IR 2l
@Eé

Seiofelfe Ve e e el ool el e e e el e e el e e e

2!

A SPECIAL PURPOSE PROCESSOR FOR IC TESTING
AND SPEED CHARACTERIZATION

1 e 9 e e o

|
+
3

(3 e 9 e e ol e e e e

BY
AMRAN AL-AGHBARI

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

|
1]
1

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER ENGINEERING

December, 2012

9?7%@'(

\7
t

A N N PP P N A PN

PN

e

]
|

ﬁe#%%%%‘%%%*%%%%%%%%

Y

o A N A A P P N A P P P PP e e o o P

S
A,
| 2 3

J4 SRS e SE T e S e e

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN- 31261, SAUDI ARABIA
DEANSHIP OF GRADUATE STUDIES
This thesis, written by AMRAN ABDULRAHMAN ABDULWALI AL-AGHBARI
under the direction his thesis advisor and approved by his thesis committee, has been
presented and accepted by the Dean of Graduate Studies, in partial fulfillment of the

requirements for the degree of MASTER OF SCIENCE IN COMPUTER

ENGINEERING.

S LA —

Dr. Mohammed E. S. Elrabaa.
(Advisor)

Dr. Basem AL-Madani

Department Chairman = =

Dr. Aiman Helmi El-Maleh
(Member)

Dr. Abdulhafidh Bouhroua
(Member)

14 13)13

Date:

© AMRAN ABDULRAHMAN ABDULWALI AL-AGHBARI
2012

Dedication

To my beloved parents, brothers and sisters all of them who 1 live for and think of. To
my wonderful wife who are behind my happiness and success. To my teachers and doctors
who taught me with good emotions and feeling that they care of me. To my friends who
support me and are being happy when they feel me on a right way. To all who respect the

truth and the goodness and follow the truth once they know it.

ACKNOWLEDGMENTS

All thanks and praise are due to my God, Allah (azzawajal) who created me, blessed me
with health, as well as provided me with patience and ambition to achieve this research.

I acknowledge deeply my thesis advisor Dr. Mohammed Elrabaa who guided me in this
research and | actually learned from him many things in this specific field and in computer
engineering in general.

| acknowledge my university King Fahd University for Petroleum and Minerals
(KFUPM). I acknowledge the Computer Engineering Department (COE). I acknowledge
the faculties who taught me, helped me and were very very cooperative and interactive. |
acknowledge all of them for pushing me to be at my current scientific level.

I acknowledge King Abdulaziz City for Science and Technology (KACST) for their
supporting for the project related to the thesis and for providing us with all needed devices.

| acknowledge Saudi Arabia Kingdom for providing me an MS scholarship and for the

facilitations on different fields and providing us with an excellent learning environment.

TABLE OF CONTENTS

DEDICATION. ...ttt ettt ettt et es i
ACKNOWLEDGMENTS ...ttt v
TABLE OF CONTENTS ...ttt V
LIST OF TABLES ...ttt sttt Xl
LIST OF FIGURES ...t X1l
LIST OF ABBREVIATIONS ... XVII
AB ST RA CT ..ttt h et b et nae e nre et re e ae e XIX
T VRSP UPRR XX
CHAPTER 1 INTRODUCTION ...ttt 1
1.1 CHICUIT IPS ettt 2
I (O 111 1 [T ST 2
Design for TeStability (DFT).....cciii et sre et sae e re e 3
TESHING PIINCIPIE ...t 3
CharaCterization PrOCESSuoiiiiierieieieieie sttt bttt eb e bt 4
1.3 THESIS OrganizZatiON...........cooieiiiiieie s 5
CHAPTER 2 LITERATURE REVIEWooiii e 6
2.1 Digital Circuit PrototyPingccccoveiieieiieiec st 6
A AT 0 U o 0] (010 o] Lo PRSPPSO 6
e YA [I (01 (014 o TT o To [P SRRSO 7
BIST-DASEA tESE PrOCESSOISvviuviitieteeiteiteeitesteetesteeteestesbeereesbeste e b e sbe s e e sbestaesbesbeeraebesreensesrens 7
SOTWArE-DASEA TESTINGevititeie e 10
LOW-COSt FPGA-BASEA tESTEISc.eivieiieiieiesieete e 11
2.2 MUITI-CYCIE PrOCESSOIScvieeieeeeerte ettt 13
CHAPTER 3 OVERVIEW OF THE PROPOSED TEST AND
CHARACTERIZATION PLATFORM.. ..ottt e 14
3.1 The TACP Support CIrcuitry (TSC) ..o 15
TSC FIXEA INTEITACE ...ttt ettt 17
3.1.1 The Configurable ClOCK GENEIALOrcceiieieiiiriseec s 18
3.1.2 The Frequency Measuring Circuit (FMC).........ccoorininiiiniieeeesese s 19

Vv

3.1.3 The Clock Selection and Application Circuit (CSAAC)ccccereiviiriiniiierenereeeenes 20

3.1.4 The Port Selection BIOCK...........cccoiiiiiiiieecc s 22
3.1.5 The Test Application/Result Ports (TAP/TRP) ..o 23
3.2 User INterface SOTIWAKEc.coiiiiiiiii e 25
INEEITACE PrOLOCOLottt 26
3.3 Test and Characterizing Processor (TACP)ccccocvviieiicie e 27
PIOCESSON ..ttt e 28
IVIBIMIOTTES. ...tk b bbbttt b bbb n e e 29
User CommUNICALION UNITooviiiiiiiiiii e 30
CHAPTER 4 DESIGN OF THE TEST AND CHARACTERIZATION

PROGCESSOR ...ttt sttt e s st e steentees e e beentesneenteeneeaneenneans 31
4.1 Instruction Design and MICroiNStrUCLIONSccccoeiieiiiie v 31
4.1.1 SendSelectionMask inStruction deSIgN..........cccvcveieiieeiieiie i 33
4.1.2 SendTestData iNStruCtion deSIgNcovciiiiiieiicece e 34
4.1.3 ReadResult iNStrUCLION AESIGNcoviiiieiiiiiie e 36
4.1.4 Compare iNStrUCTION GESIGNccviviriiiterieiei et 37
4.2 TACP TOP LEVEI DESIGN ..ottt 38
4.3 User Communication UNIT.........ooooiiiiiiiiiiice e 39
4.3 1 UART MOUUIE ...ttt 40
4.3.2 CommUNICALION FIAQGSoivveiiie et 42
4.3.3 Previous received DYLE rEQISTEN.......cii it 44
4.3.4 Transmitted byte MUILIPIEXErS......ccoii i 44
4.3.5 Receiving state Maching (IX_FSM)oiiiiiiiiiice e 45
4.3.6 Transmitting state machine (tX_FSM) ..o 47
4.3.7 Break POINE FEQISIENvoiviiicie ettt st st sr e be e sbesteenaesae s 49
4.3.8 RECEIVING COUNLETeiuiiiiiitieieiie et et st ettt et s e st e besaeess e besaeesresbeeneesbeeteenaesne s 49
4.3.9 TranSMItliNg COUNTEToveiiiiiitirieite ettt 50
4.3.10 CommuNiCation EFTOr FIAQ........cooiiiiiiiieieiesee e 51
4.3.11 PCWIIE CIFCUITIY .ottt ettt e 51
4.3.12 PCREAU CIFCUIIIY .. veuviieeieiieiieie sttt et 52
4.3.13 DCWIIEE CIFCUITIY ...e.viteiieeieiieie sttt ettt 53
4.3.14 RCREAA CIFCUITIYeuviieieeieiieiisie sttt sttt 54

4.3.15 DCREAU CIICUITIY .. .cviiiieiieiieiesitete sttt 54

4.3.16 RCWIILE CIFCUILIY ...ttt 55
Y 1= 0o [PPSR 55
4.5 MemOry MUILIPIEXEEoiieeiece e 56

ISPrOCESSING CHFCUILIY ...oviiiiciie ettt ettt re st besae e be e e e sreeteenrenae s 57
4.6 TACP PrOCESSOTeeiiiiiitieitie ettt b e snneennees S57

4.6.1 THE SEBQUENCETeeiteeeeeeee ettt bbbt b b 60

4.6.2 THE CONLIOI SLOTE......eivieiieciiee sttt ettt st e ste e seeereeneenne s 61

4.6.3 TwO Previous parameter FEJISTErSeoeiveieirise e 64

4.6.4 Port selection Mask CIFCUITIYccocvieiiiieiiiese e 65

4.6.5 Selection mask Shift regiSter SM........ccceiieiiiiiiiiiiies e 66

4.6.6 Test data Shift regISTEr TDccoociiiiiieieieee e 67

4.6.7 Testresult Shift regiSter TRccooiiiiiieieee e 67

4.6.8 FreqUENCY regiStEr FRccvciiii ittt sttt sre st sre s 68

4.6.9 Frequency control word regiSter CWcccvoiiieeie it 68

4.6.10 InStruction REGISLEr IRecviiiiiiie ettt st 69

4.6.11 General COUNTEN CRouoiiieiiieie sttt ettt 70

4.6.12 WOId COUNTEN WC ...ttt 70

4.6.13 User counter regiSter UCoviiiiiiieic et st sr et st sre s 71

4.6.14 StaCK POINTEN SP ...c.viii it st sre s te e aesae s 72

S ST = T o LSS UR TSSOSO 73

4.6.16 Memory addresSing CIFCUILIYcciiiieiiiiiie ettt st et ene s 74

4.6.17 Test result memory Writing CIFCUITIYooveiririiiiisie e 75

4.6.18 PUSH CITCUITIYctiiiieieieeiee ettt bbb 76

4.6.19 Enumerate MUITIPIEXEToviiiiiiii e 76

CHAPTER 5 TEST AND CHARACTERIZATION PROCESSOR
IMPLEMENTATION L.ttt 78
5.1 User Interface IMplementationccccoooiiiieiii i 79

L AT Lo o oo =T o LSS ORU PSRN 79

EXECULING PrOGIAMIS ...ttt sttt ettt st et et esteene e e sre e s e sneeneeseeenen 80

IMEMOIY INTEITACE ...ttt ettt 82
5.2 The Instruction BUilder SOFtWaAIEcocvvieiieii i 83

5.3 TSC ProtOtYPINGcieeiieiieieieieeste sttt 85

5.3.1 CIOCK GALING ...ttt ettt 86
5.3.2 ClOCK MUILIPIEXING ..vviviiiieie ittt re e 87
5.3.3 Emulating the Configurable Clock Generator (CCG)cocevevviieienieeieneieeiesean, 89

5.4 IPS UNAEEN TESE (TUTS) .iiuiiiieiicieii ettt 91
15U IUT: 4-bit Combinitional AdGEr.........ccoviiiiiiiieeieee e 92

2M JUT: 8-Dit PIPEHNEA AGUET ...ttt 93

3 JUT: s820 benchmark with scan chain is iNSErted..........c.cocvvvvrvreeenriieeeeesseeeeens 93

4™ JUT: s820 benchmark with scan chain is inserted and flip-flops are doubled. 94
CHAPTER 6 TEST RESULTS .ttt s 96
6.1 Maximum FreqUENCY TEST........ccciiiiiiiiiiieieie et 96
6.2 Testing the 15t IUT: the 4bit Combinational Adderccccooevvevviiiiiieeennne. 98
6.3 Testing the 2"d [UT: the 8-bit Pipelined Adderccccoeevevrveeeeeererieeenen, 101
6.4 Complete Testing and Characterizing Programccccocevviinenenennnnnnnne 103
Testing and characterizing the 3™ TUTccoueeieiiiiceeeiess et 104
Testing and characterizing the 4™ TUTcccceeeeriieceeess et 108

6.5 Testing of the Loop Back from the Chip ... 111
CONCLUSION AND FUTURE WORKcoiiiiieiieee e 114
CHAPTER 7 APPENDIX ... 115
A. Instruction-Set List with their microinstructions............ccocceovveiinenc i 115
N (-] (o] S PS 115
A2, SENASEIECTIONMEASKc.ociiiiiiiiicie s 116
A3 SENATESIDALA.eveeeieieiieiee et r et enes 116
Ad. REAURESUIL ... et 117

F T Y o o] V7N 4 [0 [T o (0 (SRRSO 118
N T 0] o1 01 SR 118
N R o T o I 0T - o S 119
AN T o T o I {4 (= T [RS 119
AN o T o I (A4 | (S 119
A.10. ReSELCOMPArEFIAQeoieeeeee e e 119
ALl JCOMPArECOITECT. . ccutiitiiiieeeie ettt ettt ettt sb e sbe e sbeeseeesnneenas 120

AL2. JCOMPAIEEITON ...t e nre e 120

A.13. SetFrequencyControlWOIG.........ccoiiiiiiieeie s 120
A.14. SendFrequencyControlWOrd. ..o 120
A.L5. IMEESUIEFTEOUENCYeeveieeiiesieeieeie ettt nr e n e e nne e 121
A.16. ReadFreqUENCYREJISIEN..... ..ot 121
ALLT. INC_CW .o bbbttt ettt ettt 122
ALLB. DEC_CW .ottt bbb bbbt bbb 122
AL, SEEHFCIOCK ...ttt 122
A.20. RESEIHFCIOCKoviiiiiieiesesse bbb 122
A.21. Load USErCOUNLEr ValUE........cccoveiiiiieiieitieiese e ste ettt re et sae e ne e 122
A.22. Load USErCoUNtEr IMEBMccciiiiiiiiieiicite et se ettt st s ne e 123
YN B (o] (Y © L= (O 11 (=] P RPTPR 123
A24, INC _USEBICOUNTEL.....ccitiiiitieeiiie ittt ae et e e sbe et e e snbe e s b e e sbae e snbeeesraeesnreas 124
A.25. DEC USEBICOUNTET.....cctiiiitieeiiie it sie e stee s e st e e saae e sbe et e snbe e st e e ssae s sbeeesraeesneeas 124
AL26. INZ .ottt ettt e e enen 124
AT, JZoeee ettt aenen 124
A28, JUMD ottt R Rt te Rttt e e enen 125
AL29. Call oot a s 125
ALB0. RELUIM ettt b b et e et b ne e b es 125
N 3 R N[| PRSP 125
F R S (0] o TR T PP PR P TT PP PROPRPR 126
A.33. ClearTeStDataREGISIENcviiiiiitiriiite e 126
B. Instruction Builder TUtOrial...........ccooiiiiiieiieeese e 127
1. Starting eMPLY PrOJECTocveiii ettt re e 127
2. AU SIGNAIS ... e et are s 127
3. A INSIFUCTIONS ...ttt enes 128
4. Add MICTOINSIIUCTIONSevveieeiieiicie et eens 128
5. Write data Path COUB.... ..ot 129
6. Generate MICTOCOUE.cceeee ettt ettt st e e sreeneenee e 130
7. EXPOIT INSIIUCTIONSouviviiiieiicisie st 131
8. Generate teSt DENCNESecie e 131
C. User Interface TULOFIAlS.......cccoeiieiiee e 134

WIItING Programs taDoooiiieiiici s 134

EXecuting Programs talccoooiiiii e 135
IMEIMONY WINTOWS. ...ttt ettt n s 137
Test-data MEMOrY WINAOWc..oiiiiiiiitiiiereeeeee st 137
TeSt-reSult MEMOIY WINAOW..........ccoiiiiiiiriieieeeeee s 138
Importing test vectors to memory WiNAOW..........ccceovveveieeie i e 140
REFERENCES ...t 141
R I I TP PP PROURPRRPTN 147

LIST OF TABLES

Table 3.1: Communication protocol - the available user commands with their codes. 27
Table 4.1: Instructions and their OPCOUESccvviveiieieiieceece e 32
Table 4.2: Communication protocol — UART communication Speed.c.ccocvvennnnnne 40
Table 4.3: Communication protocol - the available user commands with their codes. 45
Table 4.4: Sequencer to data path signals (micro-instructions signals)..........cccccocevvennene 62
Table 4.5: Selecting Port eXamMPIES.......ccviieiieieiieseese e 65

Table 5.1: The generated clock frequencies and their control words using the DCMs in the
Q1001 (0] 3/ o 1=0 I od 1T o AR 91

Xi

LIST OF FIGURES

Figure 1.1 : Principle of testing with ATEs: apply test patterns, capture responses and

compare them With eXPeCted ONES..civeiiiieiiee e 4
Figure 1.2 : Characterization process: test the IP under different frequencies to find out the
IMAXTMIUML .ttt bttt b bbbt e e st e st e s e b e b e b e b e e bt et e e b e e st et et e sbenbesbenbenbe s 5
Figure 2.1 : Basic BIST Architecture Block Diagram.ccccovviviiiiiienencnenc e 8
Figure 2.2 : A 4-bit linear feedback shift register (LFSR) which is used as a test pattern
0 TcT 0 1= 1 o] (I =€) TR SRTRP PR 9
Figure 3.1 : The Proposed Platform: PC, Test Processor on FPGA board, and Support
CIrCUITIY ON CREP. ottt bbb ene s 15
Figure 3.2 : Block diagram of the TACP Support Circuitry (TSC) to be placed on the
[S10100]1Y; ¢1INol o | o TP P TP TP TPV PR PSP 16
Figure 3.3 : The fixed interface between TACP and TSC........cccccovevvevecicieece e 17
Figure 3.4 : The configurable clock generator. ... 19
Figure 3.5 : The frequency measuring Circuit (FCM)......c.ccccoovveiiiie i 20
Figure 3.6 : The state diagram of the control unit of the frequency measuring circuit (FMC).
... 21
Figure 3.7 : The Clock Frequency Control REgIStEr.ccovviiiiiiieieeee e 21
Figure 3.8 : The Clock Selection and Application CirCuit............c.ccccevveveeieiieieere s, 22
Figure 3.9 : Logic Simulation Results for the CSaAC [1]......ccccoovrvrieiniiieicre e 22
Figure 3.10 : The Port Selection CirCUILIY.cccvoiviiieiiece e 23
Figure 3.11 : Test application port (TAP) and test results port (TRP).cccccevvrvrvnnnne. 24
Figure 3.12 : Scan test application/reSult POIS.cccoveveiieiecie e 25
Figure 3.13 : Packet type list. Each packet starts with flags defining a command and
determingS PACKEL SIZE.cviiiieiii et 26
Figure 3.14 : TACP Main COMPONENTS.cc.civiiiiieieiiesieeiie et este et sve e 28
Figure 3.15 : The three memories. Each memory has four inputs and four outputs......... 30
Figure 4.1 : Four IUTs, each has three ports, each port has a serial number.................... 33
Figure 4.2 : SendSelectionMask microinstructions and flow chart.c.ccoceovninnne. 34
Figure 4.3 : SendTestData microinstructions and flow chart.c..ccceveiiieiin e, 35
Figure 4.4 : Simulation of the instruction SendTestData............c.coovvvereienenc e 36
Figure 4.5 : ReadResult microinstructions and flow chart.c..cccovveiieiiiciie e, 37

Xii

Figure 4.6 : Compare microinstructions and flow chart.ccccooo v, 38

Figure 4.7 : TACP design top view and its Subcomponents.cccccoevenencieninennnn. 39
Figure 4.8 : Communication protocol connected to UART module...........ccccoevviinrnnnen. 40
Figure 4.9 : The UART module input/output diagram.c.ccooveiviieieienencneneneeee 41
Figure 4.10 : Decoding the received type-byte to eighteen flags.ccccocevvvevvieinenne. 42
Figure 4.11 : Combining previous received byte with the current received byte to form a
L6-DIEWOIT. . bbbt e bbb 44
Figure 4.12 : tX_Dyte MUITIPIEXETS.oviiiiieieee e 44
Figure 4.13 : Receiving state machine FSM diagram...........ccccccevviievivene i 46
Figure 4.14 : Receiving state maching CIFCUIIY.cccooeiiiirinininieieeeese s 47

Figure 4.15 :
Figure 4.16 :
Figure 4.17 :
Figure 4.18 :

Figure 4.19

Figure 4.20 :

Figure 4.21:

Figure 4.22 :
Figure 4.23 :
Figure 4.24 :
Figure 4.25 :
Figure 4.26 :

transmitting state machine sends test result and register values to the user.48
transmitting state machine circuitry and the transmit signal. 48

Break point register circuitry and BreakF flag.ccccocooveveiiciiicein. 49
The receiving counter and itS CIFCUITIY.cccooiririniniiieeee s 50
: The transmitting counter and itS CIFCUILIY.ccccevieiieieiie e 50
Error flag CIFCUITIY. ..c..oviiii e 51
PCWrite circuitry in the communication protoocol.cccccevveveeiveineenne. 52
PCRead circuitry in the communication protoocol.ccccceveniiiinnnnne 53
DCWrite circuitry in the communication protoocol.............ccccevevviiieinenee. 53
RCRead circuitry in the communication protoocol............ccccccevvenerinnnnnne. 54
DCRead circuitry in the communication protoocol.ccccevevveiieiienee. 55
RCWrite circuitry in the communication protocol............cccccceveniiinnnnnne. 55

Figure 4.27 : Memories and address registers. Each memory has four inputs and four
outputs. Each memory has two address registers; one write/read register and one read only
=10 1S (] OSSO SRTSP 56

Figure 4.28 : Memory multiplexer circuitry manage memory access between the data path

AN the PrOLOCOL......c..eeiice e e e sre e nre e 56
Figure 4.29 : Memory multiplexer circuitry manage memory access from the TACP data
path and the communication protocol to the memories.ccccoevveiii i, 57
Figure 4.30 : Processor tOP diagram.cccooeiiririeieieniesie e 58
Figure 4.31 : Processor components: sequencer, control store, and data path.................. 58
Figure 4.32 : The sequencer and the CONtrol SEOre.cccocvvireiiinecseeee e 61

Xiii

Figure 4.33 : Control store entry consists of selection, status signal, and branch address.

... 62
Figure 4.34 : Combining previous and current byte to form a 16-bit word for each port on
INSEIUCTION MEBIMOIY. ...ttt ettt st ettt et eebe st e sbeeteereesbeebeaneenreenes 64

Figure 4.35 : CR down-counter with the 16 bit port selection mask generation circuitry and
the CR_ISZEIO Flag. ... eeveeie ettt

Figure 4.36 : 8-bit selection mask register shifts in the returned-back port selection from

T8 CRID. e 66
Figure 4.37 : 8-bit test data register and itS CIFCUILIY.cccceviveveiieiieie e 67
Figure 4.38 : 8-bit test results register and itS CIFCUILIY.covvveieiieiierece e 68
Figure 4.39 : Frequency regiSter CIrCUITIY.........ccivcvuiiiieiicie e 68
Figure 4.40 : 16-bit control word register and itS CIrCUItrY.ccocvvvveiieierencncsireeee 69
Figure 4.41 : Six bit INStrUCtioN reQISTEr.ccvveiiieiecc e 69
Figure 4.42 : The 32 bit general counter CR and itS CIrCUItIY.ccccceovverencieneninenn 70
Figure 4.43 : 4-bit Word Counter WC and itS CIFCUItIY.ccccoveveivievrerecie e 71
Figure 4.44 : USEr-COUNTET CITCUITIY......ccuiiviiiiriiiiieiieieie ettt 72
Figure 4.45 : Stack pOINter CIFCUIITY.ccvoiiiicciecie st 72
Figure 4.46 : Zero flag circuitry for the user counter register.cccocevereneneneresnnnn 73
Figure 4.47 : Zero flag circuitry for the user counter register.cocvvveveiieeneevieseennn. 73
Figure 4.48 : Zero flags circuitry of the general CouNters............ccoovvvieienencnc s 74
Figure 4.49 : Clock selection Flag CIFCUIIY..........covivveiieie e 74
Figure 4.50 : Compare error flag CIrCUITIY.cooviiiiiiiieic e 74
Figure 4.51 : Addressing circuitry in the TACP data path.cccccccovveviiieiiecice e, 75
Figure 4.52 : Test-result memory data-in port and write enable circuitry.cc.co....... 75

Figure 4.53 :

Push circuitry generates Stack_in bus which is connected to the data-in port

IN the INSTFUCTION MEMOIY. ..o 76

Figure 4.54 : 5-bit multiplexer selects one byte at a time to be send as a response to the
URT=] g] (=T - (0SS 77

Figure 5.1: The Implemented test & characterization platform; the host PC running the user
interface tool, an FPGA board for the TACP connected to the PC, and another FPGA board
containing the TSC and 4 CUTs and connected to the TACP FPGA..........cccccevevveiiienn.

Figure 5.2 : User interface to write and download programs to the TACP FPGA. 80

Figure 5.3 : User interface thet executes the program and tracks register contentss on the
TACP FPGA. ottt ettt et e e e s re e ae e st e e te e beaneesneenteeneeaneenreenee s 81

Xiv

Figure 5.4 : User interface to display memory Contenets.cccovevveveciesiieseeve s 82

Figure 5.5 : Eight signal types in MIiCroCOE.coeiiireiiiiiiiieeee e 84
Figure 5.6 : TACP Processor uses the microcode archeticture............ccocvevevivenecviesnenn. 85
Figure 5.7 : Replace gated clock signal by using enable signal. gated_clock = CLK &&
ENADIE <. e 86
Figure 5.8 : Replace gated clock signal by using FPGA clock tri-state buffer. gated_clock
Z PO && CLK QUL ... 87
Figure 5.9 : BUFGCE simulation — dedicated clock signals tri-state with no pulse lose. 87
Figure 5.10 : The BUFGMUX clock multiplexer simulation..............cccocvevevieeneciinsnene. 88
Figure 5.11 : The ASIC version of clock selection and application circuit (CSaAC). The
circuitry has a clock multiplexer and a clock gating...........cccovevveiieiicc i 89

Figure 5.12 : The FPGA implementation of clock selection and application circuit CSaAC
with the implementation of four CUTSs clock gating. All gated clocks are replaced by FPGA
clock buffers BUFGMUX and BUFGCE. The critical path has four level of clock gating.

... 89
Figure 5.13 : Emulating the DCO using eight DCMs. The DCO is combined with the four
phase divider. The frequency is chosen by the 6-bit control word register. 90
Figure 5.14 : Illustration of assigning the ten port selection bits to the four IUTs........... 91
Figure 5.15 : 1% IUT: 4-bit combinitional adder.............ccccevevvveereeereieeeee e 92
Figure 5.16 : 2" [UT: 8-bit piplined adder.cccoveevecuereereeeeseeeee s 93
Figure 5.17 : 3 IUT: s820 benchmark with scan chain is inserted.c.coceevvevunee. 94
Figure 5.18 : 4™ IUT: s820 benchmark with scan chain is inserted and flip-flops are
(0 [oN o] =T USRS 95
Figure 6.1 : Code and flow chart of the test program that changes frequency within a loop.
... 97
Figure 6.2 : Execution snapshot of the test program that changes frequency within a loop.
... 98
Figure 6.3 : Program execution window snapshot. The program tested a compinational 4-
0L = To [0 T OSSR 100

Figure 6.4 : Memory windows snapshot after executing the test program of the
compinational 4-bit adder. The three windows show the test data, the test result and the
COMIPAEISTION. ..ttt ettt ettt b e bbbt et e et b e bbbt et et e et e be st be e e 101

Figure 6.5 : Program execution window snapshot. The program tested a compinational 4-
0 - To [0 1 S SRS 102

Figure 6.6 : Program execution window snapshot. The program tested a compinational 4-
0T [0 1 SR SRS 103

XV

Figure 6.7 : A complete test program and its flow chart for the S820S benchmark 1UT.
... 104

Figure 6.8 : IUT3 testing: Snapshots for the user interface with four instances of the
memory viewer after executing the IUT 3 test program. At this point, not all test results
matches the expected. The comparison window shows some non-zero values where a
difference exists. This indicates that the chip cannot handle the currrent frequency. 107

Figure 6.9 : IUT 4 testing: Snapshots for the user interface with four instances of the
memory viewer after executing the test program. At this point, not all test results matches
the expected. The comparison window shows some non-zero values where a difference

exists.This indicates that the chip cannot handle the currrent frequency.ccc........ 110
Figure 6.10 : Loop back testing; test-data is sent to the TSC and received back. The TD
register gets back the returned test-data (TD = 0X22)......ccccceviririinininiinene s 112
Figure 6.11 : Test program for the selection mask SM register. SM contains the looped
back selection mask that was sent (SM = 0X60)..cceoereriririninineeeee s 113
Figure 7.1 : Starting Instruction builder with an empty project..........ccccoeevvivevveiecnnene 127
Figure 7.2 : Add & edit signals and determine the signal type..........cccocevvriniiinieninnns 128
Figure 7.3 : Add & edit instruction and define its parameters sizes and names.............. 128
Figure 7.4 : Writing microinstruction and defining their cycles...........cccccoiiiniiinnns 129
Figure 7.5 : Writing verilog code for data path component................ccccovevvviie e, 130
Figure 7.6 : Generating verilog code for MiCroCode.ocovvriiiiniieienenenc s 131
Figure 7.7 : Writing programs WiNGOW..........c.cccueiieieiieieeie e e st see e sia e 134
Figure 7.8 : Executing programs WINOW.cccoueiuerierienenieneseseseeee e 136
Figure 7.9 : Test-data Memory WINAOW.ccccoveiieiiiieiecie e 138
Figure 7.10 : Comparing test-results with expected results.cccoooeiiiiiiininnns 139
Figure 7.11 : Comparing results sorted by the third column to rise up vector caused error.
... 139
Figure 7.12 : Import test-vector dialog window and test-vectors file snapshot.............. 140

XVi

ASIC
ASIP
ATE
ATPG
BIST
BRAM
CAD
CCG
CPI
CPU
CSaAC
DP
DCM
DUT
EDA
FPGA
FMC
FSM
GUI

LUT
p-Address
p-Operation

opcode

LIST OF ABBREVIATIONS

. Application Specific Integrated Circuit.

. Application Specific Instruction-set Processor.
: Automatic Test Equipment

: Automatic Test Pattern Generator

. Built-In Self-Test

: Block RAM

: Computer Aided Design

: Configurable Clock Generator.

: Cycle Per Instruction or Clocks Per Instructions.
. Central Processing Unit

: Clock Selection and Application Circuitry.
: Data Path.

. Digital Clock Manager

: Device Under Test

. Electronic Design Automation

. Field Programmable Gate Array

. Frequency Measurement Circuitry.

. Finite State Machine

. Graphical User Interface

: Hardware

. Integrated Circuit

. Input/Output

. Intellectual Property

. IP Under Test

: Look Up Table

: Micro-Address

: Micro-Operation

: Operation Code

Xvii

RAM
ROM
SoC
SW
TACP
TSC
UCu
USB

: Random Access Memory

: Read-Only Memory

. System on Chip

. Software

: Test And Characterization Processor
. Test Support Circuitry

: User Communication Unit.

: Universal Serial Bus

XViil

ABSTRACT

Full Name : AMRAN ABDULRAHMAN ABDULWALI AL-AGHBARI
Thesis Title : A Special Purpose Processor for IC Testing and Speed Characterization
Major Field : Computer Engineering

Date of Degree : December, 2012

Conventionally, IC testing and speed characterization is carried out using very
expensive Automatic Test Equipments (ATESs). Built-in-self-test (BIST) techniques can
also be used as a low-cost solution for at-speed testing. However, BIST may require some
modification of the circuit under test (CUT) to coup with the pseudo random nature of the
test vectors (what is known as test points insertion). Also, speed characterization can’t be
directly carried out by BIST. Other low-cost testing and speed characterization methods
are needed especially for developers of circuit IPs in small companies and universities. In
this thesis, a special purpose test and characterization processor (TACP) for IC testing and
speed characterization has been developed, implemented and tested. The processor utilizes
specially developed test support circuitry (TSC) which is fabricated on the chip containing
the IPs under test. The TSC, in coordination with the off-chip stand-alone TACP processor,
receives test data serially, re-format them, apply them to IPs under test, reformat the test
results and send it serially to the test processor. The TSC also include a configurable clock
generator which is controlled by the TACP. By controlling the testing frequency and test
patterns application, the IPs can be characterized to find their maximum frequency of
operation. A proof-of-concept implementation was realized using two FPGA boards; one
for the processor and the other to emulate the chip that contains IPs and on-chip circuitry.
Also, a complete user interface tool has been developed allowing the user to write, load
and administer his/her test program, download test data and receive the test results through

a standard PC.

XiX

Al I ez
Gt I de am ks Olpas 1 JulSTI !
g8 o Lt g 9 WalSiadl ol jlasly ol e i 1 Al Olgee
gl dwdin ozl

o AU ASTlgigh e i alsuns) o dasad ks 3l TC 203)1 59 sSIY) 19l s s i gf 5 5l oy

Wl Jghns” (BIST) Juikdt jamdll flgs plisinl Laf Sy .Automatic Test Equipments (ATEs)
(Sl LI g By b a (ISl Uyt 3150l BN (B Sl by (galusiant (ST LA 8) Sl ylLasly pgdd AAASH)
Gl Ip A) Caro gy Jorf 0 8 i Lalutsuant deaas b LT ST (Glasl DU Lol Layf Oy g) jlas ¥ bl
8phall 05,201 S Circuit IPs 8 Sadl dad)l gl (g, Sand Rols ¢ Jlglll 8w Lo 9 Y AIS° 61 (g 51 G ol
A Special iSOy Jisll o g sl (o @l Jles) 5 Gl g peendd o Wl sda (B Slasldl
Bl (5 7+ 19 iK1 8,13 ausiiay pdlaedl . Purpose Test and Characterization Processor (TACP)
oy g) Callaall Eadd gl o dgpSU) BB B rnal 5 W g S bhes ot Laras Gt
9 LY Sl (s —(Eg SIP BB s B gae e o) Jraol) pladl as Gl — Bluned) 5101 . 1gas
Serially dlodod ik it pliael) gh 5 o3 miledl o 585 U3 s 9 Jylas) ghlaad) 3511 e \ghkas o g5 oots
Bl & Sy Configurable Clock Generator (CCG) Leall 16 ©issg Lyl b Sbiluwd! 85041
o e Jows OF Sy B8 ol sl 9 85101 Cioogs (Say 35 3L @Sl a1 Ul Gmban pdlael gy Ladind
Field Programmable Gate Array i, il adJl jlgl alsenl Lles addey aggdadl s O
sl Bumly Byl el jam as Suilue) 85I BSTus Jos o5 9 g Bty o pdlaod! e o5 S ((FPGA,)

Pyl g8 el Bsl B g LI Ul J3) gyl el B pustianed) e JolSae | gl 7ol eoond 05 LS

XX

CHAPTER 1

INTRODUCTION

Developers of circuit intellectual properties (IPs) in universities and small companies need to
silicon-prove their IPs. Unfortunately, automatic test equipments (ATEs) that can handle Giga-
Hertz testing are very expensive making them beyond the reach of many universities and IP
developers in small companies. ATEs are best suited for testing thousands of chips of the same
design, however, they are not practical for developers who prototype and verify only several
number of different circuit IPs.

In this thesis, a special purpose processor that can test and characterize prototypes of circuit IPs
has been developed. These IPs are fabricated along with a special test support circuitry (TSC) on
the same chip. The processor is a part of the low-cost testing and characterizing platform
introduced in [1]. The processor is designed and implemented on an FPGA board. To verify the
processor’s operation, the rest of the platform has also been implemented. The support circuitry
with some IPs are emulated on another FPGA board. A graphical user interface tool was
implemented to write programs and control executing them on the processor. Many successful

programs were successfully run.

1.1 Circuit IPs

Circuit intellectual property is a reusable unit of logic, cell, or chip layout design. It is also called
IP for simplicity. It is used as building blocks within larger designs. IPs are licensed either as soft
IPs which are a synthesizable hardware-description language modules or as hard IPs which are
layout macros [2].

IP-based design promise large productivity gains. Many IPs are used and integrated with other
circuitries to work together as a single system. IP-based design has a very short time-to-market
development cycle because it reuses existing IPs to build larger designs. IPs have rapidly become
the cornerstone of the SoC industry [3, 4, 5]. In SoC, pre-designed and pre-verified hardware and
software blocks can be combined on chips for many different applications.

Many researchers in universities and small companies are developing new IPs but they face a
huge problem when they try to market them. Unfortunately, IPs cannot be marketed unless silicon-
proven with specific performance numbers (Maximum frequency of operation, maximum
throughput, maximum latency, average power, etc.). Moreover, fabricating an IP prototype is
relatively cheap, testing and characterizing it on the other hand could be very costly. Developing
a cost-effective solution would enable circuit designers to prototype, test and characterize their IPs

at the operational speeds.

1.2 1C Testing

Testing is a manufacturing step that ensures that each of the fabricated physical devices
(integrated circuits or ICs), has no manufacturing defect(s). Testing also characterizes the
fabricated ICs by determining their maximum operating frequency (called speed or frequency

binning).

Verification, on the other hand, is a predictable testing that comes before fabrication in all
phases of the IC design flow used to prove the correctness of the design. Functional simulation and

timing simulation are examples of verification methods.

Design for Testability (DFT)

To facilitate the test process, modification on the synthesized design is suggested to get a
testable design. Design for testability (DFT) methods were developed and became a standard phase
after the synthesis phase in the IC design flow. In this phase, all storage elements inside the IC are
replaced with scan cells which are connected and forms multiple shift registers (i.e. scan chains).
Thus, the IC can be set directly into a specific state by shifting in stimulus to all storage elements.
Additional test points may be inserted to improve the observeability and controllability of the
design in case a pseudo random pattern generator is used to generate the test vectors (as the case

with BIST).

Testing Principle

Figure 1.1 illustrates the basic principle of digital testing with ATEs. Test patterns are applied
to the IC, and then test responses are captured and compared with stored expected responses. The
circuit is considered good if the responses match. The quality of the tested circuit will depend upon
the thoroughness of the test vectors that are usually generated using Automatic Test Pattern
Generation (ATPG) techniques. The test vector itself usually has two parts; the first is applied to
the IC inputs, and the other part is shifted into the scan chain of the IC under test to change its

storage elements values and therefore force the IC to a specific state.

Test 01000 Circuit .. 01011 Test
........ |:> Vet |:>
patterns| .. oio11 ..11011 [responses

..01110 Test ... 01001

Stored .. 10010

11011
correct | ... |:>
. 11011

responses| 51019

10000 | Test

...00000 | result

Figure 1.1 : Principle of testing with ATEs: apply test patterns, capture responses and compare them with
expected ones..

Characterization Process

Characterization is to determine the exact limits of device operating values: What is the
maximum frequency the design can operate on with no errors? How much power does it consume?
In this thesis, the main concern is speed characterization. To do that, the IC clock frequency is set
initially at minimum value, and then at-speed testing of the IC is administered by applying stimuli
and comparing the test results with expected ones. If the test result is OK, the frequency is increased
and the test is done again and again. The test continues until reaching the maximum frequency or
getting a difference between the test result and the expected results. Figure 1.2 illustrates this
process.

In at-speed testing, part of the stimulus is shifted into the scan chain while the rest is used as
primary inputs. Thus, the stimulus length is equal to the scan chain length plus the number of
primary inputs while the result vector length is equal to the scan chain length plus the number of

primary outputs. Testing is done by applying two clock cycles at a specific frequency. The first

clock pulse results in new stimulus which is applied with the next clock pulse. This way a transition

delay fault can be discovered which indicates that the frequency has to be decremented.

[Start]

Y

Start with the max/min frequency

>
A 4
Do tests with all patterns
Send TVs
Capture Responses
Compare with Expected

.. 11010

Test - 01000 Circuit
o :) Under

patterns| . o011
.. 01110 Test

.. 10010

- 01011 TES(
: 11011 | responses

| 01001

S .- 10010

Stored | " 1005

correct y |:> Comp. |
.11011 y

responses| oio01

-10000 | Test

-00000 | Tesult

Decrement/
increment the
frequency

[Stop]
Figure 1.2 : Characterization process: test the IP under different frequencies to find out the maximum.

1.3 Thesis Organization

The next chapter contains a literature survey on test and characterization methods and multi-
cycle processors. The platform overview is explained in chapter three. Chapter four contains the
complete design of the TACP and its components in details. The implementation of the platform
is presented in chapter four with a discussion about the ASIC emulation problems. Experimental
results are presented and discussed in chapter six followed by conclusions and references. Several
appendices that summarize the TACP instruction set and provide user tutorials on the different

software tools developed are provided at the end.

CHAPTER 2

LITERATURE REVIEW

This chapter includes literature survey about IC test processors and other testing and
characterizing methods. The survey shows the contribution of the testing platform on the IC testing
and characterizing field. The last section in the chapter introduces the multi-cycle processor

architecture that are needed to build the testing processor.

2.1 Digital circuit prototyping

Developers of circuit IPs need to prove the functional correctness of their IPs and to characterize
their performance (speed and power). There are two main methods for verifying new circuit IPs
functionality and performance; simulation-based verification with very detailed process and device
models in what is called virtual prototyping, and through physical prototyping by either using

FPGA implementation or via fabrication with a silicon foundry.

Virtual Prototyping
One way to prove the correctness of an IP is virtual prototyping. Virtual prototyping tools
attempt to capture the effects of all physical parameters (process and otherwise) through modeling.

Virtual prototypes are used to faithfully represent the ‘“product-to-be’’, so as to be able to simulate

its features, performances, functionality and usage before the real product is actually built [6].
Virtual prototyping is just simulation-based verification software that is more accurate than
traditional simulations. The existing virtual prototype software costs high and is not practical for
testing circuit IPs. Furthermore, it is still a simulation that cannot be compared with a silicon-

proven chip.

Physical Prototyping

Chip fabrication is the most trusted and accepted method of verification, since it reveals the
actual performance of the circuit being prototyped. Fabricated chips would achieve the highest
performance but they would require very expensive automatic testing equipments (ATEs) to test
and characterize their performance at their operational speeds (called at-speed testing).

Automatic test equipments (ATESs) are standalone devices that can be used to test digital
designs. They have many advantages such as digital and analog test capability, high-current pin
protections and high-speed test execution. They also has disadvantages such as they are very
expensive and require an accurate setup. Agilent, Advantest and Teradyne are example of
companies that provide these machines. The ATEs mainly detects failures due to manufacturing
defects, aging, environment effects and others [7] and helps manufacturers to maintain their
manufacturing tools. They are not practical for prototyping IPs of universities researchers and

small companies because of their high cost.

BIST-based test processors
Built-in self-test (BIST) is the primary test methodology which reduces dependency on external

Automatic Test Equipment (ATE). It is a circuitry that is designed and integrated on the chip with

the circuit under test (CUT). It has many components as shown in the simple block diagram in
Figure 2.1. The test pattern generator (TPG) generates test patterns to be applied to the circuit
under test (CUT). The analyzer retrieves the responses, updates responses signature and compares

the signature with a good CUT signature to detect fault.

Chip
Circuit
TPG —> Under |=>» Analyzer | Signature
Test

Figure 2.1 : Basic BIST Architecture Block Diagram.

Test pattern generators (TPG) is the main component that affect the test process. It could be
deterministic or pseudorandom (i.e. requires a seed to start the pattern random generation). In the
deterministic way a ROM could be used to store good test vectors that covers most faults. These
good vector usually are generated using automatic test pattern generator (ATPG). However, this is
too expensive in the chip area. Another way is to use a counter on the circuit input to generate all
permutations. This is not practical if inputs number is large [8]. For pseudorandom TPGs, Linear
feedback shift register (LFSR) is a well-known example of TPGs that needs a small hardware.
Figure 2.2 show a 4-bit LFSR and the sequences that it can generate. It randomly generates all 4-
bit permutations (except the sequence that has all zeros). Another successful TPG idea is to use
LFSR with a small ROM that stores some test patterns that are not covered by LFSR. This called
the mixed-mode testing in which the pseudo-random testing is followed by a deterministic testing
approach. General-LFSR is presented and well explained in [9] to be used instead of LFSR.
GLFSR is the general form of LFSR, MISR. It can generate higher randomness test vectors so the
fault can be discovered with fewer patterns. Using GLFSR for a mixed-mode testing approach is

presented in [10] to investigate its performance. It starts by pseudo-random test while a controller
8

counts the generated test vectors. When the counter reaches a predefined number, it starts the

deterministic test.

Figure 2.2 : A 4-bit linear feedback shift register (LFSR) which is used as a test pattern generator (TPG).

A BIST-Based test processor is presented in [11] that contains linear feedback shift register
(LFSR), signature analyzer and RAMSs. The LFSR is programmable and can set user seed for every
test set. The processor uses LFSR to generate random numbers and apply them to the circuit under
test (CUT). Then, it compress the responses to generate the signature and store them in its RAM
to be sent later to computer to compare them with a signature of a good CUT. Other RAMs is used
to store the seeds, test length and the polynomial.

It is not practical to test the circuit using all 2n combinations. Many researches are done on
selecting the best seeds that can cover most faults. Test length affects the testing time. High fault
coverage cannot be achieved within an acceptable test length. Reseeding is a technique which has
been proposed to solve this problem. A heuristic approach is presented in [12] that come of a small
leads to very small number of seeds, short test sequences and almost complete fault coverage.
Based on that approach, [13] proposes and simulate an external test processor architecture.

In general, BIST test quality depends on signature analysis that can detect more than 99% of

faults. This coverage percentage decreases with the increasing of the complexity of the design.

BIST-based test processors achieve fault coverage for memory cores better than complex design
such as microprocessors and IP cores. BIST also adds an overhead area for each CUT since it is
included in the chip that contains the CUT. Some researchers proposed efficient utilization of area
by using one BIST to test multiple components in SoC [14]. They used a microcode-based
controller to control one BIST to test multiple RAM cores for SoC system.

In summary, BIST is a good random test method that require a reasonable area. It can reach to
100% fault coverage for some designs and more than 90% in average but also requires modification

of the CUT in order to achieve the high fault coverage.

Software-based testing

Software-based self-testing strategy is a proposed for complex designs that cannot be tested
perfectly using BIST techniques such as system-on-chip (SoC). System-on-chip consists of many
heterogeneous embedded modules such as RAMSs, processors, IPs, etc. There is a need for special
test processor designed on the chip to test all its components for these reasons; some of these
components could be black boxes and not designed for testability. In addition, the controllability
and observability become more limited with the increase of the complexity of the design. Also,
most of SoC components are not connected to the ASIC pins and cannot be tested by external
testers.

Trying to utilize BIST-based testing for SoC, researchers in [15] suggest using BIST-based
testing strategy for testing processor IPs by generating random instructions. This way, they achieve
a good fault coverage with a minimum area and without the need for scan chain insertion into the

processor under test.

10

Researchers in [16] remark the fact that most SoC has at least one processor core. They suggest
utilizing existing processors and use a subset of their instruction set for testing purposes. They also
suggest mutual self-test of processors that can do hardware- and software-based test strategy in
which the following possibilities are considered; one processor is made active and tests the other
passive processor at the logic block level via scan-chains(hardware-based testing). Then both
processors are made active one of them test the other using valid op-code, valid data and functional
inputs (software-based testing). Also the processor can provide active March test for a memory
block. In addition, one of the test processors can work as a watchdog that monitor the chip
correctness at normal operation.

In most cases, the test processor in SoC generates the test vectors. Some researchers suggest
connecting the SoC to large external RAM that holds the test program, data and expected responses
[17]. This way the RAM could be considered as an external ATE but the test process is controlled
by the chip.

The test processor in [18] is a 16-bit RISC processor and supported by a scan controller that is
connected to all components scan chains in the chip. It can support bus tests, functional tests, scan

testing and act as a watchdog in normal operation.

Low-cost FPGA-Based testers

FPGA is also used in many testing platforms to present a standalone low-cost tester. An FPGA
holds the tester, software to control the tester and the chip under test which is usually put on a
daughter board that is connected to the FPGA board. This platform is good for functional testing.
It can also do at-speed testing but at low speeds (not more than few hundred MHz) [19, 20, 21, 22,

23]. FPGA s are also used as a verification method to prototype ASIC designs [21].

11

An FPGA-based functional tester to test SoC is presented in [22] . An automatic software tool
in a host PC prepares a compressed test set and a decompression logic. Then, the compressed test
set is downloaded into SRAM on the FPGA-board and the decompression logic is downloaded into
the FPGA. The FPGA reads, decompresses the test set from the RAM, sends them to the DUT and
captures the responses.

SRAM testing platform is presented in [20]. It is consist of FPGA board (i.e. Xilinx Virtex 4)
connected to slave board accommodates SRAM under test. The FPGA executes a special March-
C testing algorithm using a Microblaze™ micro-processor that could detect specific SRAM faults.

FPGA-based test platform is presented in [19]. It is consist of FPGA board (Xilinx Spartan 3)
connected to slave board that accommodates the DUT. The platform uses three SRAMs to store
timing data, test patterns and responses. There are a PC software to read timing data and test files
and send them to SRAMs. A state machine on the FPGA manages all operations.

In the work presented in [23], a new multiplier architecture is designed, implemented, fabricated
and then used as a DUT for the presented FPGA-based testing platform.

An on-chip and at-speed tester for memories is presented in [24]. The presented patent platform
can do at-speed testing and characterizing of multiple memories. It consists of two parts; the
centralized flow controller and the localized signal generator. The centralized flow controller
consists of memory, processor and a user interface. The localized signal generator is to be included
with the memory under test in an integrated circuit. It has also a clock generator, characterization
circuit and a phase lock loop (PLL). The memory stores some memory test algorithms and the test
program that use these algorithms. The testing starts by receiving an execute signal indicating the

memory type and the storing test operations.

12

That platform is excellent since it can do testing and characterizing. However, it is dedicated
for memories only and cannot be generalized because it depends on specific stored testing

algorithms.

2.2 Multi-cycle processors

Processor architecture can be single-cycle in which each instruction is executed in one cycle
(i.e. Clock Per Instruction (CPI) = 1) or multi-cycle in which the instruction is executed in multiple
cycles (i.e. CPI > 1). Multi-cycle architecture is suitable for our work because it can deal with
variable data size. Instructions of variable data size are needed to send test data, receive test results
and compare results.

Microcode is a simple well-known processor architecture that allows multi-cycle instructions.
It has the ability to add and remove instructions with relatively less effort. It consists of three parts;
data path, sequencer and control store. The sequencer is the control unit that fetches low-level
microinstructions from a control store and derives the appropriate control signals as well as micro-
program sequencing information from each microinstruction. The data path is controlled by these
control signals. Control store is a ROM and stores microinstructions of all instructions. Each entry
reflects all the signal values at specific clock. In the data path all operations and data manipulations
are performed. It may contain registers, shifters, ALUs, or any combinational and sequential
circuits. Data path is controlled by control signals coming from the selected entry of the control
store. A good view of microcode history is presented in [25]. It discusses the evolution of
microcode from its introduction to its decline and to its likely resurgence in custom computing

machines and reconfigurable computing.

13

CHAPTER 3

OVERVIEW OF THE PROPOSED TEST AND
CHARACTERIZATION PLATFORM

This chapter gives an overview of the targeted test and characterization platform [1] and
describes its components in details. Figure 3.1 shows the general architecture of the test and
characterization platform. Unlike many previous techniques which either use a test circuit that is
entirely on-chip with the device under test or entirely off the DUT’s chip, the new method uses a
hybrid approach. Also, unlike the approach in [20] where voltage and clock controllers are
integrated on the DUT’s chip while the test controller could be off-chip, this method provides a
general way for applying stimuli and capturing results with fixed interfaces (i.e. the same test
controller can be used to test and characterize any circuit). Also, unlike the approach in [20] no
BIST circuitry is required. The test controller (TACP) can be implemented on an ASIC or a Field-
Programmable Gate Array (FPGA). The TACP could be interfaced to a PC for receiving test
instructions and data and sending the test results. The TACP’s on-chip support circuitry provides
the fixed interface (Figure 3.3) to the TACP and the controlled clock source for the 1UTs. All

interfaces use serial data communications to save 1/O pins [1].

14

PC FPGA or Chip ASIC Chip
Fixed Fixed
U Interface T & Interface <:> e
ser est
Interface <:::> Characterizati <:> gu ppf)trt - CI_JT
Software on Processor treury :
& |cur

Figure 3.1 : The Proposed Platform: PC, Test Processor on FPGA board, and Support Circuitry On Chip.

3.1 The TACP Support circuitry (TSC)
The TACP support circuitry (TSC), shown in Figure 3.2, performs the following functions:

e Port Selection: The proposed method supports testing and characterization of unlimited
number of IPs on the prototype chip. Each IP could also have several input/output ports for
different purposes (functional I/Os and scan 1/0s). The TSC provides a mean to select a
specific port to apply/receive test data to/from.

o Serial-to-Parallel and Parallel-to-Serial data conversion (SERDES): To have fixed logic
interfaces between the TACP and the prototype chip all data communications are serial. As
such, the TSC converts the received serial test data to parallel data to be applied to the IUT.
It also converts back the captured test results from parallel form to serial form.

e Controlled Clock Source: All data transfer between the TACP and the prototype chip and
functional characterization is carried out using the TACP relatively low frequency clock to
ease the design of the interface. For speed characterization, a high speed digitally controlled
oscillator is provided as part of the TSC. The user can increase/decrease this oscillator

frequency and use it for at speed testing of his/her IP(s).

Figure 3.2 shows a block diagram of the TSC. The main components are the configurable clock

generator, the port selection block, test application ports (TAPS), and test result ports (TRPS).

15

HFCLK_Meas_ACK
HEFCLK Meas Req

Strobe in CLK CR:
CLK CW_in

Strobe_out_ CLK_FR

CLK FR out %

RESET >

TCLK_ i —————peeeeseeoee

(The test clock from the TACP)

TCLK in (TACP Clock) ==
TCLE 0l]

Strobe_in_PMask
—_—

Test Port Selection Mask
(PS_Mask Data_in)

Strobe_in_TData

Input Test Data (Test Data in)
—_—

Strobe_out TR _____4,|

Test Results Output (TResult_out)
4—

Port Selection Block

Test Port Selection Mask 0}1‘[

(PS_Mask Data_out)

Scan Chain input/output port = EI

AaC TD

CLK Sel
The Configurable l—
> AaC
> Clock Generator
Test Data to TAP1 | -
Test Clockto TARL ... (two pulses of TCLK_in or HFCLK)

Test Data to TAP2 IUTI
Test.Clockto TAPZ
Strobe to TAP2

Test Data to TAPn
Test Clockto TAPn

Strobe to TAPn

Test Data to TAPn+1

Strobe toTAPn+1

Test Application Ports (TAPs)

Test Results PEI‘ts (TRPs)
_Test Results from TRP1

Test Clockto TRP1

‘wl‘rs from TRP2

Test Clockto, TRP2

Strobe to TRP1 'lg—k—
A

Strobe to TRP2

iest RBesnlts from TRP3

Test Clockto TRP3
Strobe to TRP3 A

_Test Results from TRPm

Test Clockto TRP

Strobe to TRPm

(Apply & Capture Test Data

Figure 3.2 : Block diagram of the TACP Support Circuitry (TSC) to be placed on the prototype chip.

16

TSC Fixed interface

Figure 3.3 shows the interface between the TACP and the prototype chip. This interface is fixed
and will not change with any chip being tested or characterized. Whatever the number of IPs to be
tested and whatever the number of inputs each IP has, the interface is fixed and does not change.
The interface has twenty pins as depicted in Figure 3.3. Data is moved serially. The transition of

the test data happens while the strobe signal is high which works as a shift signal for the serial data.

...

The Processor §The Chip:

GND e
RESET =——p—i

TCLK_iN
TCLK_OUt g

Strobe_in_PMask
PS_Mask_Data_in ep
PS_Mask_Data_oOuUt mmge

Strobe_in_TData ———p—i
Test_Data_in ——p—
Test_Data_out ==

CLK_Sel —>—|
AaC_TD —>—

Strobe_out_TR =——p=—i
TResult_out ——¢

HFCLK_Meas_Re(] mpu
HFCLK_Meas_ACK =g

Strobe_in_CLK_CR ===
CLK_CW_in ==p=—

Strobe_out_CLK_FR ==
CLK_FR_out ==

rteteseeresssenesese st see et eseane et e e ens | OO
Figure 3.3 : The fixed interface between TACP and TSC.

e TCLK in: The processor clock operates the TSC to synchronize it with the processor.
e TCLK out: The same processor clock loops back for de-skewing purpose.

e Strobe_in_PMask: Strobe signal for scanning in the port selection bits.

e PS Mask_Data in: Port selection input stream.

e PS Mask_Data_out: Port selection output stream used for loop back testing purposes.
e Strobe_in_TData: Strobe signal for scanning in test data.

e Test Data_in: Test data input stream.

e Test Data out: Test data output stream used for loop back testing purposes.

17

e CLK Sel: Selects the clock source for testing; either the TACP TCLK or the on-chip
HFCLK.

e AaC_TD: Apply-and-capture signal that prompt the TSC to apply two cycles of the
selected clock to the selected IUT and capture the result.

e Strobe out_TR: Strobe to read out test result.

e TResult_out: Test result output stream.

e HFCLK_Meas_Req: A request to measure the selected frequency on the chip.

e HFCLK Meas ACK: An acknowledgement indicates finishing the frequency
measurement process.

e Strobe_in_CLK_CR: Strobe to input the control word of the on-chip clock generator.

e CLK_CW._in: Control word input stream.

e Strobe out CLK_FR: Strobe to read out the measured frequency register.

e CLK_FR_out: Measured frequency register output stream.

3.1.1 The Configurable Clock Generator

As mentioned before, the regular test clock is coming from the TACP which is off-chip. This
clock is kept at a moderate frequency (50~100 MHz). Hence no special high-frequency
transceivers or signal traces are required. This eases the design of the interface and keeps its cost
to a minimum. At the same time this clock is adequate for scanning in/out the test data/results and
performing functional characterization of the IUTs. Frequency characterization, however, requires
a clock source that can be configured to produce a high-frequency clock. This configurable source
is placed on the prototype chip and dubbed the Configurable Clock Generator. This generator, as
illustrated in Figure 3.4, is made up of a frequency measuring circuit (FMC), Figure 3.5 and
Figure 3.6, a clock frequency control register, Figure 3.7, and a clock selection and application

circuit, Figure 3.8.

18

Strobe_out_CLK_FR —»

CLK_FR_out +— Frequenc_y] Processor
Measuring Circuit i clock
Processor (FMC) High
clock ; - |Frequency
" Digitally-controlled oscillator | Clock

_____________ (HFCLK) CLK_Sel
. Binary Control Word Clock Selection [* AaC
CLK_CW_in —™" ¢ 5ck Frequency & Application [¢==
Strobe| in_ CLK_CR—*

_ v
q Control Register CLK_Out

Figure 3.4 : The configurable clock generator.

3.1.2 The Frequency Measuring Circuit (FMC)

The FMC, simply counts the number of high-frequency clock cycles within a certain period and
puts the result in a shift register that would be shifted out by the TACP using the
Strobe_out CLK_FR strobe signal and through the CLK_FR_out pin. The measurement period is
specified by the TACP as the difference between activating the measurement request
(HFCLK_Meas_Req) and deactivating the request. When the FMC is done it activates the
acknowledgement signal (HFCLK_Meas_ACK) which remains high till a new measurement
request is received. The detailed design of the FCM including its controller’s state diagram and its
operation is shown in Figure 3.5 and Figure 3.6. The user can control the accuracy of the
measurement by having a longer measurement period. To get the frequency the following formula
IS used:

FR X TACP processor frequency

M dF =
easured Frequency Request period length (Cycles)

19

Notel: the master Reset signal is

connected to all FFs [4—— HFCLK_Meas_Req

CLR .
=
=
. = | HFCLK Meas ACK
High-Frequency TCeLK];:“ ‘g - -
Clock Counter i v
En —— TCLK
Jy———-—-——- ¥ HFCL Note2:since TCLK and HFCLK are
Strobe out CLK FR —»Shift Frequency Loadf¢ unrelated, all signals crossing
CLK FR out %+ Register TCLK their domains are synchronized

Figure 3.5 : The frequency measuring Circuit (FCM).

3.1.3 The Clock Selection and Application Circuit (CSaAC)

The clock selection and application circuit (CSaAC), Figure 3.7, is responsible for selecting the
required test clock (based on the CLK_Sel input signal from the TACP) and applying exactly two
pulses of that clock to the selected TAP/TRP ports (in response to a strobe on the AaC input). The
TACP triggers the CSaAC by setting the AaC signal to high for at least two cycles of the selected
clock (Sel_CLK). The CSaAC will produce exactly two pluses of the selected clock for each AaC
pulse, but in order for this circuit to fire again, the AaC signal must be reset for at least two cycles
of the selected clock. The clock gating circuit ensures that the two pulses applied are complete with
no glitches by enabling the output clock when the selected clock is low. The only constraint for
this circuit is that the sum of the clock inverter delay, the FF’s clock to Q delay and the clock-
gating AND gate delay is less than the width of the negative pulse of the selected clock. Also, due
to the required synchronization of the AaC input with the selected clock (3 FF synchronizer is
used), the output clock pulses will have a latency of 3 cycles of the selected clock. The TACP takes
care of all these issues by applying the AaC signal for two TCLK _in cycles (TCLK _in frequency
is always < than the selected clock frequency) and then resetting it for two more cycles before

setting it again (in case of successive apply and capture commands).
20

Figure 3.9 shows logic simulation results of the CSaAC with unit gate delays. Figure 3.9 (a)
shows how the circuit functions correctly when the AaC pulse is at least two cycles of Sel CLK
and the so is the reset time in between AaC pulses. When the AaC pulse is less than two cycles or
the reset time in between pulses is less than two cycles, the circuit fails, as shown in Figure 3.9 (b)
and Figure 3.9 (c), respectively.

- Control FSM operation (state diagram on the left)
HFCLK_Meas_Req/HFCLK_Meas_ACK B] o
S0: waiting for a frequency measurement request (i.e. activation of the

HFCLK Meas Req signal) from the TACP to start. The
acknowledgement signal is held high. Once the request is activated, the
clear (CLR) input of the high-frequency counter is activated and a state
transition to S1 is carried out.

Reset

S1: The clear signal is held high waiting for the high frequency clock
counter to be cleared. This wait is due to the unknown delay of the
synchronizer. Once a clear is detected, the clear signal is de-activated.
the En signal is activated and a state transition to S2 is carried out.

S2: En signal is held high counting the HFCLK cycles and waiting for the
measurement request de-activation by the TACP. Upon de-activation of
the measurement request the En signal is de-activated and a state
transition to S3 is carried out.

En?/ Load, HFCLK Meas ACK

S3: The En signal is held low waiting for synchronization. Once the de-
activation of the En signal is detected (as En ? signal going low), the
Load (load control input of the frequency register) and
HFCLK Meas ACK signals are activated indicating measurement is
done arid frequency value ¢an be read from the frequency register. The
circuit goes back to state SO.

Figure 3.6 : The state diagram of the control unit of the frequency measuring circuit (FMC).

The DCO control word

o
L
T,

—
CLK CW_in —Jp Q T

Strobe_in CLK CR =——eepff' -:e::0 e U | IR e -l

TCLK T T __________ J

Figure 3.7 : The Clock Frequency Control Register.

21

Synchronization FFs
A

v NI NI Wi

3

el 2

HFCLK Sel_CLK] B
A

CLK_Sel e
CLK_Out E!

R I I I

Figure 3.8 : The Clock Selection and Application Circuit.

3.1.4 The Port Selection Block

This block is responsible for selecting a specific test application/test result port to deliver the
strobes, test clock and input test data to or receive test results from. The user can select a single
input/output port or two ports (one input and one output). To make this block general yet with a
fixed interface to the TACP, it is made up by cascading a basic cell as shown in Figure 3.10. The
selection mask is loaded serially through the PS_Mask_Data_in input using the Strobe_in_PMask
strobe signal. The TACP supports variable length selection mask (up to 216 bits). The port

selection mask is also read out through PS_Mask_Data_out for testing the selection chain.

200 400 600
I L L L 1 L 1 L I L L L 1 1 i 2 I
AaC 1 |
Sel CIX [1 1 1
En_ 5§ S I
CLE Ow: [1 [
(a) Correct operation of the CSaAC with AaC pulses of at least two Cycles of Sel CLK
200 . 490 ! 690
AaC. I | L
sedczx L L LT LI LI rr L rrrrrr
En S
CLE Out.

200 ! 400 ! 60
- 1 L |
Aol MMM L L e
Sel CLE 1 —1
s 11 1

(c) Incorrect operation of the CSaAC due to insufficient reset time between AaC pulses

Figure 3.9 : Logic Simulation Results for the CSaAC [1].

22

Test Port Selection (PS_Mask Data in)
Strobe_in PMask *

TCLK in a7
Hie]
i~ 3
d _IV_bTCLKiin to TAP1
Input Test Data (Test Data_in) __/__/‘\—r“’—pl"esr Data to TAP1
Strobe_in TData — \——;/‘_"i:_bsrrobe to TAP1
T : b
(From the CSaAC) CLK_Out m=r—"] \—(: PN———r”"————»CLK_Outto TAP1
P [
P I Selection circuitry for
‘ * I TAPs2ton-1
E I 1
N o 1
i~ Y
d \—lV_pTCLKiin to TAPn

AY

Y
/| N———A"—————p Test Data to TAPn
Y
L N N— " Strobeto TAPn
Y
- N (LK OuttoTAPn

AY

AY

I selection circuitry for
| TRPs1tom1
|

Test Port Selection Mask Out
(PS_Mask Data out)
Test Results Output (TResult_out)

|

Test Data from TRPm
$TCLK_in to TRPm

¥ Strobe to TRPm
»CLK_Out to TrpM

AP A

Strobe_out TR /N

Figure 3.10 : The Port Selection Circuitry.

3.1.5 The Test Application/Result Ports (TAP/TRP)

There are two types of test application/result ports as was illustrated in Figure 3.2. The first
type, shown in Figure 3.11 (a) and Figure 3.11 (b), are used for applying and capturing primary
inputs/outputs of an IUT. These are similar to boundary scan ports and are made of shift registers
for scanning in/out the test data/results and parallel-load registers for applying/capturing the test
data/results. As Figure 3.11 shows, each TAP (or TRP) is made of a cascaded number of identical
cells equal to the port's data width. The shift registers use the TCLK _in and the application/capture
registers use the selected apply and capture clock (CLK_Out). The CLK_Out clock is also used
for the IUT's internal registers. For the TRP, the TACP needs to apply at least one TCLK _in cycle
(to load the test results into the shift register) before activating the Strobe_out TR signal to read

out the results.
23

IP designers may also need to use full-scan designs in addition to/or instead of boundary-scan.
This requires making all or part of the internal Flip Flops scanable (forming one long scan chain).
Such scan chains could be used for debugging/diagnostics of an IUT internal circuitry or to fully
test a sequential circuit which is difficult to do using only primary inputs/outputs. Special
TAP/TRP scan ports were developed for scan chain inputs/outputs of IUTs, as shown in
Figure 3.12. These ports have to be used (i.e. selected) in pairs where data is shifted through the
chain when either the Strobe_in_TR or the Strobe out TR signals is activated. The TCLK in,
Scan_En and CLK_Out signals are made available for the internal scan FFs of the IUT. Regular
TAP/TRP ports are used for non-scan primary inputs and outputs of the IUT. The TACP
instructions support shifting test data in, shifting test results out, or simultaneous shifting in and

out of test data and results, respectively.

Test Data to TAP
Strobe to TAP
1 4
a e
TCLK_in to TAP >
O
v +—P >m)
oS A
2
HD Q1D
A 4 /\ 1 From IUT <
%‘ e
O
Y—>D :Q|—ID,
A)
A To IUT
| |
| |
| | oD,
| |
1 i 1
* CLK_Out to TRP
y
=R Strobe to TRP
_'| o TCLK_in to TRP
——»p Q|—>ID,/ Test Data From TRD «
/‘\ . Note: At least one TCLK_in cycle is needed before the strobe
CLK_Out t0 TAP - 1 p-CLE_Out toTUT’s signal to the TRP is activated (to write the test results into the
internal registers output chain).
(a) k-bits wide test application port (TAP). (b) I-bits wide test results port (TRP).

Figure 3.11 : Test application port (TAP) and test results port (TRP).

24

Strabe to TAP TCLK_in to TAP X
Scan Enable ~. Scan CLK_in
Strobe to TRP TCLK_in to TRP -

Regular TRP for | 1
primary outputs 1 I

Regular TAP for
primary inputs

Test Data to Scan TAP =g
Scan Enable eige|

AllTA A A A
Scan TCLK_in . ?) < T
CLK_Out TAP -) ____‘_‘_ __ IUT
Test Results from Scan TRP #4=Q Dl)
En (=
A

Figure 3.12 : Scan test application/result ports.

3.2 User Interface Software

This software enables the user to fully control the testing process. It provides the user with
complete interfaces for writing and editing programs, downloading program and test data to
memories, uploading programs, test data and test results from memories, reading register contents,
sending control signals to reset registers, reset program execution, set a break point, edit the value
of an address registers, start or stop running the current program.

Any communication media can be used; Ethernet, USB or serial port (i.e. UART port). The user
interface and the test processor can are communicating through a serial cable. A communication
protocol is proposed to be implemented in both sides. The protocol take care of downloading and
uploading from memories. It also forwards control signals from the user to the processor. It gives

a high level of abstraction to facilitate the processor design and the user interface design.

25

Interface Protocol

The user interface has to implement the user interface protocol which will be also implemented
on TACP (a hardware version). The protocol defines 19 commands as listed and described in
Table 3.1. They are categorized into four groups; loading registers commands, downloading to
memories commands, uploading form memories requests and control commands. The
communication unit is the packet. The user sends variable-size packets each packet starts with type

byte that defines the packet type and length. A graphical representation of the implemented

protocol structure is depicted in Figure 3.13.

Three-byte packets %byte packet

0x18 | two bytes |Load rx counter || _ [0x40 | Request inst.
so| 0x19 || two bytes |Load tx counter || 8 | 0x41 | Request test-data
5 0x1A| two bytes |Load PCRead E- 0x42 | Request test-result
E 0x1B || two bytes |Load PCWrite 0x53 | Request regs.
» |0x1C| two bytes |Load DCRead
£ |0x1D| two bytes |Load DCWrite || _ [0x90 |Single-step
0 0x1E || two bytes |Load RCRead || £[0x91|Run
& ox1F two bytes |I.oad RCWrite g [0x92 | Reset

Q

0x9F || two bytes |1.0ad BP 0x93 | Stop
E Variable-size packet
E 0x20 Receive instructions
5 0x21 Receive test-data

Figure 3.13 : Packet type list. Each packet starts with flags defining a command and determines packet size.

26

Table 3.1: Communication protocol - the available user commands with their codes.

Class

=z
©

Command

Description

Load rx counter

Set a new value to the receiving counter.

Load tx counter

Set a new value to the transmitting counter.

Load PCRead

Set the instruction memory reading address register.

Load PCWrite

Set the writing address of the instruction memory.

Load DCRead

Set the reading address of the test-data memory.

Load DCWrite

Set the writing address of the test-data memory.

Load RCRead

Set the reading address of the test-result memory.

Load RCWrite

Set the writing address of the test-result memory.

Loading
OO (NOO|OTPIWIN|F-

Load BP Set new value to the break point register.
kS . Receives instructions and stores them in the instruction
S |10 | Receive inst. . . e
= memory. The count is determined by the receiving counter.
g 11 | Receive test data Receives test-data and stores them in test-data memory.
&) Received data size is determined by the receiving counter.
. Requests to read data from instruction memory. Data size is
12 | Request inst. . o
determined by the transmitting counter.
“é 13 | Request test data Reques_ts to read data fror_n t_est-data memory. Data size is
= determined by the transmitting counter.
) Requests to read data from test-result memory. Data size is
14 | Request test result . .
determined by the transmitting counter.
15 | Request registers | Requests reading all register contents.
_ |16 | Single Step Sends a single-step control signal to execute one instruction.
£ |17 |Run Sends a run control signal to execute the rest of the program.
[- -
8 18 | Reset Sends a reset control signal that clear all processor registers.
19 | Stop Sends a stop control signal to stop the program execution.

3.3 Test and Characterizing Processor (TACP)

This Thesis focuses on the test and characterization processor (TACP). The test processor

executes the program written and downloaded by the user through the user interface software. It is

supported with memories and user communication unit. The processor can select an IP on the chip,

send test data to IP inputs or scan chain, apply test data and read the captured results back from IP

outputs on the chip. It can also set, decrease or increase the frequency of testing clock on the chip.

27

It has the ability to compare the results with the expected results and store the comparison in
memory.

TACP consists of the processor, user communication unit, memories and memory multiplexer.
Figure 3.14 shows the TACP which is a special purpose processor associated with memories and
a user communication unit. It runs programs from its memory and produces the appropriate test
signals to TSC on the chip. The user communication unit enables the user to access memories and

read register contents.

TACP

Memory

i)

/ Mem. Muxes \
=»| User Comm. QE g

P
User <& Unit < rocessor

TSC

Figure 3.14 : TACP main components.

Processor

The processor is a microcode architecture that consists of sequencer and data path. The
sequencer is the control unit of the processor that sequences the micro instruction execution. It
only has five components; address register, comparator, incrementer and two multiplexers.

The control store is a ROM that stores all control signals for all execution cycles. Each entry
contains the states of all data path control signals and info about the next address. In each clock
cycle, the sequencer selects on entry that controls the data path and determine the next micro

instruction address.

28

The data path contains all components that is needed to execute the instructions and controlled

by the control signals from the control store. The data path components are as follows:

Test data shift register (TD): It shifts the test data out to the TSC. At the same time it shifts
the old test data in that are coming from the TSC (returned back).

Test result shift register (TR): It shifts the test result in from the TSC.

Selection mask shift register (SM): It shifts in the old selection mask coming from the
TSC. SM and TD are used as a loop back checkers.

Measured frequency shift register (FR): It shifts in the corresponding FR in the TSC. Its
value indicates the measured frequency.

Frequency control word shift register (CW): It shifts out the frequency control word to
the corresponding FR in the TSC.

User counter (UC): it is a 32-bit register that can be decremented, incremented, loaded from
memory, stored in memory or loaded by immediate value. It is assigned with a zero flag so
the user can use JZ and JNZ instructions that branches according to that flag. The ability to
load store this register make it possible to use it for multiple counters.

Addressing multiplexers: These multiplexers controls the new value that should be stored
in address registers. An address register can be loaded with immediate value,or incremented.
Enumerating multiplexer: The user can read the contents of some registers by sending a
request containing the register number. The enumerating multiplexer outputs the selected
register value as a response to the user request.

Instruction Register: Holds the current executing instruction opcode.

Stack register: The processor supports calling subroutines. It uses the bottom of the
instruction memory as a stack to push/pop program counter.

Break point register: The program execution stop if the program counter match the break
point register.

Flags.

Memories

The platform also contains memories to store instruction, data and results. To facilitate memory

management, three independent memories are suggested as shown in Figure 3.15. Each memory

has two 16-bit address ports one of them is a writing port.

Instruction memory: It stores the program and the stack.
Test data memory: It is used for test data and expected result.

Test result memory: It is used for the test result and comparison result.
29

PCWrite _l_)

WE_Instruction —>.
dinla —>

PCRead —T—)

> PCWrite_reg

addr_wr
Instruction

memory
dout_b

dout_a
we

din
addr _rd

—> Instruction_a

—> PCRead _reg

> Instruction_b

DCWrite —l-)

WE_TestData —>
din2a —>

DCRead —T—)

> DCWrite_reg

addr_wr
Test data

memory
dout b

dout_a
we

din
addr_rd

—>TestData_a

—>»DCRead_reg

» TestData_b

RCWrite —l-)

WE_TestResult —>
din3a —>

RCRead —T—)

> DCWrite_reg

addr_wr
Test result

memory
dout_b

dout_a
we

din
addr_rd

—>TestData_a

~—>»DCRead reg

> TestData_b

Figure 3.15 : The three memories. Each memory has four inputs and four outputs.

User Communication Unit

User communication unit implements a hardware version of the user interface protocol that has

the 19 commands mentioned earlier in Table 3.1. A graphical representation of the implemented

protocol structure is depicted in Figure 3.13. The user communication unit has these components:

Communication media unit: This unit deals with the communication physical details and
totally depends on the communication media type. For each communication media (i.e.
UART, USB, Ethernet, etc.) there is a different version. This unit simply converts signals
(bits) to bytes and vice versa to facilitate the protocol implementation that only deals with
packets and bytes.

Receiving Transmitting state machines: The protocol is designed in hardware as two finite
state machines (FSMs).

Receiving counter: The receiving counter is used with variable length packets to count
down received instructions and data.

Transmitting counters: The transmitting counter is used to count the data sent to the user.
Addressing multiplexers: Accessing memories requires incrementing address registers.
The user can also set a direct value to any address register. These multiplexers manage
modifying the address registers.

Flags: Flags supports the state machine by storing the encoding of the current user
command.

30

CHAPTER 4

DESIGN OF THE TEST AND CHARACTERIZATION
PROCESSOR

In this chapter, the implemented design of test and characterization processor (TACP) is
illustrated in details. The chapter starts by discussing some main instructions design. Then the
TACP top level diagram is illustrated showing its components. Then each component has its own
block and subcomponents illustrated in details and so on. The block diagram of each component
is viewed and followed by its signals definitions. Each signal appears in this chapter has its unique
name so signals can be matched between figures. If two signal appears in many figures and have
exactly the same name that means these signals are connected together. The last section in this
chapter illustrates the design of the four main instructions. The explanations are supported by

flowchart and micro instructions.

4.1 Instruction Design and Microinstructions

Thirty three instructions are designed. They can be distinguished into five groups. They are
listed in Table 4.1 with their names and opcodes. Appendix A, page 115 has the detailed

descriptions of all instructions, their parameters and their micro-instruction

31

Table 4.1: Instructions and their opcodes

Testing Instructions opcode Branch Instructions opcode
1 | SendSelectionMask 28 19 | JCompareError 08
2 | SendTestData 29 20 | JCompareCorrect 09
3 | ReadResult 23 21 | Jump 11
4 | ApplyAndCapture 01 22 | Call 02
5 | Load DCRead 13 23 | Return 26
6 | Load RCRead 15
7 | Load RCWrite 16 Counter Instructions opcode
8 | ClearTestDataRegister 35 24 | Load_UserCounter value | 18
9 | ResetCompareFlag 24 25 | Load_UserCounter Mem | 17
10 | Compare 03 26 | Store_UserCounter 33
27 | INC_UserCounter 07
Frequency Instructions opcode | 28 | DEC_UserCounter 05
11 | SetFrequencyControlWord | 30 29 | INZ 10
12 | SendFrequencyControlWord | 27 30 |JZ 12
13 | MeasureFrequency 20
14 | ReadFrequencyRegister 22 Others Instructions opcode
15 | INC_CW 06 31 | Stop 32
16 | DEC_CW 04 32 | Nop 21
17 | SetHFClock 31 33 | Fetch 00
18 | ResetHFClock 25

Testing instructions: The processor needs instructions to send test vectors to the chip, apply
them and read test result back. This involves memory addressing instructions to control
reading and storing location in memory.

Frequency control instructions: The processor needs instructions to control the frequency
on the chip, measure, increase, decrease it and read the measured frequency from the chip.
Counter instructions: The processor needs counters to do loops. For instance, it is required
to repeat the test with different frequencies until getting compare error. Only one counter
register is designed. However, its value can be stored in temporary memory and reloaded
again. This allows using the counter register for multiple times in the same program.
Branching instructions: the processor design allows loops, calling subroutines and
conditional/unconditional branching. It uses the instruction memory as stack starting from
the bottom.

Other instructions: such as stop executing the program, NOP.

The most important instructions are explained in the following sub sections.

32

4.1.1 SendSelectionMask instruction design

The on-chip circuitry has multiple IUTs. Each IUT has multiple ports. Each port has an enable
bit in the selection register that can be set using this instruction. The circuit decodes the selected
port number. SendSelectionMask instruction decodes a selected port number. It has two zero-based
parameters, the selection window length and the selected port number. For example, suppose we
have for IUTs each IUT has three ports and the ports are serialized as depicted in Figure 4.1.
SendSelectionMask B, 3 selects port number four by sending a 12-bit stream 0000000000100,

SendSelectionMask B, 7 selects port eight 000010000000 and so on.

O O Gy
IUT 0 IUT 1 IUT 2 IUT 3
@ O ©

Figure 4.1 : Four IUTs, each has three ports, each port has a serial number.

To select more than one port at a time, the instruction has to be called multiple times with
different window lengths. SendSelectionMask B, 7 followed by SendSelectionMask 6, 0 results in
sending 0000001_000010000000. The latest sent 12-bits are 0000001 00001 which means
selecting ports 0 and 6.

The microinstruction and flowchart of the instruction is show in Figure 4.2. The instruction
starts by loading instruction parameters. It increments the program counter PC twice to load two
bytes from instruction memory to the lower part of the 32-bit register CR. Then it loads another
two bytes to the higher part of CR register. It then increment the program counter PC for the fifth
time to have the second parameter, the selected port number. After then the instruction loops and
decrements CR until it reach zero. The selection mask circuitry outputs one when CR equals the

selected port number, otherwise it outputs zero.

33

[Start]

PC =PC +2
SendSelectionMask microinstructructions: CR low 1Inst16bit
1C:0 Increment PC 2 PC=PC+2
1C:1 Load CR_: Low Instruction2 ¢
1C: 2 Increment _PC
1c:3 Increment_PC @ | PC=PC+1 |
1C:3 Load CR_High Instruction2 \<
1C:4 Increment PC
1C:5 Decrement CR @ Send Strobe in_Pmask to chip
1¢:5 Strobe_in:PMask send bit (CR = Inst16bit ?)
1C:5 if not (CR_IsZero) Branch 1C:5
1C: 6 Increment PC @ | CR= CR -1 |
@ @ NO
YES
6 PC=PC+1 |
[Fetch next instruction]

Figure 4.2 : SendSelectionMask microinstructions and flow chart.

4.1.2 SendTestData instruction design

SendTestData instruction reads data from test data memory and sends them as one serial
bitstream with strobe signal to TSC. Load_DCRead instruction needs to be invoked before start
sending to determines data address. It has two parameters, the number of bytes and the number of
bits minus three. It always sends three bits at least. For example, SendTestData 0, 3 load one byte
from test data memory sends six bits, SendTestData 5, 5 load 6 bytes and send eight bits from each,
SendTestData 3, 0 load 4 bytes and sends six bits from each.

Figure 4.3 shows the micro instructions and flowchart of this SendTestData associated by clock
number to show the concurrent microinstructions. It starts by loading four bytes to CR, then it

loads TD register, set number of bits in WC register, and increments DCRead. There are two nested

34

loops, the inner loop sends bits to TSC while the outer loop load bytes from memory. The algorithm

is designed to generate a continuous bitstream with no stops between bytes.

SendTestData microinstructructions: [Start]

1D:0 Increment PC ¢

1D:1 Increment_PC

1D:1Load_CR_Low_Instruction2 Load No. of W.ords @ Load No. of Bits per word

1D:2 Increment_PC Load No. of Bits per word Load test-data bvte <
1D:3 Increment_PC Load test-data byte Strobe and Send a bit

1D:3 Load_CR_High_Instruction2

1D:4 Branch 1D:6 >\

1D:4 Increment_DC WC =WC -1

1D:4 Load_TD_TestData Shift right, Strobe and Send a bit
1D:4 Load_WC_Instruction

1D:5 Increment_DC
1D:5Load _TD TestData

1D:5 Load_WC_Instruction

1D:5 Strobe_in_TData

1D:6 Decrement_WC

1D:6 Shift_TestData

1D:6 Strobe_in_TData

1D:6 if not (WC_IsZero) Branch 1D:6
1D:7 Decrement_CR

1D:7 Shift_TestData @ NO

NO

CR=CR-1
Shift right, Strobe and Send a bit

©
©
9
9

1D:7 Strobe_in_TData YES

1D:7 if not (CR_IsZero) Branch 1D:5 PCRead = PCRead+ 1

1D:8 Increment_PC Shift right, Strobe and Send a bit
1D:8 Shift_TestData v

1D:8 Strobe_in_TData

[Fetch next instruction]

Figure 4.3 : SendTestData microinstructions and flow chart.

Figure 4.4-a shows a simulation of calling SendDatalnstruction with the parameters 1 and 5.
This means to read two bytes from the memory and to send eight bits from each byte. The
simulation shows that the strobe stay high for sixteen clock cycles. The test data (i.e. 97 and D5)
are sent in this period through the Test Data in output pin. Figure 4.4-b shows another
implementation of the instruction with the parameters 1 and 2. This will read two bytes from the

memory and send five bits from each byte.

35

mlnl wﬂ_'vsl ., [|poms poons 450Ins= T T !)
» B Instruction_b[7:0) 00| 3 ¥ os
» W TestData_b[7:0] 1§ 000000p0 | 1001011

HQ Strobe_in_TData

11010101

| =1

1 Test_pata_in

E next_instruction
& ax
T reset

Helnlelels Nl o

1
0
0
h_% ProcessorBusy 1
1
0
0

el siclnlnlinNelal

(a) SendTestData 1, 5 — two bytes, eight bits per byte

CO—E. -

1

o

p B Instruction_b[7:0] j% 02

p B TestData_b[7:0] 11 00000090 X 10010111
]& Strobe_in_TData
1 Test_Data_in
]& ProcessorBusy
1§ next_instruction
& <k L M L
'li reset 0 1 1

(b) SendTestData 1, 2 — two bytes, five bits per byte

450 ns 500khs

L L L 1 4 L
D ¥ 1d } op I o1
11010101

&
g_

S 350 ns

o

1

]

—— —-)-‘.-.'- -

» » O O O

[

:
JJF HLl

Figure 4.4 : Simulation of the instruction SendTestData

4.1.3 ReadResult instruction design

ReadResult instruction sends strobe signal to TSC and receives the test result. It stores the
received bytes in test result memory. Load RCWrite instruction needs to be invoked to determine
the memory location. It has two parameters the number of bytes to be stored in memory and the
number of bits per byte. For example ReadResult 3, 4 reads 20 bits and stores them as four bytes
in test result memory four bits in each.

Figure 4.5 below shows microinstructions and flowchart of ReadResult. It starts by loading CR
with 32 bit value to be used by the outer loop and indicates the number of bytes. The inner loop
sends strobe and shifts in test results coming from TSC to TR register. WC register is used as

number of bits and a counter for the inner loop.

36

@[Start]

v
PC=PC+2
CR low =Inst16bit
v
ClearTR
3 PC=PC+2
CR high= Inst16bit

v
Micro instructructions: @l Load “]5’ Inst b |
17:0 Increment PC @ Send Strobe_out_TR to chip
17:1 Increment PC Shift right TR
17:1 Load CR Low_Instruction2 g P
17:2 Increment PC ,l‘
17:3 ClearTR @| WC =WC -1 |
17:3 Increment PC VL
17:3 Load CR High Instruction2 K
17:4 I.oa.d_WC_Ins t;uction @/ Send Strobe_out_TR to chip /
17:4 Stroge_;ut_TR Shift right TR
17:5 Decrement WC
17:5 Strobe_out TR @ NO
17:5 if not (WC_IsZero) Branch 17:5 @
17:6 Decrement CR YES
17:6 Increment RCWrite @ —
17:6 Load WC Instruction CR=CR-1
17:6 Stor; T;stResults TR RCWrite = RCWrite +1
17:6 Strobe out TR Load WC, Inst_b
17:6 if not_ (CR:IsZero) Branch 17:5 Store TR
17:7 Increment PC 7

- @ Send Strobe_out_TR to chip
Shift right TR

R

YES

@) PC=PC+1 |
v

[Fetch next instruction]

Figure 4.5 : ReadResult microinstructions and flow chart.

4.1.4 Compare instruction design

Compare instruction compares (i.e. XORing) between test data memory block and test result
memory block and stores results in test result memory. The addresses needs to be determined by
invoking instructions Load_DCRead, LoadRCRead, and Load_RCWrite. The instruction affects

CF flags. It makes CF high when it detects a discrepancy. Figure 4.6 shows microinstructions and

37

flowchart. The instruction keeps incrementing addresses and stores the compare results into test

result memory.

microinstructructions: Start]

v

Load No. of Words

03:0 Increment_PC
03:1 Increment_PC
03:1 Load_CR_Low_Instruction2

ra
N

CR=CR-1

03:2 Increment_PC RCWrite = RCWrite + 1
03:3 Increment PC DCRead = DCRead + 1
03:3 Load_CR_High_Instruction2 RCRead = RCRead + 1
03:4 Decrement_CR Store Comparison Byte

03:4 Increment_DC
03:4 Increment_RCRead @ @ NO
03:4 Increment_ RCWrite

03:4 Store_TestResults Compare
03:4 if not (CR_IsZero) Branch 03:4 [Fetch next instruction]

Figure 4.6 : Compare microinstructions and flow chart.

4.2 TACP Top Level Design

The TACP black box is depicted in Figure 4.7 showing pin names that represents the interfaces
with the user interface and with the test support circuitry (TSC). TACP is connected to the user
interface through two serial pins rx and tx. It is then connected to the TSC through 19 pins (5 inputs
and 14 outputs). In addition, it may be connected to additional external control signals such as

reset, run and single-step that the user can access them directly if needed.

38

reset|— 2
TCLK inl> 3
Memory Strobe_in_PMask|—> 4
o PS Mask Data_inl— 5
Strobe_in_TDat,
38— PS_Mask_Data_out mTZ;: nl_)amai: : ?/
37> Test_Data_out = User Comm. IJT —=> _CLK_._S'el — §

TSC | 36—s| TResult_out A vnit ey Procesor @&

> AaCP> o | TSC
35— HFCLK_Meas_ACK Strobe_out TRI>10

34— CLK_FR out TAC P HFCLK Meas Reql>11

S Strobe_in_CLK_CR|->12
= CLK CW inf>13
'3,‘ _— Strobe_out CLK_FR[—>14
\ y S 58 % o= Master_GND[—>15|_)
™M v 1
[User Interface]

Figure 4.7 : TACP design top view and its subcomponents.

4.3 User Communication Unit

The communication protocol defines interchanging information rules between the user and the
TACP processor. The communication unit implements the protocol at the TACP side while the
user interface software implements the protocol at the user side. There are nineteen commands the
user could issue each has its unique byte code, as listed and described in Table 3.1.

The user communication unit is attached with UART module that deals with physical
communication issues through the COM serial port. The communication protocol circuitries
include two state machines to control the receiving and transmitting operations with the user, 16-
bit down-counter for receiving, 16-bit down-counter for transmitting, memory addressing
multiplexing circuitries, break point register, previous-byte register and flags. The communication
unit receives and responds to user commands through the UART module, Figure 4.8. It can reach

memory, registers and other components.

39

User
Interface

vt

v

Ix_byte

reset
clk

il

rx

Ix

rx_byte

transmit UART received

recv_error

is_transmitting

VI vy

Communication Protocol

PCWrite_reg PCWrite
Instruction_a WE_Instruction
PCRead _reg PCRead
DCWrite_reg DCWrite
TestData_a WE_TestData
DCRead_reg DCRead
RCRead _reg RCRead
TestResult_b RCWrite
RCWrite_reg
BP_reg
ResponseToUser RegSelect
BreakF
recv_error_reg
rx_flag Reset
rx_byte rx_flag Run
received rx_flag SingleSitep
recv_error rx_flag Stop
is_transmitting
reset ix_byte
clk fransmit

VYYVYYYY VY VY VY
Processor

— |

Figure 4.8 : Communication protocol connected to UART module.

4.3.1 UART module

The UART module does the physical communication between the user and the processor. It

uses COM port for communication. The communication speed is fixed and can be controlled by

setting the CLOCK_DIVIDE parameter according to Table 4.2 below. The table comes from the

equation CLOCK_DIVIDE =

clock rate

50%10°

4xbaudrate

4xbaud rate

. The chosen baud rates are the standard baud

rates of the COM port. The implemented version works at 57600 baud rate which has the least

error margin as it is shown in Table 4.2, row 7.

Table 4.2: Communication protocol - UART communication speed.

CLOCK DIVIDE | Baud Error
1 | 10417 1200 0.667
2 | 5208 2400 0.333
3 | 2604 4800 0.167
4 |1302 9600 0.083
5 | 651 19200 0.041
6 |325 38400 0.520
7 | 217 57600 0.013
8 |108 115200 | 0.506

40

UART module is located at the middle between the user and the processor. It does the physical
communication so it corresponds to the COM driver on the user PC.

UART module has two state machines for receiving and transmitting bits with the user side. It
receives bytes from the COM port serially and sends them with a receive strobe with each byte to
the communication protocol. It also takes bytes from the communication protocol and sends them
serially while rising a transmission busy signal. Figure 4.8 shows a black box of UART module

that uses the 15-pin serial communication port.

o~ \\' v v v o V . \z P
\ r';g W v w W / 'A"
\k_* [

v

—> | byre ¥ X rx_byte |—>
—> |transmit YpART Teceived [—>
—>|reset recv_error |—>»
—>|clk is_transmitting [—>

Figure 4.9 : The UART module input/output diagram.

e rx: the received bit from the serial port.

e tx: the transmitted bit to the serial port.

e tx_byte: Byte to be transmitted to the user interface through the UART module.

e transmit: The communication protocol module has to set this signal high when it needs to
transmit a byte to the user interface.

e rx_byte: The received byte from the user interface through the UART module.

e received: The UART module sets this signal high whenever it finishes receiving a byte.

e rcv_error: This bit indicates if there is an error on receiving the current byte.

e is_transmitting: The UART module sets this signal high when it is transmitting a byte to
indicate that the transmitting line is busy. When the protocol intends to send a byte, it has to
wait until is_transmitting becomes low.

e clk: it has to be 50 MHz clock signals so the UART module can work as illustrated in
section 4.3.1, page 40 and Table 4.2, page 40.

e reset: resets the transmitting/receiving state machines of the UART module.

41

4.3.2 Communication flags

The receiving state machine starts its work by receiving one of the known type-byte. Each type-
byte represents a user command and has its unique control bits as shown in Table 4.3. When the
receiving state machine receives a valid type-byte, its bits are decoded to eighteen flags that
controls the transmitting and receiving state machines, Figure 4.10.

clear

4

rx IDLE no rcv

—> rx_flag load

—>» rx_flag load_rx_counter
—>» rx_flag load PCRead
—> rx_flag load PCWrite
—>» rx_flag load _DCWrite
—> rx_flag load RCRead
—>» rx_flag load _DCRead

Decoding

VAP Vv by v
14-bit flag register

= |—» rx_bits_index(—> rx_flag load RCWrite
— |—>»| rx_bits_index1 — i
e || rx_bits_index2 —> rx_flag_load BP

rx byte —>| ™[> m_gl:t_jboadl —> rx _ﬂag_mem_;vntel_ it;st_td

- <« |—»| rx_bit_bytelst ————> rx_flag SingleSte;

v [rx_gt_t_mem_wnte S mﬁag Ruf 7
© |—»| rx_bit_request > -
o~ |—»{ rx_bif_control rx_flag_Reset

—> rx_flag Stop

> rx_bit_bytelst

rx IDLE no rev —> rx_bit_memWrite

B o —> rx_bit_request

—>» rx_flag load_tx_counter
—> rx_flag_request_inst
—> rx_flag request_td

—> rx_flag_request_tr

state_tx_IDLE

vy by
4-bit

clear

Figure 4.10 : Decoding the received type-byte to eighteen flags.

The flags decoder has three inputs rx_byte, rx_IDLE_no_rcv and state_tx_IDLE:

e rx_IDLE_no_rcv: indicates that the the receiving state machine is at state IDLE and no
byte is received. It is used as a clear signal for all flags.
e state tx_IDLE: indicates that the transmitting FMS is at IDLE state.
e rx_byte: The received byte from the user interface through the UART module. It has the
following bits which are mentioned in Table 4.3.
o rx_bits_index: three bits reserved for indexing as shown in Table 4.3.
o rx_bit_load: this bit indicates that the user is sending two bytes to be loaded to one
of the nine registers (i.e. rx counter, tx counter, BP, PCRead, DCRead, RCRead,
PCWrite, DCWrite or RCWrite) according to Table 4.3.
o rx_bit_control: this bit indicates that the user is sending a control signal. There are
four control signals as shown in Table 4.3: single-step, run, reset and stop.
42

o rx_bit_bytelst: this bit set the receiving FSM to state_bytelst which indicates
receiving the first byte of a register contents. It is also used if a control signal will
be received.

o rx_bit_mem_write: this bit the moves the receiving state machine to state_LOOP.
It indicates that the user is writing data either to instruction memory or to test-data
memory.

o rx_bit_request: this bit indicates that the user is requesting on of the four available
requests shown in Table 4.3 (i.e. reading data from one of the three memories or
reading the contents of the enumerated registers).

The output of the circuitry is decoded flags which are explained in the following:

e rx_flag_load: This flag indicates that the user is sending two bytes to be loaded to one of
the nine registers (i.e. rx counter, tx counter, BP, PCRead, DCRead, RCRead, PCWrite,
DCWrite or RCWrite) according to Table 4.3.

e rx_flag_load_rx_counter: the current context is loading new value to rx counter.

e rx_flag_load_tx_counter: the current context is loading new value to tx counter.

e rx_flag_load PCRead: the current context is loading new value to PCRead, the instruction
memory reading address register.

o rx_flag_load PCWrite: the current context is loading new value to PCWrite, the
instruction memory writing address register.

e rx_flag_load _DCWrite: the current context is loading new value to DCWrite, the test-data
memory writing address register.

o rx_flag load RCRead: the current context is loading new value to RCRead, the test-result
memory reading address register.

o rx_flag_load DCRead: the current context is loading new value to DCRead, the test-data
memory reading address register.

o rx_flag_load RCWrite: the current context is loading new value to RCWrite, the test-
result memory writing address register.

e rx_flag_load_BP: the current context is loading new value to BP_reg, the break point
register.

e rx_flag_request_inst: the user requests reading from instruction memory.

o rx_flag_request_td: the user requests reading from test-data memory.

o rx_flag_request_tr: the user requests reading from test-result memory.

e rx_flag_mem_write_inst_td: if it is high indicates that the user requests writing test-data.
If it is low, indicates that the user requests writing instructions.

e rx_flag_SingleStep: a control flag which is raised for one clock cycle only. It asks the
processor to execute the current instruction.

43

e rx_flag_Run: a control flag which is raised for one clock cycle only. It sets the RunF flag
which give the processor a green light to continue executing all program instructions.

e rx_flag_Reset: This control flag send a reset signal to all registers in the processor.

e rx_flag_Stop: This control signal resets the RunF flag and therefore stop running the current
program. It starts the single-step mode in which the user controls when to execute the next
instruction.

4.3.3 Previous received byte register
Prev_rx_byte register saves the current received byte. It is used to combine two consecutive
received bytes and forms a 16-bit word as shown in Figure 4.11. This 16-bit word can be loaded

at once to any 16-bit register. It is useful for receiving addresses and loading counters.

rx_byte

8I

A4
16
two bytes 7Pl‘eV_1‘X_by1g ®——rx_2bytes

—lrx_byte x_2bytes > |—§1_

Figure 4.11 : Combining previous received byte with the current received byte to form a 16-bit word.

e rx_2bytes: the latest received two bytes.
e rx_bytes: the latest received byte.

4.3.4 Transmitted byte multiplexers
Three multiplexers to determine which data line is connected to the user response byte. User
can request one of the four available requests; reading data from one of the three memories or

reading the contents of the enumerated registers.

tx_byte Muxes TestResult b >0
—>|TestResult_b TestData_a ———> o tx_byte
a Instructi N

:)) fgsﬂ)auf_a nstruction_a A

nstruction_a - o
—>|ResponseToUser ix_byte > ResponseToUser — rx_flag Request tr
—>|rx_flag Request_inst
—>lrx_flag Request_td rx_ﬂag._Request_ td
—>Irx_flag_Request ir rx_flag Request inst

Figure 4.12 : tx_byte multiplexers.

44

e TestResult_b: the 2" data port of test result memory accessed by the address port RCRead.
e TestData_a: the 1% data port of test data memory accessed by the address port DCWrite.

e Instruction_a: the 1% data port of instruction memory accessed by address port PCWrite.
e rx_flag_Request_inst, rx_flag_Request_td, rx_flag_Request_tr: explained in page 43.
e tx_byte: Byte to be transmitted to the user interface through the UART module.

4.3.5 Receiving state machine (rx_FSM)
The receiving state machine receives and implements the user commands stated in Table 4.3.
Command codes are designed in such a way to facilitate the hardware design of the transmitting

and receiving state machine.

Table 4.3: Communication protocol - the available user commands with their codes.

(<5}
w | E| B .
No. | class Command code Code % %’. §| E f‘é '”‘?'ex
S| 2| ||| [20
e

1 Load rx counter 18 00011000 1 |1 |000
2 Load tx counter 19 00011001 1 |1 |001
3 Load PCRead 1A 00011010 1 |1 |010
4 © | Load PCWrite 1B 00011011 1 |1 |011
5 | © |Load DCRead 1C | 00011100 1 |1 |100
6 S [Load DCWrite 1D 00011101 1 (1 (101
7 Load RCRead 1E 00011110 1 |1 |110
8 Load RCWrite 1F 00011111 1 1 111
9 Load BP 9F 10011111 |1 1 (1 (111
10 § = Receive inst. 20 00100000 1 000
11 | @ 2| Receive test data 21 00100001 1 001
12 Request inst. 40 01000000 1 000
13 | € |Requesttestdata |41 | 01000001 1 001
14 % Request test result | 42 01000010 1 010
15 Request registers 53 01010011 1 1 011
16 __ | Single Step 90 10010000 |1 1 000
17 | £ |Run 91 10010001 |1 1 001
18 | S |Reset 92 | 10010010 |1 1 010
19 Stop 93 10010011 |1 1 011

45

Figure 4.13 shows its FSM diagram. It starts in the IDLE state waiting for receiving the type-
byte from the UART module. If the type-byte indicates a memory write, it goes to LOOP state,
starts receiving, storing bytes and decrements the receiving counter until it reaches zero. If the
type-byte indicates a control signal or loading register, it goes to the 1 BYTE state. On this state,
if the type-byte indicates a control signal, it returns to the IDLE state directly. If it is a loading
command, it waits for receiving a byte and goes to the 2" BYTE to receive another byte to form a
complete 16-bit word. It then loads the 16-bit value to the register specified by the type-byte and
return to the IDLE state. Finally, if the type-byte indicates a request for reading memories or
registers, the receiving state machine stay in IDLE state and trigger the transmitting state machine
to handle the request. The receiving state machine is a 2-bit state machine. Its circuitry is shown

Figure 4.14.

start
rx_bit mem_ write rx_bit bytelst &

xE received ¥ received
LOOP IDLE

rx_flag load

& received
lst 2nd
BYTE BYTE

rx_counter == W

Figure 4.13 : Receiving state machine FSM diagram.

46

rx_IDLE received —> .
rx bit mem write —> rx_IDLE received
rx0 —>» >
rxl —>| Dol
rx_count!=0 —>| rx0 >| \rx IDLE no_rcv
rx_FSM BYTEIst _received —)DJ_) __20
:;:j;g:fglwd state_IDLE_received |—> rx_flag load —> o
—Slrx couni=p State_BYTE2nd_received (—> LOOP_received 0_;
—> rx_bit_bytelst state_LOOP_received —> received —¢ »| /BYTE2nd_received
—rx_bit_mem_write ™ APLE no_rev —> . IDLE received
rx_bit_bytelst — 1
. . .
rx_bit_mem_write _)rx0 - »| /BYTEIst_ received
rx1 _>D_) “rxa T
rx_count!=0 —> L>g)
BYTEIst received »| /LOOP_received

rx_flag load —>|

Figure 4.14 : Receiving state machine circuitry.

rx0 and rx1: These are two flip-flops to store the FSM current state.

rx_flag_load: This flag indicates that the current context is loading to a register.

received: indicates that a byte has been received by the UART module.

rx_count!=0: indicates that the receiving counter has a non-zero value.

rx_bit_bytelst: this bit indicates whether the current context is receiving a control signal
or loading the lower byte to a 16-bit register.

rx_bit_mem_write: indicates that the current context is loading to memory.
rx_IDLE_no_rcv: the receiving state machine is at state IDLE and no byte is received now.
rx_IDLE_received: the receiving state machine is at state IDLE and a new byte is received
now.

state BYTE1st_received: the state machine is at state BYTE1st and a new byte is received.
state. BYTE2nd_received: FSM is at state BYTE2nd and a new byte is received.

state_ LOOP_received: the state machine is at state LOOP and a new byte is received.

4.3.6 Transmitting state machine (tx_FSM)

The transmitting state machine responds to the user requests and sends him the requested

information. There are four types of requests. This includes three read requests from the three

memories. The fourth one is a request to send all enumerated register and flag values to the user.

The transmitting state machine is triggered by the receiving state machine. It has three states. It

starts with the IDLE state and waits until it is triggered and receives a request, then it moves to the

BUSY state. Then, the state machine loops in the BUSY state waiting until the transmission line

47

become free, then it moves to the TRANSMIT state. In the transmit state it decrements the
transmitting counter and loops while the transmitting line is free. When the state machine reaches
the TRANSMIT state, a byte will be transmitted, the transmitting line will become busy again and
the state machine will return beck to the BUSY state. At any state, if the transmitting counter
reaches zero it return directly to the IDLE state.

~is_transmitting &
is_transmitting

Y

tx_count !=0

new_tx_request ~is_transmitting &

start X ¥ “x_count =0*

— IDLE BUSY | " Trans.
tx count == 0 s_transmitting
— L—/

'\ tx_co‘mif/ :

Figure 4.15 : transmitting state machine sends test result and register values to the user.

The transmitting state machine is a 2-bit FSM. Its circuitry is shown in Figure 4.16.

rx_IDLE received new_tx_Request
rx_bit_request
tx_count!=0 tx0 :ﬂ ’
tx1 |
tx0 :D_D—) D402
tx FSM tx_count!=0

. i txo
is_transmitting tx_count!=0 —> D41 2
is_transmitting

—>

—>»|rx_IDLE_received state_tx_IDLE transmit
—>

—>|rx_bit_request is_transmitting

state_tx_ IDLE

state_ BUSY

1x_count!=0 transmit[—>

Figure 4.16 : transmitting state machine circuitry and the transmit signal.

e is_transmitting: indicates whether the transmitting line is busy or not.

e rx_IDLE_received: the receiving state machine is at IDLE state and a new byte is received.
e tx_count!=0: indicates that the transmitting counter has a non-zero value.

e rx_bit_request: this bit indicates that the user is requesting.

e new_tx_request: start the transmitting process if it is not busy with a previous request.

e state tx IDLE: indicates that the transmitting state machine is at IDLE state.

e state BUSY: indicates that the transmitting state machine is at BUSY state.

e transmit: indicates that there is a byte ready to be transmitted to the user interface.

48

4.3.7 Break point register

The break point register enables the user to stop running the program at specific point. It stores
the instruction address where the program execution has to stop. The break point register circuitry
includes a comparator between the break point register and the program counter, Figure 4.17. The

comparator result named BreakF, is ORed later with the stop control signal to the processor to stop

state. BYTE2nd_received
rx_flag load BP

the program execution.

rx_2bytes —IQ—)H 16
16 .o
—>|rx_flag_load BP 15 BP reg 0
—>|rx_2bytes BP re BreakFl—> -
—>»|PCRead_reg =~ — g i > BreakF
;] rea
—>»|state_BYTE2nd _received PCRead_reg —>

Figure 4.17 : Break point register circuitry and BreakF flag.

e rx_flag_load BP: indicates that the context is loading to the break point register.
e rx_2bytes: 16-bit value to be loaded to the break point register.

e state BYTE2nd_received: indicates that the 16-bit value is received and ready.
e PCRead_reg: the program counter.

e BreakF: the break point flag, it is the comparator result between BP and PCRead.

4.3.8 Receiving counter

The receiving counter is a down counter used for downloading instructions or test-data from the
user interface to the corresponding memory. The user has to initialize the counter value before the
downloading request to determine the number of bytes to be downloaded. The counter circuitry

contains a zero flag that indicates whether the counter reaches zero, Figure 4.18.

49

state. BYTE2nd_received
rx_flag load rx_counter

rx_counter

rx_flag _load _rx_counter
state_ BYTE2nd_received
rx_2byrtes

state LOOP _received

rx_count!=0

Yy

rx_2bytes —19'—)

1 16

—>®_/_) 16_|°
16

p———F >

\4

15 1x_co

unter

0

state_LOOP_received

16

Figure 4.18 : The receiving counter and its circuitry.

rx_flag_load_rx_counter: is loading value to rx counter.
state. BYTE2nd_received: indicates that 16-bit value has been recieved.
rx_2bytes: the latest received two bytes.
state_ LOOP_received: the receiving context is downloading to memory and a new byte is

received.

rx_count!=0: indicates that the receiving counter has a non-zero value.

4.3.9 Transmitting counter

»
rx_count!=0

This down counter is used by the transmitter to upload a specific number of bytes to the user.

circuitry also contains a zero flag for the counter, Figure 4.19.

state_ BYTE2nd_received
rx_flag load_tx_counter

tx_counter
—>|state BYTE2nd received
—>|rx_flag_load tx_counter
—>|state_tx_IDLE x_count!=0
—>|rx_2bytes RegSelect
—>| transmit

state_tx_IDLE

rx_2bytes _1,69

1 16

—>D o>
16 7

'.—90

0

The user has to set its value and also to initialize the memory address before the uploading request.

The counter is decremented and the address is incremented automatically with each sent byte. The

N

y

A 15 tx_counter 0

transmit

=

Figure 4.19 : The transmitting counter and its circuitry.

50

1,6’ 15,9 RegSelect

tx_count!=0

e state BYTE2nd_received: indicates that the receiving FSM has received 16-bit.
e rx_flag_load_tx_counter: indicates that the user requests loading value to tx counter.

e state tx_IDLE: indicates that the transmitting FMS is at IDLE state.

e rx_2bytes: the latest received two bytes.
e transmit: rises when the user is requesting and the transmitter is ready for transmission.
e tx_count!=0: indicates that the transmitting counter has a non-zero value.

4.3.10 Communication Error Flag

Error flag is a communication flag that accumulates the UART module receiving errors. It

reflects communication error for each sending operation. It is cleared with each new user

command, Figure 4.20.

—>lrecv_error

—>lrx_IDLE_received

Error Flag

recv_error_reg

—>

recv_error

DErrFQ

rx_IDLE received —>

Figure 4.20 : Error flag circuitry.

clear

> recy_error_reg

e recv_error: indicates if there is an error on receiving the current byte. This signal is coming

from the UART module.
e rx_IDLE_received: the idle transmitting state clear the flag.
e recv_error_reg: the accumulated recv_error for a complete command.

4.3.11 PCWrite circuitry

PCWrite is the first instruction memory address port which is a write/read port. PCWrite

circuitry allows the user to load to the PCWrite register. The register is also incremented when the

user reads/writes from instruction memory. Write enable signal is also raised when writing to

instruction memory. The circuitry is shown in Figure 4.21.

51

1

YA

PCWrite_reg — D | PCWrite
rx_2bytes —/—)'

PCWrite Muxes \

;%;f’%”es state BYTE2nd received

rite_reg
state_BYTE2nd _received rx_flag_load PCWrite
rx_flag load PCWrite
m—,ﬁ ot PCWrite]> tr “"Sf"“ —>
rx flas request_inst WE_Instruction}—>» rx_flag_request_inst
state_ LOOP_received state LOOP received —> WE _Instruction
rx_flag_mem_write_inst_td rx_flag m;m writ_e inst td —> >

Figure 4.21: PCWrite circuitry in the communication protoocol.

PCWrite_reg: The old value of the PCWrite register.

rx_2bytes: the latest received two bytes.

state. BYTE2nd_received: indicates that the receiving FSM has completed receiving 16-
bit.

rx_flag_load_ PCWrite: indicates that the user requests loading value to PCWrite.
transmit: indicates that the UART module starts transmitting a byte to the user.
rx_flag_request_inst: indicates that the current context is reading from instruction
memory.

state LOOP_received: the state machine is at state LOOP and a new byte is received.
rx_flag_mem_write_inst_td: if it is low, the writing bytes will be to instruction memory.
PCWrite: The new value to be stored in the PCWrite register.

WE_ Instruction: the write-enable pin of the instruction memory.

4.3.12 PCRead circuitry

PCRead is the second test result memory address port which is a read only port. The PCRead is

the program counter register. PCRead circuitry in the protocol can load new value to the register.

This

will enable the user to put an arbitrary value directly to the PCRead register to set the program

execution point or even to restart the program. The circuitry is shown in Figure 4.22.

52

PCRead Muxes

rx_2bytes
PCRead_reg
state_BYTE2nd_received

—>
—>
—>
—>»{rx_flag _load PCRead

PCRead|—>

16
rx_2bytes —>]
PCRead reg —*>

>J

state BYTE2nd received —»|
rx_flag load PCRead —>

Figure 4.22 : PCRead circuitry in the communication protoocol.

rx_2bytes: the latest received two bytes.

PCRead_reg: The old PCRead register value.
state BYTE2nd_received: rises once the receive-state-machine receives 16-bit value.
rx_flag_load_PCRead: indicates that the user requests loading new value to PCRead.
PCRead: The new value of PCRead register.

4.3.13 DCWrite circuitry

o | PCRead
o

DCWrite is the first test data memory address port which is a write/read port. Using the protocol,

DCWrite can be incremented or loaded. It is loaded by the user but incremented when the user

read/write from test-data memory. Write enable signal also raised when the user write to test-data

memory. The circuitry is shown in Figure 4.23.

WY

DCWrite Muxes

rx_2bytes

DCWrite_reg
state_BYTE2nd_received
rx_flag_load DCWrite
fransmit

rx_flag request_td
state_LOOP_received
rx_flag_mem_write_inst_td

DCWrite
WE_TestData

—>
—

state BYTE2nd_received
rx_flag load DCWrite

1

16

+
DCWrite reg —e—> 16
rx_2bytes _2_) B

1

A
C

transmit
rx_flag request td

state LOOP_received

4

=Py

A 4

01

| DCWrite

\

N\

WE_TestData

rx_flag mem_ write_inst _td

Figure 4.23 : DCWrite circuitry in the communication protoocol.

rx_2bytes: the latest received two bytes.
DCWrite_reg: The old DCWrite register value.
state. BYTE2nd_received: rises once the receive-state-machine receives 16-bit value.
rx_flag_load_DCWrite: indicates that the user requests loading value to DCWrite.
transmit: indicates that the UART module starts transmitting a byte to the user.
rx_flag_request_td: indicates that the current context is reading from test data memory.

53

~

state LOOP_received: the state machine is at state LOOP and a new byte is received.
rx_flag_mem_write_inst_td: if it is high, the writing bytes will be to test data memory.
DCWrite: The new DCWrite register value.

rx_flag_request_td: a flag raises when the user requests reading test-data.
WE_TestData: set the write enable pin of the test-data memory.

4.3.14 RCRead circuitry

RC

Read is the second test result memory address port which is a read only port. The user can

read from test-result momory and RCRead register holds the reading address. The user can load

this register using the protocol before requesting test result. When the protocol start transmitting

the test result, RCRead is incremented with each sent byte. The RCRead circuitry is shown in

Figure 4.24.

1 16
+ PR
RCRead _reg —o—)D 16 7| RCRead
RCRead Muxes rx_2bytes ls 16, 5[°

—>»| RCRead_reg P

—>|rx_2bytes state BYTE2nd received

—>»|state BYTE2nd received rx_flag load RCRead

—>| 1 Slag_load RCRead pepogql o state_tx_IDLE

—>|state_tx_IDLE - -

— transmit transmit

—»|rx_flag_request tr rx_flag request tr

Figure 4.24 : RCRead circuitry in the communication protoocol.

RCRead_reg: The old RCRead register value.

rx_2bytes: the latest received two bytes.

state_tx_IDLE: indicates that the transmitting FMS is at IDLE state.

transmit: indicates that the UART module starts transmitting a byte to the user.
rx_flag_request_tr: a flag raises when the user requests reading test result.
RCRead: The new RCRead register value.

4.3.15 DCRead circuitry

DC

Read is the second test data memory address port which is a read only port. PCRead circuitry

allows only loading new values to PCRead, Figure 4.25.

54

16
Ll 2bytzCRead Muxes s 2bytes \DCRead
—> DCRead_reg DCRead > D CR?ad_r eg —#>°
—>|state_BYTE2nd_received state._ BYTE?nd_received —>
—>|rx_flag_load_DCRead rx_flag load_DCRead —>

Figure 4.25 : DCRead circuitry in the communication protoocol.

rx_2bytes: the latest received two bytes.

DCRead_reg: The old DCRead register value.

state BYTE2nd_received: rises once the receive-state-machine receives 16-bit value.
rx_flag_load_DCRead: a flag raises when the user requests loading new value to DCRead.
DCRead: The new DCRead register value.

4.3.16 RCWrite circuitry
RCWrite is the first test result memory address port which is a write/read port. RCWrite circuitry

allows just loading new values to RCWrite, Figure 4.26.

i 16 :
Ll 2byl5sCWr|te Muxes . 2bytes “\RCWrite
—>|RCWrite_reg RCWrite|—> RCWrite_reg —»>{°
—>|state_ BYTE2nd_received state. BYTE?nd_received —>
—>|1x_flag_load RCWrite rx_flag load RCWrite —>

Figure 4.26 : RCWrite circuitry in the communication protocol.

e rx_2bytes: the latest received two bytes.
e RCWrite_reg: The old RCWrite register value.
e state BYTE2nd_received: rises once the receive-state-machine receives 16-bit value.
e rx_flag_load RCWrite: a flag raises when the user requests loading new value to RCWrite.
e RCRead: The new RCWrite register value.
4.4 Memories

There are three identical dual port RAMSs: instruction memory, test data memory, and test result
memory. Each is connected with two address registers; one write/read register and one read
register. There is one write enable signal for each memory, Figure 4.27. Each memory has four

inputs, four outputs, clock and reset signal.
55

—>| PCWrite_reg addr_wr dout al>
addr_rd Inst.
1k . we memory
—>clk Memories din dout_bl»
—>reset
Address Registers=
=>Addresses doutla|~ “jj”—“: Test dout a>
aaar_r
Siwel doutlb|—~> . Data
—dinla doutla|~> din MeMOrYdour bl
Slhwe2 dout2b|—~>
—idin2a dout3a|—>
—>we3 dout3b|—> addr_wr Test dout al>
. addr_rd
—ldin3a . Result
din Memoryiour 5,

Figure 4.27 : Memories and address registers. Each memory has four inputs and four outputs. Each
memory has two address registers; one write/read register and one read only register.

4.5 Memory Multiplexer

The TACP processor and the communication protocol both are accessing the memories.
Obviously, some multiplexers are needed for the shared address ports, write enable, and data-in

ports. Those needed multiplexers are shown in Figure 4.28.

. 16
Memories Muxes Stack_in —A)} dinla SPWrite E’—)H\ addrla
—>\SPWite e byte 2o lo PCwiite 102510 [
—>|PCWrite IsProcessing f {
—>|Push 7 3
—>| WE_Instruction 16 I\ 16, N\
— Stack in PCRead —>|~ | addrlb Push —>|. |wel
—i by;e addrla :; PCReadToUser —x>»|© > WE_Instruction L6/—) =] 3
—>|PCRead di:ji S f <
T 16
—>»|PCReadToUser addrlb > RCRead 16. . I\ ddrib DCRead —#>|..) addr2b
2|PCRead addr2b > 16 |2 —> DCRead_user —e»(g
—>DCRead_user RCReadToUser —>»|© P
. addria [—> |~ 2
—> RCWrite
3 addr3b|—> 2
—>|RCWrite_user 16, N\

— ite —=>| . addr3a
—>{RCRead RCWrite 727 >
—>|RCReadToUser RCWrite_user —+> o/
—>|IsProcessing

Figure 4.28 : Memory multiplexer circuitry manage memory access between the data path and the protocol.

56

IsProcessing Circuitry

The memories multiplexers are controlled by IsProcessing signal. When IsProcessing is high, it
allows the processor to access memory. When it is low, it allows the protocol to access memory.
This signal ensures that the processor is not executing an instruction when the protocol accessing

memory, Figure 4.29.

rx flag Run —— 3/ g

IsPr?ceSS|ng Circuitry rx_flag Stop :D_’ RRunF _l_)
—>|rx_flag_SingleStep BreakF next_instruction
—>{rxc flag Run rx_flag SingleStep —> * >
—»|rx_flag Stop next_instruction —> Single Step —>
—»| Breakl’ IsProcessing > IsStopInstruction —»0 IsProcessing
—y|IsStopInstruction ProcessorBusy —>
—>| ProcessorBusy rx_flag Run

Figure 4.29 : Memory multiplexer circuitry manage memory access from the TACP data path and the communication
protocol to the memories.

4.6 TACP Processor

The processor connected to memory to read instructions and test data, store test results, and
modify address register contents, Figure 4.30. It is connected to the user communication unit to
receive user control signals and requests for reading register contents and responds to them. The

processor is connected to TSC to do testing and read the results.

57

ProcessorBusy |—»)
RegisterOutput — O
i =2
> cik IsStopInstruction |—»
= —>{reset
g —>|next_instruction HFCLK Meas (3;25 :;
RegSelect Stmb;_in_ TData —>
Strobe_in_CLK_CR |—>
HFCLE_Meas ACK Strobe_in_PMask |—>»
—>»{CLK_FR out Q
O Strobe_out CLK_FR |—> wn
v —>»|PS_Mask_Data_out -
= Strobe_out TR |—>
—>| Test_Data_out CLE CW in
—>»| TResult_out P _CH_it >
rocessor CLK_Sel | >
5 PS_Mask_Data_in |—»
DCRead_reg Test Data_in (—>»
—>»| PCRead_reg
>.—>|RCRead_reg P
S . ush |—>»
2 RCWm‘e._reg WE_TestResult |—>
£ —>|Instruction_a
@ . DCRead —>» .
—>| Instruction_b ta
= PCRead |> §
—>»| TestData_b RCRead £
—>| TestResult_a RCWrite —> o
—>| TestResult_b e > S
SPWrite |—>
Stack_in |—>»
TestResult_in |—>»

Figure 4.30 : Processor top diagram.

The processor is designed using microcode architecture which consists of a sequencer, control

store, and data path, Figure 4.31.

Data path
—>»|CLK_FR out CLK_CW in|—>
Q —>»| TResult_out
n CLK_Sel[5O
= —>»|PS_Mask _Data_out . (7]
PS_Mask_Data_in |—> =
—>»| Test_Data_out .
Test_Data_in —>
—>|RegSelect
67 Control Store 10 8 5 clkg ProcessorBusy —)a
control_store_entry mAddress O Sl pcer RegisterQuiput =2
N Pusih —>»
DCRead reg WE_TestResult |—»
Sequencer —>|PCRead_reg DCRead|—>
conirol_store_enitry mAddress > —>|RCRead_reg
I . PCRead |—
© —>|RCWrite_reg RCRead|—> =
TSC—>|HFCLK_Meas_ACK AaC > QE, —>|Instruction_a RCWrite|—> g
HFCLK_Meas_Req > g S —>|Instruction_b SPWrite |— ©
= —>|next_instruction IsStopInstruction —> |~ > TestData_b Stack in _)E
O —lcik Strobe_in_TData > —>|TestResult_a TestResult_in |—>
2 Sl reser —>| TestResult_b -
Strobe_in_CLK_CR > 9
== — (7] . CF_IsNotEqual
—>| CF_IsNotEqual Strobe_in_PMask > & —>|Sirobe_in_CLK_CR “CR Isgm :))
o —2|CR_IsZero Strobe_out CLK_FR > a & —>|Strobe_in_PMask UC IsZero|—>
a —>|UC _IsZero Strobe_out TR > Q @ —>|Strobe_out CLK_FR - o
) WC_IsZero |— g
—> WC_IsZero —>|Strobe_out_TR OpCode |— ¥
—>»| OpCode DP Status Signals =»DP =>»|DP Status Signals
>

Figure 4.31 : Processor components: sequencer, control store, and data path.

58

AaC: apply and capture signal.

CF_IsNotEqual: control flag connected to the sequencer reflects the compare flag status.
CLK_CW._in: control word shift register output. This signal is used for shifting out the
control word register to the chip. It is used with the associated strobe signal
Strobe_out CLK_CR.

CLK_FR_out: frequency register bit coming from the chip. It has to be shifted to FR
register when Strobe_out_ CLK_FRis high.

CLK_Sel: a signal is sent to the chip to indicate that the testing mode is at-speed testing.
control_store_entry: each entry represents all microinstructions to be executed in the
current clock cycle. It consists of selection, control signals and branch address.
CR_IsZero: control signal connected to the sequencer reflects the CR counter zero flag.
DCRead: data counter to be connected to the second address port of the test data memory.
DCRead_reg, PCRead_reg, RCRead reg, RCWrite_reg: address ports of memories.
HFCLK_Meas_ACK: the acknowledge signal is coming from the chip to indicate that the
frequency measuring circuit is ready to start measuring.

HFCLK_Meas_Req: request to the chip to start measuring the chip frequency.
Instruction_a, Instruction_b, TestData_b, TestResult_a, TestResult_b: data out ports of
memories.

IsStoplnstruction: indicates that the processor is currently executing the stop instruction.
mAddress: the current micro address which is the control store ROM address.
Master_GND: a ground signal is sent from TACP to the chip.

OpCode: control signal reflects the current instruction opcode. It is connected to IR register.
PCRead: program counter to be connected to the second instruction memory address port.
ProcessorBusy: indicates whether the processor is currently executing an instruction. This
signal is used to prevent contention on writing to memories by the processor and the
communication unit.

PS_Mask_Data_in: a signal is used for sending port selection mask to the chip. It is used
with the associated strobe signal Strobe_in_PMask.

PS_Mask_Data_out: return back bit from the chip used for verification. When the port
selection mask is sent using the PS_Mask_Data_in, the old port selection mask is returned
back through this pin.

Push: indicates that the processor is writing to the stack in the instruction memory. This
signal is used to prevent contention between the processor and the communication unit.
RCRead: result counter to be connected to the second test result memory address port.
RCWrite: result counter to be connected to the first address port of the test result memory.
RegisterOutput: one byte gets one of data path registers according to RegSelect. This bus
signals is used to read data path info to the user.

59

reset: the processor reset signal is sent to the chip.

RegSelect: determines which register the user is currently read.

SPWrite: stack pointer to be connected to the first address port of the instruction memory.
Stack_in: pushed stack data. To be connected to data in port of the instruction memory.
Strobe_in_CLK_CR: indicates shifting out the control word register.

Strobe_in_PMask: indicates shifting out the port selection mask.

Strobe_in_TData: indicates shifting out the test data register.

Strobe_out_ CLK_FR: indicates shifting in the frequency register.

Strobe_out_TR: indicates shifting in the test result.

Test_Data_in: a signal is used for shifting out the test data register to the chip. It is used
with the associated strobe signal Strobe_in_TData.

Test_Data_out: return back bit from the chip used for verification. When the test data is
sent using the Test_Data_in, the old test data is returned back through this pin.
TestResult_in: To be connected to data in port of the test result memory.

TResult_out: the test result bit coming from the chip. It is associated with the strobe
Strobe_out TR

UC_IsZero: control signal connected to the sequencer reflects the user counter zero flag.
WC _IsZero: control signal connected to the sequencer reflects the WC counter zero flag.
WE_TestResult: the write enable pin of the test result memory.

DP Status Signals: a collection of 45 signals that are coming from the sequencer to control
the data path. those signals are as shown in Table 4.4.

4.6.1 The sequencer

Sequencer and control store are shown on Figure 4.32. Sequencer has five components:

Micro-address incrementer (variable size = a bits).

Micro-address multiplexer (fixed size = 2-input multiplexer).

Micro-address register (variable size = a bits).

Selection 0 comparator (variable size = a bits).

Control multiplexer (variable size = log,d bits, d = number of control signals).

Unlike other components in the sequencer, the control multiplexer size changes according to

the number of control signals. This number comes from the number of signals that causes

conditional branching and used as micro-instructions. Clearly, it changes when editing the

60

instruction set. Special algorithm is developed to generate the HDL code of the control multiplexer.
Other sequencer components are parameterizable and their HDL code could be fixed. Figure 4.29

shows the sequencer and its control multiplexer that has a variable size.

OpCode
Control Store Sequencer
= 0 I_) N
< f S
=) e, a o 1
@ 7 jart dd L
= a |Branch addr. | HAddress 'T) a
LIy @\ ROM »— >|o -
2 0 Lyln e = opcode length
= s [= ucode length
3 Q_b,c- sel a = address length
< ¢ W d = control signals length
=) d h 1 g = control store entry length
17 T DIEN [b=log:d
---------------- O A a=e +f
- - = + +
signal decoder ¢ ; gratbre
c, control Data path status signals -
Control h multiplexer i

Figure 4.32 : The sequencer and the control store.

4.6.2 The control store

The control store consists of ROM and two decoders, Figure 4.32. The ROM width, height, and
contents vary with each edition of the instruction set. Each instruction is consists of one or more
control store entries. Each entry represents all micro-instructions that should be executed in the
same clock cycle. The entry consists of the control multiplexer selection bits followed by the status
signals to be sent to the data path, and ends by the branch address which consists of opcode and

micro-code, Figure 4.33. the sequencer to datapath signals are listed in Table 4.4.

61

0001_000000100000000000000_00000_00000_0000

—~—\

selection

status signals

~ J H_J W_J
opcode_ucode

%._J

branch address

Figure 4.33 : Control store entry consists of selection, status signal, and branch address.

Table 4.4: Sequencer to data path signals (micro-instructions signals)

No. | Signal name Description
1 ClearTD Clear test data counter
2 ClearTR Clear test result counter
3 Decrement_CR Decrement the general counter CR.
4 Decrement WC Decrement the word counter WC.
5 DEC_CW Decrement frequency control word CW register.
6 DEC_SP Decrement the stack pointer SP.
7 DEC _UC Decrement the user counter UC.
Increment the test data counter, i.e. the DCRead
8 Increment_DC .
- register.

9 Increment_PC Increment the program counter, i.e. the PCRead register.
10 Increment_RCRead Increment th_e second test result address register, i.e. the
RCRead register.

11 Increment RCWrite Increm_ent tht_e first test result address register, i.e. the

- RCWrite register.

12 INC_CW Increment frequency control word CW register.

13 INC_UC Increment the user counter UC.

14 Load_CR_High_Instruction2 | Load 16 bits to the highest part of the general register.

15 Load CR_Low_Instruction2 | Load 16 bits to the lowest part of the general register.

16 Load_CW._Instruction2 Load 16 bits to the frequency control word regiser CW.

17 Load DC Instruction? Loe_ld 16 bits to the test data counter, i.e. the DCRead

- = register.

18 Load IR_Instruction Loa_ld 8 bits from instruction memory to the instruction
register IR.

19 Load PC_Instruction2 !_oad 1§ bits to the program counter register IR from
instruction memory.

20 Load RCRead_Instruction2 E%?gtgf bits to the second test result memory address

21 Load RCWrite_Instruction2 E%?gtgf bits to the first test result memory address

29 Load TD_TestData Copy a byte from test data memory to test data register

TD.

62

23 Load_UC_High Load 16 bits to the highest part of the user counter.
24 Load UC_Low Load 16 bits to the lowest part of the user counter.
o5 Load UC TR1 Copy a byte from the test result memory to the first part
- = of the user counter.
26 Load UC_TR2 Copy a byte from the test result memory to the second
part of the user counter.
27 | Load UC_TR3 Copy a byte from the test result memory to the third part
of the user counter.
28 Load UC_TR4 Copy a byte from the test result memory to the fourth
part of the user counter.
29 Load WC._Instruction \Iy\?gd 8 bits from instruction memory to word counter
30 | Popl Pops 8 bits from the stack to the PrevParam_b register.
Pops 8 bits from the stack and combine them with
31 | Pop_PC2 PrevParam_b then copy the formed 16 bits to the
program counter PCRead.
32 | push PC1 Push the lowest part of the program counter PCRead to
- the stack.
33 | push PC2 Push the highest part of the program counter PCRead to
- the stack.
34 | ResetBusy Reset the processor busy flag.
35 ResetCF Reset the compare flag CF.
36 ResetHFClock Reset the high frequency clock selection flag SF.
37 | SetBusy Set the processor busy flag.
38 | SetHFClock Set the high frequency clock selection flag SF.
39 | Shift_TestData Shift the test data register TD out to the chip.
40 | Store_TestResults_ Compare rSetgﬁ Sthe result of comparing test result with expected
41 | store TestResults TR Store the test result register TR in the test result
memory.
42 | store UC1 Store the first byte of the user counter UC in the test
result memory.
43 | store UC2 Store the second byte of the user counter UC in the test
result memory.
a4 | store UC3 Store the third byte of the user counter UC in the test
result memory.
45 Store_UCA Store the fourth byte of the user counter UC in the test

result memory.

The following subsections are the data path components.

63

4.6.3 Two previous parameter registers

Instruction memory has two data-out ports Instruction_a and Instruction_b. PrevParam_a and
PrevParam_b registers are used to store the latest read value of these ports respectively. This way,
it is possible to have a 16-bit word by combining the current data-out (Instruction_a or
Instruction_b as a higher part) with the previously read byte (PrevParam_a or PrevParam_b as a
lower part). The PrevParam_a does not change its value until there is an increment on the program
counter. This way port-selection circuitry can use Instruction_a_16 in its comparison loop while
Increment_PC prevent PrevParam_a against taking Instruction_a value before completing the loop.
As the program counter is incremented, we get 16-bit word from each instruction memory port as

shown in Figure 4.34.

Instruction_a Instruction_b

8,
Y Vv ’
Increment_PC —»Lolj_/ 16 8/
>—> A\ 4 16
| PrevParam a | Instruction_a_16 | PrevParam_b | >
[8 | 8 | Instruction_b_16

Figure 4.34 : Combining previous and current byte to form a 16-bit word for each port on instruction memory.

e Increment_PC: load a new value only with the incrementing the program counter. This is
important prevent overwriting PrevParam_a since it will be used in a loop to send port
selection mask.

e Instruction_a: the first instruction memory data out port.

e Instruction_a_16: two bytes which are loaded from the stack in the instruction memory.

e Instruction_b: the second instruction memory data out port.

e Instruction_b_16: the last two bytes which are loaded from the instruction memory.

64

4.6.4 Port selection mask circuitry

The port selection mask is a binary string to be sent to the selection register in the support

circuitry on the chip. As shown in Figure 4.35 the port selection mask circuitry is a comparing

circuit that compares the lower 16-bit part of CR with the port number.

Instruction_b_16 l:)) :E PS Mask_Data_in
: 0

31 CB
%—) CR _IsZero

Figure 4.35 : CR down-counter with the 16 bit port selection mask generation circuitry and the
CR_IsZero flag.

Decrement_ CR—>

PS_Mask_Data_in: a signal is used for sending port selection mask to the chip. It is used
with the associated strobe signal Strobe_in_PMask.

CR_IsZero: control signal connected to the sequencer reflects the CR counter zero flag.
Decrement_CR: Decrement the general counter CR.

Instruction_b_16: the last two bytes which are loaded from the instruction memory.

This circuitry works as a decoder that decodes the port number. At first, the number of ports has

to be loaded into the general counter CR. Then, CR is decremented until it reaches zero. By

comparing the value of CR with the 16-bit parameter, a bit stream is generated whose length is

equal to the number of ports and contains all zeroes except one position. Table 4.5 below shows

examples of some mask strings and the needed CR and parameter value to generate it.

Table 4.5: Selecting port examples
Parameter | CR Output
0 16 | 0000000000000001
1 16 | 0000000000000010
2 8 | 00000100
3 6 | 001000
15 16 | 1000000000000000

65

To select more than one port at a time, the operation has to be done multiple times. For example,
to get the bit stream “0001000100: set parameter = 2 and CR = 6. This will generate “000100”.
Then set parameter = 0 and CR =4 to generate “0001”. By sending those two strings to the selection

mask it is possible to activate more than one port simultaneously.

4.6.5 Selection mask shift register SM

It shifts in the selection mask that is returned back from the chip. It is one-word length (i.e. byte)
register whose only use is for verification. The register is cleared when the sending selection mask
starts (i.e when CR is loaded). The port selection strobe is also used here as a shift signal. So, the
register has two signals that are coming from the chip which are the strobe and the returned back
mask bit. Figure 4.36 shows the SM circuitry.

Strobe_in_Pmask ﬁ

—> ShiftLeft(SM) _g,«_> b
P —

>

7 0
Load CR_Low_Instruction2 —>|clear SM <«—PS_Mask_Data_out
|

Figure 4.36 : 8-bit selection mask register shifts in the returned-back port selection from the chip.

e Strobe_in_Pmask: the strobe that is sent to the chip to shift in the port selection mask.

e PS Mask Data out: the returned back bit from the chip. PS_Mask data in,
PS_Mask_data_out are two signals that are connected to the selection shift register on the
chip as a shift data in and out respectively.

e Load CR_Low_Instruction2: load two bytes from instruction memory to the lower part
of the counter register CR. This signal is used here as a clear signal since it is called on the
beginning of each sending port selection mask operation.

o ShiftLeft(SM): the SM register after shifting left and including PS_Mask_Data_out signal.

66

4.6.6 Test data shift register TD

It loads a byte from the test data memory then shifts it out to the chip bit by bit. At the same

time it shifts in the returned back test data from the chip. Figure 4.37 shows the register TD and its

circuitry.

Load ITD TestData —

Strobe_in_Pmask —¢

—> ShiftRight(TD) — 5« >
8
7 ¥V 0

Test_Data_out —»|sin TD sout| —> Test Data_in

TestData_b) __g,:_)} ClearTD —> |clear

Figure 4.37 : 8-bit test data register and its circuitry.

1

0

Shift_TestData: if it is high the TD contents will be shifted right and Test_Data_out bit will
be shited into the register.

Load_TD_TestData: is used to load from test data memory to the TD register.
TestData_b: the second test-data memory data port. This value will be loaded into TD if
Load_TD_TestData is high.

ClearTD: is used to clear the register before each shifting operation. This is important when
it is needed to shift less than 8 bits.

Test_Data_in: the bit to be sent to the chip.

Test_Data_out: the returned back bit from the chip.

4.6.7 Test result shift register TR

It shifts in the test result bits that are coming from the chip. Then its content is stored in the test

result memory. Its circuitry is shown in Figure 4.38 below.

67

Strobe_out TR —¢

—> ShiftRight(TR) — <>
8

A
7 >

oT

7 v 0
TResult out —>{sin TR
ClearTR —>»|clear |

Figure 4.38 : 8-bit test results register and its circuitry.

e Strobe out_TR: asignal to start shifting in the test result.
e TResult_out: test result bit received from the chip.
e ClearTR: clear TR register. It is important since the number of shifted bits is arbitrary.

4.6.8 Frequency register FR
This frequency register shifts in the frequency register that contains the measured frequency on

the chip, Figure 4.39.

Strobe_out_ CLK_FR

— 5 ShiftRight(FR) _8,,_;,
8 H

CLK FR_ aut—)

I
Figure 4.39 : Frequency register circuitry.

e Strobe out CLK_FR: shifts in the frequency register from the chip.
e CLK_FR_out: the frequency bit coming from the chip.
o ShiftLeft(FR): the FR register after shifting left and including CLK_FR_out signal.

4.6.9 Frequency control word register CW

The control word register determines the at-speed clock frequency. The register can be loaded
with a 16-bit immediate value and then incremented or decremented as shown in Figure 4.40. Its
content has to be sent to the chip by rotating it left.

e Load CW _lInstruction2: load two instruction memory bytes to the CW register.
e INC_CW: Increment frequency control word CW register.

68

Instructmn b 16 —/—)

>0 16
¢—> RotateLeft(C) 105!
- 16, L d CW_ I truction2
16 o oda nstruction.

> INC cw A4

DEC_C /4 CLE CW in<€ 15 0
Strobe_in_ CLKE_CR _CW_in C:N (—‘

Figure 4.40 : 16-bit control word register and its circuitry.

e DEC_CW: decrement frequency control word CW register.

e Strobe_in_CLK_CR: a shift signal rotates the control word register.

e Instruction_b_16: the last two bytes which are loaded from the instruction memory.

e Rotateleft(CW): the CW register after rotated left.

e CLK_CW._in: control word shift register output. This signal is used for shifting out the
control word register to the chip. It is used with the associated strobe signal
Strobe_out CLK_CR.

4.6.10 Instruction Register IR
The instruction register contains the opcode of the instruction under execution. Its circuitry has
only one signal to control the loading. The register takes new value on the fetch stage of the

instruction execution, Figure 4.41.

Load IR Instrucaon
Instruction_b _/_p_,z_)

") 0

l—) Opcode

Figure 4.41 : Six bit instruction register.

e Instruction_b: the second instruction memory data out port.
e Load_IR_Instruction: Load 8 bits from instruction memory to the instruction register IR.
e OpCode: control signal reflects the current instruction opcode. It is connected to IR register.

69

4.6.11 General counter CR

It is a general 32-bit down counter for internal use. Instructions mainly use it to count

reading/writing words from/to memory, Figure 4.42. This counter has to be loaded with two

separate operation each operation increments the program counter PC by two.

Instruction_b_16

16 \
= 16

16, |o

v_ VY

Load_CR_High_Instruction2

16,
>
1 =
32 32 16 _|o $16 16
32 ——> v

> 1‘ ‘31 CR 0‘

Decrement CR T 32 16
Load CR_Low_Instruction2 = = CR_IsZero
@—) PS Mask _Data_in
>

Figure 4.42 : The 32 bit general counter CR and its circuitry.

Instruction_b_16: the last two bytes which are loaded from the instruction memory.
Decrement_CR: decrements the 32-bit counter by one.

Load_CR_Low_Instruction2: loads the parameter to the lower 16-bit part.

Load CR_High_Instruction2: loads the parameter to the higher 16-bit part.
PS_Mask_Data_in: a signal is used for sending port selection mask to the chip. It is used
with the associated strobe signal Strobe_in_PMask.

CR_lIsZero: control signal connected to the sequencer reflects the CR counter zero flag.

4.6.12 Word counter WC

It is a general 4-bit down counter for internal use. It is used to count bits when shifting in or out

a register. It is very helpful to do shifting by arbitrary number, Figure 4.43.

70

Load_WC _Instruction _‘L Decrement WC
8 4

Instruction_b —9p—> 4
4 ' 4
7> 1 :) 4 B
> 3 0

WC

@—) WC _IsZero

Figure 4.43 : 4-bit Word Counter WC and its circuitry.

e Load WC instruction: load four bits from the instruction memory to the WC counter.

e Decrement_ WC: decrement the WC counter.

e Instruction_b: the instruction parameter coming from the second instruction memory port.
e WC IsZero: control signal connected to the sequencer reflects the WC counter zero flag.

4.6.13 User counter register UC

A 32-bit up-down counter is designed for the user. It can be loaded with immediate value or it
can be loaded/stored in the test result memory. This enables the user to have multiple counters in
the memory and switch between them. It is associated with a zero flag ZF (combinational flag)
and JZ and JNZ instructions. So the user can make conditional branching according to its value.

As shown in Figure 4.44, four signals are used to load from test result memory, Load_UC_TR1,
2, 3, and 4. Two signal are used to load immediate value coming from instruction memory,
Load UC High and Load_UC_Low. The test result memory is chosen for load/store the counter

value because it has the least addressing multiplexers.

71

Instruction b 16 ——>

Instruction b _16

—/—):; 32
1 2/—0
[}

DEC UC

Load UC _High

16 i
~| 16
16, [©
16, 8 8
L ' 8 TestResult a
8 8 8
16, oI\ v ¥
- 16 8 v ¥\O 1/« Load UC_TRI
JEIIN 8 VL 01/ Load_UC_TR2
f v v\o 1 ;< Load UC _TR3
01/« Load UC_TR4
Load _UC_Low v v
s uc !

Figure 4.44 : User-counter circuitry.

4.6.14 Stack pointer SP

incremented with each pop operation.

increment SP twice, Figure 4.45.

Popl
Pop PC2
16

+ ’/\
1 ’n—\
16 L 16 o}
I\ 1 e
- 15
A
DEC_SP

Figure 4.45 : Stack pointer circuitry.

Pop1: increment SP by one.

72

Stack pointer is a 16-bit address register and points to the top of the stack. The instruction
memory is used as a stack memory for calling subroutines starting from the highest address

location. The stack pointer is initialized with zero and incremented with each push operation and

When the call instruction is invoked, it decrement SP twice and store two byte of PC. When

return instruction is invoked, it send two signals Popl and Pop_PC2 to retrieve the PC value and

SPWrite

—>

e Pop_PC2: increment SP by one and copy the read address “Instruction a 16” to the
program counter PC.

e DEC_SP: decrement SP by one.

e SPWrite: stack pointer to be connected to the first address port of the instruction memory.

4.6.15 Flags
There are seven flags. Some of them are storage elements like CF, SF, ErrF and RunF. The rest
are combinational circuits outputs like ZF, CR_IsZero and WC_IsZero.

a. Communication Error Flag ErrF: Its value become high if there is an error on
the last transmission operation between the PC and the Processor. This register is
part of the communication protocol module not the TACP data path module.

b. Run Flag RunF: indicates whether the current mode is single step mode or normal
mode. In the normal mode, its value is high. This register is part of the
communication protocol not the TACP data path module, Figure 4.46.

D —l—>
recv_error ED_) ErrFQ ErrF

rx_state_reg ==rx_IDLE ————>|clear

Figure 4.46 : Zero flag circuitry for the user counter register.

c. User Counter Flag ZF: Its value indicates whether the contents of the user counter
register is zero or not. Since the user can use more than one counter using the
load/store instructions, this flag always reflects the zero flag of the current counter
because it is a combinational circuit, Figure 4.47.

31 uc 0

Figure 4.47 : Zero flag circuitry for the user counter register.

d. CR_IsZero, WC _IsZero: Internal flags that are used in looping inside the
instruction. They reflects whether CR or WC is zero or not respectively,
Figure 4.48.

73

31

CR S we

TestData_b —&l—))ﬁ w ﬁ 1 4
TestResult b —2%>, 1 D}A N 1

0
%)_) CR_IsZero \@)_) WC _IsZero

Figure 4.48 : Zero flags circuitry of the general counters.

Clock Selection Flag SF: It is a set-reset flip-flop used to switch between the high
speed and the low speed clock in the chip. Its value indicates which clock should
be selected and applied to the IP under test when the ApplyAndCapture signal is
high, Figure 4.49.

ResetHH FClock —|g SF 0
SetHFClock —|S

|3 CLK Sel

Figure 4.49 : Clock selection Flag circuitry.

Compare error flag CF:It became high if there is an error resulted in comparing
the test results with the expected results. The compare instruction compares one
word from the test data memory with one word from the test result memory. Its
value is changed with the storing of the comparison result in the memory. Its
circuitry is shown in Figure 4.50.

Compare €2« Store_TestResults Compare

<>

1, |o PCF2
ResetCF—)£—|

Figure 4.50 : Compare error flag circuitry.

4.6.16 Memory addressing circuitry

There are three dual port memories associated with six address registers. The data path needs to

modify some of those address registers. It needs to modify the program counter and the stack

pointer, increment the test data reading address and increment the test result writing address. The

needed circuitry to do this is shown in Figure 4.51.

74

16
1 E 16 5 [RCWrite
RCWrite_reg —t - 16
16 @ T
Load
Inc
16, _
1 16 = RCRead
Instruction_b RCRead reg = 16 °
N 16 _|©
8) aad
¥ 16 ne 16, >
PrevParam_b 7 1 |[:) 16 -DCRead
8 DCRead_reg —E = 16
16 <
Load
Instruction_a Inc
16
16 PC
- N g o
|—8,«— P(‘Read_reg °© T
T Load

Pop PC2
Inc

Figure 4.51 : Addressing circuitry in the TACP data path.

4.6.17 Test result memory writing circuitry

Unlike the communication protocol module, the TACP data path can write to the test result
memory. It may store the test result TR register, the comparison result between test result and
expected result, or the user counter. Thus the test-result memory data-in port needed circuitry as
shown in Figure 4.52 consists mainly of multiplexers. Notice that the user counter UC needs four

multiplexers since it is 32-bit up-down counter.

(=)

31 0 7

32 TestData bj B |

3 Test_result_in

TestResult b

T Store_TestResults TR

8/
8 . R Store_TestResults_Compare
8 51° A Store_vct
ore_U
0 8, 3 T WE_TestResult
T Store UC2 >
T Store UC3 7

Store UC4

Figure 4.52 : Test-result memory data-in port and write enable circuitry.

75

TestData_b: the second data out ports of test data memory.

TestResult_b: the second data out ports of test result memory.
Store_TestResults_Compare: Store the result of comparing test result with expected
results.

Store_TestResults_ TR: Store the test result register TR in the test result memory.
Store_UCL.: Store the first byte of the user counter UC in the test result memory.
Store_UC2: Store the second byte of the user counter UC in the test result memory.
Store_UC3: Store the third byte of the user counter UC in the test result memory.
Store_UCA4: Store the fourth byte of the user counter UC in the test result memory.
TestResult_in: To be connected to data in port of the test result memory.
WE_TestResult: the write enable pin of the test result memory.

4.6.18 Push circuitry

The TACP processor uses a stack located at the bottom of the instruction memory. When a

CALL instruction is invoked, the program counter has to be incremented and stored in the stack.

The push circuitry contains an incrementer and a multiplexer as shown in Figure 4.53. The Stack_in

bus will be multiplexed with other bus coming from the communication protocol module as it also

need to write to instruction memory.

Push_ PC1

Low 8 ¢
1 16 8
8 Stack_in
PCRead reg —>

High

Figure 4.53 : Push circuitry generates Stack_in bus which is connected to the data-in port in
the instruction memory.

4.6.19 Enumerate multiplexer

When the user requests info, the protocol responses by sending the TACP data path register

contents, the memories addresses and data-out, and other registers. Enumerate multiplexer is a

five-bit multiplexer that selects one byte at a time to be send to the user. As shown in Figure 4.54,

76

the multiplexer inputs are the processor data path info, memories address and data ports and the
break point register. The five-bit selection RegSelect is five bits of the transmitting counter in the
communication protocol. When the user ask for info, the transmitting state machine starts
decrementing the transmitting counter and therefore sending one byte each time. Hence, the user

has to set the value 24 in the transmitting counter to fetch all info at once.

Memories info TACP data path info
A
0~ SV =
X X P TP =3 TV
a0 aa aqg aa [eNe aa
?f §F FfF F§F¥_FF_S5°F
wm S = = = :‘.n :‘.:‘.Nnn‘-q:.:.
SVEARFESR RRRRERRERFR
¥~ s 2 s s 8 s salssalss T s s T y N0
ARPARFARARREIRRIARIAR T358SS5837
T oSS ioos oo s oS ToS TSR SSSOOOSTDTNNDSD
CREE EhE At Bt T R T Bt BTN R S Ao
N I A T R P P R S RS S R~ R S i BN
NN RN = m em e e e e e e e e D OO0 0000000000 OO
AWN=_S e oo T8 OOAONMEWN=R,S =68 I ERR~S
5
RegSelect
E " ResponseloUser
numerate Mux
flags 1: Processor data path flags
—>{TACP data path info {UC_IsZero, CF_IsNotEqual, SF}
—>»|Memories info ResponseToUser |—> flags 2: Status flags {BreakF, HFCLK_Meas_ACK,
—>|RegSelect ProcessorBusy, recv_error_reg, RunAll_reg}

Figure 4.54 : 5-bit multiplexer selects one byte at a time to be send as a response to the user interface.

77

CHAPTER 5

TEST AND CHARACTERIZATION PROCESSOR
IMPLEMENTATION

This chapter introduces the implementation of the test and characterization processor (TACP)
and its integration with the whole system. The graphical user interface is implemented on a PC
using a high level programming language. The TACP is implemented on one FPGA while the test
support circuitry (TSC) with four circuits-under-test (CUTSs) are emulated in another FPGA board.
The PC is connected to the TACP FPGA and the two FPGAs are connected through a 20-pin cable
forming the fixed interface. Xilinx ISE 14.2 is used to synthesize, simulate and download designs
to FPGAs. The system works properly and many test programs are executed and will be discussed
in the next chapter.

The chapter also introduces the instruction builder software that helps on editing the microcode
instructions. Finally, the chapter discusses the problems faced when prototyping the TSC.

Figure 5.1 shows a snapshot of the platform implementation. The PC is connected through a
serial communication cable to the TACP FPGA which in turn is connected to the prototyped TSC

FPGA.

78

User interface softwarek>>| TACP K= TSC

Figure 5.1: The Implemented test & characterization platform; the host PC running the user interface tool, an
FPGA board for the TACP connected to the PC, and another FPGA board containing the TSC and 4 CUTs and
connected to the TACP FPGA.

5.1 User Interface Implementation

Complete user interface software is designed using C#.Net programming language. It consists
mainly of three interfaces; writing programs interface, executing programs interface and multiple
memory interfaces. The software also implements the user communication protocol and has
assembler and disassembler. It has a wizard to import test data vectors from text files generated by

automatic test pattern generators (ATPGs). Appendix C includes a tutorial on this software.

Writing Programs

The software contains a dedicated interface to write programs as shown in Figure 5.2. The user
can write programs by selecting instructions from the instruction list that are imported from the
instruction builder software. The interface helps the user to set instruction parameters, move or
delete program lines. It can also generate the assembly code of the program and uses the interface

protocol to download the program to the instruction memory on the TACP FPGA.

79

=

— fl
i\ﬁ Test and Characterization Processor - User Interface - Reading test-resulttacp E@g

Wiiting Programs | Executing Programs | Communicaﬁonl COM Port: COM3 - Connect [l Test-data Mem.
Instruction set Program
fetch - 0003 1c OB 0000 00 0A0 (4] Code
ganj_?el:[:;h:n_\hsk 0000 //initialize test-result store address - »
R“*“ dR“ I: a £/ || 0000 Load RCWrite FEFF 10 FF FF
e AndC || || 0003 /read output
Compare e h"’m SendSelectionMask 0000000, 000A 1c OB 00 00 00 DA
L dpDCR d 000A ReadResult 00000002, 06 00
Lo RCRond 0010 //read scan chain 1762 00 80 0006
Lo RCW it 0010 SendSelectionMask 0000000, 000B
RﬂEl tC n;“[0017 ClearTestDataRegister 1c OB 00 00 00 OB
Eser-omparetag 0018 ReadResult 00000000, 07 00
JCompareCorrect 001E //Exit 23
JCompareError | | 001E Stop 17 00 00 00 00 07
Opcode: 28 Sort
20
Window length-1(4) 0000000B
Bit No.(0 to n-1)(2) 000A
Il Instruction Description: I
Send a bit stream to the port
selection mask register on the - |l -
chip. It decodes the port no. and . = .
T Address: 0000 |2 Download | (1f)bytes. [] Show program lines
before sending it. Usually the D:\Emran 111'Thesis\Thesis Work\UserInterface'bin\Debug'documeni [ﬂ]@

Figure 5.2 : User interface to write and download programs to the TACP FPGA.

Executing Programs

The software contains a dedicated interface to execute and track the execution of the program
as shown in Figure 5.3. The user starts by uploading the current program on the TACP memory on
the TACP FPGA. Then the execution starts with single mode or batch mode. The user can set a
break point by selecting a program line and press “set break point” button. To change the current
execution to a specific line the user double clicks that line. The user is also allowed to set values
to any of the six address registers. The TACP registers are displayed and updated manually or

automatically after each execution request.

80

-
M Test and Characterization Processor - User Interface - test_frequency_loop.tacp

[

= B

Whiting Programs | Executing Programs |[:Qmmunicaﬁon | COM Port: COM3 - Connect |all Test-data Mem.

Instruction Memory
Address: 0000 Size: 0040 |2 Upload

0000 /finitialize -
0000 Load_UserCounter value 00000009
0005 SetFrequencyControlWord 000E
0008 //measuring frequency

0008 SendFrequencyControlWord OF
000A MeasureFrequency 000003FF

000F ReadFrequencyRegister OF

0011 //change frequency and loop
0011 INC CW

0012 DEC UserCounter

0013 JNZ 0008

0016 Stop

0017 fetch

0018 fetch

0019 fetch

001A fetch

001B fetch

001C fetch -

m

Addr. Line Code Show comments

o011 9 06 Set Break Point

[RSi.lngle step ” Reset PCRead ” Run All ” Stop]

Update test-result memory after each execute

Instruction Mem. addresses Test-result Mem. addresses

PCWrite: 0000 12 RCWrite: OFFF 00
PCRead: 0011 06 RCRead: 0000 00

Test-data Mem. addresses
DCWrite: 0000 00
DCRead: 0000 00

Datapath

Instruction Register (IR:): 16 Read back from chip
PortMask (SM): 00

Test Data (TD): 00
TestResult (TR): 00

Stack pointer: 0000
User Counter: 00000009
Break Point (BP): 0000
Contrel Word (CW): 000E
Frequency (FR): 0400 AckF

Chip frequency measuring

Cyeles: 400 Reset All
Processor Frequency: 50 MHz Registers

Measured Frequency: 50 MHz

Flags

Frequency =FR * Processor Frequency + Cycles
Measured Frequency = 1024 = 50 = 1024 = 50MHz

Figure 5.3 : User interface thet executes the program and tracks register contentss on the TACP FPGA.

PCRead: The program counter.

PCWrite: The instruction download address.
DCRead: The test data address to be used when sending data to the TSC.
DCWrite: The test data download address.

RCRead: The upload test result

RCWrite: The test result address to be used when storing results coming from the TSC.

IR: The instruction registers shows the executed instruction opcode.
Stack pointer: The stack address to be used with subroutines.

User Counter: The user counter used to do iterations.

BP: the break point register used to stop the execution when its value equals PCRead.

CW: The frequency control word register value on the TACP that supposed to be sent to the

corresponding CW register on the TSC.

FR: The frequency register value on the TACP that supposed to be read from the

corresponding FR register on the TSC.

Cycles: The user has to write this value manually. It has to match the number of cycles used

with the MeasureFrequency instruction.

Processor Frequency: The TACP frequency. The user has to write this value manually.
Measured Frequency: a calculated value represents the selected frequency on the chip.

81

e SM: The selection mask returned back from the chip.
e TD: The test data register value represents the returned back data from the chip.
e TR: The latest read test result byte.

Memory Interface

The software contains a dedicated interface to interact with the TACP memories on the TACP
FPGA as shown in Figure 5.3. The interface allows the user to download to or upload from the
TACP memories. The interface allows the user to write data or import them from file. The user
can upload a memory block from the corresponding memory in the TACP FPGA by specifying its
location and size. He also can download to any specific memory location. The memory interface
can be customized to view the contents one test vector for each row. It views memory contents in
table with each row represents a test vector and each column represents byte. Test vector importing
wizard has been designed. It can also import test data from test files generated by automatic test
pattern generation (ATPG). The user can specify a memory location and number of bytes to be

uploaded. The interface memory can be updated manually or automatically after each execution.

Eile

Vector: | 0000 |7 Download lr,r Lpload]-lddrsE_‘ E]E] 2 Rec

Vector format: 4,
oo ﬂﬂ 0216 -
0001 000111110 07 03
0002 06 |0C | 011000110 06 OC
0002 |04 |31 | 100010010 04 31
0004 BD |1E | 111101011 BD 1E
04 1C
0005 04 |1C | 111000010 CB 61
0006 CB |61 000011101 01 09
0007 01 |09 010011000 A221
0003 AZ (21 |000010100 04 0A
04 |0OA 010100010 _|[| 09 0A

Wsi10 Isize:ﬂﬂt]ﬂll]ﬂlE DCWrite=0000]02 DCRead=0000]02

Figure 5.4 : User interface to display memory contenets.

82

5.2 The Instruction Builder Software

The instruction builder software is designed to automate editing and building the processor in
the TACP. It mainly rebuild the sequencer and the control store after each editing on the
instructions. Instruction builder software is a graphical user interface that helps on writing and
editing microcode instructions. It simplifies editing instructions by automating the processor
Verilog code writing when any change on the instruction set is required. It shortens the time need
to design and verify the modified version of the instruction set. It also updates and exports the
instruction list which is used by the user interface software to write programs.

The sequencer and the control store are the control unit of the microcode architecture. To modify
instructions, very accurate modifications needed to be done on these components. Instruction
builder software helps to automate this to avoid mistakes and to shorten modification time. The
most important job is summarized in these points:

e Building the sequencer control multiplexer: The instruction builder has an
enumerating algorithm that takes care of the sequencer control signals, enumerates them
and produces the control multiplexer Verilog lines. Doing the same work manually after
each instruction design modification is a tedious work.

e Building the control store: Each control store entry consists of the control multiplexer
selection bits, control signals for the data path and next address bits. Adjusting these bits
after each instruction modification is anther tedious work. The instruction builder
constructs each entry of the control store and builds the control store Verilog code.

e Export instructions to the assembler: after instruction modification, the instruction
metadata can be exported which contains: instruction name, code and parameter count,

names and sizes.
The instruction builder requires the user to enter all needed microcode signals and categorizes

them by defining the source-to-destination type (i.e. sequencer to data path, data path to external,

83

etc.). Then it uses these information with the micro-instructions to write the microcode Verilog

code automatically. Appendix B, shows a tutorial of this software.

Figure 5.5 shows a diagram explaining signal types.

Sequencer to data path
Data path to sequencer
Sequencer to external
External to sequencer
External to data path
Data path to external

NGO~ wWDE

Sequencer to data path and external
External to sequencer and data path

Ext. to DP

Ext. to Seq. & DP

Ext. to Seq.

Microcode
v Seq. to DP vy
> Sequencer [DP to Seqf Data path > DP fo ext.
| i > Seq. to DP & ext.
>Seq. to ext.

Figure 5.5 : Eight signal types in microcode.

The processor is a microcode architecture that consists of sequencer and data path as depicted

in Figure 5.6. The sequencer is the control unit of the processor that sequences the micro instruction

execution. It only has five components; address register, comparator, incrementer and two

multiplexers.

84

Control Store 0 L
> Opcodqd | N <
ME "~ |- | nAdd
g Branch addr. Sl 1} ress
z 3 [<
®) S || sel ~ '1_) ”%_
= E I\% S 1
= . |
en| | PP sig. 1
@ > Data path <>
. N—— K X I) Sequencer
pAddress decoder
A External Control

Figure 5.6 : TACP Processor uses the microcode archeticture.

The control store is a ROM that stores all control signals for all execution cycles. Each entry
contains the states of all data path control signals and info about the next address. In each clock
cycle, the sequencer selects on entry that controls the data path and determine the next micro

instruction address.

5.3 TSC Prototyping
Usually, FPGA boards are used for prototyping. Designs are tested and emulated using FPGA

boards before sending for fabrication to get an ASIC chips. FPGAs do not have any basic pure
logic gates such as AND, OR and NOT available to the designer. Rather, it utilizes the look-up-
tables (LUTSs) to emulate all combinational functions existing in the design. LUTs make it difficult
to do timing analysis and estimation for the prototyped ASIC. For example, all two-input functions
will be emulated by identical two-input LUTs. Although functions may vary in their complexity
level and delays, LUTs make complicated functions take the same delay simple functions take.
While LUTs may unify functions delay, place-and-route (PAR) phase becomes critical in FPGA
design flow. PAR could assign different paths with different delays for the design. Hence, the same

design could give different results with different place-and-route algorithms. It happens many

85

times with a proved and well-simulated design that a slight change on the design could corrupt it
and gives strange result. This error rises only because of changing routes from one implementation
to another. For instance, it happened that a program which run perfectly as one shot from start to
the end, gives different results when we set a break point and run the program in two batches. For
all of these timing problems, we searched for solutions that can make the prototyping possible and
can came up with a good working processor.

To emulate the test support circuitry (TSC), some clock-related issues such as clock gating and
clock multiplexing has to be manipulated. In addition, the TSC has a configurable clock generator
that the user can modify its frequency. An alternative circuitry has to be designed to emulate it.
The following subsection addresses the emulating problems and the solution we choice to

overcome them.

5.3.1 Clock gating

Clock gating is used to reduce dynamic power dissipation since it switches of some parts of the
design. The ASIC version of the TSC uses gated clocks to enable and disable the shift registers
that surrounds each CUT. Since gated clock is synthesized using look-up-table in FPGAs, the
signal will not be a clock anymore and the clock will cause timing problems. Gated clocks could
not be emulated this way. One way to overcome this problem is to use the enable signal as shown

in Figure 5.7. This solution is used for all shift registers.

data ——Ip QP remove data—D Q—
bl =——»| enable—EN
enac”éé > gating clk—p

(a) FF with Enable (b) FF with Enable

Figure 5.7 : Replace gated clock signal by using enable signal.
gated_clock = CLK && Enable

86

This solution is not enough to solve all clock gating issues. Some CUTs may not have enable
signal. Another solution is to use a dedicated clock tri-state buffer from the FPGA resurces. In our
FPGA prototyping using Xilinx Spartan 3A, we used BUFGCE. This solution is used with the
clock signals that are feeding CUT and some shift registers and ANDed with the corresponding

port selection signal.

replace
switch

Port OZD_'
0 I B
CLK out CE I
(a) Port Switch (b) BUFGCE

Figure 5.8 : Replace gated clock signal by using FPGA clock tri-state buffer.
gated_clock = Porto && CLK_out

Figure 5.9 shows a simulation that explains how BUFGCE passes the clock when its chip enable

(CE) is high [26]. It is simply work as an AND gate.

CE m Cl PP s s s P

I o o LI LI L
b1 § [1]] LI LI LI [LI L

BUFGCE I cE | I [

Figure 5.9 : BUFGCE simulation — dedicated clock signals tri-state with no pulse lose.

5.3.2 Clock multiplexing

Another issue on ASIC emulation is the multiplexing between two clock signals. The TSC needs
to allow the user to select between the high frequency clock to do at-speed testing and the TACP
clock to do testing using the TACP clock or to fill the scan chain. The chosen solution for clock
multiplexing is to use the FPGA clock multiplexers that are designed for the digital clock managers
(DCMs). In our FPGA prototyping using Xilinx Spartan 3A, we used BUFGMUX.

The BUFGMUX has a bad consequence on the resulting clock signal. To multiplex between

two clock signals, the BUFGMUX loses the first pulse after each change in its selection.

87

Farthermore, the multiplexer will not lose any pulses if the previously selected clock signal was

off. This is illustrated in the simulation in Figure 5.10 (a). The BUFGMUX loses the first clock

pulses with each change on its clock selection as depicted in Figure 5.10 (b).

.a. This losing will not happen if the other clock input was kept high or low during its last

selection periods.

BUFGMUX [. 2o~ O o ne%ms
ol L MMM [FL oM | L

10
v B RN M A i B Y o I o RN b B B I
= o AL AL LA DA AR
s/ e

(a) BUFGMUX loses one pulse with each selection change.

BUFGMUX m L 2DEIIns L ZSDIns L 3DDIns L 350|ns L 4DDIns L
LM LA | LT FLIL L

10 o E o
] n
% P Worrn_nrnmnrinrn _nr_rnri_rrn_rr - {rnrn_
b)

a)

Bs |7 1 | |
(b) BUFGMUX will not lose if the non-selected clock signal was off.

Figure 5.10 : The BUFGMUX clock multiplexer simulation.

The behavior of the BUFGMUX has a great impact on the ApplayAndCapture instruction.
Since the clock selection and application circuitry (CSaAC) has to generate two consecutive clock
pulses, the first call of ApplayAndCapture instruction produces one clock pulse while the next call
will produce two. Figure 5.11 shows the CSaAC which uses a multiplexer to select between high
frequency clock (HFCLK) and processor clock (TCLK) and an AND gate for its clock gating

circuitry. The circuit output the CLK_out clock signal that will be ANDed later for with suitable

port selection pin to feed a CUT.

88

Svnchronization FFs Clock Gating Circuit
- A e a En_S
AaC - — ['

CLK_ Sel—— | Syc0 Syel Sye2 FF3 FF4 : I) N

—>¢ A A A A A : B I

HFCLK = * 1. * 1, * :
TCLK 2/ Sel CLK

HFCLK: High frequency clock.
TCLK: Processor clock (50Mhz).

Two pulses

Figure 5.11 : The ASIC version of clock selection and application circuit (CSaAC).
The circuitry has a clock multiplexer and a clock gating.

The FPGA implementation of CSaAC along with four CUTs clock gating circuitries are shown
in Figure 5.12. BUFGMUX is used as a multiplexer to select one of the two clocks (TACP’s clock
or the HFCLK). BUFGCE is used to replace clock gating in five locations as depicted in the figure.
The CLK_IUT signal feeds directly the corresponding IUT and some of its shift registers. If the
CUT has additional port for scan chain, additional clock multiplexer or clock tri-state buffer may

be needed that may be controlled by the scan_enable signal.

Synchronization FFs CLK_IUT 0

AaC
CLE_Sel—
HFCLK
TCLK . c..Sel CLK

N,
Ead

CLK IUT 1

N
rd

: ' -
{CLK_Out

En S I\LV
-

: . N o .
o, ook Gating Cirewit ey g f —— Port 6 —5))
HFCLK: High frequency clock. ‘w R Poi*t.é’ —> CLEIUT2

TCLK: Processor clock (50Mhz). scan_enable

N,
Ead

“ v §
—~ Port 8§ —

CLK IUT 3

Clock selection and application circuit

N
rd

Figure 5.12 : The FPGA implementation of clock selection and application circuit CSaAC with the
implementation of four CUTs clock gating. All gated clocks are replaced by FPGA clock buffers BUFGMUX
and BUFGCE. The critical path has four level of clock gating.

5.3.3 Emulating the Configurable Clock Generator (CCG)
The TSC has a digitally controlled oscillator (DCO) within the configurable cock generator

(CCG). Obviously, ring oscillators cannot be implemented on FPGASs since FPGAs use LUTSs.
89

Each FPGA board has many digital clock managers (DCMs). Most Xilinx FPGA boards has eight
DCMs. The DCM can be configured to a specific frequency within the range ~4 MHz-333MHz.
Unfortunately, DCM cannot be configured at run-time (unless reconfigurable computing is used).

To emulate the DCO, eight DCMs are configured to generate different clock frequencies. These
clock signals are multiplexed using three-bit multiplexer. The resulted clock signals is fed into the
divider that has four dividing phase and the resulted frequencies with the original one enter another

three-bit multiplexer as depicted in Figure 5.13. This way we get six-bit control word.

Emulated digitally-controlled oscillator (DCQO) - ﬂ
FF3
m— 328MHz P
= 300MHz FF2 ——»
= — 280MH
L, pcM | otV iz L | = HFCLK
DM L260MHz | & g [’
+— 240MEH E = FF1 —s—»
oo 22 5 1 P
220MHz | ™ 2
I8 — 200MH B '
DCM ——— 2 FF0 ——>
"> 4
180MHz X
$—>DCM — o x
Strobe_in_CLK_CR "
—» shift
CLK—CW—m: data Control Register
TCLK etk

Figure 5.13 : Emulating the DCO using eight DCMs. The DCO is combined with the four phase divider. The
frequency is chosen by the 6-bit control word register.

The circuitry is designed in such a way to make the control word value is proportional to the
frequency. Table 5.1 shows the resulting frequencies as a function of the six-bit control word. A
total of 40 different frequencies ranged between 11MHz and 325MHz could be obtained with this

method with control word ranged between 0x38 and 0x1F (in six bits).
90

Table 5.1: The generated clock frequencies and their control words using the DCMs in the prototyped chip.

Control Freq. Control Freq. Control Freq. Control Freq.
Word (MHz) Word (MH2z) Word (MH2z) Word (MH2z)
111 000 | 325 000_010 | 140 001_100 |60 010 110 |25
111 001 | 300 000 011 | 130 001_101 |55 010 111 | 225
111 010 | 280 000 100 |120 001_110 |50 011 000 | 20.3125
111 011 | 260 000_101 |110 001_111 |45 011 001 |18.75
111 100 | 240 000 110 |100 010 000 |40.625 |011 010 | 175
111 101 | 220 000 111 |90 010 001 |37.5 011 011 |16.25
111 110 | 200 001 000 |81.25 010 010 |35 011_100 |15
111 111 | 180 001_001 |75 010 011 |32.5 011 101 |13.75
000 000 |162.5 001010 |70 010_100 |30 011_110 |125
000 001 | 150 001 011 |65 010 101 |27.5 011 111 |11.25
5.4 1Ps Under Test (IUTs)

In our emulated chip, four circuits are included as a CUTs; a four-bit adder, an eight-bit
pipelined adder and two instances s820 which is one of the ISCAS-89 benchmarks. Scan chains
are inserted into s820 circuit which has five flip-flops. In one of these benchmarks, the Flip-flops
are doubled. The design has ten ports as shown in Figure 5.14. The first and the second IUTs are

assigned with two ports for each; one input port and one output port. The third and the fourth IUTs

are assigned with three ports for each; one input port, one output port and one scan chain port.

TestData —)DO—) Data Result —)D°—>

2
¥

PS Mask_in —>

IUTO

> Data Result

l'UTl

Port Selection Mask
Serial-in Serial-out

—>PS Mask _out

VALV b v

Ports: 012 3456789

¢ ! {
[>0 Dam Result -3 >0 [>0
IUT 2
sout —>{ >0

Data Resulir

IUT2

sout

{
>c

Scan chain port

Scan chain port

Figure 5.14 : lllustration of assigning the ten port selection bits to the four IUTs.

91

Each IUT is surrounded by four registers; TAP, APP, CAP and TRP. The user select an IUT
and send test data serially to be shifted into the corresponding TAP shift register. Then the data
has to be moved to the AAP register which is connected to the IUT inputs. The CAP register is
connected to the IUT outputs to capture the result. The TRP shift register reads the data from the
CAP register and send them serially to the user. The processor clock (TCLK) drives the TAP and
the TRP shift registers operates by to synchronize the shifting with the processor while the

application clock (CLK _out) drives the APP and the CAP registers.

15t JUT: 4-bit Combinitional Adder
A combinational 4-bit adder has two 4-bit inputs, carry-in bit, carry-out bit and 4-bit output.
The inputs are connected to the 9-bit APP register while the outputs are connected to the 5-bit CAP

register as depicted in Figure 5.15.

Port 0 Port 1

TData_in —>| TResult_out

4
= > —> 4 >
R AR |
cin cout
TCLK *
CLK out

Figure 5.15 : 1% IUT: 4-bit combinitional adder.

e TData_in: The received test data bit from the TACP processor.

e TResult_out: The test result bit of the IUT.

e TCLK: The TACP clock.

e CLK out: The clock out signal of the CSaAC circuit that generates two clock pulses
after each applay-and-capture signal sent from TACP.

e Port 0: Port selection bit indicates that test data will be shifted into IUTO input port.

e Port 1: Port selection bit indicates that test data will be shifted into IUTO output port.

92

2" |UT: 8-bit pipelined Adder
A pipelined 8-bit adder has two 8-bit inputs, carry-in bit, carry-out bit and 8-bit output. The
inputs are connected to the 17-bit APP register while the outputs are connected to the 9-bit CAP

register as depicted in Figure 5.16.

Port 2 Port 3
TData_in —, N — TResult_out
Sl P > 2 |©
> > > >

(" 4
— 4
»| 4 -+ 4
A |coutl
M 41 »
: > 4
>+
Ed VEa’ VEd
coutl cout T’
TCLK ®

CLK out

dvl
ddv
I g I
=
\4

91
—+
v
>
v
(ITI

L[] [wns]
dvD
d3l

Figure 5.16 : 2" IUT: 8-bit piplined adder.

e TData_in: The received test data bit from the TACP processor.

e TResult_out: The test result bit of the IUT.

e TCLK: The TACP clock.

e CLK out: The clock out signal of the CSaAC circuit that generates two clock pulses
after each applay-and-capture signal sent from TACP.

e Port 2: Port selection bit indicates that test data will be shifted into IUT1 input port.

e Port 3: Port selection bit indicates that test data will be shifted into IUT1 output port.

3" JUT: s820 benchmark with scan chain is inserted

The third IUT is s820 which is one of the ISCAS89 benchmarks. It is a sequential circuit that
contains five flip-flops. Before using it, a scan chain is inserted by multiplexing the five flip-flops
inputs. The circuit has 18 inputs which are connected to the APP register and 19 outputs which are
connected to the CAP register as depicted in Figure 5.17. ATPG is used to generate test vectors
with their expected results. Each 23-bit test vector starts by the scan chain five bits followed by the

17 inputs.

93

Port 4
TData_in —> > o

§820 benchmark — scan chain is inserted Port 5
- N

TResult_out

Combinational logic

Port 4 —>
Port 6

scan_enabl
CLK_out —4> [% m
TCLK T_) .- RS)

91

Figure 5.17 : 3" JUT: s820 benchmark with scan chain is inserted.

e TData_in: The received test data bit from the TACP processor.

e TResult_out: The test result bit of the IUT.

e TCLK: The TACP clock.

e CLK out: The clock out signal of the CSaAC circuit that generates two clock pulses
after each applay-and-capture signal sent from TACP.

e scan_enable: turn on the scan chain to be filled with test data.

e Port 4: Port selection bit indicates that test data will be shifted into ITUT3 input port.

e Port 5: Port selection bit indicates that test data will be shifted into IUT3 output port.

e Port 6: Port selection bit indicates that the scan chain of the IUT3 is selected.

4™ 1UT: s820 benchmark with scan chain is inserted and flip-flops are doubled.

The scan chain is duplicated in the s820 circuit to make the fourth IUT. Now, there are two
columns of the flip-flops as depicted in Figure 5.18. The second row stores the previous state of
the first row. One part of the test vector is made ready on the circuit inputs and the other part is
scanned into the first row. Since there are two clock pulses with each apply-and-capture instruction,
the next state will be captured in the scan chain and the current state outputs will be captured on
the CAP register. So, the scan chain with the CAP register will be shifted out to be matched with

the expected results.

94

TResult_out

Port 9 —> : .

Port 7 :

Port 7 —>

Port 8 ‘D .
scan_enable

CLK_out —9->| &)
TCLK
=

Figure 5.18 : 4" IUT: s820 benchmark with scan chain is inserted and flip-flops are doubled.

e TData_in: The received test data bit from the TACP processor.

e TResult_out: The test result bit of the IUT.

e TCLK: The TACP clock.

e CLK out: The clock out signal of the CSaAC circuit that generates two clock pulses
after each applay-and-capture signal sent from TACP.

e scan_enable: turn on the scan chain to be filled with test data.

e Port 7: Port selection bit indicates that test data will be shifted into IUT4 input port.

e Port 8: Port selection bit indicates that test data will be shifted into IUT4 output port.

e Port 9: Port selection bit indicates that the scan chain of the IUT4 is selected.

95

CHAPTER 6

TEST RESULTS

Numerous successful tests were conducted using the implemented FPGA prototype of the
complete test and characterization platform. Many of these tests are discussed in this chapter and
supported with snapshots in detail to illustrate the capabilities of the platform. Some results shown
in this chapter are a little bit different from the ASIC version due to the prototyping issues
mentioned in section 5.3. In the following subsections, a small characterization program is
explained. After that, there are four programs to test the four IPs under test (IUTs) that shows that

the platform is implemented well.

6.1 Maximum Frequency Test

The objective of this test is to determine the maximum possible speed of an IUT (i.e. the
maximum frequency it can operate at). This is done by a test program that changes the chip
frequency within a loop as shown in Figure 6.1. It starts with a specific frequency specified by
initializing the control word to a specific value. The frequency is decremented by incrementing the
control word. The loop lasts for nine times. The program starts with setting the number of loops in
the counter and setting an initial control word. It ends with decrementing the counter and loop if it

does not reach zero. Inside the loop, the processor sends the frequency, measures it and reads the
96

measured frequency register back to the processor. IP testing has to be done here. If the testing

fails then the control-word is incremented and loops again.

[Start]
¥
| Counter =9 |

v

| Control Word = 000F. |

s
-
y

0000 Load UserCounter value 00000009 / Send(bnhn;VWnd = 000E /
0005 SetFrequencyControlWord 000E ¢

0008 SendFrequencyControlWord OF

000A MeasureFrequency 000003FF |

000F ReadFrequencyRegister OF

Measure the chip frequency |

/ Read the measured frequency /
//Testing can be done here «———>

Increment Control Word
Decrement Counter

YES

[Stop]
Figure 6.1 : Code and flow chart of the test program that changes frequency within a loop.

0011 INC CW

0012 DEC UserCounter
0013 JNZ 0008

0016 Stop

Figure 6.2 below shows a snapshot of the execution of the program. For example, take the
second execution of the loop. The user counter contains the value is 7 and CW contains 10. The
measured frequency is calculated from this formula:

FR X Processor Frequency

Measured Frequency = No. of cycles

The read frequency register on FR is 0340 which is 832 in decimal. The processor frequency is

50 MHz. The number of cycles is (400) which is 1024 in decimal. So, the measured frequency =

% = 40.625MHz which is similar to exact value in Table 5.1. Potential error can be

1 X50MHz

measured from the same formula = 0.05. This error ratio can be minimized if needed by

97

increasing the No. of cycles. This experiment showed the correct operation of the platform and the

accuracy of the frequency measurement scheme.

N Test and Characterization Processor - File:D:\Emran 111\Thesis\Thesis Work\Userlnterface\bin'\Debug\test_frequency_loop.ta... l =NACN X

| Writing Programs | Communication I info | Executing Programs

[coms [+

Instruction Memory Test Data Memory

Address: 0000 Sjze: O00AD

Write Address (PCWrite): 0000 12 Write Address (DCWrite): 0000
Read Address (PCRead): 0011 06 Read Address (DCRead): 0000

Flags
Frequency =FR = Cycles = Processor Frequency
Measured Frequency =832 = 50 = 1024 =40.625MHz = §F

Address: 0000 Size: 00AD |25

00
00

Test Result Memory

Address: 0000 Size: 00AD |&5

01 0000 Load_UserCounter_value 00000009 - 00| 0O 00O 0O OO ODOOO0D0O0 - 00 | 0O 0O OO 0O 0O 0D 0D OO =
02 0005 SetFrequencyControlWord 000E L 08 08
03 0008 SendF requency Control£Word OF £| |15 0000 0000 00 00 00 00 15| 00 00 00 00 00 00 00 00
04 000A MeasureFrequency 000003FF 1z | 0O 00 0O 00 OO 00 00 00 1z | 00 00 0O 0O 00 00 00 00
05 000F ReadFrequencyRegister OF 20 | 0O 00 00 00 OO 00 00 00 20 | 00 00 00 0O 00 00 00 00
* rc " ;g 00 00 00 00 00 00 00 00 ;g 00 00 00 00 00 00 00 00
7 2 _UserCounter E E
08 0013 JNZ 0008 52| 0000000000000000 = |, |0000000000000000 =
09 0016 Stop 40 | 00 00 00 00 OO 00 00 00 0 | 00 00 0O 0O 00 00 00 00
0a 0017 fetch 43 | 0O 00 00 00 OO 00 00 00 43 | 00 00 00 0O 00 00 00 00
3‘; ggig ::ﬂ gg 00 00 00 00 00 00 00 00 gg 00 00 00 00 00 00 00 00
0d 001A fetch &0 | 00 00 00 00 0O 00 00 00 =0 | 00 00 00 00 00 00 00 00
Oe 001B fetch 55 | 00 00 00 00 OO 00 00 00 55 | 00 00 00 0O 00 00 00 00
25000011(13) f:tc:]ll 70| 0O 00 00 00 00 00 00 00 70 | 00 00 00 0O 00 00 00 00
et 78 78
11 001E ferch 7= | 00 00 00 00 00 00 00 00 7= | 00 00 00 00 00 00 00 00
12 001F fetch 53 | 00 00 00 00 00 00 00 00 53 | 00 00 00 00 00 00 00 00
13 0020 fetch - 30 - 30 -

Write Address (TDWrite): 0000 00
Read Address (TDRead): 00A0 00

Fun Read from chip Update memory after each execute
[Next |1 [Runal[swp || Next | [Reset | PortSelection Mask (5M): 00 Datapath
Address: 0011 Line: 6 06 TestData (ID): 00 Instruction Register (IR:): 16
Frequency Measuring TestResult (TR): 00 Word Counter (WC): 00
Cveles: 400 Control Word (CW): 0010
yeles: Frequency (FR): 0340 i
Processor Frequency: S0 Stack pointer: 0000
Measured Frequency: 40.62 MHz User Counter: 00000007

General Counter (CR): FFFFFFFF

Figure 6.2 : Execution snapshot of the test program that changes frequency within a loop.

6.2 Testing the 15t IUT: the 4bit Combinational Adder

The presented program here is used to test IUTO, the combinational adder. To start, the user
writes the program and downloads it to the instruction memory and downloads the test data
followed by the expected results to the test data memory. The program sends the ten test-vectors,
receives the test-results and compares them with expected-results.

e The test data (10 vectors, 20 bytes): 02, 16, 07, 03, 06, 0C, 04, 31, BD, 1E, 04, 1C,
CB, 61, 01, 09, A2, 21, 04, 0A.

e The expected results (10 vectors, 10 bytes): 09, 0A, 12, 06, 1C, 11, 0C, 0A, 03, OE.
That is: 2+6+1=09, 7+3+0=0A, 6+C+0=12 and so on.

98

e Examples: A + B + cin = {cout, Sum}
2+6+1=09, 7+3+0=0A, 6+C+0=12 and so on.

e The program (15 instructions, 58 bytes):

0000 //Initialize addresses

0000 Load_DCRead 0000

0003 Load_RCWrite FFFF

0006 Load_UserCounter_value 0000000A

000B //Start Test Process Loop

000B SendSelectionMask 00000009, 0000

0012 SendSelectionMask 00000000, 0000

0019 SendTestData 00000000, 01

001F SendTestData 00000000, 02

0025 ApplyAndCapture

0026 ReadResult 00000000, 06

002C DEC_UserCounter

002D JNZ 0019

0030 //Compare All

0030 ResetCompareFlag

0031 Load_RCRead 0000

0034 Compare 00000009

0039 Stop
The program starts by setting the test-data reading-address register to 0 and the writing address

test results to OXFFFF. The user counter is loaded by 10 which is the number of test vectors.
After that, the program loads a byte from test data memory and sends four bits from it. It loads
another byte and sends five bits from it. This makes 9-bit test data which represents A, B and cin
inputs for the adder. After that, apply-and capture is sent to the circuit and the result is read back
to be stored in the test result memory as one byte. The addition result is the first 5 bits from the

stored byte which represents sum and cout. The process is iterated ten times for ten test vectors. At

99

the end the program compares the ten-byte expected results with the 10-byte results, update the
compare flag (CF) and save the comparison on the test result memory.

Figure 6.3 shows a snapshot of the program after finishing the program execution and reach the
stop instruction. CF is off which means that the test result matches the expected result.

Figure 6.4 shows three instances of memory viewer. On the left the test data memory shows the
ten test vectors which are twenty bytes. The test result is shown in the middle window. The

rightmost window shows that the comparison result in zeroes for all ten comparison which means

that all bytes matches the expected results.

I — —
P o " = §

| Executing Programs | Communication COM Port: COM3 - Connect |l Test-data |&ll Test-result

Instruction Memory Instruction Mem. addresses Test-result Mem. addresses

Address: 0000 Size: 003D 2 Upload | PCWrite: 0000 0D RCWrite: 0013 00

0000 Load_DCRead 0000 PCRead: 0034 00 RCRead: 000A 00
0003 Load_RCWrite FFFF
- Test-data Mem. addresses

0006 Load UserCounter value 0000000A
000B //Start Test Process Loop DCWrite: 0000 02 - Update

. e ist
000E SendSelectionMask 00000009, 0000 DCRead: 001E |01 Registers

0012 SendSelectionMask 00000000, 0000
0019 SendTestData 00000000, 01 Datapath _
DO1F SendTestData 00000000, 02 Instruction Register (IR:): 20 Read back from chip
0025 ApplyAndCapture . Port Mask (5M): 00
0026 ReadResult 00000000, 06 Stack pointer: 0000

TestData (TD): 08

002C DEC_UserCounter User Counter: 00000000
002D JNZ 0019 TestResult (TR): 07

0030 //Compare All Break Point (BP): 0000

0030 ResetCompareFlag .
0031 Load_RCRead 0000 Control Word (CW): 0000 IF

0034 Compare 00000009 Frequency (FR): 0000 PF AckF
0039 Stop . N .
Chip frequency measuring

Cyeles: 400

Flags

Addr. Line Code [¥]Show comments

Processor Frequency: 50
0032 19 20 Set Break Point 1) AMEHz
MHz

Run Measured Frequency:

[Single step][Reset PCRead][Run All][Stop] Frequency = FR * Processor Frequency + Cyeles
Measured Frequency =0 = 50 + 1024 = 0MHz

Update test-result memory after each execute

Figure 6.3 : Program execution window snapshot. The program tested a compinational 4-bit adder.

100

F—_— = = =l

File

[Byte: | 0002 [[
oo n:lr'—l

00000
00000 |
00000
00000
00000
ooo00
00000
00 | 00000
00 | 00000 | -
RCWrite=0013|00 RCRead=08D0|00

[_Byte' | oooo E[“
» o000 Elm

0001 01010
0002 01001 |
0003 01100
0004 00111
0005 10001
0006 00110
0007 01010
0008 03 |11000
0009 0E |01110| - ||
RCWrite=0013[00 RCRead=08D0|00

|[Byte:]I}DDD 2 Do oad[prload].—
o000 Eﬂ

oo 111011000
0002 06 |0C |011000110
0003 04 |31 |001010001
0004 BD |1E |101101111
0005 04 |1C |001000111
0006 CE |61 |[110110000
0007 01 |09 |[100010010
0008 A2 |21 | 010010000
0009 04 |0A |001001010 -~
000 S:HMI DCWrite=0000[02 DCRead=001Ej01

m

12
06
1C
11
ocC
DA

oo
oo
oo
oo
oo
oo

Figure 6.4 : Memory windows snapshot after executing the test program of the compinational 4-bit adder.
The three windows show the test data, the test result and the comparision.

6.3 Testing the 2" IUT: the 8-bit Pipelined Adder

In pipelined circuits multiple clock cycles is required to reach the desired result. In the pipelined
adder test program, two (or more) apply-and-capture instructions are needed to empty the pipeline
and get the correct summation result.

e The test data (10 vectors, 30 bytes): 7C, 01, 1D, A3, 61, 02, 19, 15, 3C, 57, 16, 8B,
06, 0D, 3D, 01, 03, 00, 11, 76, 07, OE, 33, 2E, B3, 55, 03, 0C, 96, 43

e The expected results (10 vectors, 20 bytes): 4E, 01, C4, 00, DF, 00, 0D, 01, E4, 00,
04, 00, 87, 00, F1, 00, ES8, 00, 42, 00

e Examples: A+ B + cin = cout Sum
7C+D1+1=01 4E, A3+21+0=00 C4, 19+C5+1=00 DF, 57+B6+0 = 01 0D and so on.

e The program (17 instructions, 65 bytes):

0000 //Initialize addresses
0000 Load_DCRead 0000
0003 Load_RCWrite FFFF
0006 Load_UserCounter_value 0000000A
000B //Start Test Process Loop
000B SendSelectionMask 00000009, 0000
0012 SendSelectionMask 00000002, 0002
0019 SendTestData 00000000, 05
001F SendTestData 00000000, 01
0025 SendTestData 00000000, 02
101

002B ApplyAndCapture
002C ApplyAndCapture
002D ReadResult 00000001, 06
0033 DEC_UserCounter
0034 JNZ 0019
0037 //Compare All
0037 ResetCompareFlag
0038 Load_RCRead 0000
003B Compare 00000009
0040 Stop
Figure 6.5 shows a snapshot of the program after finishing the program execution and reach the

stop instruction. CF is off which means that the test result matches the expected result.
Figure 6.6 shows two instances of memory viewer. The left window shows the test data memory
which consists of 10 vectors, 3 bytes for each. The rightmost window shows that the test results

which consists of 10 vectors, 2 bytes for each.

L et an aract

| Executing Programs | Communication COM Port: COM3 - Connect |l Test-data |all Test-result =

Instruction Memory Instruction Mem. addresses Test-result Mem. addresses

Address: 0000 Size: 0045 PCWrite: 0000 0D RCWrite: 001D 00
0000 //Initialize addresses +| PCRead: 0041 00 RCRead: 0SD0 00
0000 Load DCRead 0000 T
0003 Load RCWrite FFFF Test-data Mem. addresses
0006 Load_UserCounter_value 0000000A DCWrite: 0SCE 00 .. Update
000B //Start Test Process Loop = Registers
000B SendSelectionMask 00000009, 0000 ||| DCRead: 0028 |04
0012 SendSelectionMaslk 00000002, 0002 Datapath i
0019 SendTestData 00000000, 05 Instruction Register (IR:): 20 Read back from chip
001F SendTestData 00000000, 01 . Port Mask (SM): 00
0025 SendTestData 00000000, 02 Stack pointer: 0000
002B ApplyAndCapture - TestData (TD): 14

=L ApPIY: User Counter: 00000000
002C ApplyAndCapture TestResult (TR): 00
002D ReadResult 00000001, 06 Break Point (BP): 0000
0033 DEC_UserCounter . Flags
0024 JNZ 0010 Contrel Word (CW): 0000 IF
0037 //Compare All Frequency (FR): 0000 PF AckF
0037 ResetCompareFlag

Chip frequency measuring
Cvcles: 400

Addr. Line Code Show comments

0000 21 0d 00 00 St Break Point Processor Frequency: 50 MHz

Run Measured Frequency: 0 MHz

[Single step][Reset PCRead ” Run All ” Stop] Frequency = FR = Processor Frequency = Cycles
Update test-result memory after each execute Measured Frequency =0 = 50 + 1024 = 0MHz

Figure 6.5 : Program execution window snapshot. The program tested a compinational 4-bit adder.

102

o Test-data memo C=ra X
.-

File Eil
[Byte:] 0000 ;} wnload [Lpload]-lddress 0000 .— [Byte:] 0000 [Lpload]j—
b 0000 mﬂm ou11111010m1o111 3 0000 ﬂm 011100101 (& 3
0001 11000101100001000 001000110
002 18 15 3C |10011000101000111 DF 00 111110110
003 |57 16 |88 |11101010011011010 0D 01 101100001
004 06 OD 3D |01100000101110111 E4 00 001001110
005 01 03 00 |10000000110000000 04 00 001000000
005 11 76 |07 |10001000011011100 87 00 111000010
007 | OE 33 |2E |01110000110001110 FL 00 100011110
008 B3 55 03 |11001101101011000 E8 00 000101110
008 | OC 96 |43 |00110000011011000 - | 42 |00 |010000100 - ||
|[t=0000000 V=:564 F=:000008C DCWrite=08CF|00 DCRead=0028]04 ho0CE:75[0001 RCWirite=001D{00 RCRead=08D0J00

Figure 6.6 : Program execution window snapshot. The pogram tested a compinational 4-bit adder.

6.4 Complete Testing and Characterizing Program

The program algorithm is illustrated in Figure 6.7. The program starts by initializing the control
word and set the at-speed mode (select the high frequency clock). Then it starts two loops using
the user counter. It stores the user counter in the test result memory temporary to be able to use it
as two counters for the two loops. The inner loop is responsible for sending the 282 test vectors to
the TSC and reads the result back. The outer loop has two jobs. First, it is responsible of changing
the control word and sending it to the TSC to change the frequency of the high clock. Second, it
compares the test results and store the comparison into memory. If the comparison results in non-
zero value the comparison flag is turned on the execution get out of the outer loop. Otherwise the

outer loop continues until reaching the maximum number of iteration.

103

1. Initialize

2. Measure frequency

3. Initialize addresses

4. Testing
1. Send and set inputs

2. Send scan chain

3. Apply three clocks

4. Read output

5. Read scan chain
6. Loop again to 4.1and
send the next test vector

5. Compare the test result with
the expected result
6. Decrement times counter

7. If test times reach the limit
goto 9

8. if compare correct goto 2

9. Stop

[Start]
0000 SetFrequencyControlWord 0017
0003 SetHFClock
0004 Load_UserCounter_value 00000025 (1) | Initialize |
0009 Load_RCWrite 0900 .
000C Store_UserCounter \l/
000D SendFrequencyControlWord OF @ / Measure frequency /

000F MeasureFrequency 000003FF

0014 ReadFrequencyRegister OF

0016 Load_DCRead 0000

0019 Load_RCWrite FFFF

001C Load_UserCounter_value 0000011A
0021 SendSelectionMask 00000008, 0009
0028 SendTestData 00000000, 05

002E SendTestData 00000000, 04

0034 SendTestData 00000000, 00

003A ApplyAndCapture

003B SendSelectionMask 0000000B, 000B @ /
0042 SendTestData 00000000,03

0048 SendSelectionMask 0000000B, 0000

004F SendSelectionMask 00000009, 0009 I

©)! Initialize addresses |

@D\l

Send inputs /

Send scan chain /
]
Apply three clocks |

0056 ApplyAndCapture

0057 ApplyAndCapture

0058 SendSelectionMask 00000008, 000A . (19)|/ Read output /
00SF ReadResult 00000002, 06

0065 SendSelectionMask 0000000B,000B @ Read scan chain l

006C ClearTestDataRegister
006D ReadResult 00000000,07
0073 DEC_UserCounter

0074 JNZ 0021

0077 ResetCompareFlag

0078 Load_DCRead 0468
007B Load_RCRead 0000
007E Compare 00000467

0083 Load_RCWrite 0901
0086 Load_UserCounter_Mem
0087 DEC_UserCounter

0088 Load_RCWrite 0900
008B Store_UserCounter

008C JZ 0093

008FDEC_CW

0090 JCompareCorrect 000D
0093 Stop

*
YES

@ |C0mpare result with expectedl

@ | Decrement tlmes counter |
~
-
NO
Stop]

@

O

Figure 6.7 : A complete test program and its flow chart for the S820S benchmark IUT.

IUT 3 and IUT 4 have scan chains. The program sends the input data at first then it send apply-
and-capture signal to move the input data from the TAP to the CAP to make the circuit inputs

ready. After that, the program fills the scan chain. At this point, the IUT inputs and scan chain are

ready with the test vector and apply-and-capture can be sent.

Reading the result also consists of two phases, reading the output and reading the scan chain.

Testing and characterizing the 3@ IUT

In a normal ASIC test it has to be one apply-and-capture signal however, in FPGA prototype,

the first apply-and-capture always results in one clock pulse while the followed ones produce two

104

pulses due to the prototyping issues mentioned in section 5.3. Hence, the test result in this program
resulted by applying three clocks to the IUT 3. The associated expected results also are generated
using a simulator and taken after applying three clock pulses.

e The test data (282 vectors, 1128 bytes): 22, 76, 07, 03, 66, 5C, 04, 01, ...
e The expected results (282 vectors, 1128 bytes): 00, 60, 00, 00, 00, 60, 00, 00, ...
e The program (43 instructions, 148 bytes):

0000 SetFrequencyControlWord 0008
0003 SetHFClock

0004 Load_UserCounter_value 00000025
0009 Load_RCWrite 0900

000C Store_UserCounter

000D SendFrequencyControlWord OF
000F MeasureFrequency 000003FF

0014 ReadFrequencyRegister OF

0016 Load_DCRead 0000

0019 Load RCWrite FFFF

001C Load_UserCounter_value 0000011A
0021 SendSelectionMask 00000009, 0004
0028 SendTestData 00000000, 05

002E SendTestData 00000000, 04

0034 SendTestData 00000000, 00

003A ApplyAndCapture

003B SendSelectionMask 00000009, 0006
0042 SendTestData 00000000, 03

0048 SendSelectionMask 00000009, 0000
004F SendSelectionMask 00000004, 0004
0056 ApplyAndCapture

0057 ApplyAndCapture

0058 SendSelectionMask 00000009, 0005
005F ReadResult 00000002, 06

0065 SendSelectionMask 00000009, 0006
006C ClearTestDataRegister

006D ReadResult 00000000, 07

0073 DEC_UserCounter

0074 JNZ 0021

0077 ResetCompareFlag

0078 Load_DCRead 0468

007B Load_RCRead 0000

007E Compare 00000467

0083 Load_RCWrite 0901

105

0086 Load_UserCounter_Mem
0087 DEC_UserCounter
0088 Load_RCWrite 0900
008B Store_UserCounter
008C JZ 0093
008F DEC_CW
0090 JCompareCorrect 000D
0093 Stop
Figure 6.8 shows a snap shot of the user interface tool after executing the program with four

snapshots from memories for the test data, test results, expected results and comparison. The latest
test was conducted using a 180 MHz. The CF flag indicates that the comparison detect a
discrepancy between results and expected results at this speed and the comparison window shows

where the discrepancy exists.

106

| Witing Programms |

Executing Programs

Communication

com

Port COM3 - © Connect kall Test-data (Gl Test-result 5

Instruction Memory
Address: 0000 Size: 0040 |7 Upload

00032 SetHFClock

Instruction Mem. addresses Test-result Mem. addresses

PCWrite: 0000 1E RCWrite: 0904 00
PCRead: 0094 00 RCRead: 0468 00

Test-data Mem. addresses
DCWrite: 0000 22

DCRead: 0SD0 00

LDatapath

Instruction Register (IR:): 20
Stack pointer: 0000

0000001

0004 Load_UserCounter_value 00000025
0009 Load RCWrite 0900

000C Store_UserCounter

000D SendFrequencyControlWord OF
000F MeasureFrequency 000003FF

0014 ReadFrequencyRegister 0F

0016 Load_DCRead 0000

0019 Load RCWrite FFFF

001C Load_UserCounter value 0000011A
0021 SendSelectionMask 00000009, 0004
0028 SendTestData 00000000, 05

002E SendTestData 00000000, 04

0024 SendTestData 00000000, 00
003AApplyAndCapture

003B SendSel Mask 00000009, 0006

@ Update

Read back from chip

PortMask (SM): 00
Test Data (TD): 00

TestResult (TR): 01

User Counter:
Break Point (BP): 0000
Control Word (CW): FFFE

Frequency (FR): 0E62
Chip freq

Flags
S5F CF
PF AckF

¥ measuring
Cyeles: 400

Addr. Code [V] Show comments
0000 43

1e 08 00 Set Break Point
Run

| Single step || Reset PCRead || Run All |[Stop |

[7] Update test-result memory after each execute

Line
Processor Frequency: 50

Measured Frequency: 179.79

MHz
MHz

Frequency =FR < Pro or Frequency + Cycles
Measured Frequency = 3682 =50 + 1024 =179.78515625MHz

get an error at 180MHz (CF is on).

a A snapshot of the user interface showing that IUT3

(2 Upload|address: 0000 Size: 0200
5 24

00 | 000000000000000000110000
00 | 000000000000000000110000
00 | 000000000000001000100000
02 | 000100000000000000001001
00 | 000000000000000000110000
00
02
00
00

011B
oic
011D
0E
011k
0120
21
2z -

000000000000000000110000
000100000000000010000000
000000000000000000000000
000000000000001000100000 | -
size:000008D0 RCWrite=0904|00 RCRead=0468[00 .:

888888888~

3
00
00
00
04
00
00
00
00
00

vsdsl |

[byte:00000000 |

¢) Test Results

ol Test-data memory E@g
File
[Bxtes] 0000 |2 load || Upload |Address: 0000 | Stze: 02D0 Vector: |011A [2 Upload|Address: 0000 size: 08D
8 8 3 5 24 - ' 5
00 00 00
o118 00 |60 (00 |00 |000000O00000000000110000 o118 00 |00 00
o11c 00 |22 (00 |00 |00000OO00000001000100000 o11c 00 |00 00
o110 00 |80 (04 |02 |000100000000000000001001 | o110 00 |00 00
o1iE 00 |60 |00 |00 |000000000000000000110000 | o1iE 00 |00 00
o1tk 00 |60 (00 |00 |000000000000000000110000 o1tk 00 |00 00
0120 00 |00 (00 |10 |100000000000000000000000 0120 00 |08 100100000000000010000000
0121 00 |60 (00 |10 |100000000000000000110000 0121 00 |60 100000000000000000110000
2 00 |22 |00 |00 | 000000000000001000100000 - || 2 00 |00 000000000000000000000000 ||
byte00000000 | Ved51 | size:000008D0 DCWrite=0000[22 DCRead=08D0(00 :| [l byte:00000000 [vetsi 5ize:000008D0 RCWrite=0904[00 RCRead=0468[00 :

(d) Expected Results

(e) Comparison
Figure 6.8 : IUT3 testing: Snapshots for the user interface with four instances of the memory viewer after executing the
IUT 3 test program. At this point, not all test results matches the expected. The comparison window shows some non-
zero values where a difference exists. This indicates that the chip cannot handle the currrent frequency.

107

Testing and characterizing the 47 IUT

In a normal ASIC test it has to be one apply-and-capture signal however, in FPGA prototype,
the first apply-and-capture always results in one clock pulse while the followed ones produce two
pulses due to the prototyping issues mentioned in section 5.3. Hence, the test result in this program
resulted by applying three clocks to the IUT 4. Two pulses will generate the results and the third
one will produce the result after applying two pulses. The associated expected results also are
generated using a simulator and taken after applying two clock pulses.

e The test data (282 vectors, 1128 bytes): 22, 76, 07, 03, 66, 5C, 04, 01, ...
e The expected results (282 vectors, 1128 bytes): 00, 60, 00, 00, 00, 60, 00, 00, ...
e The program (43 instructions, 148 bytes):

0000 //initialize

0000 SetFrequencyControlWord 0016
0003 SetHFClock

0004 Load_UserCounter_value 00000025
0009 Load_RCWrite 0900

000C Store_UserCounter

000D //Measure frequency

000D SendFrequencyControlWord OF
000F MeasureFrequency 000003FF

0014 ReadFrequencyRegister OF

0016 //nitialize addresses

0016 Load_DCRead 0000

0019 Load RCWrite FFFF

001C Load_UserCounter_value 0000011A
0021 //Send inputs

0021 SendSelectionMask 00000009, 0007
0028 SendTestData 00000000, 05

002E SendTestData 00000000, 04

0034 SendTestData 00000000, 00

003A ApplyAndCapture

003B //Send scan chain

003B SendSelectionMask 00000009, 0009
0042 SendTestData 00000000, 03

0048 //Apply three clocks

0048 SendSelectionMask 00000009, 0000
004F SendSelectionMask 00000007, 0007

108

0056 ApplyAndCapture

0057 ApplyAndCapture

0058 //Read output

0058 SendSelectionMask 00000009, 0008
005F ReadResult 00000002, 06

0065 //Read scan chain

0065 SendSelectionMask 00000009, 0009
006C ClearTestDataRegister

006D ReadResult 00000000, 07

0073 //Loop for the next test vector

0073 DEC_UserCounter

0074 JNZ 0021

0077 //Compare test result with expected
0077 ResetCompareFlag

0078 Load_DCRead 0468

007B Load_RCRead 0000

007E Compare 00000467

0083 //Decrement times counter

0083 Load_RCWrite 0901

0086 Load_UserCounter_Mem

0087 DEC_UserCounter

0088 Load_RCWrite 0900

008B Store_UserCounter

008C //if time reach maximum then exit
008C JZ 0093

008F //if correct result change frequency and loop
008F DEC_CW

0090 JCompareCorrect 000D

0093 //Exit

0093 Stop

109

[Witng Pogans |

Instruction Memory

Address: 0000 Size: 0040 |2 Upload
0000 SetFrequencyControlWord 0008

0003 SetHFClock

0004 Load_UserCounter_value 00000025
0009 Load RCWrite 0900

000C Store UserCounter

000D SendFrequencyControlWord O0F
000F MeasureFrequency 000003FF

0014 ReadFrequencyRegister 0F

0016 Load_DCRead 0000

0019 Load RCWrite FFFF

001C Load_UserCounter_value 0000011A
0021 SendSelectionMask 00000009, 0004
0028 SendTestData 00000000, 05

002E SendTestData 00000000, 04

0034 SendTestData 00000000, 00

003A ApplyAndCapture

003B SendSel Mask 00000009, 0006

COM Port: COM3 Connect |l Test-data |l Test-result
Instruction Mem. addresses Test-result Mem. addresses

PCWrite: 0000 1E RCWrite: 0904 00
PCRead: 0094 00 RCRead: 0468 00

Test-data Mem. addresses
DCWrite: 0000 22

DCRead: 0SD0 00

Datapath
Instruction Register (IR:): 20
Stack pointer: 0000
0000000C

Executing Programs | Communication M

-

2 Update

Read back from chip

PortMask (SM): 00
Test Data (TD): 00

TestResult (TR): 01

User Counter:
Break Point (BP): 0000
Control Word (CW): FFFD
Frequency (FR): 0FFB

Chip freq

Flags
SF CF

¥ measuring

Cycles: 400

Addr. Code [¥] Show comments -
0000 43

Processor Frequency: 50
1e 08 00 Set Break Point guenel
Run

Measured Frequency: 199.76
[Single step][Reset PCRead][Run All][Stop]

[7] Update test-result memory after each execute

Line
MHz
MHz

Frequency =FR = Processor Frequency + Cycles
Measured Frequency = 4091 = 50 = 1024 =199.755850375MH

Vector: | 0114 [£ Upload|address: 0000 Size: 0800
2

000000000000000000110000

3
00011010001000110111111

76

5C

00001011001100011101001

6E

11100101101010111011001

61

01001110100111000011100

21

01010010001011000010001

30

01000011111010000110011

13

11110010111011100100000

39

00000111110011001110100

2A

04

10110000110100101010001

000000000000000000110000

000000000000001000100000

000110000000000111000000

000000000000000000110000

000000000000000000110000

100000000000000000110000

000000000000000000000000

888888888~

5

oo
oo
oo
03
oo
oo
10
oo
oo

000000000000001000100000

[byte:00000000

V451

| size:000008D0 DCWrite=0000|22 DCRead=08D0[00 .:

[byte00000000 | Vs451

3
00
00
00
00
00
00
00
00
00

|

size:00000800 RCWrite=0904(/00 RCRead=0468(00 .:

(b) Test data ¢) Test Results
o-! Test-data memory | -: - _lilﬂlgl = -
File File
Vector: |011A | 2 nload || & Uple ﬁ Vector: | 0114 [;_E} Uplqaﬂ]:\ddmgs: 0000 Size: 08DO
B8 B8 3 5 24 x 8 8 3 5 24 -~
1A DO DO DO DO DO000D0000000000000000000
0118 00 60 00 |00 | 000000000000000000110000 0118 o0 (0O (0O OOC | 000000000000000000000000
oic o0 |22 00 |00 | O0O0000OOOOOO0001000100000 01c o0 |00 |00 OO | 000000000000000000000000
01D 00 1C 00 |03 | 000110000000000111000000 i 011D o0 (0O (0O ©C 0000000000000CO000000000,
01E 00 60 00 |00 |000000000000000000110000 = 011E 00 |00 |00 OO | 000000000000000000000000 =
01F 00 60 00 |00 | 000000000CO0000000110000 011F o0 |0O (OO OC 0000000000000CO000000000
0120 00 60 00 |10 | 100000000000000000110000 0120 00 |00 |00 OO | 000000000000000000000000
m21 o0 00 00 |00 | 000000000C00000C00000000 0121 00 |0O |00 OO | 0000000000000C0000000000
m22 00 |22 00 |00 | 00000000COCO0001000100000 = 022 o0 |00 |00 OO | 000000000000000000000000 -
byte00000000 | VsdS1 | size=000008D0 DCWrite=0000|DD DCRead=0000[0D : (Il byt=00000000 | Vsd51 | cize:000008D0 RCWrite=000400 RCRead=0463[00 :
(d) Expected Results (e) Comparison

Figure 6.9 : IUT 4 testing: Snapshots for the user interface with four instances of the memory viewer after executing
the test program. At this point, not all test results matches the expected. The comparison window shows some non-
zero values where a difference exists.This indicates that the chip cannot handle the currrent frequency.

110

6.5 Testing of the Loop Back from the chip

The developed platform allows testing of the TSC circuitry itself by scanning in and out test
data and port selection masks. Figure 6.10 below shows a small program execution that sends test
data to the chip. The purpose of this program is to see the returned back data in the TD register.
The test data memory is initially loaded with the test data memory with the data shown in
Figure 6.10 which starts with 22 at location O in the test data memory. The program, starting with
address 0, it selects the tenth port which represents the input port for the fourth IUT. Then it sends
8 bits from the 1% byte 0x22, then sends 7 bits from the second byte 0x76, then sends three bits
from the third byte 0x07 then 8 bits from the forth byte 0x03. In each time, the test data is sent to
the TSC and is automatically looped back to the TACP. The total number of sent bits is 26 which
are 01000100 0110111 111 11000000. Since the number of inputs in IUT4 is 18 bits, the first 8
bits will be returned back to the processor (value of 22). As can be seen in the user interface

(Figure 6.10), TD register contains 22 and this is correct.

111

M Test and Characterization Processor - User Interface - feedback_TD.tacp E=e ® |

Wiiting Programs | Executing Programs |Communication| COM Port: |COM3 |"| Connect | Test-data Mem.
Instruction Mem. addresses Test-result Mem. addresses

Instruction Memory
Address: 0000 Size: 00d0 PCWrite: 0000 0D RCWrite: 0001 00
0000 Load_DCRead 0000 +| PCRead: 0022 20 RCRead: 0000 00
I | 0003 SendSelectionMask 0000000B, 0009 E I
I | 000A SendTestData 00000000, 05 5| Test-data Mem. addresses
0010 SendTestData 00000000, 04 DCWrite: 08D0 00 ’
0016 SendTestData 00000000, 00
DO1C SendTestData 00000000, 05 DCRead: 0004 66
0p Datapath
ggfi :313 Instruction Register (IR:): 1D Read back from chip
24 fe Port Mask (SM): 00
0025 fetch Stack pointer: 0000 ort Mask (SM)
> Test Data (TD): 22
ooS fowen User Counter: 00000000 (D)
=7 let TestResult (TR): 00
0028 fetch Break Point (BP): 0001
0029 fetch i Flags
002A fetch Contrel Word (CW): 0000 ZF
gg“::g :eig Frequency (FR): 0000 AckF
2C fei .
002D fetch _ | ~Frequency Measuring
S Cycles: 400 Reset All
Addr. Line Code [| Show comments REg‘.IS?EtEI‘S

Processor Frequency: 50 Hz
002z 7 20 Set Break Point q " A
MHz

Run Measured Frequency: 0

[Single step H Reset PCRead ” Run All ” Stop] Frequency =FR * Processor Frequency + Cycles
Measured Frequency =0 50 + 1024 =0AMHz

Update test-result memory after each execute

Figure 6.10 : Loop back testing; test-data is sent to the TSC and received back. The TD register gets back the
returned test-data (TD = 0x22).

Another test program was run to check the selection mask register SM, Figure 6.11. As can be
seen from the figure, the SM register contains 60 which is 0110 _0000_0000. This means that, out
of the available twelve ports, ports number nine and ten had been selected. To achieve this, the test
program first sends the 12-bit sequence 1000_0000_0000 using the following instruction:

0000 SendSelectionMask 0000000B, 0000
Then it sends the following 10-bit sequence 0000_0000 01 using the following instruction:
0007 SendSelectionMask 00000009, 0009
Hence the value of the 12-bit selection-mask register SM becomes 0000_0000_0110. Finally,
the byte 0110 _0000 is shifted out to the SM register using the instruction:
000E SendSelectionMask 00000007, 0000

112

Thus we get the value 60 for SM register in the processor as it shown in Figure 6.11 below.

r -— -—— - — - - -_ - - - al
M Test and Characterization Processor - User Interface - 4IUTs_4thIUT_HCLK1 doublepulses 3rdvector Q... E@g
Writing Programs | Executing Programs |Ccmmunicaﬁcn| COM Port: |COM3 |v| Connect ol Test-data Mem. E
Instruction Memory Instruction Mem. addresses Test-result Mem. addresses
| Address: 0000 Size: 0040 PCWrite: 0000 1C RCWrite: 0001 00 |
0000 SendSelectionMask 00000008, 0000 +| PCRead: 0015 1C RCRead: 0000 00
0007 SendSelectionMask 00000009, 0009 |;| Test.data Mem. add
000E SendSelectionMask 00000007, 0000 S|~ lest-data Vem. adiresses .
0015 SendSelectionMask 00000007, 0000 DCWrite: 08D 00 - Update
001C SendSelectionMask 00000007, 0000 i looot lee *" Registers
0023 Stop DCRead:
0024 fetch Datapath
ggi:_ :3:3 Instruction Register {(IR:): 1C Read back from chip
€ Port Mask (5M): 60
0027 fetch Stack pointer: 0000 ort Mask (SM)
TestData (TD): 00
s User Counter: 00000000 st Data (ID)
et TestResult (TR): 00
002A fetch Break Point (BP): 0000
002E fetch . Flags
002C fetch Control Word (CW): 0000 ZF
002D fetch Freguency (FR): 0000 AckF
002E fetch c
002F fetch - || [Frequency M“;:“;"“E 100
S veles: Reset All
Addr. Line Code [| Show comments = "
= Processor Frequency: 50 MHz Registers
ols 4 1c 07000000 00 | Set Break Point N
Run Measured Frequency: 0 MHz
[Single step J[Reset PCRead H Run All][Stop] Frequency =FR * Processor Frequency + Cycles
Update test-result memory after each execute Measured Frequency =0 x 50 = 1024 = 0MHz

(S
Figure 6.11 : Test program for the selection mask SM register. SM contains the looped back selection mask that
was sent (SM = 0x60)..

113

CONCLUSION AND FUTURE WORK

Test and characterization processor is designed and implemented on FPGA boards. TSC with
some IPs were emulated on another FPGA board. Graphical user interface is designed to effectively
use the processor. The system is successfully tested running many programs on it. Then all
circuitries are designed. Implementation is done on two Spartan 3A FPGA boards. Graphical user
interface is designed and tested. Comprehensive test programs are written and run on the processor.

Test results show that the processor works as planned.

114

CHAPTER 7

APPENDIX

A. Instruction-Set List with their microinstructions

Explaining and designing of some instructions is stated in section 4.6. In this section the

complete list of the thirty three designed instructions and their microinstructions is listed.

A.l. fetch

It is the default instruction that exists at address 0 so, the execution will start with it. It selects
the next instruction to be execute and branch to it by loading the instruction register (IR) address.
Each instruction branches to address O after finishing its execution. That is, fetch instruction is
executed before each instruction. The fetch instruction also holds the execution if the
next_instruction flag is off which enable running the program in a single step mode. It also set the

processor busy flag on while the processor executes instructions.

Opcode Instruction name Parameters
00 feach no parameters
micro instructions:
00:0 NOP
00:0 ResetBusy
00:1 if not (next_instruction) Branch 00:0

115

00:2 Load_IR_Instruction
00:2 SetBusy

00:3 Increment_PC

00:3 NOP

A.2. SendSelectionMask
Send a bit stream to the port selection mask register on the chip. It decodes the port no. and put
it in specific window length before sending it. Usually the window length is the total number of

ports.

Opcode Instruction name Parameters Size (bytes)

] Window length-1 4
1C SendSelectionMask Bit No.(0 to n-1) 2

micro instructions:
1C:0 Increment_PC
1C:1 Increment_PC
1C:1 Load_CR_Low_Instruction2
1C:2 Increment_PC
1C:3 Increment_PC
1C:3 Load_CR_High_Instruction2
1C:4 Increment_PC
1C:5 Decrement_ CR
1C:5 Strobe_in_PMask
1C:5if not (CR_IsZero) Branch 1C:5
1C:6 Increment PC

A.3. SendTestData

Send test data from the address specified by DCRead register.

Opcode Instruction name Parameters Size (bytes)
No. of words-1 4
1D SendTestData Bits per word-3 1

micro instructions:

1D:0 Increment_PC

1D:1 Increment_PC

1D:1 Load_CR_Low_Instruction2
1D:2 Increment_PC

1D:3 Increment_PC

1D:3 Load_CR_High_Instruction2
1D:4 Branch 1D:6

116

1D:4 Increment_DC

1D:4 Load _TD_TestData

1D:4 Load_WC_Instruction

1D:5 Increment_DC

1D:5 Load_TD_TestData

1D:5 Load WC_Instruction

1D:5 Strobe_in_TData

1D:6 Decrement_ WC

1D:6 Shift_TestData

1D:6 Strobe_in_TData

1D:6 if not (WC_lIsZero) Branch 1D:6
1D:7 Decrement_CR

1D:7 Shift_TestData

1D:7 Strobe_in_TData

1D:7 if not (CR_IsZero) Branch 1D:5
1D:8 Increment_PC

1D:8 Shift_TestData

1D:8 Strobe_in_TData

A.4. ReadResult
Read results back from the chip and strore them in test result memory in the address specified

by RCWrite register.

Opcode Instruction name Parameters Size (bytes)
No. of Words-1 4
17 ReadResult Bits pre word-2 1

micro instructions:
17:0 Increment_PC
17:1 Increment_PC
17:1 Load_CR_Low_Instruction2
17:2 Increment_PC
17:3 ClearTR
17:3 Increment_PC
17:3 Load_CR_High_Instruction2
17:4 Load_WC Instruction
17:4 Strobe_out TR
17:5 Decrement WC
17:5 Strobe_out TR
17:5 if not (WC_IsZero) Branch 17:5
17:6 Decrement_CR
17:6 Increment_RCWrite
17:6 Load_WC Instruction

117

17:6 Store_TestResults TR

17:6 Strobe_out_ TR

17:6 if not (CR_IsZero) Branch 17:5
17:7 Increment PC

A.5. ApplyAndCapture

Send an apply-and-capture signal and leave two clock cycles before and after sending.

Opcode Instruction name Parameters

01 ApplyAndCapture no parameters
micro instructions:

01:0 NOP

01:1 NOP

01:2 NOP

01:3 AaC

01:4 AaC

01:5 AaC

01:6 AaC

01:6 NOP

01:7 NOP

01:8 NOP

A.6. Compare

Compare (xor) between two memory locations and store the comparision result on another
location. The addresses has to be set before calling this instruction using these instructions:
Load_DCRead: the expected result location. LoadRCWrite: location to save comparison results.

LoadRCRead: the stored test results location.

Opcode Instruction name Parameters Size (bytes)

03 Compare No. of words-1 4
micro instructions:

03:0 Increment_PC

03:1 Increment_PC

03:1 Load_CR_Low_Instruction2

03:2 Increment_PC

03:3 Increment_PC

03:3 Load_CR_High_Instruction2

03:4 Decrement_CR

03:4 Increment_DC

118

03:4 Increment_ RCRead

03:4 Increment_ RCWrite

03:4 Store_TestResults_Compare
03:4 if not (CR_IsZero) Branch 03:4

A.7. Load DCRead

Set a value to the test-data memory reading address register (b).

Opcode | Instruction name Parameters Size (bytes)

0D Load DCRead Data reading address 2

micro instructions:
0D:0 Increment_PC
0D:1 Increment_PC
0D:1 Load_DC_Instruction2

A.8. Load RCRead

Set a value to the test-result memory reading address register (b)

Opcode | Instruction name Parameters Size (bytes)

OF Load RCRead Result reading address

micro instructions:
OF:0 Increment_PC
OF:1 Increment_PC
OF:1 Load RCRead_Instruction2

A.9. Load RCWrite

Set a value to the test-result memory writing address register (a)

Opcode | Instruction name Parameters Size (bytes)

10 Load RCWrite | Result writing address 2

micro instructions:
10:0 Increment_PC
10:1 Increment_PC
10:1 Load RCWrite_Instruction2

A.10. ResetCompareFlag

Clear the comparing result flag (CF)

Opcode Instruction name Parameters
18 ResetCompareFlag no parameters

119

micro instructions:
18:0 ResetCF

A.11. JCompareCorrect

Jump if compare flag (CF) is not zero

Opcode | Instruction name Parameters Size (bytes)

08 JCompareCorrect | Branching address 2
micro instructions:

08:0 Increment_PC

08:0 if not (CF_IsNotEqual) Branch 08:2

08:1 Branch 00:0

08:1 Increment_PC

08:2 Load_PC_Instruction2

A.12. JCompareError

Jump if compare flag (CF) is zero

Opcode | Instruction name Parameters Size (bytes)

09 JCompareError Branching address 2
micro instructions:

09:0 Increment_PC

09:0 if (CF_IsNotEqual) Branch 09:2

09:1 Branch 00:0

09:1 Increment_PC

09:2 Load PC_Instruction2

A.13. SetFrequencyControlWord

Set a value in the frequency control word register (CW) to be shifted out later to the chip.

Size
(bytes)
2

Opcode Instruction name Parameters

1E SetFrequencyControlWord | Control word
micro instructions:

1E:0 Increment_PC

1E:1 Increment_PC

1E:1 Load CW _Instruction2

A.14. SendFrequencyControlWord

Shift out the frequency control word register (CW) to the chip
120

Opcode Instruction name Parameters Size (bytes)

1B SendFrequencyControlWord | Control word length-1 1
micro instructions:

1B:0 Increment_PC

1B:0 Load_WC_Instruction

1B:1 Decrement WC

1B:1 Strobe_in CLK_CR

1B:1 if not (WC _IsZero) Branch 1B:1

A.15. MeasureFrequency

Run the frequency measuring algorithm to measure chip high frequency clock

Opcode | Instruction name Parameters Size (bytes)

14 MeasureFrequency No. of cycles-1 4
micro instructions:

14:0 Increment_PC

14:1 Increment_PC

14:1 Load_CR_Low_Instruction2

14:2 Increment_PC

14:3 Increment_PC

14:3 Load_CR_High_Instruction2

14:4 if not (HFCLK_Meas_ACK) Branch 14:4

14:5 Decrement_CR

14:5 HFCLK Meas_Req

14:5 if not (CR_IsZero) Branch 14:5

14:6 if not (HFCLK_Meas_ ACK) Branch 14:6

A.16. ReadFrequencyRegister
Copy the chip measured-frequency register (FR) to the precessor frequency register (FR), It

shifts right the two registers simultanously.

Opcode Instruction name Parameters Size (bytes)

16 ReadFrequencyRegister | Word length-1 1
micro instructions:

16:0 Increment_PC

16:0 Load_WC_Instruction

16:1 Decrement WC

16:1 Strobe out CLK_FR

16:1 if not (WC_IsZero) Branch 16:1

121

A.17. INC_CW

Increment the frequency control word register (CW) to be sent to the chip later

Opcode Instruction name Parameters
06 INC_CW no parameters
micro instructions:
06:0 INC_CW

A.18. DEC_CW

Decrement the frequency control word register (CW) to be sent to the chip later

Opcode Instruction name Parameters
04 DEC _CW no parameters
micro instructions:
04:0 DEC_CW

A.19. SetHFClock

Set the high frequency clock flag (SF).

Opcode Instruction name Parameters
1F SetHFClock no parameters
micro instructions:
1F:0 SetHFClock

A.20. ResetHFClock

Reset the high frequency clock flag (SF).

Opcode Instruction name Parameters
19 ResetCompareFlag no parameters
micro instructions:
19:0 ResetHFClock

A.21. Load_UserCounter_value

Load an immediate value to the user counter register (UC).

. Size
Opcode Instruction name Parameters (bytes)
12 Load_UserCounter_value | Immediate value 4
micro instructions:

122

12:0 Increment_PC
12:1 Increment_PC
12:1 Load UC Low
12:2 Increment_PC
12:3 Increment_PC
12:3 Load_UC High

A.22. Load_UserCounter_Mem
Load a value from the test-result memory to the user counter register (CU). Load RCWrite

instruction has to be called before this instruction to set the loading address.

Opcode Instruction name Parameters

11 Load UserCounter Mem | no parameters
micro instructions:

11:0 Increment_ RCWrite

11:0 Load_UC_TR1

11:1 Increment_ RCWrite

11:1 Load_UC_TR2

11:2 Increment_ RCWrite

11:2 Load_UC_TR3

11:3 Increment_ RCWrite

11:3 Load UC TR4

A.23. Store_UserCounter
Store the user counter register (UC) value into test-result memory. Load_RCWrite instruction

has to be called before this instruction to set the Storing address.

Opcode Instruction name Parameters

21 Store_UserCounter no parameters
micro instructions:

21:0 Increment_ RCWrite

21:0 Store_UC1

21:1 Increment_ RCWrite

21:1 Store_UC2

21:2 Increment._ RCWrite

21:2 Store_UC3

21:3 Increment_ RCWrite

21:3 Store_UC4

123

A.24. INC_UserCounter

Incerment the user counter register (UC).

Opcode

Instruction name

Parameters

07

INC_UserCounter

No parameters

micro instructions:
07:0 INC_UC

A.25. DEC_UserCounter

Decerment the user counter register (UC).

Opcode

Instruction name

Parameters

05

DEC_UserCounter

no parameters

micro instructions:
05:0 DEC UC

A.26. INZ

Jump if the user counter (UC) register is not zero.

Opcode

Instruction name

0A

JNZ

Parameters Size (bytes)
Branch address 2

micro instructions:
0A:0 Increment_PC
0A:0 if not (UC_lsZero) Branch 0A:2
0A:1 Branch 00:0
0A:1 Increment_PC
0A:2 Load PC_Instruction2

A27.3Z

Jump if the user counter register (CU) is zero.

Opcode

Instruction name

0C

Parameters Size (bytes)
JZ Branch address 2

micro instructions:
0C:0 Increment_PC
0C:0if (UC_IsZero) Branch 0C:2
0C:1 Branch 00:0
0C:1 Increment_PC
0C:2 Load_PC_Instruction2

124

A.28. Jump

Do unconditional branching.

Opcode Instruction name Parameters Size (bytes)
0B Jump Branch address 2
micro instructions:
0B:0 Increment_PC
0B:1 Load_PC_lInstruction2

A.29. Call

Push the program counter (i.e. PCRead register) to the stack, then branch.

Opcode Instruction name Parameters Size (bytes)

02 Call Branch address 2
micro instructions:

02:0 DEC_SP

02:0 Increment_PC

02:1 DEC_SP

02:1 Push_PC2

02:2 Load_PC_Instruction2

02:2 Push_PC1

A.30. Return
Pop the program counter (i.e. PCRead register) from the stack. It does branch because the

program counter will change.

Opcode Instruction name Parameters
1A Return no parameters
micro instructions:
1A:0 Popl
1A:1 NOP
1A:2 Pop_PC2
1A:3 NOP

A.31. NOP

Do nothing. Just waste processor cycles. It is useful for doing delay loop or delay between

instructions.

125

Opcode

Instruction name

Parameters

15

NOP

Nno parameters

micro instructions:
15:0 NOP

A.32. Stop

Stop running the program by looping to the same location.

Opcode

Instruction name

Parameters

20

Stop

No parameters

micro instructions:
20:0 Branch 20:0

20:0 IsStoplnstruction

A.33. ClearTestDataRegister

Clear the test data register (TD).

Opcode

Instruction name

Parameters

23

ClearTestDataRegister

no parameters

micro instructions:
23:0 ClearTD

126

B. Instruction Builder Tutorial

This appendix presents a tutorial for designing instructions and generating the resulted processor

HDL code.

1. Starting empty project
All signals and instruction data are stored in the file “TACPDatabase.bin”. By deleting this file
we start a new empty project. Figure 7.1 shows a snapshot of instruction builder software after

deleting the file. There is also another text file “DatapathBody.txt” that stores the data path code.

Le ™
— | 1

— Signal
Delete |D Add, Edit »> I Sortl up |D0wn| Add,Edit»I u Instructions:
20

uCode E_l,lcle:IU_Br. Add.: Iu_ IU_

r~ Signal TPDBTQ»' oo Increment uCode | Decrement uCode |
Other v |2D ID ID

Mremdes sdAdraes kike A4
Peiencaiiollalanath — Add ¥ Edi Insraetion

D atapath to Sequencer]) Add as Update | Mew B
Sequencer bo Extermal OpCode: I Name.l new inst. inst. | opcode| Copy

External to Sequencer Parameters: Sizes:
External to Datapath
D atapath to Extermal
Sequencer to ExtemalDP Comment:
External ko SequencertDP
Al e

ADatapath"l “Olutput” | Export Instruction List | Export Instructions | Save Instructions

Figure 7.1 : Starting Instruction builder with an empty project.

-

alalalole e le s

2. Add signals
On the left there is signals list. To add signals, press the button “Add, Edit >>" then write the

signal unique name and a description to be included as a comment in the Verilog file.

127

rﬁ Instructions Editor Qe
Signals | Add&Edt Signal
Delete g3 Im Nleries |Decrement_EFl
EtE:EEI_DUt o Category: |Sequencer to D atapath j
EEEE%:-{'D = Comrment; |Decrement General Register
BEE—EE Add new zignal Edit current zignal |

Decrement CH
Decrement_wTC
HFCLFK._Meaz_ ALK
HFCLK_Meaz Req
INC_Cu

INC_LIC
Increment_DC
Increment_PC
Increment_RCRead

)) Fi'gum._z - Add @it?gnals and determine the signal type.
It is also important to set the signal type from the type list mentioned earlier and showed in

-

Figure 5.5.

3. Add instructions
Instruction is defined by its opcode and name. The user could also define parameters. Parameters

should be written in parameter-text-box separated by comma and their sizes in sizes-text-box.

Add & Edit Instructions

&dd as | Update | Mew | E3
Uplode: |2E| M arne: |SendTestD ata new inst. inst. | opcode| Copy
Farametersiio. of words-1, Bits per word-3 Sizes:
4.1
Commment: |Send test data from the address specified by DCRead register P

Figure 7.3 : Add & edit instruction and define its parameters sizes and names.

4. Add microinstructions
Each instruction could have any number of microinstructions. For the selected instruction,

microinstructions can be added by double clicking any signal from the signal list.

128

L | nstructions:

20 j

10:0 Increment_PC -
1071 Increment_PC

10:1 Load_CR_Low_Instructions
102 Increment_PC

103 Increment_PC

10:3 Load_CR_High_|nstruction2
10:4 Branch 1006

104 Increment_DC

10:4 Load_TD_TestData

104 Load _'WC_lnstuction

1005 Increment_D1C

1005 Load_TD_TestData

10:5 Load _'WC_lnstuction

10:5 Strobe_in_TData

10:6 Decrement_WC

10:6 Shift_TestData

10:E Strobe_in_TData

10:6 if not PWC_ls2era) Branch 10:6
107 Decrement_CH

10:7 Shift_TestData

10:7 Strobe_in_TData

10:7 if not [CR_leZera] Branch 1005

m

10:8 Increment_PC &
0o 0 Increment uCode | Decrement uCode |
W |20 o o

Figure 7.4 : Writing microinstruction and defining their cycles.
There are two types of microinstructions:

Normal microinstructions: like the sequencer to data path or to external signals.
Conditional microinstructions: any signal goes to the sequencer. These signals control the
sequencer.

Microinstruction consists of clock number, signal name, and branch address if it is conditional.
If some microinstructions have the same clock cycle, that means they will be executed in the same
clock.

There are buttons for incrementing and decrementing clock cycle for the selected

microinstruction(s).

5. Write data path code
The last step in designing the microcode is to write the data path code. Data path button exists

in the right bottom corner of the instruction builder window.

129

The user can put any needed data path components and define their wires and registers. he

should not write the data path interface. He also should not redefine the signals that are defined in

the signal list.
B Instructions Editor - - P N
Datapath body
Load D atapath body Save Datapath body ‘
assign RCRead = Increment RCRead ? RCRead reg + 1 : -

| Load RCRead Instruction? ? {Instruction_ b[ADDR WIDTH-8-1:0], PrevParam b}:
ECRead reg;

always @ (posedge clk, posedge reset)
if (reset)
ProcessorBusyF <= 0;
else if (SetBusy)
ProcessorBusyF <= 1;
else if (ResetBusy)
BrocessorBusyF <= 0;

glways @ (posedge clk, posedge reset)
if (reset)
PrevParam a <= 0;

m

elase
PrevParam a <= Instruction a;

glwavs ® (posedoe clk. posedoe reset)

Figure 7.5 : Writing verilog code for data path component.

6. Generate microcode

The software has many options. It can generate data path module verilog code, sequencer
module verilog code or the whole microcode verilog code that include sequencer code, data path

code, and sequencer and data path instantiations.

130

Output

{* AllVerlog codes module Microcode# (parameter RADDR WIDTH = 12Z, -
WORD SIZE = 8,

(" Microcode Verilog code CW_SIZE = 1%,
FR_SIZE = 1%,

" Sequencer Verilog code STATUS_Signals NoOfBits = 53,

SELECT NeoDfBits = 0,
OPCODE_MNoDfBits = &,
" Signals List uCODE NoOfBits = 4

" Datapath Yerlog code

" Instruction List

2 FFE i
" Instruction testbench //External inputs

input HFCLE Meas ACE, Fia
input next instructicom, //0
input CLE_FR out, rr
input PS5 Mask Data out, [/
input Test Data out, Fr

Y = i i
= B input TResult_ out, £ i
Refrezh Copy T .

Figure 7.6 : Generating verilog code for microcode.
In addition, the software can report signals grouped as their types. It can report instructions with

A

their microinstructions.

7. Export instructions
It is possible to have the instructions in a text file. The software reports instructions with their
parameters and sizes. This text file can be read by software that uses the instructions to build

programs.

8. Generate test benches
The software can translate the microinstructions into testbench format as shown in this table.

This table is a translation of one instruction (i.e. SendTestData).

Instruction microinstruction Testbench

SendTestData /[Testbench:

1D:0 Increment_PC /[Code: 1D

1D:1 Increment_PC //Mnemonic: SendTestData

1D:1 /[Parameters: No. of words-1=4, Bits per word-3=1
Load CR_Low_Instruction2 [[for a given CR=3 and WC=2

1D:2 Increment_PC #20;//1D:0 Increment_PC

1D:3 Increment_PC Increment_PC = 1'b1;

1D:3

Load_CR_High_Instruction2 #20;//1D:1 Increment_PC, Load_CR_Low_Instruction2
1D:4 Branch 1D:6 Load CR_Low_Instruction2 = 1'b1;

131

1D:4 Increment_DC

1D:4 Load TD_TestData

1D:4 Load_WC_Instruction
1D:5 Increment_DC

1D:5 Load_TD_TestData

1D:5 Load WC_Instruction
1D:5 Strobe_in_TData

1D:6 Decrement_ WC

1D:6 Shift_TestData

1D:6 Strobe_in_TData

1D:6 if not (WC_IsZero) Branch
1D:6

1D:7 Decrement_CR

1D:7 Shift_TestData

1D:7 Strobe_in_TData

1D:7 if not (CR_IsZero) Branch
1D:5

1D:8 Increment_PC

1D:8 Shift_TestData
1D:8 Strobe_in_TData

#20;//1D:2 Increment_PC
Load CR_Low_Instruction2 = 1'b0;

#20;//1D:3 Increment_PC, Load_CR_High_Instruction2
Load CR_High_lInstruction2 = 1'b1;

#20;//1D:4 Branch 1D:6,

Load TD_TestData, Load WC _Instruction
Increment_PC = 1'b0;

Load CR_High_lInstruction2 = 1'b0;
Increment_DC = 1'b1;

Load TD TestData = 1'b1;

Load WC_Instruction = 1'b1;

Increment_DC,

#20;//1D:6 Decrement. WC, Shift_TestData,
Strobe_in_TData, if not (WC_IsZero) Branch 1D:6
Increment_DC = 1'b0;

Load TD TestData = 1'b0;

Load WC_Instruction = 1'b0;

Decrement WC = 1'b1;

Shift_TestData = 1'b1;

#20;//1D:6 Decrement WC, Shift_TestData,
Strobe_in_TData, if not (WC_IsZero) Branch 1D:6
Increment_DC = 1'b0;

Load TD_TestData = 1'b0;

Load WC_Instruction = 1'b0;

Decrement WC = 1'bl;

Shift_TestData = 1'b1;

#20;//1D:7 Decrement_CR, Shift_TestData,
Strobe_in_TData, if not (CR_IsZero) Branch 1D:5
Decrement WC = 1'b0;

Decrement CR =1'b1,

#20;//1D:5 Increment_DC, Load TD_TestData,
Load WC _Instruction, Strobe_in_TData
Strobe_in_TData = 1'b1,

#20;//1D:6 Decrement WC, Shift_TestData,
Strobe_in_TData, if not (WC_IsZero) Branch 1D:6
Increment_DC = 1'b0;

Load TD_TestData = 1'b0;

Load WC_Instruction = 1'b0;

Decrement WC = 1'b1;

Shift_TestData = 1'b1;

#20;//1D:6 Decrement WC, Shift_TestData,
Strobe_in_TData, if not (WC_IsZero) Branch 1D:6

132

Increment_DC = 1'b0;

Load TD_TestData = 1'b0;
Load WC_Instruction = 1'b0;
Decrement WC = 1'bl;
Shift_TestData = 1'b1;

#20://1D:7 Decrement_CR, Shift_TestData,
Strobe_in_TData, if not (CR_IsZero) Branch 1D:5
Decrement WC = 1'b0;

Decrement CR =1'b1;

#20;//1D:5 Increment_DC, Load TD_ TestData,
Load WC_Instruction, Strobe_in_TData
Strobe_in_TData = 1'b1;

#20;//1D:6 Decrement. WC, Shift_TestData,
Strobe_in_TData, if not (WC_IsZero) Branch 1D:6
Increment_DC = 1'b0;

Load TD TestData = 1'b0;

Load WC_Instruction = 1'b0;

Decrement WC = 1'b1;

Shift_TestData = 1'b1;

#20;//1D:6 Decrement. WC, Shift_TestData,
Strobe_in_TData, if not (WC_IsZero) Branch 1D:6
Increment_DC = 1'b0;

Load TD TestData = 1'b0;

Load WC_Instruction = 1'b0;

Decrement WC = 1'b1;

Shift_TestData = 1'b1;

#20;//1D:7 Decrement_CR, Shift_TestData,
Strobe_in_TData, if not (CR_IsZero) Branch 1D:5
Decrement WC = 1'b0;

Decrement_CR = 1'b1;

#20;//1D:8 Increment_PC, Shift_TestData,
Strobe_in_TData

Decrement_CR = 1'b0;

Increment_PC = 1'bl;

#20;//1D:9

Increment_PC = 1'b0;

Shift_TestData = 1'b0;

Strobe_in_TData = 1'b0;

133

C. User Interface Tutorials

The program has two parts: writing program tab and executing program tab.

Writing Programs tab

The writing program tab is shown in Figure below. To write a program there is an instruction
list to select instruction. Below the instruction list there are some fields to set or edit the instruction
parameter. Instruction description also viewed there. The instructions could be sorted

alphabetically by pressing the sort button.

i ———————— i
i\ﬁ Test and Characterization Processor - User Interface - Reading test-resulttacp E@&J

Virting Programs | Exscuting Programs | Communicationl COM Port: COM3 = Connect [l Test-data Mem.
Instruction set Program
fetch A 0003 1c OB 000000 0AD (€] Code
ganj_?el:;h:n_\hsk 0000 /finitialize test-result store address - -
Rdees I: a £|| || 0000 Load RCWrite FFFF 10 FFFF
:’l : :]::c || || 0003 //read output
CPN apture 0003 SendSelectionMask 0000000B, D0DA 1c OB 00 00 00 0A
L D“EP;;“ER 4 000A ReadResult 00000002, 06 00
L“d—RCR“d 0010 /iread scan chain 1702 00 00 00 06
L“*‘d—RC“‘?“_t 0010 SendSelectionMask 00000008, 000B
R'n e “a;'l 0017 ClearTestDataRegister 1c OE 00 00 00 0B
eserl-Omparetiag 0018 ReadResult 00000000, 07 00
JCompareCorrect 001E //Exit 23
JComparekrror " | || 001E Stop 1700 00 00 00 07
Opcode: 28 Sort
20
Window length-1(4) 0000000B
BitNo.(0 to n-1)(2) 000A
Il Instruction Description: |
Send a bit stream to the port
selection mask register on the L -
chip. It decodes the port no. and . = .
put it in specific window length Address: 0000 (1) bytes. [7] Show program lines
before sending it. Usually the D:\Emran 111'Thesis\Thesis Work\UserInterface\bin'\Debug\document [ﬂ]@

Figure 7.7 : Writing programs window.

The program is written by selecting instructions and adding them to the program list. In this list
it is possible to edit instruction parameter, select instruction or instructions and move them up or

down or delete instructions. Beside the program list there are the program code written in

134

hexadecimal values. The code can be edited directly and then transformed to instruction list rather
than editing the program list. It is also possible to copy another program code and paste it there.
Comments can be added as separate lines. The show program lines checkbox can show or hide
program lines. The program can be saved as a text file contains the hexadecimal code. The program
comments are saved in a separate file with the same name and with additional “ cmt” extension.
Finally for this tab, the program can be downloaded to the instruction memory to a specific

address. The connection had to be established.

Executing Programs tab
The Executing program tab is shown in Figure 7.8 below. In the beginning, the program is
uploaded from the instruction memory. The uploaded program is listed on the left side of the

window.

135

M Test and Characterization Processor - User Interface - test_frequency_loop.tacp

=ai=] XA

Writing Programs | Execiting Programs | Communication |- ©OM Port: comM3 S

Connect ol Test-data Mem,

Instruction Memory
Address: 0000 Size: 0040 |2 Upload

0000 /finitialize -
0000 Load_UserCounter value 00000009
0005 SetFrequencyControlWord 000E
0008 //measuring frequency

0008 SendFrequencyControlWord OF
000A MeasureFrequency 000003FF

000F ReadFrequencyRegister OF

0011 //change frequency and loop
0011 INC CW

0012 DEC UserCounter
0013 JNZ 0008

0016 Stop

0017 fetch

0018 fetch

0019 fetch

001A fetch

001B fetch

m

001C fetch -

Addr. Line Code [V]Show comments
go1r 9

06 Set Break Point
Run

| Singlestep || ResetPCRead | RunAll || Stop |

Update test-result memory after each execute

Instruction Mem. addresses Test-result Mem. addresses

PCWrite: 0000 12 RCWrite: OFFF 00
PCRead: 0011 06 RCRead: 0000 00

Test-data Mem. addresses
DCWrite: 0000 00
DCRead: 0000 00

Datapath
Instruction Register (IR:): 16

Read back from chip
PortMask (SM): 00

Test Data (TD): 00
TestResult (TR): 00

Stack pointer: 0000
User Counter: 00000009

Break Point (BP): 0000

Flags
Contrel Word (CW): 000E
Frequency (FR): 0400 AckF
Chip frequency measuring
Cyeles: 400 Reset All
- Registers
Processor Frequency: 50 MHz
Measured Frequency: 50 MHz

Frequency =FR * Processor Frequency + Cycles
Measured Frequency = 1024 = 50 = 1024 = 50MHz

[« —

Figure 7.8 : Executing programs window.

The upload address and the number of bytes to upload have to be determined before uploading.

Comments can be added from the current comment file to the uploaded program by checking the

show-comments checkbox.

Below the uploaded program, there are execution control buttons. Set-break-point button copies
the selected instruction address to BP register. Single-step button executes only one instruction.
Run-all button executes all instruction. The execution stops when it reaches the stop instruction,

BP register equals PCRead register or the user presses stop button. Reset PCRead button set the

PCRead register to zero which means to reset the execution.

On the right side of this window, processor register contents are displayed. Memory addresses
six address registers are displayed and assigned with a “set” buttons that enables the user to set a

value to the register manually. The chip frequency is calculated according to FR register value.

136

The user can set the processor frequency and the number of cycles used by the MeasureFrequency
instruction. Update-Registers button reload all register value from the processor. Reset-All-

Registers button sends a reset signals to the processor and reload the register values.

Memory windows

In the main windows there are four buttons to launch different memory windows. The memory
window has a memory table reflects the memory contents. It is shown in Figure 7.9 below and
Figure 7.10 below. Each row in the table represents a vector (i.e. test vector, result vector, etc.).
The first column in the table is the address column shows the memory address or the vector
number. The middle columns represent the memory contents one byte for each cell. The last
column is the vector column which is formed be combining the other columns together. Column
headers represent how many bits should be taken from each byte to form the test vector. For
example, the test vector header in Figure 7.9 below is 23 which is the summation of (8+7+3+5) in
the other columns. The user should take care of these numbers of bits when writing programs to
send those test vectors.

Finally, using the file menu, the memory contents can be saved to or read from files.

Test-data memory window

This window is used to download or upload test-data and expected results to the processor test-
data memory. The user can specify a memory location and number of bytes to upload. The user
also can move directly to a specific test vector or a specific memory location. The current write

and read addresses of the test data memory is shown in the status bar and updated after each

137

execution. This window is also used to show the expected result. A snapshot of test-data memory

window is shown in Figure 7.9 below.

L hl
ol Test-data memory E‘Elg

File
Vector: | 0000 [@Dﬂm]ﬂﬁﬂ][@ Upload]Aﬂdr\m: 0000 Size: 0200
(4

3 7 & 5 23
L L DOU UL000 1000 U
0001 66 |5C |04 |01 | 00001011001100011101001
0002 AD |6E |04 |1C |11100101101010111011001
o1
04

0003 CB |61 09 |01001110100111000011100
(| 0004 Az (21 0A |01010010001011000010001
0005 BE |30 06 08 |01000011111010000110011
0006 BA |13 0O 1E 11110010111011100100000
0007 SF 3% |01 |00 |00000111110011001110100
ooos 58 |2A |04 16 10110000110100101010001
0009 96 |46 |07 |O0C |01100011010010110001111
000A BE5 (4B |07 13 10011101011011101001111| -
[byte00000000 | Vsi448 [size:00000BCO DCWrite=08D0[00 DCRead=08D0J00 .:

— = El

k' E_ = — -—

Figure 7.9 : Test-data memory window.

Test-result memory window

This window is used to upload test-result and the comparison result stored in the test-data
memory. A snapshot of this window is shown Figure 7.10 below. The memory contents can be

compared

138

r
gl Test-result memery

”

|l= =] = |

-

'
ol Test-data memory s S——_— WS- @ el

.

File
Vector: | 0000 [@ Uplead]A, File
& 7 3 5 23| Vector:|011A [2 Download|[2 Upload|Address: 0000 Size: 08DO0 (@]
» 000D 00 60 D0 DO D0 08 08 03 5 23 |Z|
0001 00 60 00 (0D (0O (P O1A 00 60 00 00 OODOOOODOOOODOO00011000
0002 00 22 00 |oo |00 0118 00 |60 (00 |00 | 0OOOOCOOOO0000000011000
0003 00 (80 04 |02 |00 011c 00 |22 |00 |00 | 0OOOOOOOCO0000100010000
0004 00 |60 |00 (oo |oo| 011D 00 |80 |04 |02 | 00010000000000000000001
0005 00 (60 (00 |00 oo:l 011E 00 |60 (00 |00 | 0DOOOOOOOOOO000000011000 3
0006 00 |00 |00 |10 |10y 011F 00 |60 (00 |00 | 0OOOOCOOOOO000000011000
0007 00 (60 00 |10 10/ 0120 00 (00 (00 |10 | 10000000000000000000000
0008 00 |22 00 (00 OO 0121 00 |60 |00 |10 | 10000000000000000011000
0009 00 |60 00 (00 OO 0122 00 |22 |00 |00 | 00OOOOOOOO0000100010000
000A 00 |20 04 |00 |00 0123 00 |60 |00 |00 | 0OOOOOOOOO0000000011000
| byte:00000000 [V448 [size:000008CO 0124 00 (20 |04 |00 |00ODDOOOOOOO000000010001 |[~|)

00000468 |

00000234

| size:00000800 DCWrite=0000|DD DCRead=0000|DD

Figure 7.10 : Comparing test-results with expected results.

Compare instruction can compare between test-data and test-result memory and store the
comparison result in test-data memory. Figure 7.11 below shows the comparison data generated
by the compare instruction. The memory is sorted by the third column which brings up five errors

rows. This indicates that vectors 234, 67, 189, 146 and 220 (i.e. EA, 43, BD, 92 and DC) resulted

in errors.

-
ol Test-result memory

-

e
Vector: | 0000 |2 Upload Address: 468 Size: 462 (@
P T T — B
wex 00 |oo |oa |oo nE
042 00 |00 |04 |00 | 0OODOOOOOOOOCOD00C0000L
0ED 00 |00 |04 |00 | 0O0DOOOOOOO00O00000000L
0092 00 |00 |04 |00 | 0OODOOOOOOO0COD0000000L
| 00OC 00 |00 |04 |00 | 00O0DOOOOOCOOCOD0000000L
0005 00 |00 |00 |00 | 0OOOOOOOOOOO0OD00000000
005 00 |00 |00 |00 | 0OODOOOOOCOOCOD00C00000
0007 00 |00 |00 |00 | 0OODOOOOOOO00O000000000
002 00 |00 |00 |00 | 0OODOOOOOOO0COD00000000
00s 00 |00 |00 |00 | 0OODOOOOOOO00O000000000
00A 00 |00 |00 |00 | 000O0000O00000000000000 -
[000008B4 | 00000118 | size:00000460 RCWrite=0904j00 RCRead=08D0J00 :

T e

S
Figure 7.11 : Comparing results sorted by the third column to rise up vector caused error.

139

Importing test vectors to memory window

Usually, test-vectors and expected-results are presented in a binary format in a text file similar
to that in Figure 7.12 below. These vectors are needed to be converted to bytes to be downloaded
to the processor memory. Import-test-vectors window can read those files and extract test vectors

and expected results.

test 1: 00011010001000110111111 OOOOOOCOOOCOOOOOOOOOLOO0O 49 faults detected
test 2: 00001011001100011101001 0QOOOOQOOOOOOOCOOOOOOOOOOOO 17 faults detected
test 3: 111001033101 03A113 033001 “”““““i““““]QDDDDDDDIDDD 20 faults detected
test 4: 0100111(Import test vectors =6 100000001001 32 faultz detected
test 5: 0101001¢ . . —=| 00000001001 & faultsz detected
teet e: 0100001:| WorkReportingltest case 01\s820slog (L]0 0000007007 12 faulte desected
test 7: 11110010 Seanhits: 5 Colmmnno: 2 100000000000 24 faults detected
test 8: 0000011: 100000110000 25 faults detected
test 9: 1011000 | [] Sean bits left to right Wo000000000 4 faults detected
test 10: 01100017 [¥/] Data bits left to right Wo0000000000 14 faults detected
test 11: 10011102 [#] Scan bits before data hits lJDDDEJD[JDDDCICI 2 faults detected
test 12: 0101011: |pooooooo1o0L 3 faults detected
test 13: 0010000¢ [Import l [Cancel I 100000001001 14 faults detected
test 14: 11000117 00000001001 4 faults detected
test 15: 0011101l o o oo oo oo oo cooooooT=T 400000001001 l faults detected
e 16 NN I0T 10001107 A0NT ANAANNNANANANNNNANANT NN Fanlera Aatac~rad

Figure 7.12 : Import test-vector dialog window and test-vectors file snapshot
The import window gives flexibility to the user. The user can specify what column in the text

file has the test-vectors, how many scan bits per vector and whether those bits are on the right or
the left of the test vector. The user also can specify whether the test vectors or scan chains will be
read from right to left or left to right.

For example, let’s take the first test vector 00011010001000110111111. In the import window,
scan bits equals 5 and the ‘scan bits before data bits’ is checked. Hence,

Scan bits: 00011.

Data bits: 010001000110111111.

‘Data bits left to right’ is checked. Hence, data bits: 111111011000100010.

18-bit data vector will be divided to three bytes (3-7-8) as follows: 111 1110110 00100010

At the end we came up with these four bytes: 22 76 07 03 and the number of bits per byte are

8-7-3-5 which is shown in column headers in Figure 7.9 above.
140

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

M. Elrabaa, "Method for Digital Integrated Circuits Testing and Characterization". Saudi

arabia Patent US Patent application number 13/471346, 14 May 2012.

"wikipedia," [Online]. Available:
http://en.wikipedia.org/wiki/Semiconductor_intellectual property core. [Accessed 2012].
Z. Nozica, "Semiconductor intellectual property and system-on-chip for communications the

future for small companies,” in Telecommunications, 2003. ConTEL 2003. Proceedings of

the 7th International Conference on, 2003.

K. S. Yeo, K. T. Ng, Z. H. Kong and T. B. Y. Dang, "Importance of Intellectual Property
Rights for Integrated Circuits,” in Intellectual Property for Integrated Circuits, J. Ross

Publishing, 2010, pp. 19-33.

R. Saleh, SteveWilton, S. Mirabbasi, AlanHu, M. Greenstreet, G. Lemieux, P. P. Pande, C.
Grecu and A. Ivanov, "System-on-Chip: Reuse and Integration,” in Proceedings of the IEEE,

2006.

M. Bordegoni and C. Rizzi, Innovation in Product Design From CAD to Virtual Prototyping,

London: Springer, 2011.

141

[7] G. Jervan, "High-Level Test Generation and Built-In Self-Test Techniques for Digital
Systems," Linkdpings university, Linkdping, 2002.

[8] M. L. Bushnell and V. D. Agrawal, "Chapter 15: BUILT-IN SELF-TEST," in Essentials of
Electronic Testing for Digital, Memory, and Mixed-Signal VLSI Circuits, Norwell,

Massachusetts USA, Kluwer Acadimic Publishers, 2004, pp. 489-548.

[9] D. K. Pradhan and M. Chatterjee, "GLFSR—A New Test Pattern Generator for Built-in-Self-
Test,” IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, vol. 18, no. 2, pp. 238-247, 1999.

[10] M. Kabir and L. Ali, "Design of GLFSR based test processor chip,” Research and

Development (SCOReD), 2009 IEEE Student Conference on , pp. 234-237, 2009.

[11] M. L. Ali, Z. M. Darus and M. A. M. Ali, "Test Processor ASIC Design," Semiconductor
Electronics, 1996. ICSE '96. Proceedings., 1996 IEEE International Conference on, pp. 261-

265, 1996.

[12] E. Kalligeros, X. Kavousianos, D. Bakalis and D. Nikolos, "An Efficient Seeds Selection
Method for LFSR-based Test-per-clock BIST," in Proceedings of the International

Symposium on Quality Electronic Design (ISQED’02), San Jose, CA, USA, 2002.

[13] M. Ali, S. Islam and M. Ali, "Test processor chip design with complete simulation result
including reseeding technique," Semiconductor Electronics, 2002. Proceedings. ICSE 2002.

IEEE International Conference on, pp. 218-221, 2002.

142

[14] W. Ying and W. Hong, "The testing of multiple RAM Cores in Soc system," Solid-State and
Integrated Circuit Technology, 2006. ICSICT '06. 8th International Conference on , pp. 2148

- 2150, 2006.

[15] K. Batcher and C. Papachristou, "Instruction Randomization Self Test For Processor Cores,"
VLSI Test Symposium, 1999. Proceedings. 17th IEEE , pp. 34-40, 1999.

[16] C. Galke, M. Pflanz and H. T. Vierhaus, "A Test Processor Concept for Systems-on-a-Chip,"
Computer Design: VLSI in Computers and Processors, 2002. Proceedings. 2002 IEEE
International Conference on, pp. 210 - 212, 2002.

[17] M. Benabdenbi, A. Greiner, F. Pecheux, E. Viaud and M. Tuna, "STEPS: experimenting a
new software-based strategy for testing SoCs containing P1500-compliant IP cores," IEEE,
vol. 1, pp. 712 - 713, 2004,

[18] R. Frost, D. Rudolph, C. Galke, R. Kothe and H. T. Vierhaus, "A Configurable Modular Test
Processor and Scan Controller Architecture,” On-Line Testing Symposium, 2007. IOLTS 07.
13th IEEE International, 2007.

[19] L. Mostardini, L. Bacciarelli, L. Fanucci, L. Bertini, M. Tonarelli, A. Giambastiani and M.
D. Marinis, "FPGA-based Low-cost System for Automatic Tests on Digital Circuits,”
Electronics, Circuits and Systems, 2007. ICECS 2007. 14th IEEE International Conference
on, pp. 911-914, 2007.

[20] S. D. Carlo, P. Prinetto, A. Scionti, J. Figueras, S. Manich and R. Rodriguez-Monta™n’es, "A

Low-Cost FPGA-Based Test and Diagnosis Architecture for SRAMs," Advances in System

143

Testing and Validation Lifecycle, 2009. VALID '09. First International Conference on , pp.
141-146, 2009.

[21] D. Markovic, C. Chang, B. Richards, H. So, B. Nikolic and R. Brodersen, "ASIC Design and
Verification in an FPGA Environment,” Custom Integrated Circuits Conference, 2007. CICC
'‘07. IEEE , pp. 737 - 740, 2007.

[22] L. Ciganda, F. Abate, P. Bernardi, M. Bruno and M. Reorda, "An enhanced FPGA-based
low-cost tester platform exploiting effective test data compression for SoCs," Design and
Diagnostics of Electronic Circuits & Systems, 2009. DDECS '09. 12th International
Symposium on , pp. 258-263, 2009.

[23] L. L. d. Oliveira, J. B. d. S. Martins and A. L. Aita, "A low-price platform to test digital
integrated circuits using FPGA," Circuits and Systems, 2005. 48th Midwest Symposium on,
vol. 2, pp. 1127-1130, 2005.

[24] S. Bahl and B. Singh, "On-Chip and At-Speed Tester for Testing and Characterization of
Different Types of Memories”. United States Patent US 7,353,442 B2, 1 April 2008.

[25] S. Vassiliadis, S. Wong and S. Cotofana, "MICROCODE PROCESSING: POSITIONING
AND DIRECTIONS," IEEE Micro, vol. 23, no. 4, pp. 21-31, 2003.

[26] Xilinx, "Spartan-3 Generation FPGA User Guide - Extended Spartan-3A, Spartan-3E, and
Spartan-3 FPGA Families,” 13 June 2011. [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug331.pdf.

144

[27] J. Shen and J. Abraham, "Native mode functional test generation for processors with
applications to self test and design validation,” Test Conference, 1998. Proceedings.,
International , pp. 990-999 , 1998.

[28] L. Chen and S. Dey, "Software-based self-testing methodology for processor cores,"
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, pp. 369-
380, 2001.

[29] A. Krstic, W.-C. Lai, K.-T. Cheng, L. Chen and S. Dey, "Embedded software-based self-test
for programmable core-based designs,” Design & Test of Computers, IEEE , vol. 19, pp. 18
- 27, 2002.

[30] D. Keezer and Q. Zhou, "Test support processors for enhanced testability of high
performance circuits,” Test Conference, 1999. Proceedings. International , pp. 801 - 809,
1999.

[31] J. Davis and D. Keezer, "Multi-Purpose Digital Test Core Utilizing Programmable Logic,"”
Test Conference, 2002. Proceedings. International, pp. 438-445, 2002.

[32] D. Keezer, C. Gray, A. Majid and N. Taher, "Low-Cost Multi-Gigahertz Test Systems Using
CMOS FPGAs and PECL," Design, Automation and Test in Europe, 2005. Proceedings ,
vol. 1, pp. 152 - 157, 2005,

[33] "http://www.teradyne.com/J750/".

[34] V. Vorisek, T. Koch and H. Fischer, "At-speed testing of SOC ICs," Design, Automation and

Test in Europe Conference and Exhibition, 2004. Proceedings , vol. 3, pp. 120 - 125, 2004.

145

[35] S. Zeidler, C. Wolf, M. Krsti'c, F. Vater and R. Kraemer, "Design of a Test Processor for

Asynchronous Chip Test," Test Symposium (ATS), 2011 20th Asian , pp. 244-250, 2011.

[36] M. Abramovici, M. A. Breuer and A. D. Friedman, "Chapter 2 Modeling," in Digital System

Testing and Testable Design, Piscataway, IEEE Press Marketing, 1990, p. 652.

[37] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital System Testing and Testable

Design, Piscataway: IEEE Pres Marketing, 1990.

[38] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory,

and Mixed-Signal VLSI Circuits, KLUWER ACADEMIC PUBLISHERS, 2000.

146

Name

Nationality

Date of Birth
Email

Permanent Address

Present Address

Tel.

Academic Background

VITA

: Amran Abdulrahman Abdulwali Al-aghbari
: Yemeni
: 29/12/1978

: emranemran@hotmail.com

: Taiz University - Taiz - Yemen

: King Fahd University for Petroleum and Minerals —Dhahran — Saudi

Arabia.

: +966 508052122
: +967 715081959

: Bachelor of Computer Science - Sana’a University — Yemen - June

2004.

147

mailto:emranemran@hotmail.com

