of the user counter UC in the test 

result memory. 

43 Store_UC2 
Store the second byte of the user counter UC in the test 

result memory. 

44 Store_UC3 
Store the third byte of the user counter UC in the test 

result memory. 

45 Store_UC4 
Store the fourth byte of the user counter UC in the test 

result memory. 

 

The following subsections are the data path components. 
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4.6.3 Two previous parameter registers 

Instruction memory has two data-out ports Instruction_a and Instruction_b. PrevParam_a and 

PrevParam_b registers are used to store the latest read value of these ports respectively. This way, 

it is possible to have a 16-bit word by combining the current data-out (Instruction_a or 

Instruction_b as a higher part) with the previously read byte (PrevParam_a or PrevParam_b as a 

lower part). The PrevParam_a does not change its value until there is an increment on the program 

counter. This way port-selection circuitry can use Instruction_a_16 in its comparison loop while 

Increment_PC prevent PrevParam_a against taking Instruction_a value before completing the loop. 

As the program counter is incremented, we get 16-bit word from each instruction memory port as 

shown in Figure 4.34. 

 
Figure 4.34 : Combining previous and current byte to form a 16-bit word for each port on instruction memory. 

 Increment_PC: load a new value only with the incrementing the program counter. This is 

important prevent overwriting PrevParam_a since it will be used in a loop to send port 

selection mask. 

 Instruction_a: the first instruction memory data out port. 

 Instruction_a_16: two bytes which are loaded from the stack in the instruction memory. 

 Instruction_b: the second instruction memory data out port. 

 Instruction_b_16: the last two bytes which are loaded from the instruction memory. 
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4.6.4 Port selection mask circuitry 

The port selection mask is a binary string to be sent to the selection register in the support 

circuitry on the chip. As shown in Figure 4.35 the port selection mask circuitry is a comparing 

circuit that compares the lower 16-bit part of CR with the port number.  

 
Figure 4.35 : CR down-counter with the 16 bit port selection mask generation circuitry and the 

CR_IsZero flag. 

 PS_Mask_Data_in: a signal is used for sending port selection mask to the chip. It is used 

with the associated strobe signal Strobe_in_PMask. 

 CR_IsZero: control signal connected to the sequencer reflects the CR counter zero flag. 

 Decrement_CR: Decrement the general counter CR. 

 Instruction_b_16: the last two bytes which are loaded from the instruction memory. 

This circuitry works as a decoder that decodes the port number. At first, the number of ports has 

to be loaded into the general counter CR. Then, CR is decremented until it reaches zero. By 

comparing the value of CR with the 16-bit parameter, a bit stream is generated whose length is 

equal to the number of ports and contains all zeroes except one position. Table 4.5 below  shows 

examples of some mask strings and the needed CR and parameter value to generate it. 

Table 4.5: Selecting port examples 

Parameter CR Output 

0 16 0000000000000001 

1 16 0000000000000010 

2 8 00000100 

3 6 001000 

15 16 1000000000000000 
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To select more than one port at a time, the operation has to be done multiple times. For example, 

to get the bit stream “0001000100”: set parameter = 2 and CR = 6. This will generate “000100”. 

Then set parameter = 0 and CR = 4 to generate “0001”. By sending those two strings to the selection 

mask it is possible to activate more than one port simultaneously. 

4.6.5 Selection mask shift register SM 

It shifts in the selection mask that is returned back from the chip. It is one-word length (i.e. byte) 

register whose only use is for verification. The register is cleared when the sending selection mask 

starts (i.e when CR is loaded). The port selection strobe is also used here as a shift signal. So, the 

register has two signals that are coming from the chip which are the strobe and the returned back 

mask bit. Figure 4.36 shows the SM circuitry. 

 

Figure 4.36 : 8-bit selection mask register shifts in the returned-back port selection from the chip. 

 Strobe_in_Pmask: the strobe that is sent to the chip to shift in the port selection mask. 

 PS_Mask_Data_out: the returned back bit from the chip. PS_Mask_data_in, 

PS_Mask_data_out are two signals that are connected to the selection shift register on the 

chip as a shift data in and out respectively. 

 Load_CR_Low_Instruction2: load two bytes from instruction memory to the lower part 

of the counter register CR. This signal is used here as a clear signal since it is called on the 

beginning of each sending port selection mask operation. 

 ShiftLeft(SM): the SM register after shifting left and including PS_Mask_Data_out signal. 
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4.6.6 Test data shift register TD 

 It loads a byte from the test data memory then shifts it out to the chip bit by bit. At the same 

time it shifts in the returned back test data from the chip. Figure 4.37 shows the register TD and its 

circuitry. 

 
Figure 4.37 : 8-bit test data register and its circuitry. 

 Shift_TestData: if it is high the TD contents will be shifted right and Test_Data_out bit will 

be shited into the register. 

 Load_TD_TestData: is used to load from test data memory to the TD register. 

 TestData_b: the second test-data memory data port. This value will be loaded into TD if 

Load_TD_TestData is high. 

 ClearTD: is used to clear the register before each shifting operation. This is important when 

it is needed to shift less than 8 bits. 

 Test_Data_in: the bit to be sent to the chip. 

 Test_Data_out: the returned back bit from the chip. 

4.6.7 Test result shift register TR 

It shifts in the test result bits that are coming from the chip. Then its content is stored in the test 

result memory. Its circuitry is shown in Figure 4.38 below. 
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Figure 4.38 : 8-bit test results register and its circuitry. 

 Strobe_out_TR: a signal to start shifting in the test result. 

 TResult_out: test result bit received from the chip. 

 ClearTR: clear TR register. It is important since the number of shifted bits is arbitrary. 

4.6.8 Frequency register FR 

This frequency register shifts in the frequency register that contains the measured frequency on 

the chip, Figure 4.39. 

 Strobe_out_CLK_FR: shifts in the frequency register from the chip. 

 CLK_FR_out: the frequency bit coming from the chip. 

 ShiftLeft(FR): the FR register after shifting left and including CLK_FR_out signal. 

4.6.9 Frequency control word register CW 

The control word register determines the at-speed clock frequency. The register can be loaded 

with a 16-bit immediate value and then incremented or decremented as shown in Figure 4.40. Its 

content has to be sent to the chip by rotating it left. 

 Load_CW_Instruction2: load two instruction memory bytes to the CW register. 

 INC_CW: Increment frequency control word CW register. 

 
Figure 4.39 : Frequency register circuitry. 
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 DEC_CW: decrement frequency control word CW register. 

 Strobe_in_CLK_CR: a shift signal rotates the control word register. 

 Instruction_b_16: the last two bytes which are loaded from the instruction memory. 

 RotateLeft(CW): the CW register after rotated left. 

 CLK_CW_in: control word shift register output. This signal is used for shifting out the 

control word register to the chip. It is used with the associated strobe signal 

Strobe_out_CLK_CR. 

4.6.10 Instruction Register IR 

The instruction register contains the opcode of the instruction under execution. Its circuitry has 

only one signal to control the loading. The register takes new value on the fetch stage of the 

instruction execution, Figure 4.41. 

 
Figure 4.41 : Six bit instruction register. 

 Instruction_b: the second instruction memory data out port. 

 Load_IR_Instruction: Load 8 bits from instruction memory to the instruction register IR. 

 OpCode: control signal reflects the current instruction opcode. It is connected to IR register. 

 
Figure 4.40 : 16-bit control word register and its circuitry. 
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4.6.11 General counter CR 

It is a general 32-bit down counter for internal use. Instructions mainly use it to count 

reading/writing words from/to memory, Figure 4.42. This counter has to be loaded with two 

separate operation each operation increments the program counter PC by two. 

 
Figure 4.42 : The 32 bit general counter CR and its circuitry. 

 Instruction_b_16: the last two bytes which are loaded from the instruction memory. 

 Decrement_CR: decrements the 32-bit counter by one.  

 Load_CR_Low_Instruction2: loads the parameter to the lower 16-bit part. 

 Load_CR_High_Instruction2: loads the parameter to the higher 16-bit part. 

 PS_Mask_Data_in: a signal is used for sending port selection mask to the chip. It is used 

with the associated strobe signal Strobe_in_PMask. 

 CR_IsZero: control signal connected to the sequencer reflects the CR counter zero flag. 

4.6.12 Word counter WC 

It is a general 4-bit down counter for internal use. It is used to count bits when shifting in or out 

a register. It is very helpful to do shifting by arbitrary number, Figure 4.43. 
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Figure 4.43 : 4-bit Word Counter WC and its circuitry. 

 Load_WC_instruction: load four bits from the instruction memory to the WC counter. 

 Decrement_WC: decrement the WC counter. 

 Instruction_b: the instruction parameter coming from the second instruction memory port. 

 WC_IsZero: control signal connected to the sequencer reflects the WC counter zero flag. 

4.6.13 User counter register UC 

A 32-bit up-down counter is designed for the user. It can be loaded with immediate value or it 

can be loaded/stored in the test result memory. This enables the user to have multiple counters in 

the memory and switch between them. It is associated with a zero flag ZF (combinational flag) 

and JZ and JNZ instructions. So the user can make conditional branching according to its value. 

As shown in Figure 4.44, four signals are used to load from test result memory, Load_UC_TR1, 

2, 3, and 4. Two signal are used to load immediate value coming from instruction memory, 

Load_UC_High and Load_UC_Low. The test result memory is chosen for load/store the counter 

value because it has the least addressing multiplexers. 
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Figure 4.44 : User-counter circuitry. 

4.6.14 Stack pointer SP 

Stack pointer is a 16-bit address register and points to the top of the stack. The instruction 

memory is used as a stack memory for calling subroutines starting from the highest address 

location. The stack pointer is initialized with zero and incremented with each push operation and 

incremented with each pop operation. 

When the call instruction is invoked, it decrement SP twice and store two byte of PC. When 

return instruction is invoked, it send two signals Pop1 and Pop_PC2 to retrieve the PC value and 

increment SP twice, Figure 4.45. 

 
Figure 4.45 : Stack pointer circuitry. 

 Pop1: increment SP by one. 
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 Pop_PC2: increment SP by one and copy the read address “Instruction_a_16” to the 

program counter PC. 

 DEC_SP: decrement SP by one. 

 SPWrite: stack pointer to be connected to the first address port of the instruction memory. 

4.6.15 Flags 

There are seven flags. Some of them are storage elements like CF, SF, ErrF and RunF. The rest 

are combinational circuits outputs like ZF, CR_IsZero and WC_IsZero. 

a. Communication Error Flag ErrF: Its value become high if there is an error on 

the last transmission operation between the PC and the Processor. This register is 

part of the communication protocol module not the TACP data path module. 

b. Run Flag RunF: indicates whether the current mode is single step mode or normal 

mode. In the normal mode, its value is high. This register is part of the 

communication protocol not the TACP data path module, Figure 4.46. 

 
Figure 4.46 : Zero flag circuitry for the user counter register. 

c. User Counter Flag ZF: Its value indicates whether the contents of the user counter 

register is zero or not. Since the user can use more than one counter using the 

load/store instructions, this flag always reflects the zero flag of the current counter 

because it is a combinational circuit, Figure 4.47. 

 
Figure 4.47 : Zero flag circuitry for the user counter register. 

d. CR_IsZero, WC_IsZero: Internal flags that are used in looping inside the 

instruction. They reflects whether CR or WC is zero or not respectively, 

Figure 4.48. 
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Figure 4.48 : Zero flags circuitry of the general counters. 

e. Clock Selection Flag SF: It is a set-reset flip-flop used to switch between the high 

speed and the low speed clock in the chip. Its value indicates which clock should 

be selected and applied to the IP under test when the ApplyAndCapture signal is 

high, Figure 4.49. 

 
Figure 4.49 : Clock selection Flag circuitry. 

f. Compare error flag  CF:It became high if there is an error resulted in comparing 

the test results with the expected results. The compare instruction compares one 

word from the test data memory with one word from the test result memory. Its 

value is changed with the storing of the comparison result in the memory. Its 

circuitry is shown in Figure 4.50. 

 
Figure 4.50 : Compare error flag  circuitry. 

4.6.16 Memory addressing circuitry 

There are three dual port memories associated with six address registers. The data path needs to 

modify some of those address registers. It needs to modify the program counter and the stack 

pointer, increment the test data reading address and increment the test result writing address. The 

needed circuitry to do this is shown in Figure 4.51. 
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Figure 4.51 : Addressing circuitry in the TACP data path. 

4.6.17 Test result memory writing circuitry 

Unlike the communication protocol module, the TACP data path can write to the test result 

memory. It may store the test result TR register, the comparison result between test result and 

expected result, or the user counter. Thus the test-result memory data-in port needed circuitry as 

shown in Figure 4.52 consists mainly of multiplexers. Notice that the user counter UC needs four 

multiplexers since it is 32-bit up-down counter. 

 
Figure 4.52 : Test-result memory data-in port and write enable circuitry. 
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 TestData_b: the second data out ports of test data memory. 

 TestResult_b: the second data out ports of test result memory. 

 Store_TestResults_Compare: Store the result of comparing test result with expected 

results. 

 Store_TestResults_TR: Store the test result register TR in the test result memory. 

 Store_UC1: Store the first byte of the user counter UC in the test result memory. 

 Store_UC2: Store the second byte of the user counter UC in the test result memory. 

 Store_UC3: Store the third byte of the user counter UC in the test result memory. 

 Store_UC4: Store the fourth byte of the user counter UC in the test result memory. 

 TestResult_in: To be connected to data in port of the test result memory. 

 WE_TestResult: the write enable pin of the test result memory. 

4.6.18 Push circuitry 

The TACP processor uses a stack located at the bottom of the instruction memory. When a 

CALL instruction is invoked, the program counter has to be incremented and stored in the stack. 

The push circuitry contains an incrementer and a multiplexer as shown in Figure 4.53. The Stack_in 

bus will be multiplexed with other bus coming from the communication protocol module as it also 

need to write to instruction memory. 

 
Figure 4.53 : Push circuitry generates Stack_in bus which is connected to the data-in port in 

the instruction memory. 

4.6.19 Enumerate multiplexer 

When the user requests info, the protocol responses by sending the TACP data path register 

contents, the memories addresses and data-out, and other registers. Enumerate multiplexer is a 

five-bit multiplexer that selects one byte at a time to be send to the user. As shown in Figure 4.54, 
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the multiplexer inputs are the processor data path info, memories address and data ports and the 

break point register. The five-bit selection RegSelect is five bits of the transmitting counter in the 

communication protocol. When the user ask for info, the transmitting state machine starts 

decrementing the transmitting counter and therefore sending one byte each time. Hence, the user 

has to set the value 24 in the transmitting counter to fetch all info at once. 

 
Figure 4.54 : 5-bit multiplexer selects one byte at a time to be send as a response to the user interface. 
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CHAPTER 5 

 

TEST AND CHARACTERIZATION PROCESSOR 

IMPLEMENTATION 

 

 

This chapter introduces the implementation of the test and characterization processor (TACP) 

and its integration with the whole system. The graphical user interface is implemented on a PC 

using a high level programming language. The TACP is implemented on one FPGA while the test 

support circuitry (TSC) with four circuits-under-test (CUTs) are emulated in another FPGA board. 

The PC is connected to the TACP FPGA and the two FPGAs are connected through a 20-pin cable 

forming the fixed interface. Xilinx ISE 14.2 is used to synthesize, simulate and download designs 

to FPGAs. The system works properly and many test programs are executed and will be discussed 

in the next chapter. 

The chapter also introduces the instruction builder software that helps on editing the microcode 

instructions. Finally, the chapter discusses the problems faced when prototyping the TSC. 

Figure 5.1 shows a snapshot of the platform implementation. The PC is connected through a 

serial communication cable to the TACP FPGA which in turn is connected to the prototyped TSC 

FPGA. 
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Figure 5.1: The Implemented test & characterization platform; the host PC running the user interface tool, an 

FPGA board for the TACP connected to the PC, and another FPGA board containing the TSC and 4 CUTs and 

connected to the TACP FPGA. 

5.1 User Interface Implementation 

Complete user interface software is designed using C#.Net programming language. It consists 

mainly of three interfaces; writing programs interface, executing programs interface and multiple 

memory interfaces. The software also implements the user communication protocol and has 

assembler and disassembler. It has a wizard to import test data vectors from text files generated by 

automatic test pattern generators (ATPGs). Appendix C includes a tutorial on this software. 

Writing Programs 

The software contains a dedicated interface to write programs as shown in Figure 5.2. The user 

can write programs by selecting instructions from the instruction list that are imported from the 

instruction builder software. The interface helps the user to set instruction parameters, move or 

delete program lines. It can also generate the assembly code of the program and uses the interface 

protocol to download the program to the instruction memory on the TACP FPGA. 
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Figure 5.2 : User interface to write and download programs to the TACP FPGA. 

Executing Programs 

The software contains a dedicated interface to execute and track the execution of the program 

as shown in Figure 5.3. The user starts by uploading the current program on the TACP memory on 

the TACP FPGA. Then the execution starts with single mode or batch mode. The user can set a 

break point by selecting a program line and press “set break point” button. To change the current 

execution to a specific line the user double clicks that line. The user is also allowed to set values 

to any of the six address registers. The TACP registers are displayed and updated manually or 

automatically after each execution request. 
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Figure 5.3 : User interface thet executes the program and tracks register contentss on the TACP FPGA. 

 PCRead: The program counter. 

 PCWrite: The instruction download address. 

 DCRead: The test data address to be used when sending data to the TSC. 

 DCWrite: The test data download address. 

 RCRead: The upload test result  

 RCWrite: The test result address to be used when storing results coming from the TSC. 

 IR: The instruction registers shows the executed instruction opcode. 

 Stack pointer: The stack address to be used with subroutines. 

 User Counter: The user counter used to do iterations. 

 BP: the break point register used to stop the execution when its value equals PCRead. 

 CW: The frequency control word register value on the TACP that supposed to be sent to the 

corresponding CW register on the TSC. 

 FR: The frequency register value on the TACP that supposed to be read from the 

corresponding FR register on the TSC. 

 Cycles: The user has to write this value manually. It has to match the number of cycles used 

with the MeasureFrequency instruction. 

 Processor Frequency: The TACP frequency. The user has to write this value manually. 

 Measured Frequency: a calculated value represents the selected frequency on the chip. 
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 SM: The selection mask returned back from the chip. 

 TD: The test data register value represents the returned back data from the chip. 

 TR: The latest read test result byte. 

Memory Interface 

The software contains a dedicated interface to interact with the TACP memories on the TACP 

FPGA as shown in Figure 5.3. The interface allows the user to download to or upload from the 

TACP memories. The interface allows the user to write data or import them from file. The user 

can upload a memory block from the corresponding memory in the TACP FPGA by specifying its 

location and size. He also can download to any specific memory location. The memory interface 

can be customized to view the contents one test vector for each row. It views memory contents in 

table with each row represents a test vector and each column represents byte. Test vector importing 

wizard has been designed. It can also import test data from test files generated by automatic test 

pattern generation (ATPG).  The user can specify a memory location and number of bytes to be 

uploaded. The interface memory can be updated manually or automatically after each execution. 

 
Figure 5.4 : User interface to display memory contenets. 
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5.2 The Instruction Builder Software 

The instruction builder software is designed to automate editing and building the processor in 

the TACP. It mainly rebuild the sequencer and the control store after each editing on the 

instructions. Instruction builder software is a graphical user interface that helps on writing and 

editing microcode instructions. It simplifies editing instructions by automating the processor 

Verilog code writing when any change on the instruction set is required. It shortens the time need 

to design and verify the modified version of the instruction set. It also updates and exports the 

instruction list which is used by the user interface software to write programs. 

The sequencer and the control store are the control unit of the microcode architecture. To modify 

instructions, very accurate modifications needed to be done on these components. Instruction 

builder software helps to automate this to avoid mistakes and to shorten modification time. The 

most important job is summarized in these points:  

 Building the sequencer control multiplexer: The instruction builder has an 

enumerating algorithm that takes care of the sequencer control signals, enumerates them 

and produces the control multiplexer Verilog lines. Doing the same work manually after 

each instruction design modification is a tedious work. 

 Building the control store: Each control store entry consists of the control multiplexer 

selection bits, control signals for the data path and next address bits. Adjusting these bits 

after each instruction modification is anther tedious work. The instruction builder 

constructs each entry of the control store and builds the control store Verilog code. 

 Export instructions to the assembler: after instruction modification, the instruction 

metadata can be exported which contains: instruction name, code and parameter count, 

names and sizes. 

The instruction builder requires the user to enter all needed microcode signals and categorizes 

them by defining the source-to-destination type (i.e. sequencer to data path, data path to external, 



 

84 

 

etc.). Then it uses these information with the micro-instructions to write the microcode Verilog 

code automatically. Appendix B, shows a tutorial of this software. 

Figure 5.5 shows a diagram explaining signal types. 

1. Sequencer to data path 

2. Data path to sequencer 

3. Sequencer to external 

4. External to sequencer 

5. External to data path 

6. Data path to external 

7. Sequencer to data path and external 

8. External to sequencer and data path 

 
Figure 5.5 : Eight signal types in microcode. 

The processor is a microcode architecture that consists of sequencer and data path as depicted 

in Figure 5.6. The sequencer is the control unit of the processor that sequences the micro instruction 

execution. It only has five components; address register, comparator, incrementer and two 

multiplexers.  
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Figure 5.6 : TACP Processor uses the microcode archeticture. 

The control store is a ROM that stores all control signals for all execution cycles. Each entry 

contains the states of all data path control signals and info about the next address. In each clock 

cycle, the sequencer selects on entry that controls the data path and determine the next micro 

instruction address. 

5.3 TSC Prototyping 

Usually, FPGA boards are used for prototyping. Designs are tested and emulated using FPGA 

boards before sending for fabrication to get an ASIC chips. FPGAs do not have any basic pure 

logic gates such as AND, OR and NOT available to the designer. Rather, it utilizes the look-up-

tables (LUTs) to emulate all combinational functions existing in the design. LUTs make it difficult 

to do timing analysis and estimation for the prototyped ASIC. For example, all two-input functions 

will be emulated by identical two-input LUTs. Although functions may vary in their complexity 

level and delays, LUTs make complicated functions take the same delay simple functions take. 

While LUTs may unify functions delay, place-and-route (PAR) phase becomes critical in FPGA 

design flow. PAR could assign different paths with different delays for the design. Hence, the same 

design could give different results with different place-and-route algorithms. It happens many 
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times with a proved and well-simulated design that a slight change on the design could corrupt it 

and gives strange result. This error rises only because of changing routes from one implementation 

to another. For instance, it happened that a program which run perfectly as one shot from start to 

the end, gives different results when we set a break point and run the program in two batches. For 

all of these timing problems, we searched for solutions that can make the prototyping possible and 

can came up with a good working processor. 

To emulate the test support circuitry (TSC), some clock-related issues such as clock gating and 

clock multiplexing has to be manipulated. In addition, the TSC has a configurable clock generator 

that the user can modify its frequency. An alternative circuitry has to be designed to emulate it. 

The following subsection addresses the emulating problems and the solution we choice to 

overcome them. 

5.3.1 Clock gating  

Clock gating is used to reduce dynamic power dissipation since it switches of some parts of the 

design. The ASIC version of the TSC uses gated clocks to enable and disable the shift registers 

that surrounds each CUT. Since gated clock is synthesized using look-up-table in FPGAs, the 

signal will not be a clock anymore and the clock will cause timing problems. Gated clocks could 

not be emulated this way. One way to overcome this problem is to use the enable signal as shown 

in Figure 5.7. This solution is used for all shift registers. 

 
Figure 5.7 : Replace gated clock signal by using enable signal. 

gated_clock = CLK && Enable 
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This solution is not enough to solve all clock gating issues. Some CUTs may not have enable 

signal. Another solution is to use a dedicated clock tri-state buffer from the FPGA resurces. In our 

FPGA prototyping using Xilinx Spartan 3A, we used BUFGCE. This solution is used with the 

clock signals that are feeding CUT and some shift registers and ANDed with the corresponding 

port selection signal. 

 
Figure 5.8 : Replace gated clock signal by using FPGA clock tri-state buffer. 

gated_clock = Port0 && CLK_out 

Figure 5.9 shows a simulation that explains how BUFGCE passes the clock when its chip enable 

(CE) is high [26]. It is simply work as an AND gate. 

 
Figure 5.9 : BUFGCE simulation – dedicated clock signals tri-state with no pulse lose. 

5.3.2 Clock multiplexing 

Another issue on ASIC emulation is the multiplexing between two clock signals. The TSC needs 

to allow the user to select between the high frequency clock to do at-speed testing and the TACP 

clock to do testing using the TACP clock or to fill the scan chain. The chosen solution for clock 

multiplexing is to use the FPGA clock multiplexers that are designed for the digital clock managers 

(DCMs). In our FPGA prototyping using Xilinx Spartan 3A, we used BUFGMUX. 

The BUFGMUX has a bad consequence on the resulting clock signal. To multiplex between 

two clock signals, the BUFGMUX loses the first pulse after each change in its selection. 
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Farthermore, the multiplexer will not lose any pulses if the previously selected clock signal was 

off. This is illustrated in the simulation in Figure 5.10 (a). The BUFGMUX loses the first clock 

pulses with each change on its clock selection as depicted in Figure 5.10 (b). 

.a. This losing will not happen if the other clock input was kept high or low during its last 

selection periods. 

a)   

(a) BUFGMUX loses one pulse with each selection change. 

 

b)  

(b) BUFGMUX will not lose if the non-selected clock signal was off. 

Figure 5.10 : The BUFGMUX clock multiplexer simulation. 

   The behavior of the BUFGMUX has a great impact on the ApplayAndCapture instruction. 

Since the clock selection and application circuitry (CSaAC) has to generate two consecutive clock 

pulses, the first call of ApplayAndCapture instruction produces one clock pulse while the next call 

will produce two. Figure 5.11 shows the CSaAC which uses a multiplexer to select between high 

frequency clock (HFCLK) and processor clock (TCLK) and an AND gate for its clock gating 

circuitry. The circuit output the CLK_out clock signal that will be ANDed later for with suitable 

port selection pin to feed a CUT. 
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Figure 5.11 : The ASIC version of clock selection and application circuit (CSaAC). 

The circuitry has a clock multiplexer and a clock gating. 

The FPGA implementation of CSaAC along with four CUTs clock gating circuitries are shown 

in Figure 5.12. BUFGMUX is used as a multiplexer to select one of the two clocks (TACP’s clock 

or the HFCLK). BUFGCE is used to replace clock gating in five locations as depicted in the figure. 

The CLK_IUT signal feeds directly the corresponding IUT and some of its shift registers. If the 

CUT has additional port for scan chain, additional clock multiplexer or clock tri-state buffer may 

be needed that may be controlled by the scan_enable signal. 

 
Figure 5.12 : The FPGA implementation of clock selection and application circuit CSaAC with the 

implementation of four CUTs clock gating. All gated clocks are replaced by FPGA clock buffers BUFGMUX 

and BUFGCE. The critical path has four level of clock gating. 

5.3.3 Emulating the Configurable Clock Generator (CCG) 

The TSC has a digitally controlled oscillator (DCO) within the configurable cock generator 

(CCG). Obviously, ring oscillators cannot be implemented on FPGAs since FPGAs use LUTs. 
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Each FPGA board has many digital clock managers (DCMs).  Most Xilinx FPGA boards has eight 

DCMs. The DCM can be configured to a specific frequency within the range ~4 MHz-333MHz. 

Unfortunately, DCM cannot be configured at run-time (unless reconfigurable computing is used). 

To emulate the DCO, eight DCMs are configured to generate different clock frequencies. These 

clock signals are multiplexed using three-bit multiplexer. The resulted clock signals is fed into the 

divider that has four dividing phase and the resulted frequencies with the original one enter another 

three-bit multiplexer as depicted in Figure 5.13. This way we get six-bit control word. 

 
Figure 5.13 : Emulating the DCO using eight DCMs.  The DCO is combined with the four phase divider. The 

frequency is chosen by the 6-bit control word register. 

The circuitry is designed in such a way to make the control word value is proportional to the 

frequency. Table 5.1 shows the resulting frequencies as a function of the six-bit control word. A 

total of 40 different frequencies ranged between 11MHz and 325MHz could be obtained with this 

method with control word ranged between 0x38 and 0x1F (in six bits).     .   
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Table 5.1: The generated clock frequencies and their control words using the DCMs in the prototyped chip. 

Control 

Word 

Freq. 

(MHz) 

Control 

Word 

Freq. 

(MHz) 

Control 

Word 

Freq. 

(MHz) 

Control 

Word 

Freq. 

(MHz) 

111_000 325 000_010 140 001_100 60 010_110 25 

111_001 300 000_011 130 001_101 55 010_111 22.5 

111_010 280 000_100 120 001_110 50 011_000 20.3125 

111_011 260 000_101 110 001_111 45 011_001 18.75 

111_100 240 000_110 100 010_000 40.625 011_010 17.5 

111_101 220 000_111 90 010_001 37.5 011_011 16.25 

111_110 200 001_000 81.25 010_010 35 011_100 15 

111_111 180 001_001 75 010_011 32.5 011_101 13.75 

000_000 162.5 001_010 70 010_100 30 011_110 12.5 

000_001 150 001_011 65 010_101 27.5 011_111 11.25 

 

5.4 IPs Under Test (IUTs) 

In our emulated chip, four circuits are included as a CUTs; a four-bit adder, an eight-bit 

pipelined adder and two instances s820 which is one of the ISCAS-89 benchmarks. Scan chains 

are inserted into s820 circuit which has five flip-flops. In one of these benchmarks, the Flip-flops 

are doubled. The design has ten ports as shown in Figure 5.14. The first and the second IUTs are 

assigned with two ports for each; one input port and one output port. The third and the fourth IUTs 

are assigned with three ports for each; one input port, one output port and one scan chain port. 

 
Figure 5.14 : Illustration of assigning the ten port selection bits to the four IUTs. 
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Each IUT is surrounded by four registers; TAP, APP, CAP and TRP. The user select an IUT 

and send test data serially to be shifted into the corresponding TAP shift register. Then the data 

has to be moved to the AAP register which is connected to the IUT inputs. The CAP register is 

connected to the IUT outputs to capture the result. The TRP shift register reads the data from the 

CAP register and send them serially to the user. The processor clock (TCLK) drives the TAP and 

the TRP shift registers operates by to synchronize the shifting with the processor while the 

application clock (CLK_out) drives the APP and the CAP registers. 

1st IUT: 4-bit Combinitional Adder 

A combinational 4-bit adder has two 4-bit inputs, carry-in bit, carry-out bit and 4-bit output. 

The inputs are connected to the 9-bit APP register while the outputs are connected to the 5-bit CAP 

register as depicted in Figure 5.15. 

 
Figure 5.15 : 1st IUT: 4-bit combinitional adder. 

 TData_in: The received test data bit from the TACP processor. 

 TResult_out: The test result bit of the IUT. 

 TCLK: The TACP clock. 

 CLK_out: The clock out signal of the CSaAC circuit that generates two clock pulses 

after each applay-and-capture signal sent from TACP. 

 Port 0: Port selection bit indicates that test data will be shifted into IUT0 input port. 

 Port 1: Port selection bit indicates that test data will be shifted into IUT0 output port. 
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2nd IUT: 8-bit pipelined Adder 

A pipelined 8-bit adder has two 8-bit inputs, carry-in bit, carry-out bit and 8-bit output. The 

inputs are connected to the 17-bit APP register while the outputs are connected to the 9-bit CAP 

register as depicted in Figure 5.16. 

 
Figure 5.16 : 2nd IUT: 8-bit piplined adder. 

 TData_in: The received test data bit from the TACP processor. 

 TResult_out: The test result bit of the IUT. 

 TCLK: The TACP clock. 

 CLK_out: The clock out signal of the CSaAC circuit that generates two clock pulses 

after each applay-and-capture signal sent from TACP. 

 Port 2: Port selection bit indicates that test data will be shifted into IUT1 input port. 

 Port 3: Port selection bit indicates that test data will be shifted into IUT1 output port. 

3rd IUT: s820 benchmark with scan chain is inserted 

The third IUT is s820 which is one of the ISCAS89 benchmarks. It is a sequential circuit that 

contains five flip-flops. Before using it, a scan chain is inserted by multiplexing the five flip-flops 

inputs. The circuit has 18 inputs which are connected to the APP register and 19 outputs which are 

connected to the CAP register as depicted in Figure 5.17. ATPG is used to generate test vectors 

with their expected results. Each 23-bit test vector starts by the scan chain five bits followed by the 

17 inputs. 
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Figure 5.17 : 3rd IUT: s820 benchmark with scan chain is inserted. 

 TData_in: The received test data bit from the TACP processor. 

 TResult_out: The test result bit of the IUT. 

 TCLK: The TACP clock. 

 CLK_out: The clock out signal of the CSaAC circuit that generates two clock pulses 

after each applay-and-capture signal sent from TACP. 

 scan_enable: turn on the scan chain to be filled with test data. 

 Port 4: Port selection bit indicates that test data will be shifted into IUT3 input port. 

 Port 5: Port selection bit indicates that test data will be shifted into IUT3 output port. 

 Port 6: Port selection bit indicates that the scan chain of the IUT3 is selected. 

4th IUT: s820 benchmark with scan chain is inserted and flip-flops are doubled. 

The scan chain is duplicated in the s820 circuit to make the fourth IUT. Now, there are two 

columns of the flip-flops as depicted in Figure 5.18. The second row stores the previous state of 

the first row. One part of the test vector is made ready on the circuit inputs and the other part is 

scanned into the first row. Since there are two clock pulses with each apply-and-capture instruction, 

the next state will be captured in the scan chain and the current state outputs will be captured on 

the CAP register. So, the scan chain with the CAP register will be shifted out to be matched with 

the expected results. 
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Figure 5.18 : 4th IUT: s820 benchmark with scan chain is inserted and flip-flops are doubled. 

 TData_in: The received test data bit from the TACP processor. 

 TResult_out: The test result bit of the IUT. 

 TCLK: The TACP clock. 

 CLK_out: The clock out signal of the CSaAC circuit that generates two clock pulses 

after each applay-and-capture signal sent from TACP. 

 scan_enable: turn on the scan chain to be filled with test data. 

 Port 7: Port selection bit indicates that test data will be shifted into IUT4 input port. 

 Port 8: Port selection bit indicates that test data will be shifted into IUT4 output port. 

 Port 9: Port selection bit indicates that the scan chain of the IUT4 is selected. 
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CHAPTER 6 

 

TEST RESULTS 

 

 

Numerous successful tests were conducted using the implemented FPGA prototype of the 

complete test and characterization platform. Many of these tests are discussed in this chapter and 

supported with snapshots in detail to illustrate the capabilities of the platform. Some results shown 

in this chapter are a little bit different from the ASIC version due to the prototyping issues 

mentioned in section 5.3. In the following subsections, a small characterization program is 

explained. After that, there are four programs to test the four IPs under test (IUTs) that shows that 

the platform is implemented well. 

6.1 Maximum Frequency Test 

The objective of this test is to determine the maximum possible speed of an IUT (i.e. the 

maximum frequency it can operate at). This is done by a test program that changes the chip 

frequency within a loop as shown in Figure 6.1. It starts with a specific frequency specified by 

initializing the control word to a specific value. The frequency is decremented by incrementing the 

control word. The loop lasts for nine times. The program starts with setting the number of loops in 

the counter and setting an initial control word. It ends with decrementing the counter and loop if it 

does not reach zero. Inside the loop, the processor sends the frequency, measures it and reads the 
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measured frequency register back to the processor. IP testing has to be done here. If the testing 

fails then the control-word is incremented and loops again. 

 
Figure 6.1 : Code and flow chart of the test program that changes frequency within a loop. 

Figure 6.2 below shows a snapshot of the execution of the program. For example, take the 

second execution of the loop. The user counter contains the value is 7 and CW contains 10. The 

measured frequency is calculated from this formula: 

Measured Frequency =
FR × Processor Frequency

No. of cycles
 

The read frequency register on FR is 0340 which is 832 in decimal. The processor frequency is 

50 MHz. The number of cycles is (400) which is 1024 in decimal. So, the measured frequency = 

832 ×50MHz

1024
 = 40.625MHz which is similar to exact value in Table 5.1. Potential error can be 

measured from the same formula 
1 ×50MHz

1024
 = 0.05. This error ratio can be minimized if needed by 
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increasing the No. of cycles. This experiment showed the correct operation of the platform and the 

accuracy of the frequency measurement scheme.  

 
Figure 6.2 : Execution snapshot of the test program that changes frequency within a loop. 

6.2 Testing the 1st IUT: the 4bit Combinational Adder 

The presented program here is used to test IUT0, the combinational adder. To start, the user 

writes the program and downloads it to the instruction memory and downloads the test data 

followed by the expected results to the test data memory. The program sends the ten test-vectors, 

receives the test-results and compares them with expected-results. 

 The test data (10 vectors, 20 bytes): 02, 16, 07, 03, 06, 0C, 04, 31, BD, 1E, 04, 1C, 

CB, 61, 01, 09, A2, 21, 04, 0A. 

 The expected results (10 vectors, 10 bytes): 09, 0A, 12, 06, 1C, 11, 0C, 0A, 03, 0E. 

That is: 2+6+1=09, 7+3+0=0A, 6+C+0=12 and so on. 
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 Examples: A + B + cin = {cout, Sum} 

2+6+1=09, 7+3+0=0A, 6+C+0=12 and so on. 

 The program (15 instructions, 58 bytes): 

0000 //Initialize addresses 

0000 Load_DCRead 0000 

0003 Load_RCWrite FFFF 

0006 Load_UserCounter_value 0000000A 

000B //Start Test Process Loop 

000B SendSelectionMask 00000009, 0000 

0012 SendSelectionMask 00000000, 0000 

0019 SendTestData 00000000, 01 

001F SendTestData 00000000, 02 

0025 ApplyAndCapture 

0026 ReadResult 00000000, 06 

002C DEC_UserCounter 

002D JNZ 0019 

0030 //Compare All 

0030 ResetCompareFlag 

0031 Load_RCRead 0000 

0034 Compare 00000009 

0039 Stop 

The program starts by setting the test-data reading-address register to 0 and the writing address 

test results to 0xFFFF. The user counter is loaded by 10 which is the number of test vectors. 

After that, the program loads a byte from test data memory and sends four bits from it. It loads 

another byte and sends five bits from it. This makes 9-bit test data which represents A, B and cin 

inputs for the adder. After that, apply-and capture is sent to the circuit and the result is read back 

to be stored in the test result memory as one byte. The addition result is the first 5 bits from the 

stored byte which represents sum and cout. The process is iterated ten times for ten test vectors. At 
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the end the program compares the ten-byte expected results with the 10-byte results, update the 

compare flag (CF) and save the comparison on the test result memory. 

Figure 6.3 shows a snapshot of the program after finishing the program execution and reach the 

stop instruction. CF is off which means that the test result matches the expected result. 

Figure 6.4 shows three instances of memory viewer. On the left the test data memory shows the 

ten test vectors which are twenty bytes. The test result is shown in the middle window. The 

rightmost window shows that the comparison result in zeroes for all ten comparison which means 

that all bytes matches the expected results. 

 
Figure 6.3 : Program execution window snapshot. The program tested a compinational 4-bit adder. 
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Figure 6.4 : Memory windows snapshot after executing the test program of the compinational 4-bit adder. 

The three windows show the test data, the test result and the comparision. 

6.3 Testing the 2nd IUT: the 8-bit Pipelined Adder 

In pipelined circuits multiple clock cycles is required to reach the desired result. In the pipelined 

adder test program, two (or more) apply-and-capture instructions are needed to empty the pipeline 

and get the correct summation result. 

 The test data (10 vectors, 30 bytes): 7C, 01, 1D, A3, 61, 02, 19, 15, 3C, 57, 16, 8B, 

06, 0D, 3D, 01, 03, 00, 11, 76, 07, 0E, 33, 2E, B3, 55, 03, 0C, 96, 43 

 The expected results (10 vectors, 20 bytes): 4E, 01, C4, 00, DF, 00, 0D, 01, E4, 00, 

04, 00, 87, 00, F1, 00, E8, 00, 42, 00 

 Examples: A + B + cin = cout  Sum 

7C+D1+1=01 4E, A3+21+0=00 C4, 19+C5+1=00 DF, 57+B6+0 = 01 0D and so on. 

 The program (17 instructions, 65 bytes): 

0000 //Initialize addresses 

0000 Load_DCRead 0000 

0003 Load_RCWrite FFFF 

0006 Load_UserCounter_value 0000000A 

000B //Start Test Process Loop 

000B SendSelectionMask 00000009, 0000 

0012 SendSelectionMask 00000002, 0002 

0019 SendTestData 00000000, 05 

001F SendTestData 00000000, 01 

0025 SendTestData 00000000, 02 
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002B ApplyAndCapture 

002C ApplyAndCapture 

002D ReadResult 00000001, 06 

0033 DEC_UserCounter 

0034 JNZ 0019 

0037 //Compare All 

0037 ResetCompareFlag 

0038 Load_RCRead 0000 

003B Compare 00000009 

0040 Stop 

Figure 6.5 shows a snapshot of the program after finishing the program execution and reach the 

stop instruction. CF is off which means that the test result matches the expected result. 

Figure 6.6 shows two instances of memory viewer. The left window shows the test data memory 

which consists of 10 vectors, 3 bytes for each. The rightmost window shows that the test results 

which consists of 10 vectors, 2 bytes for each. 

 
Figure 6.5 : Program execution window snapshot. The program tested a compinational 4-bit adder. 
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Figure 6.6 : Program execution window snapshot. The program tested a compinational 4-bit adder. 

6.4 Complete Testing and Characterizing Program 

The program algorithm is illustrated in Figure 6.7. The program starts by initializing the control 

word and set the at-speed mode (select the high frequency clock). Then it starts two loops using 

the user counter. It stores the user counter in the test result memory temporary to be able to use it 

as two counters for the two loops. The inner loop is responsible for sending the 282 test vectors to 

the TSC and reads the result back. The outer loop has two jobs. First, it is responsible of changing 

the control word and sending it to the TSC to change the frequency of the high clock.  Second, it 

compares the test results and store the comparison into memory. If the comparison results in non-

zero value the comparison flag is turned on the execution get out of the outer loop. Otherwise the 

outer loop continues until reaching the maximum number of iteration. 



 

104 

 

 
Figure 6.7 : A complete test program and its flow chart for the S820S benchmark IUT. 

IUT 3 and IUT 4 have scan chains. The program sends the input data at first then it send apply-

and-capture signal to move the input data from the TAP to the CAP to make the circuit inputs 

ready. After that, the program fills the scan chain. At this point, the IUT inputs and scan chain are 

ready with the test vector and apply-and-capture can be sent. 

Reading the result also consists of two phases, reading the output and reading the scan chain. 

Testing and characterizing the 3rd IUT 

In a normal ASIC test it has to be one apply-and-capture signal however, in FPGA prototype, 

the first apply-and-capture always results in one clock pulse while the followed ones produce two 
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pulses due to the prototyping issues mentioned in section 5.3. Hence, the test result in this program 

resulted by applying three clocks to the IUT 3. The associated expected results also are generated 

using a simulator and taken after applying three clock pulses. 

 The test data (282 vectors, 1128 bytes): 22, 76, 07, 03, 66, 5C, 04, 01, … 

 The expected results (282 vectors, 1128 bytes): 00, 60, 00, 00, 00, 60, 00, 00, … 

 The program (43 instructions, 148 bytes): 

0000 SetFrequencyControlWord 0008 

0003 SetHFClock 

0004 Load_UserCounter_value 00000025 

0009 Load_RCWrite 0900 

000C Store_UserCounter 

000D SendFrequencyControlWord 0F 

000F MeasureFrequency 000003FF 

0014 ReadFrequencyRegister 0F 

0016 Load_DCRead 0000 

0019 Load_RCWrite FFFF 

001C Load_UserCounter_value 0000011A 

0021 SendSelectionMask 00000009, 0004 

0028 SendTestData 00000000, 05 

002E SendTestData 00000000, 04 

0034 SendTestData 00000000, 00 

003A ApplyAndCapture 

003B SendSelectionMask 00000009, 0006 

0042 SendTestData 00000000, 03 

0048 SendSelectionMask 00000009, 0000 

004F SendSelectionMask 00000004, 0004 

0056 ApplyAndCapture 

0057 ApplyAndCapture 

0058 SendSelectionMask 00000009, 0005 

005F ReadResult 00000002, 06 

0065 SendSelectionMask 00000009, 0006 

006C ClearTestDataRegister 

006D ReadResult 00000000, 07 

0073 DEC_UserCounter 

0074 JNZ 0021 

0077 ResetCompareFlag 

0078 Load_DCRead 0468 

007B Load_RCRead 0000 

007E Compare 00000467 

0083 Load_RCWrite 0901 
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0086 Load_UserCounter_Mem 

0087 DEC_UserCounter 

0088 Load_RCWrite 0900 

008B Store_UserCounter 

008C JZ 0093 

008F DEC_CW 

0090 JCompareCorrect 000D 

0093 Stop 

Figure 6.8 shows a snap shot of the user interface tool after executing the program with four 

snapshots from memories for the test data, test results, expected results and comparison. The latest 

test was conducted using a 180 MHz. The CF flag indicates that the comparison detect a 

discrepancy between results and expected results at this speed and the comparison window shows 

where the discrepancy exists. 
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(a) A snapshot of the user interface showing that IUT3 get an error at 180MHz (CF is on). 

 
(b) Test data                                                              (c) Test Results 

 

(d) Expected Results                                                              (e) Comparison 

Figure 6.8 : IUT3 testing: Snapshots for the user interface with four instances of the memory viewer after executing the 

IUT 3 test program. At this point, not all test results matches the expected. The comparison window shows some non-

zero values where a difference exists.This indicates that the chip cannot handle the currrent frequency. 
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Testing and characterizing the 4rd IUT 

In a normal ASIC test it has to be one apply-and-capture signal however, in FPGA prototype, 

the first apply-and-capture always results in one clock pulse while the followed ones produce two 

pulses due to the prototyping issues mentioned in section 5.3. Hence, the test result in this program 

resulted by applying three clocks to the IUT 4. Two pulses will generate the results and the third 

one will produce the result after applying two pulses. The associated expected results also are 

generated using a simulator and taken after applying two clock pulses. 

 The test data (282 vectors, 1128 bytes): 22, 76, 07, 03, 66, 5C, 04, 01, … 

 The expected results (282 vectors, 1128 bytes): 00, 60, 00, 00, 00, 60, 00, 00, … 

 The program (43 instructions, 148 bytes): 

0000 //initialize 

0000 SetFrequencyControlWord 0016 

0003 SetHFClock 

0004 Load_UserCounter_value 00000025 

0009 Load_RCWrite 0900 

000C Store_UserCounter 

000D //Measure frequency 

000D SendFrequencyControlWord 0F 

000F MeasureFrequency 000003FF 

0014 ReadFrequencyRegister 0F 

0016 //Initialize addresses 

0016 Load_DCRead 0000 

0019 Load_RCWrite FFFF 

001C Load_UserCounter_value 0000011A 

0021 //Send inputs 

0021 SendSelectionMask 00000009, 0007 

0028 SendTestData 00000000, 05 

002E SendTestData 00000000, 04 

0034 SendTestData 00000000, 00 

003A ApplyAndCapture 

003B //Send scan chain 

003B SendSelectionMask 00000009, 0009 

0042 SendTestData 00000000, 03 

0048 //Apply three clocks 

0048 SendSelectionMask 00000009, 0000 

004F SendSelectionMask 00000007, 0007 
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0056 ApplyAndCapture 

0057 ApplyAndCapture 

0058 //Read output 

0058 SendSelectionMask 00000009, 0008 

005F ReadResult 00000002, 06 

0065 //Read scan chain 

0065 SendSelectionMask 00000009, 0009 

006C ClearTestDataRegister 

006D ReadResult 00000000, 07 

0073 //Loop for the next test vector 

0073 DEC_UserCounter 

0074 JNZ 0021 

0077 //Compare test result with expected 

0077 ResetCompareFlag 

0078 Load_DCRead 0468 

007B Load_RCRead 0000 

007E Compare 00000467 

0083 //Decrement times counter 

0083 Load_RCWrite 0901 

0086 Load_UserCounter_Mem 

0087 DEC_UserCounter 

0088 Load_RCWrite 0900 

008B Store_UserCounter 

008C //if time reach maximum then exit 

008C JZ 0093 

008F //if correct result change frequency and loop 

008F DEC_CW 

0090 JCompareCorrect 000D 

0093 //Exit 

0093 Stop 
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(a) A snapshot of the user interface showing that IUT3 get an error at 180MHz (CF is on). 

 
(b) Test data                                                              (c) Test Results 

 
(d) Expected Results                                                              (e) Comparison 

Figure 6.9 : IUT 4 testing: Snapshots for the user interface with four instances of the memory viewer after executing 

the test program. At this point, not all test results matches the expected. The comparison window shows some non-

zero values where a difference exists.This indicates that the chip cannot handle the currrent frequency. 
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6.5 Testing of the Loop Back from the chip 

The developed platform allows testing of the TSC circuitry itself by scanning in and out test 

data and port selection masks. Figure 6.10 below shows a small program execution that sends test 

data to the chip. The purpose of this program is to see the returned back data in the TD register. 

The test data memory is initially loaded with the test data memory with the data shown in 

Figure 6.10 which starts with 22 at location 0 in the test data memory. The program, starting with 

address 0, it selects the tenth port which represents the input port for the fourth IUT. Then it sends 

8 bits from the 1st byte 0x22, then sends 7 bits from the second byte 0x76, then sends three bits 

from the third byte 0x07 then 8 bits from the forth byte 0x03. In each time, the test data is sent to 

the TSC and is automatically looped back to the TACP. The total number of sent bits is 26 which 

are 01000100_0110111_111_11000000. Since the number of inputs in IUT4 is 18 bits, the first 8 

bits will be returned back to the processor (value of 22). As can be seen in the user interface 

(Figure 6.10), TD register contains 22 and this is correct. 
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Figure 6.10 : Loop back testing; test-data is sent to the TSC and received back. The TD register gets back the 

returned test-data (TD = 0x22). 

Another test program was run to check the selection mask register SM, Figure 6.11. As can be 

seen from the figure, the SM register contains 60 which is 0110_0000_0000. This means that, out 

of the available twelve ports, ports number nine and ten had been selected. To achieve this, the test 

program first sends the 12-bit sequence 1000_0000_0000 using the following instruction: 

  0000 SendSelectionMask 0000000B, 0000  

Then it sends the following 10-bit sequence 0000_0000_01 using the following instruction: 

  0007 SendSelectionMask 00000009, 0009 

Hence the value of the 12-bit selection-mask register SM becomes 0000_0000_0110. Finally, 

the byte 0110_0000 is shifted out to the SM register using the instruction:  

  000E SendSelectionMask 00000007, 0000 
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Thus we get the value 60 for SM register in the processor as it shown in Figure 6.11 below. 

 
Figure 6.11 : Test program for the selection mask SM register. SM contains the looped back selection mask that 

was sent (SM = 0x60).. 
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CONCLUSION AND FUTURE WORK 

 

 

Test and characterization processor is designed and implemented on FPGA boards. TSC with 

some IPs were emulated on another FPGA board. Graphical user interface is designed to effectively 

use the processor. The system is successfully tested running many programs on it. Then all 

circuitries are designed. Implementation is done on two Spartan 3A FPGA boards. Graphical user 

interface is designed and tested. Comprehensive test programs are written and run on the processor. 

Test results show that the processor works as planned. 
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CHAPTER 7 

 

APPENDIX 

 

 

A. Instruction-Set List with their microinstructions 

Explaining and designing of some instructions is stated in section 4.6. In this section the 

complete list of the thirty three designed instructions and their microinstructions is listed. 

A.1. fetch 

It is the default instruction that exists at address 0 so, the execution will start with it. It selects 

the next instruction to be execute and branch to it by loading the instruction register (IR) address. 

Each instruction branches to address 0 after finishing its execution. That is, fetch instruction is 

executed before each instruction. The fetch instruction also holds the execution if the 

next_instruction flag is off which enable running the program in a single step mode. It also set the 

processor busy flag on while the processor executes instructions. 

Opcode Instruction name Parameters 

00 feach no parameters 

micro instructions: 

00:0 NOP 

00:0 ResetBusy 

00:1 if not (next_instruction)  Branch 00:0 
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00:2 Load_IR_Instruction 

00:2 SetBusy 

00:3 Increment_PC 

00:3 NOP 

A.2. SendSelectionMask 

 Send a bit stream to the port selection mask register on the chip. It decodes the port no. and put 

it in specific window length before sending it. Usually the window length is the total number of 

ports. 

Opcode Instruction name Parameters Size (bytes) 

1C SendSelectionMask 
Window length-1 4 

Bit No.(0 to n-1) 2 

micro instructions: 

1C:0 Increment_PC 

1C:1 Increment_PC 

1C:1 Load_CR_Low_Instruction2 

1C:2 Increment_PC 

1C:3 Increment_PC 

1C:3 Load_CR_High_Instruction2 

1C:4 Increment_PC 

1C:5 Decrement_CR 

1C:5 Strobe_in_PMask 

1C:5 if not (CR_IsZero)  Branch 1C:5 

1C:6 Increment_PC 

A.3. SendTestData 

Send test data from the address specified  by DCRead register. 

Opcode Instruction name Parameters Size (bytes) 

1D SendTestData 
No. of words-1 4 

Bits per word-3 1 

micro instructions: 

1D:0 Increment_PC 

1D:1 Increment_PC 

1D:1 Load_CR_Low_Instruction2 

1D:2 Increment_PC 

1D:3 Increment_PC 

1D:3 Load_CR_High_Instruction2 

1D:4 Branch 1D:6 
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1D:4 Increment_DC 

1D:4 Load_TD_TestData 

1D:4 Load_WC_Instruction 

1D:5 Increment_DC 

1D:5 Load_TD_TestData 

1D:5 Load_WC_Instruction 

1D:5 Strobe_in_TData 

1D:6 Decrement_WC 

1D:6 Shift_TestData 

1D:6 Strobe_in_TData 

1D:6 if not (WC_IsZero)  Branch 1D:6 

1D:7 Decrement_CR 

1D:7 Shift_TestData 

1D:7 Strobe_in_TData 

1D:7 if not (CR_IsZero)  Branch 1D:5 

1D:8 Increment_PC 

1D:8 Shift_TestData 

1D:8 Strobe_in_TData 

A.4. ReadResult 

Read results back from the chip and strore them in test result memory in the address specified 

by RCWrite register. 

Opcode Instruction name Parameters Size (bytes) 

17 ReadResult 
No. of Words-1 4 

Bits pre word-2 1 

micro instructions: 

17:0 Increment_PC 

17:1 Increment_PC 

17:1 Load_CR_Low_Instruction2 

17:2 Increment_PC 

17:3 ClearTR 

17:3 Increment_PC 

17:3 Load_CR_High_Instruction2 

17:4 Load_WC_Instruction 

17:4 Strobe_out_TR 

17:5 Decrement_WC 

17:5 Strobe_out_TR 

17:5 if not (WC_IsZero)  Branch 17:5 

17:6 Decrement_CR 

17:6 Increment_RCWrite 

17:6 Load_WC_Instruction 
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17:6 Store_TestResults_TR 

17:6 Strobe_out_TR 

17:6 if not (CR_IsZero)  Branch 17:5 

17:7 Increment_PC 

A.5. ApplyAndCapture 

Send an apply-and-capture signal and leave two clock cycles before and after sending. 

Opcode Instruction name Parameters 

01 ApplyAndCapture no parameters 

micro instructions: 

01:0 NOP 

01:1 NOP 

01:2 NOP 

01:3 AaC 

01:4 AaC 

01:5 AaC 

01:6 AaC 

01:6 NOP 

01:7 NOP 

01:8 NOP 

A.6. Compare 

Compare (xor) between two memory locations and store the comparision result on another 

location. The addresses has to be set before calling this instruction using these instructions: 

Load_DCRead: the expected result location. LoadRCWrite: location to save comparison results. 

LoadRCRead: the stored test results location. 

Opcode Instruction name Parameters Size (bytes) 

03 Compare No. of words-1 4 

micro instructions: 

03:0 Increment_PC 

03:1 Increment_PC 

03:1 Load_CR_Low_Instruction2 

03:2 Increment_PC 

03:3 Increment_PC 

03:3 Load_CR_High_Instruction2 

03:4 Decrement_CR 

03:4 Increment_DC 
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03:4 Increment_RCRead 

03:4 Increment_RCWrite 

03:4 Store_TestResults_Compare 

03:4 if not (CR_IsZero)  Branch 03:4 

A.7. Load_DCRead 

Set a value to the test-data memory reading address register (b). 

Opcode Instruction name Parameters Size (bytes) 

0D Load_DCRead Data reading address 2 

micro instructions: 

0D:0 Increment_PC 

0D:1 Increment_PC 

0D:1 Load_DC_Instruction2 

A.8. Load_RCRead 

Set a value to the test-result memory reading address register (b) 

Opcode Instruction name Parameters Size (bytes) 

0F Load_RCRead Result reading address 2 

micro instructions: 

0F:0 Increment_PC 

0F:1 Increment_PC 

0F:1 Load_RCRead_Instruction2 

A.9. Load_RCWrite 

Set a value to the test-result memory writing address register (a) 

Opcode Instruction name Parameters Size (bytes) 

10 Load_RCWrite Result writing address 2 

micro instructions: 

10:0 Increment_PC 

10:1 Increment_PC 

10:1 Load_RCWrite_Instruction2 

A.10. ResetCompareFlag 

Clear the comparing result flag (CF) 

Opcode Instruction name Parameters 

18 ResetCompareFlag no parameters 
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micro instructions: 

18:0 ResetCF 

A.11. JCompareCorrect 

Jump if compare flag (CF) is not zero 

Opcode Instruction name Parameters Size (bytes) 

08 JCompareCorrect Branching address 2 

micro instructions: 

08:0 Increment_PC 

08:0 if not (CF_IsNotEqual)  Branch 08:2 

08:1 Branch 00:0 

08:1 Increment_PC 

08:2 Load_PC_Instruction2 

A.12. JCompareError 

Jump if compare flag (CF) is zero 

Opcode Instruction name Parameters Size (bytes) 

09 JCompareError Branching address 2 

micro instructions: 

09:0 Increment_PC 

09:0 if (CF_IsNotEqual)  Branch 09:2 

09:1 Branch 00:0 

09:1 Increment_PC 

09:2 Load_PC_Instruction2 

A.13. SetFrequencyControlWord 

Set a value in the frequency control word register (CW) to be shifted out later to the chip. 

Opcode Instruction name Parameters 
Size 

(bytes) 

1E SetFrequencyControlWord Control word 2 

micro instructions: 

1E:0 Increment_PC 

1E:1 Increment_PC 

1E:1 Load_CW_Instruction2 

A.14. SendFrequencyControlWord 

Shift out the frequency control word register (CW) to the chip 
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Opcode Instruction name Parameters Size (bytes) 

1B SendFrequencyControlWord Control word length-1 1 

micro instructions: 

1B:0 Increment_PC 

1B:0 Load_WC_Instruction 

1B:1 Decrement_WC 

1B:1 Strobe_in_CLK_CR 

1B:1 if not (WC_IsZero)  Branch 1B:1 

A.15. MeasureFrequency 

Run the frequency measuring algorithm to measure chip high frequency clock 

Opcode Instruction name Parameters Size (bytes) 

14 MeasureFrequency No. of cycles-1 4 

micro instructions: 

14:0 Increment_PC 

14:1 Increment_PC 

14:1 Load_CR_Low_Instruction2 

14:2 Increment_PC 

14:3 Increment_PC 

14:3 Load_CR_High_Instruction2 

14:4 if not (HFCLK_Meas_ACK)  Branch 14:4 

14:5 Decrement_CR 

14:5 HFCLK_Meas_Req 

14:5 if not (CR_IsZero)  Branch 14:5 

14:6 if not (HFCLK_Meas_ACK)  Branch 14:6 

A.16. ReadFrequencyRegister 

Copy the chip measured-frequency register (FR) to the precessor frequency register (FR), It 

shifts right the two registers simultanously. 

Opcode Instruction name Parameters Size (bytes) 

16 ReadFrequencyRegister Word length-1 1 

micro instructions: 

16:0 Increment_PC 

16:0 Load_WC_Instruction 

16:1 Decrement_WC 

16:1 Strobe_out_CLK_FR 

16:1 if not (WC_IsZero)  Branch 16:1 
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A.17. INC_CW 

Increment the frequency control word register (CW) to be sent to the chip later 

Opcode Instruction name Parameters 

06 INC_CW no parameters 

micro instructions: 

06:0 INC_CW 

A.18. DEC_CW 

Decrement the frequency control word register (CW) to be sent to the chip later 

Opcode Instruction name Parameters 

04 DEC_CW no parameters 

micro instructions: 

04:0 DEC_CW 

A.19. SetHFClock 

Set the high frequency clock flag (SF). 

Opcode Instruction name Parameters 

1F SetHFClock no parameters 

micro instructions: 

1F:0 SetHFClock 

A.20. ResetHFClock 

Reset the high frequency clock flag (SF). 

Opcode Instruction name Parameters 

19 ResetCompareFlag no parameters 

micro instructions: 

19:0 ResetHFClock 

A.21. Load_UserCounter_value 

Load an immediate value to the user counter register (UC). 

Opcode Instruction name Parameters 
Size 

(bytes) 

12 Load_UserCounter_value Immediate value 4 

micro instructions: 
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12:0 Increment_PC 

12:1 Increment_PC 

12:1 Load_UC_Low 

12:2 Increment_PC 

12:3 Increment_PC 

12:3 Load_UC_High 

A.22. Load_UserCounter_Mem 

Load a value from the test-result memory to the user counter register (CU). Load_RCWrite 

instruction has to be called before this instruction to set the loading address. 

Opcode Instruction name Parameters 

11 Load_UserCounter_Mem no parameters 

micro instructions: 

11:0 Increment_RCWrite 

11:0 Load_UC_TR1 

11:1 Increment_RCWrite 

11:1 Load_UC_TR2 

11:2 Increment_RCWrite 

11:2 Load_UC_TR3 

11:3 Increment_RCWrite 

11:3 Load_UC_TR4 

A.23. Store_UserCounter 

Store the user counter register (UC) value into test-result memory. Load_RCWrite instruction 

has to be called before this instruction to set the Storing address. 

Opcode Instruction name Parameters 

21 Store_UserCounter no parameters 

micro instructions: 

21:0 Increment_RCWrite 

21:0 Store_UC1 

21:1 Increment_RCWrite 

21:1 Store_UC2 

21:2 Increment_RCWrite 

21:2 Store_UC3 

21:3 Increment_RCWrite 

21:3 Store_UC4 
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A.24. INC_UserCounter 

Incerment the user counter register (UC). 

Opcode Instruction name Parameters 

07 INC_UserCounter no parameters 

micro instructions: 

07:0 INC_UC 

A.25. DEC_UserCounter 

Decerment the user counter register (UC). 

Opcode Instruction name Parameters 

05 DEC_UserCounter no parameters 

micro instructions: 

05:0 DEC_UC 

A.26. JNZ 

Jump if the user counter (UC) register is not zero. 

Opcode Instruction name Parameters Size (bytes) 

0A JNZ Branch address 2 

micro instructions: 

0A:0 Increment_PC 

0A:0 if not (UC_IsZero)  Branch 0A:2 

0A:1 Branch 00:0 

0A:1 Increment_PC 

0A:2 Load_PC_Instruction2 

A.27. JZ 

Jump if the user counter register (CU) is zero. 

Opcode Instruction name Parameters Size (bytes) 

0C JZ Branch address 2 

micro instructions: 

0C:0 Increment_PC 

0C:0 if (UC_IsZero)  Branch 0C:2 

0C:1 Branch 00:0 

0C:1 Increment_PC 

0C:2 Load_PC_Instruction2 
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A.28. Jump 

Do unconditional branching. 

Opcode Instruction name Parameters Size (bytes) 

0B Jump Branch address 2 

micro instructions: 

0B:0 Increment_PC 

0B:1 Load_PC_Instruction2 

A.29. Call 

Push the program counter (i.e. PCRead register) to the stack, then branch. 

Opcode Instruction name Parameters Size (bytes) 

02 Call Branch address 2 

micro instructions: 

02:0 DEC_SP 

02:0 Increment_PC 

02:1 DEC_SP 

02:1 Push_PC2 

02:2 Load_PC_Instruction2 

02:2 Push_PC1 

A.30. Return 

Pop the program counter (i.e. PCRead register) from the stack. It does branch because the 

program counter will change. 

Opcode Instruction name Parameters 

1A Return no parameters 

micro instructions: 

1A:0 Pop1 

1A:1 NOP 

1A:2 Pop_PC2 

1A:3 NOP 

A.31. NOP 

Do nothing. Just waste processor cycles. It is useful for doing delay loop or delay between 

instructions. 
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Opcode Instruction name Parameters 

15 NOP no parameters 

micro instructions: 

15:0 NOP 

A.32. Stop 

Stop running the program by looping to the same location. 

Opcode Instruction name Parameters 

20 Stop no parameters 

micro instructions: 

20:0 Branch 20:0 

20:0 IsStopInstruction 

A.33. ClearTestDataRegister 

Clear the test data register (TD). 

Opcode Instruction name Parameters 

23 ClearTestDataRegister no parameters 

micro instructions: 

23:0 ClearTD 
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B. Instruction Builder Tutorial 

This appendix presents a tutorial for designing instructions and generating the resulted processor 

HDL code. 

1. Starting empty project 

All signals and instruction data are stored in the file “TACPDatabase.bin”. By deleting this file 

we start a new empty project. Figure 7.1 shows a snapshot of instruction builder software after 

deleting the file. There is also another text file “DatapathBody.txt” that stores the data path code. 

 
Figure 7.1 : Starting Instruction builder with an empty project. 

2. Add signals 

On the left there is signals list. To add signals, press the button “Add, Edit >>” then write the 

signal unique name and a description to be included as a comment in the Verilog file. 
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Figure 7.2 : Add & edit signals and determine the signal type. 

It is also important to set the signal type from the type list mentioned earlier and showed in 

Figure 5.5. 

3. Add instructions 

Instruction is defined by its opcode and name. The user could also define parameters. Parameters 

should be written in parameter-text-box separated by comma and their sizes in sizes-text-box. 

 
Figure 7.3 : Add & edit instruction and define its parameters sizes and names. 

4. Add microinstructions 

Each instruction could have any number of microinstructions. For the selected instruction, 

microinstructions can be added by double clicking any signal from the signal list. 
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Figure 7.4 : Writing microinstruction and defining their cycles. 

There are two types of microinstructions: 

 Normal microinstructions: like the sequencer to data path or to external signals. 

 Conditional microinstructions: any signal goes to the sequencer. These signals control the 

sequencer. 

Microinstruction consists of clock number, signal name, and branch address if it is conditional. 

If some microinstructions have the same clock cycle, that means they will be executed in the same 

clock. 

There are buttons for incrementing and decrementing clock cycle for the selected 

microinstruction(s). 

5. Write data path code 

The last step in designing the microcode is to write the data path code. Data path button exists 

in the right bottom corner of the instruction builder window. 
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The user can put any needed data path components and define their wires and registers. he 

should not write the data path interface. He also should not redefine the signals that are defined in 

the signal list. 

 
Figure 7.5 : Writing verilog code for data path component. 

6. Generate microcode 

The software has many options. It can generate data path module verilog code, sequencer 

module verilog code or the whole microcode verilog code that include sequencer code, data path 

code, and sequencer and data path instantiations. 
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Figure 7.6 : Generating verilog code for microcode. 

In addition, the software can report signals grouped as their types. It can report instructions with 

their microinstructions.  

7. Export instructions 

It is possible to have the instructions in a text file. The software reports instructions with their 

parameters and sizes. This text file can be read by software that uses the instructions to build 

programs. 

8. Generate test benches  

The software can translate the microinstructions into testbench format as shown in this table. 

This table is a translation of one instruction (i.e. SendTestData). 

Instruction microinstruction Testbench 

SendTestData 

1D:0 Increment_PC 

1D:1 Increment_PC 

1D:1 

Load_CR_Low_Instruction2 

1D:2 Increment_PC 

1D:3 Increment_PC 

1D:3 

Load_CR_High_Instruction2 

1D:4 Branch 1D:6 

//Testbench: 

//Code: 1D 

//Mnemonic: SendTestData 

//Parameters: No. of words-1=4,  Bits per word-3=1  

//for a given CR=3 and WC=2 

#20;//1D:0 Increment_PC 

Increment_PC = 1'b1; 

 

#20;//1D:1 Increment_PC, Load_CR_Low_Instruction2 

Load_CR_Low_Instruction2 = 1'b1; 
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1D:4 Increment_DC 

1D:4 Load_TD_TestData 

1D:4 Load_WC_Instruction 

1D:5 Increment_DC 

1D:5 Load_TD_TestData 

1D:5 Load_WC_Instruction 

1D:5 Strobe_in_TData 

1D:6 Decrement_WC 

1D:6 Shift_TestData 

1D:6 Strobe_in_TData 

1D:6 if not (WC_IsZero)  Branch 

1D:6 

1D:7 Decrement_CR 

1D:7 Shift_TestData 

1D:7 Strobe_in_TData 

1D:7 if not (CR_IsZero)  Branch 

1D:5 

1D:8 Increment_PC 

 

1D:8 Shift_TestData 

1D:8 Strobe_in_TData 

#20;//1D:2 Increment_PC 

Load_CR_Low_Instruction2 = 1'b0; 

 

#20;//1D:3 Increment_PC, Load_CR_High_Instruction2 

Load_CR_High_Instruction2 = 1'b1; 

 

#20;//1D:4 Branch 1D:6, Increment_DC, 

Load_TD_TestData, Load_WC_Instruction 

Increment_PC = 1'b0; 

Load_CR_High_Instruction2 = 1'b0; 

Increment_DC = 1'b1; 

Load_TD_TestData = 1'b1; 

Load_WC_Instruction = 1'b1; 

 

#20;//1D:6 Decrement_WC, Shift_TestData, 

Strobe_in_TData, if not (WC_IsZero)  Branch 1D:6 

Increment_DC = 1'b0; 

Load_TD_TestData = 1'b0; 

Load_WC_Instruction = 1'b0; 

Decrement_WC = 1'b1; 

Shift_TestData = 1'b1; 

#20;//1D:6 Decrement_WC, Shift_TestData, 

Strobe_in_TData, if not (WC_IsZero)  Branch 1D:6 

Increment_DC = 1'b0; 

Load_TD_TestData = 1'b0; 

Load_WC_Instruction = 1'b0; 

Decrement_WC = 1'b1; 

Shift_TestData = 1'b1; 

#20;//1D:7 Decrement_CR, Shift_TestData, 

Strobe_in_TData, if not (CR_IsZero)  Branch 1D:5 

Decrement_WC = 1'b0; 

Decrement_CR = 1'b1; 

#20;//1D:5 Increment_DC, Load_TD_TestData, 

Load_WC_Instruction, Strobe_in_TData 

Strobe_in_TData = 1'b1; 

#20;//1D:6 Decrement_WC, Shift_TestData, 

Strobe_in_TData, if not (WC_IsZero)  Branch 1D:6 

Increment_DC = 1'b0; 

Load_TD_TestData = 1'b0; 

Load_WC_Instruction = 1'b0; 

Decrement_WC = 1'b1; 

Shift_TestData = 1'b1; 

#20;//1D:6 Decrement_WC, Shift_TestData, 

Strobe_in_TData, if not (WC_IsZero)  Branch 1D:6 
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Increment_DC = 1'b0; 

Load_TD_TestData = 1'b0; 

Load_WC_Instruction = 1'b0; 

Decrement_WC = 1'b1; 

Shift_TestData = 1'b1; 

 

#20;//1D:7 Decrement_CR, Shift_TestData, 

Strobe_in_TData, if not (CR_IsZero)  Branch 1D:5 

Decrement_WC = 1'b0; 

Decrement_CR = 1'b1; 

 

#20;//1D:5 Increment_DC, Load_TD_TestData, 

Load_WC_Instruction, Strobe_in_TData 

Strobe_in_TData = 1'b1; 

#20;//1D:6 Decrement_WC, Shift_TestData, 

Strobe_in_TData, if not (WC_IsZero)  Branch 1D:6 

Increment_DC = 1'b0; 

Load_TD_TestData = 1'b0; 

Load_WC_Instruction = 1'b0; 

Decrement_WC = 1'b1; 

Shift_TestData = 1'b1; 

 

#20;//1D:6 Decrement_WC, Shift_TestData, 

Strobe_in_TData, if not (WC_IsZero)  Branch 1D:6 

Increment_DC = 1'b0; 

Load_TD_TestData = 1'b0; 

Load_WC_Instruction = 1'b0; 

Decrement_WC = 1'b1; 

Shift_TestData = 1'b1; 

#20;//1D:7 Decrement_CR, Shift_TestData, 

Strobe_in_TData, if not (CR_IsZero)  Branch 1D:5 

Decrement_WC = 1'b0; 

Decrement_CR = 1'b1; 

 

#20;//1D:8 Increment_PC, Shift_TestData, 

Strobe_in_TData 

Decrement_CR = 1'b0; 

Increment_PC = 1'b1; 

#20;//1D:9 

Increment_PC = 1'b0; 

Shift_TestData = 1'b0; 

Strobe_in_TData = 1'b0; 
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C. User Interface Tutorials 

The program has two parts: writing program tab and executing program tab. 

Writing Programs tab 

The writing program tab is shown in Figure  below. To write a program there is an instruction 

list to select instruction. Below the instruction list there are some fields to set or edit the instruction 

parameter. Instruction description also viewed there. The instructions could be sorted 

alphabetically by pressing the sort button. 

 
Figure 7.7 : Writing programs window. 

The program is written by selecting instructions and adding them to the program list. In this list 

it is possible to edit instruction parameter, select instruction or instructions and move them up or 

down or delete instructions. Beside the program list there are the program code written in 
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hexadecimal values. The code can be edited directly and then transformed to instruction list rather 

than editing the program list. It is also possible to copy another program code and paste it there. 

Comments can be added as separate lines. The show program lines checkbox can show or hide 

program lines. The program can be saved as a text file contains the hexadecimal code. The program 

comments are saved in a separate file with the same name and with additional “_cmt” extension. 

Finally for this tab, the program can be downloaded to the instruction memory to a specific 

address. The connection had to be established. 

Executing Programs tab 

The Executing program tab is shown in Figure 7.8 below. In the beginning, the program is 

uploaded from the instruction memory. The uploaded program is listed on the left side of the 

window.  
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Figure 7.8 : Executing programs window. 

The upload address and the number of bytes to upload have to be determined before uploading. 

Comments can be added from the current comment file to the uploaded program by checking the 

show-comments checkbox. 

Below the uploaded program, there are execution control buttons. Set-break-point button copies 

the selected instruction address to BP register. Single-step button executes only one instruction. 

Run-all button executes all instruction. The execution stops when it reaches the stop instruction, 

BP register equals PCRead register or the user presses stop button. Reset PCRead button set the 

PCRead register to zero which means to reset the execution. 

On the right side of this window, processor register contents are displayed. Memory addresses 

six address registers are displayed and assigned with a “set” buttons that enables the user to set a 

value to the register manually. The chip frequency is calculated according to FR register value. 
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The user can set the processor frequency and the number of cycles used by the MeasureFrequency 

instruction. Update-Registers button reload all register value from the processor. Reset-All-

Registers button sends a reset signals to the processor and reload the register values. 

Memory windows 

In the main windows there are four buttons to launch different memory windows. The memory 

window has a memory table reflects the memory contents. It is shown in Figure 7.9 below and 

Figure 7.10 below. Each row in the table represents a vector (i.e. test vector, result vector, etc.). 

The first column in the table is the address column shows the memory address or the vector 

number. The middle columns represent the memory contents one byte for each cell. The last 

column is the vector column which is formed be combining the other columns together. Column 

headers represent how many bits should be taken from each byte to form the test vector. For 

example, the test vector header in Figure 7.9 below is 23 which is the summation of (8+7+3+5) in 

the other columns. The user should take care of these numbers of bits when writing programs to 

send those test vectors.  

Finally, using the file menu, the memory contents can be saved to or read from files. 

Test-data memory window 

This window is used to download or upload test-data and expected results to the processor test-

data memory. The user can specify a memory location and number of bytes to upload. The user 

also can move directly to a specific test vector or a specific memory location. The current write 

and read addresses of the test data memory is shown in the status bar and updated after each 



 

138 

 

execution. This window is also used to show the expected result. A snapshot of test-data memory 

window is shown in Figure 7.9 below. 

 
Figure 7.9 : Test-data memory window. 

Test-result memory window 

This window is used to upload test-result and the comparison result stored in the test-data 

memory. A snapshot of this window is shown Figure 7.10 below. The memory contents can be 

compared  
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Figure 7.10 : Comparing test-results with expected results. 

Compare instruction can compare between test-data and test-result memory and store the 

comparison result in test-data memory. Figure 7.11 below shows the comparison data generated 

by the compare instruction. The memory is sorted by the third column which brings up five errors 

rows. This indicates that vectors 234, 67, 189, 146 and 220 (i.e. EA, 43, BD, 92 and DC) resulted 

in errors. 

 
Figure 7.11 : Comparing results sorted by the third column to rise up vector caused error. 
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Importing test vectors to memory window 

Usually, test-vectors and expected-results are presented in a binary format in a text file similar 

to that in Figure 7.12 below. These vectors are needed to be converted to bytes to be downloaded 

to the processor memory. Import-test-vectors window can read those files and extract test vectors 

and expected results. 

 
Figure 7.12 : Import test-vector dialog window and test-vectors file snapshot. 

The import window gives flexibility to the user. The user can specify what column in the text 

file has the test-vectors, how many scan bits per vector and whether those bits are on the right or 

the left of the test vector. The user also can specify whether the test vectors or scan chains will be 

read from right to left or left to right. 

For example, let’s take the first test vector 00011010001000110111111. In the import window, 

scan bits equals 5 and the ‘scan bits before data bits’ is checked. Hence, 

Scan bits: 00011. 

Data bits: 010001000110111111. 

‘Data bits left to right’ is checked. Hence, data bits: 111111011000100010. 

18-bit data vector will be divided to three bytes (3-7-8) as follows: 111_1110110_00100010 

At the end we came up with these four bytes: 22 76 07 03 and the number of bits per byte are 

8-7-3-5 which is shown in column headers in Figure 7.9 above.  
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