Design of CMOS Current-Mode Analog
Computational Circuits
Karama Mohammed AL-Tamimi
A Thesis Presented to the DEANSHIP OF GRADUATE STUDIES KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the Requirements for the Degree of

Electrical Engineering

December, 2012

KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 DHAHRAN- 31261, SAUDI ARABIA
 DEANSHIP OF GRADUATE STUDIES

This thesis, written by Karama Mohammed AL-Tamimi under the direction of his thesis advisor and approved by his thesis committee, has been presented and accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING.

Dr. Ali Ahmed AL-Shaikhi
Department Chairman

Dr. Salam A. Zummo
Dean of Graduate Studies

Date

Dr. Munir A. AL-Absi (Advisor)

Dr. M. T. Abuelma'atti (Member)

Dr. Hussain A. Alzaher (Member)
© King Fahd University of Petroleum \& Minerals

$$
2012
$$

Dedication

To

my great mother, my noble father , my lovely wife, my warmhearted brothers and sisters, my son Saleh, and my dear uncle Awadh your love is the source of my strength

ACKNOWLEDGMENTS

First and foremost all praise to Almighty Allah who gave me the faith and ability to complete this work successfully.

Acknowledgment is due to King Fahd University of Petroleum \& Minerals for providing all facilities and support to this research.

Acknowledgment is also due to Hadhramout Establishment for Human Development (HEHD) for supporting me during master program.

My deep appreciation goes to my major thesis advisor Dr. Munir A. Al-Absi for his continuous help, guidance and the countless hours of attention he devoted throughout the course of this research. He was always kind, understanding and sympathetic towards me. Working with him was indeed a wonderful and learning experience which I thoroughly enjoyed.

Besides my advisor, I would like to thank my thesis committee members: Prof. Muhammad T. Abuelma'atti for his fruitful comments which contributed to the improvement of this research and Prof. Hussain Abdullah Alzaher for his interest, advices and valuable cooperation.

My heartfelt gratitude goes to my parents, my wife, my brothers and sisters for their encouragement, prayers, patience, moral and of course financial support.

I would also like to express my sincere thanks to Eng. Abdulla Ahmed Bugshan for his unlimited support to my educational endeavors. He will always be greatly appreciated.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT V
TABLE OF CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES X
GLOSSARY xiii
ABSTRACT (ENGLISH) XV
ABSTRACT (ARABIC) xvi
CHAPTER 1 INTRIDUCTION 1
1.1 Motivation 1
1.2 Why Low Power Designs 3
1.3 Why Analog Design 4
1.4 Why Current-Mode Operation 5
1.5 Operation of MOSFET devices at Different Inversion Levels 6
1.6 Literature Review 10
1.7 Problem Definition 12
1.8 Thesis Organization 13
CHAPTER 2 LOGARITHMIC AND EXPONENTIAL CIRCUITS 15
2.1 CMOS Logarithmic Function Circuit 15
2.1.1 Introduction 15
2.1.2 First Proposed Design 18
2.1.3 Second Proposed Design 32
2.1.3.1 The proposed Design 32
2.1.3.2 Second Order Effects 35
2.1.3.3 Simulation Results 38
2.2 CMOS Exponential Function Circuit 47
2.2.1 Introduction 47
2.2.2 Proposed Exponential Circuit Design 48
2.2.2.1 The proposed Approach 49
2.2.2.2 Circuit Description 53
2.2.3 Simulation Results 64
CHAPTER 3 VARIABLE GAIN AMPLIFIERS (VGAs) 69
3.1 Logarithmic-Control Variable-Gain Attenuator (LCVGA) 69
3.2 Exponential-Control Variable-Gain Amplifier 83
CHAPTER 4 LOG-ANTILOG BASED COPUTATIONAL CIRCUITS 91
4.1 Introduction 91
4.2 Proposed Log-Antilog Based Computational Circuit 92
4.3 Four-Quadrant Multiplier 94
4.4 Squarer 100
4.5 Divider 102
4.6 1/x Function 104
4.7 Cube-Law Function 105
4.8 Multi-input Analog Multiplier (MIM) 106
CHAPTER 5 CONCLUSION AND FUTURE WORK 109
5.1 Conclusions 109
5.2 Directions for Future work 110
Appendix A 111
Appendix B 113
References 114
Vita 123

LIST OF TABLES

Table 2.1 Dimension ratios of transistors of figure (2.5) 24
Table 2.2 Performance comparison 31
Table 2.3 Summary of transistors dimensions of figure (2.13) 38
Table 2.4 Performance comparison 46
Table 2.5 Different exponential approximations comparison 52
Table 2.6 Aspect ratios of squaring unit 55
Table 2.7 Transistor dimensions of figure (2.33) 58
Table 2.8 Dimensions of CM (figure 2.2) 59
Table 2.9 Comparison table between different exponential function circuits 68
Table 3.1 LCVGA transistors dimensions 81
Table 3.2 Performance summary of LCVGA 81
Table 3.3 Comparison with prior works 90
Table 4.1 Performance comparison 108

LIST OF FIGURES

Figure 1.1 Current as a function of effective voltage [6] 7
Figure 1.2 Proposed analog functions realizations using the Log-Antilog circuits 14
Figure 2.1 The basic concept of signal compression with a logarithmic amplifier 16
Figure 2.2 Error between "ex $-e^{-x}$ "and " 2 x " 19
Figure 2.3 Basic exponential function circuit (a) Circuit (b) Symbol 20
Figure 2.4 Block diagram of the proposed logarithmic circuit design 20
Figure 2.5 Proposed logarithmic circuit (a) transistor level (b) post-layout 21
Figure 2.6 Simulated and calculated results (a) linear scale (b) semi-log scale 25
Figure 2.7 Log and transfer characteristic of the proposed design 25
Figure 2.8 Varying the gain using the bias current I_{b} 27
Figure 2.9 Simulation for temperature insensitivity 28
Figure 2.10 Triangular wave response 28
Figure 2.11 Results of the $\log (1 / x)$ realization 29
Figure 2.12 Frequency response of figure (2.5) 29
Figure 2.13 Proposed Circuit (a) Transistor level (b) Physical-Layout 33
Figure 2.14 DC transfer characteristics of logarithmic circuit 39
Figure 2.15 The output current with different gain values 40
Figure 2.16 The output current with different Ix (different zeros of output current) 41
Figure 2.17 Simulation results for temperature independency 42
Figure 2.18 Frequency response of the proposed logarithmic circuit 42
Figure 2.19 Transient response 43
Figure 2.20 Triangular wave response 44
Figure 2.21 The output current response for $\log (1 / x)$ realization 44
Figure 2.22 Gain adjustment for $\log (1 / x)$ realization 45
Figure 2.23 Variation of $I_{\text {out }}$ with $\pm 1 \%$ change in W/L of transistors M5 \& M6 45
Figure 2.24 Proposed approximation curves 50
Figure 2.25 Different approximations comparison 51
Figure 2.26 The error between different approximations and the ideal function 51
Figure 2.27 Block diagram of the proposed current-mode exponential generator 53
Figure 2.28 Squaring Unit (SU) 54
Figure 2.29 Simulation results of the SU block 55
Figure 2.30 Error of the SU block 56
Figure 2.31 SU block results for different Temperatures 56
Figure 2.32 Single-Quadrant Divider [51] 57
Figure 2.33 Current mirror (CM) (a) circuit (b) symbol 59
Figure 2.34 DC curves of CM 60
Figure 2.35 Transient response of BDCM 60
Figure 2.36 Amount of Error (nA) for BDCM 61
Figure 2.37 The full circuit of the exponential function 63
Figure 2.38 Effect of mismatch in the current mirror 64
Figure 2.39 Linear-in-dB characteristics of the proposed EXPFG 65
Figure 2.40
The error in dB between the equation (2.40) and its CMOS implementation figure (2.37) 65
Figure 2.41 Transient response 66
Figure 2.42 Temperature variation $-25^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}$ 67
Figure 2.43 Linear-in-dB characteristics for $\pm 10 \%$ variation in voltage supply 67
Figure 3.1 Characteristics of the natural logarithmic curve 70
Figure 3.2 Proposed LCVGA 71
Figure 3.3 Block diagram for the realization of figure (3.2) 72
Figure 3.4 Transient response of LCVGA when Atten $=0.5$ 74
Figure 3.5 Response with different temperatures 75
Figure 3.6 Response with different loads 76
Figure 3.7 THD of LCVGA 76
Figure 3.8 Step response of LCVGA 77
Figure $3.9 i_{\text {out }}$ with different attenuation values 77
Figure 3.10 Transient response when $I_{\text {ctrl }}$ is ramp (a) 80 nA p-p (b) 380 nA p-p 78
Figure 3.11 Transient response when $f_{\text {in }}=100 \mathrm{kHz}$ 78
Figure 3.12 380nA peak-to-peak triangular 79
Figure 3.13 80nA peak-to-peak triangular 79
Figure 3.14 The frequency response of the proposed LCVGA 80
Figure 3.15 The proposed structure of exponential-control VGA 84
Figure 3.16 Simulation results of the proposed exponential-control VGA 86
Figure 3.17 Different gain values effect 86
Figure 3.18 Transient analysis of the overall circuit 87
Figure 3.19 VGA response with triangular control signal 88
Figure 3.20 VGA response with sinusoidal control signal 88
Figure 3.21 Load effect 89
Figure 3.22 Different $I_{\text {in }}$ amplitude effect 89
Figure 3.23 AC response 90
Figure 4.1 Log-Antilog Computational circuit implementation 93
Figure 4.2 DC transfer characteristics of the proposed 4-Q multiplier 95
Figure 4.3 The proposed multiplier is used as a modulator 96
Figure 4.4 AM modulator with rectangular $i_{y 2}$ 97
Figure $4.5 \quad$ Frequency response of the proposed circuit in figure (4.1) 98
Figure 4.6 THD of the output waveform for different input amplitudes 98
Figure 4.7 Squaring DC transfer characteristics 101
Figure 4.8 The proposed circuit is used as a frequency doubler 101
Figure 4.9 Squaring response with a triangular input signal 102
Figure 4.10 DC input/output transfer curves of the 2-quadrant divider 103
Figure 4.11 Transient response (a) triangular (b) sinusoidal 103
Figure 4.12 Simulation results of the $1 / x$ function with different $i_{y 2}$ 104
Figure 4.13 Triangular response of the proposed cube-law circuit 105
Figure 4.14 Conventional multi-input multiplier 106
Figure 4.15 The proposed block diagram which can multiply 4 input currents 107
Figure 4.15 Simulation results of MIM structure. 107

GLOSSARY

Symbol	Quantity	Unit
$\mathrm{V}_{\text {th }}$	Threshold voltage	V
λ	Channel length modulation factor	1/V
$V_{D S P}$	Drain-to-source pinch-off voltage	V
$V_{G S}$	Gate-to-source voltage	V
$V_{e f f}$	Effective gate-source voltage	V
$\mathrm{I}_{\text {Do }}$	Leakage current	A
n	Weak inversion slope factor	-
$\mathrm{V}_{\text {BS }}$	Body-source voltage	V
V_{T}	Thermal voltage ($\approx 25 \mathrm{mV}$ at room temperature)	V
K	Boltzmann constant (1.38*10 ${ }^{-23}$)	J/ ${ }^{\circ} \mathrm{K}$
T	Absolute temperature	K
q	Charge of an electron $\left(1.6 * 10^{-19}\right)$	C
$\mathrm{k}_{\mathrm{n}}^{\prime}$	Process transconductance parameter	$\frac{\mathrm{A}}{\mathrm{V}^{2}}$
μ_{n}	The mobility of charge carriers	$\frac{\mathrm{cm}^{2}}{V \cdot \mathrm{~s}}$
$\mathrm{C}_{\text {ox }}$	Normalized oxide capacitance (capacitor per unit gate area)	$\frac{F}{m^{2}}$
$\epsilon_{\text {ox }}$	Permittivity of the silicone oxide	$\frac{F}{m}$
t_{ox}	Thickness of the oxide layer	m
W	Channel width	m
L	Channel length	m
SNR	Signal-to-Noise Ratio	dB
$\mathrm{V}_{\text {DD }}$	Positive supply voltage	V
$\mathrm{V}_{\text {SS }}$	Negative supply voltage	V
$\mathrm{V}_{\text {th0 }}$	Threshold voltage at $\mathrm{V}_{\mathrm{BS}}=0$	V
γ	Bulk-threshold parameter typical value of $0.7 \mathrm{~V}^{-\frac{1}{2}}$	$V^{-\frac{1}{2}}$
\emptyset_{b}	Surface-potential (typical value of 0.6V)	V

$V_{D S} \quad$ Drain-to-source voltage V
$I_{D S} \quad$ Drain-to-source current A

Abstract

Full Name	: Karama Mohammed Karama AL-Tamimi
Thesis Title	$:$ Design of Low Voltage Low Power Current Mode Analog
	Computational Unit Using MOSFETs in Weak Inversion

Major Field : Electrical Engineering Date of Degree : December, 2012

The major objective of this research is to design low-voltage current-mode logarithmic and exponential circuits using MOSFETs in weak inversion region. In this regard, two different structures for current-input current-output logarithmic amplifiers and 96 dB linear exponential function generator are proposed. The proposed circuits are simulated with standard CMOS $0.35 \mu \mathrm{~m}$ process technology to validate the theoretical analysis. Simulation results confirm that the proposed structures achieve the required goals in terms of low voltage operation and low power consumption while at the same time show stable performance with temperature and process variations. To demonstrate the effectiveness, logarithmic and exponential circuits are used as core cells to introduce different analog signal processing applications such as computational circuit and variable gain amplifiers (VGAs).

ملخص الرسالة

الإسم الكامل : كرامهه بن محمد كرامه التميمي
عنوان الرسالة : تصميم ومحاكاة معالج إشارات تماثلية قليل الإستهلاك للجهِ والطاقة بإستخدام ترانزستورات تعمل في منطقة تحت جها العتبة

التخصص : الهنسة الكهربائية
تاريخ الارجة العلمية : ديسمبر 2012

الههف الرئيسي من هذا البحث هو تصميم دوائر المكبّر اللوغاريتمي والدالة الأسية قلبلة الأستهلاك للجهج والطاقة بإستخدام ترانزستورات MOSFETs في منطقة الإنقلاب الضعيف (تحت جهـ العتبة). في هذا الصدد، تم تصميم دائر تين مختلفة للمكبّر اللوغارينمي بنمط التيار بالإضـافة إلى دائرة دالّة أسيّة لها نطاق خرج خطي واسع يصل إلى 96dB نتائج المحاكاة تؤكد أن الدوائر المقترحة تحقق الأهداف المطلوبة من حيث الإستهلاك القليل للجهِ والطاقة، وفي ذات الوقت تظهر أداء مستقر مع تغيّر درجة الحرارة أو عدم النوافق في النبائط. وللتنليل على فعاليّة الدوائر اللوغاريتمية والأسيّة، تم إستخدامها في تصميم أنظمة مختلفة لتطبيقات معالجة الإشارات الثناظرية مثل دائرة العطليات الحسابية والمكبرات ذات الكسب المتغيّر (VGAs).

CHAPTER 1

INTRODUCTION

1.1 Motivation

With the rapid advance in technology and applications, ultra low power systems are required in many applications such as portable or mobile battery powered devices, systems that function by harvesting power from environment, systems where heat dissipation should be minimized, complex systems and systems where the overall cost is function of the size of the system. Many techniques have been proposed to develop circuits that dissipate low power. One of these techniques is design circuits using MOSFETs in subthreshold that allow generating current in the range of nano-ampers.

The need to carry out signal processing on the signals in its analog form will assure faster and lower design cost. Moreover, with the development of new technologies and the advent of portable battery powered systems; for example wireless sensors networks, biomedical circuits, cell phones, there is an increasing interest in energy-aware circuit design techniques.

As the scale of integration keeps growing, more and more sophisticated signal processing systems are being implemented on a VLSI chip. These signal processing applications not only demand great computation capacity but also consume considerable amounts of energy. While performance and area remain to be two major design goals, power consumption has become a critical concern in today's VLSI system design [1]. The need
for low-power VLSI systems arises from two main forces. First, with the steady growth of processing capacity per chip, large current has to be delivered and the heat due to large power consumption must be removed by proper cooling techniques. Second, battery life in portable electronic devices is limited. Low power design directly leads to prolonged operation time in these portable devices.

Also, with shrinking technology sizes, energy efficiency has become a critical aspect of designing digital circuits. Traditionally, voltage scaling, a mechanism in which the supply voltage is varying and the threshold voltage is constant, has been an effective solution in meeting stringent energy requirements. However, voltage scaling does come at a cost of reduction in performance. The limits of voltage scaling, and therefore energy minimization, can be explored by operating a circuit at subthreshold [2]. In subthreshold circuits, the supply voltage is reduced well below the threshold voltage of a transistor. Due to the significant reduction in power with respect to the supply voltage, subthreshold circuits are classified as ultra low power circuits. Specifically in application areas where speed can be sacrificed for low power, subthreshold circuits are ideal fit e.g. medical applications and battery operated devices such as cellular phones.

Also, there is increasing demand for more logic functionality: that is, an IC must be capable of performing more functions, particularly as a combined set of designs on a single chip.

Today's designers have to make some important decisions among the conflicting limits on IC operation that are imposed by performance demands and reliability constraints. Examination of the key issues involved in MOSFET design for high-performance ICs can help guide designers out of this dilemma. These issues include the operating limits imposed by the differing requirements of speed, reliability, and power dissipation. In
addition, conflicts involving process complexity and manufacturing cost go beyond the trade-offs that apply to operation. We can link the emerging trend of decreasing the supply voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$ to this second trade-off, as supply voltage reduction enables active power reduction with increased performance. While the supply voltage can be reduced, constraints due to increasing numbers of transistors per IC, combined with more aggressive passive power requirements, make it impossible to further reduce the designed MOSFET threshold voltage [3].

1.2 Why Low Power Designs

Even when power is available in nonportable applications, the issue of low power design is becoming critical. Up until now, this power consumption has not been of great concern, since large packages and other cooling techniques have been capable of dissipating the generated heat. However, as the density and size of the chips and systems continue to increase, the difficulty in providing adequate cooling might either add significant cost to the system or provide a limit on the amount of functionality that can be provided [4]. While the power dissipation increases linearly as the years go by, the power density increases exponentially, because of the ever-shrinking size of the integrated circuits. If this exponential rise in the power density were to increase continuously, a microprocessor designed a few years later, would have the same power as that of the nuclear reactor. Such high power density introduces reliability concerns such as, electromigration, thermal stresses and hot carrier induced device degradation, resulting in the loss of performance. Thus, it is evident that the methodologies for the design of low power digital systems are needed.

Another factor that fuels the need for low power chips is the increased market demand for portable consumer electronics powered by batteries. The craving for smaller, lighter and more durable electronic products indirectly translates to low power requirements. Battery life is becoming a product differentiator in many portable systems. Being the heaviest and biggest component in many portable systems, batteries have not experienced the similar rapid density growth compared to the electronic circuits. For battery-portable systems running on batteries such as, laptops, cellular phones and personal digital assistants (PDAs), low power consumption is a prime concern, because it directly affects the performance by having effects on battery longevity. In this situation, low power VLSI design has assumed great importance as an active and rapidly developing field. Hence, motivated by emerging battery operated applications that demand intensive computation in portable environments such as pacemakers and cellular phones etc, techniques are investigated which reduce power consumption in CMOS circuits, by operating the devices at low currents and low voltages. It is known that MOSFET devices and circuits especially CMOS circuits consume relatively low power. But there seems to be a need to reduce this power further to prolong the life of battery [5].

1.3 Why Analog Design

The world around us is analog, and the need to carry out signal processing on the signals in its analog form will assure faster and lower cost designs. Moreover, with the development of new technologies and the advent of portable battery powered systems; for example wireless sensors networks, biomedical circuits, cell phones, there is an increasing interest in energy-aware circuit design techniques.

Low voltage and low power design techniques are, therefore, attracting the interest of both manufacturers and users. Subthreshold operation of MOSFETs, in which the power supply voltage is lowered to below the transistor threshold voltage, enables drastic savings when energy rather than speed is the primary constraint. Operating the MOSFET in subthreshold region is, therefore, a possible approach to achieve low voltage and low power design.

While CMOS circuits operating in the subthreshold region have been inadequate for high speed applications, they have been used in applications that require ultra low power dissipation. With technology scaling, power supply and threshold voltage continue to decrease to satisfy high performance and low power requirements. This led to designing many circuits and systems using MOSFETs operating in the subthreshold region. As an example, today medical and wireless applications, requiring ultra low power dissipation with low-to-moderate performance $(10 \mathrm{kHz}-100 \mathrm{MHz})$, are designed using this approach. Another example is the sensory information processing systems in wireless sensor networks. These systems employ MOSFETs operating in subthreshold region to minimize power dissipation and increase the life time of the battery. Recently, current-mode circuits employing MOSFETs working in the subthreshold region have been used to implement high performance contrast sensitive silicon retina.

1.4 Why Current-Mode Operation

The need for low voltage and low power designs for portable operation of electronic systems and biomedical instruments is highly required. Current-input current-output circuits are more attractive than their voltage-mode counterparts in such applications
where low power consumption and long battery life are key factors. The reason is if the input and output signals are currents, then the circuit performance is completely determined by currents and the voltage levels are irrelevant in determining the performance. Usually, the nodes inside current mode circuits are low-impedance nodes. Thus, the voltage swings are usually small and, therefore, operation from low-voltage supplies is feasible. With low impedance nodes, the time constant of the circuits is relatively low and this results in wide bandwidth circuits. Moreover, in current mode circuits high gain is mostly not required. This results in simpler hardware structures. This justifies the growing range of applications of current mode circuits; for example, in neural networks, microwave and optical systems, continuous time filters and sampled data filters [6].

1.5 Operation of MOSFET devices at Different Inversion Levels

MOSFET devices in amplifier stages typically operate in their active (saturation) regions. However, within the active region a device may be biased to the strong inversion region, the moderate inversion region, or the weak inversion region. In weak inversion, the number of free carriers in the channel is small enough to lead to negligible drift current, but diffusion current flows as the MOSFET operates more like a bipolar junction transistor [7]. The gate-to-source voltage is near the threshold voltage and very small channel current densities exist in this situation. As gate-to-source voltage increases, more carriers are induced in the channel and drift current becomes more significant. In the moderate inversion region, drift and diffusion components are comparable. Strong
inversion is reached as the gate-to-source voltage increases to the point that drift current dominates the drain current.

Figure 1.1 Drain current as a function of effective voltage [7]

A. Strong Inversion Region

The strong inversion region is perhaps the most commonly used among the three regions. Basic circuit design courses often confine discussion of MOSFET circuits to operation in this region since analytic equations are readily available. In the strong inversion region, variation of drain current with gate-to-source voltage is given by [7]

$$
\begin{equation*}
I_{D}=\frac{\mu C_{o x}}{2} \cdot \frac{W}{L}\left[V_{G S}-V_{t h}\right]^{2}\left[1+\lambda\left(V_{D S}-V_{D S P}\right)\right] \tag{1.1}
\end{equation*}
$$

Where V_{th} is the nominal threshold voltage, λ is the channel length modulation factor, and $V_{D S P}$ is the drain-to-source pinchoff voltage.

B. Moderate Inversion Region

As $V_{\text {eff }}\left(V_{e f f}=V_{G S}-V_{t h}\right)$ increases, more carriers are induced in the channel and drift current becomes more significant. In this region, drift and diffusion currents are comparable. Increased gate-to-source voltage leads to the strong inversion region when drift current dominates the diffusion component. Although an inversion coefficient can be defined to characterize the level of inversion [7], it can be approximately defined by the gate-to-source voltage. The lower end of the weak inversion region is the subthreshold region that exists for values of $V_{G S}$ less than V_{th} when positive drain current flows. As $V_{G S}$ ranges from subthreshold values up to about 20 mV above V_{th}, the device is in the weak inversion region. From a value of 20 mV above V_{T} to a $V_{G S}$ of approximately 220 mV the device operates in the moderate inversion region [7]. Above this value of $V_{G S}$ drift current dominates and the device is in the strong inversion region.

C. Weak Inversion Region

Weak inversion mode is the region when a MOSFET transistor gate-to-source voltage $V_{G S}$ is below the threshold voltage $V_{t h}$. Whereas the drain current has a near-square law variation in the strong inversion region, the approximate relation between drain current and gate-to-source voltage in the weak inversion region is given by [7]

$$
\begin{equation*}
I_{D S}=I_{D o} e^{\left(\frac{V_{G S}-V_{t h}+(n-1) V_{B S}}{n V_{T}}\right)}\left[1-e^{\left(-\frac{V_{D S}}{V_{T}}\right)}\right] \tag{1.2}
\end{equation*}
$$

where $\mathrm{I}_{\mathrm{Do}}=2 \mathrm{n} k_{n}^{\prime} \frac{W}{L} \mathrm{~V}_{\mathrm{T}}^{2}$ is the leakage current of the MOSFET, V_{GS} is the gate-to-source voltage, $V_{\text {th }}$ is the threshold voltage of the MOS transistor, $\mathrm{n}(1 \leq \mathrm{n} \leq 3)$ is the weak inversion slope factor, V_{BS} is the body-source voltage, and $\mathrm{V}_{\mathrm{T}}=\frac{\mathrm{KT}}{\mathrm{q}}$ is the thermal voltage $\left(\approx 25 \mathrm{mV}\right.$ at room temperature). K is Boltzmann constant $\left(1.38 * 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}\right), \mathrm{T}$ is temperature in degree Kelvin and q is charge of an electron $\left(1.6 * 10^{-19} \mathrm{C}\right), \mathrm{k}_{\mathrm{n}}^{\prime}=$ $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\left(\frac{\mathrm{A}}{\mathrm{V}^{2}}\right)$ is the process transconductance parameter $\left(k_{n}=k_{n}^{\prime} \frac{\mathrm{W}}{\mathrm{L}}\left(\frac{\mathrm{A}}{\mathrm{V}^{2}}\right)\right), \quad \mu_{\mathrm{n}}$ is the mobility of charge carriers $\left(\frac{c m^{2}}{V . s}\right), \mathrm{C}_{\mathrm{ox}}=\frac{\epsilon_{\mathrm{ox}}}{\mathrm{t}_{\mathrm{ox}}}=\frac{\epsilon_{\mathrm{r}} \epsilon_{\mathrm{o}}}{\mathrm{t}_{\mathrm{ox}}}$ is the normalized oxide capacitance (capacitor per unit gate area $\left(\frac{F}{m^{2}}\right)$), ϵ_{ox} is the permittivity of the silicone oxide $\left(\frac{F}{m}\right), \mathrm{t}_{\mathrm{ox}}$ is thickness of the oxide layer (m) and $\frac{\mathrm{W}}{\mathrm{L}}$ is the transistor aspect ratio.

If $V_{D S} \gg V_{T}$ and $V_{B S}=0$, then equation (1.2) can be rewritten as follows:
$I_{D S}=I_{D o} e^{\left(\frac{V_{G S}-V_{t h}}{n V_{T}}\right)}$

As MOSFET integrated circuit technology has evolved to exploit smaller and smaller device structures, it has become increasingly important in recent years to look more closely at the minority carriers present under the gate when the gate-to-source voltage is less than the threshold voltage, i.e. in what is called the "sub-threshold" region. These carriers cannot be totally neglected, and play an important role in device and circuit performance. At first they were viewed primarily as a problem, causing undesirable "leakage" currents and limiting circuit performance. Now it is recognized that they also enable a very useful mode of MOSFET operation, and that the sub threshold region of
operation is as important as the traditional cut-off, linear, and saturations regions of operation [9].

1.6 Literature Review

Over the last decade researchers have looked for implementation of known functions using MOSFET in weak inversion region such as non-linear functions, e.g. logarithmic and exponential, and computational functions like multiplier, divider, squarer and square rooter. They have looked for the low-voltage and low-power (LVLP) configurations so that it can be proper for many battery powered applications like Short Range Wireless and biomedical applications.

Operating the MOSFETs in subthreshold region is one approach to achieve low voltage and low power design. However, in the past, CMOS circuits using MOSFETs operating in subthreshold region have been inadequate for high speed applications, but have been used in applications that require ultra low power dissipation. With technology scaling, power supply and threshold voltage continue to decrease to simultaneously satisfy high performance and low power requirements. This leads to designing many circuits and systems using MOSFETs operating in subthreshold region. As an example, medical and wireless applications, require ultra low power dissipation with low-to-moderate performance $(10 \mathrm{kHz}-100 \mathrm{MHz})$ are designed using this approach [10]. A current-mode exponential circuit using MOSFETs in weak inversion region was reported in [11]. This circuit approximates the exponential function through Taylor's series. Then, it has been concluded that it is power efficient. The supply voltage is 1 V and the power consumption is 3.5 uW . On the other side, the drawback of this circuit is the limited output range (with
the reference $\mathrm{I}_{\mathrm{B}}=300 \mathrm{nA}$, $\mathrm{I}_{\text {out }}$ varies from $1.37 \mathrm{I}_{\mathrm{B}}$ to $3.65 \mathrm{I}_{\mathrm{B}}$, the output dynamic range is limited to 8.5 dB). Another exponential function based on MOS transistors operating in the weak inversion region is presented in [12]. The proposed circuit has the advantage of being simple and small size (i.e. number of transistors). In [13] a new current-mode analog circuit configuration that implements the logarithmic function using BJT is proposed. The major advantage of this circuit realization compared to previously published circuits is that it can perform the logarithmic function for whatever of input greater or smaller than unity. A new Low-Voltage Low-Power (LVLP) CMOS currentmode circuit that performs divide and $1 / x$ functions is reported in [14]. 1V power supply has been used. The disadvantage of this circuit is that the input signal can't be negative. CMOS current-mode $\mathrm{n}^{\text {th }}$-root circuit with only six transistors has been proposed in [15]. The input current-range is very wide from 120 nA to 40 uA with relative errors less than 1% for n greater than 2 .

Gilbert in 1975 [16] has developed the Translinear Principle (TL) which is very useful in today's electronics area. Many researchers have implemented a variety of circuits based on this principle, mainly using BJTs and also MOS transistors in strong as well as weak inversion regions see for example [17],[18]. In [19], family of very low-power and low voltage analog building blocks that are based on MOSFET translinear loops has been presented. However the major drawbacks of these circuits are the effects of device mismatches and the limited gate-bulk operating voltage. In [20] analytical framework of CMOS translinear circuits in the subthreshold MOSFET has been presented. Among the few literatures reported, a current-mode squarer/divider circuit is proposed in [21] based on CMOS translinear loop. However the circuit operates at 1.5 V and consumes $150 \mu \mathrm{~W}$ power. Square root circuit discussed in [22] is a typical example of classical exploitation
of TL principle using BJTs. Though dynamic range of the circuit is high, due to device mismatch some appreciable errors are observed in output current. In [23] and [24] squaring circuit using MOSFETs in strong inversion has been presented. In strong inversion the current-voltage relationship is quadratic in nature and not exponential like in subthreshold and as a result their implementation yield an output current expression with additional terms along the required square function.

1.7 Problem Definition

From the literature review it appears that the logarithmic, exponential and computational circuits are important blocks and widely used in designing various analog systems. The drain-to-source current in MOSFET operating in weak inversion region, $I_{D S}$ in equation (1.3), is strongly dependent on temperature and process variation and, is additionally, exponentially proportional to the voltages differentiate $\left(V_{g s}-V_{\text {the }}\right)$. It is the aim of this thesis to design and simulate CMOS current-input current-output logarithmic and exponential functions meet the low voltage and low power requirements while they simultaneously feature the attractive characteristics of simplicity, only MOSFETs used, high accuracy and insensitive to temperature variation. To verify the efficiency of these functions different analog signal processing systems like variable gain-amplifier and computational circuits will be developed based on these cells. The attractive properties of log-antilog make them powerful to perform multiple functions in terms of programmability instead of designing different circuits and then additional circuit will be needed for programmability. Figure (1.2) illustrates the proposed architecture.

1.8 Thesis organization

The thesis work is presented as follows. In Chapter 2 Logarithmic and Exponential circuits are introduced and discussed as core cells. Chapter 3 presents new types of variable-gain attenuator, namely logarithmic-control variable-gain attenuator (LCVGA), and exponential-control variable-gain amplifier with extended output dB -linear range. Chapter 4 presents the proposed \log-antilog based analog computational circuits to perform multiplication, division, squaring, inverse and cube-law functions. The conclusions and suggestions for future work are discussed in Chapter 5.

Figure 1.2 Proposed analog functions realizations using the Log-Antilog circuits

CHAPTER 2

CMOS CURRENT-MODE LOGARITHMIC AND EXPONENTIAL FUNCTIONS

2.1 CMOS Logarithmic Function Circuit

2.1.1 Introduction

Logarithmic amplifier is a non-linear device that produces an output that is proportional to the logarithm of the input. In certain applications, a signal may be too large in magnitude for a particular system to handle. In such cases, the signal voltage/current must be scaled down by a process called signal compression so that it can be properly handled by the system. If a linear circuit is used to scale down the amplitude of the signal, the lower voltages/currents are reduced by the same percentage as the higher voltages/currents. Linear signal compression often results in lower voltages /currents becoming obscured by noise and difficult to accurately distinguish. To overcome this problem, a signal with large dynamic range can be compressed using a logarithmic circuit. In logarithmic signal compression the higher voltages/currents are reduced by a greater percentage than the lower voltages, thus keeping the lower voltage/current signals from being lost in noise [25]. Figure (2.1) shows the basic concept of the signal compression with linear and logarithmic systems.

Figure 2.1 The basic concept of signal compression with a logarithmic amplifier

Moreover, the circuits that perform such characteristics are also widely used in many other applications; for example, medical equipment, instrumentation, telecommunication, active filters, disk drives, neural networks, applications that require compression of analog input data, linearization of transducers that have exponential outputs, and analog multiplication and division. This explains continuous interest in developing logarithmic function circuits manifested by the relatively large number of publications in this area; see for example Refs. [26-32] and the references cited therein. However, all these realizations have at least one of the following drawbacks:

- Absence of low voltage operation capability [26, 28, 30]
- Limited dynamic range [26, 27, 28, 31]
- Employment of BJT transistors [26, 30, 31]
- Doesn't enjoy Current-Mode operation [26, 28, 29, 31]
- Cannot realize a true logarithmic function circuit where the ratio is larger or smaller than unity $[26,27,31,32]$
- Temperature dependent [26, 28-32]
- Relatively high power consumption [31, 32]
- No controllability [26, 27, 28, 31]
- To some extent, linearity error is high [28, 31, 32]
- Use passive elements i.e. resistors [26, 27, 30, 31]
- Complexity [31, 32]

In the most recent published works [26-28], voltage-mode logarithmic converter is presented [26] and voltage-current logarithmic circuit is reported in [28]. However, these two realizations are temperature dependent. Current-mode logarithmic function generator was presented in [27]. This circuit can realize a logarithmic function of the form:

$$
I_{\text {out }}=\frac{I_{b 4}}{\ln (N)} \ln \left(\frac{I_{\text {in }}}{I_{b 2}}\right)
$$

Where N (the ratio between the biasing currents) is a constant, $I_{\text {out }}$ is the output current, $I_{b 2}$ and $I_{b 4}$ are biasing currents and $I_{i n}$ is the input current. However, since $I_{o u t}$ must be positive, then the condition $I_{i n} \geq I_{b 2}$ must be satisfied. Thus, the circuit cannot realize a true logarithmic function circuit where $I_{i n}$ and $I_{b 2}$ can attain arbitrary positive values and $I_{\text {out }}$ can attain any positive or negative value.

The major intention of this work is, therefore, to develop a current-input current-output circuit capable of performing $\log (x)$ and $\log (1 / x)$ in CMOS technology for any value of x larger or smaller than unity, working under low voltage supply and consumes low
power while it simultaneously features with simplicity, good accuracy, temperature independent.

2.1.2 First Proposed Design

A new scheme for a controllable CMOS low-voltage and low-power current mode logarithmic function circuit is introduced. The proposed design absorb normalized input range (27.1 dBm), has controllable output amplitude, high accuracy and insensitive to temperature variation $\left(0.036 \mathrm{nA} / 1^{\circ} \mathrm{C}\right)$, while it simultaneously features the attractive characteristics of simplicity, operates under very low power supply ($\pm 0.5 \mathrm{~V}$), and consumes an ultra low power $(0.3 \mu \mathrm{~W})$. The functionality of the proposed topology is confirmed using HSPICE with $0.35 \mu \mathrm{~m}$ CMOS process.

2.1.2.1 Design Principle

Based on Taylor's series expansion, the exponential function can be approximated as expressed below:

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots \tag{2.1}
\end{equation*}
$$

Where x is the independent variable and If x is much smaller than one $(x \ll 1)$, then the higher order terms in Taylor's approximation can be neglected and (2.1) can be written as:

$$
\begin{equation*}
e^{x} \approx 1+x+\frac{x^{2}}{2!} \quad \text { if } x \ll 1 \tag{2.2}
\end{equation*}
$$

According to equation (2.2), one can write

$$
\begin{equation*}
e^{-x} \approx 1-x+\frac{x^{2}}{2!} \quad \text { if } x \ll 1 \tag{2.3}
\end{equation*}
$$

Subtracting equation (2.3) from equation (2.2) we can easily get:
$e^{x}-e^{-x}=2 x \quad$ if $x \ll 1$
The error between $" \mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x} "}$ and " 2 x " is plotted in figure (2.2). The error can be less than 0.1% while the input variable $|x|<0.2$.

Figure 2.2 Error between " $e^{x}-e^{-x}$ " and " $2 x$ "

With reference to the exponential function generator cell shown in figure (2.3) where I_{b} is the bias current [33-34], and assuming that both M1 and M2 are perfectly matched and both of them are biased in the weak inversion region, using equation (1.2) and assuming $V_{D S} \geq 4 V_{T}$, the currents I_{b} and I_{2} can be expressed as [35]
$I_{b}=I_{D 0} \cdot \exp \left[\frac{\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{A}}\right)+(\mathrm{n}-1) \mathrm{V}_{\mathrm{BS}}}{\mathrm{nV}_{\mathrm{T}}}\right]$
and
$I_{2}=I_{D 0} \cdot \exp \left[\frac{\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{B}}\right)+(\mathrm{n}-1) \mathrm{V}_{\mathrm{BS}}}{\mathrm{nV}_{\mathrm{T}}}\right]$

From equations (2.5) and (2.6) we will get
$I_{2}=I_{b} \cdot \exp \left[\frac{\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)}{\mathrm{nV}_{\mathrm{T}}}\right]$

Figure 2.3 Basic exponential function circuit (a) Circuit (b) Symbol [33]

2.1.2.2 Proposed Design

The block diagram of the proposed current-mode logarithmic circuit is shown in figure (2.4). The transistor level and layout of the proposed design is shown in figure (2.5) (a) and (b) respectively. With reference to figure (2.5), the current I_{b} is the bias current, I_{x} and I_{y} are the two input current signals and $I_{o u t}$ is the output current.

Figure 2.4 Block diagram of the proposed logarithmic circuit design

Figure 2.5 Proposed logarithmic circuit (a) transistor level (b) post-layout

The drain currents in transistors M_{2} and M_{6} are given by:
$I_{2}=I_{b} \cdot \exp \left[\frac{\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)}{\mathrm{nV}_{\mathrm{T}}}\right]$
$I_{6}=I_{b} \cdot \exp \left[\frac{\left(V_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)}{\mathrm{nV} \mathrm{V}_{\mathrm{T}}}\right]$
Equation (2.9) can be rewritten as:
$I_{6}=I_{b} \cdot \exp \left[\frac{-\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)}{\mathrm{n} \mathrm{V}_{\mathrm{T}}}\right]$
The drain current for transistor M_{8} is the same as the drain current I_{6}

$$
\begin{equation*}
I_{\text {out }}=I_{2}-I_{8}=I_{2}-I_{6} \tag{2.11}
\end{equation*}
$$

From (2.8), (2.10) and (2.11), the output current is given by:

$$
\begin{equation*}
I_{\text {out }}=I_{b}\left[\exp \left[\frac{\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)}{\mathrm{nV} \mathrm{~V}_{\mathrm{T}}}\right]-\exp \left[\frac{-\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)}{\mathrm{nV} \mathrm{~V}_{\mathrm{T}}}\right]\right] \tag{2.12}
\end{equation*}
$$

Using equation (2.4) and with the $\operatorname{term}\left[\frac{\left(V_{A}-V_{B}\right)}{n V_{T}}\right] \ll 1$, it is easy to show that
$I_{\text {out }}=2 I_{b} \cdot\left[\frac{\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)}{\mathrm{nV}_{\mathrm{T}}}\right]$
Transistors M_{3} and M_{4} are used to convert the input currents I_{y} and I_{x} to voltages V_{B} and V_{A} respectively in logarithmic form as shown in equations (2.14) and (2.15), respectively:

$$
\begin{align*}
& V_{A}=V_{D D}-V_{s g 4}=V_{D D}-n V_{T} \ln \left(\frac{I_{x}}{I_{D o}}\right)-V_{t h} \tag{2.14}\\
& V_{B}=V_{D D}-V_{s g 3}=V_{D D}-n V_{T} \ln \left(\frac{I_{y}}{I_{D o}}\right)-V_{t h} \tag{2.15}
\end{align*}
$$

combining equations (2.15) and (2.14) to get:

$$
\begin{equation*}
\left[\frac{\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)}{\mathrm{nV}_{\mathrm{T}}}\right]=\ln \left(\frac{I_{y}}{I_{x}}\right) \tag{2.16}
\end{equation*}
$$

Substituting equation (2.16) in (2.13); the output current $I_{\text {out }}$ will be expressed by:
$I_{o u t}=2 I_{b} \ln \left(\frac{I_{y}}{I_{x}}\right)$

Equation (2.17) implements a current-mode logarithmic function circuit. If the current I_{x} is kept constant, the output current $I_{\text {out }}$ is proportional to the logarithm of I_{y}, and its gain can be adjusted by the bias current I_{b}. Since the transistors in figure (2.5) are biased in the weak inversion region, the power consumption of the proposed circuit is very low. Moreover, in the proposed circuit, there are only two transistors stacked in the electric path between the voltage supply and the ground, therefore the proposed design is suitable for low supply voltage. To assure the MOSFET is operating in weak inversion forward saturation, $I_{D} \leq I_{D o}$ and $V_{D S} \geq 4 V_{T}$ [35-37].

2.1.2.2.1 Mismatch Analysis

In real implementation there is always mismatch between the transistors. Referring to figure (2.5), assume that the threshold voltage of M3 and M4 are $V_{t h}+\left|\Delta V_{t h 3}\right|$ and $V_{t h}+\left|\Delta V_{t h 4}\right|$ and leakage currents are $I_{D o 3}+\left|\Delta I_{D o 3}\right|$ and $I_{D o 4}+\left|\Delta I_{D o 4}\right|$, then equations (2.14) and (2.15) can be rewritten as

$$
\begin{align*}
& V_{A}=V_{D D}-V_{s g 4}=V_{D D}-n V_{T} \ln \left(\frac{I_{X}}{I_{D o}+\left|\Delta I_{D o 4}\right|}\right)-V_{t h}+\left|\Delta V_{t h 4}\right| \tag{2.18}\\
& V_{B}=V_{D D}-V_{s g 3}=V_{D D}-n V_{T} \ln \left(\frac{I_{Y}}{I_{D o}+\left|\Delta I_{D o 3}\right|}\right)-V_{t h}+\left|\Delta V_{t h 3}\right| \tag{2.19}
\end{align*}
$$

combining equations (2.18) and (2.19) to get

$$
\begin{equation*}
\frac{V_{A}-V_{B}}{n V_{T}}=\ln \left(\frac{I_{Y}}{I_{X}}\right)+\ln \left(\frac{I_{D o}+\left|\Delta I_{D o 4}\right|}{I_{D o}+\left|\Delta I_{D o 3}\right|}\right)+\left\{\frac{\left|\Delta V_{t h 4}\right|-\left|\Delta V_{t h 3}\right|}{n V_{T}}\right\} \tag{2.20}
\end{equation*}
$$

according to equations (2.13) and (2.20), the output current can be rewritten as:
$I_{\text {out }}=2 I_{b} \ln \left(\frac{I_{Y}}{I_{X}}\right)+2 I_{b} \ln \left(\frac{I_{D o}+\left|\Delta I_{D o 4}\right|}{I_{D o}+\left|\Delta I_{D o 3}\right|}\right)+2 I_{b}\left\{\frac{\left|\Delta V_{t h 4}\right|-\left|\Delta V_{t h 3}\right|}{n V_{T}}\right\}$
Inspection of equation (2.21) clearly shows that the output current of the logarithmic circuit comprises three current components. The desired component that is proportional to
the logarithmic of the input current in addition to two undesired components. The two undesired components are constant current components.

2.1.2.3 Simulation Results

The developed circuit was simulated using HSPICE level 49 which is equivalent to EKV model in $0.35 \mu \mathrm{~m} 2 \mathrm{p} 4 \mathrm{~m}$ CMOS process technology and the results were obtained with $I_{b}=30 \mathrm{nA}, I_{x}=125 \mathrm{nA}$ and $\mathrm{V}_{\mathrm{DD}}=-\mathrm{V}_{\mathrm{SS}}=500 \mathrm{mV}$. The aspect ratios of transistors in figure (2.5) are listed in table (2.1). The output current was measured by forcing it through a grounded load resistor $R_{L}=1 k \Omega$. The simulated and calculated results are shown in figure (2.6). As the input current I_{y} varies from $20 n A$ to $400 n A$ (while $I_{x}=125 n A$), the measured output dynamic range is around $149 n A$. It appears from figure (2.6) that the simulated results are in very good agreement with the required function which confirms the functionality of the developed design. It can be seen that at $I_{y}=125 n A$ the output current will be Zero.

Table 2.1 Dimension ratios of transistors of figure (2.5)

Transistor	Aspect Ratios W/L $\boldsymbol{\mu m} / \boldsymbol{\mu m}$
M1-M2	$1.4 / 0.35$
M3-M4	$6.3 / 0.35$
M5-M6	$1.4 / 0.35$
M7-M8	$1 / 1$

Figure 2.6 Simulated and calculated results (a) linear scale (b) semi-log scale

Figure 2.7 Log and transfer characteristic of the proposed design

Figure (2.7) shows the simulation results of the proposed design when the input current, I_{y} is normalized to a reference current equal to 1 mA .

The gain term ' I_{b} ' was varied and the corresponding output response is shown in figure (2.8). As clearly seen in figure (2.8), the output current can be adjusted by the current I_{b}. The results also demonstrate that a larger output dynamic range can be obtained by increasing the current I_{b}.

The error between the simulated results and the theoretical values calculated by equation (2.17) is defined by the following formula:
error $\%=\frac{\text { simulated value-theoretical value }}{\text { theoretical value }} \times 100 \%$

The maximum simulated error was 4% which occurred at normalized current $\frac{I_{y}}{I_{x}}=1.36$ and $I_{b}=30 n A$; however most of the simulated errors are less than 4%. The simulated maximum power consumption for the proposed circuit is $0.284 \mu \mathrm{~W}$ which happened at $I_{x}=125 n A$ and $I_{b}=30 n A$.

The temperature independency of the proposed design has been confirmed, the temperature was varied from -25 to $+75^{\circ} \mathrm{C}$ (i.e. $100^{\circ} \mathrm{C}$ variation range) and the output current was monitored. The output current was normalized to its current at level $+25^{\circ} \mathrm{C}$ and it appears from Figure (2.9) that $I_{o u t}$ is insensitive to temperature variation. At I_{y} equal to 300 nA , the output current $I_{\text {out }}$ was $53.3 \mathrm{nA}, 53.72 \mathrm{nA}$, and 54.82 nA for T equal to $-25^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$ respectively while the nominal value is 52 nA . The maximum deviation from the nominal value is 2.82 nA which happened at $75^{\circ} \mathrm{C}$. In other words, the max deviation is 0.0376 nA per $1^{\circ} \mathrm{C}$ as illustrated below:

Figure 2.8 Varying the gain using the bias current I_{b}

Figure (2.10) shows the output current waveform for the triangular input wave signal of 280nA peak to peak and $\mathrm{f}=10 \mathrm{kHz}$. From figure (2.10) the functionality of the proposed design is confirmed. With reference to equation (2.17), in case of I_{x} is the input signal and I_{y} is kept constant then the $\log (1 / x)$ function can be realized. Figure (2.11) shows the results. The circuit was also simulated for frequency response. The -3 dB bandwidth is found to be 5.7 MHz as shown in figure (2.12).

Table 2.2 summarizes the performance of the introduced logarithmic circuits (first and second designs) compared to the most recent published works.

Figure 2.9 Simulation for temperature insensitivity

Figure 2.10 Triangular wave response

Figure 2.11 Results of the $\log (1 / x)$ relization

Figure 2.12 Frequency response

2.1.2.4 Discussion

In this design, a new logarithmic function circuit is proposed. The circuit enjoys attractive features at once. It offers highly accurate logarithmic function of the form of equation (2.17) for any value of I_{Y} larger or smaller than I_{X}. The introduced design is good for integration since it uses only MOSFET transistors. The performance of the proposed logarithmic circuit has been verified using HSPICE tool and with $0.35 \mu \mathrm{~m}$ process, where both controllability and temperature independency have been considered. The circuit consumes around $0.3 \mu \mathrm{~W}$ and has less than 4% linearity error. The proposed low-voltage and low-power circuit is expected to be useful in many analog signal processing applications. When the current I_{Y} is increased, the simulated error is also increased. One of the reasons is due to the neglect of the higher order terms in equation (2.1). Another reason is that the larger I_{Y} will results in larger $V_{\text {sg3 }}$ and larger $V_{s g 3}$ will drive the MOS_{3} transistor into strong region; therefore the V-I characteristics can no longer be exponential.

Table 2.2 Performance comparison

Parameter	Performance						
	[26]	[27]	[28]	This work			
Process	$0.18 \mu \mathrm{~m}$ BiCMOS	$0.5 \mu \mathrm{~m}$ CMOS	$0.18 \mu \mathrm{~m}$ CMOS	$0.35 \mu m, 2 \mathrm{p} 4 \mathrm{~m}$ CMOS			
No. of transistors	9 (2 BJT)	21	4	8			
Passive elements e.g. R \& C	Two resistors	Two resistors	Non	Non			
Operation Region	Active (BJT)	Weak inversion	Weak inversion	Weak inversion			
Voltage Supply (V)	> 1.3	-	1.8	± 0.5			
Inputloutput	Voltagel voltage	Current\ current	Current $\$ voltage & Currentlcurrent \hline Max. linearity error & 36 dB (63\%) & NA & 5\% & 4\% \hline Power dissipation ($\mu \mathrm{W}$)	17750	NA	0.3	0.284
Gain controllability	No	Yes	No	Yes			
True for $x \geq 1$ or $<$ 1 ?	Not satisfied	Not satisfied	Satisfied	Satisfied			
Temperature	Dependent	Compensated using a PTAT and resistive cancellation technique	Dependent	Independent			
Area	NA	NA	NA	16 um x 18 um			

**Proportional-to-absolute- temperature (PTAT)

2.1.3 Second Proposed Design

A novel CMOS current-mode controllable low-voltage and low-power logarithmic function circuit is introduced. It consists of one Operational Transconductance Amplifier (OTA) and two PMOS transistors biased in weak inversion region. The proposed design provides high dynamic range, controllable amplitude, high accuracy and it is insensitive to temperature variation. The circuit operates from $\pm 0.75 \mathrm{~V}$ power supply and consumes $0.5 \mu \mathrm{~W}$. The functionality of the proposed circuit was verified by simulation using HSPICE with $0.35 \mu \mathrm{~m} 2 \mathrm{p} 4 \mathrm{~m}$ CMOS process.

2.1.3.1 Proposed OTA-Based Design

The proposed design concept is shown in figure (2.13) (a). It consists of an Operational Transconductance Amplifier (OTA) and two PMOS transistors, M5 and M6 biased in weak inversion region. The physical layout is shown in figure (2.13), (b).

(a)

(b)

Figure 2.13 Proposed Circuit (a) Transistor level (b) Physical-Layout

It is well known that the output current of the OTA is given by:

$$
\begin{equation*}
I_{\text {out }}=g_{m}\left(V_{1}-V_{2}\right) \tag{2.23}
\end{equation*}
$$

where g_{m} is the transconductance of the MOSFET pair used in the OTA, V_{1} and V_{2} are the OTA's two input voltages. Transistors M5 and M6 are biased in weak inversion region and are used to convert the input currents I_{x} and I_{y} to voltages V_{1} and V_{2} respectively in logarithmic form as shown in equations (2.24) and (2.25) respectively:

$$
\begin{align*}
& \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{sg} 5}=\mathrm{V}_{\mathrm{DD}}-\mathrm{n} \mathrm{~V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{x}}}{\mathrm{I}_{\mathrm{Do}}}\right)-V_{t h} \tag{2.24}\\
& \mathrm{~V}_{2}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{sg} 6}=\mathrm{V}_{\mathrm{DD}}-\mathrm{n} \mathrm{~V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{Do}}}\right)-V_{t h} \tag{2.25}
\end{align*}
$$

Where V_{1} and V_{2} are the input voltages of M 1 and M 2 respectively, V_{DD} is the supply voltage, V_{sg} is the source-to-gate voltage.

Combining equations (2.24) and (2.25) yields:

$$
\begin{equation*}
\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)=\mathrm{nV}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right) \tag{2.26}
\end{equation*}
$$

Combining (2.26) and (2.23), one can easily get the output current $\mathrm{I}_{\text {out }}$ expressed by:

$$
\begin{equation*}
\mathrm{I}_{\text {out }}=\mathrm{g}_{\mathrm{m}} \mathrm{n} V_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right) \tag{2.27}
\end{equation*}
$$

The transconductance g_{m} of the transistor in weak inversion region is given by:

$$
\begin{equation*}
\mathrm{g}_{\mathrm{m}}=\frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{n} \mathrm{~V}_{\mathrm{T}}} \tag{2.28}
\end{equation*}
$$

where I_{D} is the drain current of MOSFETs M1 and M2 and is given by:

$$
\begin{equation*}
I_{D}=\frac{I_{\text {bias }}}{2} \tag{2.29}
\end{equation*}
$$

From (2.27), (2.28) and (2.29) the output current can be written as:

$$
\begin{equation*}
\mathrm{I}_{\text {out }}=\frac{\mathrm{I}_{\text {bias }}}{2} \cdot \ln \left(\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right) \tag{2.30}
\end{equation*}
$$

With reference to equation (2.30), if the current I_{x} is fixed, the output current $I_{\text {out }}$ is proportional to the logarithm of the input current I_{y} and if I_{y} is kept constant, then the function $\log (1 / x)$ can be realized. The amplitude of the output current can be scaled by varying the current $\mathrm{I}_{\text {bias }}$ of the OTA. As shown in figure (2.13) (a), the transistors M1-M4 form the OTA and M7-M8 provide the required bias current. Since M1-M6 are biased in the weak inversion region, the power consumption can be very low. Besides, there is only three transistors cascoded in the supply voltage path; it can operate under low supply voltage.

2.1.3.2 Second order effects

The characteristic of the logarithmic circuit in figure (2.13) was obtained by assuming transistors are perfectly matched. In real implementation there is always mismatch between the transistors in addition to the body effect error.

A. Mismatch analysis

 M1-M2 of the proposed logarithmic circuit is not perfectly matched due to a non identical slope factor (n) or mismatched aspect ratios $\left(\frac{W}{L}\right)$-which directly proportional to the g_{m} due to process variation, for example, the transconductance of M1 and M2 is $g_{m}+\Delta g_{m 1}$ and $g_{m}+\Delta g_{m 2}$ respectively; then equation (2.23) can be derived again as
$I_{\text {out }}=g_{m}\left(V_{1}-V_{2}\right)+\left\{\Delta g_{m 1}\left(V_{1}\right)-\Delta g_{m 2}\left(V_{2}\right)\right\}$
According to equation (2.31), and by recalculating equations (2.24)-(2.29), equation (2.30) can be rewritten as

$$
\begin{align*}
& I_{\text {out }}=\frac{I_{\text {bias }}}{2} \ln \left(\frac{I_{Y}}{I_{X}}\right)+\left\{\Delta g_{m 1}\left(V_{1}\right)-\Delta g_{m 2}\left(V_{2}\right)\right\} \tag{2.32}\\
& \left|I_{\text {error }}\right|=\left\{\Delta g_{m 1}\left(V_{1}\right)-\Delta g_{m 2}\left(V_{2}\right)\right\} \tag{2.33}
\end{align*}
$$

From equation (2.32), it is clear that a current error deviation is generated.
Moreover, assuming there is threshold voltage, $V_{\text {th }}$ mismatched between M5 and M6, where $V_{t h 5}=V_{t h}+\alpha$ and $V_{t h 6}=V_{t h}-\alpha$, respectively then equation (2.26) will be

$$
\begin{equation*}
V_{1}-V_{2}=\mathrm{nU}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{X}}}\right)+2 \alpha \tag{2.34}
\end{equation*}
$$

and then recalculate equations (2.24)-(2.29), the equation (2.30) can be rewritten as

$$
\begin{align*}
& I_{\text {out }}=\frac{I_{\text {bias }}}{2} \ln \left(\frac{I_{Y}}{I_{X}}\right)+\frac{\alpha I_{\text {bias }}}{n U_{T}} \tag{2.35}\\
& \left|I_{\text {error }}\right|=\frac{\alpha I_{\text {bias }}}{n U_{T}} \tag{2.36}
\end{align*}
$$

According to equation (2.35), the output current has two current components. The desired component that is proportional to the logarithmic of the input current in addition to undesired component. The undesired component is a constant current component.

Besides the transconductance and threshold voltage mismatch, the leakage current $I_{D o}$ of the MOSFET in subthreshold region is proportional to the aspect ratio of the MOSFET, consequently, if the aspect ratios of M5-M6 in figure (2.13) are mismatched due to the process variation, it would result in the leakage current of M5-M6 to be not identical; i.e., $I_{D o 5}=I_{D o}+\Delta I_{D O 5}$ and $I_{D o 6}=I_{D o}+\Delta I_{D o 6}$, and by substituting these leakage currents into equations (2.24)-(2.25), respectively, and recalculate equations (2.27)-(2.29), as a result equation (2.30) can be obtained again as

$$
\begin{equation*}
I_{\text {out }}=\frac{I_{\text {bias }}}{2} \ln \left(\frac{I_{\text {in }}}{I_{x}}\right)+\left\{\frac{I_{\text {bias }}}{2} \ln \left(\frac{I_{\mathrm{Do}}+\Delta \mathrm{I}_{\mathrm{D} 05}}{I_{\mathrm{D} 0}+\Delta \mathrm{I}_{\mathrm{D} 06}}\right)\right\} \tag{2.37}
\end{equation*}
$$

Subtracting equation (2.30) from equation (2.37) we get the output current error quantity as

$$
\begin{equation*}
\left|I_{\text {error }}\right|=\left\{\frac{I_{\text {bias }}}{2} \ln \left(\frac{\mathrm{I}_{\mathrm{Do}}+\Delta \mathrm{I}_{\mathrm{D} 55}}{\mathrm{I}_{\mathrm{Do}}+\Delta \mathrm{I}_{\mathrm{Do} 6}}\right)\right\} \tag{2.38}
\end{equation*}
$$

From equation (2.37) undesired component is generated.
To further investigate the mismatch effect, assuming that there is a $\pm 10 \%$ variation of the aspect ratios between M5 and M6. After thirty times iterations, the Monte Carlo analysis indicates that, the corresponding maximum deviation is 4.74%.

B. Error due to body effect

In the MOSFET transistors, as the source-to-bulk voltage $V_{S B}$ increases, the threshold voltage $V_{\text {th }}$ will be also increased. This is called the "body effect", which can be characterized by

$$
\begin{equation*}
V_{t h}=V_{t h 0}+\gamma\left[\sqrt{\left(2 \emptyset_{b}+\left|V_{S B}\right|\right)}-\sqrt{2 \emptyset_{b}}\right] \tag{2.39}
\end{equation*}
$$

where $V_{t h 0}$ is the zero body bias threshold voltage, γ is the bulk-threshold parameter (typical value of $0.7 V^{-\frac{1}{2}}$) and \emptyset_{b} is the surface-potential (typical value of 0.6 V). To avoid this effect, the cascaded MOS transistors should be placed in separated wells, and thus $V_{S B}$ will be zero. So, these transistors will have zero body bias threshold voltage. In M3 \rightarrow M8 transistors bulk is connected to the source, hence $V_{S B}=0$ and $V_{t h}=V_{t h 0}$, but in M1 and M2 transistors $V_{S B} \neq 0$. Considering this mismatch between M1 and M2 transistors where $V_{t h 1}=V_{t h}+\beta, V_{t h 2}=V_{t h}-\beta$ and β is the mismatch term between $V_{t h 1}$ and $V_{t h 2}$, equation (2.23) can be rewritten as

$$
\begin{equation*}
I_{\text {out }}=g_{m}\left(V_{1}-V_{2}\right)-g_{m} 2 \beta \tag{2.40}
\end{equation*}
$$

According to equation (2.40) and then recalculate equations (2.26)-(2.29), the equation (2.30) can be rewritten as

$$
\begin{align*}
& I_{\text {out }}=\frac{I_{\text {bias }}}{2} \ln \left(\frac{I_{Y}}{I_{X}}\right)-\frac{\beta I_{\text {bias }}}{n U_{T}} \tag{2.41}\\
& \left|I_{\text {error }}\right|=\frac{\beta I_{\text {bias }}}{n U_{T}} \tag{2.42}
\end{align*}
$$

Form equation (2.41), it is clear that the body effect will cause a deviation error. The amount of the deviation is indicated in equation (2.42). To prevent this deviation, the cascoded MOS transistors should be placed in separated wells.

2.1.3.3 Simulation Results \& Discussion

The functionality of the proposed circuit was carried out using HSPICE tool where the Taiwan Semiconductor Manufacturing Company (TSMC) $0.35 \mu \mathrm{~m}$ two-polysilicon and four-metal layer (2 p 4 m) CMOS processes was employed to simulate the circuit.

For the MOSFET to work in weak inversion forward saturation, the following two conditions must be satisfied [37],

$$
\begin{gather*}
\left\{\begin{array}{l}
V_{D S} \geq 3 V_{T}, \quad \text { for } N M O S \\
V_{S D} \geq 3 V_{T}, \quad \text { for PMOS }
\end{array}\right. \tag{2.43}\\
I_{D}<I_{D o} \tag{2.44}
\end{gather*}
$$

The threshold voltage for the NMOS transistor is 0.582 V and that for the PMOS transistor is -0.766 V in our process and the voltage supply in the simulation is $\pm 0.75 \mathrm{~V}$. To comply with equations (2.43) and (2.44), the aspect ratios of all transistors of the proposed logarithmic function circuit are listed in table (2.3) and the bias current can be set from 40nA up to $175 n$ A.

Table 2.3 Summery of transistors dimensions of figure (2.13)

Transistor	Aspect Ratio $\frac{\boldsymbol{w}(\mu \mathrm{m})}{L(\mu \mathrm{~m})}$	Ratios
M1-M2	$3.5 / 1.75$	2
M3-M4	$3.5 / 19.6$	$1 / 5.6$
M5-M6	$21 / 0.35$	60
M7-M8	$14 / 14$	1

The simulated results are shown in figure (2.14) where the bias current $I_{\text {bias }}=135 \mathrm{nA}$ (i.e. $I_{D} \simeq 68.5 n A$), $I_{x}=100 n A$ and $\mathrm{V}_{\mathrm{DD}}=-\mathrm{V}_{\mathrm{SS}}=0.75 \mathrm{~V}$. As the input current I_{y} varies from 20 nA to 350 nA (while $I_{x}=100 \mathrm{nA}$), the measured output current range can be 173.1 nA (from $-93.83 n A$ to $79.25 n A$). It appears from figure (2.14) that the simulated results are in very good agreement with the required function which confirms the functionality of the developed design. The output current was measured by forcing it through a grounded load resistor $R_{L}=1 k \Omega$. On a semi-logarithmic scale the transfer (or $I_{\text {in }}-I_{o u t}$) curve will, therefore, be a straight line. The measured maximum power consumption is $0.5 \mu \mathrm{~W}$.

Figure 2.14 DC transfer characteristics of logarithmic circuit
(a) Linear scale (b) Semi-Log scale of x-axis

However, as the bias current was set to 115 nA and 170 nA , respectively; under the same test conditions, the corresponding output current ranges are about 147.1nA (from -79.4 nA to 67.7 nA) and 211 nA (from -115.2 nA to 95.8 nA), respectively. It is clear that as the
$I_{\text {bias }}$ increased the output dynamic range will increased. Figure (2.15) shows the output current curves with different values of the gain term $\left(I_{\text {bias }}\right)$.

Figure 2.15 The output current with different gain values

If the current I_{x} is set to $80 \mathrm{nA}, 100 \mathrm{nA}$ and 120 nA , the zero output current will be at $I_{y}=80 \mathrm{nA}, 100 \mathrm{nA}$ and 120 nA , respectively. The results of the output current with different I_{x} are shown in figure (2.16). As I_{x} increased, it is observed that at higher values of the input current, I_{y}, the corresponding error will be less than the error at lower values of the input current and vice versa. The errors between the simulated results and the theoretical values calculated by equation (2.30) have calculated with $I_{\text {bias }}=115 \mathrm{nA}, 135 \mathrm{nA}$ and 170 nA , respectively. The maximum measured error was 5.7%.

Figure 2.16 the output current with different Ix (different zeros of output current)

The stability of the proposed design against the temperature variation has been confirmed, the temperature was varied from -25 to $+75^{\circ} \mathrm{C}$ (in degree Celsius) and the output current was compared. The output current was normalized to its current at level $+25^{\circ} \mathrm{C}$ and it appears from figure (2.17) that $I_{\text {out }}$ shows good performance with temperature variation. The frequency response of the proposed logarithmic circuit is shown in figure (2.18), where the simulation was performed with the $I_{x}=100 \mathrm{nA}$, the magnitude of the input DC and small signals were 165 nA and 135 nA , respectively, and also a 10 pF capacitor was attached to the output as a load. At the bias current $I_{\text {bias }}=135 \mathrm{nA}$ and 115 nA , the corresponding -3 dB bandwidth is 7.56 MHz and 7.88 MHz , respectively.

Figure 2.17 Simulation results for temperature independency

Figure 2.18 Frequency response of the proposed logarithmic circuit

The transient simulation shown in figure (2.19) was measured by applying the sinusoidal input current I_{y} with peak amplitude of 135 nA , DC component of 165 nA and the frequency is 1 MHz . Figure (2.20) shows the output current waveform for the triangular input signal current of 280 nA peak to peak and $\mathrm{f}=10 \mathrm{kHz}$. The proposed circuit in figure (2.13) has been simulated for $\log (1 / x)$ realization. If I_{x} varied from 20 nA to 350 nA (while $I_{y}=100 \mathrm{nA}$) the corresponding output current results in semi-log scale are shown in figure (2.21). The gain of $\log (1 / x)$ realization has been adjusted by taking three different values of the bias current, $I_{\text {bias }}=115 \mathrm{nA}, 135 \mathrm{nA}$ and 170 nA , respectively, as shown in Figure (2.22). Figure (2.23) shows the performance of the proposed logarithmic circuit $\frac{I_{\text {bias }}}{2} \ln \left(\frac{I_{y}}{I_{x}}\right)$ for changes of $\pm 1 \%$ in the parameter W/L for transistors M5 and M6. Inspection of figure (2.23) shows that the proposed logarithmic function enjoys good performance with variations in W/L with maximum deviation $\pm 4.5 \%$.

Figure 2.19 Transient response

Figure 2.20 Triangular wave response

Figure 2.21 The output current response for $\log (1 / \mathrm{x})$ realization

Figure 2.22 Gain adjustment for $\log (1 / \mathrm{x})$ realization

Figure 2.23 Variation of $I_{o u t}$ with $\pm 1 \%$ change in W/L of transistors M5 \& M6

The summary of the performance comparison with the most recent published works is listed in table (2.4).

Table 2.4 Performance comparison

Parameter	Performance						
	[26]	[27]	[28]	Proposed Work			
Process	$0.18 \mu \mathrm{~m}$ BiCMOS	$0.5 \mu \mathrm{~m}$ CMOS	$0.18 \mu \mathrm{~m}$ CMOS	$0.35 \mu \mathrm{~m}, 2 \mathrm{p} 4 \mathrm{~m}$ CMOS			
No. of transistors	9 (2 BJT)	21	4	8			
Passive elements e.g. R \& C	Two resistors	Two resistors	Non	Non			
Operation Region	Active (BJT)	Weak inversion	Weak inversion	Weak inversion			
Voltage Supply (V)	> 1.3	-	1.8	± 0.7			
Inputloutput	Voltage voltage	Current \backslash current	Current $\$ voltage & Current\current \hline Max. linearity error & 36 dB (63\%) & NA & 5\% & 4.7\% \hline Power dissipation ($\mu \mathrm{W}$)	17750	NA	0.3	0.675
Gain controllability	No	Yes	No	Yes			
True for $x \geq 1$ or $<$ 1 ?	Not satisfied	Not satisfied	Satisfied	Satisfied			
Temperature	Dependent	Compensated using a PTAT* and resistive cancellation technique	Dependent	Independent			

**Proportional-to-absolute- temperature (PTAT)

2.2 CMOS Exponential Function Circuit

2.2.1 Introduction

The exponential function generator produces an output waveform (current/voltage) which is an exponential function of the input waveform (current/voltage). The exponential characteristics can be easily obtained in BiCMOS or Bipolar technologies using the intrinsic characteristics $\left(I_{C} / V_{B E}\right)$ of the bipolar transistors [38]. Though, it is not easy to realize such function in CMOS technology because the inherent square-law or linear characteristics of MOSFET operating in strong inversion region. So the widely used technique to implement analog exponential function circuits using MOSFET in strong inversion is based on pseudo-approximations. To mathematically implement the exponential function by this method, different approximations have been already introduced; Taylor series $2^{\text {nd }}$ order [39-42], Taylor series $4^{\text {th }}$ order [43], Pseudo exponential [44], Pseudo-Taylor approximation [45], Modified Pseudo-Taylor approximation [46], approximation proposed by Ming-Lang et. al. in 2008 [47].

A MOSFET device biased in weak inversion region is a well-known approach to introduce an exponential function due to the exponential relationship between $I_{D S}$ and $V_{G S}$ of MOSFET in weak inversion regime; see for example references [28-29, 48-49] and some of the references cited therein. Referring to equation (1.3), the drain current of MOSFET in weak inversion region is given by:

$$
I_{D S}=2 \mathrm{n} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{W}{L} \mathrm{~V}_{\mathrm{T}}^{2} e^{\left(\frac{V_{g s}-V_{t h}}{n U_{T}}\right)}
$$

Although the low $V_{G S}$ voltage makes this technique efficient in low voltage applications compared with approximations that use MOSFET in strong inversion regime but, obviously, the exponential relation between $I_{D S}$ and $V_{G S}$ is not perfect because it suffers
from strongly temperature dependency, threshold voltage variation effect and sensitivity against process variation. Therefore, it is highly preferred to design exponential function generator satisfies the following:

- Accurate and stable exponential function design against temperature variation
- Robust and efficient design versus the supply voltage variation
- Current-input current-output exponential generator thus providing higher frequencies of operation and wider dynamic ranges.
- Extended output range
- Minimum linearity error

In this thesis, a new exponential approximation is proposed. This approximation demonstrates 96 dB output dynamic range over maximum input range $-5.75 \leq x \leq 5.75$ while keeping linearity error in $\pm 0.5 \mathrm{~dB}$ level. The implemented circuit is designed and simulated using $0.35 \mu \mathrm{~m}$ CMOS process.

2.2.2 Proposed Exponential Circuit Design

MOSFETs biased in weak inversion region are used not to utilize the inherent exponential $\left(I_{D S} / V_{G S}\right)$ relationship but to simply implement x^{2} and x^{4} terms using translinear loops. The term x^{4} can be easily realized by two cascaded squaring units. Complete design of low voltage $(\pm 0.75 \mathrm{~V})$ and low power $(6.13 \mu \mathrm{~W})$ current-input current-output exponential function generator is presented. A 96 dB range linearly in dB output current with $\pm 0.5 \mathrm{~dB}$ linearity error was attained. The output current shows stable characteristics ($\pm 1.27 \mathrm{~dB}$) with $100^{\circ} \mathrm{C}$ temperature range $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.75^{\circ} \mathrm{C}\right)$. Additionally the design features with low
sensitivity against voltage supply variation which is $\pm 3.35 \mathrm{~dB}$ for $\pm 10 \%$ variation from the nominal value.

2.2.2.1 The proposed Approach

Motivated by the approximations [39-47], a new approximation formula for exponential function generator is proposed in this thesis as follows:

$$
\begin{equation*}
e^{x} \cong \frac{0.025+(1+0.125 x)^{4}}{0.025+(1-0.125 x)^{4}} \tag{2.45}
\end{equation*}
$$

The plot in dB scale of equation (2.45) is shown in figure (2.24). The dB -value comparison of different approximations described in the prior art and the error of each one with the proposed equation (2.45) are shown in figure (2.25) and figure (2.26), respectively. From figures (2.25) and (2.26), it is evident that the proposed approximation achieves the best output range and maximum normalized input range compared to the other approximations with $\pm 0.5 \mathrm{~dB}$ error.

Table (2.5) summarizes the output range and the input range of different approximations compared to the proposed pseudo-exponential in this work with linearity error less than $\pm 0.5 \mathrm{~dB}$.

Figure 2.24 Proposed approximation curves (a) Numerator (b) Denominator (c) Proposed equation (2.45)

Table 2.25 Different approximations comparison

Table 2.26 The error between different approximations and the ideal function

Table 2.5 Different exponential approximations comparison

Approximation	Equation	Input range	Output range
$2^{\text {nd }}$ Order Taylor Series [39]	$1+x+\frac{1}{2} x^{2}$	$-0.6 \leq x \leq 0.85$	13.3 dB
$4^{\text {th }}$ Order Taylor Series [43]	$1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}$	$-1.2 \leq x \leq 2.0$	30 dB
Pseudo exponential [43]	$e^{x} \cong \frac{1+0.5 x}{1-0.5 x}$	$-0.85 \leq x \leq 0.85$	14.8 dB
Pseudo-Taylor approximation $(\mathrm{m}=1)[45]$	$e^{x}=\frac{e^{0.5 x}}{e^{-0.5 x}} \cong \frac{m+(1+0.5 x)^{2}}{m+(1-0.5 x)^{2}}$	$-1.08 \leq x \leq 1.08$	17.8 dB
Pseudo-Taylor approximation $(\mathrm{m}=0.82)[45]$	$e^{x}=\frac{e^{0.5 x}}{e^{-0.5 x}} \cong \frac{m+(1+0.5 x)^{2}}{m+(1-0.5 x)^{2}}$	$-1.63 \leq x \leq 1.63$	27.2 dB
Modified PseudoTaylor approximation [46]	$e^{x} \cong \frac{0.12+(1+0.25 x)^{2}}{0.12+(1-0.25 x)^{2}}$	$-3.1 \leq x \leq 3.1$	56dB
Approximation proposed in 2008 [47]	$e^{x}=\left[\frac{e^{0.25 a x}}{e^{-0.25 a x}}\right]^{2} \cong \frac{-0.026 a x+(1+0.25 a x)^{2}}{0.026 a x+(1-0.25 a x)^{2}}$	$-3.3 \leq x \leq 3.3$	60dB
Proposed	$e^{x} \cong \frac{0.025+(1+0.125 x)^{4}}{0.025+(1-0.125 x)^{4}}$	$-5.75 \leq x \leq 5.75$	96dB

2.2.2.2 Circuit Description

A. Circuit Design

The full block diagram of the proposed design is shown in figure (2.27). The number of transistors used in the overall circuit is 65 MOSFETs without any passive elements and all of them stacked between $\pm 0.75 \mathrm{~V}$ voltage-supply.

Figure 2.27 Block diagram of the proposed current-mode exponential generator

B. Squaring Unit (SU)

The squaring unit used in block diagram shown in figure (2.27) is shown in figure (2.28). The voltage supply is $\pm 0.75 \mathrm{~V}$ and the aspect ratios of the transistors are illustrated in table (2.6). The constant currents equal to $4 I_{\text {ref }}$ and $1.6 I_{\text {ref }}$ can be easily provided by a proper current source and current sink of current $I_{r e f}$; e.g. if the current $I_{r e f}$ in figure (2.27) set
to be 25 nA , then the constant current $4 I_{\text {ref }}$ flows through M9 \{in squaring unit, figure (2.28) $\}$ will be 100 nA .

Figure 2.28 Squaring Unit (SU) [17]

With reference to figure (2.28), and by applying Translinear Loop (TL) through M1-M4 transistors then,

$$
\begin{equation*}
V_{g s 1}+V_{g s 2}=V_{g s 3}+V_{g s 4} \tag{2.46}
\end{equation*}
$$

where $V_{g s 1}, V_{g s 2}, V_{g s 3}$ and $V_{g s 4}$ are the gate-to-source voltages of M1, M2, M3 and M4 respectively. From equation (1.3) and equation (2.46), one can easily get the following:

$$
\begin{equation*}
I_{1} I_{2}=I_{3} I_{4} \tag{2.47}
\end{equation*}
$$

since $I_{1}=I_{2}=I_{x}, I_{3}=4 I_{\text {ref }}$ and $I_{4}=I_{\text {out }}$ then the output current will be expressed as follows:

$$
\begin{equation*}
I_{o u t}=\frac{I_{x}^{2}}{4 I_{r e f}} \tag{2.48}
\end{equation*}
$$

Equation (2.48) represents the current-mode squaring function. Since the squaring circuit is a key block in the proposed current-mode exponential generator as indicated in figure (2.27), the simulation results has been carried out to demonstrate the validity of the theory. The corresponding maximum error is 1.5% and the circuit is stable with temperature variation as demonstrated in figure (2.31).

Table 2.6 Aspect ratios of squaring unit

Transistor	Aspect Ratio $\frac{w(\mu \mathrm{~m})}{L(\mu \mathrm{~m})}$	Ratio
M1, M3	$3.5 / 7$	0.5
M2, M4	$91.7 / 7$	13.1
M5-M10	$7 / 7$	1

Figure 2.29 Simulation results of the SQ block

Figure 2.30 Error of the SU block

Figure 2.31 SU block results for different Temperatures

C. Current divider

Figure 2.32 Single-Quadrant Divider [50]

The transistors involved in dashed box Ma-Md in figure (2.32) forms a single-quadrant current divider [50] where all transistors are operating in subthreshold region. By analyzing this loop, we will get the following:

$$
\begin{align*}
& V_{s g a}+V_{s g b}=V_{s g c}+V_{s g d} \tag{2.49}\\
& I_{a} I_{b}=I_{c} I_{d} \tag{2.50}
\end{align*}
$$

with $I_{a}=I_{w}, I_{b}=0.125 I_{\text {num }}, I_{c}=0.125 I_{\text {den }}$, and $I_{d}=I_{\text {out }}$. Then the equation (2.50) will be

$$
\begin{equation*}
I_{o u t, D i v i d e r}=I_{w} \frac{I_{\text {num }}}{I_{\text {den }}} \tag{2.51}
\end{equation*}
$$

The transistor ratios are shown in table (2.7). The $\left(\frac{W}{L}\right)_{j, l}=\frac{1}{8}\left(\frac{W}{L}\right)_{i, k}$ to scale down the currents $I_{\text {num }}$ and $I_{\text {den }}$ so that transistors Mb (which represents the dividend quantity) and Mc (represents divisor quantity) can absorb this amount of current and as a result the quotient amount (represented by Md) can be improved in terms of accuracy. This implies
that the aspect ratios of all the transistors involved in the translinear loop must be selected to meet the anticipated dynamic range of the input and output currents.

Table 2.7 Transistor dimensions of figure 2.2

Transistor	Aspect Ratio $\frac{w(\mu \mathrm{~m})}{L(\mu \mathrm{~m})}$	Ratio
Ma, Md	$196 / 1.4$	140
Mb, Md	$175 / 1.4$	125
$\mathrm{Me}-\mathrm{Mh}$	$7 / 7$	1
Mi, Mk	$19.6 / 19.6$	1
Mj, Ml	$2.45 / 19.6$	0.125
$\mathrm{Mm}-\mathrm{Mn}$	$1 / 1$	1

D. Current Mirror (CM):

Figure (2.33) shows the current mirror with two output currents. If the input current is I_{x} then two copies of this current can obtained at the output, I_{x} and $-I_{x}$. The dimensions of CM are listed in table (2.8). The simulation results with $\pm 0.75 \mathrm{~V}$ voltage supply are shown to verify the functionality of the circuit. Figure (2.34) and figure (2.35) shows the DC transfer characteristics and transient response, respectively. The error calculated is very small as shown in figure (2.36).

Figure 2.33 current mirror (a) circuit (b) symbol

Table 2.8 Dimensions of CM (figure 2.33)

Transistor	Aspect Ratio $\frac{W(\mu \mathrm{~m})}{L(\mu \mathrm{~m})}$	Ratio
Mn1-Mn5	$1 / 10$	0.1
Mp1-Mp5	$1.7 / 10$	0.17

Figure (2.34) DC curves of BDCM

Figure 2.35 Transient response of BDCM

Figure 2.36 Amount of Error (nA) for BDCM

With the reference to the figure (2.27) there are six nodes A, B, C, D, E and F. The current flows through these nodes as follows:

$$
\begin{align*}
& I_{A}=8 I_{r e f}+I_{x}=8 I_{r e f}\left(1+0.125 \frac{I_{x}}{I_{r e f}}\right) \tag{2.52}\\
& I_{B}=8 I_{r e f}-I_{x}=8 I_{r e f}\left(1-0.125 \frac{I_{x}}{I_{r e f}}\right) \tag{2.53}\\
& I_{C}=\frac{\left(8 I_{r e f}\right)^{2}\left(1+0.125 \frac{I_{x}}{I_{r e f}}\right)^{2}}{4 I_{r e f}} \tag{2.54}\\
& I_{D}=\frac{\left(8 I_{r e f}\right)^{2}\left(1-0.125 \frac{I_{x}}{I_{r e f}}\right)^{2}}{4 I_{r e f}} \tag{2.55}
\end{align*}
$$

$$
\begin{align*}
& I_{E}=\frac{\left(8 I_{r e f}\right)^{4}\left(1+0.125 \frac{I_{x}}{I_{r e f}}\right)^{4}}{\left(4 I_{r e f}\right)^{3}}=64 I_{r e f}\left(1+0.125 \frac{I_{x}}{I_{r e f}}\right)^{4} \tag{2.56}\\
& I_{F}=\frac{\left(8 I_{r e f}\right)^{4}\left(1-0.125 \frac{I_{x}}{I_{r e f}}\right)^{4}}{\left(4 I_{r e f}\right)^{3}}=64 I_{r e f}\left(1-0.125 \frac{I_{x}}{I_{r e f}}\right)^{4} \tag{2.57}\\
& I_{\text {num }}=1.6 I_{\text {ref }}+64 I_{\text {ref }}\left(1+0.125 \frac{I_{x}}{I_{r e f}}\right)^{4}=64 I_{r e f}\left[0.025+\left(1+0.125 \frac{I_{x}}{I_{r e f}}\right)^{4}\right] \tag{2.58}\\
& I_{\text {den }}=1.6 I_{\text {ref }}+64 I_{r e f}\left(1-0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4}=64 I_{r e f}\left[0.025+\left(1-0.125 \frac{I_{x}}{I_{r e f}}\right)^{4}\right] \tag{2.59}
\end{align*}
$$

By recall equation (2.51), the output current of the proposed EXPFG will be

$$
\begin{align*}
& I_{\text {out }}=I_{w} \frac{I_{\text {num }}}{I_{\text {den }}}=I_{w}\left\{\frac{\left[0.025+\left(1+0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4}\right]}{\left[0.025+\left(1-0.12 \frac{I_{x}}{I_{\text {ref }}}\right)^{4}\right]}\right\} \cong I_{w} e^{\left(\frac{I_{x}}{I_{\text {ref }}}\right)} \tag{2.60}\\
& I_{\text {out }}=I_{w} e^{\left(\frac{I_{x}}{I_{r e f}}\right)} \tag{2.61}
\end{align*}
$$

where $I_{\text {out }}$ is the output current, I_{x} is the input ac signal, $I_{\text {ref }}$ is a constant current and I_{w} is a DC component which can be used to scale the output signal. From equation (2.61), it is clear that the exponential current-mode generator can be realized and its output current can be adjusted by I_{w}. The full circuit of the proposed current-mode exponential function generator (EXPFG) is shown in figure (2.37).

Figure 2.37 The full circuit of the exponential function

2.2.2.3 Current Mirror Mismatch

Referring to the figure (2.27), if the current mirror $1.6 I_{\text {ref }}$ is not exact (i.e. it is equal to $1.6 I_{r e f}+\Delta I_{r e f}$), then equations (2.58) to (2.60) can be reevaluated and the output current will be expressed as (See appendix A for more details):

$$
\begin{equation*}
I_{o u t}=I_{w} \frac{I_{\text {num }}}{I_{\text {den }}}=I_{w}\left\{\frac{\left[k+\left(1+0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4}\right]}{\left[k+\left(1-0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4}\right]}\right\} \tag{2.62}
\end{equation*}
$$

where $k=0.025+\frac{\Delta I_{r e f}}{64 I_{r e f}}$. Assume that there is $\pm 10 \%$ deviation from the exact value (0.025); the results shown in figure (2.38) show that the deviation is not significant.

Figure 2.38 Effect of mismatch in the current mirror

2.2.3 Simulation Results

The circuit in figure (2.37) is used to implement the proposed function and is verified by simulation in $0.35 \mu \mathrm{~m}$ CMOS process technology with supply voltage $\pm 0.75 \mathrm{~V}$. The threshold voltage of PMOS and NMOS is 0.833 V and 0.572 V in this process technology. The Tanner simulation result is illustrated in figure (2.39) where $I_{\text {ref }}$ equals to 25 nA . Thus the x-axis, $150 n A \leq I_{x} \leq 150 n A$, can be normalized as $-6 \leq \mathrm{x} \leq 6$ for comparing to figure (2.25). The curve of the proposed function is very close to the ideal exponential function, $I_{w} e^{\left(\frac{I_{x}}{25 n A}\right)}$, with a high output dynamic range, nearly 96 dB . The error between the proposed function and the ideal exponential function, $I_{w} e^{\left(\frac{I_{x}}{25 n A}\right)}$, is limited to $\pm 0.5 \mathrm{~dB}$ when $-137.5 n A \leq I_{x} \leq 137.5 n A$, as illustrated in figure (2.40).

Figure 2.39 Linear-in-dB characteristics of the proposed EXPFG

Figure 2.40 The error in dB between the equation (2.45) and its CMOS implementation figure (2.37)

The simulation of transient response has been carried out with sinusoidal input signal of frequency 5 kHz . The results are shown in figure (2.41). Figure (2.42) presents the results of normalized output current $I_{\text {out }}(\mathrm{dB})$ at $-25^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}$. As expected the inputloutput characteristics are roughly stable with temperature variation. The linearity error remains less than $\pm 1.5 \mathrm{~dB}$ for the full scale of the input current range. The maximum deviation of the output current was about $\pm 1.27 \mathrm{~dB}$ and is occurred for the normalized value $\frac{I_{x}}{I_{\text {ref }}}=5.25$.

Figure (2.43) clarifies the results of the normalized output current $I_{\text {out }}(\mathrm{dB})$ characteristics for $\pm 10 \%$ variation of the supply voltages $V_{D D}$ and $V_{S S}$ at the nominal temperature of $25^{\circ} \mathrm{C}$. The corner values of the supply voltage were $\pm 0.675 \mathrm{~V}$ and $\pm 0.825 \mathrm{~V}$, where ± 0.75 V was the nominal supply. Table (2.9) summarizes the performance of the proposed circuit with recently published works.

Figure 2.41 Transient response

Figure 2.42 Temperature variation $-25^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}$

Figure 2.43 Linear-in-dB characteristics for $\pm 10 \%$ variation in voltage supply

Table 2.9 Performance comparison table between different exponential function circuits

Parameter	[28]	$[39]^{\text {[1] }}$	[47]	[49]	This work
Year	2011	2005	2008	2012	2012
Voltage Supply	1.8 V	1 V	1.8 V	1.5 V	$\pm 0.75 \mathrm{~V}$
Process	$0.18 \mu \mathrm{~m}$ CMOS	$0.35 \mu \mathrm{~m}$ CMOS	$0.18 \mu \mathrm{~m}$ CMOS	$0.35 \mu \mathrm{~m}$ CMOS	$0.35 \mu \mathrm{~m}, 2 \mathrm{p} 4 \mathrm{~m}$ CMOS
Power dissipation	214nW	$3.5 \mu \mathrm{~W}$	NA	400 uA	6.13uW
Technique	Exact	Approximation	Approximation	Exact	Approximation
Operation Region	Weak inversion	Weak inversion	Strong inversion	Weak inversion	Weak inversion
Input Signal	voltage	current	current	voltage	current
Output Signal	current	current	current	current	current
Linear-in-dB range	NA	8.5 dB	58 dB	40dB	96 dB
Linearity error	$\pm 0.92 \mathrm{~dB}$	$\pm 0.45 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.75 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$
BW	NA	NA	NA	NA	105 kHz
$\Delta \mathrm{T}$ range	Dependent	NA	NA	$-10^{\circ} \mathrm{C}: 70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}: 75^{\circ} \mathrm{C}$
Error due ΔT	Dependent	NA	NA	$\pm 3 \mathrm{~dB}$	$\pm 1.27 \mathrm{~dB}$
$\Delta \mathrm{V}$ range	NA	NA	NA	$\pm 10 \% \mathrm{~V}$	$\pm 10 \% \mathrm{~V}$
Error due $\Delta \mathrm{V}$	NA	NA	NA	$\pm 1 \mathrm{~dB}$	$\pm 3.35 \mathrm{~dB}$

\{1\} Experimental

CHAPTER 3

VARIABLE GAIN AMPLIFIERS (VGAs)

To verify the effectiveness of the logarithmic and exponential structures proposed in chapter 2, different \log-antilog based circuits for different applications have been developed in chapters $3 \& 4$. In this chapter two kinds of variable-gain amplifiers are presented; logarithmically-controlled variable-gain attenuator (LCVGA) and exponentialcontrol variable-gain amplifier. Variable-gain amplifier can be used in many applications that need gain control to improve the performance of the overall system.

3.1 Logarithmically-Controlled Variable-Gain Attenuator (LCVGA)

This design presents a novel current-mode building block for analog signal processing, namely logarithmic-control variable-gain attenuator (LCVGA). It consists of two Operational Transconductance Amplifier (OTA) and two PMOS transistors designed to work in subthreshold regime. The circuit operates from $\pm 0.75 \mathrm{~V}$ DC power supply with three transistors stacked in the electric path between +ve supply and -ve supply and consumes $0.6 \mu \mathrm{~W}$. The output range is 43 dB with maximum error less than $\pm 0.5 \mathrm{~dB}$. The functionality of the proposed design was confirmed using Tanner tool in $0.35 \mu \mathrm{~m}$ CMOS process technology. This circuit is expected to be a useful building block for AGCs for Bionic Ears (BE).

3.1.1 General Overview

In signal processing, sometimes the signal may be too large to be handled. So compression (i.e. attenuation) process is needed to scale down the signal in order to process it properly. Such block can be found in high frequency applications like RF receivers [51], low frequency applications e.g. analog bionic ear processor [52] and automated gain control (AGCs) in auditory prostheses [53]. The attenuation characteristics can be carried out by a linear function, power-law compression or logarithmic characteristics. The inherent characteristics of MOSFET in subthreshold region have been utilized to introduce a current-mode logarithmically-controlled variablegain attenuator suitable for low power AGCs.

Figure 3.1 Characteristics of the natural logarithmic curve

To more clarify the different regions of natural logarithmic input/output transfer curve; see figure (3.1). It can be seen that the compression (attenuation) process happened as follows:

$$
\text { Attenuation when }\left\{\begin{array}{cc}
1<x<e & 0^{\circ} \mathrm{C} \text { phase shift } \\
e^{-1}<x<1 & 180^{\circ} \mathrm{C} \text { phase shift }
\end{array}\right.
$$

3.1.2 Proposed LCVGA

The complete circuit diagram of the proposed design is shown in figure (3.2). It consists of two OTAs, current mirror and two PMOS transistors biased in weak inversion region used for current- to-voltage compression. Transistors in dashed boxes (M1-M4 and M7M10) form OTA_{1} and OTA_{2} respectively. Transistors M11, M12\& M13 form the current mirror required to mirror $\mathrm{I}_{\text {bias }}$ from M11 into transistor M12 and M13 with 1:1 ratio. Figure (3.3) shows the block diagram for the realization of the proposed function.

Figure 3.2 Proposed LCVGA

Figure 3.3 Block diagram for the realization of figure (3.2)

With reference to figure (3.2), the output current of the OTA is given by:

$$
\begin{equation*}
I_{\text {out }(\text { OTA })}=g_{m}\left(V_{1}-V_{2}\right) \tag{3.1}
\end{equation*}
$$

The transconductance g_{m} of the transistor in weak inversion region is given by:

$$
\begin{equation*}
\mathrm{g}_{\mathrm{m}}=\frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{n} U_{\mathrm{T}}} \tag{3.2}
\end{equation*}
$$

Where $g_{m}=\frac{I_{D}}{n U_{T}}$, the transconductance of MOS in weak inversion used in the OTAs, I_{D} is the drain current of MOSFETs form differential pairs in OTA1 and OTA2 and is given by $\mathrm{I}_{\mathrm{D}}=\frac{\mathrm{I}_{\text {bias }}}{2}, V_{1}$ and V_{2} are the two input voltages. The control current I_{x} and input current I_{y} are converted to voltages V_{1} and V_{2} in logarithmic form through transistors M_{5} and M_{6} respectively according to the following equations:

$$
\begin{align*}
& \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{sg} 5}=\mathrm{V}_{\mathrm{DD}}-\mathrm{nU} \mathrm{U}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{x}}}{\mathrm{I}_{\mathrm{Do}}}\right)-\mathrm{V}_{\mathrm{th}} \tag{3.3}\\
& \mathrm{~V}_{2}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{sg} 6}=\mathrm{V}_{\mathrm{DD}}-\mathrm{nU} \mathrm{U}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{Do}}}\right)-\mathrm{V}_{\mathrm{th}} \tag{3.4}
\end{align*}
$$

Where V_{DD} is the supply voltage and V_{sg} is the source to gate voltage, $U_{T}=\frac{K T}{q}$ is the thermal voltage, n is the slope factor and I_{Do} is the leakage current of the MOSFET. Combining equations (3.3) and (3.4) yields

$$
\begin{align*}
& \left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)=\mathrm{nU}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right) \tag{3.5}\\
& \left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=\mathrm{nU}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\underline{\mathrm{x}}}}{\mathrm{I}_{\mathrm{y}}}\right) \tag{3.6}
\end{align*}
$$

According to equation (3.1) and by combining equations (3.2)-(3.6), one can easily get the equations (3.7)-(3.10)

$$
\begin{align*}
& I_{O 1}=g_{m}\left(V_{1}-V_{2}\right) \tag{3.7}\\
& I_{O 2}=g_{m}\left(V_{2}-V_{1}\right) \tag{3.8}\\
& I_{O 1}=g_{m} \mathrm{nU}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right) \tag{3.9}\\
& I_{O 2}=g_{m} \mathrm{nU}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{x}}}{\mathrm{I}_{\mathrm{y}}}\right)=-g_{m} \mathrm{nU}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right) \tag{3.10}
\end{align*}
$$

It is easy to show that the output currents of OTA1 and OTA2 are given by equations (3.11) and (3.12) expressed by:

$$
\begin{align*}
& I_{O 1}=\left(\frac{I_{i n}+I_{\text {bias }}}{2}\right) \cdot \ln \left(\frac{I_{y}}{I_{x}}\right) \tag{3.11}\\
& I_{O 2}=-\frac{I_{\text {bias }}}{2} \cdot \ln \left(\frac{I_{y}}{I_{x}}\right) \tag{3.12}
\end{align*}
$$

With reference to figure (3.1) and from equations (4) and (5) the output current is given by:

$$
\begin{align*}
& I_{o u t}=I_{O 1}+I_{O 2} \\
& I_{o u t}=\frac{I_{i n}}{2} \ln \left(\frac{I_{y}}{I_{x}}\right) \tag{3.13}
\end{align*}
$$

The amplifier current gain is given by:

$$
\begin{align*}
& A_{i}=\frac{I_{\text {out }}}{I_{\text {in }}}=\frac{1}{2} \ln \left(\frac{I_{y}}{I_{x}}\right) \\
& \mathrm{A}_{\mathrm{i}}=\ln \left(\frac{I_{y}}{I_{x}}\right)^{\frac{1}{2}} \tag{3.14}
\end{align*}
$$

According to equation (3.14) a current-mode variable-gain attenuator can be realized and its attenuation amount can be logarithmically controlled by the controlled currents I_{y} and I_{x}. The output signal can be attenuated twice, one by the square-root and then by the natural logarithmic characteristics.

3.1.3 Simulation Results

The proposed LCVGA was simulated using Tanner tool in $0.35 \mu \mathrm{~m} 2 \mathrm{p} 4 \mathrm{~m}$ CMOS process technology. The results obtained at $I_{\text {bias }}=100 \mathrm{nA}, I_{x}=100 \mathrm{nA}$, and $\mathrm{V}_{\mathrm{DD}}=-\mathrm{V}_{\mathrm{SS}}=$ 0.75 V . If a sinusoidal signal applied at the input $i_{\text {in }}(t)=60 \mathrm{nA} \sin (2 \pi * 10 \mathrm{kHz} * t)$ and atten $=0.5$. It is clear from figure (3.4) that the simulated results are in very good agreement with the theoretical one, which confirms the functionality of the developed design.

Figure 3.4 Transient response of LCVGA when Atten=0.5

The stability of the design has been tested against temperature variations over $100^{\circ} \mathrm{C}$ range $\left(-25^{\circ} \mathrm{C}: 75^{\circ} \mathrm{C}\right)$. The circuit features $0.0541 \mathrm{nA} / 1^{\circ} \mathrm{C}$ over this range. Figure (3.5) demonstrates this claim. Up to $10 \mathrm{M} \Omega$ load has been attached to the output terminal to verify the functionality of the circuit with different loads. As seen in figure (3.6), the circuit shows good performance with reasonable error up to $2.5 \mathrm{M} \Omega$. The Total Harmonic Distortion (THD) against different input amplitudes shows that the maximum THD is 3.5% at $I_{x}=100 \mathrm{nA}$ and $\mathrm{f}=10 \mathrm{kHz}$ as shown in figure (3.7).

The response of this structure to the step input presents an appropriate stability behavior whereas the transition time is $4.125 \mu \mathrm{~s}$ as illustrated in figure (3.8). Different attenuation values have been taken and the corresponding output signals shown in figure (3.9).

Figure 3.5 Response with different temperatures

Figure 3.6 Response with different loads

Figure 3.7 THD of LCVGA

Figure 3.8 Step response of LCVGA

Figure $3.9 i_{\text {out }}$ with different attenuation values

Transient response when $i_{i n}$ is a 10 kHz sinusoidal signal and $I_{c t r l}$ is a ramp is shown in figure (3.10); $i_{\text {out }}$ is shown to have variable amplitude according to the control signal. Figure (3.11) shows the response when 100 kHz input signal is applied.

Figure 3.10 Transient response when $I_{c t r l}$ is ramp (a) 80 nA p-p (b) 380 nA p-p

Figure 3.11 Transient response when $f_{i n}=100 \mathrm{kHz}$

The response of the circuit when a 380 nA peak-to-peak and 80 nA peak-to-peak triangular waveform applied is shown in figures (3.12) and (3.13), respectively.

Figure 3.12 380nA peak-to-peak triangular

Figure 3.13 80nA peak-to-peak triangular

Simulation for the frequency response of the proposed LCVGA was carried out as shown in figure (3.14). Firstly, $10 \mathrm{k} \Omega$ resistive load was attached to the output. When atten $=-0.5$, 0.5 and 0.693 the corresponding cut-off frequency is $30.62 \mathrm{MHz}, 0.5 \mathrm{MHz}$ and 0.36 MHz , respectively. Secondly, 50 pF capacitive load was attached in parallel with $\mathrm{R}=10 \mathrm{k} \Omega$ and for atten $=-0.5,0.5$ and 0.693 the corresponding cut-off frequency is $550 \mathrm{kHz}, 230 \mathrm{kHz}$ and 205 kHz , respectively. The simulated maximum power consumption for the proposed LCVGA is around $0.857 \mu \mathrm{~W}$. The transistors dimensions are listed in table (3.1) and the summary of the simulation results is listed in table (3.2).

Figure 3.14 The frequency response of the proposed LCVGA

Table 3.1 LCVGA transistors dimensions

Transistor	$\frac{W}{L}(\mu \mathrm{~m} / \boldsymbol{\mu m})$	Ratios
M1, M2, M7, M8	$3.5 / 1.75$	2
M3, M4, M9, M10	$3.5 / 19.6$	$1 / 5.6$
M5, M6	$21 / 0.35$	60
M11, M12, M13	$14 / 14$	1

Table 3.2 Performance summary

Parameter	Proposed LCVGA
Process	$0.35 \mu \mathrm{~m}, 2 \mathrm{p} 4 \mathrm{~m}$ CMOS
Operation mode	Current-Mode
Voltage Supply	$\pm 0.75 \mathrm{~V}$
Minimum Atten.	-0.8
Maximum Atten.	5.693
Max. linearity error	$30.62 \mathrm{MHz} @$ Atten=-0.5
BW	$0.857 \mu \mathrm{~W}$
and $10 \mathrm{k} \Omega$ resistance load	
THer Consumption	3.5%
Applications	e.g. AGCs for Bionic Ears (BE)

3.1.4 Conclusion

In conclusion, a new kind of VGA has been disclosed. It is current-mode OTA-based logarithmic-control VGA (LCVGA). The developed design enjoys simplicity and attractive for integration. This block can be a very useful block in analog signal processing circuits and systems. The design operates from low voltage supply and consumes very small amount of power.

3.2 Exponential-Control VGA

3.2.1 Introduction

The linear-in-dB variable gain amplifier (VGA) is usually employed in Automatic Gain Control (AGC) loop to increase the signal-to-noise ratio (SNR).

Various approaches have been reported to implement VGAs circuits [43, 54-61] and such circuits can be found in several signal processing applications e.g. wireless receivers [54] in order to enhance the system performance regarding the linearity, SNR and power consumption, global positioning system (GPS) receivers [55], disk drives [56], biomedical signal acquisition [57] and direct-conversion receivers [58].

Among the most significant demands of VGAs are the wide range of gain variation, low sensitivity against voltage supply variation, small chip size and consequently low power consumption.

3.2.2 Proposed Exponential-Control VGA

The proposed exponential-control VGA is developed based on the new approximation given in equation (2.45) and its CMOS implementation shown in figure (2.37) chapter 2 with small modification where the control signal was applied to the input of the EXPFG cell and the input small signal has been added to the DC component I_{w} in the divider included in EXPFG as illustrated clearly in the figure (3.15).

According to Kirchhoff's Current Law (KCL) "the sum of current into a junction equals the sum of current out of the junction", then the current flows through Z node in figure (3.15) will be obtained as shown in equations (3.15)-(3.18):

Figure 3.15 The proposed structure of exponential-control VGA

$$
\begin{align*}
& I_{o u t, 1}=\left(I_{w}+I_{\text {in }}\right) e^{\left(\frac{I_{c t r l}}{I_{r e f}}\right)} \tag{3.15}\\
& I_{\text {out }, 2}=I_{w} e^{\left(\frac{I_{c t r l}}{I_{r e f}}\right)} \tag{3.16}\\
& I_{\text {out }}=I_{\text {out }, 1}-I_{\text {out }, 2}=\left(I_{w}+I_{\text {in }}\right) e^{\left(\frac{I_{c t r l}}{I_{r e f}}\right)}-I_{w} e^{\left(\frac{I_{c t r l}}{I_{r e f}}\right)} \tag{3.17}\\
& I_{\text {out }}=I_{\text {in }} e^{\left(\frac{I_{c t r l}}{I_{r e f}}\right)} \tag{3.18}\\
& A_{i}=\frac{I_{\text {out }}}{I_{\text {in }}}=e^{\left(\frac{I_{c t r l}}{I_{r e f}}\right)} \tag{3.19}
\end{align*}
$$

where A_{i} is the current gain, $I_{\text {ctrl }}$ is the control signal and $I_{\text {ref }}$ is the reference constant current. From equation (3.18), it is obviously that a variable-gain amplifier can be realized and its gain can be exponentially controlled by the control current $I_{c t r l}$. This current-mode
structure exhibits a linear-in- dB controllable output range of 71 dB with $\pm 0.5 \mathrm{~dB}$ linearity error over maximum input control signal $-150 \mathrm{nA} \leq I_{\text {ctrl }} \leq 100 \mathrm{nA}$.

The gain in linear dB scale is calculated as follows:

$$
\begin{equation*}
A_{i}(d B)=20 \log _{10}\left(e^{\left(\frac{I_{c t r l}}{I_{r e f}}\right)}\right) \tag{3.20}
\end{equation*}
$$

To more simplify equation (3.20), $\log _{10^{-}} \ln$ relationship can be used as the following:

$$
\begin{align*}
& \log _{10}(x)=\frac{\ln (x)}{\ln (10)} \tag{3.21}\\
& A_{i}(d B)=20 \frac{\ln \left(e^{\left(\frac{I_{c t r l}}{I_{r e f}}\right)}\right)}{\ln (10)} \tag{3.22}\\
& A_{i}(d B)=8.699 \frac{I_{c t r l}}{I_{r e f}} \tag{3.23}
\end{align*}
$$

Equation (3.23) readily shows that the gain in dB scale is linearly proportional to the control signal.

3.2.3 Simulation Results

Simulation results are given to verify the theory of the proposed VGA. Tanner tool is used with standard $0.35 \mu \mathrm{~m}$ CMOS process to simulate the proposed structure of exponentialcontrol VGA in figure (3.15). The circuit operates from $\pm 0.75 \mathrm{~V}$ voltage supply and the current $I_{\text {ref }}$ is set to 25 nA . Figure (3.16) shows that the output control range is around 71 dB with $\pm 0.5 \mathrm{~dB}$ linearity error. Different values of $I_{\text {ctrl }}(-17.33 \mathrm{nA}, 0 \mathrm{nA}$ and 17.33 nA$)$ have been used to meet $0.5,1$ and 2 gain values, respectively, and as a result the eventual output signal changed accordingly as shown in figure (3.17).

Figure 3.16 Simulation results of the proposed exponential-control VGA

Figure 3.17 Different gain values effect

Transient analysis of the overall circuit is shown in figure (3.18); where $I_{\text {in }}$ is a sinusoidal signal with 10 kHz frequency and 20 nA amplitude and $I_{c t r l}$ is chosen to be a ramp. The figure demonstrates the variable gain effect on the amplitude of the output current.

Figure 3.18 Transient analysis of the overall circuit $I_{\text {in }}$ is a $10-\mathrm{kHz}$ sinusoidal signal and $I_{\text {ctrl }}$ is a ramp. $I_{\text {out }}$ is shown to have variable amplitude

The response of the proposed VGA when a sinusoidal input signal with $\mathrm{f}=10 \mathrm{kHz}$ and 20 nA amplitude is applied and the control signal is triangular 200nA peak-to-peak with $\mathrm{f}=1 \mathrm{kHz}$ and 10 kHz sinusoidal with amplitude of 100 nA is shown in figure (3.19) and (3.20), respectively. At point of $I_{c t r l}=100 n A$ the VGA gives highest amplification and $I_{c t r l}=-100 n A$ gives highest attenuation.

Figure 3.19 VGA response with triangular control signal

Figure 3.20 VGA response with sinusoidal control signal

The effect of the load and different amplitudes has been studied and simulated by sweeping the load form 0 to $10 \mathrm{M} \Omega$ when the amplitude is set to be 40 nA and the amplitude of the input varies from 10 nA to 50 nA when the load set to be $10 \mathrm{k} \Omega$ and results are shown in figures (3.21) and (3.22), respectively.

Figure 3.22 Different $I_{i n}$ amplitude effect

AC simulation is given in figure (3.23) with resistive (R) and complex (RC) load effect. If $\mathrm{R}=10 \mathrm{k} \Omega$ while Gain= $0.5,1$ and 2 , the corresponding -3 dB frequency is $174 \mathrm{kHz}, 242$ kHz and 291 kHz , respectively but if $\mathrm{C}=50 \mathrm{pF}$ is added parallel with R , then for $\mathrm{Gain}=0.5$, 1 and 2 the -3 dB frequency is $132 \mathrm{kHz}, 170 \mathrm{kHz}$ and 181 kHz , respectively.

Table (3.3) outlines the most features of the proposed VGA compared to the prior works. These performance parameters are either better or compare favorably with the reported state-of-the-art VGAs.

Figure 3.23 AC response

Table 3.3 Comparison with prior works

Parameter	[58]	$[59]$	$[60]$	$[61]$	This Work
Year	2012	2004	2006	2009	2012
Process (CMOS)	$0.18 \mu \mathrm{~m}$	$0.5 \mu \mathrm{~m}$	$0.18 \mu \mathrm{~m}$	$0.18 \mu \mathrm{~m}$	$0.35 \mu \mathrm{~m}$
Gain (dB)	-3 to 45	-26.79 to 23.94	0 to 95	-10 to 50	-49 to 22
Stages	1	1	3	3	1
Voltage supply	1.8 V	2 V	1.8 V	1.8 V	$\pm 0.75 \mathrm{~V}$
BW	3 MHz	134 kHz	32 MHz	8 MHz	$181 \mathrm{kHz}{ }^{\text {a }}$
Power consumption	0.549 mW	$1.6 \mu \mathrm{~W}$	6.48 mW	6.7 mW	$12.782 \mu \mathrm{~W}$

[^0]
CHAPTER 4

LOG-ANTILOG COMPUTATIONAL CIRCUIT

Log-antilog based versatile building block for implementing computational functions such as four-quadrant multiplier, squarer, divider, inverse and cube-law in analog domain is proposed and simulated in $0.35 \mu \mathrm{~m} 2 \mathrm{p} 4 \mathrm{~m}$ n-well CMOS process using Tanner tool. The proposed block features current-mode operation and consumes around $13.184 \mu \mathrm{~W}$ from $\pm 0.75 \mathrm{~V}$ power supply. The linearity error is less than 4.1% and the -3 dB bandwidth of the overall circuit has been observed to over 700 kHz . The total harmonic distortion (THD) is found to be less than 2.25%. Simulation results of all proposed functions are given to verify the theoretical analysis.

4.1 Introduction

Analog computational circuits like multiplier, squarer and divider represent pivotal elements in the design of many integrated circuits for numerous signal processing applications; for example: AM modulators, frequency doublers, equalizers, fuzzy systems, neural networks and etc.

Several computational circuits have been introduced in the previous literature [6, 62-95]. However, many of them are in voltage-mode [62-75], other configurations need at least three times of the threshold voltage, thereby aren't proper for low voltage applications [85-89], consume a relatively large area [83, 90, 91], have limited bandwidth [86-91] and
large linearity error [88, 90-95]. The topology proposed in [63] can work for voltagemode and current-mode but employs floating-gate MOS transistors i.e. require higher supply voltage and it is not suitable for low voltage operation. Since current-mode circuits received more attention than their voltage-mode counterparts, some current-mode configurations are reported in the prior art [6, 76-81]. The most recent work [6] uses MOSFET biased in weak inversion region to introduce computational circuit capable of performing multiplication, division, squaring and $1 / x$ functions. However, the main drawback of this circuit is the limited input range.

In specific applications; cost, small area on the chip, low voltage operation, power consumption, high accuracy and current-mode operation (i.e. wide range of frequencies) are required and necessary for integration as a part of VLSI.

4.2 Proposed Log-Antilog Based Computational Circuit

The developed topology of the computational circuit shown in figure (4.1) is based on the log-antilog cells proposed in chapter (2). According to figure (4.1), two current mirrors, four logarithmic circuits, and two exponential function generators have been used to implement a multifunction current-mode circuit efficient to perform different computational operations in analog domain.

Figure 4.1 Log-Antilog Computational circuit implementation

With the reference to figure (4.1), the current at node 1 and node 3 are shown in equations (4.1) and (4.2) respectively:

$$
\left.\begin{array}{l}
I_{\text {node } 1}=\frac{I_{\text {bias }}}{2} \ln \left(\frac{I_{\text {in1 }} I_{\text {in2 }}}{I_{x 1} I_{x 2}}\right) \\
I_{\text {node } 3}=I_{w} e^{\left(\frac{\left(I_{\text {bias }}\right.}{2} \ln \left(\frac{I_{n 11} I_{i n 2}}{I_{11} I_{x 2}}\right)\right.} I_{\text {ref }} \tag{4.2}
\end{array}\right), ~ \$
$$

Using the properties of logarithmic exponential functions will result in:

$$
\begin{equation*}
I_{\text {node } 3}=I_{w}\left(\frac{I_{i n 1} I_{\text {in } 2}}{I_{x 1} I_{x 2}}\right)^{\propto} \tag{4.3}
\end{equation*}
$$

Where $\alpha=\frac{I_{\text {bias }}}{2 I_{r e f}}$ is the power factor ratio, $I_{i n 1}, I_{i n 2}, I_{x 1}$ and $I_{x 2}$ are the input signals, and I_{w} is constant current used to scale the output signal. Clearly, equation (4.3) is efficient to implement different computational functions like multiplication, division, squaring, inverse, raise to power and parametric current amplifier. In order to demonstrate the feasibility of the proposed circuit in figure (4.1) and equation (4.3), simulation results for different functions has been carried out using Tanner tool in $0.35 \mu \mathrm{~m}$ n-well 2 p 4 m CMOS process.

4.3 Four-Quadrant Multiplier

To implement four-quadrant multiplier, design $\propto=1$ by choosing $I_{\text {bias }}=2 I_{\text {ref }}$ in equation (4.3). According to figure (4.1), the current flows in the different nodes will be as follows:

$$
\begin{align*}
& I_{i n 1}^{+}=\left(I_{y 1}+i_{y 1}\right) \tag{4.4}\\
& I_{\text {in } 2}^{+}=\left(I_{y 2}+i_{y 2}\right) \tag{4.5}\\
& I_{\text {in } 1}^{-}=\left(I_{y 1}-i_{y 1}\right) \tag{4.6}\\
& I_{\text {in } 2}^{-}=\left(I_{y 2}-i_{y 2}\right) \tag{4.7}\\
& I_{\text {node } 1}=\frac{I_{\text {bias }}}{2} \ln \left(\frac{\left(I_{y 1}+i_{y 1}\right)\left(I_{y 2}+i_{y 2}\right)}{I_{x 1} I_{x 2}}\right) \tag{4.8}\\
& I_{\text {node } 2}=\frac{I_{\text {bias }}}{2} \ln \left(\frac{\left(I_{y 1}-i_{y 1}\right)\left(I_{y 2}-i_{y 2}\right)}{I_{x 1} I_{x 2}}\right) \tag{4.9}\\
& I_{\text {node } 3}=I_{w}\left[\frac{\left[I_{y 1} I_{y 2}+I_{y 1} i_{y 2}+I_{y 2} i_{y 1}+i_{y 1} i_{y 2}\right.}{I_{x 1} I_{x 2}}\right] \tag{4.10}\\
& I_{\text {node } 4}=I_{w}\left[\frac{\left[\frac{I_{y 1} I_{y 2}-I_{y 1} i_{y 2}-I_{y 2} i_{y 1}+i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}\right]}{I_{\text {node } 5}=\frac{2 I_{w} i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}+k}\right. \tag{4.11}
\end{align*}
$$

where $k=\frac{2 I_{w} I_{y 1} I_{y 2}}{I_{x 1} I_{x 2}}$, is the DC component which shifts the ac small signal. Subtracting k in equation (4.12) to get:

$$
\begin{equation*}
I_{o u t}=\frac{2 I_{w} i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}} \tag{4.13}
\end{equation*}
$$

From equation (4.13) and if $i_{y 1}$ and $i_{y 2}$ are the input current signals, a current-mode fourquadrant analog multiplier can be obtained and its output current, $I_{\text {out }}$ can be scaled by any of the constant currents $I_{w}, I_{x 1}$ or $I_{x 2}$.

The simulation was carried out with the voltage supply $\pm 0.75 \mathrm{~V}$ and the aspect ratios of all transistors of sub-circuits as indicated in chapter 2. With $I_{y 1}=I_{y 2}=150 \mathrm{nA}, I_{x 1}=$ $I_{x 2}=130 n A$ and $I_{w}=10 n A$, when the input current $i_{y 1}$ varies from -100 nA to 100 nA while the input current $i_{y 2}$ steps from -100 nA to 100 nA by 20 nA , the results of DC transfer characteristic of the proposed analog 4-Q multiplier is shown in figure (4.2). The maximum linearity error is around 1.8%.

Figure 4.2 DC transfer characteristics of the proposed 4-Q multiplier

The proposed multiplier can be utilized as an amplitude modulator (AM). If the input waveforms are $i_{y 1}=A \sin \left(2 \pi f_{1} t\right)$ and $i_{y 2}=A \sin \left(2 \pi f_{2} t\right)$, where $A=100 \mathrm{nA}$ is the amplitude of the waveforms, $i_{y 1}$ is the carrier waveform with $\mathrm{f}_{1}=10 \mathrm{kHz}$ and $i_{y 2}$ is the modulating waveform with $\mathrm{f}_{2}=1 \mathrm{kHz}$, respectively, the output modulated waveform $I_{A M}$ is clearly shown in figure (4.3). It has the same frequency of $i_{y 1}$ but its amplitude changed according to $i_{y 2}$. Figure (4.4) illustrates the functionality of the proposed multiplier as AM modulator when the modulating waveform $i_{y 2}$ is a rectangular signal with 200 nA peak-to-peak and 1 kHz frequency.

Figure 4.3 The proposed multiplier is used as a modulator

Figure 4.4 AM modulator with rectangular $i_{y 2}$
The frequency response of the proposed multiplier is shown in figure (4.5). If $10 \mathrm{k} \Omega$ resistance load was attached to the output terminal and the capacitance load was set to 0 , $20 \mathrm{pF}, 40 \mathrm{pF}, 60 \mathrm{pF}, 80 \mathrm{pF}$ and 100 pF , the corresponding $-3-\mathrm{dB}$ bandwidth is about 722 kHz, $681 \mathrm{kHz}, 609 \mathrm{kHz}, 587 \mathrm{kHz}, 536 \mathrm{kHz}$, and 516 kHz , respectively. The main cause for the restricted bandwidth of the proposed design is due to the subthreshold limitations. The total harmonic distortion (THD) of the circuit in figure (4.1) is shown in figure (4.6). The maximum THD is 2.25%. The simulated power consumption is around $10 \mu \mathrm{~W}$

Figure 4.5 Frequency response of the proposed circuit in figure (4.1)

Figure 4.6 THD of the output waveform for different input amplitudes

4.3.1 Mismatch effect

Referring to equations (4.3) and (4.12), if $I_{\text {bias }}$ is not exact equal to $2 I_{\text {ref }}$ \{i.e. $\left(I_{\text {bias }}=\right.$ $\left.\left.2 I_{r e f}+\Delta I\right) \rightarrow(\propto=1+\Delta \propto)\right\}$ and if k is not exact (i.e. $k=\frac{2 I_{w} I_{y 1} I_{y 2}}{I_{x 1} I_{x 2}}+\Delta k$), then the output current expressed in equation (4.13) can be rewritten as indicated in equation (4.14):

$$
\begin{equation*}
I_{o u t}=\frac{2 I_{w} i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}+\Delta k+\Delta \delta \frac{I_{w}\left(I_{y 1} I_{y 2}+i_{y 1} i_{y 2}\right)}{I_{x 1} I_{x 2}}+\left(\delta_{1}-\delta_{2}\right) \frac{I_{w}\left(I_{y 1} i_{y 2}+I_{y 2} i_{y 1}\right)}{I_{x 1} I_{x 2}} \tag{4.14}
\end{equation*}
$$

where:
$\delta_{1}=\left[\frac{I_{y_{1}} I_{y 2}+I_{y 1} i_{y 2}+I_{y 2} i_{y 1}+i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}\right]^{\Delta \alpha}$
$\delta_{2}=\left[\frac{I_{y 1} I_{y 2}-I_{y 1} i_{y 2}-I_{y 2} i_{y 1}+i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}\right]^{\Delta \alpha}$
$\Delta \delta=\left(\delta_{1}+\delta_{2}\right)-2$
$\Delta \propto=\frac{\Delta I}{2 I_{r e f}}$
Inspection of equation (4.14) clearly shows that the output current of the computational circuit comprises four current components. The desired component that is proportional to the multiplication of the input signals in addition to three undesired components. The first undesired component is a constant current component and the other two undesired components are a current proportional to the input current. (See appendix A for the full derivation).

4.4 Squarer

The squaring function can be obtained easily from equation (4.13) by imposing the input currents to be $i_{y 1}=i_{y 2}=i_{y}$, and then equation (4.13) can be rewritten as (4.15)

$$
\begin{equation*}
I_{o u t}=\delta i_{y}^{2} \tag{4.15}
\end{equation*}
$$

where $\delta=\frac{2 I_{w}}{I_{x 1} I_{x 2}}$ is a constant quantity used to scale the output signal. It is evident from equation (4.15) that the squaring function is implementable. To demonstrate the validity of equation (4.15), simulation results using Tanner tool are given with $0.35 \mu \mathrm{~m}$ CMOS process technology. The squaring DC transfer curve is shown in figure (4.7). The output signal is in very good agreement with the expected signal with 0.1 nA offset due to the mismatched devices.

The proposed squaring circuit can be employed as a frequency doubler. By using the following Power-Reducing Identification

$$
\sin ^{2}(\alpha)=\frac{1}{2}[1-\cos (2 \alpha)]
$$

and if the input signal, i_{y}, has the frequency $f_{\text {in }}=1 \mathrm{kHz}$, the output signal with $f_{\text {out }}=$ 2 kHz can be obviously seen in figure (4.8). Figure (4.9) shows the output squaring signal if a 200 nA peak-to-peak triangular signal with $\mathrm{f}=1 \mathrm{kHz}$ has been applied at the input.

Figure 4.7 Squaring DC transfer characteristics

Figure 4.8 The proposed circuit is used as a frequency doubler

Figure 4.9 Squaring response with a triangular input signal

4.5 Divider

With reference to the equation (4.13), if $i_{y 2}$ (numerator) is the dividend and $I_{x 2}$ (denominator) is the divisor, and keeping all other currents fixed, then the output current (quotient) is given by:

$$
\begin{equation*}
I_{o u t}=\sigma \frac{i_{y 2}}{I_{x 2}} \tag{4.16}
\end{equation*}
$$

where $\sigma=\frac{2 I_{w} i_{y 1}}{I_{x 1}}$ kept constant. From equation (4.16), a two-quadrant divider (2-Q) can be realized in current-mode operation. The simulation of the DC characteristics is shown in figure (4.10), where the dividend, $i_{y 2}$ varies from -100 nA to 100 nA and the divisor, $I_{x 2}$ steps from 100 nA to 200 nA by 10 nA . According to the results, the maximum linearity error is 4.1%.

Figure 4.10 DC input/output transfer curves of the 2-quadrant divider

The transient response results are shown in figure (4.11), (a) and (b) for triangular and sinusoidal signals, respectively.

Figure 4.11 Transient response (a) triangular (b) sinusoidal

4.6 1/x Function

The inverse operation is a special case from the division one. So, with keeping $i_{y 2}$ constant in equation (4.15), the output current is, therefore, proportional to the inverse of the current $I_{x 2}$ and as a result the equation (4.16) will be in the equation (4.17) form:

$$
\begin{equation*}
I_{o u t}=\lambda \frac{1}{I_{x 2}} \tag{4.17}
\end{equation*}
$$

where $\lambda=\frac{2 I_{w} i_{y 1} i_{y 2}}{I_{x 1}}$ is the constant term. The simulation results are illustrated in figure (4.12) where $I_{x 2}$ varies from 10 nA to 300 nA while $i_{y 2}$ varied from -200 nA to 200 nA in steps of 25 nA .

Figure 4.12 Simulation results of $1 / \mathrm{x}$ function with different $i_{y 2}$

4.7 Cube-Law Function

According to figure (4.1) and equation (4.3), if \propto is chosen to be equal to $\frac{3}{2}$. Setting $I_{\text {bias }}=3 I_{\text {ref }}, I_{x 1}=I_{x 2}$ and $I_{i n 1}=I_{i n 2}=I_{i n}$, then the equation (4.3) can be rewritten as follows:

$$
\begin{equation*}
I_{\text {node }, 3}=\frac{I_{w}}{I_{x}^{3}} \cdot\left(I_{\text {in }}\right)^{3} \tag{4.18}
\end{equation*}
$$

From equation (4.18), the current at node 3 in figure (4.1) is proportional to the cubic of the input current. A pure cube-law circuit can be readily realized from the equation (4.18) by using a couple of them in a balanced structure and additional circuit will be added for constant shift compensation. The proposed cube-law design has low power-consumption $(13.3 \mu \mathrm{~W})$ and it is also operates under low voltage supply $(\pm 0.75 \mathrm{~V})$ but the drawback of this circuit is that the error is relatively significant (12\%). The simulation of the cube-law design is displayed in figure (4.13) where a triangular input signal with 200nA p-p has been applied.

Figure 4.13 Triangular response of the proposed cube-law circuit

4.8 Multi-input Analog Multiplier (MIM)

In the field of analog signal processing, sometimes, it is needed to multiply multiple signals simultaneously [96]-[98]. The conventional way to achieve this necessity is shown in figure (4.14). Depending of the number of inputs, the multiplier circuits are cascaded. Unfortunately, this method increases error at the output, because multiplication naturally is an additive operation. Therefore the noise which is generated in the first stage of the multiplier will be amplified in the next stages [99].

Figure 4.14 Conventional multi-input multiplier

With Log-Antilog properties a multiple input multiplier can be easily obtained. To demonstrate this claim, a novel multiple input analog multiplier has been developed as indicated in figure (4.15) where four input currents can be multiplied simultaneously. Only four simple parallel logarithmic circuits in series with one exponential generator (proposed in chapter 2) have been used. Simulation results have been carried out and figure (4.16) confirms the functionality of the proposed design.

Figure 4.15 The proposed block diagram which can multiply 4 input currents

Figure 4.16 Simulation results of MIM structure

The performance of the proposed log-antilog computational circuit compared to recently published works is shown in table (4.1).

Table (4.1) Performance comparison

Parameter	[6]	[62]	[95]	This Work
Year	2012	2010	2005	2012
Functions	Multiplication, squaring, division and inverse	Multiplication	Multiplication	Multiplication, squaring, division, inverse, cube-law MIM multiplier
Technique	Translinear loops	new design principle	Translinear loops	Log-antilog
Operation Mode	Current-mode	Voltage-mode	Current-mode	Current-mode
$\begin{aligned} & \text { CMOS } \\ & \text { Process } \end{aligned}$	$0.35 \mu \mathrm{~m}$	$0.35 \mu \mathrm{~m}$	$0.35 \mu \mathrm{~m}$	$0.35 \mu \mathrm{~m}$
Supply Voltage	$\pm 0.75 \mathrm{~V}$	2 V	2 V	$\pm 0.75 \mathrm{~V}$
Linearity error	0.3\%	3.2\%	5\%	1.8\% (multiplier)
-3 dB BW	2.3 MHz	268 kHz	200 kHz	722 kHz
THD	0.7\%	4.2\%	0.9\%	2.25\%
Power Consumption	$2.3 \mu \mathrm{~W}$	$6.7 \mu \mathrm{~W}$	$5.5 \mu \mathrm{~W}$	$13.184 \mu \mathrm{~W}$

CHAPTER 5

CONCLUSION AND FUTURE WORK

The use of MOSFETs operating in weak inversion region in designing analog computational circuits has been investigated. In this regard, two new current-mode logarithmic function circuits have been proposed in addition to current-mode exponential function generator. To confirm the validation of the proposed non-linear blocks, different structures for various applications were presented. Firstly, two kinds of variable-gain amplifiers have been developed. Secondly, log-antilog computational circuit efficient to perform multiple arithmetical operations in analog domain has been introduced.

5.1 Conclusions

MOSFETs operating in weak inversion region have proved to be feasible and effective in designing different circuits for analog signal processing applications and as such the main attractive parameters are the low voltage operation, small area on the chip and ultra low power consumption. From this fact, MOSFETs operating in this region is receiving more attention especially in biomedical applications where the power consumption is a key parameter.

In this thesis, the MOSFETs operating in weak inversion region have been utilized to design two current-input current-output logarithmic function circuits. The proposed circuits feature with simplicity, suitable for low voltage environment, stable with temperature and process variations.

Moreover, new exponential approximation has been presented to achieve large output range around 96 dB while keeping the error amount less than $\pm 0.5 \mathrm{~dB}$. This approximation has been implemented by MOSFETs using translinear loops.

To investigate the capability of the logarithmic and exponential circuits, different logantilog applications have been presented and simulated.

Two kinds of variable-gain amplifier; logarithmically-control variable-gain attenuator (LCVGA) and exponential-control variable-gain amplifier are introduced.

Finally, computational circuit based on logarithmic exponential cells has been presented in order to perform numerous arithmetical operations.

5.2 Directions for Future Work

Since nothing is perfect and complete in this life, this work can be improved and expanded in some directions.

- Introducing the physical layout of the exponential function generator and then the layout of the overall computational circuit and VGAs.
- Fabrication of these circuits and testing them experimentally to demonstrate the validity of the theory and simulation.
- Implement the exponential current-mode circuit with MOSFET in strong inversion and then build a VGA with very high gain by cascading more than one stage.

Appendix A

Chapter 2:

Referring to the figure (2.27), if the current mirror $1.6 I_{\text {ref }}$ is not exact (i.e. $1.6 I_{\text {ref }}+$ $\Delta I_{\text {ref }}$), then equations (2.53) and (2.54) can be rewritten as:

$$
\begin{align*}
& I_{\text {num }}=\left(1.6 I_{\text {ref }}+\Delta I_{\text {ref }}\right)+64 I_{\text {ref }}\left(1+0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4} \tag{A.1}\\
& I_{\text {num }}==64 I_{\text {ref }}\left[0.025+\frac{\Delta I_{\text {ref }}}{64 I_{r e f}}+\left(1+0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4}\right] \tag{A.2}\\
& I_{\text {den }}=\left(1.6 I_{\text {ref }}+\Delta I_{\text {ref }}\right)+64 I_{\text {ref }}\left(1-0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4} \tag{A.3}\\
& I_{\text {den }}=64 I_{\text {ref }}\left[0.025+\frac{\Delta I_{\text {ref }}}{64 I_{\text {ref }}}+\left(1-0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4}\right] \tag{A.4}
\end{align*}
$$

By recall equation (2.55), the output current of the proposed EXPFG will be
$I_{\text {out }}=I_{w} \frac{I_{\text {num }}}{I_{\text {den }}}=I_{w}\left\{\frac{\left[k+\left(1+0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4}\right]}{\left[k+\left(1-0.125 \frac{I_{x}}{I_{\text {ref }}}\right)^{4}\right]}\right\}$
where $k=0.025+\frac{\Delta I_{r e f}}{64 I_{r e f}}$. Assume that there is $\pm 10 \%$ deviation from the exact value (0.025); the results show that the deviation is not significant.

Chapter 4:

Referring to chapter (4) section (4.2) and section (4.3), if $I_{\text {bias }}=2 I_{\text {ref }}+\Delta I$ then:
$\propto=\frac{2 I_{\text {ref }}+\Delta I}{2 I_{\text {ref }}}=1+\frac{\Delta I}{2 I_{\text {ref }}}$
$\alpha=1+\Delta \alpha$
where $\Delta \propto=\frac{\Delta I}{2 I_{r e f}}$ is a very small value represents the error amount.
then equation (4.3) can be rewritten as follows:

$$
\begin{equation*}
I_{\text {node } 3}=I_{w}\left(\frac{I_{i n 1} I_{i n 2}}{I_{x 1} I_{x 2}}\right)\left(\frac{I_{i n 1} I_{i n 2}}{I_{x 1} I_{x 2}}\right)^{\Delta \propto} \tag{A.6}
\end{equation*}
$$

equations (4.10) and (4.11) can expressed as

$$
\begin{align*}
& I_{\text {node } 3}=I_{w}\left[\frac{I_{y 1} I_{y 2}+I_{y 1} i_{y 2}+I_{y 2} i_{y 1}+i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}\right]\left[\frac{y_{y 1} I_{y 2}+I_{y 1} i_{y 2}+I_{y 2} i_{y 1}+i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}\right]^{\Delta \alpha} \tag{A.7}\\
& I_{\text {node } 4}=I_{w}\left[\frac{I_{y 1} I_{y 2}-I_{y 1} i_{y 2}-I_{y 2} i_{y 1}+i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}\right]\left[\frac{I_{y 1} I_{y 2}-I_{y 1} i_{y 2}-I_{y 2} i_{y 1}+i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}\right]^{\Delta \alpha} \tag{A.8}
\end{align*}
$$

Assume that $\delta_{1}=\left[\frac{I_{y 1} I_{y 2}+I_{y 1} i_{y 2}+I_{y 2} i_{y 1}+i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}\right]^{\Delta \alpha}$ and $\delta_{2}=\left[\frac{I_{y 1} I_{y 2}-I_{y 1} i_{y 2}-I_{y 2} i_{y 1}+i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}\right]^{\Delta \alpha}$

$$
\begin{align*}
& I_{\text {node } 5}=I_{w}\left\{\frac{\left(I_{y 1} I_{y 2}+I_{y 1} i_{y 2}+I_{y 2} i_{y 1}+i_{y 1} i_{y 2}\right) \delta_{1}+\left(I_{y 1} I_{y 2}-I_{y 1} i_{y 2}-I_{y 2} i_{y 1}+i_{y 1} i_{y 2}\right) \delta_{2}}{I_{x 1} I_{x 2}}\right\} \tag{A.9}\\
& I_{\text {node } 5}=I_{w}\left\{\frac{I_{y 1} I_{y 2}\left(\delta_{1}+\delta_{2}\right)+I_{y 1} i_{y 2} \delta_{1}-I_{y 1} i_{y 2} \delta_{2}+I_{y 2} i_{y 1} \delta_{1}-I_{y 2} i_{y 1} \delta_{2}+i_{y 1} i_{y 2}\left(\delta_{1}+\delta_{2}\right)}{I_{x 1} I_{x 2}}\right\} \tag{A.10}\\
& I_{\text {node } 5}=I_{w}\left\{\frac{\left(I_{y 1} I_{y 2}+i_{y 1} i_{y 2}\right)\left(\delta_{1}+\delta_{2}\right)}{I_{x 1} I_{x 2}}+\frac{\left(I_{y 1} i_{y 2}+I_{y 2} i_{y 1}\right) \delta_{1}-\left(I_{y 1} i_{y 2}+I_{y 2} i_{y 1}\right) \delta_{2}}{I_{x 1} I_{x 2}}\right\} \tag{A.11}
\end{align*}
$$

With $\delta_{1}+\delta_{2}=2+\Delta \delta$

$$
\begin{align*}
& I_{\text {node } 5}=I_{w}\left\{\frac{2\left(I_{y 1} I_{y 2}+i_{y 1} i_{y 2}\right)}{I_{x 1} I_{x 2}}+\Delta \delta \frac{\left(I_{y 1} I_{y 2}+i_{y 1} i_{y 2}\right)}{I_{x 1} I_{x 2}}+\left(\delta_{1}-\delta_{2}\right) \frac{\left(I_{y 1} i_{y 2}+I_{y 2} i_{y 1}\right)}{I_{x 1} I_{x 2}}\right\} \tag{A.12}\\
& I_{\text {node } 5}=\frac{2 I_{w} i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}+\frac{2 I_{w} I_{y 1} I_{y 2}}{I_{x 1} I_{x 2}}+\Delta \delta \frac{I_{w}\left(I_{y 1} I_{y 2}+i_{y 1} i_{y 2}\right)}{I_{x 1} I_{x 2}}+\left(\delta_{1}-\delta_{2}\right) \frac{I_{w}\left(I_{y 1} i_{y 2}+I_{y 2} i_{y 1}\right)}{I_{x 1} I_{x 2}} \tag{A.13}
\end{align*}
$$

Moreover, if k is not exact (i.e. $k=\frac{2 I_{w} I_{y 1} I_{y 2}}{I_{x 1} I_{x 2}}+\Delta k$), equation (4.13) can be modified to read

$$
\begin{equation*}
I_{o u t}=\frac{2 I_{w} i_{y 1} i_{y 2}}{I_{x 1} I_{x 2}}+\Delta k+\Delta \delta \frac{I_{w}\left(I_{y 1} I_{y 2}+i_{y 1} i_{y 2}\right)}{I_{x 1} I_{x 2}}+\left(\delta_{1}-\delta_{2}\right) \frac{I_{w}\left(I_{y 1} i_{y 2}+I_{y 2} i_{y 1}\right)}{I_{x 1} I_{x 2}} \tag{A.14}
\end{equation*}
$$

Appendix B

Publications

During this study, the following journal and conference papers were produced:

Patents/ Disclosures:

[1] Karama M. AL-Tamimi and Munir A. AL-Absi "A Controllable Current-Mode CMOS Logarithmic Function Circuit," filed with the U.S. Patent and Trademark Office (USPTO), U.S.A, on March 12, 2012, Docket\# 33000.61.

Refereed Journal /Magazine Articles:

[1] Munir Al-Absi and Karama Al-Tamimi, " A CMOS Current-Mode $\log (x)$ and $\log (1 / \mathrm{x})$ Functions Generator", under review in International Journal of Electronics (IJE)
[2] Munir Al-Absi and Karama Al-Tamimi, " Logarithmic-Control Variable Gain Amplifier (LCVGA), submitted to International Journal of Electronics
[3] Karama Al-Tamimi \& Munir Al-Absi, "Taylor Series-Based Current Mode CMOS logarithmic Circuit, Submitted to AEU - International Journal of Electronics and Communications
[4] Karama AL-Tamimi and Munir AL-Absi "Realization of 96 dB-Linear Exponential Current Generator" To be submit to Analog Integrated Circuits and Signal Processing, Springer.

Refereed Conference Publications:

[1] Karama AL-Tamimi and Munir A. AL-Absi, "A new CMOS Current-Mode Logarithmic Circuit," IEEE Student Conference on Research and Development, 2012, pp 82-86
[2] Karama AL-Tamimi and Munir A. AL-Absi , "A Novel Logarithmic CurrentControlled Current Amplifier (LCCA)", World Academy of Science, Engineering and Technology, Vol. 61, 2012, pp. 496-498
[3] Munir A. AL-Absi and Karama AL-Tamimi, "A Current-Mode Controllable Logarithmic Function Circuit using MOSFET in Subthreshold", Proceedings of The World Congress on Engineering and Computer Science (WCECS 2012) 2012, pp844-846
[4] Karama AL-Tamimi and Munir A. AL-Absi, "An Ultra Low Power High Accuracy Current-Mode CMOS Squaring Circuit", Proceedings of The World Congress on Engineering and Computer Science 2012, pp872-874

References

[1] International Technology Roadmap for Semiconductors, 2001 Edition.
[2] S. S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K. Das, W. Haensch, E. J. Nowak and D. Sylvester, "Ultralow-voltage, minimum-energy CMOS," IBM Journal of Research and Development, vol. 50, no. 4-5, pp. 469-490, 2006
[3] D. P. Foty and E.J. Nowak, "MOSFET technology for low-voltage/low-power applications," Micro, IEEE 14, no. 3 (1994): 68-77.
[4] A. P. Chandrakasan, S. Sheng and R. W. Brodersen, "Low Power CMOS Digital Design," IEEE Journal of Solid-state Circuits, vol. 27, no. 4, pp. 473-484, April 1999.
[5] K. Ragini and B. K. Madhavi, "Ultra Low Power Digital Logic Circuits in Subthreshold for Biomedical Applications," Journal of Theoretical and Applied Information Technology, 2005, pp. 584-590.
[6] Al-Absi, M. A., A. Hussein, and M. TaherAbuelma'atti. "A Low Voltage and Low Power Current-Mode Analog Computational Circuit." Circuits, Systems, and Signal Processing (2012): 1-11.
[7] DJ Comer and DT Comer, "Using the weak inversion region to optimize input stage design of CMOS op amps," Circuits and Systems II: Express Briefs, IEEE Transactions on 51, no. 1 (2004): 8-14.
[8] Clifton Fonstad, "Supplementary Notes: MOSFETs in the Sub-threshold Region (i.e. a bit below VT)", MIT6_012F09_lec12_sub.
[9] Phillip E. \& Douglas R., "CMOS Analog Circuit Design", Oxford, 2nd Edition, 2002.
[10] Alice Wang, Anantha P. Chandrakasan, Stephen V. Kosonocky, "Optimal Supply and Threshold Scaling for Subthreshold CMOS Circuits," IEEE Computer Society Annual Symposium on VLSI, pp. 5-9, April 2002.
[11] C.-H. Kao, W.-P. Lin, and C.-S. Hsieh, "Low-voltage low-power current mode exponential circuit," Circuits, Devices and Systems, IEE Proceedings - (2005): 633-635.
[12] N. Abouchi, R. Gallorini, and C. Ruby, "Exponential and logarithmic functions using standard CMOS $0.8 \mu \mathrm{~m}$ technology," in Electronics, Circuits and Systems, 1999. Proceedings of ICECS '99. The 6th IEEE International Conference on, vol. 1, 1999, 189192 vol.1.
[13] Muhammad Taher Abuelma'atti and Osama Oglah Faris, "A Current-mode Logarithmic Function Circuit," Active and Passive Electronic Components, vol. 27, no. 3, pp. 183-187, 2004.
[14] M. A. Al-Absi, "Low-voltage and low-power CMOS current-mode divider and 1/x circuit," in Electronic Devices, Systems and Applications (ICEDSA), 2010 Intl Conf on, 2010, 245-247.
[15] Kuo-Jen Lin and Chih-Jen Cheng, "Compact CMOS Current-Mode Nth-Root Circuit," Special Issue on Applied Mathematics and Microelectronics Engineering, vol.7, No.3, pp. 71-74, December 2009.
[16] B.Gilbert, "Translinear circuits: a proposed classification", Electronics Letters, pp. 14-16, Jan. 1975.
[17] A. G. Andreou and K.A. Boahen "Translinear circuits in subthrshold MOS" Analog Integrated Circuits and Signal Processing. vol.9, no.2.
[18] B. Minch"MOS Translinear Principle for All Inversion Levels" Circuits and Systems II: Express Briefs, IEEE Transactions on. vol.55, no.2 , Feb. 2008
[19] R. Fried, C.Enz "A family of very low-power analog building blocks based on CMOS" Analog and Mixed IC Design, 1997. Proceedings, Sept. 1997
[20] Seevinck.et.al. "CMOS translinear circuits for minimum supply voltage" Circuits and Systems II: Analog and Digital Signal Processing, vol.47,no.12, Dec. 2000
[21] C.A. De La Blas, A. Lopez, "A novel two quadrant MOS translinear Squarerdivider cell",Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE International Conference on, pp.5-8, Sep. 2008
[22] M.Kumngern and K.Dejhan. "A New Translinear-Based Dual-Output SquareRooting Circuit" Active and Passive Electronic Components, Dec. 2008
[23] Abdelrahman.et.al "New squaring circuit with reduced sensitivity to element mismatches" Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, May. 2007
[24] T. Serrano-Gotarredona, B. Linares-Barranco, A.G. Andreou, "A general translinear principle principle for subthreshold MOS transistors", vol.46, pp.607-616, May. 1999
[25] Thomas L. Floyd, Electronic Devices (Conventional Flow Version), 6th ed. (Prentice Hall, 2001).
[26] A. Ghanaatian-Jahromi, A. Abrishamifar, and A. Medi, "A Novel Voltage-toVoltage Logarithmic Converter with High Accuracy," Journal of Selected Areas in Microelectronics (JSAM), 01 (2011), 1-5. (2011).
[27] C. Huang and S. Chakrabartty, "Current-input current-output CMOS logarithmic amplifier based on translinear Ohm's law," Electronics Letters 47, no. 7 (March 31, 2011): 433-434.
[28] Y. Karimi and A. Abrishamifar, "A low power configurable analogue block," in 2011 19th Iranian Conference on Electrical Engineering (ICEE) (presented at the 2011 19th Iranian Conference on Electrical Engineering (ICEE), IEEE, 18 July2011), 1-5.
[29] Nacer Abouchi and Romuald Gallorini, "Exponential and Logarithmic Functions Using Standard CMOS $0.8 \mu \mathrm{~m}$ Technology," Analog Integrated Circuits and Signal Processing 27, no. 1 (April 21, 2001): 73-83-83.
[30] Muhammad Taher Abuelma'atti and Osama Oglah Faris, "A Current-mode Logarithmic Function Circuit," Active and Passive Electronic Components, vol. 27, no. 3, pp. 183-187, 2004.
[31] C. D Holdenried et al., "A DC-4-GHz true logarithmic amplifier: theory and implementation," IEEE Journal of Solid-State Circuits 37, no. 10 (October 2002): 12901299.
[32] F. Bergouignan et al.: ‘Designs of a logarithmic and exponential amplifiers using current conveyors', Third IEEE International Conference on Electronics, Circuits, and Systems, 1996Vol 1.1, pp. 61-64.
[33] R. Fried and C. C Enz, "Simple and accurate voltage adder/subtractor," Electronics Letters 33, no. 11 (May 22, 1997): 944-945.
[34] J. Mulder et al., "Application of the back gate in MOS weak inversion translinear circuits," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 42, no. 11 (November 1995): 958-962.
[35] E. A. Vittoz, "Micropower Techniques, in Design of MOS VLSI Circuits for Telecommunications," edited by J. France and Y. Tsivids, Prentice Hall, 1994, pp. 53 96.
[36] Pimentel, J., Salazar, F., Paheco, M., \& Gavriel, Y. (2000) Very low-power analog cells in CMOS: Proceedings of the 43rd IEEE midwest symposium on circuits and systems (Vol. 1, pp. 328-331), Aug, 2000.
[37]
Fabio A. Salazar, Marco A. Pacheco and Marely Vellasco: ‘ Micro power CMOS Analog Cell', Symposium on integrated Circuit Design, 30 Sep-1998, 187-190.
[38] Carrara, F., Filoramo, O., \& Palmisano, G. (2004). High dynamic- range variable gain amplifier with temperature compensation and linear-in-dB gain control. Electronics Letters, 40(6), 363-364
[39] Kao, C.-H., W.-P. Lin, and C.-S. Hsieh. "Low-voltage Low-power Current Mode Exponential Circuit." Circuits, Devices and Systems, IEE Proceedings - (2005): 633-635. doi:doi:10.1049/ip-cds:20050002.
[40] Vlassis, S. "CMOS Current-mode Pseudo-exponential Function Circuit." Electronics Letters 37, no. 8 (2001): 471-472. doi:10.1049/el:20010357.
[41] Chang, Cheng-Chieh, and Shen-Iuan Liu. "Current-mode Pseudo-exponential Circuit with Tunable Input Range." Electronics Letters 36 (2000): 1335. doi:10.1049/el:20001003.
[42] Liu, W., C. C Chang, and S. I Liu. "Realisation of Exponential VI Converter Using Composite NMOS Transistors." Electronics Letters 36, no. 1 (2000): 8-10.
[43] Arthansiri, T., and V. Kasemsuwan. "Current-mode Pseudo-exponential-control Variable-gain Amplifier Using Fourth-order Taylor's Series Approximation." Electronics Letters 42, no. 7 (March 2006): 379 - 380
[44] Weihsing Liu, and Shen-Iuan Liu. "CMOS Exponential Function Generator." Electronics Letters 39, no. 1 (2003): 1-2. doi:10.1049/el:20030013.
[45] Quoc-Hoang Duong, Trung-Kien Nguyen, and Sang-Gug Lee. "dB-Linear V-I Converter With Tunable Input And Output Range." 1:201-204. IEEE. Accessed May 6, 2012. doi:10.1109/MWSCAS.2003.1562253.
[46] Quoc-Hoang Duong, T. K Nguyen, and Sang-Gug Lee. "CMOS exponential current-to-voltage circuit based on newly proposed approximation method." In Proceedings of the 2004 International Symposium on Circuits and Systems, 2004. ISCAS ’04, Vol.2, 2:II-865-8

Ming-Lang Lin, A. T Erdogan, T. Arslan, and A. Stoica. "A novel CMOS exponential approximation circuit." In SOC Conference, 2008 IEEE International, 301304. IEEE, 2008. doi:10.1109/SOCC.2008.4641532.
[48] Yamaji, T., Kanou, N., \& Itakura, T. (2002). A Temperature stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range. IEEE Journal of SolidState Circuits, 37(5), 353-358.
[49] Kalenteridis, V., S. Vlassis, and S. Siskos. "1.5-V CMOS Exponential Current Generator." Analog Integrated Circuits and Signal Processing (2012): 1-9.
[50] Sarpeshkar, Rahul. Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems. 1st ed. Cambridge University Press, 2010.
[51] Périn, Mathieu, Sébastien Darfeuille, Olivier Aymard, Patrice Gamand, and Corinne Berland. "Low-power Digitally-controlled Variable Gain Attenuator and LNA with High Gain Dynamic Range for sub-GHz ISM Bands." Analog Integrated Circuits and Signal Processing 73, no. 1 (April 11, 2012): 169-183
[52] Sarpeshkar, R., C. Salthouse, Ji-Jon Sit, M.W. Baker, S.M. Zhak, T.K.-T. Lu, L. Turicchia, and S. Balster. "An Ultra-low-power Programmable Analog Bionic Ear Processor." IEEE Transactions on Biomedical Engineering 52, no. 4 (April 2005): 711 727.
[53] Hintea, S., P. Faragó, M. N. Roman, G. Oltean, and L. Festila. "A Programmable Gain Amplifier for Automated Gain Control in Auditory Prostheses." J. Med. Biol. Eng 31, no. 3 (2011): 185-192.
[54] Jeon, O., Fox, R. M., \& Myers, B. A. (2006). Analog AGC circuitry for a CMOS WLAN receiver. IEEE Journal of Solid-State Circuits, 4(10), 2291-2300.
[55] Li, X. Q., Dong, L. M., \& Peng, X. H. (2010). A 20 db, 250 M CMOS variable gain amplifier for GPS receiver. In: Proceedings of the 2010 Asia Pacific conference on postgraduate research in microelectronics and electronics (PrimeAsia) (pp. 267-270), Shanghai, China, 2010.
[56] R. Harjani, "A low-power CMOS VGA for $50 \mathrm{Mb} / \mathrm{s}$ disk drive read channels," IEEE Trans. Circuits Syst. II, Analog Digit. Signal, Process., vol.42, no.6, pp.370-376, June 1995.
[57] Sharma, S., G. Kumar, D. kumar Mishra, and D. Mohapatra. "Design and Implementation of a Variable Gain Amplifier for Biomedical Signal Acquisition." International Journal 2, no. 2 (2012).
[58] Yang, Shang-Hsien, and Chua-Chin Wang. "A Low Power 48-dB/stage linear-indB Variable Gain Amplifier for Direct-conversion Receivers." Microelectronics Journal 43, no. 4 (April 2012): 274-279
[59] W, Liu, and Liu S-I. "Low Voltage and Low Power CMOS Exponential-Control Variable-Gain Amplifier." IEICE Trans Fundam Electron Commun Comput Sci (Inst Electron Inf Commun Eng) E87-A, no. 4 (2004): 952-954.
[60] Duong, Quoc-Hoang, Quan Le, Chang-Wan Kim, and Sang-Gug Lee. "A 95-dB Linear Low-power Variable Gain Amplifier." IEEE Transactions on Circuits and Systems I: Regular Papers 53, no. 8 (August 2006): $1648-1657$.
[61] Jiaye, Z., T. Xi, W. Junyu, T. Zhangwen, and M. Hao. "A 60-dB Linear VGA with Novel Exponential Gain Approximation." Journal of Semiconductors 30, no. 6 (2009): 065006.
[62] W. Liu, S.I. Liu, Design of a CMOS low-power and low-voltage four-quadrant analog multiplier. Analog Integr. Circuits Signal Process. 63(2), 307-312 (2010)
[63] Vlassis, S., and S. Siskos. "Design of Voltage-mode and Current-mode Computational Circuits Using Floating-gate MOS Transistors." IEEE Transactions on Circuits and Systems I: Regular Papers 51, no. 2 (February 2004): 329 - 341.
[64] Seon, J. K. "Design and Application of Precise Analog Computational Circuits." Analog Integrated Circuits and Signal Processing 54, no. 1 (2008): 55-66.
[65] S. Liu and Y. Hwang, "CMOS squarer and four-quadrant multiplier," IEEE Trans. Circuits Syst. I, vol. 42, pp. 119-122, Apr. 1995.
[66] S.-I. Liu and D.-J.Wei, "Analogue squarer and multiplier based on MOS squarelaw characteristic," Electron. Lett., vol. 32, no. 6, pp. 541-542, 1996.
[67] D. C. Soo and R. G. Meyer, "A four-quadrant NMOS analog multiplier," IEEE J. Solid-State Circuits, vol. SC-17, pp. 1174-1178, Dec. 1982.
[68] S. C. Qin and R. L. Geiger, "A _5 V CMOS analog multiplier," IEEE J. SolidState Circuits, vol. SC-22, pp. 1143-1146, Dec. 1987.
J. S. Pena-Finol and J. A. Connely, "A MOS four-quadrant analog multiplier using the quarter-square technique," IEEE J. Solid-State Circuits, vol. SC-22, pp. 10641073, Dec. 1987.
[70] K. Bult and H. Wallinga, "A CMOS four-quadrant analog multiplier," IEEE J. Solid-State Circuits, vol. SC-21, pp. 430-435, June 1986.
[71] S.-I. Liu and C.-C. Chang, "A CMOS square-law vector summation circuit," IEEE Trans. Circuits Syst. II, vol. 43, pp. 520-524, July 1996.
[72] G. Giustolini, G. Palmisano, and G. Palumbo, "1.5 V power supply CMOS voltage squarer," Electron. Lett., vol. 33, no. 13, pp. 1134-1135, 1997.
[73] S. I. Liu, J. L. Lee, and C. C. Chang, "Low voltage BiCMOS four-quadrant multiplier and squarer," Analog Integr. Circuits Signal Proc., vol. 20, pp. 25-29, 1999.
[74] A. Hyogo, Y. Fukutomi, and K. Sekine, "Low voltage four-quadrant analog multiplier using square root circuit based on CMOS pair," in Proc. IEEE Int. Symp. Circuits Systems, ISCAS'99, Orlando, FL, May 1999, pp. II-274-II-277.
[75] S. R. Zarabadi, M. Ismail, and C.-C. Hung, "High performance analog VLSI computational circuits," IEEE J. Solid-State Circuits, vol. 33, pp. 430-435, Apr. 1998.
[76] V. Riewruja, K. Anuntahirunrat, and W. Surakampontrorn, "A class AB CMOSsquare-rooting circuit," Int. J. Electron., vol. 85, no. 1, pp. 55-60, 1998.
M. H. Eskiyerli, A. J. Payne, and C. Toumazou, "State space synthesis of integrators based on the MOSFET square law," Electron. Lett., vol. 32, no. 6, pp. 505506, 1996.
[78] R. J. Wiegerink, Analysis and Synthesis of MOS Translinear Circuits. Boston, MA: Kluwer, 1993.
[79] H. Wasaki, Y. Horio, and S. Nakamura, "Current multiplier/divider circuit," Electron. Lett., vol. 27, no. 6, pp. 504-506, 1991.
[80] O. Oliaei and P. Loumeau, "Four-quadrant class AB CMOS current multiplier," Electron. Lett., vol. 32, no. 25, pp. 504-506, 1996.
[81] B.-D. Liu, C.-Y. Huang, and H.-Y.Wu, "Modular current-mode defuzzification circuit for fuzzy logic controlers," Electron. Lett., vol. 30, no. 16, pp. 1287-1288, 1994.
[82] Bult, K., \& Wallinga, H. (1987). A class of analog CMOS circuits based on the square-law characteristics of an MOS transistor in saturation. IEEE Journal of Solid-State Circuits, SC-22, 357-365.
[83] Zarabadi, S. R., Ismail, M., \& Hung, C.-C. (1998). High performance analog VLSI computational circuits. IEEE Journal of Solid-State Circuits, SC-33, 644-649.
[84] Song, H., \& Kim, C. (1990). A MOS four-quadrant analog multiplier using simple two-input squaring circuits with source followers. IEEE Journal of Solid-State Circuits, SC 25, 841-894.
[85] Wang, Z. (1991). A CMOS four-quadrant analog multiplier with single-ended voltage output and improved temperature performance, IEEE Journal of Solid-State Circuits, SC-26, 1293-1301.
[86] Lande, T. S., Nesheim, J. A., \& Berg, Y. (1995). Auto correlation in micropower analog CMOS. Analog Integrated Circuits and Signal Processing, 1, 61-68.
[87] Liu, S.-I., Chang, C.-C., \& Hwang, Y.-S. (1996). New CMOS four-quadrant multiplier and squarer circuits. Analog Integrated Circuits and Signal Processing, 9, 257263.
[88] Liu, S.-I. (1995). Square-rooting and vector summation circuits using current conveyors. IEE Proceedings Circuits, Devices \& Systems, 142(4), 223-226.
[89] Torrance, R. R., Viswanathan, T. R., \& Hanson, J. V. (1985). CMOS voltage to current transducers. IEEE Transactions on Circuits and Systems, CAS-32(11), 10971985.
[90] Nedungadi, A., \& Viswanathan, T. R. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, CAS-31, 891894.
[91] Seevink, E., \& Wassenaar, R. F. (1987). A versatile CMOS linear tranconductor/square-law function circuit, IEEE Journal of Solid- State Circuits, SC22(3), 366-377.
[92] Chen, C., \& Li, Z. (2006). A low-power CMOS analog multiplier. IEEE Transactions on Circuits and Systems II, 53, 100-104.
[93] Demosthenous, A., \& Panovic, M. (2005). Low-voltage MOS linear transconductor/squarer and four-quadrant multiplier for analog VLSI. IEEE Transactions on Circuits and Systems I, 52, 1721-1731.
[94] Cruz-Blas, C. A., Lopez-Martin, A., \& Carlosena, A. (2003). 1.5-V MOS translinear loops with improved dynamic range and their applications to current-mode signal processing. IEEE Transactions on Circuits and Systems II, 50, 918-927.
[95] M. Gravati, M. Valle, G. Ferri, N. Guerrine, L. Reyes, A novel current-mode very low power analog CMOS four-quadrant multiplier, in Proceedings of ESSCIRC, France (2005), pp. 495-498.
[96] Y.Chen, Y.Huang, D.Liu , "Current-mode defuzzifier circuit to realize the centroid strategy", IEE Circuits Devices Systemt, Vol. 1, 1997.
[97] Cyril Prasanna Raj P, S.L. Pinjare, "Design and Analog VLSI Implementation of Neural Network Architecture for Signal Processing", European Journal of Scientific Research, Vol. 27, No.2, 2009.
[98] Hamid Reza Mehrvarz and Chee Yee Kwok, "A Novel Multi-Input Floating-Gate MOS Four-Quadrant Analog Multiplier", IEEE Journal of Solid-State Circuits, Vol. 31, No. 8, pp. 1123-1131, 1996.
[99] B. Razavi, "Noise", Stephen W. Design of Analog CMOS Integrated Circuits, McGraw-Hill publisher, New York, pp: 223-226, 2001.

Vita

- Karama Mohammed K. AL-Tamimi.
- Born in Hadhramout province, Yemen in 1982.
- Received the Bachelor's degree with honor in electronics \& communication engineering from Hadhramout University of Science \& Technology (HUST), Hadhramout, Yemen in July 2007.
- Completed Master's degree requirements in Electrical Engineering at King Fahd University of Petroleum \& Minerals (KFUPM), Dhahran 31261, Saudi Arabia in December, 2012.
- E-mail: kmt340@gmail.com

[^0]: a @ RC=0.5 $\mu \mathrm{s}$ \& Gain=2

