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ABSTRACT 

 

In this study, the failure rate of different types of bleed air control valves for the Boeing 

737 aircraft is modeled. Two approaches are utilized to perform this work. In the first 

approach, Weibull model, in which different parameters are utilized and tested, is used. 

In the second one, a common type of the Artificial Neural Network (ANN) modeling is 

used. A Feed-forward back-propagation algorithm is implemented to train the network. 

Subsequently, the optimum number of neurons and layers that give the best result 

compared to the actual data are determined. Finally, the outputs from both models are 

compared against the actual data. The final results show a high level of accuracy of the 

ANN's predictions compared to the more traditional Weibull modeling. The developed 

verified model lends itself to applications that extend from scheduling replacements 

operations of these valves, to developing plans for inventory management in any aviation 

engines maintenance facility.   
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 الخلاصة

 

الاسم : وحيد علي الوادعي 

 باستخدام الشبكات العصبيه الاصطناعية 737عنوان البحث: التنبؤ باعطال نظام الهواء في طائرات البوينج من طراز 

التخصص: هندسة الطيران والفضاء 

) 2011 (ديسمبر 1433تاريخ الدرجة العلمية : محرم \ 

 باستخدام طريقتين علميتين. في 737في هذا البحث تم تحليل وتنبؤ الاعطال لبعض الصممات في نظام الهواء لطائرات البوينج 
الطريقة الأولى , تم استخدام التحليل الوايبلي أما في الطريقة الثانيه فتم استخدام الشبكات العصبية الاصطناعية. وللحصول على 

أدق النتائج, تمت دراسة وتحليل الشبكات العصبية وذلك بتغيير عدد الطبقات والأعصاب للشبكة  خلال عملية المحاكاة للتنبؤ 
بالأعطال. أخيرا تمت مقارنة مخرجات البرنامج بالبيانات الفعلية لعدد مرات الأعطال. وبناْء عليه, فقد إتضح خلال من خلال 
هذه المقارنة ان الشبكات العصبية اللإصطناعية لديها القدرة الفائقة لمحاكاة النتاائج الفعلية لعدد مرات اللأعطال. وللزيادة في 

 .التحقق من دقة النتائج, تمت المقارنة مع مخرجات التحليل الوايبلي

يمكن استخدام هذه الدراسه كأداه لتخطيط صيانة الصممات المذكوره في هذه الدراسة من خلال معرفة عدد الوحدات المطلوب 
توفرها في مستودعات الصيانة كبديل في حالة الأعطال لأي صمام. يمكن قياس هذه الدراسة كإطار عام يمكن استخامه في أي 

مجال من  مجالات الصيانة. 



1 

 

Chapter 1    

INTRODUCTION 

Calculating the age of any airplane’s part is a vital process because it has a direct 

impact not only on the safety of the aircraft but also on the efficiency of any flight 

operations. The bleed air system is one of those systems that operate under extreme 

temperate and pressure conditions, a failure in such a system could cause a catastrophic 

damage to other aircraft systems. For example, a failure of the bleed air regulator could 

affect the pressurization system which might jeopardize the safety of the flight especially 

when cruising at high altitudes. Because of that, continuous monitoring and preventive 

maintenance are significant to enhance the aircraft reliability and safety especially during 

the critical phase of the flight (i.e., takeoff and landing). 

 During the last few years, a lot of efforts have been made on trying to forecast and 

predict the failure of equipment and systems using some traditional statistical models, but 

unfortunately these models sometimes do not give the best outcome due to the 

complexity and nonlinearity of the data gathered from many maintenance records. 

However, when it comes to airplanes, failure prediction analysis should be carefully 

conducted with an adequate level of accuracy in order to achieve highest levels of safety 

and efficiency and to avoid inaccurate interpretation and results that could lead to 

harmful consequences. 
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1.1 Bleed Air System Description 

Since the 737 bleed air control valves are used as a test model to demonstrate the analysis 

method, it would be appropriate to introduce the function and layout of the system before 

proceeding with a description of our work. The basic idea of any aircraft bleed air system 

is to extract air from the engine and use that air to serve other systems. Engine bleed air is 

obtained from the 5th and 9th stages of the engine compressor section. When 5th stage low 

pressure bleed air is insufficient for the bleed air system requirements, the high stage 

valve modulates to open to maintain adequate bleed air pressure. During takeoff, climb, 

and most of the cruise conditions, low pressure bleed air from the 5th

- Air conditioning 

 stage is sufficient 

and the high stage valve remains closed because the engine power settings at these phases 

of flights are generally high. The following systems rely on the bleed air system for 

operation: 

- Pressurization system 

- Engine starting 

- Hydraulic reservoirs pressurization 

- Water tank pressurization system 

Figure 1.1 shows the basic layout of the Boeing 737 bleed air system [37]. 
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Figure  1.1 Boeing 737 Bleed Air System 

 

1.2 Bleed Air Regulator (BAR) 
 

The bleed air regulator is a pneumatic controller designed to provide regulated control 

pressure, with electrically controlled shutoff, from a bleed air source. Other functions 

incorporated are electrical indication of excessive bleed air supply pressure, automatic 

electrical shutoff of regulated control pressure in the event a separate downstream 

pressure exceeds bleed air supply pressure and a relief valve to maintain regulation of 

control pressure in the event of pressure regulator failure. The bleed air regulator controls 

the flow of engine bleed air to the pneumatic manifold. The bleed air regulators have 
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overpressure switches to prevent overpressure conditions and shutting the air-condition 

pack off.  

1.3 High Stage Valve (HSV) 

The high stage regulator and valve control the supply of high stage engine bleed air. The 

high stage regulator operates the high stage valve. The high stage valve controls the flow 

of bleed air from the 9th

1) Downstream pressure is more than 9

 stage bleed air manifold. This valve works under extreme 

conditions in term of pressure and temperature, because of that, the reliability and 

maintainability of this valve was carefully designed in order to avoid any bleed control 

malfunctions.  

The high stage regulator gets unregulated air from a tap on the 9th stage bleed air 

manifold. The unregulated air goes through the pneumatic shutoff mechanism to the 

reference pressure regulator. The reference pressure regulator decreases the pressure to a 

constant control pressure. A relief valve prevents damage to the high stage valve if the 

reference pressure regulator fails. The control pressure from the high stage regulator goes 

to chamber A of the high stage valve. The actuator opens the valve against spring force 

and pressure in chamber B. The combination of forces that operate on the actuator cause 

the valve to regulate the downstream pressure to 32 psi (nominal).During normal 

operation, the high stage valve closes for these reasons: 

th

2) The 5th Stage pressure is greater than the high stage regulated pressure. 

 stage pressure. 
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When downstream pressure is more than 9th stage pressure, the reverse flow mechanism 

in the high stage regulator opens and bleeds off the control pressure to the high stage 

valve. The high stage valve then closes. When 5th stage manifold pressure is greater than 

the high stage regulated pressure (nominal 34 psi), the high stage valve closes because 

the force in chamber B, combined with the spring force, is greater than the force in 

chamber A. This causes the high stage valve to close. The pneumatic shutoff mechanism 

increases the life of the high stage regulator. The shutoff operates after the shift to 5th 

stage engine supply occurs. High pressures (110 psi) in the supply port operate a shutoff 

mechanism. The shutoff mechanism closes the supply to the regulator inlet and vents the 

regulator. 

This reduces the duty cycle of the regulator and exposure to extreme pressures and 

temperatures during high engine power operation. A relief valve in the high stage valve 

decreases downstream pressure in the inter stage duct when the pressure regulator and 

shutoff valve (PRSOV) is closed. 
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Figure  1.2 High Stage Valve and Regulator 

 

Figure  1.2 and Figure  1.3 shows the high stage valve with a detailed schematic about the 

functional description [37]. 
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Figure  1.3  High stage valve functional description 

 

1.4 Pressure Regulator and Shutoff Valve (PRSOV) 

A bleed air regulator and the pressure regulator and shutoff valve (PRSOV) control the 

flow of bleed air to the pneumatic manifold. The bleed air regulator (BAR) operates the 

pressure regulator and shutoff valve (PRSOV). The PRSOV is pneumatically controlled 

by the BAR. 

These are the PRSOV control functions. 

a. Shutoff of engine bleeds air 

b. Pressure regulation of engine bleeds air (42 psi nominal) 
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c. Temperature limitation of engine bleeds air (450F/232C) 

 

The PRSOV is a butterfly valve that is spring-loaded closed. The valve has these parts: 

1- Pneumatic actuator. 

2- Manual override and position indicator. 

3- Control air port. 

4-  Downstream sense port. 

 

Figure  1.4 shows the PRSOV with its main components [37]. 

 

 
 

Figure  1.4  Pressure Regulator and Shutoff Valve (PRSOV) 
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1.5 Objectives 

The main objective of this study is to design an Artificial Neural Network model that can 

predict the failure of some bleed air system components of an aircraft based on a history 

of data collected from a maintenance facility. The effect of multiple ANN configurations 

on the accuracy of the network performance is extensively discussed in order to come up 

with an optimum structure that has the ability to ensure a reliable data which can be 

utilized for maintenance planning.   Another objective is to conduct full analysis for the 

Weibull model. Finally, both results will be compared to confirm the reliability of each 

model. 
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Chapter 2  

LITERATURE REVIEW 

2.1 Weibull Distribution 

 The history of the Weibull distribution can be traced back to 1928, when two 

researchers, Fisher and Tippett, deduced the distribution in their study of the extreme 

value theory. In the late 1930s, a Swedish professor Waloddi Weibull derived the same 

distribution and his hallmark paper in 1951 made this distribution fashionable [1]. In his 

paper Professor Weibull explained the reasoning of the Weibull distribution through the 

phenomena of the weakest link in the chain, [2].  

 Weibull analysis is widely used in failure prediction modeling in many fields. It is 

considered to be one of the most widely used distributions in reliability data analysis. 

Many methods have been proposed for estimating the two Weibull parameters, among 

which Weibull probability plot (WPP), maximum likelihood estimation (MLE) and least 

squares estimation (LSE) are the methods frequently used nowadays. Zaretsky proposed a 

generalized Weibull-based methodology for structural life prediction that uses a discrete-

stressed - volume approach. They applied this methodology to qualitatively predict the 

life of a rotating generic disk with circumferentially placed holes as a function of the 

various Weibull parameters [3].  

Al-Garni studied the failure rate in many aviation industry fields with a focus on aircraft 

components and systems by using both two and three parameters Weibull [4-13]. His new 
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approach was to study and calculate the reliability analysis not only on the component 

level, but also at the system level. Phased Bi-Weibull, mixture model were used to 

estimate the parameters in their study. Through his study, he focused on a lot of 

maintenance issues and procedures that would promote and enhance the reliability of 

studied system by concluding his researches with some practical recommendation related 

to the  maintenance practices and inventory systems to avoid an under or over stock parts.  

Shaikh [14] studied the reliability of some rotating equipment that is used in oil and gas 

field, two parameters Weibull was utilized at the study. Smaha studied the utilization of 

Weibull to predict the failure of some equipment based on history of data to give an 

indication of the component failure mechanism, [15]. He has also demonstrated that 

Weibull could be utilized in calculating the number of future failures according to the 

mean time between failures (MTTF).  Erwin with assistance from NASA used Weibull 

model in aging and predicting the life of aircraft engine structures including critical 

rotating components like high pressure turbine blades, fan, and compressors, [16]. Lewis 

used regression based analysis which will be basically used in this study [17-18]. 

2.2 Artificial Neural Network (A.N.N) 

 McCulloch and Pitts tried to understand how the brain could produce highly 

complex patterns by using many basic cells that are connected together. They formed a 

logical calculus of neural network, [19]. A network consists of number of neurons and 

properly set synaptic connections that can compute any computable function. A simple 

logic function is performed by a neuron in this case based upon on the weights set in the 

McCulloch-Pitts neuron. The arrangement of neuron in his case maybe represented as a 
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combination of a logic function. The most important type feature of this type of neuron is 

the concept of the threshold. When the net input to a particular neuron is greater than the 

specified threshold by the user, the neuron fires.  Logic circuits are found to use this type 

of neuron extensively.  

Later, in Hebb’s book, an explicit statement of a physiological learning rule for 

synaptic modification was presented for the first time [20]. Hebb proposed that the 

connectivity of the brain is continually changing as an organism learns differing 

functional tasks, and that neural assemblies are created a change. The concept behind the 

Hebb theory is that if two neurons are found to be active simultaneously the strength of 

connection between the two neurons should be increased. The concept is similar to that of 

correlation matrix learning. Moreover, Rosenblatt introduced perceptions. In perceptions 

network the weights on the connection paths can be adjusted.  

A method of iterative weight adjustment can be used in perception net [21]. The 

perception net is found to converge if the weights obtained allow the net to produce 

exactly all the training inputs and target output vector pairs. Later, Widrow and Hoff 

introduced (ADALINE), abbreviated from Adaptive Linear Neuron uses a learning rule 

called as Least Mean Square (LMS) rule or Delta rule [22]. This rule is found to adjust 

the weights so as to reduce the difference between the net input to the output and the 

desired output. The convergence criteria in this case are the reduction of mean square 

error to a minimum value. This delta rule for a single layer can be called a precursor of 

the back propagation net used for multi-layer nets. The multi-layer extension of Adaline 

formed the Madaline.  
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In 1982, John Hopfield’s introduced new concept networks, Hopfield showed 

how to use “Using spin glass” type of model to store the information in dynamically 

stable networks, [23]. His work paved the way for physicists to enter neural modeling, 

thereby transforming the field of neural networks.   

Three years later, Parker back propagation net paved its way into neural networks, 

[24]. This method propagates the error information at the output units back to the hidden 

units using generalized delta rule. This net is basically a multilayer, feed foreword net 

trained by means of back propagation. Back propagation net emerged as the most popular 

learning algorithm for the training for multilayer perceptions and has been the workhouse 

for many neural network applications. This approach became common in modeling 

engineering and industrial problems. As a result Broomhead and Lowe developed Radial 

Based Functions (RBF). This is also a multilayer net that is quiet similar to the back 

propagation net. Al-Garni utilized the back propagation approaches to predict the failure 

of some equipment, [4-13]. The network topology and architecture played a significant 

role in the accuracy of the prediction. Selecting the right structure of the network was one 

the challenges in the study in order to come up with an optimum model with good 

parameters that would lead to a reliable prediction of the failure. 

 Kutsurelis utilized ANNs as a forecasting tool to study their ability in predicting 

the trend of some stock markets indices, [25]. Accuracy of the back propagation 

algorithm which was used to train the network was compared against a traditional 

forecasting method and multiple linear regression analysis. From his study, it was 

concluded that neural networks do have the capability to forecast financial markets and, if 
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properly trained, the individual investor could benefit from the use of this forecasting 

tool.  

Soumitra proposed a model that could be implemented at aircraft maintenance, 

repair, and overhaul (MRO), [26]. He focused on many applications that could be 

facilitated by the artificial neural network. His main concept was to feed all the aircraft 

original equipment manufacturer manual (OEM) data to the network. By doing so, the 

probability at the point and the extent of damage caused in an aircraft with a better 

accuracy can be predicted. 

 Abd Kadir used ANN to calculate and predict the remaining useful life (RUL) of 

rotating machinery, [27]. He implemented his study on bearings life by utilizing Feed 

Forward neural network (FFNN), the study compared results from both ANN and 

Weibull model with a conclusion of better prediction analysis from the artificial neural 

network model.  

The accuracy of ANN predictions to critical aircraft engine components has not 

been adequately investigated yet. In the present work, an initial modeling of failure rates 

using Weibull approach will first be introduced. Then a feed forward back propagation 

algorithm will be implemented to predict the engine valves using collected data 

corresponding to five years of operation in an aviation facility. The effect of model 

parameters will be investigated and its accuracy will be verified. Both flight hours and 

flight cycles will be used in failure data representation to give flexibility in maintenance 

scheduling. Finally possible operational applications of the developed model will be 

presented.  
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Chapter 3  

WEIBULL METHODOLOGY 

3.1 Weibull Regression Model  

The Weibull model is one of the most commonly used models to identify the 

failure characteristics of any component parts. In aerospace, it is considered to be one of 

the sophisticated tools that are widely utilized in order to identify unexpected failures for 

some parts. It also gives an optimum maintenance strategy, especially when researchers 

try to estimate the remaining age for any parts with increasing failure. The beauty about 

this model is the ability to provide reasonably accurate failure analysis and failure 

predictions with relatively small sample of data. This means that it is possible to use data 

as the first failure emerges and decide on corrective actions before more failure data is 

generated. 

 There are many models for the Weibull distribution like the three parameters 

model, mixture model and phase-bi model which could be implemented due to the nature 

of the study. In this study the two parameters model will be used. The Weibull failure 

distribution may be used to model both increasing and decreasing failure rates.  It is 

characterized by a hazard rate function λ (t) of the form: 

λ (t) = bat  
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which is a power function. The function λ (t) is increasing for a>0, b>0 and is decreasing 

for a>0, b<0. For mathematical convenience it is better to express the hazard function λ 

(t) in the following form to better emphasize the physics of the modeling process: 

                               
1

( ) 0, 0, 0tt t
β

βλ η β
η η

−
 

= > > ≥ 
 

        (3.1) 

The reliability function ( )R t  which indicates the probability of surviving beyond a given 

time t can be derived from the failure rate function as follows: 

                                  
( ) exp tR t

β  
= −  η   

                                                                    (3.2) 

The cumulative distribution function F (t) which indicates the probability that a failure 

occur before time t can be defined as the following: 

                                  F (t) = 1-R (t) 

                                  
( ) 1 exp tF t

β  
= − −  η   

                                                               (3.3) 

where: 

        t = time, which is in our case either the flight hours or flight cycles. 

      β  = shape parameter (which has a strong influence on how Weibull graph shape).  

     η= scale parameter, which is called the characteristic life of a component, that fixes 

one point of the cumulative distribution function F (t); the “63.2” percentile, which also 
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mean that the probability failure of an object is 36.78%. This parameter is derived by 

substituting β  for the time t in Equation (3.3) as follows: 

                         ( ) 1 exp tF t
β  

= − −  η                                          
 

                         
( ) 1 expF

β  η
η = − −  η   

= 1-exp (-1) = 0.632 = 63.2% 

The function R (t) is normally used when reliabilities are being computed, and the 

function F (t) is normally used when probabilities are being computed. 

3.2 Bathtub Curve  

The life of a set of units can be divided into three distinct periods. Figure  3.1 [29] 

shows the reliability “bathtub curve” which models important instantaneous failure rates 

vs. time. Following the slope from the start to where it begins to flatten out this can be 

considered the first period. The first period is characterized by a decreasing failure rate. It 

is what occurs during the early life of a population of units. This first period is known as 

an infant mortality period. The next period is the flat segment of the graph. It is called the 

normal life. Failures occur more in a random sequence during this time. The third period 

begins at the point where the slope begins to increase and extends to the end of the graph. 

This is what happens when units become mature and begin to fail at an increasing rate. 

Bathtub is basically used as a visual model to demonstrate the three main periods of 

component failure and not adjusted to reflect a graph of the unanticipated behavior for a 

certain component family [29]. 



18 

 

 

 

Figure  3.1 The Bathtub Curve 

 

Before fitting the model to the failure data, one needs to define some important statistical 

characteristics that are widely used in reliability calculations: 

Mean Time To Failure (MTTF): Which measures the average time between failures with 

the modeling assumption that the failed system is not repaired.  

Average (median) life ( 0.5T  ): the life by which half of the units will survive. 

MTTF = ηΓ (1+ 1
β

), where Γ is the Gamma function                                                   (3.4) 

http://en.wikipedia.org/wiki/Failure�
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                                     Γ(x) =(x-1) Γ(x-1) 

                                   ( 0.5T  ) = η 

1

( 2)In
 
 β 

                                                                      (3.5) 

3.3 Fitting the Weibull Model to the Data 

               In aviation maintenance, there are usually two units that are used in building 

maintenance programs, namely the flight hours and flight cycles: 

Flight hour (FH): the time from starting up the engine till shut down. 

Flight cycle (FC): one take off and one landing. 

In this study modeling the failure rate for the bleed air control system will be carried out 

in terms of both units. 

3.3.1 Bleed Air Regulator (BAR-Flight Hour) 

  To fit the Weibull model, MS EXCEL has the capability to calculate and fit the 

data on a Weibull plot. Below are the numerical approach steps to fit the model starting 

with the complementary function as the following: 

                          
( ) exp tR t

β  
= −  η     

                          F (t) = 1-R (t) 

                       
( ) 1 exp tF t

β  
= − −  η     
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                       ( ) 1 exp tF t
β  

= − −  η     

                          

ln[1 ( )]

ln{ln[1 ( )]}

tF t

tF t

β

β

  
− = −  η   

  
− = −  η   

 

                         

1 ( ) ( ) (3.6)
1 ( )

In In n t n
F t

β β η
  

= −  −  
 

                                  
 

This equation is a straight line equation   

       y = mix + b     

where; 

                            y=
( )

1
1

In In
F t

   
  −   

, m=β , b= ( )ln−β η   ,  

The two parameters can easily be calculated from the slope of the straight line and the y-

intercept point on the graph. 

To calculate the reliability, the median rank is best tool to use [32]. Median of a set of 

data is the number which is in the middle of the data set. To calculate the median, the 

data should be sorted in ascending order. The median rank formula is: 

                                        
0.3( ) 0
0.4i

iF t i N
N
−

= ≤ ≤
+

                                (3.7)                           

Where I is the failure number and N is the total number of failures. 
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Table 3-1 shows the main calculations to fit the Weibull model to the failure data using 

equations (3.1-3.7) for the bleed air regulator (BAR) in term of flight hours (FH). 

 

Table  3-1 Failure analysis for Bleed Air Regulator (FH) 
 

 (t) FH Rank F(t) 1/(1-F(t)) ln(ln(1/(1-F(t))) ln(t) 

41 1 0.029 1.030 -3.494 3.713 

262 2 0.072 1.078 -2.584 5.568 

266 3 0.115 1.130 -2.098 5.583 

275 4 0.158 1.187 -1.759 5.616 

295 5 0.200 1.251 -1.495 5.686 

313 6 0.243 1.322 -1.275 5.746 

690 7 0.286 1.401 -1.086 6.536 

821 8 0.329 1.490 -0.918 6.710 

947 9 0.371 1.591 -0.765 6.853 

1233 10 0.414 1.708 -0.624 7.117 

1315 11 0.457 1.845 -0.492 7.181 

1384 12 0.500 2.000 -0.366 7.232 

1454 13 0.542 2.186 -0.245 7.282 

1565 14 0.585 2.412 -0.127 7.355 

1725 15 0.628 2.689 -0.010 7.452 

1750 16 0.670 3.038 0.105 7.467 

2016 17 0.713 3.492 0.223 7.608 

2031 18 0.756 4.105 0.345 7.616 

2234 19 0.799 4.978 0.473 7.711 

2237 20 0.841 6.324 0.612 7.712 

2400 21 0.884 8.666 0.769 7.783 

2669 22 0.927 13.764 0.963 7.889 

2790 23 0.970 33.428 1.255 7.933 
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Figure  3.2 Weibull plot for failure data of Bleed Air Regulator (FH) 

Using an Excel spread sheet, tables 3-2 and 3-3 show regression analysis output and 

statistics for the failure data given in table 3-1 

Table  3-2 Regression Statistics (BAR-FH) 

Regression Statistics 

Multiple R 0.9640915 

R Square 0.9294724 

Adjusted R Square 0.9261139 

Standard Error 0.321034 

Observations 23 
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Table  3-3 Statistics (BAR-FH) 

  Coefficients 

Standard 

Error t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept -7.9175076 0.448033 -17.6717 4.39E-14 -8.84924 -6.98577 -8.84924 -6.98577 

ln(BAR 

hours) 1.0771718 0.06475 16.63597 1.44E-13 0.942518 1.211826 0.942518 1.211826 

 

Using equation (6), the Weibull parameters are calculated as: 

            β = (slope of the line) = 1.07 

Since β >1 this indicates an increasing failure rate of the bleed air regulator. 

            B = ( )ln−β η    which means that  

           η  = exp ( )b
−
β

exp ( )b
−
β

 = exp – 7.917( )
1.077
− =1557 (hours), than means 63% of the 

failures occurred up to this time. 

Similarly, from equation (4) and (5); 

        MTTF = 1516 hours 

       0.5T  = 1105 hours 

It is seen that (R Square) is a very important index for the goodness of fit. With an 

acceptable value of 93%, the goodness of fit is verified. However, if the accuracy of fit is 

to be enhanced, one could introduce the third Weibull parameter which is called the shift 

parameter. In this study only two-parameter Weibull model will be used. Three parameter 
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Weibull model will not improve accuracy significantly, and thus will not affect the final 

conclusions regarding the developed ANN model.  

3.3.2 Goodness-of-Fit Test (BAR-Flight Hour) 

 The goodness of fit for a statistical model describes how well it fits a set of 

observations. Measures of goodness of fit typically summarize the discrepancy between 

observed values and the values expected under the model in question. The test consists of 

computing a statistic based on the sample of failure times. This statistics is then 

compared with a critical value obtain from a table of such values [29]. The test compares 

the distribution function with uniform distribution function of the empirical sample. The 

idea is to calculate the maximum distance between the theoretical and empirical 

functions. If this distance exceeds a certain value, which is a fixed value that depends 

only on the sample size, then the sample does not fit the Weibull method. Kolmogorov-

Simirnov (KS) goodness of fit test, which was developed by Lilliefors, is widely used in 

this practice. The beauty of KS test lies in its flexibility where it can be used with 

variable of distributions at a small sample [34]. 

 There are several computational methods for the KS. First, sort the data. Then 

establish the assumed distribution (null hypothesis) and estimate its parameters. Then, 

obtain both the theoretical (assumed CDF) distribution (F0) as well as the empirical (Fn) 

at each data point. Since KS is a distance test, one needs to find the maximum distance 

|F0 - Fn| between the theoretical and empirical distributions. Its two basic functions are 

defined in equation (3.8). 

http://en.wikipedia.org/wiki/Statistical_model�
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              F0(Xi) = P0(X ≤ Xi) CDF (Xi);                                       

(3.8) 

 

F0(Xi) is the assumed cumulative distribution function evaluated at Xi and Fn(Xi) is the 

empirical distribution function obtained by the proportion of the data smaller than Xi in 

the data set size n. 

   Fn(Xi) = i/n; i = 1,..., n                                                (3.9) 

 

Then, define: D+ = Fn - F0 and D- = F0 - Fn-1 for every data point Xi

The KS logic is as follows: if the maximum departure between the assumed CDF and 

empirical distributions is small, then the assumed CDF will likely be correct. But if this 

discrepancy is "large" then the assumed F

. The KS statistic is: 

                     D = Maximum of all D+ and D- ( ≥ 0); for i = 1,..., n                         (3.10) 

0

 

 is likely not the underlying data distribution. 

Using equations (3.8), (3.9) and (3.10) 

Table  3-4 shows calculation for KS test with the following sample of calculations for 

Row 1 in table 3.1:       

 Fo ( ) 1 exp tF t
β  

= − −  η   
=

 

1.077411 exp 0.01971
  = − − =  1556      

                     

  Fn-1(1) =(1-1)/23 = 0   D+ = Fn- Fo =0.043-0.019=0.023 
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Table  3-4 KS GOF test for Bleed Air Regulator (FH) 

ROW FH Fo Fn Fn-1 D+ D- 

1 41 0.019718 0.043478 0 0.023761 0.019718 

2 262 0.13653 0.086957 0.043478 -0.04957 0.093052 

3 266 0.138613 0.130435 0.086957 -0.00818 0.051657 

4 275 0.14329 0.173913 0.130435 0.030623 0.012855 

5 295 0.153634 0.217391 0.173913 0.063758 -0.02028 

6 313 0.162882 0.26087 0.217391 0.097988 -0.05451 

7 690 0.340669 0.304348 0.26087 -0.03632 0.0798 

8 821 0.394856 0.347826 0.304348 -0.04703 0.090508 

9 947 0.443329 0.391304 0.347826 -0.05202 0.095502 

10 1233 0.540835 0.434783 0.391304 -0.10605 0.149531 

11 1315 0.565794 0.478261 0.434783 -0.08753 0.131011 

12 1384 0.585828 0.521739 0.478261 -0.06409 0.107567 

13 1454 0.605281 0.565217 0.521739 -0.04006 0.083542 

14 1565 0.634406 0.608696 0.565217 -0.02571 0.069188 

15 1725 0.672887 0.652174 0.608696 -0.02071 0.064191 

16 1750 0.678546 0.695652 0.652174 0.017106 0.026372 

17 2016 0.733326 0.73913 0.695652 0.005805 0.037674 

18 2031 0.736136 0.782609 0.73913 0.046473 -0.00299 

19 2234 0.771514 0.826087 0.782609 0.054573 -0.0111 

20 2237 0.772001 0.869565 0.826087 0.097564 -0.05409 

21 2400 0.797041 0.913043 0.869565 0.116002 -0.07252 

22 2669 0.832716 0.956522 0.913043 0.123805 -0.08033 

23 2790 0.846725 1 0.956522 0.153275 -0.1098 

    MAX= 0.153275 0.149531 
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From the table above,  

Max D+  = 0.153 

Max D-  = 0.149 

Sample size = 23,  

The critical value (CV) for KS test can be calculated using (3.11): 

CV= 1.36
n

    where (n) is the sample size                                                    (3.11) 

CV= 0.28 

Since max D+ = 0.153   < CV = 0.280   ⇒ The sample is accepted. 

3.3.3 Weibull Analysis for Bleed Air Regulator (Flight Cycles) 

Following the same procedures for the flight hours, the following tables and calculations 

demonstrate the Weibull analysis for the BAR in terms of flight cycles (FC). Table  3-5 

shows the failure history for the BAR with the required calculation for fitting the data to 

the Weibull model. 
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Table  3-5 BAR Weibull failure analyis (FC) 

(FC) Rank F(t) 1/(1-F(t)) ln(ln(1/(1-F(t)))) ln( FC) CDF 

76 1 0.030 1.031 -3.494 4.331 0.022 

345 2 0.073 1.078 -2.585 5.844 0.113 

394 3 0.115 1.130 -2.099 5.976 0.130 

396 4 0.158 1.188 -1.760 5.981 0.131 

462 5 0.201 1.251 -1.495 6.136 0.153 

517 6 0.244 1.322 -1.276 6.248 0.172 

1104 7 0.286 1.401 -1.087 7.007 0.355 

1215 8 0.329 1.490 -0.919 7.102 0.386 

1461 9 0.372 1.592 -0.766 7.287 0.450 

1897 10 0.415 1.708 -0.625 7.548 0.550 

2001 11 0.457 1.843 -0.492 7.601 0.572 

2053 12 0.500 2.000 -0.367 7.627 0.582 

2209 13 0.543 2.187 -0.245 7.700 0.612 

2329 14 0.585 2.412 -0.127 7.753 0.633 

2395 15 0.628 2.690 -0.011 7.781 0.645 

2512 16 0.671 3.039 0.106 7.829 0.664 

2981 17 0.714 3.493 0.224 8.000 0.733 

2984 18 0.756 4.105 0.345 8.001 0.733 

3271 19 0.799 4.979 0.473 8.093 0.768 

3495 20 0.842 6.324 0.612 8.159 0.793 

3739 21 0.885 8.667 0.770 8.227 0.817 

4097 22 0.927 13.765 0.964 8.318 0.847 

4322 23 0.970 33.429 1.255 8.371 0.864 

 

Table 3-6 and Table 3-7 represents the Regression analysis and statistics for data given in 

Table 3-5 
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Table  3-6 Regression Statistics (BAR-FC) 

Regression Statistics 

Multiple R 0.97211 

R Square 0.944999 

Adjusted R Square 0.94238 

Standard Error 0.283503 

Observations 23 

 

 

Table  3-7 Statistics (BAR-FC) 

 

From regression output, it is clear that data shows a strong fit based on the value of (R 

Square) which is almost 95%. In order to estimate the Weibull parameters for this model, 

the same procedures used in the flight hour's calculations will be implemented. 

Using equation (3.6), we can calculate the Weibull parameters as: 

            β = (slope of the line) = 1.11 

Since β >1 this indicates an increasing failure rate of the bleed air regulator. 

            B = ( )ln−β η    which means that 

 
Coefficients Standard 

Error 
t Stat P-value Lower 

95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -8.60946 0.428512 -20.0915 3.42E-15 -9.5006 -7.71832 -9.5006 -7.71832 

ln(FC) 1.110828 0.05848 18.99498 1.05E-14 0.989212 1.232444 0.989212 1.232444 
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  η  = exp ( )b
−
β

exp ( )b
−
β

 = exp – 8.609( )
1.110
− =1806 (cycles), than means 63% of the 

failures occurred up to this time. 

Similarly, from Equations (3.4) and (3.5); 

        MTTF = 1738 cycles 

       0.5T  = 1202 cycles 

3.3.4 Weibull Analysis for High Stage Valve (Flight Hours) 

Same procedures will be followed for analysis for this valve just like the bleed air 

regulator. First, the Weibull analysis will be performed in terms of flight hours and cycles 

followed by the goodness of fit test. 

 

Table  3-8 shows the failure analysis for the high stage valve in terms of flight hours with 

the necessary calculations to estimate the Weibull parameters. The main difference 

between the high stage valve and the bleed air regulator data is the number of 

observations or failures. For the high stage valve, the number is failures are less than the 

BAR. This gives a good indication about how our analysis would be affected as the 

number of observations is decreasing. Following the same steps that were used in the 

BAR calculations, Figure  3.3 shows the Weibull plot for high stage valve. 
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Table  3-8  Failure analysis for High Stage Valve (Flight Hour) 

 

t (FH) Rank F(t) 1/(1-F(t)) ln(ln(1/(1-F(t)))) ln( t) 

234 1 0.049 1.051 -2.999 5.455 

236 2 0.118 1.134 -2.074 5.464 

500 3 0.188 1.231 -1.572 6.215 

760 4 0.257 1.346 -1.214 6.633 

989 5 0.326 1.485 -0.929 6.897 

1022 6 0.396 1.655 -0.685 6.930 

1211 7 0.465 1.870 -0.468 7.099 

1641 8 0.535 2.149 -0.268 7.403 

1786 9 0.604 2.526 -0.076 7.488 

1901 10 0.674 3.064 0.113 7.550 

1923 11 0.743 3.892 0.307 7.562 

2100 12 0.813 5.333 0.515 7.650 

2155 13 0.882 8.471 0.759 7.676 

2712 14 0.951 20.571 1.107 7.905 
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Figure  3.3 Weibull plot for high stage valve (FH) 

 

Similarly, using an Excel spread sheet, below are the regression analysis for the high 

stage bleed valve. Table 3-9 represents regression analysis for data given in Table 3-8 

                                Table  3-9 Regression Statistics (HSV-FH) 

Regression Statistics 

Multiple R 0.970156 

R Square 0.941203 

Adjusted R Square 0.936304 

Standard Error 0.288974 

Observations 14 
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The results show that R square value is almost (94%) which shows a strong index of fit. 

Although the sample data for the high stage valve is less than those for the bleed air 

regulator, this fact did not affect the index of fit for the data which shows the power of 

the Weibull method for our analysis with limited number of observations. Another 

regression output in Table 3-10 represents another statistics for data give in Table 3-8. 

 

Table  3-10 Statistics (HSV-FH) 
 

  Coefficients 

Standard 

Error t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept -10.2946 0.7084 -14.5319 0.0000 -11.8381 -8.7511 -11.8381 -8.7511 

ln(BAR 

hours) 1.3953 0.1007 13.8598 0.0000 1.1760 1.6147 1.1760 1.6147 

 

Using equation (3.6), Weibull parameters are:  

            β = (slope of the line) = 1.39 

Since β >1 this indicates an increasing failure rate of the high stage valve. 

            B = ( )ln−β η    which means that  

           η  = exp ( )b
−
β

exp ( )b
−
β

 = exp – 10.294( )
1.395
− =1600 (hours), than means 63% of the 

failures occurred up to this time. 

Similarly, from Equations (3.4) and (3.5); 

        MTTF = 1459 hours 

       0.5T  =     1229 hours 
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3.3.5 Goodness-of-Fit Test (High StageValve-Flight Hour) 

Similar to the BAR, the goodness of fit for the data for high stage valve will be checked. 

Since the number of data is relatively smaller, this check will indicate any effect of the 

size on the fitting the model into the Weibull model. Following the same calculations that 

were performed for the BAR,  

Table  3-11 shows the KS goodness of fit test calculations. 

From the  

Table  3-11, 

Max D+ = 0.149 

Max D-  = 0.145 

Sample size = 14,  

The critical value CV for KS test for data of size 14 = 0.360 

Since max D+ = 0.149 < CV = 0.360 ⇒ the sample is accepted. 
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Table  3-11 KS GOF test for High Stage Valve (FH) 

 

Rank FH Fo Fn Fn-1 D+ D- 

1 234 0.067 0.071 0.000 0.005 0.067 

2 236 0.068 0.143 0.071 0.075 -0.004 

3 500 0.180 0.214 0.143 0.034 0.037 

4 760 0.299 0.286 0.214 -0.013 0.085 

5 989 0.401 0.357 0.286 -0.044 0.115 

6 1022 0.415 0.429 0.357 0.014 0.058 

7 1211 0.493 0.500 0.429 0.007 0.064 

8 1641 0.645 0.571 0.500 -0.074 0.145 

9 1786 0.688 0.643 0.571 -0.045 0.117 

10 1901 0.719 0.714 0.643 -0.005 0.076 

11 1923 0.725 0.786 0.714 0.061 0.011 

12 2100 0.768 0.857 0.786 0.090 -0.018 

13 2155 0.780 0.929 0.857 0.149 -0.077 

14 2712 0.875 1.000 0.929 0.125 -0.053 

    

MAX= 0.149 0.145 
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3.3.6 Weibull Analysis for High Stage Valve (Flight Cycles) 

Due to the fact that high stage valve works under extreme conditions in terms of pressure 

and temperature, it is imperative to take a look at the data from different angle, and this 

time form cycles point of view. Engines are pushed to the limit during the takeoff phase 

of the flight. At this phase, all engine systems, especially bleed air system, are exposed to 

a tremendous amount of power that would make any malfunction leads to a catastrophic 

subsequence. Table  3-12 shows the failure data for the high stage valve in terms of flight 

cycles (FC), with the necessary calculations to estimate the Weibull parameters. 
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Table  3-12 High stage valve failure data (FC) 

t(FC) Rank F(t) 1/(1-F(t)) ln(ln(1/(1-F(t)))) ln(t) CDF 

337 1 0.049 1.051 -2.999 5.820 0.064 

346 2 0.118 1.134 -2.074 5.846 0.066 

930 3 0.188 1.231 -1.572 6.835 0.226 

1014 4 0.257 1.346 -1.214 6.922 0.250 

1510 5 0.326 1.485 -0.929 7.320 0.388 

1655 6 0.396 1.655 -0.685 7.412 0.426 

1890 7 0.465 1.870 -0.468 7.544 0.484 

2707 8 0.535 2.149 -0.268 7.904 0.657 

2806 9 0.604 2.526 -0.076 7.940 0.675 

3235 10 0.674 3.064 0.113 8.082 0.743 

3238 11 0.743 3.892 0.307 8.083 0.744 

3311 12 0.813 5.333 0.515 8.105 0.754 

3744 13 0.882 8.471 0.759 8.228 0.809 

4000 14 0.951 20.571 1.107 8.294 0.836 
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Figure  3.4 Weibull plot for high stage valve (FC) 

Regression and statistical data for the high stage valve are given in Table 3-13 and Table 

3-14. 

Table  3-13 Regression Statistics (HSV-FC) 

Regression Statistics 

Multiple R 0.96703199 

R Square 0.93515088 

Adjusted R Square 0.92974679 

Standard Error 0.3034834 

Observations 14 



39 

 

Table  3-14 Statistics (HSV-FC) 

  Coefficients 

Standard 

Error t Stat P-value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept -10.505258 0.762281 -13.7814 1.02E-08 -12.1661 -8.84439 -12.1661 -8.84439 

ln (cycles) 1.33790498 0.101706 13.15465 1.73E-08 1.116307 1.559503 1.116307 1.559503 

 

Using Equation (3.6), Weibull parameters are: 

                        β = (slope of the line) =1.338  

Since β >1 this indicates an increasing failure rate of the high stage valve. 

            B = ( )ln−β η    which means that  

           η  = exp ( )b
−
β

exp ( )b
−
β

 = exp – 10.505( )
1.338
− = 2570 (cycles), than means 63% of the 

failures occurred up to this time. 

Similarly, from Equations (3.4) and (3.5); 

        MTTF = 2359 cycles 

       0.5T  =    1954 cycles 

3.3.7 Goodness-of-Fit Test (High StageValve -Flight Cycle) 

Table  3-15 shows KS goodness of fit calculations for the high stage valve (cycles). 
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Table  3-15 KS test for high stage valve (FC) 

Rank Cycles Fo Fn Fn-1 D+ D- 

1 337 0.064 0.071 0.000 0.007 0.064 

2 346 0.066 0.143 0.071 0.077 -0.005 

3 930 0.227 0.214 0.143 -0.012 0.084 

4 1014 0.251 0.286 0.214 0.035 0.036 

5 1510 0.388 0.357 0.286 -0.031 0.102 

6 1655 0.426 0.429 0.357 0.003 0.069 

7 1890 0.485 0.500 0.429 0.015 0.056 

8 2707 0.658 0.571 0.500 -0.086 0.158 

9 2806 0.675 0.643 0.571 -0.032 0.104 

10 3235 0.743 0.714 0.643 -0.029 0.101 

11 3238 0.744 0.786 0.714 0.042 0.030 

12 3311 0.754 0.857 0.786 0.103 -0.032 

13 3744 0.809 0.929 0.857 0.120 -0.048 

14 4000 0.836 1.000 0.929 0.164 -0.093 

    

MAX= 0.164 0.158 

 

 

From the table above,  
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Max D+  = 0.164 

Max D-  = 0.158 

Sample size = 14,  

From appendix, the critical value CV for KS test for data of size 14 = 0.360 

Since max D+ = 0.149 < CV = 0.360 ⇒ the sample is accepted. 

 

3.3.8 Weibull AnalysisPressure Regulator and Shutoff Valve (Flight Hours) 

Following the same methodology used for bleed air regulator and high stage valve, 

estimating of Weibull parameters will be conducted for the data in terms of flight hours 

(FH) and flight cycles (FC). Among the three valves that are studied in this work, the 

PRSOV got the least number of failure data gathered from the aircraft logbook. The 

following calculations will reveal how significant the simulation process is affected by 

drastically reducing the number of analyzed data. 

Table  3-16 shows the failure analysis for the high stage valve in terms of flight hours 

(FH) with the necessary calculations to estimate the Weibull parameters. 
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Table  3-16 PRSOV failure data (Flight Hour) 

t (FH) Rank F(t) 1/(1-F(t)) ln(ln(1/(1-F(t)))) ln(t) CDF 

77 1 0.061 1.065 -2.759 4.344 0.038 

427 2 0.149 1.175 -1.823 6.057 0.236 

512 3 0.237 1.310 -1.308 6.238 0.282 

954 4 0.325 1.481 -0.935 6.861 0.488 

1036 5 0.412 1.701 -0.632 6.943 0.521 

1117 6 0.500 2.000 -0.367 7.018 0.551 

1256 7 0.588 2.426 -0.121 7.136 0.599 

1340 8 0.675 3.081 0.118 7.200 0.626 

1360 9 0.763 4.222 0.365 7.215 0.633 

1990 10 0.851 6.706 0.643 7.596 0.786 

2064 11 0.939 16.286 1.026 7.632 0.799 

 

Following the same approach for estimating the Weibull parameters, Figure  3.5 shows 

the Weibull plot for the PRSOV in terms of (FH). 
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Figure  3.5  PRSOV Weibull plot (FH) 

From above graph, regression and statistical analysis for this valve are represented in 

Table 3-17 and Table 3-18 

 

Table  3-17 Regression Statistics (PRSOV-FH) 

 

 

 

 

 

Regression Statistics 

Multiple R 0.940446 

R Square 0.884439 

Adjusted R Square 0.871599 

Standard Error 0.402766 

Observations 11 
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From above table it can be noticed that R Square is approximately (88%) which shows a 

weak index of fit. This clearly indicates how Weibull fit accuracy was affected by the 

number of data in this case. The index of fit for PRSOV model is least value compared to 

the other valves. The goodness of fit test will be conducted again to ensure and validate 

the Weibull model for this particular valve. 

Regression analysis was similarly utilized to estimate the Weibull parameters for PRSOV 

as following. 

Table  3-18 Statistics (PRSOV-FH) 

 Coefficients Standard 
Error t Stat P-

value 
Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -8.1684 0.9287 -8.7952 0.0000 -10.2693 -6.0675 -10.2693 -6.0675 

ln(PRSO
V (FH)) 

1.1323 0.1364 8.2994 0.0000 0.8236 1.4409 0.8236 1.4409 

 

Using equation (3.6), Weibull parameters can be estimated as the following: 

                              β = (slope of the line) = 1.132 

Since β >1 this indicates an increasing failure rate of the pressure regulator shut off valve  

η  = exp ( )b
−
β

exp ( )b
−
β

 = exp – 8.168( )
1.132
− =1360 (hours), than means 63% of the failures 

occurred up to this time. 

Similarly, from equation (3.4) and (3.5); 
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        MTTF = 1300 hours 

       0.5T  = 983 hours 

3.3.9 Goodness-of-Fit Test (PRSOV-Flight Hours) 

Similar to previous analysis conducted for all valves, Kolmogorov-Simirnov will indicate 

whether Weibull distribution is valid to the PRSOV analysis. Since Weibull did not show 

a strong fit to the model, this test validates weather the analysis is accepted or not. Table 

 3-19 shows KS GOF test for PRSOV in terms of flight hours (FH): 

 

Table  3-19 KS GOF test for PRSOV (FH) 

ROW FH Fo Fn Fn-1 D+ D- 

1 77 0.038 0.091 0.000 0.053 0.038 

2 427 0.236 0.182 0.091 -0.055 0.146 

3 512 0.282 0.273 0.182 -0.009 0.100 

4 954 0.489 0.364 0.273 -0.125 0.216 

5 1036 0.521 0.455 0.364 -0.066 0.157 

6 1117 0.551 0.545 0.455 -0.006 0.097 

7 1256 0.600 0.636 0.545 0.037 0.054 

8 1340 0.627 0.727 0.636 0.101 -0.010 

9 1360 0.633 0.818 0.727 0.185 -0.095 

10 1990 0.786 0.909 0.818 0.123 -0.032 

11 2064 0.799 1.000 0.909 0.201 -0.110 

    

MAX= 0.201 0.216 
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From the table above,  

Max D+  = 0.201 

Max D-  = 0.216 

Sample size (n) = 11,  

The critical value ( CV) = 1.36
n

   = 0.410                      

Since max D+ = 0.216  < CV = 0.410  ⇒ the sample is accepted. 

 

3.3.10 Weibull Analysis for Pressure Regulator and Shutoff Valve (Flight Cycles) 

As mentioned earlier, the simulation process is performed from different   perspective 

which is the flight cycles. Such an approach will make this study comprehensive in terms 

of maintenance planning strategy. Following the same procedures for modeling the 

failure rate of the bleed air following the same procedures for modeling the failure rate of 

the bleed air system components, below are the calculations and output for the PRSOV 

for Weibull method. 
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Table  3-20 PRSOV failure data (FC) 

 

t (FC) Rank F(t) 1/(1-F(t)) ln(ln(1/(1-F(t))) ln(t) CDF 

112 1 0.061 1.065 -2.759 4.718 0.040 

720 2 0.149 1.175 -1.823 6.579 0.274 

781 3 0.237 1.310 -1.308 6.661 0.296 

1605 4 0.325 1.481 -0.935 7.381 0.543 

1625 5 0.412 1.701 -0.632 7.393 0.548 

1725 6 0.500 2.000 -0.367 7.453 0.572 

1769 7 0.588 2.426 -0.121 7.478 0.582 

1806 8 0.675 3.081 0.118 7.499 0.590 

1891 9 0.763 4.222 0.365 7.545 0.609 

2093 10 0.851 6.706 0.643 7.646 0.651 

3145 11 0.939 16.286 1.026 8.054 0.809 

 

 

Figure  3.6 shows Weibull plot for the above table. 
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Figure  3.6 PRSOV Weibull Plot (FC) 

Table 3-21 and Table 3-22 show the regression output and statistics for the above figure: 

Table  3-21 Regression Statistics (PRSOV-FC) 

Regression Statistics 

Multiple R 0.893 

R Square 0.797 

Adjusted R Square 0.775 

Standard Error 0.533 

Observations 11 
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The above graph shows a poor fit which indicted by a (R Square = 0.797). Since the 

PRSOV got the least amount of data, it is clear that Weibull method does not give a good 

and accurate simulation output for such a size of data. Although Weibull model has an 

advantage of being accurate with limited number of data, this feature apparently got 

drastically affected with this sample size at the above table.  The goodness of fit test is 

demonstrated to ensure weather Weibull model is accepted for this sample or not. 

Below are the regression outputs for the PRSOV (FC) model. 

Table  3-22 Statistics (PRSOV-FC) 

 

Using Equation (3.6), Weibull parameters can be estimated as the following. 

β = (slope of the line) =1.11 

 Since β >1 this indicates an increasing failure rate of the pressure regulator shut off valve 

   B = ( )ln−β η    which means that  

 η  = exp ( )b
−
β

exp ( )b
−
β

 = 8.463exp ( )
1.113
−

− =2005 (cycles), than means 63% of the failures 

occurred up to this time. 

Similarly, from Equations (3.4) and (3.5); 

 
Coefficients Standard 

Error t Stat P-value Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -8.463908017 1.34325 -6.30106 0.000141 -11.5026 -5.42526 -11.5026 -5.42526 

ln(FC) 1.113545932 0.187094 5.951806 0.000215 0.69031 1.536781 0.69031 1.536781 
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        MTTF = 1926 cycles 

       0.5T  =     1442 cycles 

3.3.11 Goodness of Fit Test (PRSOV-Flight Cycles) 

Similar to flight hours (FH) approach,  

Table  3-23 shows the GOF test for the PRSOV in terms of flight cycles (FC). 

 

Table  3-23 KS GOF test for PRSOV (FC) 

 

ROW FC Fo Fn Fn-1 D+ D- 

1 112 0.040 0.091 0.000 0.051 0.040 

2 720 0.274 0.182 0.091 -0.092 0.183 

3 781 0.296 0.273 0.182 -0.023 0.114 

4 1605 0.543 0.364 0.273 -0.179 0.270 

5 1725 0.572 0.455 0.364 -0.117 0.208 

6 1769 0.582 0.545 0.455 -0.037 0.127 

7 1891 0.609 0.636 0.545 0.027 0.064 

8 1625 0.548 0.727 0.636 0.179 -0.089 

9 2093 0.651 0.818 0.727 0.167 -0.077 

10 1806 0.590 0.909 0.818 0.319 -0.228 

11 3145 0.809 1.000 0.909 0.191 -0.100 

        MAX= 0.319 0.270 
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From  

Table  3-23, 

Max D+  = 0.201 

Max D-  = 0.216 

Sample size (n) = 11,  

The critical value ( CV) = 1.36
n

   = 0.410                      

Since max D+ = 0.319  < CV = 0.410  ⇒ the sample is accepted. 
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Chapter 4  

ANN METHODOLOGY 

4.1 Artificial Neural Network 

4.1.1 Introduction 

 Artificial Neural Network is an information processing system that has a certain 

performance characteristics in common with biological neural network [28]. It’s a non-

linear structure based on the function of human brain, which is a powerful tool for 

modeling, especially when underlying data relationship is unknown. ANN can identify 

and learn correlated patterns between input data and corresponding target values. ANN is 

composed of interconnected neurons that are arranged in systematic structure to perform 

a task using the concept of artificial intelligence. ANNs have become the focus of much 

attention because of their wide range of applicability and the ease with which they can 

treat complicated problems. What makes ANN unique are their adaptive nature, where 

“learning by example” replaces “programming” in solving problems. They have the 

ability to learn from experience in order to improve their performance and to adapt 

themselves to changes in the environment. 

 In addition to that they are able to deal with incomplete information or data and can be 

very effective especially in situations where it is not possible to define the rules or steps 

that lead to the solution of a problem. ANN’s have been used for a wide variety of 
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applications where statistical methods are traditionally implemented. The problems which 

were normally solved through classical statistical methods, such as multiple regressions, 

are being tackled by ANN’s. 

4.1.2 Artificial Neural Networks Classifications 

          ANNs can be categorized based on many aspects. They can be classified according 

to the following attributions. 

 Classification 

Applications 

 Clustering 

 Function approximation 

 Prediction 

 Static (feed forward)  

Connection Type 

 Dynamic (feedback) 

 Single layer 

Topology  

 Multilayer 

 Recurrent 

 Self-organized 
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 Supervised 

Learning Methods 

 Unsupervised 

 In this study, the most popular algorithm which is the back-propagation algorithm 

is utilized to train the network. The back-propagation (BP) artificial neural network 

(ANN) is a well-known and widely applied mathematical model for prediction 

applications. The back propagation ANN algorithm concept is based on a gradient 

descent algorithm that is used to continually adjust the network weights to maximize 

performance, using some criterion function. The aim of the network is to train the 

network to achieve a balance between the ability to respond correctly to the input patterns 

that are used for training and the ability to provide a good responses to the input that are 

similar. 

 BP process could be divided into two segments, which are the forward-

propagation and the back-propagation. The first segment simply starts by sending input 

signals thorough the nodes of each layer in the network. The back-propagation segment 

calculates the error by referring to the stopping criteria that was set for the network. 

Commonly, neural networks are adjusted, or trained, so that a particular input leads to a 

specific target output. Figure  4.1 shows a simple perceptron and could it is processed and 

Figure  4.2 shows the basic concept of the back-propagation algorithm. The network is 

adjusted, based on a comparison of the output and the target, until the network output 

matches the desired target. The stopping criteria is basically a preset value for the 

difference between the output and the desired output of the network, in most of the 
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literatures, this difference is referred to as the error function or the mean square error 

(MSE). 

 Transforming the input signals into output signals is accomplished by an 

activation function which could be a sigmoid- function or any other function depends on 

the structure and the nature of the network. Sigmoid function is utilized which is the most 

suitable function to serve the purpose of our problem.. 

 

 

Figure  4.1 Simple Perceptron 

 

 

 

 

Figure  4.2 Working Flow Chart for the BP ANN process 

 

The basic mathematical model of the back-propagation algorithm [33] is described as 

follows: 
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   jx = normalized Xd   1< d ≤ M                                         

(4.1)  

  netk

1

1

k

kj j
j

W x
−

=
∑ =    m  ≤ k  ≤ N  + n                                    (4.2) 

               kx   = f(netk m)       <  k ≤ N + n                                         (4.3)                    

                           sO  = N sX +    s 1 ≤  ≤ n                                                                        (4.4) 

                         f (net) = netke−+1
1

                                                                            (4.5) 

Where m is the number of inputs to the network, n is the number of outputs of the ANN, 

and X
d 

represents the actual inputs to the ANN (which have to be normalized and then 

initially stored in x
j
). The non-linear activation function f (net

k
) in equation (4.5) is log-

sigmoid function and it depends on the desired output data range. N is a constant, which 

represents the number of intermediate neurons in the ANN. It can be any integer as long 

as it is not less than m. The value of N+m determines how many neurons are there in the 

network (if the inputs are included as neuron). W is the weight matrix in each layer whose 

size depends on the number of neurons in the corresponding adjacent layers of ANN. W
kj 

are the elements of the weight matrix. The term x
k 

is called the “activation level” of the 

neuron, and O
s 
is the output from ANN.  
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 Figure  4.3 and Figure  4.4 illustrate the multiple ANN configurations and 

structures used in our analysis. 
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Figure  4.3 ANN (2, 4, 1) configuration 
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Figure  4.4  ANN (3, 6, 1) configuration 

4.1.3 Sigmoid Activation Function 

 Equation (4.5) is the activation function for the network and it is also called the 

transfer function. It basically determines the relation between the inputs and outputs of a 

node and a network. There are some other functions like hyperbolic function, cosine 

function, and linear functions. The sigmoid activation function is easy to differentiate and 

usually applied to applications whose desired output values are between 0 and 1. Because 

of that, this function is usually preferred over other types of activation functions. Figure 

 4.5 shows the sigmoid activation function. 
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Figure  4.5 Log-Sigmoid Function 

4.1.4 ANN Training Performance 

 The training performance is evaluated using the following performance measures, 

namely the Mean Square Error (MSE). The main objective of the back-propagation 

algorithm is to minimize this error by adjusting the weight of the neurons. Initially, the 

error will be high because the weights are randomly assigned. Throughout the training 

process, this error decreases and converges to minimum value. Below is the equation for 

the MSE. 

                                         E = 
2[ ( ) ( )]F t O t−∑                                                             (4.6) 

Where F(t) is the actual failure of the component (input to the network), and ( )O t is 

calculated failure of the component (output of the network).  
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4.1.5 Results and Discussion (Bleed Air Regulator-Flight Hour) 
 

 In this work, MATLAB was used to write a code to build the network. Table  4-1 

shows the calculations for the BAR with different network structures. Before the results 

are discussed, it is important to consider some of the network parameters that are usually 

tweaked and adjusted in order to come up with optimum results that come to a close 

proximity with the actual data. These parameters are: 

 

1. Network structure: It is a vital step to calculate and build a suitable network for 

our data, the number of neuron and layers are the most significant parameters that 

will drastically affect accuracy. We will start with two neurons for the input layer, 

four neurons for the hidden layer, and a single output layer with one neuron. This 

structure is called (2,4,1). From literature review it was found that in many 

circumstances, having the number of neurons for the hidden layer equal to double 

the number on neurons at the input layer gives optimum results. Accordingly,  the 

following network structures will also be investigated (3, 6, 1), (4, 8, 1), and (4, 

10, 1). It was obvious that the number of neurons at the hidden layer has a 

significant effect on the results. Increasing the number of neurons in the hidden 

layer is the most significant factor that affects the accuracy of result. On the other 

hand, the input and output layer parameters do not have a major impact on the 

simulations process. 

2. Rate of learning: The back-propagation algorithm provides an approximation to 

the trajectory in weight spaced computed by the method of steepest descend [33]. 
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The smaller the learning rate, the smaller the changes to the synaptic weights in 

the network will be from one iteration to the next, and the smoother will be the 

trajectory in weight spaces, keeping in mind that this is achieved at the cost of a 

slower rate of learning. On the other hand, if the leaning rate parameter is 

increased to accelerate the rate of learning, the resulting large changes in the 

synaptic weights will make the network unstable. 

Typically, in most practical applications, learning rate is chosen to be in between 

0.1 and 0.3. The number of training epochs is set to a very high value ranging 

from 1000 to 10000. The training is stopped when the 'mean squared value' of 

error reduces to a value less than the acceptable threshold or when all the training 

cycles are completed. 

3. Momentum constant: In back-propagation networks, the weight change is in a 

direction that is a combination of a current gradient and the previous gradient. 

This approach is beneficial when some training data are very different from a 

majority of the data. Based on that concept, a small training rate is used in order 

to avoid a major disruption of the direction of learning when there is unusual pair 

of training pattern. If the momentum is added to the weight updated formula, the 

convergence if faster. The weights from previous training must be saved to use 

the momentum. The main purpose of the momentum is to accelerate the 

convergence of error propagation algorithm. This method makes the current 

weights adjustment with a fraction of recent weights adjustment. The momentum 

constant is between values 0 to 1.  
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Table  4-1 shows the major outputs for the ANN outputs. Figure  4.6,Figure  4.7,Figure  4.8,  

and Figure  4.9 show the network output compared to the actual data and the Weibull 

method.  
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Table  4-1 Bleed Air Regulator with different ANN structures (FH) 

 

FH Rank F(t) Normalize 
(Hours) 

ANN 
(4,8,1) 

ANN 
(3,6,1) 

ANN 
(2,4,1) 

ANN 
(4,10,1) 

41 1 0.030 0 0.029 0.029 0.053 0.029 

262 2 0.073 0.080 0.080 0.189 0.171 0.074 

266 3 0.115 0.082 0.113 0.191 0.174 0.110 

275 4 0.158 0.085 0.156 0.196 0.181 0.154 

295 5 0.201 0.092 0.202 0.204 0.194 0.200 

313 6 0.244 0.099 0.239 0.211 0.205 0.232 

690 7 0.286 0.236 0.287 0.268 0.318 0.279 

821 8 0.329 0.284 0.325 0.337 0.363 0.326 

947 9 0.372 0.330 0.367 0.381 0.357 0.378 

1233 10 0.415 0.434 0.417 0.427 0.490 0.422 

1315 11 0.457 0.463 0.454 0.461 0.499 0.458 

1384 12 0.500 0.489 0.499 0.496 0.502 0.496 

1454 13 0.543 0.514 0.544 0.532 0.524 0.531 

1565 14 0.585 0.554 0.588 0.587 0.598 0.570 

1725 15 0.628 0.613 0.623 0.655 0.664 0.630 

1750 16 0.671 0.622 0.644 0.664 0.665 0.666 

2016 17 0.714 0.718 0.718 0.733 0.772 0.729 

2031 18 0.756 0.724 0.754 0.737 0.782 0.741 

2234 19 0.799 0.798 0.801 0.819 0.823 0.796 

2237 20 0.842 0.799 0.816 0.821 0.823 0.832 

2400 21 0.885 0.858 0.848 0.883 0.875 0.897 

2669 22 0.927 0.956 0.928 0.907 0.940 0.926 

2790 23 0.970 1.000 0.970 0.966 0.965 0.967 
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Figure  4.6 BAR (FH) ANN (2, 4, 1) comparison with actual data and Weibull 

 

 

Figure  4.7 BAR (FH) ANN (4, 8, 1) comparison with actual and Weibull data 
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Figure  4.8 BAR (FH) ANN (3, 6, 1) comparison with actual and Weibull data 

 

 

 

Figure  4.9 BAR (FH) ANN (4, 10, 1) comparison with actual and Weibull data 



66 

 

The average percentage differences of the output failure rate compared to  the actual  

failure data are found to be 16.57%, 13.15%, 1.63%, and 1.62% for ANN having (2,4,1), 

(3,6,1),(4,8,1) and (4,10,1) configuration respectively. It is evident from the percentage 

differences that the ANN results improve as the number of inputs and intermediate 

neurons increase up to four inputs, however, increasing the number of inputs beyond four 

does not have a significant impact on our calculations. Adjusting other parameters like 

the learning rate and momentum constant did not indicate any noticeable effect on the 

accuracy of the network output. Therefore, (4, 8, 1) ANN model has been adapted for the 

present study. All network parameters are listed in Table 4-2. 

 

Table  4-2 Major network parameters 
 

Parameters  

Network architecture (4, 8, 1) 

Network leaning rate 0.2 

Network momentum constant 0.05 

 

 

4.1.6 Results and Discussion (Bleed Air Regulator-Flight Cycle) 

The same procedures will be followed to predict the failure rate for the bleed air regulator 

in terms of flight cycles (FC). Table  4-3 shows the failure data with all required 

calculations and outputs to estimate the failure by utilizing neural networks. 
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Table  4-3 Bleed air regulator with different  ANN strutcutes (FC) 

 

(FC) Rank F(t) Normalized ANN(2,4,1) 

ANN 

(3,6,1) ANN(4,8,1) 

76 1 0.030 0.000 0.065 0.051 0.066 

345 2 0.073 0.063 0.165 0.161 0.097 

394 3 0.115 0.075 0.186 0.180 0.128 

396 4 0.158 0.075 0.187 0.181 0.159 

462 5 0.201 0.091 0.214 0.203 0.203 

517 6 0.244 0.104 0.233 0.218 0.239 

1104 7 0.286 0.242 0.310 0.279 0.300 

1215 8 0.329 0.268 0.346 0.316 0.328 

1461 9 0.372 0.326 0.412 0.386 0.370 

1897 10 0.415 0.429 0.453 0.434 0.420 

2001 11 0.457 0.453 0.485 0.463 0.458 

2053 12 0.500 0.466 0.504 0.481 0.495 

2209 13 0.543 0.502 0.565 0.543 0.550 

2329 14 0.585 0.531 0.603 0.587 0.591 

2395 15 0.628 0.546 0.619 0.608 0.619 

2512 16 0.671 0.574 0.641 0.636 0.651 

2981 17 0.714 0.684 0.755 0.735 0.735 

2984 18 0.756 0.685 0.756 0.736 0.757 

3271 19 0.799 0.752 0.807 0.799 0.800 

3495 20 0.842 0.805 0.838 0.828 0.841 

3739 21 0.885 0.863 0.891 0.873 0.889 

4097 22 0.927 0.947 0.947 0.950 0.929 

4322 23 0.970 1.000 1.000 0.985 0.971 
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  Figures 4.10,4.11,4.12,4.13 show all ANN results with a comparison to the Weibull 

method. 
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Figure  4.10 BAR ANN (2,4,1) compared to the actual (FC) 
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Figure  4.11 BAR ANN (3,6,1) compared to actual (FC) 
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Figure  4.12 BAR ANN (4,8,1) compred to actual (FC) 

 

 

Figure  4.13 BAR ANN results compared to actual and Weibull (FC) 
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Table 4-4 shows the percentage error for all ANN configurations and Weibull compared 

to actual data. 

 

Table  4-4 High bleed air regulator results percentage error (FC) compared to actual data 

Curve Mean Percentage Error (compared to F(t) 

Weibull 15.38 

ANN (2,4,1) 10.30 

ANN (3,6,1) 8.68 

ANN (4,8,1) 2.81 

 

From the above table, it can be clearly observed that ANN with (4, 8, 1) configuration 

has the most accurate output. The network training is drastically improved with minimum 

change to the network structure. On the other hand, Weibull method showed a significant 

error when compared to the neural network method. 

4.1.7 Results and Discussion (HSV- FH) 

Following the BAR analysis and calculations procedures, the high stage valve data output 

did show that the ANN accuracy was not really affected by the size of the data. As a start, 

the same ANN configuration structure was followed with the same network parameters, 

the final output was very close compared to the actual data. To ensure a proper 

simulation, some network parameters were tweaked to study the effect of those 

parameters on the network performance. No significant results were noticed which in turn 
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shows the strength of the ANN approach in terms of the network learning even with 

small data. Table  4-5 shows summary of high stage valve calculations with different 

ANN structures. 

 

Table  4-5 High stage valve with different ANN structure (FH) 

 

FH Rank F(t) CDF NORMALIZED 

ANN 

(4,8,1) 

ANN 

(3,6,1) 

ANN 

(2,4,1) 

234 1 0.049 0.066 0.000 0.049 0.102 0.0828 

236 2 0.118 0.067 0.001 0.117 0.103 0.0834 

500 3 0.188 0.179 0.107 0.252 0.180 0.1848 

760 4 0.257 0.298 0.212 0.256 0.241 0.2553 

989 5 0.326 0.400 0.305 0.310 0.335 0.337 

1022 6 0.396 0.414 0.318 0.396 0.346 0.3608 

1211 7 0.465 0.492 0.394 0.496 0.472 0.4648 

1641 8 0.535 0.645 0.568 0.535 0.592 0.6099 

1786 9 0.604 0.688 0.626 0.608 0.645 0.6494 

1901 10 0.674 0.720 0.673 0.674 0.675 0.6899 

1923 11 0.743 0.725 0.682 0.716 0.687 0.702 

2100 12 0.813 0.768 0.753 0.812 0.823 0.8262 

2155 13 0.882 0.780 0.775 0.881 0.849 0.855 

2712 14 0.951 0.876 1.000 0.951 0.947 1.0103 
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The following graphs demonstrate the output of our simulation process with a 

comparison to the Weibull to the ANN analysis for the high stage valve (FH). 

 

 

Figure  4.14 High stage valve (FH) ANN (2, 4, 1) compared to actual data 
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Figure  4.15 High stage valve (FH) ANN (3, 6, 1) compared to actual data 

 

 

Figure  4.16 High stage valve (FH) ANN (4, 8, 1) compared to actual data 
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Figure  4.17 High stage valve (FH) ANN compared to actual and Weibull 

 

It is clear from above graphs that the most optimum ANN configuration structure for the 

simulation process is (4, 8, and 1). Table  4-6 shows the deviation of each curve 

(percentage error) from the actual data.  

Percentage error = Abs ((Calculated - Actual) / Calculated)) 

 

Table  4-6 High stage valve average percentage error (FH) compared to actual data 

Curve Mean Percentage Error (compared to F(t)) 

Weibull 15.39 

ANN (2,4,1) 9.72 

ANN (3,6,1) 9.02 

ANN (4,8,1) 3.02 
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4.1.8 Results and Discussion (HSV-FC) 

All figures and tables below show the output for ANN simulation for high stage valve 

(cycles). The same approach used for the (hours) analysis was exactly followed to 

generate the following results in Table 4-7: 

 

Table  4-7 high stage valve (cycles) with different ANN structures 

 

t(FC) Rank F(t) CDF Normalized ANN(2,4,1) ANN(3,6,1) ANN(4,8,1) 

337 1 0.049 0.064 0.000 0.054 0.115 0.050 

346 2 0.118 0.066 0.002 0.055 0.115 0.117 

930 3 0.188 0.226 0.162 0.188 0.190 0.188 

1014 4 0.257 0.250 0.185 0.188 0.220 0.253 

1510 5 0.326 0.388 0.320 0.326 0.340 0.327 

1655 6 0.396 0.426 0.360 0.344 0.381 0.393 

1890 7 0.465 0.484 0.424 0.464 0.470 0.445 

2707 8 0.535 0.657 0.647 0.539 0.640 0.575 

2806 9 0.604 0.675 0.674 0.620 0.672 0.608 

3235 10 0.674 0.743 0.791 0.704 0.721 0.690 

3238 11 0.743 0.744 0.792 0.718 0.721 0.747 

3311 12 0.813 0.754 0.812 0.784 0.729 0.812 

3744 13 0.882 0.809 0.930 0.787 0.885 0.873 

4000 14 0.951 0.836 1.000 0.999 0.961 0.951 
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The following graphs demonstrate the output of our simulation process with a 

comparison to the Weibull to the ANN analysis for the high stage valve (cycles). 

 

Figure  4.18 High stage valve (FC) ANN (2,4,1) compared to actual data 
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Figure  4.19 High stage valve (FC) ANN (3,6,1) compared to actual data 

 

 

 

Figure  4.20 High stage valve (FC) ANN (4,8,1) compared to actual data 
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Figure  4.21 High stage valve (FC) ANN compared to actual data and Weibull 

It is clear from above graphs that the most optimum ANN configuration structure for the 

simulation process is (4, 8, and 1). Table  4-8 below shows how far each curve 

(percentage error) from the actual data. 

 

Table  4-8 Stage valve average percentage error (FC) compared to actual data 

Curve Mean Percentage Error (compared to F(t)) 

Weibull 15.16 

ANN (2,4,1) 15.01 

ANN (3,6,1) 9.70 

ANN (4,8,1) 1.59 
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4.1.9 Results and Discussion (PRSOV-FH) 

Following the same approach used for the rest of the components, ANN analysis 

is conducted to simulate the failure prediction for the PRSOV valve. It is evident that 

Weibull model accuracy level was affected by the number of data for this valve. For 

ANN results reliability, the prediction analysis for this valve will show how ANN 

behaves with limited number of data. It should be emphasized that because the valves at 

hand are critical parts of the airplane propulsion system, the reliability of all predictions 

should be accurate enough to ensure high safety standard for all flight operation 

conditions. Table  4-9 shows all ANN analysis for PRSOV in terms of flight hours (FH). 

Table  4-9 ANN results for PRSOV (FH) 

 

t 
(FH) Rank F(t) CDF Normalized 

ANN 
(2,4,1) 

ANN 
(3,6,1) 

ANN 
(4,8,1) 

77 1 0.061 0.038 0.000 0.046 0.046 0.061 

427 2 0.149 0.236 0.176 0.145 0.157 0.149 

512 3 0.237 0.282 0.219 0.142 0.222 0.237 

954 4 0.325 0.488 0.441 0.379 0.325 0.325 

1036 5 0.412 0.521 0.483 0.421 0.392 0.412 

1117 6 0.500 0.551 0.523 0.472 0.484 0.500 

1256 7 0.588 0.599 0.593 0.567 0.622 0.593 

1340 8 0.675 0.626 0.636 0.631 0.668 0.675 

1360 9 0.763 0.633 0.646 0.624 0.675 0.729 

1990 10 0.851 0.786 0.963 0.899 0.866 0.851 

2064 11 0.939 0.799 1.000 0.935 0.921 0.939 



81 

 

Figures (4-22), (4-23),(4-24), and (4-25) show output of our simulation process with a 

comparison to the Weibull to the ANN analysis for the PRSOV valve (FH). 

 

 

Figure  4.22 PRSOV (FH) ANN (2,4,1) comparison with actual data 
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Figure  4.23 PRSOV (FH) ANN (3,6,1) comparison with actual data 

 

 

 

Figure  4.24 PRSOV (FH) ANN (4,8,1) with actual data 
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Figure  4.25 PRSOV (FH) ANN compared with Weibull 

 

Based on the above figures, it can be concluded that network with (4, 8, 1) configuration 

gives the best results compared to the actual failure rates. Despite limited number of 

observations, ANN analysis showed a strong agreement with actual data as shown in 

Table 4-10.  

 

Table  4-10 PRSOV analysis percentage error compared to actual data (FH) 

Curve Mean Percentage Error  

Weibull 21.29 

ANN (2,4,1) 14.86 

ANN (3,6,1) 7.05 

ANN (4,8,1) 0.51 
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Table 4-10 shows the power of neural network in terms of accuracy. Although the data 

size was relatively small, the output was extremely in close proximity with the actual 

failure rate, which indicates the reliability of the ANN for prediction analysis. 

4.1.10 Results and Discussion (PRSOV-FC) 

As mentioned before, the power of the neural network approach could be clearly seen 

with the PRSOV due to the limited number of observations. The model is tested with 

small sample of data compared to other valves. The following figures are the output of 

the neural network model simulation for the PRSOV in terms of flight cycles (FC) with 

the same configuration and parameters.  

Similar to the flight hour's analysis, Table  4-11 shows the main calculations and outputs 

for the PRSOV in terms of (FC). 

 

Table  4-11 ANN results for PRSOV (FC) 
 

t (FC) Rank F(t) Normalized ANN(2,4,1) ANN(3,6,1) ANN(4,8,1) 
112 1 0.061 0.000 0.067 0.028 0.061 
720 2 0.149 0.200 0.267 0.237 0.169 
781 3 0.237 0.221 0.309 0.264 0.237 
1605 4 0.325 0.492 0.597 0.530 0.325 
1625 5 0.412 0.499 0.613 0.546 0.430 
1725 6 0.500 0.532 0.698 0.645 0.500 
1769 7 0.588 0.546 0.724 0.692 0.588 
1806 8 0.675 0.559 0.738 0.729 0.676 
1891 9 0.763 0.587 0.747 0.799 0.763 
2093 10 0.851 0.653 0.826 0.830 0.851 
3145 11 0.939 1.000 1.238 1.058 0.939 
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Figures 4-26, 4-27,4-28 and 4-29 illustrate all ANN outputs following the same approach 

and parameters for the flight hour's calculations. 

 

 

Figure  4.26 PRSOV (FC) ANN (2,4,1) comparison with actual data 
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Figure  4.27 PRSOV (FC) ANN (3, 6, 1) comparison with actual data 

 

 

Figure  4.28 PRSOV (FC) ANN (4,8,1) comparison with actual data 
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Figure  4.29  PRSOV ANN comparison with Weibull 

 

Based on the above figures, it can be easily noted that (4, 8, 1) configuration gives the 

best results compared to the actual failure rates. Although there is limited number of 

failure data, this configuration results showed a strong agreement with the actual failure 

data.  Table  4-12 shows a comparison of Weibull and ANN to the actual data. 

 

Table  4-12  PRSOV analysis percentage error compared to actual data (FC) 

Curve Mean Percentage Error (compared to F(t) 

Weibull 25.69 

ANN (2,4,1) 21.68 

ANN (3,6,1) 26.98 

ANN (4,8,1) 1.43 
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From the above table, it is clear that ANN performance and accuracy is less than the 

results for the flight hours. However, there is a big improvement in the training process if 

compared the (3, 6, 1) network to the (4, 8, 1) one. Referring to the (4,8,1) graph, it can 

be observed that the network was showing a fluctuation results for the early failures, but 

when the valve gets mature, a considerable enhancement for the failure prediction is 

noticed. One particular conclusion is the high accuracy of the non-linearity of the ANN 

technique compared to the traditional statistical approaches like Weibull. 

4.1.11 Results Summary 

Table  4-13 and Table  4-14 summarizes all results from Weibull and ANN. The main 

objective of summarizing the results is to identify all factors that affected the accuracy 

and performance of both methods. Results will be discussed for flight hours and cycles. 

 
Table  4-13  Results summery for all components (FH) 

 

Component Number of 
observations 

ANN 
(2,4,1)  

Error (%) 

ANN 
(3,6,1) 

Error (%) 

ANN 
(4,8,1) 

Error (%) 

Weibull 
analysis 

Error (%) 

Most 
Accurate 

Result 

BAR 

 
23 16.57 13.15 1.63 17.02 1.63 

High Stage 
Valve 14 9.72 9.02 3.02 15.39 3.02 

 

PRSOV 
11 14.86 7.05 0.51 21.29 0.51 
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As shown in Table  4-13, it can be easily noted that ANN results by far gave the best 

results in agreement with the actual failure data. Surprisingly, ANN gave the best results 

with minimum number of observations. That is a powerful aspect of artificial intelligence 

where networks training can be accurate with limited number of data. On the other hand, 

Weibull method did not give reliable results. The Weibull method performance was 

affected by the number of data and shown fluctuating outputs. This is due to the fact that 

Weibull is a traditional statistical approach that might be severely affected by the data 

size and nonlinearity.  

The highest error for the ANN method was at the high stage valve where the network 

struggled with the training especially for pre mature failures. This is basically due to a 

couple of mature failures of the valve in the beginning. Because of that, the network 

showed good results with mature failures which are the dominant factor for the high stage 

valve. 

 

Table  4-14 Results summary for all components (FC) 

 

Component 

 

Number of 
observations 

ANN 
(2,4,1)  

Error (%) 

ANN 
(3,6,1) 

Error (%) 

ANN 
(4,8,1) 

Error (%) 

Weibull 
analysis 

Error (%) 

Most 
Accurate 

Result 

BAR 
 23 10.30 8.68 2.81 15.38 2.81 

High Stage 
Valve 14 15.10 9.7 1.59 15.16 1.59 

 
PRSOV 11 21.68 26.98 1.43 25.96 1.43 
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Overall, the ANN figures and results showed a strong agreement with the actual failure 

rates. Moreover, changing the number of neurons in the hidden layer has a significant 

impact on the network results. The number of failure data for each valve didn’t have a 

visible effect on network performance. On the other hand, the Weibull results were too 

far from the actual data. Number of failures aggravated and degraded the accuracy of 

Weibull model. 
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Chapter 5   

ANN MODEL VALIDATION 

Before using the developed ANN failure model in maintenance planning, its 

predictions need to be validated. A partial set of the gathered failure data is used to 

construct the verification model. Fourteen points, see Table 5.1, covering the bleed air 

regulator life range to 2392 Flight Cycles are used. The predictions of this model up to 

4322 Flight Cycles are compared against actual failure data. Figure 5.1 shows the ANN 

model results of this reduced data set up to 2392 FC, and Figure 5.2 shows a comparison 

of the predictions of this model up to 4322 FC with the actual failure data. 

Table 5.1. Partial data set for model verification. 

(FC) Rank F(t) Normalized ANN(4,8,1) 
76 1 0.049 0.000 0.054 

345 2 0.118 0.119 0.155 
394 3 0.188 0.141 0.189 
396 4 0.257 0.142 0.256 
462 5 0.326 0.171 0.337 
517 6 0.396 0.196 0.375 
1104 7 0.465 0.456 0.470 
1215 8 0.535 0.506 0.546 
1461 9 0.604 0.615 0.604 
1897 10 0.674 0.808 0.683 
2001 11 0.743 0.854 0.754 
2053 12 0.813 0.877 0.835 
2209 13 0.882 0.947 0.879 
2329 14 0.951 1.000 0.950 
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Figure 5.1  BAR (FC) test sample 
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Figure 5.2 BAR (FC) ANN comparison with actual data 
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As seen from Figure 5.2, there is excellent agreement between the ANN predicted 

values and the collected failure data. This shows, that with even a small number of 

gathered data points, neurons, and with just one hidden layer, the model is capable of 

predicting very accurate failure rates for a number of flight cycles FC that is roughly 

equal to that of the collected data range. This is a very strong maintenance planning tool, 

because based on the measured data of, say two years, the failure rate predictions for the 

following two years could be obtained with excellent accuracy. 
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Chapter 6  

CONCLUSION AND FUTURE WORK 

In this work, Weibull model and Artificial Neural Network model were utilized to 

predict the failure rate of the bleed air system of a Boeing aircraft. For the Weibull 

analysis, the data was fitted into the model using two parameters. The goodness of fit 

(GOF) test was performed to all data to check the applicability of the Weibull to the data. 

Results of the Weibull analysis did not show a strong level of reliability when compared 

to the actual failure data.  

For the ANN analysis, the network was designed with different architecture and 

parameters to ensure reliable results with strong agreement with actual failure data. It was 

evident that the network configuration has a crucial impact on the network performance. 

All parameters were tweaked and adjusted to study the effect of each single element on 

the behavior of the network. ANN predictions matched very well with the collected 

failure data and showed a high level of reliability.  

To further utilize this work and to better adapt it to support of maintenance strategies, 

there are several points that can be investigated: 

a. The effect of using other ANN schemes in the simulation, particularly Radial 

Based Functions, could be investigated and comparison between different 

schemes would yield valuable information on the best scheme for a particular 

failure type. 

b. The failure data gathered from the field can be categorized by the season. It is 

known that hot season got more failures than other seasons. It would be 

appropriate to check the effect of environmental factors in the reliability of the 

bleed air system. 
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c. The application of this work could be extended into many areas where failure 

prediction becomes a dilemma. The prediction of failure rate for any component 

can be calculated using the same approach mentioned in this work. The key is to 

have an accurate failure history in order to come up with reliable calculations.  

d. Based on the results presented in this work, an optimization procedure could be 

developed for an efficient preventive maintenance plan. It should take into 

account the preventive maintenance time and cost, as well as the repair time and 

cost. Based on the manufacturer acceptable reliability values, the downtime for 

maintenance could be minimized without compromising the safety of the flight. 

e. This study can be a great tool for spare part inventory planning. Having an 

accurate failure prediction figures will reduce cost and enhance aircraft 

availability. The other benefit is to avoid over stocking which in turns decreases 

the warehouse storage capability. 
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