

iii

© Mohammed Misbhauddin

2012

iv

DEDICATION

To Mom and Dad,

for their love and sacrifice

v

ACKNOWLEDGMENTS

Alhamdulillah, a truly long journey of completing a PhD has materialized with me

writing this acknowledgement to all who aided and supported me through this ordeal.

First of all, I would like to thank my PhD supervisor Dr. Mohammad Alshayeb. I am

indebted to him for his patience with me, his judicious guidance and specially his

confidence and the freedom he granted me throughout the work. Apart from guidance in

life at university and research, Dr. Alshayeb provided a strong sense of encouragement,

inspiration and was always ready to lend an ear when I faced difficulties in my personal

life. Steve Jobs’ aptly quoted “You cannot connect the dots looking forward; you can

only connect them looking backward.” With the completion of my dissertation, I can’t

fail to notice the support of Dr. Alshayeb in connecting my past dots.

I would like to thank Prof. Radwan Abdel-Aal, who kindly agreed to co-supervise my

dissertation and generously review my work. I would also like to acknowledge the

support of my committee member Dr. Moataz for his critiques and discussions on the

topics of UML models. I am also grateful to all other members of my PhD committee,

Dr. Aiman El-Maleh and Dr. Mahmoud Elish for reviewing and providing constructive

feedback on my work.

I gratefully acknowledge the support from the Information and Computer Science Dept.,

and the King Abdul Aziz City of Science and Technology Graduate Student Grant (No.

 .(أ ط – 18-20

vi

The time spent in King Fahd University has been great fun due to my friendly colleagues.

It has been a great pleasure sharing an office with Yousef Elarian. Although not in my

research area, his friendly presence, discussions and useful insights and ideas improved

my perception on my work and personal life. I also thank my friends Imran, Abdul

Rahmaan, Fareed, Mumtaz, Mujahid, Abdur Rahman, Ammar, Sameh and Walid for all

the unforgettable conversations. They vivified my days at KFUPM.

Of course I wish to thank my parents and siblings, specially my Mom who would have

been proud of me. My special thanks goes to my beloved wife for her support and

patience through difficult times and the good ones. Also to my son, Mohammed Saud,

who has given me a lot of joy and his strength has motivated me to excel.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. V

TABLE OF CONTENTS .. VII

LIST OF TABLES.. XIV

LIST OF FIGURES ... XVII

LIST OF ABBREVIATIONS .. XX

ABSTRACT .. XXIII

الرسالة ملخص ... XXV

1 CHAPTER 1 INTRODUCTION .. 1

1.1 Problem Description ... 4

1.2 Motivation .. 6

1.3 Research Objectives .. 8

1.4 Research Methodology ... 9

1.5 Research Contributions ... 13

1.6 Outline of Dissertation .. 14

2 CHAPTER 2 BACKGROUND ... 17

2.1 Model Driven Software Engineering.. 17

2.2 UML: Object-Oriented Modeling Language ... 18

2.2.1 UML Class Diagram ... 23

2.2.2 UML Sequence Diagram ... 25

2.2.3 UML Use Case Diagram... 29

2.3 OCL: Modeling Constraints .. 32

viii

2.4 Model Transformation .. 35

2.4.1 Software Refactoring .. 39

2.5 Model Transformation Framework ... 40

2.5.1 Model Transformation System ... 42

2.5.2 Model Smells .. 45

2.5.3 Model Behavior .. 47

2.5.4 Refactoring Quality... 48

2.5.5 Refactoring Tool Support .. 48

2.5.6 Consistency Management .. 49

3 CHAPTER 3 LITERATURE REVIEW ... 50

3.1 Code Based Refactoring .. 50

3.1.1 Bad Smell Identification and Refactoring Suggestion .. 51

3.1.2 Behavior Preservation .. 54

3.1.3 Refactoring Application .. 55

3.1.4 Refactoring Effect Evaluation ... 57

3.1.5 Consistency Preservation ... 58

3.2 Model Based Refactoring .. 58

3.2.1 Model Specification .. 60

3.2.2 Model Transformation Language .. 63

3.2.3 Model Smells .. 65

3.2.4 Model Behavior .. 70

3.2.5 Model Refactoring .. 72

3.2.6 Refactoring Quality... 74

3.2.7 Tool Support ... 75

3.2.8 Consistency Management .. 80

ix

3.3 Refactoring Consistency Management .. 80

3.4 Metamodel Extension ... 84

4 CHAPTER 4 INTEGRATED METAMODEL ... 91

4.1 UML Metamodel ... 91

4.2 UML Class Diagram ... 96

4.2.1 UML Class Diagram Metamodel.. 97

4.2.2 Class Diagram Metamodel Extension .. 99

4.3 UML Sequence Diagram .. 99

4.3.1 UML Sequence Diagram Metamodel .. 100

4.3.2 Sequence Diagram Metamodel Extension .. 102

4.4 UML Use Case Diagram ... 108

4.4.1 UML Use Case Diagram Metamodel ... 108

4.4.2 Use Case Diagram Metamodel Extension ... 110

4.5 Object Constraint Language (OCL) ... 142

4.5.1 OCL Metamodel .. 142

4.5.2 OCL Metamodel Extension ... 144

4.6 Integrated Metamodel .. 145

4.6.1 STEP 1: Sequence and Use Case Metamodel Composition .. 151

4.6.2 STEP 2: Class Metamodel Composition ... 156

4.6.3 STEP 3: OCL Metamodel Composition... 159

5 CHAPTER 5 INTEGRATED MODEL REFACTORING ... 163

5.1 Model Refactoring Strategy .. 164

5.1.1 Model Transformation System ... 164

5.1.2 Model Smell Detection Strategy ... 166

x

5.1.3 Model Refactoring Application ... 166

5.1.4 Model Behavior .. 168

5.1.5 Refactoring Process .. 168

5.2 Model Refactoring Template... 169

5.3 Running Case Study ... 171

5.4 Integrated Model Smells ... 174

5.4.1 Creeping Featurism .. 174

5.4.2 Multiple Personality ... 183

5.4.3 Excessive Alternation ... 196

5.4.4 Undue Familiarity ... 209

5.4.5 Spider’s Web .. 220

5.4.6 Specters’ ... 232

5.4.7 Model Duplication .. 240

5.4.8 Ripple Effect ... 253

6 CHAPTER 6 TOOL SUPPORT .. 263

6.1 UCDesc: A Use Case Description Tool .. 263

6.1.1 Analysis of Existing Use Case Modeling Tools ... 264

6.1.2 UCDesc Architecture ... 266

6.1.3 Features of UCDesc Tool ... 269

6.1.4 Current Limitations of UCDesc Tool .. 274

6.2 IntegraUML: A multi-view UML Integration and Refactoring Tool ... 275

6.2.1 IntegraUML Architecture .. 275

6.2.2 IntegraUML Input Format ... 278

6.2.3 IntegraUML Features .. 281

6.2.4 Current Limitations of IntegraUML Tool ... 283

xi

7 CHAPTER 7 VALIDATION ... 285

7.1 Validation Framework... 285

7.2 Case Studies .. 289

7.2.1 Student Projects ... 290

7.2.2 Published Case Studies ... 291

7.3 Individual Refactoring ... 292

7.3.1 OFD (Online Form Designer) ... 292

7.3.2 OG (OurGoal) .. 296

7.3.3 ESAP (Electronic Student Academic Portfolio) .. 299

7.3.4 ME (MyEvents) ... 303

7.3.5 FOMS (Freelancing Online Management System) ... 306

7.3.6 ATM (Automated Teller Machine) .. 309

7.3.7 SCM (Supply Chain Management) .. 313

7.3.8 O-Comm (OS Commerce) .. 316

7.3.9 ORA (On-Road Assistance) .. 320

7.4 Discussion ... 323

7.4.1 Identification of Model Smells in Use Case Diagrams ... 323

7.4.2 Identification of Model Smells in Sequence Diagrams .. 324

7.4.3 Identification of Model Smells in Class Diagrams.. 325

8 CHAPTER 8 ANALYSIS AND DISCUSSION .. 327

8.1 Integrated Refactoring .. 327

8.1.1 OFD (Online Form Designer) ... 327

8.1.2 OG (OurGoal) .. 332

8.1.3 ESAP (Electronic Student Academic Portfolio) .. 336

8.1.4 ME (MyEvents) ... 339

xii

8.1.5 FOMS (Freelancing Online Management System) ... 344

8.1.6 ATM (Automated Teller Machine) .. 347

8.1.7 SCM (Supply Chain Management) .. 352

8.1.8 O-Comm (OS Commerce) .. 355

8.1.9 ORA (On-Road Assistance) .. 360

8.2 Analysis and Discussion... 363

8.2.1 Integrated Refactoring Impact on Use Case Diagram .. 365

8.2.2 Integrated Refactoring Impact on Class Diagram .. 367

8.2.3 Integrated Refactoring Impact on Sequence Diagram ... 369

9 CHAPTER 9 CONCLUSION AND FUTURE WORK ... 371

9.1 Summary... 371

9.2 Contributions .. 373

9.3 Threats to Validity ... 374

9.4 Future Works .. 376

APPENDIX 1: FORMAL DESCRIPTION FOR THE UML METAMODEL 379

APPENDIX 2: MODEL REFACTORING CATALOG ... 400

APPENDIX 3: XML & ASSOCIATED STANDARDS ... 445

APPENDIX 4: XQUERY FUNCTIONS FOR INTEGRATED MODEL SMELLS 457

APPENDIX 5: XMI SCHEMA FOR EXTENDED USE CASE METAMODEL 474

APPENDIX 6: UCDESC USER MANUAL .. 480

APPENDIX 7: XMI SCHEMA FOR INTEGRATED METAMODEL 488

APPENDIX 8: INTEGRAUML USER MANUAL... 495

xiii

APPENDIX 9: UML MODEL METRICS .. 500

APPENDIX 10: UML MODEL SMELLS .. 512

REFERENCES .. 526

VITAE ... 579

xiv

LIST OF TABLES

Table 1 List of model smells detected using OO metrics .. 67

Table 2 Template elements from different notation proposed in the literature 112

Table 3 Summary of Alternative Scenarios .. 122

Table 4 Inclusion and Exclusion Meta-classes in Step 1. .. 153

Table 5 Traceability Matrix for Use Case and Sequence Metamodel Composition 154

Table 6 Traceability Mapping between Class and UC-SD metamodel classes 156

Table 7 Mapping of Syntactic Structure of Sentences into Use Case Objects 267

Table 8 Summary of each student project case study system .. 291

Table 9 Summary of each published case study system .. 291

Table 10 Comparison of Class Diagram-level Metrics for OFD System 292

Table 11 Comparison of Class Element-level Metrics for OFD System 293

Table 12 Comparison of Use Case Diagram-level Metrics for OFD System 294

Table 13 Comparison of Use Case Element-level Metrics for OFD System 294

Table 14 Comparison of Sequence Element-level Metrics for OFD System 295

Table 15 Comparison of Class Diagram-level Metrics for OG System 296

Table 16 Comparison of Class Element-level Metrics for OG System 297

Table 17 Comparison of Use Case Diagram-level Metrics for OG System 298

Table 18 Comparison of Use Case Element-level Metrics for OG System.................... 298

Table 19 Comparison of Sequence Element-level Metrics for OG System 299

Table 20 Comparison of Class Diagram-level Metrics for ESAP System 299

Table 21 Comparison of Class Element-level Metrics for ESAP System 300

Table 22 Comparison of Use Case Diagram-level Metrics for ESAP System 301

Table 23 Comparison of Use Case Element-level Metrics for ESAP System 301

Table 24 Comparison of Sequence Element-level Metrics for ESAP System 302

Table 25 Comparison of Class Diagram-level Metrics for ME System 303

Table 26 Comparison of Class Element-level Metrics for ME System 304

Table 27 Comparison of Use Case Diagram-level Metrics for ME System 305

Table 28 Comparison of Use Case Element-level Metrics for ME System 305

Table 29 Comparison of Sequence Element-level Metrics for ME System 306

Table 30 Comparison of Class Diagram-level Metrics for FOMS System 306

Table 31 Comparison of Class Element-level Metrics for FOMS System 307

Table 32 Comparison of Use Case Diagram-level Metrics for FOMS System 308

Table 33 Comparison of Use Case Element-level Metrics for FOMS System 308

Table 34 Comparison of Sequence Element-level Metrics for FOMS System 309

Table 35 Comparison of Class Diagram-level Metrics for ATM System 309

Table 36 Comparison of Class Element-level Metrics for ATM System 310

Table 37 Comparison of Use Case Diagram-level Metrics for ATM System 311

Table 38 Comparison of Use Case Element-level Metrics for ATM System................. 311

Table 39 Comparison of Sequence Element-level Metrics for ATM System 312

xv

Table 40 Comparison of Class Diagram-level Metrics for SCM System 313

Table 41 Comparison of Class Element-level Metrics for SCM System 314

Table 42 Comparison of Use Case Diagram-level Metrics for SCM System 315

Table 43 Comparison of Use Case Element-level Metrics for SCM System 315

Table 44 Comparison of Sequence Element-level Metrics for SCM System 316

Table 45 Comparison of Class Diagram-level Metrics for O-Comm System 316

Table 46 Comparison of Class Element-level Metrics for O-Comm System 317

Table 47 Comparison of Use Case Diagram-level Metrics for O-Comm System 318

Table 48 Comparison of Use Case Element-level Metrics for O-Comm System........... 319

Table 49 Comparison of Sequence Element-level Metrics for O-Comm System 319

Table 50 Comparison of Class Diagram-level Metrics for ORA System 320

Table 51 Comparison of Class Element-level Metrics for ORA System 321

Table 52 Comparison of Use Case Diagram-level Metrics for ORA System 322

Table 53 Comparison of Use Case Element-level Metrics for ORA System 322

Table 54 Comparison of Sequence Element-level Metrics for ORA System 323

Table 55 Comparison of Class Diagram-level Metrics for OFD System 328

Table 56 Comparison of Class Element-level Metrics for OFD System 329

Table 57 Comparison of Use Case Diagram-level Metrics for OFD System 330

Table 58 Comparison of Use Case Element-level Metrics for OFD System 330

Table 59 Comparison of Sequence Element-level Metrics for OFD System 331

Table 60 Comparison of Class Diagram-level Metrics for OG System 332

Table 61 Comparison of Class Element-level Metrics for OG System 333

Table 62 Comparison of Use Case Diagram-level Metrics for OG System 334

Table 63 Comparison of Use Case Element-level Metrics for OG System.................... 334

Table 64 Comparison of Sequence Element-level Metrics for OG System 335

Table 65 Comparison of Class Diagram-level Metrics for ESAP System 336

Table 66 Comparison of Class Element-level Metrics for ESAP System 337

Table 67 Comparison of Use Case Diagram-level Metrics for ESAP System 338

Table 68 Comparison of Use Case Element-level Metrics for ESAP System 338

Table 69 Comparison of Sequence Element-level Metrics for ESAP System 339

Table 70 Comparison of Class Diagram-level Metrics for ME System 340

Table 71 Comparison of Class Element-level Metrics for ME System 341

Table 72 Comparison of Use Case Diagram-level Metrics for ME System 342

Table 73 Comparison of Use Case Element-level Metrics for ME System 342

Table 74 Comparison of Sequence Element-level Metrics for ME System 343

Table 75 Comparison of Class Diagram-level Metrics for FOMS System 344

Table 76 Comparison of Class Element-level Metrics for FOMS System 345

Table 77 Comparison of Use Case Diagram-level Metrics for FOMS System 346

Table 78 Comparison of Use Case Element-level Metrics for FOMS System 346

Table 79 Comparison of Sequence Element-level Metrics for FOMS System 347

xvi

Table 80 Comparison of Class Diagram-level Metrics for ATM System 348

Table 81 Comparison of Class Element-level Metrics for ATM System 349

Table 82 Comparison of Use Case Diagram-level Metrics for ATM System 350

Table 83 Comparison of Use Case Element-level Metrics for ATM System................. 351

Table 84 Comparison of Sequence Element-level Metrics for ATM System 351

Table 85 Comparison of Class Diagram-level Metrics for SCM System 352

Table 86 Comparison of Class Element-level Metrics for SCM System 353

Table 87 Comparison of Use Case Diagram-level Metrics for SCM System 354

Table 88 Comparison of Use Case Element-level Metrics for SCM System 354

Table 89 Comparison of Sequence Element-level Metrics for SCM System 355

Table 90 Comparison of Class Diagram-level Metrics for O-Comm System 356

Table 91 Comparison of Class Element-level Metrics for O-Comm System 357

Table 92 Comparison of Use Case Diagram-level Metrics for O-Comm System 358

Table 93 Comparison of Use Case Element-level Metrics for O-Comm System........... 358

Table 94 Comparison of Sequence Element-level Metrics for O-Comm System 359

Table 95 Comparison of Class Diagram-level Metrics for ORA System 360

Table 96 Comparison of Class Element-level Metrics for ORA System 361

Table 97 Comparison of Use Case Diagram-level Metrics for ORA System 362

Table 98 Comparison of Use Case Element-level Metrics for ORA System 362

Table 99 Comparison of Sequence Element-level Metrics for ORA System 363

Table 100 Refactoring impact spectrum over use case design size metrics 366

Table 101 Refactoring impact spectrum over use case complexity metrics 367

Table 102 Refactoring impact spectrum over class metrics .. 368

Table 103 Refactoring impact spectrum over sequence model design size metrics 369

Table 104 Refactoring impact spectrum over sequence model message frequency 370

xvii

LIST OF FIGURES

Figure 1 Schematic Representation of the Proposed Research Approach 12

Figure 2 Hierarchical Classification of UML Diagrams ... 20

Figure 3 Four Layer Architecture for Metamodel Management 22

Figure 4 Graphical notations for UML Class Diagram ... 24

Figure 5 Graphical notations for UML Sequence Diagram ... 29

Figure 6 Graphical notations for UML Use case diagram ... 32

Figure 7 Outline of an OCL Constraint Specification ... 33

Figure 8 Taxonomy of Model Transformation ... 36

Figure 9 Model refactoring example .. 40

Figure 10 Relationship between models and graph representation 61

Figure 11 UML Profile Metamodel .. 95

Figure 12 Classification of UML Diagrams into Views .. 96

Figure 13 Subset of the UML Class Diagram Metamodel .. 98

Figure 14 Subset of the UML Sequence Diagram Metamodel 101

Figure 15 An example lightweight extension of "alt" fragment 105

Figure 16 Extended Component of the Sequence Metamodel 106

Figure 17 Extended Sequence Diagram Metamodel [368] .. 107

Figure 18 Subset of the UML Use case diagram metamodel .. 109

Figure 19 Use Case Behavior Description Approaches .. 110

Figure 20 Addition to the extended UML metamodel for Actor 117

Figure 21 Addition to the extended UML metamodel for Use Case 118

Figure 22 Addition to the extended UML metamodel for extend relationship 124

Figure 23 Structure of a typical text based use case description.................................... 126

Figure 24 Excerpt of the Extended Metamodel for the Use Case Flow of Events 128

Figure 25 Excerpt of the Extended Metamodel for the Use Case Flow Steps 129

Figure 26 UC Description example depicting the use of Alternative Flow 131

Figure 27 UC Description example depicting the use of Extension Points 132

Figure 28 Metamodel for the Anchor meta-class mentioned in Figure 25 132

Figure 29 Excerpt of the Extended Metamodel for UC Flow with Generalization 135

Figure 30 UC Flow Generalization example .. 135

Figure 31 Multiple Use Case Scenarios adapted from [1] ... 137

Figure 32 Excerpt of the Extended Metamodel for Constraint 138

Figure 33 The Complete Extended Use case diagram Metamodel 140

Figure 34 OCL Metamodel .. 143

Figure 35 Excerpt of the Extended OCL Metamodel .. 144

Figure 36 UML Model Integration Elements ... 147

Figure 37 Model Integration Framework.. 150

Figure 38 Abstract Relationship between Use Case and Sequence Diagram 152

Figure 39 Step 1: The UC-SD (Intermediate) Metamodel .. 155

file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644600
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644602
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644603
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644604
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644605
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644606
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644607
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644608
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644609
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644610
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644611
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644614
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644615
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644619
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644620
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644622
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644624
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644625
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644626
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644627
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644630
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644631
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644633
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644634
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644635
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644636
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644637
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644638

xviii

Figure 40 Step 2: The View (Intermediate) Metamodel .. 158

Figure 41 Traceability Mapping between UC Constraint and OCL Metamodel 159

Figure 42 The Complete Integrated Metamodel ... 162

Figure 43 Use Case Diagram of the Running Case Study ... 172

Figure 44 Remove Functional Decomposition Refactoring .. 179

Figure 45 Excerpt of the NBS model views depicting Creeping Featurism Smell 181

Figure 46 Excerpt of the NBS model views after refactoring .. 182

Figure 47 Middle Man Lifeline Pattern within a Sequence Model 186

Figure 48 Decompose God Use Case Refactoring .. 189

Figure 49 Excerpt of the NBS model views depicting Multiple Personality Smell 191

Figure 50 Excerpt of the NBS model view depicting Multiple Personality Smell 192

Figure 51 Excerpt of the NBS model views after refactoring .. 193

Figure 52 Excerpt of the NBS model view after refactoring ... 194

Figure 53 Use Case Behavior (Sequence Model) divided into three sections 199

Figure 54 Substitute Excessive Extensions Refactoring ... 201

Figure 55 Excerpt of the NBS model views depicting Excessive Alternation Smell 203

Figure 56 Excerpt of the NBS model views depicting Excessive Alternation Smell 204

Figure 57 Excerpt of the NBS model views after refactoring .. 205

Figure 58 Excerpt of the NBS model views after refactoring .. 206

Figure 59 Break Intitmate Elements Refactoring .. 214

Figure 60 Excerpt of the NBS model views depicting Undue Familiarity Smell 216

Figure 61 Excerpt of the NBS model views after refactoring .. 217

Figure 62 Sample use case model depicting Spider's Web Model Smell 220

Figure 63 Redistribute Responsibility Refactoring ... 226

Figure 64 Excerpt of the NBS model views depicting Spider’s Web Smell 227

Figure 65 Excerpt of the NBS model views after refactoring .. 228

Figure 66 Remove Specters' Refactoring.. 236

Figure 67 Excerpt of the NBS model views depicting Specters’ Smell 237

Figure 68 Excerpt of the NBS model views after refactoring .. 238

Figure 69 Concepts of Paths in the detection strategy for Duplication Model Smell 242

Figure 70 Remove Duplication Refactoring ... 248

Figure 71 Excerpt of the NBS model views depicting Duplication Smell 250

Figure 72 Excerpt of the NBS model views after refactoring .. 251

Figure 73 Class Responsibility Assignment Refactoring .. 258

Figure 74 Excerpt of the NBS model views depicting Ripple Effect Smell................... 259

Figure 75 Excerpt of the NBS model views after refactoring .. 260

Figure 76 Sample XMI excerpt exported by CaseComplete UML Tool 265

Figure 77 High-Level Architecture of UCDesc Tool .. 266

Figure 78 Example yUML Link and corresponding Use Case Diagram........................ 268

Figure 79 UCDesc Main Layout .. 269

file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644639
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644640
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644641
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644642
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644643
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644644
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644645
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644646
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644647
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644648
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644649
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644650
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644651
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644652
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644653
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644654
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644655
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644656
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644657
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644658
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644659
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644660
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644661
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644662
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644663
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644664
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644665
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644666
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644667
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644668
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644669
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644670
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644671
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644672
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644673
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644674
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644675
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644676
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644678

xix

Figure 80 UCDesc Use Case Description Format ... 271

Figure 81 UCDesc (a) Use Case Description and (b) Flow Authoring Windows 272

Figure 82 An example use case flow description and its equivalent XMI 274

Figure 83 High-Level Architecture of the IntegraUML tool ... 277

Figure 84 Platform-specific Architecture of IntegraUML ... 278

Figure 85 XML Schema Diagram of the UML Class Diagram 280

Figure 86 XML Schema Diagram of the UML Sequence Diagram............................... 281

Figure 87 Use Case Diagram for IntegraUML ... 282

Figure 88 IntegraUML Main Layout .. 283

Figure 89 Validation Framework ... 287

Figure 90 Number of middle-man using design patterns used in case studies 325

Figure 91 Number of instances of model smells detected over UML Class Diagrams .. 326

Figure 92 Number of instances of Integrated Model Smells detected 364

Figure 93 Use case metrics association with model characteristics 365

Figure 94 Sequence model metrics association with model characteristics 369

file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644679
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644680
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644682
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644683
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644684
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644685
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644686
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644687
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644688
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644691
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644692
file:///C:/Documents%20and%20Settings/Mohammed%20Misbhauddin/Desktop/Thesis/CompleteThesisTitleHere.docx%23_Toc336644693

xx

LIST OF ABBREVIATIONS

AGG : Attributed Graph Grammar

API : Application Programming Interface

ATL : ATLAS Transformation Language

CASE : Computer Aided Software Engineering

CSP : Constraint Satisfaction Problem

DOM : Document Object Model

DPO : Double Push-Out Scheme

DTD : Document Type Definition

ECL : Embedded Constraint Language

FSL : Formal Specification Language

GME : Generic Modeling Environment

GRASP : General Responsibility Assignment Software Pattern

GTS : Graphical Transformation Language

HTML : Hyper Text Markup Language

IDE : Integrated Development Environment

MDA : Model Driven Architecture

MDSE : Model Driven Software Engineering

xxi

MET : Model Element Term

MOF : Meta-Object Facility

MTL : Model Transformation Language

MTS : Model Transformation System

NAC : Negative Application Condition

OCL : Object Constraint Language

OMG : Object Management Group

OO : Object Oriented

PIM : Platform Independent Model

PSM : Platform Specific Model

SDO : Simple Delegating Operation

SGML : Standardized Generalized Markup Language

SPO : Simple Push-Out Scheme

TGG : Triple Graph Grammar

QVT : Query/View/Transformation

UC : Use Case

UML : Unified Modeling Language

xxii

UMLAUT : UML All pUprposes Transformer

W3C : World Wide Web Consortium

XML : eXtensible Modeling Language

XMI : XML Metadata Interchange

XSLT : eXtensible Sylesheet Language Transformation

xxiii

ABSTRACT

Full Name : Mohammed Misbhauddin

Thesis Title : Towards An Integrated Metamodel Based Approach to Software

Refactoring

Major Field : Computer Science and Engineering

Date of Degree : May 2012

Software refactoring is the process of changing a software system in a manner that does

not alter its external behavior and yet improving its internal structure. Model-Driven

Architecture and the popularity of the UML have enabled the application of refactoring at

model-level which earlier was applied to only software code. Refactoring at model level

is more multifaceted and challenging than at source code level. Hence, research in this

area is still considered to be in its infancy. The objective of this research was to develop a

multi-view integrated approach to model-driven refactoring using UML models. The

main motivation behind using multiple views for model refactoring was to utilize the

inter-view relationships to bridge the gap between code and model refactoring. In this

research, a single model from each UML view is composed at metamodel level to

construct an integrated metamodel. Class diagram representing the structural view,

sequence diagram representing the behavioral view and use case diagram representing the

functional view were selected for integration. A total of eight integrated refactoring

opportunities that can be used to improve the design models were proposed over the

integrated metamodel along with a set of primitive refactorings that can be used to

remove the proposed smells. A prototype tool called IntegraUML that performs model

integration and refactoring was also developed to allow semi-automated identification

and resolution of the model smells. Validation of the proposed approach was performed

by comparing integrated refactoring approach with refactoring applied to models

individually in terms of quality improvement through UML model metrics. A total of

nine case studies were considered for empirical validation of the proposed approach. It is

concluded that more opportunities can be detected using the integrated approach rather

than the individual refactoring approach. Apart from this, there was a significant

xxiv

improvement in the design size, complexity and modularity of the individual models after

the application of refactoring over the integrated model as opposed to individual

refactoring. Future work to this approach can investigate on using other models in the

integration, application of pattern refactoring over the integrated metamodel and

empirical validation over large real-world project designs.

xxv

 ملخص الرسالة

 محمد مصباح الدين : الاسم الكامل

 نحو نظام تعريف نموذجي متكامل لاعادة هيكلية البرمجيات : عنوان الرسالة

 علوم الحاسب الآلي والهندسة : التخصص

 ٢١٠٢ مايو: تاريخ الدرجة العلمية

إعادة هيكلية البرمجيات هي عملية تغيير نظام البرمجيات بحيث تحسن من هيكله الداخلي ولا تغير سلوكه

مستوى تطبيق إعادة الهيكلية على (UMLالخارجي. مكنت الهيكلية المرتبطة بالنماذج ولغة النمذجة الموحدة)

النماذج والتي كانت في السابق تطبق على شيفرة البرمجيات. إعادة الهيكلية على مستوى النماذج هو متعدد الأوجه

 .وأكثر صعوبة من على مستوى شيفرة المصدة. لهذا، لا تزال الابحاث في هذا المجال تعتبر في المراحل الأولى

وجه لإعادة الهيكلية النماذج باستخدام لغة النمذجة الموحدة الهدف من هذا البحث هو وضع نهج متكامل متعدد الا

(UML .) الدافع الرئيسي لاستخدام طرق المتعددة لإعادة هيكلية النماذج هو للاستفادة من العلاقات المتداخلة بهدف

ه لغة سد الفجوة بين شيفرة ونماذج إعادة هيكلية البرمجيات. في هذا البحث، تم استخدام نموذج واحد من أوج

نموذج الاصناف ليمثل تم تحديد .على مستوى النموذج العام لبناء نموذج عام متكامل(UMLالنمذجة الموحدة)

وجهة النظر البنيوية، نموذج مخطط التسلسل ليمثل وجهة النظر السلوكية ونموذج حالات الاستخدام ليمثل وجهة

ة الهيكلة التي يمكن استخدامها لتحسين النماذج المقترحة النظر الوظيفية. تم اقتراح مجموعه من ثمانية فرص إعاد

على النموذج العام المتكامل بالإضافة الى مجموعة من طرق اعادة الهيكلة البدائية التي يمكن استخدامها لإزالة

ح والتي تنفذ تكامل النماذج وإعادة الهيكلية وكذلك تسم IntegraUML المشاكل المقترحة. تم تصميم أداة تسمى

تم إجراء المصادقة على النهج المقترح وذلك من خلال مقارنة نهج .بالتحديد شبه الالي وتصليح مشاكل النماذج

إعادة الهيكلية المتكامل مع تطبيق إعادة الهيكلية على نماذج فردية من حيث تحسين الجودة من خلال قياس متريات

للتحقق من صحة النهج المقترح. كانت النتيجة أنه سة (. تم تطبيق تسع حالات دراUMLلغة النمذجة الموحدة)

وفضلا .يمكن الكشف عن فرص لإعادة الهيكلية أكثر باستخدام النهج المتكامل مقارنة بنهج اعادة الهيكلة الفردي

 عن ذلك، كان هناك تحسن كبير في حجم التصميم، والتعقيد والنمطية للنماذج الفردية بعد تطبيق إعادة الهيكلية من

خلال النموذج المتكامل بدلا من إعادة هيكلية النماذج الفردية. العمل المستقبلي سيبحث في استخدام نماذج أخرى في

النموذج المتكامل، تطبيق اعادة هيكلية الانماط من خلال النموذج العام المتكامل والمصادقة باستخدام تصاميم

 مشروع حقيقي كبير.

1

1 CHAPTER 1

INTRODUCTION

Software Maintenance has become an integral component of software development and

management. The process of maintaining software requires application of certain set of

activities that modify an existing software system. A number of incentives dictate the

need for maintaining software, which includes factors such as failures in performance and

implementation, changes in information and environment, inefficiencies in operation etc.

Chapin et al. [2] categorized software maintenance based on the objective evidence of the

maintainer’s activities. Another term usually associated synonymously with software

maintenance is Software Evolution [3].

Cook et al. [4] defined the term Evolvability as the “capability of software products to be

evolved to continue to serve its customers in a cost effective manner”. Hence, software

evolution is a subset of software maintenance activities that occur when perfective (add,

remove or modify functionality), corrective (remove errors) or performance (improve

operation and quality) maintenance for the customer’s benefit is executed. Over the years,

software practitioners and managers have been struggling to get hold over the software

development process in order to cope up with the rate of change and minimize its effects

on delivering better software products. Hence, software maintenance and evolution not

only incorporate activities after the delivery of the system but also during its development

phase.

2

An interesting feature of evolution is its structural aspect. Portion of a system is

considered weak or instable if its structure (code, design, architecture) hinders its

evolution. Structural weakness, if not identified and removed or at least improved, will

spread throughout the system causing more weaknesses and result in a system difficult to

maintain. In order to meet this challenge, studies have identified and developed software

engineering methodologies to improve the structure of software systems leading to

improvement in overall software quality. Although activities that target removing or

improving structural weaknesses are categorized under maintenance, Chikofsky and

Cross [5] referred to them as Restructuring. According to Chikofsky and Cross,

“Restructuring is the transformation from one representation form to another at the same

relative abstraction level, while preserving the subject system’s external behavior”.

William F. Opdyke as an outcome of his PhD dissertation [6] redefined restructuring in

terms of Object Oriented Development domain as “behavior preserving program

transformations” and termed this paradigm as Refactoring.

The main objective of refactoring is simplicity – keeping the system as simple as

possible. Refactoring improves the internal design of the software and is considered an

essential activity during software development and maintenance. It provides developers

with the ability to understand the software better, to modify and maintain and as a result

account for a significant portion of the development effort.

Motivated from the work of Opdyke, a large portion of the methodologies and tools

related to refactoring that operate at source code level are proposed in the literature.

These tools aid the developer with identification of code blocks in need of refactoring and

a few provide automated refactoring support by selecting the most appropriate way to

3

restructure. With the growing popularity of Model-driven software engineering (MDSE),

refactoring has moved in recent times from the more generic code-based refactoring to a

higher level of abstraction. MDSE is a discipline that promotes the use of models at

different levels of abstractions for developing, maintaining and evolving software

systems [7]. Software researchers are now concentrating their efforts on refactoring

software design models. Some of the motivations for moving from code to design models

for refactoring are [8]:

 A model provides an abstract view of the system; hence, visualization of the

structural changes required is easier.

 Problems uncovered at the design-level can be improved directly on the model.

 Exploring alternate decision paths is much cheaper at the design-level.

Although there exist numerous terms related to MDSE such as Model-Driven

Development (MDD), Model Driven Software Development (MDSD) and Model-Driven

Architecture (MDA), they do not imply the same methodology. MDA [9] tends to be

more restrictive and focuses on UML-based modeling languages. Due to its widespread

use for modeling Object Oriented Systems, UML (Unified Modeling Language) [10]

models are used as suitable candidates for model-driven refactoring in recent literature.

4

1.1 Problem Description

Although model-driven refactoring has attained wide recognition and acceptance, several

vexing problems remain. Research in this area is still under development bounded by a

number of challenges and open issues. Some of the key challenges and issues,

highlighted by Mens et al. [11-14] when applying refactoring to software models and

based on our systematic review of the literature of the field, are summarized here:

 Lack of model refactoring opportunities: In order to apply refactoring to models,

identification of structural weaknesses and design defects within the model (also

known as Model Smells or Refactoring Opportunities) is required. There exists quite

a few refactoring opportunities when it comes to code refactoring [15-17]. In contrast,

only a few refactoring opportunities have been discussed in terms of model-driven

refactoring. One of the main reasons behind this research-gap is because models are

typically built up from different views composed of multiple diagrams as opposed to

source code that conforms to a single model (based on the language used). Of all the

studies that relate to model-driven refactoring in the literature, only 54% of them

address the concept of model smells and their detection strategies [18]. There is a

need to identify a comprehensive and commonly accepted list of model refactoring

opportunities. Apart from this, there is also a need to establish relation between the

refactoring opportunity (problem) and appropriate refactoring operations that can

improve the model by removing the problem.

 Lack of precise definition of proposed refactoring opportunities: Studies that

discuss the same refactoring opportunity use different identification strategies. This

5

inconsistency is mainly because of the multi-view nature of UML modeling. For

instance, the God Class refactoring opportunity is described by both the class and

sequence diagram in some studies [19, 20] while it is described by the class diagram

only in others [21-25]. Apart from this, studies that use the same diagram use

different threshold values to quantify the opportunity. For instance, Ghannem et al.

[22] classify a class as God Class if it has more than 10 attributes and 20 methods

whereas Llano and Pooley [23] classify it if a class is composed of 60 or more

attributes and methods.

 Lack of precise definition of behavior in models: By definition, software

refactoring is a contemporary software maintenance activity intended to modify the

internal structure of the software without changing its observable behavior. In order

to ensure this, a precise definition of behavior is required for models to achieve true

model-driven refactoring. Apart from this, there is also need of a formal specification

technique to state the behavioral invariants and methods to verify whether model

refactoring preserves these invariants. A key research challenge is therefore the lack

of precise definition of behavior and formalisms to define and verify behavior

preservation for model-driven refactoring.

 Lack of an evaluation framework: Another important objective of refactoring is

improvement in software quality because of restructuring the software model.

Although an important activity, only 5.3% of the studies published on model-driven

refactoring address it [18]. Lack of an evaluation approach severely affects the

usability of model-driven refactoring approaches in industrial software development.

6

 Inconsistency among different models: Due to the multi-view nature of software

models, the issue of consistency and synchronization is important. UML is a

collection of different diagrams representing different views. Although different,

most of these diagrams contain complementary information. Applying refactoring to

one of these diagrams could result in inconsistencies among other dependent models.

This issue is contrasting to code based refactoring which is often (but not always)

expressed within a single programming language. The key issue here is to identify an

approach to ensure model consistency between all dependent views.

 Lack of automated tool support: One of the main requirements in the area of

refactoring is the availability of tool support to automatically detect and remove

model defects. Tool support provided in the field of model-driven refactoring are

usually classified based on the degree of automation provided. A fully automated tool

provides automatic detection and correction of defects without human intervention. A

semi-automated tool requires human assistance before the actual transformation.

More than two-thirds of the studies that provide model-driven refactoring tools are

not fully automated [18]. The two main factors affecting full automation are 1) no

means of automated model defect detection and 2) tools that do provide detection do

not provide a mapping between the defects and refactoring solutions.

1.2 Motivation

Refactoring at model-level is more multifaceted and challenging than at code-level due to

the existence of multiple views. A typical software design is composed of diagrams from

7

all views, each capturing an important characteristic of the system. A view is a collection

of diagrams that illustrate similar aspects of the system. With the growing popularity of

MDA and UML based techniques, researchers have started exploring the use of multiple

views for model analysis. Some prominent applications include Model Consistency

Management [26-28], Model Evaluation [29] and Model Reuse [30]. Most research

studies published on model-driven refactoring concentrate mainly on refactoring

application on individual models from a view at a time. Model-driven refactoring

approaches can be classified based on two criteria: the number of views considered for

refactoring and the technique used [31]. The main motivations behind the use of multiple

views for refactoring are:

 There exists a complementary relation among all the UML views. Refactoring a

single diagram from a view at a time ignores the surplus information available from

inter-view relationships. A few recent approaches have suggested the use of multiple

views for model-driven refactoring [19, 20, 31, 32]. Although effective, these

approaches either do not consider all available model views or incorporate views

outside the scope of UML modeling notation.

 One of the motivations for model-driven refactoring is that the problems uncovered at

the design-level can be improved directly on the model. However, since the set of

refactoring opportunities for program refactoring are more detailed than the model

based refactoring, a large number of smells escape and seep into the implemented

code. Considering multiple views for refactoring opportunity detection provides a

broad view of all aspects required for a complete description of the system.

8

 The use of multiple views allows integrating behavioral information into other static

views. This integration allows refactoring operations to assess model behavior and

ensure its preservation post refactoring.

 Refactoring an integrated multi-view model applies the refactoring operation to all

related model views hence circumventing or considerably reducing the effort needed

to ensure model consistency.

1.3 Research Objectives

Although the concept of refactoring is being researched thoroughly, its application to

UML models is still faced with numerous issues and challenges. Most of these issues are

due to the multi-view nature of modeling in UML. The main objective of this work is to

fill the gap between the source-code and model-driven refactoring by applying

refactoring to more than one view at a time. Our work addresses the following research

questions:

1. What is the state-of-the-art in UML model-driven refactoring?

2. How can multiple UML views be used to identify refactoring opportunities?

3. Which refactoring opportunities can be re-used and adapted to model-driven

refactoring because of the multi-view integrated model?

4. How to specify model refactoring steps over multi-view integrated metamodel and

prove they preserve the observable behavior of the complete system?

5. How to automate the process of model integration and the process of applying model

refactoring in the form of a tool?

9

Specifically, the objectives of this research are

1. To provide an integrated metamodel that combines the metamodel of class model,

sequence model and use case model representing the three views of UML.

2. To identify refactoring opportunities within the software design using model

information from multiple views. This information is obtained from the integrated

model.

3. To provide refactoring solutions to mitigate the identified opportunities at the

metamodel level. The use of metamodel for refactoring provides the user with

additional information regarding the semantics in the model and the structure that the

model is required to follow. This information aids in describing the refactoring steps.

4. To provide automated tool support for model integration and refactoring. Automated

support ensures proper model conversion so they conform to the specified metamodel

accordingly.

1.4 Research Methodology

In order to address the issues identified in Section 1.3, we propose the use of multiple

views for model-driven refactoring. UML 2 defines 14 different diagrams as part of its

most recent specification [10]. Since the use of all diagrams in included in the UML suite

for refactoring is not feasible, we use the concept of views. Typically UML models are

classified into three views: structural, behavioral and functional [33]. Each view

represents an important aspect of the system and together they provide a complete

description of the system. Although these views are independent from each other, there

10

exists a relationship (information dependency) among diagrams in these views. We need

to establish convergence points where the integration of all the views is possible i.e. a

way to represent in the structural view, the behavior of each element found from the

behavioral view and the functionality found in the functional view. This integration of

different UML diagrams can supplement additional meaning to the entire system thereby

increasing the information available as a whole. For instance, adding behavior

information available from behavioral view of UML such as sequence diagrams, state

diagrams etc. to the structural view such as class diagrams.

With feasibility of the approach in mind, we selected a single diagram from each view

based on its popularity and functional use. Core diagrams used in our approach include

Class diagram from the structural view, Sequence diagram from the behavioral view and

Use case diagram from the functional view. An outline of our research approach is

depicted in Figure 1. The key components of our methodology include

1. Metamodel Extension: In order to ensure proper integration of metamodels, we

extended the metamodels of sequence diagram and use case diagram. The class

diagram metamodel was used as-is from the UML specification. The use case

diagram metamodel was extended with behavior information in order to establish its

relation to the sequence model. The sequence diagram metamodel was extended to

handle model traceability and act as a liaison between the use case metamodel and

class diagram metamodel. The main motivation behind these extensions is to ensure

seamless integration of all selected metamodels to form the Integrated metamodel.

Section 4.2 to 4.5 discusses our extensions to the UML metamodels in detail.

11

2. Metamodel Integration: The Integrated metamodel is composed of metamodels of

the class diagram, the extended metamodel of the sequence diagram and the extended

metamodel of the use case diagram. In order to ensure complete modeling of

information, we also incorporated the Object Constraint Language (OCL) [34]

metamodel within the Integrated metamodel so that constraints (from class diagrams),

invariants and guards (from sequence diagrams) and pre and post conditions (from

use case diagrams) are structurally represented. Section 4.6 discusses the composition

of metamodels and the complete Integrated Metamodel.

3. Integrated Model Refactoring: An important aspect of model-driven refactoring is

to identify refactoring opportunities and suggest refactoring operations. We identify

and propose refactoring opportunities over the Integrated Metamodel and provide

refactoring steps to remove these defects. We define a template in order to present our

proposed refactoring opportunities and steps. The two main components of this

template are the smell detection algorithm and model refactoring steps that consists of

composite refactoring to remove the detected model smell. Chapter 5 discusses our

proposed refactoring opportunities along with examples from a running case study.

12

4. Tool Support: An important aspect of proposing a metamodel driven refactoring

approach is to provide tool support for automatic model conversion for metamodel

Integrated

Model

Integrated

Meta-
Model

Use Case Model

Sequence Model

Class Model

UML Class

Diagram

Metamodel

Extended

Sequence Diagram

Metamodel

Extended Use

Case Diagram

Metamodel
Conforms to

Refactoring

Rules

Refactoring

Engine

Refactored

Integrated

Model

Reads

Source model

Target model

Writes

Conforms to

Figure 1 Schematic Representation of the Proposed Research Approach

13

conformance. We implemented a tool called IntegraUML to aid users in converting

their models to the proposed metamodel. The main objective of this tool is to support

model integration and transformation on UML models serialized in the form of XMI

(XML Metadata Interchange) [35]. The tool imports the XMI representations of the

class diagram, sequence diagrams and use case diagrams and integrates them into an

intermediate format that conforms to the proposed Integrated metamodel. The smell

detection module is an XQuery (Query language for XML) based engine that imports

model smell descriptions from the Refactoring Rules repository one by one and

applies it over the integrated model. Each model smell within the repository is stored

as an XQuery file. The refactoring module applies the appropriate refactoring to the

integrated model. This process is repeated until all smells in the repository are

exhausted. Chapter 6 provides a detail description on the architecture of all the

prototype tools implemented as part of our work.

5. Validation: Due to the lack of an evaluation framework in the literature that

associates external model quality to internal attributes, we used the model metrics as

part of our validation framework. In order to validate our approach; we compared

model metrics evaluated over refactoring individual model views versus refactoring

multiple model views. Case studies used for validation and analysis and results of the

validation are discussed in Chapter 7 and Chapter 8 respectively.

1.5 Research Contributions

The major contributions of the work proposed in this dissertation are as follows:

14

1. A state-of-the-art literature review of software refactoring and UML model-driven

refactoring approaches.

2. An integrated metamodel that unifies the three different views of the UML language

(Structural, Behavioral and Functional).

3. An initial catalogue of model-driven refactoring opportunities based on individual

UML models and the Integrated metamodel.

4. A formal description of UML model syntax and semantics and their use in describing

model constraints to ensure model behavior preservation.

5. A prototype tool that enables model integration and refactoring based on the proposed

integrated metamodel. It also facilitates the refactoring process and allows

verification of preconditions and automatic application of refactoring rules.

6. Providing refactorings for structural, behavioral and functional view of UML together

along with an XML-based formalism to represent transformation using a new

integrated metamodel.

1.6 Outline of Dissertation

The rest of this dissertation is structured as follows:

 Chapter 2 presents the background knowledge upon which the work presented in this

dissertation is based upon. The chapter describes the Model-Driven Software

Engineering paradigm and Object-Oriented Modeling notations such as the Unified

Modeling Language (UML) and the Object Constraint Language (OCL). Next, the

chapter also introduces the concept of Model Transformation and Software

15

Refactoring. Finally, the chapter describes model metrics, used for validating the

proposed approach.

 Chapter 3 surveys state-of-the-art in the field of software refactoring. The first section

reviews refactoring studies conducted at code-level also known as Program

Refactoring. The second section reviews refactoring research conducted at model-

level also known as Model-driven Refactoring. The third section reviews the

approaches carried out in the research literature to synchronize refactorings between

design artifacts and code also known as Source-Consistent Refactoring. Since the

work presented in this literature involves proposing extensions to existing UML

diagram metamodels, the fourth section briefly reviews all research efforts made in

the area of metamodel extensions.

 Chapter 4 initially describes UML metamodels for the diagrams considered for the

work proposed in this dissertation: Class Diagram, Sequence Diagram and Use case

Diagram. The chapter then explains in detail the proposed extensions to the

metamodels of these UML models. Finally, the chapter concludes with the integrated

metamodel process and description.

 Chapter 5 where the main contribution of the dissertation resides, describes the

detection strategies for refactoring opportunity identification and implementation of

refactoring over the integrated metamodel in detail. This chapter introduces a

template to describe the integrated refactorings proposed.

 Chapter 6 describes the implementation of the model integration and refactoring tool.

This chapter introduces the Integration subsystem, the Refactoring subsystem and

describes data structures and storage mechanisms based on the Integrated metamodel.

16

 Chapter 7 illustrates the methodology used for validating the integrated model

refactorings. Next, the chapter describes the suite of case studies used for the

validation process. The chapter also provides the data collection methodology and the

information used for validating the approach. Finally, the chapter presents the results

of refactoring application over individual UML models.

 Chapter 8 presents the results of the refactoring application over the integrated UML

models. Finally, a thorough discussion based on the analysis of the results is included.

 Chapter 9 concludes the dissertation by answering the research questions posed. It

presents the contributions, threats to validity and future work.

17

2 CHAPTER 2

BACKGROUND

This chapter provides background over some of the key concepts used in this work.

These key concepts include explanations of notations and techniques used throughout the

rest of this dissertation.

2.1 Model Driven Software Engineering

The use of models for software development has been around since a long time. Although

used in the software development process, models were treated as informal sketches or

used for “mere” documentation purposes [36]. Prior to the formulation of the Model

Driven Software Engineering (MDSE) concept, models were considered informal drafts

of the software under development. These models were discarded once the code was

completed. With advent of model driven approaches, models are treated as key artifacts

in all phases of the software development lifecycle.

Model-driven software engineering (MDSE) is becoming the most promising paradigm in

software engineering. MDSE is a discipline that promotes the use of models at different

levels of abstraction for developing, maintaining and evolving software systems [7]. It

varies from the traditional software development paradigm by shifting focus to system

models that capture system requirements, architecture and design decisions that fulfill

them. In addition, these system models can be used to partially or fully automate code

18

generation in any target language. MDSE provides an environment that ensures the

systematic and disciplined use of models throughout the software development process.

Hence, it ensures an audit trace starting right from system requirements through the code

that implements them.

Although there exist numerous terms related to MDSE such as Model-Driven

Development (MDD), Model Driven Software Development (MDSD) and Model-Driven

Architecture (MDA), they do not imply the same methodology. MDA [9] tends to be

more restrictive and focuses on UML-based modeling languages. Out of the many

approaches to MDSE, MDA adopted by the Object Management Group (OMG) has

become the most favorable one. The three primary objectives of MDA are portability,

interoperability and reusability.

Unified Modeling Language [10], although not originally designed for MDA, became a

standard formalism for a wide range of application domains due to its wide use and

popularity. UML describes various types of models in MDA. It contains diagrams and

views that can represent various perspectives of a system.

2.2 UML: Object-Oriented Modeling Language

The Object Oriented paradigm has achieved immense popularity over other programming

paradigms. The prime reason for this acceptance is that it gives priority to modeling

concepts, which is important from the problem domain’s perspective, leaving behind

programming technicalities to be filled in later. With the growing popularity of the Object

19

Oriented paradigm and with an intention to provide a standard for Object Oriented

Analysis and Design, the Object Management Group (OMG) adopted UML as a standard

language for the design and analysis of Object Oriented Programs.

UML is a graphical language that provides notations and action semantics to describe and

design software systems. It was a result of amalgamation of different graphical modeling

approaches by Grady Booch [37], James Rumbaugh et al. [38] and Ivar Jacobson [39].

Not only does UML describe a software system at different levels of abstraction, but is

also used in tools for software simulation [40].

Since the adoption of UML as an open standard by OMG in 1997, it has undergone

constant evolution to keep up with criticisms [41] in order to provide a more precise and

expressive modeling language. The most recent specification, UML 2.4, describes 14

formal diagrams, which intend to provide different views of a system under design. A

view is a collection of diagrams that illustrate similar characteristics of the system. The

UML taxonomy classifies its diagrams into two views: structural and behavioral. There

have been other proposals for view classifications such as the 4+1 view by Kruchten [42]

and the structural, behavioral and functional view classification proposed by Iivari [33].

Since the UML taxonomy provides no categorization for representing the functional

aspects of the UML modeling suite, we decided to adopt the view classification by Iivari.

A typical classification of the diagrams into three different views: structural, behavioral

and functional is shown in Figure 2. Use case diagrams are a means of specifying

functionality according to Jacobson et al. [39]. The classification of Activity Diagram

into the functional view is based on the observations by Rumbaugh et al. [38] and Shlaer

20

and Mellor [43, 44] who use data flow modeling concepts such as action/activity to

describe the functionality of the system.

Figure 2 Hierarchical Classification of UML Diagrams

Structural View

The basic building blocks in an object-oriented design are objects and classes.

The structural view provides diagrams that capture the physical organization of

these blocks in the system. It describes a static structure of the system. One of the

most prominent diagrams in this view is the class diagram, which is considered

UML
Diagrams

Structural
View

Class
Diagram

Object
Diagram

Package
Diagram

Deployment
Diagram

Composite
Structure
Diagram

Component
Diagram

Profile
Diagram

Behavioral
View

Sequence
Diagram

Communication
Diagram

Timing
Diagram

Interaction
Overview Diagram

State Machine
Diagram

Functional
View

Activity
Diagram

Use Case
Diagram

21

part of the integrated metamodel proposed in this dissertation. Section 2.2.1

provides a detail description of the class diagram.

Behavioral View

Diagrams included in the behavioral view show the dynamic behavior of the

structural objects in the system. This dynamic behavior specifies the series of

changes made to the system over time. One of the most commonly used diagrams

to model system behavior is the sequence diagram, which is considered part of the

integrated metamodel proposed in this dissertation. Section 2.2.2 provides a detail

description of the sequence diagram.

Functional View

The functional view is a collection of diagrams that depict how a system is

supposed to work. It captures information about the system from the user’s

perspective. Because of these advantages, these diagrams are among a few which

are constructed early in the development of software. One of the most vital

diagrams from this view that provides modeling of system’s functional

requirements is the Use Case Diagram. The use case diagram is considered as part

of the integrated metamodel proposed in this dissertation. Section 2.2.3 provides a

detail description of the use case diagram.

All UML diagrams conform to the UML metamodel that specifies its abstract syntax,

concrete syntax and semantics. A metamodel is a model of the modeling language (such

as UML). A notation known as Meta-Object Facility (MOF) [45] put forward by OMG

allows software engineers to build and extend UML metamodels. In order to demonstrate

22

the relationship between the systems under development, models and metamodels, a four-

layer architecture provided by MOF is shown in Figure 3.

Based on this architecture, metamodels for modeling languages can be defined using

MOF. These modeling languages, like UML, can then be used to describe domain

specific concepts. Finally user data can be instantiated. A complete system can be

developed using UML by generating a number of UML models. Models that represent

the system are then used to produce a software system that conforms to the model.

Meta Meta -

Model

Meta - Model

Model

Conforms to

Conforms to

M1

M2

M3

System M0

Represented by

Figure 3 Four Layer Architecture for Metamodel Management

23

2.2.1 UML Class Diagram

Class diagram represents the structural view of an object-oriented system. It consists of a

set of classes designating important entities of the modeled system. Along with classes, a

class diagram also consists of relationships between these classes. It is the most common

diagram and considered as the backbone for modeling object-oriented systems.

Classes are defined as a set of objects sharing the same attributes and methods. Attributes

are unique features of a class and methods are the means through which a class exposes

its functionality to other classes. A class is typically represented in UML as a rectangle

with three partitions. The top partition identifies its name, the middle partition lists all its

attributes and the bottom partition lists all its methods. Associated with each attribute and

method of a class is an important concept called visibility. Visibility specifies whether

other objects are allowed to see the corresponding attribute or method of a given class.

UML defines three kinds of visibility:

 Public (+) which allows access to objects of all other classes

 Private (-) which allows access to objects of the owner class only

 Protected (#) which allows access to objects of its subclasses

Classes in a class diagram are related to each other by different types of relationships.

Relationships in a UML class diagram are classified into three categories: Association,

Generalization and Dependency. When two or more classes are connected to each other,

an association relationship exists between them. Aggregation is a type of association

between classes when a class (whole) is formed by a collection of other classes (parts).

Composition is a stronger form of aggregation in which the lifetime of the part classes is

24

dependent on the lifetime of the whole class. Generalization is a relationship between a

super class and a subclass. Also termed as inheritance, the child class (subclass) inherits

common functionality defined in the parent class (super class). Dependency is a directed

relationship from a target class to a source class in which the target class requires the

presence and information of the source class. It is not possible to give a precise semantics

to the dependency relation as it is decided by the manner in which the users use it. This is

why semantic description of the dependency relation will not be included. All the

graphical notations available in a UML class diagram are given in Figure 4.

A class diagram can be used to provide both a conceptual design (referred to as Domain

Model) as well as detailed design (referred to as Design Model) of the system under

Customer

Customer

Name: String
ID: Integer

register()

Customer

- Name: String

- ID: Integer

+register(Service): Boolean
-changeID (Integer)

Class notations

(a) Detail suppressed (b) analysis-level (c) implementation-level

Association
Aggregation Composition

Generalization Dependency

Figure 4 Graphical notations for UML Class Diagram

25

development. It is because of this flexibility, class diagrams are primarily used to

comprehend requirements and domain-level entities. A domain model mainly consists of

classes and relationships between them. The classes in this model are usually detail-

suppressed (Figure 4(a)) or analysis-level (Figure 4(b)) with few attributes and no

methods. Association is the primary relationship used in the domain model. However,

other relationships such as generalization can also be depicted. A design model is

structurally similar to a domain model but more detailed. These details include visibility

and type of attributes and methods, navigations and new associations discovered as part

of the detail analysis.

2.2.2 UML Sequence Diagram

Sequence diagram represents the dynamic view of an object-oriented system. The main

purpose of a sequence diagram is to capture dynamic behavior of a system. This is

realized by modeling flow of events leading to a desired result. Vital information made

available reading a sequence diagram are the messages that are sent between objects as

well as the order in which they occur. This information is conveyed along the horizontal

and vertical dimensions of the diagram. Moving through the vertical dimension from left

to right, we can identify the objects between which the messages are exchanged and

moving along the horizontal dimension from top to bottom provides the time sequence of

these messages. Objects on a sequence diagram are depicted as a “lifeline” which

includes a dotted line along the vertical axis, which extends for the period of the

interaction. Messages are shown with arrows moving from the sending object to the

receiving object (except for gates, which are discussed later). Different messages are

depicted by different styles of arrows. Each message contains two events: a send event

26

occurring at the sender’s end of the message and a receive event occurring at the

receiver’ end of the message.

In a sequence diagram, the natural order in which messages are exchanged is sequential

from top to bottom. This concept of sequential ordering was broadened with the inclusion

of “Combined Fragments”. Combined Fragment is a notation element added to the UML

2 specification to allow grouping of messages together in order to depict conditional flow

in a sequence diagram. Prior to this in UML 1.x, “in-line” guards were used which soon

became incapable of handling sophisticated logic required for complex sequences.

A combined fragment is composed of two elements: an operand and a guard. An operand

can be thought of as a sub-sequence diagram that constitutes the body of the combined

fragment. A combined fragment can have one or more operands depending upon its type.

A guard is associated with each operand, which is a Boolean condition that needs to

evaluate to “true” in order to execute the sequence within the operand. The guard is

positioned on the top-left corner of the operand. The UML 2 specification identified

twelve kinds of combined fragments. These fragment kinds are discussed below.

- Alt (alternatives) is used to represent choice of behavior. It has multiple guarded

operands chosen in a mutually exclusive manner based on the outcome of the guard

expression. In programming terms, it realizes the “if – else” logic.

- Opt (optional) is used to represent sole choice of behavior. It has a single guarded

operand executed based on the outcome of the guard expression. In programming

terms, it realizes the “if” logic.

27

- Break is used to represent a breaking scenario. It has a single guarded operand

executed instead of the remainder of the enclosing fragment or the diagram. It usually

models the exception handling behavior.

- Par (parallel) is used to represent concurrent merge between the operands. It has

multiple operands that execute in parallel without compromising the integrity of the

outcome.

- Seq (Sequencing) is used to represent weak sequencing between the operands. It has

multiple operands that enforce the execution of messages within a preceding operand

before the next one starts. However, it does not impose any order within an operand

on messages not sharing a lifeline.

- Strict is used to represent strict sequencing between operands. It is similar to seq with

the exception that messages within an operand must follow the ordered sequence.

- Neg (negative) is used to represent traces designated as invalid. It has a single

operand showing a sequence that should not be possible and not allowed. All other

sequences are considered positive.

- Assert is used to represent an assertion. It designates that any sequence of messages

not shown as an operand of the assertion are not valid.

- Critical is used to designate a sequence of messages as critical.

- Loop is used to represent a repeating sequence. It has a single guarded operand

repeated a number of times based on the outcome of the guard. A loop guard specifies

the minimum and the maximum number of iterations.

28

- Consider / Ignore is a combined single operand fragment. The “consider” operand

identifies messages that should be considered within the combined fragment.

Alternatively, the “ignore” operand defines the messages that should be ignored.

With the release of UML 2, the “Interaction Use” element was also introduced.

Interaction Use provides the designer with the ability to merge simpler sequence

diagrams to form complex sequence diagrams. In other words, it represents an abstract

sequence diagram component. An interaction use element is depicted similar to a

combined fragment with the keyword “ref” placed on the top-left corner. The operand of

this frame contains the name of the referenced sequence diagram along with any

parameters. Information is passed from and to the main sequence diagram through

parameters and return values respectively. Another way of passing information from the

main diagram to a referenced fragment is by using gates. As opposed to the discussion

earlier that messages are depicted as arrows between lifelines, gates are messages with

one end connected to a frame’s edge and the other connected to a lifeline. The UML

specification defines three types of gates: formal gates if it belongs to the main sequence

diagram, actual gates on interaction use element and fragment gates on combined

fragments.

Another significant improvement made in UML 2 was the concept of part-

decomposition. Part-decomposition allows a lifeline in a sequence diagram to be complex

element in itself. The internal interactions of this lifeline can be shown as a separate

sequence diagram. Messages to or from the decomposed lifeline are treated as gates.

Corresponding gates on the sequence diagram explaining the decomposition match these

gates. A Sequence diagram also allows the placement of a constraint over a lifeline

29

known as State Invariant. This constraint must evaluate to true for the remainder of the

trace to be valid. A state invariant is depicted on a sequence diagram by placing the

constraint inside curly braces on the lifeline. All the graphical notations available in a

UML sequence diagram are shown in Figure 5.

2.2.3 UML Use Case Diagram

Jacobson et al. [39] initially introduced the concept of use case diagrams that was later

adopted by OMG to be part of the Unified Modeling Language. Use case diagrams

represent a functional view of the object-oriented system. This diagram plays a vital role

in modeling the system requirements. Requirements are represented as a set of use cases

within the use case diagram. Each use case is a specification of a set of operations

between the system and actors resulting in an output valuable to actors or stakeholders of

the system.

A use case diagram consists of four distinct elements that depict the working of a system:

The system itself, the actors that interact with the system, the services (or use cases) the

Synchronous

Message
Return Message

Customer

Lifeline

Asynchronous

Message

Interaction fragment / frame

Name

Content

Area

State

Invariant

Figure 5 Graphical notations for UML Sequence Diagram

30

system is required to perform and the relationships between these elements. The system

element sets the boundary of the system with respect to the actors who use it and the

services it must provide. Actors are depicted outside the system element boundary as they

are not realized by the system and services are depicted inside the system element. The

notion of a system element is to establish the scope of the system.

An actor element is either a person or another system that is involved in the successful

operation of the system. Relationships in a use case diagram can be classified into three

broad categories:

1. Actor - Use Case Relationship

2. Actor - Actor Relationship

3. Use case - Use case Relationship

An actor in a use case diagram can be associated to one or more use cases. This

relationship can specify whether the actor initiates the use case or receives results from

the use case or both. An actor-use case relationship is also known as association.

Although not explicitly mentioned in the UML Specification, UML provides one actor-

actor relationship called generalization. Since this relationship also applies to use-cases, it

will be referred here as actor generalization. Adapted from the similar concept of class

diagrams, actor generalization allows different actors with common functionality to be

represented by a general actor. This general actor can then be related to specialized actors

that are identified by unique needs.

UML allows three different relationships between use cases: generalization, Inclusion

and Extension. Use case generalization is similar in definition to actor generalization

31

where general functionality is separated from specific functionality in different use cases.

Specific use cases inherit general functionality and add their own specific different

functionality to the specification. Two use cases are related by inclusion if one use case

uses the functionality offered by the other use case. The use case that includes the other

use case is typically not complete on its own. This relationship induces the concept of

reusability in a use case diagram. An inclusion relationship is represented by a directed

arrow from the including use case to the included use case with a keyword <<include>>

over the arrow. An extension relationship exists between two use cases when one use

case wants to utilize the functionality of another use case if certain conditions are

satisfied. In contrast to the inclusion relationship, a use case that extends the other use

case is complete on its own. The extending use case is also known as the base use case.

The base use case should have a clearly defined extension point where the extension use

case can be invoked for additional functionality. An extension relationship is also

represented by a directed arrow from the extension use case to the base use case with a

keyword <<extend>> over the arrow. The base use case has a partition with the keyword

<<extension point>> that identifies the point of an extension use-case invocation.

All the graphical notations available in a UML use case diagram are shown in Figure 6.

32

2.3 OCL: Modeling Constraints

The notation provided by UML can only express information that can be represented

graphically. In order to express properties such as constraints, invariants etc. on UML

models that cannot be represented graphically, a formal text-based declarative language is

required. Object Constraint language (OCL) [34] is a declarative specification language

adopted by OMG as part of the UML 2.0 specification. OCL provides the ability to

access model elements and express constraints over these elements using invariants, pre-

conditions and post-conditions. OCL is a declarative language that cannot change the

value of a model element and hence considered side effect free. UML models annotated

with OCL constraints add preciseness and well formedness to the models and assists in its

verification and validation.

An OCL constraint typically consists of two parts: the context and a set of OCL

expressions. As an OCL constraint highly depends upon which model element is

constrained, this context of the OCL constraint specifies this information. An OCL

Association Inclusion Extension

System

Name

Content
Area

Actor

Use case

Extension Use

case

Generalization

<<extension

point>>

<<include>> <<extend>>

Figure 6 Graphical notations for UML Use case diagram

33

context can either be a classifier, attribute of a classifier or an operation. Outline of an

OCL constraint is given in Figure 7 below.

The context (model-Element) of a constraint can be referenced in its body either by a

keyword “self” or by assigning it an optional name (context-Name). The body of a

constraint consists of a set of OCL expressions. Each expression consists of a type, name

and body. Some of the mostly used expressions types include: inv, pre, post, body, init

and derive.

 inv (invariant) is a static constraint that specifies conditions that must evaluate to true

at any given moment. It is typically used when the body contains a condition that

must be met by all instances of a classifier.

 Pre (pre-condition) specifies the conditions that must evaluate to true before

execution of an operation starts.

 Post (post-condition) specifies the condition that must evaluate to true after the

execution is completed.

 init (initial) specifies an initial value of an attribute.

 derive specifies how a value for an attribute can be obtained.

Context <context-Name > : <model-Element>

 <expression-Type><expression-Name> :<expression-Body>

 <expression-Type><expression-Name> :<expression-Body>

 ...

Figure 7 Outline of an OCL Constraint Specification

34

An expression can access the property or operation of the classifier in context. Since

OCL is a query language, it expects a result when querying the property or operation of a

context. This result can either be single-valued or multi-valued. OCL uses the “.”

operator when it expects a single value and uses the “->” operator when it expects a

multi-valued result. Multi-valued results in OCL are known as collections and are of

three different types: Sets, Bags and Sequences. A set cannot contain duplicate items, a

bag can contain duplicate items and sequences are similar to bags but the elements are

ordered.

Boolean operators (and, or, xor, not and implies) are used to combine multiple

expressions in an expression body. A few popular expression forms that can be included

in the expression body are:

 Literal Expression specifies an expression with no arguments and

produces a result.

 If Expression specifies a Boolean condition. Based on the outcome of this

condition, two other expressions specified by the “then Expression” and the “else

Expression” are executed.

 Loop Expression specifies a loop construct over a collection. An iterator

represents each element in the collection during iterations of the loop.

 Variable Expression specifies reference to a variable.

 Message Expression returns a collection of OCL Messages.

 State Expression specifies the state of a class within an expression.

 Type Expression specifies an existing meta type in an expression

35

 Feature Call Expression specifies a feature defined for a

classifier in the UML model like property, operation etc.

2.4 Model Transformation

One of the main reasons why models are considered as second-class development assets

is that they do not raise productivity to a sufficient level. With the advent of MDSE, it

ensured that models could be formally and precisely defined and hence can be used as

primary artifacts in the process of software development. One of the main components

that enable MDSE and accounts for the key success of model-based approaches is Model

transformation. Model Transformation is considered one of the integral activities that

ensure that models can be used for software evolution, refinement and realization in code.

It is considered the heart and soul of model-driven architecture [46].

Model Transformation is an approach that takes as input a source model that conforms to

a given source metamodel and produces another model conforming to a given target

metamodel as output. A number of model transformation approaches have emerged

recently in lieu of OMG’s initiative for a MDSE approach. The MDSE approach provides

opportunity for Platform Independent Model (PIM) to PIM and PIM to Platform Specific

Model (PSM) transformations. Numerous classifications for model transformation

approaches have been proposed in the literature [46-50]. An exemplary list of model

transformations includes:

36

 Generating lower-level models from higher-level models (e.g. code from design

models).

 Synchronizing models at the same level (vertical consistency) or different levels

(horizontal consistency) of abstraction

 Model evolution tasks (e.g. Model refactoring)

 Reverse engineering of higher-level models from lower-level models (e.g. design

models from code)

Although these classifications are thoroughly detailed, we present a simpler taxonomy of

model transformation approaches to comprehend the scope of our work. This taxonomy

is shown in Figure 8.

Model – Code

 (PIM – PSM)
Model – Model

(PIM – PIM)

Same Source &

Target Metamodel

Different Source &

Target Metamodel

Create Update

Model

Transformation

Create Update

Figure 8 Taxonomy of Model Transformation

37

At a high level, model transformation approaches are classified into two categories:

model-to-code transformation and model-to-model transformation. In model-to-code

transformations, a metamodel of the target programming language is used. Discussion

about this type of transformation is out of the scope of this work.

Model-to-model transformations are transformations that translate between source and

target models at the same level of abstraction. The need for this kind of transformation is

because

 Bridging Large Abstraction Gaps: The process of transforming PSMs to PIMs is

easier when intermediate models are generated rather than a direct transformation.

This makes the transformation modular and maintainable.

 Multiple Views and Synchronization: Model-to-model transformations are also

useful for computing different views of a system model and synchronizing them.

 Formal Representation for Analysis and Verification: Informal models (such as

UML) can be transformed into a formal modeling language in order to add

preciseness and formality to the model. This aids in verifying the model for

correctness.

Mens and Van Gorp [50] made a distinction between two kinds of model

transformations: exogenous and endogenous. Exogenous Transformation is a model

transformation where the source and the target metamodel are different and belong to two

different domains. In contrast to exogenous transformations, if the source and target

metamodel are identical we refer to it as endogenous transformation. Another slightly

different classification of model transformation was provided by France and Bieman [8].

38

They classified model transformation approaches as vertical and horizontal. If the target

model is at a different level of abstraction than the source model, the transformation is

known to be vertical. On the other hand, if the source and the target model belong to the

same level of abstraction, the transformation is known as horizontal. Also a

transformation approach may create a new target model that is separate from the source

or support an update of the existing source model. Czarnecki and Helson [47] further

classified model-to-model transformation approaches based on the manner in which they

are implemented. Categories include:

 Direct Manipulation Approach: These approaches provide an internal model

representation of the source model and some APIs to manipulate it to generate the

target model.

 Intermediate Manipulation Approach: In this approach, the source model is exported

into a standard intermediate representation. An external transformation language or

tool is used for applying transformations.

 Transformation Language support Approach: This category of model transformation

approaches provides a mechanism for explicitly expressing, composing and applying

transformations.

One of the most popular types of transformation classified under Endogenous Horizontal

transformation is called Software Refactoring. Model refactoring is a special instance of

model transformation where the source and the target models are instances of the same

metamodel and operate at a higher level of abstraction. This type is shown in the Figure 8

with a darkened rectangle and is elaborated in section 2.4.1. In order for a model

refactoring approach to be valuable for practical application, certain set of activities are

39

required to be specified as part of the approach. These activities, included as part of a

transformation framework, are elaborated in section 2.5.

2.4.1 Software Refactoring

Refactoring, a term extensively acknowledged in the discipline of Object Oriented

Programming, was defined by Opdyke as an outcome of his PhD dissertation [6]. It is an

object oriented alternative to the concept of restructuring categorized as a software

maintenance activity by Chikofsky and Cross [5]. According to Chikofsky and Cross,

“Restructuring is the transformation from one representation form to another at the same

relative abstraction level, while preserving the subject system’s external behavior”.

Fowler et al. [15] redefined refactoring highlighting its inherent advantages as “a change

made to the internal structure of software to make it easier to understand and cheaper to

modify without changing its observable behavior.” Fowler’s definition emphasizes

program understandability and maintainability. Fowler et al. also provided a

comprehensive catalog of refactorings as part of their book [15]. Hence, refactoring is

just a way of rearranging code.

The topic of refactoring at the level of source code has been extensively studied. With the

growing popularity of MDA and UML, application of refactoring has been elevated to a

more abstract level of design models. Hence, the term model refactoring or model-driven

refactoring was proposed. The key motivations for shifting the focus of software

refactoring from source code to design models can be summarized as follows.

 A model provides an abstract view of the system; hence, visualization of the

structural changes required is easier.

40

 Problems uncovered at the design-level can be improved directly on the model.

 Exploring alternate decision paths is much cheaper at the design-level.

A simple illustrative example of a UML model refactoring is shown in Figure 9. It shows

a class diagram in which two classes have attributes of the same type. Model refactoring

removes this redundancy by introducing a new super class and moving the common

attribute to this super class.

2.5 Model Transformation Framework

Model-driven refactoring is a special kind of model transformation that allows us to

improve the structure of the model while preserving its internal quality characteristics.

Model-driven refactoring is a considerably new area of research that still needs to reach

the level of maturity attained by source code refactoring. Based on the information

Graduate

-id : int

UnderGrad

-id : int
Graduate

UnderGrad

Student

-id : int

(a) Before Refactoring (b) After Refactoring

Figure 9 Model refactoring example

41

obtained from source code and model-driven approaches, we identified a list of distinct

activities that are essential for a model refactoring approach.

1. Model Specification: Select an appropriate language for specifying the model. Either

a formal or an informal language can specify models. A formal language apart from

specifying a syntax and semantics also provides a proof system for validation.

2. Model Transformation Language: A transformation language allows composition of

rules that dictate the transformation process. The specification language along with

the transformation language forms a Transformation System.

3. Model Smells: Model smells are portions within the model that need to be refactored.

A number of detection strategies are available in the literature for identifying model

smells. They are also referred to as Refactoring Opportunities.

4. Model Behavior: One important constraint posed by refactoring is the notion of

behavior preservation. Since models are non-executable entities, the concept of

behavior has to be defined and verified before and after the application of

refactoring(s).

5. Model Refactoring: Select suitable refactoring(s) that can be applied at the identified

location(s). Refactoring operations are chosen based on the smell identified.

6. Refactoring Quality: Evaluate the effect of refactoring on the quality of the software

model.

7. Tool Support: Application of Refactoring is usually supported by a tool. A refactoring

tool can either perform refactoring automatically without user intervention or requires

user confirmation before application.

42

8. Consistency Management: Refactoring a model leaves other related models and

source code inconsistent. In order to preserve consistency between the refactored

model and other software models and source code, model consistency approaches

need to be adopted.

2.5.1 Model Transformation System

A model transformation system (MTS) includes both the specification language and the

transformation language. UML is a graphical notation designed to specify, visualize and

document artifacts of s software system. It is a semi-formal language as its syntax and

static semantics are precisely defined but dynamic semantics are not formally defined.

The process of model-driven refactoring includes a number of activities such as behavior

conservation, verification, synchronization etc. that requires a formal set of both static

and dynamic semantics to ensure behavior-preserving transformation. Although many

authors use UML metamodel and models as-is for model refactoring, they annotate the

model with formal behavioral constraints using OCL. The importance of choosing a

proper specification language can be understood clearly from the reasoning provided by

Kalleberg [51]:

“The effectiveness and applicability of a software transformation system

depends to a large extent on how its underlying program model has been

formulated. The model determines which transformation tasks will be easy

and which will be difficult or impossible. Particularly, the "abstractness"

of the representation determines which analyses and transformations are

possible – if the model is too abstract, refactoring is not possible, and if

the model is too detailed, many analyses become too expensive”.

43

Apart from the specification language, transformation rules that dictate the

transformation from source model to the target model are required to be specified.

Languages or formalisms used to describe these rules are known as Model

Transformation Languages (MTL). The choice of MTL depends on the selected model

specification. A transformation rule is a depiction of how a collection of constructs in the

source metamodel can be altered into one or more constructs in the target metamodel. A

transformation rule consists of a Left-Hand Side (LHS) component and a Right-Hand

Side (RHS) component. The LHS accesses the source model and the RHS component

access the target model. Both the LHS and RHS components are described using model

fragments (or patterns) with zero or more model elements. Popular model transformation

systems include:

 Graph Transformation System (GTS): One of the most popular and widely used

specification languages to represent UML models is graphs. The use of graphs to

represent models is motivated by the fact that models are fundamentally graph-based

in nature. A graph consists of a set of vertices (V) and a set of edges (E) such that

each edge e in E has a source s(e) and a target t(e) in V. A graph is given as a tuple

<V, E, s. t> where s and t are two functions that assign each edge a source and a

target node. Graph transformation languages are based on algebraic graph grammars.

There exist two paradigms for graph transformation approaches. The conventional

paradigm, also known as Algebraic Graph Transformation, defines transformation

rules declaratively. Transformation rules in Algebraic Graph Transformation have a

Left Hand Side (LHS) graph and a Right Hand Side Graph (RHS). On application of

the rule, elements in the LHS are deleted and the elements in the RHS are added. A

44

transformation rule also consists of an arbitrary number of negative application

condition (NAC) [52] graphs. If the rule matches any of its NAC, then the rule cannot

be applied. The other paradigm is known as Triple Graph Grammar (TGG). The

transformation rules in TGG are always bidirectional. The relationship between the

source graph and the target graph is described by a correspondence graph.

 Logic Based System: Another popular approach to represent UML models is logic-

based representation. Logic is a formal system that allows definition of formulas

representing propositions. Formulas can be derived by the use of well-defined rules

and axioms also known as theorems. For instance, Boolean logic limits the truth-

values of its propositions to two values: true and false. Popular logic based languages

include Alloy [53, 54], Z notation [55], Object-Z [56] and Description Logic [57].

Primitive transformations in logic-based systems are formalized as algebraic laws that

consist of templates with which the actual declarations match. Each law defines two

templates of equivalent models on the left and the right side. Equivalence allows

application of the law in both directions.

 Direct Manipulation: This approach allows direct manipulation of the metamodel

without conversion to any other specification language. One of the main reasons for

the popularity of this methodology is the availability of quite a few model-to-model

transformation languages such as Query/View/Transformation (QVT) [58], Xpand

[59] and the ATLAS Transformation Language (ATL) [60] to describe refactoring

rules. OCL is usually used with UML to define pre and post conditions in order to

ensure behavior preservation. Although popular, describing model refactoring

transformations for UML models is not an easy task due to the complexity and

45

impreciseness of the UML metamodel. The main reason for the popularity of

UML/OCL based approaches is the fact that OCL is both formal and simple when

compared to other formal specification languages such as Z.

2.5.2 Model Smells

Martin Fowler et al. [15] were the first to introduce the concept of code smells:

“In doing so, we have learned to look for certain structures in the code

that suggest (sometimes they scream for) the possibility of refactoring”.

Similar to the concept of code smells, model smells can be defined as elements within the

model that are potential candidates for improvements. Models Smells could either be

symptoms of design defects or bad alternatives to recurring design problems in OO

design also known as anti-patterns. Brown et al. [17] initially defined anti-patterns as

structures that although may appear beneficial, but result in having negative

consequences on the quality of the OO system. Not all the anti-patterns defined by Brown

et al. [17] can be detected at the design level. In our work, we use the term model smells

to refer to both design defect symptoms and anti-patterns.

The manner in which model smells are detected (also known as the detection strategy)

has resulted in two paradigms of refactoring: Metrics-Based Refactoring and Pattern-

Based Refactoring. Apart from these approaches, a hybrid approach that uses both

metrics and patterns to describe smell detection strategy has also gained popularity.

1. Metrics-Based Refactoring: One methodology that gained immense popularity for

detecting bad smells, proposing refactorings for correction and verification of quality

improvements is Metrics-Based Refactoring. Metrics used for detecting model smell

46

belong to different metric suites [61-63]. An important aspect of using model metrics

as a smell detection strategy is the threshold value of the metrics as it has decisive

influence on detection accuracy. Marinescu [64] identified three ways of

parameterizing threshold values for metrics used for smell detection as follows:

a. Empirical results from metrics’ authors and similar past experiences

b. Using a Tuning Machine to find proper threshold values for regulating the

detection strategy automatically [65]. This approach uses an examples

repository of flaw samples and selects those values that maximize the number

of correctly detected samples.

c. Analyzing multiple versions for change stability information or persistency of

a design flaw over time [66]. Although this approach does not help in

parameterizing a threshold value, it provides a value time perspective for each

potential entity and hence improves the accuracy of the detection process.

2. Pattern-Based Refactoring [67]: Another popular method to detect refactoring

opportunities is to identify problems within the model that can be solved by applying

design patterns. Design patterns are defined as solutions that can be reused for a

recurring design problem. It typically shows relationships between classes or objects.

The concept of using design patterns to solve common design issues in order to speed

up the software development process was initiated by Gamma et al. [68]. The field of

identifying symptoms for design related problems and using design patterns to solve

them is termed as Pattern-Based Model Refactoring. Design patterns in this paradigm

are represented as a triple (PM, SM, T), where PM (Problem Model) is a model

describing the design problem, SM (Solution Model) is a model describing the

47

solution and T is a transformation that transforms an input model presenting with an

instance of PM and replacing it with the corresponding solution model SM.

3. Rule-Based Detection [24]: This smell detection strategy identifies both model smells

and anti-patterns using a declarative rule definition. These rules are manually defined

to identify the symptoms that characterize the smell. A rule-based method can be

perceived as a hybrid approach that uses metrics, structural patterns and lexical

information to form rules that query the source model for design defects or anti-

patterns. Rule-based detection approaches either use complex queries or algorithms to

detect refactoring candidates.

2.5.3 Model Behavior

One important constraint associated with application of refactoring is behavior

preservation. By definition, model-driven refactoring is an activity to restructure models

in order to improve model quality without changing its observable behavior. In order to

demonstrate whether a refactoring operation is behavior preserving, concept of model

behavior needs to be precisely defined.

The most popular approach to define model behavior is through the use of model

constraints such as pre-conditions and Invariants. Pre-conditions are assertions that a

model must satisfy prior to the safe application of refactoring. These conditions

characterize valid model transformations. As their name implies, pre-conditions must be

checked before refactoring is executed. Invariants are conditions that must remain true

before and after refactoring. Usually, preconditions are checked prior refactoring to

ensure invariants hold after the refactoring operation. Establishing preconditions and

invariants for refactoring properly is very important. Lax definitions will allow

48

refactoring operation to be executed but may not preserve model behavior. On the other

hand, severe unnecessary preconditions may not allow refactoring application even when

required.

2.5.4 Refactoring Quality

An important objective of Model-Driven Refactoring is to improve the quality of the

software model without changing its behavior. Only a few studies elaborate the concept

of Model Quality and address the issue of quality assessment for UML models. One of

the most popular approaches to assess the quality of models is using model metrics [69].

Similar to software metrics, model metrics are also used to measure and quantify

desirable aspects of the models. Some software metrics can easily be ported to models,

especially those that measure object oriented source code.

2.5.5 Refactoring Tool Support

Based on the activities required for Model-Driven Refactoring, it is evident that in order

to be completely practical, tool support is necessary to cover the entire range of

designated activities. Refactoring tools can be classified based on their degree of

automation: Manual, Semi-Automated and Fully-Automated. A fully-automated tool

provided automatic detection and correction of design defects without user intervention.

Semi-automated tools require interaction with the user throughout the refactoring

process. A semi-automated refactoring tool assists the user by proposing refactoring

opportunities and their suggested solutions. The decision to perform the actual

transformation is left to the user. Manual refactoring tools are UML modeling tools that

leave the process of model smell detection and application decision to the user

49

completely. Manual refactoring tools automate behavior preserving model

transformations only.

Another important requirement for refactoring tools is their deployment mode. A

refactoring tool can either be a standalone prototype tool or developed as a plugin to an

existing Integrated Development Environment (IDE). The importance of integration into

an existing IDE on usability of the tool was provided by Egyed [70].

“A final challenge is that all of the above should be implemented in

model-driven development environments in an as efficient and scalable

way as possible, otherwise it will never be adopted by practitioners”.

2.5.6 Consistency Management

Spanoudakis and Zisman [71] defined inconsistency as “a state in which two or more

overlapping elements of different software models make assertions about aspects of the

system they describe which are not jointly satisfiable". They provided an in-depth survey

of inconsistency management approaches available to the field of software engineering.

With respect to Consistency management due to software refactoring, two kinds of

inconsistencies are observed [72].

 Vertical Inconsistency: When source code/design model is refactored, corresponding

design artifacts / source code becomes inconsistent.

 Horizontal Inconsistency: Since a modeling language such as UML is typically

composed of many different diagrams, the issue of consistency between all these

diagrams needs to be addressed. This need arises when any one of them evolves or

refactored.

50

3 CHAPTER 3

LITERATURE REVIEW

This section reviews the literature on code based refactoring, model based refactoring and

integrated refactoring. It is worth-mentioning that an extensive survey of software

refactoring emphasizing on source code refactoring has been conducted as part of an

initiative called “The Refactoring Project” at the Universiteit Antwerpen [11, 12, 73-75]

A similar state of the art survey was also done for model based refactoring by Mens et al.

[13].

3.1 Code Based Refactoring

Opdyke [6] introduced the concept of object oriented refactoring in 1992 as “program

restructuring transformation that supports the design, evolution and reuse of object-

oriented application frameworks” as a result of observing the evolution of object oriented

programs and Database Schemas [76]. Opdyke compiled a set of twenty-six low-level

refactorings and a set of three high-level refactorings assembled from the low-level

refactorings. In order to assure behavior preservation, he identified invariants and

augmented his refactorings with pre-conditions to ensure that these invariants were

preserved even after the refactoring process.

Following upon the foundation laid by Opdyke, Dan Roberts in 1999 [77] supplemented

Opdyke’s refactoring definition with post-conditions. These post-conditions specify how

51

the pre-conditions are transformed by the refactorings thereby reducing program analysis

effort after the refactoring. Research in the area of code refactoring has been done at

length. To simplify the presentation of the research conducted in improving code-level

refactoring, we organize it in line with the activities involved in the refactoring process.

Wake [16] suggested that a refactoring process should first identify portions within the

software that needs refactoring. Then an appropriate refactoring is selected and applied to

this portion. Mens et al. [73] added three more steps to provide a complete list of six

distinct refactoring activities. These activities are as follows:

1. Identify portions within the software that needs to be refactored (Bad Smell

Identification).

2. Select suitable refactoring(s) that can be applied at the identified location(s)

(Refactoring Suggestion).

3. Verify behavior preservation for the applied refactoring(s) (Behavior Preservation).

4. Apply the refactoring(s) (Refactoring Application).

5. Evaluate the effect of the refactoring(s) on the quality of the software or the process

(Refactoring Effect Evaluation).

6. Preserve consistency between the refactored code and other software artifacts

(Consistency Preservation).

3.1.1 Bad Smell Identification and Refactoring Suggestion

Steps 1 and 2 are usually coalesced as studies identify fragments of code in need of

refactoring and propose a suitable approach to handle them. Software in this section

refers to source code, as refactorings related to software models is discussed in Section

3.2. Portions of code in need of refactoring are referred to as bad smells or code smells.

52

Martin Fowler et al. defined bad smells in code as “certain structures in the code that

suggest (sometimes they scream for) the possibility of refactoring” [15]. They identified

twenty-two bad smells for code. These bad smells were later classified by Wake [16] into

smells within and between the classes.

Looking for bad smells requires analysis of source code that can be done with either

static information or dynamic information. Static analysis of source code is preferred

over dynamic ones, as the latter requires execution of the source code to obtain its

runtime behavior. Static analysis can be done either by lexical analysis of the source code

or by projecting the source code over a graphical representation. Well-known graphical

notations to represent source code include Abstract Syntax Trees (AST) [78-80], Program

Dependence Graphs (PDG) [81-83] and Type Graphs [84, 85].

Analyzing software artifacts to identify structural shortcomings is also one of the

strategies used to detect bad smells. Code smells proposed by Fowler et al. [15] fall into

this category of smell detection approaches. Studies analyzing structural anomalies use

strategies such as search algorithms over code parse-trees [86], analyzing internal method

structure [87] and discovering relationships between entities [88, 89].

Code duplication or cloning, one of the bad smells proposed by Fowler et al. [15], is

considered one of the worst smells that affects software maintainability. A number of

code-clone detection approaches have been discussed in the literature. Popular methods

employed for code-clone detection include lexical analysis [90-98], graph-based traversal

and slicing [78-83, 99, 100] and pattern recognition [101]. Although code duplication is

considered a bad smell, a few studies [102-104] have shown that cloning can sometimes

53

be reasonable and beneficial to the design. Hill and Rideout [105] proposed the use of

machine learning algorithms on near duplicate code segments for automated code

completion.

A popular approach to detect refactoring opportunities or code smells is the use of source

code metrics. Simon et al. [106] referred to this strategy of code smell identification as

Metrics-based refactoring. Research studies based on metrics to identify code smells use

object-oriented metrics such as coupling, cohesion, inheritance and complexity [64, 107-

117]. Although popular, some authors claim that metrics are not sufficient in precise

detection of bad smells [118-120]. Improvements to the metric based approach include

using code patterns, heuristics and machine learning. Pattern based approaches define bad

smells as patterns of source code [119]. Heuristics-based approaches use a combination

of traditional object-oriented metrics composed as functions to evaluate software quality

attributes. These functions are then used to identify refactoring opportunities [121-126].

Machine learning approaches that use metrics to predict refactoring opportunities is also

gaining immense popularity. Prevalent machine learning algorithms employed by smell

detection approaches include Naïve Bayes [127-129], C4.5 [130], clustering algorithms

[131-136] and Fuzzy Logic [137].

Another popular approach is the identification of opportunities where design patterns can

be inserted in the source code. Design patterns [68] are reusable solutions to commonly

occurring problems in software design. This strategy is referred to as Pattern-based

Refactoring [138]. A pattern-based approach initially identifies problem location in a

program and then recommends an appropriate design pattern to transform the program. A

number of approaches focus exclusively on design pattern based approaches were

54

proposed [139-143]. Shimomura et al. [144] use genetic algorithms to assess the quality

of a program based on design patterns.

A number of studies assessed the effect of bad smells on software evolution. These

studies investigate the evolution of bad smells over multiple versions of software systems

[145-148]. A state-of-the-art in bad smell detection and refactoring suggestion

approaches can be found in these studies [149, 150].

3.1.2 Behavior Preservation

The most important aspect of refactoring and the most difficult one to specify and verify

is the notion of behavior. Opdyke [6] introduced the concept of preconditions to handle

behavior specification and preservation. Preconditions ensure that provided the same set

of input values to the source model before and after refactoring, it should always produce

the same result. Although preconditions provide a good notion of behavior, they do not

consider the size of the program and hence static checking of these preconditions before

the application of refactoring can become very expensive. Roberts [77] augmented his

refactorings with post-conditions. Roberts was able to prove theoretically that a set of

post-conditions can be translated into a set of equivalent preconditions that later formally

proved by Heckel [151]. Post-conditions not only enable specification of invariants that

depend on dynamic information easier but also increase the efficiency of the refactoring

tool by postponing the evaluation of a constraint.

Mens et al. [85] proposed a relaxed notion of behavior preservation claiming that full

behavior preservation is impossible. Based on their notion, a program will perform the

same actions before and after refactoring execution if:

55

 The refactoring is access preserving. That is if each method at least accesses the same

variables, directly or indirectly, before and after the refactoring.

 The refactoring is update preserving. That is if each method at least updates the same

variable before and after refactoring.

 The refactoring is call preserving. That is if each method at least performs the same

method calls before and after refactoring.

Another pragmatic approach to verify behavior preservation is through rigorous testing.

Although sensible, this approach cannot definitely claim behavior preservation due to the

relationship between code structure and tests. Hence, any modification done to code

structure may alter the test results even though refactoring does not alter behavior [152,

153].

3.1.3 Refactoring Application

After identifying the refactoring opportunities, the next step is to correct them by

refactoring application. Authors in refactoring literature propose refactoring application

in two ways: implicit and explicit. Implicit approaches loosely associate refactorings and

model smells. The basis of selecting a particular refactoring from the provided options is

not expressed clearly [15, 73, 130]. In implicit approaches, multiple corrective solutions

are possible for the same smell. Explicit approaches associate refactoring operations with

different kind of refactoring opportunities and are clearly expressed. Most of the

approaches using metrics-based, learning algorithms and pattern-based techniques adopt

the explicit approach. Prior to correcting the identified defects, two important issues must

be addressed: order of bad smells to resolve and the sequence of refactoring application.

56

Ranking refactoring opportunities in the literature is proposed based on their impact on

software quality [88, 154-156], software faults [157] and based on past source code

modifications [158]. Cheng and Liao [159] proposed a taxonomy of code smells based on

their semantic relationship from the viewpoint of refactoring application.

An important aspect prior to rule application is to suggest the sequence of refactoring

applications. Suggesting a particular refactoring sequence may require an effort that is

comparable to the one of re-implementing part of the system from scratch. This

suggestion should take into account the dependency and interrelationship between

relevant refactorings to produce a practical sequence. A number of approaches to

sequence refactoring applications have been proposed in the literature. Prominent ones

include critical pair analysis [160] and graph unfolding [161, 162] for graph based

representations, simplification rules over Definite Finite Automata representation [163],

constraint programming [164, 165], multi-objective optimization [166, 167], set pair

analysis [168, 169] and genetic algorithms [170] . Other approaches target improvements

over specific object-oriented principles such as cohesion [171, 172] and inheritance

[173]. Arcoverde et al. [174] conducted a survey to understand the longevity of code

smells and ranked refactorings based on difficulty, priority and frequency of use.

A popular trend with refactoring application is the use of evolutionary algorithms. This

paradigm of software refactoring is known as Search-based Refactoring [171, 175].

Normal refactoring approaches require manual specification of rules, metrics and patterns

to identify refactoring opportunities and suggest refactoring operations to remove these

anomalies. These approaches suffer from a number of complications such as right metric

combinations, metric threshold values, and calibration and so on. Search-based

57

refactoring treats refactoring as a combinatorial optimization problem. Hence, the

approach tries to find a correct combination of refactoring operations that maximize the

number of corrected defects and improve overall software quality. A number of search

techniques are used in the literature such as Genetic Algorithms [171, 173, 176],

Simulated Annealing [173, 177], Multiple Ascent Hill-Climbing [173], Steepest Ascent

Hill-Climbing [173], Steepest and Multiple Descent [177] and Artificial Bee Colony

Search [177] to search for an optimal combination of refactoring application.

In order for refactoring application to be feasible and practical, tool support integrated as

part of the state-of-the-art Computer-Aided Software Engineering (CASE) tools is

essential. Refactoring tools usually support identification of code flaws [24, 64, 178-180],

refactoring code [181-183] and both [124, 184-187]. A state-of-the-art in software

refactoring tools can be seen at [188].

3.1.4 Refactoring Effect Evaluation

Apart from identifying refactoring opportunities within source code, metrics are also used

to measure the effect of refactoring on internal and external software quality. Impact of

refactoring on internal quality attributes have been studied by [88, 189-191]. Quite a few

efforts have been made to study the impact of refactoring on external quality attributes

too. Some prominent attributed studied include Understandability [192-194],

Changeability [195], Maintainability [110, 193, 194, 196, 197], Reusability [198] and

Testability [193, 194]. Ratzinger et al. [199] used data mining and classification

algorithms to evaluate the effect of refactoring on the number of software defects. They

claim that the number of software defects decreases as the number of refactorings

increase over earlier versions of software.

58

Quite a few studies have also discussed the impact of design patterns on software quality.

A number of authors have studied the impact of design patterns on internal quality

attributes (coupling, size and inheritance) [200-202]. Khomh and Gueheneuc [203] and

Ampatzoglou [204] studied the impact of design patterns of external quality attributes

such as reusability, expandability and understandability. They claim that design patterns

do not necessarily improve quality and some patterns in turn decrease some quality

attributes. Authors in [205-208] have also investigated the correlation between design

pattern introduction and change proneness. Elish and Alshayeb [209] proposed a

classification of refactoring methods based on their effect on software quality.

3.1.5 Consistency Preservation

Since consistency preservation is concerned with both the source code and models at

higher level of abstraction, the topic is discussed independently in section 3.3.

3.2 Model Based Refactoring

Model-driven refactoring is a special kind of model transformation that allows us to

improve the structure of the model while preserving its internal quality characteristics.

Model-driven refactoring is a considerably new area of research, which still needs to

reach the level of maturity attained by source code refactoring. Refactoring at model level

is more multifaceted and challenging than at source code level. This is due to the

existence of multiple views. A view is a collection of diagrams that illustrate similar

characteristics of the system.

59

Approaches to model-driven refactoring can be classified into two categories based on

the number of views considered when refactoring: single view and multiple views. Each

of these approaches can be further classified as either operational or relational [31]. The

operational approach allows definition of model refactoring and provides methods to

automate them whereas the relational approach allows verification for behavior

preservation and consistency.

Since then, a few surveys covering state-of-the-art [13], taxonomy [210], open issues and

challenges [11, 12, 14, 74, 211] related to model-driven refactoring have been published

in the literature. We could discuss the literature in the area of model-driven refactoring

along several ways. However, keeping in line with the organization of code based

refactoring in the previous section; we chose to organize the literature by model

refactoring activities. The refactoring process for models consists of a number of distinct

activities (based on the refactoring process for source code refactoring [73]):

1. Select an appropriate language for specifying the model. Either a formal or a non-

formal language can specify models. A formal language apart from specifying a

syntax and semantics also provides a proof system for validation. (Model

Specification)

2. A transformation language allows composition of rules that dictate the transformation

process. The specification language along with the transformation language forms a

Transformation System. (Model Transformation Language)

3. Model smells are portions within the model that needs to be refactored. A number of

detection strategies are available in the literature for identifying model smells. They

are also referred to as Refactoring Opportunities. (Model Smells)

60

4. One important constraint posed by refactoring is the notion of behavior preservation.

Since models are non-executable entities, the concept of behavior has to be defined

and verified before and after the application of refactoring(s). (Model Behavior)

5. Select suitable refactoring(s) that can be applied at the identified location(s).

Refactoring operations are chosen based on the smell identified. (Model Refactoring)

6. Evaluate the effect of refactoring on the quality of the software model. (Refactoring

Quality)

7. Application of Refactoring is usually supported by a tool. A refactoring tool can

either perform refactoring automatically without user intervention or requires user

confirmation before application. (Tool Support)

8. Refactoring a model leaves other related models and source code inconsistent. In

order to preserve consistency between the refactored model and other software

models and source code, model consistency approaches need to be adopted.

(Consistency Management)

3.2.1 Model Specification

One of the most popular and widely used specification languages to represent UML

models is graphs. The use of graphs to represent models is motivated by the fact that

models are fundamentally graph-based in nature. As models are required to conform to

their metamodel, graphs must conform to the corresponding type graph [212]. A typed

graph ensures whether or not a graph is well formed or not. Figure 10 obtained from

[213] visualizes the relationship between metamodel, model, graph and type graph.

61

The use of directed typed graphs for model specification is a common approach [161,

213-217]. The graph that contains nodes and edges and relationship between them is

similar to the relation between objects and classes in UML. Another popular type of

graph used for model specification is the directed attributed type graph to represent the

UML metamodel [160, 218-220]. The use of an attributed type graphs allows inclusion of

object-oriented concepts such as attributes, relationships and multiplicities to be added to

the type graph.

Another popular approach to represent UML models is logic-based representation. A

popular logic based language used to represent UML models is Alloy [53]. Alloy is a

formal object-oriented language based on first-order relational logic. A relational

language is a set of all relational sentences formed from a relational signature and a

function. A relational signature is composed of a set or sequence of constants that can be

either objects, functions or relations. An Alloy model is a sequence of paragraphs. A

paragraph can either be a signature that defines new types or formal paragraphs used to

record constraints. With the proposition of Alloy 3 [54], inheritance concepts can be

integrated as the language allows a signature to extend another signature. A number of

type graph metamodel

graph model

represents

represents

is typed by conforms to

Figure 10 Relationship between models and graph representation

62

approaches [221-224] used the Alloy language to present a formal type system and

semantics for object-oriented UML model specification.

The Z notation [55] is a formal specification language gaining popularity in the field of

formal software engineering. Z is mathematical notation based on set theory, calculus and

first-order predicate logic and is used for describing and modeling computing systems. Z

is a declarative language that describes the system states and models their change under

the execution of operations. The main construct of a Z specification is called a schema. A

schema consists of variable declarations and predicates defined over the variables. Estler

and Wehrheim [225] used formal specifications written in Z for refactoring but

verification of these refactorings were carried out in their approach using an Alloy based

constraint solver. An object-oriented variation of the Z notation known as Object-Z [56]

has become popular with UML modeling. Object-Z supports object-oriented concepts

such as classes, polymorphism and inheritance. Estler et al. [226] used the Object-Z

notation in their approach to represent UML models. A formal notation using both

Object-Z and process algebra CSP (CSP-OZ) for modeling the static view and dynamic

view was used by Derrick and Wehrheim [227] and Ruhroth et al. [32].

Another popular logic based approach is Description Logic (DL) [57]. Spanoudakis and

Zisman [228] highlighted two important limitations of first-order logic based approaches.

They pointed out that first-order logic is semi-decidable hence not sufficient to provide

semantically adequate inferences and the process of theorem proving is computationally

inefficient. Description Logic is a less expressive formalism than first-order logic but

provides more reasoning capability and is decidable. Knowledge in DL is represented as

concepts, roles and individuals. Individuals are instances of defined concepts and related

63

to each other by roles. DLs use a small set of constructors (operators) to construct

complex concepts and roles. Approaches using DL to represent UML diagrams translate

the metamodel into DL concepts and roles. Classes are mapped to concepts and

associations are mapped to roles [229-231].

Saadeh et al. [232] also used logic to represent UML models. In their approach, elements

in the UML model are represented as logic terms called Model Element Terms (METs)

and presented as Prolog facts to take advantage of Prolog’s search engine and

backtracking techniques.

With the proposition of the QVT (Query/View/Transformation) [58] standard by Object

Modeling Group, UML metamodels accompanied by OCL are used in the context of a

model transformation language. Sunye et al. [233] were the first one to use the

UML/OCL model for refactoring. Other studies that followed the trail included [21, 234-

236]. Apart from being used as a formal representation for the UML model, OCL

expressions have also been used for refactoring application [237-240].

3.2.2 Model Transformation Language

Languages or formalisms used to describe transformation rules are known as Model

Transformation Languages (MTL). Although there exist quite a few model

transformation languages, we limit our scope to those that have been used in the literature

for the purpose of UML model refactoring.

Alloy language can also be used to compose model transformations. A catalog of

primitive transformations was proposed by Gheyi et al. [222]. Primitive transformations

are formalized as algebraic laws that consist of templates with which the actual Alloy

64

declarations match. Each law defines two templates of equivalent models on the left and

the right side. Equivalence allows application of the law in both directions. The catalog of

Alloy laws have been proven to be sound and complete [241] and can be used for

behavior-preserving transformations such as model refactoring. Gheyi et al. [221]

presented an approach for proving structural model refactorings for Alloy. They

presented an example Alloy Law (or model refactoring) to introduce a generalization into

an Object Model. Massoni et al. [223] presented refactorings as Alloy transformation

done at two levels: program level and the object model level. They extended their

contribution in [224] with description of synchronization and proof soundness for the

Alloy transformations.

Graph transformation languages are based on algebraic graph grammars. A number of

approaches make use of graph transformation languages to define model refactoring rules

[214, 215, 217, 242]. Mens [213] specified design models as typed graphs and expressed

refactorings as typed graph transformations. They evaluated two concrete graph

transformation tools (AGG and Fujaba) for composing model refactoring rules over class

diagrams and statecharts. They also proposed the use of critical pair analysis to detect

implicit dependencies between refactorings. A critical pair is a pair of transformation that

conflict with each other. Set of critical pairs represents all conflicts when applying

model-refactoring rules to a model. Based on their previous work, Mens et al. [160]

implemented a number of refactorings from Fowler et al.’s catalog as typed graph

transformations with NACs. Junbing et al. [243] proposed a conflict resolution algorithm

to handle model refactoring conflicts based on critical pair analysis.

65

Bottoni et al. [244] used the Double Push-Out (DPO) scheme to define model refactoring

rules over a number of UML models and source code in an integrated fashion. The DPO

scheme for graph transformation ensures that the target graph has no dangling edges after

the application of the transformation as opposed to the Single Push-Out (SPO) scheme.

Rangel et al. [245] also used the DPO graph transformation scheme for model

refactoring. Amelunxen and Schürr [246] also used graph transformation approach to

specify dynamic semantics of modeling languages and provided formalization of model

refactoring rules over the latest version of UML/MOF 2 metamodel.

3.2.3 Model Smells

Models smells in the literature are identified either by analyzing the source code and then

applying them at the model-level [24, 247-250] or by analyzing the model directly. Since

the scope of this paper is limited to Model-Driven Refactoring, we list approaches that

analyze design models directly to detect refactoring opportunities. The manner in which

model smells are detected (also known as the detection strategy) has resulted in two

paradigms of refactoring: Metrics-Based Refactoring and Pattern-Based Refactoring.

Apart from these approaches, a hybrid approach that uses both metrics and patterns to

describe smell detection strategy has also gained popularity known as rule-based

approach.

One methodology that gained immense popularity for detecting bad smells, proposing

refactorings for correction and verification of quality improvements is Metrics-Based

Refactoring. Most model smells identified in the literature relate to the UML class

diagram as it is the most frequently used model in OO software development. Astels

[251] was the first one who proposed the notion of UML model smells in the context of

66

model refactoring. He argued that the visual notation of UML models makes smell

structures more evident. Model smells in his work were described informally using the

visual notation of UML. Kempen et al. [25] identified the model smell “God Class”

defining it as a single class with many attributes and/or operations. Threshold values for

metrics associated with this model smell were not provided in his work.

Ruhroth et al. [32] and Fourati et al. [19] associated different class model smells and anti-

patterns with OO metrics. Specific values for metric thresholds in their approaches were

either taken from published empirical results or based on their experiences. A few model

smells in their approaches not only covered class models but also considered metrics over

the statechart diagram and sequence diagram respectively. Ghannem et al. [22] used an

advanced evolutionary approach to model smell detection. Instead of specifying which

metrics to use or their threshold values, they used Genetic Programming to choose the

best metrics combination from an exhaustive list to detect different model smells.

Mohamed et al. [20] proposed an extension to the UML metamodel incorporating model

smell and refactoring meta-classes in order to assist users to create their own smell-

refactoring definition. For each model smell, information such as metric-based heuristics

required detecting them and the UML diagrams on which these metrics depend on are

attached. They demonstrated their approach by detecting the Blob anti-pattern using

design metrics based on Class and Sequence Diagram. A list of model smells and the

UML diagrams they relate to is tabulated in Table 1.

67

Table 1 List of model smells detected using OO metrics

Model Smell UML

Diagram

References

God Class or The Blob CD, SD [19, 20, 22, 25]

Hidden Concurrency CD, SC [32]

Unnecessary Behavioral

Complexity
CD, SC [32]

Too Low Cohesion CD [32]

Lazy Class CD [32]

Too Strong Coupling CD [32]

Refused Bequest CD [32]

Lava Flow CD, SD [19]

Functional Decomposition CD, SD [19, 22]

Poltergeists CD, SD [19]

Swiss Army Knife CD [19]

Poor use of Abstract Class CD [22]

Note: CD: Class Diagram, SD: Sequence Diagram, SC: Statecharts

Another popular method to detect refactoring opportunities is to identify problems within

the model that can be solved by applying design patterns. France et al. [67] were the first

to propose the use of design patterns for model transformation. Kim et al. [252] later

investigated approaches for incorporating design patterns into UML models. They

defined design patterns in terms of roles at the metamodel level. A role is based on a

UML meta-class and associates a set of constraints (well-formedness rules, pre and post

conditions and invariants) on the meta-class to adapt to the type of elements they can play

the role. Kim [253] used the concept of roles to describe the problem model (called

Problem Specification in their approach). A problem specification described the problem

that suggested the usage of a particular design pattern. To specify the problem, Kim [253]

used a methodology they developed earlier [254]. Ballis et al. [255, 256] proposed a

graphical language to define patterns/anti-patterns either textually or using the graphical

notations. An important aspect of their approach is that they allow users to customize

existing pattern descriptions or create new from the start.

68

El-Boussaidi and Mili [257] extended the UML-based representation of the problem

models to represent time evolution. In order to detect instances of problem models within

a source model, they translated their pattern matching problem into a Constraint

Satisfaction Problem (abbr. CSP; by extracting variables and constraints from the

problem model) and used a CSP solver to find the instance. El-Sharqwi et al. [258] also

used CSP to formalize their algorithm for problem model detection. They used XML to

represent both the pattern and the software model. Bouhours et al. [259] defined the

concept of Spoiled Patterns to specify problem patterns for refactoring. According to

them, a spoiled pattern is an abstraction of an alternative solution which is a less optimal

solution (optimal being the design pattern) to solve a design problem. Millan et al. [234]

proposed an extended OCL language (pOCL) and demonstrated its use to find

occurrences of an alternative solution within a source input model by using OCL rules.

Rule-based detection approaches either use complex queries or algorithms to detect

refactoring candidates. Llano and Pooley [23] provided an informal specification

approach to describe anti-patterns that appear in UML diagrams. They exemplified their

approach by providing a specification of two popular anti-patterns: God Class and

Poltergeists. Detection strategies for these anti-patterns are specified in their approach by

a textual description which can easily be translated into a query for automated detection.

Akiyama et al. [260] proposed the refactoring of Class diagram by redistributing class

responsibilities in order to obtain a design model of higher quality. Responsibilities in

their approach are initially obtained from Requirements Specification and assigned to

classes based on the GRASP (General Responsibility Assignment Software Pattern)

69

guidelines [261]. Model smells are detected by formalizing the guidelines proposed by

GRASP using predicate logic.

Other UML models used for model smell detection using the rule-based method include

sequence diagrams and use case models. Dobrzański and Kuźniarz [262] used a rule-

based approach to describe the middle man model smell. A middle man class in their

approach is defined as one that has an attribute with at least 2 Simple Delegating

Operations (SDO). Operation for an attribute is classified as an SDO based on a set of

conditions. Liu et al. [263] represented the UML sequence diagram as a suffix tree and

proposed a special algorithm to detect longest common prefixes of its suffixes in order to

identify duplicated fragments. A fragment of a sequence diagram is a rectangular unit

whose edges are parallel to the diagram’s axes. El-Attar and Miller [264] identified 26

anti-patterns for use case models and provided a query based approach to formulate the

detection of these anti-patterns using OCL language. Stolc and Polasek [236] described

their refactoring approach using a graphical definition of the refactoring rules with the

smell defined on the left side of the rule and the solution on the right side. OCL queries

are generated automatically for the model smell defined on the left side of the rule for

smell detection.

OCL is used heavily in the field of Model-Driven Refactoring to fulfill numerous

purposes such as: constraint specification, specification of pre and post conditions on

operations, specification of well-formedness rules for metamodels and as a query

language. Because of these important applications, it is important to ensure that

specifications written in OCL are easy to understand and maintain. Hence, the notion of

70

OCL smells analogous to Model Smells was defined. Correa et al. [240] defined OCL

smells as:

“Structures present in OCL expressions that might negatively affect the

understandability or maintainability of OCL specifications”.

The concept of OCL smells was initially introduced by Correa and Werner [237]. They

identified OCL smells that either required refactoring of the OCL specification or in a

few cases warranted changing the associated UML Class model. They classified these

smell into three categories: those that affect only OCL expressions, those that result from

refactoring the underlying class diagram and finally those that require modification of the

underlying class model as a result of changes made to the OCL expression. The authors

extended their approach with an enhanced list of OCL smells [238] and an empirical

study to demonstrate their impact on understandability [239, 240].

3.2.4 Model Behavior

Specification of model behavior and approaches to ensure their preservation after the

application of refactoring is considered the most important activity in the refactoring

process as refactoring is supposed to preserve observable behavior. The most popular

approach to define model behavior is with model constraints such as pre-conditions and

invariants. Model constraints are assertions that a model must satisfy prior to the safe

application of refactoring. Constraints can be in the form of pre-conditions that must be

checked before refactoring is executed or post-conditions that are checked after the

application of refactoring. OCL is the most popular language used to define model

constraints.

71

Most of the approaches in the literature describing model behavior through pre and post

conditions use OCL constraints [21, 215, 224, 233-235, 237, 240, 248, 262, 265-267].

Other scripting languages used to describe constraints include python scripts [268] and

ECL [269]. A number of approaches that do not provide prototype tool described model

constraints in natural language form [260, 270, 271]. Although easier to comprehend,

using informal approaches to describe behavior affects implementation and automatic

verification of behavior preservation.

Graph based approaches usually describe pre-conditions using negative application

conditions (NAC). An NAC is a graph that defines a prohibited graph structure in order

to restrict application of refactoring rules. Approaches in the literature that used NAC

along with refactoring operations to describe pre-conditions include Bottoni et al. [244,

272], Mens et al. [213] and Hosseini and Azgomi [273].

The other common approach to specify model behavior is through process algebra CSP

[274, 275]. Behavior preservation in this approach is verified by proving that the target

model is a refinement of the source model. The theory of failure-divergence refinement in

CSP is used to demonstrate behavior preservation in refactoring. Another similar

approach is proving behavior preservation through model equivalence. Equivalence is

refinement in both directions. Studies proving behavior preservation by model

equivalence used different formalisms and tools. Estler et al. [226] used Object-Z as the

specification language and proved equivalence using the model checker SAL [276].

Derrick and Wehrheim [227] and Ruhroth et al. [32] also used Object-Z but proved

refinement using CSP. Other formalisms used to prove equivalence include co-algebra

[277] and Alloy [221, 223, 278]. Another approach worth mentioning is the use of

72

behavioral models to specify behavior for structural diagram refactoring [231] . They

formalized Sequence Diagram traces to prove observation and invocation call

preservation.

3.2.5 Model Refactoring

The class diagram, apart from being the most frequently used model in object-oriented

development, is also the most frequently researched diagram for model-driven

refactoring. According to Mens et al. [13], the main reason class diagrams are profoundly

investigated is because of their close similarity in representation to object-oriented

program structure. Hence most program refactorings [15] can be ported directly to UML

class diagrams. Sunyé et al. [233] were the first to try refactoring on UML models.

According to Sunyé et al., the primary advantage of UML over other modeling languages

is that the syntax is defined precisely by a meta-model. They transposed some of the

existing code based refactorings onto the class diagram. Astels [251] also informally

defined some class diagram refactorings. His motivation for selecting the class diagram

was that it is easier to comprehend the structure when looking at the class diagram rather

than the source code. Boger et al. [279] also provided refactorings for class diagrams.

Class diagram refactorings in their approach were classified into five basic categories:

Addition, Removal, Move, Generalization and Specialization over attributes, methods

and associations.

Refactoring over behavioral models is still in its infancy. Sunyé et al. [233] initially

applied refactoring to statecharts. They introduced the following refactorings: Fold and

Unfold Incoming / Outgoing Actions, Fold and Unfold Incoming / Outgoing Transitions,

Grouping States and Moving Atomic States In and Out of Composite States. Phillips and

73

Rumpe [280] extended the definition of UML refactoring over system structure diagrams

and state diagrams. Phillips and Rumpe’s approach made use of a new transformation

language introduced as part of a project titled Computer-Aided Intuition-Guided

Programming project (CIP) [281]. Boger et al. [279] also provided refactorings for state

diagrams and activity graphs. Refactoring in activity graphs involved changing the order

of activities without altering the overall result.

With respect to refactoring of functional models, only a few approaches address the

problem of refactoring in use case diagrams. Rui and Butler [282] were the first to initiate

the application of refactoring over use case models. No formal definition of a use case

model was provided as they used a three-layer meta-model based on Regnell’s use case

model [283] to base their refactorings over. Rui and Butler decomposed their model into

entities like use case, actor, user, task, goal, service, episode and so on. Refactoring

operations were then identified over these entities like creation, deletion, modification

and move operation. One interesting refactoring operation was decomposition of use

cases to distribute its behavior. Their approach was refined by Yu et al. [270] with the

introduction of the concept of “episode tree”. Complex episodes were decomposed into

one or more child episodes and similar episodes were merged together to form a

composite episode. The Episode Tree provided a visualization of the whole episode

hierarchy, which made them introduce new refactoring operations like

generalization_generation, inclusion_mergence, extension_mergence and

precedence_mergence. This whole set of refactorings introduced in [270, 282, 284] was

later put together in the form of a tool to realize use case refactoring [284, 285]. The tool

provided additional features by including OCL to define constraints among the entities

74

and XML to store the model. The missing element of formal semantics in order to

validate the behavior preservation property of refactoring for use case models was

provided as part of the PhD thesis by Kexing Rui [286].

3.2.6 Refactoring Quality

An important objective of Model-Driven Refactoring is to improve the quality of the

software model without changing its behavior. Only a few studies elaborated on the

concept of Model Quality and addressed the issue of quality assessment for UML models.

One of the most popular approaches to assess the quality of models is using model

metrics. Similar to software metrics, model metrics are also used to measure and quantify

desirable aspects of the models. Some software metrics can easily be ported to models,

especially those that measure object oriented source code.

One of the most widely used design metric suite for OO programs was provided by

Chidamber and Kemerer [62] also known as the CK metric suite. Genero et al. [63]

proposed a set of complexity measures based on the UML class diagram. Kim and

Boldyreff [287] proposed a number of metrics that can be used at early stages of software

development. Their metric suite covered class, sequence and use case diagrams.

Gronback [288] provided a broad collection of UML metrics to detect aberrations from

standard design practices. A few of these practices were derived from style guidelines

provided by Ambler [289]. Enckevort [21] used four out of the six metrics from the CK

metrics suite to quantify model quality. They also chose the Fan-In and Fan-Out metrics

proposed by Henry and Kafura [290]. In their approach to assess refactoring quality, they

calculated metrics for the model before and after the application of refactoring.

75

As mentioned earlier, modeling in UML is multi-faceted. UML diagrams model different

views of the system and these diagrams are not mutually disjoint. Multiple views of the

UML models provide information not available from program code. Muskens et al. [29]

proposed metrics that combine information from multiple views. Lange [291] also

postulated that metrics for establishing Model Size requires information from multiple

views of the model.

Apart from defining metrics for UML models, correlation between these metrics and

external model quality attributes needs to be established. Lange and Chaudron [69]

developed a quality model for UML based on the ISO quality model [292] and McCall

quality model [293] for software quality. We refer to this model as LC model. The LC

model is a hierarchical model with four levels. The first or the highest level defines the

primary uses of the model: Maintenance and Development. The second level defines the

purpose of the model within its primary application. The third level identifies the

characteristics of the purposes and the fourth level defines the metrics and the rules for

the assessment of the characteristics. Jalbani et al. [294] proposed an integrated quality

engineering approach for UML models. They divided their approach into two parts:

Quality Assessment and Quality Improvement. Quality assessment includes the Quality

Model for UML based on the LC model and metrics for UML. Quality Improvement

includes model smell detection and model refactoring.

3.2.7 Tool Support

Two of the most widely used state-of-the-art UML modeling CASE tools for

implementing model refactoring are Eclipse and Poseidon. One of the first model

refactoring tool Refactoring Browser proposed by Boger et al. [279] implemented

76

refactoring rules for UML class, state machine and activity diagrams. The refactoring

browser was integrated in Poseidon. However, this plugin is not available anymore for

Poseidon. RACOoN is another plugin developed for Poseidon by Van Der Straeten and

D'Hondt [230]. Model refactoring rules can be implemented and loaded into RACOoN

for execution. It’s a manual refactoring tool that lets the user select the refactoring.

Inconsistencies encountered during application of multiple rules are presented to the user

with resolution options.

Eclipse is an IDE from the Eclipse foundation [182] that uses a plugin mechanism to

allow integration with various projects. Together Architect for Eclipse is a model

transformation environment that supports the QVT standard. It supports only textual

notation of QVT and the user invokes each refactoring rule separately. Markovic and

Baar [235] used this modeling environment to implement their refactoring rules. Voigt

and Ruhroth [295] developed a fully-automated tool (called RMC) as an Eclipse plugin

that enables model creation, measurement, diagnosis and refactoring. It also allows users

to define their own measures (using OCL queries), threshold values (range of values) and

refactoring. Available refactorings are stored in a configuration file that can be extended

by the user. They used the tool to propose a quality cycle for software model

development [32]. VisTra [236] is a visual oriented tool implemented as an Eclipse

plugin for refactoring class models. It provides a rule editor that allows users to define

transformation rules graphically. The VisTra framework automatically generates OCL

query and transformation script for the transformation rule. End users can invoke

transformation rules on the UML model. M-Refactor is another model refactoring plugin

for the Eclipse Modeling Environment developed by Mohamed, et al. [20]. It’s a semi-

77

automated refactoring tool that detects model smells on the source model based on the

value of the metrics based heuristic. Based on the detected smell, model refactoring

solutions are presented to the user. Since their approach is based on an extended UML

metamodel, information regarding the smell, metric thresholds and refactoring solutions

are represented by meta-classes.

Another popular approach to implement model refactoring is using standard

programming language scripts. Porres [268] first proposed the System Modeling

Workbench (SMW) toolkit based on Python programming language to implement UML

model refactorings. Similar approach was followed by Correa and Werner [238] to

refactor OCL expressions using their OCL extension called OCL-Script. Since OCL-

Script is an action language as opposed to standard OCL, it can be used to manipulate

metamodel-level and model-level instances. The NEPTUNE platform [234] is a

prototype tool that allows verification and transformation of models. It uses an extension

of the OCL language called pOCL to automate the detection of model fragments that can

be substituted by structural design patterns. It is a semi-automatic refactoring tool that

suggests the user to substitute the detected problem pattern with the corresponding design

(solution) pattern.

Zhang et al. [269] used the Constraint-Specification Aspect Weaver (C-SAW) model

transformation engine to describe model refactoring. They proposed a special language,

called Embedded Constraint Language (ECL), to specify and implement user-defined

refactorings. According to Zhang et al. [269], ECL is an extension of OCL with

additional operations for model aggregation and transformation. C-SAW is developed as

78

a plugin for Generic Modeling Environment (GME), which is a UML meta-modeling

environment.

As evident from section 3.2.2, Graph Transformation is one the most popular model

transformation language used to express refactorings. Two general-purpose graph

transformation tools commonly used to specify model refactorings are AGG [296] and

Fujaba [297]

.

AGG is rule-based visual programming environment that supports graph transformation.

A number of studies made use of the AGG tool to implement their refactoring rules.

Kazato et al. [218] formalized model refactoring using graph transformation in AGG.

AGG, apart from providing model transformation primitives, also provides advanced

mechanisms such as critical pair analysis that can be used for analyzing refactoring rules

[160] and an Application Programming Interface (API) that allows programmers to use

the transformation engine with other environments. Folli and Mens [216] used the AGG

API to develop a model refactoring application in Java.

Fujaba on the other hand implements a controlled graph transformation approach.

Transformation rules and their order of application are represented in Fujaba by a

compact notation called story diagrams (which is a combination of activity diagram and

collaboration diagram). Geiger and Zündorf [298] exemplified statechart refactoring

using the Fujaba CASE tool. In their approach, they flattened nested statecharts into plain

state machines for the sake of refactoring. Grunske et al. [214] used the Fujaba tool set to

implement graph transformation. Mens [213] implemented model refactoring rules in

79

both AGG and Fujaba for comparison. He identified both positive and negative aspects of

using both tools for implementing model refactoring.

Sunyé et al. [233] were among the first to propose refactorings over UML models. They

created an initial set of Class model refactoring and statechart refactoring. They

implemented their approach in a general-purpose transformation framework called

UMLAUT (Unified Modeling Language All pUrposes Transformer) [299].

Prototype tools based on XSLT for model transformation have also gained popularity.

This is mainly because most UML modeling environments export model diagrams as

XMI. The UML Model Transformation Tool (UMT-QVT) proposed by Oldevik [300] is

an open source tool based on XSLT. An alternative approach was proposed by Peltier et

al. [301] to use XSLT to execute model transformation on the back-end instead of

specification. They used a high-level transformation language (MTRANS) to specify

refactoring rules that were later converted to XSLT programs before execution. Ren et al.

[284] proposed a prototype tool for use case refactoring based on XML. It is composed of

a Refactoring Tool GUI and a Use Case Diagrammer to draw the use case model.

Following the approach by Peltier et al. [301] to use XSLT at the back-end, Li et al. [302]

proposed an approach to use QVT relations to specify transformations and implement

each relation as an XSLT rule template. The main reason specified for using XSLT as a

back-end language is due to its low-level syntax.

AndroMDA is another prototype MDA tool that allows generation of complete

applications from a UML model. Although its focus is on code generation, Mens et al.

[13] demonstrated its use for model refactoring. El-Boussaidi and Mili [257] proposed a

80

semi-automatic tool for marking models using constraint satisfaction technique and

rewriting source models to incorporate appropriate solutions. Their main aim was to

propose a framework for detection of problem patterns that can be solved by design

patterns.

Apart from these tools, a number of prototype tools have been proposed in the literature

to validate their proposed approaches [22, 24, 260, 264]. These tools cannot be classified

as refactoring tools as they do not provide complete refactoring functionality. These tools

aid the user either in detecting model smells or anti-patterns in models or calculating

metrics for quality assessment.

3.2.8 Consistency Management

Another vital aspect of model refactoring is model consistency. Lucas, et al. [303]

provided an excellent systematic review of the literature on inconsistency management in

software engineering domain. The need of consistency management with model

refactoring arises because UML is composed of many different diagrams. Refactoring

one diagram leaves the others in an inconsistent state. Since consistency preservation is

concerned with both the source code and models at higher level of abstraction, the topic

is discussed independently in section 3.3.

3.3 Refactoring Consistency Management

Consistency, as defined by Spanoudakis and Zisman [228] is “a state in which two or

more elements, which overlap in different models of the same system, have a satisfactory

81

joint description”. Inconsistencies occur if a change in an element is not correctly

reflected on all overlapping elements in other models of the same system. Based on the

description in section 2.5.6, inconsistencies occur at two levels: horizontal and vertical.

Horizontal consistency, also known as intra-model consistency, aims at identifying and

resolving inconsistencies between models at the same level of abstraction. Intra-model

consistency approaches tend to handle both syntactic or structural consistency and

semantic or behavioral consistency. Intra-model consistency management approaches can

be classified into four classes based on the formalism and technique used for checking

consistency: 1) Direct, 2) Transformational, 3) Formal and 4) Knowledge Representation.

A systematic literature review of UML model consistency approaches can be found in

[303].

Direct approaches to consistency management use OCL to define consistency checking

rules over UML. Chiorean et al. [304] proposed the use of OCL to validate models

against well-formedness rules and also it to define inter-model consistency rules.

Spanoudakis and Kim [305] conducted a series of experiments to evaluate the impact on

the whole model based on an inconsistency involving a particular element. Based on this

framework, Spanoudakis et al. [306] proposed a set of significance-ranking rules

formalized in OCL based on the impact of consistency violation. Other approaches that

used OCL to define model consistency rule include Paige et al. [307] and Sapna and

Mohanty [308].

Transformational approaches transform one model into another or to a common notation

and apply comparison techniques to establish consistency. Graaf and van Deursen [309]

82

used ATL transformation language to specify mapping between state machines and

scenario diagrams. Egyed [310] proposed a transformation-based inconsistency

management approach between class diagrams at different levels of abstraction. Egyed

[28, 70, 311], proposed a model profiler to establish a correlation between model

elements and consistency rules based on the manner in which they are accessed during

consistency checks. Since the use of graphs to represent models is a popular approach,

many authors propose consistency management approaches based on graphs. Mens et al.

[312] used graph transformational analysis and critical pair analysis to identify and

establish casual dependencies between alternative resolutions for model inconsistencies.

Kuster [313] proposed a graph based approach to handle behavioral model consistency

between sub-models of a larger model at the same level of abstraction and models

generated during different phases of software development. Fryz, and Kotulski [314]

used Conjugated Graphs for representing UML models. Other approaches using graphs

for consistency checking and resolution include [315, 316].

Formal approaches convert the UML model into a formal notation to check and resolve

inconsistencies. Formal specification languages (FSL) are popularly used as they provide

precise descriptions of the software system and can be formally analyzed. Commonly

used FSLs in the literature for UML consistency management include Z [317], Petri Nets

[318-321], , Symbolic analysis [322], B [323-325], pi-calculus [326], Constraint

Programming [327], PVS specification language [328, 329], CSP-OZ [330] and automata

[331, 332].

Knowledge representation approaches use logical representation languages such as

Description Logic to translate models and use reasoning for consistency management.

83

Van Der Straeten et al. [230, 231, 333] used description logic to represent UML models

as collection of concepts and roles and logic rules to detect and suggest means to resolve

inconsistencies. Other logic based representations include Temporal Logic [334] and

Maude [303, 335].

Vertical consistency aims at identifying and resolving inconsistencies between models

and source code. Massoni [336] identified three common approaches for handling code-

model consistency. These are as follows:

 Simple forward engineering: Models are used only in the initial stages of

development and discarded later. Hence, changes are made only on the source code

that renders the consistency issue useless.

 Successive reverse engineering: Source code is the primary artifact and models are

generated as physical images of the source code. Reverse Engineering tools are used

to maintain consistency.

 Round-trip engineering: Models are used to generate source code during

implementation. Once a stable version of the source code is available, reverse

engineering tools are used to ensure model consistency.

Since the approaches highlighted by Massoni rely heavily on the use of reverse

engineering tools to reconstruct models based on source code modifications, a number of

alternate approaches to handle the issue of vertical inconsistency have been proposed.

Bottoni, et al. [244] used distributed graphs for model transformation. A distributed graph

consists of a network graph. Each network node is refined by a local object graph and

network edges are refined by graph morphisms on local object graphs. The graph

84

morphisms describe how the object graphs are interconnected. Their main objective in

using distributed graphs was to describe synchronized transformation on distributed

models: diagrams and code. Code was represented by a flow graph and diagrams were

represented by a typed graph in their approach. Common interface parts are represented

using an interface graph. For instance, the interface between class diagrams and flow

graphs will present Method, Variable and Type nodes. Refactorings are then described by

a set of coordinated graph transformations, which is instantiated on code modification

and applied to an appropriate model affected by the change. Van Gorp et al. [248]

proposed the idea of source consistent refactoring to handle vertical consistency. Since

UML models do not model statements in method bodies, Van Gorp et al. constructed

their own metamodel called GrammyUML. This metamodel added eight extensions to the

UML 1.4 specification allowing them to model statements in method bodies.

3.4 Metamodel Extension

UML models are described by a metamodel. A UML metamodel is a qualified alternate

of the UML models and is a representative of any diagram that can be expressed with it.

UML provides well-defined ways to extend the metamodel. These extension mechanisms

allow designers to customize and extend the syntax and semantics of the model elements.

The two extension mechanisms provided are 1) by augmenting the metamodel itself

(heavyweight extension) or 2) by constructing a profile (lightweight extension). A UML

profile is a predefined set of stereotypes, tagged values and constraints to support

modeling in specific domains. Profiles give a well-defined manner of adopting the

85

standard UML model to a particular domain. Since a profile is not a new element, its

expressiveness is constrained by the model element it specializes. Augmenting an

element to metamodel allows the addition of a new model element or meta-class to the

standard UML abstract syntax.

Extending the UML metamodel has been a common practice in the literature in order to

enhance the expressive power of UML to model object-oriented designs. Most of these

proposed extensions stem from the motivation when the existing UML specification fails

to represent the semantic meaning of the design. The extension mechanisms provided by

UML have been utilized in numerous applications. These applications include modeling

OO frameworks [337], integrating software architecture descriptions [338-340], agent

oriented systems [341-343], design composition [344], aspect oriented system [345, 346],

modeling variability in families of systems [347], adding business goals to activity

diagrams [348], representing XML Schemas [349], secure systems development [350]

and web applications [351].

Although most of the works mentioned above concentrated on adding domain-specific

structural information to the UML metamodel, there were also few initiatives made to

extend the behavioral elements of the UML metamodel. Metamodel for sequence

diagrams has been the primary focus of extension to integrate domain specific behavioral

information. da Silva and de Lucena [352] enriched the UML sequence diagram with

explicit information to represent the exchange of messages between agents. Based on

their earlier work [343] on adding structural elements to the UML metamodel,

interactions between these elements to model the dynamic aspects of a Multi-Agent

System were proposed. Padilla et al. [353] proposed a notation to specify multiplicities

86

over a classifier in a sequence diagram. In order to provide an interpretation of

multiplicities, they extended the UML metamodel and demonstrated how interaction

operators behave in the presence of this additional information. Harel and Maoz [354]

extended and defined a subset of the UML language called Modal UML Sequence

Diagrams (MUSD). This extension allows fragments or part of fragments to be either

mandatory (universal) or optional (existential).

Apart from proposing new behavioral elements for the UML metamodel, proposals

redefining current behavioral constructs were also suggested. Refsdal and Stølen [355]

proposed the addition of risk related information to the UML Sequence diagram. They

proposed an operator “palt” that adds probabilistic choice to the existing “alt” operator.

Haugen et al. [356] proposed an external mandatory operator ”xalt” that specifies that one

of the alternate cases in that fragment must be possible.

Heavyweight extensions have also been applied to the other UML models in the

literature. Metamodel for use case diagrams has been the primary focus of extension to

add narrative information to the model. These modifications involve extension of the

metamodel to incorporate the behavioral properties as described in the textual

descriptions of the use case model.

An extension to the UML metamodel for use cases was initially proposed by [357] for

their XML-based requirements verification approach. They proposed a simple extension

wherein a use case is composed of a sequence of steps. Each step refers to an optional

condition, set of exceptions or an action. The metamodel defined as part of their approach

87

distinguished between different actions such as actor’s actions (by the actor), system’s

actions (by the system) and use case actions (inclusions and extensions).

Rui and Butler [282] proposed a use case metamodel based on a single use case modeling

notation. Elements in their metamodel are divided into three levels. Environmental level

is similar to that of the UML use case metamodel, which includes actors, use cases and

other feature based information such as goals, services and tasks. At the structural level,

use case from the previous level is further decomposed into a series of episodes along

with preconditions and post-conditions. In the event level, each episode from the

structural level is further decomposed into events. An event is further classified as

stimulus, response or an action.

Diaz et al. [358] proposed a use case specification metamodel as an extension to the use

case package of the UML metamodel. Each use case in their proposed extension includes

a specification element, which is composed of two different paths in a textual

specification: basic and alternative. Each path is composed of a sentence which is

classified as either a simple sentence or a special sentence (extends, include and control).

Metz et al. [359] did not propose an extension to the use case metamodel but provided an

in-depth explanation of the different types of alternative flows in a use case description.

They focused on unifying specific notational issues such as alternative flow types in use

case modeling. This concept of use case variability specification was later integrated into

a use case metamodel extension proposed by Bragança and Machado [360]. They

extended the use case metamodel with new model elements in order to clarify the use

case relationships (extend and include). The Extend meta-class from the UML metamodel

88

was extended to include extension fragments. They associated a rejoin point (the return

location within the base use case after execution of the extension fragment) with each

extension fragment.

Hoffman et al. [361] recently proposed a narrative metamodel for textual use case

descriptions specifying the behavior of use cases in a flow-oriented manner. The main

motivation behind their approach was to ensure consistency between UML use case

model and its descriptions. Each use case from the UML use case model is described as

flow of events, which is easily comprehendible by both technical and non-technical

stakeholders.

Zelinka and Vranic [362] proposed a precise definition of different use case templates so

as to allow a consistent application. Their goal was not to unify the UML use case model

with its textual description, but to map the common and variable part among different

template descriptions. This allowed flexibility of using a single notation or a combination

of several use case description notations.

Somé [363] proposed a use case specification metamodel which is formally defined as an

extension to the UML metamodel specification. He provided a set of constraints that

ensure consistency between use case descriptions and use case models. He also enhanced

the degree of expressiveness by introducing control flow structures for iteration and

concurrency and definition of variable custom traits.

The most recent extension proposed for a use case metamodel was by Repond et al.

[364]. Particularly they modeled the generalization relationship within a use case

behavior, which was not provided by earlier proposed extensions. They also defined the

89

concept of use case scenarios that represents a specific path among all the possible flows

of the use case. Hence, each use case consists of multiple scenarios where each scenario

has a sequence of steps that model a specific flow path. Although the concept of

scenarios was put forward earlier by [282], it was not properly explained in their work.

Extensions proposed by [282, 357, 359, 360] fail to include the concept of flows (or

scenarios) within use case descriptions. Extensions proposed by [358, 361-363] explicitly

modeled flows as a set of steps within a use case description. Although these works

modeled use case flow, the lowest level of abstraction in their work is a use case step of

which a flow is composed. In our proposed extension to the use case metamodel, we

considered different form of steps within a use case flow and each action step further is

modeled to the level of fine grain system-user interaction. Apart from this, we modeled

the concept of use case transactions useful for applications such as effort estimation and

use case analysis.

Almost all extensions proposed to the UML use case metamodel do not model the

generalization relationship except for the metamodel proposed by Repond et al. [364].

Their work introduced a GeneralizationPoint where specialized use cases can add

additional behavior. In our proposed extension, a specialized use case cannot only add

additional behavior, but it can modify or replace the steps of the generalized use case.

Also the concept of GeneralizationPoint within the generalized use case defeats the

purpose of generalization (i.e. allowing the generalized use case to have knowledge of

what all use cases specializes it and where they add additional behavior).

90

Finally, all proposed extensions in the literature cannot be used for use case analysis and

evaluation due to lack of information modeled such as different actor types, use case

transactions and structure for use case constraints. In our proposed extended use case

metamodel, we incorporated all required information for use case analysis and evaluation

enhancing the usability of a use case model while maintaining the level of stakeholder

comprehension. This extension allows easy integration of the use case metamodel with

the metamodels of sequence and class diagrams.

91

4 CHAPTER 4

INTEGRATED METAMODEL

This chapter discusses the construction of the Integrated metamodel. Information

regarding the UML metamodel, its contents and extension mechanisms supported are

introduced initially. The diagrams that form the elements of the integrated metamodel are

then discussed individually and finally the composition method employed to build the

integrated metamodel and the metamodel itself is discussed.

4.1 UML Metamodel

Software development is classified as a methodology. Methodology as defined by

Henderson-Sellers [365]

“A methodology has several constituent parts including a full lifecycle

process, a comprehensive set of concepts, a set of rules, heuristics and

guidelines underpinning appropriate development techniques, a set of

metrics, information on quality assurance, a set of coding and other

organizational standards and advice on reuse and project management”

In simpler terms, methodology can be defined as a systematic approach to getting work

done in a particular discipline. Following this line of definition, Software Development

Methodology can be defined as a systematic approach to design and development in the

92

software engineering discipline. Methodologies can either be expressed in natural

language description or by a modeling language if the underlying methodology is

complex and non-trivial. Since software design is composed of diagrams and elements

that refer to each other in complicated manner, it is more viable for it to be expressed by

a modeling language rather than described through natural language.

Due to the popularity of the Object-oriented (OO) paradigm, UML has been adopted as a

modeling language to express OO development methodology. Gonzalez-Perez and

Henderson-Sellers [366] defined a relationship between a methodology, model and a

metamodel as

“If a methodology is a model, creating that methodology is modeling,

whereas creating the language concepts used to describe the methodology

is metamodeling”.

The Object Management Group currently defines the UML language using a metamodel.

The UML specification document [10] defines the metamodel in three different parts.

These parts are

1. Abstract Syntax: A class diagram describes the abstract syntax of UML, which is

composed of meta-classes and meta-associations. A meta-class describes each model

element (e.g. Class, Attribute, Lifeline, Use case etc.) and meta-associations describe

the interrelationships between these meta-classes. Syntax of UML is well defined and

unambiguous.

2. Well-formedness Rules: Specification of constraints on instances of the meta-classes

(that represent the UML language constructs) is through a set of well-formedness

93

rules. These constraints for well formedness are semi-formal specified by a

combination of OCL expressions and an informal description.

3. Semantics: Semantics describe the meanings of the meta-classes introduced in the

abstract syntax. Semantics of the metamodel consists of natural language description

of the language constructs and their collaboration. Although the use of natural

language makes them easier to understand, it also includes some incomplete and

ambiguous information.

One of the main reasons of why UML is popular among OO developers is because it

allows extension or even modification of the base language metamodel in order to adapt

the language to a specific situation or domain. Categories of extension mechanisms

provided by UML include: (1) Lightweight extension mechanism and (2) Heavyweight

extension mechanism.

 Lightweight extension mechanism: Lightweight extension mechanisms are termed as

lightweight because they do not add new model elements to the UML metamodel.

UML profiles are used to implement these types of extensions. A UML Profile [10] is

a collection of extensions that are packaged together to customize UML for a

particular domain. It specifies a set of standard elements, well-formedness rules and

semantics, beyond those specified by the UML metamodel. A UML profile consists

of stereotypes, tagged values and constraints. Tagged values allow association of user

defined variables or metadata to a model element. A tag value is represented by a

name-value pair and must be compatible with the constraints of the base class of the

model element. Constraints on the other hand, allow addition of semantic restrictions

to the model elements. Constraints, similar to UML semantics, are written in OCL

94

and must also be compatible with the constraints of the base class of the model

element. Tagged values and constraints are grouped under a meaningful name that

forms a stereotype. Stereotypes are defined as extension to the UML model elements

which implies that the tagged values and constraints it contains are associated with

the model element implicitly. The keywords <<stereotype>>, <<TaggedValue>>

and <<Constraint>> are used when including them in the extended metamodel. The

relationship between stereotypes, tagged values and constraints as part of a UML

profile metamodel is shown in Figure 11.

 Heavyweight extension mechanism: Adding new elements in the form of meta-

classes, defining suitable metadata and meta-associations is referred to as

heavyweight extension. These extensions are guided by the Meta-Object Facility’s

(MOF) meta-metamodel language [45]. The MOF meta-metamodel is a standard

provided by OMG for specifying, interchanging and extending the UML metamodel.

The metamodel constructed by using the heavyweight extension mechanism is more

expressive but might end up with an exceedingly complex notation. Both these

approaches have their share of advantages and disadvantages. Using the lightweight

extension mechanism allows the availability of standard UML notation and hence

generic UML tools could be used. On the other hand, the stereotypes must adhere to

the constraints of the base element it extends which severely limits its expressiveness.

Using the heavyweight extension mechanism makes the metamodel incompatible

with UML-compliant tools, as the notation would not conform to UML standard.

However, using this extension mechanism allows addition of any desired feature to

the metamodel.

95

Instances of the UML metamodel form a suite composed of all the UML models. UML

models are classified into three categories based on the aspect of the system they

describe. These categories are referred to as views: structural view, behavioral view and

functional view. The structural view consists of diagrams that capture the physical

organization of the basic elements (classes, objects etc.) in the system. It describes the

static structure of the system. The behavioral view consists of diagrams that focus on the

interactions between the elements in the system. This view represents how elements work

together, interact, and respond to the environment. The functional view is a collection of

diagrams that depict how a system is supposed to work, modeling the workflow and

business processes. It captures information about the system from the user’s perspective.

Figure 12 shows the classification of the UML diagrams into views.

Figure 11 UML Profile Metamodel

96

The Integrated Metamodel proposed in this chapter is composed of one model from each

view. Class diagram from the structural view, sequence diagram from the behavioral

view and use case diagram from the functional view are used as core models for

composing the integrated metamodel. A metamodel description of the models selected

from each view is provided and then the integrated metamodel is discussed. Although

UML metamodel does not differentiate between model elements, subsets of UML

metamodel are referred to here as class diagram metamodel, sequence diagram

metamodel and use case diagram metamodel. These subsets include all model elements

that are used when constructing respective models.

4.2 UML Class Diagram

Class diagram represents the structural view of an object-oriented system. It consists of a

set of classes designating important entities of the system modeled. Along with classes, a

class diagram also consists of relationships between these classes. It is the most common

diagram and considered as the backbone for modeling object-oriented systems.

Figure 12 Classification of UML Diagrams into Views

97

A formal syntax for class diagram along with semantics is provided by Meng and

Aichernig [367]. Utilizing their work with minor modifications (to incorporate features

introduced in UML 2 specification), a formal definition of the UML Class diagram

metamodel is provided here. Formally, a class diagram can be defined as:

Definition 4.1: A class diagram is a 4-tuple where

 is a non-empty finite set of classes

 is a finite set of associations

 is the relationship between classes

 is a set of well-formedness rules on the Class Diagram

4.2.1 UML Class Diagram Metamodel

The UML specification document describes the UML abstract syntax in the form of a

class diagram representing the UML metamodel and well-formedness rules. The UML

class diagram metamodel is composed of a number of meta-classes. Some of these meta-

classes may not be useful for the intended application of refactoring; hence, a subset of

the UML Class diagram metamodel to be used for the integrated model is given in Figure

13. A detailed description of the abstract syntax and well-formedness rules of UML class

diagrams is provided in Appendix 1.

98

Figure 13 Subset of the UML Class Diagram Metamodel

99

4.2.2 Class Diagram Metamodel Extension

The metamodel for class diagram is used as-is without any extension. The reason for not

extending the class diagram metamodel is that it is extensively and precisely described in

the UML specification.

4.3 UML Sequence Diagram

Sequence diagram represents the dynamic view of an object oriented system. The main

purpose of a sequence diagram is to capture dynamic behavior of a system. This is

realized by modeling flow of events leading to a desired result.

Formally, a sequence diagram can be defined as:

Definition 4.2: A sequence diagram is a 7-tuple

 where

 is a finite set of lifelines

 is a finite set of end locations

 is a finite set of message labels

 is the relationship (event) between lifelines

 is a partial order providing the position of ends within each

of the lifelines

 is an ordered set of fragments in the sequence diagram

 is a set of well-formedness rules on the Sequence Diagram

100

4.3.1 UML Sequence Diagram Metamodel

Similar to that of the Class diagram, the UML Specification document also describes the

Sequence Diagram metamodel by an abstract syntax in the form of a class diagram and

the well-formedness rules. A subset of the UML Sequence diagram metamodel to be used

for the integrated model is shown in Figure 14. A detailed description of the abstract

syntax and well-formedness rules of UML sequence diagrams is provided in Appendix 1.

101

Figure 14 Subset of the UML Sequence Diagram Metamodel

102

4.3.2 Sequence Diagram Metamodel Extension

The main motivation for proposing an extension to the UML metamodel for sequence

diagram is to make it easier to integrate with the other metamodels. Apart from this, the

extended metamodel accommodates future extensions made to sequence diagram

notations. By extensions we mean either integration of domain-specific information or

modeling syntactic variability due to difference in comprehension. It will allow advanced

UML modelers to define domain-specific extensions to the sequence diagram in a precise

and usable manner. Furthermore, this modification also provides ease of mapping

program code to sequence diagrams thereby providing a means of validating consistency

between them.

Extensions to Sequence diagram notations and metamodel have been proposed quite a

few times in the literature. The approaches are discussed in section 3.4 as part of the

literature review for metamodel extensions.

The UML sequence diagram metamodel described in the previous subsections contains a

meta-class called “CombinedFragment”. The UML specification provides twelve types of

combined fragments that are given by an enumerated attribute called

“InteractionOperatorKind”. The extended sequence diagram metamodel proposed in this

work restructures the combined fragment logic by suggesting a change to the abstract

syntax and well-formedness rules of the metamodel elements.

Initially two new meta-classes SingleOperand and MultiOperand are introduced. The

motivation behind the inclusion of these meta-classes is to remove the well-formedness

rule (Rule 6) enforced through constraints on the sequence diagram in the UML

103

specification. Based on this rule, all the sub-classes of the meta-class SingleOperand can

have only one operand in its body. These two meta-classes are defined similar to the

manner of meta-class description in the UML specification as follows:

SingleOperand Metaclass

 Description

- SingleOperand is an abstract meta-class, which declares a combined fragment

with only one single operand in its body definition. SingleOperand is a

specialization of CombinedFragment.

 Associations

- InteractionOperand –the operand of the fragment

MultipleOperandMetaclass

 Description

- MultipleOperand is an abstract meta-class, which declares a combined

fragment with more than one single operand in its body definition.

MultipleOperand is a specialization of CombinedFragment.

 Attributes

- isStrict – if false, the messages between different operands can be interleaved

but messages within a single operand should be ordered; the default is false

 Associations

- InteractionOperand –the set of operands of the fragment

The proposed metamodel modifies one class declaration from the standard metamodel.

The “CombinedFragment” meta-class will no longer have the attribute

104

“InteractionOperatorKind”. In addition, the association of this class with the

“InteractionOperand” meta-class is also removed.

Apart from the above modifications, a single meta-class for each

“InteractionOperandKind” was also added to the extended metamodel. These meta-

classes are then made subclasses of either the SingleOperand or the MultipleOperand

meta-class. The Opt, Loop, Break and Neg meta-classes are made subclasses of

SingleOperand as they require only one operand. The remaining Par, Alt, Assert, Strict,

Seq and ConsiderIgnore meta-classes are made subclasses of the MultipleOperand meta-

class. The main motivation behind this modification is because a number of suggestions

have been proposed in the literature to modify the semantics of some combined fragment

operators such as “alt”, “neg”, “assert” and so on. In order for the above-mentioned

proposed operators to be added as metamodel extensions, existing combined fragment

operators need to be treated as model elements. Our proposed extended metamodel

allows researchers to define their modifications in a usable manner by making use of

lightweight extensions. In order to illustrate this, we take an example of the extension

proposed by Refsdal and Stølen [355] to include probabilistic choice to the existing “alt”

operator. They proposed an operator “palt” (probabilistic alternative), in which the choice

between alternatives is expressed as probabilities between two or more operands. This

extension is depicted in Figure 15 using a stereotype “palt”.

105

Apart from deprecating the well-formedness rule Rule 6, another rule

Rule 7 is also removed. This is because the conditions and are included as

metadata in the loop meta-class and removed from the InteractionConstraint meta-class.

This ensures that they are valid only when the loop fragment is used. The “Loop” meta-

class can hence be defined as

Loop Metaclass

 Description

- Loop is a meta-class, which declares a combined fragment representing a

loop. The single operand in the fragment body will be repeated a number of

times as specified by constraint attached to it. Loop is a specialization of

SingleOperand.

 Attributes

- minint – the minimum number of iterations of a loop

- maxint – the maximum number of iterations of a loop

Figure 15 An example lightweight extension of "alt" fragment

106

 Well-formedness rules

- If minint is specified, then the expression must evaluate to a non-negative

integer.

- If the maxint is specified, then the expression must evaluate to a positive

integer.

- If both minint and maxint are specified, the value of maxint must be greater

than or equal to the value of minint.

The descriptions of all other meta-classes are left for future improvements and extensions

to the UML Metamodel. The proposed extension component for the Sequence

Metamodel along with its related meta-classes from the original UML Sequence

Metamodel is shown in Figure 16. Figure 17 presents the complete extended sequence

diagram metamodel. The extended sequence diagram metamodel along with promising

applications apart from metamodel integration is provided by Misbhauddin and Alshayeb

[368].

Figure 16 Extended Component of the Sequence Metamodel

107

Figure 17 Extended Sequence Diagram Metamodel [368]

108

4.4 UML Use Case Diagram

Use case diagrams were initially introduced by Jacobson [39] and later adopted by the

OMG to be part of UML. A use case diagram represents a functional view of an object-

oriented system and plays a vital role in modeling the system’s functional requirements.

To model these requirements, the use case diagram represents them as a set of use cases.

Each use case is a specification of a set of operations between the system and actors

resulting in an output valuable to actors or stakeholders of the system. Formally, a use

case diagram can be defined as follows:

Definition 4.3: A use case diagram is a 5-tuple where

 is a finite set of use cases

 is a finite set of actors

 is a finite set of associations

 is the relationship between use cases

 is a set of well-formedness rules on the Use Case Diagram

4.4.1 UML Use Case Diagram Metamodel

A use case model represents the functional view of an Object Oriented (OO) system and

plays a vital role in modeling the system’s functional requirements. The use case model

represents the functional requirements as a set of use cases. Each use case is a

specification of a set of operations between the system and the actors resulting in an

output valuable to actors or stakeholders of the system. UML use case diagram models

use cases and their relationships with actors and other use cases. Behavior of each use

109

case is typically documented either through other UML models (sequence [369-371] or

activity diagrams [372-374]), formal modeling languages [375-378], or as natural

language text.

UML models are described by a metamodel detailed out in its specification document

[10]. A UML metamodel is a qualified alternate of the UML models and is a

representative of any model that can be expressed with it. Since the UML metamodel

includes information for all the diagrams in the modeling suite, a subset of the UML

metamodel that includes all elements related to modeling a use case diagram is shown in

Figure 18. A detailed description of the abstract syntax and well-formedness rules of

UML use case diagrams is provided in Appendix 1.

Figure 18 Subset of the UML Use case diagram metamodel

110

4.4.2 Use Case Diagram Metamodel Extension

The use case model that is part of the UML specification describes only its structural

view. The structural view defines the services provided by the system without divulging

its internal structure. The internal structure presents the behavioral aspect of the use case.

A use case, once initiated by an actor, performs a number of operations to provide a

meaningful output to the invoking actor. These set of operations constitutes a use case’s

behavior. There are a number of ways in which the behavioral information can be

presented. A classification of these approaches is given in Figure 19 below:

Figure 19 Use Case Behavior Description Approaches

Use Case
Behavior

Textual

Unstructured
/ Prose

Structured /
Tabular

Jacobson [39]

Cockburn [379]

Kruchten [381]

Leite et al. [382]

Toro et al. [383]

Visual

Activity
Diagram

Nakatani et al. [374]

Gutiérrez et al. [372]

Lei & Jiang [373]

Sequence
Diagram

Li [370]

Almendros & Iribarne [369]

Yue et al. [371]

Formal

Calculus Back et al. [375]

Abstract State
Machine

Grieskamp et al. [377]

Z Grieskamp & Lepper [378]

X-Machines Dranidis et al. [376]

111

Which of these approaches to use depends on the nature of the use case behavior as well

as the intended reader? It is suggested by Cockburn [379], Kulak and Guiney [380] and

many other practitioners that non-technical stakeholders usually understand use case

behavior written in the vocabulary of the problem domain better than any other notation.

Hence the text-based approaches gained immense popularity. Two major advantages

available by selecting the text-based approach for behavioral specification are:

1. Understandable by both technical and non-technical stakeholders.

2. Minimum use of UML vocabulary.

One major trade-off when selecting textual specifications to model use case behavior is

that they are prone to mistakes and incompleteness. Although using formal models and

other UML diagrammatic notations for requirements elicitation and use case description

allows for better structure and validation, it also introduces a high participation hurdle for

customer involvement which is the main goal for use case specification. In order to

circumvent the issues posed when using the text-based approach, we propose a

metamodel that extracts useful information from the text and maps it to the metamodel

elements for further analysis. A number of different notations or templates for composing

them have been proposed in the literature. Table 2 shows a number of prevalent

initiatives that describe a use case template descriptions in the form of a structured

template.

112

Table 2 Template elements from different notation proposed in the literature

Template Elements
Cockburn

[379]

Jacobson

[39]

RUP

 [381]

Leite

[382]

Toro

[383]

Name: Unique name assigned to a use case √ √ √ √ √

Number: Unique ID assigned to a use case √ √

Goal: Statement of goals expected from the use

case
√

Scope: System being considered black-box under

design
√

Level: Level of use case description √

Description: Brief summary of use case purpose √ √

Primary Actor: Actor that initiates the use case √ √

Secondary/Supporting Actors: Actors that

participate within the use case
√

Offstage Actors: Non-interacting actors

concerned with the outcome of the use case

Special Requirements: List of non-functional

requirements
 √ √

Preconditions: Expected state of the system prior

to use case execution
√ √ √ √ √

Post-conditions (Success): State of the system
upon successful completion of the use case

√ √ √ √

Post-conditions (Failure): State of the system if

goal is abandoned
√

Performance Target: The amount of time this

use case should take
√

Priority: How critical to the system /

organization is the use case
√

Frequency: How often is it expected to happen √

Open Issues: List of issues about this use case

awaiting decisions
√ √

Due Date: Date or release of deployment √

Main Flow: Steps of the scenario from trigger to

goal delivery
√ √ √ √ √

Sub Flows: Sub-variations that will cause

eventual bifurcation in the flow
√ √ √

Alternate Flows: Conditional variations that will

cause eventual bifurcation in the flow
√ √ √

Extension Points: List of extensions each

referring to a step in the main flow
 √ √

Exceptions: Conditional variations that will

cause unsuccessful termination of use case flow
 √ √

Super Use Case: Name of use case that this one

specializes
√

Sub Use Case: Links to all use cases that

specialize this use case
√

113

As observed from Table 2, a number of variations exist in the elements for use case

description template. Despite these differences, each approach has two major parts of

information: description and dynamics depicted in Table 2 separated by a thick line. The

description part includes elements such as name, number, goal, scope, level, description,

actors (primary and secondary), preconditions, post-conditions (success and failure),

priority, frequency, open issues, due date and special requirements. The dynamics part

captures the use case’s flow of execution. Flow of execution of a use case includes a

sequence of steps that can either be events (messages exchanged between actors and use

case objects), or anchors (that disrupt the main flow by allowing access to sub flows,

alternate flows, use case extensions and inclusions).

The main objectives in proposing an extension to the use case metamodel can be

summarized as follows:

1. The original metamodel is an essential subset of the extended metamodel so that

information can be utilized from both depending upon the requirement of the user.

2. The extended metamodel should take into consideration information from all

published templates. But information that is useful for further analysis of the use case

model should be included as meta-classes so other tools can access and extend it

easily and other information can be included as meta-attributes of the respective

meta-classes.

3. Information for use case analysis, model evaluation, and model interchange should be

readily available and accessible from the metamodel.

114

4. The extended metamodel should provide an integrated global modeling environment

for tools and users and provide seamless transition from requirements to system

modeling.

For the sake of clarity of presentation, we construct the metamodel in pieces. A complete

metamodel is presented towards the end of this section. Each modeling element from the

use case diagram is analyzed and extended.

4.4.2. (a) Actors

Actors are used in the use case diagram to model users of the system. The UML

Specification defines actors as entities that can communicate with several use cases. In

this proposed extension to the use case metamodel, we classified actors based on two

criterions: the role they play in a use case and the role they play in the system. Many

authors define different types of actors based on their role in the use case. According to

Larman [384], an actor can be classified into three types:

1. Primary Actor: An actor that initiates the use case and helps realize its goal.

2. Supporting Actor: An actor that participates in a use case that helps realize a

primary actor’s goal.

3. Offstage Actor: An actor that does not interact with the system but has needs that

should be addressed in the system. Offstage actors are considered as stakeholders of

the system under development.

115

The actor’s type may differ from use case to use case. Based on the above classification,

we added three associations between the UseCase meta-class and the Actor meta-class to

denote the role an actor plays in a use case. Popularity of the use of use case modeling as

a de facto standard for requirement modeling in the field of software engineering was

further enhanced with the establishment of a software estimation technique known as Use

Case Points (UCP) [385]. UCP became a good candidate for early estimation of software

size and effort because of its simplicity and ease of use. The main activity of UCP is to

estimate the complexity of actors and use cases. The complexity of actors is identified

based on the role an actor plays in the system (as opposed to in a use case as discussed

above).

In order to incorporate this information in our extended metamodel, we categorized

actors based on information from both the original UCP model presented by Schneider

and Winters [385] and the enhanced model known as iUCP presented by Nunes [386].

Based on this, we classified the actors into the following categories:

1. System Actor: This type of actor is another system interacting with the base system

through an application programming interface (API). For example, the ATM system

reads the credit card information directly from a credit card reader. In this case, the

credit card reader is outside the system and accessed through an API; therefore, the

credit card reader is a system actor.

2. Network System Actor: This type of actor is another system interacting with the

base system through a protocol or data store. For example, the ATM system verifies

the credit card information from an accounting system. In this case, the accounting

116

system is outside the system and accessed through a network. Therefore the

accounting system is a network system actor.

3. Human Actor: This type of actor is a person or a user who will use the system. It is

the most common type of actor. For example in the ATM system, a customer will ask

the system to perform a transaction and therefore, the customer is a human actor.

The iUCP model differs from the original UCP model as it is based on the usage-centered

design method [387] in contrast to the conventional use case model for classifying actors.

The main reason behind this is because of the richness of the information conveyed by

the usage-centered method regarding the complexity underlying each actor. Human

actors are divided into simple, average and complex based on the number of roles they

play in the system. In the usage-centered design method, the concept of actor is

expanded through user roles that represent the relationship between users and a system. A

user role is characterized by the “context in which it’s performed, the characteristic

manner in which it’s performed, and the design criteria for the role’s supporting

performance” [386]. The number of roles supported by each human actor provides an

important way to infer the complexity associated with each actor. In order to incorporate

this, we added a meta-attribute called num_roles to the Actor meta-class. Since this

attribute is associated with human actors only, a default value of 1 is used for system and

network system actors.

Actors in a use case model can be associated to each other using the generalization

relationship. It is the only kind of relationship that exists between actors. The actor

modeling the common role is referred to as the parent actor and the actors using the

117

common role are called the child actors. In simple terms, a child actor inherits the

capability to communicate with the use cases its parent actor is associated with. The

metamodel representation with the modified Actor meta-class and its relationship with

the UseCase meta-class are presented in Figure 20.

4.4.2. (b) Use Case

A use case within a use case model consists of number of information elements as shown

in Table 2. Despite the difference of information portrayed by different templates, each

template has two major parts of information: the description part and the dynamics part.

In this section, we discuss the description part of a use case.

Information within the use case description can be classified into two categories;

information that is used for “mere” documentation purpose and information that will be

used for use case analysis at later stages of software development. Keeping in lieu with

Figure 20 Addition to the extended UML metamodel for Actor

118

the above mentioned criteria, we decided to separate these elements and depict them

independently in the enhanced metamodel as follows:

1. Use case description elements that will be used for its documentation will be

represented as meta-attributes in a separate meta-class called Description. (See Figure

21)

2. Use case description elements that will be used for analysis will be represented as

separate meta-classes and elaborated and justified later in this section.

Figure 21 Addition to the extended UML metamodel for Use Case

119

4.4.2. (c) Use Case Relationships

UML defines three types of relationships between use cases: ‹‹include››, ‹‹extends›› and

generalization. When describing these relationships through a metamodel, we need to

discuss the relationship depiction on the use case structural view and within the use case

flow of execution (its behavioral view). In this section, we discuss the impact of use case

relationships on metamodel elements that depict the use case’s structural view. We

provide a coherent description of these relationships derived from the literature and

extend the use case metamodel based on these descriptions. The manner in which these

relationships are depicted in the use case’s flow of execution are discussed later.

 Include Relationship

Two use cases are related by the ‹‹include›› relationship if one use case (known as

the base use case) uses the functionality offered by the other use case (known as

the included use case). Two main reasons for using the ‹‹include›› relationship in

a use case model according to the UML specification are: to fragment Complex

Use Case into manageable ones [384, 385] and to reuse use Cases [384, 385, 388-

392]. Apart from this, some authors recommend the use of ‹‹include›› relationship

for conditional behavior [384, 389, 391] and to handle asynchronous events [384].

The main motivation behind the use of ‹‹include›› relationship for conditional

behavior by the above-mentioned authors is that this relationship is much easier

for most people to understand and use than other relationships such as ‹‹extends››

and generalization. Also the use of ‹‹extends›› is restricted to cases where the base

use case is locked or “closed for modification”. Since it is difficult to gauge when

a use case is closed for modification, we adopted the semantics of the ‹‹include››

120

relationship as outlined in the UML specification and accepted by majority of the

authors [393] and leave the concept of conditional behavior to the ‹‹extends››

relationship. We do not modify the meta-classes related to the ‹‹include››

relationship in the extended metamodel.

 Extend Relationship

Two use cases are related by the ‹‹extends›› relationship if one use case (known

as the base use case) implicitly incorporates the behavior of another use case

(known as extension use case) at a specified location. The extension use case is

executed only when some particular condition is satisfied in the base use case.

There have been many reasons proposed in the literature for the use of the

‹‹extends›› relationship in the use case model. These can be summarized as

follows:

1. Optional or Exceptional Behavior: Behavior that is optional to the base

use case can be separated and defined in an extending use case. Most

authors agree with this usage of the extend relationship [1, 385, 388-391].

2. Asynchronous Events: An asynchronous event is one that can be called at

any point in the base use case. Use of the extend relationship to describe

asynchronous events is supported by Constantine and Lockwood [1] and

Cockburn [379].

3. Defer Behavior Implementation: Armour and Miller [389] suggested the

use of extend relationship to separate behavior from the base use case that

can be developed later in order to assign it a lower priority.

121

The semantics of the ‹‹extends›› relationship has created a lot of disagreement

among authors. In this section, we attempted to resolve these concerns by

extending the metamodel to incorporate necessary information in order to ensure

consistency in semantics of this relationship.

Since the extend relationship is optional and controlled by an execution condition,

it requires the specification of the following elements:

 Extension Point: The point in the behavior of the base use case where an

extended use case can be inserted is known as the extension point.

 Extension Constraint: This is an optional constraint that specifies the

condition that must be true for the extension use case to be invoked from

the base use case.

When the extension point in base use case scenario is reached, the extension

constraint is evaluated and control is switched to the extension use case. After the

execution of the extension use case, the control is resumed just after the extension

point in the base use case scenario [39, 379, 389]. But in order to use the extend

relationship to model exceptional behavior, the control should be allowed to

return to any point in the base use case flow or be allowed to end the use case

resulting in a failure or alternative success scenario. In order to handle these

situations, Metz et al. [359] defined five types of alternative sequences. These are

summarized in Table 3 below.

122

Table 3 Summary of Alternative Scenarios

Alternative History: The control in this type

of alternative sequence never returns to the

base use case scenario. The success post-

condition in this case can either be the overall

success post condition of the base use case or

its subset.

Alternative Insertion: The control in this type

of alternative sequence returns to the point just

after the extension point in the base use case.

Use Case Exception: The control in this type

of alternative sequence never returns back to

the base use case scenario. In contrast to

alternative history, the use case exception is

always a failure scenario and results in a failure

post condition.

Alternative Fragment: The control in this

type of alternative sequence returns to any

point after the extension point in the base use

case.

Alternative Cycle: The control in this type of

alternative sequence returns to any point before

the extension point in the base use case.

123

In order to accommodate sequences mentioned in Table 3, the concept of rejoin

point was proposed [359, 360]. A rejoin point allows the control to return to

separate point in the main flow after performing the steps specified in the

extension use case. We followed a similar approach in our extension of the use

case metamodel and added a meta-class called RejoinPoint. When the rejoin point

is equal to the extension point it leads to an alternative insertion fragment. When

the rejoin point is a point that occurs either before or after the extension point,

then the alternate scenario leads to an alternative cycle or alternative fragment

respectively. Finally when the rejoin point is not specified, it leads to a use case

exception.

In order to complete our extension to the Use Case metamodel for ‹‹extends››

relationship, we considered an interesting premise put forward by Laguna and

Marqués [394]. An extension point in the base use case can be extended by

several use cases. An issue arises when this extension point is reached and a

decision is to be made if whether only one or at least one among these extension

use cases are to be selected. In order to complete and clarify the behavior of the

base use case and to aid in the process of elicitation of requirements, Laguna and

Marqués [394] added multiplicity attributes to the extension point meta-class.

Following their approach, we added the lower and upper meta-attributes to the

ExtensionPoint meta-class to clarify the behavior of extend relationship in case of

multiple use case extensions. A multiplicity of 0..1 states that the extension use

case can be executed when the constraint is true (equivalent to the original UML

extend semantics), a multiplicity of 1..1 states that only one of the possible

124

extension use case can be selected and finally a multiplicity of 1..* allows more

than one use case to be inserted.

In addition, following Constantine and Lockwood [1] in our metamodel

extension, we have considered the concept of asynchronous extensions in which

an extension use case can be called asynchronously at any step of the use case

flow. Asynchronous extensions are defined in our metamodel as a separate meta-

class called AsyncExtend. It is defined separately as it lacks an extension point

and extension location. For example, a customer can press cancel at any time

during his usage of the ATM Machine. Figure 22 shows the extended metamodel

for ‹‹extends›› relationship.

Figure 22 Addition to the extended UML metamodel for extend relationship

125

 Generalization Relationship

The generalization relationship in a use case model allows a given use case to be

defined as a specialized form of an existing use case. Common behaviors,

constraints and assumptions are factored out into a general use case (also known

as the parent use case) which can then be inherited by a specialized use case (also

known as the child use case). The concept of generalization and specialization

gives rise to two types of use cases:

 Abstract Use Case: An abstract use case is an incomplete use case that can

only be invoked by another use case. An actor cannot directly invoke it.

Jacobson refers to the generalized use case as an abstract use case.

 Concrete Use Case: A concrete use case is a self-contained complete use

case one that can be directly invoked by an actor. A concrete use case

provides an implementation to an abstract use case. Jacobson refers to the

specialized use case as a concrete use case.

Most authors agree with the definition and usage of the generalization

relationship. Figure 21 depicts the use case metamodel for generalization.

Although the structural representation of this relationship is straightforward, its

usage within a use case scenario description is vaguely described in the literature.

A metamodel for generalization within a use case description is discussed in this

section.

126

4.4.2. (d) Use Case Flows

From the many forms of composing the dynamics part of the use case specification,

Bittner and Spence [391] provided the most promising one. They expressed the use case

dynamics through a sequence of steps. These steps are grouped to form behavioral

fragments called flows. A single use case consists of multiple flows as shown in Figure

23, but the flow of events that is initiated when the use case is executed by an actor is

called the main flow. Apart from the main flow, a use case can also have multiple sub

flows and alternate flows. These flows are initiated from the main flow. A sub flow is

used either to describe complex logic associated with a particular step or to factor out

redundant steps described in a flow. Alternate flows include behavior that is alternate to

the use case. This could be optional or exceptional behavior Steps within a flow are

usually atomic events, the content interpretation of which will be discussed later. Usually

unconstrained natural language is used to describe the steps within a flow.

 Figure 23 Structure of a typical text based use case description

127

Following the flow composition architecture described in Figure 23, we initially added a

meta-class called Flow to the extended use case metamodel. Different types of flows are

then represented as specialized meta-classes of the Flow meta-class: MainFlow, SubFlow

and AlternateFlow. Apart from terminological differences and elements used, there are

some noteworthy semantic differences between the templates mentioned earlier in Table

2. In order to ensure deterministic initiation of use cases and their completeness, we

describe the semantics that our extended metamodel is built upon as follows:

1. Restrict the number of main flows to only one (as described by Cockburn [379] and

opposed to Jacobson’s [39] notation that allows multiple main flows).

2. Allow sub flows and alternate flows within sub flows and alternate flows.

3. Allow multiple extension points (as described by Jacobson’s [39] notation and

opposed to Cockburn’s [379] notation that does not allow extensions at all).

In order to allow sub flows and alternate flows to have sub flows and alternate flows

within them, we added another level of inheritance between the Flow meta-class and

SubFlow and AlternateFlow. This intermediate meta-class is called OtherFlow. Most

authors define use case flow as a composition of a sequence of steps [363, 364, 379].

Since one of our main goals for extending the use case metamodel is to use the

instantiated use case model for analysis, we used the concept of transactions. Our main

motivation in the use of transactions to describe flows is because transactions are mainly

used as a complexity metric within the use case point method. A transaction is a shortest

sequence of use case steps starting from an actor’s request and ending in a system

response [395]. Hence, a use case flow is composed of a number of ordered transactions

included in the metamodel by the Transaction meta-class. Each transaction is then

128

composed of a sequence of steps modeled by the Step meta-class. Figure 24 shows the

excerpt of the extended metamodel for the use case flow of events.

Figure 24 Excerpt of the Extended Metamodel for the Use Case Flow of Events

 Use Case Action Steps

In a flow description, a step can be classified as either an action step or a

branching step. A step that performs a certain action (from the actor to the system

or vice versa) is referred to as an event. A branching step is a step that alters the

sequential order of the flow by invoking the behavior of another flow of events.

Branching steps are discussed in the next subsection. Natural language sentences

are used to describe an event. A number of approaches that make use of the

grammatical structure of the natural language and natural language processing

(NLP) techniques, to analyze and extract relevant information, have been

proposed in the literature [396-404]. As far as the metamodel is concerned, we

focused on the elements that make up a typical event sentence. An event allows a

129

sender to communicate with one or more receivers through a message (action)

that may or may not include additional parameters (arguments). Hence, it is safe

to assume that an event is composed of a sender, multiple receivers, an action and

zero or more arguments.

Since a step can either be an event or a branching action, it is specialized by two

meta-classes called Event and Anchor. The Event meta-class is further extended to

include Sender, Receiver, Action and Argument meta-classes based on the above

mentioned reasons. In addition, following Diev’s transaction definition [395] and

the transaction model proposed by Ochodek and Nawrocki [405], we enumerated

four types of actions relevant from the use case transaction point of view. This is

shown through an enumerated meta-attribute called actionType in the Action

meta-class. Excerpt of the metamodel depicting the meta-classes relevant to a use

case step is shown in Figure 25.

Figure 25 Excerpt of the Extended Metamodel for the Use Case Flow Steps

130

 Use Case Branching Steps

As mentioned earlier, a step can either be an event or a branching action. We refer

to the branching action step as anchors as they are mere placeholders or locations

within the main flow that invoke another flow or use case. The natural order in

which steps occur within a flow is sequential from top to bottom. This concept of

sequential ordering can be altered by including the behavior of another flow in the

main flow. A flow may include another flow in its execution. This insertion can

either be conditional or unconditional. Unconditional insertions of a flow are

referred to as Inclusion. A flow may include another flow which is part of the

same use case description (also known as sub flows) or may include a flow

defined in another use case description (i.e. use cases related to each other by the

UML include relationship). These two inclusions are referred to as Internal

Inclusion and External Inclusion respectively. An internal inclusion anchor

specifies the name of a sub-flow (bolded out to differentiate) [39] whereas an

external inclusion anchor is composed of the keyword include followed by the

name of the use case to be included [39, 379].

Use case descriptions, apart from allowing unconditional insertions, also provide

a means of including another flow based on a condition. Conditional insertions of

a flow are referred to as a Variation. Similar to that of Inclusion, a flow may

include a variation flow part of the same use case description (also known as

alternate flows) or may include a flow defined in another use case description (i.e.

use cases related to each other by the UML extends relationship). These two

131

variations are referred to as Internal Variation and External Variation

respectively.

Internal Variation anchors usually do not include branching information.

Information about an alternative flow is specified in the alternative flow itself. An

example of an internal variation scenario is shown in Figure 26.

Based on the example illustrated above, we modified the AlternativeFlow meta-

class shown in Figure 24 with the following meta-attributes: VariationStep and

SequenceNum (for cases when a single step in the main flow can result in multiple

alternative flows). Since the internal variation is a conditional branch, a constraint

element needs to be added to the extended metamodel. All discussions related to

constraints are deferred towards the end of this section. In addition, since the

alternation scenarios depicted in Table 3 are applicable to alternative flows, an

association is added between the AlternativeFlow meta-class and the RejoinPoint

meta-class.

Main Flow

1. -----------

2. -----------

3. The Customer enters the withdrawal amount.

4. -----------

Alternative Flow

3 (a) ATM System has no currency

1. The system notifies the customer that the ATM is out of

cash.

2. The use case ends.

Figure 26 UC Description example depicting the use of Alternative
Flow

132

An external variation anchor specifies the name of the extension point.

Information regarding the extension use case to invoke, condition and location is

included in the extension point. An example of the use of an extension point and

its description is shown in Figure 27.

Figure 28 illustrates how the concepts mentioned above can be included as

specialized meta-classes of the Anchor meta-class mentioned in Figure 25.

Main Flow

1. -----------

2. System requests withdrawal amount

3. The Customers enter the withdrawal amount

4. {Exceeds Limit}

5. -----------

Extension Points

 Exceeds Limit [amount >= maxAmount] : Exceed Error , return: 2

 Constraint Extension Use Case Rejoin Point

Figure 27 UC Description example depicting the use of Extension Points

Figure 28 Metamodel for the Anchor meta-class mentioned in Figure 25

133

 Use Case Generalization

One area when describing textual use case metamodels that has been given least

attention is how a specialized flow of a child use case is specified. Hoffmann et

al. [361] were the first to discuss generalization within use case flow. They

introduced the concepts called general narrative description and specialized

narrative description to differentiate between original use case flow and inherited

use case flow. Although the formalization provided by them has its own merits,

inheriting all elements of the general narrative description within the specialized

description causes redundancy and makes the behavioral model difficult to

maintain. The only other work to discuss generalization in use case flow was

carried out by Repond et al. [364]. In their work, a generalized use case is

required to define points (called Generalization Points) where the specialized use

cases can add additional behavior. Two main problems with their approach are:

 A specialized use case can only add additional behavior but cannot modify

or replace the steps of the generalized use case.

 The use of “Generalization Point” within the generalized use case defeats

the purpose of allowing the generalized use case not to care about what

specialization use cases exist.

In this section, we clarify the semantics of use case generalization and provide an

extension to the use case metamodel. We used the terms parent use case to refer to

the generalized use case and child use case to refer to the specialized use case.

The two main functions of the child use case when inheriting from a parent use

134

case are: modifying existing behavior and adding new behavior. The child use

case replaces a portion of actions, conditions and rules of the parent use case. The

steps to be replaced are rewritten; steps not rewritten are executed as in parent use

case. Apart from this, new actions, conditions and rules can be added, thus

enhancing the behavior of the child use case. Since the flow description of a child

use case will be either adding new behavior or inheriting existing behavior from

the parent use case, we included it as a separate meta-class called ChildFlow

inheriting from the Flow meta-class. Since the use case can either have a

MainFlow or a ChildFlow depending on whether it is a parent use case or child

use case, we modified the multiplicities on these two associations in the

metamodel to 0..1 instead of 1.

Steps in the child use case flow can be defined locally (added behavior) which is

handled by association between the super meta-class Flow and Transaction in the

metamodel. Inherited behavior can either be modified or executed and used as-is.

Similar to the manner we handled Alternative Flow in describing use case

branching steps; we define a new meta-class redefinedStep. This meta-class has a

meta-attribute inheritedStep, which references the step number inherited from the

parent use case. Hence, a child flow is composed of regular steps and redefined

steps. A redefined step can be rewritten; hence, we add a relationship between the

inheritedStep meta-class and the Step meta-class to facilitate this information. A

modified version of the use case metamodel extension depicted in Figure 25 that

handles use case flow generalization is shown in Figure 29.

135

Figure 29 Excerpt of the Extended Metamodel for UC Flow with Generalization

Figure 30 shows exemplarily how the main flow of use case Reservation is

redefined in the child use case Reserve Conference. We used the keyword “super”

to differentiate between a regular step and inherited step within the child flow

description. Hence, our proposed extension not only allows reusability of actions

that do not require rewriting, it also allows child use case to modify actions

inherited from parent use case flow.

Use Case: Reservation

Main Flow

1. The system displays a list of

options available for

reservation.

2. The customer selects an

option.

3. The system displays the total

cost.

4. The system displays the

reservation confirmation

number.

5. The use case ends

 Use Case: Reserve Conference

Child Flow

1. super: 1

2. super: 2

a. The customer selects to

reserve a conference room.

3. The customer selects the room size,

duration and additional equipment

required

4. The system computes the cost.

5. super: 3

6. super: 4

7. super: 5
Figure 30 UC Flow Generalization example

136

4.4.2. (e) Use Case Constraints

A use case model is composed of a number of constraints related to different model

elements. We briefly describe these constraints prior to defining the metamodel

extension. Constraints within a use case model include:

1. Precondition: Preconditions indicate circumstances that must be true prior to the

execution of the use case behavior. A precondition on a use case explains the state the

system must be in for the use case to begin.

2. Post-condition: A Post-condition indicate circumstances that must be true after

execution of the use case behavior. A post-condition on a use case explains the state

the system will be at the end of its execution. Based on the concept of alternate

scenarios presented in Table 3, a use case can result in one of many states depending

on the execution path (scenario) followed. Hence, a use case can have a single

successful post-condition and multiple failure or alternate post-conditions. This

concept is explained appropriately by the illustration in Figure 31 adopted from [1].

3. Extension/Alternate Flow Constraint: Execution of use case alternate flows or

extension use cases require a condition to be satisfied. This condition is referred to as

a flow constraint.

137

All approaches that provide extensions to use case metamodel make use of a single meta-

class called Constraint to handle use case constraints. Recent advancements in the field of

use case modeling prompted the necessity of a structured storage and representation

mechanism for constraints. Two main research proposals that make use of the use case

constraint structure are: (1) Inferring use case sequencing relations from preconditions

and post-conditions for requirements verification [406], use case synchronization [407]

and test scenario generation [408]; (2) Enhancing software effort estimation process by

assigning weights to preconditions, post-conditions and exceptions [409].

Prior to describing the use case metamodel extension with use case constraints, we

included a meta-class in the metamodel called Entity. An entity, what most use case

modeling tools refer to as Vocabulary or Glossary, refers to the systems under

consideration, use cases, actors of the system and their attributes. For instance, Customer

and Transaction are entities of an ATM System use case model.

Figure 31 Multiple Use Case Scenarios adapted from [1]

138

A use case constraint can be either atomic or compound. A compound constraint is

composed of multiple atomic constraints constructed using Boolean operators (and, or

and not). An atomic constraint is a 3-tuple <E, R, V> where E is the entity, R is the

relational operator and V is the value. Values assigned to entities of the system can be

either units such as “logged in” or numeric. For instance a use case precondition “System

is Active” can be written as <System, =, Active>. In order to incorporate this structure in

the use case metamodel, we add the following meta-classes: Constraint, Atomic,

Compound, Value, Relation, Numeric and Unit. Figure 32 shows the excerpt of the use

case constraint metamodel.

The complete extended use case metamodel is shown in Figure 33. Due its overwhelming

size and the fact that the complete diagram is composed from figures previously included

Figure 32 Excerpt of the Extended Metamodel for Constraint

139

in this section, the diagram in Figure 33 is annotated with the figure numbers it is

composed of for reference. The diagram included in Figure 33 is only meant for

visualizing the completeness and the connectivity between the components. Meta-classes

highlighted in red-color are enumeration classes. The extended use case diagram

metamodel along with other encouraging applications such as Effort Estimation for use

case analysis and application for metamodel interchange among UML tools are provided

by Misbhauddin and Alshayeb [410].

140

Figure 33 The Complete Extended Use case diagram Metamodel

141

Since the extended metamodel for use case diagram adds behavior, we need to augment

the formal definition of the use case. A formal definition of a use case flow is given

below:

Definition 4.4: A use case flow is a 6-tuple

 where

 is a finite set of actors

 is a finite set of action labels

 is a finite set of steps in a use case flow

 is a partial ordering between steps and anchor

 is a set of location anchors part of the use case flow causing inclusion

or variation

is a set of well-formedness rules on the Use Case Diagram

A use case step consists of the following components:

- is the actor initiating the action event.

- is the action event performed by the use case step.

- is a list of arguments.

- is the actor receiving the action event.

Anchors in a use case flow are classified into two different categories: Inclusion and

Variation.

142

 [INCLUSION] An inclusion anchor consists of a name and a body.

The body of an inclusion anchor is given by another flow .

 [VARIATION] A variation anchor consists of the following

components:

- is the name of the alternate flow or another use case.

- is the condition at which the variation is invoked.

- is the rejoin point from the variation.

The body of a variation anchor is given by another flow .

4.5 Object Constraint Language (OCL)

OCL is a specification language and not an action language for UML. It is mainly used to

write queries to access model elements and their values and state constraints on model

elements. UML model elements are annotated with OCL constraints to ensure their

proper usage and validity of the whole model.

4.5.1 OCL Metamodel

The OCL Metamodel part of the UML OCL 2 specification is given in Figure 34. As with

the UML diagrams described in the previous subsections, all of them have constraints

associated with one or more of their elements. The main reason for including the OCL

metamodel, as part of the integrated model, is to have a consistent structure for all the

constraints provided by the UML diagrams.

143

A constraint in OCL is composed of a context and a set of expressions.

 [Context] The context of an OCL constraint consists of:

- is an optional name to address the context within the

constraint’s body of expressions. Alternatively, the “self” is also used.

- refers to the model element on which

the constraint is defined.

 [Expression] An expression of a constraint consists of the following

components:

-

-

-

Figure 34 OCL Metamodel

144

4.5.2 OCL Metamodel Extension

Although the OCL metamodel proposed by OMG is complete, it is rather comprehensive.

Not all meta-classes included in the metamodel are used when describing constraints over

the diagrams considered in our work. To make the OCL metamodel usable for describing

constraints from class, sequence and use case diagrams in a structured yet simple manner,

we adopt the extension proposed by Ramalho et al. [411]. They developed their

metamodel from three sources: 1) The UML metamodel [10] to ensure integration with

the latest UML standard, 2) the OCL EBNF (Extended Bacchus-Naur Form) grammar

and 3) the OMG OCL Metamodel. The excerpt of the OCL metamodel considered for our

work is shown in Figure 35. The Constraint meta-class consists of one or more

expressions (Expression meta-class) and is associated with a Context meta-class.

Figure 35 Excerpt of the Extended OCL Metamodel

145

4.6 Integrated Metamodel

Modeling a complex system requires the software designers to concentrate on multiple

different aspects of the system. Designers have to take into account the static structure

(attributes and operations), the dynamic behavior (scenarios, invariants), and its

functional behavior (requirements, access rights) etc. Often complex metamodels are

decomposed into a number of views particularly for multi-perspective metamodels such

as UML. Designing models that conform to these metamodels often face consistency and

integration problems between the different views. Usually, different views of the same

metamodel share a common core. This common core inter-relates different views both at

syntactic and semantic level. The UML specification provides only the syntactic

commonality between views through high-level packages. With the advent of MDA, a

number of approaches to integrate multiple views synthesizing semantic information have

been proposed in the literature. In this section, we identify available approaches to link

multiple views and use one of them to propose an Integrated Metamodel for refactoring

multiple UML views.

Model Integration can be defined as the creation of links between previously separated

models, services or processes. Although referenced by multiple terms such as Model

Composition, Model Synthesis, Model Weaving and Model Merging, the concept of

model integration has been applied to the domain of Model-driven software engineering

for numerous applications. Some of the prominent applications include integrating formal

approaches to visual modeling languages [412], integrating complementary information

146

[27, 413], merging/synthesizing models [414, 415] and interoperability with other

enterprise metamodels [416-418] .

In order to link models at the same or different levels of abstraction, MDA provides two

model integration approaches [9]:

1. Model merging-based integration: Two or more models are merged together to

produce a model at the same or lower level of abstraction.

2. Metamodel-based integration: A mapping is defined between the metamodels of the

models to integrate.

In this work, we use the metamodel-based integration approach to propose an Integrated

metamodel. Integrating models at the metamodel level allows efficient use of Model-

Driven Architecture techniques such as model weaving and model transformation. The

main motivation for integrating metamodels in this work is to propose model-driven

refactoring over multiple views of UML. Two main advantages of using an integrated

metamodel for refactoring are:

1. Interoperability: The flow of information between multiple views can be visualized

and aids in establishing techniques on how to extract or understand the information in

order to process them.

2. Inter-navigability: Navigating across multiple models to identify refactoring

opportunities can be very difficult. An integrated metamodel provides inter-

navigability that allows accessing related information for smell detection and model

refactoring.

147

The UML specification provides numerous different diagrams that allow designers to

model the structural, behavioral and functional aspects of the system under development.

The Integrated Metamodel proposed in this work is developed incorporating one diagram

from each UML view. These diagrams cover structural, behavioral and functional

concepts of UML. This restriction is introduced for a single primary reason: to avoid

unnecessary complication in metamodel integration and model-driven refactoring.

However, the approach can be extended and applied to the entire suite of UML diagrams.

To allow smooth integration of the metamodels, we initially identified missing

information required to synthesize these metamodels. This information is depicted

pictorially in Figure 36.

Figure 36 UML Model Integration Elements

148

In order to facilitate integration of the missing information, we extended the UML

metamodels of Use Case diagram and Sequence diagram to ensure seamless integration.

The Integrated metamodel is composed of metamodel of the class diagram (see Figure

13) that represents the structural view, extended metamodel of the sequence diagram (see

Figure 17) that represents the behavioral view and the extended metamodel of the use

case diagram (see Figure 33) that represents the functional view. In order to ensure

complete modeling of information, the Integrated metamodel also incorporates the OCL

metamodel so that constraints (from class diagrams), invariants and guards (from

sequence diagrams) and pre and post conditions (from use case diagrams) are structurally

represented.

In order to ensure that the integrated approach is unobtrusive, we followed the integration

principles proposed by da Silva and Paton [413]. These principles are briefly summarized

below.

 Standard UML should be retained as a subset in which existing constructs keep their

roles and semantics.

 Integration should support complete applications, so links between integrated models

and existing UML models should be well defined and close.

 Integration should introduce as few new model elements into UML as possible.

In order to obtain the integrated metamodel, we follow a stepwise model composition

approach. The metamodels for use case and sequence diagrams are initially composed

and then this resultant metamodel is composed with the class diagram metamodel.

149

Finally the OCL metamodel is added to get the Integrated metamodel. Based on the

composition semantic defined in [419], the integrated metamodel composition approach

is shown in Figure 37. The receiving metamodel is a term used to specify the metamodel

into which the other metamodel is composed inside. The resulting metamodel is a term

used to specify the metamodel obtained after the composition has been performed. Based

on existing methodologies [420-422], metamodel integration mechanism involves three

basic steps:

1. The Comparison Step: Correspondence between elements of the metamodel are

identified and stored as a set of rules known as correspondence rules (also called

comparison rules, mapping rules or matching rules).

2. The Integration Step: Models mapped in the previous step are integrated in this step

based on an integration strategy. The integration strategy defines which elements will

appear in the integrated model and how these elements will be organized.

3. The Consistency Step: The main objective in this step is to discover design errors,

adverse properties and conflicts.

In the following sections, we will elaborate the comparison and composition mechanism

following the stepwise construction of the integrated metamodel shown in Figure 37.

150

Use Case Metamodel

Integration
Mechanism

UC-SD Metamodel

Resulting
Metamodel

Receiving
Metamodel

<<becomes>>

STEP 1

Sequence Metamodel

<<becomes>>

STEP 2
Class Metamodel

Integration
Mechanism

View Metamodel

Resulting
Metamodel

STEP 3

OCL Metamodel

<<becomes>> Integration
Mechanism

Integrated Metamodel

Resulting
Metamodel

Figure 37 Model Integration Framework

151

4.6.1 STEP 1: Sequence and Use Case Metamodel Composition

In each step, we first identify correspondence between elements of the two metamodels.

In order to identify correspondence, we generate a traceability matrix that highlights the

mapping links between the two metamodels. The traceability matrix identifies the

following types of correspondence links between the metamodel elements.

Syntactic Similarity (SYN): This correspondence relationship indicates that the

two meta-classes related to each other by this link are syntactically equivalent. Usually,

syntactically similar meta-classes are specializations of a common super-class in the

UML Specification. Syntactically similar meta-classes are merged together in the

resulting metamodel.

Semantic Similarity (SEM): This correspondence relationship indicates that the

two meta-classes related to each other by this relation are semantically equivalent. In

order to integrate semantically similar meta-classes in the resulting metamodel,

correspondence rules are defined.

Inclusion (INC): This mapping link indicates that the meta-class is included in

the resulting metamodel although no similarity exists between this meta-class with other

meta-classes. Correspondence rules are defined to describe the association of this meta-

class with other meta-classes in the receiving metamodel.

Exclusion (EXC): This mapping link indicates that the meta-class is excluded

from the resulting metamodel. Typically, the main reason for exclusion is its relevance to

the application of the Integrated Metamodel.

152

Dependency (DEP): This mapping link indicates that the two meta-classes

related to each other by this relation are dependent. Meta-classes related by this link are

usually kept in the resultant model and a directed dependency link is added between

them.

The use case metamodel included in the UML specification provides only its structural

elements. This is the reason why the use case metamodel was augmented with behavioral

information by integrating use case flows or scenarios. Hence, this augmentation has

made the use case diagram more similar to the sequence diagram. An abstract

relationship between the use case and sequence diagram is shown in Figure 38. Based on

this information, the use case metamodel is considered the receiving metamodel as it is

composed of sequence diagrams.

In order to keep the size of the traceability matrix to a manageable dimension, the

inclusion and exclusion meta-classes are listed separately in Table 4. Another important

observation is that the Constraint and StateInvariant meta-class are added to the

Integrated metamodel as-is in this step until the final step of OCL metamodel integration.

Another important decision is to decide which meta-class to include in the Integrated

metamodel in case of Structural Similarity. Based on the principles of integration

summarized in the previous section, meta-classes closer to the UML standard are

retained.

Use Case

Diagram

Use Cases 1 * Sequence

Diagram
1 1

Figure 38 Abstract Relationship between Use Case and Sequence Diagram

153

Table 4 Inclusion and Exclusion Meta-classes in Step 1.

Mapping Link INC EXC

U
se

 C
as

e

M
et

a-
cl

as
se

s Use Case
Description

Constraint

Include
SpecialREQ

Extend

AsyncExtend RejoinPoint

S
eq

u
en

ce

M
et

a-
cl

as
se

s
StateInvariant

PartDecomposition

ConsiderIgnore

The meta-classes for Include and Extend are added to the Inclusion list as they merely list

the use cases included or extended by the base use cases. Their use in the behavior is

provided by anchors (inclusion and variation) included in the traceability matrix. Based

on the traceability matrix shown in

Table 5, a set of correspondence rules were generated that can be used for composing the

use case and sequence diagram metamodel. The intermediate resulting metamodel

(referred as UC-SD metamodel) is shown in Figure 39.

154

Table 5 Traceability Matrix for Use Case and Sequence Metamodel Composition

S
e
q

u
e
n

c
e

D
ia

g
r
a
m

 M
et

a
-c

la
ss

e
s

Use Case Diagram Meta-classes

Actor

Extension

Point

Flow Event Step Inclusion Anchor Variation Anchor

Main Child Sub Alt Sender Receiver Action Argument Internal External Internal External

Lifeline DEP

Message SYN

Message End SEM SEM

Interaction SYN SEM

Opt SEM SEM

Loop SEM SEM

Break SEM SEM

Neg SEM SEM

Par SEM SEM

Alt SEM SEM

Seq SEM SEM

Strict SEM SEM

Assert SEM SEM

Critical SEM SEM

Gate SEM SEM

Interaction

Use
 SEM SEM SEM

Argument SYN

155

Figure 39 Step 1: The UC-SD (Intermediate) Metamodel

156

4.6.2 STEP 2: Class Metamodel Composition

Integrating the class diagram metamodel is simpler than the use case and sequence

diagram metamodel integration. Although most of the traceability links between the class

diagram metamodel and the UC-SD metamodel are structural similarity, we discourage

its use due to the principles followed in the integration process. Hence, instead of

merging the structurally similar meta-classes, we add the Dependency relationship

between the related meta-classes. Thus, the structure of the class diagram remains intact

for model evaluation and the dependency relation aids in navigating related information

for model smell detection and refactoring. The mapping links between the class diagram

meta-classes and the UC-SD meta-classes is shown in Table 6.

Table 6 Traceability Mapping between Class and UC-SD metamodel classes

Class Diagram

Meta-classes
Mapping Links

UC-SD

Meta-classes

Class
DEP Lifeline

DEP Actor

Property INC

Operation DEP Message

Parameter SYN Argument

AssociationEnd INC

AssociationClass INC

Association INC

Generalization INC

Dependency INC

Operation meta-class in the class diagram metamodel is structurally similar to the

Message meta-class in the UC-SD metamodel. In order to keep the semantics of the class

diagram intact, a dependency link between the Operation meta-class and the Message

157

meta-class is added. Because of the above-mentioned composition, the Parameter meta-

class is merged into the Arguments meta-class in the UC-SD metamodel. Since the

Parameter meta-class has an attribute called direction, the association relationship

between the Arguments meta-class and the InteractionUse meta-class is modified.

Initially there were two associations differentiating between the input and the output

arguments. These associations are now replaced with a single association and the

direction attribute will handle the type of the argument (i.e. in or out).

A dependency relation is added between the Class meta-class and the Lifeline and Actor

meta-class. This relationship is justified by the fact that any lifeline included in a

sequence diagram needs to be available as a class instance in the class diagram. Similarly,

an actor in the use case represents the role, which is usually transforms into an entity

class within the class diagram. Hence, a dependency link between the Class and Actor

meta-class is also added to the Integrated Metamodel.

A partially integrated metamodel that integrates the class diagram metamodel with the

UC-SD metamodel is given in Figure 40. We refer to this intermediate resulting

metamodel as the View metamodel as it integrated the three views of UML.

158

Figure 40 Step 2: The View (Intermediate) Metamodel

159

4.6.3 STEP 3: OCL Metamodel Composition

The final step in the stepwise composition of the metamodels is the inclusion of the OCL

metamodel. The OCL metamodel defines a structure for describing the various

constraints and invariants provided by the different views. The main meta-class in the

OCL metamodel is the Constraint meta-class.

Since the context will be directly related to the Constraint meta-class in the Integrated

metamodel, the meta-classes Context and its specialized classes StructuralContext and

BehavioralContext are excluded. Based on the extension proposed for the Use Case

constraints in the extended use case metamodel, a mapping was established between

Constraint metamodel (from Use Case) and the OCL Metamodel as shown in Figure 41.

Hence, as a result the constraints from the use case metamodel are mapped directly as

context to the Constraint meta-class provided by the extended OCL metamodel.

Figure 41 Traceability Mapping between UC Constraint and OCL Metamodel

160

The StateInvariant meta-class is replaced with a composition relation between the

Constraint meta-class and the Lifeline meta-class. Although the StateInvariant meta-class

was a subclass of the InteractionFragment meta-class in the View metamodel, the

context of the invariant is the lifeline. Hence, the path “Interaction (composition)

Interaction Fragment (super-sub) StateInvariant” was reduced by directly relating it to

the Lifeline meta-class. Another constraint from the sequence metamodel is the

Interaction Constraint that guards the Interaction Operand. Similar to the above mapping,

a composition relationship is added between the InteractionOperand meta-class and the

Constraint meta-class excluding the InteractionConstraint meta-class from the integrated

metamodel.

The relationship between the Constraint meta-class and the Class, Property and

Operation meta-classes is borrowed from the works of Warmer and Kleppe [188] and

Lano [423]. Below we describe how these relationships can be exploited to create a

translation mapping between the OCL metamodel and the View metamodel.

1. The most important way in which an OCL expression with type as context can be

used is as an invariant. An invariant can be defined as a Boolean expression that

evaluates to true if the invariant is true. Associating an invariant with a Class in a

model means that any system made according to the model is faulty when the

invariant is not met. This is represented in the integrated metamodel by the

composition relationship with role-name inv between the Class meta-class and

Constraint meta-class.

2. An initial value for a property can also be given by an OCL expression. An initial

value is the value that the instance of the class will have on creation. This is

161

represented in the integrated metamodel by the composition relationship with role-

name init between the meta-classes Property and Constraint.

3. An attribute may also have a derivation rule. Attribute is an instance of the meta-class

Property in the Class Metamodel, and the derivation rule is an instance of the meta-

class BehavioralConstraint. The fact that the rule describes the derivation for attribute

is represented in the integrated metamodel by the composition relationship with role-

name derivation between the meta-classes Property and Constraint.

4. Constraints attached to an operation that defines what properties should be true at

initiation of the operation and at termination of the operation when it executes

normally are represented by preconditions and post-conditions. This is represented in

the integrated metamodel by the composition relationship with role-name pre and

post between the meta-classes Operation and Constraint.

A complete diagram of the Integrated metamodel is depicted in Figure 42.

162

Figure 42 The Complete Integrated Metamodel

163

5 CHAPTER 5

INTEGRATED MODEL REFACTORING

Refactorings are usually defined in two ways. The first style is to identify and describe a

refactoring opportunity (or bad smell) first and then propose a set of refactorings that

either removes or alleviates the effect of this smell (also known as Smell-Based

Refactoring). The second style is to describe a refactoring first and then provide a list of

instances in which this refactoring can be applied. Fowler et al. in [15] used both of these

ways when defining refactorings. For instance, Fowler et al. identified Lazy Class as a

bad smell that occurs when a class is not handling enough responsibility in a system. In

order to remove this smell, they proposed either using the Collapse Hierarchy refactoring

(if a subclass) or Inline Class refactoring (if not a useful component). In another section,

Fowler et al. first defined the refactoring like Extract Method and then provided

motivations (Long Method or Complex Method) regarding when to use this refactoring

(a.k.a. Bad Smell).

 We use the former method of defining and describing refactorings in this chapter over

the integrated model. The reason for this selection is two-fold:

 All model elements in the integrated model are similar to the model elements

provided by UML. Hence refactoring operations over these elements (add, modify or

remove) are already proposed in the literature. We make use of these primitive

refactorings and propose a composite refactoring to handle the refactoring

164

opportunities identified in this work. A catalog of primitive refactorings defined over

the UML model is provided in Appendix 2.

 Structuring refactoring definitions around bad smells increases comprehension and

readability.

This chapter is organized as follows: Section 5.1 describes the standards and approaches

used in our work to describe model-driven refactoring. Section 5.2 describes a template

that will used in the remainder of the chapter to describe models smells and refactoring

solutions. Section 5.3 describes a running case study used throughout the chapter to

demonstrate the effect of refactoring. Section 5.4 describes eight integrated model smells

proposed as part of this work in detail following the template described in section 5.2.

5.1 Model Refactoring Strategy

In Section 2.5, we identified and described a set of activities pertinent when proposing

refactoring over models. In this section, we describe the formalisms and methodologies

used in our approach to propose model-driven refactoring over the integrated UML

model.

5.1.1 Model Transformation System

In order to select an appropriate model specification and transformation language, we

identified a set of criteria to compare all available model-driven refactoring approaches.

These criteria, proposed in the form of a comparison framework in [424], allows

researchers and practitioners in selecting an appropriate approach suitable to their

165

specific needs and trade-offs. We selected the text-based (XMI) approach because of the

following major advantages:

1. Portability: Models created in any UML CASE tool can be used for refactoring with

minimal translation effort.

2. Ease of Use: Models represented in XMI are easier to follow as they are based on

well-structured XMI Schemas. Simplicity of structure plays an important role when it

comes to implementing complex refactoring operations.

3. Expressiveness: XMI-based standards provide numerous ways in which important

refactoring activities can be expressed. For instance, XPath or XQuery can be used to

describe refactoring opportunity detections and so on. Complete lists of standards

used in this work are described briefly in Appendix 3.

Apart from numerous advantages, using text-based approaches such as XMI introduce a

number of challenges. A major trade-off with XMI is the lack of formality. In order to

overcome this issue, a lot of effort was invested in the design and implementation of

parsing and model checking algorithms to ensure behavior preservation and model

consistency. Two other relevant challenges posed are the amount of deep nesting and

cross-referencing when working with XMI based approaches [425]. We circumvented

these issues by mapping original XMI representations of UML models onto a simpler

schema (an intermediate XMI representation) which resolves cross-referencing by

replacing IDREF’s with relevant information for model analysis and transformation. The

intermediate schema also reduces the depth of tag nesting to a maximum of three, which

aids in model navigation for smell detection algorithms.

166

5.1.2 Model Smell Detection Strategy

The focus of model smell detection is to fulfill the requirements regarding the description

of the smell patterns. The core requirement for smell description is to describe them in a

general and comprehensive manner. Smells are queries, which on execution must be able

to detect their instances in the representation format of the model. The most well-known,

widely used and standardized XML-aware query language is XQuery.

XQuery is a functional and declarative language that supports concepts of user-defined

functions and modules which allows grouping of related functions into independent

packages. In our approach, we use XQuery to describe models smells over the integrated

model. More information on XQuery is included in Appendix 3.

5.1.3 Model Refactoring Application

Several techniques are available to perform refactoring application over models. These

techniques have been classified into different top-level taxonomies, below is a list of

some popular approaches:

1. Direct Manipulation Approach: Direct manipulation approaches use an internal

representation of the model and a programming interface to manipulate the model.

Tools that follow this approach make use of general programming languages like

Java, C++ etc. providing a minimal infrastructure to organize the transformations.

Transformation rules, behavior preservation primitives and scheduling in this

approach are mainly done from scratch. The advantage of using a direct manipulation

approach includes control over the internal representation of the model for model

traversal and reorganization. But since transformation rules are implemented by the

167

user from scratch in this approach, it makes the transformation process cumbersome

and hence affects reusability.

2. Generic Transformation Approach: Generic approaches use tools and languages

such as XSLT or graph transformation tools [426]. Although a number of languages

are available in the literature [427] for XMI-based representations, XSLT is

considered the most popular of them all. Implementing model transformations using

generic approaches such as XSLT seem attractive as models are serialized using

XMI. Model refactoring using XSLT usually leads to non-maintainable

implementation because of the verbosity and poor readability of XSLT. Peltier et al.

[301] proposed an alternative approach to use XSLT to execute model transformation

on the back-end instead of specification. Li et al. [302] also proposed an approach to

use QVT relations to specify transformations and implement each relation as an

XSLT rule template. The main reason specified for using XSLT as a back-end

language is due to its low-level syntax. However, these approaches overcoming the

previously listed problems also suffer from poor efficiency, as the pass-by-value

semantics of XSLT require a large amount information copying.

3. Template Based Approach: Template based approaches separate the process of

transformation rules description from the rule engine. A template usually consists of

the target model containing splices of meta-information to access model elements

from the source and perform model transformation. The source model accessing logic

in this approach can be implemented in numerous ways. For instance, the logic could

be a java code accessing the API provided by the internal representation of the source

model or it could be declarative queries.

168

In this work, the direct manipulation approach is used to define and apply refactoring

over the XMI representation of the UML models. The motivation behind this selection is

mainly due to the use of the Integrated metamodel proposed in this work to represent the

source model. The use of a direct approach allows complete control over the internal

representation of the model for model traversal and transformation. Although fairly

popular, XSLT and the template-based approach is not considered mainly because of the

amount of information copying required between source and target models after each

refactoring application and the high dependence of transformation engine tools

respectively.

5.1.4 Model Behavior

As with other model-driven refactoring approaches proposed in the literature, we make

use of pre-conditions and post conditions to ensure behavior preservation after

application of refactoring. Each primitive refactoring operation is associated with pre and

post conditions. Although an algebraic framework is used to describe these constraints,

these are converted into programming language routines by the direct manipulation

approach.

5.1.5 Refactoring Process

To demonstrate how the overall approach works, we discuss briefly the model refactoring

process.

1. Model Parsing and Integration: To start, one model from each view specifically the

class diagram, set of sequence diagrams and the use case diagram (along with use

case descriptions) comprise the input layer of the approach. Each of these diagrams

169

are serialized using XMI and are imported by the prototype tool. Before the

integration, each diagram is checked for structural and semantic well-formedness

based on the rules provided in Appendix 1. Models are then unified into a single

integrated model following the composition rules discussed in Section 4.6. The

resultant model conforms to the integrated metamodel proposed in this work.

2. Model Traversal and Smell Detection: The integrated model is internally

represented in the form of a Document Object Model (DOM) tree and traversed using

an XMI parser. Model smells in the form of XQuery modules are then applied over

the integrated model one-by-one. If a model smell exists within the model, the

refactoring module is invoked.

3. Model Refactoring: The refactoring module invokes applicable rules from the

repository and applies it over the model. Each refactoring rule in the repository is

associated with two constraints (Tpre, Tpost). If the pre-condition is satisfied,

refactoring operations are applied over the source model. After refactoring, the post

conditions are checked over the target model. If not satisfied, the refactoring

operations are rolled-back and the source model is returned without any

transformation.

5.2 Model Refactoring Template

In this section, we describe the template that is used to describe the refactoring

opportunities proposed as part of this work.

170

1. Description: A description of the situation in which the refactoring opportunity is

likely to occur.

2. Rationale: Reasons why the pattern described above is considered a model smell and

is in need of change.

3. Target Quality Improvements: Quality aspects violated if this smell occurs. These

usually include object-oriented principles, concepts and good design practices.

4. Smell Detection Strategy: Description of model smells using XQuery is the actual

core of the Refactoring Engine. As the framework is customized for the detection of

model smells, this section demonstrates how XQuery is used to describe and detect

bad smells in the Integrated Model. An algorithm of the detection strategy is included

in this section whereas the XQuery functions that realize this algorithm are included

in Appendix 4.

5. Refactoring Mechanics: Refactoring operations can be classified into three

categories based on their level of granularity: Primitive, Composite and Fine-Grain.

Primitive refactoring is an atomic refactoring operation that cannot be split into more

than one refactoring during application [6]. A sequence of primitive refactorings is

known as composite refactoring. Composition of refactoring allows application of

sequential refactoring operations on the model as a single unit [428]. This section

includes composite refactoring rules (mainly due to the use of primitive refactoring

operations for class, sequence and use case diagrams from the literature) to handle the

detected model smell. This subsection is structured into four parts as follows: Name,

Preconditions, Mechanics and Post conditions. Behavior preservation in the target

model is ensured with the help of preconditions and behavior-preserving

171

transformations (Mechanics). A list of post conditions, which should be valid after a

refactoring, are also specified. Post conditions are useful in building tool support.

6. Example: A simple example to illustrate the applicability of the model refactoring is

included. Of course, such examples can only show certain aspects of the usability of

model refactorings. They cannot demonstrate their complete functionality and the

variety and flexibility of possible applications. Since there is no visual representation

of the integrated model, the examples include separate class, sequence and use case

diagrams.

7. Post Refactoring Improvements: The effect of refactoring on each view of UML

considered is discussed to highlight the expected improvement.

8. Side Effects: Refactoring sometimes lead to violation of user-implemented strategies.

Any side effects as a result of refactoring application are included in this subsection.

5.3 Running Case Study

In order to make the presentation more concrete, we demonstrate the proposed

refactoring application throughout this chapter over a running case study: Net Banking

System (NBS). The following description sets up the context of the running example.

NBS is designed for financial institutions such as banks to provide their basic

banking operations over the internet. The system allows customers to open

accounts, perform online transactions like transferring money, paying bills and

viewing account summaries. The system also allows bank operators and

172

administrators to perform updates to the system online and handling other online

operations.

The services provided by the system are summarized below and all functional

requirements of the NBS system modeled through a use case diagram are shown in

Figure 43.

 Figure 43 Use Case Diagram of the Running Case Study

173

1. Open a new account: New customers and existing customers can open a new

account.

2. Bill Payment: Customers can use one of their accounts for bill payment. Popular

agencies that can receive bill payments are already stored in the system. A customer

can either enter the amount to be paid or pay the full retrieved amount based on the

vendor account information provided. Regular auto-pay service for recurring monthly

payments can also be setup. Bills can be marked as Favorite to avoid entering

information each time a payment is made to the same agency.

3. Transfer Funds: A customer can transfer money between his accounts. Transfers to

other accounts require a Beneficiary setup prior to the transaction. If a transfer is

made to an existing beneficiary, the setup process is by-passed.

4. Account Summary: A customer can get an account summary for all his accounts.

5. Transaction History: A customer can get transaction history for all his accounts.

This includes all transactions performed between a selected duration of time.

6. Admin Services: The system allows bank operators and system administrators to

perform system updates, conflict resolution, account management and update through

the NBS.

174

5.4 Integrated Model Smells

5.4.1 Creeping Featurism

5.4.1 (a) Description

Functional decomposition is a design methodology in which functionality provided by

the system is modularized for fine-grain control over implementation and ease of

understanding. Although useful in understanding the modular nature of a larger-scale

application, functional decomposition is considered an anti-pattern when applied to

object-oriented domain [429]. Functional Decomposition in use cases is caused by

separating analytical use cases into functions that yield a set of smaller use cases that are

naturally easier to implement. This structuring, if not controlled, will result in many small

use cases that offer little or no value to the system’s users if executed individually.

Hence, the use case structure creeps directly into the design of the system making it look

like use cases completely obscuring the concepts of objects and their relationships. This

is referred to as Creeping Featurism Model Smell [430].

Use cases in UML are structured using pair of relationships between them: include and

extend. Functional decomposition most commonly occurs due to the misuse of the

include relationship. The effects of functional decomposition do not simply stop at the

functional level; it disperses into the structural and behavioral level as well. A high

degree of functional decomposition will result in behaviorally rich classes manipulating a

number of dumb data classes. This indicates that responsibility is improperly distributed

among classes. Data classes are classes that have only attributes, getter operations and

setter operation [15]. Since getter and setter operations may be omitted by convention, a

175

data class is just a collection of attributes which defeats the purpose of Object-Oriented

design methodology.

5.4.1 (b) Rationale

The anti-pattern of functional decomposition has been addressed recently in the literature

in the context of UML model refactoring. Three out of four detection approaches propose

the use of class diagrams to detect functional decompositions [19, 22, 24]. One major

side effect in these propositions is the use of lexical analysis of class names to classify

them as Functional classes. El-Attar and Miller [264] are the only ones who described the

functional decomposition pattern over use case diagrams. They simply merge the

functionally decomposed use case into the base use case without further analysis. The

Creeping Featurism Model smell detects the occurrence of functional decomposition over

use case, sequence and class diagrams.

When working with use case diagrams, it can sometimes be the case that a number of use

cases delegate smaller tasks to other use cases by making use of the include relationship.

Although this helps in managing the complexity of the use case, it renders the whole use

case model difficult to comprehend. Another drawback is when this logic results in the

creation of smaller, less useful classes in the class model just to handle to the small task

initially created in the use case model. These small classes will also increase the

complexity of the sequence model by allowing behaviorally rich classes to use them as

data placeholders and increasing the message communication traffic for simple get and

set operations. Identification and removal of this model smell is beneficial to the user in

176

order to manage the modularity and complexity of the class, sequence and use case

models and to ensure proper usage of object oriented design methodology.

5.4.1 (c) Target Quality Improvements

 Management of Use Case Complexity

 Behavior Distribution

 Modular Design/Cohesion

5.4.1 (d) Model Smell Detection Strategy

Initially, we define a use case that performs small tasks and provides little or no value to

other use cases or actors. We refer to this use case as a Lazy Use Case (based on the

naming of a class that does nothing in a class model proposed by Fowler et al. [15]).

To identify the availability of this model smell in an integrated model, a lazy use case

needs to be identified. The interaction part of this use case is then examined to look for

data classes. A class is termed as a data classes if it has only attributes and getter/setter

methods. The pseudo code given below describes the steps required for automated

detection of the creeping featurism model smell.

Definition 5.1 Lazy Use Case: A use case is termed as a lazy use case

if

 It is an inclusion use case

 It has no actors associated with it

 Included only once by another use case

177

: ALGORITHM: CREEPING FEATURISM

: start

: read Model

: for (each use-case in the Model)

: read UC

: if (UC inclusion count is 1) and (UC has no actor)

: parent = Including use-case of UC

: diff = (lifelines in parent) ∩ (lifelines in UC)

: if (diff is a data class)

: return diff

: end if

: end if

: end for

: stop

5.4.1 (e) Model Refactoring Mechanics

Name: Remove Functional Decomposition

Parameters: Usecase uc, Usecase inc, Class c and Class d where,

 uc is the lazy use case

 inc is the use case that includes the lazy use case

 c is the data class

 d is the behaviorally rich class that manipulates the data class c

Preconditions:

i. Class c is not abstract.

ii. Class c and d has no common attributes.

iii. There is an inclusion relationship between use cases inc and uc. The use

case inc includes the use case uc.

178

Mechanics:

1. Remove Data Class (Part of the inclusion use case). This is done by

identifying the class that has maximum interactions with the data class.

Then use Inline Class refactoring to merge the data class into the

identified class.

2. Substitute Lifeline refactoring is then used to remove all references to the

old data class from all interaction diagrams and replace it with its merged

class.

3. Collapse Fragment refactoring is then used to insert the interaction

fragment of the inclusion use case into the interaction diagram of the

including/base use case at the point of inclusion (ref fragment).

4. Finally, Merge UC Inclusion refactoring is used to merge the inclusion use

case into the including use case.

Figure 44 shows the ordering of the composite refactoring Remove Functional

Decomposition.

Post Conditions:

i. All association ends with class c in the previous model are replaced with

class d in the refactored model.

ii. Class c is removed from the model

iii. The interaction fragments for use case uc is collapsed and merged into the

interaction diagram of use case inc by inserting it at the point of inclusion.

iv. Lifelines with reference to class c are replaced with reference to class d.

179

v. The inclusion relationship between use cases inc and uc is deleted.

vi.

5.4.1 (f) Example

Figure 45 shows a subset of the model views from the NBS system that depicts the

creeping featurism model smell. The Change Rate use case is included only by the

Update use case and is not associated with any actor. On further examination of the

sequence diagram for the Change Rate use case and Update use case, we identified a

behaviorally rich class BankServer using a data class InterestRate (based on information

from the class diagram).

The InlineClass (BankServer, InterestRate) refactoring is first applied to inline and

remove the class InterestRate. The SubstituteLifeline (BankServer, InterestRate)

refactoring is then applied to substitute and redirect all messages that were initially

communicated to/from InterestRate to BankServer. The CollapseInteraction (Update,

Figure 44 Remove Functional Decomposition Refactoring

180

changeRate) refactoring is then applied to merge the changeRate interaction into the

Update interaction at the point of fragment reference. The interaction for changeRate is

hence deleted as part of the CollapseInteraction refactoring. Finally, the

MergeUCInteraction (Update, ChangeRate) refactoring is applied to merge the

functionally decomposed use case ChangeRate into its base use case Update. The

refactored model views are shown in Figure 46.

181

Figure 45 Excerpt of the NBS model views depicting Creeping Featurism Smell

182

Figure 46 Excerpt of the NBS model views after refactoring

183

5.4.1 (g) Post Refactoring Model Improvement

The Functional View of the refactored model will not have unnecessary inclusion

relationships and hence will reduce the complexity of the use case model view. The

Behavioral View of the refactored model is improved a lot as a result of the refactoring

operation. Some notable improvements are Reduction in the number of get and set

messages exchanged between behaviorally rich classes and dumb data classes, removal of

simple interaction fragments that result in referring to multiple sequence models for

comprehension and enhanced behavior distribution by moving data to lifelines where it is

used mostly. The Structural View of the refactored model will show improved modularity

by the removal of data classes that increase coupling.

5.4.1 (h) Side Effects

Functional Decomposition when done due to lack of object-oriented knowledge is surely

considered a smell and needs to be refactored. However, sometimes smaller use cases are

extracted from a larger use case for future use by either associating an actor or making it

reusable for other use cases. Using the Remove Functional Decomposition refactoring

discussed in this section will result in deletion of this use case.

5.4.2 Multiple Personality

5.4.2 (a) Description

Multiple personality smell [430] is a result of inappropriate requirements allocation. It

can be found in use cases that play multiple roles. Ideally, each use case is required to

play a single role. Hence, it is required that a use case contains only one, coherent set of

responsibilities. Multiple personality can lead to the detection of two different situations:

184

a secondary role superimposed on a single class or multiple classes cutting across a single

use case. The former is a well-known anti-pattern known as God Class or Blob [431].

Following the same terminology, we refer to the later in our work as a God Use Case. A

God use case is a result of improper partitioning of responsibility during system

evolution, so that one module becomes predominant.

Based on the works done to estimate the effort required for use case implementation

[385, 386, 432], use cases are classified into three categories. A use case is considered

simple if it has three or fewer transactions and the implementation of which requires five

or fewer classes. A use case is considered average if it has four to seven transactions and

the implementation of which requires five to ten classes. Finally, a use case is considered

complex if it has more than seven transactions and the implementation of which requires

more than 10 classes. Redistribution of functionality from a God Use Case becomes

easier when we take a closer look into the behavior of the use case. Some of the identified

symptoms are:

 A God Use Case includes a number of lazy classes. This will result in increased count

of classes participating in the use case. Removing these lazy classes will reduce the

complexity of the use case.

 Existence of middle man lifelines in the interaction of the use case. A middle man is a

lifeline that sits between two other lifelines and just forwards method calls. Removing

middle man elements will reduce the transaction count and number of classes

implemented by the use case.

185

5.4.2 (b) Rationale

When working with use case diagrams, it can sometimes be the case that although the

overall model is small and compact but each use case may be highly complex. Although

we agree that complexity is a subjective term but a use case, which covers multiple

system goals, handles multiple requirements, whose behavior description cannot be

covered in a single page should be termed complex. Although use of complex use cases

within the use case model generates a neat and well-organized functional view of the

system, its behavioral view is surely complex with wide array of messages exchanged

between a number of incoherent classes and extensive concurrent set of operations.

Identification and removal of this model smell is beneficial to the user in order to manage

the complexity of the sequence models representing the complex use cases. This in turn

will also affect the modularity of the class model.

5.4.2 (c) Target Quality Improvements

 Management of Use Case Complexity

 Management of Behavior Complexity

 Modular Design/Cohesion

5.4.2 (d) Model Smell Detection Strategy

To identify the availability of this model smell in an integrated model, a God use case

needs to be identified. The interaction part of this use case is examined to look for

number of classes implemented by the use case and the number of transactions.

Definition 5.2: A use case is termed as a God Use Case if

 Its implementation contains more than 10 classes

 Its behavior has more than 7 transactions

186

Based on the definition provided by Astels [251], we define a pattern for detecting

whether a lifeline is a middle-man or not. Each lifeline in the integrated model has event

ends associated with it. These event ends are ordered and depicts the type of the message

such as send event, receive event and so on. If for a lifeline, these events are ordered as

shown in Figure 47, then the lifeline is considered as a middle-man as its only job in the

diagram is to delegate message from one lifeline to the other.

The pseudo code given below describes the steps required for automated detection of the

multiple personality model smell. The code returns a value of 0 if the smell does not

exist, a value of 1 if the smell exists with inclusion of lazy classes in the God use case

and a value of 2 if the smell exists with both inclusion of lazy classes and middle-man

lifelines in the interaction.

Figure 47 Middle Man Lifeline Pattern within a
Sequence Model

187

: ALGORITHM: MULTIPLE PERSONALITY

: start
: read Model

: for (each use-case in the Model)

: read UC

: if (# of classes in UC is > 10) and (# of transactions in UC is > 7)

: and (# of lazy classes in UC >= 2)

: for (each lifeline in the UC)

: read Life

: end-List = (all ends on Life)

: for (each substring ss of end-List of size 2)

: if (ss = {receiveEvent, sendEvent})

: return 2

: end if

: end for

: return 1

: end for

: else

: return 0

: end if

: end for

: stop

5.4.2 (e) Model Refactoring Mechanics

Name: Decompose God Use Case

Parameters: Usecase uc, List midman, List lazyClass, List base where,

 uc is the God Use Case

 midman is the list of classes within the interaction of the God Use Case

which are middle man lifelines

 lazyClass is the list of lazy classes

 base is the list of classes that that will inline the lazy classes

Preconditions:

i. Class lazyClass is not abstract.

188

ii. Class lazyClass and Class base has no common attributes.

iii. The direct base class of the Class lazyClass is also a base class of the

Class base.

iv. The Class lazyClass is a sub class of the Class base or the two classes do

not share any methods.

v. Midman is a lifeline model element in uc.

Mechanics:

1. In order to remove the lazy class, Inline Class refactoring is used to

remove lazy classes that are not useful independent components. If the

lazy class is a sub class, then use Collapse Hierarchy refactoring to merge

the class into its super class.

2. Substitute Lifeline refactoring is then used to remove all references to the

old lazy classes from all interaction diagrams and replace it with its

merged class or super class.

3. Finally, Remove Middle Man refactoring is used to remove the lifelines

from the use case interaction.

Figure 48 shows the ordering of the composite refactoring Decompose God Use

Case.

Post Conditions:

i. All association ends with Class lazyClass in the previous model are

replaced with Class base in the refactored model.

ii. Class lazyClass is removed from the model.

189

iii. Lifelines with reference to Class lazyClass are replaced with reference to

Class base.

iv. Midman lifeline does not exist in the interaction for use case uc.

5.4.2 (f) Example

Figure 49 and Figure 50 shows a subset of the model views from the NBS system that

depicts the multiple personality model smell. The existence of a God use case

wireTransfer (implements eleven classes) is identified on examination of the use case

diagram and all the sequence diagrams associated with each use case. Closer examination

of the sequence diagram for the wireTransfer use case yielded the existence of two

middle man classes TransferChannel and IBAN and lazy classes AccountInfo and

Figure 48 Decompose God Use Case Refactoring

190

InterBankTransfer. The existence of lazy classes was conformed from the class diagram

of the system.

The InlineClass refactoring is initially applied to all the lazy classes and middle man

classes identified by the model smell. These refactoring operations are listed below:

1. InlineClass (BankServer, TransferChannel)

2. InlineClass (Accounts, AccountInfo)

3. InlineClass (Accounts, IBAN)

Since the lazy class InterBankTransfer is a sub class of the Transfer Class, the

CollapseHierarchy (Transfer, InterBankTransfer) is used to inline the class with its

parent class. The SubstituteLifeline refactoring is then applied to substitute and redirect

all messages that were initially communicated to/from the lazy classes. The refactoring

operations are as follows:

1. SubstituteLifeline (Transfer, InterBankTransfer)

2. SubstituteLifeline (Accounts, AccountInfo)

Finally, the RemoveMiddleMan (wireTransfer, IBAN) & RemoveMiddleMan

(wireTransfer, TransferChannel) refactoring is applied to remove the middle man

lifelines and initiate direct communication. The refactored model views are shown in

Figure 51 (structural and functional view) and Figure 52 (behavioral view).

191

 Figure 49 Excerpt of the NBS model views depicting Multiple Personality Smell

192

Figure 50 Excerpt of the NBS model view depicting Multiple Personality Smell

193

Figure 51 Excerpt of the NBS model views after refactoring

194

Figure 52 Excerpt of the NBS model view after refactoring

195

5.4.2 (g) Post Refactoring Model Improvement

The Behavioral View of each of the complex use cases from the Functional View is

improved a lot in the refactored model because of the refactoring operation. The

complexity of the use case and its interaction is reduced by removing additional classes

such as lazy classes and middle man classes. Removal of these classes also reduces the

number of transactions within the interaction model of the use case. Hence, it is safe to

quote that the refactoring operation reduces the complexity and effort required to

implement the use case and its behavior. The Structural View of the refactored model

will show improved modularity by the removal of lazy classes that increase coupling and

results in improved cohesion among the inlined classes.

5.4.2 (h) Side Effects

Since this refactoring targets lazy classes and delegating lifelines in order to reduce the

complexity of the God Use case, it does not have any negative effect on the model. But

some patterns make use of Delegating Classes to provide multiple views of information

such as Model-View-Controller (MVC) pattern. It is difficult to detect and differentiate

whether delegation in behavior is done to provide multiple views of model to a view or

using lazy middle man classes to forward messages. Hence, one important side effect of

the Decompose God Use Case model refactoring is its inability to differentiate between

the above-mentioned functionalities provided by middle man classes in the integrated

model.

196

5.4.3 Excessive Alternation

5.4.3 (a) Description

Excessive Alternation smell [430] occurs when the extend relationship between use cases

is misused by the designers. The use case “extend” relationship allows additional

behavior to be inserted into the base use case at a specific point known as extension point.

One potential problem with use case modeling is to identify when to stop identifying

alternative cases. Failure to identify this may lead to designers abusing the use case

relationships like include and extend for functional decomposition. Building a non-trivial

application, armed with the latest GUIs and event driven systems, there is a possibility to

have a number of use cases that can produce essentially infinite number of usage

scenarios. Too few use cases result in an inadequate specification, while too many use

cases lead to functional decomposition. Limiting the analysis to the most obvious or

important scenarios that generalizes to all use cases is a good approach. Fowler classified

use cases into system use cases and user use cases [429]. System use cases are generic

use cases that do not delve into many user-specifics. System use cases are more

appropriate while modeling use cases, as they are useful in iteration planning and system

testing. However, with every system use case, there are a number of user use cases hiding

behind it waiting to be extended.

Another potential problem with use case modeling is the comprehension of the semantics

of the extend relationship. In many cases the extend relationship is used in place of

include or generalization relationship and even worse in place of pre and post conditions.

This misuse can lead to a form of anti-pattern seen in Program Code known as the Switch

Pattern. In this pattern, the base use case performs a few transactions in the beginning

197

and then keeps switching to other extension use cases conditionally. This scenario is

similar to the switch construct used in some programming languages.

Although the existence of excessive alternation model smell can be identified by

examining the functional view, in order to conform and to ensure automatic mitigation of

this model smell requires the examination of other model views. Excessive alternation

may lead to a complex use case model difficult to understand and maintain. In order to

mitigate excessive alternation, common behavior from the base use case is extracted and

inserted into all the extension use cases replacing the extension with an inclusion

relationship.

5.4.3 (b) Rationale

El-Attar and Miller [264] included the abuse of the extend relationship for functional

decomposition in their suite of use case anti-patterns. Although described, their approach

did not provide an implementable detection and mitigation strategy. The use of multiple

views for detection of excessive alternation not only provides means to identify misuse of

extend relationship but also provide detail information to remove the identified smell in

an automated manner.

Excessive alternation may lead to a complex use case model difficult to understand and

maintain. A number of authors agree that the use of include and generalization

relationship is much easier for most people to understand and use than the extend

relationship [394, 433]. The misuse of extend relationship in place of utilizing the pre and

post conditions of a use case could overwhelm and obscure other content in the diagram

due to the presence of a number of extend arrows. “Encapsulatable” behavior at the

198

beginning of a use case can be separated and this can be replaced as a precondition of the

use case. The availability of excessive alternation in a use case diagram not only

complicates the functional view but also adds redundant behavior in the use case

behavior and ignores a number of object-oriented advantages such as inclusion,

polymorphism and inheritance in its structural view.

5.4.3 (c) Target Quality Improvements

 Use Case Maintainability

 Management of Behavior Complexity

 Reduction of Behavior Redundancy

 Modular Design

 Enhance Reusability

5.4.3 (d) Model Smell Detection Strategy

To ensure the applicability of this model smell in the integrated model, a use case with

multiple extension points is selected. In order to quantify the number of extension points

required in order to select the use case as a candidate for further examination, we use the

“Number of Extension Point (NOEP) metric and its maximum acceptable value of 3 as

provided by Gronback [288]. Based on this suggestion, any use case with three or more

extension points is used for further examination for applicability of this model smell.

The behavior of the selected use case is then examined to identify whether a “switch

pattern” exists. In order to explain this, we first divide the behavior of a use case model

into three sections as shown in Figure 53. These sections are the preamble, body and post.

Hence, a base use case with a preamble length of greater than two, a body with only an

199

“alt” fragment and post length equal to zero is considered to depict excessive alternation

model smell.

The pseudo code given below describes the steps required for automated detection of the

excessive alternation model smell.

: ALGORITHM: EXCESSIVE ALTERNATION

: start
: read Model

: for (each use-case in the Model)

: read UC

: if (# of extension-points in UC is >= 3)

: if (# of preamble steps in UC > 2) and (switch-pattern(body) is true)

: and (# of post steps is = 0)

: return UC

: stop

5.4.3 (e) Model Refactoring Mechanics

Name: Substitute Excessive Extensions

Parameters: Usecase uc, String newUC where,

 uc is the Base Use Case

 newUC is the temporary name for a new use case

Figure 53 Use Case Behavior (Sequence Model)
divided into three sections

200

 Preconditions:

i. The name of the new use case (newUC) does not conflict with the name of

an existing use case within the model.

Mechanics:

1. In order to use the same name as the base use case, we first need to

rename the base use case. Rename UseCase refactoring is initially used to

rename the use case to any other name.

2. Create UseCase refactoring is used to create a new use case with the same

name as the base use case.

3. Extract Fragment refactoring is then used on the base use case sequence

diagram to extract the preamble transactions into the newly created use

case.

4. If the operand of “alt” fragment in the body of the use case behavior is not

an Interaction Use Fragment, then first use Extract Fragment refactoring

to extract the steps in the operand into a new use case.

5. Insert Fragment refactoring is then used to add the common behavior in

the beginning of all the extension use case sequence diagrams and the one

created in step 4 (if applicable).

6. Add Inclusion refactoring is used to add inclusion between the base use

case and newly created use cases in step 4 and the extension use cases of

the previous base use case.

201

7. Move Actor Reference refactoring is used to add uses relationship from the

actor to all the previous extension use cases. The actor’s relationship to the

base use case still remains in the model.

8. Isolate UseCase refactoring is used to remove all relationships and actor

references from the previous base use case.

9. Finally, Delete UseCase refactoring is used to the remove the old base use

case renamed in step 1.

Figure 54 shows the ordering of the composite refactoring Substitute Excessive

Extensions.

Post Conditions:

i. A use case with name newUC does not exist in the model.

Figure 54 Substitute Excessive Extensions Refactoring

202

ii. All extension Points within the use case uc are removed.

iii. There are no extend relationship between uc and other use cases in the model.

5.4.3 (f) Example

Figure 55 and Figure 56 shows a subset of the model views from the NBS system that

depicts the excessive alternation model smell. On examination of the use case diagram,

the existence of the use case Login was identified having more than two extension points.

Closer examination of the sequence diagram for the Login use case revealed the existence

of a switch pattern (more delegations than transactions). Since all the lifelines in the

Login sequence diagram were subsets of the lifelines in the sequence diagram for the

extension use case, the login sequence diagram was added using a “ref” combined

fragment in all its extension sequence diagrams.

The RenameUseCase (Login, newUC) refactoring and CreateUseCase (Login) is initially

applied to rename the Login use case with a temporary name newUC and create a new

one with the same name to preserve its name. ExtractFragment (newUC, startPoint,

endpoint, Login) refactoring is then used to extract the preamble part of the use case into

the newly created Login use case.

203

Figure 55 Excerpt of the NBS model views depicting Excessive Alternation Smell

204

Figure 56 Excerpt of the NBS model views depicting Excessive Alternation Smell

205

Figure 57 Excerpt of the NBS model views after refactoring

206

Figure 58 Excerpt of the NBS model views after refactoring

207

For the operand without the “alt” operand, ExtractFragment (newUC, startPoint2,

endPoint2, Print Statement) refactoring is performed. The common behavior extracted

earlier into the Login use case is then added to all the extension use cases using the Insert

Fragment refactoring. The refactoring operations are as follows:

1. InsertFragment (Perform Transaction, Login)

2. InsertFragment (View Account Summary, Login)

3. InsertFragment (Update Account Info, Login)

4. InsertFragment (Print Statement, Login)

AddInclusion refactoring is then performed to add inclusion relationship between Login

and the newly extracted use case and other “ref” fragment use cases. The refactoring

operations are as follows:

1. AddInclusion (Login, Print Statement)

2. AddInclusion (Login, Perform Transaction)

3. AddInclusion (Login, View Account Summary)

4. AddInclusion (Login, Update Account Info)

Then the MoveActorReference refactoring is applied to move all the actor references from

the newUC use case to the newly created base use cases. The refactoring operations are as

follows:

1. MoveActorReference (newUC, Perform Transaction)

2. MoveActorReference (newUC, View Account Summary)

208

3. MoveActorReference (newUC, Update Account Info)

4. MoveActorReference (newUC, Print Statement)

5. MoveActorReference (newUC, Login)

Finally, the IsolateUseCase (newUC) refactoring is used to remove all relationships from

the newUC and DeleteUseCase (newUC) refactoring is performed to remove the use case

from the model. The refactored model views are shown in Figure 57 and Figure 58.

5.4.3 (g) Post Refactoring Model Improvement

A use case that spends less time performing its own tasks and switches from one use case

to the other throughout its lifetime is considered a bad form of behavior distribution. Not

only it complicates the functional view with a number of extension points and extends

relationships, it also increases the complexity of the behavior by magnifying its

Cyclomatic Complexity (result of increase in the number of branch points). Identifying

and substituting these cases with simpler relationships like “include” enhances

comprehension and maintenance of the functional view of the system and alleviates the

complexity of the behavioral view of the model. These in turn opens commonality

features to be considered for enhancing the modularity of the structural view of the

model.

5.4.3 (h) Side Effects

Excessive Alternation done because of identifying as many alternate scenarios as possible

for a system under design can be considered a good quality practice. However, overdoing

can complicate the model and affect other aspects of the system. Although extensions are

209

problematic, they do provide the ability for a base use case to begin execution of the

extension use case from a specified step within the extension use case as opposed to

inclusion where execution must start at the first step. Removing this relationship and

substituting with the include relationship will not allow designers to benefit from this

attribute of the extend relationship. Another side effect of this refactoring is the increase

in the number of use cases associated with an actor. But since the new associations fully

describe what the actor can do with the system, it can be justified [434]. If the actor

association with the use cases is due to improper depiction of actor role in the system, the

Spider’s Web model smell and its associated refactoring can be applied (see Section

5.4.5).

5.4.4 Undue Familiarity

5.4.4 (a) Description

One of the main principles of Object Oriented Design is Encapsulation. This means that

the implementation details are hidden behind the definition of the object. When objects

violate encapsulation, the model smells of Undue Familiarity. Undue Familiarity is a

model smell that occurs when one object knows more about another object than it is

required to. This model smell is mostly similar to the Inappropriate Intimacy Smell found

in Source Code.

Classes in UML class diagram are related to each other by three major relationships:

Generalization, Aggregation and Association. Out of these, association is the only

relationship that can be bi-directional. Although a bi-directional association between

classes in a class diagram does not indicate the existence of the Undue Familiarity model

210

smell, it can be considered as the point of origin for further investigation. Studying the

mode of interaction between these classes will provide more information as to whether

objects of one class know more about the objects of the other class. This in turn results in

a complex use case with more than required messages and classes implemented by the

use case and a use case model with inappropriate behavior distribution.

5.4.4 (b) Rationale

Undue Familiarity model smell results in a system design that is unstable and less

reusable. Because of this model smell, the design is more likely to have changes in one

part of the system impact another part of the system. For instance, if the user interface has

the knowledge that its data access layer makes use of a particular form of data storage,

then the data access layer cannot change without potentially making changes throughout

the user interface. Hence, the user interface cannot run or be tested without a connection

to the database to populate the used form of data storage. Therefore, this inappropriate

knowledge makes the system more fragile. Simple changes create breaking changes.

Reusability of objects is reduced as they assume that the intimate information in the other

familiar objects remain the same.

The existence of inappropriately familiar classes within a class diagram not only obscures

the structural view but also increases the message communication frequency in the

behavioral view and ignores a number of model design primitives such as behavior

distribution and use case complexity in its functional view.

5.4.4 (c) Target Quality Improvements

 Use Case Maintainability and Complexity

211

 Management of Behavior Complexity

 Modular Design/Coupling

 Model Maintainability, Stability & Reusability

5.4.4 (d) Model Smell Detection Strategy

To ensure the applicability of this model smell in the integrated model, pairs of bi-

directionally associated classes are identified. An association with both its ends as owner-

ends is referred to as a bidirectional association. For each of these pairs, examine the

interaction parts of all the use cases they are part of and their mode of interaction within

those interaction model elements. Message interactions between two classes can be

termed inappropriate if they access data and methods from each other frequently. In order

to identify if message passing between two sets of lifelines is inappropriate, we define

two types of messages: Access and Update. An access message is a “getter” method

requesting data from the other class. A return statement in the interaction diagram usually

follows this message. An update message is a “setter” method updating data in the other

class. Update messages are parameterized messages. Hence, message passing between

two classes is termed inappropriate if both classes involved perform update and access

message exchanges. If message-passing frequency between these two classes is

inappropriate and these pairs occur in interaction parts of more than one use cases, then

undue familiarity model smell exists in the integrated model.

The pseudo code given below describes the steps required for automated detection of the

Undue Familiarity model smell.

212

: ALGORITHM: UNDUE FAMILIARITY

: start
: read Model

: for (each association in the Model)

: read Assoc

: if (ends of Assoc are both owned)

: c1 = one end of the Assoc

: c2 = other end of the Assoc

: for (each use case in the model)

: read UC

: diff = (lifelines in UC) ∩ (set{c1,c2})

: if (diff != empty)& (mesg freq between c1 & c2 is inappropriate)

: counter++;

: end if

: end for

: if (counter > 1)

: return Assoc

: end if

: end if

: end for
: stop

5.4.4 (e) Model Refactoring Mechanics

Name: Break Intimate Elements

Parameters: Association assoc, Class src, Class tar, String newCase

where,

 assoc is the intimate association relationship

 src is one end of the association relationship assoc

 tar is the other end of the association relationship assoc

 newCase is the name of a new use case if similar fragments are extracted

Preconditions:

i. The association relationship assoc is bi-directional.

213

ii. The name newCase does not conflict with the name of an existing use case

within the model.

Mechanics:

The mechanics of this refactoring is based on the nature of the intimate elements.

Hence, the solution is divided into two parts:

1. If the nature of the association is breakable i.e. if the messages and data

items involved between the associated classes is exclusive to these classes

and not invoked by other associations to the tar class.

a. For each message access and update message from the src class to

the tar class, Move Attribute and Move Operation refactoring is

applied. This is repeated across all interactions involving

communication between the src and tar classes. If Move Operation

is successful, Remove Message refactoring removes the message

call between the classes involving the moved operations

b. If the tar class is empty after the previous refactoring application

and has no relationship with other classes in the class model,

Remove Empty Class refactoring is applied.

c. Since all message incident to the removed class are included in the

src class, Remove Lifeline refactoring is applied to the tar lifeline

across all interactions.

2. If the nature of the association is unbreakable, i.e. if the messages and data

items involved between the associated classes is not exclusive and are

invoked by other associations.

214

a. Extract Fragment refactoring is then used on the frequent message

exchange fragment of the interaction if the same message

exchange pattern appears in other interactions of the system. This

extracted fragment is added into a new use case newCase.

b. Add Inclusion refactoring is used to add inclusion between the base

use cases and the newly created use case newCase in step 2a.

Figure 59 shows the ordering of the composite refactoring Break Intimate

Elements.

Post Conditions:

Due to the alternative nature of the refactoring operation, no post-conditions are

specified. In case the first path is traversed, Class tar may not be part of the

Figure 59 Break Intitmate Elements Refactoring

215

refactored model. In case the second path is traversed, Use Case newCase exists

within the refactored model.

5.4.4 (f) Example

Figure 60 shows a subset of the model views from the NBS system that depicts the undue

familiarity model smell. The association pair between the Accounts and Credit class was

found to be bi-directional and further investigated for inappropriate interactions within

the sequence model. These pairs appeared within two interactions POS Payment and

Increase Limit. Closer examination of the identified interactions revealed that message

passing between these two classes was inappropriate as both classes performed update

and access message exchanges between each other.

The following MoveAttribute and MoveOperation refactorings were applied to move the

familiar attributes and operations to the source class.

1. MoveAttribute (Accounts, Credit, limit)

2. MoveAttribute (Accounts, Credit, outstanding)

3. MoveOperation (Accounts, Credit, increaseLimit)

4. MoveOperation (Accounts, Credit, reimburseLimit)

216

Figure 60 Excerpt of the NBS model views depicting Undue Familiarity Smell

217

Figure 61 Excerpt of the NBS model views after refactoring

218

For each operation moved into the Accounts class, the Remove Message refactoring was

applied to remove the message interaction between the two classes. The following set of

refactorings was applied to the interactions of POS Payment and Increase Limit.

1. RemoveMessage (Accounts, Credit, getLimit)

2. RemoveMessage (Credit, Accounts, limit)

3. RemoveMessage (Accounts, Credit, setOutstandingAmount)

4. RemoveMessage (Accounts, Credit, IncreaseLimit)

5. RemoveMessage (Credit, Accounts, getType)

6. RemoveMessage (Accounts, Credit, type)

7. RemoveMessage (Credit, Accounts, getStatus)

8. RemoveMessage (Accounts, Credit, status)

9. RemoveMessage (Accounts, Credit, newLimit)

The Remove Lifeline (Credit) is then applied to the isolated Credit lifeline in both the

POS Payment and Increase Limit interaction. Since the class Credit became empty as a

result of the move operations, the Remove Empty Class (Credit) is applied to remove it

from the structural view. The refactored model views are shown in Figure 61.

The example presented here for Undue Familiarity is one instance of the model smell.

Hence, the functional view was not modified.

219

5.4.4 (g) Post Refactoring Model Improvement

When objects are properly encapsulated, the model as a whole is more pliant to change.

But when objects go against encapsulation, the model becomes more difficult to change.

Problems in one object propagate to other objects throughout the system and changes in

one object require changes in other objects.

Application of this refactoring reduces intimacy between overly intimate classes by either

combining them or moving features where they are used most often. This ensures

encapsulation principle of Object Oriented Programming and hence reduces coupling

between classes and makes the model more reusable, maintainable and easier to update.

The complexity of the use case and its interaction is also reduced by removing additional

transactions within the interaction model of the use case. Behavior and functionality is

properly distributed in the functional view of the model. Hence, it is safe to quote that the

refactoring operation reduces the complexity and organization of the use cases within the

model.

5.4.4 (h) Side Effects

Inappropriate Intimacy is a result of improper behavior distribution within the software

model beginning from its functional view in high-level design phase and propagating to

its structural view in low-level design phase. Reduction of this intimacy will not cause

any side effects within the design model, as it was a result of improper behavior

distribution.

220

5.4.5 Spider’s Web

5.4.5 (a) Description

Lilly [434] provided a list of the top ten pitfalls that occur when using use cases for

modeling real time projects. The same author when discussing the actor-to-use-case

relationship suggested the name Spider’s Web. This model smell is derived from the same

concept. This model smell occurs when an actor in the use case model has multiple

responsibilities (i.e. associated with a number of use cases) so that the view looks like a

spider’s web. A pictorial representation of the spider’s web model smell in the form of a

sample use case model is illustrated in Figure 62.

An actor initiating multiple use cases is either an indication that the actor is defined too

broadly [391] or inappropriate granularity of use cases. In case of improper actor

identification, the behavior of actor participation in the sequence diagram and its

association with other entity classes (since actors are realized as entity classes in the

Figure 62 Sample use case model depicting Spider's Web Model Smell

221

detailed design phase) must be examined. For instance, a User actor is very general and is

usually associated with a large number of use cases. In case of inappropriate granularity

of use case composition, use case behavioral view must be examined to ensure the

fragmented use case is non-trivial, does not describe an internal system process and

provides a usable output value to the system’s user. For instance, highly fragmented use

cases usually describe interactions between the system and the actor rather than the actual

goal.

Although the existence of the spider’s web smell can be visually identified through the

use case diagram, it cannot be classified as a model smell unless all views are examined

to detect the existence of improper actor classification and use case decomposition.

5.4.5 (b) Rationale

Spider’s Web model smell may lead to a complex use case model that is difficult to

understand and maintain. The existence of spider’s web model smell in the use case

model is also an indication of God Class existence in the structural view. Since one of

the effects of spider’s web model smell is the improper fragmentation of use cases, the

total number of sequence diagrams described by the system increase causing duplication

and unnecessary implementation. Hence, the availability of spider’s web in a use case

diagram not only complicates the functional view but also adds unnecessary redundant

behavior in sequence diagrams and may result in behaviorally rich entity classes that

realize the actors involved in the model smell.

5.4.5 (c) Target Quality Improvements

 Use Case Maintainability

222

 Reduction of Behavioral Redundancy

 Modular Design

5.4.5 (d) Model Smell Detection Strategy

To ensure the applicability of this model smell in the integrated model, an actor

associated with multiple use cases is selected. In order to quantify the number of use

cases required in order to select an actor as a candidate for further examination, we use

the “Number of Use Cases per Actor (NUCA)” metric and its maximum threshold

UPNUCA. Since this upper limit threshold value is not available in the literature, we

consider actors that are associated with more than 30% of the total use cases implemented

by the system.

The behavior of the selected actor is then examined to identify whether the actor

represent a user type or a role. Using actors to represent types rather than roles results in

compromising usability and stability of the use case model [391]. In order to identify

whether an actor is representing multiple roles within the system, a behavior signature is

associated with each use case associated with an actor. A behavior signature is a set of

lifelines interacting with the actor to realize the use case functionality in the sequence

diagram. Use cases associated with the actor are then classified based on behavior

signature similarity. Two signatures are also considered similar if the exclusion lifelines

are child classes of the same parent class. If an actor is associated with multiple

signatures, the existence of the Spider’s web model smell is confirmed and is need of

refactoring.

223

The pseudo code given below describes the steps required for automated detection of the

spider’s web model smell.

: ALGORITHM: SPIDER’S WEB

: start

: read Model

: for (each actor in the Model)

: read A

: if (# of use-cases for A is >= UPNUCA)

: for (each use-case associated with A)

: read UC

: for (each lifeline associated with UC)

: read Life

: if (Life is a child class)

: sig = sig U {parent(Life)}

: else

: sig = sig U {Life}

: end if

: end for

: if (first use-case)

: base-sig = sig

: end if

: if (sig != base-sig)

: diff = diff +1

: end if

: end for

: end if

: if (diff >= 2)

: return A

: end if

: end for

: stop

5.4.5 (e) Model Refactoring Mechanics

Name: Redistribute Responsibility

Parameters: Actor a, List actorNames, List ucNames where,

 a is the Actor with multiple roles

 actorNames is the list of new actors to distribute the use cases

224

 ucNames is the list of the use cases to be associated with each new actor in

the actorNames list.

Preconditions:

i. The name of the new actors (actorNames) does not conflict with the name

of existing actors within the model.

ii. The list ucNames includes all use cases assigned to Actor a.

Mechanics:

1. Split Actor refactoring is used to split actor a into the number of actors

mentioned in the actorNames list.

2. Each new actor is associated with a subset of use cases assigned to the

main actor a. Since Split Actor refactoring in the previous steps associates

all use cases associated with the main actor to the newly created actor,

unwanted associations are removed using the Remove Actor Reference

refactoring based on the list provided by ucNames.

3. Isolate Actor refactoring is applied to main actor a to isolate it from the

use case model.

4. Delete Actor refactoring is used remove the actor from the system.

5. If the lifeline for actor a has an incoming call event in the interaction,

Create Sub Class refactoring is performed to create a new class based on

the new actor to which the use case is assigned.

6. Push Down Operation refactoring is performed to move the incoming

message to the newly created specialized class for the actor a.

225

7. Finally, Substitute Lifeline refactoring is then used to remove all

references to the old actor from respective interaction diagrams and

replace it with the new actor based on the new actor-use case relationship.

Figure 63 shows the ordering of the composite refactoring Redistribute

Responsibility.

Post Conditions:

i. Actor with name a does not exist in the model.

ii. Lifelines with reference to Actor a are replaced with reference to actors in

actorNames.

226

5.4.5 (f) Example

Figure 64 shows a subset of the model views from the NBS system that depicts the

spider’s web model smell. On examination of the use case diagram, the existence of the

actor Operator was identified having a number of use case associations.

Figure 63 Redistribute Responsibility Refactoring

227

Figure 64 Excerpt of the NBS model views depicting Spider’s Web Smell

228

Figure 65 Excerpt of the NBS model views after refactoring

229

In order to identify whether the actor is representing multiple roles within the system, its

behavior signature is created for each use case it is associated to based on the information

from the behavioral view. Following are the four signatures in line with the four use cases

Operator is associated to in the use case diagram.

1. Update: {BankServer}

2. Backup System: {BankServer, BackupDatabase}

3. Customer Queries: {BankServer, FAQ}

4. Maintain Database: {BankServer, BackupDatabase}

Based on the signatures, it was identified that Operator was involved with more than one

role in the system. Hence, the availability of the Spider’s Web model smell is confirmed.

In order to remove this smell, initially the Split Actor refactoring is applied based on the

number of different signatures found. The following refactoring operations are hence

applied to the model.

1. SplitActor (Operator, Admin)

2. SplitActor (Operator, Tech Support)

3. SplitActor (Operator, Database Admin)

Since the Split Actor refactoring associated all new actors with the associations of the

base actor, the Remove Actor Reference refactoring is applied to assign the new actors to

their specific use cases. This is based on the information available from the behavioral

view. The following refactoring operations are hence applied to the model.

230

1. RemoveActorReference (Admin, Handle Customer Queries)

2. RemoveActorReference (Admin, Backup System)

3. RemoveActorReference (Admin, Maintain Database)

4. RemoveActorReference (Tech Support, Update)

5. RemoveActorReference (Tech Support, Backup System)

6. RemoveActorReference (Tech Support, Maintain Database)

7. RemoveActorReference (Database Admin, Update)

8. RemoveActorReference (Database Admin, Handle Customer Queries)

Since the use cases are appropriately and completely partitioned among the new actors,

the IsolateActor (Operator) and eventually DeleteActor (Operator) is applied to remove

the actor Operator from the model.

All interactions of the use cases involved in the refactoring process are examined to

identify if the lifeline for the actor Operator has an incoming call event in the interaction.

Since the BankServer lifeline invokes the message requestAnswer() from the Operator

lifeline in the Handle Customer Queries interaction, CreateSubClass (Operator, Tech

Support) refactoring is performed to create a new class based on the new actor Tech

Support to which the use case is assigned. The PushDownOperation (Operator,

requestAnswer) is performed to move the operation to the Tech Support Class and finally

SubstituteLifeline (Operator, Tech Support) is applied to redirect messages to the newly

created sub class. The refactored model views are shown in Figure 65.

231

5.4.5 (g) Post Refactoring Model Improvement

System actors trigger use cases and an actor can start more than one use case within the

system. This is depicted by an association relationship between the actor and the use case

in the use case diagram. The more use cases associated with an actor, the more complex

is the relationship between actors and the system.

Application of this refactoring reduces the number of use cases associated with an actor

by splitting them among actors. This ensures that actors within the system are not user

types but roles. From the viewpoint of an actor, the complexity of the system is reduced,

as it has to deal with fewer use cases. Apart from improving the complexity of the actors

and their interaction, behavior is properly distributed and associated to appropriate

triggers. This restructuring also affects the structural view by introducing the concept of

modularity through generalization and functionality distribution.

5.4.5 (h) Side Effects

The Spider’s web model smell exists within a system due to improper actor identification

and functionality association. Although reducing the number of use cases associated per

actor comes at the cost of having more actors in the system. This increase in the number

of actors affects the size of the system and hence increasing its overall use case point

value used popularly for use case effort estimation.

232

5.4.6 Specters’

5.4.6 (a) Description

Specters’ model smell occurs in cases where designers new to object-oriented design

define system architectures. In this model smell, one or more ghostlike apparition classes

exist in the system that appear only briefly to initiate some action in another more

permanent class. We refer to these classes as Specter classes as they have a very brief

lifecycle and are classes with limited responsibilities and roles to play in the system.

Although the name of this smell suggests a smell related to the class diagram, the

existence of this smell requires information from all UML views for the following key

reasons:

1. A specter class is a stateless class or in other terms, a class with no attributes. This

can be identified from the system’s structural view. This class is also referred to as an

Irrelevant Class [431].

2. All associations of the specter class are transient. A temporary, short-duration class

pops into existence only to invoke other classes through temporary associations. This

can be confirmed by taking into consideration all the sequence diagrams (behavioral

view) associated with the system. Specter classes within the sequence diagram

usually send messages to other classes but never receive any messages back.

3. It is part of a single-operation use case that exist only to invoke other use cases

through an include relationship. Single-operation use cases are usually in the center of

a nested “include” path for delegating control to an essential use case.

233

5.4.6 (b) Rationale

The specters’ model smell is a variation of a well-known anti-pattern known as

Poltergeist [431]. The specters’ model smell is usually intentional on the part of some

architects who do not really understand the object-oriented concept. Availability of these

classes results in a chaotic software designs, inclusion of unnecessary abstractions; and

hence make the system design excessively complex, hard to understand, and hard to

maintain.

5.4.6 (c) Target Quality Improvements

 Use Case Comprehension and Maintainability

 Management of Behavior Complexity

 Modular Design/Cohesion

5.4.6 (d) Model Smell Detection Strategy

To ensure the applicability of this model smell in the integrated model, classes with no

attributes and associated with a number of other classes are selected. The behavior of

these classes within the sequence diagram is then studied. If these classes are invoked by

other classes only to act as a delegate or simply invoke other classes without receiving

any reply, the existence of the specters’ smell is confirmed. In order to reduce the search

space, information from the functional view plays a vital role. Specter’ classes are usually

part of inclusion use cases or highly complex use cases (such as the God Use Case).

Since the Multiple Personality smell discussed in Section 5.4.2 handles existence of

transient classes that act as agent classes or middle-men classes, the specter’s smell

identifies transient classes that simply invoke other classes.

234

The pseudo code given below describes the steps required for automated detection of the

specters’ model smell.

: ALGORITHM: SPECTERS’

: start

: read Model

: for (each class in the Model)

: read C

: if (# of attributes for C is = 0)

: for (each inclusion use-case in the model)

: read UC

: for (each lifeline associated with UC)

: read Life

: if (Life = C) and (# of receive Events for Life = 0)

: false = 0

: else

: false = 1

: end if

: end for

: end for

: end if

: if (false = 0)

: {specters} = {specters} U (C)

: end if

: end for

: return specters

: stop

5.4.6 (e) Model Refactoring Mechanics

Name: Remove Specters Class

Parameters: List classNames where,

 classNames is a list of classes suspected of being specter’s

Preconditions:

i. The list of classes in (classNames) does not have any attributes (objects

excluded).

235

Mechanics:

1. Search all classes that invoke the specters class and use the Move

Operation refactoring to move the method to the classes that use it.

2. Since the specter classes invoke other permanent classes based on its

initial invocation of the start method, these corresponding invocations are

required to be moved to the invoking lifeline in all interactions that

include the specters class. This is simply done by applying the Remove

Middle Man refactoring.

3. Since all operations are moved to the classes that invoke the specters class,

the Remove Empty Class refactoring is applied to remove the class from

the structural view of the system.

5. If interaction belongs to an inclusion use case and removal of the specters

class result in a no message occurrences except for other inclusions and

extensions through the “ref” fragment, the Collapse Fragment refactoring

is then used. This refactoring inserts the interaction fragment of the

inclusion use case into the interaction diagram of the including/base use

case at the point of inclusion (ref fragment).

6. Finally, Merge UC Inclusion refactoring is used to merge the inclusion use

case into the including use case.

Figure 66 shows the ordering of the composite refactoring Remove Specters’.

Post Conditions:

i. Classes with names in the class-list classNames do not exist in the system.

236

5.4.6 (f) Example

Figure 67 shows a subset of the model views from the NBS system that depicts the

specters’ model smell.

Figure 66 Remove Specters' Refactoring

237

Figure 67 Excerpt of the NBS model views depicting Specters’ Smell

238

Figure 68 Excerpt of the NBS model views after refactoring

239

On examination of the class diagram, the existence of an Irrelevant class instance

PaymentGateway was identified. Based on a list of all inclusion use cases (possibly those

in the middle of a Include or Extend chain) obtained from the functional view, the

interactions of all these were examined. The Pay Bill interaction made use of the

PaymentGateway and the interaction had no receive events (except the invoking

operation, which is ignored). Based on this information, the existence of specters’ model

smell is confirmed in the model.

Initially, the invoking operation is moved into all the associated classes. Hence, the

MoveOperation (PaymentGateway, Accounts, startPayment) refactoring is performed for

the given example. The RemoveMiddleMan (BankServer, PaymentGateway) refactoring

is applied to remove the middle man lifeline and initiate direct communication. Since the

invoking operation startPayment is moved to the invoking class, the empty class

PaymentGateway is removed by applying the RemoveEmptyClass (PaymentGateway)

refactoring. Since the PayBill interaction had other message occurances even after the

removal of the specter class, the CollapseFragment refactoring and MergeUCInclusion

refactoring are not invoked resulting in no change made to the functional view of the

system. The refactored model views are shown in Figure 68.

5.4.6 (g) Post Refactoring Model Improvement

Specter classes have limited responsibility in the system. They are stateless classes with a

short lifecycle. Removal of these classes from the system reduces behavioral complexity

by removing unnecessary interactions and lifelines from the interactions and as a result

improves modularity between classes in the structural view by reducing coupling and

240

increasing cohesion. As a result, an overall improvement is seen in the functional view

wherein the seeding use-case behavior realized by includes and extends is reduced to

reusability rather than adding to use case sequencing and scheduling. The depth of

includes and extends relationship in the functional view is also reduced to enhance

maintainability.

5.4.6 (h) Side Effects

When correcting anti-patterns such as specters’ (or poltergeists), the local and structural

refactorings applied to the design can produce side effects that may introduce other anti-

patterns. The most common side-effect anti-pattern that may result because of removing

specters’ from the model is the God Class. This is because the removal of an irrelevant

class merges its functionality into the associated class that earlier held methods whose

data may have been located in a rich God class.

This side effect can be easily circumvented by allowing the application of refactorings

that handle God class before this refactoring such as Multiple Personality, Creeping

Featurism and Undue Familiarity. Hence, this could move attributes from the invoking

God class and the specters’ class would no longer be considered as an irrelevant class.

5.4.7 Model Duplication

5.4.7 (a) Description

Duplication is one of the most common bad smells when it comes to code based

refactoring. Although usually not defined over models, the use of an integrated model

allows for the identification of common model fragments throughout the system

description. Therefore, Model duplication considering multiple views can be defined as

241

information objects described separately within the system specification even when

processed in the same manner. Duplicated model fragments are more difficult to identify

than duplicate code fragments mainly because they are not exact replicas of each other.

In order to detect duplication, an initial point has to be established from one of the views.

In this smell description, the Actor-Use Case relationship is selected as the point of origin

for duplication detection and analysis. This selection is based on use case duplication

observed by Ciemniewska et al. [435]. The detection strategy described in this work

starts from this point; that is identifying near similar patterns and confirming them

through information from the behavioral and the structural view as it traverses the

functional view.

5.4.7 (b) Rationale

Duplication, be it code or model, is considered one of the most abhorrent smell evident

from the literature. Not only does it reduce reusability, changes made to one portion of

the duplicated fragment will remain unchanged in other similar fragments. Detection of

duplication was not handled in previous studies on model refactoring mainly due to the

lack of complete information in one single view of the system specification. The

integration of model views allows exploitation of inter-view relationships and aids in the

detection of duplication across models view.

5.4.7 (c) Target Quality Improvements

 Reduction of Redundant Use Case Associations

 Reduction of Behavioral Redundancy

 Design Cohesiveness and Modularity

242

5.4.7 (d) Model Smell Detection Strategy

To ensure the applicability of this model smell in the integrated model, all actor-use case

relationships are considered. To demonstrate this, we use the concept of trees. For each

actor in the system, a tree is constructed (hypothetically) with the actor as the root node.

Each of these trees is composed of multiple paths from the root node to the leaf node. An

illustration of this concept is shown in Figure 69.

The maximum depth of paths traversed is equivalent the maximum value among the

maximum Depth of Inclusion Relationship (DOIR) and the maximum Depth of Extension

Relationship (DOER). Two paths are investigated for similarity if the root node (i.e. the

Actor) and the leaf node (an extension or inclusion use case) are same. For instance,

Paths 2 and 3 in Figure are similar and are investigated to identify the availability of

Model Duplication Smell. For the sake of simplicity, the use cases between the root and

the leaf node are referred to as Middle Use Cases. Behavior of all middle use cases are

examined and compared to establish similarity. Two behaviors are structurally similar if:

Figure 69 Concepts of Paths in the detection strategy for Duplication Model Smell

243

1. The lifelines involved in both the interactions are same. If not, at least the

different ones are sub classes of the same super class.

2. The sequence of message interactions among lifelines is the same. Each message

interaction is represented by a tuple {source lifeline, message-type, destination

lifeline}.

3. Message names may or may not be similar but the size of the arguments are same

for messages between the same sequences.

4. Extension and inclusion use cases (through “ref” fragments in the behavior) are

invoked at the same sequence.

If structural similarity between two similar use cases is established, the existence of

Model Duplication is confirmed. The pseudo code given below describes the steps

required for automated detection of the model duplication smell.

244

: ALGORITHM: MODEL DUPLICATION

: start

: read Model

: for (each actor in the Model)

: read A

: for (each use-case associated with A)

: read UC

: sig = A + UC

: if (# of extends for UC > 0) or (# of includes for UC >0)

: for (each extension or inclusion of UC)

: sig = sig + CLOSURE (UC)

: end for

: end if

: {sig-set} = {sig-set} U (sig)

: end for

: for (each pair from {sig-set})

: read sig1, sig2

: if (size of sig1 = size of sig2) and (last two elements of sig1 and sig 2 are same)

: status = SIMILARITY (sig1, sig2)

: end if

: if (status = 1)

: dup = dup U {sig1, sig2}

: end if

: end for

: end for

: return dup

: stop

The pseudo-code for model duplication uses two sub-functions: CLOSURE and

SIMILARITY. Since the functionality of CLOSURE is trivial, we do not provide the

algorithm for it here. The pseudo code for SIMILARITY that checks for structural

similarity of two interactions is given below.

245

: ALGORITHM: SIMILARITY

: start

: read sig1 and sig2

: for (each i from 2 to size-2 of sig1)

: read UC1 = sig1(i) and UC2 = sig2(i)

: diff = (lifelines in UC1) ∩ (lifelines in UC2)

: if (diff is a super-sub relation)

: for (each message occurance in UC1 and UC2)

: read msg1 in UC1 and msg2 in UC2

: msg1-set = (source, type, destination of msg1)

: msg2-set = (source, type, destination of msg2)

: if (msg1-set = msg2-set)

: similar = 1

: else

: similar = 0

: break

: end if

: end for

: end if

: end for

: return similar

: stop

5.4.7 (e) Model Refactoring Mechanics

Name: Remove Duplication

Parameters: Actor a, Use Case uc1, Use Case uc2 String newName

where,

 a is the Actor

 uc1 is one of the duplicate use cases

 uc2 is the other duplicate use case

 newName is the name of a new use case that results from merging the two

duplicate use cases.

246

Preconditions:

i. The name of the new use case (newName) does not conflict with the name

of an existing use case within the model.

ii. The use cases uc1 and uc2 are assigned to Actor a.

Mechanics:

1. Create UseCase refactoring is used to create a new use case.

2. Extract Fragment refactoring is then used on either use case sequence

diagram (uc1 or uc2) to extract the complete interaction into the newly

created use case.

3. Since the structurally similar behavior of the two use cases may have

different messages, the Replace Message refactoring is used to rename the

message. An argument ”type” is also added to the message that determines

the type of action performed by the structurally similar use cases. Merge

Operation refactoring is also applied to merge the lexically different

operations in the class and renamed it to the new message name used in

the interaction.

4. If different lifelines exists in the two interactions (they are sub-classes

based on the constraint included in the smell description), Substitute

Lifeline refactoring is performed to add the super class to the interaction.

5. Add Actor Reference refactoring is performed to add an association

between the actor triggering the use cases uc1 and uc2 and the new use

case.

247

6. Isolate UseCase refactoring is applied to the use cases uc1 and uc2 to

isolate them from the use case model.

7. Delete UseCase refactoring is used to remove the use cases uc1 and uc2

from the system.

Figure 70 shows the ordering of the composite refactoring Remove

Duplication.

Post Conditions:

i. Use cases with names uc1 and uc2 does not exist in the model.

ii. Use case with name newCase is added to the model.

248

5.4.7 (f) Example

Figure 71 shows a subset of the model views from the NBS system that depicts the

duplication model smell. On examination of the use case diagram, two paths associated

with the actor Operator were identified. In order to ensure the existence of the model

smell, the behavior of the middle use cases involved Add Application Form and Edit

Application Form were observed. The sequence of message occurrence between the two

Figure 70 Remove Duplication Refactoring

249

interactions was found to be structurally similar. Hence, the existence of the duplication

model smell was confirmed.

Initially, the CreateUseCase (Manage Application Form) refactoring is applied to create

an empty isolated use case. Then the ExtractFragment (Add Application Form, Manage

Application Form) refactoring is performed to copy the complete interaction fragment

from one of the similar use cases (either can be used) into the new use case. In order to

identify lexically different message interaction between the use cases, each message in

the interaction of Add Application Form and Edit Application Form is compared. A

message with a different name is replaced in the interaction of the new use case Manage

Application Form with a new message. The following refactoring operation is hence

applied ReplaceMessage (createForm, manageForm(type)). If both the messages are not

used in any other interactions, they are replaced in the class diagram. The

MergeOperation (createForm, EditForm, manageForm) refactoring is applied to the

structural view to apply the change. Since the use of super-sub class relationship was not

utilized (as lifelines in both the use cases were same), the AddActorReference (Operator,

Manage Application Form) is applied. The duplicate use cases are initially isolated by

applying the IsolateUseCase (Add Application Form) and IsolateUseCase (Edit

Application Form) and finally deleted by applying the DeleteUseCase (Add Application

Form) and DeleteUseCase (Add Application Form).

The refactored model views are shown in Figure 72.

250

 Figure 71 Excerpt of the NBS model views depicting Duplication Smell

251

Figure 72 Excerpt of the NBS model views after refactoring

252

5.4.7 (g) Post Refactoring Model Improvement

Duplication is one of the most common defects that can be observed in models. The most

common form of this duplication is through the use of similar or different information

objects and describing the processes that manipulate them as separate use cases.

Merging use cases that handle similar information objects through a structurally similar

sequence of message interactions reduces the redundancy in describing their behavior in

the sequence diagram. It also reduces the number of use cases in the use case model and

the number of use cases associated with an actor, which in turns reduces complexity of

the use case model. Merging use cases that manipulate different information objects

through a similar process helps in identifying and applying object-oriented principles

such as reusability through inheritance and polymorphism to the structural view of the

model.

5.4.7 (h) Side Effects

Although the removal of duplication from the integrated model does not introduce side

effects into the model, it does require a change in the operation arguments in the class

and sequence diagrams. Ensuring behavior preservation can get complicated with the

model size and hence the complexity of this refactoring is directly proportional to the size

of the integrated model considered for refactoring. A more stable algorithm for

duplication resolution for large model system is hence sought as a future work of this

model smell.

253

5.4.8 Ripple Effect

5.4.8 (a) Description

A change in one design artifact can cause cascading changes to all related artifacts. This

propagation is based on the degree of dependency that exists between the related artifacts.

In case of a multi-view modeling environment such as UML, artifacts usually belong to

different views. Functional requirements specify the intended behavior of the system and

use cases have become a widely accepted modeling notation for capturing them. Software

requirements are volatile and their change can occur at multiple points during the

development process and is inevitable [436]. The ripple effect model smell identifies the

strength of dependency between use cases and classes which are connected through an

intermediate artifact; the sequence diagram. The strength of dependency is an indicator

that a change in the use case specification will eventually effect the structural

organization of objects within the system. A high degree of change can therefore question

the stability of the system and severely affects its efficiency and maintainability.

The ripple effect model smell is a variation of the shotgun surgery and divergent change

bad smells proposed by Fowler et al. [15]. However, unlike them, the ripple effect makes

use of the additional information from functional view and tries to identify the change

impact caused to the structural and behavior view because of changes to the functional

requirements of the system under design.

5.4.8 (b) Rationale

Dependency between different artifacts is mainly due to the use of multi-phase

development by most of the software development paradigms. Use of information from

254

one artifact for the development of others ensures consistency. Although dependency is

certain, the degree of dependency depends on the design of the system. If modeled

incorrectly, severely affects the design maintainability and reusability. When the number

of classes implementing a use case is high, this indicates that changes in a use case can

have impact on a large number of classes. This change propagates to all other related

classes and since classes are shared between use cases results in a cycle of change

propagation. More specifically, an indicator that related functionality is spread over the

system design. Hence, this adversely affects design stability and maintainability.

5.4.8 (c) Target Quality Improvements

 Use Case Maintainability and Reusability

 Behavioral Dependency

 Structural Stability

5.4.8 (d) Model Smell Detection Strategy

Based on the inter-view relationship, the number of classes per use case can be identified

by information from use case diagrams, sequence diagrams and class diagram. Use cases

describe the functional requirements of a system. Classes implement these requirements

and their participation within use cases is depicted in the sequence diagrams. In order to

detect the existence of the Ripple Effect smell, we developed a basic metric called Impact

Factor (IF), which is calculated for each use case.

Each class in the integrated model is associated with a number of other classes through

association, aggregation and composition relationship. The metric Number of

Associations Linked to a Class (NASC) provides this value for each class (see Appendix

255

9). The behavior of each use case is represented through a sequence diagram, which is

composed of a number of classes. For a given class (lifeline) in a particular use case, we

calculate the number of classes it is interacting within the interaction of the use case. We

refer to this as the Number of Internal Connections (NOIC). Based on this information,

we calculate the Number of External Connections (NOEC) for each class in a use case

behavior as follows:

Hence, NOEC is the measure of the number of classes that might be affected because of

any change occurring to the description of the class. Hence, the Impact Factor metric is a

summation of all classes external to the use case that may be affected because of a change

made to the requirement specification modeled by the respective use case. The Impact

Factor is thus calculated as follows:

 ∑

The Ripple Effect model smell identifies classes most affected by a change in the

functional requirement of the system and tries to solve this by localizing changes through

model refactoring operations over all participating views.

In order to quantify an acceptable Impact Factor metric for a use case we use a maximum

threshold value UPIF. Since this upper limit threshold value is not available in the

literature, we consider the 70/30 principle. Hence, the upper limit is equal to

256

Where NCM is the number of classes in the system (see Appendix 9). This ensures that

30% of change is allowed (i.e. 70% should be stable and not affected). The pseudo code

given below describes the steps required for automated detection of the ripple effect

model smell.

: ALGORITHM: RIPPLE EFFECT

: start

: read Model

: for (each use-case in the Model)

: read UC

: if (IF(UC) >= UPIF)

: {uc-list} = {uc-list} U UC

: end if

: end for

: return uc-list

: stop

5.4.8 (e) Model Refactoring Mechanics

Name: Class Responsibility Assignment

Parameters: List ucNames where,

 ucNames is the list of use cases that are not stable

Preconditions:

i. The name of the new class (newClass) does not conflict with the name of

an existing class within the model.

Mechanics:

For each use case in the ucNames list, the class (lifeline) contributing most the

value of IF is selected. The resolution of this smell requires identifying

257

applicability of Single Responsibility principle, part of the design principles

proposed by Martin [437] better known by their mnemonic acronym S.O.L.I.D.

The Single Responsibility principle targets cohesion. There should never be more

than one reason for a class to change. If a class has more than one responsibility,

then they become coupled. Changes to one responsibility may impair or inhibit

the class' ability to meet the others. The following refactoring operations are

applied to divide responsibility,

1. Create Sub Class refactoring is used to create two sub classes from the

names provided in the newClass list.

2. Push Down Method refactoring is then used to push the related

alternatives behavior to the sub classes. This assigns responsibility of the

behavior (method) using polymorphic operations to the classes for which

the behavior varies.

3. Finally, Substitute Lifeline refactoring is applied to replace the lifelines

with their appropriate child classes from the structural view.

Figure 73 shows the ordering of the composite refactoring Class Responsibility

Assignment.

Post Conditions:

None

258

5.4.8 (f) Example

Since a complete example of this model smell detection and resolution is difficult to

portray, we illustrate an abstract example using the same NBS system. The two actors

Customer and Operator of the NBS system access their functionality through a menu that

is handled by the Menu Class. Two use cases considered for this illustration are Update

Information and Create User. Figure 74 shows a subset of the model views from the NBS

system that depicts the ripple effect model smell.

Figure 73 Class Responsibility Assignment Refactoring

259

Figure 74 Excerpt of the NBS model views depicting Ripple Effect Smell

260

Figure 75 Excerpt of the NBS model views after refactoring

261

Figure 75 depicts a refactored version to solve this problem. In the refactored version,

two subclasses are employed OperatorMenu and CustomerMenu of the class Menu. Each

of the responsibilities is assigned to the subclass individually. As a result, displayMenu is

implemented with these subclasses separately. Thus, the function of displaying operator

menu is implemented in the class OperatorMenu without any alternatives of customers

and the operator; these conditional branches are realized by means of polymorphism of

displayMenu in the subclasses. The following refactoring operations are used to obtain

the refactored version

1. CreateSubClass (Menu, OperatorMenu)

2. CreateSubClass (Menu, CustomerMenu)

3. PushDownOperation (Menu, displayMenu)

4. SubstituteLifeline (Menu, OperatorMenu)

5. SubstituteLifeline (Menu, CustomerMenu)

5.4.8 (g) Post Refactoring Model Improvement

A class that is coupled to a large number of other classes, and would produce a large

number of changes throughout the system in the event of an internal change (due to a

change in the use case specification the class is part of), contributes to the Ripple Effect

smell. By the definition, a class that presents this smell tends to be coupled to a large

number of other classes. Hence, removing this smell reduces the coupling between the

classes in its structural view. This in turn localizes the effect on any change made to the

behavior of the use case to classes included within the use case only and reduces their

impact on other classes.

262

5.4.8 (h) Side Effects

Ripple Factor is a result of improper responsibility distribution within the software model

beginning from its functional view in high-level design phase and propagating to its

structural view in low-level design phase. Proper assignment of responsibility of classes

based on the information from the functional view will not cause any side effects within

the design model. It will in turn make the design more resilient to change by localizing

changes and demonstrate effective use of object-oriented design principles.

263

6 CHAPTER 6

TOOL SUPPORT

This chapter offers discussion about the two tools developed as part of this work:

UCDesc and IntegraUML. UCDesc is a complementary tool to provide use case

modeling support for IntegraUML. IntegraUML is the main tool that provides the

capability of integrating UML models; specifically class diagrams, sequence diagrams

and use case diagrams, and allowing designers to refactor this integrated model. The

schema for the Integrated Model is created using Altova XMLSpy 2010 [438] and

presented in Appendix 7. In this chapter, we describe in detail the motivation,

architecture and implementation of both the UCDesc tool and IntegraUML tool.

6.1 UCDesc: A Use Case Description Tool

UCDesc is designed for documenting and analyzing the behavior of use cases in the

system. The most important element of Use Case analysis is the authoring of Use Case

"flow" or "narrative". Traditional UML tools provide limited support for this vital

artifact. As a result, designers end up using word processors and a myriad of informal

templates to document use cases. The main motivation for designing the UCDesc tool is

to allow designers to properly design and analyze use cases and to provide capability of

exporting them as a means of model interchange. In this section, we provide details of the

implementation and usage of this use case description tool.

264

6.1.1 Analysis of Existing Use Case Modeling Tools

Use case modeling tools can be classified into two categories: tools that provide support

in the construction of the structural view of use cases and tools that provide support in

documentation of the behavioral aspect of use cases along with the structural view. Since

the structural view is the one that is part of the UML standard, numerous commercial

software tools are available [439-443]. Experts agree that the most important aspect of

use case analysis is the authoring of use case descriptions. However, traditional UML

tools provide limited support for this important activity. Some provide basic description

features such as composing use case behavior as prose text or documentation [444, 445].

Three noteworthy tools that are available for modeling the behavior aspect of use cases

are CaseComplete [446], Visual Use Case [447] and Visual Paradigm for UML [448].

These tools provide powerful features when it comes to composing use case flow of

events. They all provide a glossary feature that allows the reuse of similar terms in the

flow of events. The flow of events in all tools has two representations, the traditional

flow of events representation with a sequence of numbered steps and an activity diagram

representation. Hyperlinks are provided in steps to allow access to use cases referenced

through the include and extend relationships in the main flow. These tools also provide

additional functionality like requirements tracing, collaboration and versioning.

Although powerful use case editors, the above-mentioned tools have some disadvantages.

Visual Use Case lacks the functionality to export its diagrams to XMI. Due to this

limitation, output models cannot be reused for analysis in other tools. One of the main

advantages of UCDesc is that it provides the ability to export to XMI format so that it can

be reused by other UML modeling tools for analysis and integration. Both CaseComplete

265

and Visual Paradigm for UML do provide an XMI export capability to the user but lacks

a fine-grained description of the flow of events in the resultant XMI file. An excerpt

taken from the XMI generated by CaseComplete is shown in Figure 76. Some tags are

modified for clarity of representation.

As shown in Figure 76, all the steps in the flow of events of a use case are available as an

attribute value. UCDesc provides syntactic processing of steps in order to allow a fine-

grained representation of steps within flow of events. UCDesc relies on a carefully

developed use case narrative metamodel. This metamodel provides sentence level

analysis of use cases steps making them more readable and understandable.

Based on recent works done on extending the UML metamodel to supplement behavioral

information, a number of prototype tools have been proposed [361, 363]. Since these

tools depend heavily on the metamodel proposed in their respective works, it could not be

used in our work.

 <?xml version="1.0" encoding="utf-8" ?>

< <XMI xmi.version="1.1" xmlns:UML="http://www.omg.org/UML">

 <XMI.header>
< <XMI.documentation>

< <XMI.exporter>Serlio Case Complete</XMI.exporter>

< <XMI.exporterVersion>5.2.3972</XMI.exporterVersion>

 </XMI.documentation>

 ……………..

< <UML:TaggedValuexmi.id="TV6" tag="Steps" value="1. Admin Logs into

 the System 2. System displays username and password to the Admin
 3. Admin enters the username and password into the System 4.
 Incorrect Username" modelElement="UC-34fb0ce5-fc39-46f4-b0f6-
 84eca0786a50" />
 </XMI>

Figure 76 Sample XMI excerpt exported by CaseComplete UML Tool

file:///C:/Users/Mohammed%20Misbhauddin/Documents/sample.xml
file:///C:/Users/Mohammed%20Misbhauddin/Documents/sample.xml

266

6.1.2 UCDesc Architecture

UCDesc consists of sub-systems that provide different end user functionality. Figure 77

shows the architecture of UCDesc tool. The Use Case Editor documents the interactions

between actors and use cases. Users can use the editor to write the narratives for the use

cases, from the invocation of use case until the user accomplish the use case. Users can

also document sub flows and alternative flows that extend from basic flow by defining

sub and alternative scenarios respectively.

One of the most important features offered by UCDesc is the inclusion of use case flow

analyzer. This module accepts the steps from the flow of events and identifies for each

step, the sender, receiver, action and arguments. The analyzer works in two steps as

follows:

Diagram

Render Engine

yUML.me

XMI Generator

HTML

JPG

Use Case Elements

U
se

 C
as

e
E

d
it

o
r

Use Case Structure

Use Case

Flow

Analyzer

Basic Flow / Sub

Flow / Alt Flow

Object List (Sender,

Receiver, Action,

Arguments)

Figure 77 High-Level Architecture of UCDesc Tool

267

1. Tagging: Each Step from the flow of events is tagged using part-of-speech (POS)

tagging to distinguish nouns, verbs and adjectives in the sentences as candidate

features that indicate syntactic structure. The Stanford POS tagger [449] is used in by

UCDesc to accomplish this task.

2. Mapping: Based on the syntactic structure derived from the POS tagger, the

mapping table shown in Table 7 is used to identify the objects of the flow step. Part of

this mapping is based on the works of Li [370].

Table 7 Mapping of Syntactic Structure of Sentences into Use Case Objects

No. Syntactic Structure Sender Receiver Action Arguments

1 subject verb object subject object verb -

2
subject verb1 object1

verb2(object2)
subject object1 verb2 object2

3
subject verb object

adjective
subject object be+ adjective adjective

4
subject verb object1

participle (object2)
subject object1 verb participle (object2)

5
subject verb object1

object2
subject object1 set+ object2 -

6

subject verb1 object

conjunctive to verb1

(object1)

 subject verb1
object, verb1

(+object1)

7
subject verb gerund

object
 subject verb

gerund verb

(+object)

8
subject verb object1

preposition object2
subject object2 verb object1

9
subject verb (for)

complement
 subject verb complement

10 subject verb subject verb

11 subject be predicative subject be + predicative

12
subject verb preposition

object
 subject

verb +

preposition
object

268

The diagram render engine renders the use case diagrams. UCDesc does not provide a

built-in diagramming utility and hence uses a web-based use case diagramming tool

known as yUML [450]. An appropriately constructed link (or URL) is accepted by the

yUML server which then produces an image file with the use case diagram. This diagram

is displayed in the systems web browser. It is the responsibility of the rendering engine to

accept use case structural information from the editor and generate an HTML file to be

passed on to the yUML server. The structural information includes actor-use case and use

case-use case relationships. An example of the hyperlink generated and a sample

rendered diagram is shown in Figure 78.

http://www.yuml.me//diagram/scruffy;/usecase/// Bill Payment Service, [Admin]-(Add

User), [User]-(Subscription Payment), (Subscription Payment)<(Pay Credit),

(Subscription Payment)<(Pay Cash), (Add User)<(Background Check)
Figure 78 Example yUML Link and corresponding Use Case Diagram

The XMI generator module generates XMI output of the use case diagram. In order to

specify the structure of the flow of events in use cases, an extended version of the use

269

case metamodel was proposed in this work. This extended use case metamodel is shown

in Figure 33. The XMI is based on an XML Schema presented in Appendix 5.

6.1.3 Features of UCDesc Tool

UCDesc is a simple use case description tool built on Java programming platform. The

primary objective of UCDesc is to allow users to compose use case descriptions and

provide the capability of exporting it to XMI. The main layout of UCDesc is shown in

Figure 79.

The main layout consists of a top menu bar and three panels at the bottom: Actor, Use

Cases and Relationships. The Actor panels lists all the actors available in a project, the

use cases panel lists all the use cases available in the project and the relationships panel

lists all the use case relationships (include and extends) available in the project. Users can

Figure 79 UCDesc Main Layout

270

add actors and use cases making use of the options available in the Edit Menu.

Relationships are added automatically when the user adds them to a particular use case

description.

The format of use case description template followed by UCDesc needs to be defined

here for comprehension. Composing use case flows requires the understanding of the

following important guidelines:

1. Use case step numbering: In order to follow the different paths through a use case,

the use case numbering scheme for the flow of events plays an important factor. Since

there is no specific UML specification regarding the numbering scheme, the format

adopted by UCDesc is shown below in Figure 80. The steps numbered 1, 2, 3 and so

on makes up the main flow. The sub flows and alternative flows are specified after

the main flow. The numbering of the sub flows and the alterative flows includes the

step # where they can be invoked followed by a character (a-z) in case if more than

one sub or alternative flow can be invoked at the same step of the main flow. Sub

flows and alternative flows can themselves have sub and alternatives flows. Where to

continue the execution after the end of a sub or an alternative flow is specified by a

"Return" statement which indicates the return step. If there is no "Return" statement,

the use case ends.

271

2. Including a Use case: A use case can be included into another use case by using the

anchor Include in the flow step followed by a use case name. For instance

1. Include Login

At step 1 in the main flow, the use case Login is invoked.

3. Extending a Use case: Extending a use case is a more complicated than the inclusion

case. Before extending a use case, extension points must be defined in the base use

case. A use case can be extended by another use case by including the extension point

name within curly braces in the flow step of the base use case. Once defined, an

extension can be added as follow;

2. {Transfer}

MAIN FLOW

1. Main Flow Step 1

2. Main Flow Step 2

3. Main Flow Step 3

……

SUB FLOW

Step# (a): Sub Flow 1

 1. Sub Flow 1 Step 1

 2. Sub Flow 1 Step 2

 ………

ALTERNATIVE FLOW

Step# (a): Flow Condition

 1. Alternate Flow 1 Step 1

 2. Alternate Flow 1 Step 2

………

Figure 80 UCDesc Use Case Description Format

272

At step 2 in the main flow, the use case mentioned in the Transfer extension point is

invoked upon successful evaluation of the extension constraint included in the

referred extension point. The extension point is typically defined as follows:

Transfer [transaction = transfer] : Transfer , return: 6

Snapshots of the UCDesc windows that allow users to insert use case description details

and author various flows is shown in Figure 81. A detailed user manual for the UCDesc

is provided in Appendix 6

.

An example use case flow description and its corresponding XMI Specification

conforming to the extended use case metamodel are shown in Figure 82.

Use Case: Perform Transaction
UC-ID: 005

<?xml version="1.0" encoding="UTF-8"?>
<UseCaseModel>

 <Actor id="actor_0" name="Customer" type="Human"
num_roles="1"/>
 <Actor id="actor_1" name="Bank System"
type="NetworkSystem"

num_roles="1"/>
 <UseCase actor-ref="actor_0" id="UC-005" name="Perform
 Transaction"

SCOPE: System

LEVEL: Primary Task

PRIORITY: High

(a) (b)

Figure 81 UCDesc (a) Use Case Description and (b) Flow Authoring Windows

273

ASYNCHRONOUS

Lost Connectivity

{System is not connected}

1. Display Error Message

2. Terminate User Session

3. Use Case Ends

isAbstract="false">
 <Supporting actor-ref="actor_1"/>
 <Description scope="System" level="PrimaryTask"
Priority="high"/>
 <Precondition>

 <Constraint>
 <Entity name="System"/>
 <Relation name="equals"/>
 <Value name="Connected"/>
 </Constraint>
 </Precondition>
 <Postcondition>
 <Success>
 <Constraint>

 <Entity name="Transaction"/>
 <Relation name="equals"/>
 <Value name="Successful"/>

 </Constraint>
 </Success>
 <Failure>
 <Constraint>
 <Entity name="Transaction"/>
 <Relation name="equals"/>

 <Value name="Failed"/>

 </Constraint>
 </Failure>
 </Postcondition>
 <AsyncExtend name="Lost Connectivity" uc-ref="UC-
013">
 <Constraint>
 <Entity name="System"/>

 <Relation name="not-equals"/>
 <Value name="connected"/>
 </Constraint>
 </AsyncExtend>
 <Include uc-ref="UC-001"/>
 <Extend uc-ref="UC-003" extPoint="Transfer"/>
 <Extend uc-ref="UC-004" extPoint="Pay Bill"/>
 <ExtensionPoint name="Transfer" lower="0"
upper="1">
 <Constraint>
 <Entity name="transaction"/>
 <Relation name="equals"/>
 <Value name="transfer"/>

 </Constraint>
 <RejoinLocation step="6"/>
 </ExtensionPoint>
 <ExtensionPoint name="Pay Bill" lower="0"
upper="1">
 <Constraint>
 <Entity name="transaction"/>
 <Relation name="equals"/>
 <Value name="pay"/>
 </Constraint>
 <RejoinLocation step="6"/>
 </ExtensionPoint>
 <MainFlow>
 <Transaction order="1">
 <Step step-no="1">
 <ExternalInclusion uc-ref="UC-001"/>
 </Step>
 </Transaction>
 <Transaction order="2">
 <Step step-no="2">
 <Sender name="System"/>
 <Receiver name="Customer"/>
 <Action type="action" name="display"/>
 <Argument name="transaction"/>
 </Step>
 <Step step-no="3">
 <Sender name="Customer"/>
 <Receiver name="System"/>
 <Action type="action" name="select"/>
 <Argument name="transaction"/>
 </Step>
 <Step step-no="4">
 <ExternalVariation extPoint="Transfer"/>

PRECONDITIONS

System is Connected

ACTOR

PRIMARY

Customer

SUPPORTING

Bank System

MAIN FLOW

1. Include Login

2. System Displays a list of Transactions

3. Customer Selects Transaction

4. {Transfer}
5. {Pay Bill}

6. System displays Transaction Summary

7. Use Case Ends

ALTERNATIVE FLOW

6 (a) Customer Selects Print

1. The system sends the summary to the Printer

2. Return: 6

SUCCESS POST-CONDITION

Transaction is Successful

FAILURE POST-CONDITION

Transaction failed

EXTENSION POINTS

Transfer [transaction = transfer] : Transfer , return: 6
Pay Bill [transaction = pay] : PayBill , return: 6

274

 </Step>
 <Step step-no="5">
 <ExternalVariation extPoint="Pay Bill"/>
 </Step>
 <Step step-no="6">

 <Sender name="System"/>
 <Receiver name="Customer"/>
 <Action type="action" name="display"/>
 <Argument name="tranbsaction
summary"/>
 </Step>
 </Transaction>
 </MainFlow>
 <AlternativeFlow variationStep="6" sequence="a">

 <Constraint>
 <Entity name="selection"/>
 <Relation name="equals"/>
 <Value name="print"/>
 </Constraint>
 <Transaction order="1">
 <Step step-no="1">
 <Sender name="System"/>
 <Receiver name="Printer"/>
 <Action type="action" name="send"/>

 <Argument name="summary"/>
 </Step>
 </Transaction>
 <RejoinLocation step="6"/>
 </AlternativeFlow>
 </UseCase>
</UseCaseModel>

Figure 82 An example use case flow description and its equivalent XMI

6.1.4 Current Limitations of UCDesc Tool

Although the UCDesc tool fulfills its basic responsibility of allowing users to create and

edit use case descriptions and export them to as an XMI file, the tool has some limitations

for it to be used as a complete use case description tool. The tool lacks a built-in diagram

rendering engine and hence require users to have an active internet connection to view a

diagrammatic representation of the structural view of a use case diagram. Another

limitation is the lack of a glossary function as provided by other commercial tools in the

market. Inclusion of this feature will enhance the use case analysis functionality provided

by UCDesc.

275

6.2 IntegraUML: A multi-view UML Integration and Refactoring

Tool

Based on the proposed integrated metamodel, we have implemented a prototype tool

called IntegraUML (UML Model Integration and Refactoring Tool). IntegraUML is a

tool to support model integration and transformation on UML models imported in the

form of an XMI file. The UML models accepted by IntegraUML are Class diagrams,

Sequence diagrams and Use Case diagrams. XMI models are imported by the tool and

integrated into an intermediate format, which then is used for refactoring. IntegraUML is

implemented on Java programming platform and makes use of the standard XML Parser

to analyze the UML models. In this section, we provide details of the implementation and

usage of the IntegraUML tool.

6.2.1 IntegraUML Architecture

Figure 83 illustrates a high-level architecture of the IntegraUML tool. The inputs to the

tool are XMI files representing the UML models. The format of the XMI file accepted by

IntegraUML is described in the next subsection. The main engine is composed of several

modules that collectively operate to integrate and refactor the input models. These

modules are explained below:

1. Integration Module: The Integration module makes use of the standard Java XML

API to parse the input models and write them to a single integrated XMI file.

Particularly, the Document Object Model (DOM) API is used. DOM represents XMI

as trees of nodes. A detailed description of the DOM API can be found in Appendix

7.

276

2. Smell Detection Module: Model smells in the IntegraUML tool are defined in

XQuery and stored in the Model Smell Repository. XQuery is conceived as a

language for querying XML files, in the same way as SQL is used for querying

relational databases. The smell detection module is build using the Saxon Query

processor. Each smell, in the form of a query, from the repository is executed over the

integrated model. If a smell exists in the integrated model, the model along with the

smell is passed on to the Refactoring module. Model smells in the repository are

organized in an order to minimize any side-effects and maximize refactoring

opportunity detection over the integrated model.

3. Refactoring Module: The refactoring module, based on the detected smell, applies a

composite refactoring to remove the model smell. A composite refactoring is

composed of several primitive refactorings which are applied in an error-free manner.

IntegraUML is a semi-automatic refactoring tool. Hence all refactorings before

application are confirmed from the user.

After executing all the smells present in the repository, the final refactored model is

stored and outputted in the form of an XMI file.

277

A platform-specific mapping of the IntegraUML architecture is given in Figure 84.

Different components are represented by a platform-specific view of their realization.

The <<java>> stereotype reflects a java implementation; the <<xmi>> stereotype

Output Layer

Refactored

Integrated XMI

Use Case Model
Class Model

Sequence Model

UML

Modeling Tool
UML

Modeling Tool

Input Layer

Integration Module

Integrated XMI

Smell Detection

Module
Model Smell

Repository

Refactoring

Module

Model, Smell

Refactored Model

Class Diagram

XMI

Sequence Diagram

XMI

Use Case Diagram
XMI

Figure 83 High-Level Architecture of the IntegraUML tool

278

reflects an XMI file; the <<java-saxon>> stereotype reflects a java implementation

using the saxon xquery processor; the <<xquery>> stereotype reflects an xquery file;

and the <<java-class>> stereotype reflects a compiled java class.

6.2.2 IntegraUML Input Format

XMI is a standard format for exchanging UML models between tools. Nonetheless, XMI-

based model exchange currently has one major shortcoming: an XMI file exported from

one tool is different from an XMI file exported from another tool for the same UML

<<java>>

IntegraUML User Interface

<<java>>
Integration Module

<<java>>

Smell Detection Module

<<java>>
Refactoring Module

Local File System

<<xmi>>

Integrated XMI

<<xmi>>

Source XMI

1...3 +model_files

+model

+file_controller

<<xquery>>

Smell Repository

<<java-saxon>>

Query Processor

+query_controller

+model_smells 0...*

+refactoring_controller

<<java>>
Refactoring Engine

<<java-class>>

Refactoring API

+implementation

Figure 84 Platform-specific Architecture of IntegraUML

279

model. There are many different reasons for these dissimilarities. Some prominent ones

are:

 There are a number of versions of the underlying standards. For appropriate usability,

the same version of MOF, XMI and UML must be used in both the exporting and

importing tools.

 There are a number of ways in which a model can be serialized for export.

 The exporting tool may use a proprietary metamodel that is not based on MOF, the

effect of which compromises interoperability.

 Finally, the most important one is the difference of tag names adopted by different

tools.

In order to be consistent in our approach, we decided to follow the current XMI Schema

Version 2.1 and UML version 2.4. An XML Schema diagram for the accepted UML

models of Class and Sequence Diagrams is shown in Figure 85 and Figure 86. The XML

Schema diagram for the Use Case model is given in Appendix 5 as the standard UML

CASE tool exported XMI does not include its behavioral information. To the best of our

knowledge, the UML CASE tool that supports these schemas (provided by OMG) is

Altova’s UModel [439].

The type attribute of the packagedElement element identifies the context of the element

whether it is a package (type="uml:Package"), class (type="uml:Class"), association

(type="uml:Association"), association class (type="uml:AssociationClass") or a data type

(type="uml:DataType").

280

Similar to the class diagram schema, the type attribute of the packagedElement element

identifies the context of the element. It can either be a package (type="uml:Package"),

interaction (type="uml:Interaction") or an event (type="uml:CallEvent").

Figure 85 XML Schema Diagram of the UML Class Diagram

281

6.2.3 IntegraUML Features

IntegraUML is prototype UML model integration and refactoring tool built in java. Its

main usage scenario is to import UML XMI models and generate an integrated model for

the purpose of refactoring application. Figure 87 shows the high-level use cases that are

most pertinent to a developer using IntegraUML.

Figure 86 XML Schema Diagram of the UML Sequence Diagram

282

The main layout of IntegraUML is shown in Figure 88. It consists of a top menu bar and

three panels. The Source UML Files panel is the main input panel. IntegraUML allows

users to upload XMI files for the class diagram; sequence diagrams and use case diagram

as individual files or combined as one. The browsing options are enabled based on the

selection of an appropriate radio button at the top of the panel. XMI files can be browsed

and parsed from this panel. The results of the parsing process are displayed in the

Diagram Parse Log panel. Typical parse log information includes diagram version, tool

exported from and statistical information like number of classes, number of interactions

and so on.

Figure 87 Use Case Diagram for IntegraUML

283

The Error Log panel displays any errors that occur during the model integration process.

The Integrate and Refactor buttons are enabled upon successful model parsing and

integration respectively. The refactoring process is an interactive one. Upon detection of

a model smell, IntegraUML displays and confirms the refactoring operation from the user

before its application. A detailed user manual for the IntegraUML tool is provided in

Appendix 8.

6.2.4 Current Limitations of IntegraUML Tool

IntegraUML is a semi-automatic model refactoring tool. It requires the user to confirm

refactoring actions before their application. A fully automated refactoring tool requires an

additional module that could remember user actions and only confirm those not already

applied. Another limitation of the IntegraUML tool is interoperability. As the output of

IntegraUML is based on a proprietary metamodel, developed as part of this work, using it

with other UML modeling tools is not suitable. Although this could be circumvented by

Figure 88 IntegraUML Main Layout

284

using a model disintegration module, which disintegrates the refactored model into class,

sequence and use case diagrams, and then using XSLT transformation to map the

resultant XMIs to a particular tools requirement. This is put forward as a future work to

the IntegraUML tool. Finally, IntegraUML accepts a particular format of XMI as input to

the tool. As there are myriad formats of XMI available for UML models, providing

support for each is difficult to achieve.

285

7 CHAPTER 7

VALIDATION

In this chapter, we establish a framework to evaluate the effect of refactoring the

integrated model proposed in this work. Initially, we construct a validation framework to

evaluate our approach against existing approaches in Section 7.1. Then we describe and

summarize the case studies used for validation in Section 7.2. Finally, baseline is

established by evaluating existing approaches from the literature over the case studies in

Section 7.3. Baseline results are compared, analyzed and discussed thoroughly with our

proposed approach in the next chapter.

7.1 Validation Framework

An important objective of model-driven refactoring is to show the effect of refactoring on

quality of the software model. Although one of the most important activity in the

refactoring process, it is addressed only by a few published studies. Lack of an evaluation

approach severely affects the usability of model refactoring approaches in the industrial

software development. It is evident that despite being one of the most important

activities, it is still in its infancy.

 The only available approach used by the proposed studies [21, 32, 451] use model

metrics and compare these metrics before and after the application of refactoring to

validate their approach. Lange and Chaudron [69] developed a quality model for UML.

286

Jalbani et al. [294] proposed an integrated quality engineering approach for UML models.

They divided their approach into two parts: Quality Assessment and Quality

Improvement. Quality assessment includes the Quality Model for UML based on the

Lange and Chaudron model and metrics for UML. Quality Improvement includes model

smell detection and model refactoring. The framework developed by Jalbani et al. is still

in development phase.

In this work, we also used model metrics to validate our proposed approach. We initially

established an acceptable suite of UML model metrics for class, sequence and use case

diagrams proposed in the literature. These metrics are catalogued in Appendix 9. The

complete validation framework is depicted in Figure 89.

The validation process is carried out in two phases. In phase 1, also referred in this work

as Individual Refactoring, UML models specifically those used in this work are

refactored separately. An intermediate parser based on Java is used to convert the

imported models (in XMI) to an intermediate XMI format. The main motivation behind

this conversion includes:

287

Figure 89 Validation Framework

288

1. The intermediate model provides a simple lexical view into the UML model.

2. The XMI file exported by major UML Modeling tools includes deeper nesting and a

significant amount of cross-references. This in turn makes the models harder to read

and navigate. The intermediate model used in our approach removes the deep nesting

by resolving diagram related attributes and including only relevant information as

tags. Cross-references are also resolved by replacing IDREF and type elements within

the XMI with their element names. This makes the intermediate model faster to

process, refactor and evaluate.

The intermediate models are then refactored. The refactoring rules and model smells for

all the diagrams are obtained from published literature in the field of model-driven

refactoring. A catalog of all the supported refactoring rules and models smells is included

as part of Appendix 2 and Appendix 10 respectively. Model metrics collected as part of

the framework are then applied to these refactored models. These metrics are used as

baselines to be compared with the Integrated Refactoring approach proposed in this work.

In phase two, the same models are integrated using the proposed IntegraUML prototype

tool. Since the approach requires behavioral information of the use case diagram in order

to construct the integrated model, UCDesc is used. As part of the Integrated Refactoring

process, the individual models are initially checked for consistency. If inconsistencies are

found, the integration process is stopped and the refactoring task is terminated. After the

consistency check step, models are integrated and checked for syntactic and semantic

compatibility against the Integrated Metamodel. Integrated model smells proposed in this

work are then applied over the integrated model to detect refactoring opportunity. The

289

model is refactored if a model smell is detected. This process is repeated until all the

smells included in the Integrated Model Smell repository are exhausted. The output of

this phase is a refactored integrated model. In order to evaluate the model, it has to be

decomposed into individual models. The Model Decomposition package takes as input

the integrated model and outputs individual class, sequence and use case model. No

information is lost during the decomposition step. Similar to the previous phase, model

metrics are applied to these refactored models. In order to evaluate the effectiveness of

the proposed approach, metric values for individual refactoring and integrated refactoring

are compared. In this chapter, we perform phase one of the validation approach. Phase 2

is performed and analyzed in the next chapter.

7.2 Case Studies

A major challenge encountered when working with UML based techniques is the

availability of quality case studies. Since the UML Class diagram is the most commonly

used diagram, most case studies only provide system design through class diagrams. This

constrains multi-model approaches such as the one proposed in this work. Hence, to

overcome this issue, we decided to construct a suite of case studies collected from two

separate yet distinct origin and domain. We used nine different software design case

studies to evaluate our approach: five obtained from student projects and four obtained

from published research, case studies and industrial white papers.

290

7.2.1 Student Projects

The case studies from student projects are supplied by a group of undergraduate B.Sc.

students with software engineering major of study. The models are the design models of

the group’s senior project conducted at King Fahd University of Petroleum and Minerals,

whose stakeholders are industrial organizations. Out of 16 projects considered, five were

selected based on the criteria summarized below.

1. Project is complete and includes all required diagrams: class, sequence, use case

diagrams and use case description.

2. Project uses UML 2 concepts such as Combined Fragments in sequence diagrams.

3. Information across all diagrams is consistent and properly documented.

4. Projects scored good grades for design and implementation from the evaluator and the

stakeholder.

In the rest of chapter, these case studies or projects are referred to as OFD (Online Form

Designer), ESAP (Electronic Student Academic Portfolio), FOMS (Freelancing Online

Management System), OG (Our Goal) and ME (My Events). Table 8 summarizes some

vital characteristics of each of the student project case studies: use cases, actors, classes,

average number of lifelines per sequence diagram, average number of messages per

sequence diagram, total number of combined fragments used and total number of

interaction use fragments used in the sequence diagram.

291

Table 8 Summary of each student project case study system

Case

Study

of Use

Cases

of

Actors

of

Classes

Avg. #

of

Lifelines

Avg. # of

Messages

of

Combined

Fragments

of

Interaction

Use

OFD 22 2 23 4 8 14 10

OG 35 7 15 5 9 11 0

ESAP 39 6 28 4 8 19 24

ME 62 9 18 4 11 39 4

FOMS 35 5 16 3 5 0 0

7.2.2 Published Case Studies

Case studies in this category are gathered from two different origins and domains: small-

scale industrial systems and published case studies. In the rest of the chapters, these case

studies are referred to as ATM (Automated Teller Machine), ORA (On-Road Assistance),

SCM (Supply Chain Management System), and O-Comm (OS-Commerce). All these

system designs came from multiple sources. ATM is a well-known case study in the field

of UML based empirical studies published by Briand et al. [452, 453]. SCM [454], and

O-Comm [455] are published case studies and ORA system [456, 457] is part of small-

scale industrial system design. Table 9 summarizes some vital characteristics of each of

the published case studies.

Table 9 Summary of each published case study system

Case

Study

of Use

Cases

of

Actors

of

Classes

Avg. #

of

Lifelines

Avg. # of

Messages

of

Combined

Fragments

of

Interaction

Use

ATM 15 2 18 4 7 15 0

SCM 8 5 21 4 5 7 3

O-Comm 119 5 59 3 6 32 5

ORA 13 4 14 4 4 1 11

292

7.3 Individual Refactoring

7.3.1 OFD (Online Form Designer)

(a) Class Diagram

Table 10 Comparison of Class Diagram-level Metrics for OFD System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 23 21

Number of The Associations (NASM) 12 10

Number of The Aggregations (NAGM) 6 6

Number of The Inheritance Relations (NIM) 10 10

293

Table 11 Comparison of Class Element-level Metrics for OFD System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 2 15 0.65

After 0 2 15 0.71

Number of Children (NOC)
Before 0 4 10 0.43

After 0 4 10 0.48

Fan-In
Before 0 3 21 0.91

After 0 3 18 0.86

Fan-out
Before 0 3 21 0.91

After 0 3 18 0.86

of Associations Linked to a Class (NASC)
Before 0 5 36 1.57

After 0 5 32 1.52

of Attributes in a Class Unweighted (NATC1)
Before 0 10 58 2.52

After 0 10 58 2.76

of Attributes in a Class Weighted (NATC2)
Before 0 3 11.5 0.50

After 0 3 11.5 0.55

of Operations in a Class Unweighted (NOPC1)
Before 0 25 127 5.52

After 0 29 127 6.05

of Operations in a Class Weighted (NOPC2)
Before 0 25 127 5.52

After 0 29 127 6.05

of Super Classes of a Class (NSUPC)
Before 0 1 10 0.43

After 0 1 10 0.48

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 2 15 0.65

After 0 2 15 0.71

294

Discussion: Two instances of the Lazy Class Model Smell were found in the class

diagram of OFD case study. Resolution of this smell although reduced the size of the

design (in terms of number of classes) as shown in Table 10, but added more methods to

the existing classes making them rich “God Classes” as evident by the NOPC1 and

NOPC2 metric values in Table 11.

(b) Use Case Diagram

Table 12 Comparison of Use Case Diagram-level Metrics for OFD System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 22 22

Number of Actors (NAM) 2 2

Table 13 Comparison of Use Case Element-level Metrics for OFD System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 7 14 0.64

After 0 7 14 0.64

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 2 14 0.64

After 0 2 14 0.64

of Use Cases which this Includes

(INCLUDING)

Before 0 0 0 0.00

After 0 0 0 0.00

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 0 0 0.00

After 0 0 0 0.00

of Extension Points of The Use Case (ExtPts)
Before 0 7 14 0.64

After 0 7 14 0.64

Depth of <<Include>> Relationship (DOIR)
Before 0 0 0 0.00

After 0 0 0 0.00

Depth of <<Extend>> Relationship (DOER)
Before 0 1 7 0.32

After 0 1 7 0.32

295

Discussion: No instances of any use case model smell were found for the OFD case

study. Hence, the values remain unchanged before and after the application of refactoring

as evident from Table 12 and Table 13.

(c) Sequence Diagram

Table 14 Comparison of Sequence Element-level Metrics for OFD System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 3 5 92 4.18

After 3 5 92 4.18

of Messages (NMM)
Before 5 15 169 7.68

After 5 15 169 7.68

of Messages sent by the Instantiated Objects of a

Class (NMSC)

Before 1 6 169 1.59

After 1 6 169 1.59

of Messages received by the Instantiated Objects
of a Class (NMRC)

Before 0 8 169 1.52

After 0 8 169 1.52

Discussion: Although quite a few instances of the middle man smell were found in the

sequence models of OFD, but refactoring was not performed due to the use of MVC

pattern in their application. Hence, the metric values shown in Table 14 remain

unchanged.

296

7.3.2 OG (OurGoal)

(a) Class Diagram

Table 15 Comparison of Class Diagram-level Metrics for OG System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 15 15

Number of The Associations (NASM) 14 14

Number of The Aggregations (NAGM) 10 10

Number of The Inheritance Relations (NIM) 4 4

297

Table 16 Comparison of Class Element-level Metrics for OG System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 1 4 0.27

After 0 1 4 0.27

Number of Children (NOC)
Before 0 2 4 0.27

After 0 2 4 0.27

Fan-In
Before 0 12 27 1.80

After 0 12 27 1.80

Fan-out
Before 0 12 27 1.80

After 0 12 27 1.80

of Associations Linked to a Class (NASC)
Before 0 12 48 3.20

After 0 12 48 3.20

of Attributes in a Class Unweighted (NATC1)
Before 0 19 81 5.40

After 0 19 81 5.40

of Attributes in a Class Weighted (NATC2)
Before 0 0 0 0.00

After 0 0 0 0.00

of Operations in a Class Unweighted (NOPC1)
Before 0 17 42 2.80

After 0 12 42 2.80

of Operations in a Class Weighted (NOPC2)
Before 0 17 42 2.80

After 0 12 42 2.80

of Super Classes of a Class (NSUPC)
Before 0 1 4 0.27

After 0 1 4 0.27

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 1 4 0.27

After 0 1 4 0.27

298

Discussion: Seven instances of the Data Class Model Smell were found in the class

diagram of OG case study. Resolution of this smell reduced the maximum number of

operations in a class (NOPC1 and NOPC2) by moving related methods to the respective

data classes from the behaviorally rich Profile class in the model as observed from Table

16.

(b) Use Case Diagram

Table 17 Comparison of Use Case Diagram-level Metrics for OG System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 35 35

Number of Actors (NAM) 7 7

Table 18 Comparison of Use Case Element-level Metrics for OG System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which this Includes

(INCLUDING)

Before 0 2 3 0.09

After 0 2 3 0.09

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 2 3 0.09

After 0 2 3 0.09

of Extension Points of The Use Case (ExtPts)
Before 0 0 0 0

After 0 0 0 0

Depth of <<Include>> Relationship (DOIR)
Before 0 1 2 0.06

After 0 1 2 0.06

Depth of <<Extend>> Relationship (DOER)
Before 0 0 0 0

After 0 0 0 0

299

Discussion: No instances of any use case model smell were found for the OG case study.

Hence, the values remain unchanged before and after the application of refactoring as

shown in Table 17 and Table 18.

(c) Sequence Diagram

Table 19 Comparison of Sequence Element-level Metrics for OG System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 4 6 175 5.00

After 4 6 175 5.00

of Messages (NMM)
Before 3 13 333 9.51

After 3 13 333 9.51

of Messages sent by the Instantiated Objects of a

Class (NMSC)

Before 0 5 315 1.54

After 0 5 315 1.54

of Messages received by the Instantiated Objects of
a Class (NMRC)

Before 1 5 313 1.53

After 1 5 313 1.53

Discussion: Although quite a few instances of the middle man smell were found in the

sequence models of OG, but refactoring was not performed due to the use of MVC

pattern in their application as evident from metric values shown in Table 19.

7.3.3 ESAP (Electronic Student Academic Portfolio)

(a) Class Diagram

Table 20 Comparison of Class Diagram-level Metrics for ESAP System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 28 28

Number of The Associations (NASM) 37 37

Number of The Aggregations (NAGM) 6 6

Number of The Inheritance Relations (NIM) 7 7

300

Table 21 Comparison of Class Element-level Metrics for ESAP System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 3 12 0.43

After 0 3 12 0.43

Number of Children (NOC)
Before 0 3 7 0.25

After 0 3 7 0.25

Fan-In
Before 1 8 78 2.79

After 1 8 78 2.79

Fan-out
Before 1 8 78 2.79

After 1 8 78 2.79

of Associations Linked to a Class (NASC)
Before 1 8 85 3.04

After 1 8 85 3.04

of Attributes in a Class Unweighted (NATC1)
Before 0 10 78 2.79

After 0 10 78 2.79

of Attributes in a Class Weighted (NATC2)
Before 0 1 1 0.04

After 0 1 1 0.04

of Operations in a Class Unweighted (NOPC1)
Before 0 63 253 9.04

After 0 53 240 8.57

of Operations in a Class Weighted (NOPC2)
Before 0 63 253 9.04

After 0 53 240 8.57

of Super Classes of a Class (NSUPC)
Before 0 1 7 0.25

After 0 1 7 0.25

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 3 12 0.43

After 0 3 12 0.43

301

Discussion: Ten instances of the Duplication Model Smell were found in the class

diagram of ESAP case study. Resolution of this smell reduced the maximum number of

operations in a class (NOPC1 and NOPC2) by moving duplicated methods to their

respective super classes as evident from Table 21.

(b) Use Case Diagram

Table 22 Comparison of Use Case Diagram-level Metrics for ESAP System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 39 39

Number of Actors (NAM) 6 6

Table 23 Comparison of Use Case Element-level Metrics for ESAP System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 5 27 0.69

After 0 5 27 0.69

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 2 27 0.69

After 0 2 27 0.69

of Use Cases which this Includes

(INCLUDING)

Before 0 0 0 0.00

After 0 0 0 0.00

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 0 0 0.00

After 0 0 0 0.00

of Extension Points of The Use Case (ExtPts)
Before 0 5 27 0.69

After 0 5 27 0.69

Depth of <<Include>> Relationship (DOIR)
Before 0 0 0 0.00

After 0 0 0 0.00

Depth of <<Extend>> Relationship (DOER)
Before 0 3 37 0.95

After 0 3 37 0.95

302

Discussion: No instances of any use case model smell were found for the ESAP case

study. Hence, the values remain unchanged before and after the application of refactoring

as shown in Table 22 and Table 23.

(c) Sequence Diagram

Table 24 Comparison of Sequence Element-level Metrics for ESAP System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 0 6 155 3.97

After 0 6 155 3.97

of Messages (NMM)
Before 0 20 296 7.59

After 0 20 296 7.59

of Messages sent by the Instantiated Objects of a

Class (NMSC)

Before 1 9 292 1.87

After 1 9 292 1.87

of Messages received by the Instantiated Objects of
a Class (NMRC)

Before 1 9 293 1.83

After 1 9 293 1.83

Discussion: The ESAP case study included a number of packages to cluster related

functionality together in the class diagram. Because of this, the Façade design pattern

was used for communication between these packages. Although a Façade class may seem

as a middle man lifeline in the sequence diagram, its main purpose is to allow a single

point access to entity classes in the model. Hence, the middle man refactoring was not

applied to the ESAP sequence diagrams. This is again evident from the sequence diagram

metrics presented in Table 24.

303

7.3.4 ME (MyEvents)

(a) Class Diagram

Table 25 Comparison of Class Diagram-level Metrics for ME System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 18 15

Number of The Associations (NASM) 13 12

Number of The Aggregations (NAGM) 15 14

Number of The Inheritance Relations (NIM) 6 5

304

Table 26 Comparison of Class Element-level Metrics for ME System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 2 7 0.39

After 0 2 6 0.40

Number of Children (NOC)
Before 0 2 6 0.33

After 0 2 5 0.33

Fan-In
Before 0 6 26 1.44

After 0 6 24 1.60

Fan-out
Before 0 6 26 1.44

After 0 6 24 1.60

of Associations Linked to a Class (NASC)
Before 1 9 54 3.00

After 1 9 50 3.33

of Attributes in a Class Unweighted (NATC1)
Before 0 16 103 5.72

After 1 16 101 6.73

of Attributes in a Class Weighted (NATC2)
Before 0 2 3 0.17

After 0 2 3 0.20

of Operations in a Class Unweighted (NOPC1)
Before 0 18 105 5.83

After 1 18 103 6.87

of Operations in a Class Weighted (NOPC2)
Before 0 18 105 5.83

After 1 18 103 6.87

of Super Classes of a Class (NSUPC)
Before 0 1 6 0.33

After 0 1 5 0.33

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 2 7 0.39

After 0 2 6 0.40

305

Discussion: Two instances of the Functional Decomposition Model Smell and one

instance of the Refused Bequest Model Smell were found in the class diagram of ME

case study. Removal of the functionally decomposed classes that resulted in improved

coupling (see Table 26) and the overall design size in terms of number of classes (see

Table 25). Similarly, the removal of the sub-class with no functionality also affected the

design size of the class model.

(b) Use Case Diagram

Table 27 Comparison of Use Case Diagram-level Metrics for ME System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 62 62

Number of Actors (NAM) 9 9

Table 28 Comparison of Use Case Element-level Metrics for ME System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 0 0 0.00

After 0 0 0 0.00

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 0 0 0.00

After 0 0 0 0.00

of Use Cases which this Includes

(INCLUDING)

Before 0 1 2 0.03

After 0 1 2 0.03

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 1 2 0.03

After 0 1 2 0.03

of Extension Points of The Use Case (ExtPts)
Before 0 0 0 0.00

After 0 0 0 0.00

Depth of <<Include>> Relationship (DOIR)
Before 0 1 2 0.03

After 0 1 2 0.03

Depth of <<Extend>> Relationship (DOER)
Before 0 0 0 0.00

After 0 0 0 0.00

306

Discussion: No instances of any use case model smell were found for the ME case study.

Hence, the values remain unchanged before and after the application of refactoring as

shown in Table 27 and Table 28.

(c) Sequence Diagram

Table 29 Comparison of Sequence Element-level Metrics for ME System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 2 6 260 4.19

After 2 6 260 4.19

of Messages (NMM)
Before 2 25 703 11.34

After 2 25 703 11.34

of Messages sent by the Instantiated Objects of a

Class (NMSC)

Before 1 10 678 1.80

After 1 10 678 1.80

of Messages received by the Instantiated Objects
of a Class (NMRC)

Before 1 10 674 1.59

After 1 10 674 1.59

Discussion: Although quite a few instances of the middle man smell were found in the

sequence models of ME, but refactoring was not performed due to the use of MVC

pattern in their application as evident from metric values shown in Table 29.

7.3.5 FOMS (Freelancing Online Management System)

(a) Class Diagram

Table 30 Comparison of Class Diagram-level Metrics for FOMS System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 16 16

Number of The Associations (NASM) 8 8

Number of The Aggregations (NAGM) 10 10

Number of The Inheritance Relations (NIM) 7 7

307

Table 31 Comparison of Class Element-level Metrics for FOMS System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 2 9 0.56

After 0 2 9 0.56

Number of Children (NOC)
Before 0 5 7 0.44

After 0 5 7 0.44

Fan-In
Before 0 6 21 1.31

After 0 6 21 1.31

Fan-out
Before 0 6 21 1.31

After 0 6 21 1.31

of Associations Linked to a Class (NASC)
Before 0 9 36 2.25

After 0 9 36 2.25

of Attributes in a Class Unweighted (NATC1)
Before 0 16 84 5.25

After 0 18 82 5.13

of Attributes in a Class Weighted (NATC2)
Before 0 2.5 2.5 0.16

After 0 2.5 2.5 0.16

of Operations in a Class Unweighted (NOPC1)
Before 1 39 174 10.88

After 1 39 174 10.88

of Operations in a Class Weighted (NOPC2)
Before 1 37 156 9.75

After 1 37 156 9.75

of Super Classes of a Class (NSUPC)
Before 0 1 7 0.44

After 0 1 7 0.44

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 2 9 0.56

After 0 2 9 0.56

308

Discussion: Two instances of the Duplication Model Smell were found in the class

diagram of FOMS case study. Resolution of this smell reduced the maximum number of

attributes in a class (NATC1) by moving duplicated attributes to their respective super

classes as shown in Table 31.

(b) Use Case Diagram

Table 32 Comparison of Use Case Diagram-level Metrics for FOMS System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 35 35

Number of Actors (NAM) 5 5

Table 33 Comparison of Use Case Element-level Metrics for FOMS System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 1 1 0.03

After 0 1 1 0.03

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 1 1 0.03

After 0 1 1 0.03

of Use Cases which this Includes

(INCLUDING)

Before 0 1 4 0.11

After 0 1 4 0.11

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 3 4 0.11

After 0 3 4 0.11

of Extension Points of The Use Case

(ExtPts)

Before 0 1 1 0.03

After 0 1 1 0.03

Depth of <<Include>> Relationship (DOIR)
Before 0 1 2 0.06

After 0 1 2 0.06

Depth of <<Extend>> Relationship (DOER)
Before 0 1 1 0.03

After 0 1 1 0.03

309

Discussion: No instances of any use case model smell were found for the FOMS case

study. Hence, the values remain unchanged before and after the application of refactoring

as shown in Table 32 and Table 33.

(c) Sequence Diagram

Table 34 Comparison of Sequence Element-level Metrics for FOMS System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 2 8 109 3.11

After 2 8 109 3.11

of Messages (NMM)
Before 1 18 162 4.63

After 1 18 162 4.63

of Messages sent by the Instantiated Objects of a

Class (NMSC)

Before 1 11 148 1.40

After 1 11 148 1.40

of Messages received by the Instantiated Objects of
a Class (NMRC)

Before 1 9 154 1.62

After 1 9 154 1.62

Discussion: Although quite a few instances of the middle man smell were found in the

sequence models of ME, but refactoring was not performed due to the use of MVC

pattern in their application as shown in Table 34.

7.3.6 ATM (Automated Teller Machine)

(a) Class Diagram

Table 35 Comparison of Class Diagram-level Metrics for ATM System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 18 14

Number of The Associations (NASM) 3 3

Number of The Aggregations (NAGM) 8 8

Number of The Inheritance Relations (NIM) 6 2

310

Table 36 Comparison of Class Element-level Metrics for ATM System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 1 6 0.33

After 0 1 2 0.14

Number of Children (NOC)
Before 0 4 6 0.33

After 0 2 2 0.14

Fan-In
Before 0 2 11 0.61

After 0 2 11 0.79

Fan-out
Before 0 2 11 0.61

After 0 2 11 0.79

of Associations Linked to a Class (NASC)
Before 0 8 22 1.22

After 0 8 22 1.57

of Attributes in a Class Unweighted (NATC1)
Before 0 14 29 1.61

After 0 14 29 2.07

of Attributes in a Class Weighted (NATC2)
Before 0 3 4 0.22

After 0 3 4 0.29

of Operations in a Class Unweighted (NOPC1)
Before 0 14 119 6.61

After 0 14 77 5.50

of Operations in a Class Weighted (NOPC2)
Before 0 14 119 6.61

After 0 14 77 5.50

of Super Classes of a Class (NSUPC)
Before 0 1 6 0.33

After 0 1 2 0.14

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 1 6 0.33

After 0 1 2 0.14

311

Discussion: Two instances of the Duplication Model Smell were found in the class

diagram of ATM case study. The duplicated methods were moved from all the subclasses

to their super class. Removal of the duplicated functionality resulted in the child classes

being empty. Hence, they were removed from the class model. This refactoring

application improved the overall design size in terms of number of classes and removed

unnecessary speculative generality as shown in Table 35 and Table 36.

(b) Use Case Diagram

Table 37 Comparison of Use Case Diagram-level Metrics for ATM System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 15 15

Number of Actors (NAM) 2 2

Table 38 Comparison of Use Case Element-level Metrics for ATM System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which this Includes

(INCLUDING)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 0 0 0

After 0 0 0 0

of Extension Points of The Use Case

(ExtPts)

Before 0 0 0 0

After 0 0 0 0

Depth of <<Include>> Relationship (DOIR)
Before 0 0 0 0

After 0 0 0 0

Depth of <<Extend>> Relationship (DOER)
Before 0 0 0 0

After 0 0 0 0

312

Discussion: No instances of any use case model smell were found for the ATM case

study. Hence, the values remain unchanged before and after the application of refactoring

as shown in Table 37 and Table 38.

(c) Sequence Diagram

Table 39 Comparison of Sequence Element-level Metrics for ATM System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 2 5 57 3.80

After 2 5 57 3.80

of Messages (NMM)
Before 3 25 102 6.80

After 3 25 102 6.80

of Messages sent by the Instantiated Objects of

a Class (NMSC)

Before 0 21 97 1.65

After 0 21 96 1.63

of Messages received by the Instantiated
Objects of a Class (NMRC)

Before 0 11 104 2.00

After 0 11 103 1.98

Discussion: A single instance of the middle man smell was found in one of the sequence

models of ATM. Refactoring was performed to remove the middle man lifeline which

barely affected the total number of messages sent and received in the overall sequence

model of the system.

313

7.3.7 SCM (Supply Chain Management)

(a) Class Diagram

Table 40 Comparison of Class Diagram-level Metrics for SCM System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 21 21

Number of The Associations (NASM) 23 23

Number of The Aggregations (NAGM) 4 4

Number of The Inheritance Relations (NIM) 2 2

314

Table 41 Comparison of Class Element-level Metrics for SCM System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 1 2 0.10

After 0 1 2 0.10

Number of Children (NOC)
Before 0 2 2 0.10

After 0 2 2 0.10

Fan-In
Before 0 5 50 2.38

After 0 5 50 2.38

Fan-out
Before 0 5 50 2.38

After 0 5 50 2.38

of Associations Linked to a Class (NASC)
Before 1 5 54 2.57

After 1 5 54 2.57

of Attributes in a Class Unweighted (NATC1)
Before 0 7 39 1.86

After 0 7 39 1.86

of Attributes in a Class Weighted (NATC2)
Before 0 0 0 0.00

After 0 0 0 0.00

of Operations in a Class Unweighted (NOPC1)
Before 0 3 23 1.10

After 0 3 23 1.10

of Operations in a Class Weighted (NOPC2)
Before 0 3 23 1.10

After 0 3 23 1.10

of Super Classes of a Class (NSUPC)
Before 0 1 2 0.10

After 0 1 2 0.10

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 1 2 0.10

After 0 1 2 0.10

315

Discussion: Although a single instance of the Functional Decomposition was found in

the class diagram of SCM case study, it was not removed. The main reason was that the

class had multiple bi-directional and compositional associations with other classes. The

detection of this smell was coincidental as the class was named in this manner. Hence, no

refactoring operations were applied to the class diagram.

(b) Use Case Diagram

Table 42 Comparison of Use Case Diagram-level Metrics for SCM System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 8 8

Number of Actors (NAM) 5 5

Table 43 Comparison of Use Case Element-level Metrics for SCM System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which this Includes

(INCLUDING)

Before 0 1 2 0.25

After 0 1 2 0.25

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 1 2 0.25

After 0 1 2 0.25

of Extension Points of The Use Case

(ExtPts)

Before 0 0 0 0

After 0 0 0 0

Depth of <<Include>> Relationship (DOIR)
Before 0 1 2 0.25

After 0 1 2 0.25

Depth of <<Extend>> Relationship (DOER)
Before 0 0 0 0

After 0 0 0 0

316

Discussion: No instances of any use case model smell were found for the SCM case

study. Hence, the values remain unchanged before and after the application of refactoring

as evident from Table 42 and Table 43.

(c) Sequence Diagram

Table 44 Comparison of Sequence Element-level Metrics for SCM System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 3 5 29 3.63

After 3 5 29 3.63

of Messages (NMM)
Before 3 11 43 5.38

After 3 11 43 5.38

of Messages sent by the Instantiated Objects of

a Class (NMSC)

Before 1 7 42 1.64

After 1 7 42 1.64

of Messages received by the Instantiated
Objects of a Class (NMRC)

Before 1 4 43 1.51

After 1 4 43 1.51

Discussion: No instances of any sequence model smell were found for the SCM case

study. Hence, the values remain unchanged before and after the application of refactoring

as shown by the sequence model metrics in Table 44.

7.3.8 O-Comm (OS Commerce)

(a) Class Diagram

Table 45 Comparison of Class Diagram-level Metrics for O-Comm System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 59 57

Number of The Associations (NASM) 43 41

Number of The Aggregations (NAGM) 2 2

Number of The Inheritance Relations (NIM) 26 26

317

Table 46 Comparison of Class Element-level Metrics for O-Comm System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 2 31 0.53

After 0 2 31 0.54

Number of Children (NOC)
Before 0 7 26 0.44

After 0 7 26 0.46

Fan-In
Before 0 9 88 1.49

After 0 9 84 1.47

Fan-out
Before 0 9 88 1.49

After 0 9 84 1.49

of Associations Linked to a Class (NASC)
Before 0 9 90 1.53

After 0 9 86 1.51

of Attributes in a Class Unweighted (NATC1)
Before 0 15 211 3.58

After 0 17 211 3.70

of Attributes in a Class Weighted (NATC2)
Before 0 7.5 104.5 1.77

After 0 8.5 104.5 1.83

of Operations in a Class Unweighted (NOPC1)
Before 0 15 244 4.14

After 0 15 202 3.54

of Operations in a Class Weighted (NOPC2)
Before 0 15 244 4.14

After 0 15 202 3.54

of Super Classes of a Class (NSUPC)
Before 0 2 26 0.44

After 0 2 26 0.46

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 3 34 0.58

After 0 3 34 0.60

318

Discussion: Two instances of the Functional Decomposition Model Smell were found

and four instances of Duplication were found in the class diagram of O-Comm case

study. The functionally decomposed classes were merged into their source class which

although reduced the total number of classes in the model as shown in Table 45 but also

increased the maximum number of attributes in the class as shown in Table 46. The

duplicated methods were moved from all the subclasses to their super class. This

refactoring application improved the overall design size in terms of number of operations

in a class.

(b) Use Case Diagram

Table 47 Comparison of Use Case Diagram-level Metrics for O-Comm System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 119 119

Number of Actors (NAM) 5 5

319

Table 48 Comparison of Use Case Element-level Metrics for O-Comm System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which this Includes

(INCLUDING)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 0 0 0

After 0 0 0 0

of Extension Points of The Use Case

(ExtPts)

Before 0 0 0 0

After 0 0 0 0

Depth of <<Include>> Relationship (DOIR)
Before 0 0 0 0

After 0 0 0 0

Depth of <<Extend>> Relationship (DOER)
Before 0 0 0 0

After 0 0 0 0

Discussion: No instances of any use case model smell were found for the O-Comm case

study. Hence, the values remain unchanged before and after the application of

refactoring.

(c) Sequence Diagram

Table 49 Comparison of Sequence Element-level Metrics for O-Comm System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 1 8 396 3.33

After 1 8 396 3.33

of Messages (NMM)
Before 1 35 675 5.67

After 1 35 675 5.67

of Messages sent by the Instantiated Objects of
a Class (NMSC)

Before 1 44 675 5.67

After 1 44 675 5.67

of Messages received by the Instantiated
Objects of a Class (NMRC)

Before 1 37 675 5.67

After 1 37 675 5.67

320

Discussion: Although quite a few instances of the middle man smell were found in the

sequence models of O-Comm, but refactoring was not performed due to the use of MVC

pattern in their application. Hence, the metric values shown in Table 49 remain

unchanged.

7.3.9 ORA (On-Road Assistance)

(a) Class Diagram

Table 50 Comparison of Class Diagram-level Metrics for ORA System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 14 14

Number of The Associations (NASM) 16 16

Number of The Aggregations (NAGM) 0 0

Number of The Inheritance Relations (NIM) 0 0

321

Table 51 Comparison of Class Element-level Metrics for ORA System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 0 0 0.00

After 0 0 0 0.00

Number of Children (NOC)
Before 0 0 0 0.00

After 0 0 0 0.00

Fan-In
Before 0 4 16 1.14

After 0 4 16 1.14

Fan-out
Before 0 4 16 1.14

After 0 4 16 1.14

of Associations Linked to a Class (NASC)
Before 1 5 32 2.29

After 1 5 32 2.29

of Attributes in a Class Unweighted (NATC1)
Before 1 4 33 2.36

After 1 4 33 2.36

of Attributes in a Class Weighted (NATC2)
Before 0 0 0 0.00

After 0 0 0 0.00

of Operations in a Class Unweighted (NOPC1)
Before 1 6 29 2.07

After 1 6 29 2.07

of Operations in a Class Weighted (NOPC2)
Before 1 6 29 2.07

After 1 6 29 2.07

of Super Classes of a Class (NSUPC)
Before 0 0 0 0.00

After 0 0 0 0.00

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 0 0 0.00

After 0 0 0 0.00

322

Discussion: No instances of any class model smell were found for the ORA case study.

Hence, the values remain unchanged before and after the application of refactoring.

(b) Use Case Diagram

Table 52 Comparison of Use Case Diagram-level Metrics for ORA System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 13 13

Number of Actors (NAM) 4 4

Table 53 Comparison of Use Case Element-level Metrics for ORA System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 3 4 0.31

After 0 3 4 0.31

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 1 4 0.31

After 0 1 4 0.31

of Use Cases which this Includes

(INCLUDING)

Before 0 6 7 0.54

After 0 6 7 0.54

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 1 7 0.54

After 0 1 7 0.54

of Extension Points of The Use Case

(ExtPts)

Before 0 3 4 0.31

After 0 3 4 0.31

Depth of <<Include>> Relationship (DOIR)
Before 0 2 8 0.62

After 0 2 8 0.62

Depth of <<Extend>> Relationship (DOER)
Before 0 1 4 0.31

After 0 1 4 0.31

Discussion: No instances of any use case model smell were found for the ORA case

study. Hence, the values remain unchanged before and after the application of

refactoring.

323

(c) Sequence Diagram

Table 54 Comparison of Sequence Element-level Metrics for ORA System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 3 8 49 3.77

After 2 8 45 3.46

of Messages (NMM)
Before 0 6 50 3.85

After 0 4 42 3.23

of Messages sent by the Instantiated Objects of
a Class (NMSC)

Before 1 2 47 1.38

After 1 2 39 1.13

of Messages received by the Instantiated
Objects of a Class (NMRC)

Before 1 2 50 1.37

After 1 2 42 1.12

Discussion: Multiple instances of the middle man smell were found in the sequence

models of SCM Case Study. A few of these were not refactored or removed as the case

study used the Orchestrator design pattern. Other four sequence diagrams simply used

middle man classes for delegation and hence were refactored. This in turn reduced the

total number of lifelines and the messages exchanged within the sequence models as

shown in Table 54.

7.4 Discussion

7.4.1 Identification of Model Smells in Use Case Diagrams

As observed from the results presented above, none of the case studies indicated the

existence of models smells over use case diagrams. The main reason behind this is the

fact that models smells for use case diagram are defined for the inappropriate use of the

324

generalization relationship. Generalization relationship in use case diagrams is the least

used relationship. This is the reason why no instances of the use case model smells were

identified among any of the included case studies.

7.4.2 Identification of Model Smells in Sequence Diagrams

Sequence diagram is the least used artifact for model-driven refactoring as evident from

the literature. Hence, only one smell (“Middle Man”) is proposed for the sequence

diagram. Since the first set of case studies was taken from student projects developed by

senior software engineering students, they were motivated to use common design patterns

such as Façade and Model-View-Controller (MVC). Since these design patterns make use

of middle man lifelines in the sequence diagram to delegate messages from the interface

to the entity classes through the controller class, removing them compromises the

stability of the design. Hence, the middle man refactoring was not applied whenever the

existence of design patterns were detected. Only the ATM (1 instance) and the ORA (4

instances) case study exhibited a few instances of middle-man lifelines use and were

refactored. Figure 90 depicts the number of case studies that use design patterns that

promote the use of middle man for message delegation.

325

Figure 90 Number of middle-man using design patterns used in case studies

7.4.3 Identification of Model Smells in Class Diagrams

Quite a few instances of model smells proposed over the class diagram were found in the

case studies. Figure 91 depicts a distribution of the number of instances of models smells

found over the class models of the case studies.

0

1

2

3

4

5

6

MVC Façade Orchestrator

Number of middle-man using design patterns used
in case studies

on instances

326

Figure 91 Number of instances of model smells detected over UML Class Diagrams

0
2
4
6
8

10
12
14
16
18
20

Number of model smell instances

on instances

327

8 CHAPTER 8

ANALYSIS AND DISCUSSION

As part of the validation strategy discussed in the previous chapter, baseline experiments

were conducted over the selected case studies. Each model in these case studies was

individually refactored. In this chapter, integrated refactoring operations are applied over

the model composed of the class, sequence and use case models. After the detection and

application of refactoring, the integrated models are decomposed and evaluated for

comparison with the results of individual refactoring. A detailed analysis and discussion

on positive and negative effects of integrated refactoring over individual refactoring is

included in Section 8.2.

8.1 Integrated Refactoring

8.1.1 OFD (Online Form Designer)

Two instances of the “Undue Familiarity” Model Smell, single instance of the “Spider’s

Web” Model Smell and seven instances of the “Duplication” Model Smell were detected

within the integrated model of the OFD case study.

328

(a) Class Diagram

Table 55 Comparison of Class Diagram-level Metrics for OFD System

Metrics Single-View Multi-View

Number of The Classes (NCM) 21 23

Number of The Associations (NASM) 10 10

Number of The Aggregations (NAGM) 6 6

Number of The Inheritance Relations (NIM) 10 12

329

Table 56 Comparison of Class Element-level Metrics for OFD System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Single 0 2 15 0.71

Multi 0 2 17 0.74

Number of Children (NOC)
Single 0 4 10 0.48

Multi 0 4 12 0.52

Fan-In
Single 0 3 18 0.86

Multi 0 3 18 0.78

Fan-out
Single 0 3 18 0.86

Multi 0 3 18 0.78

of Associations Linked to a Class (NASC)
Single 0 5 32 1.52

Multi 0 5 32 1.39

of Attributes in a Class Unweighted (NATC1)
Single 0 10 58 2.76

Multi 0 10 57 2.48

of Attributes in a Class Weighted (NATC2)
Single 0 3 11.5 0.55

Multi 0 3 12 0.52

of Operations in a Class Unweighted (NOPC1)
Single 0 29 127 6.05

Multi 0 25 109 4.74

of Operations in a Class Weighted (NOPC2)
Single 0 29 127 6.05

Multi 0 25 109 4.74

of Super Classes of a Class (NSUPC)
Single 0 1 10 0.48

Multi 0 1 12 0.52

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Single 0 2 15 0.71

Multi 0 2 17 0.74

330

Discussion: As a result of the Duplication Model Smell, two super classes were created

within the class model. Similarities between the operations of these classes were detected

from the analysis of the sequence models. Although this refactoring resulted in increasing

the number of classes and inheritance relations in the class model (from Table 55), it

reduced the overall design modularity by reducing the maximum and total number of

operations within a class as evident from Table 56.

(b) Use Case Diagram

Table 57 Comparison of Use Case Diagram-level Metrics for OFD System

Metrics Single View Multi View

Number of Use Cases (NUM) 22 21

Number of Actors (NAM) 2 5

Table 58 Comparison of Use Case Element-level Metrics for OFD System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Single 0 7 14 0.64

Multi 0 7 7 0.33

of Use Cases which Extend this Use Case

(EXTENDED)

Single 0 2 14 0.64

Multi 0 1 7 0.33

of Use Cases which this Includes

(INCLUDING)

Single 0 0 0 0.00

Multi 0 0 0 0.00

of Use Cases which Includes this Use Case

(INCLUDED)

Single 0 0 0 0.00

Multi 0 0 0 0.00

of Extension Points of The Use Case (ExtPts)
Single 0 7 14 0.64

Multi 0 7 7 0.33

Depth of <<Include>> Relationship (DOIR)
Single 0 0 0 0.00

Multi 0 0 0 0.00

Depth of <<Extend>> Relationship (DOER)
Single 0 1 7 0.32

Multi 0 1 7 0.33

331

Discussion: The detection and resolution of the Spider’s Web and Duplication Model

Smell changed the complete landscape of the use case model of the OFD case study.

Resolution of the Duplication model smell reduced the maximum number of extensions

in the model by half which is considerable improvement in terms of use case complexity

(See Table 58). Apart from that, the maximum number of use cases per actor metric was

also reduced from 14 to 5 that although resulted in increasing the total number of actors

in the system as shown in Table 57.

(c) Sequence Diagram

Table 59 Comparison of Sequence Element-level Metrics for OFD System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Single 3 5 92 4.18

Multi 3 5 87 4.14

of Messages (NMM)
Single 5 15 169 7.68

Multi 5 15 156 7.43

of Messages sent by the Instantiated Objects

of a Class (NMSC)

Single 1 6 169 1.59

Multi 1 6 156 1.60

of Messages received by the Instantiated

Objects of a Class (NMRC)

Single 1 8 169 1.52

Multi 1 8 156 1.61

Discussion: No much changed in the sequence diagram models other than decreasing the

number of sequence diagrams as a result of the Duplication Model Smell. This mainly

because of the instances of integrated refactoring smells detected all dealt with the

sequence diagram as whole rather than its internal functionality except the undue

familiarity model smell which did not affect the collected metrics.

332

8.1.2 OG (OurGoal)

Eight instances of the “Undue Familiarity” Model Smell and seven instances of the

“Duplication” Model Smell were detected within the integrated model of the OG case

study.

(a) Class Diagram

Table 60 Comparison of Class Diagram-level Metrics for OG System

Metrics Single View Multi View

Number of The Classes (NCM) 15 15

Number of The Associations (NASM) 14 14

Number of The Aggregations (NAGM) 10 10

Number of The Inheritance Relations (NIM) 4 4

333

Table 61 Comparison of Class Element-level Metrics for OG System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Single 0 1 4 0.27

Multi 0 1 4 0.27

Number of Children (NOC)
Single 0 2 4 0.27

Multi 0 2 4 0.27

Fan-In
Single 0 12 27 1.80

Multi 0 12 27 1.80

Fan-out
Single 0 12 27 1.80

Multi 0 12 27 1.80

of Associations Linked to a Class (NASC)
Single 0 12 48 3.20

Multi 0 12 48 3.20

of Attributes in a Class Unweighted (NATC1)
Single 0 19 81 5.40

Multi 0 19 81 5.40

of Attributes in a Class Weighted (NATC2)
Single 0 0 0 0.00

Multi 0 0 0 0.00

of Operations in a Class Unweighted (NOPC1)
Single 0 12 42 2.80

Multi 0 12 42 2.80

of Operations in a Class Weighted (NOPC2)
Single 0 12 42 2.80

Multi 0 12 42 2.80

of Super Classes of a Class (NSUPC)
Single 0 1 4 0.27

Multi 0 1 4 0.27

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Single 0 1 4 0.27

Multi 0 1 4 0.27

334

Discussion: When it comes to the effect of the Undue Familiarity Model Smell from the

Integrated Model Smell suite and the Data Class Model Smell from the Individual

Refactoring Model Smell, the effect on class diagram is minimal. Hence, there is no

apparent difference in the metric values depicted in Table 60 and Table 61.

(b) Use Case Diagram

Table 62 Comparison of Use Case Diagram-level Metrics for OG System

Metrics Single View Multi View

Number of Use Cases (NUM) 35 22

Number of Actors (NAM) 7 5

Table 63 Comparison of Use Case Element-level Metrics for OG System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Single 0 0 0 0

Multi 0 0 0 0

of Use Cases which Extend this Use Case

(EXTENDED)

Single 0 0 0 0

Multi 0 0 0 0

of Use Cases which this Includes

(INCLUDING)

Single 0 1 3 0.09

Multi 0 1 3 0.14

of Use Cases which Includes this Use Case

(INCLUDED)

Single 0 2 3 0.09

Multi 0 2 3 0.14

of Extension Points of The Use Case

(ExtPts)

Single 0 0 0 0

Multi 0 0 0 0

Depth of <<Include>> Relationship (DOIR)
Single 0 1 2 0.06

Multi 0 1 2 0.09

Depth of <<Extend>> Relationship (DOER)
Single 0 0 0 0

Multi 0 0 0 0

335

Discussion: The resolution of the duplication model smell had a huge impact structure-

wise to the use case model of the OG case study as shown in Table 62. This is a result of

identifying duplicate paths in the use case model and resolving it through their respective

sequence models. Not only did this refactoring reduce the number of use cases, actors

which no longer were associated with use cases were also merged.

(c) Sequence Diagram

Table 64 Comparison of Sequence Element-level Metrics for OG System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Single 4 6 175 5.00

Multi 3 5 87 3.95

of Messages (NMM)
Single 3 13 333 9.51

Multi 3 13 201 9.14

of Messages sent by the Instantiated Objects

of a Class (NMSC)

Single 0 5 271 1.53

Multi 1 5 178 1.45

of Messages received by the Instantiated

Objects of a Class (NMRC)

Single 1 5 269 1.51

Multi 1 5 188 1.45

Discussion: As a result of the resolution of the undue familiarity model smell, the

minimum and maximum number of lifelines within the sequence diagrams also reduced.

And as a resolution of the duplication model smell, the total number of messages and

messages exchanged between lifelines also reduced considerably as shown in Table 64.

Being at the center of the integrated model, the sequence diagram had the maximum

effect as a result of detection and resolution of the identified integrated model smells.

336

8.1.3 ESAP (Electronic Student Academic Portfolio)

Two instances of the “Specters” Model Smell and one instance of the “Duplication”

Model Smell were detected within the integrated model of the ESAP case study.

(a) Class Diagram

Table 65 Comparison of Class Diagram-level Metrics for ESAP System

Metrics Single View Multi View

Number of The Classes (NCM) 28 26

Number of The Associations (NASM) 37 35

Number of The Aggregations (NAGM) 6 6

Number of The Inheritance Relations (NIM) 7 7

337

Table 66 Comparison of Class Element-level Metrics for ESAP System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Single 0 3 12 0.43

Multi 0 3 12 0.46

Number of Children (NOC)
Single 0 3 7 0.25

Multi 0 3 7 0.27

Fan-In
Single 1 8 78 2.79

Multi 1 8 74 2.85

Fan-out
Single 1 8 78 2.79

Multi 1 8 74 2.85

of Associations Linked to a Class (NASC)
Single 1 8 85 3.04

Multi 1 8 81 3.12

of Attributes in a Class Unweighted (NATC1)
Single 0 10 78 2.79

Multi 0 10 78 3.00

of Attributes in a Class Weighted (NATC2)
Single 0 1 1 0.04

Multi 0 1 1 0.04

of Operations in a Class Unweighted (NOPC1)
Single 0 53 240 8.57

Multi 0 63 251 9.65

of Operations in a Class Weighted (NOPC2)
Single 0 53 240 8.57

Multi 0 63 251 9.65

of Super Classes of a Class (NSUPC)
Single 0 1 7 0.25

Multi 0 1 7 0.27

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Single 0 3 12 0.43

Multi 0 3 12 0.46

338

Discussion: Since the Specters’ model smell target temporary classes within the class

model identified from the sequence models, a significant impact can be seen from the

improved coupling and design size of the class model as evident from Table 65 and Table

66.

(b) Use Case Diagram

Table 67 Comparison of Use Case Diagram-level Metrics for ESAP System

Metrics Single View Multi View

Number of Use Cases (NUM) 39 38

Number of Actors (NAM) 6 5

Table 68 Comparison of Use Case Element-level Metrics for ESAP System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Single 0 5 27 0.69

Multi 0 5 27 0.69

of Use Cases which Extend this Use Case

(EXTENDED)

Single 0 2 27 0.69

Multi 0 2 27 0.71

of Use Cases which this Includes

(INCLUDING)

Single 0 0 0 0.00

Multi 0 0 0 0.00

of Use Cases which Includes this Use Case

(INCLUDED)

Single 0 0 0 0.00

Multi 0 0 0 0.00

of Extension Points of The Use Case (ExtPts)
Single 0 5 27 0.69

Multi 0 5 27 0.71

Depth of <<Include>> Relationship (DOIR)
Single 0 0 0 0.00

Multi 0 0 0 0.00

Depth of <<Extend>> Relationship (DOER)
Single 0 3 37 0.95

Multi 0 3 37 0.97

339

Discussion: Due to the detection of a single instance of the duplication model smell, the

effect is barely noticeable with the reduction in the number of use cases and actors in the

use case model of the ESAP case study.

(c) Sequence Diagram

Table 69 Comparison of Sequence Element-level Metrics for ESAP System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Single 0 6 155 3.97

Multi 0 6 150 3.95

of Messages (NMM)
Single 0 20 296 7.59

Multi 0 20 288 7.58

of Messages sent by the Instantiated Objects of

a Class (NMSC)

Single 1 9 292 1.87

Multi 1 9 282 2.01

of Messages received by the Instantiated
Objects of a Class (NMRC)

Single 1 9 293 1.83

Multi 1 9 283 1.94

Discussion: A combination of the specters’ and duplication model smell resolution

reduced the number of lifelines, messages and messages exchanged in the sequence

models of the ESAP case study as shown in Table 69.

8.1.4 ME (MyEvents)

Five instances of the “Duplication” Model Smell, single instance of the “Specters” Model

Smell and a single instance of the “Spider’s Web” Model Smell were detected within the

integrated model of the ME case study.

340

(a) Class Diagram

Table 70 Comparison of Class Diagram-level Metrics for ME System

Metrics Single View Multi View

Number of The Classes (NCM) 15 14

Number of The Associations (NASM) 12 12

Number of The Aggregations (NAGM) 14 13

Number of The Inheritance Relations (NIM) 5 5

341

Table 71 Comparison of Class Element-level Metrics for ME System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Single 0 2 6 0.40

Multi 0 2 6 0.40

Number of Children (NOC)
Single 0 2 5 0.33

Multi 0 2 5 0.33

Fan-In
Single 0 6 24 1.60

Multi 0 6 23 1.53

Fan-out
Single 0 6 24 1.60

Multi 0 6 23 1.53

of Associations Linked to a Class (NASC)
Single 1 9 50 3.33

Multi 1 9 49 3.27

of Attributes in a Class Unweighted (NATC1)
Single 1 16 101 6.73

Multi 1 15 90 6.00

of Attributes in a Class Weighted (NATC2)
Single 0 2 3 0.20

Multi 0 2 3 0.20

of Operations in a Class Unweighted (NOPC1)
Single 1 18 103 6.87

Multi 0 17 95 6.33

of Operations in a Class Weighted (NOPC2)
Single 1 18 103 6.87

Multi 0 17 95 6.33

of Super Classes of a Class (NSUPC)
Single 0 1 5 0.33

Multi 0 1 5 0.33

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Single 0 2 6 0.40

Multi 0 2 6 0.40

342

Discussion: Due to the detection of a single instance of the specters’ model smell, the

effect is barely noticeable with the reduction in the number of classes and associations in

the class model of the ME case study.

(b) Use Case Diagram

Table 72 Comparison of Use Case Diagram-level Metrics for ME System

Metrics Single View Multi View

Number of Use Cases (NUM) 62 61

Number of Actors (NAM) 9 12

Table 73 Comparison of Use Case Element-level Metrics for ME System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Single 0 0 0 0.00

Multi 0 2 4 0.07

of Use Cases which Extend this Use Case

(EXTENDED)

Single 0 0 0 0.00

Multi 0 2 4 0.07

of Use Cases which this Includes

(INCLUDING)

Single 0 1 2 0.03

Multi 0 1 22 0.36

of Use Cases which Includes this Use Case

(INCLUDED)

Single 0 1 2 0.03

Multi 0 21 22 0.36

of Extension Points of The Use Case (ExtPts)
Single 0 0 0 0.00

Multi 0 2 4 0.07

Depth of <<Include>> Relationship (DOIR)
Single 0 1 2 0.03

Multi 0 1 2 0.03

Depth of <<Extend>> Relationship (DOER)
Single 0 0 0 0.00

Multi 0 1 3 0.05

343

Discussion: Although the ME case study had a huge number of use cases within the

model, they were justified except that the maximum number of use cases per actor was 27

which resulted in the spider’s web model smell. Resolution of this model smell resulted

in increasing the total number of actors in the model but reducing the maximum number

of use cases per actor to 12. The resolution of the duplication model smell although did

not reduce the number of use cases within the system, but significantly improved the

complexity and structure of the use case model by identifying and adding include and

extend relationships within the model as shown in Table 73.

(c) Sequence Diagram

Table 74 Comparison of Sequence Element-level Metrics for ME System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Single 2 6 260 4.19

Multi 2 6 264 4.26

of Messages (NMM)
Single 2 25 703 11.34

Multi 2 13 424 6.84

of Messages sent by the Instantiated Objects of
a Class (NMSC)

Single 1 10 678 1.80

Multi 0 10 455 1.60

of Messages received by the Instantiated

Objects of a Class (NMRC)

Single 1 10 674 1.59

Multi 0 10 471 1.51

Discussion: As a result of the resolution of the duplication model smell, a huge impact

was seen in terms of the maximum and total number of messages in the system as evident

from the metric values in Table 74. This in turn also affected the number of messages

sent and received by lifelines within the sequence models.

344

8.1.5 FOMS (Freelancing Online Management System)

No instances of the Integrated Model Smells were detected within the integrated model of

the FOMS case study.

(a) Class Diagram

Table 75 Comparison of Class Diagram-level Metrics for FOMS System

Metrics Single View Multi View

Number of The Classes (NCM) 16 16

Number of The Associations (NASM) 8 8

Number of The Aggregations (NAGM) 10 10

Number of The Inheritance Relations (NIM) 7 7

345

Table 76 Comparison of Class Element-level Metrics for FOMS System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Single 0 2 9 0.56

Multi 0 2 9 0.56

Number of Children (NOC)
Single 0 5 7 0.44

Multi 0 5 7 0.44

Fan-In
Single 0 6 21 1.31

Multi 0 6 21 1.31

Fan-out
Single 0 6 21 1.31

Multi 0 6 21 1.31

of Associations Linked to a Class (NASC)
Single 0 9 36 2.25

Multi 0 9 36 2.25

of Attributes in a Class Unweighted (NATC1)
Single 0 18 82 5.13

Multi 0 16 84 5.13

of Attributes in a Class Weighted (NATC2)
Single 0 2.5 2.5 0.16

Multi 0 2.5 2.5 0.16

of Operations in a Class Unweighted (NOPC1)
Single 1 39 174 10.88

Multi 1 39 174 10.88

of Operations in a Class Weighted (NOPC2)
Single 1 37 156 9.75

Multi 1 37 156 9.75

of Super Classes of a Class (NSUPC)
Single 0 1 7 0.44

Multi 0 1 7 0.44

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Single 0 2 9 0.56

Multi 0 2 9 0.56

346

Discussion: No instances of any integrated model smells were found for the FOMS case

study. Hence, the values remain unchanged before and after the application of refactoring

as shown in Table 75 and Table 76.

(b) Use Case Diagram

Table 77 Comparison of Use Case Diagram-level Metrics for FOMS System

Metrics Single View Multi View

Number of Use Cases (NUM) 35 35

Number of Actors (NAM) 5 5

Table 78 Comparison of Use Case Element-level Metrics for FOMS System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Single 0 1 1 0.03

Multi 0 1 1 0.03

of Use Cases which Extend this Use Case

(EXTENDED)

Single 0 1 1 0.03

Multi 0 1 1 0.03

of Use Cases which this Includes

(INCLUDING)

Single 0 1 4 0.11

Multi 0 1 4 0.11

of Use Cases which Includes this Use Case

(INCLUDED)

Single 0 3 4 0.11

Multi 0 3 4 0.11

of Extension Points of The Use Case

(ExtPts)

Single 0 1 1 0.03

Multi 0 1 1 0.03

Depth of <<Include>> Relationship (DOIR)
Single 0 1 2 0.06

Multi 0 1 2 0.06

Depth of <<Extend>> Relationship (DOER)
Single 0 1 1 0.03

Multi 0 1 1 0.03

347

Discussion: No instances of any integrated model smells were found for the FOMS case

study. Hence, the values remain unchanged before and after the application of refactoring

as shown in Table 77 and Table 78.

(c) Sequence Diagram

Table 79 Comparison of Sequence Element-level Metrics for FOMS System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Single 2 8 109 3.11

Multi 2 8 109 3.11

of Messages (NMM)
Single 1 18 162 4.63

Multi 1 18 162 4.63

of Messages sent by the Instantiated Objects of

a Class (NMSC)

Single 1 11 148 1.40

Multi 1 11 148 1.40

of Messages received by the Instantiated
Objects of a Class (NMRC)

Single 1 9 154 1.62

Multi 1 9 154 1.62

Discussion: No instances of any integrated model smells were found for the FOMS case

study. Hence, the values remain unchanged before and after the application of refactoring

as shown in Table 79.

8.1.6 ATM (Automated Teller Machine)

Five instances of the “Duplication” Model Smell, three instances of the “Specters” Model

Smell and a single instance of the “Undue Familiarity” Model Smell were detected within

the integrated model of the ATM case study.

348

(a) Class Diagram

Table 80 Comparison of Class Diagram-level Metrics for ATM System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 14 9

Number of The Associations (NASM) 3 3

Number of The Aggregations (NAGM) 8 5

Number of The Inheritance Relations (NIM) 2 0

349

Table 81 Comparison of Class Element-level Metrics for ATM System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 1 2 0.14

After 0 0 0 0.00

Number of Children (NOC)
Before 0 2 2 0.14

After 0 0 0 0.00

Fan-In
Before 0 2 11 0.79

After 0 2 8 0.89

Fan-out
Before 0 2 11 0.79

After 0 2 8 0.89

of Associations Linked to a Class (NASC)
Before 0 8 22 1.57

After 1 5 16 1.78

of Attributes in a Class Unweighted (NATC1)
Before 0 14 29 2.07

After 0 11 26 2.89

of Attributes in a Class Weighted (NATC2)
Before 0 3 4 0.29

After 0 1.5 2.5 0.28

of Operations in a Class Unweighted (NOPC1)
Before 0 14 77 5.50

After 0 16 62 6.89

of Operations in a Class Weighted (NOPC2)
Before 0 14 77 5.50

After 0 16 62 6.89

of Super Classes of a Class (NSUPC)
Before 0 1 2 0.14

After 0 0 0 0.00

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 1 2 0.14

After 0 0 0 0.00

350

Discussion: The resolution of the specters’ and undue familiarity model smells reduced

the number of total number of classes and aggregation relationships within the class

model for the ATM case study. Based on the duplication model smell, a number of

classes were identified as “speculative generality” and were possibly overriding only a

single operation with no attributes. Hence, these classes were removed and additional

parameter added to the message in the super class to differentiate the call based on the

type of the sequence diagram. This is the reason of reduction in the number of inheritance

relations in the class model.

(b) Use Case Diagram

Table 82 Comparison of Use Case Diagram-level Metrics for ATM System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 15 17

Number of Actors (NAM) 2 2

351

Table 83 Comparison of Use Case Element-level Metrics for ATM System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 0 0 0

After 0 4 5 0.29

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 0 0 0

After 0 1 5 0.29

of Use Cases which this Includes

(INCLUDING)

Before 0 0 0 0

After 0 1 7 0.41

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 0 0 0

After 0 4 7 0.41

of Extension Points of The Use Case

(ExtPts)

Before 0 0 0 0

After 0 4 5 0.29

Depth of <<Include>> Relationship (DOIR)
Before 0 0 0 0

After 0 1 3 0.18

Depth of <<Extend>> Relationship (DOER)
Before 0 0 0 0

After 0 1 5 0.29

Discussion: The removal of the duplication model smell resulted in the identification of

include and extend relationships within the use case models as evident from the metrics

in Table 83. Although this resulted in increasing the total number of use cases due to

extraction of duplicate fragments from the sequence models of the respective use cases.

(c) Sequence Diagram

Table 84 Comparison of Sequence Element-level Metrics for ATM System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 2 5 57 3.80

After 1 5 60 3.53

of Messages (NMM)
Before 3 25 102 6.80

After 1 13 74 4.35

of Messages sent by the Instantiated Objects of
a Class (NMSC)

Before 0 21 96 1.63

After 0 12 72 1.05

of Messages received by the Instantiated
Objects of a Class (NMRC)

Before 0 11 103 1.98

After 0 5 74 1.26

352

Discussion: The removal of the duplication model smell resulted in significantly

improving the maximum number of messages within a sequence diagram. This is mainly

due to the use of extract fragment refactoring applied to remove redundant fragments into

an independent sequence model.

8.1.7 SCM (Supply Chain Management)

A single instance of the “Specters” Model Smell was detected within the integrated

model of the SCM case study.

(a) Class Diagram

Table 85 Comparison of Class Diagram-level Metrics for SCM System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 21 20

Number of The Associations (NASM) 23 22

Number of The Aggregations (NAGM) 4 4

Number of The Inheritance Relations (NIM) 2 2

353

Table 86 Comparison of Class Element-level Metrics for SCM System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 1 2 0.10

After 0 1 2 0.10

Number of Children (NOC)
Before 0 2 2 0.10

After 0 2 2 0.10

Fan-In
Before 0 5 50 2.38

After 0 5 48 2.40

Fan-out
Before 0 5 50 2.38

After 0 5 48 2.40

of Associations Linked to a Class (NASC)
Before 1 5 54 2.57

After 1 5 52 2.60

of Attributes in a Class Unweighted (NATC1)
Before 0 7 39 1.86

After 0 7 39 1.95

of Attributes in a Class Weighted (NATC2)
Before 0 0 0 0.00

After 0 0 0 0.00

of Operations in a Class Unweighted (NOPC1)
Before 0 3 23 1.10

After 0 4 25 1.25

of Operations in a Class Weighted (NOPC2)
Before 0 3 23 1.10

After 0 4 25 1.25

of Super Classes of a Class (NSUPC)
Before 0 1 2 0.10

After 0 1 2 0.10

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 1 2 0.10

After 0 1 2 0.10

354

Discussion: Due to the detection of a single instance of the specters’ model smell, the

effect is barely noticeable with the reduction in the number of classes and associations in

the class model of the SCM case study.

(b) Use Case Diagram

Table 87 Comparison of Use Case Diagram-level Metrics for SCM System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 8 8

Number of Actors (NAM) 5 5

Table 88 Comparison of Use Case Element-level Metrics for SCM System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 0 0 0

After 0 0 0 0

of Use Cases which this Includes

(INCLUDING)

Before 0 1 2 0.25

After 0 1 2 0.25

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 1 2 0.25

After 0 1 2 0.25

of Extension Points of The Use Case

(ExtPts)

Before 0 0 0 0

After 0 0 0 0

Depth of <<Include>> Relationship (DOIR)
Before 0 1 2 0.25

After 0 1 2 0.25

Depth of <<Extend>> Relationship (DOER)
Before 0 0 0 0

After 0 0 0 0

355

Discussion: Since the detected instance of an integrated model smell did not affect the

use case model of the SCM case study, the values remain unchanged before and after the

application of refactoring as shown in Table 87 and Table 88.

(c) Sequence Diagram

Table 89 Comparison of Sequence Element-level Metrics for SCM System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 3 5 29 3.63

After 2 5 28 3.50

of Messages (NMM)
Before 3 11 43 5.38

After 3 11 42 5.25

of Messages sent by the Instantiated Objects of

a Class (NMSC)

Before 1 7 42 1.64

After 1 7 41 1.65

of Messages received by the Instantiated
Objects of a Class (NMRC)

Before 1 4 43 1.51

After 1 4 42 1.51

Discussion: Due to the detection of a single instance of the specters’ model smell, the

effect is barely noticeable with the reduction in the minimum number of lifelines in a

sequence model of the SCM case study.

8.1.8 O-Comm (OS Commerce)

Twenty three instances of the “Duplication” Model Smell, two instances of the “Undue

Familiarity” Model Smell and a single instance of the “Multiple Personality” Model

Smell were detected within the integrated model of the O-Comm case study.

356

(a) Class Diagram

Table 90 Comparison of Class Diagram-level Metrics for O-Comm System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 57 57

Number of The Associations (NASM) 41 41

Number of The Aggregations (NAGM) 2 2

Number of The Inheritance Relations (NIM) 26 26

357

Table 91 Comparison of Class Element-level Metrics for O-Comm System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 2 31 0.54

After 0 2 31 0.54

Number of Children (NOC)
Before 0 7 26 0.46

After 0 7 26 0.46

Fan-In
Before 0 9 84 1.47

After 0 9 84 1.47

Fan-out
Before 0 9 84 1.47

After 0 9 84 1.47

of Associations Linked to a Class (NASC)
Before 0 9 86 1.51

After 0 9 86 1.51

of Attributes in a Class Unweighted (NATC1)
Before 0 17 211 3.70

After 0 17 211 3.70

of Attributes in a Class Weighted (NATC2)
Before 0 8.5 104.5 1.83

After 0 8.5 104.5 1.83

of Operations in a Class Unweighted (NOPC1)
Before 0 15 202 3.54

After 0 15 202 3.54

of Operations in a Class Weighted (NOPC2)
Before 0 15 202 3.54

After 0 15 202 3.54

of Super Classes of a Class (NSUPC)
Before 0 2 26 0.46

After 0 2 26 0.46

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 3 34 0.60

After 0 3 34 0.60

358

Discussion: As stated earlier, when it comes to the effect of the Undue Familiarity Model

Smell from the Integrated Model Smell suite and the Data Class Model Smell from the

Individual Refactoring Model Smell, the effect on class diagram is minimal. Hence, there

is no apparent difference in the metric values depicted in Table 90 and Table 91.

(b) Use Case Diagram

Table 92 Comparison of Use Case Diagram-level Metrics for O-Comm System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 119 80

Number of Actors (NAM) 5 5

Table 93 Comparison of Use Case Element-level Metrics for O-Comm System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 0 0 0.00

After 0 5 5 0.06

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 0 0 0.00

After 0 1 5 0.06

of Use Cases which this Includes

(INCLUDING)

Before 0 0 0 0.00

After 0 0 0 0.00

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 0 0 0.00

After 0 0 0 0.00

of Extension Points of The Use Case

(ExtPts)

Before 0 0 0 0.00

After 0 5 5 0.06

Depth of <<Include>> Relationship (DOIR)
Before 0 0 0 0.00

After 0 0 0 0.00

Depth of <<Extend>> Relationship (DOER)
Before 0 0 0 0.00

After 0 1 5 0.06

359

Discussion: Due to the resolution of the integrated model smell instances detected, a

significant improvement was seen in the complexity and structure of the use case model

for the O-Comm case study. The resolution of the duplication model smell reduced the

total number of use cases in the model as shown in Table 92. Identification of the

Multiple personality model smell also added multiple extend relationships between use

cases as evident from Table 93.

(c) Sequence Diagram

Table 94 Comparison of Sequence Element-level Metrics for O-Comm System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 1 8 396 3.33

After 1 8 274 3.43

of Messages (NMM)
Before 1 35 675 5.67

After 1 24 631 7.89

of Messages sent by the Instantiated Objects of

a Class (NMSC)

Before 1 44 675 5.67

After 1 24 605 7.56

of Messages received by the Instantiated

Objects of a Class (NMRC)

Before 1 37 675 5.67

After 1 24 627 7.84

Discussion: Although the detection and resolution of the duplication model smell

improved the use case model metrics considerably, the average number of messages

exchanged increased by a fair margin too in the sequence models. This is mainly because

the refactoring operation to resolve the model duplication combines two sequence models

with the same signature. Since the signature is made up the lifelines involved in a use

cases sequence model, the refactoring did not affect the average number of lifelines per

sequence model. On the positive side, the resolution of the multiple personality model

360

smell reduced the maximum number of messages in a sequence model significantly as

evident from Table 94.

8.1.9 ORA (On-Road Assistance)

Four instances of the “Specters” Model Smell, three instances of the “Creeping

Featurism” Model Smell and a single instance of the “Excessive Alternation” Model

Smell were detected within the integrated model of the ORA case study.

(a) Class Diagram

Table 95 Comparison of Class Diagram-level Metrics for ORA System

Metrics Before Refactoring After Refactoring

Number of The Classes (NCM) 14 10

Number of The Associations (NASM) 16 12

Number of The Aggregations (NAGM) 0 0

Number of The Inheritance Relations (NIM) 0 0

361

Table 96 Comparison of Class Element-level Metrics for ORA System

Metrics

Minimum Maximum Total Average

Depth of Inheritance (DIT)
Before 0 0 0 0.00

After 0 0 0 0.00

Number of Children (NOC)
Before 0 0 0 0.00

After 0 0 0 0.00

Fan-In
Before 0 4 16 1.14

After 0 4 12 1.20

Fan-out
Before 0 4 16 1.14

After 0 4 12 1.20

of Associations Linked to a Class (NASC)
Before 1 5 32 2.29

After 1 5 24 2.40

of Attributes in a Class Unweighted (NATC1)
Before 1 4 33 2.36

After 2 4 29 2.90

of Attributes in a Class Weighted (NATC2)
Before 0 0 0 0.00

After 0 0 0 0.0

of Operations in a Class Unweighted (NOPC1)
Before 1 6 29 2.07

After 1 6 24 2.40

of Operations in a Class Weighted (NOPC2)
Before 1 6 29 2.07

After 1 6 24 2.40

of Super Classes of a Class (NSUPC)
Before 0 0 0 0.00

After 0 0 0 0.00

of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*)
Before 0 0 0 0.00

After 0 0 0 0.00

362

Discussion: The resolution of the specters’ model smell reduced the number of total

number of classes and association relationships within the class model for the ORA case

study as evident from the class model metrics shown in Table 95 and Table 96.

(b) Use Case Diagram

Table 97 Comparison of Use Case Diagram-level Metrics for ORA System

Metrics Before Refactoring After Refactoring

Number of Use Cases (NUM) 13 9

Number of Actors (NAM) 4 4

Table 98 Comparison of Use Case Element-level Metrics for ORA System

Metrics

Minimum Maximum Total Average

of Use Cases which this Extends

(EXTENDING)

Before 0 3 4 0.31

After 0 1 1 0.11

of Use Cases which Extend this Use Case

(EXTENDED)

Before 0 1 4 0.31

After 0 1 1 0.11

of Use Cases which this Includes

(INCLUDING)

Before 0 6 7 0.54

After 0 3 4 0.44

of Use Cases which Includes this Use Case

(INCLUDED)

Before 0 1 7 0.54

After 0 1 4 0.44

of Extension Points of The Use Case

(ExtPts)

Before 0 3 4 0.31

After 0 1 1 0.11

Depth of <<Include>> Relationship (DOIR)
Before 0 2 8 0.62

After 0 2 5 0.56

Depth of <<Extend>> Relationship (DOER)
Before 0 1 4 0.31

After 0 1 1 0.11

363

Discussion: As a result of the resolution of the creeping featurism model smell, a couple

of functional use cases were merged into their “including” use cases. This in turn reduced

the total number of use cases within the model. On the other hand, the resolution of the

excessive alternation model smell reduced the number of extend relationships within the

use case model. This effect of integrated refactoring on the relationships in the use case

model for the ORA case study is evident from Table 98.

(c) Sequence Diagram

Table 99 Comparison of Sequence Element-level Metrics for ORA System

Metrics

Minimum Maximum Total Average

of Lifelines (LIFELINES)
Before 2 8 45 3.46

After 2 7 31 3.44

of Messages (NMM)
Before 0 4 42 3.23

After 0 9 35 3.89

of Messages sent by the Instantiated Objects of

a Class (NMSC)

Before 1 2 39 1.13

After 1 4 33 1,20

of Messages received by the Instantiated

Objects of a Class (NMRC)

Before 1 2 42 1.12

After 1 4 34 1.20

Discussion: Although the resolution of the specters’ model smell reduced the maximum

and total number of lifelines per sequence model, the resolution of the creeping featurism

increased the number of messages exchanged within a sequence model.

8.2 Analysis and Discussion

In this chapter, we evaluated the effect of refactoring, considering both single model at a

time and a multi-view integrated model, on indicative metrics for class, sequence and use

364

case models. The evaluation and discussion demonstrated that the impact of refactoring

on these metrics was non-trivial. Hence, it is not feasible to generalize that any

application of a refactoring to remove the identified smell improves or impairs one of the

external quality attributes.

Based on this information, instead of stating that refactoring a model smell has partial

impact on the metrics, we found that it is beneficial if the effect on the metrics is

described by an impact spectrum rather than specific values. A collection of metrics are

loosely associated with a design characteristic such as size, modularity and so on. These

associations are based on the work of Seidl and Sneed [458] who tried associating UML

model metrics with characteristics such as quantity, complexity, quality and size.

Although their work is intended for the application of testing, it can be used for our

analysis as well. Each metric is then given a value from the set {+, -, =} which designates

the impact as a result of refactoring.

0

10

20

30

40

50

60

of instances found

Figure 92 Number of instances of Integrated Model Smells detected

365

Figure 92 shows the number of instances of integrated model smells detected over the

selected case studies. It is evident that the Duplication model smell is the most popular

among all the other smells. The only model smells instance not detected within the

existing case studies is Ripple Effect.

8.2.1 Integrated Refactoring Impact on Use Case Diagram

Depicted in Figure 93 (a) and (b) are use case metric associations with their design

characteristics.

No. of Use Cases

No. of Actors

No. of UC / actor

UC Design Size

Max No. Inclusion / UC

Max No. Extension / UC

Avg. DOIR

UC
Complexity &

Reusability

Avg. DOER

(a)

(b)

Figure 93 Use case metrics association with model
characteristics

366

Table 100 Refactoring impact spectrum over use case design size metrics

Case Study
No. of Use

Cases

No. of

Actors

No. of

UC/Actor

OFD - + -

OG - - -

ESAP - - -

ME - + -

FOMS - + -

ATM + = -

SCM = = =

O-Comm - = -

ORA - = +

When it comes to design size, the smaller the number of elements the better it is for

analysis. Table 100 shows a consistent reduction in the number of use cases and number

of use cases per actor metric as a result of integrated model refactoring. Few instances

where there is an increase in the number of actors is mainly due to resolution of the

Spider’s Web Model Smell which usually is accompanied by a significant reduction in

the number of use cases associated with actors. There is only a single instance when the

number of use cases per actor increases. This is because of the resolution of the Excessive

Alternation Model Smell that associates extension use cases directly to the actor

removing the extend relationship.

367

Table 101 Refactoring impact spectrum over use case complexity metrics

Case Study
Max No. of

Inclusion/UC

Max No. of

Extension/UC

Avg.

DOIR

Avg.

DOER

OFD = - = =

OG = = = =

ESAP = = = =

ME + + = +

FOMS + = = =

ATM + + + +

SCM = = = =

O-Comm = + = +

ORA - - - -

With the set of metric chosen for use case complexity and reusability, the lower the value

the better it is for use case analysis. Exceptions include increase in relationships when

there are actually no relationships in the original model. As seen from the results

summarized in Table 101, it is evident that most of the time the impact on relationships is

either the same or increased. The three case studies (ME, ATM, O-Comm) that actually

resulted in increasing the values of the metrics had no relationships between use cases

within the use case model. Integrated Refactoring over these case studies identified these

relationships mainly by removing duplication and adding structure to the overall model.

Hence, the increase in these cases is more beneficial rather than considered a side-effect.

8.2.2 Integrated Refactoring Impact on Class Diagram

For the analysis of the impact of class diagrams, we used a slightly different approach.

Based on the work of Seidl and Sneed [458], we analyze the impact of integrated

refactoring on the case studies on the following characteristics:

• Data Complexity: The more data attributes a class has the higher its complexity

368

• Functional Complexity: More methods a class have, the higher its complexity.

• Hierarchical Complexity: More hierarchical levels, the more dependent the

lower level classes are on the higher level ones.

• Coupling: Classes with a high coupling have a greater impact domain.

• Reusability: The more, associations and interactions there are, the more difficult

it is to take out individual classes and methods from the current architecture and

to reuse them

Table 102 Refactoring impact spectrum over class metrics

Case Study

Data

Complexity

(NOA)

Functional

Complexity

(NOM)

Hierarchical

Complexity

(DIT)

Coupling

(DCC)

Reusability

(NASM +

NAGM)

OFD - - = = +

OG = = = = =

ESAP = + = - -

ME - - = - -

FOMS - - = - =

ATM - - - - -

SCM = + = - -

O-Comm = = = = =

ORA - - = - -

As the characteristics of the class model analyzed deal with complexity and reusability,

the lower the values the better it is for class diagram use and analysis. As seen from Table

102, there are notable improvements in the degree of complexity, reusability and

modularity of the class model after integrated refactoring. Although there are a few

exceptions, these is mainly due to the resolution of undue familiarity wherein operations

are distributed among classes resulting in increase in the NOM metric values.

369

8.2.3 Integrated Refactoring Impact on Sequence Diagram

Depicted in Figure 94 (a) and (b) are sequence model metric associations with their

design characteristics.

Table 103 Refactoring impact spectrum over sequence model design size metrics

Case Study
Max No. of

Lifelines

Max No. of

Messages

OFD = =

OG - =

ESAP = =

ME = -

FOMS = -

ATM = -

SCM = =

O-Comm = -

ORA = +

Max No. of Lifelines

Max No. of Messages

SEQ Design

Size

NMSC

NMRC

Message
Exchange
Frequency

(a)

(b)

Figure 94 Sequence model metrics association with
model characteristics

370

When it comes to design size, the smaller the number of elements the better it is for

analysis. Table 103 shows a notable improvement to sequence diagram design size

mainly in terms of the number of messages. Although there is an exception in one case

study (ORA) where the max number of messages exchanged between lifelines has

actually increased. This is mainly contributed due to the side-effect of the creeping

featursm model smell resolution as the messages of the inclusion use case are typically

combined with its base use case when the inclusion is a functional decomposition.

Table 104 Refactoring impact spectrum over sequence model message frequency

Case Study NMSC NMRC

OFD - -

OG - -

ESAP - -

ME - -

FOMS - -

ATM - -

SCM = =

O-Comm - -

ORA - -

As seen from the results summarized in Table 104, it is evident that the message

exchange frequency had consistency improved as a result of integrated model refactoring.

371

9 CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Summary

Model-driven engineering, an emerging trend in software engineering, has enabled the

application of refactoring to UML models. The concept of refactoring was initially used

for source code restructuring. The main goal of refactoring is to reduce software

complexity by modifying the system without altering its external behavior. With the

popularity of MDE and UML, recent approaches for refactoring have elevated it to a

more abstract level of design models. Hence the term model refactoring or model-driven

refactoring was coined.

An Object-Oriented system modeled by UML is built up from many different views.

Model refactoring, in recent proposals, is applied to a single view at a given time. Hence,

information from other views are either not considered or later synchronized for

consistency preservation. The objective of this research was to develop a multi-view

integrated approach to model-driven refactoring using UML models. Due to feasibility,

we restricted our scope to one diagram from each UML view, class diagram (structural

view), sequence diagram (behavioral view) and use case diagram (functional view). An

integrated metamodel composed from the metamodels of the selected UML models was

initially constructed. In order to ensure proper integration of metamodels, metamodels of

the sequence diagram and use case diagram were initially extended prior to composition.

372

Refactoring opportunities and transformation operations were defined at the metamodel

level (integrated), which is based on the M2 level of the UML architecture in order to

utilize the extension capability of the language.

Our approach to refactor the integrated model consisted of two main steps. First, we

identified where to apply refactoring by detecting refactoring opportunities identified in

this work. Finally, we applied a set of composite refactorings used to remove the model

smell from the integrated model. We proposed a total of eight integrated refactoring

opportunities that can be used to improve the design models where these opportunities

appear. For each of the proposed refactoring opportunities, we also described a set of

primitive refactorings that can be used to remove the identified smells. The main

objective of identifying these refactoring opportunities was to make the design models

more maintainable by improving the overall organization of the software system.

We developed a tool that fully supported the integrated model refactoring approach from

integration to refactoring and evaluation. We performed an empirical validation using

nine case studies to explore the effectiveness of our approach. The validation study

compared our integrated refactoring approach with refactoring applied to models

individually in terms of quality improvement. From the results, we found that more

opportunities can be detected using the integrated approach rather than the individual

refactoring approach.

Quality improvement through refactoring was measured by the difference between

metrics before and after the application of refactoring. As a result of the evaluation and

analysis we found that the use of an integrated model aided in identification of more

373

design flaws than individual refactoring of models. Inter-model flaws such as duplication,

specters’, undue familiarity etc. were easy to detect and resolve when information from

multiple views was considered. The resulting use case models depicted reusability

through inclusion & extension and better responsibility assignment. The resulting

sequence models depicted reduction in the total number of messages within each diagram

and reduction in the message passing frequency. The resulting class models depicted

modularity through reduction in coupling, distribution of behavior to their familiar

classes and use of OO concepts such as inheritance and abstraction.

9.2 Contributions

The research work presented in this dissertation makes the following contributions to the

field of model-driven software refactoring:

1. Provides a state-of-the–art survey and systematic literature review in the field of

model-driven software refactoring.

2. Provides a process model consisting of a number of distinct activities essential for

model-driven refactoring along with a comparison framework for evaluating

existing refactoring approaches.

3. Provides an extension to the UML metamodel for sequence diagram by adding

model elements to enable model extensibility and enhance code traceability.

4. Provides an extension to the UML metamodel for use case diagram that includes

representation for all its elements and relationships (structural and textual) in a

374

conflict-free manner and one that includes information for model analysis,

evaluation and interchange among modeling tools.

5. Provides an integrated metamodel built taking into consideration the three views

of UML models: structural, behavioral and functional.

6. Provides a catalog of eight model smells based on the integrated metamodel.

These smells take into consideration information from the functional, behavioral

and structural view (in the form of an integrated metamodel) and propose

refactoring opportunities to correct design defects and anti-patterns covering the

different views of UML models.

7. Provides a prototype tool to develop use case diagrams authoring both its

structural and behavioral components.

8. Provides automated tool support for model smell detection, resolution and

evaluation over the proposed integrated metamodel.

9.3 Threats to Validity

Threats to validity for an empirical study are divided into three types: Construct Validity,

Internal Validity and External Validity [459].

Construct Validity: This measures the extent to which the independent and dependent

variables accurately model the study hypotheses. In our work, the dependent variable

which is the quality improvement achieved by refactoring, has to address the degree the

quality model accurately measures the quality of the software. Due to the lack of a quality

model that is evaluated through empirical experiments and expert opinion in the field of

375

model-driven refactoring, we evaluated the effect of refactoring on indicative metrics for

class, sequence and use case models. Another threat to construct validity is the choice of

threshold values for a few smell detection strategies. These values were obtained from

design guidelines and metric authors from the literature. The choice of a threshold value

can vary the effectiveness of the strategy in identifying model smells in the integrated

metamodel.

Internal Validity: This measures the extent to which changes in the dependent variable

can be safely attributed to changes in the independent variables. In our validation, there

are two threats pertaining to this category: unavailability of a model quality framework

and semi-automatic application of refactoring. Due to lack of a mapping framework

between the internal quality metrics and external attributes, comparison between the

internal quality metrics was performed. Second, although identification of refactoring

opportunities is performed automatically through the proposed prototype tool, a semi-

automatic approach is employed for resolution. This means each refactoring operation

before its application over the model is consulted from the user. There is a possibility that

the we may have misclassified a few false-positive cases as opportunities for refactoring.

This threat was considerably mitigated by the fact that we are well versed with the case

studies and that the size of the case studies was relatively small.

External Validity: This measures the extent to which results of the study are generic and

negate the effects of environmental variables. In our validation, there is only one threat

pertaining to this category: choice of case studies for evaluation. Case studies considered

in this work were obtained from senior software engineering projects and small-sized

case studies published in the literature and books. These case studies may not be

376

representative of all types of systems, specifically industrial case studies developed by

professionals and practitioners. Due to the lack of usable large sized case studies in the

domain of this research, the behavior of the integrated model refactoring approach could

not be assessed on a wider scale.

9.4 Future Works

Refactoring software, especially models of software is a relatively new discipline and a

highly active area of research. The work developed in this research considered

application of refactoring over multiple views of UML in an integrated manner, which is

a novel achievement in this constantly evolving area. Hence, the approach must go

through several adjustments based on substantial experience of practical applications to

obtain relevance in the industry. Based on our review of literature in the field of model-

driven refactoring and the work presented in this dissertation, several possible directions

for future investigations were identified.

Formal systems add preciseness to the process of refactoring at the expense of

interoperability and ease of use. On the other hand, text based approaches (like XMI) are

easy to understand and are portable but makes the task of model refactoring difficult due

to size, manual handling of transformation and behavior preservation and impreciseness.

Techniques to integrate formality within text-based approaches will improve usability of

these approaches.

377

There is a significant gap between the model smells and anti-patterns proposed for source

code and models. An initial attempt to bridge this gap has been proposed in this

dissertation that considers more than one UML view to identify model smells.

Identification of more refactoring opportunities based on the integrated model is hence

required. Pattern-based model refactoring is another refactoring opportunity detection

approach gaining immense popularity. The use of the integrated metamodel identifying

the application of behavioral and structural design patterns can also be investigated.

Apart from the UML class diagram, other diagrams are rarely used for refactoring. The

use of multiple UML models for detection of smells may motivate the researchers to look

into refactoring operations for other UML models. Defining refactoring opportunities

including other models in the integrated framework, namely the state and object

diagrams, will allow addition of more information to the structural and behavioral view.

Research in the area of model quality evaluation is significantly lacking behind. Hence,

there is a vital requirement of a model metrics catalog for all UML models, framework to

establish correlation between these metrics and external model quality attributes and

empirical studies to evaluate the effect of model metrics and design patterns over model

refactoring techniques.

Other avenues for future work include investigation of interaction information from

models for behavior specification and preservation (call preservation). An plugin version

of the Integrated Refactoring tool for popular CASE tools such as Eclipse can be

developed for wider use. Finally, there is need for approaches to determine an appropriate

model smell application and resolution schedule is required to maximize quality

378

improvements. Further studies should also be performed to evaluate the effectiveness of

the proposed integrated model refactoring large real-world project designs.

379

Appendix 1: Formal Description for the UML Metamodel

A1.1 Class Diagram

A class diagram is a 4-tuple where

 is a non-empty finite set of classes

 is a finite set of associations

 is the relationship between classes

 is a set of well-formedness rules on the Class Diagram

In this subsection, a detailed description of the abstract syntax of UML class diagrams is

initially provided followed by a list of formalized well-formedness rules.

 [CLASS] A class consists of the following components:

- where is the name space of a class diagram.

- is an optional integer specifying the upper multiplicity.

- is an optional integer specifying the lower multiplicity.

- specifies that the class does not provide a complete

declaration.

- is a Boolean that specifies whether the class has ancestors or not.

- is a Boolean that specifies whether the class has descendents or

not.

 [ATTRIBUTE] A class is composed of a set of attributes and operations. An

attribute of a class is represented by instances of Property and consists of the

following components:

- .

380

- .

- which may be one of the basic types or other classes.

- is an optional integer specifying the upper multiplicity.

- is an optional integer specifying the lower multiplicity.

- which is an initial value of the attribute of type .

- is a Boolean that specifies whether the attribute is fixed

(true) or changeable.

- is a Boolean that specifies whether the attribute is derived

from other attributes or not.

The default syntax of an attribute declaration given in the UML specification is:

 [OPERATION] An operation of a class is a function that can be performed to

alter the behavior of a class. It consists of the following components

- .

- .

- is an optional return type which may be one of the basic

types or other classes.

- is a Boolean that specifies whether its execution changes that

system state or not.

- is a Boolean that specifies whether the details of the

operation are provided or by a descendent.

381

- is a Boolean that specifies whether the return parameter is

unique or not.

 [PARAMETER] An operation is composed of a list of zero or more formal

parameters . Each parameter has the following components

- .

- .

- which may be one of the basic types or other classes.

-) which is an initial value of the parameter of type

).

 The default syntax of an operation is given as

and each parameter in the is described as

Classes in a class diagram are related to each other by different types of relationships.

Relationships in a UML class diagram are classified into three categories: Association,

Generalization and Dependency.

 [ASSOCIATION] An association consists of an association name and a set of

association ends End (). An association end : End ()} consists of the

following components:

- is the class connected to the end.

382

- which can be used to traverse from the source end to the target

end.

- is an integer that specifies the lower bound on the number of target

instances that can be associated with a source instance.

- is an integer that specifies the upper bound on the number of target

instances that can be associated with a source instance.

- specifies whether the end is an aggregation with

respect to another end. .

- is a Boolean that specifies whether traversing from source to

the target instances is possible or not.

 [GENERALIZATION] A generalization is a directed relationship between

two classes. It consists of:

- is the super class.

- is the sub class.

- is a Boolean.

 [ASSOCIATION CLASS] In the UML Metamodel, an Association Class is a

declaration between classes, which has a set of attributes of its own. Association

Class is both an Association and a Class. An association class consists of the

following component:

- where is the name space of a class diagram.

383

Apart from the abstract syntax, the UML specification also provides a set of well-

formedness rules. Well-formedness rules for class diagrams written in a formal

description can be found in [460]. These set of well-formedness rules (WF) for the UML

class diagram are written here in a formal notation. In this subsection, a detailed

description of the well-formedness rules of UML class diagrams are provided.

 Rule 1: A well-formed class has unique attribute names

 Rule 2: Operations can have same names if they differ in scope, types or

number of parameters or result type

 (

 ())

In this rule is an auxiliary function that checks whether the parameters

(also known as message signature) of the operations are different. This function

can be formally written as:

 () ()

 (() ()

 ())

384

 Rule 3: A class with an abstract operation must be abstract

 Rule 4: An abstract class must have at least one abstract operation

 ()

 Rule 5: Multiplicity of the class must be valid

 Rule 6: An abstract class must be inherited by another concrete class

 Rule 7: An operation can have at most one return parameter

 (())

 Rule 8: An association is n-ary when n ≥ 2

 ()

 Rule 9: Multiplicities of association ends must be well-formed

()

385

 Rule 10: An association end with one end as “shared” or “composite”

aggregation-kind must be a binary association

 Rule 11: An association end with one end as “composite” aggregation-kind

must be navigable

(

)

 Rule 12: Only one end of an association can be “shared” or “composite”

((

)

)

386

 Rule 13: An association end with one end as “composite” aggregation-kind,

that end cannot have multiplicity greater than 1

()

 Rule 14: In an association, at least one end must be navigable

()

 Rule 15: In a generalization relationship, the subclass cannot be a root

(())

 Rule 16: In a generalization relationship, the super class cannot be a leaf

(())

 Rule 17: In a generalization relationship, the subclass cannot redefine the

attributes of the super class

 ((() ())

)

387

 Rule 18: Each class in the class diagram has a unique name

 Rule 19: Two different associations relating to a common class cannot have

the same name

 Rule 20: An abstract class in the class diagram must be the super class of at

least one concrete class

 Rule 21: There should be no loops among generalizations in a class diagram

 ()

In this rule is an auxiliary function that returns the transitive

closure of all the use cases included by this use case directly or indirectly. This

function can be formally written as

388

 :

 |

A1.2 Sequence Diagram

A sequence diagram is a 7-tuple where

 is a finite set of lifelines

 is a finite set of end locations

 is a finite set of message labels

 is the relationship (event) between lifelines

 is a partial order providing the position of ends within each of the

lifelines

 is an ordered set of fragments in the sequence diagram

 is a set of well-formedness rules on the Sequence Diagram

Similar to that of the Class diagram, the UML Specification document also describes the

Sequence Diagram metamodel by an abstract syntax in the form of a class diagram and

the well-formedness rules. In this subsection, a detailed description of the abstract syntax

of UML sequence diagrams will be provided.

389

 [LIFELINE] A lifeline consists of the following components

- .

- is a set of all end locations part of the lifeline whose

ordering is provided by using the relational operator.

- is a set of attributes that belongs to a lifeline.

- is the name of the decomposed fragment that shows the

interactions for the decomposed lifeline.

 [DECOMPOSITION] A decomposed fragment of a lifeline is given by an external

sequence diagram .

 [END LOCATION] An end location consists of the following

components:

- .

- is the lifeline to which this end belongs to.

- is a Boolean that specifies whether the end is a gate or not.

- is the fragment to which end belongs if the

end is a gate.

 [MESSAGE] A message consists of the following components:

- .

-

 .

- .

- is an optional attribute to which the return value is assigned.

- is the return value of the message.

390

- specifies the sending end of a message.

- specifies the receiving end of a message.

 [ARGUMENTS] A message is composed of a list of zero or more

arguments . Each argument has the following components:

- .

- is a value assigned to the argument or ‘-‘ if not assigned.

The default syntax of a message is given as

and each argument in the is described as

 |

Fragments in a sequence diagram are classified into three categories:

Combined Fragments, Interaction Use Fragments and State Invariants.

 [COMBINED FRAGMENT] A combined fragment consists of the

following components:

- is a set of lifelines covered by the fragment.

-

 .

- is a set of operands of the combined fragment.

- is a set of gates between the fragment and its

enclosing interaction.

391

o [OPERAND] An operand consists of an interaction

constraint and an operand body. An operand body is given by an

inline sequence diagram .

- [CONSTRAINT] is an interaction constraint given as a

Boolean expression which guards the entry into an operand. It includes the

following components:

 is an optional value or an expression that

specifies the minimum number of iterations.

 is an optional value or an expression that

specifies the maximum number of iterations.

The default syntax of an interaction constraint is given by

 | |

 [INTERACTION USE] An interaction use is given by the same

default syntax as that of a message but the name in this case refers to the referred

interaction. The referred interaction is an external sequence diagram . An

interaction use fragment also consists of is a set of gates

between the fragment and its enclosing interaction.

 [STATE INVARIANT] A state invariant consists of the following

components

- is the lifeline covered by the state invariant.

- is the constraint that should hold at runtime.

392

Also in this subsection, a detailed description of the well-formedness rules of UML

sequence diagrams is provided.

 Rule 1: If in a sequence diagram a lifeline is decomposed, the sequence of

constructs in the diagram such as combined fragments and interaction use covering

this lifeline must also appear in the decomposed interaction. This is also known as

extra-global.

In this rule is an auxiliary function that returns all the fragments that the

lifeline is part of. This function can be formally written as

 :

 |

 Rule 2: The Send event must be ordered before the receive event if both the

send and the receive event belonging to a message are on the same lifeline

 () ()

393

 Rule 3: If a return attribute is specified in a message, it must be an attribute

of the lifeline sending the message

 ()

 Rule 4: Arguments of a message must be attributes of the sending lifeline or

constants

 () (())

 Rule 5: Messages inside of a combined fragment should not cross its

boundaries or its operands within the combined fragment

 Rule 6: A combined fragment with operator opt, loop, break or neg must have

exactly one operand

 (

)

 ()

394

 Rule 7: The interaction constraint with and applies only to a

combined fragment with operator loop

 ((()))

 ((()))

 Rule 8: A combined fragment with operator break should cover all the

lifelines within the enclosing sequence diagram

 Rule 9: A combined fragment with operator loop and interaction

constraint specified then the evaluation of should be a non-negative integer

 ((()))

 ((()))

395

 Rule 10: A combined fragment with operator loop and interaction

constraint specified then the evaluation of should be a positive integer

 ((()))

 ((()))

 Rule 11: A combined fragment with operator loop and both and

 interaction constraint specified, then the evaluation of should be

greater than or equal to the evaluation of

 ((()))

 ((()))

 ((())

 (()))

A1.3 Use Case Diagram

A use case diagram is a 5-tuple where

 is a finite set of use cases

 is a finite set of actors

 is a finite set of associations

 is the relationship between use cases

396

 is a set of well-formedness rules on the Use Case Diagram

In this subsection, a detailed description of the abstract syntax of UML use case diagrams

will be provided.

 [ACTOR] An actor consists of the following components

- .

 [USE CASE] A use case consists of the following components

- .

- is a set of all extension points owned by the use case.

 [EXTENSION POINT] An extension Point belonging to a use case has a

name .

The default syntax of an extension point is given by

 [ASSOCIATION] An association relationship consists of the following

components:

- is the actor.

- is the use case.

Use cases in a use case diagram are related to each other by different types of

relationships. These relationships are generalization, inclusion and extension.

 [GENERALIZATION] A generalization relationship consists of the

following components:

- is the general use case.

397

- is the specialized use case.

 [INCLUSION] An inclusion relationship consists of the following

components:

- is the use case that is to be included.

- is the use case that will include the addition.

 [EXTENSION] An extension relationship consists of the following

components:

- is the use case that is being extended (base).

- is the use case that is represents the extension.

- is condition that must hold for the extension to take place.

- is an ordered list of extension points where fragments of

the extending use case are to be inserted.

 [ACTOR GENERALIZATION] An actor generalization relationship consists

of the following components:

- is the general actor.

- is the specialized actor.

Also in this subsection, a detailed description of the well-formedness rules of UML use

case diagrams is provided.

 Rule 1: An actor must have a name

398

 Rule 2: A use case must have a name

 Rule 3: A use case cannot include use cases that directly or indirectly include

it.

 ()

In this rule is an auxiliary function that returns the transitive

closure of all the use cases included by this use case directly or indirectly. This

function can be formally written as

 :

 |

399

 Rule 4: An extension point must have a name

 ()

 Rule 5: The extension locations referenced by the extend relationship must

belong to the use case being extended

 ()

400

Appendix 2: Model Refactoring Catalog

This section provides the specification of all model level refactorings. These refactorings

are grouped into three categories based on the model they transform: Use Case, Class and

Sequence. Each refactoring is described in detail. Refactoring pre-conditions and post-

conditions are defined using notations and functions described in Appendix 1. These

refactorings are provided as a Java API (library – jar). In order to invoke these

refactorings, the UML model should be parsed and used as a DOM tree. The document

node of that tree is passed on each invocation.

A2.1 Use Case Model Refactoring

1. Create Use Case

Description: This refactoring creates a new empty use case without any associated actors

and any associated interaction.

Origin: From Rui [286] [page 134]

Parameters: String newUC

Preconditions: The name of the new use case () does not conflict with the name

of an existing use case within the model.

401

Post-conditions:

Mechanism &Verification: The behavior of the use case model is not affected with the

addition of the newly created use case. The precondition ensures preservation of distinct

entity name invariant.

Implementation:

 Method Name: create_UseCase

 Arguments: Document doc, String name where

 doc is the document node of the source model

 name is the name for the use case

 Return Value: String status

2. Create Actor

Description: This refactoring creates a new actor without any reference to a use case(s).

Origin: From Rui [286] [page 135]

Parameters: String newActor

Preconditions: The name of the new actor () does not conflict with the name

of an existing actor within the model.

402

Post-conditions:

Mechanism &Verification: The newly created actor does not interact with any use case

and is isolated from other actors. Therefore, the behavior of the use case model does not

change with the addition of a new actor. The precondition ensures preservation of distinct

entity name invariant.

Implementation:

 Method Name: create_Actor

 Arguments: String name where

 name is the name for the actor

 Return Value: String status

3. Delete Use Case

Description: This refactoring deletes an unreferenced use case from the use case model.

Origin: From Rui [286] [page 137]

Parameters: Use case uc

Preconditions: The use case is isolated from other use cases and actors. Isolation from

other use cases means

 No inclusions

 No extensions

403

 Not included and extended by other use cases

 Not a super use case to other use cases

Post-conditions:

Mechanism &Verification: Since the use case is isolated from other use cases and actors,

it does not affect interactions between them. Hence, this deletion does not change the

behavior of the use case model.

Implementation:

 Method Name: delete_UseCase

 Arguments: String name where

 name is the name of the use case

 Return Value: String status

4. Delete Actor

Description: This refactoring deletes an unreferenced actor from the use case model.

404

Origin: From Rui [286] [page 138]

Parameters: Actor a

Preconditions: The actor is isolated from other use cases and actors. Isolation from other

actors means that the actor is not a super-actor to any other actor.

Post-conditions:

Mechanism &Verification: Since the actor is isolated from other use cases and actors, it

does not participate in interactions between them. Hence, this deletion does not change

the behavior of the use case model.

Implementation:

 Method Name: delete_Actor

 Arguments: String name where

 name is the name of the actor

 Return Value: String status

405

5. Generalize Use Cases

Description: This refactoring creates a generalization relationship between two or more

use cases. This refactoring reduces redundancy in use cases by moving common

interactions to the parent use case and hence improves reusability.

Origin: From Rui [286] [page 154]

Parameters: A set of use cases {uc1, uc2… ucn}, String newUC

Preconditions:

(i) The use cases {uc1, uc2… ucn} are used by the same set of actors. In order to formally

write this condition, we define an auxiliary function that returns all the actors associated

with a given use case. This function can be written as

 |

Then the precondition can be written as

406

(ii) There is no relationship among the use cases {uc1, uc2… ucn}. These use cases are not

referenced by any other use case.

(iii) The name of the new super use case () does not conflict with the name of an

existing use case within the model.

Post-conditions:

A new use case is created and it is the parent of use cases {uc1, uc2… ucn}.

Mechanism &Verification: A new empty use case is created and is assigned as the parent

or super use cases of the given use cases. In the behavioral view, common interaction

fragment is moved to this use case.

The precondition (i) ensures that the use cases {uc1, uc2… ucn} has the same set of actors.

According to the definition of generalization relationship, moving common interaction

elements to the parent use case does not change the behavior of the use cases.

407

Precondition (ii) ensures that the use cases are isolated. Precondition (iii) ensures distinct

entity name for the newly added parent use case.

Implementation:

 Method Name: generalize_UseCases

 Arguments: ArrayList subUCNames, String superUCName where

 subUCNames are the names of the child use cases

 superUCName is the name of the parent use case

 Return Value: String status

6. Generalize Actors

Description: This refactoring creates a generalization relationship between two or more

actors using a common set of use cases. A new actor is created which uses the above

common set of use cases.

Origin: From Rui [286] [page 157]

Parameters: A set of actors {a1, a2… an}, String newActor

Preconditions:

(i) The actors {a1, a2… an} use a common set of use cases {uc1, uc2… ucn}. In order to

formally write this condition, we define an auxiliary function that returns all the actors

associated with a given use case. This function can be written as

408

 |

Then the precondition can be written as

(ii) There is no actor relationship among actors {a1, a2… an}, and any other actor does not

reference them.

(iii) The name of the new super actor () does not conflict with the name of an

existing actor within the model.

409

Post-conditions:

(i) A new actor is created and it is the parent of actors {a1, a2… an}.

(ii) The new actor has association relationship with use cases {uc1, uc2… ucn}.

(ii) Association relationships between use cases {uc1, uc2… ucn} and actors {a1, a2… an}

are removed. Actors inherit these relationships from the parent actor newActor.

Mechanism &Verification:

A generalization relationship between actors means that the child actors participate in all

relationships of the parent actor. All common use cases are associated with the new

parent actor and are removed from the child actors.

No new association between actors and use cases are added. Actors {a1, a2… an} inherit

association relationships between newActor and use cases {uc1, uc2… ucn}. Hence all

interactions between actors and use cases are preserved. Precondition (ii) ensures that

actors {a1, a2… an} are isolated from other actors so that the newActor does not affect

410

other actors. Precondition (iii) ensures distinct entity name for the newly added parent

actor.

Implementation:

 Method Name: create_ActorGeneralization

 Arguments: ArrayList subActorNames, String superActorName where

 subActorNamesare the names of the child actors

 superActorNameis the name of the parent actor

 Return Value: String status

7. Merge Use Cases

Description: This refactoring merges two independent use cases that are used by the

same set of actors. This refactoring helps manage the use case granularity by avoiding

fragment use cases.

Origin: From Rui [286] [page 152]

Parameters: Use case uc1and uc2

Preconditions:

(i) Use cases uc1 and uc2 are not referenced by any use case.

411

(ii) Use cases uc1 and uc2 are used by the same set of actors.

Post-conditions:

The use case uc2 is deleted.

Mechanism &Verification: This refactoring keeps one use case and deletes the other

one.

The precondition (i) ensures that the use cases {uc1, uc2} are isolated from other use

cases. This ensures that merging them together does not affect the behavior of the use

case model. Precondition (ii) ensures that the use cases are used by the same set of actors.

Implementation:

 Method Name: merge_UseCases

 Arguments: String UC1, String UC2 where

 UC1 andUC2 are the names of the use cases to be merged

 Return Value: String status

412

8. Merge Actors

Description: This refactoring merges two actors into one. This refactoring helps manage

actors.

Origin: From Rui [286] [page 156]

Parameters: Actor a1and a2

Preconditions:

Actors a1 and a2 are not referenced by any other actor. However, actor a2 can be the

parent of actor a1.

Post-conditions:

(i) Use case references by actor a2 are used by the actor a1.

(ii) The actor a2 is deleted.

413

Mechanism &Verification: This refactoring keeps one actor and deletes the other one.

The precondition ensures that the actors{a1, a2} are isolated from other actors. This

ensures that merging them together does not affect the behavior of the use case model.

Implementation:

 Method Name: merge_Actors

 Arguments: String A1, String A2 where

 A1 andA2 are the names of the actors to be merged

 Return Value: String status

9. Merge Use Case Generalization

Description: This refactoring merges two use cases that are related to each other by

generalization and the interaction of the parent use case is empty (abstract). This

refactoring helps maintain the abstraction level of use cases.

Origin: From Rui [286] [page 146]

Parameters: Use Case uc1 and its parent uc2

Preconditions:

(i) There is a generalization relationship between use cases uc1 and uc2.

414

(ii) The use cases uc2 is not referenced by any other use case except uc1.

Post-conditions:

(i) Use case uc1 takes over all association relationships between use case uc2 and its

actors.

(ii) The generalization relationship between uc1 and uc2 is deleted.

(ii) The use case uc2 is deleted.

Mechanism &Verification: This refactoring merges the parent use case into the child use

case.

The precondition (i) ensures a generalization relationship between the use cases.

Precondition (ii) isolates the use case uc2 from other use cases than uc1. Since the use case

415

uc2has an empty interaction, it can be merged into the use case uc1. The interaction

between the use case uc2 and related actors is not changed. Hence behavior is preserved.

Implementation:

 Method Name: merge_UCGeneralization

 Arguments: String subUC, String superUC where

 subUC is the name of the child use case

 superUC is the name of the parent use case

 Return Value: String status

10. Merge Use Case Inclusion

Description: This refactoring merges two use cases that are related to each other by

inclusion relationship. The included use case is merged into the base use case. This

refactoring helps manage use case granularity and maintain the abstraction level of use

cases.

Origin: From Rui [286] [page 147]

Parameters: Base Use Case uc1 and included Use Case uc2

Preconditions:

(i) There is an inclusion relationship between use cases uc1 and uc2. The use case uc1

includes the use case uc2.

416

(ii) Use case uc2 is not referenced by other use cases except uc1.

Post-conditions:

(i) The inclusion relationship between uc1 and uc2 is deleted.

(ii) The use case uc2 is deleted.

Mechanism &Verification: This refactoring merges the inclusion use case into the base

use case at the point of inclusion.

The precondition (i) ensures an inclusion relationship between the use cases. Precondition

(ii) isolates the use case uc2 from other use cases than uc1. Merging the included use case

into its base use case does not alter the behavior of the use case model. Hence behavior is

preserved.

417

Implementation:

 Method Name: merge_UCInclusion

 Arguments: String incUC, String baseUC where

 incUC is the name of the inclusion use case

 baseUCis the name of the base use case

 Return Value: String status

11. Merge Use Case Extension

Description: This refactoring merges two use cases that are related to each other by

extension relationship. The extending use case is merged into the base use case. This

refactoring helps manage use case granularity and maintain the abstraction level of use

cases.

Origin: From Rui [286] [page 148]

Parameters: Base Use Case uc1and extending Use Case uc2

Preconditions:

(i) There is an extension relationship between use cases uc1 and uc2. The use case uc2 Push

extends the use case uc1.

418

(ii) Use case uc2 is not referenced by other use cases except uc1.

Post-conditions:

(i) The extension relationship between uc1 and uc2 is deleted.

(ii) The use case uc2 is deleted.

Mechanism &Verification: This refactoring merges the extension use case into the base

use case at the point of extension.

The precondition (i) ensures an extension relationship between the use cases.

Precondition (ii) isolates the use case uc2 from other use cases than uc1. Merging the

extension use case into its base use case does not alter the behavior of the use case model.

Hence behavior is preserved.

419

Implementation:

 Method Name: merge_UCExtension

 Arguments: String extUC, String baseUC where

 extUC is the name of the extension use case

 baseUCis the name of the base use case

 Return Value: String status

12. Split Use Case

Description: This refactoring splits one use case into two use cases. This refactoring

helps manage use case granularity.

Origin: From Rui [286] [page 159]

Parameters: Use Case uc and String newUC

Preconditions:

(i) The use case uc is not referenced by any other use case.

420

(ii) The name of the new use case () does not conflict with the name of an

existing use case within the model.

Post-conditions:

(i) The new use case newUC is created.

 (ii) The new use case newUC is used by all actors that have an association relationship

with the use case uc.

(iii) There is no use case relationship between uc and newUC.

Mechanism &Verification: This refactoring splits one use case into two use cases. The

new use case has no relationship with the split use case.

The precondition (i) ensures that the use case uc has no relationship with the other use

cases so that splitting uc does not change the behavior of other use cases. Precondition

(ii) ensures distinct entity name invariant.

421

Implementation:

 Method Name: split_UC

 Arguments: String UC, String newUC where

 UC is the name of the use case to be used for splitting

 newUC is the name of the new use case

 Return Value: String status

13. Split Actor

Description: This refactoring splits one actor into two actors. This refactoring helps

manage granularity. It also improves reusability of the use case model.

Origin: From Rui [286] [page 166]

Parameters: Actor a and String newActor

Preconditions:

(i) The actor a interacts with one use case in the use case model.

 ()

(ii) The actor a has no actor relationship with any other actor.

422

(iii) The name of the new actor () does not conflict with the name of an

existing actor within the model.

Post-conditions:

(i) A new actor a’ with name newActor is created.

 (ii) The new actor newActor interacts with all use cases that the actor a interacts with.

(iii) There is no actor relationship between a and a’.

Mechanism &Verification: This refactoring splits one actor into two actors. The new

actor interacts with the same use cases uc that the old actor interacts with. The interaction

between actor a and the use case u is preserved by the interaction between the actor a’

and the use case u. Hence behavior is preserved.

The precondition (i) ensures that actor a interacts with only one use case. This simplifies

the definition if the refactoring. Precondition (ii) ensures that the actor a has no

423

relationship with the other actors so that splitting a does not change the behavior of other

actors. Precondition (iii) ensures distinct entity name invariant.

Implementation:

 Method Name: split_Actor

 Arguments: String Actor, String newActor where

 Actor is the name of the actor to be used for splitting

 newActor is the name of the new actor

 Return Value: String status

14. Use Case Generalize Generation

Description: This refactoring splits one use case into two and creates a generalization

relationship between two use cases. This refactoring helps manage use case granularity. It

is a special case of the “Generalize Use Case” refactoring.

Origin: From Rui [286] [page 161]

Parameters: Use case uc, String newUC

Preconditions:

(i) The use case is not referenced by any other use case.

424

(ii) The name of the new use case () does not conflict with the name of an

existing use case within the model.

Post-conditions:

A new use case is created and it is the parent of the use case uc.

Mechanism &Verification: A new empty use case is created and is assigned as the parent

or super use cases of the given use case uc. In the behavioral view, common interaction

fragment is moved to this use case.

The precondition (i) ensures that the use case is isolated. Precondition (ii) ensures distinct

entity name for the newly added parent use case.

Implementation:

 Method Name: generate_UCGeneralization

 Arguments: String subUCName, String superUCName where

 subUCName is the names of the child use case

 superUCName is the name of the parent use case

 Return Value: String status

425

15. Use Case Inclusion Generation

Description: This refactoring splits one use case into two and creates an inclusion

relationship between the two use cases. This refactoring helps manage use case

granularity and reduce redundancy.

Origin: From Rui [286] [page 162]

Parameters: Use case uc, String newUC

Preconditions:

(i) The name of the new use case () does not conflict with the name of an existing

use case within the model.

Post-conditions:

(i) A new use case uc’ with the name newUC is created.

(ii) The use case uc includes the newly created use case uc’

Mechanism &Verification: A new empty use case is created and is assigned as the

inclusion use case of the given base use case uc. The precondition (i) ensures distinct

entity name for the newly added inclusion use case.

426

Implementation:

 Method Name: generate_UCInclusion

 Arguments: String baseUC, String newUC where

 baseUC is the name of the base use case

 newUC is the name of the inclusion use case

 Return Value: String status

16. Use Case Extension Generation

Description: This refactoring splits one use case into two and creates an extension

relationship between the two use cases. This refactoring helps manage use case

granularity and reduce redundancy.

Origin: From Rui [286] [page 163]

Parameters: Use case uc, String newUC

Preconditions:

(i) The name of the new use case () does not conflict with the name of an existing

use case within the model.

Post-conditions:

(i) A new use case uc’ with the name newUC is created.

427

(ii) The newly added use case uc’ extends the use case uc.

Mechanism &Verification: A new empty use case is created and is assigned as the

extension use case of the given base use case uc. The precondition (i) ensures distinct

entity name for the newly added extensionuse case.

Implementation:

 Method Name: generate_UCExtension

 Arguments: String baseUC, String newUC where

 baseUC is the name of the base use case

 newUC is the name of the extension use case

 Return Value: String status

17. Actor Generalize Generation

Description: This refactoring splits one actor into two and creates a generalization

relationship between the two actors. This refactoring helps manage improve the

understandability and reusability of the use case model.

Origin: From Rui [286] [page 168]

Parameters: Actor a, String newActor

428

Preconditions:

(i) The actor does not have a parent actor.

(ii) The name of the new actor () does not conflict with the name of an existing

actor within the model.

Post-conditions:

(i) A new actor a’ with the name newActor is created and it is the parent of actors a.

Mechanism &Verification: A new actor is created and is assigned as the parent or super

actor of the given actor a. The precondition (i) ensures unique parent. Precondition (ii)

ensures distinct entity name for the newly added parent actor.

Implementation:

 Method Name: generate_ActorGeneralization

 Arguments: String Actor, String newActor where

429

 Actor is the names of the actor used for splitting

 newActor is the name of the new parent actor

 Return Value: String status

A2.2 Class Model Refactoring

1. Pull Up Attribute

Description: This refactoring removes one attribute from a class or a set of classes and

inserts it into one of its superclasses. It is the analogous to Fowler et al.’s Pull Up

Attribute for Code Refactoring. If you pull up an attribute, the new visibility should be

set to the maximum visibility of this attribute in the subclasses. At least all subclasses

should still have access to the attribute after refactoring.

Origin: From Mantz [461] [page 95]

Parameters: String superClass, String attr

Preconditions:

(i) The attribute () is owned by the same type by all classes that has the super class

() as their parent class.

 ()

 ()

430

(ii) The super class () must not have an attribute with the same name.

 ()

Post-conditions:

(i) The super class () has an attribute with the same name and type as the

attributes in the subclasses.

 ()

(ii) The child classes of the super class () has no attribute with the name

).

 ()

Mechanism &Verification: The behavior of the class model is not affected with the

pulling up of the attribute. Based on the laws of inheritance, these attributes can still be

accessed from the super class and since the attribute visibility is changed to the maximum

(either public or protected); they can be accessed from the subclasses without any

restriction.

Implementation:

 Method Name: pullup_Attribute

 Arguments: String superClass , String attr where

 superClass is the name of the parent class

431

 attr is the name for the attribute to be pulled into the parent

class

 Return Value: String status

2. Pull Up Method

Description: This refactoring moves a method of a class to its super class. Usually this

refactoring is used simultaneously on several classes which inherit from the same super

class. The aim of this refactoring is often to extract identical methods. This refactoring is

analogous to Fowler et al.’s Pull Up Method for Code Refactoring. In order to keep the

view consistent, Pull Up Method is often used with Pull Up Attribute. In most cases, it is

also important that the operation is still visible in the subclass after refactoring Pull Up

Method.

Origin: From Mantz [461] [page 106]

Parameters: String superClass, String method, ArrayList signature

Preconditions:

(i) The super class () must not have a method with the same name and

signature.

 ()

432

 (ii) All the sub classes of the parent () must have a method with the same

name and signature.

 () (())

In the above precondition, we define an auxiliary function that checks

whether the parameters (also known as method signature) of the methods are same. This

Function can be formally written as

 ()

 () ()

 () () ()

Post-conditions:

(i) The super class () has a method with the same name and signature as the

method in the subclasses.

 ()

(ii) The child classes of the super class () has no method with the name

) and signature.

 ()

433

Mechanism &Verification: The behavior of the class model is not affected with the

pulling up of the method. Based on the laws of inheritance, this method can still be

accessed from the super class and since the method visibility is changed to the maximum

(either public or protected); it can be accessed from the subclasses without any

restriction.

Implementation:

 Method Name: pullup_Method

 Arguments: String superClass , String method, ArrayList signature where

 superClass is the name of the parent class

 method is the name for the method to be pulled into the

parent class

 signature is the parameter list of the method to be pulled

 Return Value: String status

3. Push Down Attribute

Description: Refactoring Push Down Attribute moves an attribute to all subclasses. In the

literature, refactoring Push Down Attribute is often limited to subclasses that require the

attribute. In case of code refactoring these classes can be indicated. In case of UML

models this is usually not possible, but it can be nevertheless useful to push down a

property to all subclasses e.g. as preparation before deleting the superclass.

Origin: From Mantz [461] [page 109]

Parameters: String superClass, String attr

434

Preconditions:

(i) No direct subclass contains an attribute with the same name as the attribute that is

being pushed down.

 ()

Post-conditions:

(i) The attribute) is defined in all subclasses.

 ()

(ii) The attribute) does not exist in the super class any more.

 ()

Mechanism &Verification: The behavior of the class model is not affected with the

pushing down of the attribute. Precondition (i) ensures that the attribute is not overwritten

in the sub classes. Any subclass not using the attribute can be later deleted.

Implementation:

 Method Name: pushdown_Attribute

 Arguments: String superClass , String attr, where

 superClass is the name of the parent class

 attr is the name for the attribute to be pushed down into the

child classes

435

 Return Value: String status

4. Push Down Method

Description: The refactoring Push Down Method pushes a method down to all its

subclasses. It is analogous to Fowler et al.’s refactoring Push Down Method. In the

literature, the Push Down Operation refactoring is often limited to subclasses that really

require the operation. In case of code refactoring these classes can be indicated. However,

in case of UML models the necessity of pushing down an operation can usually not be

automatically construed (a possible solution is to inspect sequence diagrams).

Origin: From Mantz [461] [page 115]

Parameters: String superClass, String method, ArrayList signature

Preconditions:

(i) The super class () has subclasses.

(ii) The method () does not exist in any direct subclass.

 ()

436

Post-conditions:

(i) The method () does not exist anymore in the super class ().

 ()

(ii) The method () exists in all subclasses.

 ()

Mechanism &Verification: The behavior of the class model is not affected with the

pushing down of the method. Precondition (ii) ensures that the method is not overwritten

in the sub classes. Any subclass not using the method can be later deleted.

Implementation:

 Method Name: pushdown_Method

 Arguments: String superClass , String method, ArrayList signature where

 superClass is the name of the parent class

 method is the name for the method to be pushed into the

child classes

 signature is the parameter list of the method to be pushed

 Return Value: String status

5. Remove Empty Superclass

Description: A set of classes has an empty super class which shall be removed. This

refactoring often follows Push Down Attribute and Push Down Method Refactoring or in

437

the intermediate version also by the Pull Up Attribute or Pull Up Method Refactoring. In

the intermediate version of this refactoring the empty super class inherits from a super

class.

Origin: From Mantz [461] [page 112]

Parameters: String superClass

Preconditions:

(i) The super class () has no attributes and methods (it should be empty).

 ()

Post-conditions:

(i) The super class () does not exist anymore.

 ()

(ii) All classes still inherit all operations and attributes of potential super classes of the

()

 ()

Mechanism &Verification: The behavior of the class model is not affected with the

deletion of the superclass. Precondition (i) and (ii) ensures that the class is empty and

isolated from other attribute and method references. Precondition (iii) ensures that no

438

behavior is lost with the refactoring as the super class was an abstract class. Postcondition

(ii) ensures that any inheritance relationship that exists between the superClass and other

classes (i.e. the deleted super class was a sub class to other super classes) is preserved as

these features are inherited in all the sub classes.

Implementation:

 Method Name: remove_SuperClass

 Arguments: String superClass where

 superClass is the name of the parent class to be removed

 Return Value: String status

6. Remove Empty Subclass

Description: Refactoring Remove Empty Subclass removes an empty subclass from the

model.

Origin: From Mantz [461] [page 99]

Parameters: String subClass

Preconditions:

(i) The subclass () has no attributes and methods (it should be empty).

439

 ()

Post-conditions:

(i) The subclass () and its inheritance relation do not exist anymore.

 ()

Mechanism &Verification: The behavior of the class model is not affected with the

deletion of the subclass. Precondition (i) ensures that the class is empty and isolated from

other attribute and method references.

Implementation:

 Method Name: remove_SubClass

 Arguments: String subClass where

 subClass is the name of the child class to be removed

 Return Value: String status

7. Create Super Class

Description: Refactoring Create Super Class is used to create a super class for at least

one class which is normally followed by Pull Up Attribute and Pull Up Method

Refactorings. In addition, this refactoring can create an intermediate super class that is a

super class that is introduced between a set of classes and their former super classes.

Origin: From Mantz [461] [page 103]

440

Parameters: String newClass, ArrayList subClasses, Boolean abstract_flag, Boolean

intermediate

Preconditions:

(i) The class name for the new super class () must be unique.

 ()

(ii) In the case that the () flag is true, the classes within the selected set of

classes () must have at least one common super class.

 ()

Post-conditions:

(i) The new Class () exists in the Class Model.

 ()

(ii) There exists an inheritance relation to the super class () for each input class

in the set ().

 ()

441

(iii) If the super class () is an intermediate one, it must inherit from all common

super classes of the selected set of subclasses (). Furthermore, there is no

direct relation anymore between these super classes and the classes of this set

().

 ()

Mechanism &Verification: The behavior of the class model is not affected with the

creation of the new super class. Precondition (i) ensures that the new class is unique to

the class model. In case the new class is an intermediate class between an existing

inheritance, Precondition (ii) and Postcondition (iii) ensure that the new class inherits

from all the common superclasses of the set of subclasses and that these subclasses have

no more direct access to the superclasses.

 Implementation:

 Method Name: create_SuperClass

 Arguments: String newClass, ArrayList subclasses, Boolean isabstract, Boolean

intermediate where

 newClass is the name of the new class to be created

 subClasses is the set of classes that will be child classes to

the newly created super class

 isabstract is a flag that identifies whether the newly created

flag is set to either abstract or concrete.

442

 intermediate is a flag which is set when the newly created

flag is an intermediate class in an existing inheritance

relationship.

 Return Value: String status

A2.3 Sequence Model Refactoring

1. Create Lifeline

Description: Create Lifeline Refactoring is used to introduce a new lifeline into a

sequence diagram.

Origin: From Meng and Barbosa [462]

Parameters: String newLifeline

Preconditions:

(i) The lifeline () must be unique in the sequence diagram.

Post-conditions:

Mechanism &Verification: The behavior of the sequence model is not affected with

adding a new lifeline since there is no message exchanges between the new lifeline and

443

the exisiting lifelines within the sequence diagram. The precondition (i) ensures that the

new lifeline is unique to the sequence model.

 Implementation:

 Method Name: create_Lifeline

 Arguments: String newLifeline where

 newLifeline is the name of the new lifeline to be added

 Return Value: String status

2. Remove Lifeline

Description: Refactoring Remove Lifeline is used to remove a lifeline that does not

interact with other participants and has no local actions within the sequence diagram.

Origin: From Meng and Barbosa [462]

Parameters: String Lifeline

Preconditions: The lifeline is isolated from other particpants of the sequence diagram.

Isolation from other participants means

 No message exchanges

 No local actions

 ()

444

Post-conditions:

Mechanism &Verification: Since the lifeline is isolated from other participating lifelines

within the sequence diagram, it does not affect interactions between them. Hence, this

deletion does not change the behavior of the sequence model.

Implementation:

 Method Name: remove_Lifeline

 Arguments: String lifeline where

 lifeline is the name of the lifeline

 Return Value: String status

445

Appendix 3: XML & Associated Standards

This section introduces the Extensible Markup Language (XML) and other technologies

associated with it such as the XML Schema, XPath, XSLT and XML Metadata

Interchange (XMI) format.

A3.1 eXtensible Markup Language (XML)

XML [463] is a “World Wide Web Consortium (W3C)-recommended general-purpose

specification for creating custom markup languages”. The Extensible Markup Language

is a simple and flexible text format used widely in the exchange of varied data on the web

and elsewhere. It is a free, platform-independent open-standard derived from the

Standardized Generalized Markup Language (SGML) in order to meet the challenges of

large-scale electronic publishing. Although a lot similar to the Hypertext Markup

Language (HTML), XML was designed to describe data instead of focusing on how data

looks and how it is displayed. For example, Figure A - 1 shows how XML can be used to

describe this dissertation.

<?xml version="1.0" encoding="UTF-8"?>
<dissertation_file>
 <dissertation>
 <id>Fall2010_001</id>
 <author>Mohammed Misbhauddin</author>
 <title>Towards an Integrated Metamodel based approach to
 Software Refactoring </title>
 <advisor>Mohammad Alshayeb</advisor>
 <co_advisor>Radwan Abdel-Aal</co_advisor>
 <committee_member>Moataz Ahmed</committee_member>
 <committee_member>Mohammed Elish</committee_member>
 <committee_member>Aiman El-Maleh</committee_member>
 </dissertation>
</dissertation_file>

Figure A - 1: XML Document for Dissertation Example

446

Elements inside an XML document represent structured values. Element names with or

without attributes are referred to as tags. A general form of an XML element is given as

<name attributes>content</name>

All XML elements begin with the element's start tag (formatted as <name>) and close

with the element's end tag (formatted as </name>). The end tag is mandatory but can be

omitted if there is no content by using the format <name attributes />. The attributes is an

optional list of attributes and their values. For instance, we can add an attribute to the

<committee_member> tag mentioned in the above XML example as follows:

<committee_member rank = "Associate">Moataz Ahmed</committee_member>

Names used for elements and attributes in an XML document can contain nearly every

letter, number or special character with the exception of white space characters and

punctuation characters (such as :, &).

One of the major advantages of XML is that it allows designers to create their own

customized tags. Hence, tag names describe the data they contain and are regarded as

metadata. Tag names should be meaningful so that information labeled is reusable.

Although flexible, XML still requires the document to be well-formed and valid to be

considered correct and usable. An XML document is considered “well-formed” if it

conforms to the rules of the XML specification (such as using lowercase letters in tags,

including closing tags on all elements, and including single and double quotation marks

on all attribute tags).

The structure of an XML document can be defined by a schema language and is validated

based on definitions in that language. A “valid” XML document apart from being well-

447

formed also conforms to the rules defined by the schema language. Two of the most

widely used schema languages are the Document Type Definition (DTD) language and

XML Schema.

A3.2 Document Type Definition (DFD)

A DTD is used to define the building blocks of an XML document and describe the

document structure with a list of valid elements. Defining a DTD allows an XML

designer to build his own set of rules and restrictions to be enforced on the resulting

XML document. Figure A - 2provides a DTD for the example XML shown in Figure A -

1.

If an XML document has elements that match element declarations in a DTD, the

document is considered a valid document. An element declaration in a DTD consists of

the name of the element, its content and its attributes. The general format of an element

declaration is as follows:

<!ELEMENT name content>

<!ATTLIST name attribute-decls>

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT dissertation_file ((dissertation))>
<!ELEMENT dissertation ((id, author, title, advisor, co_advisor,
 committee_member+))>
<!ELEMENT id (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT advisor (#PCDATA)>
<!ELEMENT co_advisor (#PCDATA)>
<!ELEMENT committee_member (#PCDATA)>

Figure A - 2 DTD for the Dissertation example

448

The name is the tag name and content specifies what kind of data can be included. The

content in an element declaration can be EMPTY, ANY (text of other XML elements) or

#PCDATA (text). The attribute-decls is of the form <type default> where type can be

CDATA (character data), set of valid values, ID, IDREF or IDREFS. The default is

optional and can be #REQUIRED, #IMPLIED, #FIXED (along with a fixed value) or an

attribute value. ID, IDREF and IDREFS enable XML elements to be related to each

other.

An XML parser (also known as a validating parser) can be used to validate an XML

document. In order for the parser to know about the DTD of an XML document, it is

specified as a DOCTYPE statement in the document to be validated. Its format is given

as follow:

<!DOCTYPE name SYSTEM " sample.dtd">

The name is the tag name of the root element and sample.dtd is the Uniform Resource

Locator (URI) that specifies the location of the DTD.

A3.3 XML Schema

XML Schemas are another important leap in the evolution of XML. They deprecated the

use of DTDs by allowing designers to specify more constraints on XML documents than

DTDs. Since the discussion about XML Schemas is exhaustive, we include only the

relevant ones in this section.

The XML Schema language is also referred to as XML Schema Definition (XSD). A

schema document is an XML document. The context of the XML elements is defined by

449

the schema namespace. All schema documents need to have a schema XML element as

the root XML element.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

Schemas usually contain element and type declarations. Each element declared uses the

XML element called element. The name attribute of that element is the name of the

element. An example declaration is as follows:

<xs:element name="id">

Schemas also allow the creation of types. These types actually do not appear in the XML

documents, but are used to declare other elements and attributes that may appear. Types

in schemas are of two kinds: simple and complex types. Simple types represent data

values and complex types represent data structure. Contents of an XML element can be

specified by using XML elements in the content of the complexType element. An

example complex type declaration with content is as follows:

 <xs:complexType>

 <xs:sequence>

 <xs:element name="dissertation"/>

 </xs:sequence>

 </xs:complexType>

Schema designers can express repetition in element content by using the sequence XML

element and express alternatives by using the choice XML element. In order to specify

the number of occurrences of elements in the element content, we can use the minOccurs

and maxOccurs attributes in the element, sequence or choice XML elements. An

example declaration that demonstrates this is as follows:

450

<xs:element name="committee_member" minOccurs="2" maxOccurs="3"/>

Attributes can also be declared in schemas. The xs:attribute XML element can be used

for this purpose. The attribute element has name, type, use, default and fixed as its

attributes. The type should be simple and not complex. The use attribute constrains

whether the attribute is optional, prohibited or required. A default value of an attribute

can be assigned using the default XML attribute and a specific value can be assigned

using the fixed XML attribute.

An XML Schema for the XML example shown in Figure A - 1 is given in Figure A - 3.

Similar to that of DTDs, an XML schema definition should be included in the XML

document for it to be validated by an XML parser. This is done by including the

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="dissertation_file">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="dissertation"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="dissertation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id"/>
 <xs:element name="author"/>
 <xs:element name="title"/>
 <xs:element name="advisor"/>
 <xs:element name="co_advisor"/>
 <xs:element name="committee_member"
minOccurs="2" maxOccurs="3"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure A - 3 XML Schema Definition for Dissertation Example

451

xmlns:xsi attribute at the top level element and the schemaLocation attribute identifies

the location of a particular XML schema.

<dissertation_file xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:SchemaLocation="E:\sample.xsd">

A3.4 XML Path Language (XPath)

The main purpose of XPath is to address parts of an XML document. It operates on the

abstract, logical structure of an XML document, rather than its surface syntax. XPath gets

its name from its use of a path notation as in Uniform Resource Locators (URL) for

navigating through the hierarchical structure of an XML document. XPath can be seen as

an expression language that works on a data model defined by XQuery/XPath Data

Model (XDM). XDM provides a tree representation of XML documents. An XPath

expression then can be used for the selection of nodes from the input documents.

The main construct in XPath is the path expression. A path expression is used to locate

nodes within an XML tree and consists of one or more steps. Each step in a path

expression is separated by a / or //. Steps in the expression are either axis steps or filter

steps. Axis steps define the direction of traversal within the tree and filter steps define

conditional selection of nodes. All axes supported by XPath are given in Table A - 1.

Some frequently used axes are abbreviated for ease of use.

452

Table A - 1 Axes provided by XPath

Axis Description Abbreviations

self:: The context node itself .

attribute:: Attributes of the context node @

parent:: The parent of the context node ..

child:: Children of the context node Can be omitted

descendant:: All children of the context node

descendant-or-

self::

The context node and its

descendants

//

ancestor:: All ancestors of the context node

ancestor-or-self:: The context node and all its

ancestors

preceding:: All nodes that precede the context

node in the document

preceding-sibling:: All the siblings of the context node

that precede it

following:: All nodes that follow the context

node in the document

following-sibling:: All siblings of the context node that

follow it

An example XPath expression to retrieve all committee members with a rank of associate

is given as follows:

// /committee_member[@rank='Associate']

Path expressions are evaluated from the left to the right side: the slashes // traverse the

descendant-or-self axis of the XML tree starting from the root node, searching element

nodes named committee_member, and selecting each as the current context node. A filter

expression [condition] is now applied to the context node and the attribute axis is

inspected for an attribute named rank holding a value “Associate”. If this condition is

true, the context node is included in the resulting sequence. All matching nodes are

returned. The result of an XPath expression can be a node-set (an unordered collection of

453

nodes without duplicates), Boolean, Number or a String. The manner in which an

expression is evaluated is based on a context.

The latest version XPath 2.0, is a superset of XPath 1.0 with added ability to support a set

of new data types and also to make use of the type information that becomes available

when documents are validated using XML Schema.

A3.5 XML Query Language (XQuery)

XQuery is “a standardized language for combining documents, databases, Web pages,

and almost anything else. It is very widely implemented. It is powerful and easy to learn.”

[464] It is a language maintained by W3C in order to express queries across XML

documents. It allows designers to select XML elements from the source file, reorganize

and transform them. XPath and XQuery go hand in hand with each other. XPath is a

complete subset of XQuery. Both XPath and XQuery documents are built around

expressions rather than statements. The major difference between XQuery and XPath is

that XPath only allows the capability to retrieve nodes from an XML document. The

former allows creation of new nodes and modification of existing nodes.

The basic structure of most queries in XQuery is the FLWOR (pronounced as flower)

expression. It stands for For, Let, Where, Order by and Return. An example XQuery

expression using the FLWOR expression to restructure the Dissertation XML tree (Figure

A - 1) and returning a sequence containing all committee members sorted by their rank is

shown in Figure A - 4.

454

A3.6 eXtensible Stylesheet Language Transformations (XSLT)

XSLT [465] is a functional transformation language for manipulating XML data. Being a

functional language, rules have to be called explicitly. There is no built-in traceability

support and rules are strictly unidirectional. Transformations are stateful, so there is no

support for incremental transformation. XSLT transformation descriptions are themselves

XML documents, so higher-order transformations can be realized.

An XSL processor parses an XML source document and tries to find a matching template

rule. If it does, instructions inside matching template are evaluated. A template rule is

written as follows:

<xsl:template match="string">

 instructions

</xsl:template>

Contents of the original elements from the source XML can be obtained by making use of

the xsl:value-of construct. Location paths determine parts of XML document to which

template should be applied. The required syntax is specified in the XPath specification.

XPath along with XSLT is used in transformation of XML documents.

xqueryversion"1.0";
for $committee in doc("dissertation.xml") //committee_member
let $rank := data($committee/@rank)
orderby $rank
return element committee-members { $committee}

Figure A - 4 Example XQuery expression

455

A3.7 XML Metadata Interchange (XMI)

XMI [35] is a standard interchange format for data objects in XML. It is defined and

maintained by the Object Management Group (OMG). Since XMI provides a standard

representation of objects in XML, it is used effectively to exchange objects using XML.

The main purpose of XMI is to allow for exchange of objects from the OMG Object

Design and Analysis Facility. These objects are more commonly known as UML

(Unified Modeling Language) and MOF (Meta Objects Facility).

An example UML class diagram is given in Figure A - 5 and its corresponding XMI

created using the open-source UML modeling tool ArgoUML [445] is given in Figure A -

6. Some attributes are left out and values for xmi.id and xmi.idref (which are

automatically generated) are changed for brevity and readability.

Faculty

name : String

rank : String

getName() :

String

Advisor

advisees : String[]

addAdvisee() : Void

Figure A - 5 UML Class Diagram: Class Advisor inherits from class Faculty

456

<UML:Class xmi.id=’_classAdvisor’ name=’Advisor’ visibility=’public’>
 <UML:Generalization xmi.idref=’_genFacultyAdvisor’/>
 <UML:Classifier.feature>
 <UML:Attribute name=’advisees’ visibility=’private’/>
 <UML:Operation name=’addAdvisee’ visibility=’public’/>
 </UML:Classifier.feature>
</UML:Class>
<UML:Class xmi.id=’_classFaculty’ name=’Faculty’ visibility=’public’>
 <UML:Generalization xmi.idref=’_genFacultyAdvisor’/>
 <UML:Classifier.feature>
 <UML:Attribute name=’name’ visibility=’private’/>
 <UML:Attribute name=’rank’ visibility=’private’/>
 <UML:Operation name=’getRank’ visibility=’public’/>
 </UML:Classifier.feature>
</UML:Class>
<UML:Generalization xmi.id=’_genFacultyAdvisor’>
 <UML:Generalization.child>
 <UML:Class xmi.idref=’_classAdvisor’/>
 </UML:Generalization.child>
 <UML:Generalization.parent>
 <UML:Class xmi.idref=’_classFaculty’/>
 </UML:Generalization.parent>
</UML:Generalization>

Figure A - 6 XMI Representation of the UML Class Diagram in Figure A-5

457

Appendix 4: XQuery Functions for Integrated Model Smells

A4.1 Creeping Featurism

Listing 1 shows the XQuery function to detect instances of the bad smells Creeping

Featurism. The function Func-Decompose is parameterized with the source model

$model. Using a “for loop”, each use case in the integrated model is bound to the

variable $x one after another in line 3. The function inclusion called in line 4 returns

the number of times a use case is included in other use cases and is shown in Listing 2. If

the inclusion count is exactly one and there are no actors associated with the use case,

function inc is called for behavioral analysis of the use case.

1 declare function local:Func-Decompose($model as node())
{
 for $x in $model//IntegratedModel/UseCase
 return if ((count(local:inclusion($model, $x))=1) and (empty($x/@actor-ref)))
 then local:inc($x,$model)
 else ()
} ;

2
3
4
5

6
7

Listing 1: XQuery function to detect the bad smell Creeping Featurism

Listing 2 shows the function inclusion. Each use case in the integrated model is

composed of a number of inclusion use cases identified by the “includes” tag in the XMI

file. The function inclusion returns the number of times a use case is included in other

use cases.

458

1 declare function local:inclusion($a as node(), $x as node())
{
 for $y in $a//IntegratedModel/UseCase/includes
 return if (data($x/@name)=data($y/@uc-ref))
 then data($x/@name)
 else ()
} ;

2

3
4
5
6

7

Listing 2: XQuery function to count the number of inclusions of a use case in other use cases

Listing 3 shows the function inc. If this function returns a non-empty sequence, then the

existence of this bad smell is confirmed. The “if statement” in lines 4-6 identifies the

including use case of the parameter $uc. Then the value-intersect function, that

returns the intersection of the values in two sequences, is used to first identify dissimilar

lifelines in both the use cases. This intersection sequence is then checked to see if it

consists of data classes. If true, this use case is returned as a candidate for refactoring.

1 declare function local:inc($uc as node(),$model as node())

{

 for $y in $model//IntegratedModel/UseCase

 return if (data($uc/@name) = data($y/includes/@uc-ref) and

 hr:value-intersect(local:data-class($model),

 hr:value-intersect(local:lifelines($uc),local:lifelines($y))))

 then data($uc/@name)

 else ()

} ;

2

3
4
5
6

7
8
9

Listing 3: XQuery function to analyze use case inclusion behavior

A4.2 Multiple Personality

Listing 4 shows the XQuery function to detect instances of the bad smell Multiple

Personality. The function Multi-Personality is parameterized with the source model

$model. Using a “for loop”, each use case in the integrated model is bound to the

459

variable $x one after another in line 3. The functions lifelines (see Listing 5) and

transactions (see Listing 6) called in line 4 and 5 returns the number of lifelines and

transactions in a use case respectively. The function lazy-class called in line 6 returns a

sequence of all lazy classes in the model (see Listing 7). If the number of lifelines is

greater than ten and the numbers of transactions are greater than seven and the number of

lifelines that are subsets of the lazy class sequence are more than or equal to two,

function middle-man (see Listing 8) is called for analyzing the inter-lifeline behavior in

the use case. If this function returns a non-empty sequence, then the existence of this bad

smell is confirmed.

1 declare function local:Multi-Personality($model as node())
{
 for $x in $model//IntegratedModel/UseCase
 return if ((count(local:lifelines($x)) > 10) and
 (count(local:transactions($x)) > 7) and
 count(hr:value-intersect(local:lazy-class($model),local:lifelines($x))) >= 2)
 then local:middle-man($model,$x)
 else ()
} ;

2
3
4

5
6
7
8

9

Listing 4: XQuery function to detect the bad smell Multiple Personality

Listing 5 and Listing 6 depicts the pseudo-code for two simple functions that return the

number of lifelines and transactions within a use case behavior respectively.

1 declare function local:lifelines($a as node())

{

 let $sequence := for $y in $a/Interaction/Lifeline

 return data($y/@name)

 return $sequence

} ;

2

3

4

5

6

Listing 5: XQuery function to count the number of lifelines within a use case interaction

460

1 declare function local:transactions($a as node())

{

 let $sequence := for $y in $a/Interaction/Message

 return data($y/@id)

 return $sequence

} ;

2

3

4

5

6

Listing 6: XQuery function to count the number of transactions within a use case interaction

A class is termed as a lazy class when it has more attributes than functions. Listing 7

provides the pseudo-code for detecting whether a class is a lazy class or not.

1 declare function local:lazy-class($a as node())

{

 let $sequence := for $y in $a//IntegratedModel/Class

 return if (count($y/Property) >count($y/Message))

 then data($y/@name)

 else ()

 return $sequence

} ;

2

3

4

5

6

7

8

Listing 7: XQuery function to check whether a class is a Lazy Class

In Listing 8, for each lifeline in the identified God Use Case, the patterns of the event

ends are checked. In line 5, if the number of ends incident to a lifeline are more than two

and are even in number, a recursive function called mm-pattern (see Listing 9) is called

to check the middle man pattern.

1 declare function local:middle-man($model as node(), $uc as node())

{

 for $x in $uc/Interaction/Lifeline

 let $val := count($x/end)

 return if ($val > 2 and local:isEven($val))

 then local:mm-pattern($model, $x, count($x/end))

 else data(1)

} ;

2

3

4

5

6

7

8

Listing 8: XQuery function to detect a middle-man lifeline within a use case interaction

461

Listing 9 shows the recursive function mm-pattern. This function breaks down the end

list into sub-sequences of size 2 and compares them with the sequence {receiveEvent,

sendEvent}. In case of a complete match, the lifeline can be safely classified as a middle-

man.

1 declare function local:mm-pattern($Life as node(), $ends as xs:integer)

{

 let $end-list := local:end-list($Life)

 return if ($ends = 0)

 then data(2)

 else

 if (subsequence($end-list, $ends, 2) = ('receiveEvent', 'sendEvent'))

 then local:mm-pattern($Life, $ends - 2)

 else data(1)

} ;

2

3

4

5

6

7

8

9

10

Listing 9: XQuery function to detect middle-man pattern recursively

A4.3 Excessive Alternation

Listing 10 shows the XQuery function to detect instances of the bad smell Excessive

Alternation. The function Excessive-Alternation is parameterized with the source

model $model. Using a “for loop”, each use case in the integrated model is bound to the

variable $x one after another in line 3. The functions extPoints (see Listing 11) called

in line 4 returns the number of extension points in a use case. If the number of extension

points is greater than or equal to two, function analyse-interaction (see Listing 12) is

called for analyzing the behavior of the use case interaction. If this function returns a

non-empty sequence, then the existence of this bad smell is confirmed.

462

1 declare function local:Excessive-Alternation($model as node())
{
 for $x in $model//IntegratedModel/UseCase
 return if (count(local:extPoints($x)) >= 3)
 then local:analyze-interaction($model,$x)
 else ()
} ;

2

3
4
5
6

7

Listing 10: XQuery function to detect the bad smell Multiple Personality

1 declare function local:analyze-interaction($model as node(), $uc as node())
{
 for $x in $uc/Interaction/Fragment/MessageOccurance
 let $val := count($x/Message)
 return if (xs:integer(data($x/@order)) = 1 and ($val > 2) and
 (max(hr:value-union(hr:value-union(local:msg-occurance($x),
 local:cf($x)),local:use($x)))=2))
 then local:switch-pattern($model, $uc)
 else ()
} ;

2
3
4

5
6
7
8
9
10

Listing 12: XQuery function to Analyze the Interaction Behavior of the Use Case

Listing 12 shows the function analyse-interaction. Interaction of a use case describes

its dynamic behavior. Each interaction is composed of a number of lifelines and

fragments. A fragment can be one of the three types acceptable by UML standards:

Message Occurance, Combined Fragment and Interaction Use. In order to ensure that the

interaction behavior is similar to that of a switch pattern, we check the preamble, body

1 declare function local:extPoints($a as node())
{
 let $points := for $y in $a/ExtensionPoint
 return data($y/@name)
 return $points
} ;

2
3
4

5
6

Listing 11: XQuery function to count the number Extension Points in the Use Case

463

and post sections of the interaction fragments. The functions msg-occurance, cf and

use called in lines 6 and 7 returns the sequence of the fragments within the interaction of

the use case. The function switch-pattern (see Listing 16) is called when the

interaction has only two fragments and the preamble is composed of a sequence of

messages (line 4) that are more than two. Listing 13, Listing 14, and Listing 15 show the

functions msg-occurance, cf and use respectively.

1 declare function local:msg-occurance($a as node())
{
 let $sequence := for $y in $a/Interaction/Fragments/MessageOccurance
 return xs:integer(data($y/@order))
 return $sequence
} ;

2
3
4

5
6

Listing 13: XQuery function to sequence the Message Occurance Fragments in the Interaction

1 declare function local:cf($a as node())
{
 let $sequence := for $y in $a/Interaction/Fragments/CombinedFragments
 return xs:integer(data($y/@order))
 return $sequence
} ;

2
3

4
5
6

Listing 14: XQuery function to sequence the Combined Fragments in the Interaction

1 declare function local:use($a as node())
{
 let $sequence := for $y in $a/Interaction/Fragments/InteractionUse
 return xs:integer(data($y/@order))
 return $sequence
} ;

2

3
4
5
6

Listing 15: XQuery function to sequence the Interaction Use Fragments in the Interaction

464

Listing 16 shows the function switch-pattern. A Combined Fragment with an “alt”

interaction operator and more than two operands indicates that the use case spends more

time switching between extension use cases and is a candidate for refactoring.

1 declare function local:switch-pattern($model as node(), $uc as node())
{
 for $x in $uc/Interaction/Fragment/CombinedFragment
 let $val := count($x/Operands)
 return if ($val > 2 and xs:integer(data($x/@order)) = 2 and
 data($x/@interactionOperator) = 'alt')
 then data($uc/@name)
 else ()
};

2
3
4

5
6
7
8
9

Listing 16: XQuery function to detect switch pattern

A4.4 Undue Familiarity

Listing 17 shows the XQuery function to detect instances of the bad smell Undue

Familiarity. The function Undue-Familiar is parameterized with the source model

$model. Using a “for loop”, each association in the integrated model is bound to the

variable $x one after another in line 3. The function isBidirectional called in line 4

returns a value one if the association end of the particular association is both owned and

navigable. The function isBidirectional is shown in Listing 18. If both ends of the

association share ownership and are navigable, function analyze-association is called

for behavioral analysis of the association.

465

1 declare function local:Undue-Familiar($model as node())
{
 for $x in $model//IntegratedModel/Association
 return if (count(local:isBidirectional($x)) = 2 and
 (empty($x/@aggregationKind)))
 then local:analyze-association($model,$x)
 else ()
} ;

2

3
4
5
6

7
8

Listing 17: XQuery function to detect the bad smell Undue Familiarity

1 declare function local:isBidirectional($a as node())
{
 let $sequence := for $y in $a/AssociationEnd
 return if (data($y/@isOwner) = 'true' and data($y/@isNavigable) = 'true')
 then data(1)
 else ()
 return $sequence
} ;

2
3
4

5
6
7
8

Listing 18: XQuery function to check ownership and navigability of an Association End

Listing 18 shows the function analyze-association. The condition for the if statement

in line 4 first finds an intersection set between a two sequences, one composed of the two

classes involved in the association relationship (result of the function call class-list shown

in Listing 20) and the other composed of all lifelines for a given use case (result of the

function call lifelines shown in Listing 5). If the size of this intersection is equal to

two, it is safe to say that both classes participate in the interaction of this use case. Hence,

the function msg-frequency is called in line 6 to evaluate the communication frequency

between the classes within the selected use case interaction.

466

1 declare function local:analyze-association($model as node(), $Assoc as node())
{
 for $x in $model//IntegratedModel/UseCase
 return if (count(hr:value-intersect(local:class-list($model, $Assoc),
 local:lifelines($x))) = 2)
 then local:msg-frequency($model, $x, $Assoc)
 else ()
} ;

2

3
4
5
6

7
8

Listing 19: XQuery function to Analyze the Association Relationship

Association Ends for an association include the reference id (type) of the class it

associates with. In order for the function analyze-association to check whether these

ends are participating in the lifelines of a use case, we needed to resolve its name from its

reference. Function resolve-class called in line 4 of Listing 20 is implemented to carry

out this purpose (see Listing 21).

1 declare function local:class-list($model as node(), $a as node())
{
 let $sequence := for $y in $a/AssociationEnd
 return local:resolve-class($model, $y)
 return $sequence
} ;

2
3
4
5
6

Listing 20: XQuery function to return the list of classes the Association is in between

1 declare function local:resolve-class($model as node(), $type as node())
{
 for $x in $model//IntegratedModel/Class
 return if (data($x/@id) = data($type/@type))
 then data($x/@name)
 else ()
} ;

2
3
4
5
6
7

Listing 21: XQuery function to resolve the name of a class given its id

467

A4.5 Spider’s Web

Listing 22 shows the XQuery function to detect instances of the bad smell Spider’s Web.

The function Spider-Web is parameterized with the source model $model. Using a “for

loop”, each actor in the integrated model is bound to the variable $x one after another in

line 3. The function NACU called in line 4 returns the Number of Actors per Use Case

value and the function NAM returns the total number of Use Cases in the model. The

codes for functions NACU and NUM are not shown as they are simple counting functions.

As in line 4, if the number of use cases associated with an actor is more than 30% of the

total number of use cases then the existence of Spider’s Web model smell is suspected

and the function actor-uc (see Listing 23) is called to analyze the relationship between

the actor and all its use cases.

1 declare function local:Spider-Web($model as node())

{

 for $x in $model//IntegratedModel/Actor

 return if (count(local:NACU($model, $x))>0.30*(local:NUM($model)))

 then local:actor-uc($x,$model)

 else ()

} ;

2
3
4
5

6
7

Listing 22: XQuery function to detect the bad smell Spider's Web

The actor-uc function shown in Listing 23 iterates through all the use cases associated

with an actor (line 3-4) and checks whether the signature of each use case is similar or

different. The function signature (see Listing 23) calculates the signature of each use

case and the function spider (see Listing 24) confirms the existence of the model smell.

468

1 declare function local:actor-uc($a as node(), $iModel as node())

{

 for $y in $iModel//IntegratedModel/UseCase

 return if (data($a/@name)=data($y/@actor-ref))

 then local:spider($a, count(hr:value-intersect(local:signature($y,$iModel))

 else ()

} ;

2

3
4
5
6

7

Listing 23: XQuery function to analyze all use cases associated with an actor

1 declare function local:spider($actor as node(),$val as xs:integer)

{

 let $v := $val

 return

 if ($v > 2)

 then data($actor/@name)

} ;

2
3
4

5
6
7

Listing 24: XQuery function to check if the more than two signatures are different

The signature function shown in Listing 25 iterates through all the lifelines within the

use case (line 3) and adds it to the signature sequence. If ant lifeline is a child class, then

the check-parent (see Listing 26) function is invoked to add the parent to the signature.

Finally, the returned sequence represents the signature of a use case.

1 declare function local:signature($a as node(), $model as node())

{

 let $sequence := for $y in $a/Interaction/Lifeline

 return local:check-parent($y,$model)

 return $sequence

} ;

2
3
4

5
6

Listing 25: XQuery function to compute the signature of a use case

469

The check-parent function shown in Listing 26 is a simple function that returns the

parent class of a child class if the class is part of an inheritance hierarchy.

1 declare function local:check-parent($x as node(),$model as node())

{

 for $y in $model//IntegratedModel/Class

 return if (data($y/@name) = data($x/@name))

 then data($y/SuperClass/@name)

 else data($x/@name)

} ;

2
3
4

5
6
7

Listing 26: XQuery function to return the parent of a child class

A4.6 Specters’

Listing 27 shows the XQuery function to detect instances of the bad smell Specters’. The

function Specters is parameterized with the source model $model. Using a “for loop”,

each class in the integrated model is bound to the variable $x one after another in line 3.

The function num-attr called in line 4 returns the Number of Attributes in a class and if

this value is equal to zero, the function analyze-class (see Listing 28) is called to check

the behavior of the class within the use cases it is included in. The codes for functions

num-attr is not shown as they are simple counting functions.

1 declare function local:Specters($model as node())

{

 for $x in $model//IntegratedModel/Class

 return if (local:num-attr($x) = 0)

 then local:analyze-class($model,$x)

 else ()

} ;

2
3
4

5
6
7

Listing 27: XQuery function to detect the bad smell Specters'

470

The analyze-class function shown in Listing 28 iterates through all the use cases

within the Integrated Model which are “inclusion” use cases and checks whether the no-

attribute class found is part of any one of them. If found, the behavior of this class (or

lifeline) within that inclusion use case is analyzed in function analyze-lifeline (see

Listing 29).

1 declare function local:analyze-class($a as node(), $x as node())

{

 for $y in $a//IntegratedModel/UseCase/includes

 return if (hr:value-intersect(data($x/@name),local:lifelines($y)))

 then local:analyze-lifeline($y,$x)

 else ()

} ;

2
3
4

5
6
7

Listing 28: XQuery function to analyze no-attribute classes

The analyze-lifeline function shown in Listing 29 checks the event ends throughout

the lifecycle of the lifeline within the use case. If all the end events are of type “send”

(identified through the recv-Events function), then the class (or lifeline) is identified as

a Specter class and needs to be refactored.

1 declare function local:analyze-lifeline($a as node(), $x as node())

{

 for $y in $a/Lifeline

 return if (data($y/@name) = data($x/@name) and (count(local:recv-Events($y))=0))

 then data($y/@name)

 else ()

} ;

2
3
4

5
6
7

Listing 29: XQuery function to analyze the no-attribute lifeline behavior in a use case

The rec-Events function shown in Listing 30 is a simple function to check whether the

end type of an event over the lifeline is of type “receive” or not.

471

1 declare function local:recv-Events($a as node())

{

 for $y in $a/End

 return if (data($y/@endType)="receiveEvent")

 then data($y/@endType)

 else ()

} ;

2

3
4
5
6

7

Listing 30: XQuery function to identify the number of receive events on a lifeline

A4.7 Ripple Effect

Listing 31 shows the XQuery function to detect instances of the bad smell Ripple Effect.

The function Ripple-Effect is parameterized with the source model $model. Using a

“for loop”, each use case in the integrated model is bound to the variable $x one after

another in line 3. The function impact-factor called in line 4 returns the value of the

impact factor metric proposed in this work in Section 5.4.8.

1 declare function local:Ripple-Effect($model as node())

{

 for $x in $model//IntegratedModel/UseCase

 return local:impact-factor($x, $model)

} ;

2
3

4
5

Listing 31: XQuery function to detect the bad smell Ripple Effect

The function impact-factor shown in Listing 32 iterates through all the lifelines of a

use case to calculate the metric NOEC (Number of external connections) for each lifeline.

If this value is found to me more than 30% of the total number of classes (from the NCM

function) then the use case is suspected of including a lifeline (or a class) that exhibits the

ripple effect model smell. The function NOEC is shown in Listing 33 and the function code

for NCM is not included as it is a simple counting function.

472

 1 declare function local:impact-factor($a as node(), $model as node())

{

 for $y in $a/Lifeline

 return if (sum(local:NOEC($y,$model))=(0.3*(local:NCM($model))))

 then data($a/@name)

 else ()

} ;

2

3
4
5
6

7

Listing 32: XQuery function to calculate the impact factor

The function NOEC shown in Listing 33 calculates the NOEC metric which is the

difference between the number of associations of a class (NASC) and the Number of

Internal Connection (NOIC) as evident from Line 5 of the function code. As earlier, the

function code for NASC is not included as it is a simple counting function.

1 declare function local:NOEC($x as node(), $iModel as node())

{

 for $y in $iModel//IntegratedModel/Class

 return if (data($y/@name) = data($x/@name))

 then (local:NASC($y,$iModel) - local:NOIC($x,$iModel))

 else ()

} ;

2

3
4
5
6

7

Listing 33: XQuery function to calculate the NOEC metric

Listing 34 shows the function code for NOIC. The function iterates through all the use

cases in the integrated model and identifies all sequence diagrams of which the selected

lifeline is part of. This is done using the built-in function in XQuery called is-value-

in-sequence and using the lifelines function to return all the lifelines participating in

any use case (see Listing 5) at Line 4. If found, the number of distinct lifelines it interacts

it with in the use case is counted (using the built in count function and the distinct

function). The interacting lifelines are obtained using the function participating-ends (see

Listing 35).

473

1 declare function local:NOIC($x as node(), $iModel as node())

{

 for $y in $iModel//IntegratedModel/UseCase

 return if (is-value-in-sequence(data($x/@name),local:lifelines($y))

 then (count(distinct-values(local:particpating-ends($y,$x))))

 else ()

} ;

2

3
4
5
6

7

Listing 34: XQuery function to calculate the NOIC metric

1 declare function local:particpating-ends($a as node(), $x as node())

{

 let $sequence := for $y in $a/Interaction/Message

 return if (data($y/@sender) = data($x/@name) or data($y/@reciever) =

 data($x/@name))

 then data($y/@name)

 return $sequence

} ;

2
3
4
5

6
7
8

Listing 35: XQuery function to identify the interacting lifelines

474

Appendix 5: XMI Schema for Extended Use Case Metamodel

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="UseCaseModel">
 <xs:annotation>
 <xs:documentation>Schema for Extended Use Case Metamodel
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="UseCase" type="UseCase"

maxOccurs="unbounded"/>

475

 <xs:element name="Actor" type="Actor"
maxOccurs="unbounded"/>

 </xs:sequence>
 <xs:attribute name="name" type="xs:Name"/>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="Actor">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:Name" use="required"/>
 <xs:attribute name="superActor" type="xs:IDREF" use="optional"/>
 <xs:attribute name="type" type="enumActor" use="required"/>
 <xs:attribute name="num_roles" type="xs:positiveInteger" use="optional"/>
 </xs:complexType>
 <xs:complexType name="UseCase">
 <xs:sequence>
 <xs:element name="Supporting" minOccurs="0"/>
 <xs:element name="Offstage" minOccurs="0"/>
 <xs:element name="Description" minOccurs="0"/>
 <xs:element name="interaction"/>
 <xs:element name="includes" type="includes" minOccurs="0"

maxOccurs="unbounded"/>
 <xs:element name="extends" type="extends" minOccurs="0"

maxOccurs="unbounded"/>
 <xs:element name="AsyncExtend" minOccurs="0"

maxOccurs="unbounded"/>
 <xs:element name="ExtensionPoint" minOccurs="0"

maxOccurs="unbounded"/>
 <xs:element name="Precondition"/>
 <xs:element name="Postcondition"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:Name" use="optional"/>
 <xs:attribute name="actor-ref" type="xs:IDREF" use="required"/>
 <xs:attribute name="superUC" type="xs:IDREF" use="optional"/>
 <xs:attribute name="isAbstract" type="xs:boolean" use="optional"/>
 </xs:complexType>
 <xs:complexType name="Precondition">
 <xs:sequence>
 <xs:element name="Constraint" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Postcondition">
 <xs:sequence>
 <xs:element name="Success">
 <xs:complexType>
 <xs:sequence>

<xs:element name="Constraint"
maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Failure" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Constraint"

476

maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ExtensionPoint">
 <xs:sequence>
 <xs:element name="Constraint"/>
 <xs:element name="RejoinLocation"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="upper" type="xs:integer" use="optional"/>
 <xs:attribute name="lower" type="xs:integer" use="optional"/>
 </xs:complexType>
 <xs:complexType name="includes">
 <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:complexType name="extends">
 <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/>
 <xs:attribute name="extPoint" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:complexType name="interaction">
 <xs:choice>
 <xs:element name="MainFlow"/>
 <xs:element name="ChildFlow" minOccurs="0"/>
 <xs:element name="SubFlow" minOccurs="0"

maxOccurs="unbounded">
 <xs:complexType/>
 </xs:element>
 <xs:element name="AlternativeFlow" minOccurs="0"

maxOccurs="unbounded">
 <xs:complexType/>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="MainFlow">
 <xs:sequence>
 <xs:element name="Transaction" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="SubFlow">
 <xs:sequence>
 <xs:element name="Transaction" maxOccurs="unbounded"/>
 <xs:element name="SubFlow" minOccurs="0"

maxOccurs="unbounded"/>
 <xs:element name="AlternateFlow" minOccurs="0"

maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 </xs:complexType>
 <xs:complexType name="AlternateFlow">

477

 <xs:sequence>
 <xs:element name="Constraint"/>
 <xs:element name="Transaction" maxOccurs="unbounded"/>
 <xs:element name="SubFlow" minOccurs="0"

maxOccurs="unbounded"/>
 <xs:element name="AlternateFlow" minOccurs="0"

maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:attribute name="VariationStep" type="xs:positiveInteger" use="required"/>
 <xs:attribute name="SequenceNum" type="xs:positiveInteger" use="required"/>
 </xs:complexType>
 <xs:complexType name="Transaction">
 <xs:sequence>
 <xs:element name="Step" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="order" type="xs:positiveInteger" use="required"/>
 </xs:complexType>
 <xs:complexType name="Step">
 <xs:choice>
 <xs:element name="event" type="event"/>
 <xs:element name="anchor" type="anchor"/>
 </xs:choice>
 <xs:attribute name="step_no" type="xs:positiveInteger" use="required"/>
 </xs:complexType>
 <xs:complexType name="event">
 <xs:sequence>
 <xs:element name="sender" type="sender"/>
 <xs:element name="receiver" type="receiver"

maxOccurs="unbounded"/>
 <xs:element name="arguments" type="arguments" minOccurs="0"

maxOccurs="unbounded"/>
 <xs:element name="action" type="action"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="sender">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="receiver">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="action">
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="actionType" use="required"/>
 </xs:complexType>
 <xs:complexType name="arguments">
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="anchor">
 <xs:choice>
 <xs:element name="ExternalInclusion"/>
 <xs:element name="ExternalVariation"/>
 <xs:element name="InternalInclusion"/>

478

 </xs:choice>
 </xs:complexType>
 <xs:complexType name="ExternalInclusion">
 <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:complexType name="InternalInclusion">
 <xs:attribute name="ref" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:complexType name="ExternalVariation">
 <xs:attribute name="extPoint" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:complexType name="Constraint">
 <xs:sequence>
 <xs:element name="Entity"/>
 <xs:element name="Relation"/>
 <xs:element name="Value"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Entity">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="Relation">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="Value">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="RejoinLocation">
 <xs:attribute name="step" type="xs:positiveInteger" use="required"/>
 </xs:complexType>
 <xs:complexType name="Supporting">
 <xs:attribute name="actor-ref" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:complexType name="Offstage">
 <xs:attribute name="actor-ref" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:complexType name="Description">
 <xs:sequence>
 <xs:element name="SpecialREQ" minOccurs="0"

maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="desc" type="xs:string" use="optional"/>
 <xs:attribute name="goal" type="xs:string" use="optional"/>
 <xs:attribute name="scope" type="enumScope" use="optional"/>
 <xs:attribute name="level" type="enumLevel" use="optional"/>
 <xs:attribute name="Priority" type="xs:string" use="optional"/>
 <xs:attribute name="Frequency" type="xs:string" use="optional"/>
 <xs:attribute name="OpenIssues" type="xs:string" use="optional"/>
 <xs:attribute name="Performance" type="xs:string" use="optional"/>
 <xs:attribute name="DueDate" type="xs:date" use="optional"/>
 </xs:complexType>
 <xs:complexType name="SpecialREQ">
 <xs:attribute name="category" type="xs:string"/>

479

 <xs:attribute name="desc" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="AsyncExtend">
 <xs:sequence>
 <xs:element name="Constraint"/>
 </xs:sequence>
 <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:simpleType name="actionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Request"/>
 <xs:enumeration value="DataValidate"/>
 <xs:enumeration value="Expletive"/>
 <xs:enumeration value="Response"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enumActor">
 <xs:restriction base="xs:string">
 <xs:enumeration value="System"/>
 <xs:enumeration value="NetworkSystem"/>
 <xs:enumeration value="Human"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enumScope">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Organization"/>
 <xs:enumeration value="System"/>
 <xs:enumeration value="Component"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enumLevel">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Summary"/>
 <xs:enumeration value="PrimaryTask"/>
 <xs:enumeration value="Subfunction"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

480

Appendix 6: UCDesc User Manual

In this section, we present the user manual for the prototype tool UCDesc. The user

manual describes how to author use case descriptions using the UCDesc tool.

A6.1 Creating a New Project

To create a new project, click File -> New Project. A dialog box requesting the name of

the project followed by its destination location appears. A project is then created at the

destination location. All UCDesc project files are saved with a .ucdesc extension. Figure

A - 7 shows the New Project dialog. On successful creation of the project, the user can

add, edit and delete actors and use cases to the system.

 Figure A - 7 UCDesc: Create New Project

481

A6.2 Adding an Actor

Using the Edit Menu, users can add, edit and delete actors. Figure A - 8 shows the Add

Actor dialog. In order to use an actor in a use case, it needs to be added before the adding

the use case. The actor-id is automatically assigned by the system. If the actor is a

specialization of an existing actor, the Parent Actor Drop-down list can be used to set the

parent actor. If the parent actor is not yet added, the actor information can be edited later

to set the parent actor.

Successfully added actor appears in the Actors panel in the UCDesc UI. Actor

information can be edited by selecting the desired actor from the Actors panel and using

the Edit Menu to either edit or delete the actor from the system.

Figure A - 8 UCDesc: Add New Actor

482

A6.3 Adding a Use Case

Authoring a use case flows is the primary functionality of the UCDesc tool. Similar to the

process of adding actors, users can add, edit and delete a use case from the Edit Menu.

Figure A - 9 shows the Add Use Case dialog.

Selecting the Add Use Case option from the Edit Menu opens the use case description

editor. The editor is a tab-based input dialog. It includes eight tabs for adding the details

for the use case, main flow description, sub flows, alternative flows and extension points.

Use case ID is auto generated upon use case addition. The details required for each use is

based on the extended use case metamodel proposed in this work.

Figure A - 9 UCDesc: Add Use Case

483

The information required from the user for use case description, actor information and

constraints are shown in Figure A - 10.

A6.4 Adding Flow of Steps

The Main Flow tab allows us to enter the steps required to fulfill the use case. Figure A -

11 shows the main flow editor tab. At any step, we can include an anchor for include and

extend using the buttons provided in the Insert panel at the bottom of the dialog box.

Figure A - 10 UCDesc: Use Case Description

484

If a user wants to include or extend a use case, the use case must added before the base

use case is authored. Another constraint for extending a use case is to add an extension

point before adding it to the main flow. Figure A - 12 shows information required for

adding an extension point.

Adding Sub Flows and Alternative Flows to the Main Flow requires the user to indicate

the step number in the flow description. If more than one sub or alternative flow is added

to the same step, lower case alphabets are used to distinguish between them. Since the

Sub Flow and Alternative Flow tab has the same basic architecture, we show only the

Alternative Flow tab and the steps required to add an Alternative Flow in Figure A - 13.

Figure A - 11 UCDesc: Main Flow Editor

485

Figure A - 12 UCDesc: Extension Point

Figure A - 13 UCDesc: Alternative Flow

486

As use case relationships are added within the use case description (inclusion and

extension), these are added simultaneously to the Relationship panel in the main UI as

shown in Figure A - 14.

Once the project is completed, it can be exported to an XMI file using File -> Export

option. A structural view of the use case diagram created can be viewed using File ->

Draw Diagram option. Since UCDesc uses a web-based diagram generator, the resultant

diagram opens in a web browser. Figure A - 15 shows the rendered use case diagram for

the above-created project.

Figure A - 14 UCDesc: Main UI after use case addition

487

Figure A - 15 UCDesc: Use Case diagram rendered from yUML webserver

488

Appendix 7: XMI Schema for Integrated Metamodel

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2009 (http://www.altova.com) by KING FAHD UNIVERSITY OF
PETROLEUM & MINERALS (KING FAHD UNIVERSITY OF PETROLEUM & MINERALS) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">
 <xs:element name="IntegratedModel">
 <xs:annotation>
 <xs:documentation>Schema for the Integrated Metamodel</xs:documentation>
 </xs:annotation>
 <xs:complexType>

<xs:sequence>
 <xs:element name="UseCase" type="UseCase" maxOccurs="unbounded"/>
 <xs:element name="Actor" type="Actor" maxOccurs="unbounded"/>
 <xs:element name="Class" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SuperClass" minOccurs="0"

maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="id" type="xs:IDREF"

use="required"/>
 <xs:attribute name="name" type="xs:string"

use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Message" minOccurs="0"

maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Arguments">
 <xs:complexType>
 <xs:attribute name="id" type="xs:ID"

use="required"/>
 <xs:attribute name="name" type="xs:string"

use="required"/>
 <xs:attribute name="type" type="xs:string"

use="optional"/>
 <xs:attribute name="direction"

type="enumDirectionKind" use="optional"/>
 <xs:attribute name="default" type="xs:string"

use="optional"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="retAttr" type="xs:string" use="optional"/>
 <xs:attribute name="visibility" type="enumVisibilityKind"

use="optional"/>

489

<xs:attribute name="isQuery" type="xs:boolean"
use="optional"/>

 <xs:attribute name="isAbstract" type="xs:boolean"
use="optional"/>

 <xs:attribute name="isStatic" type="xs:boolean"
use="optional"/>

 <xs:attribute name="concurrency"
type="enumConcurrencyKind"/>

 </xs:complexType>
 </xs:element>
 <xs:element name="Association" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="Association">
 <xs:sequence>
 <xs:element name="AssociationEnd"

minOccurs="2" maxOccurs="2">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"

use="required"/>
 <xs:attribute name="type" type="xs:IDREF"

use="required"/>
 <xs:attribute name="lower" type="xs:string"

use="optional"/>
 <xs:attribute name="upper" type="xs:string"

use="optional"/>
 <xs:attribute name="isOwner"

type="xs:boolean" use="optional"/>
 <xs:attribute name="isNavigable"

type="xs:boolean" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="AssociationClass">
 <xs:complexType>
 <xs:attribute name="id" type="xs:ID"

use="required"/>
 <xs:attribute name="idref" type="xs:IDREF"

use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Property" type="Property"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="isFinalSpecialization" type="xs:boolean"

use="optional"/>
 <xs:attribute name="isAbstract" type="xs:boolean" use="optional"/>
 <xs:attribute name="isLeaf" type="xs:boolean" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Constraint" type="Constraint"/>

490

</xs:sequence>
 <xs:attribute name="name" type="xs:Name"/>
 <xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>
 </xs:element>
 <xs:complexType name="UseCase">

<xs:sequence>
 <xs:element name="Supporting" minOccurs="0"/>
 <xs:element name="Offstage" minOccurs="0"/>
 <xs:element name="Include" type="Include" minOccurs="0"

maxOccurs="unbounded"/>
 <xs:element name="Extend" type="Extend" minOccurs="0"

maxOccurs="unbounded"/>
 <xs:element name="AsyncExtend" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="ExtensionPoint" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="ExtPoint">
 <xs:sequence>
 <xs:element name="RejoinLocation"/>
 <xs:element name="Constraint" type="Constraint"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Precondition">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Constraint" type="Constraint" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Postcondition">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Success">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Constraint" type="Constraint"

maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Failure">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Constraint" type="Constraint"

maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Interaction" type="Interaction"/>

491

 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:Name"/>
 <xs:attribute name="actor-ref" type="xs:IDREF" use="required"/>
 <xs:attribute name="superUC" type="xs:IDREF"/>
 <xs:attribute name="isAbstract" type="xs:boolean" use="optional"/>
 </xs:complexType>
 <xs:complexType name="ExtPoint">
 <xs:attribute name="id" type="xs:IDREF" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="lower" type="xs:integer" use="optional"/>
 <xs:attribute name="upper" type="xs:integer" use="optional"/>
 </xs:complexType>
 <xs:complexType name="Include">
 <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:complexType name="Extend">
 <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/>
 <xs:attribute name="extPoint" type="xs:integer" use="required"/>
 </xs:complexType>
 <xs:complexType name="Actor">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:Name" use="required"/>
 <xs:attribute name="type" type="enumType" use="required"/>
 <xs:attribute name="num_roles" type="xs:positiveInteger" use="optional"/>
 <xs:attribute name="superActor" type="xs:IDREF" use="optional"/>
 </xs:complexType>
 <xs:complexType name="Interaction">
 <xs:sequence>
 <xs:element name="Lifeline" type="Lifeline"/>
 <xs:element name="Message" type="Message"/>
 <xs:element name="Gate" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Fragment" type="Fragment" minOccurs="0"

maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="Lifeline">
 <xs:sequence>
 <xs:element name="End" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="endType" type="enumEvent" use="required"/>
 <xs:attribute name="event-ref" type="xs:IDREF" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="StateInvariant" type="Constraint"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:IDREF" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="class-ref" type="xs:IDREF" use="required"/>
 </xs:complexType>
 <xs:complexType name="Property">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>

492

 <xs:attribute name="lower" type="xs:integer"/>
 <xs:attribute name="upper" type="xs:string"/>
 <xs:attribute name="default" type="xs:string"/>
 <xs:attribute name="isReadOnly" type="xs:boolean"/>
 <xs:attribute name="isDerived" type="xs:boolean"/>
 <xs:attribute name="visibility" type="enumVisibilityKind"/>
 </xs:complexType>
 <xs:complexType name="Association">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:Name"/>
 <xs:attribute name="AggregationKind" type="enumAggregationKind"/>
 </xs:complexType>
 <xs:complexType name="MessageEnd">
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="id" type="xs:IDREF" use="required"/>
 <xs:attribute name="isGate" type="xs:boolean"/>
 </xs:complexType>
 <xs:complexType name="DataType">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="Message">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="messageKind" type="enumMessageKind"/>
 <xs:attribute name="messageSort" type="enumMessageSort"/>
 </xs:complexType>
 <xs:complexType name="Fragment">
 <xs:choice>
 <xs:element name="SingleOperand">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="InteractionOperand"

type="InteractionOperand"/>
 <xs:choice>
 <xs:element name="Opt"/>
 <xs:element name="Loop">
 <xs:complexType>
 <xs:attribute name="maxint" type="xs:integer"/>
 <xs:attribute name="minint" type="xs:integer"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Break"/>
 <xs:element name="Neg"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="MultiOperand">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="InteractionOperand"

type="InteractionOperand" maxOccurs="unbounded"/>
 <xs:choice>
 <xs:element name="Par"/>
 <xs:element name="Alt"/>

493

 <xs:element name="Assert"/>
 <xs:element name="Strict"/>
 <xs:element name="Seq"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="isStrict" type="xs:boolean" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="InteractionUse">
 <xs:complexType>
 <xs:attribute name="interactionName" type="xs:IDREF"

use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="InteractionOperand">
 <xs:sequence>
 <xs:element name="InteractionFragment" type="Fragment"/>
 <xs:element name="Guard" type="Constraint" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Arguments">
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute name="name" type="xs:Name"/>
 <xs:attribute name="direction" type="enumDirectionKind"/>
 <xs:attribute name="type" type="xs:IDREF"/>
 <xs:attribute name="default" type="xs:string"/>
 </xs:complexType>
 <xs:simpleType name="enumMessageSort">
 <xs:restriction base="xs:string">
 <xs:enumeration value="syncCall"/>
 <xs:enumeration value="asyncCall"/>
 <xs:enumeration value="createMessage"/>
 <xs:enumeration value="deleteMessage"/>
 <xs:enumeration value="reply"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enumMessageKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="complete"/>
 <xs:enumeration value="lost"/>
 <xs:enumeration value="found"/>
 <xs:enumeration value="unknown"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enumDirectionKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="in"/>
 <xs:enumeration value="out"/>
 <xs:enumeration value="inout"/>
 <xs:enumeration value="return"/>
 </xs:restriction>
 </xs:simpleType>

494

 <xs:simpleType name="enumAggregationKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>
 <xs:enumeration value="shared"/>
 <xs:enumeration value="composite"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enumVisibilityKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="public"/>
 <xs:enumeration value="private"/>
 <xs:enumeration value="protected"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enumType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="System"/>
 <xs:enumeration value="NetworkSystem"/>
 <xs:enumeration value="Human"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enumEvent">
 <xs:restriction base="xs:string">
 <xs:enumeration value="sendEvent"/>
 <xs:enumeration value="recieveEvent"/>
 <xs:enumeration value="fragment"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enumConcurrencyKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="sequential"/>
 <xs:enumeration value="guarded"/>
 <xs:enumeration value="concurrent"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="Constraint">
 <xs:sequence>
 <xs:element name="Expression" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Operator"

maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

</xs:schema>

495

Appendix 8: IntegraUML User Manual

In this section, we present the user manual for the prototype tool IntegraUML. The user

manual describes how to user can create a project, import XMI files for the UML

diagrams into the project, create and refactor the integrated model.

To create a new project, click File -> New Project. A dialog box requesting the name of

the project followed by its destination location appears. When you click the ‘Ok’ button,

a project folder is created at the Project Location with the Name of the project. New

Project dialog box is shown in Figure A - 16.

If the selected project location already contains a folder of the same name, you will be

prompted to rename the project or change the source location. To open an existing

Figure A - 16 IntegrUML: New Project Dialog Box

496

project, choose the ‘File -> Open Project’ option from the menu. This will launch a

project folder selector that will allow you to select and open a project. IntegraUML looks

for a project file (Data.IntegraUML) within the project folder. This file identifies that the

folder is an IntegraUML workspace. Failure to find this file in the selected folder will

result in an error message. If the file is found, clicking the ‘Ok’ button or pressing the

‘Enter’ key opens the selected project.

When a project is created or opened, the user can browse and upload the model files. This

can be done through the Source UML Files panel. IntegraUML provides users with two

options when uploading source model files. Users can upload XMI files for the class

diagram; sequence diagrams and use case diagram as individual files or combined as one

XMI file. The browsing options are enabled based on the selection of an appropriate

radio button at the top of the panel. Selecting one disables the other group as shown in

Figure A - 17.

Once the selection is made, the users can upload respective model XMI files using the

Browse button. Upon successful selection of the model files, the parse buttons beside the

browse buttons is enabled. All model files must be parsed before integration. Parsing

Figure A - 17 IntegraUML: Source UML File Selection

497

starts the DOM API and generates a DOM tree for each UML model. The results of the

parsing process is displayed in the Diagram Parse Log panel. Typical parse log

information includes diagram version, tool exported from and statistical information like

number of classes, number of interactions and so on as shown in Figure A - 18.

The ‘Integrate’ button at the bottom of the UI is activated once all uploaded model files

are parsed successfully. The model integration process is started once the user presses the

‘Integrate’ button. Results of unsuccessful model integration are displayed in the Error

Log as shown in Figure A - 19. The user is required to resolve these errors before

proceeding with model integration.

Figure A - 18 IntegraUML: UML Model Parsing Results

498

An integrated model XMI file is created in the project’s source location upon successful

model integration and an appropriate feedback message dialog is show to the user.

IntegraUML allows users to select and upload model files from any location in the user’s

computer. However, the user is required to save the project in order to copy these files to

the project location. To save an open project, choose the ‘File -> Save Project’ option

from the menu. This will copy and rename all the model files as shown in Figure A - 20.

Figure A - 19 IntegraUML: Model Integration Error

499

Figure A - 20 IntegraUML: File Structure

500

Appendix 9: UML Model Metrics

A9.1 Class Diagram Metrics

1. DEPTH OF INHERITANCE TREE (DIT)

Level: Class-Level

Description: This metric is useful for measuring the vertical hierarchy of

an inheritance tree. The higher the value of DIT, the greater

the chance of reuse becomes. However, a high value of DIT

can cause program comprehension problem.

Reference: [62]

2. NUMBER OF CHILDREN (NOC)

Level: Class-Level

Description: This metric counts the number of direct children of a class.

Reference: [62]

3. FAN-IN

Level: Class-Level

Description: This metric counts the number of incoming association

relations of a class. It measures the extent to which other

classes use the class’ provided services.

Reference: [290]

501

4. FAN-OUT

Level: Class-Level

Description: This metric counts the number of outgoing association

relations of a class. It measures the extent to which the

class uses services provided by other classes.

Reference: [290]

5. NUMBER OF THE ASSOCIATIONS (NASM)

Level: Model-Level

Description: An association is a connection, or a link, between classes.

This metric counts the number of associations in a class

model. This metric is useful for estimating the scale of

relationships between classes.

Reference: [287]

6. NUMBER OF THE AGGREGATIONS (NAGM)

Level: Model-Level

Description: An aggregation is a special form of association that

specifies a whole-part relationship between the aggregate

(whole) and a component part. This metric counts the

number of aggregations in a class model.

Reference: [287]

502

7. NUMBER OF THE ASSOCIATIONS LINKED TO A CLASS (NASC)

Level: Class-Level

Description: The number of associations including aggregations is

counted. This metric is useful for estimating the static

relationships between classes.

Reference: [287]

8. NUMBER OF THE ATTRIBUTES IN A CLASS UNWEIGHTED (NATC1)

Level: Class-Level

Description: This metric counts the number of attributes in a class. It

does not apply a weighting scheme, meaning public, private

and protected attributes are treated equal.

Reference: [287]

9. NUMBER OF THE ATTRIBUTES IN A CLASS WEIGHTED (NATC2)

Level: Class-Level

Description: This metric is a weighted version of NATC1. That is, it

applies different weights to each metric depending on their

visibility, i.e. 1.0 for public, 0.5 for protected and 0.0 for

private attributes. This is more correct in a sense that the

concept of encapsulation is more properly reflected in this

weighting scheme.

Reference: [287]

503

10. NUMBER OF THE OPERATIONS IN A CLASS UNWEIGHTED (NOPC1)

Level: Class-Level

Description: This is an un-weighted metric that counts the number of

operations in a class. Inheriting Operations in case of

generalization relationship with other classes is also

included in this measure.

Reference: [287]

11. NUMBER OF THE OPERATIONS IN A CLASS WEIGHTED (NOPC2)

Level: Class-Level

Description: This metric is same as NOPC1 except different weights are

applied. The weights are similar to the one used in NATC2.

Reference: [287]

12. NUMBER OF THE CLASSES (NCM)

Level: Model-Level

Description: This metric counts the number of classes in a model. This

metric is comparable to the traditional LOC (lines of code)

or a more advanced McCabe’s cyclomatic complexity

(MVG) metric for estimating the size of a system [204].

Thus, in OOP this metric can be used to compare sizes of

systems.

Reference: [287]

504

13. NUMBER OF THE INHERITANCE RELATIONS (NIM)

Level: Model-Level

Description: This metric counts the number of generalization

relationships between classes existing in a model.

Reference: [287]

14. NUMBER OF THE SUPER CLASSES OF A CLASS (NSUPC)

Level: Class-Level

Description: This counts the direct parents of a class. In a single

inheritance implementation like Java, the value of this

metric is either 0 or 1, whereas under multiple inheritance

schemes it is greater than or equal to 0.

Reference: [287]

15. NUMBER OF THE ELEMENTS IN THE TRANSITIVE CLOSURE OF

THE SUBCLASSES OF A CLASS (NSUBC*)

Level: Class-Level

Description: This counts the transitive closure of the subclasses of a

class, and it is potentially useful for predicting the classes

who might be affected if changes occur in this class.

Reference: [287]

505

16. NUMBER OF THE ELEMENTS IN THE TRANSITIVE CLOSURE OF

THE SUPERCLASSES OF A CLASS (NSUPC*)

Level: Class-Level

Description: This metric counts the transitive closure of the super

classes of a class, and it is potentially useful for predicting

the classes whose changes might affect this class.

Reference: [287]

A9.2 Sequence Diagram Metrics

1. NUMBER OF MESSAGES SENT BY THE INSTANTIATED OBJECTS OF

A CLASS (NMSC)

Level: Lifeline-Level

Description: This metric count the number of messages sent by the

objects instantiated from the class. It can be used for

finding out which classes are actively involved in

interactions within a system.

Reference: [287]

2. NUMBER OF MESSAGES RECEIVED BY THE INSTANTIATED

OBJECTS OF A CLASS (NMRC)

Level: Lifeline-Level

506

Description: This metric is similar to the RFC metric of C&K metric

suite. It counts the number of messages received by the

objects instantiated from the class. It can be used for

finding out which classes are actively involved in

interactions within a system.

Reference: [287]

3. NUMBER OF MESSAGES (NMM)

Level: Model-Level

Description: Messages are exchanged between objects manifesting

various interactions. This metric counts the number of

messages within a sequence model.

Reference: [287]

4. NUMBER OF THE DIRECTLY DISPATCHED MESSAGES OF A

MESSAGE (NDM)

Level: Message-Level

Description: According to the UML semantics, a message can be an

activator of other messages. This metric counts the number

of messages directly dispatched as a result of this message

invocation.

Reference: [287]

507

5. NUMBER OF THE ELEMENTS IN THE TRANSITIVE CLOSURE OF

THE DIRECTLY DISPATCHED MESSAGES OF A MESSAGE (NDM*)

Level: Message-Level

Description: This metric counts the transitive closure of all the messages

activated as a result of this message being dispatched. It is

potentially useful for predicting the lifelines and messages

that might be affected if this message is modified or

removed.

Reference: [287]

6. NUMBER OF LIFELINES (LIFELINES)

Level: Model-Level

Description: The metric counts the number of lifelines on the sequence

model.

Reference: [466]

A9.3 Use Case Diagram Metrics

1. NUMBER OF THE USE CASES (NUM)

Level: Model-Level

Description: This metric counts the number of use cases in a use case

model. The rationale behind the inclusion of this metric is

508

that a use case represents a coherent unit of functionality

provided by a system, a subsystem, or a class.

Reference: [287]

2. NUMBER OF THE ACTORS (NAM)

Level: Model-Level

Description: This metric computes the number of actors in a use case

model.

Reference: [287]

3. NUMBER OF THE ACTORS ASSOCIATED WITH A USE CASE (NACU)

Level: Use Case-Level

Description: This metric computes the number of actors that are

associated with a use case, and it is useful to measure the

importance of the requirement expressed by the use case.

The reason for this argument is that the requirements that

many actors concern are likely to be important for the

system to function properly as a whole.

Reference: [287]

4. NUMBER OF USE CASES WHICH THIS EXTENDS (EXTENDING)

Level: Use Case-Level

509

Description: This metric counts the number of use cases extended by

this use case.

Reference: [466]

5. NUMBER OF USE CASES WHICH EXTEND THIS USE CASE

(EXTENDED)

Level: Use Case-Level

Description: The metric counts the number of use cases which extend

this use case.

Reference: [466]

6. NUMBER OF USE CASES WHICH THIS INCLUDES (INCLUDING)

Level: Use Case-Level

Description: The metric counts the number of use cases which this use

case includes.

Reference: [466]

7. NUMBER OF USE CASES THAT INCLUDES THIS USE CASE

(INCLUDED)

Level: Use Case-Level

Description: The metric counts the number of use cases, which include

this use case.

Reference: [466]

510

8. NUMBER OF EXTENSION POINTS OF THE USE CASE (ExtPts)

Level: Use Case-Level

Description: The metric counts the number of extension points in the use

case. An extension point in a use case is a useful concept,

but when too many are provided, it is a sign that perhaps

the use case should be split up or modeled in a different

way to improve readability.

Reference: [466]

9. DEPTH OF <<INCLUDE>> RELATIONSHIP (DOIR)

Level: Use Case-Level

Description: A series of nested <<include>> relationships in Use Case

modeling is a sign of functional decomposition and makes

for difficult reading. This metric computes the depth of the

include relationship.

Reference: [289]

10. DEPTH OF <<EXTEND>> RELATIONSHIP (DOER)

Level: Use Case-Level

Description: An <<extend>> relationship is itself commonly

misunderstood. A number of nested <<extend>>

relationships can be difficult to understand and should be

511

discouraged. This metric computes the depth of the extend

relationship.

Reference: [289]

512

Appendix 10: UML Model Smells

Models smells are defined as elements within the model that are potential candidates for

improvements and refactoring. Either model smells could be symptoms of design defects

or bad alternatives to recurring design problems in OO design also known as anti-

patterns. Based on our detailed systematic literature review [18], we identified that 17

published studies proposed model smells over UML models. Models smells used in our

work for validation and comparison were selected based on the following criteria:

1. Smells defined only over UML Class, Sequence and Use Case models. This is based

on the scope of the work.

2. Smells defined are either metric-based or rule-based (heuristics). Design pattern

based model smells are not considered in line of the scope of the work.

3. Smells defined should be measurable with threshold values clearly specified in the

study.

4. Studies proposing model smells should associate refactoring strategy (solutions) to

the identified refactoring opportunities.

A10.1 Class Model Smells

In this section, we describe smells for class models. Thirteen smells related to class

diagram have been proposed in the literature. Of these, only seven satisfy our selection

criteria. However, some of these smells either use information from more than one model

in the detection and resolution strategy. Since we are concerned with smells that can be

513

detected and resolved only over the class diagram, a table of these seven smells along

with the study is presented in Table A - 2 to aid in the selection. Grayed out cells indicate

that the study did not address the particular smell in their proposal.

Table A - 2 Class Model Smells and their Information Dependence

Studies GC FD LZC DUP Coup RB LF

Ruhroth et al. [32]

Strategy
CD

Z
 CD CD

Solution
CD

Z
 CD CD

Fourati et al. [19]

Strategy
CD

SEQ
CD CD

Solution
CD

SEQ
CD CD

Stolc and Polasek [236]
Strategy CD

Solution CD

Enckevort [21]
Strategy CD

Solution Man

(GC: God Class, FD: Functional Decomposition, LZC: Lazy Class, DUP: Duplication,

Coup: Strong Coupling, RB: Refused Bequest, LF: Lava Flow, CD: Class Diagram,

SEQ: Sequence Model, Man: Manual Refactoring by Expert, Z: Method description in

the form of Z Language notation.)

Based on the information presented in Table A - 2, five class model smells were selected.

These smells are described in this section.

1. Functional Decomposition

a. Smell Description: Functional Decomposition anti-pattern described by

Brown et al. [17] is a “main” routine that accesses numerous subroutines.

Moha et al. [24] described functional decomposition as a smell that

consists of a main class in which Inheritance and Polymorphism are rarely

514

used i.e. associated with small classes, has private attributes and

implements a few methods.

b. Smell Detection: Fourati et al. [19] provided a rule based detection of this

model smell. Moreover, an important constraint in their description is

detecting whether the name of the class is functional or not (Hence, it is a

semi-automated detection strategy). According to them, a functionally

decomposed class has all private attributes (High Cohesion) and a single

function. The detection rule proposed is shown below:

(IsFunctional (C) = true) & (NPrAtt = high) & (NOM =

low) & (DIT = 0) & (NOC = 0)

IsFunctional: It tests if a class has a name as a function i.e. a verb or a

noun action like ‘Creation’, ‘Making’ and so on.

NPrAtt: The number of Private Attributes

NOM: Number of Methods of a class including the constructor

DIT: It is the depth in the inheritance tree. Maximum length is considered

in case of multiple inheritance.

NOC: It is the number of immediate subclasses subordinated to a class in

the class hierarchy.

The low and high thresholds delimiting each metric in the above rule are

based on the maximum value of each used metric. Due to the lack of

information, we used max and min values suggested by Gronback [288].

c. Smell Resolution: Classes associated with the functionally decomposed

class are merged together if the class is coupled with only one class (i.e.

the functionally decomposed class accessing it).

515

2. Class Duplication

a. Smell Description: This smell is derived from Fowler et al.’s Duplicate

Code smell. Since a class model does not contain any code, its attributes,

association ends and operations care used to identify duplication.

b. Smell Detection: Stolc and Polasek [236] detects duplication in classes

that are subclasses of a common superclass. Attribute body of each

attribute in a subclass is compared with attribute bodies of other siblings to

identify redundancy. If an attribute with the same body exists in all

subclasses, then refactoring is recommended.

c. Smell Resolution: Pull up Property Refactoring is used on all sub-classes

to remove the attribute from all subclasses and added to the common

superclass.

3. Too Strong Coupling

a. Smell Description: Coupling in a class diagram measures the degree of

dependency between classes. Two classes are coupled if at least one of

them depends upon the other [62]. Strong Coupling is an indicator that

classes in the model are too interdependent on others and is a sign of

sensibility to changes and hence difficult to maintain.

b. Smell Detection: Ruhroth et al. [32] used a combination of the Direct

Class Coupling (DCC) metric [467] and MaxUsedPL metric to identify the

smell. The detection rule proposed is shown below:

(DCC > UPDCC) & (MaxUsedPL > UPMaxUsedPL)

516

DCC: It counts the different number of classes that a class is directly

related to. It includes classes that are directly related by attribute

declarations and message passing (parameters) in methods.

MaxUsedPL: Maximum length of all parameter lists used by a class.

UP indicates the upper limit threshold for the metric. As indicated in their

work UPDCC = 9 and UPMaxUsedPL = 5.

c. Smell Resolution: Move Property Refactoring is used to move attributes

to classes where they are used more often. In case moving attributes

cannot be performed, Merge Class Refactoring is used to join strongly

coupled classes.

4. Refused Bequest

a. Smell Description: Refused Bequest is also one of the code smells

proposed by Fowler et al. Subclasses get to inherit methods and data of

their parents. This smell arises when subclasses use either some or none of

the features inherited from their superclass.

b. Smell Detection: Ruhroth et al. [32] redefined the detection strategy for

this traditional smell to detect it over class models. They used a

combination of the OIF (Operations Inheritance Factor) metric and DIT to

detect refused bequest model smell. The detection rule proposed is shown

below:

(OIF < LOWOIF) & (DIT >= 1)

517

OIF: It is a quotient between the number of inherited operations and the

number of available operations (locally defined and inherited).

LOW indicates the lower limit threshold for the metric. As indicated in

their work LOWOIF = 0.2.

c. Smell Resolution: In order to resolve this smell, a new sibling class is

created and Push Down Operation and Push Down Property Refactoring

is used to push all the unused methods to the sibling. Hence, the parent

holds only what is common.

5. Lava Flow

a. Smell Description: Lava Flow is a software development anti-pattern

described by Brown et al. as dead code in an isolated class which makes it

uncoupled from other classes.

b. Smell Detection: Fourati et al. [19] provided a rule based detection of this

model smell. According to them, a class demonstrating lava flow model

smell has large number of attributes and is complex and has no

interactions. The detection rule proposed is shown below:

(NAtt = high) & (NAss = low) & (NOM = high) & (DIT = 0)

& (NOC = 0)

NAss: The number of Associations (association link, aggregation,

composition, dependency link) of a class.

NAtt: The number of Attributes of a class

518

The low and high thresholds delimiting each metric in the above rule are

based on the maximum value of each used metric. Similar to what we

adopted for the Functional Decomposition Smell, we used max and min

values suggested by Gronback [288].

c. Smell Resolution: A semi-automatic solution is proposed for resolving

this model smell. A class, if detected to contain lava flow smell, is

presented to the user. If acceptable, the class is removed from the model.

A10.2 Sequence Model Smells

In this section, we describe smells for sequence models. This is the least studied topic in

the field of model-driven refactoring. Although, Astels [251] was the first author to

propose the use of sequence diagrams to detect the existence of Middle Man model smell,

his approach was naïve and lacked a proper detection and resolution strategy. Only two

studies discuss the identification of smells related to the UML sequence diagram. Liu et

al. [263] proposed the duplication model smell over sequence diagrams using suffix trees

as model representation. Since their approach is heavily based on a different

representation formalism and tool support for detection and resolution is no longer

available, we do not consider this model smell. The only other model smell Middle Man

which is described below.

1. Middle Man

a. Smell Description: A Middle Man is a lifeline (or a class/object) that sits

between two others and forwards method calls between them. A middle

519

man is apparent in the sequence diagram by the pattern of messages being

simply delegated to another lifeline.

b. Smell Detection: Dobrzanski and Kuzniarz [262] provided a rule based

detection of this model smell. According to them, a class is considered a

middle man if it has an attribute with at least two Simple Delegating

Operations (SDO). A special metamodel (TAU) is used to describe the

body of an operation. Nevertheless, based on the description provided by

Wake [16] and included in their detection approach, “most methods of a

class call the same or similar method on another object.” We use this

definition to define a detection strategy that evaluates the incoming and

outgoing messages to a class. If similar names are used, the methods is

classified as a delegating operation.

c. Smell Resolution: Remove Middle Man Refactoring is used to remove the

middle man lifeline from the sequence diagram. It works for a pair of

classes A and B, where A is a middle man of a delegate B. If the middle

man delegates for more than one lifeline, the refactoring process is

repeated for any pair consisting of A and a delegate class.

A10.3 Use Case Model Smells

Although quite a few studies proposed refactoring operations over Use Case (UC)

diagrams, only one study by El-Attar and Miller [264] is available in the literature that

520

identified anti-patterns and discussed their resolution with refactoring solution. They

proposed a total of 21 anti-patterns. We classified these into three categories as follows:

1. OMG: Anti-patterns that can be detected over the use case model conforming to

the standard UML metamodel proposed by OMG (i.e. only the structural part of

the use case model).

2. Behavior: Anti-patterns that require information about the flow of steps within

each use case model. This information is not available in the standard UML

metamodel and requires alternate description formalisms such as text, template

and other UML diagrams. Hence, anti-patterns in this category are not considered

in this work.

3. Consistency: Anti-patterns that describe violations to use case diagram well-

formedness rules. Since each diagram undergoes consistency (syntactic and

semantic) before refactoring, these smells are also excluded from this work.

Out of the all the anti-patterns presented in Table A - 3, only those conforming to the

UML metamodel (1-8) were considered for our work. Based on our initial selection

criteria, any smell without a quantitative threshold value is excluded from the work.

Hence, anti-patterns 7 and 8 were also excluded as an upper limit threshold for “too

many” was not provided and lack of detection strategy for classifying an actor as a

device. Selected anti-patterns are described in detail in this section.

521

Table A - 3 Classification of Use Case Anti-patterns [263]

Use Case Anti-patterns

OMG Consistency Behavior

1 Using

extension/inclusion

UCs to implement an

abstract UC

9
Two actors with the

same name
14

Functional

decomposition of

UCs: Using the

include relationship

2

Multiple generalizations

of a UC
10

An actor inside the

system boundary
15

Functional

decomposition by

using an extension UC

to extend multiple

UCs

3 An actor associated

with an unimplemented

abstract UC

11 An unassociated UC 16
Using instances for

actors instead of roles

4 An actor associated

with a generalized

concrete UC

12
An association between

two actors
17

An actor associated

with an extension UC

5

Duplicating

functionalities for the

generalized and

specializing UCs

13
An association between

UCs
18

Functional

decomposition by

creating a call

sequence between

UCs using pre and

post-conditions

6 A UC that is used as an

extension and inclusion

UC

 19
Very large alternative

flows

7
Too many UCs 20

UC initiated by two

actors

8 Representing devices as

actors
 21

Using the term “actor”

in textual descriptions

1. Using extension/inclusion UC’s to implement an abstract UC

a. Smell Description: An actor is directly associated with an abstract UC.

The implementation of this abstract UC is not done through a specializing

UC but through extension or inclusion UCs instead.

b. Smell Detection: The steps involved in the detection of this smell are as

follows:

i. Search for any abstract UC.

522

ii. If the (UC is associated with an actor) AND (is extended by or

includes other UCs) AND (has no child UC).

c. Smell Resolution: The authors proposed a semi-automatic resolution

strategy for this anti-pattern. If the inclusion or extension is justified, the

UC is changed to concrete. If not, it is left to the modeler to add either

specializing use case in the future or change relationship to inheritance

instead of inclusion/extension.

2. Multiple Generalizations of a UC

a. Smell Description: A single UC specializes two or more UCs. Multiple

generalization leads to violation of behavioral semantics of the use case

model.

b. Smell Detection: The steps involved in the detection of this smell are as

follows:

i. Search for a child UC.

ii. If the UC is specializing more than one UC.

c. Smell Resolution: The specialization relationship is replaced by an

include relationship. The include relationship is considered more

appropriate since the shared UC contains common behavior not

specializing behavior.

3. An actor associated with an unimplemented abstract UC

a. Smell Description: An actor is directly associated with an abstract UC

that is not implemented by specializing UC(s).

523

b. Smell Detection: The steps involved in the detection of this smell are as

follows:

i. Search for an abstract UC.

ii. If the (UC is associated with an actor) AND (not specialized by at

least one UC).

c. Smell Resolution: The authors propose a semi-automatic resolution

strategy for this anti-pattern. The UC is changed to concrete in order to

allow initiation by an actor.

4. An actor associated with a generalized concrete UC

a. Smell Description: Often generalized UCs only contain fragments of

general behavior that is used by its specializing UCs. Therefore,

generalized UCs are often incomplete. Such incomplete generalized UCs

contain “blanks” that are intended to be “filled” by special behavior

contained in the specializing UCs.

b. Smell Detection: The steps involved in the detection of this smell are as

follows:

i. Search for any generalized UC.

ii. If the (UC is concrete) AND (associated with an actor).

c. Smell Resolution: Explicit associations between the actor and the

specializing UCs is created in place of the association between the actor

and the generalized UC. The explicit associations with the specializing

UCs will enforce the service request to be performed through one of the

specializing UCs.

524

5. Duplicating functionalities for the generalized and specializing UCs

a. Smell Description: This anti-pattern detects duplication in the use case

diagram. The relationships that a generalized UC has with other UCs are

duplicated for the specializing UC. Hence, this leads to creation of

duplicated or redundant code in the implementation phase.

b. Smell Detection: The steps involved in the detection of this smell are as

follows:

i. Search for a generalization relationship between two UCs.

ii. If both the generalized and specializing UCs have similar

relationships with other UCs.

c. Smell Resolution: The authors proposed a semi-automatic resolution

strategy for this anti-pattern. Modelers determine whether a given included

or extending UC is applicable to all of the specializing UCs or only a

subset of them. Based on this if it is applicable to all other children,

redundant path is removed. Else, irrelevant associations with other use

cases is removed from the diagram.

6. A UC that is used as an extension and inclusion UC

a. Smell Description: The reuse of a preexisting UC is achieved by making

it both an extension UC and an inclusion UC. Object-oriented modeling

and design strongly promotes the concept of reuse. However, when

applying the concept of reuse, the include and the extend relationships can

be misused leading to the creation of UCs containing both common and

exception-handling behavior.

525

b. Smell Detection: The steps involved in the detection of this smell are as

follows:

i. Search for any included UCs.

ii. If inclusion UC is extending other UC’s.

c. Smell Resolution: The authors proposed a semi-automatic resolution

strategy for this anti-pattern. Resolution is based on the type of situation

encountered and is described below:

i. If the shared UC contains functionality suitable for only the base

UC that includes it, the extend relationship is removed. A new

extension UC is created to handle the exceptional situation

generated by the other base UC.

ii. If the shared UC contains functionality suitable only for the base

UC that it extends, the include relationship is removed. A new UC

is created and included by the other base UC.

iii. If the shared UC does contain both common and exception

behavior, the shared UC is split into two separate UCs. Each of the

newly created UCs should only contain functionality appropriate to

the base UC.

526

References

[1] L. L. Constantine and A. D. Lockwood Lucy, "Structure and Style in Use Cases

for User Interface Design," in Object Modeling and User Interface Design, M.

van Harmelen: Addison-Wesley, 2001.

[2] N. Chapin, J. E. Hale, K. M. Kham, J. F. Ramil, and W.-G. Tan, "Types of

software evolution and software maintenance," Journal of Software Maintenance,

vol. 13, pp. 3-30, 2001.

[3] K. H. Bennett and V. T. Rajlich, "Software maintenance and evolution: a

roadmap," Proceedings of the 22
nd

 International Conference on Software

Engineering, pp. 73-87, Limerick, Ireland, 2000.

[4] S. Cook, H. Ji, and R. Harrison, "Software Evolution and Software Evolvability,"

Working Paper, University of Reading, UK, 2000.

[5] E. J. Chikofsky and J. H. Cross, Reverse engineering and design recovery: a

taxonomy," IEEE Software," vol. 7, pp. 13-17, IEEE, 1990.

[6] W. Opdyke, "Refactoring Object-Oriented Frameworks," PhD thesis, University

of Illinois at Urbana Champaign, 1992.

[7] F. Fondement and R. Silaghi, "Defining Model Driven Engineering Processes," in

Third International Workshop in Software Model Engineering (WiSME), 2004.

[8] R. B. France and J. M. Bieman, "Multi-View Software Evolution: A UML-based

Framework for Evolving Object-Oriented Software," in 17th IEEE International

Conference on Software Maintenance (ICSM'01), p. 386, 2001.

[9] J. Miller and J. Mukerji, "MDA Guide Version 1.0.1," 2003.

[10] OMG, "Unified Modeling Language: Superstructure," Version: 2.4.1,

formal/2011-08-06, Object Management Group, 2011.

527

[11] T. Mens, S. Demeyer, B. Du Bois, H. Stenten, and P. Van Gorp, "Refactoring:

Current Research and Future Trends," Electronic Notes in Theoretical Computer

Science, vol. 82, 2003.

[12] T. Mens, G. Taentzer, and D. Müller, "Challenges in Model Refactoring,"

International Workshop on Object-Oriented Reengineering, Berlin, Germany,

2007.

[13] T. Mens, G. Taentzer, and D. Müller, "Model-Driven Software Refactoring," in

Model-Driven Software Development: Integrating Quality Assurance: IDEA

Group Publishing, 2008.

[14] R. Van Der Straeten, T. Mens, and S. Van Baelen, "Challenges in Model-Driven

Software Engineering," in Models in Software Engineering. vol. 5421, M.

Chaudron, Berlin / Heidelberg: Springer, pp. 35-47, 2009.

[15] M. Fowler, K. Beck, J. Brant, and W. Opdyke, Refactoring: Improving the Design

of Existing Code: Addison-Wesley, 1999.

[16] W. C. Wake, Refactoring Workbook: Addison-Wesley, 2003.

[17] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and T. J.

Mowbray, AntiPatterns: Refactoring Software Architectures and Projects in

Crisis, 1st Edition ed.: John Wiley and Sons, 1998.

[18] M. Misbhauddin and M. Alshayeb, "Model-driven software refactoring: A

systematic review," Manuscript submitted for publication, King Fahd University

(KFUPM), Saudi Arabia.

[19] R. Fourati, N. Bouassida, and H. Abdallah, "A Metric-Based Approach for Anti-

pattern Detection in UML Designs," in Computer and Information Science. vol.

364, R. Lee, Berlin / Heidelberg: Springer, pp. 17-33, 2011.

528

[20] M. Mohamed, M. Romdhani, and K. Ghedira, "M-REFACTOR: A New

Approach and Tool for Model Refactoring " ARPN Journal of Systems and

Software, vol. 1, pp. 117-122, 2011.

[21] T. v. Enckevort, "Refactoring UML models: using openarchitectureware to

measure uml model quality and perform pattern matching on UML models with

OCL queries," Proceedings of the 24th ACM SIGPLAN conference companion on

Object oriented programming systems languages and applications, pp. 635-646,

Orlando, Florida, USA, 2009.

[22] A. Ghannem, M. Kessentini, and G. El Boussaidi, "Detecting model refactoring

opportunities using heuristic search," Proceedings of the 2011 Conference of the

Center for Advanced Studies on Collaborative Research, pp. 175-187, Toronto,

Ontario, Canada, 2011.

[23] M. T. Llano and R. Pooley, "UML Specification and Correction of Object-

Oriented Anti-patterns," in Fourth International Conference on Software

Engineering Advances, pp. 39-44, 2009.

[24] N. Moha, Y. G. Gueheneuc, L. Duchien, and A. F. Le Meur, "DECOR: A Method

for the Specification and Detection of Code and Design Smells," IEEE

Transactions on Software Engineering, vol. 36, pp. 20-36, 2010.

[25] M. v. Kempen, M. Chaudron, D. Kourie, and A. Boake, "Towards proving

preservation of behaviour of refactoring of UML models," Proceedings of the

2005 annual research conference of the South African institute of computer

scientists and information technologists on IT research in developing countries,

pp. 252-259, White River, South Africa, 2005.

[26] J. Muskens, R. J. Bril, and M. R. V. Chaudron, "Generalizing Consistency

Checking between Software Views," in 5th Working IEEE/IFIP Conference on

Software Architecture (WICSA) pp. 169-180, 2005.

529

[27] A. Egyed and N. Medvidovic, "Extending architectural representation in UML

with view integration," Proceedings of the 2nd international conference on The

unified modeling language: beyond the standard, pp. 2-16, Fort Collins, CO,

USA, 1999.

[28] A. Egyed, "UML/Analyzer: A Tool for the Instant Consistency Checking of UML

Models," Proceedings of the 29th international conference on Software

Engineering, pp. 793-796, 2007.

[29] J. Muskens, M. Chaudron, and C. Lange, "Investigations in Applying Metrics to

Multi-View Architecture Models," in Proceedings of the 30th EUROMICRO

Conference, pp. 372-379, 2004.

[30] M. Ahmed, "Towards the Development of Integrated Reuse Environments for

UML Artifacts," in The Sixth International Conference on Software Engineering

Advances, 2011.

[31] J. Derrick and H. Wehrheim, "Model transformations across views," Science of

Computer Programming, vol. 75, pp. 192-210, 2010.

[32] T. Ruhroth, H. Voigt, and H. Wehrheim, "Measure, diagnose, refactor: a formal

quality cycle for software models," Proceedings of the 35th Euromicro

Conference on Software Engineering and Advanced Applications, pp. 360-367,

2009.

[33] J. Iivari, "Object-orientation as structural, functional and behavioural modelling: a

comparison of six methods for object-oriented analysis," Information and

Software Technology, vol. 37, pp. 155-163, 1995.

[34] OMG, "UML 2.0 OCL Specification," Object Management Group, 2003.

[35] OMG, "XML Metadata Interchange Specification 2.1.1," formal/2007-12-01,

Object Management Group, 2007.

[36] E. Seidewitz, "What models mean," IEEE Software, vol. 20, pp. 26-32, 2003.

530

[37] G. Booch, Object-Oriented Analysis and Design with Applications vol. Second:

Benjamin-Cummings Publishing Co., 1993.

[38] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-

Oriented Modeling and Design: Prentice Hall, 1991.

[39] I. Jacobson, Object Oriented Software Engineering: A Use Case Driven

Approach: Addison-Wesley, 1992.

[40] B. Arief and N. A. Speirs, "A UML tool for an automatic generation of simulation

programs," in Proceedings of the 2nd international workshop on Software and

performance, pp. 71-76, NY, USA, 2000.

[41] B. Meyer, UML: the positive spin," American Programmer," 1997.

[42] P. Kruchten, The 4+1 View Model of Architecture," IEEE Software," vol. 12, pp.

42-50, IEEE Computer Society, Available:

http://doi.ieeecomputersociety.org/10.1109/52.469759, 1995.

[43] S. Shlaer and S. J. Mellor, Object Oriented Systems Analysis: Modeling the World

in Data: Prentice Hall, 1988.

[44] S. J. Mellor and S. Shlaer, Object Life Cycles: Modeling the World In States:

Prentice Hall, 1991.

[45] OMG, "Meta Object Facility (MOF)," formal/2006-01-01, Object Management

Group, 2006.

[46] S. Sendall and W. Kozaczynski, Model Transformation: The Heart and Soul of

Model-Driven Software Development," IEEE Software," vol. 20, pp. 42-45, 2003.

[47] K. Czarnecki and S. Helsen, "Feature-based survey of model transformation

approaches," IBM Systems Journal, vol. 45, pp. 621-646, 2006.

http://doi.ieeecomputersociety.org/10.1109/52.469759

531

[48] K. Czarnecki and S. Helsen, "Classification of Model Transformation

Approaches," in Workshop on Generative Techniques in the Context of Model-

Driven Architecture, 2003.

[49] N. Prakash, S. Srivastava, and S. Sabharwal, "The Classification Framework for

Model Transformation," Journal of Computer Science, vol. 2, pp. 166-170, 2006.

[50] T. Mens and P. Van Gorp, "A Taxonomy of Model Transformation," Electronic

Notes in Theoretical Computer Science, vol. 152, pp. 125-142, 2006.

[51] K. T. Kalleberg, "Abstractions for Language-Independent Program

Transformations," Doctoral thesis, Department of Informatics, University of

Bergen, Bergen, Norway, 2007.

[52] A. Habel, R. Heckel, and G. Taentzer, "Graph grammars with negative

application conditions," Fundam. Inf., vol. 26, pp. 287-313, 1996.

[53] D. Jackson, I. Shlyakhter, and M. Sridharan, "A micromodularity mechanism,"

SIGSOFT Software Enggineering Notes, vol. 26, pp. 62-73, 2001.

[54] D. Jackson, Software abstractions: logic, language and analysis: MIT Press,

2006.

[55] J. M. Spivey, The Z notation: a reference manual. Hertfordshire, UK: Prentice

Hall International, 1992.

[56] G. Smith, The Object-Z Specification Language: Kluwer Academic Publisher,

2000.

[57] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, The

Description Logic Handbook: Theory, Implementation and Applications.:

Cambridge University Press, 2003.

[58] OMG, "Meta object faacility (MOF) 2.0 query/view/transformation

specification," ad/04-10-11, 2004.

532

[59] openArchitectureware.org. (March 2012). openArchitectureWare (oAW).

Available: http://www.openarchitectureware.org/

[60] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, "ATL: a QVT-like

transformation language," Companion to the 21st ACM SIGPLAN symposium on

Object-oriented programming systems, languages, and applications, pp. 719-720,

Portland, Oregon, USA, 2006.

[61] J. M. Bieman and B.-K. Kang, "Cohesion and reuse in an object-oriented system,"

SIGSOFT Software Enggineering Notes, vol. 20, pp. 259-262, 1995.

[62] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object-Oriented

Design," IEEE Transactions on SoftwareEngineering, vol. 20, 1994.

[63] M. Genero, M. Piattini, and C. Calero, "Empirical validation of class diagram

metrics," in Proceedings. 2002 International Symposium in Empirical Software

Engineering, pp. 195-203, 2002.

[64] R. Marinescu, "Detecting Design Flaws via Metrics in Object-Oriented Systems,"

in Proceedings of the 39th International Conference and Exhibition on

Technology of Object-Oriented Languages and Systems (TOOLS '39),

Washington, DC, USA, 2001.

[65] P. F. Mihancea and R. Marinescu, "Towards the Optimization of Automatic

Detection of Design Flaws in Object-Oriented Software Systems," in Ninth

European Conference on Software Maintenance and Reengineering, pp. 92-101,

2005.

[66] N. Tsantalis and A. Chatzigeorgiou, "Ranking Refactoring Suggestions Based on

Historical Volatility," in 15th European Conference on Software Maintenance

and Reengineering, pp. 25-34, 2011.

[67] R. B. France, S. Ghosh, E. Song, and D.-K. Kim, A metamodeling approach to

pattern-based model refactoring," IEEE Software," vol. 20, pp. 52-58, 2003.

http://www.openarchitectureware.org/

533

[68] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software: Addison Wesley, 1994.

[69] C. F. J. Lange and M. R. V. Chaudron, "Managing Model Quality in UML-Based

Software Development," in 13th IEEE International Workshop on Software

Technology and Engineering Practice, pp. 7-16, 2005.

[70] A. Egyed, "Instant consistency checking for the UML," Proceedings of the 28th

international conference on Software engineering, pp. 381-390, Shanghai, China,

2006.

[71] G. Spanoudakis and A. Zisman, "Management of inconsistencies in software

engineering: a survey of the state of the art," in Handbook of Software

Engineering and Knowledge Engineering. vol. 1: World Scientific Publishing

Co., pp. 329-380, 2001.

[72] Z. Huzar, L. Kuzniarz, G. Reggio, and J. Sourrouille, "Consistency Problems in

UML-Based Software Development," in UML Modeling Languages and

Applications. vol. 3297, N. Jardim Nunes, B. Selic, A. Rodrigues da Silva, and A.

Toval Alvarez, Berlin / Heidelberg: Springer pp. 1-12, 2005.

[73] T. Mens and T. Tourwe, "A Survey of Software Refactoring," IEEE Transactions

on Software Engineering, vol. 30, pp. 126-139, 2004.

[74] T. Mens and A. Van Deursen, "Refactoring: Emerging Trends and Open

Problems," in Proceedings First International Workshop on REFactoring:

Achievements, Challenges, Effects (REFACE), 2003.

[75] B. Du Bois, P. Van Gorp, A. Amsel, N. Van Eetvelde, H. Stenten, S. Demeyer,

and T. Mens, "A discussion of refactoring in research and practice," University of

Antwerp, Belgium,Available:

http://win.ua.ac.be/~lore/refactoringProject/publications/ADiscussionOfRefactori

ngInResearchAndPractice.pdf, 2004.

http://win.ua.ac.be/~lore/refactoringProject/publications/ADiscussionOfRefactoringInResearchAndPractice.pdf
http://win.ua.ac.be/~lore/refactoringProject/publications/ADiscussionOfRefactoringInResearchAndPractice.pdf

534

[76] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth, "Semantics and Implementation

of Schema Evolution in Object-Oriented Databases," in Proc. of ACM-SIGMOD

Int'l Conference on Management of Data, pp. 311-322, 1987.

[77] D. B. Roberts, "Practical Analysis for Refactoring," University of Illinois at

Urbana-Champaign, 1999.

[78] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier, "Clone Detection

Using Abstract Syntax Trees," in Proceedings of the International Conference on

Software Maintenance, Washington, DC, USA, 1998.

[79] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis,

"Measuring Clone Based Reengineering Opportunities," in Proceedings of the 6th

International Symposium on Software Metrics, Washington, DC, USA, 1999.

[80] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis,

"Advanced Clone-Analysis to Support Object-Oriented System Refactoring," in

Proceedings of the Seventh Working Conference on Reverse Engineering

(WCRE'00), Washington, DC, USA, 2000.

[81] R. Komondoor and S. Horwitz, "Using Slicing to Identify Duplication in Source

Code," in Static Analysis. vol. 2126 Berlin / Heidelberg: Springer, pp. 40-56,

2001.

[82] J. Krinke, "Identifying Similar Code with Program Dependence Graphs," in

Proceedings of the Eighth Working Conference on Reverse Engineering

(WCRE'01), Washington, DC, USA, 2001.

[83] N. Tsantalis and A. Chatzigeorgiou, "Identification of Extract Method

Refactoring Opportunities," Proceedings of the 2009 European Conference on

Software Maintenance and Reengineering, pp. 119-128, 2009.

[84] N. Juillerat and B. Hirsbrunner, "FOOD: An Intermediate Model for Automated

Refactoring," Proceedings of the Conference on New Trends in Software

Methodologies, Tools and Techniques, pp. 452-461, 2006.

535

[85] T. Mens, N. Eetvelde, S. Demeyer, and D. Janssens, "Formalizing refactorings

with graph transformations," Software Maintenance and Evolution : Research and

Practice, vol. 17, pp. 247-276, July/August 2005 2005.

[86] T. Tourwe and T. Mens, "Identifying Refactoring Opportunities Using Logic

Meta Programming," in Proceedings of the Seventh European Conference on

Software Maintenance and Reengineering, Washington, DC, USA, 2003.

[87] P. Meananeatra, S. Rongviriyapanish, and T. Apiwattanapong, "Identifying

refactoring through formal model based on data flow graph," 5th Malaysian

Conference in Software Engineering (MySEC), pp. 113-118118, 2011 2011.

[88] N. Tsantalis and A. Chatzigeorgiou, "Identification of Move Method Refactoring

Opportunities," IEEE Transactions on Software Enggineering, vol. 35, pp. 347-

367, 2009.

[89] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk, and A. De Lucia, "Identifying

method friendships to remove the feature envy bad smell (NIER track),"

Proceedings of the 33rd International Conference on Software Engineering, pp.

820-823, Waikiki, Honolulu, HI, USA, 2011.

[90] S. Ducasse, M. Rieger, and S. Demeyer, "A Language Independent Approach for

Detecting Duplicated Code," in Proceedings of the IEEE International

Conference on Software Maintenance, Washington, DC, USA, 1999.

[91] T. Kamiya, S. Kusumoto, and K. Inoue, "CCFinder: a multilinguistic token-based

code clone detection system for large scale source code," IEEE Transactions on

Software Engineering, vol. 28, pp. 654-670, 2002.

[92] R. Wettel and R. Marinescu, "Archeology of Code Duplication: Recovering

Duplication Chains from Small Duplication Fragments," in Proceedings of the

Seventh International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, Washington, DC, USA, 2005.

536

[93] F. Van Rysselberghe and S. Demeyer, "Evaluating Clone Detection Techniques

from a Refactoring Perspective," Proceedings of the 19th IEEE international

conference on Automated software engineering, pp. 336-339, 2004.

[94] R. Tairas and J. Gray, "An information retrieval process to aid in the analysis of

code clones," Empirical Software Enggineering, vol. 14, pp. 33-56, 2009.

[95] A. Marcus and J. I. Maletic, "Identification of High-Level Concept Clones in

Source Code," Proceedings of the 16th IEEE international conference on

Automated software engineering, p. 107, 2001.

[96] G. G. Koni, "A Scenario Based Approach for Refactoring Duplicated Code in

Object Oriented Systems," Institute of Computer Science, University of Bern,

2001.

[97] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, "Refactoring Support Based on

Code Clone Analysis," in Product Focused Software Process Improvement. vol.

3009;3009 Berlin / Heidelberg: Springer, pp. 220-233, 2004.

[98] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, "On Refactoring

Support Based on Code Clone Dependency Relation," in Proceedings of the 11th

IEEE International Software Metrics Symposium, Washington, DC, USA, 2005.

[99] M. Rieger, S. Ducasse, and M. Lanza, "Insights into System-Wide Code

Duplication," Proceedings of the 11th Working Conference on Reverse

Engineering, pp. 100-109, 2004.

[100] H. A. Basit and S. Jarzabek, "Detecting higher-level similarity patterns in

programs," SIGSOFT Software Enggineering Notes, vol. 30, pp. 156-165, 2005.

[101] E. Merlo, G. Antoniol, M. Di Penta, and V. F. Rollo, "Linear Complexity Object-

Oriented Similarity for Clone Detection and Software Evolution Analyses,"

Proceedings of the 20th IEEE International Conference on Software

Maintenance, pp. 412-416, 2004.

537

[102] C. Kapser and M. W. Godfrey, "Aiding Comprehension of Cloning Through

Categorization," Proceedings of the Principles of Software Evolution, 7th

International Workshop, pp. 85-94, 2004.

[103] C. Kapser and M. W. Godfrey, ""Cloning Considered Harmful" Considered

Harmful," Proceedings of the 13th Working Conference on Reverse Engineering,

pp. 19-28, 2006.

[104] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto, "Software

Quality Analysis by Code Clones in Industrial Legacy Software," Proceedings of

the 8th International Symposium on Software Metrics, p. 87, 2002.

[105] R. Hill and J. Rideout, "Automatic Method Completion," Proceedings of the 19th

IEEE international conference on Automated software engineering, pp. 228-235,

2004.

[106] F. Simon, F. Steinbrückner , and C. Lewerentz, "Metrics Based Refactoring," in

Proceedings of the Fifth European Conference on Software Maintenance and

Reengineering, Washington, DC, USA, 2001.

[107] P. Joshi and R. K. Joshi, "Concept Analysis for Class Cohesion," Proceedings of

the 2009 European Conference on Software Maintenance and Reengineering, pp.

237-240, 2009.

[108] L. Zhao and J. H. Hayes, "Predicting Classes in Need of Refactoring: An

Application of Static Metrics," in Workshop on Predictive Models of Software

Engineering (PROMISE), associated with ICSM 2006, 2006.

[109] D. C. Atkinson and T. King, "Lightweight Detection of Program Refactorings,"

Proceedings of the 12th Asia-Pacific Software Engineering Conference, pp. 663-

670, 2005.

[110] B. Du Bois, S. Demeyer, and J. Verelst, "Refactoring-Improving Coupling and

Cohesion of Existing Code," in 11th Working Conference on Reverse

Engineering, pp. 144-151, 2004.

538

[111] G. Bavota, A. De Lucia, and R. Oliveto, "Identifying Extract Class refactoring

opportunities using structural and semantic cohesion measures," Journal of

Systems and Software, vol. 84, pp. 397-414, 2011.

[112] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, "A two-step technique for

extract class refactoring," Proceedings of the IEEE/ACM international conference

on Automated software engineering, pp. 151-154, Antwerp, Belgium, 2010.

[113] D. Boshnakoska and A. Mišev, "Correlation between Object-Oriented Metrics

and Refactoring," in ICT Innovations 2010. vol. 83, M. Gusev and P. Mitrevski:

Springer Berlin Heidelberg, pp. 226-235, 2011.

[114] A. De Lucia, R. Oliveto, and L. Vorraro, "Using structural and semantic metrics

to improve class cohesion," in IEEE International Conference on Software

Maintenance, pp. 27-36, 2008.

[115] R. Marinescu, "Measurement and quality in object-oriented design," in

Proceedings of the 21st IEEE International Conference on Software Maintenance

(ICSM'05), pp. 701-704, 2005.

[116] R. Marinescu, "Detection strategies: metrics-based rules for detecting design

flaws," in Proceedings of 20th IEEE International Conference Software

Maintenance, pp. 350-359, 2004.

[117] M. J. Munro, "Product Metrics for Automatic Identification of 'Bad Smell' Design

Problems in Java Source-Code," in Proceedings of the 11th IEEE International

Software Metrics Symposium, Washington, DC, USA, 2005.

[118] N. Moha, Y.-G. Gueheneuc, and P. Leduc, "Automatic Generation of Detection

Algorithms for Design Defects," Proceedings of the 21st IEEE/ACM

International Conference on Automated Software Engineering, pp. 297-300,

2006.

539

[119] M. Zhang, N. Baddoo, P. Wernick, and T. Hall, "Improving the Precision of

Fowler's Definitions of Bad Smells," Proceedings of the 2008 32nd Annual IEEE

Software Engineering Workshop, pp. 161-166, 2008.

[120] S. Singh and K. S. Kahlon, "Effectiveness of encapsulation and object-oriented

metrics to refactor code and identify error prone classes using bad smells,"

SIGSOFT Software Enggineering Notes, vol. 36, pp. 1-10, 2011.

[121] E. Piveta, M. Pimenta, J. Araújo, A. Moreira, P. Guerreiro, and R. T. Price,

"Representing refactoring opportunities," Proceedings of the 2009 ACM

symposium on Applied Computing, pp. 1867-1872, Honolulu, Hawaii, 2009.

[122] S. Demeyer, S. Ducasse, and O. Nierstrasz, "Finding refactorings via change

metrics," SIGPLAN Notes, vol. 35, pp. 166-177, 2000.

[123] M. Salehie, S. Li, and L. Tahvildari, "A Metric-Based Heuristic Framework to

Detect Object-Oriented Design Flaws," Proceedings of the 14th IEEE

International Conference on Program Comprehension, pp. 159-168, 2006.

[124] A. Trifu and U. Reupke, "Towards Automated Restructuring of Object Oriented

Systems," in 11th European Conference on Software Maintenance and

Reengineering, pp. 39-48, 2007.

[125] L. Tahvildari and K. Kontogiannis, "A Metric-Based Approach to Enhance

Design Quality through Meta-pattern Transformations," Proceedings of the

Seventh European Conference on Software Maintenance and Reengineering, p.

183, 2003.

[126] T. Dudziak and J. Wloka, "Tool-Supported Discovery and Refactoring of

Structural Weaknesses in Code," Technical University of Berlin, 2002.

[127] Y. Kosker, B. Turhan, and A. Bener, "An expert system for determining candidate

software classes for refactoring," Expert Systems with Applications, vol. 36, pp.

10000-10003, 2009.

540

[128] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, "A Bayesian

Approach for the Detection of Code and Design Smells," Proceedings of the 2009

Ninth International Conference on Quality Software, pp. 305-314, 2009.

[129] Y. Köşker, B. Turhan, and A. Bener, "Refactoring prediction using class

complexity metrics," International Conference on Software Paradigm Trends

(ICSOFT), pp. 289-292, Porto, Portugal, 2008.

[130] H. A. Sahraoui, R. Godin, and T. Miceli, "Can Metrics Help to Bridge the Gap

Between the Improvement of OO Design Quality and Its Automation?,"

Proceedings of the International Conference on Software Maintenance

(ICSM'00), p. 154, 2000.

[131] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander, "Decomposing

object-oriented class modules using an agglomerative clustering technique," in

25
th

 IEEE International Conference on Software Maintenance, pp. 93-101,

Alberta, Canada, 2009.

[132] N. Anquetil, C. Fourrier, and T. C. Lethbridge, "Experiments with Clustering as a

Software Remodularization Method," Proceedings of the Sixth Working

Conference on Reverse Engineering, p. 235, 1999.

[133] I. G. Czibula and G. Şerban, "Improving Systems Design Using a Clustering

Approach," International Journal of Computer Science and Network Security,

vol. 6, 2006.

[134] G. Serban and I. G. Czibula, "Restructuring software systems using clustering," in

22nd international symposium on Computer and information sciences, pp. 1-6,

2007.

[135] A. Alkhalid, M. Alshayeb, and S. Mahmoud, "Software Refactoring at the

Function Level Using New Adaptive K-Nearest Neighbor Algorithm," Advances

in Engineering Software, vol. 41, pp. 1160-1178, 2010.

541

[136] A. Alkhalid, M. Alshayeb, and S. Mahmoud, "Software Refactoring at the

Package Level Using Clustering Techniques," IET Software, vol. 5, pp. 276-284,

2011.

[137] P. Lerthathairat and N. Prompoon, "An Approach for Source Code Classification

Using Software Metrics and Fuzzy Logic to Improve Code Quality with

Refactoring Techniques," in Software Engineering and Computer Systems. vol.

181, J. M. Zain, W. M. b. Wan Mohd, and E. El-Qawasmeh: Springer Berlin

Heidelberg, pp. 478-492, 2011.

[138] J. Kerievsky, Refactoring to Patterns: Addison-Wesley, 2005.

[139] Y.-G. Guéhéneuc and H. Albin-Amiot, "Using Design Patterns and Constraints to

Automate the Detection and Correction of Inter-Class Design Defects,"

Proceedings of the 39th International Conference and Exhibition on Technology

of Object-Oriented Languages and Systems (TOOLS39), p. 296, 2001.

[140] J. H. Jahnke and A. Zündorf, "Rewriting Poor Design Patterns by Good Design

Patterns," in Proceedings of ESEC/FSE '97 Workshop on Object-Oriented

Reengineering, 1997.

[141] S.-U. Jeon, J.-S. Lee, and D.-H. Bae, "An Automated Refactoring Approach to

Design Pattern-Based Program Transformations in Java Programs," Proceedings

of the Ninth Asia-Pacific Software Engineering Conference, p. 337, 2002.

[142] C. Jebelean, "Automatic Detection of Missing Abstract Factory Design Pattern in

Object-Oriented Code," Proceedings of the International Conference on

Technical Informatics, Politehnica University in Timisoara, 2004.

[143] C. Jebelean, C.-B. Chirila, and V. Cretu, "A logic based approach to locate

composite refactoring opportunities in object-oriented code," Proceedings of the

2010 IEEE International Conference on Automation, Quality and Testing,

Robotics, pp. 1-6, 2010.

542

[144] T. Shimomura, K. Ikeda, and M. Takahashi, "An Approach to GA-Driven

Automatic Refactoring Based on Design Patterns," in Fifth International

Conference on Software Engineering Advances, pp. 213-218, 2010.

[145] A. Chatzigeorgiou and A. Manakos, "Investigating the Evolution of Bad Smells in

Object-Oriented Code," in Seventh International Conference on the Quality of

Information and Communications Technology, pp. 106-115, 2010.

[146] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, "The evolution and impact

of code smells: A case study of two open source systems," Proceedings of the

2009 3rd International Symposium on Empirical Software Engineering and

Measurement, pp. 390-400, 2009.

[147] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, "An Exploratory Study of the

Impact of Code Smells on Software Change-proneness," Proceedings of the 2009

16th Working Conference on Reverse Engineering, pp. 75-84, 2009.

[148] S. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, "Are all code smells harmful? A

study of God Classes and Brain Classes in the evolution of three open source

systems," Proceedings of the 2010 IEEE International Conference on Software

Maintenance, pp. 1-10, 2010.

[149] J. Pérez and Y. Crespo, "Perspectives on automated correction of bad smells,"

Proceedings of the joint international and annual ERCIM workshops on

Principles of software evolution (IWPSE) and software evolution (Evol)

workshops, pp. 99-108, Amsterdam, The Netherlands, 2009.

[150] M. Zhang, T. Hall, and N. Baddoo, "Code Bad Smells: a review of current

knowledge," Journal of Software Maintenance and Evolution: Research and

Practice, vol. 23, pp. 179-202, 2011.

[151] R. Heckel, "Algebraic Graph Transformations with Application Conditions," TU

Berlin, 1995.

543

[152] J. U. Pipka, "Refactoring in a "Test First"-World," XP-2002-Proceedings of the

3rd International Conference on eXtreme Programming and Flexible Proceses in

Software Engineering, 2002.

[153] A. van Deursen and L. Moonen, "The Video Store Revisited—Thoughts on

Refactoring and Testing," XP 2002 - Proceedings of the 3rd International

Conference on eXtreme Programming and Flexible Proceses in Software

Engineering, 2002.

[154] N. Tsantalis and A. Chatzigeorgiou, "Identification of refactoring opportunities

introducing polymorphism," J. Syst. Softw., vol. 83, pp. 391-404, 2010.

[155] H. Liu, L. Yang, Z. Niu, Z. Ma, and W. Shao, "Facilitating software refactoring

with appropriate resolution order of bad smells," Proceedings of the the 7th joint

meeting of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, pp. 265-268, Amsterdam,

The Netherlands, 2009.

[156] H. Liu, Z. Ma, W. Shao, and Z. Niu, "Schedule of Bad Smell Detection and

Resolution: A New Way to Save Effort," IEEE Transactions on Software

Engineering, vol. 38, pp. 220-235, 2012.

[157] M. Zhang, N. Baddoo, P. Wernick, and T. Hall, "Prioritising Refactoring Using

Code Bad Smells," Proceedings of the 2011 IEEE Fourth International

Conference on Software Testing, Verification and Validation Workshops, pp. 458-

464, 2011.

[158] N. Tsantalis and A. Chatzigeorgiou, "Ranking Refactoring Suggestions Based on

Historical Volatility," in 15th European Conference on Software Maintenance

and Reengineering (CSMR), pp. 25-34, 2011.

[159] Y.-P. Cheng and J.-R. Liao, "An ontology-based taxonomy of bad code smells,"

Proceedings of the third conference on IASTED International Conference:

544

Advances in Computer Science and Technology, pp. 437-442, Phuket, Thailand,

2007.

[160] T. Mens, G. Taentzer, and O. Runge, "Analysing refactoring dependencies using

graph transformation," Software and Systems Modeling, vol. 6, pp. 269-285, 2007.

[161] F. Qayum and R. Heckel, "Analysing refactoring dependencies using unfolding of

graph transformation systems," Proceedings of the 7th International Conference

on Frontiers of Information Technology, pp. 1-5, Abbottabad, Pakistan, 2009.

[162] F. Qayum and R. Heckel, "Search-Based Refactoring based on Unfolding of

Graph Transformation Systems," Proceedings of the Fifth International

Conference on Graph Transformation - Doctoral Symposium, 2010.

[163] E. Piveta, J. Araújo, M. Pimenta, A. Moreira, P. Guerreiro, and R. T. Price,

"Searching for Opportunities of Refactoring Sequences: Reducing the Search

Space," Proceedings of the 2008 32nd Annual IEEE International Computer

Software and Applications Conference, pp. 319-326, 2008.

[164] M. F. Zibran and C. K. Roy, "A Constraint Programming Approach to Conflict-

Aware Optimal Scheduling of Prioritized Code Clone Refactoring," Proceedings

of the 2011 IEEE 11th International Working Conference on Source Code

Analysis and Manipulation, pp. 105-114, 2011.

[165] M. F. Zibran and C. K. Roy, "Conflict-Aware Optimal Scheduling of Code Clone

Refactoring: A Constraint Programming Approach," in IEEE 19th International

Conference on Program Comprehension (ICPC), pp. 266-269, 2011.

[166] H. Liu, G. Li, Z. Y. Ma, and W. Z. Shao, "Conflict-aware schedule of software

refactorings," IET Software, vol. 2, pp. 446-460, 2008.

[167] H. Liu, G. Li, Z. Ma, and W. Shao, "Scheduling of conflicting refactorings to

promote quality improvement," Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, pp. 489-492,

Atlanta, Georgia, USA, 2007.

545

[168] L.-j. Zhang and X.-f. Xie, "Software refactoring scheme optimization model

based on set pair analysis," Application Research of Computers, vol. 27, pp. 4175-

41774177, Nov. 2010.

[169] L.-j. Zhang and X.-f. Xie, "Application of Identical Degree of Set Pair Analysis

on Software Refactoring," in International Conference on Computational

Intelligence and Software Engineering (CiSE), pp. 1-4, 2010.

[170] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R. Kwon, "Automated scheduling

for clone-based refactoring using a competent GA," Software: Practice and

Experience, vol. 41, pp. 521-550, 2011.

[171] O. Seng, J. Stammel, and D. Burkhart, "Search-based determination of

refactorings for improving the class structure of object-oriented systems,"

Proceedings of the 8th annual conference on Genetic and evolutionary

computation, pp. 1909-1916, Seattle, Washington, USA, 2006.

[172] M. Harman and L. Tratt, "Pareto optimal search based refactoring at the design

level," Proceedings of the 9th annual conference on Genetic and evolutionary

computation, pp. 1106-1113, London, England, 2007.

[173] M. O’Keeffe and M. Ó Cinnéide, "Search-based refactoring for software

maintenance," Journal of Systems and Software, vol. 81, pp. 502-516, 2008.

[174] R. Arcoverde, A. Garcia, and E. Figueiredo, "Understanding the longevity of code

smells: preliminary results of an explanatory survey," Proceedings of the 4th

Workshop on Refactoring Tools, pp. 33-36, Waikiki, Honolulu, HI, USA, 2011.

[175] M. O'Keeffe and M. Ó Cinnéide, "Getting the most from search-based

refactoring," Proceedings of the 9th annual conference on Genetic and

evolutionary computation, pp. 1114-1120, London, England, 2007.

[176] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, "Maintainability

defects detection and correction: a multi-objective approach," Automated

Software Engineering, pp. 1-33, 2012.

546

[177] H. Kilic, E. Koc, and I. Cereci, "Search-based parallel refactoring using

population-based direct approaches," Proceedings of the Third international

conference on Search based software engineering, pp. 271-272, Szeged, Hungary,

2011.

[178] E. van Emden and L. Moonen, "Java quality assurance by detecting code smells,"

in Proceedings of the 9th Working Conference on Reverse Engineering, pp. 97-

107, 2002.

[179] A. Trifu and R. Marinescu, "Diagnosing design problems in object oriented

systems," in 12th Working Conference on Reverse Engineering, p. 10 pp., 2005.

[180] E. Duala-Ekoko and M. P. Robillard, "Clonetracker: tool support for code clone

management," Proceedings of the 30th international conference on Software

engineering, pp. 843-846, Leipzig, Germany, 2008.

[181] D. B. Roberts, J. Brant, and R. Johnson, "A refactoring tool for Smalltalk,"

Theory and Practice of Object Systems, vol. 3, pp. 253-263, 1997.

[182] E. Foundation. (2012). Eclipse IDE. Online: http://www.eclipse.org/downloads/

[183] JetBrains. (2012). IntelliJ IDEA.

[184] C. Zannier, "Tool support for refactoring to design patterns," Companion of the

17th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, pp. 122-123, Seattle, Washington, 2002.

[185] M. O'Keeffe and M. O. Cinneide, "Automated Design Improvement by Example,"

Proceedings of the 2007 conference on New Trends in Software Methodologies,

Tools and Techniques, pp. 315-329, 2007.

[186] N. Sudhakar and J. Gyani, "TECDP: a tool for extracting creational design

patterns," Proceedings of the International Conference and Workshop on

Emerging Trends in Technology, pp. 735-736, Mumbai, Maharashtra, India, 2010.

http://www.eclipse.org/downloads/

547

[187] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, "JDeodorant:

identification and application of extract class refactorings," Proceedings of the

33rd International Conference on Software Engineering, pp. 1037-1039, Waikiki,

Honolulu, HI, USA, 2011.

[188] S. Erb, "A Survey of Software Refactoring Tools," Course of Applied Computer

Science, Baden-Württemberg Cooperative State University, Karlsruhe,Available:

http://stephanerb.eu/files/erb2010b_Survey_of_Software_Refactoring_Tools.pdf,

2010.

[189] B. Du Bois and T. Mens, "Describing the impact of refactoring on internal

program quality," in Proceedings of the workshop on Evolution of Large-Scale

Industrial Software Applications (ELISA), pp. 37-48, Netherlands, 2003.

[190] K. Stroggylos and D. Spinellis, "Refactoring--Does It Improve Software

Quality?," in International Conference on Software Engineering Workshops, pp.

10-16, 2007.

[191] S. Bryton and F. B. e. Abreu, "Strengthening Refactoring: Towards Software

Evolution with Quantitative and Experimental Grounds," Proceedings of the 2009

Fourth International Conference on Software Engineering Advances, pp. 570-

575, 2009.

[192] B. Du Bois, S. Demeyer, and J. Verelst, "Refactor to Understand" Reverse

Engineering Pattern Improve Program Comprehension?," in European

Conference on Software Maintenance and Reengineering, pp. 334-343, 2005.

[193] M. Alshayeb, "Empirical investigation of refactoring effect on software quality,"

Information and Software Technology, vol. 51, pp. 1319-1326, 2009.

[194] M. Alshayeb, "The Impact of Refactoring to Patterns on Software Quality

Attributes," Arabian Journal for Science and Engineering, vol. 36, pp. 1241-

1251, 2011.

http://stephanerb.eu/files/erb2010b_Survey_of_Software_Refactoring_Tools.pdf

548

[195] B. Geppert, A. Mockus, and F. Rossler, "Refactoring for Changeability: A way to

go?," in 11th IEEE International Software Metrics Symposium, 2005.

[196] D. Wilking, U. F. Khan, and S. Kowalewski, "An Empirical Evaluation of

Refactoring," e-Informatica Software Engineering Journal, vol. 1, pp. 27-42,

2007.

[197] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, "A Quantitative Evaluation of

Maintainability Enhancement by Refactoring," in Proceedings of the

International Conference on Software Maintenance, pp. 576-585, Washington,

DC, 2002.

[198] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, "Does refactoring improve

reusability?," in 9th International Conference on Software Reuse, pp. 287-297,

Berlin, Heidelberg, 2006.

[199] J. Ratzinger, T. Sigmund, and H. C. Gall, "On the relation of refactorings and

software defect prediction," Proceedings of the 2008 international working

conference on Mining software repositories, pp. 35-38, Leipzig, Germany, 2008.

[200] A. Ampatzoglou and A. Chatzigeorgiou, "Evaluation of object-oriented design

patterns in game development," Information and Software Technology, vol. 49,

pp. 445-454, 2007.

[201] B. Huston, "The effects of design pattern application on metric scores," Journal of

Systems and Software, vol. 58, pp. 261-269, 2001.

[202] N.-L. Hsueh, P.-H. Chu, and W. Chu, "A quantitative approach for evaluating the

quality of design patterns," Journal of Systems and Software, vol. 81, pp. 1430-

1439, 2008.

[203] F. Khomh and Y.-G. Gueheneuce, "Do Design Patterns Impact Software Quality

Positively?," Proceedings of the 2008 12th European Conference on Software

Maintenance and Reengineering, pp. 274-278, 2008.

549

[204] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, "A methodology to assess the

impact of design patterns on software quality," Information and Software

Technology, vol. 54, pp. 331-346, 2012.

[205] J. M. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T. Alexander, "Design

Patterns and Change Proneness: An Examination of Five Evolving Systems,"

Proceedings of the 9th International Symposium on Software Metrics, p. 40, 2003.

[206] D. Jain and H. J. Yang, "OO Design Patterns, Design Structure, and Program

Changes: An Industrial Case Study," Proceedings of the IEEE International

Conference on Software Maintenance (ICSM'01), p. 580, 2001.

[207] M. Di Penta, L. Cerulo, Y. G. Gueheneuc, and G. Antoniol, "An empirical study

of the relationships between design pattern roles and class change proneness," in

Software Maintenance, 2008. ICSM 2008. IEEE International Conference on, pp.

217-226, 2008.

[208] D. Posnett, C. Bird, and P. Dévanbu, "An empirical study on the influence of

pattern roles on change-proneness," Empirical Software Enggineering, vol. 16,

pp. 396-423, 2011.

[209] K. O. Elish and M. Alshayeb, "A Classification of Refactoring Methods Based on

Software Quality Attributes," Arabian Journal for Science and Engineering, vol.

36, pp. 1253-1267, 2011.

[210] M. Mohamed, M. Romdhani, and K. Ghedira, "Classification of model

refactoring approaches," Journal of Object Technology, vol. 8, pp. 121-126, 2009.

[211] M. Katić and K. Fertalj, "Challenges and Discussion of Software Redesign," in

The 4th International Conference on Information Technology, pp. 1-7, Amman,

Jordan, 2009.

[212] A. Corradini, U. Montanari, and F. Rossi, "Graph processes," Fundam. Inf., vol.

26, pp. 241-265, 1996.

550

[213] T. Mens, "On the Use of Graph Transformations for Model Refactoring," in

Generative and Transformational Techniques in Software Engineering. vol. 4143,

R. Lämmel, J. Saraiva, and J. Visser, Berlin / Heidelberg: Springer, pp. 219-257,

2006.

[214] L. Grunske, L. Geiger, A. Zündorf, N. Eetvelde, P. Gorp, and D. Varró, "Using

Graph Transformation for Practical Model-Driven Software Engineering," in

Model-Driven Software Development, S. Beydeda, M. Book, and V. Gruhn,

Berlin Heidelberg: Springer, pp. 91-117, 2005.

[215] T. Baar and S. Marković, "A Graphical Approach to Prove the Semantic

Preservation of UML/OCL Refactoring Rules," in Perspectives of Systems

Informatics. vol. 4378, I. Virbitskaite and A. Voronkov, Berlin / Heidelberg:

Springer, pp. 70-83, 2007.

[216] A. Folli and T. Mens, "Refactoring of UML models using AGG," Proceedings of

the Third International ERCIM Symposium on Software Evolution, 2007.

[217] A. Moeini, V. Rafe, and F. Mahdian, "An approach to refactoring legacy

systems," in 3rd International Conference on Advanced Computer Theory and

Engineering (ICACTE), pp. 5-8, 2010.

[218] H. Kazato, M. Takaishi, T. Kobayashi, and M. Saeki, "Formalizing refactoring by

using graph transformation," IEICE Transactions on Information and Systems,

vol. E87-D, pp. 855-867, 2004.

[219] M. Saeki and H. Kaiya, "Model Metrics and Metrics of Model Transformation,"

in ACM/IEEE 9th International Conference on Model Driven Engineering

Languages and Systems, 2006.

[220] C. Ermel, H. Ehrig, and K. Ehrig, "Refactoring of Model Transformations,"

Proceedings of the Eighth International Workshop on Graph Transformation and

Visual Modeling Techniques, 2009.

551

[221] R. Gheyi, T. Massoni, and P. Borba, "A Rigorous Approach for Proving Model

Refactorings," 20th IEEE/ACM International Conference on Automated Software

Engineering, 2005.

[222] T. Massoni, R. Gheyi, and P. Borba, "Formal Refactoring for UML Class

Diagrams," in 19th Brazilian Symposium on Software Engineering (SBES), pp.

152-167, 2005.

[223] T. Massoni, R. Gheyi, and P. Borba, "Formal Model-Driven Program

Refactoring," in Fundamental Approaches to Software Engineering. vol. 4961, J.

Fiadeiro and P. Inverardi, Berlin / Heidelberg: Springer, pp. 362-376, 2008.

[224] T. Massoni, R. Gheyi, and P. Borba, "Synchronizing Model and Program

Refactoring," in Formal Methods: Foundations and Applications. vol. 6527, J.

Davies, L. Silva, and A. Simao, Berlin / Heidelberg: Springer, pp. 96-111, 2011.

[225] H. C. Estler and H. Wehrheim, "Alloy as a Refactoring Checker?," Electronic

Notes in Theoretical Computer Science, vol. 214, pp. 331-357, 2008.

[226] H. C. Estler, T. Ruhroth, and H. Wehrheim, "Modelchecking Correctness of

Refactorings - Some Experiments," Electronic Notes in Theoretical Computer

Science, vol. 187, pp. 3-17, 2007.

[227] J. Derrick and H. Wehrheim, "Model Transformations Incorporating Multiple

Views," in Algebraic Methodology and Software Technology. vol. 4019, M.

Johnson and V. Vene, Berlin / Heidelberg: Springer, pp. 111-126, 2006.

[228] G. Spanoudakis and A. Zisman, "Inconsistency Management in Software

Engineering: Survey and Open Research Issues," in Handbook of Software

Engineering and Knowledge Engineering. vol. 1, S. K. Chang: World Scientific

Publishing Co., pp. 329-380, 2001.

[229] R. Van Der Straeten, V. Jonckers, and T. Mens, "Supporting Model Refactorings

Through Behaviour Inheritance Consistencies," in <<UML>> 2004 - The Unified

Modeling Language. Modelling Languages and Applications. vol. 3273, T. Baar,

552

A. Strohmeier, A. Moreira, and S. Mellor, Berlin / Heidelberg: Springer, pp. 305-

319, 2004.

[230] R. Van Der Straeten and M. D'Hondt, "Model refactorings through rule-based

inconsistency resolution," Proceedings of the 2006 ACM symposium on Applied

computing, pp. 1210-1217, Dijon, France, 2006.

[231] R. Van Der Straeten, V. Jonckers, and T. Mens, "A formal approach to model

refactoring and model refinement," Software and Systems Modeling, vol. 6, pp.

139-162, 2007.

[232] E. Saadeh, D. Kourie, and A. Boake, "Fine-grain transformations to refactor UML

models," Proceedings of the Warm Up Workshop for ACM/IEEE ICSE 2010, pp.

45-51, Cape Town, South Africa, 2009.

[233] G. Sunyé, D. Pollet, Y. Le Traon, and J.-M. Jézéquel, "Refactoring UML

Models," in «UML» 2001 — The Unified Modeling Language. Modeling

Languages, Concepts, and Tools. vol. 2185 Berlin: Springer-Verlag, pp. 134-148,

2001.

[234] T. Millan, L. Sabatier, T.-T. Le Thi, P. Bazex, and C. Percebois, "An OCL

extension for checking and transforming UML models," Proceedings of the 8th

WSEAS International Conference on Software engineering, parallel and

distributed systems, pp. 144-149, Cambridge, UK, 2009.

[235] S. Markovic and T. Baar, "Refactoring OCL Annotated UML Class Diagrams,"

Software and Systems Modeling, vol. 7, pp. 25-47, 2008.

[236] M. Stolc and I. Polasek, "A visual based framework for the model refactoring

techniques," in IEEE 8th International Symposium on Applied Machine

Intelligence and Informatics, pp. 72-82, 2010.

[237] A. Correa and C. Werner, "Applying Refactoring Techniques to UML/OCL

Models," in The Unified Modeling Language. Modelling Languages and

553

Applications. vol. 3273, T. Baar, A. Strohmeier, A. Moreira, and S. Mellor,

Berlin / Heidelberg: Springer, pp. 173-187, 2004.

[238] A. Correa and C. Werner, "Refactoring object constraint language specifications,"

Software and Systems Modeling, vol. 6, pp. 113-138, 2007.

[239] A. Correa, C. Werner, and M. Barros, "An Empirical Study of the Impact of OCL

Smells and Refactorings on the Understandability of OCL Specifications," in

Model Driven Engineering Languages and Systems. vol. 4735, G. Engels, B.

Opdyke, D. Schmidt, and F. Weil, Berlin / Heidelberg: Springer, pp. 76-90, 2007.

[240] A. Correa, C. Werner, and M. Barros, "Refactoring to improve the

understandability of specifications written in object constraint language," IET

Software, vol. 3, pp. 69-90, 2009.

[241] R. Gheyi, T. Massoni, P. Borba, and A. Sampaio, "A Complete Set of Object

Modeling Laws for Alloy," in Formal Methods: Foundations and Applications.

vol. 5902, M. Oliveira and J. Woodcock, Berlin / Heidelberg: Springer, pp. 204-

219, 2009.

[242] A. Christoph, "Describing Horizontal Model Transformations with Graph

Rewriting Rules," in Model Driven Architecture. vol. 3599, U. Aßmann, M.

Aksit, and A. Rensink, Berlin / Heidelberg: Springer, pp. 901-901, 2005.

[243] C. Junbing, W. Zhijian, C. Bo, and Q. Si, "Towards A Model Refactoring Conflict

Resolution Algorithm," in 1st International Conference on Information Science

and Engineering (ICISE2009), pp. 5439-5442, 2009.

[244] P. Bottoni, F. Presicce, and G. Taentzer, "Specifying Integrated Refactoring with

Distributed Graph Transformations," in Applications of Graph Transformations

with Industrial Relevance. vol. 3062, J. Pfaltz, M. Nagl, and B. Böhlen, Berlin /

Heidelberg: Springer, pp. 220-235, 2004.

[245] G. Rangel, L. Lambers, B. König, H. Ehrig, and P. Baldan, "Behavior

Preservation in Model Refactoring Using DPO Transformations with Borrowed

554

Contexts," in Graph Transformations. vol. 5214, H. Ehrig, R. Heckel, G.

Rozenberg, and G. Taentzer, Berlin / Heidelberg: Springer, pp. 242-256, 2008.

[246] C. Amelunxen and A. Schürr, "Formalising model transformation rules for

UML/MOF 2," Software, IET, vol. 2, pp. 204-222, 2008.

[247] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, "A meta-model for

language-independent refactoring," in Proceedings. International Symposium on

Principles of Software Evolution, pp. 154-164, 2000.

[248] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer, "Towards Automating

Source-Consistent UML Refactorings," in «UML» 2003 - The Unified Modeling

Language. Modeling Languages and Applications. vol. 2863, P. Stevens, J.

Whittle, and G. Booch, Berlin / Heidelberg: Springer, pp. 144-158, 2003.

[249] N. Moha, A. Rouane Hacene, P. Valtchev, and Y.-G. Guéhéneuc, "Refactorings

of Design Defects Using Relational Concept Analysis," in Formal Concept

Analysis. vol. 4933, R. Medina and S. Obiedkov, Berlin / Heidelberg: Springer,

pp. 289-304, 2008.

[250] N. Maneerat and P. Muenchaisri, "Bad-smell prediction from software design

model using machine learning techniques," in Eighth International Joint

Conference on Computer Science and Software Engineering, pp. 331-336, 2011.

[251] D. Astels, "Refactoring with UML," in Proceedings of International Conference

eXtreme Programming and Flexible Processes in Software Engineering, pp. 67-

70, 2002.

[252] D.-K. Kim, R. France, S. Ghosh, and S. Eunjee, "A role-based metamodeling

approach to specifying design patterns," in Proceedings. 27th Annual

International Computer Software and Applications Conference, pp. 452-457,

2003.

555

[253] D.-K. Kim, "Software Quality Improvement via Pattern-Based Model

Refactoring," in 11th IEEE High Assurance Systems Engineering Symposium, pp.

293-302, 2008.

[254] D.-K. Kim and C. El Khawand, "An approach to precisely specifying the problem

domain of design patterns," Journal of Visual Languages and Computing, vol. 18,

pp. 560-591, 2007.

[255] D. Ballis, A. Baruzzo, and M. Comini, "A Rule-based Method to Match Software

Patterns Against UML Models," Electronic Notes in Theoretical Computer

Science, vol. 219, pp. 51-66, 2008.

[256] D. Ballis, A. Baruzzo, and M. Comini, "A Minimalist Visual Notation for Design

Patterns and Antipatterns," in Fifth International Conference on Information

Technology: New Generations, pp. 51-56, 2008.

[257] G. El-Boussaidi and H. Mili, "Detecting Patterns of Poor Design Solutions Using

Constraint Propagation," in Model Driven Engineering Languages and Systems.

vol. 5301, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter, Berlin /

Heidelberg: Springer, pp. 189-203, 2008.

[258] M. El-Sharqwi, H. Mahdi, and I. El-Madah, "Pattern-based model refactoring,"

International Conference on Computer Engineering and Systems (ICCES), pp.

301-306, 2010.

[259] C. Bouhours, H. Leblanc, and C. Percebois, "Bad smells in design and design

patterns," Journal of Object Technology, vol. 8, pp. 43-63, 2009.

[260] M. Akiyama, S. Hayashi, T. Kobayashi, and M. Saeki, "Supporting Design Model

Refactoring for Improving Class Responsibility Assignment," in Model Driven

Engineering Languages and Systems. vol. 6981, J. Whittle, T. Clark, and T.

Kühne, Berlin / Heidelberg: Springer, pp. 455-469, 2011.

556

[261] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development, 3rd ed. Englewood Cliffs:

Prentice Hall, 2005.

[262] Ł. Dobrzański and L. Kuźniarz, "An approach to refactoring of executable UML

models," Proceedings of the 2006 ACM symposium on Applied computing, pp.

1273-1279, Dijon, France, 2006.

[263] H. Liu, Z. Ma, L. Zhang, and W. Shao, "Detecting Duplications in Sequence

Diagrams Based on Suffix Trees," in 13th Asia Pacific Software Engineering

Conference, pp. 269-276, Kanpur, India, 2006.

[264] M. El-Attar and J. Miller, "Improving the quality of use case models using

antipatterns," Software and Systems Modeling, vol. 9, pp. 141-160, 2010.

[265] L. Favre and C. Pereira, "Formalizing MDA-Based Refactorings," 19th

Australian Conference on Software Engineering, pp. 377-386, 2008.

[266] K. Lano and D. Clark, "Model Transformation Specification and Verification," in

The Eighth International Conference on Quality Software, pp. 45-54, 2008.

[267] I. Porres, "Model Refactorings as Rule-Based Update Transformations," in

«UML» 2003 - The Unified Modeling Language. Modeling Languages and

Applications. vol. 2863, P. Stevens, J. Whittle, and G. Booch, Berlin /

Heidelberg: Springer, pp. 159-174, 2003.

[268] I. Porres, "Rule-based update transformations and their application to model

refactorings," Software and Systems Modeling, vol. 4, pp. 368-385, 2005.

[269] J. Zhang, Y. Lin, and J. Gray, "Generic and Domain-Specific Model Refactoring

Using a Model Transformation Engine," in Model-Driven Software Development,

S. Beydeda, M. Book, and V. Gruhn, Berlin Heidelberg: Springer, pp. 199-217,

2005.

557

[270] W. Yu, J. Li, and G. Butler, "Refactoring Use Case Models on Episodes," in 19th

IEEE International Conference on Automated Software Engineering (ASE'04), pp.

328-331, 2004.

[271] Y. Kim and K.-G. Doh, "The Service Modeling Process Based on Use Case

Refactoring," in Business Information Systems. vol. 4439, W. Abramowicz,

Berlin / Heidelberg: Springer, pp. 108-120, 2007.

[272] P. Bottoni, F. Parisi-Presicce, and G. Taentzer, "Specifying Coherent Refactoring

of Software Artefacts with Distributed Graph Transformations," in

Transformation of Knowledge, Information and Data: Theory and Applications,

P. van Bommel, Hershey, PA: Information Science Publishing, 2005.

[273] S. Hosseini and M. A. Azgomi, "UML Model Refactoring with Emphasis on

Behavior Preservation," Proceedings of the 2008 2nd IFIP/IEEE International

Symposium on Theoretical Aspects of Software Engineering, pp. 125-128, 2008.

[274] C. A. R. Hoare, Communicating Sequential Processes: Prentice Hall, 1985.

[275] A. W. Roscoe, The Theory and Practice of Concurrency: Prentice Hall, 1997.

[276] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari,

"SAL 2," in Computer Aided Verification. vol. 3114, R. Alur and D. Peled:

Springer Berlin / Heidelberg, pp. 251-254, 2004.

[277] L. S. Barbosa and M. Sun, "UML Model Refactoring as Refinement: A

Coalgebraic Perspective," 10th International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, pp. 340-347, 2008.

[278] R. Gheyi, T. Massoni, and P. Borba, "Type-safe Refactorings for Alloy,"

Proceedings of the 8
th

Brazilian Symposium on Formal Methods, pp. 174-190,

Porto Alegre, Brazil, 2005.

[279] M. Boger, T. Sturm, and P. Fragemann, "Refactoring Browser for UML," in

Objects, Components, Architectures, Services, and Applications for a Networked

558

World. vol. 2591, M. Aksit, M. Mezini, and R. Unland, Berlin / Heidelberg:

Springer, pp. 366-377, 2003.

[280] J. Philipps and B. Rumpe, "Roots of Refactoring," in Tenth OOPSLA Workshop

on Behavioral Semantics, pp. 187-199, 2001.

[281] F. L. Bauer and C. Language Group, The Munich Project CIP, Vol. 1: The Wide

Spectrum Language CIP-L vol. 2: Springer - Verlag, 1985.

[282] K. Rui and G. Butler, "Refactoring Use Case Models: The Metamodel," in

Proceedings of the 25
th

 Australasian Computer Society Conference, pp. 301-308,

2003.

[283] B. Regnell, "Requirements Engineering with Use Cases - a Basis for Software

Development," Lund University, 1999.

[284] S. Ren, G. Butler, K. Rui, J. Xu, W. Yu, and R. Luo, "A prototype tool for use

case refactoring," in Proceedings of the 6th International Conference on

Enterprise Information Systems, pp. 173–178 2004.

[285] J. Xu, W. Yu, K. Rui, and G. Butler, "Use Case Refactoring: A Tool and a Case

Study," in Proceedings of the 11th Asia-Pacific Software Engineering

Conference, pp. 484-491, Washington, DC, USA, 2004.

[286] K. Rui, "Refactoring use case models," PhD Thesis, Concordia University, 2007.

[287] H. Kim and C. Boldyreff, "Developing Software Metrics Applicable to UML

Models," in 6th ECOOP Workshop on Quantitative Approaches in Object-

Oriented Software Engineering, 2002.

[288] R. Gronback. (2004, May 2012). Model Validation: Applying Audits and Metrics

to UML Models. Available: http://conferences.embarcadero.com/jp/article/32089

[289] S. W. Ambler, The Elements of UML 2.0 Style. New York: Cambridge University

Press, 2005.

http://conferences.embarcadero.com/jp/article/32089

559

[290] S. Henry and D. Kafura, "Software Structure Metrics Based on Information

Flow," IEEE Transactions on Software Engineering, vol. 7, pp. 510-518, 1981.

[291] C. Lange, "Model Size Matters," in Models in Software Engineering. vol. 4364,

T. Kühne, Berlin / Heidelberg: Springer, pp. 211-216, 2007.

[292] I. O. f. S. I. I. E. C. (IEC), "Software Engineering-Product Quality," ISO/IEC

Standard No. 9126, 2001-2004.

[293] J. McCall, P. Richards, and G. Walters, "Factors in Software Quality," US Rome

Air Development Center, RADC TR-77-369,Available:

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD

A049014, 1977.

[294] A. A. Jalbani, J. Grabowski, H. Neukirchen, and B. Zeiss, "Towards an integrated

quality assessment and improvement approach for UML models," Proceedings of

the 14th international SDL conference on Design for motes and mobiles, pp. 63-

81, Bochum, Germany, 2009.

[295] H. Voigt and T. Ruhroth, "A Quality Circle Tool for Software Models," in

Conceptual Modeling - ER 2008. vol. 5231, Q. Li, S. Spaccapietra, E. Yu, and A.

Olivé, Berlin / Heidelberg: Springer, pp. 526-527, 2008.

[296] AGG. (2011). The Attributed Graph Grammar System. Online: http://user.cs.tu-

berlin.de/~gragra/agg/

[297] Fujaba. (2011). Fujaba Tool Suite. Online: http://www.fujaba.de/

[298] L. Geiger and A. Zündorf, "Statechart Modeling with Fujaba," Electronic Notes in

Theoretical Computer Science, vol. 127, pp. 37-49, 2005.

[299] W. M. Ho, J. M. Jezequel, A. Le Guennec, and F. Pennaneac'h, "UMLAUT: an

extendible UML transformation framework," in 14th IEEE International

Conference on Automated Software Engineering, pp. 275-278, Florida, USA,

1999.

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA049014
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA049014
http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
http://www.fujaba.de/

560

[300] J. Oldevik. (2005). UMT-QVT Tool. Online: http://umt-qvt.sourceforge.net/

[301] M. Peltier, J. Bézivin, and G. Guillaume, "MTRANS: A general framework based

on XSLT for model transformations," in Workshop on Transformations in UML

(WTUML01), Genova, Italy, 2001.

[302] D. Li, X. Li, and V. Stolz, "QVT-based model transformation using XSLT,"

SIGSOFT Software Enggineering Notes, vol. 36, pp. 1-8, 2011.

[303] F. J. Lucas, F. Molina, and A. Toval, "A systematic review of UML model

consistency management," Information and Software Technology, vol. 51, pp.

1631-1645, 2009.

[304] D. Chiorean, M. Paşca, A. Cârcu, C. Botiza, and S. Moldovan, "Ensuring UML

Models Consistency Using the OCL Environment," Electronic Notes in

Theoretical Computer Science, vol. 102, pp. 99-110, 2004.

[305] G. Spanoudakis and H. Kim, "Diagnosis of the significance of inconsistencies in

object-oriented designs: a framework and its experimental evaluation," Journal of

Systems and Software, vol. 64, pp. 3-22, 2002.

[306] G. Spanoudakis, K. Kasis, and F. Dragazi, "Evidential diagnosis of

inconsistencies in object-oriented designs," International Journal of Software

Engineering and Knowlege Enggineering, vol. 14, pp. 141-178, 2004.

[307] R. F. Paige, D. S. Kolovos, and F. A. C. Polack, "Refinement via Consistency

Checking in MDA," Electronic Notes in Theoretical Computer Science, vol. 137,

pp. 151-161, 2005.

[308] P. G. Sapna and H. Mohanty, "Ensuring Consistency in Relational Repository of

UML Models," in Proceedings of the 10th International Conference on

Information Technology, pp. 217-222, 2007.

[309] B. Graaf and A. van Deursen, "Model-Driven Consistency Checking of

Behavioural Specifications," in Fourth International Workshop on Model-Based

http://umt-qvt.sourceforge.net/

561

Methodologies for Pervasive and Embedded Software (MOMPES '07) pp. 115-

126, 2007.

[310] A. Egyed, "Consistent Adaptation and Evolution of Class Diagrams during

Refinement," in Fundamental Approaches to Software Engineering. vol. 2984, M.

Wermelinger and T. Margaria-Steffen, Berlin / Heidelberg: Springer pp. 37-53,

2004.

[311] A. Egyed, "Fixing Inconsistencies in UML Design Models," Proceedings of the

29th international conference on Software Engineering, pp. 292-301, 2007.

[312] T. Mens, R. Van Der Straeten, and M. D’Hondt, "Detecting and Resolving Model

Inconsistencies Using Transformation Dependency Analysis," in Model Driven

Engineering Languages and Systems. vol. 4199, O. Nierstrasz, J. Whittle, D.

Harel, and G. Reggio, Berlin / Heidelberg: Springer pp. 200-214, 2006.

[313] J. M. Küster, "Towards Inconsistency Handling of Object-Oriented Behavioral

Models," Electronic Notes in Theoretical Computer Science, vol. 109, pp. 57-69,

2004.

[314] L. Fryz and L. Kotulski, "Assurance of System Consistency During Independent

Creation of UML Diagrams," Proceedings of the 2nd International Conference on

Dependability of Computer Systems, pp. 51-58, 2007.

[315] J. H. Hausmann and R. Heckel, "Extended model relations with graphical

consistency condition," Proceedings UML 2002 Workshop on Consistency

Problems in UML-based Software Development, pp. 61-74, Blekinge Institute of

Technology, 2002.

[316] R. Wagner, H. Giese, and U. A. Nickel, "A plug-in for flexible and incremental

consistency management," Proceedings of the International Conference on the

Unified Modeling Language (Workshop 7: Consistency Problems in UML-based

Software Development), San Francisco, USA, 2003.

562

[317] N. Amálio, S. Stepney, and F. Polack, "Formal Proof from UML Models," in

Formal Methods and Software Engineering. vol. 3308, J. Davies, W. Schulte, and

M. Barnett, Berlin / Heidelberg: Springer pp. 418-433, 2004.

[318] K. van Hee, N. Sidorova, L. Somers, and M. Voorhoeve, "Consistency in model

integration," Data and Knowledge Engineering, vol. 56, pp. 4-22, 2006.

[319] M. Schrefl and M. Stumptner, "Behavior-consistent specialization of object life

cycles," ACM Transactions on Software Enggineering Methodology, vol. 11, pp.

92-148, 2002.

[320] Y. Shinkawa, "Inter-Model Consistency in UML Based on CPN Formalism,"

Proceedings of the XIII Asia Pacific Software Engineering Conference, pp. 411-

418, 2006.

[321] S. Yao and S. M. Shatz, "Consistency Checking of UML Dynamic Models Based

on Petri Net Techniques," Proceedings of the 15th International Conference on

Computing, pp. 289-297, 2006.

[322] D. Kholkar, G. M. Krishna, U. Shrotri, and R. Venkatesh, "Visual specification

and analysis of use cases," Proceedings of the 2005 ACM symposium on Software

visualization, pp. 77-85, St. Louis, Missouri, 2005.

[323] R. Laleau and F. Polack, "Using formal metamodels to check consistency of

functional views in information systems specification," Information and Software

Technology, vol. 50, pp. 797-814, 2008.

[324] D. Ossami, J.-P. Jacquot, and J. Souquières, "Consistency in UML and B Multi-

view Specifications," in Integrated Formal Methods. vol. 3771, J. Romijn, G.

Smith, and J. van de Pol, Berlin / Heidelberg: Springer pp. 386-405, 2005.

[325] W. L. Yeung, "Checking Consistency between UML Class and State Models

Based on CSP and B," Journal of Universal Computer Science, vol. 10, pp. 1540-

1559, 2004.

563

[326] V. Lam and J. Padget, "Consistency Checking of Sequence Diagrams and

Statechart Diagrams Using the pi-Calculus," in Integrated Formal Methods, pp.

347-365, 2005.

[327] H. Malgouyres and G. Motet, "A UML model consistency verification approach

based on meta-modeling formalization," Proceedings of the 2006 ACM

symposium on Applied computing, pp. 1804-1809, Dijon, France, 2006.

[328] R. F. Paige, P. J. Brooke, and J. S. Ostroff, "Metamodel-based model

conformance and multiview consistency checking," ACM Transactions on

Software Enggineering Methodology, vol. 16, p. 11, 2007.

[329] R. F. Paige, L. Kaminskaya, J. S. Ostroff, and J. Lancaric, "BON-CASE: an

extensible CASE tool for formal specification and reasoning," Journal of Object

Technology, vol. 1, pp. 77-96, 2002.

[330] H. Rasch and H. Wehrheim, "Checking Consistency in UML Diagrams: Classes

and State Machines," in Formal Methods for Open Object-Based Distributed

Systems. vol. 2884, E. Najm, U. Nestmann, and P. Stevens, Berlin / Heidelberg:

Springer pp. 229-243, 2003.

[331] H. Wang, T. Feng, J. Zhang, and K. Zhang, "Consistency check between

behaviour models," in IEEE International Symposium on Communications and

Information Technology, pp. 486-489, 2005.

[332] X. Zhao, Q. Long, and Z. Qiu, "Model checking dynamic UML consistency,"

Proceedings of the 8th international conference on Formal Methods and Software

Engineering, pp. 440-459, Macao, China, 2006.

[333] R. Van Der Straeten, T. Mens, J. Simmonds, and V. Joncker, "Using Description

Logic to Maintain Consistency between UML Models," in "UML" 2003 - The

Unified Modeling Language. vol. 2863 Berlin / Heidelberg: Springer, pp. 326-

340, 2004.

564

[334] P. Inverardi, H. Muccini, and P. Pelliccione, "Automated Check of Architectural

Models Consistency Using SPIN," Proceedings of the 16th IEEE international

conference on Automated software engineering, p. 346, 2001.

[335] F. J. Lucas and A. Toval, "A precise approach for the analysis of the UML models

consistency," 1st International Workshop on Best Practices of UML part of 24th

International Conference on Conceptual Modeling (ER 2005), Klagenfurt

(Austria), 2005.

[336] T. Massoni, "Introducing Refactoring to Heavyweight Software Processes,"

Federal University of Pernambuco, Brazil, Technical Report,Available:

http://www.cin.ufpe.br/~tlm/download/article-refactoring-RUP.pdf, 2003.

[337] M. Fontoura, W. Pree, and B. Rumpe, "UML-F: A Modeling Language for

Object-Oriented Frameworks," in ECOOP 2000 - Object-Oriented Programming.

vol. 1850 Berlin / Heidelberg: Springer, pp. 63-82, 2000.

[338] M. M. Kandé and A. Strohmeier, "Towards a UML Profile for Software

Architecture Descriptions," in Proceedings of the 3rd international conference on

The unified modeling language: advancing the standard pp. 513-527, 2000.

[339] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins, "Modeling

Software Architectures in the Unified Modeling Language," ACM Transactions

on Software Engineering and Methodology, vol. 11, pp. 2-57, 2002.

[340] M. H. Kacem, A. H. Kacem, M. Jmaiel, and K. Drira, "Describing dynamic

software architectures using an extended UML model," in Proceeding of the 2006

ACM Symposium on Applied Computing, pp. 1245-1249, 2006.

[341] G. Wagner, "A UML Profile for Agent-Oriented Modeling," in Proceedings of the

3rd International Workshop on Agent-Oriented Software Engineering, 2002.

[342] C. Hahn and I. Slomic, "Agent-based Extensions for the UML Profile and

Metamodel for Service-oriented Architectures," in 12th Enterprise Distributed

Object Computing Conference Workshops, pp. 309-316, 2008.

http://www.cin.ufpe.br/~tlm/download/article-refactoring-RUP.pdf

565

[343] V. T. da Silva and C. J. de Lucena, "From a Conceptual Framework for Agents

and Objects to a Multi-Agent System Modeling Language," Autonomous Agents

and Multi-Agent Systems, vol. 9, pp. 145-189, 2004.

[344] S. Clarke, "Extending the UML Metamodel for Design Composition," in

Workshop on Multi-Dimensional Separation of Concerns in Software

Engineering, 2000.

[345] A. A. Zakaria, H. Hosny, and A. Zeid, "A UML Extension for Modeling Aspect-

Oriented Systems," in 2nd Workshop on Aspect-Oriented Modeling with UML,

2002.

[346] A. Przybylek, "Separation of Crosscutting Concerns at the Design Level: an

Extension to the UML Metamodel," in Proceedings of the International

Multiconference on Computer Science and Information Technology, pp. 551-557,

2008.

[347] S. Robak, B. Franczyk, and K. Politowicz, "Extending the UML for Modelling

variability for System Families," International Journal of Applied Math and

Computer Science, vol. 12, pp. 285-298, 2002.

[348] B. Korherr and B. List, "Extending the UML 2 Activity Diagram with Business

Process Goals and Performance Measures and the Mapping to BPEL," in

Advances in Conceptual Modeling - Theory and Practice. vol. 4231 Berlin /

Heidelberg: Springer, pp. 7-18, 2006.

[349] B. Vela and E. Marcos, "Extending UML to represent XML Schemas," in The

15th Conference On Advanced Information Systems Engineering, pp. 97-100,

2003.

[350] J. Jürjens, "UMLsec: Extending UML for Secure Systems Development," in

Proceedings of the 5th International Conference on The Unified Modeling

Language, pp. 412-425, London, UK, 2002.

566

[351] L. Baresi, F. Garzotto, and P. Paolini, "Extending UML for Modeling Web

Applications," in Proceedings of the 34th Annual Hawaii International

Conference on System Sciences, p. 3055, Washington, DC, USA, 2001.

[352] V. T. da Silva and C. J. de Lucena, "Extending the UML Sequence Diagram to

model the dynamic aspects of Multi-Agent Systems," PUC-Rio, Rio de Janeiro,

Brazil, MCC 15/03,Available: ftp://ftp.inf.puc-

rio.br/pub/docs/techreports/03_15_silva.pdf, 2003.

[353] G. Padilla, M. A. Serrano, and C. Montes de Oca, "A UML Sequence Diagram

Extension to Handle Multiplicities," in Fifth Mexican International Conference in

Computer Science, pp. 80-87, Los Alamitos, CA 2004.

[354] D. Harel and S. Maoz, "Assert and negate revisited: Modal semantics for UML

sequence diagrams," Software and Systems Modeling, vol. 7, pp. 237-252, 2008.

[355] A. Refsdal and K. Stolen, "Extending UML Sequence Diagrams to Model Trust-

dependent Behavior With the Aim to Support Risk Analysis," Science of

Computer Programming, vol. 74, pp. 34-42, 2008.

[356] O. Haugen, K. E. Husa, R. K. Runde, and K. Stolen, "STAIRS towards formal

design with sequence diagrams," Software and Systems Modeling, vol. 4, pp. 355-

357, 2005.

[357] A. Durán, A. Ruiz-Cortés, R. Corchuelo, and M. Toro, "Supporting Requirements

Verification Using XSLT," in IEEE International Requirements Engineering

Conference, pp. 165-172, Essen, Germany, 2002.

[358] I. Díaz, F. Losavio, A. Matteo, and O. Pastor, "A specification pattern for use

cases," Journal of Information and Management, vol. 41, pp. 961-975, 2004.

[359] P. Metz, J. O'Brien, and W. Weber, "Specifying Use Case Interaction: Types of

Alternative Courses," Journal of Object Technology, vol. 2, pp. 111-131, 2003.

ftp://ftp.inf.puc-rio.br/pub/docs/techreports/03_15_silva.pdf
ftp://ftp.inf.puc-rio.br/pub/docs/techreports/03_15_silva.pdf

567

[360] A. Bragança and R. J. Machado, "Extending UML 2.0 Metamodel for

Complementary Usages of the <<extend>> Relationship within Use Case

Variability Specification," in 10th International Software Product Line

Conference, pp. 123-130, Baltimore, USA, 2006.

[361] V. Hoffmann, H. Lichter, A. Nyáen, and A. Walter, "Towards the Integration of

UML and textual Use Case Modeling," Journal of Object Technology, vol. 8, pp.

85-100, 2009.

[362] L. u. Zelinka and V. Vrani´c, "A Configurable UML Based Use Case Modeling

Metamodel," in First IEEE Eastern European Conference on the Engineering of

Computer Based Systems, pp. 1-8, Washington, DC, 2009.

[363] S. S. Somé, "A Meta-Model for Textual Use Case Description," Journal of Object

Technology, vol. 8, pp. 87-106, 2009.

[364] J. Repond, P. Dugerdil, and P. Descombes, "Use-Case and Scenario

Metamodeling for Automated Processing in a Reverse Engineering Tool," in 4th

India Software Engineering Conference, pp. 135-144, New York, 2011.

[365] B. Henderson-Sellers, "Who needs an OO methodology anyway?," Journal of

Object Oriented Programming, vol. 8, pp. 6-8, 1995.

[366] C. Gonzalez-Perez and B. Henderson-Sellers, Metamodelling for Software

Engineering: Wiley Publishing, 2008.

[367] S. Meng and B. K. Aichernig, "Towards a Coalgebraic Semantics of UML: Class

Diagrams and Use Cases," The United Nations University / International Institute

for Software Technology, Technical Report 272,Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2628, 2003.

[368] M. Misbhauddin and M. Alshayeb, "Extending the UML Metamodel for

Sequence Diagram to Enhance Model Traceability," in Proceedings of the 2010

Fifth International Conference on Software Engineering Advances pp. 129-134,

France, 2010.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2628

568

[369] J. M. Almendros-Jiménez and L. Iribarne, "Describing Use-Case Relationships

with Sequence Diagrams," The Computer Journal, vol. 50, pp. 116-128, 2007.

[370] L. Li, "Translating Use Cases to Sequence Diagrams," in Proceedings of the 15th

IEEE international conference on Automated software engineering, pp. 293-296,

Grenoble , France, 2000.

[371] T. Yue, L. C. Briand, and Y. Labiche, "Automatically Deriving UML Sequence

Diagrams from Use Cases," Simula Research Laboratory, Carleton University,

Canada, TR-SCE-10-03,Available:

http://squall.sce.carleton.ca/pubs/tech_report/TR-SCE-10-03.pdf, 2010.

[372] J. Gutiérrez, C. Nebut, M. Escalona, M. Mejías, and I. Ramos, "Visualization of

Use Cases through Automatically Generated Activity Diagrams," in Model

Driven Engineering Languages and Systems. vol. 5301, K. Czarnecki, I. Ober, J.-

M. Bruel, A. Uhl, and M. Völter, Berlin / Heidelberg: Springer, pp. 83-96, 2008.

[373] M. Lei and W. C. Jiang, "Research on Activity Based Use Case Meta-Model," in

International Conference on Advanced Computer Theory and Engineering, pp.

843-846, 2008.

[374] T. Nakatani, T. Urai, S. Ohmura, and T. Tamai, "A requirements description

metamodel for use cases," in Proceedings of the Eighth Asia-Pacific on Software

Engineering Conference, p. 251, 2001.

[375] R.-J. Back, L. Petre, and I. Porres, "Formalising UML use cases in the refinement

calculus," TUCS Technical Reports, Turku Centre for Computer Science, Turku,

Finland, TUCS-TR-279,Available:

http://tucs.fi/publications/view/?pub_id=tBaPePa99a, 1999.

[376] D. Dranidis, K. Tigka, and P. Kefalas, "Formal modelling of use cases with X-

machines," in Proceedings of the 1st South-East European Workshop on Formal

Methods, 2003.

http://squall.sce.carleton.ca/pubs/tech_report/TR-SCE-10-03.pdf
http://tucs.fi/publications/view/?pub_id=tBaPePa99a

569

[377] W. Grieskamp, M. Lepper, W. Schulte, and N. Tillmann, "Testable Use Cases in

the Abstract State Machine Language," in Proceedings of the Second Asia-Pacific

Conference on Quality Software, p. 167, Washington, D.C., 2001.

[378] W. Grieskamp and M. Lepper, "Using Use Cases in Executable Z," in

Proceedings of the 3rd IEEE International Conference on Formal Engineering

Methods, p. 111, Washington, DC, USA, 2000.

[379] A. Cockburn, Writing Effective Use Cases: Addison-Wesley, 2000.

[380] D. Kulak and E. Guiney, Use Cases: Requirements in Context vol. 2 nd Boston,

MA, USA: Addison-Wesley Professional, 2003.

[381] P. Kruchten, The Rational Unified Process: An Introduction vol. 2nd: Addison-

Wesley, 2000.

[382] J. C. Leite, J. Doorn, G. Hadad, J. H. Doorn, and G. Kaplan, "A Scenario

Construction Process," Requirements Engineering Journal, vol. 5, pp. 38-61,

2000.

[383] A. D. Toro, B. B. Jiménez, A. R. Cortés, and M. T. Bonilla, "A Requirements

Elicitation Approach Based in Templates and Patterns," in Workshop em

Engenharia de Requisitos, pp. 17-29, 1999.

[384] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and the Unified Process vol. 2nd. Upper Saddle River, NJ:

Prentice Hall PTR, 2001.

[385] G. Schneider and J. P. Winters, Applying Use Cases: A Practical Guide vol. 2nd:

Addison-Wesley, 2001.

[386] N. J. Nunes, "iUCP-Estimating Interaction Design Projects with Enhanced Use

Case Points," in Task Models and Diagrams for User Interface Design. vol. 5963,

D. England, P. Palanque, J. Vanderdonckt, and P. Wild, Berlin / Heidelberg:

Springer, pp. 131-145, 2010.

570

[387] L. L. Constantine and A. D. Lockwood Lucy, Software for Use: A Practical

Guide to the Models and Methods of Usage-Centered Design: Addison Wesley,

Longman, 1999.

[388] S. Adolph, P. Bramble, A. Cockburn, and A. Pols, Patterns for Effective Use

Cases: Addison-Wesley, 2003.

[389] F. Armour and G. Miller, Advanced Use Case Modeling: Software Systems:

Addison-Wesley, 2001.

[390] J. Arlow and I. Neustadt, UML and the Unified Process: practical object-oriented

analysis and design: Addison-Wesley, 2002.

[391] K. Bittner and I. Spence, Use Case Modeling: Addison-Wesley, 2003.

[392] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language

Reference Manual vol. 2nd: Addison-Wesley, 2005.

[393] M. Hilsbos, I.-Y. Song, and Y. Choi, "A Comparative Analysis of Use Case

Relationships," in Perspectives in Conceptual Modeling. vol. 3770, J. Akoka, S.

Liddle, I.-Y. Song, M. Bertolotto, I. Comyn-Wattiau, W.-J. van den Heuvel, M.

Kolp, J. Trujillo, C. Kop, and H. Mayr, Berlin / Heidelberg: Springer, pp. 53-62,

2005.

[394] M. A. Laguna and J. M. Marqués, "On the Multiplicity Semantics of the Extend

Relationship in Use Case Models," in Software and Data Technologies. vol. 47, J.

Cordeiro, B. Shishkov, A. Ranchordas, and M. Helfert, Berlin Heidelberg:

Springer, pp. 62-75, 2009.

[395] S. Diev, "Software estimation in the maintenance context," SIGSOFT Software

Engineering Notes, vol. 31, pp. 1-8, 2006.

[396] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, "Automated analysis of

requirement specifications," in 19th International Conference on Software

Engineering, pp. 161-171, New York, 1997.

571

[397] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, "Application of Linguistic

Techniques for Use Case Analysis," in International Requirements Engineering

Conference, pp. 161-170, London Limited, 2003.

[398] V. Ambriola and V. Gervasi, "On the Systematic Analysis of Natural Language

Requirements with CIRCE," Automated Software Engineering, vol. 13, pp. 107-

167, 2006.

[399] S. Overmyer, B. Lavoie, and O. Rambow, "Conceptual modeling through

linguistic analysis using LIDA," in 23rd International Conference on Software

Engineering, pp. 401-410, Washington, 2001.

[400] A. Sampaio, R. Chitchyan, A. Rashid, and P. Rayson, "EA-Miner: a tool for

automating aspect-oriented requirements identification," in International

Conference on Automated Software Engineering, pp. 352-355, New York, 2005.

[401] G. Fliedl, C. Kop, H. C. Mayr, A. Salbrechter, J. Vöhringer, G. Weber, and C.

Winkler, "Deriving static and dynamic concepts from software requirements

using sophisticated tagging," Journal of Data & Knowledge Engineering, vol. 61,

pp. 433-448, 2007.

[402] C. Rolland and C. Ben Achour, "Guiding the construction of textual use case

specifications," Journal of Data & Knowledge Engineering, vol. 25, pp. 125-160,

1998.

[403] A. Sinha, A. M. Paradkar, P. Kumanan, and B. Boguraev, "A linguistic analysis

engine for natural language use case description and its application to

dependability analysis in industrial use cases," in International Conference on

Dependable Systems and Networks, pp. 327-336, 2009.

[404] T. Yue, L. C. Briand, and Y. Labiche, "Automatically Deriving a UML Analysis

Model from a Use Case Model," Simula Research Laboratory, Carleton

University, Canada, TR SCE-09-09,Available:

http://134.117.61.33/pubs/tech_report/TR-SCE-09-09.pdf, 2010.

http://134.117.61.33/pubs/tech_report/TR-SCE-09-09.pdf

572

[405] M. Ochodek and J. R. Nawrocki, "Automatic Transactions Identification in Use

Cases," in Second Central and East European Conference on Software

Engineering Techniques, pp. 55-68, 2011.

[406] S. S. Somé and D. K. Nair, "Use Case Based Requirements Verification -

Verifying the consistency between use cases and assertions," in 9th International

Conference on Enterprise Information Systems, pp. 190-195, 2007.

[407] S. S. Somé, "Specifying Use Case Sequencing Constraints Using Description

Elements," in Sixth International Workshop on Scenarios and State Machines, pp.

4-10, Washington, DC, 2007.

[408] S. S. Somé and X. Cheng, "An Approach for Supporting System-level Test

Scenarios Generation from Textual Use Cases," in ACM symposium on Applied

computing, pp. 724-729, New York, 2008.

[409] M. R. Braz and S. R. Vergilio, "Software Effort Estimation Based on Use Cases,"

in 30th Annual International Computer Software and Applications Conference,

pp. 221-228, Washington, DC, 2006.

[410] M. Misbhauddin and M. Alshayeb, "Extending the UML Use Case Metamodel

with Behavioral Information to Facilitate Model Analysis and Interchange,"

Manuscript submitted for publication, King Fahd University (KFUPM), Saudi

Arabia.

[411] F. Ramalho, J. Robin, and R. Barros, "XOCL - an XML Language for Specifying

Logical Constraints in Object Oriented Models," Journal of Universal Computer

Science, vol. 9, pp. 956-969, 2003.

[412] A. Tchertchago, "Formal Semantics for a UML fragment using UML/OCL

metamodeling," in Software Engineering and Applications Cambridge, MA:

ACTA Press, 2002.

[413] P. P. da Silva and N. W. Paton, "User Interface Modeling in UMLi," IEEE

Software, vol. 20, pp. 62-69, 2003.

573

[414] A. Boronat, J. Á. Carsí, I. Ramos, and P. Letelier, "Formal Model Merging

Applied to Class Diagram Integration," Electronic Notes in Theoretical Computer

Science, vol. 166, pp. 5-26, 2007.

[415] P. Selonen and T. Systä, "Scenario-based Synthesis of Annotated Class Diagrams

in UML," Proceedings of OOPSLA 2000 Workshop: Scenario-based round-trip

engineering, pp. 26-31, 2000.

[416] R. B. Salem, R. Grangel, and J.-P. Bourey, "A comparison of model

transformation tools: Application for Transforming GRAI Extended Actigrams

into UML Activity Diagrams," Computers in Industry, vol. 59, pp. 682-693, 2008.

[417] W. Sun, E. Song, P. C. Grabow, and D. M. Simmonds, "Toward an Integrated

Tool Environment for Static Analysis of UML Class and Sequence Models,"

Journal of Universal Computer Science, vol. 16, pp. 2435--2454, 2010.

[418] A. Staikopoulos and B. Bordbar, "A Comparative Study of Metamodel Integration

and Interoperability in UML and Web Services," in Model Driven Architecture –

Foundations and Applications. vol. 3748, A. Hartman and D. Kreische, Berlin /

Heidelberg: Springer pp. 145-159, 2005.

[419] OMG, "Unified Modeling Language: Infrastructure," Version. 2.4.1, formal/2011-

08-05, Object Management Group, 2011.

[420] C. Batini, M. Lenzerini, and S. B. Navathe, "A comparative analysis of

methodologies for database schema integration," ACM Computing Surveys, vol.

18, pp. 323-364, 1986.

[421] R. A. Pottinger and P. A. Bernstein, "Merging models based on given

correspondences," Proceedings of the 29th international conference on Very large

data bases, pp. 862-873, Berlin, Germany, 2003.

[422] S. B. Chaouni, M. Fredj, and S. Mouline, "MDA based-approach for UML

Models Complete Comparison," International Journal of Computer Science

Issues, vol. 8, pp. 1-10, 2011.

574

[423] K. Lano, "Introduction to the Unified Modeling Language," in UML 2 Semantics

and Applications, K. Lano, Hoboken, New Jersey: John Wiley and Sons Inc.,

2009.

[424] M. Misbhauddin and M. Alshayeb, "Model-driven Refactoring Approaches —A

Comparison Framework.," in The African Conference on Software Engineering

and Applied Computing, Botswana, 2012.

[425] H. Liu and X. Jia, "Model Transformation Using a Simplified Metamodel,"

Journal of Software Engineering and Applications, vol. 3, pp. 653-660, 2010.

[426] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U.

Prange, D. Varro, and S. Varro-Gyapay, "Model transformation by graph

transformation: a comparative study," International Workshop on Model

Transformations in Practice, 2005.

[427] T. Furche, F. Bry, S. Schaffert, R. Orsini, I. Horrocks, M. Kraus, and O. Bolzer,

"Survey over Existing Query and Transformation Languages," Reasoning on the

Web with Rules and Semantics (REWERSE), LudwigMaximiliansUniversität

München, Munich, IST506779/Munich/I4D1/D/PU/a1,Available:

http://rewerse.net/deliverables/m24/i4-d9a.pdf, 2004.

[428] G. Kniesel and H. Koch, "Static composition of refactorings," Science of

Computer Programming, Special Issue on Program Transformation, vol. 52, pp.

9-51, 2004.

[429] M. Fowler, Use and Abuse Cases," Distributed Computing," 1998.

[430] M. Misbhauddin and M. Alshayeb, "Towards a Multi-view Approach to Model-

based Refactoring," in The African Conference on Software Engineering and

Applied Computing, Botswana, 2012.

[431] A. J. Riel, Object-Oriented Design Heuristics: Addison-Wesley, 1996.

http://rewerse.net/deliverables/m24/i4-d9a.pdf

575

[432] B. Anda, H. Dreiem, D. I. K. Sjøberg, and M. Jørgensen, "Estimating Software

Development Effort Based on Use Cases - Experiences from Industry," in

Proceedings of the 4th International Conference on The Unified Modeling

Language, Modeling Languages, Concepts, and Tools pp. 487-502, 2001.

[433] M. Laguna, J. Marqués, and Y. Crespo, "On the Semantics of the Extend

Relationship in Use Case Models: Open-Closed Principle or Clairvoyance?," in

Advanced Information Systems Engineering. vol. 6051, B. Pernici, Berlin /

Heidelberg: Springer, pp. 409-423, 2010.

[434] S. Lilly, "Use Case Pitfalls: Top 10 problems from real projects using use cases,"

Proceedings of Technology of Object-Oriented Languages and Systems, 1999.

[435] A. Ciemniewska, J. Jurkiewicz, L. Olek, and J. Nawrocki, "Supporting Use-Case

Reviews," in Proceedings of the 10th international conference on Business

information systems, pp. 424-437, Berlin, Heidelberg, 2007.

[436] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and

Techniques: John Wiley and Sons Ltd, 1998.

[437] R. C. Martin, "Design Principles and Design Patterns,"

Objectmentor.com,Available:

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf,

2000.

[438] Altova. (2010). XMLSpy. Online: http://www.altova.com/xmlspy.html

[439] Altova. (2012). UModel. Online: http://www.altova.com/umodel.html

[440] Gentleware. (2010). Poseidon for UML. Online: www.gentleware.com

[441] Omondo. (2011). EclipseUML. Online: http://www.omondo.com/

[442] Objecteering. (2009). Objecteering. Online: http://www.objecteering.com/

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.altova.com/xmlspy.html
http://www.altova.com/umodel.html
http://www.gentleware.com/
http://www.omondo.com/
http://www.objecteering.com/

576

[443] IBM. (2010). Rational Rose Modeler. Online:

www.ibm.com/software/awdtools/developer/rose/modeler/

[444] S. Systems. (2011). Enterprise Architect. Online:

http://www.sparxsystems.com.au/

[445] Collabnet. (2009). ArgoUML. Online: http://argouml.tigris.org/

[446] Serlio. (2011). CaseComplete. Online: http://www.casecomplete.com/

[447] TechnoSolutions. (2009). Visual Use Case. Online:

http://www.visualusecase.com/

[448] V. Paradigm. (2011). Visual Paradigm for UML. Online: http://www.visual-

paradigm.com/product/vpuml/

[449] K. Toutanova, D. Klein, C. Manning, and Y. Singer. (2003). Stanford POS

Tagger. Online: http://nlp.stanford.edu/software/tagger.shtml

[450] T. Harris. (2010). yUML beta v0.18. Online: http://yuml.me/

[451] A. C. Jensen and B. H. C. Cheng, "On the use of genetic programming for

automated refactoring and the introduction of design patterns," Proceedings of the

12th annual conference on Genetic and evolutionary computation, pp. 1341-1348,

Portland, Oregon, USA, 2010.

[452] L. Briand, Y. Labiche, and L. O'Sullivan, "Impact Analysis and Change

Management of UML Models," Software Quality Engineering Laboratory,

Carleton University, Ontario, Canada, TR-SCE-03-01,Available:

http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-03-01.pdf, 2001.

[453] L. Briand, Y. Labiche, L. O’Sullivan, and M. M. Sówka, "Automated impact

analysis of UML models," Journal of Systems and Software, vol. 79, pp. 339-352,

2006.

http://www.ibm.com/software/awdtools/developer/rose/modeler/
http://www.sparxsystems.com.au/
http://argouml.tigris.org/
http://www.casecomplete.com/
http://www.visualusecase.com/
http://www.visual-paradigm.com/product/vpuml/
http://www.visual-paradigm.com/product/vpuml/
http://nlp.stanford.edu/software/tagger.shtml
http://yuml.me/
http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-03-01.pdf

577

[454] M. Chapman, M. Goodner, B. Lund, B. McKee, and R. Rekasius, "Supply Chain

Management Sample Application Architecture," Web Services-Interoperability

Organization,Available: http://www.ws-

i.org/SampleApplications/SupplyChainManagement/2003-

12/SCMArchitecture1.01.pdf, 2003.

[455] A. T. Pugibet, "CSTL: A Conceptual Schema Testing Language," Master Thesis,

Conceptual Modeling of Information Systems Research Group, Universitat

Politècnica de Catalunya (UPC), Spain, 2008.

[456] N. Koch, "Automotive Case Study: UML Specification of On Road Assistance

Scenario," Sensoria: Software Engineering for Service-Oriented Overlay

Computers, Information Society Technologies, Italy, FAST-TR_No.1,Available:

http://rap.dsi.unifi.it/sensoria/files/FAST_report_1_2007_ACS_UML.pdf, 2007.

[457] D. Berndl and N. Koch, "Automotive Scenario: Illustrating Service

Specification," Sensoria: Software Engineering for Service-Oriented Overlay

Computers, Information Society Technologies, Italy, FAST-TR-No.2,Available:

http://rap.dsi.unifi.it/sensoria/files/FAST_report_2_2007_ACS_Spec.pdf, 2007.

[458] R. Seidl and H. Sneed, Modeling Metrics for UML Diagrams," Testing

Experience," 2010.

[459] D. E. Perry, A. A. Porter, and L. G. Votta, "Empirical studies of software

engineering: a roadmap," Proceedings of the Conference on The Future of

Software Engineering, pp. 345-355, Limerick, Ireland, 2000.

[460] A. Funes and C. George, "Formal Foundations in RSL for UML Class Diagrams,"

The United Nations University / International Institute for Software Technology,

Technical Report 2532002.

[461] F. Mantz, "Syntactic Quality Assurance Techniques for Software Models,"

Diploma Thesis, Fachbereich Mathematik und Informatik, Philipps-Universität,

Marburg, 2009.

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2003-12/SCMArchitecture1.01.pdf
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2003-12/SCMArchitecture1.01.pdf
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2003-12/SCMArchitecture1.01.pdf
http://rap.dsi.unifi.it/sensoria/files/FAST_report_1_2007_ACS_UML.pdf
http://rap.dsi.unifi.it/sensoria/files/FAST_report_2_2007_ACS_Spec.pdf

578

[462] S. Meng and L. S. Barbosa, "A Coalgebraic Semantic Framework for Reasoning

about UML Sequence Diagrams," in The Eighth International Conference on

Quality Software, pp. 17-26, 2008.

[463] W3C. (2008, May 2012). Extensible Markup Language (XML) Version 1.0.

Available: http://www.w3.org/TR/REC-xml/

[464] W3C. (2011, May 2012). XQuery 1.0: An XML Query Language. Available:

http://www.w3.org/TR/xquery/

[465] W3C. (2007, May 2012). XSL Transformations (XSLT) Version 2.0. Available:

http://www.w3.org/TR/xslt20/

[466] J. Wüst. (2011). SDMetrics. Online: http://www.sdmetrics.com

[467] J. Bansiya and C. G. Davis, "A Hierarchical Model for Object-Oriented Design

Quality Assessment," IEEE Transactions on Software Engineering, vol. 28, pp. 4-

17, 2002.

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt20/
http://www.sdmetrics.com/

579

Vitae

Name : Mohammed Misbhauddin

Nationality : Indian

Date of Birth :8/2/1981

 Email : misbhauddin.mohammed@gmail.com

Address : Hyderabad, India

Academic Background : Mohammed Misbhauddin earned his Bachelors of

Engineering degree in Computer Science and Engineering from Deccan College

of Engineering and Technology (affiliated to Osmania University), Hyderabad,

India in May 2003. He completed his Masters in Science from Illinois Institute of

Technology, Chicago, USA in May 2005. His research interests include model-

driven software development, software refactoring, meta-modeling, software

metrics and quality, artificial intelligence and data mining.

	Misbah-DoctorofPhilosophy
	Misbah-Signs
	2012-09-27-Dissertation_Misbhauddin-with arabic abstract

