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 الةـملخص الرس

 

 شيخ أوغليمحمد معتز فراس     :الاسم
 

 ة من أجل زيادة وثوقية الدارات التركيبيةرالمتكر اتمخطط عام لاستخدام الوحد    :العنوان
 

 هندسة الحاسب الآلي   التخصص:
 

 2102 تشرين الأول  تاريخ الدرجة العلمية:

 

لا تزال الأجهزة النانوية آخذة بالتقلص مع مررور الوقرتإ افرافة الرل تطلبهرا الرل جهرد تشرويل أقرل وتررددات عمرل 

أعلل. هذا ما جعلها أكثر عرفة للمؤثرات الخارجية وأصرب  مرن سرماتها ارت راد معردلات الخطرن الديناميكيرة. لحرل 

اسع في زيادة وثوقية الدارات التركيبية. وقد قمنا فري هذه المشكلة سنلجن لتقنيات التكرارإ فهي تستخدم علل نطاق و

الأخطاء اللينة )أو الديناميكية( بالاعتماد علل تقنيات التكرار وعلل احتمالات الحالة فد وثوقية البحثنا هذا بتحسين 

ة من أجرل زيرادة وثوقيرة الردارات رالمتكر اتعلل مخارج هذه الدارات. يقترح البحث مخططاً عاماً لاستخدام الوحد

التركيبيةإ وسيبحث افافة الل ذلك في عردة جوانرب متعلقرة بتطبيرق هرذا المخطرط. ويشرتمل ذلرك علرل ث ثرة أمرور  

والمقارنرة برين حمايرة مخررج واحرد لقراء حمايرة مخرارج متعرددة.  إأنواد الوحدات المتكررةإ تعقيرد منطرق التصرحي 

الوحدات المتكرررة. ويههرر تحليرل الوثوقيرة  ستخدامهجية لتطبيق المخطط العام لاسنقوم ع وة علل ذلك بتطوير من

علرل أن المنهجيرة المقترحرة قرادرة علرل تحقيرق  LGSynth91الذي تم اجرائه لردارات مرجعيرة عردة مرن مجموعرة 

الوحردات  فريفقرد حققنرا وفررات كبيررة  إوثوقية أعلل مرن تلرك التري يحققهرا تكررار الوحردات الث ثري. وعلرل العمروم

 فافة الل تحقيق الوثوقية العالية.المفافة باستخدام المنهجية المقترحة بالإالمتكررة 



Chapter 1

Introduction

In future nano-scale technology, studies indicate that high-density chips, up to an

order of 1012 devices/cm2 [7], will be increasingly accompanied by manufacturing

defects and susceptible to dynamic faults during chip operation [8][9]. The re-

duced noise margin of nano-scale devices increases the effect of external fault sources

such as electromagnetic interferences, thermal perturbations, and cosmic radiations.

Moreover, operating at low voltages and high frequencies makes these devices more

fragile and sensitive to environmental influences. Essentially, fault tolerant designs

are required for reliable systems that will operate correctly in spite of transient

dynamic faults. All fault tolerance approaches rely on some sort of redundancy;

otherwise, there will be no way to tell that a device has changed its state.
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1.1 Motivation

In nanometric technologies, circuits are increasingly sensitive to various kinds of

perturbations. Soft errors, a concern in the past for space applications, become a

reliability issue at ground level. Alpha particles and atmospheric neutrons induce

single-event upsets affecting memory cells, latches, and flip-flops, and single-event

transients initiated in the combinational logic and captured by the associated latches

and flip-flops. To overcome this challenge, a designer must utilize a variety of soft

error mitigation schemes adapted to various circuit structures, design architectures,

and design constraints [10].

The soft error rate (SER) produced by these effects may exceed the failure in time

(FIT) specifications in various application domains. In such applications, soft-error

mitigation schemes should be employed for both memories and logic. Duplication

and comparison such as triple modular redundancy (TMR) and majority voting,

or more generally, N-modular redundancy (NMR) proposed by Von Neumann [11]

are the most commonly used solutions for reducing SER induced by SEUs and

SETs in logic parts. Many researches have investigated increasing the reliability

of circuits using redundancy schemes. Their main concern is to increase reliability

while minimizing the inevitable overhead of area, power, or time. In this work, we

are targeting the reliability issue in the logic based on probabilities of signals and

output states. We will make use of this information to build up a reliable version
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from the original circuit, while maintaining the minimum possible area overhead

based on a generalized modular redundancy scheme.

1.2 Problem Statement

Given a combinational logic circuit, our aim is to increase the reliability of this

circuit against soft errors using a generalized modular redundancy scheme, while

maintaining minimum area overhead.

1.3 Thesis Contributions

The contributions of this work can be summarized as follows:

• Develop a generalized modular redundancy scheme to enhance the reliability of

combinational logic circuits against soft errors based on probabilities of states

at their outputs.

• Investigate different aspects concerning the application of the generalized mod-

ular redundancy scheme. This includes types of redundant modules, complex-

ity of voters and single versus multiple outputs protection.

• Develop a methodology for applying the generalized modular redundancy

scheme to increase the reliability of combinational logic circuits with variety

of sizes.
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1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 starts with a background about dif-

ferent types of faults and their models. Different soft error mitigation methods

are also discussed. This includes hardened storage cells, modular redundancy and

circuit-level time redundancy.

Chapter 3 introduces the generalized modular redundancy (GMR) concept. In

Chapter 4, we start by discussing various aspects concerning the application of the

generalized modular redundancy scheme. Based on that, the developed methodol-

ogy of applying GMR to enhance the reliability of combinational circuits is then

presented.

In Chapter 5, we present the work flow which has been followed to improve

fault tolerance of combinational circuits. Fault model and reliability evaluation

methodology along with simulation environment are also discussed in this chapter.

Chapter 6 provides some analyses and evaluations of different aspects about the

proposed methodology. Reliability results of various benchmarks are also reported.

Finally, Chapter 7 concludes this work and suggests future work.



Chapter 2

Literature Review

2.1 Errors, Faults, and Types of Faults

As stated in [12], we term an internal state of a system an erroneous state when

there exist circumstances in which further processing, by the normal algorithms of

the system, will lead to a failure. The term “error” is used to designate that part

of the state which is “incorrect.” An error is thus an item of information; and the

terms error, error detection, and error recovery are used as equivalents for erroneous

state, erroneous state detection, and erroneous state recovery.

A fault is the mechanical or algorithmic cause of an error, while a potential fault

is a mechanical or algorithmic construction within a system such that (under some

circumstances within the specification of the use of the system) the construction

will cause the system to assume an erroneous state. Faults due to hardware com-

5
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ponent failures, are often classified by duration, extent, and value. Duration refers

to whether the fault is permanent or transient; extent applies to whether the effect

of the fault is localized or distributed; and value indicates whether the fault creates

fixed or varying erroneous logical values.

2.2 Fault Models

In engineering, models are used to bridge the gap between the physical reality and

mathematical abstraction. They allow the development of analytical tools. There-

fore, they are essential in the design process. Modeling of faults is highly related to

the modeling of the circuit. Generally, the level refers to the degree of abstraction.

Thus, the behavioral level has fewer implementation details, and fault models at

this level may have no obvious correlation to manufacturing defects. The register-

transfer level (RTL) or logic level consists of a netlist of gates. Stuck-at faults at

this level are the most popular fault models in digital testing. Other faults at this

level are bridging faults and delay faults. Transistor and other lower levels, which

referred to as component levels, include stuck-open and stuck-short types of faults.

Considering a MOS transistor as an ideal switch, a defect is modeled as the switch

being permanently in either the open or the shorted state. This fault model assumes

only one transistor to be stuck-open or stuck-short. Stuck-short is also referred to

as stuck-on or stuck-closed. These models were proposed by Case [13].
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Stuck-at faults are modeled by assigning a fixed (0 or 1) value to a signal line in

the circuit. A signal line can be an input or an output of a logic gate or a flip-flop.

The most popular forms are the single stuck-at faults, i.e., a line can have two faults:

stuck-at-1 and stuck-at-0. There are three assumptions assumed for single stuck-at

faults: (1) only one line is faulty, (2) the faulty line is permanently set to either 0

or 1, and (3) the fault can be at an input or output of a gate. In general, several

stuck-at faults can be simultaneously present in a circuit. A circuit with n lines

can have (3n − 1) possible stuck line combinations. This is because each line can

be in one of the three states: stuck-at-1, stuck-at-0, or fault-free. All combinations

except one, having all lines in fault-free states, are counted as faults. It is clearly

evident that even a moderate value of n will give an enormously large number of

multiple stuck-at faults. For this reason, it is a common practice to model only

single stuck-at faults, where an n-line circuit can have at most 2n single stuck-at

faults [14]. In addition, a large percentage of multiple stuck-at faults are detected

by single stuck-at fault tests.

2.3 Fault Avoidance and Fault Tolerance

The traditional approach to achieving reliable computing systems has been based

largely on fault avoidance (termed fault intolerance by Avizienis [15]) which in-

cludes: utilization of the most reliable components, elimination of expected forms
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of interference and carrying out of comprehensive testing to eliminate hardware and

software design faults. Many recent methods have been proposed to perform fault

avoidance through reconfiguration. These methods are classified into two groups:

(1) Hardware-oriented methods, where a faulty basic element (BE) is automatically

swapped with a spare using additional wires, switches, and controllers, along the re-

placement policy. (2) Reconfiguration-oriented, where reconfigurability is exploited

for fault avoidance with partial mapping modification [16].

An alternative approach to fault avoidance is that of fault tolerance. This ap-

proach involves the use of protective redundancy. A system can be designed to be

fault tolerant by incorporating additional components and special algorithms, which

attempt to ensure that occurrences of erroneous states do not result in later system

failures. The degree of fault tolerance depends on the success with which erroneous

states, which corresponds to faults, are identified and detected, and the success with

which such states are repaired or replaced [12].

The objective of fault tolerance is either to mask, or to recover from, faults once

they have been detected [17]. Many researches on reliable systems are concerned

with the detection of faults using error detecting and correcting codes or fault de-

tecting and self repairing circuits. The tolerance itself is achieved using redundancy

techniques.
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2.4 Soft Errors

When high-energy neutrons (present in terrestrial cosmic radiation) or alpha parti-

cles (originating from impurities in the packaging materials) strike a sensitive region

in a semiconductor, they generate a dense local track of electron-hole pairs. These

electron-hole pairs are then collected at a p-n junction, and create a single event

transient (SET). This unexpected current pulse of a short duration, under some

conditions, may be misinterpreted by the circuit as a valid signal, and result in an

incorrect state or output, thus producing a soft error [3]. As this type of faults does

not reflect a permanent failure, hence soft or transient terms are used.

Historically, soft errors have been of great concern in memory cells, that are

much more susceptible to particle strikes than combinational logic, where SET are

frequently masked before reaching an output or a storage element [18] [19]. However,

technological trends such as faster clock rates, smaller device sizes, lower supply

voltages, and shallower logic depths are drastically reducing SET masking, and

remarkably increasing the occurrence of soft errors in combinational logic [20]. The

single event transient may propagate through the combinational logic, and errors

may or may not reach a storage element or an output depending on the following

factors [21]:

Logical masking: The hazard may not propagate because there is not any sen-

sitized path from the node where the strike happened to any output of the
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combinational logic circuit.

Temporal masking: As the hazard propagates towards a sequential element, it

will form a sort of noise on the data input of that sequential element. This

noise may reach the sequential element outside its latching window. Hence,

the error will not be latched and there will be no soft error.

Electrical masking: Since all CMOS circuits have limited bandwidths, hazards

with bandwidths greater than the cut-off frequency will be attenuated. The

amplitude of the hazard pulse will be reduced, and eventually the hazard pulse

may disappear. However, since most logic gates are nonlinear circuits with a

substantial voltage gain, low-frequency pulses with sufficient initial amplitude

will be amplified [22].

As stated earlier, with the increase in clock rates, and the reduction in both feature

sizes and supply voltages the effect of those masking is becoming more limited.

The most deceitful form of single event transient errors is silent data corruption

(SDC), where a fault causes the system to produce erroneous outputs. To avoid

silent data corruption, designers often employ basic error detection mechanisms,

such as parity. With the ability to detect a fault but not correct it, we can avoid

generating incorrect outputs, but cannot recover when an error happens. That is

to say, error detection mechanism does not reduce the overall error rate, but does

provide fail-stop behavior and thereby avoids any data corruption. Such errors are
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categorized as detected unrecoverable errors (DUE) in [23].

There are two techniques that can be used to reduce soft errors impact: (1)

error detection and retry and (2) error masking. Error detection and retry involves

using on-line error detection circuitry [24] [25] [26] which monitors the outputs of a

circuit for the occurrence of an error. If an error is observed, the system recovers

through rollback and retry, therefore preventing a fault from happening. Error mask-

ing employs circuitry that masks errors using schemes such as: quadded logic [27],

interwoven logic [28], and triple modular redundancy (TMR) [26]. For real-time sys-

tems, it may not be possible to do error detection and retry, therefore error masking

is the only available choice. Sometimes, the cost of implementing error detection

and retry may be comparable to that of implementing error masking schemes [3].

2.5 Soft Error Rate

Currently, the industry specifies soft error rates in terms of silent data corruption

(SDC) and detected unrecoverable errors (DUE) numbers. Both SDC and DUE

rates are typically expressed in FIT (Failure(s) in Time). One FIT expresses one

error in a billion (109) hours. FIT rates are additive, so we can compute the SDC

or DUE FIT rate of a chip or a system by summing the SDC or DUE FIT rates of

all its components. The sum of SDC and DUE FIT is usually referred to as the soft

error rate (SER) of a chip [23]. The additive property of FIT makes it convenient for
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calculations. However, mean time to failure (MTTF) is another important indicator.

MTTF is inversely related to FIT. A FIT rate of 1000 is equivalent to MTTF of 114

years (109/(1000× 24× 365)). Vendors usually set soft error rate budgets for their

chips or systems based on target market requirements. For example, IBM targets

114 SDC FIT (1000 yr MTTF), for its Power4 systems [29].

Soft error rate (SER) estimation can be performed at different levels of design

hierarchies, through modeling soft errors across the device, logic, and architectural

levels. Device level abstracts the soft error impact as a transient pulse waveform.

Soft errors are modeled by using nuclear and device physics tools, with an aim of

creating a transient current waveform library that captures different process and

operating conditions that impact the soft error rate. SPICE simulation is usually

used to obtain the estimation at this level of abstraction. At the logic level, estima-

tion of SER is based on attempting to capture electrical, logic, and latch window

masking models. This can be used next to compute SET occurrence rate, the error

propagation probability (EPP), and the error latching probability. Architectural

level solutions may be more effective than circuit or logic level solutions, because

the definition of what constitutes an error typically lies in the architecture. For

example, in microprocessor architecture, a strike on a branch prediction unit does

not result in an error in the microprocessor.
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Figure 2.1: Example of hardened storage cells: DICE [1].

2.6 Soft Error Mitigation

Radiation affects logic due to single event transient in combinational logic and sin-

gle event upset in sequential cells. Solutions for these effects comprise hardened

sequential cells, self-checking design, modular redundancy, and circuit-level time

redundancy.

2.6.1 Hardened Storage Cells

Hardened storage cells like SRAM cells, latches, and flip-flops preserve their state

even if the state of one of their nodes is altered by a transient soft error. Several

hardened storage cells have been proposed in the literature. Figure 2.1 shows the

DICE cell [1] which is robust against any single event disturbing a single node of

the cell.

Another hardening approach is proposed in [30]. In [2] this solution was adapted

to implement a new memory cell. This proposed hardening design makes use of 11

CMOS transistors. The proposed hardened memory cell overcomes the problems
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Figure 2.2: 11-transistor nanoscale CMOS memory cell [2].

associated with the previous designs by utilizing novel access and refreshing mech-

anisms. The cell was shown to provide similar protection against SEUs as DICE

while requiring 20% less area and a 55% reduction of speed-power product. Details

of several hardened cells can be found in [31].

2.6.2 Modular Redundancy

Protecting combinational logic is a complex task when compared to protecting mem-

ories, latches, and flip-flops, and may involve quite high hardware cost. Therefore,

it is mandatory to properly select the protection scheme in order to meet design

requirements in terms of area, speed, power and reliability. Redundancy techniques

(duplication and comparison) such as triple modular redundancy (TMR) [26] are a

possible solution for masking errors produced in the logic, despite its high area and

power penalty. TMR is a special case of the generalized NMR system. An NMR

system is a system that consists of N identical modules which are fed to a majority
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Figure 2.3: Block diagram for TMR-based error masking [3].

voter. TMR is a system where N = 3, which consists of three identical modules

whose outputs are voted on.

If 2 out of 3 modules produce the same results, this implies that the majority

of the modules produce correct results and the system will be functioning correctly.

In TMR, all the three identical modules perform the same operation, and a voter

accepts outputs from all three modules, producing a majority vote at its output as

shown in Figure 2.3. TMR is heavily used in practice whenever the reliability of

the circuit is a crucial demand, especially when single faults are needed to be pro-

tected. Recently, Xilinx introduced its triple module redundancy technology which

is developed to address the special requirements of FPGAs in high-radiation envi-

ronments. Designed for space applications and proven through numerous mission-

critical projects, TMR provides full SEU and SET immunity for any Virtex-4 space-

grade FPGA design. This technique automatically builds TMR into Xilinx FPGA

designs, providing complete SEU and SET protection [32].
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2.6.3 Error Detection using Checkers

Another approach is to extend the function of the combinational blocks to generate

error detection code outputs in addition to their regular outputs, and use a code

checker to detect errors [33]. The general idea for achieving error detection and

correction is to add some redundancy (i.e., some extra bits), which afterward can

be used to check consistency of the output bits, and to recover bits determined

erroneous. Checkers used this concept to detect if an output codeword is incorrect

and correct it if possible [34]. Parity check, cyclic redundancy check (CRC) and

Checksum are types of redundancy checks used in data communication for error

detection. Forward error correction is an example of error correction. In theory it is

possible to correct any error, however error correcting codes are more sophisticated

than error detection codes and require more redundancy bits.

2.6.4 Circuit-Level Time Redundancy

A first scheme proposed in [35] [36] uses double sampling to observe an output of a

combinational circuit at two different instants. This is done by adding a redundant

latch to each circuit output, and driving the redundant latches by using a delayed

clock signal, as shown in Figure 2.4. The delayed clock can be produced by adding

some delay elements on the normal clock signal. Another more efficient alternative

is to use the two edges or the two levels of the clock signal to activate the regular
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Figure 2.4: A detection technique using a redundant latch and a delayed clock.

and the redundant storage element. Upon error detection, the latest operation has

to be repeated (retry). Also, as suggested in [35], to avoid the occurrence of the

same error in case of timing faults, the clock frequency is reduced during retry.

In this double sampling scheme, the delay element δ can be added on the combi-

national circuit output rather than on the clock as in [35] [36]. This creates a second

sampling instant that precedes by δ the regular sampling instant. As we can see,

for real-time systems, it may not be possible to do error detection and retry, thus

error masking and online error detection and correction are the preferable options.

2.7 Related Work

In a work done by Mohanram et al. [3], two soft error rate reduction heuristics

were introduced. They are cluster sharing reduction and dominant value reduction.

Cluster sharing reduction is based upon two observations. The first is that soft error

susceptibility of certain nodes in the logic circuit can be orders of magnitude higher

than that of other nodes in the design. The second is that these nodes tend to be
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clustered together. Thus, the cluster sharing reduction heuristic involves selecting

such clusters of nodes (with low soft error susceptibility), so that the clusters’ logic

can be shared across the three copies used to realize TMR. The clusters are removed

from two out of the three copies of the TMR design and they are driven by the cluster

from a single copy only. If a particle strike occurs in the non-triplicated portion of

the design, it will (in the presence of a sensitized path) propagate to the outputs of

all three copies and thus goes undetected. However, any particle strike that occurs

on a node in the triplicated logic portion of the circuit will be masked by the 2-

out-of-3 voter. Therefore, by carefully selecting the clusters of nodes with low soft

error susceptibility, nodes with the highest soft error susceptibility will be in the

triplicated logic portion of the circuit, thereby giving a cost-effective reduction in

the soft error failure rate.

Dominant value reduction is the second technique, and it works as follows. First

of all, the soft error failure rates at the outputs of the circuit are computed, where

each of the primary outputs has either logic 0 or logic 1. For example, let primary

output Oi has a logic 1 failure rate that is an order of magnitude higher than its

logic 0 failure rate. Then, the authors consider the approach to error masking where

just two copies of the logic circuit are used, and the 2-out-of-3 majority voter is

replaced by an OR gate as shown in Figure 2.5. Any particle strike that causes

a 1 → 0 → 1 transient to appear at the output Oi is guaranteed to be masked.

However, a 0 → 1 → 0 transient will not be masked. Thus, while the logic 1 failure
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Figure 2.5: Example of dominant value reduction for error masking [3].

Figure 2.6: Partial error masking scheme [3].

rate of the primary output Oi is reduced to 0, the logic 0 failure rate is not. However,

since the logic 1 failure rate is an order of magnitude higher than the logic 0 failure

rate, the reduction in failure rate is considerably high.

These two reduction procedures are then combined to form the partial error

masking scheme. It starts with a TMR realization for error masking that is first

reduced using cluster sharing. The soft error failure rate of the resulting implemen-

tation is then estimated along with the area overhead. Dominant value masking is

then used to further reduce area overhead. Figure 2.6 depicts partial error masking

scheme.

Another similar approach to the dominant value reduction is also proposed by

Krishnaswamy et al. in [37]. Their proposed technique increases logic masking
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at high-impact nodes by exploiting redundancy already present in the circuit as

identified by covering relationships among existing nodes. Just like partial TMR,

which replicates vulnerable nodes, this technique incurs a smaller area overhead as

it increases logic masking through the addition of single gates. In their work, they

use the notation f ⊆ g when g covers f , i.e., g is 1 for every input vector that makes

f = 1. This relation is then generalized to:

f&C(g) ⊆ g&C(g) (2.1)

Here C(g) =∼ ODC(g), is the Boolean function representing the care set of g.

In other words, g covers f if and only if g is 1 or a don’t-care wherever f is 1. They

define node g to be an anti-cover of node f when:

g&C(g) ⊆ f&C(g) (2.2)

Based on the idea that nodes’ influence on SER is proportional to the probability

that faults arrive at the node, and the probability that those faults are observed as

errors at the output, they compute the impact of each gate. Then, for a high-

impact node x, they find other nodes that it covers or anti-covers. So, given a

candidate node y covered by x, they add redundant logic by transforming node x

into OR(x, y) because y ⊆ x implies OR(x, y) = x. Similarly, if x is an anti-cover

of y, they transform node x into AND(x, y).
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In [38], the authors proposed a method for reliability improvement based on

modular redundancy schemes. This method selects the best subset among possible

redundant architectures. It is built upon the progressive module redundancy tech-

nique and the block grading concept. To understand the block grading concept,

let us consider a circuit which consists of a certain number K of blocks b1, b2, . .

., bK . The reliability of each block bi is denoted by qi. The reliability of such a

circuit R depends on the reliabilities of its constituent blocks. By improving the

reliability of a single block bi as in Equation 2.3, the reliability of the circuit will be

improved as in Equation 2.4. ∆qi stands for the individual reliability improvement

of block bi. Likewise, ∆Ri expresses the global reliability increase due to reliability

improvement of block bi. ∆Ri scales with the weight (noted wi) of ∆qi in the new

global reliability calculation. The greater wi is, the greater the ∆Ri will be. The wi

values are integers in the range [1, K].

q+
i = qi + ∆qi (2.3)

R+
i = Ri + ∆Ri (2.4)

Efficiency is achieved by taking into account grades of blocks with respect to

reliability, by adding redundancy progressively and by considering mixed modular

redundancy. The idea is to add redundancy first on the blocks that have higher
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weights, because they contribute to higher reliability improvements, and then on the

blocks with lower weights. The proposed method presents a shortcut by avoiding

analyses of all the possible redundant architectures exhaustively. This method is

not constrained on TMR but extends to 5MR. Compared with previous works such

as selective module redundant techniques described in [39], the proposed method

does not need to analyze the logic implications of each logic gate, and it could be

combined with other soft error mitigation techniques at logic and circuit level.

In [40] the authors present a design technique for hardening circuits mapped

onto FPGAs. They detect SEU sensitive gates of a given circuit based on signal

probabilities; the signal probability of a line is the probability of this line having a

value of 1. After characterizing the input environment, input signals probabilities

are then propagated to compute the signal probability of each internal node at the

gate level. A gate is identified as a sensitive gate if its SEU sensitive probability

is greater than the threshold specified by the user. Triple modular redundancy is

then introduced for each sensitive gate. Additionally, a majority voter is introduced

between gates depending on the fanout connections of these sensitive gates. The

effectiveness of selectively introducing TMR for SEU mitigation is highly dependant

on input signal probabilities and the nature of the circuit. The advantage of selective

TMR is clear for those circuits wherein the size of the SEU sensitive sub-circuit is

much smaller compared to the original circuit.

In [4], the authors introduced the idea of increasing sequential circuit reliability
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Figure 2.7: Incorrect encoding for 3 states with redundancy [4].

by introducing redundant equivalent states to states with high probability of occur-

rence in sequential circuit finite state machine. To maintain the same operation of

the original FSM, the newly added redundant states have the same input, next state,

and output as the original states. Other states with low probability are kept without

protection to minimize the area overhead. The authors divided the original states of

the state machine into protected states with high probability of occurrence, and nor-

mal states with low probability of occurrence. For each protected state, equivalent

redundant states are added to guarantee single soft fault tolerance. The analysis of

the problem suggests that the following requirements have to be met:

• The Hamming distance between protected states codes should be at least 3.

• The Hamming distance between codes of normal states and protected states

should be at least 2.
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Figure 2.8: Correct encoding for 3 states with redundancy [4].

These requirements are a must in order to be able to add redundant states

without code overlapping with protected or normal stats. To illustrate this, let us

assume that 3 states need to be protected with no normal states. Thus, using only 4-

bits to encode them will result in overlapping between some of the redundant states.

Figure 2.7 shows that states A and C have the same redundant states namely, 0100

and 1000. Similarly, states B and C have the same redundant states namely, 1101

and 1110. Therefore, the correct encoding is to use 5-bits instead of 4-bits. One

possible encoding is shown in Figure 2.8.

The author developed an algorithm to determine the number of bits needed to

encode protected, redundant, and normal states; the algorithm will also provide

states’ codes. He found that failure rate of sequential circuits which involves pro-

tecting states with high probability of occurrence is less than the ones involving

protecting random or lower state probability. For more details about the work, you
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can refer to [4].

The authors in [5] suggest that simple replication of micro-architecture modules

will no longer suffice, as all replicated modules will have faults. As a result, designers

will have to devise a method for operating with defective structures, given that all

the structures will have defects. In [41], the authors introduce the concept of history

index of correct computation (HICC), where they developed a technique to tolerate

the expected flawed nano-chips at run time. The HICC is a measure of a hardware

unit’s reliability. The HICC module transmits the correct computation based on

the history indices of redundant units that implement the identical function. The

redundant unit with the highest history index is considered to be the most reliable

one, and is selected to transmit its computation. Other redundant units that imple-

ment the same function are considered unreliable, and their computation is ignored.

The history index of every redundant unit is updated based on majority voting.

To demonstrate how the HICC concept works, consider three copies of an 8-bit

ALU with no error correction or detection which are depicted in Figure 2.9 as units

A, B and C. A decision unit is located inside the HICC module. The result selector,

decision unit, receives results from the three identical units along with their stored

history indices, and decides which result is correct, based on the one with the highest

history index. The result from the unit with the highest index is transmitted. In

this way, computation is based on correct computation history rather than merely

on some voting process. The history index is updated based on bitwise majority
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Figure 2.9: HICC module [5].

voting. The history index of each of the redundant units is incremented by 1 when

its computation is identical to that of the majority and is decremented by 1 when

it is not.

Moreover, maximizing the reliability of a system based on nano-devices may

require a combination of techniques [42]. Previous results that used error correcting

codes (ECCs) and TMR at the bit and module levels demonstrated that recursive

TMR at both levels has the best resilience to noise [43]. Thus, they combined

redundancy and reconfiguration to make the system more tolerant of faults. To

increase the fault tolerance of the error-prone decision units at the module level, a

second copy of the result is stored with an additional parity bit, as illustrated in

Figure 2.10 and Figure 2.11. The parity checker transmits the even parity result.

History indices also have an additional parity bit. The index is updated if even

parity is detected. They have stated that without such extra redundancy at the

module level, HICC performance is deteriorated.
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Figure 2.10: Enhanced majority voting with parity checking at the module level [5].

Figure 2.11: Enhanced HICC unit with parity checking at the module level [5].

In [6], the authors investigate defect tolerance based on adding redundancy at

the transistor-level for electronic circuits. Their work is focused on transistor stuck-

open, stuck-short and bridges between gates of transistors. In order to tolerate

single defective transistors, each transistor, A, is replaced by a quadded-transistor

structure implementing either the logic function (A+A)(A+A) or the logic function

(AA) + (AA). In both of the quadded-transistor structures, any single transistor
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defect (stuck-open, stuck-short, AND/OR-bridge) will not change the logic behavior,

and hence the defect is tolerated.

Figure 2.12: Defect-tolerant N2-transistor structure [6].

The quadded-transistor structure is then generalized to an N2-transistor struc-

ture, where N ≥ 2. An N2-transistor structure is composed of N blocks connected

in series with each block composed of N parallel transistors, as shown in Figure 2.12.

An N2-transistor structure guarantees defect tolerance of all defects of multiplicity

less than or equal to (N − 1) in the structure. Hence, a large number of multi-

ple defects can be tolerated in a circuit implemented based on these structures.

As demonstrated by the authors, the investigated technique achieves significantly

higher defect tolerance than recently reported nanoelectronics defect-tolerant tech-

niques (even with up to 4 to 5 times more transistor defect probability) and at

reduced area overhead.
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In [44], two algorithms for the selective assignment of input don’t cares (DCs)

are proposed to enhance input error resilience. The authors focused on input errors

due to propagated failures from previous blocks. Both algorithms determine 0/1 as-

signments for the most critical DC terms. This work is motivated by the observation

that reliability-driven assignment of DCs can improve input error resilience in logic

circuits. They showed that selective reliability-driven DC assignment can enhance

robustness and avoid the high overheads associated with complete reliability-driven

DC assignment.

In [45], the authors introduced the idea of synthesizing combinational circuits to

increase their tolerance for soft errors. Their idea is based on extracting sub-circuits

from the original multi-level circuit and re-synthesizing each extracted sub-circuit

to increase fault masking. After that, the re-synthesized sub-circuits are merged

back to the original circuit. As a result, the overall reliability of the original circuit

is enhanced. The proposed scheme provides a heuristic that first finds the best

irredundant set of cubes to cover an extracted sub-circuit minterms such that fault

masking for single fault is maximized especially for minterms with high probability

of occurrence. Then, an extra number of cubes can be added as redundant cubes to

the cover such that they have a significant effect on maximizing error masking. After

that, a technique based on modification of the fast extraction algorithm is proposed

to enhance area overhead to the optimized circuits obtained in the previous step.

An average failure rate reduction of 26% is obtained compared to the original circuit
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when the number of injected faults in the new re-synthesized circuit is proportional

to area compared to original area. An average area overhead of 61% is added

compared to the original circuit.



Chapter 3

Generalized Modular Redundancy

3.1 Introduction

Given a combinational logic circuit with multiple inputs and outputs, we will use

“state” notation to denote a given output combination, Figure 3.1. Of course, each

state at the output of a circuit has a probability of occurrence. This probability is

attributable to the structure of the circuit and input vectors provided by the envi-

ronment. Based on these probabilities, we would like to increase the reliability of the

logic by protecting those states with high probability of occurrence. Protecting only

these states will help us to increase the reliability of the circuit while saving some

area overhead, by not protecting states with low probability of occurrence. This

work is an extension of a previous work for enhancing sequential circuits reliabil-

ity [4]. The author proposed a technique of protecting states with high probability

31



32

�� �� �� ��

���� ���� ���� ���� ���	


���� 
���� 
���� 
����

 �  

��������������������������������

��������

��������

Figure 3.1: States in combinational logic circuits.

of occurrence to enhance fault tolerance for sequential circuits. The protection is

done by introducing redundant states to the finite states machine (FSM). To main-

tain the same operation of the unprotected FSM, the newly added redundant states

have the same input, next state, and output as the original protected states.

3.2 Types of States

Based on their probability of occurrence, states at the primary outputs of a com-

binational logic circuit can be classified into two types: dominant states and states

which are not dominant, i.e., with low or moderate probability of occurrence. When

the probability of occurrence for a certain state is close to an order of magnitude

higher than the probability of occurrence for other states it is considered as a dom-

inant state. Inferior states are states with low probability of occurrence. Therefore,

dominant states will be considered for reliability enhancement due to their highly
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skewed susceptibility to soft errors.

3.3 Protection of Dominant States

Like the introduction of redundant states for sequential circuits [4], redundant mod-

ules have to be introduced in combinational circuits. The author devised some

requirements that have to be met:

• The Hamming distance for each pair of protected states’ codes has to be at

least 3.

• The Hamming distance between normal (unprotected) states’codes and pro-

tected states’ codes has to be at least 2.

• The combinational logic which implements each output has to be not shared

with the others.

Protected states, in sequential circuits, include original dominant states; normal

states include the remaining states in the finite state machine. In order to detect all

single errors for protected states, the Hamming distance between protected state A,

and its redundant states should be 1. Similarly for protected state B, the Hamming

distance between it and any of its redundant states should be 1. To insure that no

two states have the same code, the distance between states A and B must be kept

at least 3. For the same reason, the distance between protected and normal states
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Figure 3.2: New States after introducing redundant modules.

has to be at least 2. Finally, no logic sharing is allowed between different outputs,

so that no single error can propagate to more than one output.

As we have stated earlier, a “state” in the combinational logic denotes a given

output combination. Dominant state or states are states with high probability of

occurrence, while inferior states are states with low probability of occurrence. To

increase the reliability of the circuit, extra redundant modules will be introduced to

the logic. New states now consist of original outputs and the outputs of redundant

modules, as shown in Figure 3.2. Modules R1 and R2 are redundant modules.

Original outputs plus outputs of redundant modules will be then fed to another

logic to produce the protected outputs, as shown in Figure 3.3.

A tool was developed to satisfy the first two requirements for enhancing sequen-

tial circuits reliability [4]. In sequential circuits, codes can be assigned to any state;

so the developed tool explores the space for an assignment that meets the mentioned

requirements with a minimum number of bits. Figure 3.4 shows desired Hamming
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Figure 3.3: Protected outputs after introducing redundant modules and correction
logic.

distances between different types of states. However, in combinational logic, a state

represents an output combination. Therefore, redundant modules should be care-

fully selected in order to meet previously stated requirements. Two options are

available for adding redundant modules: original module replication and introduc-

ing new modules.

• In module replication, a redundant module is essentially a replica of one of the

original modules in the circuit. Original modules are replicated and introduced

as redundant modules. Hence, a decision has to be made to determine which

modules to be replicated and for how many times, in order to satisfy the

requirements for combinational logic.

• For newly introduced redundant modules, modules are specially customized so

that new states can satisfy the requirements. In this case, we are not limited
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Figure 3.4: Desired Hamming distance between different types of states.

by the options offered by modules replication. Instead, we might be able to

add fewer redundant modules by customizing them with respect to dominant

protected states.

3.4 Protecting Single Output

Let us consider the case of a single output circuit or one module. States at the

output are the simple state 0 (logic 0) or state 1 (logic 1). In some cases, the

probability of having one state is far more than the probability of having the other.

So, the dominant state will be selected for protection, while the other will not.

Assume that logic 0 is dominant at the output. New redundant modules have to
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be introduced to the logic. We can see that by replicating the module one time the

first two requirements are satisfied. After adding the extra module, state “0” will

become “00” and state “1” will become “11”. There is only one state to protect, so

the first requirement is already satisfied. Hamming distance between the protected

state and the other state equals to two, so the second requirement is also satisfied.

The third requirement is met while synthesizing the circuit.

If an error hits and alters the output, while the circuit is at state “00”, the re-

sulting state will be “01” or “10”. In order to obtain the protected output, both

original and redundant outputs will be fed to another logic. In this case, dominance

of state 0, it turns out that this logic is an AND gate. Any particle strike that

causes a 0 → 1 → 0 transient to appear at the output is guaranteed to be masked.

However, a 1 → 0 → 1 transient will not be masked. Therefore, logic 0 failure rate

of the primary output is reduced to 0, while logic 1 failure rate is not. Figure 3.5(a)

demonstrates these findings. The same observations can be found when the domi-

nant state is state “1”. However, the logic which will produce the protected output

is an OR gate, Figure 3.5(b). The use of these dominant values or states along with

simple voters (And, OR) has been discussed earlier in the literature [3].

Let’s consider the case where there is no dominant state at the primary output,

i.e., the probability of having state “0” is equal or close to the probability of having

state “1”. Obviously, we need to protect the two states. We can see that by replicat-

ing the module two times the first two requirements are satisfied. After adding the
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Figure 3.5: Protecting one state in single output circuits.

redundant modules, state “0” will become “000” and state “1” will become “111”.

Hamming distance between the protected states equals to three, so the first require-

ment is satisfied. We don’t have to worry about the second requirement as all states

are considered for protection. Again, to obtain the protected output, all original

and redundant outputs will be fed to another logic. Figure 3.6 shows the result of

replicating the module and the logic needed to obtain the protected output.

In this case, protecting all states, we had to replicate the original module two

times; so we ended up with three replicas. Moreover, the logic that produces the

protected output is essentially the 2-out-of-3 majority voter. So, with the purpose

of protecting all states at the primary output we ended up applying TMR, where

we have three exact copies of the original circuit plus a majority voter.
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Figure 3.6: Protecting all states in single output circuits.

Equality comparator serves as an excellent example for protecting single output

circuits. A 6-bit equality comparator has two inputs, each of which is 6-bit long. It

has a single output; the output equals to “1” if and only if the two inputs are equal.

Thus, the probability of having a “1” at the output is: Prob(1) = 26/212 = 0.015,

while the probability of having a “0” equals to: Prob(0) = 1−Prob(1) = 1−0.015 =

0.985 which is an order of magnitude greater than Prob(1). So, equality comparator

is eligible for dominant value protection. Protecting the state which is vulnerable

to soft errors the most involves adding one extra module. This will save us some

area overhead, another extra module, as opposed to TMR wherein we need two

redundant modules.
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Figure 3.7: Logic diagram of a full adder.

3.5 Protecting Multiple Outputs

In this section, we will discuss the idea of protecting multiple outputs together by

using the generalized modular redundancy (GMR) scheme. We will take the full

adder as a case study. The full adder consists of two sub-modules: Sum and Carry.

Figure 3.7 and Table 3.5 show the full adder and its truth table. By looking at

the outputs, we can observe four different output combinations or states, namely:

“00”, “01”, “10”, and “11”. It is clearly visible that some states are happening more

frequently than others, assuming that all input patterns are equally likely to happen.

Probability distribution of states at full adder’s outputs is like this: P(00) = 1/8,

P(01) = 3/8, P(10) = 3/8, and P(11) = 1/8.

Obviously, there is no one dominant state. However, by protecting more than

one state we can apply GMR scheme. Assume that we want to protect the two states

with highest probabilities of occurrence (“01” and “10”). Figure 3.8 shows that by

replicating each module (Sum and Carry) only one time the requirements mentioned

above are satisfied. After replication, states (00, 01, 10, 11) become (0000, 0011,
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Cin A1 B1 Sum Carry
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 3.1: Truth table of a full adder.
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Figure 3.8: Full adder’s states after replication (protecting two states).

1100, 1111), respectively. We denote Carry and its replica as C1 and C2. Similarly,

S1 and S2 represent Sum and its duplicate.

The equations 3.1 and 3.2, show that the conditions are satisfied, where H is

the Hamming distance between two states. As a result, states which will result in

from a protected state, when a single transient error hits the logic, are guaranteed

to be disjoint from each others and from other unprotected states. The final outputs

of the protected version of the full adder can be obtained using Karnaugh-map as

shown in Figure 3.9. It is evident that the area of this logic is comparable to the
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Figure 3.9: Full adder’s protected outputs after replication (protecting two states).

area of the majority voter.

H(0011, 1100) = 4 > 3. (3.1)

H(0000, 0011) = 2, H(0000, 1100) = 2,

H(1111, 0011) = 2, H(1111, 1100) = 2.

(3.2)

What if we want to apply GMR, generally protecting portion of states, to pro-

tect all the states of a full adder? Figure 3.10 shows that in order to protect all

states we need to replicate each module two times. This will ensure that states are

disjoined. The final protected outputs are also shown in the figure. In this case,

protecting all states, we had to triplicate each module; the outputs also are identical

to the majority voters used in TMR. Accordingly, we can think of triple modular

redundancy (TMR) as a special case of our method, where we protect all states at

the output.
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Figure 3.10: Full adder’s protected outputs after replication (protecting all states).

A digital comparator serves as an excellent example for protecting multiple out-

put circuits. A 4-bit digital comparator has two inputs A and B each of which

is 4-bit long. It has two outputs. The output equals to “00” if and only if the

two inputs are equal. It equals to “10” if A is greater than B, and to “01” if

B is greater than A. Thus, the probability of having a “00” at the output is:

Prob(00) = 24/28 = 0.0625, while the probability of having a “10” or “01” equals

to: Prob(10) = Prob(01) = (1 − Prob(00))/2 = 0.46875. The protection will be

applied to states which are vulnerable to soft errors the most. This includes both

states “10” and “01”. By protecting these states, more than 93% of soft errors will

be masked.
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3.6 Why Generalized Modular Redundancy?

We have seen that the dominant value protection concept along with simple voters

“AND voter” and “OR voter” are a special case of generalized modular redundancy

(GMR) where we protect a single output circuit. Moreover, triple modular redun-

dancy (TMR) can be seen as a special case of this method, where we protect all

states at the output no matter how many outputs are protected. Hence, the name

generalized modular redundancy is used. What is more important about GMR is

the idea of protecting multiple outputs together. To clarify this point, let’s go back

to our example, the full adder. By looking at each module alone, Sum or Carry, we

can see that the probability of having a “0” is equal to the probability of having a

“1” for both modules. To protect these modules against transient soft errors, TMR

will be used as there is no dominant value. However, if we look at the outputs of the

full adder as a block, we can see that there are some dominant states (state “01”,

and state “10”). Having this in mind, we are able to increase the reliability of the

circuit by protecting these dominant states, while maintaining less area overhead.

Table 3.6 summarizes these findings.
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Circuit Num. of Modules Voter
FA (without protection) 2 -
FA (protecting 2 states) 4 special logic

FA (TMR) 6 majority voter
Eq. comparator (without protection) 1 -
Eq. comparator (protecting 1 state) 2 single gate

Eq. comparator (TMR) 3 majority voter
4-bit comparator (without protection) 2 -
4-bit comparator (protecting 2 states) 4 special logic

4-bit comparator (TMR) 6 majority voter

Table 3.2: Summary of protection methods and their area overhead.



Chapter 4

Using Generalized Modular

Redundancy to Enhance

Combinational Circuits Reliability

4.1 Introduction

We have seen that generalized modular redundancy can be used to protect states

at the output which are highly vulnerable to soft errors. The protection is applied

to single or multiple outputs by adding some redundant modules. These redundant

modules can be replicas of the original modules or some new customized modules.

Correction logic, or voters in some cases, are then needed to obtain the final pro-

tected outputs. In this chapter, we will investigate replication against introducing

46
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customized redundant modules, complexity of the correction logic or voters, and the

protection of single output versus multiple outputs. Based on that, the developed

methodology of applying GMR to enhance the reliability of combinational circuits

will be presented.

4.2 Module Replication against Customized Re-

dundant Modules

In module replication, a redundant module is essentially a replica of one of the

original modules in the circuit. However, newly introduced redundant modules

are specially customized modules. In order to protect states at the outputs of

combinational circuits, some requirements regarding the Hamming distance between

states have to be met. Having this issue in mind, customized redundant modules,

in some cases, are considered more flexible than replicated modules.

To explain this point, consider states at the output of a circuit with two outputs.

In order to protect states “00”, “01”, and “10” by module replication, each module

has to be replicated two times to satisfy Hamming distance requirements. However,

these requirements can be met by adding just three customized modules. Due to

the flexibility of customized redundant modules we are able to save some area over-

head. Figure 4.1 demonstrates this case, where M1 and M2 are original modules;

R1→R4 are replicated modules and C1→C3 are customized redundant modules.
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Area overhead resulting from adding customized modules is most likely to be better

or close to the overhead introduced by module replication due to existence of don’t

care conditions. Nevertheless, adding customized redundant modules requires full

description or truth table in order to be able to synthesize these modules properly.

Therefore, in this work, customized redundant modules will be used when the truth

table has a reasonable size (i.e., number of inputs ≤ 15). Otherwise, module repli-

cation will be used when the number of inputs is greater than 15. However, partial

truth tables can be used to synthesize customized redundant modules for circuits

with large number of inputs, even though this will not guarantee masking of all

faults.

For a better understanding of the difference between replicated modules and

customized redundant modules, let us take the circuit described in Figure 4.2 which

has 6 inputs and 2 outputs. State “01” has a very high probability of occurrence

P (01) = 0.95. Thus, we will attempt to protect only state “01”. In order to meet

the Hamming distance requirements at the outputs of the circuit, mentioned earlier

in Section 3.3, by using module replication both M1 and M2 modules have to be

replicated. So, we will end up with two extra modules identical to the modules of

the original circuit. However, these requirements can be easily met by adding one

customized redundant module, as depicted in Figure 4.3. In this case, we will end

up with one extra customized module. Figure 4.4 shows the synthesized version of

the circuit after adding the customized redundant module. We can notice that the
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Figure 4.1: Protecting states “00”, “01”, and “10” by: a) Module replication. b)
Customized redundant modules.

customized redundant module C1 is smaller in size than original module M2, which

is one added advantage for this type of modules where customized modules can be

smaller in size than the original modules due to existence of don’t cares, as shown in

Figure 4.3. After that, the correction logic needed to obtain the protected outputs

has to be added to the logic. Figure 4.5 shows the correction logic for modules M1

and M2.
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.i 6

.o 2

.ilb A1 A2 A3 A4 A5 A6

.ob M1 M2

.p 64
000000 01
000001 01
000010 01
000011 01
.
.
111011 01
111100 01
111101 00
111110 10
111111 11
.e

Figure 4.2: Description of example circuit.

.i 6

.o 3

.ilb A1 A2 A3 A4 A5 A6

.ob M1 M2 C1

.p 64
000000 010
000001 010
000010 010
000011 010
.
.
111011 010
111100 010
111101 001
111110 10-
111111 111
.e

Figure 4.3: Description of example circuit after adding a customized redundant
module.
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Figure 4.4: Example circuit after adding a customized redundant module.
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Figure 4.5: Correction logic for modules M1 and M2 in example circuit.

4.3 Complexity of Correction Logic

The idea behind GMR is to protect susceptible states against soft errors while saving

some area overhead. Two sources of overhead exist in this method: redundant mod-

ules and correction logic or voters to obtain the protected outputs. Having fewer

redundant modules is the key to saving area overhead. However, if the correction

logic or voters are complex enough, they will cause to override savings in area over-

head. For this reason, voters must be minimal in terms of area. We have seen that

only one gate (AND or OR) is needed to protect one state at a single output circuit.

A reasonable logic size is needed to protect states for circuits with two outputs. 2-

out-of-3 majority voter is used when all states at the output are protected. However,

experiments show that protecting more than two outputs together demands larger

logic to obtain the protected outputs. This may reduce the savings in area achieved
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by protecting portion of the states at the output. For this reason, we will limit the

use of GMR in this work to protect single or pair of outputs. Figure 4.6 shows the

majority voter and an example of the correction logic needed in pair protection for

the cases of protecting one, two and three states. Mi stands for original modules,

Ri stands for replicated modules and Ci stands for customized redundant modules.

Two-level logic minimization has been done to these examples by using “espresso”

tool. The size of the correction logic when protecting two states is similar to that

of the majority voter; it is smaller when only one state is protected. However, the

size becomes larger when three states are protected. This is acceptable, especially

when the size of the modules is large enough. The size of the correction logic can

be reduced further by using multilevel minimization techniques. Table 4.1 reports

the size of the correction logic, for all possible scenarios, in number of literals in the

sum of product form after using fast extraction “fx” and common cube extraction

“gcx” for multilevel minimization which are implemented in the sequential interac-

tive synthesis (SIS) package [46]. We can see that, in case of protecting one state,

the size of the correction logic is smaller than that of the majority voter. The size

of the correction logic when protecting two states is similar to the size of the major-

ity voter. However, the size of the correction logic when protecting three states is

slightly more than double the size of the majority voter. This introduces. a disad-

vantage to this technique, unless the size of circuit’s modules is large enough where

area savings obtained by GMR can compensate the extra overhead introduced by
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Majority voters:
{P_M1} = M1 R1 + M1 R2 + R1 R2
{P_M2} = M2 R3 + M2 R4 + R3 R4

Correction logic (protecting one state):
{P_M1} = C1 M1 + M1 M2
{P_M2} = C1 M2 + M1 M2

Correction logic (protecting two states):
{P_M1} = C1 C2 M2’ + C1 M1 + C2 M1 M2’ + C2’ M1 M2
{P_M2} = C2 M1’ M2 + C2’ M1 M2

Correction logic (protecting three states):
{P_M1} = C1 C2 C3 M2’ + C1 C2 M1 + C1 C3 M1 M2’ + C2 C3 M1 M2’ + C3’ M1 M2
{P_M2} = C1’ C2 C3 M1’ + C1’ C2 M2 + C1’ C3 M1’ M2 + C2 C3 M1’ M2 + C3’ M1 M2

Figure 4.6: Majority voter and correction logic for pair protection (with two-level
minimization).

the correction logic.

In regard to pair protection, the number of redundant modules is proportional

to the number of protected states at the outputs. For example, if we want to protect

one state at two outputs circuit or sub-circuit, one customized redundant module has

to be added to the logic. If we are to protect two states, two customized redundant

modules have to be introduced to meet Hamming distance requirements. Protect-

ing three states will involve the addition of three customized redundant modules.

Figures 4.7 and 4.8 depict all possible protection scenarios, where states above the

dotted line are the protected states; notations Mi and Ci are used to designate orig-

inal modules and customized redundant modules, respectively. It is clearly visible

that in all these cases area overhead savings will be achieved. Protecting one state
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Scenario Lits(sop)
Protecting state “00” 8
Protecting state “01” 7
Protecting state “10” 7
Protecting state “11” 6

Protecting states “00” & “01” 15
Protecting states “00” & “10” 15
Protecting states “00” & “11” 14
Protecting states “01” & “10” 13
Protecting states “01” & “11” 16
Protecting states “10” & “11” 16

Protecting states “00” & “01” & “10” 28
Protecting states “00” & “01” & “11” 26
Protecting states “00” & “10” & “11” 26
Protecting states “01” & “10” & “11” 26

Majority voter for two outputs 12

Table 4.1: Size of correction logic after multilevel minimization for all possible sce-
narios of pair protection.
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saves three modules and protecting two states saves two modules in comparison to

TMR. Even when protecting three states out of four, we are still able to save a

module.

4.3.1 Masking of Correction Logic

One more aspect about correction logic is its ability to mask errors originating in

the modules. In the first place, correction logic is designed to mask single errors.

However, the majority voter for a certain output is independent from any other

output and depends only on the module producing this output in addition to its

redundant modules. While in pair protection, the correction logic of both outputs

depends on all original and redundant modules. So, for a pair of outputs in TMR,

the majority voters have a masking probability of (6 + 9)/(26− 1) = 0.238, where a

single error might happen within any of the six modules (2 original + 4 redundant

modules) or two errors each occurring in one of the modules belonging to each output

(1 original + 2 redundant modules), as they are independent. For a pair of outputs

in GMR single-output protection, the correction logic has a masking probability

of (4 + 4)/(24 − 1) = 0.53, where a single error might happen within any of the

four modules (2 original + 2 redundant modules) or two errors each occurring in

one of the modules belonging to each output (1 original + 1 redundant module),

as they are independent. For GMR output pair protection, the correction logic

when protecting one state has a masking probability of 3/(23 − 1) = 0.429, where
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Figure 4.7: a) One customized redundant module to protect one state. b) Two
customized redundant modules to protect two states.
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Figure 4.8: Three customized redundant modules to protect three states.

a single error might happen in one of the modules (2 original + 1 redundant). The

probability of masking when protecting two states equals to 4/(24 − 1) = 0.267, as

there are 4 modules (2 original + 2 redundant). Finally, the probability of masking

when protecting three states equals to 5/(25 − 1) = 0.161, as there are 5 modules

(2 original + 3 redundant). As a result, this analysis adds more advantage to GMR

single-output protection in addition to pair protection when one or two states are

protected. On the contrary, the probability of masking for the correction logic is

less than that of the majority voter when three states are protected in GMR pair

protection.

The probability of masking for the case of GMR has to be multiplied by the

probability of state protection. So, the overall probability of masking for TMR is
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1 − Pe + Pe × Pm. While, it is 1 − Pe + Pe × Ps × Pm for GMR. Where, Pe is the

probability of having an error in the circuit represented by its modules, Pm is the

probability of masking and Ps is the probability of state protection. The probability

of having an error in the module of an output differs between TMR and GMR. It

should be less in GMR due to the use of customized redundant modules where the

area is probably less; thanks to existing don’t cares.

Having don’t care conditions in customized redundant modules, as shown in

Figures 4.7 and 4.8, can add more fault tolerance in the circuit. When there is a

don’t care in an unprotected state, we don’t have to care about the value of the

redundant module, as the Hamming distance requirements are already met. So,

even if a transient error appeared at this extra module, we can still have a correct

result at the output of the correction logic. This also is shown in Figure 4.5. If the

don’t care is present in a state that is not protected this makes us tolerate errors

in the customized module. However, if the don’t care is in one of the protected

states, then this will allow us to tolerate double errors by design. One error on the

customized module that has the don’t care and one error on any other module.

4.4 Single Output Versus Pair Protection

As we have restricted the use of GMR in this work to deal with a single or pair of

outputs, an investigation has to be made in order to verify the effectiveness of each
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option. To achieve this, the circuit which is described in Figure 4.2 will be used as an

example. This circuit has 6 inputs and 2 outputs. It has a fixed output “01” for all

input patterns except three where the states are “00”, “10”, and “11”. We perform

two protection procedures. In the first one, single output protection is applied to

each output, while in the other the two outputs are protected as a pair. In single

output protection we need to add two redundant modules. For pair protection, we

protect for two states as they require the same area overhead, in terms of redundant

modules, when applying single output protection. The percentage of protected states

at the outputs for both cases is set to be the same. Later, correction logic or

voters are added to obtain the protected outputs. Figures 4.9 and 4.10 show the

resulting circuits after applying single and pair protection. M1 and M2 are original

modules, R1 and R2 are replicated modules, C1 and C2 are customized redundant

modules. By analyzing the reliability of each method against soft errors, it is evident

that single output protection is more advantageous, as shown in Figure 4.11. The

size of correction logic, which is significantly larger in pair protection, together

with probability of masking play an important role in this regards. As this logic

has no protection against soft errors, reliability will be degraded as this logic gets

bigger. Also, the reliability of single output protection is better than pair protection

when protecting only one state. This is shown in Figure 4.12. These findings are

consistent for larger circuits. Thus, we will favor single output protection whenever

it is possible.
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Figure 4.9: Original and replicated modules for single protection of the example
circuit along with correction logic.

4.5 Methodology of Applying GMR

From the discussion above, we were able to reach some important conclusions about

critical issues for applying the generalized modular redundancy scheme to increase

combinational circuits’ fault tolerance. These conclusions comprise the following:

• Customized redundant modules will be used when the truth table has a rea-

sonable size (i.e., number of inputs ≤ 15) for both single and pair protection.

Otherwise, module replication will be used for circuits with more than 15

inputs.

• Due to the complexity of the correction logic needed to obtain protected out-
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Figure 4.10: Original and customized modules for pair protection of the example
circuit along with correction logic.
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Figure 4.11: Reliability of single protection against pair protection (protecting 2
states).
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Figure 4.12: Reliability of single protection against pair protection (protecting 1
state).
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puts, applying GMR protection will be limited to sub-circuits with one or two

outputs.

• We will favor single output protection whenever it is possible. If not, pair

protection will be used. Otherwise, triple modular redundancy will be applied.

Based on these conclusions, the methodology depicted in Figure 4.13 will be used

to apply GMR for enhancing combinational circuits reliability.

In the initialization step, a protection threshold for identifying dominant states

at the outputs, thr, has to be specified. For a single output, a state will be considered

dominant if the probability of occurrence for this state is greater than the threshold.

However, for pair protection, meeting this threshold might require protecting more

than one state. States with the highest probabilities of occurrence will be protected

such that the sum of their probabilities must exceed protection threshold. A truth

table of the circuit has to be provided also. This table will be used to calculate

probability of occurrence for states at the outputs. For circuits with large number

of inputs, the table will be unacceptably large. Thus, partial truth tables can be

used to estimate probabilities of states at the outputs by simulation.

During evaluation, the probability of occurrence for the dominant state P (Di) at

output i is calculated. Then, output i is paired with other available outputs j and

the probability of occurrence for the dominant state(s) P (Dij) is calculated. As we

may protect more than one state, we keep track of the number of protected states
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thr : Protection threshold for identifying dominant states.
T/PT : Truth table/Partial truth table of the circuit.
Pi(S) : Probability of occurrence of state S at output i .
Pij(S) : Probability of occurrence of state S when pairing outputs i and j .
P (Di) : Probability of the dominant state at output i .
P (Dij) : Probability of the dominant state(s) when pairing outputs i and j .
NPij : Number of protected states when pairing outputs i and j .

Begin
1. Initialization:
2. Set protection threshold thr .
3. Provide T/PT.
4. Evaluation:
5. ForEach output i Do
6. Evaluate probability of occurrence Pi(0), Pi(1).
7. For all other outputs j .
8. Evaluate probability of occurrence Pij(00), Pij(01), Pij(10), Pij(11).
9. Choose best candidate j where thr has been met with minimum NPij .
10. Decision:
11. If P (Di) > thr Then
12. If NPij > 2 Then
13. Apply single protection.
14. Else
15. If P (Di) ≥ P (Dij) Then
16. Apply single protection.
17. Else
18. Apply pair protection.
19. EndIf
20. EndIf
21. Else If NPij ≤ 3 Then
22. Apply pair protection.
23. Else
24. Apply TMR protection.
25. EndIf
26. EndFor

End.

Figure 4.13: Methodology of applying GMR for enhancing combinational circuits
reliability.
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NPij
when pairing output i with output j. After that, we choose the best candidate

j for pairing with i such that P (Dij) is greater than thr with minimum value for

NPij
.

Next, a decision on the protection scheme has to be made. This includes single

protection, pair protection and TMR. The cost of applying single protection equals

the cost of applying pair protection when the number of protected states NPij
is

two. For this reason, the scheme which provides maximum protection will be used,

line 15 in the methodology. If both single protection and pair protection are not

applicable, then TMR will be used to protect the output.

4.6 Illustrative Example

In a standard floating point representation a real number is represented using three

values: a sign bit, mantissa and exponent; the value of the real number is:

r = (−1)sign × 1.mantissa× 2exponent

In this representation, the most significant bit (MSB) of the real number (which

is always 1) is hidden. To add or subtract two floating point numbers, first their

exponents must be aligned by shifting (1.mantissa) of one of the two numbers to

the right. Then the shifted/unshifted (1.mantissa) of the two numbers are added

or subtracted. Since the result of this addition/subtraction may not be of the form

(1.xxx), it is necessary to shift the result to the left until the MSB is 1. This process
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is called Normalization. In order to find the proper shift amount, a leading zero

detector (LZD) is required. The LZD can also detect the cases when the result of

addition is all zeros. So, for example a 24-bit leading zero detector circuit will have

24 inputs and 5 outputs. In this case, the state “00000” has the highest probability

of occurrence followed by “00001” then “00010” and so on.

Let the outputs of this circuit be: out0, out1, out2, out3 and out4 from the left to

the right. To enhance the reliability of this circuit by using the generalized modular

redundancy scheme, we will use the methodology discussed above. At first, we will

set protection threshold, thr, to 0.9 and provide the truth table shown in Figure 4.14.

The algorithm will start with the evaluation step. The probability of having a “1” at

out0 equals to Pout0(1) = 256/224, and the probability of having a “0” at this output

equals to Pout0(0) = 1 − Pout0(1) = 0.99998. We can see that Pout0(0) > thr, hence

“0” is the dominant state at out0 and P (Dout0) = Pout0(0). After that, output

out0 is paired with other available outputs (out1, out2, out3 and out4 ) and the

probability of occurrence for the dominant states P (Dij) is calculated. The results

are as follows: P (Dout0 out1) = 0.99609, P (Dout0 out2) = 0.94116, P (Dout0 out3) =

0.79998 and P (Dout0 out4) = 0.66665. We can see that output out1 is the best

candidate for pairing with out0 such that P (Dij) is greater than thr with minimum

value for NPij
, where P (Dij) = P (Dout0 out1) with NPout0 out1 = 1.

At the decision step we have the following: P (Dout0) > thr, NPout0 out1 < 2 and

P (Dout0) > P (Dout0 out1). As a result, out0 will be protected as a single output.
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The same process will be repeated for out1 and out2. They also will be protected

as single outputs.

At this point, we are left out with out3 and out4. The evaluation step for

out3 results in the following: Pout3(1) = 0.2, Pout3(0) = 1 − Pout3(1) = 0.8 and

Pout3(0) < thr. There is no dominant state at out3 as we have set the thr to

0.9. When pairing out3 with the only output left out4, the resulting dominant

state P (Dout3 out4) equals to 0.933 with the number of protected states, NPout3 out4 ,

equals to 3. At the decision step we have: P (Dout3) < thr, P (Dout3 out4) > thr and

NPout3 out4 = 3. As a result, out3 will be protected as a pair along with out4. By

using GMR scheme, we are able to reduce area overhead by 4 modules; out0, out1

and out2 require one extra module for each as they are protected as single outputs;

out3 and out4 are protected as pair and they require 3 extra modules as the number

of protected states is 3. So, we ended up with 11 modules. However, protecting this

circuit by TMR will require 5× 3 = 15 modules. Detailed reliability figures will be

discussed later in Chapter 6.
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.i 24

.o 5

.ilb A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13
A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

.ob out0 out1 out2 out3 out4

.p 25
1----------------------- 00000
01---------------------- 00001
001--------------------- 00010
0001-------------------- 00011
00001------------------- 00100
000001------------------ 00101
0000001----------------- 00110
00000001---------------- 00111
000000001--------------- 01000
0000000001-------------- 01001
00000000001------------- 01010
000000000001------------ 01011
0000000000001----------- 01100
00000000000001---------- 01101
000000000000001--------- 01110
0000000000000001-------- 01111
00000000000000001------- 10000
000000000000000001------ 10001
0000000000000000001----- 10010
00000000000000000001---- 10011
000000000000000000001--- 10100
0000000000000000000001-- 10101
00000000000000000000001- 10110
000000000000000000000001 10111
000000000000000000000000 11000
.e

Figure 4.14: Actual file describing the truth table of the leading zero detector circuit.



Chapter 5

Experimental Setup & Framework

5.1 Benchmarks

In this work, LGSynth911 benchmarks circuits are used. These contain a set of

circuits with various sizes, in terms of size of the logic, and number of inputs and

outputs, see Table 5.1.

5.2 Fault Model and Injection Mechanism

In our work, we assume a stuck-open and stuck-short fault models at the transistor

level. Faults can be injected at any transistor; stuck-open means that the transistor

is stuck at the OFF state, while stuck-short means that it is stuck at the ON

1http://www.cbl.ncsu.edu:16080/benchmarks/LGSynth91/

70
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Benchmark Number of inputs Number of outputs
5xp1 7 10
alu4 14 8

apex1 45 43
apex2 39 3
apex3 54 50
apex4 9 19
b12 15 9
clip 9 5

cordic 23 2
duke2 22 29
ex5p 8 63

misex2 25 18
misex3 14 14
sao2 10 4
seq 41 35

table3 14 14
table5 17 15
vg2 25 8

z5xp1 7 10

Table 5.1: Benchmarks circuits.
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state. The transistor level is used as soft errors usually alter the state of individual

transistors.

In case of a stuck-open fault, the gate of the transistor at which the fault is

injected is connected to GND for NMOS transistors and to VDD for PMOS transis-

tors. For stuck-short faults, the gate of the transistor at which the fault is injected

is connected to VDD for NMOS transistors and to GND for PMOS transistors. This

is shown in Figure 5.1. In each simulation iteration, a single or multiple faults are

injected randomly, stuck-open or stuck-short is randomly applied to these faulty

transistors.
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Figure 5.1: Stuck-open and stuck-short fault models.

5.3 Measuring Reliability of Circuits

For evaluating circuit failure probability and reliability, we adopt the simulation-

based reliability model used in [47]. We compare circuit reliability based on the
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generalized modular redundancy scheme with TMR.

To compute the circuit failure probability, Fm, resulting from injecting m defec-

tive transistors, we use the following procedure:

1. Set the number of iterations to be performed, I, to 10000 and the number of

failed simulations, K, to 0.

2. Simulate the fault-free circuit by applying a random test vector T .

3. Randomly inject m transistor defects.

4. Simulate the faulty circuit by applying the test vector T .

5. If the outputs of the fault-free and faulty circuits are different, increment K

by 1.

6. Decrement I by 1 and if I is not 0 goto step 3.

7. Failure Rate Fm = K/10000.

Assuming that every transistor has the same defect probability, P , and that

defects are randomly and independently distributed, the probability of having a

number of m defective transistors in a circuit with N transistors follows the binomial

distribution [47] as shown in Eq. 5.1.

P (m) =

(
N

m

)
Pm × (1− P )N−m (5.1)
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Assuming the number of transistor defects, m, as a random variable and using

the circuit failure probability Fm as a failure distribution in m, the probability of

circuit failure, F , and circuit reliability, R, are computed as in Eq. 5.2 and Eq. 5.3.

F =
N∑

m=0

Fm × P (m) (5.2)

R = 1− F = 1−
N∑

m=0

Fm × P (m) (5.3)

Reliability estimation of combinational circuits can be achieved by measuring

their failure rates. Failure rate is the percentage of which a circuit will produce

faulty output when a fault is injected in the logic. This way, reliability of a circuit

is reciprocally proportional to its failure rate.

5.4 Tools

Many tools are used for different purposes. They comprise:

Espresso: For logic minimization [48].

SIS: For logic minimization and synthesis [46]. The following commands are used

for both modules and correction logic:

1. espresso.
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2. fx.

3. read library “Library”2.

4. map.

ModelSim: Used for simulation at the transistor level [49]. Benchmarks are trans-

lated from Bench format to Verilog. Then, ModelSim is used to evaluate the

reliability of both unprotected and protected versions of the benchmarks.

5.5 Work Flow

We start by providing the protection threshold at the outputs and a truth table

or partial truth table for circuits with large number of inputs (more than 16 in

this work). The truth table is introduced in espresso pla file format. After that,

we evaluate probability of occurrence for states at the outputs. Based on this, a

decision will be made on how to protect the output under processing. Evaluation

and decision steps will be repeated until all primary outputs have been processed.

Next, redundant modules followed by voters to obtain the protected outputs will

be introduced to the logic. Eventually, we synthesize the logic such that no logic

sharing is allowed among different modules. This is achieved by synthesizing each

module alone. Then, we combine these synthesized modules together along with the

2It includes an inverter along with nand and nor gates with 2, 3 and 4 inputs.
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voters. The final protected synthesized version of circuit will be in bench format.

Figure 5.2 depicts the flow for applying the generalized modular redundancy scheme.
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Figure 5.2: Work flow for applying the generalized modular redundancy scheme.



Chapter 6

Experimental Results &

Discussion

6.1 Analyzing Benchmarks

We have seen the methodology of applying GMR to enhance combinational circuits’

reliability in Chapter 4. We have also seen cases where the use of GMR is particularly

beneficial (general comparator and equality comparator) in Chapter 3. In order to

investigate the applicability of the proposed methodology, it will be applied on

the set of benchmarks presented in Chapter 5. We examine different values of

protection threshold thr. Then, for each value, we evaluate the number of protected

modules in the following categories: single output protection, pair protection and

triple modular redundancy. We also list the number of protected states for outputs

77
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that are protected as pairs. Tables 6.1, 6.2 and 6.3 summarize this evaluation.

Protection threshold thr can take values in the range [0, 1]. A value of zero

means that no protection is applied. A value of one means that all states at the

primary outputs are protected, i.e., TMR will be applied as TMR is the special

case of GMR where all states at the primary outputs are protected. As the value of

thr drops below one, the number of modules protected by TMR will also decrease.

These modules will be protected by GMR as singles or pairs. This is clearly visible in

“apex4” benchmark where the number of modules protected by TMR has dropped

from 10 to 1.

In most of the cases, the number of modules which are protected by TMR is

considerably low. In fact, a good number of cases like: “misex2”, “misex3”, “table3”,

“table5”, “duke2” and “ex5p” have almost no modules protected as TMR. This

enables us to exploit the advantage of GMR where decent reliability figures are

achieved while saving area overhead. For few benchmarks like “clip” and “5xp1”

TMR is used despite the reduction of thr down to 0.75. For such cases no or limited

area savings can be achieved.

From this analysis, we can see that the proposed methodology of applying GMR

to increase fault tolerance of combinational circuits is very encouraging. In the

next section, reliability that corresponds to different protection thresholds will be

inspected for some benchmarks.
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Table 6.1: Analyzing benchmarks at different protection thresholds (1).



80

��������	


������������������ ���� ��� ���������� ���� ���� ���������� ���������� ���� ����������

��������������

��������������� 	
 
	 
� 
� 	� 	� 	� � 	�

������������� 	 � � � � 	 	 � 	


������������ 	� � �  �  
 	 �


 
 
 
 
 
 
 



 
 
 
 
 
 



 
 
 
 



 
 � 



 �


 �


 �




��	��


�

�����

	�

�����

	

�����������������

�����������������

��������	


������������������ ����������������������� ���� ���� ��� ����������������� ���� ��� ���� ����������

��������������

��������������� 
 
 	 	� 	 
 		 	� 	�

������������� � � 	 � � 	 � � �


������������ 
 
 	
  � 	
  
 �

� 
 
 
 
 
 



 
 
 



 



 



 


� �

����



������

	

����� 

	�

�����������������

�����������������

Table 6.2: Analyzing benchmarks at different protection thresholds (2).
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Table 6.3: Analyzing benchmarks at different protection thresholds (3).
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6.2 Evaluating Reliability at Different Protection

Thresholds

We have seen how changing protection threshold, thr, can affect protection scheme at

the outputs. However, as the value of thr goes smaller it affects the overall reliability

of the protected version of the circuit. Thus, the value of thr has to stay at high

values to insure that the reliability of the protected circuits stays at acceptable rate.

Figure 6.1 depicts changing in overall reliability of “apex4” benchmark in response

to different protection thresholds. It is evident that the circuit with the highest

protection threshold (0.95) has the best reliability. At thr equals to 0.9, decent

reliability figures are achieved accompanied by remarkable overhead savings. By

decreasing the value of thr we can notice the corresponding reduction in reliability.

Table 6.4 shows the reliability of the original circuit “apex4”, protected versions at

different protection thresholds using GMR, and protected version using TMR along

with their area overhead. It is evident that at thresholds higher than 0.8, GMR is

able to achieve higher reliability figures than that of TMR along with decent savings

in area overhead.

At protection threshold equals to 0.95, 8 outputs are protected as 4 pairs and 1

output is protected as a single output. In each pair of outputs, we protect 3 out of 4

states which requires 3 redundant modules. The total savings in area overhead are

5 modules (4 in pair protection + 1 in single protection). Moreover, the existence of
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don’t cares in the customized redundant modules (which is used in pair protection)

increases fault tolerance of protected circuits. If we don’t care about the output

of a redundant module, this means that, in this particular case, we can mask the

error without referring to that redundant module. So, no matter if an error hits

that module or not, we still can obtain a correct output. For example, in one of

the customized modules within this circuit, more than 68% of the minterms are

don’t cares. These don’t cares can significantly boost the reliability of the protected

circuit. In addition to its higher area overhead, TMR protection lacks the advantage

of the don’t cares within the redundant modules. For these reasons, TMR falls

short behind GMR even at thr equals to 0.8, where 20% of states at the outputs

are not protected. At protection threshold equals to 0.9, we are able to save 4 more

modules. When thr equals to 0.8, the total of 13 modules are saved as against

TMR protection. However, decreasing protection threshold results in the use of pair

protection to protect four pair of outputs, where three states are protected, rather

than TMR (as shown in Table 6.1). Away form savings in area overhead, this will

have a negative effect as the correction logic when protecting three states is larger

than the majority voters, and probability of masking for this logic is less. Therefore,

due to the sacrifice made when protection threshold is reduced along with previously

stated reasons, the reliability at 0.95 is better than that at 0.9 and lower.

Figure 6.2 and Table 6.5 show reliability results for “ex5p” benchmark. By

analyzing these results, the same findings from previous example can be extracted.
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Figure 6.1: Reliability of “apex4” benchmark at different protection thresholds.

Prob. of
transistor

failure

Reliability

Original thr = 0.8 thr = 0.9 thr = 0.95 TMR

7.499E-05 0.9141 0.9855 0.9917 0.9973 0.9924
1.500E-04 0.8294 0.9725 0.9807 0.9913 0.9809
3.749E-04 0.6351 0.9157 0.9411 0.9636 0.9225
7.499E-04 0.4029 0.8152 0.847 0.8907 0.7702
1.125E-03 0.2536 0.6861 0.7449 0.7976 0.6041
1.500E-03 0.1621 0.5763 0.6332 0.6912 0.452
Overhead 100.00% 253.18% 259.67% 298.41% 303.70%

Table 6.4: Reliability of “apex4” benchmark at different protection thresholds.
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When thr equals to 0.95, reliability is at its best; however, overhead savings is

not significant. At lower threshold rates, major overhead savings is achieved on

the price of sacrificing reliability. This circuit has a large number of outputs (63).

As a result, the number of voters and their area overhead will highly affect the

reliability of this circuit as the logic of these voters is not protected. Moreover,

module sizes in this circuit are considerably small. This will reduce the overall

reliability of the protected version of the circuit. Due to the previously discussed

reasons, we can see that even after using TMR to protect the circuit, the reliability

of the circuit is worse than its reliability without protection. However, the case

is better for GMR at high protection thresholds. So, a trade off has to be made

between reliability and overhead saving. In the rest of this work, a thr equals to

0.9 will be used. Table 6.6 presents number of module savings at thr equals to 0.9

when compared to TMR. A maximum overhead reduction of 33% can be achieved

when we duplicate all modules instead of triplicating them. This corresponds to the

analysis performed earlier in Section 6.1. For some benchmarks with large number

of inputs, like “apex1”, “apex3” and “seq”, area overhead savings are limited due

to the use of module replication solely. For instance, we are able to save 25 modules

instead of 33 in “seq” circuit.
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Figure 6.2: Reliability of “ex5p” benchmark at different protection thresholds.

Prob. of
transistor

failure

Reliability

Original thr = 0.8 thr = 0.85 thr = 0.9 thr = 0.95 TMR

3.668E-04 0.9597 0.9507 0.958 0.9696 0.9785 0.9237
7.337E-04 0.9215 0.8984 0.9196 0.9433 0.9594 0.8484
1.834E-03 0.8113 0.7704 0.8086 0.8579 0.8956 0.6612
3.668E-03 0.6571 0.5956 0.6529 0.7204 0.7923 0.4222
5.503E-03 0.5389 0.4636 0.5218 0.6138 0.6917 0.2668
7.337E-03 0.4496 0.3554 0.4215 0.5081 0.5964 0.1707
Overhead 100.00% 225.09% 235.73% 262.22% 285.99% 360.09%

Table 6.5: Reliability of “ex5p” benchmark at different protection thresholds.
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Benchmark
Module
savings

Total num.
of modules

(TMR)
Reduction

5xp1 1 30 3%
alu4 3 24 13%

apex1 25 129 19%
apex2 2 9 22%
apex3 42 150 28%
apex4 9 57 16%
b12 6 27 22%
clip 0 15 0%

cordic 2 6 33%
duke2 29 87 33%
ex5p 62 189 33%

misex2 17 54 31%
misex3 13 42 31%
sao2 3 12 25%
seq 25 105 24%

table3 14 42 33%
table5 15 45 33%
vg2 4 24 17%

z5xp1 1 30 3%

Table 6.6: Total module savings & reduction percentages compared to TMR at thr
equals to 0.9.
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6.3 Effectiveness of Single Output Protection

We have seen in Section 3.4 that equality comparator serves as an excellent example

for protecting single output circuits. The probability of having a “1” at its output is:

Prob(1) = 0.015, while the probability of having a “0” equals to: Prob(0) = 0.985.

Protecting the state which is vulnerable to soft errors the most involves adding

one extra module, as opposed to TMR wherein we need two redundant modules.

Despite protecting only one state at the output, the reliability of the circuit is greater

than its reliability when protected using TMR. This is clearly evident in Figure 6.3.

Reliability figures and area overhead are shown in Table 6.7.
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Figure 6.3: Reliability of 6-bit equality comparator with single output protection.
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Prob. of
transistor

failure

Reliability

Original Single protection TMR

1.587E-03 0.8508 0.9871 0.9464
3.175E-03 0.7327 0.9391 0.8226
7.937E-03 0.45 0.7007 0.4282
1.587E-02 0.2054 0.3658 0.1068
2.381E-02 0.0849 0.1725 0.0238
3.175E-02 0.0433 0.0762 0.0094
Overhead 100.00% 200.95% 304.13%

Table 6.7: Reliability of 6-bit equality comparator with single output protection.

6.4 Effectiveness of Pair Protection

We have seen in section 3.5 that the digital comparator serves as an excellent example

for pair protection. The protection will be applied to states which are vulnerable

to soft errors the most, namely states “10” and “01”. By protecting these states,

more than 93% of soft errors will be masked. Since only three states appear at the

outputs of the comparator, protecting these three states provides full protection for

this circuit. In contrast to TMR, where all four possible states are protected using

module replication, protecting the three states that might actually happen by adding

customized redundant modules can achieve the same protection level provided by

TMR which is a 100%. However, due to the remarkable savings in area overhead,

the reliability of pair protection is considerably greater than the reliability of TMR,

as the failure rate is proportional to the area of the circuit. Figure 6.4 shows the

reliability of the digital comparator when protecting two and three states using

GMR, and when protecting all states using TMR. It is clear from Table 6.8 that
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even protecting only 2 out of 3 states is better than TMR thanks to savings in area

overhead.
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Figure 6.4: Reliability of 4-bit general comparator with pair protection.

Prob. of
transistor

failure

Reliability

Original
Protecting
2 states

Protecting
3 states

TMR

3.226E-03 0.9028 0.9666 0.9832 0.96
6.452E-03 0.8124 0.9158 0.9438 0.8939
1.613E-02 0.5918 0.753 0.8037 0.6211
3.226E-02 0.361 0.4903 0.562 0.2822
4.839E-02 0.2161 0.3048 0.3632 0.1172
6.452E-02 0.1305 0.1959 0.2333 0.0493
Overhead 100.00% 200.65% 222.58% 316.77%

Table 6.8: Reliability of 4-bit general comparator with pair protection.
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6.5 Effectiveness of GMR Protection

In Section 4.6, we have seen a complete example for applying the GMR protection

scheme to enhance the reliability of the leading zero detection circuit. Protecting this

circuit using GMR exploits its advantages where both single and pair protection are

applied. At protection threshold equals to 0.9, three out of five outputs are protected

as single outputs, while the remaining two are protected as pair. A remarkable

savings in area overhead is achieved, and reliability of GMR is greater than that of

TMR. Figure 6.5 and Table 6.9 demonstrate this.
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Figure 6.5: Reliability of 24-bit leading zero detector.
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Prob. of
transistor

failure

Reliability

Original thr = 0.9 TMR

1.786E-03 0.8558 0.97 0.9413
3.571E-03 0.7457 0.9284 0.8536
8.929E-03 0.483 0.767 0.5752
1.786E-02 0.2164 0.4783 0.2177
2.679E-02 0.107 0.2718 0.0693
3.571E-02 0.0443 0.1345 0.0196
Overhead 100.00% 227.50% 323.21%

Table 6.9: Reliability of 24-bit leading zero detector.

6.6 Reliability of Other Benchmarks at thr Equals

to 0.9

In this section, we report reliability results of applying GMR protection, with thr

equals to 0.9, to the set of benchmarks used in this work. We compare these results

with the reliability of applying TMR protection. In Table 6.10, we report the reli-

ability results obtained based on the simulation procedure outlined in Section 5.3

for the generalized modular redundancy scheme for several transistor defect prob-

abilities based on stuck-open and stuck-short defects. In Table 6.11, we report the

reliability results for the triple modular redundancy scheme. The effectiveness of

the generalized modular redundancy scheme is clearly demonstrated by the results

as it achieves higher circuit reliability when compared to that of triple modular re-

dundancy. This is in addition to the observation that the GMR scheme requires less

area overhead as indicated in the tables. These reliability figures have been achieved
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Benchmarks
Generalized Modular Redundancy

#Trans. 0.0001 0.0002 0.0005 0.001 0.002 0.005 Overhead

alu4 17538 0.999 0.992 0.957 0.866 0.659 0.230 243.85%
apex1 38852 0.991 0.968 0.871 0.704 0.356 0.030 287.62%
apex2 23590 0.992 0.968 0.761 0.426 0.141 0.015 245.22%
apex3 25878 0.992 0.974 0.909 0.757 0.464 0.046 278.08%
apex4 34630 0.988 0.973 0.913 0.779 0.447 0.020 259.67%
b12 1818 0.999 0.997 0.993 0.984 0.960 0.866 394.35%

cordic 14204 0.987 0.955 0.809 0.541 0.199 0.013 200.17%
duke2 8410 0.997 0.993 0.981 0.958 0.898 0.688 240.29%
ex5p 7148 0.991 0.983 0.960 0.924 0.845 0.641 262.22%

misex2 1404 0.997 0.994 0.986 0.972 0.945 0.867 244.60%
misex3 30086 0.994 0.982 0.907 0.729 0.316 0.008 208.87%
sao2 1870 0.999 0.998 0.995 0.986 0.963 0.868 201.51%
seq 47000 0.991 0.974 0.882 0.646 0.282 0.018 241.05%

table3 18884 0.994 0.988 0.962 0.892 0.698 0.188 207.43%
table5 20424 0.994 0.990 0.961 0.882 0.703 0.188 209.82%
vg2 3692 0.999 0.999 0.996 0.980 0.933 0.737 265.61%

Table 6.10: Reliability and area overhead of benchmarks for the GMR scheme with
0.9 protection.

thanks to reduction in overall area overhead due to reduction in total number of re-

quired redundant modules and the use of customized redundant modules.

For benchmarks with minimal savings in area overhead and where the size of

modules is considerably small, the addition of voters to obtain protected outputs

may cancel the savings. Sometimes, the total overhead of using GMR with such

benchmarks may exceed the overhead of using TMR especially when pair protection

is used which requires larger voters.

“b12” benchmark is an example of such circuits. From Table 6.10 and Table 6.11

we can see that area overhead when using GMR is greater than the overhead when

TMR is used. Despite the increase of total overhead, reliability of GMR is still
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Benchmarks
Triple Modular Redundancy

#Trans. 0.0001 0.0002 0.0005 0.001 0.002 0.005 Overhead

alu4 21784 0.995 0.981 0.902 0.716 0.387 0.119 302.89%
apex1 41642 0.982 0.943 0.821 0.624 0.271 0.013 308.28%
apex2 28938 0.991 0.938 0.650 0.286 0.055 0.007 300.81%
apex3 29218 0.978 0.934 0.815 0.597 0.278 0.017 313.97%
apex4 40502 0.989 0.971 0.877 0.659 0.302 0.008 303.70%
b12 1614 0.997 0.995 0.986 0.971 0.939 0.832 350.87%

cordic 21340 0.984 0.917 0.650 0.321 0.107 0.013 300.73%
duke2 11254 0.978 0.960 0.916 0.830 0.650 0.276 321.54%
ex5p 9816 0.980 0.959 0.896 0.798 0.636 0.302 360.09%

misex2 2190 0.991 0.982 0.956 0.912 0.827 0.605 381.53%
misex3 43576 0.985 0.953 0.776 0.423 0.077 0.001 302.53%
sao2 2888 0.998 0.996 0.987 0.969 0.920 0.727 311.21%
seq 59404 0.980 0.953 0.766 0.454 0.095 0.000 304.67%

table3 27676 0.990 0.973 0.919 0.784 0.485 0.040 304.00%
table5 29592 0.989 0.974 0.918 0.777 0.472 0.047 304.01%
vg2 4378 0.995 0.989 0.969 0.930 0.858 0.683 314.96%

Table 6.11: Reliability and area overhead of benchmarks for the TMR scheme.

better than that of TMR. This can be attributed to the existence of don’t cares in

the customized redundant modules.

The only weak spot of a protected circuit is the voter which is added to obtain

the protected outputs. As the size of this vulnerable part increases, reliability will

degrade due to errors in this part of the circuit which is not protected. So, it

is favorable to have voters which are as small as possible; like the voter in single

output protection which is only one gate.

The existence of don’t cares in the customized redundant modules increases fault

tolerance of protected circuits. If we don’t care about the output of a redundant

module, this means that, in this particular case, we can mask the error without
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referring to that redundant module. So, no matter if an error hits that module or

not, we still can obtain a correct output.

6.7 Protecting Voters

In order to increase the fault tolerance of the error-prone voters different techniques

have been proposed. A cascade NMR or TMR scheme is offered using redundant

voters to reduce the probability of circuit failure in the voter [42] [50]. The TMR

process can be repeated by combining three of the TMR units with another majority

voter to form a second-order TMR unit with even higher reliability. Another tech-

nique that adds redundancy at the transistor level and provides built-in immunity

to stuck-open, stuck-short and bridges defects has also been proposed by El-Maleh

et al. [6]. This technique is based on replacing each transistor by N2-transistor

structure (N ≥ 2) that guarantees defect tolerance of all N − 1 defects. It pro-

vides significantly less circuit failure probability and higher reliability than other

techniques based on gate level (quadded logic) and unit level (TMR).

To investigate the effect of protecting voters on the overall reliability of the circuit

the second technique will be used [6]. Figure 6.6 shows the advantage of protecting

voters in both cases where GMR and TMR were used for a 4-bit general comparator.

We can clearly notice the benefit of protecting these voters and how they affect the

overall reliability of the circuit, see Table 6.12. The overall area overhead of applying
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Figure 6.6: Reliability of 4-bit general comparator with/without voter protection.

GMR and protecting voters for a digital comparator equals to the area overhead of

applying TMR to that circuit. However, there is a huge improvement in reliability

between these two cases. So, by utilizing the savings in area overhead achieved by

GMR in protecting the voters, we can make the most of the generalized modular

redundancy in terms of both reliability and area overhead.

Figure 6.7 shows reliability of “ex5p” benchmark before and after protecting

voters in both cases where GMR and TMR were used. We have seen earlier, in

Section 6.2, that this circuit has a large number of outputs (63) and its module sizes

are considerably small. As a result, the number of voters and their area overhead will

highly affect the reliability of this circuit as the logic of these voters is not protected.

Even after using TMR to protect the circuit, the reliability became worse than its
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Prob. of
transistor

failure

Reliability
Protect 3 states
(no voter prot.)

Protect 3 states
(voter prot.)

TMR (no
voter prot.)

TMR (voter
prot.)

3.226E-03 0.9832 0.9951 0.96 0.9897

6.452E-03 0.9438 0.9785 0.8939 0.956

1.613E-02 0.8037 0.8815 0.6211 0.7837

3.226E-02 0.562 0.6753 0.2822 0.470

4 4.839E-02 0.3632 0.5072 0.1172 0.2504

6.452E-02 0.2333 0.3789 0.0493 0.1313

Overhead 222.58% 316.77% 317.42% 367.10%

Table 6.12: Reliability of 4-bit general comparator with/without voter protection.

reliability without protection. However, we can notice the improvement in reliability

for TMR after protecting the correction logic. Despite the fact that reliability has

improved dramatically, area overhead has also increased to a great extent. This

dramatic increase in reliability for TMR can be attributed to the following reasons:

(1) large number of voters which corresponds to the large number of outputs in the

circuit, (2) relatively large size of majority voters, (3) lower masking probability as

opposed to the correction logic for pair protection when only two states are protected

for all pairs. When thr equals to 0.9, the increase in reliability when protecting the

correction logic is not as much as that of TMR. This is due to smaller size and better

masking probability of the correction logic as outputs are protected as singles or pairs

with 2 states to protect. From Table 6.13, we can see that the overall area overhead

of applying GMR and protecting correction logic for the “ex5p” benchmark equals

to the area overhead of applying TMR. However, there is a substantial improvement

in reliability when the GMR scheme is used.
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Figure 6.7: Reliability of “ex5p” benchmark with/without voter protection.

Prob. of
transistor

failure

Reliability

thr = 0.9
thr = 0.9 (voter
protection)

TMR
TMR (voter
protection)

3.668E-04 0.9696 0.9854 0.9237 0.9999

7.337E-04 0.9433 0.9767 0.8484 0.9997

1.834E-03 0.8579 0.9267 0.6612 0.9880

3.668E-03 0.7204 0.8504 0.4222 0.9510

5.503E-03 0.6138 0.7814 0.2668 0.9047

7.337E-03 0.5081 0.7070 0.1707 0.8347

Overhead 262.22% 365.88% 360.09% 540.35%

Table 6.13: Reliability of “ex5p” benchmark with/without voter protection.



Chapter 7

Conclusion & Future Work

7.1 Conclusion

In this work, a generalized modular redundancy scheme to enhance the reliability

of combinational logic circuits against soft errors has been proposed. It is based on

probability of occurrence for states at the outputs of these circuits. An investigation

on different aspects regarding the application of the generalized modular redundancy

scheme has been done. This includes types of redundant modules, complexity of

voters and single versus multiple outputs protection.

Furthermore, a methodology for applying the generalized modular redundancy

scheme to increase the reliability of combinational logic circuits has been developed.

Reliability analysis for various benchmark circuits shows that the proposed method-

ology can achieve reliability figures higher than that of triple modular redundancy.
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Generally, remarkable overhead savings are also accomplished in addition to that

superior reliability. Moreover, reliability of the correction logic can be increased by

utilizing the attained overhead savings. This way, the overall reliability of the circuit

can be further promoted to higher levels while maintaining low area overhead.

7.2 Future Work

As a future work, as investigation regarding the incorporation of the following tech-

niques could be done:

• Incorporation of synthesis techniques which target maximizing the masking

property in the logic. This can be applied to synthesize individual modules in

a circuit. By maximizing the masking property in the logic, we are increasing

the reliability of the modules themselves against soft errors. After that, the

generalized modular redundancy scheme can be applied to take care of non-

maskable errors.

• Synthesis of customized redundant modules based on partial truth tables for

circuits with large number of inputs, even though this will not guarantee mask-

ing of all faults.

• Combining the generalized modular redundancy scheme with cluster sharing

reduction.
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[24] M. Gössel and S. Graf. Error detection circuits. McGraw-Hill, 1993.

[25] M. Nicolaidis and Y. Zorian. On-line testing for VLSI a compendium of ap-

proaches, pages 7–20. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[26] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems (3rd ed.):

Design and Evaluation. A. K. Peters, Ltd., Natick, MA, USA, 1998.

[27] J.G. Tryon. Quadded Logic, Redundancy Techniques for Computing Systems.

Spartan Books, Washington, 1962.

[28] W. H. Pierce. Failure-Tolerant Computer Design. Academic Press, New York,

1965.

[29] D.C. Bossen. CMOS soft errors and server design. In Workshop on Radiation

Induced Soft Errors. IEEE Pres, 2002.

[30] M. Diaz, J.C. Geffroy, and M. Courvoisier. On-set realization of fail-safe se-

quential machines. IEEE Transactions on Computers,, C-23(2):133 – 138, Feb.

1974.



106

[31] M. Nicolaidis. Soft Errors in Modern Electronic Systems. Frontiers in Electronic

Testing. Springer, 2010.

[32] Xilinx. http://www.xilinx.com/ise/optional prod/tmrtool.htm.

[33] Algirdas Avizienis. Arithmetic algorithms for error-coded operands. IEEE

Transactions on Computers,, C-22(6):567 –572, June 1973.

[34] W. Stallings. Data And Computer Communications. Alternative eText Formats

Series. Pearson/Prentice Hall, 2007.

[35] M. Nicolaidis. Time redundancy based soft-error tolerance to rescue nanometer

technologies. In Proceedings. 17th IEEE VLSI Test Symposium., pages 86–94,

1999.

[36] L. Anghel and M. Nicolaidis. Cost reduction and evaluation of a temporary

faults detecting technique. In Proceedings Design, Automation and Test in

Europe Conference and Exhibition., pages 591–598, 2000.

[37] S. Krishnaswamy, S.M. Plaza, I.L. Markov, and J.P. Hayes. Enhancing de-

sign robustness with reliability-aware resynthesis and logic simulation. In

IEEE/ACM International Conference on Computer-Aided Design. ICCAD

2007., pages 149 –154, Nov. 2007.

[38] Tian Ban and Lirida Naviner. Progressive module redundancy for fault-tolerant

designs in nanoelectronics. Microelectronics Reliability, 51(9-11):1489 – 1492,



107

2011. Proceedings of the 22th European Symposium on the Reliability of Elec-

tron Devices, Failure Physics and Analysis.

[39] S. Almukhaizim and Y. Makris. Soft error mitigation through selective addition

of functionally redundant wires. IEEE Transactions on Reliability,, 57(1):23 –

31, March 2008.

[40] Xiaoxuan She and P.K. Samudrala. Selective triple modular redundancy for

single event upset (SEU) mitigation. In NASA/ESA Conference on Adaptive

Hardware and Systems. AHS 2009., pages 344 –350, Aug. 2009.

[41] Y. Dotan, N. Levison, R. Avidan, and D.J. Lilja. History index of correct

computation for fault-tolerant nano-computing. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems,, 17(7):943 –952, July 2009.

[42] S.K. Shukla and R.I. Bahar. Nano, quantum and molecular computing: implica-

tions to high level design and validation. Solid Mechanics and Its Applications

Series. Kluwer Academic Publishers, 2004.

[43] A. Klein Osowski, V.V. Pai, V. Rangarajan, P. Ranganath, K. KleinOsowski,

M. Subramony, and D.J. Lilja. Exploring fine-grained fault tolerance for nan-

otechnology devices with the recursive nanobox processor grid. IEEE Transac-

tions on Nanotechnology,, 5(5):575 –586, Sept. 2006.



108

[44] A. Zukoski, M.R. Choudhury, and K. Mohanram. Reliability-driven don’t care

assignment for logic synthesis. In Design, Automation Test in Europe Confer-

ence Exhibition (DATE), pages 1 –6, March 2011.

[45] Khaled A.K. Daud. Synthesis of soft error tolerant combinational circuits.

Master’s thesis, King Fahd University of Petroleum & Minerals, December 2011.

[46] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. R. Stephan, R. K. Brayton, and A. S. Vincentelli. SIS: A System

for Sequential Circuit Synthesis. Electronics Research Laboratory Memorandum,

(UCB/ERL M92/41), May 1992.

[47] Yan Qi Pieter Jonker Jie Han, Jianbo Gao and Jos A.B. Fortes. Toward

hardware-redundant, fault-tolerant logic for nanoelectronics. IEEE Design and

Test of Computers, pages 328–339, July-August 2005.

[48] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. McMullen,

and Gary D. Hachtel. Logic Minimization Algorithms for VLSI Synthesis.

Kluwer Academic Publishers, Norwell, MA, USA, 1984.

[49] ModelSim. http://www.model.com/.

[50] K Nikolic, A Sadek, and M Forshaw. Fault-tolerant techniques for nanocom-

puters. Nanotechnology, 13(3):357, 2002.



Vitae

• Feras Chikh Oughali

• Born in Damascus, Syria, September 9th 1986.

• Received B.S. degree in Computer Engineering from Damascus University,

Damascus, Syria in 2009.

• Received M.S. degree in Computer Engineering from KFUPM, Dhahran, Saudi

Arabia in 2012.

• Publications:

– Sadiq M. Sait, Feras Chikh Oughali, Abdalrahman Arafeh, FSM State-

Encoding for Area and Power Minimization Using Simulated Evolution

Algorithm, Journal of Applied Research and Technology, December 2012.

– Abdalrahman Arafeh, Feras Chikh Oughali, Tarek Sheltami, Ashraf Mah-

moud, A Contention Free Multi-Channel MAC Protocol With Improved

Negotiation Efficiency for Wireless Adhoc Networks, Proceedings of the

International Conference on Ambient Systems, Networks and Technolo-

gies, Paris, France, 2010.



110

• Contact Information:

– Current Address: Dhahran, Saudi Arabia.

– Permanent Address: Damascus, Syria.

– Mobile: +966-569077842

– Email: oughali.feras@gmail.com


