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Chapter 1  

INTRODUCTION 

This chapter introduces the problem of characterizing the sum of lognormal 

random variables along with its importance in various scientific fields. 

 

1.1 Introducing the Problem and the Importance of the 

Solution  

The sum of lognormal distribution has no closed-form equation and is difficult to 

compute numerically. Several approximations have been proposed for it and employed in 

the literature, most, if not all, of these approaches are typically valid for very specific 

ranges of the parameters of the sum. The lognormal (LN) random variables (RVs) topic 

appears in a variety of scientific fields and has been studied in many papers [1-5]. It 

arises in wireless communications when analyzing the total power received from several 

interfering sources [6-8], and in fields such as  physics [2] , electronics [3], optics [9] , 

economics [10], and it is also of interest to statistical mathematicians [11-12].  

In the area of wireless or radio frequency (RF) engineering, the LN RV is used to model 

the signal level with large-scale variations due to obstacles and signal shadowing [13]. It 

is of great importance to characterize the sum of LN RVs in terms of the overall 

probability density function (PDF) or the cumulative distribution function (CDF). This 
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characterization may be used to quantify the probability of the sum exceeding or 

dropping below a certain threshold value. 

The LN RV is specified by the parameters 𝜇 and 𝜎, which are the mean and 

standard deviation, respectively, of the corresponding normal RV. A preferred 

characterization for the sum of the LN RVs would be in terms of the 𝜇’s and 𝜎’s of the 

individual LN RVs. Furthermore, the preferred characterization should present the final 

approximation in the form of an expression, or formula that is easy and convenient to 

evaluate, without relying on quantities that need to be evaluated empirically or on using 

nested numerical integrations. 

Recent advances in the area of computing the distribution function for the sum of 

LN RVs, such as those in [14] and [15], have only allowed for the efficient computation 

of the distribution function for the sum, for specific cases of the general problem. 

Specifically, the study in [14] has produced new and relatively accurate simple 

expressions for the characteristic function for the sum of LN RVs. The work in this 

Master thesis aims to extend the utilization of these expressions and allow for more 

efficient calculations of the distribution of the sum. 

In addition, previous research has shown that the cell-site transmitted traffic 

power for the wireless Code Division Multiple Access (CDMA) data network can be 

modeled as the sum of lognormal-like RVs. The work herein also aims to apply the 

developed methods to this problem as well.  
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1.2 Background 

The background material is presented in two subsections. The first subsection, 

describes the lognormal random variable and its characterization while the second 

subsection defines the problem of the sum of the lognormal random variables. The 

second subsection also outlines the main results with respect to the problem of the sum of 

LN RVs that would be the basis for the work carried out in this thesis. 

The background material required for the example application, i.e. the cell-site traffic 

power characterization problem for CDMA wireless data networks will be included in 

Chapter 5.  

1.2.1 The Lognormal Random Variable 

  If 𝑋 is a normal random variable with mean and standard deviation specified by 

𝜇𝑋 and 𝜎𝑋, respectively, then 𝑍 = exp(𝑋) has a lognormal distribution. Conversely, if 𝑍 

has a lognormal distribution, then 𝑋 = ln(𝑍) is normally distributed. The PDF of 𝑋 is 

given by: 

𝑓𝑋(𝑥) =
1

√2𝜋 𝜎𝑋
exp �−

(𝑥 − 𝜇𝑋)2

2𝜎𝑋2
�  ,                             𝑥 𝜖 [−∞,∞] (1.1) 

then the PDF of 𝑍 can be consequently written in terms of the moments of 𝑋, as follows: 
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𝑓𝑍(𝑧) =

⎩
⎪
⎨

⎪
⎧ 1
√2𝜋 𝜎𝑋𝑧

exp �−
(ln(𝑧) − 𝜇𝑋)2

2𝜎𝑋2
� ,          𝑧 > 0

 
0,                                                                𝑧 ≤ 0

 

� (1.2) 

The moments of the lognormal RV 𝑍 can be evaluated by using the 𝑛th moment 

generating function of the normal distribution as follows: 

𝐸[𝑍𝑛] = 𝐸[(𝑒𝑋)𝑛] 

= � 𝑒𝑥𝑛
∞

−∞

1
√2𝜋 𝜎𝑋

exp �−
(𝑥 − 𝜇𝑋)2

2𝜎𝑋2
� 𝑑𝑥 

 = 𝑒𝑛𝜇𝑋+
1
2𝑛

2𝜎𝑋
2
 

(1.3) 

For example, the mean of 𝑍, 𝐸[𝑍], is given by setting 𝑛 = 1 in relation (1.3) to be 

𝐸[𝑍] = 𝐸[𝑒𝑋] = 𝑒𝜇𝑋+
1
2𝜎𝑋

2
 (1.4) 

while the variance is given by 

𝜎𝑍2 = 𝐸[𝑍2] − (𝐸[𝑍])2 

= 𝑒2𝜇𝑋+𝜎𝑋
2

(𝑒𝜎𝑋
2
− 1) 

(1.5) 

The cumulative distribution function (CDF) of the lognormal RV 𝑍, defined as 

Prob(𝑍 ≤ 𝑧) is simply given by: 
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𝐹𝑍(𝑧) = Ψ�
ln(𝑧) − 𝜇𝑋

𝜎𝑋
� (1.6) 

where Prob(𝑍 ≤ 𝑧) is the probability that the RV 𝑍 is less than or equal to the value 𝑧 

and Ψ(. ) is the CDF for the standard normal distribution with zero-mean and unit 

variance.  

Moreover, in engineering fields, it is customary to represent the lognormal 

distribution in decibels as 𝑍 = 10𝑌 10⁄ , where 𝑌 is a normal random variable with mean 

and standard deviation specified by 𝜇𝑌 and 𝜎𝑌, respectively. Therefore, if 𝑍 has a 

lognormal distribution, then 𝑌 = 10log10(𝑍) is normally distributed. The PDF of 𝑍 in 

terms of the moments of 𝑌 is specified by:  

𝑓𝑍(𝑧) =

⎩
⎪
⎨

⎪
⎧ 1
𝜁𝜁√2𝜋 𝜎𝑌𝑧

 exp �−
(10log10(𝑧) − 𝜇𝑌)2

2𝜎𝑌2
� ,         𝑧 > 0

 
0,                                                                             𝑧 ≤ 0

 

� (1.7) 

where  𝜁𝜁 = ln(10)
10

=0.23026 [16]. The RV 𝑋 is related to the RV 𝑌 by the following 

relation: 

𝑌 =
1
𝜁𝜁
𝑋. (1.8) 

as a result, the mean and standard deviation of Y are as following: 
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𝜇𝑌 =
1
𝜁𝜁
𝜇𝑋. (1.9) 

 

and  

𝜎𝑌 =
1
𝑦
𝜁𝜁𝜎𝑋. (1.10) 

In a mobile radio environment, the parameter 𝜎Y =  1
𝜁
𝜎x

 
in decibels, sometimes 

called the decibel spread. It typically ranges between 6 dB and 12 dB  for practical 

channels [17]. These ranges can be classified depending on the severity of  the shadowing 

effect [8]. For example, 6 dB represents a light-shadowed mobile radio environment, 

while 12 dB represents a heavy-shadowed environment. In Ultra-Wide Band (UWB) 

transmission environments, the decibel spread takes on values that range between 3 dB 

and 5 dB [18]. However, it is more convenient to work with the natural logarithm as 

opposed to the decibel scale. 

 Let a lognormal RV 𝑍 be denoted by LN (𝜇 ,𝜎 ). The PDF and CDF curves for 

the single lognormal RV for various values of 𝜎  and 𝜇 = 0, are shown in Figure 1.1: (a) 

and (b), respectively. 
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Figure  1.1: (a) PDF of Lognormal RV.  (b) CDF of Lognormal RV. 

The characteristic function (CF) for the lognormal RV 𝑍  Φ𝑍(𝜔) is defined using: 

 Φ𝑍(𝜔) = � 𝑒𝑗𝜔𝑧𝑓𝑍(𝑧)𝑑𝑧
∞

0
 (1.11) 

1.2.2 The sum of Lognormal Random Variables 

Let 𝑊 the sum of 𝐾 LN RVs, be defined as the following: 

 𝑊 = 𝑍1 + 𝑍2 + ⋯+ 𝑍𝐾 = �𝑍𝑘

𝐾

𝑘=1

 (1.12) 

where the lognormal RV 𝑍𝑘 has the parameters 𝜇𝑘 and 𝜎𝑘. The RVs 𝑍𝑘’s can be either 

statistically independent or correlated. It is desired to compute the PDF 𝑓𝑊(𝑧) or CDF 

𝐹𝑊(𝑧) of the RV 𝑊. 
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For the case of independent 𝑍𝑘’s, the conventional method for computing the 

distribution of the sum is first to compute the individual CF’  Φ𝑍𝑘(𝜔) for the lognormal 

RV’ 𝑍𝑘, and then the CF for the sum 𝑊 would be simply the multiplication of the 

individual CF’s as giving below: 

 Φ𝑊(𝜔) = �Φ𝑍𝑘(𝜔)
𝐾

𝑘=1

 (1.13) 

 

 

For the case of independent and identically distributed (IID) 𝑍𝑘’s, Φ𝑊(𝜔) is 

given by:  

 Φ𝑊(𝜔) =  [Φ𝑍(𝜔)]𝐾 (1.14) 

subsequently, the PDF for 𝑊 may be obtained by the inverse Fourier transform specified 

by  

 𝑓𝑊(𝑧) = � 𝑒−𝑗𝜔𝑤Φ𝑊(𝜔)𝑑𝜔
∞

−∞
 (1.15) 

The CDF for 𝑊 can be obtained by either integrating 𝑓𝑊(𝑧) or directly from the 

corresponding CF using the relation developed in [19]: 
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 𝐹𝑊(𝑧) =
2
𝜋
�

Re{Φ𝑊(𝜔)}
𝜔

sin(𝜔𝑧)𝑑𝜔
∞

0
 (1.16) 

It can be seen from the previous material, that evaluating the CF Φ𝑍𝑘(𝜔) for the 

individual LN RV plays a major role in evaluating the required PDF or CDF for the sum 

of lognormal RVs 𝑊. Unfortunately, evaluating Φ𝑍𝑘(𝜔) is not an easy task, since the 

envelope for the integrand in (1.11) does not decay sufficiently fast. Rewriting the 

integrand in (1.11) in terms of the normal RV 𝑋 PDF, results in an integrand that 

oscillates at an exponential frequency, due to the term exp(𝑗𝜔𝑒𝑥). Therefore, the 

numerical evaluation of the CF as given by (1.11) requires the use of specialized 

numerical integration methods. Recently, Gubner [20] presented another form that is 

much easier to evaluate and which replies on reducing the oscillation in the integrand of 

(1.11), and employing the Hermite Gauss quadrature (HGQ) technique as the numerical 

integration method. The study in [15] generalizes Gubner’s approach and proposes forms 

with almost no oscillations that result in more accurate evaluations of Φ𝑍𝑘(𝜔). 

Unfortunately, these new forms are non-parametric and involve nested calculations. The 

previous work in [14] relies on the result produced by Gubner [20] to write the 

approximate CF for the RV 𝑍𝑘 as follows: 

 

 
Φ�𝑍𝑘(𝜔) = �𝐴𝑛

(𝑘)𝑒−𝑎𝑛
(𝑘)𝜔

𝑁

𝑛=1

 (1.17) 

where the constants 𝐴𝑛
(𝑘) and 𝑎𝑛

(𝑘) are given in terms of the RV parameters 𝜇𝑘 and 𝜎𝑘, and 

the first 𝑁-points of the HGQ weights and nodes. The superscript (𝑘𝑘) indicates that the 
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constants are specific to the 𝑘𝑘th lognormal RV only. The HGQ weights and nodes are 

identical for any 𝑁-points of HGQ and are typically tabulated as in [21]. By utilizing 

(1.13) and (1.14), the approximated CF for the sum of lognormal RVs 𝑊 can be given by 

the following equation: 

 Φ�𝑊(𝜔) = ���𝐴𝑛
(𝑘)𝑒−𝑎𝑛

(𝑘)𝜔
𝑁

𝑛=1

�
𝐾

𝑘=1

 (1.18) 

for the independent but non identically distributed (INID) case. For the independent and 

identically distributed (IID) case, the approximate CF is given by: 

 Φ�𝑊(𝜔) = ��𝐴𝑛𝑒−𝑎𝑛𝜔
𝑁

𝑛=1

�

𝐾

 (1.19) 

the superscript (𝑘𝑘) is dropped from (1.19) since all 𝐴𝑛’s and 𝑎𝑛’s are identical for the 𝐾 

RVs. Both forms given in (1.18) and (1.19) can be expanded to be rewritten as: 

 Φ�𝑊(𝜔) = � 𝐴𝑚
(𝑊)𝑒−𝑎𝑚

(𝑊)𝜔
𝑀

𝑚=1

 (1.20) 

where the constants 𝐴𝑚
(𝑊) and 𝑎𝑚

(𝑊) are computed in terms of 𝐴𝑛
(𝑘)’s and 𝑎𝑛

(𝑘)’s. It can be 

noted that Φ�𝑍𝑘(𝜔) and Φ�𝑊(𝜔) are both written as weighted exponential sum of 𝑁 and 𝑀 

terms, respectively. 𝑀 is equal to 𝑁𝐾 for the INID case, while it is �𝑁 + 𝐾 − 1
𝑁 − 1 � for the 

IID case. In [14] it is shown that even for the case of correlated 𝑍𝑘’s, Φ�𝑊(𝜔) can still be 

written in a form similar to the one given in (1.20). We refer to the forms in (1.18) and 
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(1.19) as the unexpanded forms, while the form given in (1.20) is referred to as the 

expanded form.  

The approximate PDF for the sum of lognormal RVs 𝑊 is given by the following 

equation in [14]: 

 𝑓𝑊(𝑧) =
1
𝜋

Re �� 𝐴𝑚
(𝑊) �𝑗𝑧 + 𝑎𝑚

(𝑊)��
𝑀

𝑚=1

� (1.21) 

The expanded form of Φ�𝑊(𝜔) is very useful, since it allows for the evaluation of 

the approximate CDF to be directly obtained by integrating (1.21) term-by-term and 

twice to obtain the following equation in [14]: 

 𝐹�𝑊(𝑧) = Re �
𝑗
𝜋
� 𝐴𝑚

(𝑊) ln �𝑎𝑚
(𝑊) �𝑗𝑧 + 𝑎𝑚

(𝑊)�� �
𝑀

𝑚=1

� (1.22) 

Unfortunately, for the case of large 𝑁 and/or large 𝐾, the number of terms 𝑀 for 

the expanded form is prohibitively large leading to significant rounding errors in the 

evaluation of (1.20) or subsequently in (1.22). 

Various types of approximations have been suggested to approximate the sum of 

lognormal RVs. In [22], it is mentioned that based on the variances, three types of 

lognormal RVs sums are identified: narrow (𝜎2 ≪ 1); moderately broad (𝜎2 < 1); and 

very broad (𝜎2 ≫ 1). It is shown that the sum of lognormal RVs may be approximated by 

a Gaussian distribution for the narrow case and as a lognormal distribution for the 

moderately broad case. For the very broad case, due to the asymptotic character of the 
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lognormal distribution described in [23], neither Gaussian nor lognormal approximation 

is appropriate. The next chapter will present a wider review of the famous approximation 

techniques for the sum of lognormal RVs. 

1.2.3 Normal Probability Scale 

It is convenient to look at the CDF of the sum of lognormal on a normal 

probability scale [24], where the lognormal distributions map into straight lines. On this 

scale, the CDF for a single lognormal RV plotted versus the logarithm of the abscissa 

generates a straight line plot with a slope that is inversely proportional to the standard 

deviation parameter, 𝜎. Plotting the CDF for the sum of lognormal RVs on a normal 

probability scale serves to identify how close or how far the obtained CDF is from that of 

a pure lognormal RV. Beaulieu in [24] shows that it is convenient to look at the CDF of 

the sum of lognormal RVs on a normal probability paper.  

The initial work in this field mainly assumed that the sum of lognormal RVs may 

be well approximated by a single lognormal RV. However, based on recent 

approximations and empirical evaluations in the literature, it is noticed that the sum of 

lognormal CDF is concaved downward, when plotted on a normal probability scale. 

Moreover, it is recognized that the CDF of the sum of independent lognormal RVs cannot 

be reasonably approximated by an equivalent single lognormal RV. The concavity of the 

CDF of the sum increases as the number of individual lognormal RV components 

increases. Figure 1.2 plots the CDF of the sum of 𝐾 lognormal RVs for 𝐾 equal to 1, 6, 

10, and 20. The plot clearly shows that the CDF for the case of 𝐾 = 1, representing a 

single lognormal RV, is a straight line. As 𝐾 increases, the resulting CDF deviates 
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progressively from the straight line shape. The shown results are for sum of IID 

lognormal RVs of 𝜇dB and 𝜎dB values equal to 0 and 12 dB, respectively. 

   

Figure  1.2: CDF of the IID sum of lognormal RVs plotted on a normal probability scale 
with 𝜇=0 and 𝜎 =12 dB for various values of 𝐾 [24]. 

1.3 Problem Statement  

The work in this thesis focuses on trying to develop an efficient and convenient 

evaluation of the distribution of the sum of lognormal RVs 𝐹�𝑊(𝑧), by utilizing the 

unexpanded form of the corresponding characteristic function,Φ�𝑊(𝜔), specified by the 

relations given by (1.18) or (1.19). The new method should avoid utilizing forms similar 

to, or derived from, the expansion in (1.20) in order to improve the accuracy of the 

K=1
K=2
K=6
K=10
K=20
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computations. Furthermore, the proposed work shall focus only on the case of 

independent and identically distributed lognormal RVs.  

In addition, the work in this thesis will attempt to apply the developed method for 

the DS-CDMA cell-site traffic power characterization problem, which will be described 

in more detail in Chapter 5. 

1.4 Thesis Contributions 

The contributions of this thesis work are as follows: 

• Implemented efficient methods of computing the distribution function of the sum 

of lognormal random variables. 

• Applied the Epsilon algorithm in approximating the distribution function, which 

resulted in the number of terms required for approximating the distribution 

function being significantly reduced when compared to the first implementation. 

• Implemented the Legendre-Gauss Quadrature (LGQ) approach of approximating 

the CF of a lognormal RV, and then use the result to evaluate the CDF of the sum 

of lognormal RVs. 

• Applied the computations of the CDF for the sum of independent LN RVs to a 

practical resource management problem for DS-CDMA data system. 
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Chapter 2  

LITERATURE REVIEW 

This chapter reviews the main existing approximation methods for computing the 

sum of lognormal random variables in the related literature. Numerous approximate 

solutions have been developed in literature to compute the moments of the sum of 

lognormal RVs. In general, it has been shown in [24-26], that every developed approach 

has its own strength and weakness in terms of the approximation accuracy for solving this 

problem. Moreover, most of the approximations either provide good accuracy only in 

some regions (e.g., right and left tails of the distribution) of the sum of the lognormal 

distribution, but give an unacceptable loss of accuracy in other ranges of the distribution  

[24]. Others require to judiciously adjust the matching parameters as a function of the 

PDF region to be approximated [25, 27]. This chapter will describe briefly some of those 

main approximations. 

Loosely speaking, the proposed techniques and approximations in the literature 

can be classified into different distinct methods, such as, the Moment Matching 

Approximation (MMA) method which is also known as the Method of Moments 

(MoMs), e.g. [6, 28], MoMs in the logarithmic domain, e.g. [29], Characteristic Function 

(CF) method, e.g. [14, 24], upper and lower bounds, e.g. [30-31], and Moment 

Generating Function Matching (MGFM), e.g. [25-26]. The above methods or techniques 

are commonly known and mentioned widely in the literature. In this chapter the 

approximation methods are classified into three distinct groups. The first group relies on 
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the fact that the distribution of the sum of several LN RVs can still be approximated by 

the distribution of an equivalent LN RV, whose parameters 𝜇 and 𝜎 must be computed 

using the original LN RVs’ parameters. Approximation methods belonging to the second 

group rely on approximating the distribution of the sum of LN RVs by a specific 

distribution such as log-shifted gamma or Pearson distribution. For methods belonging to 

group I and group II, the equivalent target approximating distribution, whether a LN or 

some other distribution, is determined by matching the first few moments, typically two 

or more, of the sum, to those of the target distribution. The third group of approximation 

methods develops expressions for the final distribution, which are different from those 

standard distributions used for group I or group II solutions. Many of the approximation 

methods must rely on quantities that are either computed empirically, i.e. using Monte-

Carlo simulations, or using numerical integrations which limit their versatility. 

The approximation methods in the  first group represent the earliest work on the 

subject by Fenton [28] where it is assumed that the sum of lognormal RVs can be 

approximated by another lognormal RV, by matching its first two positive moments. This 

procedure is progressively continued until the approximation using a final equivalent LN 

RV is found. This is one of the earliest methods for solving our problem that is also 

referred to as the Fenton-Wilkinson method, and which can be also described as a 

Positive Moment-Matching method. In [29], it is stated that Wilkinson's approach is 

consistent with an accumulated body of evidence indicating that, for the values of K 

(number of RVs) of interest, the distribution of the sum of lognormal random variables is 

well approximated, at least to the first-order, by another lognormal distribution. But this 

approach is valid only for a limited range of small values of the dB spread  𝜎dB . In 
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particular, it is reported that the Wilkinson approach breaks down for 𝜎 dB > 4 dB which 

includes the range of most practical interest. Schwartz and Yeh [29] follow the same 

approach as Fenton’s, but perform exact computations to match the logarithm of the sum 

of two independent LN RVs to an equivalent normal RV. The developed method is 

applicable to a wider range of parameters of the individual LN RVs. It was used in [8, 

32], to analyze outage probability in cellular systems. It is further described in [33] as an 

exact expression for the first two moments of a sum of two lognormal RVs. Employing a 

recursive approach, the moments are calculated for the sum of more than two lognormal 

RVs by assuming that a sum of two lognormal RVs is also a lognormal RV. 

Later on, Safak in [34] extends the Schwartz and Yeh method to the case of 

correlated RVs. Mehta et al. in [25] propose a method that matches an expression for the 

characteristic function (CF) of the sum of LN RVs to the CF function of the target 

equivalent LN RV. Therefore, this method utilizes the frequency domain to perform the 

matching procedure at two specific frequency points in order to determine the parameters 

𝜇 and 𝜎 for the final equivalent LN RV. The method identifies two sets of two frequency 

points: the first set produces an equivalent LN RV that approximates the distribution of 

the sum for high values of the abscissa, while the second set produces an equivalent LN 

RV that approximates the distribution of the sum for low values of the abscissa. 

Approximating the sum of LN RV by an equivalent LN RV produces an 

approximation that cannot be accurate for all range of the abscissa. For example, the 

method proposed by Fenton produces an approximation that is suitable for the high end 

of the distribution (i.e. large values of the abscissa). While the approximation proposed 
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by Schwartz and Yeh produces an approximation that is suitable for the low end of the 

distribution (i.e. low values of the abscissa). As mentioned earlier, the method presented 

by Mehta et al. produces an approximation that either fits for the high end or fit the low 

end of the distribution, but not for both. Realizing this observation, Beaulieu and Xie [24] 

developed yet another approximation using a LN RV, referred to by the minmax 

approach, that intends to provide a compromise and attempt to approximate the 

distribution for the sum in both the high end and also the low end of the abscissa.  

Beaulieu and Rajwani in [35] evaluate the empirical CDF for the sum of LN RVs 

using Monte-Carlo simulations and provide the corresponding plots using the normal 

probability scale. The CDF of a pure LN RV would appear as a straight line when plotted 

on the normal probability scale. The obtained results clearly indicate that the distribution 

for the sum of LN RVs cannot be approximated by single LN RV, especially for sums of 

large number (𝐾 ≥  6) of LN RVs as the concavity of the corresponding distribution 

increases. The study considers the case of sums of IID LN RVs and provides a curve fit 

for the resulting empirical distribution. 

Example methods belonging to the second group include the methods proposed in 

[22, 36-38]. The study in [22] proposes the use of the log-shifted gamma (LSG) 

distribution as an approximation for the sum of LN RVs. Similar to the iterative 

procedure by Fenton [28] and by Schwartz and Yeh [29], the study assumes that the LSG 

distribution can approximate the sum of the first two LN RVs. Subsequently, the study 

further assumes that the LSG distribution can also approximate the sum of one LN RV 

and the obtained LSG distribution from the previous stage. The matching process relies 
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on the first two moments and involve very cumbersome and hard to evaluate numerical 

integrals that are required at every stage. In [36] Liu et al. suggest that the formulas used 

for the curve fit in [35] are a special case of a generalized lognormal distribution and 

propose the use of the power lognormal distribution with finite moments for the 

approximation for the sum of LN RVs. The empirical CDF for the sum is first evaluated 

and then employed in the matching process.  

Another example of a distribution that has been used to approximate the sum of 

lognormal RVs in recent work is the Pearson distribution. The Pearson system [39], 

developed by Pearson in the late 1880s, consists of seven types of distributions covering 

various distribution functions, among the seven types of Pearson distributions. In [39], 

Pearson proposed a set of four-parameter PDFs that are referred to as the Pearson’s 

family. The set consists of seven types of fundamental distributions which are tabulated 

in Table 2.1 [38].  
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Table  2.1: Seven Types of Pearson Distributions [38] 

Model 
Type PDF Distribution Name 

I 𝑓(𝑥) =
1

𝐵(𝑝, 𝑞) 𝑥
𝑝−1(1 − 𝑥𝑞−1), 𝑥 𝜖 [0,1] Beta Distribution 

II 𝑓(𝑥) =
1

𝑎𝐵(0.5,𝑚 + 1)�1 −
𝑥2

𝑎2
�
𝑚

, 𝑥 𝜖 [−𝑎,−𝑎] N/A 

III 𝑓(𝑥) = 𝑘𝑘 �1 +
𝑥
𝑎
�
𝑝
𝑒−𝑝𝑥/𝑎, 𝑥 𝜖 [−𝑎,∞] Gamma Distribution 

IV 𝑓(𝑥) = 𝑣 �1 +
(𝑥 − 𝜇4)2

𝜇32
�
−𝜇

exp �−𝜇2 tan−1(
𝑥 − 𝜇4
𝜇3

)� , 𝑥 𝜖 [−∞,∞] N/A 

V 𝑓(𝑥) =
𝛾𝑝−1

Γ(𝑝 − 1)
𝑥−𝑝𝑒−𝛾/𝑥 N/A 

VI 𝑓(𝑥) =
1

𝐵(𝑏, 𝑞)
𝑥𝑝−1

(1 + 𝑥)𝑝+𝑞   , 𝑥 𝜖 [0,∞] 
Beta of the Second 

Kind 

VII 𝑓(𝑥) =
1

𝑎𝐵(0.5,𝑚 − 0.5)�1 +
𝑥2

𝑎2
�
−𝑚

 , 𝑥 𝜖 [−𝑎,𝑎] Student’s 𝑡 
 

 

Zhang and Song in [38] suggest that the distribution for the sum of LN RVs can 

be approximated by one of the seven types of Pearson distributions. The matching 

process utilizes the first four moments that need to evaluated using numerical integration 

or empirically using Monte-Carlo simulation. In [40], it is found that the Type IV Pearson 

distribution has the closest PDF and CDF shapes to the lognormal sum distribution. The 

study proposes to approximate the sum of lognormal distribution with the Type IV 

Pearson distribution by matching the mean, the variance, the skewness and the kurtosis of 

the two distributions. The work in [26, 41-42] also uses type IV Pearson distribution for 

the approximation. The PDF of the Pearson Type IV distribution is defined over the 

entire real axis and can be written as follows: 
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𝑓𝑃𝐼𝑉(𝑥) = 𝑣 �1 +

(𝑥 + 𝜇4)2

𝜇32
�
−𝜇1

exp �−𝜇2tan−1 �
𝑥 − 𝜇4
𝜇3

�� (2.2) 

Wu et al. in [37] propose the use of log-skewed normal distribution as an 

approximate distribution for the sum of LN RVs. Again all the above methods require 

either the utilization of empirical results obtained from Monte-Carlo simulations or 

evaluating nested numerical integrations.  

Finally, for methods belonging to the third group, the work by Beaulieu and 

Rajwani in [35] referenced earlier proposes the form Ψ(𝑎0 − 𝑎1𝑒𝑎2𝑧) where Ψ(. ) is the 

CDF of the standard normal random variable, and 𝑎0, 𝑎1, and 𝑎2 are constants 

determined by matching the form of the distribution to the empirical distribution in the 

desired range of the abscissa 𝑧. The study in [43] by Zhao and Ding proposes a least-

squares approximation of the form Ψ(𝑎0 + 𝑎1𝑧) for the sum of LN RVs approximation, 

or the form Ψ(𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2) for the quadratic least squares approximation. Again, 

the required constants are determined such that the error between the forms and the 

empirical CDF for the sum is minimum. Finally, the recent work by Mahmoud in [14] 

develops expressions for the characteristic function for the sum variable for both the 

independent and correlated cases. The expressions are in the form of weighted 

exponential sums which allow for a double integration to obtain a summation expression 

for the target approximate CDF. The evaluations performed in [14] reveal that the 

developed expressions are simple and convenient to evaluate for a sum of a low number 

(i.e. ≤ 6) of LN RVs, while the difficulty increases with both the increase in the number 

of individual LN RVs and also with the increase in the number of corresponding 𝜎’s.  
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Chapter 3  

METHODS OF ENHANCING THE 

COMPUTATIONS OF THE DISTRIBUTION 

FUNCTION OF LN RVs 

In this chapter, efficient and convenient computation methods for the sum of a large 

number of LN RVs will be presented, by utilizing the unexpanded form for the 

characteristic function of the sum of lognormal RVs as in equation (1.19). The first 

method is the application of appropriate quadrature rules to the integral involving the 

characteristic function for the sum with a proper change of variables. The second method 

is the application of the Epsilon algorithm to reduce the number of needed computations. 

Results indicate that while the first method presents a simple way to evaluate the sum in 

terms of the weights and nodes of the chosen quadrature rule, it is computationally heavy 

as it may require 100s to 1000s of terms to arrive at a reasonable approximation of the 

target CDF. The second method reduces the needed evaluations to as few as 10 and 

improves the accuracy for both the lower end and higher end of the approximated CDF. 

3.1 Use of Oscillatory Quadratures 
In this section, different quadrature rules are listed and briefly presented. Many 

quadrature types are reviewed in the literature, such as: Fejer [44], Clenshaw–Curtis [45], 

or Gauss quadratures family, that include different types depending on the weight 

function. More details on this can be found in [21]. The highly oscillatory quadrature is 
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discussed in [46-47]. In [48] a comparison is made between Clenshaw–Curtis and Gauss 

quadrature, while the work in [49] compares between Fejer and Clenshaw–Curtis 

quadratures. The work in [50-51] focuses mainly on the error estimation for these 

quadratures. More related material can be found in [52-53]. 

Quadrature rules are in general used to approximate a definite integral of a function, 

which is, stated as a weighted sum of function values at specified points within the 

domain of integration. The 𝑁-point Gaussian quadrature rule is a quadrature rule 

constructed to yield an exact result for polynomials of degree 2𝑁 −  1 or less by a 

suitable choice of the points 𝑥𝑖  and weights  𝑤𝑖  for  𝑖 =  1, . . . ,𝑁. The domain of 

integration for quadrature rules is conventionally taken to be [−1, 1], and the rule can be 

stated as follows: 

 � 𝑓(𝑥)𝑑𝑥
1

−1
≈�𝑤𝑖𝑓(𝑥𝑖)

𝑁

𝑖=1

 (3.1) 

The above Gaussian quadrature produces accurate results if the function 𝑓(𝑥) is well 

approximated by a polynomial function in the interval [−1, 1]. The integrated function 

can be written as  𝑓(𝑥) = 𝑊(𝑥)𝑔(𝑥), where 𝑔(𝑥) is approximately polynomial, and if 

𝑊(𝑥) is known, then there are alternative weights 𝑤𝑖′ such that ∫ 𝑓(𝑥)𝑑𝑥 =1
−1

∫ 𝑊(𝑥)𝑔(𝑥)𝑑𝑥1
−1 ≈ ∑ 𝑤𝑖′𝑓(𝑥𝑖)𝑁

𝑖=1 . Common weights functions include 𝑊(𝑥) =

(1 − 𝑥2)−
1
2 for the Chebyshev–Gauss quadrature, and 𝑊(𝑥) = 𝑒−𝑥2 as in the Hermite-

Gauss quadrature (HGQ) [21]. When the integral is over the interval [𝑎, 𝑏], then the 

limits are changed into [−1, 1] as the follows:  

http://en.wikipedia.org/wiki/Integral�
http://en.wikipedia.org/wiki/Function_(mathematics)�
http://en.wikipedia.org/wiki/Weighted_sum�
http://en.wikipedia.org/wiki/Polynomial�
http://en.wikipedia.org/wiki/Chebyshev%E2%80%93Gauss_quadrature�
http://en.wikipedia.org/wiki/Gauss%E2%80%93Hermite_quadrature�
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 � 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=
𝑏 − 𝑎

2
� 𝑓 �

𝑏 − 𝑎
2

𝑥 +
𝑏 + 𝑎

2 � 𝑑𝑥
1

−1
 (3.2) 

using the Gaussian quadrature rule, the integral in (3.2) may be approximated as: 

  � 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≈
𝑏 − 𝑎

2
�𝑤𝑖𝑓 �

𝑏 − 𝑎
2

𝑥𝑖 +
𝑏 + 𝑎

2 �
𝑛

𝑖=1

 (3.3) 

 
3.2 Using Quadratures to approximate CDF of sum of LN RVs 

The unexpanded form for Φ�𝑊(𝜔) in equation (1.18) or (1.19) is relatively accurate 

especially for large 𝐾 (i.e. 𝐾 > 40 , number of RVs). The approximate CDF 𝐹�𝑊(𝑧) may 

be evaluated from the approximate CF using [19]: 

 𝐹�𝑊(𝑧) =
2
𝜋
�

Re�Φ�𝑊(𝜔)�
𝜔

sin(𝜔𝑧)𝑑𝜔
∞

0
 (3.4) 

The previous relation is reasonably accurate for small and moderate values of the 

abscissa 𝑧. For large 𝑧, the oscillations of the term sin(𝜔𝑧) become very excessive. This 

is compounded by the fact that the envelope dominated by Φ�𝑊(𝜔) does not decay 

sufficiently fast especially for large 𝜎𝑘’s (i.e. 𝜎𝑘 > 3). An easier form of (3.4) can be 

obtained by performing the substitution 𝑦 = 𝜔𝑧. Then the new approximation for the 

CDF for the sum RV 𝑊 is now given by the following relation: 

 𝐹�𝑊(𝑧) =
2
𝜋
�

Re�Φ�𝑊(𝑦 𝑧⁄ )�
𝑦

sin(𝑦)𝑑𝑦
∞

0
 (3.5) 
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The above form eliminates the oscillations due to the sine function. However, due to the 

argument 𝑦 𝑧⁄  for the CF of 𝑊, the envelope need to be considered for excessively large 

values of the argument of Φ�𝑊(. ) when 𝑧 is small. 

This thesis work attempts to utilize the relatively accurate CF of the sum of IID 

lognormal RVs specified by (1.19) in the computation of the approximate CDF of the 

same sum. Towards this end, the work utilizes different quadrature rule to evaluate the 

approximate CDF using relation (3.5) 

For a given quadrature rule with 𝑁𝑞 number of points,  𝛽𝑛 weights, and nodes 𝛼𝑛, 

the approximate CDF in (3.5) can be evaluated using (3.3) as:  

 𝐹�𝑊(𝑧) ≈ �𝛽𝑛𝑔(𝛼𝑛)

𝑁𝑞

𝑛=1

 (3.6) 

where the function  𝑔(∙) is given by  

 𝑔(𝛼𝑛) =
2
𝜋

Re�Φ�𝑊(𝛼𝑛 𝑧⁄ )� sin(𝛼𝑛) 𝛼𝑛⁄  (3.7) 

The relation in (3.6) provides an expression for evaluating the approximate CDF for the 

sum 𝑊 in terms of the original parameters 𝜇𝑘’s and 𝜎𝑘’s of the 𝑍𝑘’s RVs and the HGQ 

weights and nodes as well as the weights 𝛽𝑛, and nodes 𝛼𝑛 used in (3.6). In the 

subsequent section, equation (3.6) is evaluated using three quadrature rules: namely 

Clenshaw-Curtis (CC), Fejer2, and Legendre. It should be pointed out that the first two 

quadratures are preferred for oscillatory integrands [49]. 
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3.3 Application of the Epsilon Algorithm 
The development from the previous section indicates that while the sum 𝑊 of 𝐾 LN 

RVs can now be evaluated using a simple summation expression in terms of the primitive 

parameters and quadrature constants. It still requires the evaluation of a large number 

(from several hundreds to several thousands) of terms, depending on 𝐾, 𝜎𝑘’s, and the 

quadrature rule employed. In this subsection the Epsilon algorithm of [54] and [55] is 

employed to facilitate evaluating (3.5) with fewer computations. 

Towards the end of this subsection, it is noted that the integral in (3.5) can be 

written as a sum of integrals, each being evaluated over a period of the oscillating sine 

term. Specially, it can be written as the following equation [15]: 

 
𝐹�𝑊(𝑧) =

2
𝜋
�(−1)𝑙 �

Re�Φ�𝑊((𝑙𝜋 + 𝑡) 𝑧⁄ )�
(𝑙𝜋 + 𝑡)

sin(𝑡)𝑑𝑡
𝜋

0

∞

𝑙=0

 

=
2
𝜋
�(−1)𝑙𝑥𝑙

∞

𝑙=0

 
(3.8) 

where 𝑥𝑙 th term is equal to the ∫ Re�Φ�𝑊((𝑙𝜋+𝑡) 𝑧⁄ )�
(𝑙𝜋+𝑡)

sin(𝑡)𝑑𝑡𝜋
0 . For the evaluation of (3.8), 

typically the first 𝐿𝐿 terms, for some large 𝐿𝐿, are evaluated only. Then, the approximate 

CDF is given by the following equation: 

 𝐹�𝑊(𝑧) ≈ 𝑆𝐿 =
2
𝜋
�(−1)𝑙𝑥𝑙

𝐿

𝑙=0

 (3.9) 

To obtain a good approximation for 𝐹�𝑊(𝑧), and due to the nature of Φ�𝑊(𝜔), the specified 

summation in (3.9) converges only for extreme values of 𝐿𝐿, especially for large 𝑧. The 
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intention is to reduce the number of computations required to arrive at  𝐹�𝑊(𝑧) =

lim𝐿→∞ 𝑆𝐿. This is achieved through the utilization of the Epsilon algorithm. 

The Epsilon algorithm of [54] and [55] operates as follows: Build a table similar 

to that shown in Table 3.1. The table, referred to by the 𝜖-table, has columns for 𝑟 =

−1, 0, 1, 2, … and rows for 𝑙 = 0, 1, 2, …. The 𝑟 = −1 column is initialized to contain 

zeros, while the 𝑟 = 0 column is initialized to contain the partial sum 𝑆𝑙 in the 𝑙th row. 

For the remaining entries in the 𝜖–table, the entry in the 𝑙th row and 𝑟th column is given 

as:  

 𝜖𝑟+1
(𝑙) = 𝜖𝑟−1

(𝑙+1) + �𝜖𝑟
(𝑙+1) − 𝜖𝑟

(𝑙)�
−1

   for 𝑟 = 0, 1, 2, …  (3.10) 

The even columns of the 𝜖–table now contain increasingly more accurate estimates of 𝑆∞ 

or  𝐹�𝑊(𝑧). In the results section it is shown that for as few as 5 or 10 terms, using the 

Epsilon algorithm one can obtain a reasonable approximation for 𝐹�𝑊(𝑧) in the range of 

interest. Finally, it should be noted that Tellambura and Senaratne in [15] utilize the 

Epsilon algorithm to compute the CDF for 𝑊, 𝐹�𝑊(𝑧), where the corresponding 

integration involves numerical integrations to evaluate Φ�𝑍𝑘(𝜔) and then Φ�𝑊(𝜔). In 

addition, the evaluations in [15] are chosen for moderate values of 𝜎𝑘 to allow more 

accurate evaluation of Φ�𝑊(𝜔). 
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Table  3.1: The Epsilon algorithm table 

 𝒓 

𝒍 -1 0 1 2 3 4 … 

0 0 𝑺𝟎 𝝐𝟏𝟎 𝝐𝟐𝟎    

1 0 𝑺𝟏 𝝐𝟏𝟏 𝝐𝟐𝟏 𝝐𝟑𝟏   

2 0 𝑺𝟐 𝝐𝟏𝟐 𝝐𝟐𝟐 𝝐𝟑𝟐 𝝐𝟒𝟐  

3 0 𝑺𝟑 𝝐𝟏𝟑 𝝐𝟐𝟑 𝝐𝟑𝟑 𝝐𝟒𝟓  

4 0 𝑺𝟒 𝝐𝟏𝟒 𝝐𝟐𝟒 𝝐𝟑𝟒   

5 0 𝑺𝟓 𝝐𝟏𝟓 𝝐𝟐𝟓 𝝐𝟑𝟓   

…        

3.4 Numerical Results and Discussion 
For the evaluation results of the CDF, curves are plotted on a normal probability 

scale with the abscissa 𝑧 in dBs. Similar to most of the work in the literature, the range of 

probabilities on the y-axis is limited to be from 10−6 to (1 − 10−6). The normal 

probability scale serves to reveal the matching between the original CDF and the 

approximation for both low and high ends of the distribution.  

First, the form (3.6) is evaluated for the three considered quadratures: Clenshaw-

Curtis (CC), Fejer2, and Legendre. The approximation resulting from (3.6) for different 

numbers of nodes and weights is shown in Figure 3.1 for 𝐾 = 20 and for 𝜎dB equal to 6 

dB and 12 dB.  

Progressively more accurate 

estimates of 𝑺∞ for even values 

of 𝑟. 



29 

 

29 

 

 

Figure  3.1 The CDF of the sum of 𝐾=20 IID lognormal RVs 𝜇dB= 0dB and 𝜎dB = 6dB 
and 𝜎dB=12 dB using the curve fit in [35] and three quadrature rules: Clenshaw-Curtis, 

Fejer2, and Legendre. 

The approximated CDF is plotted against the original CDF as represented by the 

curve fit developed in [35]. The number of weights and nodes 𝑁𝑞, considered for this 

evaluation is 1600, 6000, and 3700 for the CC, Fejer2, and Legendre quadrature rules, 

respectively. CC and Fejer2 quadrature rules are specialized for oscillatory integrands, 

while the Legendre quadrature rule is for general integrands. The CC quadrature rule 

produces the best results with the least 𝑁𝑞. It can be seen that for the same quadrature 

rules, the evaluation is less accurate for 𝜎dB = 12 dB compared to those for 𝜎dB = 6 dB. 

This is because Φ𝑊(𝜔) decays more rapidly for small values of 𝜎dB than it does for high 

values of 𝜎dB such as 12 dB. Another observation is that the quadrature rules seem to be 

able to approximate the desired CDF for low and moderate values of the abscissa, but the 

discrepancies arise mostly for higher values of the abscissa. To assess the relative 
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accuracy between the approximate CDF and the original CDF, the following metric is 

developed: define the set of 𝐼 abscissa points 𝑧𝑖 uniformly spaced between 10 log10 𝑧min  

and 10 log10 𝑧max  in the range of interest. The sum of relative errors squared, 𝑆𝑆𝑅𝐸 is 

defined as 

 𝑆𝑆𝑅𝐸 = ��
Ψ−1�𝐹𝑊(𝑧𝑖)� − Ψ−1 �𝐹�𝑊(𝑧𝑖)�

Ψ−1�𝐹𝑊(𝑧𝑖)�
�

2𝐼

𝑖=1

 (3.11) 

where 𝐹𝑊(𝑧𝑖) is the true CDF for the sum 𝑊 evaluated at 𝑧𝑖, 𝐹�𝑊(𝑧𝑖) is the approximate 

CDF evaluated at 𝑧𝑖, and Ψ−1(∙) is the inverse normal RV CDF. 𝐹𝑊(𝑧𝑖) is taken as the 

curve fit developed in [35]. Figure 3.2 shows the 𝑆𝑆𝑅𝐸 for the three considered 

quadrature rules versus the number of weights and nodes,  𝑁𝑞, considered in the 

evaluation of (3.5). The CC quadrature produces the least 𝑆𝑆𝑅𝐸 for 𝑁𝑞 values ranging 

from few 10s of terms to about 200 compared to the other quadrature rules. For extremely 

large 𝑁𝑞 (i.e. greater than 500), all quadrature rules produce the same 𝑆𝑆𝑅𝐸 value. The 

𝑆𝑆𝑅𝐸 floor of 2.2 × 10−2 is due to the inaccuracies of the Φ�𝑊(𝜔) approximation, and 

not due to the quadrature rule. Therefore, increasing the number of weights and nodes 𝑁𝑞 

does not aid in obtaining more accurate results for 𝐹�𝑊(𝑧𝑖). 
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Figure  3.2 Sum of squared relative errors between CDF evaluated using quadrature rules 
and curve fit versus number of weights and nodes for sum of 20 IID LN RVs and 

𝜎dB = 12 dB. 

Next, the form (3.9) is considered to assess the number of terms 𝐿𝐿 required to 

obtain a reasonable approximation 𝐹�𝑊(𝑧). Figure 3.3 shows the evaluation of (3.9) for 

𝐾=20 and for 𝜎dB equal to 6 dB and 12 dB. The number of terms considered in the partial 

summation, 𝐿𝐿 is taken to be 200, 1000, and 10000. The individual 𝑥𝑙 term is evaluated 

using the MATLAB quadgk [56] numerical integration routine. 
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Figure  3.3 The CDF for the sum 𝑊 evaluated using relation (3.10) for 20 IID LN RVs 

and 𝜎dB equal to 6 dB and 12 dB. 

It can be seen that the accuracy of the approximation improves as 𝐿𝐿 increases. 

However, to obtain a reasonable close fit for the original CDF, the number of terms 𝐿𝐿 

must be on the order of 104 or higher. Furthermore, the approximation is less accurate for 

higher values of the abscissa 𝑧 especially for 𝜎dB = 6 dB. In Figure 3.4, the results are 

shown for evaluating (3.9) but using the Epsilon algorithm for 𝐾 equal to 6 and 20 and 

𝜎dB = 12 dB. For this evaluation 6, 10, or 14 terms are utilized of 𝑥𝑙 to construct the 

Epsilon table. It can be seen that with as few as 6 terms and with the use of the Epsilon 

algorithm, one can obtain an approximation that is better than that obtained with 1000’s 

of terms using other than the Epsilon algorithm. Furthermore, the accuracy of the 

approximation for the low end and high end of the distribution improves compared to the 
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results in Figure 3.3. Finally, more accurate results are possible with a higher number of 

initial terms of 𝑥𝑙. 

 

Figure  3.4 The CDF for the sum 𝑊 evaluated using the Epsilon algorithm for 6 and 20 
IID LN RVs and 𝜎dB equal 12 dB. 
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Chapter 4  

ANALYSIS AND IMPLEMENTATION OF 

LEGENDRE-GAUSS QUADRATURE 

The previous work in chapter 3 utilizes the CF for the single RV specified by 

relation (1.17) developed in [20] and [14] to compute the CDF for the sum of lognormal 

RVs. Initially, the CF for the sum of independent 𝐾 lognormal RVs is simply the 

multiplication of the individual CFs, and then the CDF may be approximated using the 

relation (1.22) for moderate values of 𝑀 or using the general relation (1.16). Chapter 3 

focused on exploiting (1.16) since the focus is on cases where 𝑀 is extremely large since 

𝐾 and/or 𝑁 are large. 

The CF utilized in the approach described above uses the HGQ rule to 

approximate the original integral with infinite limits of the CF specified by relation 

(1.11). Gubner in [20] has shown an example explaining that using the Legendre-Gauss 

Quadrature rule (LGQ) as opposed to the HGQ one can obtain higher accuracy for the 

same number of nodes and weights if the infinite limits of the integral are changed to 

optimized finite integral limits. The example evaluated the CF for a single RV at one 

frequency point to highlight the relative accuracy of the involved quadrature rules. 

The work in this chapter extends the work of Gubner in [20] and evaluates the CF of 

the single RV with assessment of the accuracy of the LGQ relative to the HGQ used by 

Mahmoud in [14] for the entire frequency range of interest. In addition, the work tries to 
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obtain a new expression for the CF of the single RV based on the LGQ rule that may be 

of acceptable accuracy but with a lower number of terms 𝑁, as compared to the HGQ 

rule. 

4.1 Evaluation of the CF of LN RV Using Optimized Integral 
Limits 
The CF for the LN RV 𝑍 with parameters 𝜇 and 𝜎 may be computed using the 

integral in relation (1.11). Gubner in [20] produces an alternative integral for the case of a 

lognormal RV with reduced oscillation specified by 

 Φ�𝑍(𝜔) = 𝑐 � 𝑒−𝜔𝑒𝑡𝑒−𝑗𝜋𝑡 �2𝜎2�⁄ 𝑒−(𝑡 𝜎⁄ )2𝑑𝑡
∞

−∞
 (4.1) 

where the constant 𝑐 is equal to 𝑒��𝜋 (2𝜎)2⁄ � 2⁄ � �√2𝜋𝜎�� . Noticing the infinite integral 

limits in (4.1) and taking the term 𝑒−(𝑡 𝜎⁄ )2 as the weight function, immediately points to 

the HGQ rule as the appropriate or natural approximation method. Gubner also observed 

that the envelope of the integrand in (4.1) attains its maximum at 𝑡0 < 0 which is the 

solution of 𝑒𝑡 = −𝑡 (𝜔𝜎2)⁄ . Furthermore, 𝑡0 goes to minus infinity as the product 𝜔𝜎2 

goes to infinity. Therefore one may obtain a better approximation of (4.1) if only the 

significant part of the integrand is considered by performing the integral in (4.1) over a 

finite interval [𝑎, 𝑏]. The new limits 𝑎 < 𝑡0 < 𝑏, referred to herein by the optimized 

integral limits, are chosen such the envelope at 𝑎 and 𝑏 is below a certain threshold 

relative to the envelope value at 𝑡0. For the specific frequency point of 𝜔 = 104 

radians/sec and using a threshold of 10−16, Gubner showed that Φ�𝑍(𝜔) evaluated using 
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the 45-point LGQ is accurate to the 14th decimal place while that for the 45-point HGQ is 

only accurate to the 6th decimal place.  

4.1.1 Implementation of LGQ with Optimized Integral Limits 

In this subsection, we adopt the method developed by Gubner and evaluate the CF 

of a single LN RV using the LGQ rule with the use of optimized integral limits. For a 

given 𝜔 and a specified threshold, 𝑇, the CF specified by (4.1) may be approximated by 

 Φ�𝑍(𝜔) = 𝑐 � 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
 (4.2) 

where 𝑓(𝑡) = 𝑒−𝜔𝑒𝑡𝑒−𝑗𝜋𝑡 �2𝜎2�⁄ 𝑒−(𝑡 𝜎⁄ )2 and the limits 𝑎 and 𝑏 are chosen such that 

𝑓(𝑎) = 𝑇𝑓(𝑡0) and 𝑓(𝑏) = 𝑇𝑓(𝑡0). 𝑡0 is the abscissa point that maximizes 𝑓(𝑡). 

Mapping the integral limits to the interval [−1, 1] and using the relation (3.3), the CF 

approximation Φ�𝑍(𝜔) may be evaluated using 

  Φ�𝑍(𝜔) ≈ 𝑐 �
𝑏 − 𝑎

2 ��𝑤𝑛𝑓 �
𝑏 − 𝑎

2
𝑡𝑛 +

𝑏 + 𝑎
2 �

𝑁

𝑛=1

 (4.3) 

where 𝑡𝑛 and 𝑤𝑛 are the 𝑛th node and weight of the 𝑁-point LGQ rule. Writing (4.3) in a 

manner similar to (1.17), we have 

  Φ�𝑍(𝜔) ≈ �𝐴𝑛𝑒−𝜔𝑎𝑛
𝑁

𝑛=1

 (4.4) 
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where now the coefficients 𝑎𝑛 and 𝐴𝑛 are computed by 𝑒𝛼𝑖 and 𝑐 �𝑏−𝑎
2
�𝑤𝑛𝑓(𝛼𝑖), 

respectively, and 𝛼𝑖 is �𝑏−𝑎
2
𝑡𝑛 + 𝑏+𝑎

2
�. 

While the form of (4.4) is similar to that of (1.17), unfortunately there is a critical 

difference between these two forms. The coefficients 𝑎𝑛 and 𝐴𝑛 in (1.17) are identical for 

every frequency 𝜔 whereas there coefficients in (4.4) are a function of 𝜔 because of their 

dependency on the optimized integral limits. This prevents the utilization of (4.4) in 

obtaining simple expressions for the PDF or CDF of the sum of lognormal RVs as in 

(1.21) and (1.22), respectively. Nonetheless, (4.4) still presents a more accurate 

evaluation of the CF of the single LN RV compared to that of (1.17). The subsection 4.2 

will explore alleviating this shortcoming at the cost of sacrificing the accuracy of the 

approximation. 

4.1.2 Results and Discussion 

In this subsection, we evaluate the accuracy of the new expression for the 

characteristic function stated by (4.4) relative to the expression obtained by Mahmoud in 

[14] and reiterated in relation (1.17). Specifically, we will use the relative error defined as 

 Relative Error =
��Φ�𝑍(𝜔)� − �Φ�𝑍REF(𝜔)��

�Φ�𝑍REF(𝜔)�
 (4.5) 

where |𝑥| is the absolute value of 𝑥. Φ�𝑍(𝜔) is the CF of interest evaluated using (4.4) or 

(1.17). Φ�𝑍
REF

(𝜔) is the reference (or accurate) value for the CF at the specific frequency of 

𝜔 radians per second. As stated in the introduction part of this section, the use of 45-point 
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LGQ with optimized integral limits produces a value of Φ�𝑍(𝜔) that is accurate to the 14th 

decimal place for 𝜔 = 104 radians per second. We also evaluate the original integral in 

(4.1) using Matlab’s function quadgk() which utilizes the adaptive Gauss-Kronrod 

quadrature [56] and it is found to be as accurate as the example given above for the LGQ 

rule. In the rest of the coming material, we consider the numerical evaluation of (4.1) 

using Matlab’s quadgk() function to be the accurate value. The evaluation shows that 

Matlab’s quadgk() function and the 45-point LGQ with optimized integral limits 

produce values of Φ�𝑍(𝜔) that are within 10−15~10−10 of each other and have much 

higher accuracy relative to all other schemes considered. 

 

a) 𝜎 =  1.3816 (𝜎dB = 6 dB) 

 

b) 𝜎 =   2.7631 (𝜎dB = 12 dB) 

Figure  4.1: Evaluation of optimized integral limits for the cases of (a) 𝜎dB = 6 dB, and 
(b) 𝜎dB = 12 dB. 

Initially, we evaluate the optimized integral limits for (4.1) needed to write the 

integral in (4.2) with finite limits. The optimized integral limits are evaluated for the case 

of 𝜎 =  1.3816 (i.e. 𝜎dB = 6 dB) or 𝜎 =   2.7631 (i.e. 𝜎dB = 12 dB). The optimized 
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integral limits are shown in Figure 4.1 for the two cases. The curves also depict the 

corresponding value of 𝑡0 where the envelope of (4.2) attains its maximum. The 

evaluation is performed for a wide range of the frequency parameter 𝜔. One can note that 

the envelope attains its maximum at values very close to 𝜔 = 0 from the left for 

frequencies less than 1 radian per second. As 𝜔 increases beyond 1 radian per second, the 

peak to shift towards the negative part of the frequency axis. The figure shows the limits 

for the case of small standard deviation 𝜎 represented by 𝜎dB = 6 dB and for the case of 

large standard deviation represented by 𝜎dB = 12 dB. However, for further evaluation of 

the CF and the evaluation of the relative computational needed effort, we will focus on 

the case of 𝜎dB = 12 dB or large standard deviation. The latter case represents the 

difficult computation case as the CF decays very slowly with 𝜔  and need to be accurate 

for a very wide range of the frequency parameter. 

The relative error is evaluated using (4.5) for the CF computed based on (1.17) 

and the HGQ rule and also for the CF computed using (4.4) employing the LGQ rule. The 

evaluation is performed for a different number of quadrature points, namely 𝑁 equal to 

10, 25, and 45. The results are shown in Figure 4.2 for a frequency range extending from 

𝜔 = 10−6 to 𝜔 = 107 radians per second. One observation is that for the same number 

of quadrature points 𝑁, the evaluation using the LGQ rule is more accurate compared to 

that using the HGQ rule. The difference in the relative error value increases with the 

increase in 𝑁 with maximum disparity between the two rules for 𝑁 = 45 points. It can be 

seen that for the LGQ rule with 𝑁 = 45 the relative error is very small compared to the 

other cases where it ranges from ~10−15 for very small 𝜔 to ~10−10 for very large 𝜔. 
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Figure  4.2: Evaluation of relative error for the computation of absolute of CF for 
𝜎dB = 12 dB using HGQ and LGQ with optimized integral limits. 

4.2 Evaluation of the CF of LN RV Using Fixed Integral Limits 

To be able to invert the expression in (4.4) for the CF of the single LN RV or the 

one corresponding to the sum of independent LN RVs resulting from the product of 

expressions similar to (4.4), the coefficients 𝑎𝑛 and 𝐴𝑛 have to be independent of the 

frequency variable 𝜔. In the previous subsection, it was shown that the coefficients 𝑎𝑛 

and 𝐴𝑛 are a function of 𝜔 because the integral limits 𝑎 and 𝑏 are optimized at every 

frequency point. In this subsection we will evaluate the accuracy of the new expression 

for the CF using the LGQ rule but for fixed integral limits. 

4.2.1 Implementation of LGQ with Fixed Integral Limits 

Let there be fixed integral limits for (4.2), denoted by 𝑎∗ and 𝑏∗, that are not 

function of the frequency variable 𝜔. Since 𝑎∗ and 𝑏∗ represent the lower and upper 

integration limits, then for a given 𝜎dB and independently of 𝜔 the natural choice of 𝑎∗ 
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would be the minimum of all possible 𝑎 values while the choice for 𝑏∗ would be the 

maximum of all possible 𝑏 values. For the data shown in Figure 4.3 and for 𝜎dB = 12 dB 

and 𝜔 ∈ (10−6, 107), the values for 𝑎∗ and 𝑏∗ values are equal to −28.827 and 16.733, 

respectively. Using these values in the coefficient of (4.4) by replacing the parameters 𝑎 

and 𝑏 with 𝑎∗ and 𝑏∗, respectively, results in an expression for the CF Φ�𝑍(𝜔) constant 

coefficients 𝑎𝑛 and 𝐴𝑛 that do not depend on 𝜔. The expression in (4.4) based on 𝑎∗ and 

𝑏∗ can now be utilized in a manner similar to the development in [14] to obtain the CF 

for the sum of independent LN RVs as in (1.20) and then obtain the PDF of the sum by 

inverting (1.20) to obtain (1.21). However, in this subsection we are interested in 

evaluating the accuracy of the new expression with the usage of 𝑎∗ and 𝑏∗. 

4.2.2 Results and Discussion 

Using the same frequency range and number of quadrature points 𝑁 as in 

subsection 4.1.2, we use (4.5) to evaluate the relative error to assess the accuracy of the 

expression (4.4) using the LGQ rule with fixed integral limits 𝑎∗ and 𝑏∗. Figure 4.3 

shows the resulting curves. Similar to Figure 4.2, the figure also includes the evaluation 

of the relative error for (1.17) which utilizes the HGQ rule for comparison purposes. 
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Figure  4.3: Evaluation of relative error for the computation of absolute of CF for 
𝜎dB = 12 dB using HGQ and LGQ with fixed integral limits 𝑎∗ and 𝑏∗. 

It can be seen from Figure 4.3 that the LGQ rule is no longer always more 

accurate that its HGQ counterpart, for the same number of quadrature points, 𝑁. In fact, 

the LGQ rule is more accurate than the corresponding HGQ rule only for 𝑁 equal to 45 

and only for very low values of the frequency variable 𝜔. For values of 𝜔 greater than 

10−4 radians per second, the LGQ rule performs worse than the HGQ for 𝑁 equals to 10 

and 25. In short, there is no clear advantage of using the LGQ rule for fixed integral 

limits 𝑎∗ and 𝑏∗. This may be interpreted as follows. Using the extended range of 

abscissa [𝑎∗, 𝑏∗], the nodes 𝑁-point LGQ are not distributed in the range where the 

integrand is most significant, as it is the case for optimized integral limits, but rather are 

spread over areas of the abscissa that are not significant. This results in a lower accuracy 

when compared to the optimized case.  

Furthermore, the previous two relative error curves were evaluated using the 

absolute value of the approximate CF. This work also evaluated the relative error in the 
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computation for the real part and the imaginary part of the CF. It is observed that the 

relative error in the computation of the imaginary part is very high compared to that for 

the computation of the real part. In other words, for most of the cases, the relative error in 

the absolute value of the CF is mainly due to the errors in computing the imaginary part.  

Finally, through experimentation it is observed that selecting values other than 𝑎∗ 

and 𝑏∗ defined in this subsection may produce lower relative error curves compared to 

those shown in Figure 4.3, specifically for particular ranges of the frequency variable 𝜔. 

Therefore, in this development we seek to identify, in a methodological manner, new and 

fixed integral limits that minimize the relative error for the CF computed using the LGQ 

rule over the entire range of the frequency variable as a whole. We refer herein to these 

new integral limits as the quasi-optimized integral limits. 

Let a set of frequency points 𝜔𝑖’s, denoted by Ω be defined such that log10 𝜔𝑖 ∈

{ −6,−5, … , 7}. Realizing that the true value of |Φ𝑍(𝜔)| decreases rapidly with the 

increase of the frequency variable and that it is of interest to obtain an approximation that 

is most accurate where |Φ𝑍(𝜔)| is significant, we define a set of weights 𝑊𝑖’s that 

emphasize the relative error for small 𝜔𝑖 and marginalizes as 𝜔𝑖 increases. For a given 

pair of integral limits (𝑎, 𝑏), the weighted sum of relative errors (WSRE) is evaluated at 

the specified frequency points in Ω. The desired fixed quasi-optimized integral limits, 

denoted by �𝑎�, 𝑏�� may be obtained by minimizing the sum of weighted relative errors 

over all possible pairs (𝑎, 𝑏). We restrict the search space to integer values of 𝑎 and 𝑏 

only where 𝑎 < 𝑏. For 𝜎dB = 12 dB, the focus of this subsection, and using Figure 4.1, 𝑎 
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and 𝑏 each range from -30 to 17. For other values of 𝜎dB, the corresponding range for 𝑎 

and 𝑏 must be used. 

For the choice of the weights, one may choose the weight at 𝜔𝑖 to be the absolute 

value of the CF at the frequency of interest, i.e. 𝑊𝑖 = |Φ𝑍(𝜔𝑖)|. Since Φ𝑍(𝜔𝑖) is nearly 

zero for high frequency points, this choice may tend to ignore the optimization for high 

frequency points. Another second choice would be to devise a weight series that 

decreases with 𝜔𝑖 but does not diminish significantly for high values of 𝜔𝑖. One such 

function would be 𝑊𝑖 = (log10(𝜔𝑖) + 7)−1. The two choices for the weight function are 

referred to as option 1 and option 2, respectively. 

Executing the optimization procedure described above in the search for the fixed 

integral limits 𝑎� and 𝑏�, we obtain the results shown in Table 4.1. The table lists the quasi-

optimized integral limits 𝑎� and 𝑏� values for the LGQ rule for each of the three values of 

𝑁 that are used and for both options of the weighting function. The table also lists the 

corresponding optimized integral limits 𝑎� and 𝑏� , of course as a function of 𝜔. It can be 

seen that the weights function used in option 2 produces pairs �𝑎�, 𝑏�� that are very close to 

the range of pairs for optimized integral limits �𝑎�, 𝑏��. 

 

 

 

 



45 

 

45 

 

 

Table  4.1: quasi-optimized integral limits for LGQ rule. 

Weights function option 
Number of quadrature 

points 𝐍 
(𝑎�, 𝑏�), σ = 6 dB (𝑎�, 𝑏�), σ = 12 dB 

 Option 1: 𝑾𝒊 = |𝚽𝒁(𝝎𝒊)| 

10 (-5,5) (-8,6) 

25 (-8,7) (-11,12) 

45 (-9,8) (-18,14) 

 Option 2: 𝑾𝒊 =

�log𝟏𝟎(𝝎𝒊) + 𝟕�−𝟏 

10 (-12,1) (-18,10) 

25 (-15,5) (-18,8) 

45 (-16,5) (-19,14) 

Optimized  (𝑎�, 𝑏�), σ = 12 dB 
𝜔 = 10−3 𝜔 = 100 𝜔 = 103 𝜔 = 106 

(-23.72,10.31) (-23.84,3.59) (-25.01,-3.21) (-27.66,-10.04) 
 

 

Figure 4.4 shows an example of a 3D surface corresponding to the weighted sum of 

relative errors for one case selected from Table 4.1. The surface corresponds to 𝑁 = 10 

quadrature points and utilizes the second weights function. 
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Figure  4.4: Surface for logarithm of weighted sum of relative error for the computation of 
absolute CF for 𝜎dB = 12 dB using the LGQ rule with 𝑁 = 10 as a function integral 

limits 𝑎 and 𝑏. 

Utilizing the quasi optimized integral limits  𝑎� and 𝑏� shown in Table 4.1, the 

relative error is obtained in a manner similar to that in Figure 4.2 and Figure 4.3. The 

results are shown in Figure 4.5. 

For the LGQ curves, results show some improved accuracy relative to the 

corresponding curves in Figure 4.3, however, as expected, the relative accuracy is still 

lower than that for the case of optimized integral limits. 
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Figure  4.5: Evaluation of relative error for the computation of absolute of CF for 
𝜎dB = 12 dB using HGQ and LGQ with fixed integral limits 𝑎� and 𝑏�. 

While it is clear from the previous table that the quasi-optimized integral limits  𝑎� 

and  𝑏� are different for different numbers of quadrature points, 𝑁, and in a final attempt 

to simplify the problem even further, one may use a specific pair of  𝑎� and 𝑏� values for 

the evaluation of the LGQ regardless of 𝑁. This makes the derived quasi integral limits a 

function of the LN RV parameter 𝜎dB and not a parameter related to the computation 

method. Results obtained using this last method provide less accuracy or higher relative 

error curves compared to those shown in Figure 4.4. Experiments show that using the pair 

for the highest 𝑁 values for the computation results in the most improved accuracy across 

the other values of 𝑁. 
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4.3 Utilization of LGQ with Optimized Limit in Computing 

CDF of Sum of Independent LN RVs 

In this subsection, we utilize the new expression derived for the approximate CF 

specified by the relation (4.4) in computing the CDF for the sum of independent LN RVs. 

The objective is to compare the resulting CDF when the LGQ rule is used to compute the 

CF of the individual RVs with that obtained with the HGQ rule used previously. 

While the derived results are applicable to the case of independent and non-

identical RVs, the evaluations here focus on the IID case only for simplicity. For the sum 

𝑊 of IID 𝐾 LN RVs with a specific 𝜎dB parameter, the CF Φ𝑊(𝜔) is simply the CF of 

the individual RV or its approximation, Φ�𝑍(𝜔), raised to the 𝐾th power. Here we utilize 

(4.4) to evaluate Φ�𝑍(𝜔). To evaluate the CDF of 𝑊, we utilize the approach developed 

in Section 3.2 . Specifically, we apply (3.5) after the change of variables and approximate 

the integral with three different quadrature rules employed therein, namely the Clenshaw-

Curtis (CC), Fejer2, and Legendre. Figures 4.6 and 4.7 show the results of plotting the 

CDF of the sum of 𝐾=20 IID lognormal RVs with optimized integral limits 𝑎� and 𝑏� and 

also quasi-optimized integral limits  𝑎� and 𝑏�, respectively. 
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Figure  4.6: The CDF of the sum of 𝐾=20 IID lognormal RVs 𝜇dB= 0dB and 𝜎dB = 6 and 
12 dB using the curve fit in [35] and three quadrature rules: Clenshaw-Curtis, Fejer2, and 

Legendre, with optimized integral limits  𝑎� and 𝑏� for LGQ approach. 

  

 

Figure  4.7: The CDF of the sum of 𝐾=20 IID lognormal RVs 𝜇dB= 0dB and 𝜎dB = 6 and 
12 dB using the curve fit in [35] and three quadrature rules: Clenshaw-Curtis, Fejer2, and 

Legendre, with quasi-optimized integral limits  𝑎� and 𝑏� for LGQ approach. 
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Chapter 5  

APPLICATION TO CDMA DATA NETWORK 

This chapter attempts to utilize the developed methods for computing the CDF for 

the sum of LN RVs to provide an expression for the CDF of the cell site traffic power for 

a direct-sequence code division multiple access (DS-CDMA) system. In the material that 

follows, we first introduce the problem of computing the distribution of cell site traffic 

power and then provide the development leading to the desired result using the methods 

presented in earlier chapters. 

5.1 Background Material 

At the core of radio resource management procedures for DS-CDMA system, is a 

formulation that relates the quality of the wireless link, as reflected by the achieved 

energy-per bit to noise power spectral density ratio  𝐸𝑏/𝑁0 and the status of the system in 

terms of granted connections speeds, system bandwidth, RF propagation conditions, and 

other network-related parameters. Assume a cellular DS-CDMA with arbitrary frequency 

reuse factor supporting arbitrary 𝑄 discrete service bit rates given by the set 𝑉 =

�𝑅0,𝑅1, … ,𝑅𝑄−1 �. Let the cell of interest be denoted by cell 0, while the co-channel 

interferers be numbered from 1 onwards. When 𝐾 connections (calls or data bursts) are to 

be supported by the system where the 𝑘𝑘th burst is assigned the bit rate 𝑟𝑘, then the 

corresponding link quality for the 𝑘𝑘th burst is given by:  
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�
𝐸𝑏
𝑁0
�
𝑘

=
𝐵𝑊
𝑟𝑘

×
𝑃𝑘𝐿𝐿𝑘010𝜁𝑘0 10⁄

(1 − 𝜌)𝐿𝐿𝑘010𝜁𝑘0 10⁄ �∑ 𝑃𝑙 + 𝑃𝑜𝑣𝐾−1
𝑙=0,𝑙≠𝑘 � + 𝑃𝑇 × ∑ 𝐿𝐿𝑘𝑚10𝜁𝑘𝑚 10⁄

∀𝑚
 

5.1 

where 𝐵𝑊 is the system bandwidth, 𝐿𝐿𝑘𝑚 and 𝜁𝜁𝑘𝑚 are the path loss coefficient and the 

shadowing factor, respectively, between the 𝑘𝑘th user in the cell of interest, and the 𝑚th 

cell site for 𝑚 = 0, 1, 2, …, . The relation in (5.1) assumes the resource management 

procedure operating in the cell site of interest allocates an amount of power, 𝑃𝑘 Watts, for 

the 𝑘𝑘th connection. The path loss coefficient 𝐿𝐿𝑘𝑚 depends on the model applicable for the 

system, while the shadowing factor 𝜁𝜁𝑘𝑚 is a Gaussian random variable with zero mean 

and a standard deviation equal to 𝜎dB, a parameter reflecting the severity of the 

shadowing process. 

The power allocated to overhead channels is given by 𝑃𝑜𝑣 = 𝛽𝑃𝑇, where 0 < 𝛽 <

1, and 𝑃𝑇 is the total transmit power for the cell site. This means (1 − 𝛽)𝑃𝑇 is the power 

limit for all traffic transmissions. In addition, the formula (5.1) conservatively assumes 

each co-channel cell is transmitting at the total cell site power, 𝑃𝑇, and that an 

orthogonality factor 0 < 𝜌 < 1 is used to control the severity of the intracell interference.  

Fig. 5.1 depicts the cellular configuration used for the cell-site traffic power 

problem. This figure shows the cell of interest where users are located randomly and also 

the first tier of 6 co-channel interferers. The second tier of co-channel interferers would 

be a second ring of twice the radius of the first ring and with cells numbered from 7 to 18. 

Cells belonging to the second tier are not shown in Fig. 5.1. 
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Figure  5.1: Cellular configuration for cell-site traffic power problem showing cell of interest, 

numbered cell 0, and cells belonging to first tier of co-channel interferers numbered 1 to 6. 

Cells belonging to second tier of co-channel interferers numbered 7 to 18 are not shown. 

An important quantity for resource management procedures is the sum of 

downlink traffic power. The work in [57] have shown that using (5.1), the sum of traffic 

powers, ∑ 𝑃𝑘𝐾−1
𝑘=0 , can be given by: 

 
�𝑃𝑘

𝐾−1

𝑘=0

= 𝑃𝑇
𝛽 ∑ 𝐺𝑘𝐾−1

𝑘=0 + 1
1 − 𝜌∑ 𝐺𝑘𝑓𝑘𝐾−1

𝑘=0

1 − ∑ 𝐺𝑘𝐾−1
𝑘=0

 
5.2 

where 𝐺𝑘 = 𝑔𝑘 (1 + 𝑔𝑘)⁄  and 𝑔𝑘 = (𝐸𝑏/𝑁0)min (𝐵𝑊 𝑟𝑘⁄ )(1 − 𝜌)⁄ . The parameter 𝑓𝑘 is 

the ratio of the sum of signal attenuation factors (path loss times the shadowing factor) 

from all interfering cell sites to the attenuation factor related the cell of interest. The 

parameter 𝑓𝑘 is given by: 

d
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𝑓𝑘 =

∑ 𝐿𝐿𝑘𝑚10𝜁𝑘𝑚 10⁄
∀𝑚

𝐿𝐿𝑘010𝜁𝑘0 10⁄  
5.3 

for 𝑘𝑘 = 0, 1, 2, … ,𝐾 − 1. The parameters 𝐺𝑘’s, 𝜌, 𝑃𝑇, and 𝛽 in (5.3) are all constants for 

a particular set of accepted connections in the system, while the only random variable 

that depends on the users’ locations and the RF propagation model is the quantity 

∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0 . Therefore to characterize the downlink traffic power ∑ 𝑃𝑘𝐾−1

𝑘=0 , it is sufficient 

to characterize the quantity ∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0 . Let the quantity ∑ 𝑃𝑘𝐾−1

𝑘=0  be denoted by 𝐴, while 

the quantity ∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0  be denoted by 𝐵. It is clear from (5.3) that 𝐴 is a linear 

transformation of the random variable 𝐵. That is, 𝐴 = 𝑐1𝐵 + 𝑐2, where the constants 𝑐1 

and 𝑐2 are given by 𝑃𝑇(1−𝜌)−1

1−∑ 𝐺𝑘𝐾−1
𝑘=0

 and 𝛽𝑃𝑇 ∑ 𝐺𝑘𝐾−1
𝑘=0

1−∑ 𝐺𝑘𝐾−1
𝑘=0

, respectively. Therefore, the cumulative 

probability distribution function (CDF) for 𝐴 can be written as 

 
𝐹𝐴(𝑥) = 𝐹𝐵 �

𝑥 − 𝑐2
𝑐1

� 
5.4 

where 𝐹𝐵(𝑥) is the CDF for the variable 𝐵. One can write an equivalent relation 𝑓𝐴(𝑥) =

1
𝑐1
𝑓𝐵 �

𝑥−𝑐2
𝑐1
� relating the PDF for the quantity 𝐴, 𝑓𝐴(𝑥), to the PDF for 𝐵, 𝑓𝐵(𝑥). 

Therefore, it is sufficient to compute the PDF or CDF for the variable 𝐵 in order to 

completely specify the distribution for 𝐴. The quantity 𝐵 is a weighted sum of the 

independent random variables 𝑓𝑘’s specified by (5.3). There is no known closed form 

formula to calculate the probability distribution for 𝑓𝑘, and therefore there is no known 

closed form formula for the distribution 𝑓𝐵(𝑥) that characterizes the quantity ∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0 .  

Earlier developments in [58] have shown that the empirical distribution of the RV 𝑓𝑘 is 

similar to a lognormal RV. Therefore, our problem is transformed to one of computing 
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the distribution for the sum of independent but not identical lognormal-like variables. 

This thesis work will attempt to utilize methods and experience developed for computing 

the distribution of sum of lognormal RVs in estimating the distribution for the 

quantity 𝐵 =  ∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0  , and subsequently, the distribution of the sum of traffic power 

specified by 𝐴 = ∑ 𝑃𝑘𝐾−1
𝑘=0 . 

5.2 Parameterization of the Distribution of 𝐟𝐤 

Considering the cellular system configuration outlined in section 5.1 and 

following the same steps as in [58] we generate the empirical distribution of the random 

variable 𝑓𝑘 for different values of the path loss exponent 𝛼 and the shadowing spread 𝜎dB. 

However, for this thesis work, we impose the usage of standard hexagonal cells with cell 

radius normalized to one kilometer. It should be noticed that the path loss exponent and 

the shadowing spread are characteristics of the propagation environment and not the 

cellular system configuration. The remaining parameters appearing in relation (5.1) such 

as total power budget 𝑃𝑇, fraction of overhead power 𝛽, orthogonality factor 𝜌, 

bandwidth 𝐵𝑊, the acceptable signal quality 𝐸𝑏/𝑁0, and system rates �𝑅0,𝑅1, … ,𝑅𝑄−1 �, 

are all technology-dependent and represent the cellular system configuration. 

The empirical distribution for the RV 𝑓𝑘 is shown in Fig. 5.2 using markers for 

values of the path loss exponent 𝛼 that range from 0 to 6 and a shadowing spread ranging 

from 6 dB to 12 dB. Low values of path loss exponent are typical for open rural areas 

while high values are typical of indoor propagation environments. With respect to the 

shadowing spread 𝜎dB, it is high for highly obstructed and shadowed areas and low 
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otherwise. The empirical distribution is obtained by evaluating relation (5.3) for an 

excessive number of uniform random locations of subscribers in the cell of interest. For 

each subscriber location, the path loss gains 𝐿𝐿𝑘𝑚’s and shadowing factors 𝜁𝜁𝑘𝑚’s with 

respect to each of the cell of interest, i.e. cell 0, and the surrounding 18 co-channel cells 

numbered 1 through 18 are evaluated and then the 𝑓𝑘 sample is computed. The process is 

repeated for 5 × 106 times for the same 𝛼 and 𝜎dB values to yield the CDF plots shown in 

Fig. 5.2. The high number of iterations is required to obtain CDF values as low as 10−6 

and as high as (1 − 10−6). 

The previous figure plots the distribution for the RV 𝑓𝑘 on a normal probability 

paper. It can be noticed that the markers plots are very close to straight lines for a given 

pair of 𝛼 and 𝜎dB. Therefore, one may approximate the 𝑓𝑘 RV for a given pair of 𝛼 and 

𝜎dB with lognormal RV with specific parameters �̂� and 𝜎�. That is 

 
𝑓𝑘~𝐿𝐿𝑁(�̂�,𝜎�) 

5.5 

The parameters �̂� and 𝜎� for the LN RV may be obtained by matching the mean 

and the standard deviation to those of the original 𝑓𝑘 RV. The model specified in relation 

(5.5) replaces the propagation environment parameters 𝛼 and 𝜎dB with specific values for 

�̂� and 𝜎� for the equivalent lognormal RV. For the range of interest of the path loss 

exponent and shadowing spread values, Table 5.1 lists the corresponding �̂� and 𝜎� values 

for the equivalent lognormal RV. 

Having identified that the distribution of the RV 𝑓𝑘 may be approximated by a 

lognormal RV with parameters �̂� and 𝜎� that are function of the path loss exponent 𝛼 and 
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the shadowing spread 𝜎dB, then the problem of computing the CDF for the quantity 

𝐵 =  ∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0  reduces to one of computing the CDF for the sum of non-identical and 

independent lognormal RVs. It should be noted that for the same 𝛼 and 𝜎dB values, all 

𝑓𝑘’s are independent and identically distributed. The scaling with the parameter 𝐺𝑘, 

which may be different from one 𝑘𝑘th connection to the next, transforms the problem into 

a sum of non-identical and independent RVs. 
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a) path loss exponent 𝛼 = 0 

 

b) path loss exponent 𝛼 = 2 

 

 

c) path loss exponent 𝛼 = 4 

 

d) path loss exponent 𝛼 = 6 

 

Figure  5.2: Distribution function for RV 𝑓𝑘 evaluated using Monte-Carlo simulations or using the 
new expression with 𝑁 = 5 for different values of path loss exponent 𝛼 and shadowing spread 
𝜎dB. The simulation results are shown using markers while the new expression results are plotted 

as lines. 
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Table  5.1: Approximation for 𝒇𝒌 RV and parameters 𝝁� and 𝝈� for equivalent LN RV. 

Path loss 

exponent, 

𝛼 

Shadowing 

spread, 𝜎dB 

Lognormal (Matching) 

�̂� = E�ln (𝑓𝑘𝑘)� 𝜎� = �Var�ln (𝑓𝑘𝑘)� 

0 

6 3.670 1.459 

8 4.238 1.972 

12 5.582 3.023 

2 

6 0.831 1.819 

8 1.367 2.256 

12 2.658 3.216 

4 

6 -1.470 2.717 

8 -1.022 3.025 

12 0.110 3.783 

6 

6 -3.383 3.854 

8 -3.027 4.062 

12 -2.091 4.634 

 

5.3 Developed Expressions for 𝑭𝑩(𝒙) and 𝑭𝑨(𝒙) 

Using the relation (5.5) and the material developed in [14] and cited in subsection 

1.2.2, the approximate CF for the RV 𝑓𝑘 can be written as 
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 Φ�𝑓𝑘(𝜔) = �𝐴𝑛𝑒−𝑎𝑛𝜔
𝑁

𝑛=1

 (5.6) 

where the coefficients 𝐴𝑛 and 𝑎𝑛 are given by 𝑐𝑤𝑛exp�− 𝑗𝜋𝑑𝑛 �√2𝜎��⁄ � and 

exp�√2𝜎�𝑑𝑛 + �̂��, respectively. 𝑤𝑛 and 𝑑𝑛 are the 𝑁-points HGQ weights and nodes as 

tabulated in [21]. The constant 𝑗 is equal to √−1 while the constant 𝑐 is equal to 

exp �𝜋 �2√2𝜎��
2

⁄ � √𝜋� .  

Figure 5.2 also shows the CDF of the equivalent LN RV, shown in lines as 

opposed to markers, with the identified �̂� and 𝜎� (taken from Table 5.1) that correspond to 

the respective path loss exponent and shadowing spread values. The CDF is not evaluated 

using the conventional formula specified by relation (1.6) but rather using relation (1.22) 

with the utilization of the coefficients 𝐴𝑛 and 𝑎𝑛 computed for (5.6). The shown CDFs in 

Figure 5.2 are evaluated for 𝑁 = 5 HGQ weights and nodes. It can be observed that the 

new formula for the distribution of 𝑓𝑘 reasonably matches the empirical results even for a 

value of 𝑁 as low as 5. More accurate results are possible with 𝑁 greater than 5. 

Correspondingly, the CF for the scaled RV 𝐺𝑘𝑓𝑘, denoted by Φ�𝐺𝑘𝑓𝑘(𝜔), may be 

computed in terms of Φ�𝑓𝑘(𝜔) as Φ�𝑓𝑘(𝐺𝑘𝜔). Therefore, the CF function of the 

summation 𝐵 =  ∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0  where 𝑓𝑘′𝑠 are independent RVs, is simply given by: 

 Φ�𝐵(𝜔) = �Φ�𝐺𝑘𝑓𝑘(𝜔)
𝐾

𝑘=0

= �Φ�𝑓𝑘(𝐺𝑘𝜔)
𝐾

𝑘=0

 (5.7) 
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since Φ�𝑓𝑘is written in the form of a sum of weighted exponentials as in (5.6), then one 

can expand (5.7) to be also of the form of sum of weighted exponentials. That is the CF 

Φ�𝐵(𝜔) may be written as: 

 Φ�𝐵(𝜔) = � 𝐴𝑚
(𝐵)𝑒−𝑎𝑚

(𝐵)𝜔
𝑀

𝑚=1

 (5.8) 

where the coefficients 𝐴𝑚
(𝐵) and 𝑎𝑚

(𝐵) are obtained by performing the multiplication of the 

𝐾 individual CFs in (5.7). The number of terms 𝑀 in (5.8) is generally upper bounded by 

𝑁𝐾. Now the CDF for the quantity 𝐵 is readily computed using:  

 𝐹�𝐵(𝑥) = Re �
𝑗
𝜋
� 𝐴𝑚

(𝐵) ln �𝑎𝑚
(𝐵) �𝑗𝑥 + 𝑎𝑚

(𝐵)�� �
𝑀

𝑚=1

� (5.9) 

similar to the result in relation (1.22). Finally, the target CDF for the sum of traffic 

powers 𝐴 = ∑ 𝑃𝑘𝐾−1
𝑘=0  is simply given by:  

 𝐹�𝐴(𝑥) = Re �
𝑗
𝜋
� 𝐴𝑚

(𝐵) ln �𝑎𝑚
(𝐵) �𝑗 (𝑥 − 𝑐2) 𝑐1⁄ + 𝑎𝑚

(𝐵)�� �
𝑀

𝑚=1

� (5.10) 

where the constants 𝑐1 and 𝑐2 are as defined as for relation (5.4). 

The above result shown in (5.10) specifies the new formula for computing the 

distribution of cell site traffic power for a CDMA data network. It presents an 

approximate closed-form alternative expression for obtaining the distribution 𝐹�𝐴(𝑥) using 

Monte-Carlo simulations. 
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One direct consequence of using the formula in (5.10) is the ability to compute 

the probability of power outage, denoted by 𝑃𝑜𝑢𝑡, for the CDMA network. If 𝑃𝑜𝑢𝑡 is 

defined as the probability that the traffic power needed to support the 𝐾 connections 

exceeds the maximum possible (1 − 𝛽)𝑃𝑇, then substituting in (5.10) we obtain: 

 

𝑃𝑜𝑢𝑡 = 1 − 𝐹�𝐴�(1− 𝛽)𝑃𝑇� 

= 1 − Re �
𝑗
𝜋
� 𝐴𝑚

(𝐵) ln �𝑎𝑚
(𝐵) �𝑗 �(1− 𝛽)𝑃𝑇 − 𝑐2� 𝑐1⁄ + 𝑎𝑚

(𝐵)�� �
𝑀

𝑚=1

� 
(5.11) 

The formulas (5.9), (5.10), and (5.11) are the main results in this chapter. 

5.4 Numerical Results 

To evaluate the above formulas and provide numerical examples, we consider a 

3rd generation wireless cellular WCDMA systems. The channel bandwidth for the system 

is equal to 5 MHz while the supported data rates set, 𝑉 is equal to {32, 64, 128, 256, 384} 

kilobits per second. The total cell site power budget 𝑃𝑇 is taken to be 24 Watts while 20% 

of this is allocated for overhead channels. This means only a maximum of 19.2 Watts can 

be allocated for traffic connections in a cell site. The orthogonality parameter 𝜌 is equal 

to 0.1. The overall system parameters and their default values are listed in Table 5.2. 
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Table  5.2: Simulation parameters used for WCDMA system. 

Parameter Value Remark 

bandwidth, 𝑊 5 MHz channel bandwidth for WCDMA system 

total power, 𝑃𝑇 24 Watts total cell site power budget 

Fraction of 
overhead power, 𝛽 

0.2 fraction of cell site power allocated for overhead 
channel 

minimum signal 
quality, 𝐸𝑏/𝑁0 

10 dB minimum energy per bit relative to noise power 
spectral density required for proper signal reception 

orthogonality 
parameter, 𝜌 

0.1 parameter specifying intracell interference power 

systems rates, 𝑉 32, 64, 128, 256, and 384 
kb/s 

service rates supported by system 

 

For the evaluation of the formulas we need to assume the existence of 𝐾 ongoing 

connections where the subscribers are located randomly in the cell of interest, each with 

some assigned system rate. Let the system state be defined by the state �𝑛0,𝑛1, … ,𝑛𝑄−1� 

where 𝑛𝑞 for 𝑞 = 0, 1, … ,𝑄 − 1 is the number of connections using the 𝑞th system rate. 

For the system parameters shown above, 𝑄 is equal to 5. The total number of connections 

𝐾 is equal to ∑ 𝑛𝑞
𝑄−1
𝑞=0 . It is clear from relation (5.2) that not all system states are feasible 

or possible to support. Only states where ∑ 𝐺𝑘𝐾−1
𝑘=0  is less than 1 can be supported by the 

system. For states where ∑ 𝐺𝑘𝐾−1
𝑘=0 > 1, the entire system traffic power is not sufficient to 

support the connections specified in the respective states. This can also be inferred from 

equation (5.2) as the sum of traffic powers must be a positive quantity. 
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We first evaluate the CDF of the RV variable 𝐵 =  ∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0  using relation 

(5.9). For simulation purposes, we employ 5 × 106 samples of RV to plot the empirical 

CDF while we use 𝑁 = 15 points for the HGQ rule used to approximate the CF for the 

RV 𝑓𝑘. Fig. 5.3 shows the CDF for the RV 𝐵 =  ∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0  for path loss exponent equal 

to 4 and two values of the shadowing spread parameter 𝜎dB: 6 dB and 12 dB. The 

evaluation is chosen for 4 distinct states: state 1 = (1, 0, 0, 0, 0), state 2 = (0, 0, 0, 0, 1), 

state 3 = (1, 1, 0, 1, 1), and state 4 = (0, 2, 0, 1, 1). The first two states represent the 

simple case of only one connection existing in the system, while the third and fourth 

states represent the cases of heterogeneous connections. The selected four states are 

feasible and the corresponding ∑ 𝐺𝑘𝐾−1
𝑘=0 ’s for the specified connections are equal to 

0.055, 0.409, 0.882, and 0.931, respectively. 

It can be observed that the formula approximates the empirical CDF well 

especially for low values of the abscissa. Furthermore, the approximation seems to 

improve as the value for the shadowing spread 𝜎dB increases. The shown cases for the 4 

states correspond to cases of a system which is progressively loaded where the load is 

proportional to the ∑ 𝐺𝑘𝐾−1
𝑘=0 . For each of the selected states, we use formula (5.11) to 

compute the probability of power outage. The results are shown in Fig. 5.4 in the form of 

bar charts. Again, we note that simulation results are very well approximated by the new 

formula. The outage probabilities for the case of 𝜎dB = 6 dB are lower than those for 

𝜎dB = 12 dB. The outage probability for the last two states correspond to almost 100% 

outage. 
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State 1 = (1, 0, 0, 0, 0) - ∑ 𝐺𝑘𝐾−1
𝑘=0 = 0.055 

 

State 2 = (0, 0, 0, 0, 1) - ∑ 𝐺𝑘𝐾−1
𝑘=0 = 0.409 

 

State 3 = (1, 1, 0, 1, 1) - ∑ 𝐺𝑘𝐾−1
𝑘=0 = 0.882 

 

State 4 = (0, 2, 0, 1, 1) - ∑ 𝐺𝑘𝐾−1
𝑘=0 = 0.931 

Figure  5.3: CDF plots for RV 𝐵 =  ∑ 𝐺𝑘𝑓𝑘𝐾−1
𝑘=0  for path loss exponent equal to 4 and two 

shadowing spread values (6 dB and 12 dB). 
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a) shadowing spread 𝜎dB = 6 dB 

 

b) shadowing spread 𝜎dB = 12 dB 

Figure  5.4: Probability of power outage for the four selected states: state 1 = (1, 0, 0, 0, 
0), state 2 = (0, 0, 0, 0, 1), state 3 = (1, 1, 0, 1, 1), and state 4 (0, 2, 0, 1, 1). 

Finally, we evaluate the outage probabilities for a group of states specified by 

�𝑛0,𝑛1, … ,𝑛𝑄−1� where we allow the number of connections, 𝑛𝑞, of one specific system 

rate, say 𝑅𝑞 for 𝑞 ∈ {0, 1, 2, … ,𝑄 − 1}, to increase from zero to the maximum possible 

number of connections that can be supported. We plot the power outage probability 

versus the number of connections. Fig. 5.5 shows the outage probabilities for different 

mixtures of connection rates, where the number of connections for one specific service 

rate is allowed to increase progressively. The outage probabilities are again shown for the 

case of path loss exponent of 4 and two shadowing spread values of 𝜎dB = 6 dB and 

𝜎dB = 12 dB. The four plots use the same plot limits for the 𝑥-axis and 𝑦-axis for ease of 

comparison. As the quantity ∑ 𝐺𝑘𝐾−1
𝑘=0  for the states in a particular outage plot approaches 

unity, the states become infeasible and the outage probability approaches one. 
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Again, consistent with previous observations, the outage probability for 𝜎dB = 12 dB is 

higher than that for 𝜎dB = 6 dB. Furthermore, the approximation presented by the 

formula improves with the increase of the shadowing spread factor or the number of 

connections. 

 

a) States (0, 𝑛, 0, 0, 0) 

 

b) States (2, 𝑛, 0, 1, 0); 

 

c) States (0, 2, 𝑛, 0, 0) 

 

d) States (0, 0, 0, 𝑛, 0); 

Figure  5.5: Power outage probability as a function of number of connections for a 
specific mixture of connection rates for a path loss exponent of 4 and  a shadowing 

spread of 6 dB and 12 dB. 
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Chapter 6  

CONCLUSION AND FUTURE DIRECTIONS 

This chapter presents the main conclusions resulting from the thesis work and also 

highlights some of the possible future directions. 

6.1 CONCLUSIONS 

The problem of characterizing the sum of lognormal random variables is of 

interest in variety of fields in science and engineering. The problem is still open as most 

if not all of the proposed solutions found in the literature are suitable or applicable for 

only limited scenarios. This thesis work initially intended to build on the work in [14] and 

exploit the newly found formula for the characteristic function specified by (1.19), in its 

unexpanded form, to enhance the computation accuracy for the CDF for the case of the 

sum of independent and identically distributed lognormal random variables.  

Along the main objective, the work in Chapter 3 presents formulas for computing 

the CDF for the sum of independent and identically distributed lognormal RVs using 

quadrature rules specialized for oscillatory integrands, namely, Clenshaw-Curtis, Fejr2, 

and also using the Legendre-Gauss quadrature rule. These formulas perform change of 

variables prior to evaluating the integration using the respective quadrature rule to reduce 

the severity of the oscillation. In another contribution, we showed an application of the 

Epsilon algorithm to approximate the integral using a smaller number of partial sums to 

arrive at the value of the original sum. The corresponding chapter displays results for 
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evaluating the CDF for extreme cases such as the case of 20 IID lognormal RVs with 

𝜎dB = 12 dB. The used methods show some enhancements for the CDF computation near 

the lower and upper tail of the distribution with the best performance attributed to the 

Clenshaw-Curtis (CC) and the Legendre-Gauss quadrature rules. The CC quadrature rule 

was able to compute the CDF with a number of weights and nodes equal to 1600 and 

achieve minimum relative error. Using the epsilon algorithm the CDF may be evaluated 

with as few as 14 partial sums for the extreme points on the abscissa. 

The original formula for the CF corresponding to the sum of IID lognormal RVs, 

at the core of the above development, utilizes the Hermite-Gauss quadrature (HGQ) rule. 

The work in Chapter 4 attempts to create an alternative formula utilizing the Legendre-

Gauss quadrature (LGQ) rule that may require fewer terms for the same level of accuracy 

as for the HGQ. This Chapter proposes a measure of relative error to assess the accuracy 

of the proposed computation methods. While the initial implementation of the LGQ 

requires relatively more computations compared to the original HGQ in terms of 

computing the optimal integration limits �𝑎�, 𝑏�� for each frequency point 𝜔, it produces 

lower relative errors for the same number of terms. Results show that the LGQ rule with 

𝑁 = 25 points achieves lower relative errors (~10−5) than the HGQ rule with 𝑁 = 45 

points. To alleviate the requirement of having to use different integral limit for different 

frequencies, we unified the integration intervals for all frequency points to be of the form 

of [𝑎∗, 𝑏∗] where we chose 𝑎∗ to be equal to the minimum of all possible 𝑎�’s while 𝑏∗ 

equals the maximum of all possible 𝑏�’s. While this approach allows the CF to be 

expressed in a simple sum of weighted exponentials similar to the case of the HGQ rule, 

it does not produce results with higher accuracy relative to the original HGQ rule. 
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Finally, as a compromise, we define and compute quasi-optimal integral limits �𝑎�, 𝑏�� that 

produce the lowest weighted relative error for a given number of terms 𝑁 and 𝜎dB 

parameter for the LN RVs. Relative error results for the quasi-optimal integral limits are 

comparable to those obtained for the HGQ rule for the same number of quadrature 

weights and nodes 𝑁. 

Lastly, in Chapter 5 we utilize the knowledge of computing the CDF for a sum of 

independent LN RVs to a resource management problem for a DS-CDMA data system. 

The Chapter presents an analytical formulation for the cell site traffic power allocations 

for data subscribers, where the sum of total traffic power allocations is modeled as a 

linear transformation of the sum of non-identical but independent lognormal-like RVs. 

Assuming that our lognormal-like RV may be approximated by lognormal RVs, we 

derived expressions for the PDF and CDF of the total cell-site traffic power as a function 

of the other system parameters, and computed the probability of outage for a given 

mixture of subscriber connections. For validation purposes, this chapter evaluates the 

derived formulas and plots results using the new expressions using Monte-Carlo 

simulations. 

6.2 FUTURE DIRECTIONS 

The following list outlines some of the possible future directions for the current work: 

1. The unexpanded expression for the CF for the sum of IID LN RV may be 

exploited by utilizing the CF to derive expressions for the moments as a function 

of the individual LN RV parameters 𝜇 and 𝜎 and the HGQ weights and nodes. 
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These expressions will serve as a new addition to the literature along the lines of 

characterizing the sum and may also be used in matching the distribution of the 

sum to some other known distributions. However, this work remains applicable 

only to the case of the sum of IID LN RVs. 

2. Many of the works found in the literature focus on approximating the distribution 

of the logarithm of the sum of independent LN RVs. Typically, such works 

compute the moments for the logarithm of the sum using Monte-Carlo 

simulations. In this thesis, we outlined formulas for the approximate PDF and 

CDF of the sum that may be transformed using the logarithm function to compute 

an approximation for the distribution of logarithm of the sum. The transformed 

approximations may be used to find expressions to approximate moments for the 

logarithm of the sum as opposed to obtaining the moments using Monte-Carlo 

simulations. 

3. The relative error curves shown in Fig. 4.2, 4.3, and 4.5 utilize the magnitude of 

the characteristic function in the calculations for the relative error. However, it 

was observed the relative error in the calculated imaginary part of the CF is 

usually higher than that for the real part of the CF for the same frequency point 

omega. This requires further investigation to identify the root cause for this 

phenomenon. 

4. Finally, one may also attempt to quantify the similarity of the resultant PDFs to 

that of the Normal RV using methods similar to the one suggested in [59]. 
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