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Software refactoring is the process of changing a software system in a manner that does 

not alter its external behavior and yet improving its internal structure. Model-Driven 

Architecture and the popularity of the UML have enabled the application of refactoring at 

model-level which earlier was applied to only software code. Refactoring at model level 

is more multifaceted and challenging than at source code level. Hence, research in this 

area is still considered to be in its infancy. The objective of this research was to develop a 

multi-view integrated approach to model-driven refactoring using UML models. The 

main motivation behind using multiple views for model refactoring was to utilize the 

inter-view relationships to bridge the gap between code and model refactoring. In this 

research, a single model from each UML view is composed at metamodel level to 

construct an integrated metamodel. Class diagram representing the structural view, 

sequence diagram representing the behavioral view and use case diagram representing the 

functional view were selected for integration. A total of eight integrated refactoring 

opportunities that can be used to improve the design models were proposed over the 

integrated metamodel along with a set of primitive refactorings that can be used to 

remove the proposed smells. A prototype tool called IntegraUML that performs model 

integration and refactoring was also developed to allow semi-automated identification 

and resolution of the model smells. Validation of the proposed approach was performed 

by comparing integrated refactoring approach with refactoring applied to models 

individually in terms of quality improvement through UML model metrics. A total of 

nine case studies were considered for empirical validation of the proposed approach. It is 

concluded that more opportunities can be detected using the integrated approach rather 

than the individual refactoring approach. Apart from this, there was a significant 



xxiv 

 

improvement in the design size, complexity and modularity of the individual models after 

the application of refactoring over the integrated model as opposed to individual 

refactoring. Future work to this approach can investigate on using other models in the 

integration, application of pattern refactoring over the integrated metamodel and 

empirical validation over large real-world project designs.    



xxv 

 

 ملخص الرسالة

 
 

 محمد مصباح الدين :               الاسم الكامل
 

 نحو نظام تعريف نموذجي متكامل لاعادة هيكلية البرمجيات :            عنوان الرسالة
 

 علوم الحاسب الآلي والهندسة :                  التخصص
 

 ٢١٠٢ مايو:      تاريخ الدرجة العلمية
 

إعادة هيكلية البرمجيات هي عملية تغيير نظام البرمجيات بحيث تحسن من هيكله الداخلي ولا تغير سلوكه 

مستوى تطبيق إعادة الهيكلية على ( UMLالخارجي. مكنت الهيكلية المرتبطة بالنماذج ولغة النمذجة الموحدة )

النماذج والتي كانت في السابق تطبق على شيفرة البرمجيات. إعادة الهيكلية على مستوى النماذج هو متعدد الأوجه 

 .وأكثر صعوبة من على مستوى شيفرة المصدة. لهذا، لا تزال الابحاث في هذا المجال تعتبر في المراحل الأولى

وجه لإعادة الهيكلية النماذج باستخدام لغة النمذجة الموحدة الهدف من هذا البحث هو وضع نهج متكامل متعدد الا

(UML .) الدافع الرئيسي لاستخدام طرق المتعددة لإعادة هيكلية النماذج هو للاستفادة من العلاقات المتداخلة بهدف

ه لغة سد الفجوة بين شيفرة ونماذج إعادة هيكلية البرمجيات. في هذا البحث، تم استخدام نموذج واحد من أوج

نموذج الاصناف ليمثل تم تحديد  .على مستوى النموذج العام لبناء نموذج عام متكامل( UMLالنمذجة الموحدة )

وجهة النظر البنيوية، نموذج مخطط التسلسل ليمثل وجهة النظر السلوكية ونموذج حالات الاستخدام ليمثل وجهة 

ة الهيكلة التي يمكن استخدامها لتحسين النماذج المقترحة النظر الوظيفية. تم اقتراح مجموعه من ثمانية فرص إعاد

على النموذج العام المتكامل بالإضافة الى مجموعة من طرق اعادة الهيكلة البدائية التي يمكن استخدامها لإزالة 

ح والتي تنفذ تكامل النماذج وإعادة الهيكلية وكذلك تسم IntegraUML المشاكل المقترحة. تم تصميم أداة تسمى

تم إجراء المصادقة على النهج المقترح وذلك من خلال مقارنة نهج  .بالتحديد شبه الالي وتصليح مشاكل النماذج

إعادة الهيكلية المتكامل مع تطبيق إعادة الهيكلية على نماذج فردية من حيث تحسين الجودة من خلال قياس متريات 

للتحقق من صحة النهج المقترح. كانت النتيجة أنه سة (. تم تطبيق تسع حالات دراUMLلغة النمذجة الموحدة )

وفضلا  .يمكن الكشف عن فرص لإعادة الهيكلية أكثر باستخدام النهج المتكامل مقارنة بنهج اعادة الهيكلة الفردي

 عن ذلك، كان هناك تحسن كبير في حجم التصميم، والتعقيد والنمطية للنماذج الفردية بعد تطبيق إعادة الهيكلية من

خلال النموذج المتكامل بدلا من إعادة هيكلية النماذج الفردية. العمل المستقبلي سيبحث في استخدام نماذج أخرى في 

النموذج المتكامل، تطبيق اعادة هيكلية الانماط من خلال النموذج العام المتكامل والمصادقة باستخدام تصاميم 

 مشروع حقيقي كبير.
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1 CHAPTER 1 

INTRODUCTION 

Software Maintenance has become an integral component of software development and 

management. The process of maintaining software requires application of certain set of 

activities that modify an existing software system. A number of incentives dictate the 

need for maintaining software, which includes factors such as failures in performance and 

implementation, changes in information and environment, inefficiencies in operation etc. 

Chapin et al. [2] categorized software maintenance based on the objective evidence of the 

maintainer’s activities. Another term usually associated synonymously with software 

maintenance is Software Evolution [3]. 

Cook et al. [4] defined the term Evolvability as the “capability of software products to be 

evolved to continue to serve its customers in a cost effective manner”. Hence, software 

evolution is a subset of software maintenance activities that occur when perfective (add, 

remove or modify functionality), corrective (remove errors) or performance (improve 

operation and quality) maintenance for the customer’s benefit is executed. Over the years, 

software practitioners and managers have been struggling to get hold over the software 

development process in order to cope up with the rate of change and minimize its effects 

on delivering better software products. Hence, software maintenance and evolution not 

only incorporate activities after the delivery of the system but also during its development 

phase. 
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An interesting feature of evolution is its structural aspect. Portion of a system is 

considered weak or instable if its structure (code, design, architecture) hinders its 

evolution. Structural weakness, if not identified and removed or at least improved, will 

spread throughout the system causing more weaknesses and result in a system difficult to 

maintain. In order to meet this challenge, studies have identified and developed software 

engineering methodologies to improve the structure of software systems leading to 

improvement in overall software quality. Although activities that target removing or 

improving structural weaknesses are categorized under maintenance, Chikofsky and 

Cross [5] referred to them as Restructuring. According to Chikofsky and Cross, 

“Restructuring is the transformation from one representation form to another at the same 

relative abstraction level, while preserving the subject system’s external behavior”. 

William F. Opdyke as an outcome of his PhD dissertation [6] redefined restructuring in 

terms of Object Oriented Development domain as “behavior preserving program 

transformations” and termed this paradigm as Refactoring. 

The main objective of refactoring is simplicity – keeping the system as simple as 

possible. Refactoring improves the internal design of the software and is considered an 

essential activity during software development and maintenance. It provides developers 

with the ability to understand the software better, to modify and maintain and as a result 

account for a significant portion of the development effort. 

Motivated from the work of Opdyke, a large portion of the methodologies and tools 

related to refactoring that operate at source code level are proposed in the literature. 

These tools aid the developer with identification of code blocks in need of refactoring and 

a few provide automated refactoring support by selecting the most appropriate way to 
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restructure. With the growing popularity of Model-driven software engineering (MDSE), 

refactoring has moved in recent times from the more generic code-based refactoring to a 

higher level of abstraction. MDSE is a discipline that promotes the use of models at 

different levels of abstractions for developing, maintaining and evolving software 

systems [7]. Software researchers are now concentrating their efforts on refactoring 

software design models. Some of the motivations for moving from code to design models 

for refactoring are [8]: 

 A model provides an abstract view of the system; hence, visualization of the 

structural changes required is easier.  

 Problems uncovered at the design-level can be improved directly on the model.  

 Exploring alternate decision paths is much cheaper at the design-level. 

 

Although there exist numerous terms related to MDSE such as Model-Driven 

Development (MDD), Model Driven Software Development (MDSD) and Model-Driven 

Architecture (MDA), they do not imply the same methodology. MDA [9] tends to be 

more restrictive and focuses on UML-based modeling languages. Due to its widespread 

use for modeling Object Oriented Systems, UML (Unified Modeling Language) [10] 

models are used as suitable candidates for model-driven refactoring in recent literature.  
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1.1 Problem Description 

Although model-driven refactoring has attained wide recognition and acceptance, several 

vexing problems remain. Research in this area is still under development bounded by a 

number of challenges and open issues. Some of the key challenges and issues, 

highlighted by Mens et al. [11-14] when applying refactoring to software models and 

based on our systematic review of the literature of the field, are summarized here:  

 Lack of model refactoring opportunities: In order to apply refactoring to models, 

identification of structural weaknesses and design defects within the model (also 

known as Model Smells or Refactoring Opportunities) is required. There exists quite 

a few refactoring opportunities when it comes to code refactoring [15-17]. In contrast, 

only a few refactoring opportunities have been discussed in terms of model-driven 

refactoring. One of the main reasons behind this research-gap is because models are 

typically built up from different views composed of multiple diagrams as opposed to 

source code that conforms to a single model (based on the language used). Of all the 

studies that relate to model-driven refactoring in the literature, only 54% of them 

address the concept of model smells and their detection strategies [18]. There is a 

need to identify a comprehensive and commonly accepted list of model refactoring 

opportunities. Apart from this, there is also a need to establish relation between the 

refactoring opportunity (problem) and appropriate refactoring operations that can 

improve the model by removing the problem. 

 Lack of precise definition of proposed refactoring opportunities: Studies that 

discuss the same refactoring opportunity use different identification strategies. This 
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inconsistency is mainly because of the multi-view nature of UML modeling. For 

instance, the God Class refactoring opportunity is described by both the class and 

sequence diagram in some studies [19, 20] while it is described by the class diagram 

only in others [21-25]. Apart from this, studies that use the same diagram use 

different threshold values to quantify the opportunity. For instance, Ghannem et al. 

[22] classify a class as God Class if it has more than 10 attributes and 20 methods 

whereas Llano and Pooley [23] classify it if a class is composed of 60 or more 

attributes and methods.  

 Lack of precise definition of behavior in models: By definition, software 

refactoring is a contemporary software maintenance activity intended to modify the 

internal structure of the software without changing its observable behavior. In order 

to ensure this, a precise definition of behavior is required for models to achieve true 

model-driven refactoring. Apart from this, there is also need of a formal specification 

technique to state the behavioral invariants and methods to verify whether model 

refactoring preserves these invariants. A key research challenge is therefore the lack 

of precise definition of behavior and formalisms to define and verify behavior 

preservation for model-driven refactoring. 

 Lack of an evaluation framework: Another important objective of refactoring is 

improvement in software quality because of restructuring the software model. 

Although an important activity, only 5.3% of the studies published on model-driven 

refactoring address it [18]. Lack of an evaluation approach severely affects the 

usability of model-driven refactoring approaches in industrial software development.   
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 Inconsistency among different models: Due to the multi-view nature of software 

models, the issue of consistency and synchronization is important. UML is a 

collection of different diagrams representing different views. Although different, 

most of these diagrams contain complementary information. Applying refactoring to 

one of these diagrams could result in inconsistencies among other dependent models. 

This issue is contrasting to code based refactoring which is often (but not always) 

expressed within a single programming language. The key issue here is to identify an 

approach to ensure model consistency between all dependent views. 

 Lack of automated tool support: One of the main requirements in the area of 

refactoring is the availability of tool support to automatically detect and remove 

model defects. Tool support provided in the field of model-driven refactoring are 

usually classified based on the degree of automation provided. A fully automated tool 

provides automatic detection and correction of defects without human intervention. A 

semi-automated tool requires human assistance before the actual transformation. 

More than two-thirds of the studies that provide model-driven refactoring tools are 

not fully automated [18]. The two main factors affecting full automation are 1) no 

means of automated model defect detection and 2) tools that do provide detection do 

not provide a mapping between the defects and refactoring solutions.     

 

1.2 Motivation 

Refactoring at model-level is more multifaceted and challenging than at code-level due to 

the existence of multiple views. A typical software design is composed of diagrams from 
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all views, each capturing an important characteristic of the system. A view is a collection 

of diagrams that illustrate similar aspects of the system. With the growing popularity of 

MDA and UML based techniques, researchers have started exploring the use of multiple 

views for model analysis. Some prominent applications include Model Consistency 

Management [26-28], Model Evaluation [29] and Model Reuse [30].  Most research 

studies published on model-driven refactoring concentrate mainly on refactoring 

application on individual models from a view at a time. Model-driven refactoring 

approaches can be classified based on two criteria: the number of views considered for 

refactoring and the technique used [31]. The main motivations behind the use of multiple 

views for refactoring are: 

 There exists a complementary relation among all the UML views. Refactoring a 

single diagram from a view at a time ignores the surplus information available from 

inter-view relationships. A few recent approaches have suggested the use of multiple 

views for model-driven refactoring [19, 20, 31, 32]. Although effective, these 

approaches either do not consider all available model views or incorporate views 

outside the scope of UML modeling notation.    

 One of the motivations for model-driven refactoring is that the problems uncovered at 

the design-level can be improved directly on the model. However, since the set of 

refactoring opportunities for program refactoring are more detailed than the model 

based refactoring, a large number of smells escape and seep into the implemented 

code. Considering multiple views for refactoring opportunity detection provides a 

broad view of all aspects required for a complete description of the system.     
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 The use of multiple views allows integrating behavioral information into other static 

views. This integration allows refactoring operations to assess model behavior and 

ensure its preservation post refactoring. 

 Refactoring an integrated multi-view model applies the refactoring operation to all 

related model views hence circumventing or considerably reducing the effort needed 

to ensure model consistency.  

 

1.3 Research Objectives 

Although the concept of refactoring is being researched thoroughly, its application to 

UML models is still faced with numerous issues and challenges. Most of these issues are 

due to the multi-view nature of modeling in UML. The main objective of this work is to 

fill the gap between the source-code and model-driven refactoring by applying 

refactoring to more than one view at a time. Our work addresses the following research 

questions: 

1. What is the state-of-the-art in UML model-driven refactoring? 

2. How can multiple UML views be used to identify refactoring opportunities? 

3. Which refactoring opportunities can be re-used and adapted to model-driven 

refactoring because of the multi-view integrated model? 

4. How to specify model refactoring steps over multi-view integrated metamodel and 

prove they preserve the observable behavior of the complete system? 

5. How to automate the process of model integration and the process of applying model 

refactoring in the form of a tool?   
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Specifically, the objectives of this research are 

1. To provide an integrated metamodel that combines the metamodel of class model, 

sequence model and use case model representing the three views of UML. 

2. To identify refactoring opportunities within the software design using model 

information from multiple views. This information is obtained from the integrated 

model. 

3. To provide refactoring solutions to mitigate the identified opportunities at the 

metamodel level. The use of metamodel for refactoring provides the user with 

additional information regarding the semantics in the model and the structure that the 

model is required to follow. This information aids in describing the refactoring steps.  

4. To provide automated tool support for model integration and refactoring. Automated 

support ensures proper model conversion so they conform to the specified metamodel 

accordingly.  

 

1.4 Research Methodology 

In order to address the issues identified in Section 1.3, we propose the use of multiple 

views for model-driven refactoring. UML 2 defines 14 different diagrams as part of its 

most recent specification [10]. Since the use of all diagrams in included in the UML suite 

for refactoring is not feasible, we use the concept of views. Typically UML models are 

classified into three views: structural, behavioral and functional [33]. Each view 

represents an important aspect of the system and together they provide a complete 

description of the system. Although these views are independent from each other, there 
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exists a relationship (information dependency) among diagrams in these views. We need 

to establish convergence points where the integration of all the views is possible i.e. a 

way to represent in the structural view, the behavior of each element found from the 

behavioral view and the functionality found in the functional view. This integration of 

different UML diagrams can supplement additional meaning to the entire system thereby 

increasing the information available as a whole. For instance, adding behavior 

information available from behavioral view of UML such as sequence diagrams, state 

diagrams etc. to the structural view such as class diagrams. 

With feasibility of the approach in mind, we selected a single diagram from each view 

based on its popularity and functional use. Core diagrams used in our approach include 

Class diagram from the structural view, Sequence diagram from the behavioral view and 

Use case diagram from the functional view. An outline of our research approach is 

depicted in Figure 1. The key components of our methodology include 

1. Metamodel Extension: In order to ensure proper integration of metamodels, we 

extended the metamodels of sequence diagram and use case diagram. The class 

diagram metamodel was used as-is from the UML specification. The use case 

diagram metamodel was extended with behavior information in order to establish its 

relation to the sequence model. The sequence diagram metamodel was extended to 

handle model traceability and act as a liaison between the use case metamodel and 

class diagram metamodel. The main motivation behind these extensions is to ensure 

seamless integration of all selected metamodels to form the Integrated metamodel. 

Section 4.2 to 4.5 discusses our extensions to the UML metamodels in detail.  
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2. Metamodel Integration: The Integrated metamodel is composed of metamodels of 

the class diagram, the extended metamodel of the sequence diagram and the extended 

metamodel of the use case diagram. In order to ensure complete modeling of 

information, we also incorporated the Object Constraint Language (OCL) [34] 

metamodel within the Integrated metamodel so that constraints (from class diagrams), 

invariants and guards (from sequence diagrams) and pre and post conditions (from 

use case diagrams) are structurally represented. Section 4.6 discusses the composition 

of metamodels and the complete Integrated Metamodel. 

3. Integrated Model Refactoring: An important aspect of model-driven refactoring is 

to identify refactoring opportunities and suggest refactoring operations. We identify 

and propose refactoring opportunities over the Integrated Metamodel and provide 

refactoring steps to remove these defects. We define a template in order to present our 

proposed refactoring opportunities and steps. The two main components of this 

template are the smell detection algorithm and model refactoring steps that consists of 

composite refactoring to remove the detected model smell. Chapter 5 discusses our 

proposed refactoring opportunities along with examples from a running case study. 
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4. Tool Support: An important aspect of proposing a metamodel driven refactoring 

approach is to provide tool support for automatic model conversion for metamodel 
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conformance. We implemented a tool called IntegraUML to aid users in converting 

their models to the proposed metamodel. The main objective of this tool is to support 

model integration and transformation on UML models serialized in the form of XMI 

(XML Metadata Interchange) [35]. The tool imports the XMI representations of the 

class diagram, sequence diagrams and use case diagrams and integrates them into an 

intermediate format that conforms to the proposed Integrated metamodel. The smell 

detection module is an XQuery (Query language for XML) based engine that imports 

model smell descriptions from the Refactoring Rules repository one by one and 

applies it over the integrated model. Each model smell within the repository is stored 

as an XQuery file.  The refactoring module applies the appropriate refactoring to the 

integrated model. This process is repeated until all smells in the repository are 

exhausted.  Chapter 6 provides a detail description on the architecture of all the 

prototype tools implemented as part of our work. 

5. Validation: Due to the lack of an evaluation framework in the literature that 

associates external model quality to internal attributes, we used the model metrics as 

part of our validation framework. In order to validate our approach; we compared 

model metrics evaluated over refactoring individual model views versus refactoring 

multiple model views. Case studies used for validation and analysis and results of the 

validation are discussed in Chapter 7 and Chapter 8 respectively.  

 

1.5 Research Contributions 

The major contributions of the work proposed in this dissertation are as follows:  
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1. A state-of-the-art literature review of software refactoring and UML model-driven 

refactoring approaches. 

2. An integrated metamodel that unifies the three different views of the UML language 

(Structural, Behavioral and Functional). 

3. An initial catalogue of model-driven refactoring opportunities based on individual 

UML models and the Integrated metamodel. 

4. A formal description of UML model syntax and semantics and their use in describing 

model constraints to ensure model behavior preservation.  

5. A prototype tool that enables model integration and refactoring based on the proposed 

integrated metamodel. It also facilitates the refactoring process and allows 

verification of preconditions and automatic application of refactoring rules.  

6. Providing refactorings for structural, behavioral and functional view of UML together 

along with an XML-based formalism to represent transformation using a new 

integrated metamodel. 

 

1.6 Outline of Dissertation 

The rest of this dissertation is structured as follows:  

 Chapter 2 presents the background knowledge upon which the work presented in this 

dissertation is based upon. The chapter describes the Model-Driven Software 

Engineering paradigm and Object-Oriented Modeling notations such as the Unified 

Modeling Language (UML) and the Object Constraint Language (OCL). Next, the 

chapter also introduces the concept of Model Transformation and Software 
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Refactoring. Finally, the chapter describes model metrics, used for validating the 

proposed approach. 

 Chapter 3 surveys state-of-the-art in the field of software refactoring. The first section 

reviews refactoring studies conducted at code-level also known as Program 

Refactoring. The second section reviews refactoring research conducted at model-

level also known as Model-driven Refactoring. The third section reviews the 

approaches carried out in the research literature to synchronize refactorings between 

design artifacts and code also known as Source-Consistent Refactoring. Since the 

work presented in this literature involves proposing extensions to existing UML 

diagram metamodels, the fourth section briefly reviews all research efforts made in 

the area of metamodel extensions.    

 Chapter 4 initially describes UML metamodels for the diagrams considered for the 

work proposed in this dissertation: Class Diagram, Sequence Diagram and Use case 

Diagram. The chapter then explains in detail the proposed extensions to the 

metamodels of these UML models. Finally, the chapter concludes with the integrated 

metamodel process and description. 

 Chapter 5 where the main contribution of the dissertation resides, describes the 

detection strategies for refactoring opportunity identification and implementation of 

refactoring over the integrated metamodel in detail. This chapter introduces a 

template to describe the integrated refactorings proposed.  

 Chapter 6 describes the implementation of the model integration and refactoring tool. 

This chapter introduces the Integration subsystem, the Refactoring subsystem and 

describes data structures and storage mechanisms based on the Integrated metamodel.  
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 Chapter 7 illustrates the methodology used for validating the integrated model 

refactorings. Next, the chapter describes the suite of case studies used for the 

validation process. The chapter also provides the data collection methodology and the 

information used for validating the approach. Finally, the chapter presents the results 

of refactoring application over individual UML models.  

 Chapter 8 presents the results of the refactoring application over the integrated UML 

models. Finally, a thorough discussion based on the analysis of the results is included.  

 Chapter 9 concludes the dissertation by answering the research questions posed. It 

presents the contributions, threats to validity and future work.  
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2 CHAPTER 2 

BACKGROUND 

This chapter provides background over some of the key concepts used in this work. 

These key concepts include explanations of notations and techniques used throughout the 

rest of this dissertation. 

 

2.1 Model Driven Software Engineering 

The use of models for software development has been around since a long time. Although 

used in the software development process, models were treated as informal sketches or 

used for “mere” documentation purposes [36].  Prior to the formulation of the Model 

Driven Software Engineering (MDSE) concept, models were considered informal drafts 

of the software under development.  These models were discarded once the code was 

completed. With advent of model driven approaches, models are treated as key artifacts 

in all phases of the software development lifecycle. 

Model-driven software engineering (MDSE) is becoming the most promising paradigm in 

software engineering. MDSE is a discipline that promotes the use of models at different 

levels of abstraction for developing, maintaining and evolving software systems [7]. It 

varies from the traditional software development paradigm by shifting focus to system 

models that capture system requirements, architecture and design decisions that fulfill 

them. In addition, these system models can be used to partially or fully automate code 
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generation in any target language. MDSE provides an environment that ensures the 

systematic and disciplined use of models throughout the software development process. 

Hence, it ensures an audit trace starting right from system requirements through the code 

that implements them. 

Although there exist numerous terms related to MDSE such as Model-Driven 

Development (MDD), Model Driven Software Development (MDSD) and Model-Driven 

Architecture (MDA), they do not imply the same methodology. MDA [9] tends to be 

more restrictive and focuses on UML-based modeling languages. Out of the many 

approaches to MDSE, MDA adopted by the Object Management Group (OMG) has 

become the most favorable one. The three primary objectives of MDA are portability, 

interoperability and reusability. 

Unified Modeling Language [10], although not originally designed for MDA, became a 

standard formalism for a wide range of application domains due to its wide use and 

popularity. UML describes various types of models in MDA. It contains diagrams and 

views that can represent various perspectives of a system. 

 

2.2 UML: Object-Oriented Modeling Language 

The Object Oriented paradigm has achieved immense popularity over other programming 

paradigms. The prime reason for this acceptance is that it gives priority to modeling 

concepts, which is important from the problem domain’s perspective, leaving behind 

programming technicalities to be filled in later. With the growing popularity of the Object 
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Oriented paradigm and with an intention to provide a standard for Object Oriented 

Analysis and Design, the Object Management Group (OMG) adopted UML as a standard 

language for the design and analysis of Object Oriented Programs. 

UML is a graphical language that provides notations and action semantics to describe and 

design software systems. It was a result of amalgamation of different graphical modeling 

approaches by Grady Booch [37], James Rumbaugh et al. [38] and Ivar Jacobson [39].  

Not only does UML describe a software system at different levels of abstraction, but is 

also used in tools for software simulation [40].   

Since the adoption of UML as an open standard by OMG in 1997, it has undergone 

constant evolution to keep up with criticisms [41] in order to provide a more precise and 

expressive modeling language. The most recent specification, UML 2.4, describes 14 

formal diagrams, which intend to provide different views of a system under design. A 

view is a collection of diagrams that illustrate similar characteristics of the system. The 

UML taxonomy classifies its diagrams into two views: structural and behavioral. There 

have been other proposals for view classifications such as the 4+1 view by Kruchten [42] 

and the structural, behavioral and functional view classification proposed by Iivari [33]. 

Since the UML taxonomy provides no categorization for representing the functional 

aspects of the UML modeling suite, we decided to adopt the view classification by Iivari.  

A typical classification of the diagrams into three different views: structural, behavioral 

and functional is shown in Figure 2. Use case diagrams are a means of specifying 

functionality according to Jacobson et al. [39]. The classification of Activity Diagram 

into the functional view is based on the observations by Rumbaugh et al. [38] and Shlaer 
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and Mellor [43, 44] who use data flow modeling concepts such as action/activity to 

describe the functionality of the system.    

 

Figure 2 Hierarchical Classification of UML Diagrams 
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part of the integrated metamodel proposed in this dissertation. Section 2.2.1 

provides a detail description of the class diagram. 

Behavioral View 

Diagrams included in the behavioral view show the dynamic behavior of the 

structural objects in the system. This dynamic behavior specifies the series of 

changes made to the system over time. One of the most commonly used diagrams 

to model system behavior is the sequence diagram, which is considered part of the 

integrated metamodel proposed in this dissertation. Section 2.2.2 provides a detail 

description of the sequence diagram. 

Functional View 

The functional view is a collection of diagrams that depict how a system is 

supposed to work. It captures information about the system from the user’s 

perspective. Because of these advantages, these diagrams are among a few which 

are constructed early in the development of software. One of the most vital 

diagrams from this view that provides modeling of system’s functional 

requirements is the Use Case Diagram. The use case diagram is considered as part 

of the integrated metamodel proposed in this dissertation. Section 2.2.3 provides a 

detail description of the use case diagram. 

All UML diagrams conform to the UML metamodel that specifies its abstract syntax, 

concrete syntax and semantics. A metamodel is a model of the modeling language (such 

as UML). A notation known as Meta-Object Facility (MOF)  [45] put forward by OMG 

allows software engineers to build and extend UML metamodels. In order to demonstrate 



22 

 

the relationship between the systems under development, models and metamodels, a four-

layer architecture provided by MOF is shown in Figure 3.  

 

 

 

Based on this architecture, metamodels for modeling languages can be defined using 

MOF. These modeling languages, like UML, can then be used to describe domain 

specific concepts. Finally user data can be instantiated.  A complete system can be 
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the system are then used to produce a software system that conforms to the model. 
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2.2.1 UML Class Diagram 

Class diagram represents the structural view of an object-oriented system. It consists of a 

set of classes designating important entities of the modeled system. Along with classes, a 

class diagram also consists of relationships between these classes. It is the most common 

diagram and considered as the backbone for modeling object-oriented systems.  

Classes are defined as a set of objects sharing the same attributes and methods. Attributes 

are unique features of a class and methods are the means through which a class exposes 

its functionality to other classes. A class is typically represented in UML as a rectangle 

with three partitions. The top partition identifies its name, the middle partition lists all its 

attributes and the bottom partition lists all its methods. Associated with each attribute and 

method of a class is an important concept called visibility. Visibility specifies whether 

other objects are allowed to see the corresponding attribute or method of a given class. 

UML defines three kinds of visibility: 

 Public (+) which allows access to objects of all other classes 

 Private (-) which allows access to objects of the owner class only 

 Protected (#) which allows access to objects of its subclasses 

Classes in a class diagram are related to each other by different types of relationships. 

Relationships in a UML class diagram are classified into three categories: Association, 

Generalization and Dependency. When two or more classes are connected to each other, 

an association relationship exists between them. Aggregation is a type of association 

between classes when a class (whole) is formed by a collection of other classes (parts). 

Composition is a stronger form of aggregation in which the lifetime of the part classes is 
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dependent on the lifetime of the whole class. Generalization is a relationship between a 

super class and a subclass. Also termed as inheritance, the child class (subclass) inherits 

common functionality defined in the parent class (super class). Dependency is a directed 

relationship from a target class to a source class in which the target class requires the 

presence and information of the source class. It is not possible to give a precise semantics 

to the dependency relation as it is decided by the manner in which the users use it. This is 

why semantic description of the dependency relation will not be included. All the 

graphical notations available in a UML class diagram are given in Figure 4. 

 

 

A class diagram can be used to provide both a conceptual design (referred to as Domain 

Model) as well as detailed design (referred to as Design Model) of the system under 
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development. It is because of this flexibility, class diagrams are primarily used to 

comprehend requirements and domain-level entities. A domain model mainly consists of 

classes and relationships between them. The classes in this model are usually detail-

suppressed (Figure 4(a)) or analysis-level (Figure 4(b)) with few attributes and no 

methods. Association is the primary relationship used in the domain model. However, 

other relationships such as generalization can also be depicted. A design model is 

structurally similar to a domain model but more detailed. These details include visibility 

and type of attributes and methods, navigations and new associations discovered as part 

of the detail analysis.      

2.2.2 UML Sequence Diagram 

Sequence diagram represents the dynamic view of an object-oriented system. The main 

purpose of a sequence diagram is to capture dynamic behavior of a system. This is 

realized by modeling flow of events leading to a desired result.  Vital information made 

available reading a sequence diagram are the messages that are sent between objects as 

well as the order in which they occur. This information is conveyed along the horizontal 

and vertical dimensions of the diagram. Moving through the vertical dimension from left 

to right, we can identify the objects between which the messages are exchanged and 

moving along the horizontal dimension from top to bottom provides the time sequence of 

these messages. Objects on a sequence diagram are depicted as a “lifeline” which 

includes a dotted line along the vertical axis, which extends for the period of the 

interaction. Messages are shown with arrows moving from the sending object to the 

receiving object (except for gates, which are discussed later). Different messages are 

depicted by different styles of arrows. Each message contains two events: a send event 
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occurring at the sender’s end of the message and a receive event occurring at the 

receiver’ end of the message.  

In a sequence diagram, the natural order in which messages are exchanged is sequential 

from top to bottom. This concept of sequential ordering was broadened with the inclusion 

of “Combined Fragments”. Combined Fragment is a notation element added to the UML 

2 specification to allow grouping of messages together in order to depict conditional flow 

in a sequence diagram. Prior to this in UML 1.x, “in-line” guards were used which soon 

became incapable of handling sophisticated logic required for complex sequences.    

A combined fragment is composed of two elements: an operand and a guard. An operand 

can be thought of as a sub-sequence diagram that constitutes the body of the combined 

fragment. A combined fragment can have one or more operands depending upon its type. 

A guard is associated with each operand, which is a Boolean condition that needs to 

evaluate to “true” in order to execute the sequence within the operand. The guard is 

positioned on the top-left corner of the operand.  The UML 2 specification identified 

twelve kinds of combined fragments. These fragment kinds are discussed below. 

- Alt (alternatives) is used to represent choice of behavior. It has multiple guarded 

operands chosen in a mutually exclusive manner based on the outcome of the guard 

expression. In programming terms, it realizes the “if – else” logic. 

- Opt (optional) is used to represent sole choice of behavior. It has a single guarded 

operand executed based on the outcome of the guard expression. In programming 

terms, it realizes the “if” logic. 
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- Break is used to represent a breaking scenario. It has a single guarded operand 

executed instead of the remainder of the enclosing fragment or the diagram. It usually 

models the exception handling behavior. 

- Par (parallel) is used to represent concurrent merge between the operands. It has 

multiple operands that execute in parallel without compromising the integrity of the 

outcome. 

- Seq (Sequencing) is used to represent weak sequencing between the operands. It has 

multiple operands that enforce the execution of messages within a preceding operand 

before the next one starts. However, it does not impose any order within an operand 

on messages not sharing a lifeline. 

- Strict is used to represent strict sequencing between operands. It is similar to seq with 

the exception that messages within an operand must follow the ordered sequence.    

- Neg (negative) is used to represent traces designated as invalid. It has a single 

operand showing a sequence that should not be possible and not allowed. All other 

sequences are considered positive. 

- Assert is used to represent an assertion. It designates that any sequence of messages 

not shown as an operand of the assertion are not valid.  

- Critical is used to designate a sequence of messages as critical. 

- Loop is used to represent a repeating sequence. It has a single guarded operand 

repeated a number of times based on the outcome of the guard. A loop guard specifies 

the minimum and the maximum number of iterations. 
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- Consider / Ignore is a combined single operand fragment. The “consider” operand 

identifies messages that should be considered within the combined fragment. 

Alternatively, the “ignore” operand defines the messages that should be ignored.   

With the release of UML 2, the “Interaction Use” element was also introduced. 

Interaction Use provides the designer with the ability to merge simpler sequence 

diagrams to form complex sequence diagrams. In other words, it represents an abstract 

sequence diagram component. An interaction use element is depicted similar to a 

combined fragment with the keyword “ref” placed on the top-left corner. The operand of 

this frame contains the name of the referenced sequence diagram along with any 

parameters. Information is passed from and to the main sequence diagram through 

parameters and return values respectively. Another way of passing information from the 

main diagram to a referenced fragment is by using gates. As opposed to the discussion 

earlier that messages are depicted as arrows between lifelines, gates are messages with 

one end connected to a frame’s edge and the other connected to a lifeline. The UML 

specification defines three types of gates: formal gates if it belongs to the main sequence 

diagram, actual gates on interaction use element and fragment gates on combined 

fragments.   

Another significant improvement made in UML 2 was the concept of part-

decomposition. Part-decomposition allows a lifeline in a sequence diagram to be complex 

element in itself. The internal interactions of this lifeline can be shown as a separate 

sequence diagram. Messages to or from the decomposed lifeline are treated as gates. 

Corresponding gates on the sequence diagram explaining the decomposition match these 

gates. A Sequence diagram also allows the placement of a constraint over a lifeline 
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known as State Invariant. This constraint must evaluate to true for the remainder of the 

trace to be valid. A state invariant is depicted on a sequence diagram by placing the 

constraint inside curly braces on the lifeline. All the graphical notations available in a 

UML sequence diagram are shown in Figure 5.     

 

2.2.3 UML Use Case Diagram 

Jacobson et al. [39] initially introduced the concept of use case diagrams that was later 

adopted by OMG to be part of the Unified Modeling Language. Use case diagrams 

represent a functional view of the object-oriented system. This diagram plays a vital role 

in modeling the system requirements. Requirements are represented as a set of use cases 

within the use case diagram. Each use case is a specification of a set of operations 

between the system and actors resulting in an output valuable to actors or stakeholders of 

the system.  

A use case diagram consists of four distinct elements that depict the working of a system: 

The system itself, the actors that interact with the system, the services (or use cases) the 
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system is required to perform and the relationships between these elements. The system 

element sets the boundary of the system with respect to the actors who use it and the 

services it must provide. Actors are depicted outside the system element boundary as they 

are not realized by the system and services are depicted inside the system element. The 

notion of a system element is to establish the scope of the system.  

An actor element is either a person or another system that is involved in the successful 

operation of the system. Relationships in a use case diagram can be classified into three 

broad categories:  

1. Actor - Use Case Relationship  

2. Actor - Actor Relationship 

3. Use case - Use case Relationship 

An actor in a use case diagram can be associated to one or more use cases. This 

relationship can specify whether the actor initiates the use case or receives results from 

the use case or both. An actor-use case relationship is also known as association. 

Although not explicitly mentioned in the UML Specification, UML provides one actor-

actor relationship called generalization. Since this relationship also applies to use-cases, it 

will be referred here as actor generalization. Adapted from the similar concept of class 

diagrams, actor generalization allows different actors with common functionality to be 

represented by a general actor. This general actor can then be related to specialized actors 

that are identified by unique needs. 

UML allows three different relationships between use cases: generalization, Inclusion 

and Extension. Use case generalization is similar in definition to actor generalization 
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where general functionality is separated from specific functionality in different use cases. 

Specific use cases inherit general functionality and add their own specific different 

functionality to the specification. Two use cases are related by inclusion if one use case 

uses the functionality offered by the other use case. The use case that includes the other 

use case is typically not complete on its own. This relationship induces the concept of 

reusability in a use case diagram. An inclusion relationship is represented by a directed 

arrow from the including use case to the included use case with a keyword <<include>> 

over the arrow. An extension relationship exists between two use cases when one use 

case wants to utilize the functionality of another use case if certain conditions are 

satisfied. In contrast to the inclusion relationship, a use case that extends the other use 

case is complete on its own. The extending use case is also known as the base use case. 

The base use case should have a clearly defined extension point where the extension use 

case can be invoked for additional functionality. An extension relationship is also 

represented by a directed arrow from the extension use case to the base use case with a 

keyword <<extend>> over the arrow. The base use case has a partition with the keyword 

<<extension point>> that identifies the point of an extension use-case invocation.   

All the graphical notations available in a UML use case diagram are shown in Figure 6.    
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2.3 OCL: Modeling Constraints 

The notation provided by UML can only express information that can be represented 

graphically. In order to express properties such as constraints, invariants etc. on UML 

models that cannot be represented graphically, a formal text-based declarative language is 

required. Object Constraint language (OCL) [34] is a declarative specification language 

adopted by OMG as part of the UML 2.0 specification. OCL provides the ability to 

access model elements and express constraints over these elements using invariants, pre-

conditions and post-conditions. OCL is a declarative language that cannot change the 

value of a model element and hence considered side effect free. UML models annotated 

with OCL constraints add preciseness and well formedness to the models and assists in its 

verification and validation.   

An OCL constraint typically consists of two parts: the context and a set of OCL 

expressions. As an OCL constraint highly depends upon which model element is 

constrained, this context of the OCL constraint specifies this information. An OCL 

Association Inclusion Extension 

System 

Name 

Content 
Area 

Actor 

Use case 

Extension Use 

case 

Generalization 

<<extension 

point>> 

<<include>> <<extend>> 

Figure 6 Graphical notations for UML Use case diagram 
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context can either be a classifier, attribute of a classifier or an operation. Outline of an 

OCL constraint is given in Figure 7 below. 

 

 

The context (model-Element) of a constraint can be referenced in its body either by a 

keyword “self” or by assigning it an optional name (context-Name). The body of a 

constraint consists of a set of OCL expressions. Each expression consists of a type, name 

and body. Some of the mostly used expressions types include: inv, pre, post, body, init 

and derive. 

 inv (invariant) is a static constraint that specifies conditions that must evaluate to true 

at any given moment. It is typically used when the body contains a condition that 

must be met by all instances of a classifier. 

 Pre (pre-condition) specifies the conditions that must evaluate to true before 

execution of an operation starts. 

 Post (post-condition) specifies the condition that must evaluate to true after the 

execution is completed. 

 init (initial) specifies an initial value of an attribute.  

 derive specifies how a value for an attribute can be obtained.    

Context <context-Name > : <model-Element> 

  <expression-Type><expression-Name> :<expression-Body> 

  <expression-Type><expression-Name> :<expression-Body> 

   ... 

Figure 7 Outline of an OCL Constraint Specification 
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An expression can access the property or operation of the classifier in context. Since 

OCL is a query language, it expects a result when querying the property or operation of a 

context. This result can either be single-valued or multi-valued. OCL uses the “.” 

operator when it expects a single value and uses the “->” operator when it expects a 

multi-valued result. Multi-valued results in OCL are known as collections and are of 

three different types: Sets, Bags and Sequences. A set cannot contain duplicate items, a 

bag can contain duplicate items and sequences are similar to bags but the elements are 

ordered. 

Boolean operators (and, or, xor, not and implies) are used to combine multiple 

expressions in an expression body. A few popular expression forms that can be included 

in the expression body are: 

 Literal Expression              specifies an expression with no arguments and 

produces a result. 

 If Expression         specifies a Boolean condition. Based on the outcome of this 

condition, two other expressions specified by the “then Expression” and the “else 

Expression” are executed. 

 Loop Expression           specifies a loop construct over a collection. An iterator 

represents each element in the collection during iterations of the loop. 

 Variable Expression          specifies reference to a variable. 

 Message Expression              returns a collection of OCL Messages. 

 State Expression            specifies the state of a class within an expression. 

 Type Expression           specifies an existing meta type in an expression  
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 Feature Call Expression                  specifies a feature defined for a 

classifier in the UML model like property, operation etc. 

 

2.4 Model Transformation 

One of the main reasons why models are considered as second-class development assets 

is that they do not raise productivity to a sufficient level. With the advent of MDSE, it 

ensured that models could be formally and precisely defined and hence can be used as 

primary artifacts in the process of software development. One of the main components 

that enable MDSE and accounts for the key success of model-based approaches is Model 

transformation. Model Transformation is considered one of the integral activities that 

ensure that models can be used for software evolution, refinement and realization in code. 

It is considered the heart and soul of model-driven architecture [46]. 

Model Transformation is an approach that takes as input a source model that conforms to 

a given source metamodel and produces another model conforming to a given target 

metamodel as output. A number of model transformation approaches have emerged 

recently in lieu of OMG’s initiative for a MDSE approach. The MDSE approach provides 

opportunity for Platform Independent Model (PIM) to PIM and PIM to Platform Specific 

Model (PSM) transformations.  Numerous classifications for model transformation 

approaches have been proposed in the literature [46-50]. An exemplary list of model 

transformations includes: 
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 Generating lower-level models from higher-level models (e.g. code from design 

models). 

 Synchronizing models at the same level (vertical consistency) or different levels 

(horizontal consistency) of abstraction 

 Model evolution tasks (e.g.  Model refactoring) 

 Reverse engineering of higher-level models from lower-level models (e.g. design 

models from code) 

Although these classifications are thoroughly detailed, we present a simpler taxonomy of 

model transformation approaches to comprehend the scope of our work. This taxonomy 

is shown in Figure 8.    

 

 

Model – Code 

 (PIM – PSM) 
Model – Model 

(PIM – PIM) 

Same Source & 

Target Metamodel 

Different Source & 

Target Metamodel 

Create  Update 

Model 

Transformation 

Create  Update 

Figure 8 Taxonomy of Model Transformation 
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At a high level, model transformation approaches are classified into two categories: 

model-to-code transformation and model-to-model transformation. In model-to-code 

transformations, a metamodel of the target programming language is used. Discussion 

about this type of transformation is out of the scope of this work.     

Model-to-model transformations are transformations that translate between source and 

target models at the same level of abstraction. The need for this kind of transformation is 

because 

 Bridging Large Abstraction Gaps: The process of transforming PSMs to PIMs is 

easier when intermediate models are generated rather than a direct transformation. 

This makes the transformation modular and maintainable.  

 Multiple Views and Synchronization:  Model-to-model transformations are also 

useful for computing different views of a system model and synchronizing them. 

 Formal Representation for Analysis and Verification: Informal models (such as 

UML) can be transformed into a formal modeling language in order to add 

preciseness and formality to the model. This aids in verifying the model for 

correctness.    

Mens and Van Gorp [50] made a distinction between two kinds of model 

transformations: exogenous and endogenous. Exogenous Transformation is a model 

transformation where the source and the target metamodel are different and belong to two 

different domains. In contrast to exogenous transformations, if the source and target 

metamodel are identical we refer to it as endogenous transformation. Another slightly 

different classification of model transformation was provided by France and Bieman [8]. 



38 

 

They classified model transformation approaches as vertical and horizontal. If the target 

model is at a different level of abstraction than the source model, the transformation is 

known to be vertical. On the other hand, if the source and the target model belong to the 

same level of abstraction, the transformation is known as horizontal. Also a 

transformation approach may create a new target model that is separate from the source 

or support an update of the existing source model.  Czarnecki and Helson [47] further 

classified model-to-model transformation approaches based on the manner in which they 

are implemented. Categories include: 

 Direct Manipulation Approach: These approaches provide an internal model 

representation of the source model and some APIs to manipulate it to generate the 

target model.  

 Intermediate Manipulation Approach: In this approach, the source model is exported 

into a standard intermediate representation.  An external transformation language or 

tool is used for applying transformations.  

 Transformation Language support Approach: This category of model transformation 

approaches provides a mechanism for explicitly expressing, composing and applying 

transformations. 

One of the most popular types of transformation classified under Endogenous Horizontal 

transformation is called Software Refactoring. Model refactoring is a special instance of 

model transformation where the source and the target models are instances of the same 

metamodel and operate at a higher level of abstraction. This type is shown in the Figure 8 

with a darkened rectangle and is elaborated in section 2.4.1. In order for a model 

refactoring approach to be valuable for practical application, certain set of activities are 
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required to be specified as part of the approach. These activities, included as part of a 

transformation framework, are elaborated in section 2.5. 

2.4.1 Software Refactoring 

Refactoring, a term extensively acknowledged in the discipline of Object Oriented 

Programming, was defined by Opdyke as an outcome of his PhD dissertation [6]. It is an 

object oriented alternative to the concept of restructuring categorized as a software 

maintenance activity by Chikofsky and Cross [5]. According to Chikofsky and Cross, 

“Restructuring is the transformation from one representation form to another at the same 

relative abstraction level, while preserving the subject system’s external behavior”.  

Fowler et al. [15] redefined refactoring highlighting its inherent advantages as “a change 

made to the internal structure of software to make it easier to understand and cheaper to 

modify without changing its observable behavior.” Fowler’s definition emphasizes 

program understandability and maintainability. Fowler et al. also provided a 

comprehensive catalog of refactorings as part of their book [15]. Hence, refactoring is 

just a way of rearranging code.  

The topic of refactoring at the level of source code has been extensively studied. With the 

growing popularity of MDA and UML, application of refactoring has been elevated to a 

more abstract level of design models. Hence, the term model refactoring or model-driven 

refactoring was proposed. The key motivations for shifting the focus of software 

refactoring from source code to design models can be summarized as follows. 

 A model provides an abstract view of the system; hence, visualization of the 

structural changes required is easier.  
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 Problems uncovered at the design-level can be improved directly on the model.  

 Exploring alternate decision paths is much cheaper at the design-level. 

A simple illustrative example of a UML model refactoring is shown in Figure 9. It shows 

a class diagram in which two classes have attributes of the same type. Model refactoring 

removes this redundancy by introducing a new super class and moving the common 

attribute to this super class.  

 

 

2.5 Model Transformation Framework 

Model-driven refactoring is a special kind of model transformation that allows us to 

improve the structure of the model while preserving its internal quality characteristics. 

Model-driven refactoring is a considerably new area of research that still needs to reach 

the level of maturity attained by source code refactoring. Based on the information 
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(a) Before Refactoring           (b) After Refactoring 

Figure 9 Model refactoring example 
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obtained from source code and model-driven approaches, we identified a list of distinct 

activities that are essential for a model refactoring approach.  

1. Model Specification: Select an appropriate language for specifying the model. Either 

a formal or an informal language can specify models. A formal language apart from 

specifying a syntax and semantics also provides a proof system for validation. 

2. Model Transformation Language: A transformation language allows composition of 

rules that dictate the transformation process. The specification language along with 

the transformation language forms a Transformation System. 

3. Model Smells: Model smells are portions within the model that need to be refactored. 

A number of detection strategies are available in the literature for identifying model 

smells. They are also referred to as Refactoring Opportunities. 

4. Model Behavior: One important constraint posed by refactoring is the notion of 

behavior preservation. Since models are non-executable entities, the concept of 

behavior has to be defined and verified before and after the application of 

refactoring(s).   

5. Model Refactoring: Select suitable refactoring(s) that can be applied at the identified 

location(s). Refactoring operations are chosen based on the smell identified.  

6. Refactoring Quality: Evaluate the effect of refactoring on the quality of the software 

model. 

7. Tool Support: Application of Refactoring is usually supported by a tool. A refactoring 

tool can either perform refactoring automatically without user intervention or requires 

user confirmation before application.   
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8. Consistency Management: Refactoring a model leaves other related models and 

source code inconsistent. In order to preserve consistency between the refactored 

model and other software models and source code, model consistency approaches 

need to be adopted. 

2.5.1 Model Transformation System 

A model transformation system (MTS) includes both the specification language and the 

transformation language. UML is a graphical notation designed to specify, visualize and 

document artifacts of s software system. It is a semi-formal language as its syntax and 

static semantics are precisely defined but dynamic semantics are not formally defined. 

The process of model-driven refactoring includes a number of activities such as behavior 

conservation, verification, synchronization etc. that requires a formal set of both static 

and dynamic semantics to ensure behavior-preserving transformation. Although many 

authors use UML metamodel and models as-is for model refactoring, they annotate the 

model with formal behavioral constraints using OCL.  The importance of choosing a 

proper specification language can be understood clearly from the reasoning provided by 

Kalleberg [51]:  

“The effectiveness and applicability of a software transformation system 

depends to a large extent on how its underlying program model has been 

formulated. The model determines which transformation tasks will be easy 

and which will be difficult or impossible. Particularly, the "abstractness" 

of the representation determines which analyses and transformations are 

possible – if the model is too abstract, refactoring is not possible, and if 

the model is too detailed, many analyses become too expensive”. 
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Apart from the specification language, transformation rules that dictate the 

transformation from source model to the target model are required to be specified. 

Languages or formalisms used to describe these rules are known as Model 

Transformation Languages (MTL). The choice of MTL depends on the selected model 

specification. A transformation rule is a depiction of how a collection of constructs in the 

source metamodel can be altered into one or more constructs in the target metamodel. A 

transformation rule consists of a Left-Hand Side (LHS) component and a Right-Hand 

Side (RHS) component. The LHS accesses the source model and the RHS component 

access the target model. Both the LHS and RHS components are described using model 

fragments (or patterns) with zero or more model elements. Popular model transformation 

systems include: 

 Graph Transformation System (GTS): One of the most popular and widely used 

specification languages to represent UML models is graphs. The use of graphs to 

represent models is motivated by the fact that models are fundamentally graph-based 

in nature. A graph consists of a set of vertices (V) and a set of edges (E) such that 

each edge e in E has a source s(e) and a target t(e) in V. A graph is given as a tuple 

<V, E, s. t> where s and t are two functions that assign each edge a source and a 

target node. Graph transformation languages are based on algebraic graph grammars. 

There exist two paradigms for graph transformation approaches. The conventional 

paradigm, also known as Algebraic Graph Transformation, defines transformation 

rules declaratively. Transformation rules in Algebraic Graph Transformation have a 

Left Hand Side (LHS) graph and a Right Hand Side Graph (RHS). On application of 

the rule, elements in the LHS are deleted and the elements in the RHS are added. A 
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transformation rule also consists of an arbitrary number of negative application 

condition (NAC) [52] graphs. If the rule matches any of its NAC, then the rule cannot 

be applied. The other paradigm is known as Triple Graph Grammar (TGG). The 

transformation rules in TGG are always bidirectional. The relationship between the 

source graph and the target graph is described by a correspondence graph. 

 Logic Based System: Another popular approach to represent UML models is logic-

based representation. Logic is a formal system that allows definition of formulas 

representing propositions. Formulas can be derived by the use of well-defined rules 

and axioms also known as theorems. For instance, Boolean logic limits the truth-

values of its propositions to two values: true and false. Popular logic based languages 

include Alloy [53, 54], Z notation [55], Object-Z [56] and Description Logic [57]. 

Primitive transformations in logic-based systems are formalized as algebraic laws that 

consist of templates with which the actual declarations match.  Each law defines two 

templates of equivalent models on the left and the right side. Equivalence allows 

application of the law in both directions.     

 Direct Manipulation: This approach allows direct manipulation of the metamodel 

without conversion to any other specification language. One of the main reasons for 

the popularity of this methodology is the availability of quite a few model-to-model 

transformation languages such as Query/View/Transformation (QVT) [58], Xpand 

[59] and the ATLAS Transformation Language (ATL) [60] to describe refactoring 

rules. OCL is usually used with UML to define pre and post conditions in order to 

ensure behavior preservation. Although popular, describing model refactoring 

transformations for UML models is not an easy task due to the complexity and 
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impreciseness of the UML metamodel. The main reason for the popularity of 

UML/OCL based approaches is the fact that OCL is both formal and simple when 

compared to other formal specification languages such as Z. 

2.5.2 Model Smells 

Martin Fowler et al. [15] were the first to introduce the concept of code smells: 

“In doing so, we have learned to look for certain structures in the code 

that suggest (sometimes they scream for) the possibility of refactoring”. 

Similar to the concept of code smells, model smells can be defined as elements within the 

model that are potential candidates for improvements. Models Smells could either be 

symptoms of design defects or bad alternatives to recurring design problems in OO 

design also known as anti-patterns. Brown et al. [17] initially defined anti-patterns as 

structures that although may appear beneficial, but result in having negative 

consequences on the quality of the OO system. Not all the anti-patterns defined by Brown 

et al. [17] can be detected at the design level. In our work, we use the term model smells 

to refer to both design defect symptoms and anti-patterns. 

The manner in which model smells are detected (also known as the detection strategy) 

has resulted in two paradigms of refactoring: Metrics-Based Refactoring and Pattern-

Based Refactoring. Apart from these approaches, a hybrid approach that uses both 

metrics and patterns to describe smell detection strategy has also gained popularity. 

1. Metrics-Based Refactoring: One methodology that gained immense popularity for 

detecting bad smells, proposing refactorings for correction and verification of quality 

improvements is Metrics-Based Refactoring. Metrics used for detecting model smell 
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belong to different metric suites [61-63]. An important aspect of using model metrics 

as a smell detection strategy is the threshold value of the metrics as it has decisive 

influence on detection accuracy. Marinescu [64] identified three ways of 

parameterizing threshold values for metrics used for smell detection as follows:  

a. Empirical results from metrics’ authors and similar past experiences 

b. Using a Tuning Machine to find proper threshold values for regulating the 

detection strategy automatically [65]. This approach uses an examples 

repository of flaw samples and selects those values that maximize the number 

of correctly detected samples.  

c. Analyzing multiple versions for change stability information or persistency of 

a design flaw over time [66]. Although this approach does not help in 

parameterizing a threshold value, it provides a value time perspective for each 

potential entity and hence improves the accuracy of the detection process. 

2. Pattern-Based Refactoring [67]: Another popular method to detect refactoring 

opportunities is to identify problems within the model that can be solved by applying 

design patterns. Design patterns are defined as solutions that can be reused for a 

recurring design problem. It typically shows relationships between classes or objects. 

The concept of using design patterns to solve common design issues in order to speed 

up the software development process was initiated by Gamma et al. [68]. The field of 

identifying symptoms for design related problems and using design patterns to solve 

them is termed as Pattern-Based Model Refactoring. Design patterns in this paradigm 

are represented as a triple (PM, SM, T), where PM (Problem Model) is a model 

describing the design problem, SM (Solution Model) is a model describing the 
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solution and T is a transformation that transforms an input model presenting with an 

instance of PM and replacing it with the corresponding solution model SM.     

3. Rule-Based Detection [24]: This smell detection strategy identifies both model smells 

and anti-patterns using a declarative rule definition. These rules are manually defined 

to identify the symptoms that characterize the smell. A rule-based method can be 

perceived as a hybrid approach that uses metrics, structural patterns and lexical 

information to form rules that query the source model for design defects or anti-

patterns. Rule-based detection approaches either use complex queries or algorithms to 

detect refactoring candidates. 

2.5.3 Model Behavior 

One important constraint associated with application of refactoring is behavior 

preservation. By definition, model-driven refactoring is an activity to restructure models 

in order to improve model quality without changing its observable behavior. In order to 

demonstrate whether a refactoring operation is behavior preserving, concept of model 

behavior needs to be precisely defined. 

The most popular approach to define model behavior is through the use of model 

constraints such as pre-conditions and Invariants. Pre-conditions are assertions that a 

model must satisfy prior to the safe application of refactoring. These conditions 

characterize valid model transformations. As their name implies, pre-conditions must be 

checked before refactoring is executed. Invariants are conditions that must remain true 

before and after refactoring. Usually, preconditions are checked prior refactoring to 

ensure invariants hold after the refactoring operation. Establishing preconditions and 

invariants for refactoring properly is very important. Lax definitions will allow 
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refactoring operation to be executed but may not preserve model behavior. On the other 

hand, severe unnecessary preconditions may not allow refactoring application even when 

required. 

2.5.4 Refactoring Quality 

An important objective of Model-Driven Refactoring is to improve the quality of the 

software model without changing its behavior. Only a few studies elaborate the concept 

of Model Quality and address the issue of quality assessment for UML models. One of 

the most popular approaches to assess the quality of models is using model metrics [69]. 

Similar to software metrics, model metrics are also used to measure and quantify 

desirable aspects of the models. Some software metrics can easily be ported to models, 

especially those that measure object oriented source code. 

2.5.5 Refactoring Tool Support 

Based on the activities required for Model-Driven Refactoring, it is evident that in order 

to be completely practical, tool support is necessary to cover the entire range of 

designated activities. Refactoring tools can be classified based on their degree of 

automation: Manual, Semi-Automated and Fully-Automated. A fully-automated tool 

provided automatic detection and correction of design defects without user intervention. 

Semi-automated tools require interaction with the user throughout the refactoring 

process. A semi-automated refactoring tool assists the user by proposing refactoring 

opportunities and their suggested solutions. The decision to perform the actual 

transformation is left to the user. Manual refactoring tools are UML modeling tools that 

leave the process of model smell detection and application decision to the user 
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completely. Manual refactoring tools automate behavior preserving model 

transformations only.    

Another important requirement for refactoring tools is their deployment mode. A 

refactoring tool can either be a standalone prototype tool or developed as a plugin to an 

existing Integrated Development Environment (IDE). The importance of integration into 

an existing IDE on usability of the tool was provided by Egyed [70].  

“A final challenge is that all of the above should be implemented in 

model-driven development environments in an as efficient and scalable 

way as possible, otherwise it will never be adopted by practitioners”. 

2.5.6 Consistency Management 

Spanoudakis and Zisman [71] defined inconsistency as “a state in which two or more 

overlapping elements of different software models make assertions about aspects of the 

system they describe which are not jointly satisfiable". They provided an in-depth survey 

of inconsistency management approaches available to the field of software engineering. 

With respect to Consistency management due to software refactoring, two kinds of 

inconsistencies are observed [72]. 

 Vertical Inconsistency:  When source code/design model is refactored, corresponding 

design artifacts / source code becomes inconsistent.  

 Horizontal Inconsistency:  Since a modeling language such as UML is typically 

composed of many different diagrams, the issue of consistency between all these 

diagrams needs to be addressed.  This need arises when any one of them evolves or 

refactored.  
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3 CHAPTER 3 

LITERATURE REVIEW 

This section reviews the literature on code based refactoring, model based refactoring and 

integrated refactoring. It is worth-mentioning that an extensive survey of software 

refactoring emphasizing on source code refactoring has been conducted as part of an 

initiative called “The Refactoring Project” at the Universiteit Antwerpen [11, 12, 73-75] 

A similar state of the art survey was also done for model based refactoring by Mens et al. 

[13]. 

 

3.1 Code Based Refactoring 

Opdyke [6] introduced the concept of object oriented refactoring in 1992 as “program 

restructuring transformation that supports the design, evolution and reuse of object-

oriented application frameworks” as a result of observing the evolution of object oriented 

programs and Database Schemas [76]. Opdyke compiled a set of twenty-six low-level 

refactorings and a set of three high-level refactorings assembled from the low-level 

refactorings. In order to assure behavior preservation, he identified invariants and 

augmented his refactorings with pre-conditions to ensure that these invariants were 

preserved even after the refactoring process. 

Following upon the foundation laid by Opdyke, Dan Roberts in 1999 [77] supplemented 

Opdyke’s refactoring definition with post-conditions. These post-conditions specify how 
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the pre-conditions are transformed by the refactorings thereby reducing program analysis 

effort after the refactoring. Research in the area of code refactoring has been done at 

length. To simplify the presentation of the research conducted in improving code-level 

refactoring, we organize it in line with the activities involved in the refactoring process. 

Wake [16] suggested that a refactoring process should first identify portions within the 

software that needs refactoring. Then an appropriate refactoring is selected and applied to 

this portion. Mens et al. [73] added three more steps to provide a complete list of six 

distinct refactoring activities. These activities are as follows: 

1. Identify portions within the software that needs to be refactored (Bad Smell 

Identification). 

2. Select suitable refactoring(s) that can be applied at the identified location(s) 

(Refactoring Suggestion). 

3. Verify behavior preservation for the applied refactoring(s) (Behavior Preservation). 

4. Apply the refactoring(s) (Refactoring Application). 

5. Evaluate the effect of the refactoring(s) on the quality of the software or the process 

(Refactoring Effect Evaluation). 

6. Preserve consistency between the refactored code and other software artifacts 

(Consistency Preservation). 

3.1.1 Bad Smell Identification and Refactoring Suggestion 

Steps 1 and 2 are usually coalesced as studies identify fragments of code in need of 

refactoring and propose a suitable approach to handle them. Software in this section 

refers to source code, as refactorings related to software models is discussed in Section 

3.2. Portions of code in need of refactoring are referred to as bad smells or code smells. 
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Martin Fowler et al. defined bad smells in code as “certain structures in the code that 

suggest (sometimes they scream for) the possibility of refactoring” [15]. They identified 

twenty-two bad smells for code. These bad smells were later classified by Wake [16] into 

smells within and between the classes.   

Looking for bad smells requires analysis of source code that can be done with either 

static information or dynamic information. Static analysis of source code is preferred 

over dynamic ones, as the latter requires execution of the source code to obtain its 

runtime behavior. Static analysis can be done either by lexical analysis of the source code 

or by projecting the source code over a graphical representation. Well-known graphical 

notations to represent source code include Abstract Syntax Trees (AST) [78-80], Program 

Dependence Graphs (PDG) [81-83] and Type Graphs [84, 85].  

Analyzing software artifacts to identify structural shortcomings is also one of the 

strategies used to detect bad smells. Code smells proposed by Fowler et al. [15] fall into 

this category of smell detection approaches. Studies analyzing structural anomalies use 

strategies such as search algorithms over code parse-trees [86], analyzing internal method 

structure [87] and discovering relationships between entities [88, 89]. 

Code duplication or cloning, one of the bad smells proposed by Fowler et al. [15],  is 

considered one of the worst smells that affects software maintainability. A number of 

code-clone detection approaches have been discussed in the literature. Popular methods 

employed for code-clone detection include lexical analysis [90-98], graph-based traversal 

and slicing [78-83, 99, 100] and pattern recognition [101]. Although code duplication is 

considered a bad smell, a few studies [102-104] have shown that cloning can sometimes 
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be reasonable and beneficial to the design. Hill and Rideout [105] proposed the use of 

machine learning algorithms on near duplicate code segments for automated code 

completion. 

A popular approach to detect refactoring opportunities or code smells is the use of source 

code metrics. Simon et al. [106] referred to this strategy of code smell identification as 

Metrics-based refactoring. Research studies based on metrics to identify code smells use 

object-oriented metrics such as coupling, cohesion, inheritance and complexity [64, 107-

117]. Although popular, some authors claim that metrics are not sufficient in precise 

detection of bad smells [118-120]. Improvements to the metric based approach include 

using code patterns, heuristics and machine learning. Pattern based approaches define bad 

smells as patterns of source code [119]. Heuristics-based approaches use a combination 

of traditional object-oriented metrics composed as functions to evaluate software quality 

attributes. These functions are then used to identify refactoring opportunities [121-126].  

Machine learning approaches that use metrics to predict refactoring opportunities is also 

gaining immense popularity. Prevalent machine learning algorithms employed by smell 

detection approaches include Naïve Bayes [127-129], C4.5 [130], clustering algorithms 

[131-136] and Fuzzy Logic [137]. 

Another popular approach is the identification of opportunities where design patterns can 

be inserted in the source code. Design patterns [68] are reusable solutions to commonly 

occurring problems in software design. This strategy is referred to as Pattern-based 

Refactoring [138]. A pattern-based approach initially identifies problem location in a 

program and then recommends an appropriate design pattern to transform the program. A 

number of approaches focus exclusively on design pattern based approaches were 
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proposed [139-143]. Shimomura et al. [144] use genetic algorithms to assess the quality 

of a program based on design patterns.  

A number of studies assessed the effect of bad smells on software evolution. These 

studies investigate the evolution of bad smells over multiple versions of software systems 

[145-148]. A state-of-the-art in bad smell detection and refactoring suggestion 

approaches can be found in these studies [149, 150].    

3.1.2 Behavior Preservation 

The most important aspect of refactoring and the most difficult one to specify and verify 

is the notion of behavior. Opdyke [6] introduced the concept of preconditions to handle 

behavior specification and preservation. Preconditions ensure that provided the same set 

of input values to the source model before and after refactoring, it should always produce 

the same result. Although preconditions provide a good notion of behavior, they do not 

consider the size of the program and hence static checking of these preconditions before 

the application of refactoring can become very expensive. Roberts [77] augmented his 

refactorings with post-conditions. Roberts was able to prove theoretically that a set of 

post-conditions can be translated into a set of equivalent preconditions that later formally 

proved by Heckel [151]. Post-conditions not only enable specification of invariants that 

depend on dynamic information easier but also increase the efficiency of the refactoring 

tool by postponing the evaluation of a constraint.  

Mens et al. [85] proposed a relaxed notion of behavior preservation claiming that full 

behavior preservation is impossible. Based on their notion, a program will perform the 

same actions before and after refactoring execution if: 
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 The refactoring is access preserving. That is if each method at least accesses the same 

variables, directly or indirectly, before and after the refactoring. 

 The refactoring is update preserving. That is if each method at least updates the same 

variable before and after refactoring. 

 The refactoring is call preserving. That is if each method at least performs the same 

method calls before and after refactoring.    

Another pragmatic approach to verify behavior preservation is through rigorous testing. 

Although sensible, this approach cannot definitely claim behavior preservation due to the 

relationship between code structure and tests. Hence, any modification done to code 

structure may alter the test results even though refactoring does not alter behavior [152, 

153]. 

3.1.3 Refactoring Application 

After identifying the refactoring opportunities, the next step is to correct them by 

refactoring application. Authors in refactoring literature propose refactoring application 

in two ways: implicit and explicit. Implicit approaches loosely associate refactorings and 

model smells. The basis of selecting a particular refactoring from the provided options is 

not expressed clearly [15, 73, 130]. In implicit approaches, multiple corrective solutions 

are possible for the same smell. Explicit approaches associate refactoring operations with 

different kind of refactoring opportunities and are clearly expressed. Most of the 

approaches using metrics-based, learning algorithms and pattern-based techniques adopt 

the explicit approach. Prior to correcting the identified defects, two important issues must 

be addressed: order of bad smells to resolve and the sequence of refactoring application.  
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Ranking refactoring opportunities in the literature is proposed based on their impact on 

software quality [88, 154-156], software faults [157] and based on past source code 

modifications [158]. Cheng and Liao [159] proposed a taxonomy of code smells based on 

their semantic relationship from the viewpoint of refactoring application. 

An important aspect prior to rule application is to suggest the sequence of refactoring 

applications. Suggesting a particular refactoring sequence may require an effort that is 

comparable to the one of re-implementing part of the system from scratch. This 

suggestion should take into account the dependency and interrelationship between 

relevant refactorings to produce a practical sequence. A number of approaches to 

sequence refactoring applications have been proposed in the literature. Prominent ones 

include critical pair analysis [160] and graph unfolding [161, 162] for graph based 

representations, simplification rules over Definite Finite Automata representation [163], 

constraint programming [164, 165], multi-objective optimization [166, 167], set pair 

analysis [168, 169]  and genetic algorithms [170] . Other approaches target improvements 

over specific object-oriented principles such as cohesion [171, 172] and inheritance 

[173]. Arcoverde et al. [174] conducted a survey to understand the longevity of code 

smells and ranked refactorings based on difficulty, priority and frequency of use.  

A popular trend with refactoring application is the use of evolutionary algorithms. This 

paradigm of software refactoring is known as Search-based Refactoring [171, 175]. 

Normal refactoring approaches require manual specification of rules, metrics and patterns 

to identify refactoring opportunities and suggest refactoring operations to remove these 

anomalies. These approaches suffer from a number of complications such as right metric 

combinations, metric threshold values, and calibration and so on. Search-based 
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refactoring treats refactoring as a combinatorial optimization problem. Hence, the 

approach tries to find a correct combination of refactoring operations that maximize the 

number of corrected defects and improve overall software quality. A number of search 

techniques are used in the literature such as Genetic Algorithms [171, 173, 176], 

Simulated Annealing [173, 177], Multiple Ascent Hill-Climbing [173], Steepest Ascent 

Hill-Climbing [173], Steepest and Multiple Descent [177] and Artificial Bee Colony 

Search [177] to search for an optimal combination of refactoring application.   

In order for refactoring application to be feasible and practical, tool support integrated as 

part of the state-of-the-art Computer-Aided Software Engineering (CASE) tools is 

essential. Refactoring tools usually support identification of code flaws [24, 64, 178-180], 

refactoring code [181-183] and both [124, 184-187]. A state-of-the-art in software 

refactoring tools can be seen at [188]. 

3.1.4 Refactoring Effect Evaluation 

Apart from identifying refactoring opportunities within source code, metrics are also used 

to measure the effect of refactoring on internal and external software quality. Impact of 

refactoring on internal quality attributes have been studied by [88, 189-191]. Quite a few 

efforts have been made to study the impact of refactoring on external quality attributes 

too. Some prominent attributed studied include Understandability [192-194], 

Changeability [195], Maintainability [110, 193, 194, 196, 197], Reusability [198] and 

Testability [193, 194]. Ratzinger et al. [199] used data mining and classification 

algorithms to evaluate the effect of refactoring on the number of software defects. They 

claim that the number of software defects decreases as the number of refactorings 

increase over earlier versions of software.  



58 

 

Quite a few studies have also discussed the impact of design patterns on software quality. 

A number of authors have studied the impact of design patterns on internal quality 

attributes (coupling, size and inheritance) [200-202]. Khomh and Gueheneuc [203] and 

Ampatzoglou [204] studied the impact of design patterns of external quality attributes 

such as reusability, expandability and understandability. They claim that design patterns 

do not necessarily improve quality and some patterns in turn decrease some quality 

attributes. Authors in [205-208] have also investigated the correlation between design 

pattern introduction and change proneness. Elish and Alshayeb [209] proposed a 

classification of refactoring methods based on their effect on software quality. 

3.1.5 Consistency Preservation 

Since consistency preservation is concerned with both the source code and models at 

higher level of abstraction, the topic is discussed independently in section 3.3.  

 

3.2 Model Based Refactoring 

Model-driven refactoring is a special kind of model transformation that allows us to 

improve the structure of the model while preserving its internal quality characteristics. 

Model-driven refactoring is a considerably new area of research, which still needs to 

reach the level of maturity attained by source code refactoring. Refactoring at model level 

is more multifaceted and challenging than at source code level. This is due to the 

existence of multiple views. A view is a collection of diagrams that illustrate similar 

characteristics of the system. 
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Approaches to model-driven refactoring can be classified into two categories based on 

the number of views considered when refactoring: single view and multiple views. Each 

of these approaches can be further classified as either operational or relational [31]. The 

operational approach allows definition of model refactoring and provides methods to 

automate them whereas the relational approach allows verification for behavior 

preservation and consistency. 

Since then, a few surveys covering state-of-the-art [13], taxonomy [210], open issues and 

challenges [11, 12, 14, 74, 211] related to model-driven refactoring have been published 

in the literature. We could discuss the literature in the area of model-driven refactoring 

along several ways. However, keeping in line with the organization of code based 

refactoring in the previous section; we chose to organize the literature by model 

refactoring activities. The refactoring process for models consists of a number of distinct 

activities (based on the refactoring process for source code refactoring [73]): 

1. Select an appropriate language for specifying the model. Either a formal or a non-

formal language can specify models. A formal language apart from specifying a 

syntax and semantics also provides a proof system for validation. (Model 

Specification) 

2. A transformation language allows composition of rules that dictate the transformation 

process. The specification language along with the transformation language forms a 

Transformation System. (Model Transformation Language) 

3. Model smells are portions within the model that needs to be refactored. A number of 

detection strategies are available in the literature for identifying model smells. They 

are also referred to as Refactoring Opportunities. (Model Smells) 
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4. One important constraint posed by refactoring is the notion of behavior preservation. 

Since models are non-executable entities, the concept of behavior has to be defined 

and verified before and after the application of refactoring(s). (Model Behavior)   

5. Select suitable refactoring(s) that can be applied at the identified location(s). 

Refactoring operations are chosen based on the smell identified. (Model Refactoring) 

6. Evaluate the effect of refactoring on the quality of the software model. (Refactoring 

Quality) 

7. Application of Refactoring is usually supported by a tool. A refactoring tool can 

either perform refactoring automatically without user intervention or requires user 

confirmation before application. (Tool Support)  

8. Refactoring a model leaves other related models and source code inconsistent. In 

order to preserve consistency between the refactored model and other software 

models and source code, model consistency approaches need to be adopted. 

(Consistency Management) 

3.2.1 Model Specification 

One of the most popular and widely used specification languages to represent UML 

models is graphs. The use of graphs to represent models is motivated by the fact that 

models are fundamentally graph-based in nature. As models are required to conform to 

their metamodel, graphs must conform to the corresponding type graph [212]. A typed 

graph ensures whether or not a graph is well formed or not. Figure 10 obtained from 

[213] visualizes the relationship between metamodel, model, graph and type graph.  
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The use of directed typed graphs for model specification is a common approach [161, 

213-217]. The graph that contains nodes and edges and relationship between them is 

similar to the relation between objects and classes in UML. Another popular type of 

graph used for model specification is the directed attributed type graph to represent the 

UML metamodel [160, 218-220]. The use of an attributed type graphs allows inclusion of 

object-oriented concepts such as attributes, relationships and multiplicities to be added to 

the type graph.  

Another popular approach to represent UML models is logic-based representation. A 

popular logic based language used to represent UML models is Alloy [53]. Alloy is a 

formal object-oriented language based on first-order relational logic. A relational 

language is a set of all relational sentences formed from a relational signature and a 

function. A relational signature is composed of a set or sequence of constants that can be 

either objects, functions or relations. An Alloy model is a sequence of paragraphs. A 

paragraph can either be a signature that defines new types or formal paragraphs used to 

record constraints. With the proposition of Alloy 3 [54], inheritance concepts can be 

integrated as the language allows a signature to extend another signature. A number of 

type graph metamodel 

graph model 

represents 

represents 

is typed by conforms to 

Figure 10 Relationship between models and graph representation 
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approaches [221-224] used the Alloy language to present a formal type system and 

semantics for object-oriented UML model specification. 

The Z notation [55] is a formal specification language gaining popularity in the field of 

formal software engineering. Z is mathematical notation based on set theory, calculus and 

first-order predicate logic and is used for describing and modeling computing systems. Z 

is a declarative language that describes the system states and models their change under 

the execution of operations. The main construct of a Z specification is called a schema. A 

schema consists of variable declarations and predicates defined over the variables. Estler 

and Wehrheim [225] used formal specifications written in Z for refactoring but 

verification of these refactorings were carried out in their approach using an Alloy based 

constraint solver. An object-oriented variation of the Z notation known as Object-Z [56] 

has become popular with UML modeling. Object-Z supports object-oriented concepts 

such as classes, polymorphism and inheritance. Estler et al. [226]  used the Object-Z 

notation in their approach to represent UML models. A formal notation using both 

Object-Z and process algebra CSP (CSP-OZ) for modeling the static view and dynamic 

view was used by Derrick and Wehrheim [227] and Ruhroth et al. [32].   

Another popular logic based approach is Description Logic (DL) [57]. Spanoudakis and 

Zisman [228] highlighted two important limitations of first-order logic based approaches. 

They pointed out that first-order logic is semi-decidable hence not sufficient to provide 

semantically adequate inferences and the process of theorem proving is computationally 

inefficient. Description Logic is a less expressive formalism than first-order logic but 

provides more reasoning capability and is decidable. Knowledge in DL is represented as 

concepts, roles and individuals. Individuals are instances of defined concepts and related 
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to each other by roles. DLs use a small set of constructors (operators) to construct 

complex concepts and roles. Approaches using DL to represent UML diagrams translate 

the metamodel into DL concepts and roles. Classes are mapped to concepts and 

associations are mapped to roles [229-231]. 

Saadeh et al. [232] also used logic to represent UML models. In their approach, elements 

in the UML model are represented as logic terms called Model Element Terms (METs) 

and presented as Prolog facts to take advantage of Prolog’s search engine and 

backtracking techniques.     

With the proposition of the QVT (Query/View/Transformation) [58] standard by Object 

Modeling Group, UML metamodels accompanied by OCL are used in the context of a 

model transformation language. Sunye et al. [233] were the first one to use the 

UML/OCL model for refactoring. Other studies that followed the trail included [21, 234-

236]. Apart from being used as a formal representation for the UML model, OCL 

expressions have also been used for refactoring application [237-240]. 

3.2.2 Model Transformation Language 

Languages or formalisms used to describe transformation rules are known as Model 

Transformation Languages (MTL). Although there exist quite a few model 

transformation languages, we limit our scope to those that have been used in the literature 

for the purpose of UML model refactoring. 

Alloy language can also be used to compose model transformations. A catalog of 

primitive transformations was proposed by Gheyi et al. [222]. Primitive transformations 

are formalized as algebraic laws that consist of templates with which the actual Alloy 
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declarations match.  Each law defines two templates of equivalent models on the left and 

the right side. Equivalence allows application of the law in both directions. The catalog of 

Alloy laws have been proven to be sound and complete [241] and can be used for 

behavior-preserving transformations such as model refactoring. Gheyi et al. [221] 

presented an approach for proving structural model refactorings for Alloy. They 

presented an example Alloy Law (or model refactoring) to introduce a generalization into 

an Object Model. Massoni et al. [223]  presented refactorings as Alloy transformation 

done at two levels: program level and the object model level. They extended their 

contribution in [224] with description of synchronization and proof soundness for the 

Alloy transformations.    

Graph transformation languages are based on algebraic graph grammars. A number of 

approaches make use of graph transformation languages to define model refactoring rules 

[214, 215, 217, 242]. Mens [213]  specified design models as typed graphs and expressed 

refactorings as typed graph transformations. They evaluated two concrete graph 

transformation tools (AGG and Fujaba) for composing model refactoring rules over class 

diagrams and statecharts. They also proposed the use of critical pair analysis to detect 

implicit dependencies between refactorings. A critical pair is a pair of transformation that 

conflict with each other. Set of critical pairs represents all conflicts when applying 

model-refactoring rules to a model. Based on their previous work, Mens et al. [160] 

implemented a number of refactorings from Fowler et al.’s catalog as typed graph 

transformations with NACs. Junbing et al. [243]  proposed a conflict resolution algorithm 

to handle model refactoring conflicts based on critical pair analysis. 
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Bottoni et al. [244] used the Double Push-Out (DPO) scheme to define model refactoring 

rules over a number of UML models and source code in an integrated fashion. The DPO 

scheme for graph transformation ensures that the target graph has no dangling edges after 

the application of the transformation as opposed to the Single Push-Out (SPO) scheme. 

Rangel et al. [245] also used the DPO graph transformation scheme for model 

refactoring. Amelunxen and Schürr [246] also used graph transformation approach to 

specify dynamic semantics of modeling languages and provided formalization of model 

refactoring rules over the latest version of UML/MOF 2 metamodel. 

3.2.3 Model Smells 

Models smells in the literature are identified either by analyzing the source code and then 

applying them at the model-level [24, 247-250] or by analyzing the model directly. Since 

the scope of this paper is limited to Model-Driven Refactoring, we list approaches that 

analyze design models directly to detect refactoring opportunities. The manner in which 

model smells are detected (also known as the detection strategy) has resulted in two 

paradigms of refactoring: Metrics-Based Refactoring and Pattern-Based Refactoring. 

Apart from these approaches, a hybrid approach that uses both metrics and patterns to 

describe smell detection strategy has also gained popularity known as rule-based 

approach. 

One methodology that gained immense popularity for detecting bad smells, proposing 

refactorings for correction and verification of quality improvements is Metrics-Based 

Refactoring. Most model smells identified in the literature relate to the UML class 

diagram as it is the most frequently used model in OO software development. Astels 

[251] was the first one who proposed the notion of UML model smells in the context of 
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model refactoring. He argued that the visual notation of UML models makes smell 

structures more evident. Model smells in his work were described informally using the 

visual notation of UML. Kempen et al. [25] identified the model smell “God Class” 

defining it as a single class with many attributes and/or operations. Threshold values for 

metrics associated with this model smell were not provided in his work.  

Ruhroth et al. [32] and Fourati et al. [19] associated different class model smells and anti-

patterns with OO metrics. Specific values for metric thresholds in their approaches were 

either taken from published empirical results or based on their experiences. A few model 

smells in their approaches not only covered class models but also considered metrics over 

the statechart diagram and sequence diagram respectively. Ghannem et al. [22] used an 

advanced evolutionary approach to model smell detection. Instead of specifying which 

metrics to use or their threshold values, they used Genetic Programming to choose the 

best metrics combination from an exhaustive list to detect different model smells.  

Mohamed et al. [20] proposed an extension to the UML metamodel incorporating model 

smell and refactoring meta-classes in order to assist users to create their own smell-

refactoring definition. For each model smell, information such as metric-based heuristics 

required detecting them and the UML diagrams on which these metrics depend on are 

attached. They demonstrated their approach by detecting the Blob anti-pattern using 

design metrics based on Class and Sequence Diagram. A list of model smells and the 

UML diagrams they relate to is tabulated in Table 1.  
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Table 1 List of model smells detected using OO metrics 

Model Smell UML 

Diagram 

References 

God Class or The Blob CD, SD [19, 20, 22, 25] 

Hidden Concurrency CD, SC [32] 

Unnecessary Behavioral 

Complexity 
CD, SC [32] 

Too Low Cohesion CD [32] 

Lazy Class CD [32] 

Too Strong Coupling CD [32] 

Refused Bequest CD [32] 

Lava Flow CD, SD [19] 

Functional Decomposition CD, SD [19, 22] 

Poltergeists CD, SD [19] 

Swiss Army Knife CD [19] 

Poor use of Abstract Class CD [22] 

Note: CD: Class Diagram, SD: Sequence Diagram, SC: Statecharts 

Another popular method to detect refactoring opportunities is to identify problems within 

the model that can be solved by applying design patterns. France et al. [67] were the first 

to propose the use of design patterns for model transformation. Kim et al. [252] later 

investigated approaches for incorporating design patterns into UML models. They 

defined design patterns in terms of roles at the metamodel level. A role is based on a 

UML meta-class and associates a set of constraints (well-formedness rules, pre and post 

conditions and invariants) on the meta-class to adapt to the type of elements they can play 

the role. Kim [253] used the concept of roles to describe the problem model (called 

Problem Specification in their approach). A problem specification described the problem 

that suggested the usage of a particular design pattern. To specify the problem, Kim [253] 

used a methodology they developed earlier [254]. Ballis et al. [255, 256] proposed a 

graphical language to define patterns/anti-patterns either textually or using the graphical 

notations. An important aspect of their approach is that they allow users to customize 

existing pattern descriptions or create new from the start.  
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El-Boussaidi and Mili [257] extended the UML-based representation of the problem 

models to represent time evolution. In order to detect instances of problem models within 

a source model, they translated their pattern matching problem into a Constraint 

Satisfaction Problem (abbr. CSP; by extracting variables and constraints from the 

problem model) and used a CSP solver to find the instance. El-Sharqwi et al. [258] also 

used CSP to formalize their algorithm for problem model detection. They used XML to 

represent both the pattern and the software model. Bouhours et al. [259] defined the 

concept of Spoiled Patterns to specify problem patterns for refactoring. According to 

them, a spoiled pattern is an abstraction of an alternative solution which is a less optimal 

solution (optimal being the design pattern) to solve a design problem. Millan et al. [234] 

proposed an extended OCL language (pOCL) and demonstrated its use to find 

occurrences of an alternative solution within a source input model by using OCL rules.   

Rule-based detection approaches either use complex queries or algorithms to detect 

refactoring candidates. Llano and Pooley [23] provided an informal specification 

approach to describe anti-patterns that appear in UML diagrams. They exemplified their 

approach by providing a specification of two popular anti-patterns: God Class and 

Poltergeists. Detection strategies for these anti-patterns are specified in their approach by 

a textual description which can easily be translated into a query for automated detection. 

Akiyama et al. [260] proposed the refactoring of Class diagram by redistributing class 

responsibilities in order to obtain a design model of higher quality. Responsibilities in 

their approach are initially obtained from Requirements Specification and assigned to 

classes based on the GRASP (General Responsibility Assignment Software Pattern) 
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guidelines [261]. Model smells are detected by formalizing the guidelines proposed by 

GRASP using predicate logic.   

Other UML models used for model smell detection using the rule-based method include 

sequence diagrams and use case models. Dobrzański and Kuźniarz [262] used a rule-

based approach to describe the middle man model smell. A middle man class in their 

approach is defined as one that has an attribute with at least 2 Simple Delegating 

Operations (SDO). Operation for an attribute is classified as an SDO based on a set of 

conditions. Liu et al. [263] represented the UML sequence diagram as a suffix tree and 

proposed a special algorithm to detect longest common prefixes of its suffixes in order to 

identify duplicated fragments. A fragment of a sequence diagram is a rectangular unit 

whose edges are parallel to the diagram’s axes. El-Attar and Miller [264] identified 26 

anti-patterns for use case models and provided a query based approach to formulate the 

detection of these anti-patterns using OCL language. Stolc and Polasek [236] described 

their refactoring approach using a graphical definition of the refactoring rules with the 

smell defined on the left side of the rule and the solution on the right side. OCL queries 

are generated automatically for the model smell defined on the left side of the rule for 

smell detection.    

OCL is used heavily in the field of Model-Driven Refactoring to fulfill numerous 

purposes such as: constraint specification, specification of pre and post conditions on 

operations, specification of well-formedness rules for metamodels and as a query 

language. Because of these important applications, it is important to ensure that 

specifications written in OCL are easy to understand and maintain. Hence, the notion of 
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OCL smells analogous to Model Smells was defined. Correa et al. [240] defined OCL 

smells as:  

“Structures present in OCL expressions that might negatively affect the 

understandability or maintainability of OCL specifications”. 

The concept of OCL smells was initially introduced by Correa and Werner [237].  They 

identified OCL smells that either required refactoring of the OCL specification or in a 

few cases warranted changing the associated UML Class model. They classified these 

smell into three categories: those that affect only OCL expressions, those that result from 

refactoring the underlying class diagram and finally those that require modification of the 

underlying class model as a result of changes made to the OCL expression. The authors 

extended their approach with an enhanced list of OCL smells [238] and an empirical 

study to demonstrate their impact on understandability [239, 240].  

3.2.4 Model Behavior 

Specification of model behavior and approaches to ensure their preservation after the 

application of refactoring is considered the most important activity in the refactoring 

process as refactoring is supposed to preserve observable behavior. The most popular 

approach to define model behavior is with model constraints such as pre-conditions and 

invariants. Model constraints are assertions that a model must satisfy prior to the safe 

application of refactoring. Constraints can be in the form of pre-conditions that must be 

checked before refactoring is executed or post-conditions that are checked after the 

application of refactoring. OCL is the most popular language used to define model 

constraints. 
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Most of the approaches in the literature describing model behavior through pre and post 

conditions use OCL constraints [21, 215, 224, 233-235, 237, 240, 248, 262, 265-267]. 

Other scripting languages used to describe constraints include python scripts [268] and 

ECL [269]. A number of approaches that do not provide prototype tool described model 

constraints in natural language form [260, 270, 271]. Although easier to comprehend, 

using informal approaches to describe behavior affects implementation and automatic 

verification of behavior preservation.  

Graph based approaches usually describe pre-conditions using negative application 

conditions (NAC). An NAC is a graph that defines a prohibited graph structure in order 

to restrict application of refactoring rules. Approaches in the literature that used NAC 

along with refactoring operations to describe pre-conditions include Bottoni et al. [244, 

272], Mens et al. [213] and Hosseini and Azgomi [273].  

The other common approach to specify model behavior is through process algebra CSP 

[274, 275]. Behavior preservation in this approach is verified by proving that the target 

model is a refinement of the source model. The theory of failure-divergence refinement in 

CSP is used to demonstrate behavior preservation in refactoring. Another similar 

approach is proving behavior preservation through model equivalence. Equivalence is 

refinement in both directions. Studies proving behavior preservation by model 

equivalence used different formalisms and tools. Estler et al. [226] used Object-Z as the 

specification language and proved equivalence using the model checker SAL [276]. 

Derrick and Wehrheim [227] and Ruhroth et al. [32]  also used Object-Z but proved 

refinement using CSP. Other formalisms used to prove equivalence include co-algebra 

[277] and Alloy [221, 223, 278]. Another approach worth mentioning is the use of 
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behavioral models to specify behavior for structural diagram refactoring [231] . They 

formalized Sequence Diagram traces to prove observation and invocation call 

preservation.        

3.2.5 Model Refactoring 

The class diagram, apart from being the most frequently used model in object-oriented 

development, is also the most frequently researched diagram for model-driven 

refactoring. According to Mens et al. [13], the main reason class diagrams are profoundly 

investigated is because of their close similarity in representation to object-oriented 

program structure. Hence most program refactorings [15] can be ported directly to UML 

class diagrams. Sunyé et al. [233] were the first to try refactoring on UML models. 

According to Sunyé et al., the primary advantage of UML over other modeling languages 

is that the syntax is defined precisely by a meta-model. They transposed some of the 

existing code based refactorings onto the class diagram.  Astels [251] also informally 

defined some class diagram refactorings. His motivation for selecting the class diagram 

was that it is easier to comprehend the structure when looking at the class diagram rather 

than the source code. Boger et al. [279] also provided refactorings for class diagrams. 

Class diagram refactorings in their approach were classified into five basic categories: 

Addition, Removal, Move, Generalization and Specialization over attributes, methods 

and associations. 

Refactoring over behavioral models is still in its infancy. Sunyé et al. [233] initially 

applied refactoring to statecharts. They introduced the following refactorings: Fold and 

Unfold Incoming / Outgoing Actions, Fold and Unfold Incoming / Outgoing Transitions, 

Grouping States and Moving Atomic States In and Out of Composite States. Phillips and 
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Rumpe [280] extended the definition of UML refactoring over system structure diagrams 

and state diagrams. Phillips and Rumpe’s approach made use of a new transformation 

language introduced as part of a project titled Computer-Aided Intuition-Guided 

Programming project (CIP) [281]. Boger et al. [279] also provided refactorings for state 

diagrams and activity graphs. Refactoring in activity graphs involved changing the order 

of activities without altering the overall result.  

With respect to refactoring of functional models, only a few approaches address the 

problem of refactoring in use case diagrams. Rui and Butler [282] were the first to initiate 

the application of refactoring over use case models. No formal definition of a use case 

model was provided as they used a three-layer meta-model based on Regnell’s use case 

model [283] to base their refactorings over. Rui and Butler decomposed their model into 

entities like use case, actor, user, task, goal, service, episode and so on. Refactoring 

operations were then identified over these entities like creation, deletion, modification 

and move operation. One interesting refactoring operation was decomposition of use 

cases to distribute its behavior. Their approach was refined by Yu et al. [270] with the 

introduction of the concept of “episode tree”. Complex episodes were decomposed into 

one or more child episodes and similar episodes were merged together to form a 

composite episode. The Episode Tree provided a visualization of the whole episode 

hierarchy, which made them introduce new refactoring operations like 

generalization_generation, inclusion_mergence, extension_mergence and 

precedence_mergence. This whole set of refactorings introduced in [270, 282, 284] was 

later put together in the form of a tool to realize use case refactoring [284, 285]. The tool 

provided additional features by including OCL to define constraints among the entities 
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and XML to store the model.  The missing element of formal semantics in order to 

validate the behavior preservation property of refactoring for use case models was 

provided as part of the PhD thesis by Kexing Rui [286].  

3.2.6 Refactoring Quality 

An important objective of Model-Driven Refactoring is to improve the quality of the 

software model without changing its behavior. Only a few studies elaborated on the 

concept of Model Quality and addressed the issue of quality assessment for UML models. 

One of the most popular approaches to assess the quality of models is using model 

metrics. Similar to software metrics, model metrics are also used to measure and quantify 

desirable aspects of the models. Some software metrics can easily be ported to models, 

especially those that measure object oriented source code.  

One of the most widely used design metric suite for OO programs was provided by 

Chidamber and Kemerer [62] also known as the CK metric suite. Genero et al. [63] 

proposed a set of complexity measures based on the UML class diagram. Kim and 

Boldyreff [287] proposed a number of metrics that can be used at early stages of software 

development. Their metric suite covered class, sequence and use case diagrams. 

Gronback [288] provided a broad collection of UML metrics to detect aberrations from 

standard design practices. A few of these practices were derived from style guidelines 

provided by Ambler [289]. Enckevort [21]  used four out of the six metrics from the CK 

metrics suite to quantify model quality. They also chose the Fan-In and Fan-Out metrics 

proposed by Henry and Kafura [290]. In their approach to assess refactoring quality, they 

calculated metrics for the model before and after the application of refactoring.  
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As mentioned earlier, modeling in UML is multi-faceted. UML diagrams model different 

views of the system and these diagrams are not mutually disjoint. Multiple views of the 

UML models provide information not available from program code. Muskens et al. [29] 

proposed metrics that combine information from multiple views. Lange [291] also 

postulated that metrics for establishing Model Size requires information from multiple 

views of the model.   

Apart from defining metrics for UML models, correlation between these metrics and 

external model quality attributes needs to be established. Lange and Chaudron [69] 

developed a quality model for UML based on the ISO quality model [292] and McCall 

quality model [293] for software quality. We refer to this model as LC model. The LC 

model is a hierarchical model with four levels. The first or the highest level defines the 

primary uses of the model: Maintenance and Development. The second level defines the 

purpose of the model within its primary application. The third level identifies the 

characteristics of the purposes and the fourth level defines the metrics and the rules for 

the assessment of the characteristics. Jalbani et al. [294] proposed an integrated quality 

engineering approach for UML models. They divided their approach into two parts: 

Quality Assessment and Quality Improvement. Quality assessment includes the Quality 

Model for UML based on the LC model and metrics for UML. Quality Improvement 

includes model smell detection and model refactoring.   

3.2.7 Tool Support 

Two of the most widely used state-of-the-art UML modeling CASE tools for 

implementing model refactoring are Eclipse and Poseidon. One  of the first model 

refactoring tool Refactoring Browser proposed by Boger et al. [279] implemented 
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refactoring rules for UML class, state machine and activity diagrams. The refactoring 

browser was integrated in Poseidon. However, this plugin is not available anymore for 

Poseidon. RACOoN is another plugin developed for Poseidon by Van Der Straeten and 

D'Hondt [230]. Model refactoring rules can be implemented and loaded into RACOoN 

for execution. It’s a manual refactoring tool that lets the user select the refactoring. 

Inconsistencies encountered during application of multiple rules are presented to the user 

with resolution options.  

Eclipse is an IDE from the Eclipse foundation [182] that uses a plugin mechanism to 

allow integration with various projects. Together Architect for Eclipse is a model 

transformation environment that supports the QVT standard. It supports only textual 

notation of QVT and the user invokes each refactoring rule separately. Markovic and 

Baar [235] used this modeling environment to implement their refactoring rules. Voigt 

and Ruhroth [295] developed a fully-automated tool (called RMC) as an Eclipse plugin 

that enables model creation, measurement, diagnosis and refactoring. It also allows users 

to define their own measures (using OCL queries), threshold values (range of values) and 

refactoring. Available refactorings are stored in a configuration file that can be extended 

by the user. They used the tool to propose a quality cycle for software model 

development [32]. VisTra [236] is a visual oriented tool implemented as an Eclipse 

plugin for refactoring class models. It provides a rule editor that allows users to define 

transformation rules graphically. The VisTra framework automatically generates OCL 

query and transformation script for the transformation rule. End users can invoke 

transformation rules on the UML model. M-Refactor is another model refactoring plugin 

for the Eclipse Modeling Environment developed by Mohamed, et al. [20]. It’s a semi-
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automated refactoring tool that detects model smells on the source model based on the 

value of the metrics based heuristic. Based on the detected smell, model refactoring 

solutions are presented to the user. Since their approach is based on an extended UML 

metamodel, information regarding the smell, metric thresholds and refactoring solutions 

are represented by meta-classes.   

Another popular approach to implement model refactoring is using standard 

programming language scripts. Porres [268] first proposed the System Modeling 

Workbench (SMW) toolkit based on Python programming language to implement UML 

model refactorings. Similar approach was followed by Correa and Werner [238] to 

refactor OCL expressions using their OCL extension called OCL-Script. Since OCL-

Script is an action language as opposed to standard OCL, it can be used to manipulate 

metamodel-level and model-level instances. The NEPTUNE platform [234] is a 

prototype tool that allows verification and transformation of models. It uses an extension 

of the OCL language called pOCL to automate the detection of model fragments that can 

be substituted by structural design patterns. It is a semi-automatic refactoring tool that 

suggests the user to substitute the detected problem pattern with the corresponding design 

(solution) pattern. 

Zhang et al. [269] used the Constraint-Specification Aspect Weaver (C-SAW) model 

transformation engine to describe model refactoring. They proposed a special language, 

called Embedded Constraint Language (ECL), to specify and implement user-defined 

refactorings. According to Zhang et al. [269], ECL is an extension of OCL with 

additional operations for model aggregation and transformation. C-SAW is developed as 
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a plugin for Generic Modeling Environment (GME), which is a UML meta-modeling 

environment. 

As evident from section 3.2.2, Graph Transformation is one the most popular model 

transformation language used to express refactorings. Two general-purpose graph 

transformation tools commonly used to specify model refactorings are AGG [296]  and 

Fujaba [297]
 
.  

AGG is rule-based visual programming environment that supports graph transformation. 

A number of studies made use of the AGG tool to implement their refactoring rules. 

Kazato et al. [218] formalized model refactoring using graph transformation in AGG. 

AGG, apart from providing model transformation primitives, also provides advanced 

mechanisms such as critical pair analysis that can be used for analyzing refactoring rules 

[160] and an Application Programming Interface (API) that allows programmers to use 

the transformation engine with other environments. Folli and Mens [216] used the AGG 

API to develop a model refactoring application in Java.  

Fujaba on the other hand implements a controlled graph transformation approach. 

Transformation rules and their order of application are represented in Fujaba by a 

compact notation called story diagrams (which is a combination of activity diagram and 

collaboration diagram). Geiger and Zündorf [298] exemplified statechart refactoring 

using the Fujaba CASE tool. In their approach, they flattened nested statecharts into plain 

state machines for the sake of refactoring. Grunske et al. [214] used the Fujaba tool set to 

implement graph transformation. Mens [213] implemented model refactoring rules in 
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both AGG and Fujaba for comparison. He identified both positive and negative aspects of 

using both tools for implementing model refactoring.    

Sunyé et al. [233] were among the first to propose refactorings over UML models. They 

created an initial set of Class model refactoring and statechart refactoring. They 

implemented their approach in a general-purpose transformation framework called 

UMLAUT (Unified Modeling Language All pUrposes Transformer) [299].   

Prototype tools based on XSLT for model transformation have also gained popularity. 

This is mainly because most UML modeling environments export model diagrams as 

XMI.  The UML Model Transformation Tool (UMT-QVT) proposed by Oldevik [300] is 

an open source tool based on XSLT. An alternative approach was proposed by Peltier et 

al. [301] to use XSLT to execute model transformation on the back-end instead of 

specification. They used a high-level transformation language (MTRANS) to specify 

refactoring rules that were later converted to XSLT programs before execution. Ren et al. 

[284] proposed a prototype tool for use case refactoring based on XML. It is composed of 

a Refactoring Tool GUI and a Use Case Diagrammer to draw the use case model. 

Following the approach by Peltier et al. [301] to use XSLT at the back-end, Li et al. [302] 

proposed an approach to use QVT relations to specify transformations and implement 

each relation as an XSLT rule template. The main reason specified for using XSLT as a 

back-end language is due to its low-level syntax.     

AndroMDA is another prototype MDA tool that allows generation of complete 

applications from a UML model. Although its focus is on code generation, Mens et al. 

[13] demonstrated its use for model refactoring. El-Boussaidi and Mili [257] proposed a 



80 

 

semi-automatic tool for marking models using constraint satisfaction technique and 

rewriting source models to incorporate appropriate solutions. Their main aim was to 

propose a framework for detection of problem patterns that can be solved by design 

patterns.  

Apart from these tools, a number of prototype tools have been proposed in the literature 

to validate their proposed approaches [22, 24, 260, 264]. These tools cannot be classified 

as refactoring tools as they do not provide complete refactoring functionality. These tools 

aid the user either in detecting model smells or anti-patterns in models or calculating 

metrics for quality assessment.  

3.2.8 Consistency Management 

Another vital aspect of model refactoring is model consistency. Lucas, et al. [303] 

provided an excellent systematic review of the literature on inconsistency management in 

software engineering domain. The need of consistency management with model 

refactoring arises because UML is composed of many different diagrams. Refactoring 

one diagram leaves the others in an inconsistent state. Since consistency preservation is 

concerned with both the source code and models at higher level of abstraction, the topic 

is discussed independently in section 3.3.  

 

3.3 Refactoring Consistency Management 

Consistency, as defined by Spanoudakis and Zisman [228] is “a state in which two or 

more elements, which overlap in different models of the same system, have a satisfactory 
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joint description”. Inconsistencies occur if a change in an element is not correctly 

reflected on all overlapping elements in other models of the same system. Based on the 

description in section 2.5.6, inconsistencies occur at two levels: horizontal and vertical.  

Horizontal consistency, also known as intra-model consistency, aims at identifying and 

resolving inconsistencies between models at the same level of abstraction. Intra-model 

consistency approaches tend to handle both syntactic or structural consistency and 

semantic or behavioral consistency. Intra-model consistency management approaches can 

be classified into four classes based on the formalism and technique used for checking 

consistency: 1) Direct, 2) Transformational, 3) Formal and 4) Knowledge Representation. 

A systematic literature review of UML model consistency approaches can be found in 

[303]. 

Direct approaches to consistency management use OCL to define consistency checking 

rules over UML. Chiorean et al. [304] proposed the use of OCL to validate models 

against well-formedness rules and also it to define inter-model consistency rules. 

Spanoudakis and Kim [305] conducted a series of experiments to evaluate the impact on 

the whole model based on an inconsistency involving a particular element. Based on this 

framework, Spanoudakis et al. [306] proposed a set of significance-ranking rules 

formalized in OCL based on the impact of consistency violation. Other approaches that 

used OCL to define model consistency rule include Paige et al. [307] and Sapna and 

Mohanty [308].  

Transformational approaches transform one model into another or to a common notation 

and apply comparison techniques to establish consistency. Graaf and van Deursen [309] 
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used ATL transformation language to specify mapping between state machines and 

scenario diagrams. Egyed [310] proposed a transformation-based inconsistency 

management approach between class diagrams at different levels of abstraction. Egyed 

[28, 70, 311], proposed a model profiler to establish a correlation between model 

elements and consistency rules based on the manner in which they are accessed during 

consistency checks. Since the use of graphs to represent models is a popular approach, 

many authors propose consistency management approaches based on graphs. Mens et al. 

[312] used graph transformational analysis and critical pair analysis to identify and 

establish casual dependencies between alternative resolutions for model inconsistencies. 

Kuster [313] proposed a graph based approach to handle behavioral model consistency 

between sub-models of a larger model at the same level of abstraction and models 

generated during different phases of software development. Fryz, and Kotulski [314] 

used Conjugated Graphs for representing UML models. Other approaches using graphs 

for consistency checking and resolution include [315, 316]. 

Formal approaches convert the UML model into a formal notation to check and resolve 

inconsistencies. Formal specification languages (FSL) are popularly used as they provide 

precise descriptions of the software system and can be formally analyzed. Commonly 

used FSLs in the literature for UML consistency management include Z [317], Petri Nets 

[318-321], , Symbolic analysis [322], B [323-325], pi-calculus [326], Constraint 

Programming [327], PVS specification language [328, 329], CSP-OZ [330] and automata 

[331, 332].     

Knowledge representation approaches use logical representation languages such as 

Description Logic to translate models and use reasoning for consistency management. 
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Van Der Straeten et al. [230, 231, 333] used description logic to represent UML models 

as collection of concepts and roles and logic rules to detect and suggest means to resolve 

inconsistencies. Other logic based representations include Temporal Logic [334] and 

Maude [303, 335].  

Vertical consistency aims at identifying and resolving inconsistencies between models 

and source code. Massoni [336] identified three common approaches for handling code-

model consistency. These are as follows: 

 Simple forward engineering: Models are used only in the initial stages of 

development and discarded later. Hence, changes are made only on the source code 

that renders the consistency issue useless.  

 Successive reverse engineering: Source code is the primary artifact and models are 

generated as physical images of the source code. Reverse Engineering tools are used 

to maintain consistency. 

 Round-trip engineering: Models are used to generate source code during 

implementation. Once a stable version of the source code is available, reverse 

engineering tools are used to ensure model consistency.  

Since the approaches highlighted by Massoni rely heavily on the use of reverse 

engineering tools to reconstruct models based on source code modifications, a number of 

alternate approaches to handle the issue of vertical inconsistency have been proposed. 

Bottoni, et al. [244] used distributed graphs for model transformation. A distributed graph 

consists of a network graph. Each network node is refined by a local object graph and 

network edges are refined by graph morphisms on local object graphs. The graph 
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morphisms describe how the object graphs are interconnected. Their main objective in 

using distributed graphs was to describe synchronized transformation on distributed 

models: diagrams and code. Code was represented by a flow graph and diagrams were 

represented by a typed graph in their approach. Common interface parts are represented 

using an interface graph. For instance, the interface between class diagrams and flow 

graphs will present Method, Variable and Type nodes. Refactorings are then described by 

a set of coordinated graph transformations, which is instantiated on code modification 

and applied to an appropriate model affected by the change. Van Gorp et al. [248] 

proposed the idea of source consistent refactoring to handle vertical consistency. Since 

UML models do not model statements in method bodies, Van Gorp et al. constructed 

their own metamodel called GrammyUML. This metamodel added eight extensions to the 

UML 1.4 specification allowing them to model statements in method bodies.  

 

3.4 Metamodel Extension 

UML models are described by a metamodel. A UML metamodel is a qualified alternate 

of the UML models and is a representative of any diagram that can be expressed with it.  

UML provides well-defined ways to extend the metamodel. These extension mechanisms 

allow designers to customize and extend the syntax and semantics of the model elements. 

The two extension mechanisms provided are 1) by augmenting the metamodel itself 

(heavyweight extension) or 2) by constructing a profile (lightweight extension). A UML 

profile is a predefined set of stereotypes, tagged values and constraints to support 

modeling in specific domains. Profiles give a well-defined manner of adopting the 
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standard UML model to a particular domain. Since a profile is not a new element, its 

expressiveness is constrained by the model element it specializes. Augmenting an 

element to metamodel allows the addition of a new model element or meta-class to the 

standard UML abstract syntax.  

Extending the UML metamodel has been a common practice in the literature in order to 

enhance the expressive power of UML to model object-oriented designs. Most of these 

proposed extensions stem from the motivation when the existing UML specification fails 

to represent the semantic meaning of the design. The extension mechanisms provided by 

UML have been utilized in numerous applications. These applications include modeling 

OO frameworks [337], integrating software architecture descriptions [338-340], agent 

oriented systems [341-343], design composition [344], aspect oriented system [345, 346], 

modeling variability in families of systems [347], adding business goals to activity 

diagrams [348], representing XML Schemas [349], secure systems development [350] 

and web applications [351].  

Although most of the works mentioned above concentrated on adding domain-specific 

structural information to the UML metamodel, there were also few initiatives made to 

extend the behavioral elements of the UML metamodel. Metamodel for sequence 

diagrams has been the primary focus of extension to integrate domain specific behavioral 

information. da Silva and de Lucena [352] enriched the UML sequence diagram with 

explicit information to represent the exchange of messages between agents. Based on 

their earlier work [343] on adding structural elements to the UML metamodel, 

interactions between these elements to model the dynamic aspects of a Multi-Agent 

System were proposed. Padilla et al. [353] proposed a notation to specify multiplicities 
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over a classifier in a sequence diagram. In order to provide an interpretation of 

multiplicities, they extended the UML metamodel and demonstrated how interaction 

operators behave in the presence of this additional information. Harel and Maoz [354] 

extended and defined a subset of the UML language called Modal UML Sequence 

Diagrams (MUSD). This extension allows fragments or part of fragments to be either 

mandatory (universal) or optional (existential). 

Apart from proposing new behavioral elements for the UML metamodel, proposals 

redefining current behavioral constructs were also suggested. Refsdal and Stølen [355] 

proposed the addition of risk related information to the UML Sequence diagram. They 

proposed an operator “palt” that adds probabilistic choice to the existing “alt” operator. 

Haugen et al. [356] proposed an external mandatory operator ”xalt” that specifies that one 

of the alternate cases in that fragment must be possible.  

Heavyweight extensions have also been applied to the other UML models in the 

literature. Metamodel for use case diagrams has been the primary focus of extension to 

add narrative information to the model. These modifications involve extension of the 

metamodel to incorporate the behavioral properties as described in the textual 

descriptions of the use case model. 

An extension to the UML metamodel for use cases was initially proposed by [357] for 

their XML-based requirements verification approach. They proposed a simple extension 

wherein a use case is composed of a sequence of steps. Each step refers to an optional 

condition, set of exceptions or an action. The metamodel defined as part of their approach 
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distinguished between different actions such as actor’s actions (by the actor), system’s 

actions (by the system) and use case actions (inclusions and extensions). 

Rui and Butler [282] proposed a use case metamodel based on a single use case modeling 

notation. Elements in their metamodel are divided into three levels. Environmental level 

is similar to that of the UML use case metamodel, which includes actors, use cases and 

other feature based information such as goals, services and tasks. At the structural level, 

use case from the previous level is further decomposed into a series of episodes along 

with preconditions and post-conditions. In the event level, each episode from the 

structural level is further decomposed into events. An event is further classified as 

stimulus, response or an action.  

Diaz et al. [358] proposed a use case specification metamodel as an extension to the use 

case package of the UML metamodel. Each use case in their proposed extension includes 

a specification element, which is composed of two different paths in a textual 

specification: basic and alternative. Each path is composed of a sentence which is 

classified as either a simple sentence or a special sentence (extends, include and control).  

Metz et al. [359] did not propose an extension to the use case metamodel but provided an 

in-depth explanation of the different types of alternative flows in a use case description. 

They focused on unifying specific notational issues such as alternative flow types in use 

case modeling. This concept of use case variability specification was later integrated into 

a use case metamodel extension proposed by Bragança and Machado [360]. They 

extended the use case metamodel with new model elements in order to clarify the use 

case relationships (extend and include). The Extend meta-class from the UML metamodel 
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was extended to include extension fragments. They associated a rejoin point (the return 

location within the base use case after execution of the extension fragment) with each 

extension fragment.  

Hoffman et al. [361] recently proposed a narrative metamodel for textual use case 

descriptions specifying the behavior of use cases in a flow-oriented manner. The main 

motivation behind their approach was to ensure consistency between UML use case 

model and its descriptions. Each use case from the UML use case model is described as 

flow of events, which is easily comprehendible by both technical and non-technical 

stakeholders.  

Zelinka and Vranic [362] proposed a precise definition of different use case templates so 

as to allow a consistent application. Their goal was not to unify the UML use case model 

with its textual description, but to map the common and variable part among different 

template descriptions. This allowed flexibility of using a single notation or a combination 

of several use case description notations.  

Somé [363] proposed a use case specification metamodel which is formally defined as an 

extension to the UML metamodel specification. He provided a set of constraints that 

ensure consistency between use case descriptions and use case models. He also enhanced 

the degree of expressiveness by introducing control flow structures for iteration and 

concurrency and definition of variable custom traits.  

The most recent extension proposed for a use case metamodel was by Repond et al.  

[364]. Particularly they modeled the generalization relationship within a use case 

behavior, which was not provided by earlier proposed extensions. They also defined the 
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concept of use case scenarios that represents a specific path among all the possible flows 

of the use case. Hence, each use case consists of multiple scenarios where each scenario 

has a sequence of steps that model a specific flow path. Although the concept of 

scenarios was put forward earlier by [282], it was not properly explained in their work.   

Extensions proposed by [282, 357, 359, 360] fail to include the concept of flows (or 

scenarios) within use case descriptions. Extensions proposed by [358, 361-363] explicitly 

modeled flows as a set of steps within a use case description. Although these works 

modeled use case flow, the lowest level of abstraction in their work is a use case step of 

which a flow is composed. In our proposed extension to the use case metamodel, we 

considered different form of steps within a use case flow and each action step further is 

modeled to the level of fine grain system-user interaction. Apart from this, we modeled 

the concept of use case transactions useful for applications such as effort estimation and 

use case analysis.     

Almost all extensions proposed to the UML use case metamodel do not model the 

generalization relationship except for the metamodel proposed by Repond et al. [364]. 

Their work introduced a GeneralizationPoint where specialized use cases can add 

additional behavior. In our proposed extension, a specialized use case cannot only add 

additional behavior, but it can modify or replace the steps of the generalized use case. 

Also the concept of GeneralizationPoint within the generalized use case defeats the 

purpose of generalization (i.e. allowing the generalized use case to have knowledge of 

what all use cases specializes it and where they add additional behavior).  
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Finally, all proposed extensions in the literature cannot be used for use case analysis and 

evaluation due to lack of information modeled such as different actor types, use case 

transactions and structure for use case constraints. In our proposed extended use case 

metamodel, we incorporated all required information for use case analysis and evaluation 

enhancing the usability of a use case model while maintaining the level of stakeholder 

comprehension. This extension allows easy integration of the use case metamodel with 

the metamodels of sequence and class diagrams.   
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4 CHAPTER 4 

INTEGRATED METAMODEL 

This chapter discusses the construction of the Integrated metamodel. Information 

regarding the UML metamodel, its contents and extension mechanisms supported are 

introduced initially. The diagrams that form the elements of the integrated metamodel are 

then discussed individually and finally the composition method employed to build the 

integrated metamodel and the metamodel itself is discussed.   

 

4.1 UML Metamodel 

Software development is classified as a methodology. Methodology as defined by 

Henderson-Sellers [365] 

“A methodology has several constituent parts including a full lifecycle 

process, a comprehensive set of concepts, a set of rules, heuristics and 

guidelines underpinning appropriate development techniques, a set of 

metrics, information on quality assurance, a set of coding and other 

organizational standards and advice on reuse and project management”  

In simpler terms, methodology can be defined as a systematic approach to getting work 

done in a particular discipline. Following this line of definition, Software Development 

Methodology can be defined as a systematic approach to design and development in the 
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software engineering discipline. Methodologies can either be expressed in natural 

language description or by a modeling language if the underlying methodology is 

complex and non-trivial. Since software design is composed of diagrams and elements 

that refer to each other in complicated manner, it is more viable for it to be expressed by 

a modeling language rather than described through natural language.  

Due to the popularity of the Object-oriented (OO) paradigm, UML has been adopted as a 

modeling language to express OO development methodology. Gonzalez-Perez and 

Henderson-Sellers [366] defined a relationship between a methodology, model and a 

metamodel as  

“If a methodology is a model, creating that methodology is modeling, 

whereas creating the language concepts used to describe the methodology 

is metamodeling”. 

The Object Management Group currently defines the UML language using a metamodel. 

The UML specification document [10] defines the metamodel in three different parts. 

These parts are 

1. Abstract Syntax: A class diagram describes the abstract syntax of UML, which is 

composed of meta-classes and meta-associations. A meta-class describes each model 

element (e.g. Class, Attribute, Lifeline, Use case etc.) and meta-associations describe 

the interrelationships between these meta-classes. Syntax of UML is well defined and 

unambiguous. 

2. Well-formedness Rules: Specification of constraints on instances of the meta-classes 

(that represent the UML language constructs) is through a set of well-formedness 
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rules. These constraints for well formedness are semi-formal specified by a 

combination of OCL expressions and an informal description.  

3. Semantics: Semantics describe the meanings of the meta-classes introduced in the 

abstract syntax. Semantics of the metamodel consists of natural language description 

of the language constructs and their collaboration. Although the use of natural 

language makes them easier to understand, it also includes some incomplete and 

ambiguous information.  

One of the main reasons of why UML is popular among OO developers is because it 

allows extension or even modification of the base language metamodel in order to adapt 

the language to a specific situation or domain. Categories of extension mechanisms 

provided by UML include: (1) Lightweight extension mechanism and (2) Heavyweight 

extension mechanism.  

 Lightweight extension mechanism: Lightweight extension mechanisms are termed as 

lightweight because they do not add new model elements to the UML metamodel. 

UML profiles are used to implement these types of extensions. A UML Profile [10] is 

a collection of extensions that are packaged together to customize UML for a 

particular domain. It specifies a set of standard elements, well-formedness rules and 

semantics, beyond those specified by the UML metamodel. A UML profile consists 

of stereotypes, tagged values and constraints. Tagged values allow association of user 

defined variables or metadata to a model element. A tag value is represented by a 

name-value pair and must be compatible with the constraints of the base class of the 

model element. Constraints on the other hand, allow addition of semantic restrictions 

to the model elements.  Constraints, similar to UML semantics, are written in OCL 
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and must also be compatible with the constraints of the base class of the model 

element. Tagged values and constraints are grouped under a meaningful name that 

forms a stereotype. Stereotypes are defined as extension to the UML model elements 

which implies that the tagged values and constraints it contains are associated with 

the model element implicitly. The keywords <<stereotype>>, <<TaggedValue>> 

and <<Constraint>> are used when including them in the extended metamodel. The 

relationship between stereotypes, tagged values and constraints as part of a UML 

profile metamodel is shown in Figure 11. 

 Heavyweight extension mechanism: Adding new elements in the form of meta-

classes, defining suitable metadata and meta-associations is referred to as 

heavyweight extension. These extensions are guided by the Meta-Object Facility’s 

(MOF) meta-metamodel language [45]. The MOF meta-metamodel is a standard 

provided by OMG for specifying, interchanging and extending the UML metamodel.  

The metamodel constructed by using the heavyweight extension mechanism is more 

expressive but might end up with an exceedingly complex notation. Both these 

approaches have their share of advantages and disadvantages. Using the lightweight 

extension mechanism allows the availability of standard UML notation and hence 

generic UML tools could be used. On the other hand, the stereotypes must adhere to 

the constraints of the base element it extends which severely limits its expressiveness. 

Using the heavyweight extension mechanism makes the metamodel incompatible 

with UML-compliant tools, as the notation would not conform to UML standard. 

However, using this extension mechanism allows addition of any desired feature to 

the metamodel. 
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Instances of the UML metamodel form a suite composed of all the UML models. UML 

models are classified into three categories based on the aspect of the system they 

describe. These categories are referred to as views: structural view, behavioral view and 

functional view. The structural view consists of diagrams that capture the physical 

organization of the basic elements (classes, objects etc.) in the system. It describes the 

static structure of the system. The behavioral view consists of diagrams that focus on the 

interactions between the elements in the system. This view represents how elements work 

together, interact, and respond to the environment. The functional view is a collection of 

diagrams that depict how a system is supposed to work, modeling the workflow and 

business processes. It captures information about the system from the user’s perspective.  

Figure 12 shows the classification of the UML diagrams into views.  

Figure 11 UML Profile Metamodel 
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The Integrated Metamodel proposed in this chapter is composed of one model from each 

view. Class diagram from the structural view, sequence diagram from the behavioral 

view and use case diagram from the functional view are used as core models for 

composing the integrated metamodel. A metamodel description of the models selected 

from each view is provided and then the integrated metamodel is discussed. Although 

UML metamodel does not differentiate between model elements, subsets of UML 

metamodel are referred to here as class diagram metamodel, sequence diagram 

metamodel and use case diagram metamodel. These subsets include all model elements 

that are used when constructing respective models. 

 

4.2 UML Class Diagram 

Class diagram represents the structural view of an object-oriented system. It consists of a 

set of classes designating important entities of the system modeled. Along with classes, a 

class diagram also consists of relationships between these classes. It is the most common 

diagram and considered as the backbone for modeling object-oriented systems.  

Figure 12 Classification of UML Diagrams into Views 
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A formal syntax for class diagram along with semantics is provided by Meng and 

Aichernig [367]. Utilizing their work with minor modifications (to incorporate features 

introduced in UML 2 specification), a formal definition of the UML Class diagram 

metamodel is provided here. Formally, a class diagram can be defined as: 

Definition 4.1: A class diagram is a 4-tuple                 where 

   is a non-empty finite set of classes 

   is a finite set of associations 

         is the relationship between classes 

     is a set of well-formedness rules on the Class Diagram    

 

4.2.1 UML Class Diagram Metamodel 

The UML specification document describes the UML abstract syntax in the form of a 

class diagram representing the UML metamodel and well-formedness rules. The UML 

class diagram metamodel is composed of a number of meta-classes. Some of these meta-

classes may not be useful for the intended application of refactoring; hence, a subset of 

the UML Class diagram metamodel to be used for the integrated model is given in Figure 

13.  A detailed description of the abstract syntax and well-formedness rules of UML class 

diagrams is provided in Appendix 1.  
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Figure 13 Subset of the UML Class Diagram Metamodel
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4.2.2 Class Diagram Metamodel Extension 

The metamodel for class diagram is used as-is without any extension. The reason for not 

extending the class diagram metamodel is that it is extensively and precisely described in 

the UML specification. 

 

4.3 UML Sequence Diagram 

Sequence diagram represents the dynamic view of an object oriented system. The main 

purpose of a sequence diagram is to capture dynamic behavior of a system. This is 

realized by modeling flow of events leading to a desired result.   

Formally, a sequence diagram can be defined as: 

Definition 4.2: A sequence diagram is a 7-tuple                   

                 where 

   is a finite set of lifelines 

     is a finite set of end locations  

     is a finite set of message labels 

                   is the relationship (event) between  lifelines 

             is a partial order providing the position of ends within each 

of the lifelines 

          is an ordered set of fragments in the sequence diagram 

      is a set of well-formedness rules on the Sequence Diagram     
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4.3.1 UML Sequence Diagram Metamodel 

Similar to that of the Class diagram, the UML Specification document also describes the 

Sequence Diagram metamodel by an abstract syntax in the form of a class diagram and 

the well-formedness rules. A subset of the UML Sequence diagram metamodel to be used 

for the integrated model is shown in Figure 14. A detailed description of the abstract 

syntax and well-formedness rules of UML sequence diagrams is provided in Appendix 1.  
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Figure 14 Subset of the UML Sequence Diagram Metamodel
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4.3.2 Sequence Diagram Metamodel Extension 

The main motivation for proposing an extension to the UML metamodel for sequence 

diagram is to make it easier to integrate with the other metamodels. Apart from this, the 

extended metamodel accommodates future extensions made to sequence diagram 

notations. By extensions we mean either integration of domain-specific information or 

modeling syntactic variability due to difference in comprehension. It will allow advanced 

UML modelers to define domain-specific extensions to the sequence diagram in a precise 

and usable manner. Furthermore, this modification also provides ease of mapping 

program code to sequence diagrams thereby providing a means of validating consistency 

between them. 

Extensions to Sequence diagram notations and metamodel have been proposed quite a 

few times in the literature. The approaches are discussed in section 3.4 as part of the 

literature review for metamodel extensions. 

The UML sequence diagram metamodel described in the previous subsections contains a 

meta-class called “CombinedFragment”. The UML specification provides twelve types of 

combined fragments that are given by an enumerated attribute called 

“InteractionOperatorKind”. The extended sequence diagram metamodel proposed in this 

work restructures the combined fragment logic by suggesting a change to the abstract 

syntax and well-formedness rules of the metamodel elements.  

Initially two new meta-classes SingleOperand and MultiOperand are introduced. The 

motivation behind the inclusion of these meta-classes is to remove the well-formedness 

rule (      Rule 6) enforced through constraints on the sequence diagram in the UML 
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specification. Based on this rule, all the sub-classes of the meta-class SingleOperand can 

have only one operand in its body. These two meta-classes are defined similar to the 

manner of meta-class description in the UML specification as follows: 

SingleOperand Metaclass 

 Description 

- SingleOperand is an abstract meta-class, which declares a combined fragment 

with only one single operand in its body definition. SingleOperand is a 

specialization of CombinedFragment. 

 Associations 

- InteractionOperand –the operand of the fragment 

MultipleOperandMetaclass 

 Description 

- MultipleOperand is an abstract meta-class, which declares a combined 

fragment with more than one single operand in its body definition. 

MultipleOperand is a specialization of CombinedFragment. 

 Attributes 

- isStrict – if false, the messages between different operands can be interleaved 

but messages within a single operand should be ordered; the default is false  

 

 Associations 

- InteractionOperand –the set of operands of the fragment 

The proposed metamodel modifies one class declaration from the standard metamodel. 

The “CombinedFragment” meta-class will no longer have the attribute 
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“InteractionOperatorKind”. In addition, the association of this class with the 

“InteractionOperand” meta-class is also removed.  

Apart from the above modifications, a single meta-class for each 

“InteractionOperandKind” was also added to the extended metamodel. These meta-

classes are then made subclasses of either the SingleOperand or the MultipleOperand 

meta-class. The Opt, Loop, Break and Neg meta-classes are made subclasses of 

SingleOperand as they require only one operand. The remaining Par, Alt, Assert, Strict, 

Seq and ConsiderIgnore meta-classes are made subclasses of the MultipleOperand meta-

class. The main motivation behind this modification is because a number of suggestions 

have been proposed in the literature to modify the semantics of some combined fragment 

operators such as “alt”, “neg”, “assert” and so on. In order for the above-mentioned 

proposed operators to be added as metamodel extensions, existing combined fragment 

operators need to be treated as model elements. Our proposed extended metamodel 

allows researchers to define their modifications in a usable manner by making use of 

lightweight extensions. In order to illustrate this, we take an example of the extension 

proposed by Refsdal and Stølen [355] to include probabilistic choice to the existing “alt” 

operator. They proposed an operator “palt” (probabilistic alternative), in which the choice 

between alternatives is expressed as probabilities between two or more operands. This 

extension is depicted in Figure 15 using a stereotype “palt”. 
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Apart from deprecating the well-formedness rule       Rule 6, another rule       

Rule 7 is also removed. This is because the conditions        and        are included as 

metadata in the loop meta-class and removed from the InteractionConstraint meta-class. 

This ensures that they are valid only when the loop fragment is used. The “Loop” meta-

class can hence be defined as 

Loop Metaclass 

 Description 

- Loop is a meta-class, which declares a combined fragment representing a 

loop. The single operand in the fragment body will be repeated a number of 

times as specified by constraint attached to it. Loop is a specialization of 

SingleOperand. 

 

 Attributes 

- minint – the minimum number of iterations of a loop 

- maxint – the maximum number of iterations of a loop 

 

Figure 15 An example lightweight extension of "alt" fragment 
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 Well-formedness rules  

- If minint is specified, then the expression must evaluate to a non-negative 

integer. 

- If the maxint is specified, then the expression must evaluate to a positive 

integer. 

- If both minint and maxint are specified, the value of maxint must be greater 

than or equal to the value of minint. 

 

The descriptions of all other meta-classes are left for future improvements and extensions 

to the UML Metamodel. The proposed extension component for the Sequence 

Metamodel along with its related meta-classes from the original UML Sequence 

Metamodel is shown in Figure 16.  Figure 17 presents the complete extended sequence 

diagram metamodel. The extended sequence diagram metamodel along with promising 

applications apart from metamodel integration is provided by Misbhauddin and Alshayeb 

[368].  

Figure 16 Extended Component of the Sequence Metamodel 
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Figure 17 Extended Sequence Diagram Metamodel [368]
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4.4 UML Use Case Diagram 

Use case diagrams were initially introduced by Jacobson [39] and later adopted by the 

OMG to be part of UML. A use case diagram represents a functional view of an object-

oriented system and plays a vital role in modeling the system’s functional requirements. 

To model these requirements, the use case diagram represents them as a set of use cases. 

Each use case is a specification of a set of operations between the system and actors 

resulting in an output valuable to actors or stakeholders of the system. Formally, a use 

case diagram can be defined as follows: 

Definition 4.3: A use case diagram is a 5-tuple                   where 

   is a finite set of use cases 

   is a finite set of actors  

          is a finite set of associations 

         is the relationship between use cases 

     is a set of well-formedness rules on the Use Case Diagram    

 

4.4.1 UML Use Case Diagram Metamodel 

A use case model represents the functional view of an Object Oriented (OO) system and 

plays a vital role in modeling the system’s functional requirements. The use case model 

represents the functional requirements as a set of use cases. Each use case is a 

specification of a set of operations between the system and the actors resulting in an 

output valuable to actors or stakeholders of the system. UML use case diagram models 

use cases and their relationships with actors and other use cases. Behavior of each use 
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case is typically documented either through other UML models (sequence [369-371] or 

activity diagrams [372-374]), formal modeling languages [375-378], or as natural 

language text. 

UML models are described by a metamodel detailed out in its specification document 

[10]. A UML metamodel is a qualified alternate of the UML models and is a 

representative of any model that can be expressed with it. Since the UML metamodel 

includes information for all the diagrams in the modeling suite, a subset of the UML 

metamodel that includes all elements related to modeling a use case diagram is shown in 

Figure 18. A detailed description of the abstract syntax and well-formedness rules of 

UML use case diagrams is provided in Appendix 1.  

 

Figure 18 Subset of the UML Use case diagram metamodel 
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4.4.2 Use Case Diagram Metamodel Extension 

The use case model that is part of the UML specification describes only its structural 

view. The structural view defines the services provided by the system without divulging 

its internal structure. The internal structure presents the behavioral aspect of the use case. 

A use case, once initiated by an actor, performs a number of operations to provide a 

meaningful output to the invoking actor. These set of operations constitutes a use case’s 

behavior. There are a number of ways in which the behavioral information can be 

presented. A classification of these approaches is given in Figure 19 below: 

 

Figure 19 Use Case Behavior Description Approaches 

 

Use Case 
Behavior 

Textual 

Unstructured 
/ Prose 

Structured / 
Tabular 

Jacobson [39]  

Cockburn  [379] 

Kruchten [381] 

Leite et al.  [382] 

Toro et al. [383] 

Visual 

Activity 
Diagram 

Nakatani et al. [374]  

Gutiérrez et al. [372] 

Lei & Jiang [373] 

Sequence 
Diagram 

Li [370]  

Almendros & Iribarne [369]  

Yue et al. [371] 

Formal 

Calculus Back et al. [375]  

Abstract State 
Machine 

Grieskamp et al. [377]  

Z Grieskamp & Lepper  [378] 

X-Machines Dranidis et al. [376]  
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Which of these approaches to use depends on the nature of the use case behavior as well 

as the intended reader? It is suggested by Cockburn [379], Kulak and Guiney [380] and 

many other practitioners that non-technical stakeholders usually understand use case 

behavior written in the vocabulary of the problem domain better than any other notation. 

Hence the text-based approaches gained immense popularity. Two major advantages 

available by selecting the text-based approach for behavioral specification are:  

1. Understandable by both technical and non-technical stakeholders. 

2. Minimum use of UML vocabulary. 

 

One major trade-off when selecting textual specifications to model use case behavior is 

that they are prone to mistakes and incompleteness. Although using formal models and 

other UML diagrammatic notations for requirements elicitation and use case description 

allows for better structure and validation, it also introduces a high participation hurdle for 

customer involvement which is the main goal for use case specification. In order to 

circumvent the issues posed when using the text-based approach, we propose a 

metamodel that extracts useful information from the text and maps it to the metamodel 

elements for further analysis. A number of different notations or templates for composing 

them have been proposed in the literature. Table 2 shows a number of prevalent 

initiatives that describe a use case template descriptions in the form of a structured 

template. 
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Table 2 Template elements from different notation proposed in the literature 

Template Elements 
Cockburn 

[379] 

Jacobson 

[39] 

RUP 

 [381] 

Leite 

[382] 

Toro 

[383] 

Name: Unique name assigned to a use case √ √ √ √ √ 

Number: Unique ID assigned to a use case √   √  

Goal: Statement of goals expected from the use 

case 
√     

Scope: System being considered black-box under 

design 
√     

Level: Level of use case description √     

Description: Brief summary of use case purpose  √ √   

Primary Actor: Actor that initiates the use case √    √ 

Secondary/Supporting Actors: Actors that 

participate within the use case  
√     

Offstage Actors: Non-interacting actors 

concerned with the outcome of the use case 
     

Special Requirements: List of non-functional 

requirements 
 √ √   

Preconditions: Expected state of the system prior 

to use case execution 
√ √ √ √ √ 

Post-conditions (Success): State of the system 
upon successful completion of the use case  

√ √ √  √ 

Post-conditions (Failure): State of the system if 

goal is abandoned  
√     

Performance Target: The amount of time this 

use case should take 
√     

Priority: How critical to the system / 

organization is the use case 
√     

Frequency: How often is it expected to happen √     

Open Issues: List of issues about this use case 

awaiting decisions 
√    √ 

Due Date: Date or release of deployment √     
 

Main Flow: Steps of the scenario from trigger to 

goal delivery 
√ √ √ √ √ 

Sub Flows: Sub-variations that will cause 

eventual bifurcation in the flow 
√ √  √  

Alternate Flows: Conditional variations that will 

cause eventual bifurcation in the flow 
√ √  √  

Extension Points: List of extensions each 

referring to a step in the main flow 
 √ √   

Exceptions: Conditional variations that will 

cause unsuccessful termination of use case flow 
   √ √ 

Super Use Case: Name of use case that this one 

specializes 
√     

Sub Use Case: Links to all use cases that 

specialize this use case 
√     
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As observed from Table 2, a number of variations exist in the elements for use case 

description template. Despite these differences, each approach has two major parts of 

information: description and dynamics depicted in Table 2 separated by a thick line. The 

description part includes elements such as name, number, goal, scope, level, description, 

actors (primary and secondary), preconditions, post-conditions (success and failure), 

priority, frequency, open issues, due date and special requirements. The dynamics part 

captures the use case’s flow of execution. Flow of execution of a use case includes a 

sequence of steps that can either be events (messages exchanged between actors and use 

case objects), or anchors (that disrupt the main flow by allowing access to sub flows, 

alternate flows, use case extensions and inclusions).  

The main objectives in proposing an extension to the use case metamodel can be 

summarized as follows: 

1. The original metamodel is an essential subset of the extended metamodel so that 

information can be utilized from both depending upon the requirement of the user.  

2. The extended metamodel should take into consideration information from all 

published templates. But information that is useful for further analysis of the use case 

model should be included as meta-classes so other tools can access and extend it 

easily and other information can be included as meta-attributes of the respective 

meta-classes. 

3. Information for use case analysis, model evaluation, and model interchange should be 

readily available and accessible from the metamodel. 
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4. The extended metamodel should provide an integrated global modeling environment 

for tools and users and provide seamless transition from requirements to system 

modeling. 

 

For the sake of clarity of presentation, we construct the metamodel in pieces. A complete 

metamodel is presented towards the end of this section. Each modeling element from the 

use case diagram is analyzed and extended.   

4.4.2. (a) Actors 

Actors are used in the use case diagram to model users of the system. The UML 

Specification defines actors as entities that can communicate with several use cases. In 

this proposed extension to the use case metamodel, we classified actors based on two 

criterions: the role they play in a use case and the role they play in the system. Many 

authors define different types of actors based on their role in the use case. According to 

Larman [384], an actor can be classified into three types:  

1. Primary Actor: An actor that initiates the use case and helps realize its goal. 

2. Supporting Actor: An actor that participates in a use case that helps realize a 

primary actor’s goal. 

3. Offstage Actor: An actor that does not interact with the system but has needs that 

should be addressed in the system. Offstage actors are considered as stakeholders of 

the system under development.  
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The actor’s type may differ from use case to use case. Based on the above classification, 

we added three associations between the UseCase meta-class and the Actor meta-class to 

denote the role an actor plays in a use case. Popularity of the use of use case modeling as 

a de facto standard for requirement modeling in the field of software engineering was 

further enhanced with the establishment of a software estimation technique known as Use 

Case Points (UCP) [385].  UCP became a good candidate for early estimation of software 

size and effort because of its simplicity and ease of use. The main activity of UCP is to 

estimate the complexity of actors and use cases. The complexity of actors is identified 

based on the role an actor plays in the system (as opposed to in a use case as discussed 

above).  

In order to incorporate this information in our extended metamodel, we categorized 

actors based on information from both the original UCP model presented by Schneider 

and Winters [385] and the enhanced model known as iUCP presented by Nunes [386]. 

Based on this, we classified the actors into the following categories: 

1. System Actor: This type of actor is another system interacting with the base system 

through an application programming interface (API). For example, the ATM system 

reads the credit card information directly from a credit card reader. In this case, the 

credit card reader is outside the system and accessed through an API; therefore, the 

credit card reader is a system actor. 

2. Network System Actor: This type of actor is another system interacting with the 

base system through a protocol or data store. For example, the ATM system verifies 

the credit card information from an accounting system. In this case, the accounting 
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system is outside the system and accessed through a network. Therefore the 

accounting system is a network system actor. 

3. Human Actor: This type of actor is a person or a user who will use the system. It is 

the most common type of actor. For example in the ATM system, a customer will ask 

the system to perform a transaction and therefore, the customer is a human actor. 

 

The iUCP model differs from the original UCP model as it is based on the usage-centered 

design method [387] in contrast to the conventional use case model for classifying actors. 

The main reason behind this is because of the richness of the information conveyed by 

the usage-centered method regarding the complexity underlying each actor.  Human 

actors are divided into simple, average and complex based on the number of roles they 

play in the system.  In the usage-centered design method, the concept of actor is 

expanded through user roles that represent the relationship between users and a system. A 

user role is characterized by the “context in which it’s performed, the characteristic 

manner in which it’s performed, and the design criteria for the role’s supporting 

performance” [386]. The number of roles supported by each human actor provides an 

important way to infer the complexity associated with each actor.  In order to incorporate 

this, we added a meta-attribute called num_roles to the Actor meta-class. Since this 

attribute is associated with human actors only, a default value of 1 is used for system and 

network system actors.  

Actors in a use case model can be associated to each other using the generalization 

relationship. It is the only kind of relationship that exists between actors. The actor 

modeling the common role is referred to as the parent actor and the actors using the 
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common role are called the child actors. In simple terms, a child actor inherits the 

capability to communicate with the use cases its parent actor is associated with. The 

metamodel representation with the modified Actor meta-class and its relationship with 

the UseCase meta-class are presented in Figure 20. 

 

4.4.2. (b) Use Case 

A use case within a use case model consists of number of information elements as shown 

in Table 2. Despite the difference of information portrayed by different templates, each 

template has two major parts of information: the description part and the dynamics part. 

In this section, we discuss the description part of a use case.  

Information within the use case description can be classified into two categories; 

information that is used for “mere” documentation purpose and information that will be 

used for use case analysis at later stages of software development. Keeping in lieu with 

Figure 20 Addition to the extended UML metamodel for Actor 
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the above mentioned criteria, we decided to separate these elements and depict them 

independently in the enhanced metamodel as follows: 

1. Use case description elements that will be used for its documentation will be 

represented as meta-attributes in a separate meta-class called Description. (See Figure 

21) 

2. Use case description elements that will be used for analysis will be represented as 

separate meta-classes and elaborated and justified later in this section.  

 

 

 

 

Figure 21 Addition to the extended UML metamodel for Use Case 
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4.4.2. (c) Use Case Relationships 

UML defines three types of relationships between use cases: ‹‹include››, ‹‹extends›› and 

generalization. When describing these relationships through a metamodel, we need to 

discuss the relationship depiction on the use case structural view and within the use case 

flow of execution (its behavioral view). In this section, we discuss the impact of use case 

relationships on metamodel elements that depict the use case’s structural view. We 

provide a coherent description of these relationships derived from the literature and 

extend the use case metamodel based on these descriptions. The manner in which these 

relationships are depicted in the use case’s flow of execution are discussed later.  

 Include Relationship 

Two use cases are related by the ‹‹include›› relationship if one use case (known as 

the base use case) uses the functionality offered by the other use case (known as 

the included use case). Two main reasons for using the ‹‹include›› relationship in 

a use case model according to the UML specification are: to fragment Complex 

Use Case into manageable ones [384, 385] and to reuse use Cases [384, 385, 388-

392]. Apart from this, some authors recommend the use of ‹‹include›› relationship 

for conditional behavior [384, 389, 391] and to handle asynchronous events [384]. 

The main motivation behind the use of ‹‹include›› relationship for conditional 

behavior by the above-mentioned authors is that this relationship is much easier 

for most people to understand and use than other relationships such as ‹‹extends›› 

and generalization. Also the use of ‹‹extends›› is restricted to cases where the base 

use case is locked or “closed for modification”. Since it is difficult to gauge when 

a use case is closed for modification, we adopted the semantics of the ‹‹include››  
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relationship as outlined in the UML specification and accepted by majority of the 

authors [393] and leave the concept of conditional behavior to the ‹‹extends›› 

relationship. We do not modify the meta-classes related to the ‹‹include›› 

relationship in the extended metamodel.  

 Extend Relationship 

Two use cases are related by the ‹‹extends›› relationship if one use case (known 

as the base use case) implicitly incorporates the behavior of another use case 

(known as extension use case) at a specified location. The extension use case is 

executed only when some particular condition is satisfied in the base use case. 

There have been many reasons proposed in the literature for the use of the 

‹‹extends›› relationship in the use case model. These can be summarized as 

follows: 

1. Optional or Exceptional Behavior: Behavior that is optional to the base 

use case can be separated and defined in an extending use case. Most 

authors agree with this usage of the extend relationship [1, 385, 388-391].   

2. Asynchronous Events: An asynchronous event is one that can be called at 

any point in the base use case. Use of the extend relationship to describe 

asynchronous events is supported by Constantine and Lockwood [1] and 

Cockburn [379]. 

3. Defer Behavior Implementation: Armour and Miller [389] suggested the 

use of extend relationship to separate behavior from the base use case that 

can be developed later in order to assign it a lower priority.    
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The semantics of the ‹‹extends›› relationship has created a lot of disagreement 

among authors. In this section, we attempted to resolve these concerns by 

extending the metamodel to incorporate necessary information in order to ensure 

consistency in semantics of this relationship.  

Since the extend relationship is optional and controlled by an execution condition, 

it requires the specification of the following elements: 

 Extension Point: The point in the behavior of the base use case where an 

extended use case can be inserted is known as the extension point.  

 Extension Constraint: This is an optional constraint that specifies the 

condition that must be true for the extension use case to be invoked from 

the base use case. 

 

When the extension point in base use case scenario is reached, the extension 

constraint is evaluated and control is switched to the extension use case. After the 

execution of the extension use case, the control is resumed just after the extension 

point in the base use case scenario [39, 379, 389]. But in order to use the extend 

relationship to model exceptional behavior, the control should be allowed to 

return to any point in the base use case flow or be allowed to end the use case 

resulting in a failure or alternative success scenario. In order to handle these 

situations, Metz et al. [359] defined five types of alternative sequences. These are 

summarized in Table 3 below.  
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Table 3 Summary of Alternative Scenarios 

Alternative History: The control in this type 

of alternative sequence never returns to the 

base use case scenario. The success post-

condition in this case can either be the overall 

success post condition of the base use case or 

its subset. 
 

Alternative Insertion: The control in this type 

of alternative sequence returns to the point just 

after the extension point in the base use case. 

 
Use Case Exception: The control in this type 

of alternative sequence never returns back to 

the base use case scenario. In contrast to 

alternative history, the use case exception is 

always a failure scenario and results in a failure 

post condition.  

Alternative Fragment: The control in this 

type of alternative sequence returns to any 

point after the extension point in the base use 

case. 

 

Alternative Cycle: The control in this type of 

alternative sequence returns to any point before 

the extension point in the base use case. 
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In order to accommodate sequences mentioned in Table 3, the concept of rejoin 

point was proposed [359, 360]. A rejoin point allows the control to return to 

separate point in the main flow after performing the steps specified in the 

extension use case. We followed a similar approach in our extension of the use 

case metamodel and added a meta-class called RejoinPoint. When the rejoin point 

is equal to the extension point it leads to an alternative insertion fragment. When 

the rejoin point is a point that occurs either before or after the extension point, 

then the alternate scenario leads to an alternative cycle or alternative fragment 

respectively. Finally when the rejoin point is not specified, it leads to a use case 

exception. 

In order to complete our extension to the Use Case metamodel for ‹‹extends›› 

relationship, we considered an interesting premise put forward by Laguna and 

Marqués [394]. An extension point in the base use case can be extended by 

several use cases. An issue arises when this extension point is reached and a 

decision is to be made if whether only one or at least one among these extension 

use cases are to be selected. In order to complete and clarify the behavior of the 

base use case and to aid in the process of elicitation of requirements, Laguna and 

Marqués [394] added multiplicity attributes to the extension point meta-class. 

Following their approach, we added the lower and upper meta-attributes to the 

ExtensionPoint meta-class to clarify the behavior of extend relationship in case of 

multiple use case extensions. A multiplicity of 0..1 states that the extension use 

case can be executed when the constraint is true (equivalent to the original UML 

extend semantics), a multiplicity of 1..1 states that only one of the possible 
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extension use case can be selected and finally a multiplicity of 1..* allows more 

than one use case to be inserted.     

In addition, following Constantine and Lockwood [1] in our metamodel 

extension, we have considered the concept of asynchronous extensions in which 

an extension use case can be called asynchronously at any step of the use case 

flow. Asynchronous extensions are defined in our metamodel as a separate meta-

class called AsyncExtend. It is defined separately as it lacks an extension point 

and extension location. For example, a customer can press cancel at any time 

during his usage of the ATM Machine. Figure 22 shows the extended metamodel 

for ‹‹extends›› relationship.    

 

Figure 22 Addition to the extended UML metamodel for extend relationship 
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 Generalization Relationship 

The generalization relationship in a use case model allows a given use case to be 

defined as a specialized form of an existing use case. Common behaviors, 

constraints and assumptions are factored out into a general use case (also known 

as the parent use case) which can then be inherited by a specialized use case (also 

known as the child use case). The concept of generalization and specialization 

gives rise to two types of use cases: 

 Abstract Use Case: An abstract use case is an incomplete use case that can 

only be invoked by another use case. An actor cannot directly invoke it. 

Jacobson refers to the generalized use case as an abstract use case. 

 Concrete Use Case: A concrete use case is a self-contained complete use 

case one that can be directly invoked by an actor. A concrete use case 

provides an implementation to an abstract use case. Jacobson refers to the 

specialized use case as a concrete use case. 

 

Most authors agree with the definition and usage of the generalization 

relationship. Figure 21 depicts the use case metamodel for generalization. 

Although the structural representation of this relationship is straightforward, its 

usage within a use case scenario description is vaguely described in the literature. 

A metamodel for generalization within a use case description is discussed in this 

section.  
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4.4.2. (d) Use Case Flows 

From the many forms of composing the dynamics part of the use case specification, 

Bittner and Spence [391] provided the most promising one. They expressed the use case 

dynamics through a sequence of steps. These steps are grouped to form behavioral 

fragments called flows. A single use case consists of multiple flows as shown in Figure 

23, but the flow of events that is initiated when the use case is executed by an actor is 

called the main flow. Apart from the main flow, a use case can also have multiple sub 

flows and alternate flows. These flows are initiated from the main flow. A sub flow is 

used either to describe complex logic associated with a particular step or to factor out 

redundant steps described in a flow. Alternate flows include behavior that is alternate to 

the use case. This could be optional or exceptional behavior Steps within a flow are 

usually atomic events, the content interpretation of which will be discussed later. Usually 

unconstrained natural language is used to describe the steps within a flow.   

 Figure 23 Structure of a typical text based use case description 
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Following the flow composition architecture described in Figure 23, we initially added a 

meta-class called Flow to the extended use case metamodel. Different types of flows are 

then represented as specialized meta-classes of the Flow meta-class: MainFlow, SubFlow 

and AlternateFlow. Apart from terminological differences and elements used, there are 

some noteworthy semantic differences between the templates mentioned earlier in Table 

2. In order to ensure deterministic initiation of use cases and their completeness, we 

describe the semantics that our extended metamodel is built upon as follows: 

1. Restrict the number of main flows to only one (as described by Cockburn [379] and 

opposed to Jacobson’s [39] notation that allows multiple main flows). 

2. Allow sub flows and alternate flows within sub flows and alternate flows. 

3. Allow multiple extension points (as described by Jacobson’s [39] notation and 

opposed to Cockburn’s [379] notation that does not allow extensions at all).  

In order to allow sub flows and alternate flows to have sub flows and alternate flows 

within them, we added another level of inheritance between the Flow meta-class and 

SubFlow and AlternateFlow. This intermediate meta-class is called OtherFlow. Most 

authors define use case flow as a composition of a sequence of steps [363, 364, 379]. 

Since one of our main goals for extending the use case metamodel is to use the 

instantiated use case model for analysis, we used the concept of transactions. Our main 

motivation in the use of transactions to describe flows is because transactions are mainly 

used as a complexity metric within the use case point method. A transaction is a shortest 

sequence of use case steps starting from an actor’s request and ending in a system 

response [395]. Hence, a use case flow is composed of a number of ordered transactions 

included in the metamodel by the Transaction meta-class. Each transaction is then 
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composed of a sequence of steps modeled by the Step meta-class. Figure 24 shows the 

excerpt of the extended metamodel for the use case flow of events. 

 

Figure 24 Excerpt of the Extended Metamodel for the Use Case Flow of Events 

 

 Use Case Action Steps 

In a flow description, a step can be classified as either an action step or a 

branching step. A step that performs a certain action (from the actor to the system 

or vice versa) is referred to as an event. A branching step is a step that alters the 

sequential order of the flow by invoking the behavior of another flow of events. 

Branching steps are discussed in the next subsection. Natural language sentences 

are used to describe an event. A number of approaches that make use of the 

grammatical structure of the natural language and natural language processing 

(NLP) techniques, to analyze and extract relevant information, have been 

proposed in the literature [396-404]. As far as the metamodel is concerned, we 

focused on the elements that make up a typical event sentence. An event allows a 
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sender to communicate with one or more receivers through a message (action) 

that may or may not include additional parameters (arguments). Hence, it is safe 

to assume that an event is composed of a sender, multiple receivers, an action and 

zero or more arguments.  

Since a step can either be an event or a branching action, it is specialized by two 

meta-classes called Event and Anchor. The Event meta-class is further extended to 

include Sender, Receiver, Action and Argument meta-classes based on the above 

mentioned reasons. In addition, following Diev’s transaction definition [395] and 

the transaction model proposed by Ochodek and Nawrocki [405], we enumerated 

four types of actions relevant from the use case transaction point of view. This is 

shown through an enumerated meta-attribute called actionType in the Action 

meta-class. Excerpt of the metamodel depicting the meta-classes relevant to a use 

case step is shown in Figure 25. 

Figure 25 Excerpt of the Extended Metamodel for the Use Case Flow Steps 
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 Use Case Branching Steps 

As mentioned earlier, a step can either be an event or a branching action. We refer 

to the branching action step as anchors as they are mere placeholders or locations 

within the main flow that invoke another flow or use case. The natural order in 

which steps occur within a flow is sequential from top to bottom. This concept of 

sequential ordering can be altered by including the behavior of another flow in the 

main flow. A flow may include another flow in its execution. This insertion can 

either be conditional or unconditional. Unconditional insertions of a flow are 

referred to as Inclusion. A flow may include another flow which is part of the 

same use case description (also known as sub flows) or may include a flow 

defined in another use case description (i.e. use cases related to each other by the 

UML include relationship). These two inclusions are referred to as Internal 

Inclusion and External Inclusion respectively. An internal inclusion anchor 

specifies the name of a sub-flow (bolded out to differentiate) [39] whereas an 

external inclusion anchor is composed of the keyword include followed by the 

name of the use case to be included [39, 379]. 

Use case descriptions, apart from allowing unconditional insertions, also provide 

a means of including another flow based on a condition. Conditional insertions of 

a flow are referred to as a Variation. Similar to that of Inclusion, a flow may 

include a variation flow part of the same use case description (also known as 

alternate flows) or may include a flow defined in another use case description (i.e. 

use cases related to each other by the UML extends relationship). These two 
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variations are referred to as Internal Variation and External Variation 

respectively.  

Internal Variation anchors usually do not include branching information. 

Information about an alternative flow is specified in the alternative flow itself. An 

example of an internal variation scenario is shown in Figure 26. 

 

Based on the example illustrated above, we modified the AlternativeFlow meta-

class shown in Figure 24 with the following meta-attributes: VariationStep and 

SequenceNum (for cases when a single step in the main flow can result in multiple 

alternative flows). Since the internal variation is a conditional branch, a constraint 

element needs to be added to the extended metamodel. All discussions related to 

constraints are deferred towards the end of this section. In addition, since the 

alternation scenarios depicted in Table 3 are applicable to alternative flows, an 

association is added between the AlternativeFlow meta-class and the RejoinPoint 

meta-class. 

Main Flow 

1. ----------- 

2. ----------- 

3. The Customer enters the withdrawal amount. 

4. ----------- 

Alternative Flow 

3 (a) ATM System has no currency 

1. The system notifies the customer that the ATM is out of 

cash. 

2. The use case ends. 

Figure 26 UC Description example depicting the use of Alternative 
Flow 
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An external variation anchor specifies the name of the extension point. 

Information regarding the extension use case to invoke, condition and location is 

included in the extension point.  An example of the use of an extension point and 

its description is shown in Figure 27. 

 

Figure 28 illustrates how the concepts mentioned above can be included as 

specialized meta-classes of the Anchor meta-class mentioned in Figure 25.  

 

 

Main Flow 

1. ----------- 

2. System requests withdrawal amount 

3. The Customers enter the withdrawal amount  

4. {Exceeds Limit} 

5. ----------- 

 

Extension Points 

       Exceeds Limit [amount >= maxAmount] : Exceed Error , return: 2   

                    
                            Constraint           Extension Use Case     Rejoin Point 

Figure 27 UC Description example depicting the use of Extension Points 

Figure 28 Metamodel for the Anchor meta-class mentioned in Figure 25 
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 Use Case Generalization  

One area when describing textual use case metamodels that has been given least 

attention is how a specialized flow of a child use case is specified. Hoffmann et 

al. [361] were the first to discuss generalization within use case flow. They 

introduced the concepts called general narrative description and specialized 

narrative description to differentiate between original use case flow and inherited 

use case flow. Although the formalization provided by them has its own merits, 

inheriting all elements of the general narrative description within the specialized 

description causes redundancy and makes the behavioral model difficult to 

maintain. The only other work to discuss generalization in use case flow was 

carried out by Repond et al. [364]. In their work, a generalized use case is 

required to define points (called Generalization Points) where the specialized use 

cases can add additional behavior. Two main problems with their approach are:  

 A specialized use case can only add additional behavior but cannot modify 

or replace the steps of the generalized use case. 

 The use of “Generalization Point” within the generalized use case defeats 

the purpose of allowing the generalized use case not to care about what 

specialization use cases exist.  

In this section, we clarify the semantics of use case generalization and provide an 

extension to the use case metamodel. We used the terms parent use case to refer to 

the generalized use case and child use case to refer to the specialized use case. 

The two main functions of the child use case when inheriting from a parent use 
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case are: modifying existing behavior and adding new behavior. The child use 

case replaces a portion of actions, conditions and rules of the parent use case. The 

steps to be replaced are rewritten; steps not rewritten are executed as in parent use 

case. Apart from this, new actions, conditions and rules can be added, thus 

enhancing the behavior of the child use case. Since the flow description of a child 

use case will be either adding new behavior or inheriting existing behavior from 

the parent use case, we included it as a separate meta-class called ChildFlow 

inheriting from the Flow meta-class. Since the use case can either have a 

MainFlow or a ChildFlow depending on whether it is a parent use case or child 

use case, we modified the multiplicities on these two associations in the 

metamodel to 0..1 instead of 1. 

Steps in the child use case flow can be defined locally (added behavior) which is 

handled by association between the super meta-class Flow and Transaction in the 

metamodel. Inherited behavior can either be modified or executed and used as-is. 

Similar to the manner we handled Alternative Flow in describing use case 

branching steps; we define a new meta-class redefinedStep. This meta-class has a 

meta-attribute inheritedStep, which references the step number inherited from the 

parent use case. Hence, a child flow is composed of regular steps and redefined 

steps. A redefined step can be rewritten; hence, we add a relationship between the 

inheritedStep meta-class and the Step meta-class to facilitate this information. A 

modified version of the use case metamodel extension depicted in Figure 25 that 

handles use case flow generalization is shown in Figure 29.  

 



135 

 

 

Figure 29 Excerpt of the Extended Metamodel for UC Flow with Generalization 

 

Figure 30 shows exemplarily how the main flow of use case Reservation is 

redefined in the child use case Reserve Conference. We used the keyword “super” 

to differentiate between a regular step and inherited step within the child flow 

description. Hence, our proposed extension not only allows reusability of actions 

that do not require rewriting, it also allows child use case to modify actions 

inherited from parent use case flow.      

Use Case: Reservation 

Main Flow 

1. The system displays a list of 

options available for 

reservation. 

2. The customer selects an 

option. 

3. The system displays the total 

cost. 

4. The system displays the 

reservation confirmation 

number. 

5. The use case ends 

 Use Case: Reserve Conference 

Child Flow 

1. super: 1 

2. super: 2 

a. The customer selects to 

reserve a conference room. 

3. The customer selects the room size, 

duration and additional equipment 

required 

4. The system computes the cost. 

5. super: 3 

6. super: 4 

7. super: 5  
Figure 30 UC Flow Generalization example 
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4.4.2. (e) Use Case Constraints 

A use case model is composed of a number of constraints related to different model 

elements. We briefly describe these constraints prior to defining the metamodel 

extension. Constraints within a use case model include:  

1. Precondition: Preconditions indicate circumstances that must be true prior to the 

execution of the use case behavior. A precondition on a use case explains the state the 

system must be in for the use case to begin.  

2. Post-condition: A Post-condition indicate circumstances that must be true after 

execution of the use case behavior. A post-condition on a use case explains the state 

the system will be at the end of its execution. Based on the concept of alternate 

scenarios presented in Table 3, a use case can result in one of many states depending 

on the execution path (scenario) followed. Hence, a use case can have a single 

successful post-condition and multiple failure or alternate post-conditions. This 

concept is explained appropriately by the illustration in Figure 31 adopted from [1]. 

3. Extension/Alternate Flow Constraint: Execution of use case alternate flows or 

extension use cases require a condition to be satisfied. This condition is referred to as 

a flow constraint.   
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All approaches that provide extensions to use case metamodel make use of a single meta-

class called Constraint to handle use case constraints. Recent advancements in the field of 

use case modeling prompted the necessity of a structured storage and representation 

mechanism for constraints. Two main research proposals that make use of the use case 

constraint structure are: (1) Inferring use case sequencing relations from preconditions 

and post-conditions for requirements verification [406], use case synchronization [407] 

and test scenario generation [408]; (2) Enhancing software effort estimation process by 

assigning weights to preconditions, post-conditions and exceptions [409].  

Prior to describing the use case metamodel extension with use case constraints, we 

included a meta-class in the metamodel called Entity. An entity, what most use case 

modeling tools refer to as Vocabulary or Glossary, refers to the systems under 

consideration, use cases, actors of the system and their attributes. For instance, Customer 

and Transaction are entities of an ATM System use case model.  

Figure 31 Multiple Use Case Scenarios adapted from [1] 
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A use case constraint can be either atomic or compound. A compound constraint is 

composed of multiple atomic constraints constructed using Boolean operators (and, or 

and not). An atomic constraint is a 3-tuple <E, R, V> where E is the entity, R is the 

relational operator and V is the value. Values assigned to entities of the system can be 

either units such as “logged in” or numeric. For instance a use case precondition “System 

is Active” can be written as <System, =, Active>. In order to incorporate this structure in 

the use case metamodel, we add the following meta-classes: Constraint, Atomic, 

Compound, Value, Relation, Numeric and Unit.  Figure 32 shows the excerpt of the use 

case constraint metamodel.             

 

 

The complete extended use case metamodel is shown in Figure 33. Due its overwhelming 

size and the fact that the complete diagram is composed from figures previously included 

Figure 32 Excerpt of the Extended Metamodel for Constraint 



139 

 

in this section, the diagram in Figure 33 is annotated with the figure numbers it is 

composed of for reference. The diagram included in Figure 33 is only meant for 

visualizing the completeness and the connectivity between the components. Meta-classes 

highlighted in red-color are enumeration classes. The extended use case diagram 

metamodel along with other encouraging applications such as Effort Estimation for use 

case analysis and application for metamodel interchange among UML tools are provided 

by Misbhauddin and Alshayeb [410].  
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Figure 33 The Complete Extended Use case diagram Metamodel
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Since the extended metamodel for use case diagram adds behavior, we need to augment 

the formal definition of the use case. A formal definition of a use case flow is given 

below: 

Definition 4.4: A use case flow is a 6-tuple                       

               
  where 

   is a finite set of actors 

        is a finite set of action labels  

                  is a finite set of steps in a use case flow 

    is a partial ordering between steps and anchor 

        is a set of location anchors part of the use case flow causing inclusion 

or variation  

        
is a set of well-formedness rules on the Use Case Diagram    

 

A use case step         consists of the following components: 

-              is the actor initiating the action event. 

-                is the action event performed by the use case step. 

-         is a list of arguments.  

-                 is the actor receiving the action event.  

Anchors in a use case flow are classified into two different categories: Inclusion and 

Variation.  
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 [INCLUSION] An inclusion anchor            consists of a name and a body. 

The body of an inclusion anchor is given by another flow         . 

 

 [VARIATION] A variation anchor            consists of the following 

components: 

-          is the name of the alternate flow or another use case. 

-                is the condition at which the variation is invoked. 

-              is the rejoin point from the variation. 

The body of a variation anchor is given by another flow        . 

 

4.5 Object Constraint Language (OCL) 

OCL is a specification language and not an action language for UML. It is mainly used to 

write queries to access model elements and their values and state constraints on model 

elements. UML model elements are annotated with OCL constraints to ensure their 

proper usage and validity of the whole model.  

4.5.1 OCL Metamodel 

The OCL Metamodel part of the UML OCL 2 specification is given in Figure 34. As with 

the UML diagrams described in the previous subsections, all of them have constraints 

associated with one or more of their elements.  The main reason for including the OCL 

metamodel, as part of the integrated model, is to have a consistent structure for all the 

constraints provided by the UML diagrams.  
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A constraint in OCL is composed of a context and a set of expressions.  

 [Context] The context        of an OCL constraint consists of: 

-               is an optional name to address the context within the 

constraint’s body of expressions. Alternatively, the “self” is also used. 

-                              refers to the model element on which 

the constraint is defined. 

 [Expression] An expression     of a constraint consists of the following 

components: 

-                                

-           

-                

Figure 34 OCL Metamodel 



144 

 

4.5.2 OCL Metamodel Extension 

Although the OCL metamodel proposed by OMG is complete, it is rather comprehensive. 

Not all meta-classes included in the metamodel are used when describing constraints over 

the diagrams considered in our work. To make the OCL metamodel usable for describing 

constraints from class, sequence and use case diagrams in a structured yet simple manner, 

we adopt the extension proposed by Ramalho et al. [411]. They developed their 

metamodel from three sources: 1) The UML metamodel [10]  to ensure integration with 

the latest UML standard, 2) the OCL EBNF (Extended Bacchus-Naur Form) grammar 

and 3) the OMG OCL Metamodel. The excerpt of the OCL metamodel considered for our 

work is shown in Figure 35. The Constraint meta-class consists of one or more 

expressions (Expression meta-class) and is associated with a Context meta-class.  

 

 

Figure 35 Excerpt of the Extended OCL Metamodel 
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4.6 Integrated Metamodel 

Modeling a complex system requires the software designers to concentrate on multiple 

different aspects of the system. Designers have to take into account the static structure 

(attributes and operations), the dynamic behavior (scenarios, invariants), and its 

functional behavior (requirements, access rights) etc. Often complex metamodels are 

decomposed into a number of views particularly for multi-perspective metamodels such 

as UML. Designing models that conform to these metamodels often face consistency and 

integration problems between the different views. Usually, different views of the same 

metamodel share a common core. This common core inter-relates different views both at 

syntactic and semantic level. The UML specification provides only the syntactic 

commonality between views through high-level packages. With the advent of MDA, a 

number of approaches to integrate multiple views synthesizing semantic information have 

been proposed in the literature. In this section, we identify available approaches to link 

multiple views and use one of them to propose an Integrated Metamodel for refactoring 

multiple UML views.  

Model Integration can be defined as the creation of links between previously separated 

models, services or processes. Although referenced by multiple terms such as Model 

Composition, Model Synthesis, Model Weaving and Model Merging, the concept of 

model integration has been applied to the domain of Model-driven software engineering 

for numerous applications. Some of the prominent applications include integrating formal 

approaches to visual modeling languages [412], integrating complementary information 



146 

 

[27, 413], merging/synthesizing models [414, 415] and interoperability with other 

enterprise metamodels [416-418] .     

In order to link models at the same or different levels of abstraction, MDA provides two 

model integration approaches [9]: 

1. Model merging-based integration: Two or more models are merged together to 

produce a model at the same or lower level of abstraction.  

2. Metamodel-based integration: A mapping is defined between the metamodels of the 

models to integrate.  

In this work, we use the metamodel-based integration approach to propose an Integrated 

metamodel. Integrating models at the metamodel level allows efficient use of Model-

Driven Architecture techniques such as model weaving and model transformation. The 

main motivation for integrating metamodels in this work is to propose model-driven 

refactoring over multiple views of UML. Two main advantages of using an integrated 

metamodel for refactoring are: 

1. Interoperability: The flow of information between multiple views can be visualized 

and aids in establishing techniques on how to extract or understand the information in 

order to process them. 

2. Inter-navigability: Navigating across multiple models to identify refactoring 

opportunities can be very difficult. An integrated metamodel provides inter-

navigability that allows accessing related information for smell detection and model 

refactoring. 
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The UML specification provides numerous different diagrams that allow designers to 

model the structural, behavioral and functional aspects of the system under development. 

The Integrated Metamodel proposed in this work is developed incorporating one diagram 

from each UML view. These diagrams cover structural, behavioral and functional 

concepts of UML. This restriction is introduced for a single primary reason: to avoid 

unnecessary complication in metamodel integration and model-driven refactoring. 

However, the approach can be extended and applied to the entire suite of UML diagrams.  

To allow smooth integration of the metamodels, we initially identified missing 

information required to synthesize these metamodels. This information is depicted 

pictorially in Figure 36. 

Figure 36 UML Model Integration Elements 
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In order to facilitate integration of the missing information, we extended the UML 

metamodels of Use Case diagram and Sequence diagram to ensure seamless integration. 

The Integrated metamodel is composed of metamodel of the class diagram (see Figure 

13) that represents the structural view, extended metamodel of the sequence diagram (see 

Figure 17) that represents the behavioral view and the extended metamodel of the use 

case diagram (see Figure 33) that represents the functional view. In order to ensure 

complete modeling of information, the Integrated metamodel also incorporates the OCL 

metamodel so that constraints (from class diagrams), invariants and guards (from 

sequence diagrams) and pre and post conditions (from use case diagrams) are structurally 

represented.   

In order to ensure that the integrated approach is unobtrusive, we followed the integration 

principles proposed by da Silva and Paton [413]. These principles are briefly summarized 

below. 

 Standard UML should be retained as a subset in which existing constructs keep their 

roles and semantics. 

 Integration should support complete applications, so links between integrated models 

and existing UML models should be well defined and close. 

 Integration should introduce as few new model elements into UML as possible. 

 

In order to obtain the integrated metamodel, we follow a stepwise model composition 

approach. The metamodels for use case and sequence diagrams are initially composed 

and then this resultant metamodel is composed with the class diagram metamodel. 
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Finally the OCL metamodel is added to get the Integrated metamodel. Based on the 

composition semantic defined in [419], the integrated metamodel composition approach 

is shown in Figure 37. The receiving metamodel is a term used to specify the metamodel 

into which the other metamodel is composed inside. The resulting metamodel is a term 

used to specify the metamodel obtained after the composition has been performed. Based 

on existing methodologies [420-422], metamodel integration mechanism involves three 

basic steps:  

1. The Comparison Step: Correspondence between elements of the metamodel are 

identified and stored as a set of rules known as correspondence rules (also called 

comparison rules, mapping rules or matching rules).  

2. The Integration Step: Models mapped in the previous step are integrated in this step 

based on an integration strategy. The integration strategy defines which elements will 

appear in the integrated model and how these elements will be organized.  

3. The Consistency Step: The main objective in this step is to discover design errors, 

adverse properties and conflicts.   

In the following sections, we will elaborate the comparison and composition mechanism 

following the stepwise construction of the integrated metamodel shown in Figure 37.  
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Use Case Metamodel 

Integration 
Mechanism 

UC-SD Metamodel 

Resulting 
Metamodel 

Receiving 
Metamodel 

<<becomes>> 

STEP 1 

Sequence Metamodel 

 

<<becomes>> 

STEP 2 
Class Metamodel 

 

Integration 
Mechanism 

 

View Metamodel 

Resulting 
Metamodel 

STEP 3 

OCL Metamodel 

 

<<becomes>> Integration 
Mechanism 

 

Integrated Metamodel 

Resulting 
Metamodel 

Figure 37 Model Integration Framework 
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4.6.1 STEP 1: Sequence and Use Case Metamodel Composition 

In each step, we first identify correspondence between elements of the two metamodels. 

In order to identify correspondence, we generate a traceability matrix that highlights the 

mapping links between the two metamodels. The traceability matrix identifies the 

following types of correspondence links between the metamodel elements.  

Syntactic Similarity (SYN): This correspondence relationship indicates that the 

two meta-classes related to each other by this link are syntactically equivalent. Usually, 

syntactically similar meta-classes are specializations of a common super-class in the 

UML Specification. Syntactically similar meta-classes are merged together in the 

resulting metamodel. 

Semantic Similarity (SEM): This correspondence relationship indicates that the 

two meta-classes related to each other by this relation are semantically equivalent. In 

order to integrate semantically similar meta-classes in the resulting metamodel, 

correspondence rules are defined.  

Inclusion (INC): This mapping link indicates that the meta-class is included in 

the resulting metamodel although no similarity exists between this meta-class with other 

meta-classes. Correspondence rules are defined to describe the association of this meta-

class with other meta-classes in the receiving metamodel.  

Exclusion (EXC): This mapping link indicates that the meta-class is excluded 

from the resulting metamodel. Typically, the main reason for exclusion is its relevance to 

the application of the Integrated Metamodel. 
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Dependency (DEP): This mapping link indicates that the two meta-classes 

related to each other by this relation are dependent. Meta-classes related by this link are 

usually kept in the resultant model and a directed dependency link is added between 

them. 

 

 

The use case metamodel included in the UML specification provides only its structural 

elements. This is the reason why the use case metamodel was augmented with behavioral 

information by integrating use case flows or scenarios. Hence, this augmentation has 

made the use case diagram more similar to the sequence diagram. An abstract 

relationship between the use case and sequence diagram is shown in Figure 38. Based on 

this information, the use case metamodel is considered the receiving metamodel as it is 

composed of sequence diagrams.  

In order to keep the size of the traceability matrix to a manageable dimension, the 

inclusion and exclusion meta-classes are listed separately in Table 4. Another important 

observation is that the Constraint and StateInvariant meta-class are added to the 

Integrated metamodel as-is in this step until the final step of OCL metamodel integration. 

Another important decision is to decide which meta-class to include in the Integrated 

metamodel in case of Structural Similarity. Based on the principles of integration 

summarized in the previous section, meta-classes closer to the UML standard are 

retained.      

Use Case 

Diagram 

Use Cases  1 * Sequence 

Diagram 
1 1 

Figure 38 Abstract Relationship between Use Case and Sequence Diagram 
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Table 4 Inclusion and Exclusion Meta-classes in Step 1. 

Mapping Link INC EXC 

U
se

 C
as

e 

M
et

a-
cl

as
se

s Use Case 
Description 

Constraint 

Include 
SpecialREQ 

Extend 

AsyncExtend RejoinPoint 

 

S
eq

u
en

ce
 

M
et

a-
cl

as
se

s 
StateInvariant 

PartDecomposition 

ConsiderIgnore 

 

The meta-classes for Include and Extend are added to the Inclusion list as they merely list 

the use cases included or extended by the base use cases. Their use in the behavior is 

provided by anchors (inclusion and variation) included in the traceability matrix. Based 

on the traceability matrix shown in  

 

 

Table 5, a set of correspondence rules were generated that can be used for composing the 

use case and sequence diagram metamodel. The intermediate resulting metamodel 

(referred as UC-SD metamodel) is shown in Figure 39.  
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Table 5 Traceability Matrix for Use Case and Sequence Metamodel Composition 
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Use Case Diagram Meta-classes 

 
Actor 

Extension 

Point 

Flow Event Step Inclusion Anchor Variation Anchor 

Main Child Sub Alt Sender Receiver Action Argument Internal External Internal External 

Lifeline DEP              

Message         SYN      

Message End       SEM SEM       

Interaction   SYN SEM           

Opt      SEM       SEM  

Loop      SEM       SEM  

Break      SEM       SEM  

Neg      SEM       SEM  

Par     SEM      SEM    

Alt      SEM       SEM  

Seq     SEM      SEM    

Strict     SEM      SEM    

Assert      SEM       SEM  

Critical      SEM       SEM  

Gate       SEM SEM       

Interaction 

Use 
 SEM          SEM  SEM 

Argument          SYN     
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Figure 39 Step 1: The UC-SD (Intermediate) Metamodel 
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4.6.2 STEP 2: Class Metamodel Composition 

Integrating the class diagram metamodel is simpler than the use case and sequence 

diagram metamodel integration. Although most of the traceability links between the class 

diagram metamodel and the UC-SD metamodel are structural similarity, we discourage 

its use due to the principles followed in the integration process. Hence, instead of 

merging the structurally similar meta-classes, we add the Dependency relationship 

between the related meta-classes. Thus, the structure of the class diagram remains intact 

for model evaluation and the dependency relation aids in navigating related information 

for model smell detection and refactoring. The mapping links between the class diagram 

meta-classes and the UC-SD meta-classes is shown in Table 6. 

Table 6 Traceability Mapping between Class and UC-SD metamodel classes 

Class Diagram 

Meta-classes 
Mapping Links 

UC-SD 

Meta-classes 

Class 
DEP Lifeline 

DEP Actor 

Property INC  

Operation DEP Message 

Parameter SYN Argument 

AssociationEnd INC  

AssociationClass INC  

Association INC  

Generalization INC  

Dependency INC  

Operation meta-class in the class diagram metamodel is structurally similar to the 

Message meta-class in the UC-SD metamodel. In order to keep the semantics of the class 

diagram intact, a dependency link between the Operation meta-class and the Message 
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meta-class is added. Because of the above-mentioned composition, the Parameter meta-

class is merged into the Arguments meta-class in the UC-SD metamodel. Since the 

Parameter meta-class has an attribute called direction, the association relationship 

between the Arguments meta-class and the InteractionUse meta-class is modified. 

Initially there were two associations differentiating between the input and the output 

arguments. These associations are now replaced with a single association and the 

direction attribute will handle the type of the argument (i.e. in or out).  

A dependency relation is added between the Class meta-class and the Lifeline and Actor 

meta-class. This relationship is justified by the fact that any lifeline included in a 

sequence diagram needs to be available as a class instance in the class diagram. Similarly, 

an actor in the use case represents the role, which is usually transforms into an entity 

class within the class diagram. Hence, a dependency link between the Class and Actor 

meta-class is also added to the Integrated Metamodel. 

A partially integrated metamodel that integrates the class diagram metamodel with the 

UC-SD metamodel is given in Figure 40. We refer to this intermediate resulting 

metamodel as the View metamodel as it integrated the three views of UML.  
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Figure 40 Step 2: The View (Intermediate) Metamodel 
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4.6.3 STEP 3: OCL Metamodel Composition 

The final step in the stepwise composition of the metamodels is the inclusion of the OCL 

metamodel. The OCL metamodel defines a structure for describing the various 

constraints and invariants provided by the different views. The main meta-class in the 

OCL metamodel is the Constraint meta-class.  

Since the context will be directly related to the Constraint meta-class in the Integrated 

metamodel, the meta-classes Context and its specialized classes StructuralContext and 

BehavioralContext are excluded. Based on the extension proposed for the Use Case 

constraints in the extended use case metamodel, a mapping was established between 

Constraint metamodel (from Use Case) and the OCL Metamodel as shown in Figure 41. 

Hence, as a result the constraints from the use case metamodel are mapped directly as 

context to the Constraint meta-class provided by the extended OCL metamodel. 

 

 
Figure 41 Traceability Mapping between UC Constraint and OCL Metamodel 
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The StateInvariant meta-class is replaced with a composition relation between the 

Constraint meta-class and the Lifeline meta-class. Although the StateInvariant meta-class 

was a subclass of the InteractionFragment meta-class in the View metamodel, the 

context of the invariant is the lifeline. Hence, the path “Interaction (composition) 

Interaction Fragment (super-sub) StateInvariant” was reduced by directly relating it to 

the Lifeline meta-class. Another constraint from the sequence metamodel is the 

Interaction Constraint that guards the Interaction Operand. Similar to the above mapping, 

a composition relationship is added between the InteractionOperand meta-class and the 

Constraint meta-class excluding the InteractionConstraint meta-class from the integrated 

metamodel. 

The relationship between the Constraint meta-class and the Class, Property and 

Operation  meta-classes is borrowed from the works of Warmer and Kleppe [188] and 

Lano [423]. Below we describe how these relationships can be exploited to create a 

translation mapping between the OCL metamodel and the View metamodel. 

1. The most important way in which an OCL expression with type as context can be 

used is as an invariant. An invariant can be defined as a Boolean expression that 

evaluates to true if the invariant is true. Associating an invariant with a Class in a 

model means that any system made according to the model is faulty when the 

invariant is not met. This is represented in the integrated metamodel by the 

composition relationship with role-name inv between the Class meta-class and 

Constraint meta-class.  

2. An initial value for a property can also be given by an OCL expression. An initial 

value is the value that the instance of the class will have on creation. This is 
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represented in the integrated metamodel by the composition relationship with role-

name init between the meta-classes Property and Constraint. 

3. An attribute may also have a derivation rule. Attribute is an instance of the meta-class 

Property in the Class Metamodel, and the derivation rule is an instance of the meta-

class BehavioralConstraint. The fact that the rule describes the derivation for attribute 

is represented in the integrated metamodel by the composition relationship with role-

name derivation between the meta-classes Property and Constraint. 

4. Constraints attached to an operation that defines what properties should be true at 

initiation of the operation and at termination of the operation when it executes 

normally are represented by preconditions and post-conditions. This is represented in 

the integrated metamodel by the composition relationship with role-name pre and 

post between the meta-classes Operation and Constraint.  

A complete diagram of the Integrated metamodel is depicted in Figure 42. 
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Figure 42 The Complete Integrated Metamodel 
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5 CHAPTER 5 

INTEGRATED MODEL REFACTORING 

Refactorings are usually defined in two ways. The first style is to identify and describe a 

refactoring opportunity (or bad smell) first and then propose a set of refactorings that 

either removes or alleviates the effect of this smell (also known as Smell-Based 

Refactoring). The second style is to describe a refactoring first and then provide a list of 

instances in which this refactoring can be applied. Fowler et al. in [15] used both of these 

ways when defining refactorings. For instance, Fowler et al. identified Lazy Class as a 

bad smell that occurs when a class is not handling enough responsibility in a system. In 

order to remove this smell, they proposed either using the Collapse Hierarchy refactoring 

(if a subclass) or Inline Class refactoring (if not a useful component). In another section, 

Fowler et al. first defined the refactoring like Extract Method and then provided 

motivations (Long Method or Complex Method) regarding when to use this refactoring 

(a.k.a. Bad Smell).   

 We use the former method of defining and describing refactorings in this chapter over 

the integrated model. The reason for this selection is two-fold: 

 All model elements in the integrated model are similar to the model elements 

provided by UML. Hence refactoring operations over these elements (add, modify or 

remove) are already proposed in the literature. We make use of these primitive 

refactorings and propose a composite refactoring to handle the refactoring 
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opportunities identified in this work. A catalog of primitive refactorings defined over 

the UML model is provided in Appendix 2. 

 Structuring refactoring definitions around bad smells increases comprehension and 

readability.  

This chapter is organized as follows: Section 5.1 describes the standards and approaches 

used in our work to describe model-driven refactoring. Section 5.2 describes a template 

that will used in the remainder of the chapter to describe models smells and refactoring 

solutions. Section 5.3 describes a running case study used throughout the chapter to 

demonstrate the effect of refactoring. Section 5.4 describes eight integrated model smells 

proposed as part of this work in detail following the template described in section 5.2.  

 

5.1 Model Refactoring Strategy 

In Section 2.5, we identified and described a set of activities pertinent when proposing 

refactoring over models. In this section, we describe the formalisms and methodologies 

used in our approach to propose model-driven refactoring over the integrated UML 

model.   

5.1.1 Model Transformation System 

In order to select an appropriate model specification and transformation language, we 

identified a set of criteria to compare all available model-driven refactoring approaches. 

These criteria, proposed in the form of a comparison framework in [424], allows 

researchers and practitioners in selecting an appropriate approach suitable to their 
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specific needs and trade-offs. We selected the text-based (XMI) approach because of the 

following major advantages:  

1. Portability: Models created in any UML CASE tool can be used for refactoring with 

minimal translation effort. 

2. Ease of Use: Models represented in XMI are easier to follow as they are based on 

well-structured XMI Schemas. Simplicity of structure plays an important role when it 

comes to implementing complex refactoring operations.  

3. Expressiveness: XMI-based standards provide numerous ways in which important 

refactoring activities can be expressed. For instance, XPath or XQuery can be used to 

describe refactoring opportunity detections and so on. Complete lists of standards 

used in this work are described briefly in Appendix 3.   

Apart from numerous advantages, using text-based approaches such as XMI introduce a 

number of challenges. A major trade-off with XMI is the lack of formality. In order to 

overcome this issue, a lot of effort was invested in the design and implementation of 

parsing and model checking algorithms to ensure behavior preservation and model 

consistency. Two other relevant challenges posed are the amount of deep nesting and 

cross-referencing when working with XMI based approaches [425]. We circumvented 

these issues by mapping original XMI representations of UML models onto a simpler 

schema (an intermediate XMI representation) which resolves cross-referencing by 

replacing IDREF’s with relevant information for model analysis and transformation. The 

intermediate schema also reduces the depth of tag nesting to a maximum of three, which 

aids in model navigation for smell detection algorithms.   
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5.1.2 Model Smell Detection Strategy 

The focus of model smell detection is to fulfill the requirements regarding the description 

of the smell patterns. The core requirement for smell description is to describe them in a 

general and comprehensive manner. Smells are queries, which on execution must be able 

to detect their instances in the representation format of the model. The most well-known, 

widely used and standardized XML-aware query language is XQuery.  

XQuery is a functional and declarative language that supports concepts of user-defined 

functions and modules which allows grouping of related functions into independent 

packages. In our approach, we use XQuery to describe models smells over the integrated 

model. More information on XQuery is included in Appendix 3.        

5.1.3 Model Refactoring Application 

Several techniques are available to perform refactoring application over models. These 

techniques have been classified into different top-level taxonomies, below is a list of 

some popular approaches: 

1. Direct Manipulation Approach: Direct manipulation approaches use an internal 

representation of the model and a programming interface to manipulate the model. 

Tools that follow this approach make use of general programming languages like 

Java, C++ etc. providing a minimal infrastructure to organize the transformations. 

Transformation rules, behavior preservation primitives and scheduling in this 

approach are mainly done from scratch. The advantage of using a direct manipulation 

approach includes control over the internal representation of the model for model 

traversal and reorganization. But since transformation rules are implemented by the 
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user from scratch in this approach, it makes the transformation process cumbersome 

and hence affects reusability.   

2. Generic Transformation Approach: Generic approaches use tools and languages 

such as XSLT or graph transformation tools [426]. Although a number of languages 

are available in the literature [427] for XMI-based representations, XSLT is 

considered the most popular of them all. Implementing model transformations using 

generic approaches such as XSLT seem attractive as models are serialized using 

XMI. Model refactoring using XSLT usually leads to non-maintainable 

implementation because of the verbosity and poor readability of XSLT. Peltier et al. 

[301] proposed an alternative approach to use XSLT to execute model transformation 

on the back-end instead of specification. Li et al. [302] also proposed an approach to 

use QVT relations to specify transformations and implement each relation as an 

XSLT rule template. The main reason specified for using XSLT as a back-end 

language is due to its low-level syntax. However, these approaches overcoming the 

previously listed problems also suffer from poor efficiency, as the pass-by-value 

semantics of XSLT require a large amount information copying.   

3. Template Based Approach: Template based approaches separate the process of 

transformation rules description from the rule engine. A template usually consists of 

the target model containing splices of meta-information to access model elements 

from the source and perform model transformation. The source model accessing logic 

in this approach can be implemented in numerous ways. For instance, the logic could 

be a java code accessing the API provided by the internal representation of the source 

model or it could be declarative queries.           
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In this work, the direct manipulation approach is used to define and apply refactoring 

over the XMI representation of the UML models. The motivation behind this selection is 

mainly due to the use of the Integrated metamodel proposed in this work to represent the 

source model. The use of a direct approach allows complete control over the internal 

representation of the model for model traversal and transformation. Although fairly 

popular, XSLT and the template-based approach is not considered mainly because of the 

amount of information copying required between source and target models after each 

refactoring application and the high dependence of transformation engine tools 

respectively.     

5.1.4 Model Behavior 

As with other model-driven refactoring approaches proposed in the literature, we make 

use of pre-conditions and post conditions to ensure behavior preservation after 

application of refactoring. Each primitive refactoring operation is associated with pre and 

post conditions. Although an algebraic framework is used to describe these constraints, 

these are converted into programming language routines by the direct manipulation 

approach.  

5.1.5 Refactoring Process 

To demonstrate how the overall approach works, we discuss briefly the model refactoring 

process.  

1. Model Parsing and Integration: To start, one model from each view specifically the 

class diagram, set of sequence diagrams and the use case diagram (along with use 

case descriptions) comprise the input layer of the approach. Each of these diagrams 
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are serialized using XMI and are imported by the prototype tool. Before the 

integration, each diagram is checked for structural and semantic well-formedness 

based on the rules provided in Appendix 1. Models are then unified into a single 

integrated model following the composition rules discussed in Section 4.6. The 

resultant model conforms to the integrated metamodel proposed in this work.  

2. Model Traversal and Smell Detection: The integrated model is internally 

represented in the form of a Document Object Model (DOM) tree and traversed using 

an XMI parser. Model smells in the form of XQuery modules are then applied over 

the integrated model one-by-one. If a model smell exists within the model, the 

refactoring module is invoked. 

3. Model Refactoring: The refactoring module invokes applicable rules from the 

repository and applies it over the model. Each refactoring rule in the repository is 

associated with two constraints (Tpre, Tpost). If the pre-condition is satisfied, 

refactoring operations are applied over the source model. After refactoring, the post 

conditions are checked over the target model. If not satisfied, the refactoring 

operations are rolled-back and the source model is returned without any 

transformation.  

 

5.2 Model Refactoring Template 

In this section, we describe the template that is used to describe the refactoring 

opportunities proposed as part of this work. 
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1. Description: A description of the situation in which the refactoring opportunity is 

likely to occur.  

2. Rationale: Reasons why the pattern described above is considered a model smell and 

is in need of change. 

3. Target Quality Improvements: Quality aspects violated if this smell occurs. These 

usually include object-oriented principles, concepts and good design practices. 

4. Smell Detection Strategy: Description of model smells using XQuery is the actual 

core of the Refactoring Engine. As the framework is customized for the detection of 

model smells, this section demonstrates how XQuery is used to describe and detect 

bad smells in the Integrated Model. An algorithm of the detection strategy is included 

in this section whereas the XQuery functions that realize this algorithm are included 

in Appendix 4. 

5. Refactoring Mechanics: Refactoring operations can be classified into three 

categories based on their level of granularity: Primitive, Composite and Fine-Grain. 

Primitive refactoring is an atomic refactoring operation that cannot be split into more 

than one refactoring during application [6]. A sequence of primitive refactorings is 

known as composite refactoring. Composition of refactoring allows application of 

sequential refactoring operations on  the model as a single unit [428]. This section 

includes composite refactoring rules (mainly due to the use of primitive refactoring 

operations for class, sequence and use case diagrams from the literature) to handle the 

detected model smell. This subsection is structured into four parts as follows: Name, 

Preconditions, Mechanics and Post conditions. Behavior preservation in the target 

model is ensured with the help of preconditions and behavior-preserving 
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transformations (Mechanics). A list of post conditions, which should be valid after a 

refactoring, are also specified. Post conditions are useful in building tool support.   

6.  Example: A simple example to illustrate the applicability of the model refactoring is 

included. Of course, such examples can only show certain aspects of the usability of 

model refactorings. They cannot demonstrate their complete functionality and the 

variety and flexibility of possible applications. Since there is no visual representation 

of the integrated model, the examples include separate class, sequence and use case 

diagrams. 

7. Post Refactoring Improvements: The effect of refactoring on each view of UML 

considered is discussed to highlight the expected improvement.  

8. Side Effects: Refactoring sometimes lead to violation of user-implemented strategies. 

Any side effects as a result of refactoring application are included in this subsection. 

 

5.3 Running Case Study 

In order to make the presentation more concrete, we demonstrate the proposed 

refactoring application throughout this chapter over a running case study: Net Banking 

System (NBS). The following description sets up the context of the running example. 

NBS  is designed for financial institutions such as banks to provide their basic 

banking operations over the internet. The system allows customers to open 

accounts, perform online transactions like transferring money, paying bills and 

viewing account summaries. The system also allows bank operators and 
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administrators to perform updates to the system online and handling other online 

operations. 

The services provided by the system are summarized below and all functional 

requirements of the NBS system modeled through a use case diagram are shown in 

Figure 43. 

 Figure 43 Use Case Diagram of the Running Case Study 
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1. Open a new account: New customers and existing customers can open a new 

account.  

2. Bill Payment: Customers can use one of their accounts for bill payment. Popular 

agencies that can receive bill payments are already stored in the system. A customer 

can either enter the amount to be paid or pay the full retrieved amount based on the 

vendor account information provided. Regular auto-pay service for recurring monthly 

payments can also be setup. Bills can be marked as Favorite to avoid entering 

information each time a payment is made to the same agency. 

3. Transfer Funds: A customer can transfer money between his accounts. Transfers to 

other accounts require a Beneficiary setup prior to the transaction. If a transfer is 

made to an existing beneficiary, the setup process is by-passed.  

4. Account Summary: A customer can get an account summary for all his accounts.  

5. Transaction History: A customer can get transaction history for all his accounts. 

This includes all transactions performed between a selected duration of time.  

6. Admin Services: The system allows bank operators and system administrators to 

perform system updates, conflict resolution, account management and update through 

the NBS.   
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5.4 Integrated Model Smells 

5.4.1 Creeping Featurism 

5.4.1  (a) Description 

Functional decomposition is a design methodology in which functionality provided by 

the system is modularized for fine-grain control over implementation and ease of 

understanding. Although useful in understanding the modular nature of a larger-scale 

application, functional decomposition is considered an anti-pattern when applied to 

object-oriented domain [429]. Functional Decomposition in use cases is caused by 

separating analytical use cases into functions that yield a set of smaller use cases that are 

naturally easier to implement. This structuring, if not controlled, will result in many small 

use cases that offer little or no value to the system’s users if executed individually. 

Hence, the use case structure creeps directly into the design of the system making it look 

like use cases completely obscuring the concepts of objects and their relationships. This 

is referred to as Creeping Featurism Model Smell [430]. 

Use cases in UML are structured using pair of relationships between them: include and 

extend. Functional decomposition most commonly occurs due to the misuse of the 

include relationship. The effects of functional decomposition do not simply stop at the 

functional level; it disperses into the structural and behavioral level as well. A high 

degree of functional decomposition will result in behaviorally rich classes manipulating a 

number of dumb data classes. This indicates that responsibility is improperly distributed 

among classes. Data classes are classes that have only attributes, getter operations and 

setter operation [15]. Since getter and setter operations may be omitted by convention, a 
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data class is just a collection of attributes which defeats the purpose of Object-Oriented 

design methodology.  

5.4.1 (b) Rationale 

The anti-pattern of functional decomposition has been addressed recently in the literature 

in the context of UML model refactoring. Three out of four detection approaches propose 

the use of class diagrams to detect functional decompositions [19, 22, 24]. One major 

side effect in these propositions is the use of lexical analysis of class names to classify 

them as Functional classes. El-Attar and Miller [264] are the only ones who described the 

functional decomposition pattern over use case diagrams. They simply merge the 

functionally decomposed use case into the base use case without further analysis. The 

Creeping Featurism Model smell detects the occurrence of functional decomposition over 

use case, sequence and class diagrams. 

When working with use case diagrams, it can sometimes be the case that a number of use 

cases delegate smaller tasks to other use cases by making use of the include relationship. 

Although this helps in managing the complexity of the use case, it renders the whole use 

case model difficult to comprehend. Another drawback is when this logic results in the 

creation of smaller, less useful classes in the class model just to handle to the small task 

initially created in the use case model. These small classes will also increase the 

complexity of the sequence model by allowing behaviorally rich classes to use them as 

data placeholders and increasing the message communication traffic for simple get and 

set operations. Identification and removal of this model smell is beneficial to the user in 
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order to manage the modularity and complexity of the class, sequence and use case 

models and to ensure proper usage of object oriented design methodology. 

5.4.1 (c) Target Quality Improvements 

 Management of Use Case Complexity 

 Behavior Distribution 

 Modular Design/Cohesion 

5.4.1 (d) Model Smell Detection Strategy 

Initially, we define a use case that performs small tasks and provides little or no value to 

other use cases or actors. We refer to this use case as a Lazy Use Case (based on the 

naming of a class that does nothing in a class model proposed by Fowler et al. [15] ). 

 

 

 

To identify the availability of this model smell in an integrated model, a lazy use case 

needs to be identified. The interaction part of this use case is then examined to look for 

data classes. A class is termed as a data classes if it has only attributes and getter/setter 

methods. The pseudo code given below describes the steps required for automated 

detection of the creeping featurism model smell. 

 

 

Definition 5.1 Lazy Use Case: A use case is termed as a lazy use case 

if  

 It is an inclusion use case 

 It has no actors associated with it 

 Included only once by another use case  

 



177 

 

: ALGORITHM: CREEPING FEATURISM  

: start 

:    read Model   

:    for (each use-case in the Model) 

:       read UC 

:       if (UC inclusion count is 1) and (UC has no actor)  

:          parent = Including use-case of UC 

:    diff = (lifelines in parent) ∩ (lifelines in UC) 

:          if (diff is a data class)  

:     return diff 

:    end if 

:  end if 

:    end for          

: stop  

 

5.4.1 (e) Model Refactoring Mechanics 

Name: Remove Functional Decomposition 

Parameters: Usecase uc, Usecase inc, Class c and Class d        where, 

 uc is the lazy use case 

 inc is the use case that includes the lazy use case  

 c is the data class  

 d is the behaviorally rich class that manipulates the data class c 

Preconditions: 

i. Class c is not abstract. 

ii. Class c and d has no common attributes. 

iii. There is an inclusion relationship between use cases inc and uc. The use 

case inc includes the use case uc. 
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Mechanics: 

1. Remove Data Class (Part of the inclusion use case). This is done by 

identifying the class that has maximum interactions with the data class. 

Then use Inline Class refactoring to merge the data class into the 

identified class.  

2. Substitute Lifeline refactoring is then used to remove all references to the 

old data class from all interaction diagrams and replace it with its merged 

class. 

3. Collapse Fragment refactoring is then used to insert the interaction 

fragment of the inclusion use case into the interaction diagram of the 

including/base use case at the point of inclusion (ref fragment).  

4. Finally, Merge UC Inclusion refactoring is used to merge the inclusion use 

case into the including use case. 

Figure 44 shows the ordering of the composite refactoring Remove Functional 

Decomposition. 

Post Conditions: 

i. All association ends with class c in the previous model are replaced with 

class d in the refactored model. 

ii. Class c is removed from the model 

iii. The interaction fragments for use case uc is collapsed and merged into the 

interaction diagram of use case inc by inserting it at the point of inclusion.  

iv. Lifelines with reference to class c are replaced with reference to class d. 
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v. The inclusion relationship between use cases inc and uc is deleted. 

vi.  

5.4.1 (f) Example 

Figure 45 shows a subset of the model views from the NBS system that depicts the 

creeping featurism model smell. The Change Rate use case is included only by the 

Update use case and is not associated with any actor. On further examination of the 

sequence diagram for the Change Rate use case and Update use case, we identified a 

behaviorally rich class BankServer using a data class InterestRate (based on information 

from the class diagram). 

The InlineClass (BankServer, InterestRate) refactoring is first applied to inline and 

remove the class InterestRate. The SubstituteLifeline (BankServer, InterestRate) 

refactoring is then applied to substitute and redirect all messages that were initially 

communicated to/from InterestRate to BankServer. The CollapseInteraction (Update, 

Figure 44 Remove Functional Decomposition Refactoring 
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changeRate) refactoring is then applied to merge the changeRate interaction into the 

Update interaction at the point of fragment reference.  The interaction for changeRate is 

hence deleted as part of the CollapseInteraction refactoring. Finally, the 

MergeUCInteraction (Update, ChangeRate) refactoring is applied to merge the 

functionally decomposed use case ChangeRate into its base use case Update. The 

refactored model views are shown in Figure 46.  
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Figure 45 Excerpt of the NBS model views depicting Creeping Featurism Smell 
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Figure 46 Excerpt of the NBS model views after refactoring 
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5.4.1 (g) Post Refactoring Model Improvement 

The Functional View of the refactored model will not have unnecessary inclusion 

relationships and hence will reduce the complexity of the use case model view. The 

Behavioral View of the refactored model is improved a lot as a result of the refactoring 

operation. Some notable improvements are Reduction in the number of get and set 

messages exchanged between behaviorally rich classes and dumb data classes, removal of 

simple interaction fragments that result in referring to multiple sequence models for 

comprehension and enhanced behavior distribution by moving data to lifelines where it is 

used mostly. The Structural View of the refactored model will show improved modularity 

by the removal of data classes that increase coupling. 

5.4.1 (h) Side Effects 

Functional Decomposition when done due to lack of object-oriented knowledge is surely 

considered a smell and needs to be refactored. However, sometimes smaller use cases are 

extracted from a larger use case for future use by either associating an actor or making it 

reusable for other use cases. Using the Remove Functional Decomposition refactoring 

discussed in this section will result in deletion of this use case.   

5.4.2 Multiple Personality 

5.4.2  (a) Description 

Multiple personality smell [430] is a result of inappropriate requirements allocation. It 

can be found in use cases that play multiple roles. Ideally, each use case is required to 

play a single role. Hence, it is required that a use case contains only one, coherent set of 

responsibilities. Multiple personality can lead to the detection of two different situations: 
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a secondary role superimposed on a single class or multiple classes cutting across a single 

use case. The former is a well-known anti-pattern known as  God Class or Blob [431]. 

Following the same terminology, we refer to the later in our work as a God Use Case. A 

God use case is a result of improper partitioning of responsibility during system 

evolution, so that one module becomes predominant. 

Based on the works done to estimate the effort required for use case implementation 

[385, 386, 432], use cases are classified into three categories. A use case is considered 

simple if it has three or fewer transactions and the implementation of which requires five 

or fewer classes. A use case is considered average if it has four to seven transactions and 

the implementation of which requires five to ten classes. Finally, a use case is considered 

complex if it has more than seven transactions and the implementation of which requires 

more than 10 classes. Redistribution of functionality from a God Use Case becomes 

easier when we take a closer look into the behavior of the use case. Some of the identified 

symptoms are: 

 A God Use Case includes a number of lazy classes. This will result in increased count 

of classes participating in the use case. Removing these lazy classes will reduce the 

complexity of the use case.  

 Existence of middle man lifelines in the interaction of the use case. A middle man is a 

lifeline that sits between two other lifelines and just forwards method calls. Removing 

middle man elements will reduce the transaction count and number of classes 

implemented by the use case.  
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5.4.2 (b) Rationale 

When working with use case diagrams, it can sometimes be the case that although the 

overall model is small and compact but each use case may be highly complex. Although 

we agree that complexity is a subjective term but a use case, which covers multiple 

system goals, handles multiple requirements, whose behavior description cannot be 

covered in a single page should be termed complex. Although use of complex use cases 

within the use case model generates a neat and well-organized functional view of the 

system, its behavioral view is surely complex with wide array of messages exchanged 

between a number of incoherent classes and extensive concurrent set of operations. 

Identification and removal of this model smell is beneficial to the user in order to manage 

the complexity of the sequence models representing the complex use cases. This in turn 

will also affect the modularity of the class model. 

5.4.2 (c) Target Quality Improvements 

 Management of Use Case Complexity 

 Management of Behavior Complexity 

 Modular Design/Cohesion 

5.4.2 (d) Model Smell Detection Strategy 

To identify the availability of this model smell in an integrated model, a God use case 

needs to be identified. The interaction part of this use case is examined to look for 

number of classes implemented by the use case and the number of transactions.  

 

 

Definition 5.2: A use case is termed as a God Use Case if  

 Its implementation contains more than 10 classes 

 Its behavior has more than 7 transactions 
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Based on the definition provided by Astels [251], we define a pattern for detecting 

whether a lifeline is a middle-man or not. Each lifeline in the integrated model has event 

ends associated with it. These event ends are ordered and depicts the type of the message 

such as send event, receive event and so on. If for a lifeline, these events are ordered as 

shown in Figure 47, then the lifeline is considered as a middle-man as its only job in the 

diagram is to delegate message from one lifeline to the other.    

 

The pseudo code given below describes the steps required for automated detection of the 

multiple personality model smell. The code returns a value of 0 if the smell does not 

exist, a value of 1 if the smell exists with inclusion of lazy classes in the God use case 

and a value of 2 if the smell exists with both inclusion of lazy classes and middle-man 

lifelines in the interaction. 

 

 

Figure 47 Middle Man Lifeline Pattern within a 
Sequence Model 
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: ALGORITHM: MULTIPLE PERSONALITY  

: start 
:    read Model   

:    for (each use-case in the Model) 

:       read UC 

:       if (# of classes in UC is > 10) and (# of transactions in UC is > 7) 

:     and (# of lazy classes in UC >= 2)   

:          for (each lifeline in the UC) 

:   read Life 

:      end-List = (all ends on Life) 

:            for (each substring ss of end-List of size 2) 

:    if (ss = {receiveEvent, sendEvent}) 

:     return 2 

:    end if  

:                end for  

:   return 1 

:     end for  

:  else  

:    return 0 

:  end if 

:    end for         

: stop  

 

5.4.2 (e) Model Refactoring Mechanics 

Name: Decompose God Use Case 

Parameters: Usecase uc, List midman, List lazyClass, List base           where, 

 uc is the God Use Case 

 midman is the list of classes within the interaction of the God Use Case 

which are middle man lifelines  

 lazyClass is the list of lazy classes 

 base is the list of classes that that will inline the lazy classes   

Preconditions: 

i. Class lazyClass is not abstract. 
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ii. Class lazyClass and Class base has no common attributes. 

iii. The direct base class of the Class lazyClass is also a base class of the 

Class base. 

iv. The Class lazyClass is a sub class of the Class base or the two classes do 

not share any methods.  

v. Midman is a lifeline model element in uc. 

Mechanics: 

1. In order to remove the lazy class, Inline Class refactoring is used to 

remove lazy classes that are not useful independent components. If the 

lazy class is a sub class, then use Collapse Hierarchy refactoring to merge 

the class into its super class. 

2. Substitute Lifeline refactoring is then used to remove all references to the 

old lazy classes from all interaction diagrams and replace it with its 

merged class or super class. 

3. Finally, Remove Middle Man refactoring is used to remove the lifelines 

from the use case interaction. 

Figure 48 shows the ordering of the composite refactoring Decompose God Use 

Case. 

Post Conditions: 

i. All association ends with Class lazyClass in the previous model are 

replaced with Class base in the refactored model. 

ii. Class lazyClass is removed from the model. 
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iii. Lifelines with reference to Class lazyClass are replaced with reference to 

Class base. 

iv. Midman lifeline does not exist in the interaction for use case uc.  

 

5.4.2 (f) Example 

Figure 49 and Figure 50 shows a subset of the model views from the NBS system that 

depicts the multiple personality model smell. The existence of a God use case 

wireTransfer (implements eleven classes) is identified on examination of the use case 

diagram and all the sequence diagrams associated with each use case. Closer examination 

of the sequence diagram for the wireTransfer use case yielded the existence of two 

middle man classes TransferChannel and IBAN and lazy classes AccountInfo and 

Figure 48 Decompose God Use Case Refactoring 
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InterBankTransfer. The existence of lazy classes was conformed from the class diagram 

of the system. 

The InlineClass refactoring is initially applied to all the lazy classes and middle man 

classes identified by the model smell. These refactoring operations are listed below: 

1. InlineClass (BankServer, TransferChannel) 

2. InlineClass (Accounts, AccountInfo) 

3. InlineClass (Accounts, IBAN) 

 

Since the lazy class InterBankTransfer is a sub class of the Transfer Class, the 

CollapseHierarchy (Transfer, InterBankTransfer) is used to inline the class with its 

parent class. The SubstituteLifeline refactoring is then applied to substitute and redirect 

all messages that were initially communicated to/from the lazy classes. The refactoring 

operations are as follows: 

1. SubstituteLifeline (Transfer, InterBankTransfer) 

2. SubstituteLifeline (Accounts, AccountInfo) 

 

Finally, the RemoveMiddleMan (wireTransfer, IBAN) & RemoveMiddleMan 

(wireTransfer, TransferChannel) refactoring is applied to remove the middle man 

lifelines and initiate direct communication. The refactored model views are shown in 

Figure 51 (structural and functional view) and Figure 52 (behavioral view).  
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 Figure 49 Excerpt of the NBS model views depicting Multiple Personality Smell 
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Figure 50 Excerpt of the NBS model view depicting Multiple Personality Smell 
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Figure 51 Excerpt of the NBS model views after refactoring  
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Figure 52 Excerpt of the NBS model view after refactoring  
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5.4.2 (g) Post Refactoring Model Improvement 

The Behavioral View of each of the complex use cases from the Functional View is 

improved a lot in the refactored model because of the refactoring operation. The 

complexity of the use case and its interaction is reduced by removing additional classes 

such as lazy classes and middle man classes. Removal of these classes also reduces the 

number of transactions within the interaction model of the use case. Hence, it is safe to 

quote that the refactoring operation reduces the complexity and effort required to 

implement the use case and its behavior. The Structural View of the refactored model 

will show improved modularity by the removal of lazy classes that increase coupling and 

results in improved cohesion among the inlined classes. 

5.4.2 (h) Side Effects 

Since this refactoring targets lazy classes and delegating lifelines in order to reduce the 

complexity of the God Use case, it does not have any negative effect on the model. But 

some patterns make use of Delegating Classes to provide multiple views of information 

such as Model-View-Controller (MVC) pattern. It is difficult to detect and differentiate 

whether delegation in behavior is done to provide multiple views of model to a view or 

using lazy middle man classes to forward messages. Hence, one important side effect of 

the Decompose God Use Case model refactoring is its inability to differentiate between 

the above-mentioned functionalities provided by middle man classes in the integrated 

model.     
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5.4.3 Excessive Alternation 

5.4.3  (a) Description 

Excessive Alternation smell [430] occurs when the extend relationship between use cases 

is misused by the designers. The use case “extend” relationship allows additional 

behavior to be inserted into the base use case at a specific point known as extension point. 

One potential problem with use case modeling is to identify when to stop identifying 

alternative cases. Failure to identify this may lead to designers abusing the use case 

relationships like include and extend for functional decomposition. Building a non-trivial 

application, armed with the latest GUIs and event driven systems, there is a possibility to 

have a number of use cases that can produce essentially infinite number of usage 

scenarios. Too few use cases result in an inadequate specification, while too many use 

cases lead to functional decomposition. Limiting the analysis to the most obvious or 

important scenarios that generalizes to all use cases is a good approach.  Fowler classified 

use cases into system use cases and user use cases [429]. System use cases are generic 

use cases that do not delve into many user-specifics. System use cases are more 

appropriate while modeling use cases, as they are useful in iteration planning and system 

testing. However, with every system use case, there are a number of user use cases hiding 

behind it waiting to be extended.  

Another potential problem with use case modeling is the comprehension of the semantics 

of the extend relationship. In many cases the extend relationship is used in place of 

include or generalization relationship and even worse in place of pre and post conditions. 

This misuse can lead to a form of anti-pattern seen in Program Code known as the Switch 

Pattern. In this pattern, the base use case performs a few transactions in the beginning 
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and then keeps switching to other extension use cases conditionally. This scenario is 

similar to the switch construct used in some programming languages.  

Although the existence of excessive alternation model smell can be identified by 

examining the functional view, in order to conform and to ensure automatic mitigation of 

this model smell requires the examination of other model views. Excessive alternation 

may lead to a complex use case model difficult to understand and maintain. In order to 

mitigate excessive alternation, common behavior from the base use case is extracted and 

inserted into all the extension use cases replacing the extension with an inclusion 

relationship.  

5.4.3 (b) Rationale 

El-Attar and Miller [264] included the abuse of the extend relationship for functional 

decomposition in their suite of use case anti-patterns. Although described, their approach 

did not provide an implementable detection and mitigation strategy. The use of multiple 

views for detection of excessive alternation not only provides means to identify misuse of 

extend relationship but also provide detail information to remove the identified smell in 

an automated manner. 

Excessive alternation may lead to a complex use case model difficult to understand and 

maintain. A number of authors agree that the use of include and generalization 

relationship is much easier for most people to understand and use than the extend 

relationship [394, 433]. The misuse of extend relationship in place of utilizing the pre and 

post conditions of a use case could overwhelm and obscure other content in the diagram 

due to the presence of a number of extend arrows. “Encapsulatable” behavior at the  
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beginning of a use case can be separated and this can be replaced as a precondition of the 

use case. The availability of excessive alternation in a use case diagram not only 

complicates the functional view but also adds redundant behavior in the use case 

behavior and ignores a number of object-oriented advantages such as inclusion, 

polymorphism and inheritance in its structural view. 

5.4.3 (c) Target Quality Improvements 

 Use Case Maintainability 

 Management of Behavior Complexity 

 Reduction of Behavior Redundancy 

 Modular Design 

 Enhance Reusability 

5.4.3 (d) Model Smell Detection Strategy 

To ensure the applicability of this model smell in the integrated model, a use case with 

multiple extension points is selected. In order to quantify the number of extension points 

required in order to select the use case as a candidate for further examination, we use the 

“Number of Extension Point (NOEP) metric and its maximum acceptable value of 3 as 

provided by Gronback [288]. Based on this suggestion, any use case with three or more 

extension points is used for further examination for applicability of this model smell.  

The behavior of the selected use case is then examined to identify whether a “switch 

pattern” exists. In order to explain this, we first divide the behavior of a use case model 

into three sections as shown in Figure 53. These sections are the preamble, body and post. 

Hence, a base use case with a preamble length of greater than two, a body with only an 
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“alt” fragment and post length equal to zero is considered to depict excessive alternation 

model smell.   

 

The pseudo code given below describes the steps required for automated detection of the 

excessive alternation model smell.  

: ALGORITHM: EXCESSIVE ALTERNATION  

: start 
:    read Model   

:    for (each use-case in the Model) 

:      read UC 

:      if (# of extension-points in UC is >= 3) 

:  if (# of preamble steps in UC > 2) and (switch-pattern(body) is true) 

:     and (# of post steps is = 0)    

:    return UC        

: stop  

 

5.4.3 (e) Model Refactoring Mechanics 

Name: Substitute Excessive Extensions 

Parameters: Usecase uc, String newUC      where, 

 uc is the Base Use Case 

 newUC is the temporary name for a new use case  

Figure 53 Use Case Behavior (Sequence Model) 
divided into three sections 
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 Preconditions: 

i. The name of the new use case (newUC) does not conflict with the name of 

an existing use case within the model. 

Mechanics: 

1. In order to use the same name as the base use case, we first need to 

rename the base use case. Rename UseCase refactoring is initially used to 

rename the use case to any other name. 

2. Create UseCase refactoring is used to create a new use case with the same 

name as the base use case. 

3. Extract Fragment refactoring is then used on the base use case sequence 

diagram to extract the preamble transactions into the newly created use 

case. 

4. If the operand of “alt” fragment in the body of the use case behavior is not 

an Interaction Use Fragment, then first use Extract Fragment refactoring 

to extract the steps in the operand into a new use case.   

5. Insert Fragment refactoring is then used to add the common behavior in 

the beginning of all the extension use case sequence diagrams and the one 

created in step 4 (if applicable).  

6. Add Inclusion refactoring is used to add inclusion between the base use 

case and newly created use cases in step 4 and the extension use cases of 

the previous base use case. 
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7. Move Actor Reference refactoring is used to add uses relationship from the 

actor to all the previous extension use cases. The actor’s relationship to the 

base use case still remains in the model. 

8. Isolate UseCase refactoring is used to remove all relationships and actor 

references from the previous base use case.  

9. Finally, Delete UseCase refactoring is used to the remove the old base use 

case renamed in step 1. 

Figure 54 shows the ordering of the composite refactoring Substitute Excessive 

Extensions. 

 

Post Conditions: 

i. A use case with name newUC does not exist in the model. 

Figure 54 Substitute Excessive Extensions Refactoring 
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ii. All extension Points within the use case uc are removed. 

iii. There are no extend relationship between uc and other use cases in the model. 

5.4.3 (f) Example 

Figure 55 and Figure 56 shows a subset of the model views from the NBS system that 

depicts the excessive alternation model smell. On examination of the use case diagram, 

the existence of the use case Login was identified having more than two extension points. 

Closer examination of the sequence diagram for the Login use case revealed the existence 

of a switch pattern (more delegations than transactions). Since all the lifelines in the 

Login sequence diagram were subsets of the lifelines in the sequence diagram for the 

extension use case, the login sequence diagram was added using a “ref” combined 

fragment in all its extension sequence diagrams. 

The RenameUseCase (Login, newUC) refactoring and CreateUseCase (Login) is initially 

applied to rename the Login use case with a temporary name newUC and create a new 

one with the same name to preserve its name. ExtractFragment (newUC, startPoint, 

endpoint, Login) refactoring is then used to extract the preamble part of the use case into 

the newly created Login use case.  
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Figure 55 Excerpt of the NBS model views depicting Excessive Alternation Smell 
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Figure 56 Excerpt of the NBS model views depicting Excessive Alternation Smell 
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Figure 57 Excerpt of the NBS model views after refactoring  
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Figure 58 Excerpt of the NBS model views after refactoring  
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For the operand without the “alt” operand, ExtractFragment (newUC, startPoint2, 

endPoint2, Print Statement) refactoring is performed. The common behavior extracted 

earlier into the Login use case is then added to all the extension use cases using the Insert 

Fragment refactoring. The refactoring operations are as follows: 

1. InsertFragment (Perform Transaction, Login) 

2. InsertFragment (View Account Summary, Login) 

3. InsertFragment (Update Account Info, Login) 

4. InsertFragment (Print Statement, Login) 

 

AddInclusion refactoring is then performed to add inclusion relationship between Login 

and the newly extracted use case and other “ref” fragment use cases. The refactoring 

operations are as follows: 

1. AddInclusion (Login, Print Statement) 

2. AddInclusion (Login, Perform Transaction) 

3. AddInclusion (Login, View Account Summary) 

4. AddInclusion (Login, Update Account Info)  

 

Then the MoveActorReference refactoring is applied to move all the actor references from 

the newUC use case to the newly created base use cases. The refactoring operations are as 

follows: 

1. MoveActorReference (newUC, Perform Transaction) 

2. MoveActorReference (newUC, View Account Summary) 
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3. MoveActorReference (newUC, Update Account Info) 

4. MoveActorReference (newUC, Print Statement) 

5. MoveActorReference (newUC, Login) 

 

Finally, the IsolateUseCase (newUC) refactoring is used to remove all relationships from 

the newUC and DeleteUseCase (newUC) refactoring is performed to remove the use case 

from the model. The refactored model views are shown in Figure 57 and Figure 58.  

5.4.3 (g) Post Refactoring Model Improvement 

A use case that spends less time performing its own tasks and switches from one use case 

to the other throughout its lifetime is considered a bad form of behavior distribution. Not 

only it complicates the functional view with a number of extension points and extends 

relationships, it also increases the complexity of the behavior by magnifying its 

Cyclomatic Complexity (result of increase in the number of branch points). Identifying 

and substituting these cases with simpler relationships like “include” enhances 

comprehension and maintenance of the functional view of the system and alleviates the 

complexity of the behavioral view of the model. These in turn opens commonality 

features to be considered for enhancing the modularity of the structural view of the 

model. 

5.4.3 (h) Side Effects 

Excessive Alternation done because of identifying as many alternate scenarios as possible 

for a system under design can be considered a good quality practice. However, overdoing 

can complicate the model and affect other aspects of the system. Although extensions are 
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problematic, they do provide the ability for a base use case to begin execution of the 

extension use case from a specified step within the extension use case as opposed to 

inclusion where execution must start at the first step. Removing this relationship and 

substituting with the include relationship will not allow designers to benefit from this 

attribute of the extend relationship. Another side effect of this refactoring is the increase 

in the number of use cases associated with an actor. But since the new associations fully 

describe what the actor can do with the system, it can be justified [434]. If the actor 

association with the use cases is due to improper depiction of actor role in the system, the 

Spider’s Web model smell and its associated refactoring can be applied (see Section 

5.4.5).  

5.4.4 Undue Familiarity 

5.4.4  (a) Description 

One of the main principles of Object Oriented Design is Encapsulation. This means that 

the implementation details are hidden behind the definition of the object. When objects 

violate encapsulation, the model smells of Undue Familiarity. Undue Familiarity is a 

model smell that occurs when one object knows more about another object than it is 

required to. This model smell is mostly similar to the Inappropriate Intimacy Smell found 

in Source Code.  

Classes in UML class diagram are related to each other by three major relationships: 

Generalization, Aggregation and Association. Out of these, association is the only 

relationship that can be bi-directional. Although a bi-directional association between 

classes in a class diagram does not indicate the existence of the Undue Familiarity model 
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smell, it can be considered as the point of origin for further investigation. Studying the 

mode of interaction between these classes will provide more information as to whether 

objects of one class know more about the objects of the other class. This in turn results in 

a complex use case with more than required messages and classes implemented by the 

use case and a use case model with inappropriate behavior distribution.     

5.4.4 (b) Rationale 

Undue Familiarity model smell results in a system design that is unstable and less 

reusable. Because of this model smell, the design is more likely to have changes in one 

part of the system impact another part of the system. For instance, if the user interface has 

the knowledge that its data access layer makes use of a particular form of data storage, 

then the data access layer cannot change without potentially making changes throughout 

the user interface. Hence, the user interface cannot run or be tested without a connection 

to the database to populate the used form of data storage. Therefore, this inappropriate 

knowledge makes the system more fragile. Simple changes create breaking changes. 

Reusability of objects is reduced as they assume that the intimate information in the other 

familiar objects remain the same. 

The existence of inappropriately familiar classes within a class diagram not only obscures 

the structural view but also increases the message communication frequency in the 

behavioral view and ignores a number of model design primitives such as behavior 

distribution and use case complexity in its functional view. 

5.4.4 (c) Target Quality Improvements 

 Use Case Maintainability and Complexity 
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 Management of Behavior Complexity 

 Modular Design/Coupling 

 Model Maintainability, Stability & Reusability 

5.4.4 (d) Model Smell Detection Strategy 

To ensure the applicability of this model smell in the integrated model, pairs of bi-

directionally associated classes are identified. An association with both its ends as owner-

ends is referred to as a bidirectional association. For each of these pairs, examine the 

interaction parts of all the use cases they are part of and their mode of interaction within 

those interaction model elements. Message interactions between two classes can be 

termed inappropriate if they access data and methods from each other frequently. In order 

to identify if message passing between two sets of lifelines is inappropriate, we define 

two types of messages: Access and Update. An access message is a “getter” method 

requesting data from the other class. A return statement in the interaction diagram usually 

follows this message. An update message is a “setter” method updating data in the other 

class. Update messages are parameterized messages. Hence, message passing between 

two classes is termed inappropriate if both classes involved perform update and access 

message exchanges. If message-passing frequency between these two classes is 

inappropriate and these pairs occur in interaction parts of more than one use cases, then 

undue familiarity model smell exists in the integrated model.  

The pseudo code given below describes the steps required for automated detection of the 

Undue Familiarity model smell. 
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: ALGORITHM: UNDUE FAMILIARITY  

: start 
:    read Model   

:    for (each association in the Model) 

:       read Assoc 

:       if (ends of Assoc are both owned) 

:    c1 = one end of the Assoc 

:    c2 = other end of the Assoc  

:          for (each use case in the model) 

:            read UC 

:       diff = (lifelines in UC) ∩ (set{c1,c2}) 

:       if (diff != empty)& (mesg freq between c1 & c2 is inappropriate) 

:   counter++; 

:       end if 

:    end for 

:    if (counter > 1) 

:  return Assoc 

:    end if     

:  end if 

:     end for        
: stop  

 

5.4.4 (e) Model Refactoring Mechanics 

Name: Break Intimate Elements 

Parameters: Association assoc, Class src, Class tar, String newCase                 

where, 

 assoc is the intimate association relationship 

 src is one end of the association relationship assoc 

 tar is the other end of the association relationship assoc 

 newCase is the name of a new use case if similar fragments are extracted 

Preconditions: 

i. The association relationship assoc is bi-directional. 
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ii. The name newCase does not conflict with the name of an existing use case 

within the model. 

Mechanics: 

The mechanics of this refactoring is based on the nature of the intimate elements. 

Hence, the solution is divided into two parts: 

1. If the nature of the association is breakable i.e. if the messages and data 

items involved between the associated classes is exclusive to these classes 

and not invoked by other associations to the tar class. 

a. For each message access and update message from the src class to 

the tar class, Move Attribute and Move Operation refactoring is 

applied. This is repeated across all interactions involving 

communication between the src and tar classes. If Move Operation 

is successful, Remove Message refactoring removes the message 

call between the classes involving the moved operations   

b. If the tar class is empty after the previous refactoring application 

and has no relationship with other classes in the class model, 

Remove Empty Class refactoring is applied. 

c. Since all message incident to the removed class are included in the 

src class, Remove Lifeline refactoring is applied to the tar lifeline 

across all interactions. 

2. If the nature of the association is unbreakable, i.e. if the messages and data 

items involved between the associated classes is not exclusive and are 

invoked by other associations. 
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a. Extract Fragment refactoring is then used on the frequent message 

exchange fragment of the interaction if the same message 

exchange pattern appears in other interactions of the system. This 

extracted fragment is added into a new use case newCase. 

b. Add Inclusion refactoring is used to add inclusion between the base 

use cases and the newly created use case newCase in step 2a.  

Figure 59 shows the ordering of the composite refactoring Break Intimate 

Elements. 

 

Post Conditions: 

Due to the alternative nature of the refactoring operation, no post-conditions are 

specified. In case the first path is traversed, Class tar may not be part of the 

Figure 59 Break Intitmate Elements Refactoring 
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refactored model. In case the second path is traversed, Use Case newCase exists 

within the refactored model.  

5.4.4 (f) Example 

Figure 60 shows a subset of the model views from the NBS system that depicts the undue 

familiarity model smell. The association pair between the Accounts and Credit class was 

found to be bi-directional and further investigated for inappropriate interactions within 

the sequence model. These pairs appeared within two interactions POS Payment and 

Increase Limit. Closer examination of the identified interactions revealed that message 

passing between these two classes was inappropriate as both classes performed update 

and access message exchanges between each other.   

The following MoveAttribute and MoveOperation refactorings were applied to move the 

familiar attributes and operations to the source class.  

1. MoveAttribute (Accounts, Credit, limit) 

2. MoveAttribute (Accounts, Credit, outstanding) 

3. MoveOperation (Accounts, Credit, increaseLimit) 

4. MoveOperation (Accounts, Credit, reimburseLimit) 
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Figure 60 Excerpt of the NBS model views depicting Undue Familiarity Smell 
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Figure 61 Excerpt of the NBS model views after refactoring  
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For each operation moved into the Accounts class, the Remove Message refactoring was 

applied to remove the message interaction between the two classes. The following set of 

refactorings was applied to the interactions of POS Payment and Increase Limit. 

1. RemoveMessage (Accounts, Credit, getLimit) 

2. RemoveMessage (Credit, Accounts, limit) 

3. RemoveMessage (Accounts, Credit, setOutstandingAmount) 

4. RemoveMessage (Accounts, Credit, IncreaseLimit) 

5. RemoveMessage (Credit, Accounts, getType) 

6. RemoveMessage (Accounts, Credit, type) 

7. RemoveMessage (Credit, Accounts, getStatus) 

8. RemoveMessage (Accounts, Credit, status) 

9. RemoveMessage (Accounts, Credit, newLimit) 

 

The Remove Lifeline (Credit) is then applied to the isolated Credit lifeline in both the 

POS Payment and Increase Limit interaction. Since the class Credit became empty as a 

result of the move operations, the Remove Empty Class (Credit) is applied to remove it 

from the structural view. The refactored model views are shown in Figure 61.  

The example presented here for Undue Familiarity is one instance of the model smell. 

Hence, the functional view was not modified.  
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5.4.4 (g) Post Refactoring Model Improvement 

When objects are properly encapsulated, the model as a whole is more pliant to change. 

But when objects go against encapsulation, the model becomes more difficult to change. 

Problems in one object propagate to other objects throughout the system and changes in 

one object require changes in other objects. 

Application of this refactoring reduces intimacy between overly intimate classes by either 

combining them or moving features where they are used most often. This ensures 

encapsulation principle of Object Oriented Programming and hence reduces coupling 

between classes and makes the model more reusable, maintainable and easier to update. 

The complexity of the use case and its interaction is also reduced by removing additional 

transactions within the interaction model of the use case. Behavior and functionality is 

properly distributed in the functional view of the model. Hence, it is safe to quote that the 

refactoring operation reduces the complexity and organization of the use cases within the 

model.  

5.4.4 (h) Side Effects 

Inappropriate Intimacy is a result of improper behavior distribution within the software 

model beginning from its functional view in high-level design phase and propagating to 

its structural view in low-level design phase. Reduction of this intimacy will not cause 

any side effects within the design model, as it was a result of improper behavior 

distribution. 
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5.4.5 Spider’s Web 

5.4.5  (a) Description 

Lilly [434] provided a list of the top ten pitfalls that occur when using use cases for 

modeling real time projects. The same author when discussing the actor-to-use-case 

relationship suggested the name Spider’s Web. This model smell is derived from the same 

concept. This model smell occurs when an actor in the use case model has multiple 

responsibilities (i.e. associated with a number of use cases) so that the view looks like a 

spider’s web. A pictorial representation of the spider’s web model smell in the form of a 

sample use case model is illustrated in Figure 62.  

 

An actor initiating multiple use cases is either an indication that the actor is defined too 

broadly [391] or inappropriate granularity of use cases. In case of improper actor 

identification, the behavior of actor participation in the sequence diagram and its 

association with other entity classes (since actors are realized as entity classes in the 

Figure 62 Sample use case model depicting Spider's Web Model Smell 
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detailed design phase) must be examined. For instance, a User actor is very general and is 

usually associated with a large number of use cases. In case of inappropriate granularity 

of use case composition, use case behavioral view must be examined to ensure the 

fragmented use case is non-trivial, does not describe an internal system process and 

provides a usable output value to the system’s user. For instance, highly fragmented use 

cases usually describe interactions between the system and the actor rather than the actual 

goal.  

Although the existence of the spider’s web smell can be visually identified through the 

use case diagram, it cannot be classified as a model smell unless all views are examined 

to detect the existence of improper actor classification and use case decomposition.  

5.4.5 (b) Rationale 

Spider’s Web model smell may lead to a complex use case model that is difficult to 

understand and maintain. The existence of spider’s web model smell in the use case 

model is also an indication of God Class existence in the structural view.  Since one of 

the effects of spider’s web model smell is the improper fragmentation of use cases, the 

total number of sequence diagrams described by the system increase causing duplication 

and unnecessary implementation. Hence, the availability of spider’s web in a use case 

diagram not only complicates the functional view but also adds unnecessary redundant 

behavior in sequence diagrams and may result in behaviorally rich entity classes that 

realize the actors involved in the model smell. 

5.4.5 (c) Target Quality Improvements 

 Use Case Maintainability 
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 Reduction of Behavioral Redundancy 

 Modular Design 

5.4.5 (d) Model Smell Detection Strategy 

To ensure the applicability of this model smell in the integrated model, an actor 

associated with multiple use cases is selected. In order to quantify the number of use 

cases required in order to select an actor as a candidate for further examination, we use 

the “Number of Use Cases per Actor (NUCA)” metric and its maximum threshold 

UPNUCA. Since this upper limit threshold value is not available in the literature, we 

consider actors that are associated with more than 30% of the total use cases implemented 

by the system.  

The behavior of the selected actor is then examined to identify whether the actor 

represent a user type or a role. Using actors to represent types rather than roles results in 

compromising usability and stability of the use case model [391]. In order to identify 

whether an actor is representing multiple roles within the system, a behavior signature is 

associated with each use case associated with an actor. A behavior signature is a set of 

lifelines interacting with the actor to realize the use case functionality in the sequence 

diagram. Use cases associated with the actor are then classified based on behavior 

signature similarity. Two signatures are also considered similar if the exclusion lifelines 

are child classes of the same parent class. If an actor is associated with multiple 

signatures, the existence of the Spider’s web model smell is confirmed and is need of 

refactoring.   
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The pseudo code given below describes the steps required for automated detection of the 

spider’s web model smell.  

: ALGORITHM: SPIDER’S WEB  

: start 

:    read Model   

:    for (each actor in the Model) 

:      read A 

:      if (# of use-cases for A is >= UPNUCA) 

:          for (each use-case associated with A) 

: read UC 

: for (each lifeline associated with UC) 

:     read Life 

:              if (Life is a child class)  

:   sig = sig U {parent(Life)} 

:  else 

:   sig = sig U {Life} 

:  end if 

: end for 

: if (first use-case)  

:  base-sig = sig 

: end if 

: if (sig != base-sig) 

:  diff = diff +1 

: end if 

:          end for 

:       end if   

:       if (diff >= 2) 

:          return A 

:       end if 

:    end for   

: stop  

 

5.4.5 (e) Model Refactoring Mechanics 

Name: Redistribute Responsibility 

Parameters: Actor a, List actorNames, List ucNames            where, 

 a is the Actor with multiple roles 

 actorNames is the list of new actors to distribute the use cases 
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 ucNames is the list of the use cases to be associated with each new actor in 

the actorNames list. 

Preconditions: 

i. The name of the new actors (actorNames) does not conflict with the name 

of existing actors within the model. 

ii. The list ucNames includes all use cases assigned to Actor a.  

Mechanics: 

1. Split Actor refactoring is used to split actor a into the number of actors 

mentioned in the actorNames list. 

2. Each new actor is associated with a subset of use cases assigned to the 

main actor a. Since Split Actor refactoring in the previous steps associates 

all use cases associated with the main actor to the newly created actor, 

unwanted associations are removed using the Remove Actor Reference 

refactoring based on the list provided by ucNames.  

3. Isolate Actor refactoring is applied to main actor a to isolate it from the 

use case model. 

4. Delete Actor refactoring is used remove the actor from the system. 

5. If the lifeline for actor a has an incoming call event in the interaction, 

Create Sub Class refactoring is performed to create a new class based on 

the new actor to which the use case is assigned. 

6. Push Down Operation refactoring is performed to move the incoming 

message to the newly created specialized class for the actor a.    
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7. Finally, Substitute Lifeline refactoring is then used to remove all 

references to the old actor from respective interaction diagrams and 

replace it with the new actor based on the new actor-use case relationship. 

Figure 63 shows the ordering of the composite refactoring Redistribute 

Responsibility. 

Post Conditions: 

i. Actor with name a does not exist in the model. 

ii. Lifelines with reference to Actor a are replaced with reference to actors in 

actorNames. 
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5.4.5 (f) Example 

Figure 64 shows a subset of the model views from the NBS system that depicts the 

spider’s web model smell. On examination of the use case diagram, the existence of the 

actor Operator was identified having a number of use case associations. 

Figure 63 Redistribute Responsibility Refactoring 
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Figure 64 Excerpt of the NBS model views depicting Spider’s Web Smell 
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Figure 65 Excerpt of the NBS model views after refactoring  
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In order to identify whether the actor is representing multiple roles within the system, its 

behavior signature is created for each use case it is associated to based on the information 

from the behavioral view. Following are the four signatures in line with the four use cases 

Operator is associated to in the use case diagram. 

1. Update: {BankServer} 

2. Backup System: {BankServer, BackupDatabase} 

3. Customer Queries: {BankServer, FAQ} 

4. Maintain Database: {BankServer, BackupDatabase} 

 

Based on the signatures, it was identified that Operator was involved with more than one 

role in the system. Hence, the availability of the Spider’s Web model smell is confirmed.  

In order to remove this smell, initially the Split Actor refactoring is applied based on the 

number of different signatures found. The following refactoring operations are hence 

applied to the model. 

1.  SplitActor (Operator, Admin) 

2. SplitActor (Operator, Tech Support) 

3. SplitActor (Operator, Database Admin) 

 

Since the Split Actor refactoring associated all new actors with the associations of the 

base actor, the Remove Actor Reference refactoring is applied to assign the new actors to 

their specific use cases. This is based on the information available from the behavioral 

view. The following refactoring operations are hence applied to the model. 
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1. RemoveActorReference (Admin, Handle Customer Queries) 

2. RemoveActorReference (Admin, Backup System) 

3. RemoveActorReference (Admin, Maintain Database) 

4. RemoveActorReference (Tech Support, Update) 

5. RemoveActorReference (Tech Support, Backup System) 

6. RemoveActorReference (Tech Support, Maintain Database) 

7. RemoveActorReference (Database Admin, Update) 

8. RemoveActorReference (Database Admin, Handle Customer Queries) 

 

Since the use cases are appropriately and completely partitioned among the new actors, 

the IsolateActor (Operator) and eventually DeleteActor (Operator) is applied to remove 

the actor Operator from the model.   

All interactions of the use cases involved in the refactoring process are examined to 

identify if the lifeline for the actor Operator has an incoming call event in the interaction. 

Since the BankServer lifeline invokes the message requestAnswer() from the Operator 

lifeline in the Handle Customer Queries interaction, CreateSubClass (Operator, Tech 

Support) refactoring is performed to create a new class based on the new actor Tech 

Support to which the use case is assigned. The PushDownOperation (Operator, 

requestAnswer) is performed to move the operation to the Tech Support Class and finally 

SubstituteLifeline (Operator, Tech Support) is applied to redirect messages to the newly 

created sub class. The refactored model views are shown in Figure 65.  
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5.4.5 (g) Post Refactoring Model Improvement 

System actors trigger use cases and an actor can start more than one use case within the 

system. This is depicted by an association relationship between the actor and the use case 

in the use case diagram. The more use cases associated with an actor, the more complex 

is the relationship between actors and the system.  

Application of this refactoring reduces the number of use cases associated with an actor 

by splitting them among actors. This ensures that actors within the system are not user 

types but roles. From the viewpoint of an actor, the complexity of the system is reduced, 

as it has to deal with fewer use cases. Apart from improving the complexity of the actors 

and their interaction, behavior is properly distributed and associated to appropriate 

triggers. This restructuring also affects the structural view by introducing the concept of 

modularity through generalization and functionality distribution.  

5.4.5 (h) Side Effects 

The Spider’s web model smell exists within a system due to improper actor identification 

and functionality association. Although reducing the number of use cases associated per 

actor comes at the cost of having more actors in the system. This increase in the number 

of actors affects the size of the system and hence increasing its overall use case point 

value used popularly for use case effort estimation.  
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5.4.6 Specters’ 

5.4.6  (a) Description 

Specters’ model smell occurs in cases where designers new to object-oriented design 

define system architectures. In this model smell, one or more ghostlike apparition classes 

exist in the system that appear only briefly to initiate some action in another more 

permanent class. We refer to these classes as Specter classes as they have a very brief 

lifecycle and are classes with limited responsibilities and roles to play in the system. 

Although the name of this smell suggests a smell related to the class diagram, the 

existence of this smell requires information from all UML views for the following key 

reasons:  

1. A specter class is a stateless class or in other terms, a class with no attributes. This 

can be identified from the system’s structural view. This class is also referred to as an 

Irrelevant Class [431]. 

2. All associations of the specter class are transient. A temporary, short-duration class 

pops into existence only to invoke other classes through temporary associations. This 

can be confirmed by taking into consideration all the sequence diagrams (behavioral 

view) associated with the system. Specter classes within the sequence diagram 

usually send messages to other classes but never receive any messages back. 

3. It is part of a single-operation use case that exist only to invoke other use cases 

through an include relationship. Single-operation use cases are usually in the center of 

a nested “include” path for delegating control to an essential use case. 
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5.4.6 (b) Rationale 

The specters’ model smell is a variation of a well-known anti-pattern known as 

Poltergeist [431]. The specters’ model smell is usually intentional on the part of some 

architects who do not really understand the object-oriented concept. Availability of these 

classes results in a chaotic software designs, inclusion of unnecessary abstractions; and 

hence make the system design excessively complex, hard to understand, and hard to 

maintain.  

5.4.6 (c) Target Quality Improvements 

 Use Case Comprehension and Maintainability 

 Management of Behavior Complexity 

 Modular Design/Cohesion 

5.4.6 (d) Model Smell Detection Strategy 

To ensure the applicability of this model smell in the integrated model, classes with no 

attributes and associated with a number of other classes are selected. The behavior of 

these classes within the sequence diagram is then studied. If these classes are invoked by 

other classes only to act as a delegate or simply invoke other classes without receiving 

any reply, the existence of the specters’ smell is confirmed. In order to reduce the search 

space, information from the functional view plays a vital role. Specter’ classes are usually 

part of inclusion use cases or highly complex use cases (such as the God Use Case). 

Since the Multiple Personality smell discussed in Section 5.4.2 handles existence of 

transient classes that act as agent classes or middle-men classes, the specter’s smell 

identifies transient classes that simply invoke other classes.   
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The pseudo code given below describes the steps required for automated detection of the 

specters’ model smell.  

: ALGORITHM: SPECTERS’  

: start 

:    read Model   

:    for (each class in the Model) 

:      read C 

:      if (# of attributes for C is = 0) 

:          for (each inclusion use-case in the model) 

: read UC 

: for (each lifeline associated with UC) 

:     read Life 

:              if (Life = C) and (# of receive Events for Life = 0)  

:   false = 0 

:  else 

:   false = 1 

:  end if 

: end for 

:          end for 

:       end if   

:       if (false = 0) 

:          {specters} = {specters} U (C) 

:       end if 

:    end for 

:    return specters   

: stop  

 

5.4.6 (e) Model Refactoring Mechanics 

Name: Remove Specters Class 

Parameters: List classNames            where, 

 classNames is a list of classes suspected of being specter’s 

Preconditions: 

i. The list of classes in (classNames) does not have any attributes (objects 

excluded). 
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Mechanics: 

1. Search all classes that invoke the specters class and use the Move 

Operation refactoring to move the method to the classes that use it.  

2. Since the specter classes invoke other permanent classes based on its 

initial invocation of the start method, these corresponding invocations are 

required to be moved to the invoking lifeline in all interactions that 

include the specters class. This is simply done by applying the Remove 

Middle Man refactoring.  

3. Since all operations are moved to the classes that invoke the specters class, 

the Remove Empty Class refactoring is applied to remove the class from 

the structural view of the system. 

5. If interaction belongs to an inclusion use case and removal of the specters 

class result in a no message occurrences except for other inclusions and 

extensions through the “ref” fragment, the Collapse Fragment refactoring 

is then used. This refactoring inserts the interaction fragment of the 

inclusion use case into the interaction diagram of the including/base use 

case at the point of inclusion (ref fragment).  

6. Finally, Merge UC Inclusion refactoring is used to merge the inclusion use 

case into the including use case. 

Figure 66 shows the ordering of the composite refactoring Remove Specters’. 

Post Conditions: 

i. Classes with names in the class-list classNames do not exist in the system. 
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5.4.6 (f) Example 

Figure 67 shows a subset of the model views from the NBS system that depicts the 

specters’ model smell.  

Figure 66 Remove Specters' Refactoring 
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Figure 67 Excerpt of the NBS model views depicting Specters’ Smell 
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Figure 68 Excerpt of the NBS model views after refactoring  
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On examination of the class diagram, the existence of an Irrelevant class instance 

PaymentGateway was identified. Based on a list of all inclusion use cases (possibly those 

in the middle of a Include or Extend chain) obtained from the functional view, the 

interactions of all these were examined. The Pay Bill interaction made use of the 

PaymentGateway and the interaction had no receive events (except the invoking 

operation, which is ignored). Based on this information, the existence of specters’ model 

smell is confirmed in the model. 

Initially, the invoking operation is moved into all the associated classes. Hence, the 

MoveOperation (PaymentGateway, Accounts, startPayment) refactoring is performed for 

the given example. The RemoveMiddleMan (BankServer, PaymentGateway) refactoring 

is applied to remove the middle man lifeline and initiate direct communication. Since the 

invoking operation startPayment is moved to the invoking class, the empty class 

PaymentGateway is removed by applying the RemoveEmptyClass (PaymentGateway) 

refactoring. Since the PayBill interaction had other message occurances even after the 

removal of the specter class, the CollapseFragment refactoring and MergeUCInclusion 

refactoring are not invoked resulting in no change made to the functional view of the 

system. The refactored model views are shown in Figure 68.   

5.4.6 (g) Post Refactoring Model Improvement 

Specter classes have limited responsibility in the system. They are stateless classes with a 

short lifecycle. Removal of these classes from the system reduces behavioral complexity 

by removing unnecessary interactions and lifelines from the interactions and as a result 

improves modularity between classes in the structural view by reducing coupling and 
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increasing cohesion. As a result, an overall improvement is seen in the functional view 

wherein the seeding use-case behavior realized by includes and extends is reduced to 

reusability rather than adding to use case sequencing and scheduling. The depth of 

includes and extends relationship in the functional view is also reduced to enhance 

maintainability.  

5.4.6 (h) Side Effects 

When correcting anti-patterns such as specters’ (or poltergeists), the local and structural 

refactorings applied to the design can produce side effects that may introduce other anti-

patterns. The most common side-effect anti-pattern that may result because of removing 

specters’ from the model is the God Class. This is because the removal of an irrelevant 

class merges its functionality into the associated class that earlier held methods whose 

data may have been located in a rich God class.  

This side effect can be easily circumvented by allowing the application of refactorings 

that handle God class before this refactoring such as Multiple Personality, Creeping 

Featurism and Undue Familiarity. Hence, this could move attributes from the invoking 

God class and the specters’ class would no longer be considered as an irrelevant class. 

5.4.7 Model Duplication 

5.4.7  (a) Description 

Duplication is one of the most common bad smells when it comes to code based 

refactoring. Although usually not defined over models, the use of an integrated model 

allows for the identification of common model fragments throughout the system 

description. Therefore, Model duplication considering multiple views can be defined as 
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information objects described separately within the system specification even when 

processed in the same manner. Duplicated model fragments are more difficult to identify 

than duplicate code fragments mainly because they are not exact replicas of each other.  

In order to detect duplication, an initial point has to be established from one of the views. 

In this smell description, the Actor-Use Case relationship is selected as the point of origin 

for duplication detection and analysis. This selection is based on use case duplication 

observed by Ciemniewska et al. [435]. The detection strategy described in this work 

starts from this point; that is identifying near similar patterns and confirming them 

through information from the behavioral and the structural view as it traverses the 

functional view.    

5.4.7 (b) Rationale 

Duplication, be it code or model, is considered one of the most abhorrent smell evident 

from the literature. Not only does it reduce reusability, changes made to one portion of 

the duplicated fragment will remain unchanged in other similar fragments. Detection of 

duplication was not handled in previous studies on model refactoring mainly due to the 

lack of complete information in one single view of the system specification. The 

integration of model views allows exploitation of inter-view relationships and aids in the 

detection of duplication across models view.   

5.4.7 (c) Target Quality Improvements 

 Reduction of Redundant Use Case Associations  

 Reduction of Behavioral Redundancy 

 Design Cohesiveness and Modularity 
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5.4.7 (d) Model Smell Detection Strategy 

To ensure the applicability of this model smell in the integrated model, all actor-use case 

relationships are considered. To demonstrate this, we use the concept of trees. For each 

actor in  the system, a tree is constructed (hypothetically) with the actor as the root node. 

Each of these trees is composed of multiple paths from the root node to the leaf node. An 

illustration of this concept is shown in Figure 69. 

 

The maximum depth of paths traversed is equivalent the maximum value among the 

maximum Depth of Inclusion Relationship (DOIR) and the maximum Depth of Extension 

Relationship (DOER). Two paths are investigated for similarity if the root node (i.e. the 

Actor) and the leaf node (an extension or inclusion use case) are same. For instance, 

Paths 2 and 3 in Figure are similar and are investigated to identify the availability of 

Model Duplication Smell. For the sake of simplicity, the use cases between the root and 

the leaf node are referred to as Middle Use Cases. Behavior of all middle use cases are 

examined and compared to establish similarity. Two behaviors are structurally similar if: 

Figure 69 Concepts of Paths in the detection strategy for Duplication Model Smell 
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1. The lifelines involved in both the interactions are same. If not, at least the 

different ones are sub classes of the same super class. 

2. The sequence of message interactions among lifelines is the same. Each message 

interaction is represented by a tuple {source lifeline, message-type, destination 

lifeline}. 

3. Message names may or may not be similar but the size of the arguments are same 

for messages between the same sequences. 

4. Extension and inclusion use cases (through “ref” fragments in the behavior) are 

invoked at the same sequence.   

If structural similarity between two similar use cases is established, the existence of 

Model Duplication is confirmed. The pseudo code given below describes the steps 

required for automated detection of the model duplication smell.  
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: ALGORITHM: MODEL DUPLICATION  

: start 

:    read Model   

:    for (each actor in the Model) 

:      read A 

:      for (each use-case associated with A) 

: read UC 

: sig = A + UC             

: if (# of extends for UC > 0) or (# of includes for UC >0) 

:      for (each extension or inclusion of UC) 

:  sig = sig + CLOSURE (UC) 

:      end for  

: end if 

: {sig-set} = {sig-set} U (sig) 

:       end for    

:       for (each pair from {sig-set}) 

: read sig1, sig2 

: if (size of sig1 = size of sig2) and (last two elements of sig1 and sig 2 are same)   

:  status = SIMILARITY (sig1, sig2) 

: end if 

: if (status = 1) 

:  dup = dup U {sig1, sig2} 

: end if 

:       end for 

:    end for 

:    return dup   

: stop  

 

The pseudo-code for model duplication uses two sub-functions: CLOSURE and 

SIMILARITY. Since the functionality of CLOSURE is trivial, we do not provide the 

algorithm for it here. The pseudo code for SIMILARITY that checks for structural 

similarity of two interactions is given below. 
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: ALGORITHM: SIMILARITY  

: start 

:    read sig1 and sig2   

:    for (each i from 2 to size-2 of sig1) 

:      read UC1 = sig1(i) and UC2 = sig2(i) 

:      diff = (lifelines in UC1) ∩ (lifelines in UC2) 

:      if (diff is a super-sub relation) 

: for (each message occurance in UC1 and UC2) 

:  read msg1 in UC1 and msg2 in UC2 

:  msg1-set = (source, type, destination of msg1) 

:  msg2-set = (source, type, destination of msg2) 

:  if (msg1-set = msg2-set) 

:   similar = 1 

:  else 

:   similar = 0 

:   break 

:  end if 

: end for 

:         end if 

:       end for   

:       return similar   

: stop  

 

5.4.7 (e) Model Refactoring Mechanics 

Name: Remove Duplication 

Parameters: Actor a, Use Case uc1, Use Case uc2 String newName            

where, 

 a is the Actor 

 uc1 is one of the duplicate use cases 

 uc2 is the other duplicate use case 

 newName is the name of a new use case that results from merging the two 

duplicate use cases. 
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Preconditions: 

i. The name of the new use case (newName) does not conflict with the name 

of an existing use case within the model. 

ii. The use cases uc1 and uc2 are assigned to Actor a.  

Mechanics: 

1. Create UseCase refactoring is used to create a new use case. 

2. Extract Fragment refactoring is then used on either use case sequence 

diagram (uc1 or uc2) to extract the complete interaction into the newly 

created use case. 

3. Since the structurally similar behavior of the two use cases may have 

different messages, the Replace Message refactoring is used to rename the 

message. An argument ”type” is also added to the message that determines 

the type of action performed by the structurally similar use cases. Merge 

Operation refactoring is also applied to merge the lexically different 

operations in the class and renamed it to the new message name used in 

the interaction. 

4. If different lifelines exists in the two interactions (they are sub-classes 

based on the constraint included in the smell description), Substitute 

Lifeline refactoring is performed to add the super class to the interaction.  

5. Add Actor Reference refactoring is performed to add an association 

between the actor triggering the use cases uc1 and uc2 and the new use 

case.  
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6. Isolate UseCase refactoring is applied to the use cases uc1 and uc2 to 

isolate them from the use case model. 

7. Delete UseCase refactoring is used to remove the use cases uc1 and uc2 

from the system. 

Figure 70 shows the ordering of the composite refactoring Remove 

Duplication. 

Post Conditions: 

i. Use cases with names uc1 and uc2 does not exist in the model. 

ii. Use case with name newCase is added to the model. 
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5.4.7 (f) Example 

Figure 71 shows a subset of the model views from the NBS system that depicts the 

duplication model smell. On examination of the use case diagram, two paths associated 

with the actor Operator were identified. In order to ensure the existence of the model 

smell, the behavior of the middle use cases involved Add Application Form and Edit 

Application Form were observed. The sequence of message occurrence between the two 

Figure 70 Remove Duplication Refactoring 
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interactions was found to be structurally similar. Hence, the existence of the duplication 

model smell was confirmed.  

Initially, the CreateUseCase (Manage Application Form) refactoring is applied to create 

an empty isolated use case. Then the ExtractFragment (Add Application Form, Manage 

Application Form) refactoring is performed to copy the complete interaction fragment 

from one of the similar use cases (either can be used) into the new use case. In order to 

identify lexically different message interaction between the use cases, each message in 

the interaction of Add Application Form and Edit Application Form is compared. A 

message with a different name is replaced in the interaction of the new use case Manage 

Application Form with a new message. The following refactoring operation is hence 

applied ReplaceMessage (createForm, manageForm(type)). If both the messages are not 

used in any other interactions, they are replaced in the class diagram. The 

MergeOperation (createForm, EditForm, manageForm) refactoring is applied to the 

structural view to apply the change. Since the use of super-sub class relationship was not 

utilized (as lifelines in both the use cases were same), the AddActorReference (Operator, 

Manage Application Form) is applied. The duplicate use cases are initially isolated by 

applying the IsolateUseCase (Add Application Form) and IsolateUseCase (Edit 

Application Form) and finally deleted by applying the DeleteUseCase (Add Application 

Form) and DeleteUseCase (Add Application Form).    

The refactored model views are shown in Figure 72.  
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  Figure 71 Excerpt of the NBS model views depicting Duplication Smell 
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Figure 72 Excerpt of the NBS model views after refactoring  
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5.4.7 (g) Post Refactoring Model Improvement 

Duplication is one of the most common defects that can be observed in models. The most 

common form of this duplication is through the use of similar or different information 

objects and describing the processes that manipulate them as separate use cases.    

Merging use cases that handle similar information objects through a structurally similar 

sequence of message interactions reduces the redundancy in describing their behavior in 

the sequence diagram. It also reduces the number of use cases in the use case model and 

the number of use cases associated with an actor, which in turns reduces complexity of 

the use case model. Merging use cases that manipulate different information objects 

through a similar process helps in identifying and applying object-oriented principles 

such as reusability through inheritance and polymorphism to the structural view of the 

model. 

5.4.7 (h) Side Effects 

Although the removal of duplication from the integrated model does not introduce side 

effects into the model, it does require a change in the operation arguments in the class 

and sequence diagrams. Ensuring behavior preservation can get complicated with the 

model size and hence the complexity of this refactoring is directly proportional to the size 

of the integrated model considered for refactoring. A more stable algorithm for 

duplication resolution for large model system is hence sought as a future work of this 

model smell. 
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5.4.8 Ripple Effect 

5.4.8  (a) Description 

A change in one design artifact can cause cascading changes to all related artifacts. This 

propagation is based on the degree of dependency that exists between the related artifacts. 

In case of a multi-view modeling environment such as UML, artifacts usually belong to 

different views. Functional requirements specify the intended behavior of the system and 

use cases have become a widely accepted modeling notation for capturing them. Software 

requirements are volatile and their change can occur at multiple points during the 

development process and is inevitable [436]. The ripple effect model smell identifies the 

strength of dependency between use cases and classes which are connected through an 

intermediate artifact; the sequence diagram. The strength of dependency is an indicator 

that a change in the use case specification will eventually effect the structural 

organization of objects within the system. A high degree of change can therefore question 

the stability of the system and severely affects its efficiency and maintainability.  

The ripple effect model smell is a variation of the shotgun surgery and divergent change 

bad smells proposed by Fowler et al. [15]. However, unlike them, the ripple effect makes 

use of the additional information from functional view and tries to identify the change 

impact caused to the structural and behavior view because of changes to the functional 

requirements of the system under design.     

5.4.8 (b) Rationale 

Dependency between different artifacts is mainly due to the use of multi-phase 

development by most of the software development paradigms. Use of information from 
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one artifact for the development of others ensures consistency. Although dependency is 

certain, the degree of dependency depends on the design of the system. If modeled 

incorrectly, severely affects the design maintainability and reusability. When the number 

of classes implementing a use case is high, this indicates that changes in a use case can 

have impact on a large number of classes. This change propagates to all other related 

classes and since classes are shared between use cases results in a cycle of change 

propagation. More specifically, an indicator that related functionality is spread over the 

system design. Hence, this adversely affects design stability and maintainability.  

5.4.8 (c) Target Quality Improvements 

 Use Case Maintainability and Reusability 

 Behavioral Dependency 

 Structural Stability 

5.4.8 (d) Model Smell Detection Strategy 

Based on the inter-view relationship, the number of classes per use case can be identified 

by information from use case diagrams, sequence diagrams and class diagram. Use cases 

describe the functional requirements of a system. Classes implement these requirements 

and their participation within use cases is depicted in the sequence diagrams. In order to 

detect the existence of the Ripple Effect smell, we developed a basic metric called Impact 

Factor (IF), which is calculated for each use case.   

Each class in the integrated model is associated with a number of other classes through 

association, aggregation and composition relationship. The metric Number of 

Associations Linked to a Class (NASC) provides this value for each class (see Appendix 



255 

 

9).  The behavior of each use case is represented through a sequence diagram, which is 

composed of a number of classes. For a given class (lifeline) in a particular use case, we 

calculate the number of classes it is interacting within the interaction of the use case. We 

refer to this as the Number of Internal Connections (NOIC). Based on this information, 

we calculate the Number of External Connections (NOEC) for each class in a use case 

behavior as follows: 

                                

Hence, NOEC is the measure of the number of classes that might be affected because of 

any change occurring to the description of the class. Hence, the Impact Factor metric is a 

summation of all classes external to the use case that may be affected because of a change 

made to the requirement specification modeled by the respective use case. The Impact 

Factor is thus calculated as follows: 

            ∑          

     

 

The Ripple Effect model smell identifies classes most affected by a change in the 

functional requirement of the system and tries to solve this by localizing changes through 

model refactoring operations over all participating views.  

In order to quantify an acceptable Impact Factor metric for a use case we use a maximum 

threshold value UPIF. Since this upper limit threshold value is not available in the 

literature, we consider the 70/30 principle. Hence, the upper limit is equal to  
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Where NCM is the number of classes in the system (see Appendix 9). This ensures that 

30% of change is allowed (i.e. 70% should be stable and not affected). The pseudo code 

given below describes the steps required for automated detection of the ripple effect 

model smell.  

: ALGORITHM: RIPPLE EFFECT  

: start 

:    read Model   

:    for (each use-case in the Model) 

:      read UC 

:      if (IF(UC) >= UPIF) 

:          {uc-list} = {uc-list} U UC 

:       end if 

:    end for   

:    return uc-list 

: stop  

 

5.4.8 (e) Model Refactoring Mechanics 

Name: Class Responsibility Assignment 

Parameters: List ucNames            where, 

 ucNames is the list of use cases that are not stable 

Preconditions: 

i. The name of the new class (newClass) does not conflict with the name of 

an existing class within the model. 

Mechanics: 

For each use case in the ucNames list, the class (lifeline) contributing most the 

value of IF is selected. The resolution of this smell requires identifying 



257 

 

applicability of Single Responsibility principle, part of the design principles 

proposed by Martin [437] better known by their mnemonic acronym S.O.L.I.D. 

The Single Responsibility principle targets cohesion. There should never be more 

than one reason for a class to change. If a class has more than one responsibility, 

then they become coupled. Changes to one responsibility may impair or inhibit 

the class' ability to meet the others. The following refactoring operations are 

applied to divide responsibility,  

1. Create Sub Class refactoring is used to create two sub classes from the 

names provided in the newClass list. 

2. Push Down Method refactoring is then used to push the related 

alternatives behavior to the sub classes. This assigns responsibility of the 

behavior (method) using polymorphic operations to the classes for which 

the behavior varies.  

3. Finally, Substitute Lifeline refactoring is applied to replace the lifelines 

with their appropriate child classes from the structural view.  

Figure 73 shows the ordering of the composite refactoring Class Responsibility 

Assignment. 

Post Conditions: 

None 
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5.4.8 (f) Example 

Since a complete example of this model smell detection and resolution is difficult to 

portray, we illustrate an abstract example using the same NBS system. The two actors 

Customer and Operator of the NBS system access their functionality through a menu that 

is handled by the Menu Class. Two use cases considered for this illustration are Update 

Information and Create User. Figure 74 shows a subset of the model views from the NBS 

system that depicts the ripple effect model smell.  

Figure 73 Class Responsibility Assignment Refactoring 
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Figure 74 Excerpt of the NBS model views depicting Ripple Effect Smell 
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Figure 75 Excerpt of the NBS model views after refactoring  
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Figure 75 depicts a refactored version to solve this problem. In the refactored version, 

two subclasses are employed OperatorMenu and CustomerMenu of the class Menu. Each 

of the responsibilities is assigned to the subclass individually. As a result, displayMenu is 

implemented with these subclasses separately. Thus, the function of displaying operator 

menu is implemented in the class OperatorMenu without any alternatives of customers 

and the operator; these conditional branches are realized by means of polymorphism of 

displayMenu in the subclasses. The following refactoring operations are used to obtain 

the refactored version 

1. CreateSubClass (Menu, OperatorMenu) 

2. CreateSubClass (Menu, CustomerMenu) 

3. PushDownOperation (Menu, displayMenu) 

4. SubstituteLifeline (Menu, OperatorMenu) 

5. SubstituteLifeline (Menu, CustomerMenu) 

5.4.8 (g) Post Refactoring Model Improvement 

A class that is coupled to a large number of other classes, and would produce a large 

number of changes throughout the system in the event of an internal change (due to a 

change in the use case specification the class is part of), contributes to the Ripple Effect 

smell. By the definition, a class that presents this smell tends to be coupled to a large 

number of other classes. Hence, removing this smell reduces the coupling between the 

classes in its structural view. This in turn localizes the effect on any change made to the 

behavior of the use case to classes included within the use case only and reduces their 

impact on other classes. 
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5.4.8 (h) Side Effects 

Ripple Factor is a result of improper responsibility distribution within the software model 

beginning from its functional view in high-level design phase and propagating to its 

structural view in low-level design phase. Proper assignment of responsibility of classes 

based on the information from the functional view will not cause any side effects within 

the design model. It will in turn make the design more resilient to change by localizing 

changes and demonstrate effective use of object-oriented design principles.  
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6 CHAPTER 6 

TOOL SUPPORT 

This chapter offers discussion about the two tools developed as part of this work: 

UCDesc and IntegraUML. UCDesc is a complementary tool to provide use case 

modeling support for IntegraUML. IntegraUML is the main tool that provides the 

capability of integrating UML models; specifically class diagrams, sequence diagrams 

and use case diagrams, and allowing designers to refactor this integrated model. The 

schema for the Integrated Model is created using Altova XMLSpy 2010 [438] and 

presented in Appendix 7. In this chapter, we describe in detail the motivation, 

architecture and implementation of both the UCDesc tool and IntegraUML tool. 

 

6.1 UCDesc: A Use Case Description Tool 

UCDesc is designed for documenting and analyzing the behavior of use cases in the 

system. The most important element of Use Case analysis is the authoring of Use Case 

"flow" or "narrative". Traditional UML tools provide limited support for this vital 

artifact. As a result, designers end up using word processors and a myriad of informal 

templates to document use cases. The main motivation for designing the UCDesc tool is 

to allow designers to properly design and analyze use cases and to provide capability of 

exporting them as a means of model interchange. In this section, we provide details of the 

implementation and usage of this use case description tool. 
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6.1.1 Analysis of Existing Use Case Modeling Tools 

Use case modeling tools can be classified into two categories: tools that provide support 

in the construction of the structural view of use cases and tools that provide support in 

documentation of the behavioral aspect of use cases along with the structural view. Since 

the structural view is the one that is part of the UML standard, numerous commercial 

software tools are available [439-443]. Experts agree that the most important aspect of 

use case analysis is the authoring of use case descriptions. However, traditional UML 

tools provide limited support for this important activity. Some provide basic description 

features such as composing use case behavior as prose text or documentation [444, 445].   

Three noteworthy tools that are available for modeling the behavior aspect of use cases 

are CaseComplete [446],  Visual Use Case [447] and Visual Paradigm for UML [448]. 

These tools provide powerful features when it comes to composing use case flow of 

events. They all provide a glossary feature that allows the reuse of similar terms in the 

flow of events. The flow of events in all tools has two representations, the traditional 

flow of events representation with a sequence of numbered steps and an activity diagram 

representation. Hyperlinks are provided in steps to allow access to use cases referenced 

through the include and extend relationships in the main flow. These tools also provide 

additional functionality like requirements tracing, collaboration and versioning. 

Although powerful use case editors, the above-mentioned tools have some disadvantages. 

Visual Use Case lacks the functionality to export its diagrams to XMI. Due to this 

limitation, output models cannot be reused for analysis in other tools. One of the main 

advantages of UCDesc is that it provides the ability to export to XMI format so that it can 

be reused by other UML modeling tools for analysis and integration. Both CaseComplete 
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and Visual Paradigm for UML do provide an XMI export capability to the user but lacks 

a fine-grained description of the flow of events in the resultant XMI file. An excerpt 

taken from the XMI generated by CaseComplete is shown in Figure 76. Some tags are 

modified for clarity of representation. 

As shown in Figure 76, all the steps in the flow of events of a use case are available as an 

attribute value. UCDesc provides syntactic processing of steps in order to allow a fine-

grained representation of steps within flow of events.  UCDesc relies on a carefully 

developed use case narrative metamodel. This metamodel provides sentence level 

analysis of use cases steps making them more readable and understandable.  

 

Based on recent works done on extending the UML metamodel to supplement behavioral 

information, a number of prototype tools have been proposed [361, 363]. Since these 

tools depend heavily on the metamodel proposed in their respective works, it could not be 

used in our work. 

 

 <?xml version="1.0" encoding="utf-8" ?> 

< <XMI xmi.version="1.1" xmlns:UML="http://www.omg.org/UML"> 

       <XMI.header> 
<  <XMI.documentation> 

<  <XMI.exporter>Serlio Case Complete</XMI.exporter> 

<  <XMI.exporterVersion>5.2.3972</XMI.exporterVersion> 

   </XMI.documentation> 

     …………….. 

<     <UML:TaggedValuexmi.id="TV6" tag="Steps" value="1. Admin Logs into    

              the System 2. System displays username and password to the Admin  
              3. Admin enters the username and password into the System 4.  
              Incorrect Username" modelElement="UC-34fb0ce5-fc39-46f4-b0f6- 
              84eca0786a50" /> 
      </XMI> 

Figure 76 Sample XMI excerpt exported by CaseComplete UML Tool 

file:///C:/Users/Mohammed%20Misbhauddin/Documents/sample.xml
file:///C:/Users/Mohammed%20Misbhauddin/Documents/sample.xml
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6.1.2 UCDesc Architecture 

UCDesc consists of sub-systems that provide different end user functionality. Figure 77 

shows the architecture of UCDesc tool.  The Use Case Editor documents the interactions 

between actors and use cases. Users can use the editor to write the narratives for the use 

cases, from the invocation of use case until the user accomplish the use case. Users can 

also document sub flows and alternative flows that extend from basic flow by defining 

sub and alternative scenarios respectively. 

 

 

One of the most important features offered by UCDesc is the inclusion of use case flow 

analyzer. This module accepts the steps from the flow of events and identifies for each 

step, the sender, receiver, action and arguments. The analyzer works in two steps as 

follows: 

Diagram 

Render Engine 

yUML.me 

XMI Generator 

HTML 

JPG 

Use Case Elements 
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Use Case Structure 

Use Case 

Flow 

Analyzer 

Basic Flow / Sub 

Flow / Alt Flow 

Object List (Sender, 

Receiver, Action, 

Arguments)  

Figure 77 High-Level Architecture of UCDesc Tool 



267 

 

1. Tagging: Each Step from the flow of events is tagged using part-of-speech (POS) 

tagging to distinguish nouns, verbs and adjectives in the sentences as candidate 

features that indicate syntactic structure. The Stanford POS tagger [449] is used in by 

UCDesc to accomplish this task.  

2. Mapping:  Based on the syntactic structure derived from the POS tagger, the 

mapping table shown in Table 7 is used to identify the objects of the flow step. Part of 

this mapping is based on the works of Li [370]. 

 

Table 7 Mapping of Syntactic Structure of Sentences into Use Case Objects 

No. Syntactic Structure Sender Receiver Action Arguments 

1 subject verb object subject object verb - 

2 
subject verb1 object1 

verb2(object2) 
subject object1 verb2 object2 

3 
subject verb object 

adjective  
subject object be+ adjective adjective 

4 
subject verb object1 

participle (object2)   
subject object1 verb participle (object2) 

5 
subject verb object1 

object2 
subject object1 set+ object2 - 

6 

subject verb1 object 

conjunctive to verb1 

(object1) 

 subject verb1 
object, verb1 

(+object1) 

7 
subject verb gerund 

object 
 subject verb 

gerund verb 

(+object) 

8 
subject verb object1 

preposition object2 
subject object2 verb object1 

9 
subject verb (for) 

complement 
 subject verb complement 

10 subject verb  subject verb  

11 subject be predicative  subject be + predicative  

12 
subject verb preposition 

object 
 subject 

verb + 

preposition 
object 
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The diagram render engine renders the use case diagrams. UCDesc does not provide a 

built-in diagramming utility and hence uses a web-based use case diagramming tool 

known as yUML [450]. An appropriately constructed link (or URL) is accepted by the 

yUML server which then produces an image file with the use case diagram. This diagram 

is displayed in the systems web browser. It is the responsibility of the rendering engine to 

accept use case structural information from the editor and generate an HTML file to be 

passed on to the yUML server. The structural information includes actor-use case and use 

case-use case relationships. An example of the hyperlink generated and a sample 

rendered diagram is shown in Figure 78. 

 
http://www.yuml.me//diagram/scruffy;/usecase/// Bill Payment Service, [Admin]-(Add 

User), [User]-(Subscription Payment), (Subscription Payment)<(Pay Credit), 

(Subscription Payment)<(Pay Cash), (Add User)<(Background Check) 
Figure 78 Example yUML Link and corresponding Use Case Diagram 

 

The XMI generator module generates XMI output of the use case diagram. In order to 

specify the structure of the flow of events in use cases, an extended version of the use 
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case metamodel was proposed in this work. This extended use case metamodel is shown 

in Figure 33. The XMI is based on an XML Schema presented in Appendix 5. 

6.1.3 Features of UCDesc Tool 

UCDesc is a simple use case description tool built on Java programming platform. The 

primary objective of UCDesc is to allow users to compose use case descriptions and 

provide the capability of exporting it to XMI. The main layout of UCDesc is shown in 

Figure 79.  

 

The main layout consists of a top menu bar and three panels at the bottom: Actor, Use 

Cases and Relationships. The Actor panels lists all the actors available in a project, the 

use cases panel lists all the use cases available in the project and the relationships panel 

lists all the use case relationships (include and extends) available in the project. Users can 

Figure 79 UCDesc Main Layout 
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add actors and use cases making use of the options available in the Edit Menu. 

Relationships are added automatically when the user adds them to a particular use case 

description.  

The format of use case description template followed by UCDesc needs to be defined 

here for comprehension. Composing use case flows requires the understanding of the 

following important guidelines: 

1. Use case step numbering: In order to follow the different paths through a use case, 

the use case numbering scheme for the flow of events plays an important factor. Since 

there is no specific UML specification regarding the numbering scheme, the format 

adopted by UCDesc is shown below in Figure 80. The steps numbered 1, 2, 3 and so 

on makes up the main flow. The sub flows and alternative flows are specified after 

the main flow. The numbering of the sub flows and the alterative flows includes the 

step # where they can be invoked followed by a character (a-z) in case if more than 

one sub or alternative flow can be invoked at the same step of the main flow. Sub 

flows and alternative flows can themselves have sub and alternatives flows. Where to 

continue the execution after the end of a sub or an alternative flow is specified by a 

"Return" statement which indicates the return step. If there is no "Return" statement, 

the use case ends. 



271 

 

 

2. Including a Use case: A use case can be included into another use case by using the 

anchor Include in the flow step followed by a use case name. For instance 

1. Include Login 

At step 1 in the main flow, the use case Login is invoked. 

3. Extending a Use case: Extending a use case is a more complicated than the inclusion 

case. Before extending a use case, extension points must be defined in the base use 

case. A use case can be extended by another use case by including the extension point 

name within curly braces in the flow step of the base use case. Once defined, an 

extension can be added as follow; 

2. {Transfer} 

MAIN FLOW 

1. Main Flow Step 1 

2. Main Flow Step 2 

3. Main Flow Step 3 

…… 

SUB FLOW 

Step# (a): Sub Flow 1 

 1. Sub Flow 1 Step 1 

 2. Sub Flow 1 Step 2 

 ……… 

ALTERNATIVE FLOW 

Step# (a): Flow Condition 

 1. Alternate Flow 1 Step 1 

 2. Alternate Flow 1 Step 2 

……… 

Figure 80 UCDesc Use Case Description Format 
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At step 2 in the main flow, the use case mentioned in the Transfer extension point is 

invoked upon successful evaluation of the extension constraint included in the 

referred extension point. The extension point is typically defined as follows: 

Transfer [transaction = transfer] : Transfer , return: 6 

Snapshots of the UCDesc windows that allow users to insert use case description details 

and author various flows is shown in Figure 81. A detailed user manual for the UCDesc 

is provided in Appendix 6 

.  

 

An example use case flow description and its corresponding XMI Specification 

conforming to the extended use case metamodel are shown in Figure 82. 

Use Case: Perform Transaction 
UC-ID: 005 

<?xml version="1.0" encoding="UTF-8"?> 
<UseCaseModel> 

   <Actor id="actor_0" name="Customer" type="Human" 
num_roles="1"/> 
   <Actor id="actor_1" name="Bank System" 
type="NetworkSystem" 
                                                                                         
num_roles="1"/> 
   <UseCase actor-ref="actor_0" id="UC-005" name="Perform  
                                                                  Transaction" 

SCOPE: System 

LEVEL: Primary Task 

PRIORITY: High 

(a) (b) 

Figure 81 UCDesc (a) Use Case Description and (b) Flow Authoring Windows 
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ASYNCHRONOUS  

Lost Connectivity 

{System is not connected} 

1. Display Error Message 

2. Terminate User Session 

3. Use Case Ends 

isAbstract="false"> 
         <Supporting actor-ref="actor_1"/> 
         <Description scope="System" level="PrimaryTask" 
Priority="high"/> 
         <Precondition> 

 <Constraint> 
          <Entity name="System"/> 
          <Relation name="equals"/> 
          <Value name="Connected"/>  
 </Constraint>  
            </Precondition> 
            <Postcondition> 
 <Success> 
       <Constraint> 

                     <Entity name="Transaction"/> 
                     <Relation name="equals"/> 
                     <Value name="Successful"/> 
  
        </Constraint> 
 </Success> 
 <Failure> 
         <Constraint> 
                     <Entity name="Transaction"/> 
                     <Relation name="equals"/> 

                     <Value name="Failed"/> 
  
          </Constraint>  
            </Failure>  
 </Postcondition> 
 <AsyncExtend name="Lost Connectivity" uc-ref="UC-
013"> 
               <Constraint> 
  <Entity name="System"/> 

  <Relation name="not-equals"/> 
  <Value name="connected"/> 
               </Constraint> 
 </AsyncExtend>  
 <Include uc-ref="UC-001"/> 
 <Extend uc-ref="UC-003" extPoint="Transfer"/> 
 <Extend uc-ref="UC-004" extPoint="Pay Bill"/> 
 <ExtensionPoint name="Transfer" lower="0" 
upper="1"> 
  <Constraint> 
   <Entity name="transaction"/> 
   <Relation name="equals"/> 
   <Value name="transfer"/>
  
  </Constraint>   
  <RejoinLocation step="6"/> 
 </ExtensionPoint> 
 <ExtensionPoint name="Pay Bill" lower="0" 
upper="1"> 
  <Constraint> 
   <Entity name="transaction"/> 
   <Relation name="equals"/> 
   <Value name="pay"/>  
  </Constraint>  
  <RejoinLocation step="6"/> 
 </ExtensionPoint> 
     <MainFlow> 
 <Transaction order="1"> 
         <Step step-no="1"> 
              <ExternalInclusion  uc-ref="UC-001"/> 
          </Step> 
 </Transaction> 
 <Transaction order="2"> 
          <Step step-no="2"> 
  <Sender name="System"/> 
  <Receiver name="Customer"/> 
  <Action type="action" name="display"/> 
  <Argument name="transaction"/> 
           </Step> 
           <Step step-no="3"> 
  <Sender name="Customer"/> 
  <Receiver name="System"/> 
  <Action type="action" name="select"/> 
  <Argument name="transaction"/> 
             </Step> 
             <Step step-no="4"> 
                     <ExternalVariation extPoint="Transfer"/> 

PRECONDITIONS 

System is Connected 

ACTOR 

PRIMARY 

Customer 

SUPPORTING 

Bank System 

MAIN FLOW 

1. Include Login 

2. System Displays a list of Transactions 

3. Customer Selects Transaction 

4. {Transfer} 
5. {Pay Bill} 

6. System displays Transaction Summary 

7. Use Case Ends 

ALTERNATIVE FLOW 

6 (a) Customer Selects Print 

1. The system sends the summary to the Printer 

2. Return: 6 

SUCCESS POST-CONDITION 

 

Transaction is Successful 

 

FAILURE POST-CONDITION 

 

Transaction failed 

 

EXTENSION POINTS 

 

Transfer [transaction = transfer] : Transfer , return: 6 
Pay Bill [transaction = pay] : PayBill , return: 6 
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             </Step> 
             <Step step-no="5"> 
                    <ExternalVariation extPoint="Pay Bill"/> 
             </Step> 
          <Step step-no="6"> 

  <Sender name="System"/> 
  <Receiver name="Customer"/> 
  <Action type="action" name="display"/> 
  <Argument name="tranbsaction 
summary"/> 
          </Step> 
 </Transaction> 
        </MainFlow> 
        <AlternativeFlow variationStep="6" sequence="a"> 

 <Constraint> 
            <Entity name="selection"/> 
           <Relation name="equals"/> 
           <Value name="print"/>  
 </Constraint> 
 <Transaction order="1"> 
            <Step step-no="1"> 
  <Sender name="System"/> 
  <Receiver name="Printer"/> 
  <Action type="action" name="send"/> 

  <Argument name="summary"/> 
           </Step> 
 </Transaction> 
 <RejoinLocation step="6"/> 
             </AlternativeFlow> 
     </UseCase> 
</UseCaseModel> 

Figure 82 An example use case flow description and its equivalent XMI 

 

6.1.4 Current Limitations of UCDesc Tool 

Although the UCDesc tool fulfills its basic responsibility of allowing users to create and 

edit use case descriptions and export them to as an XMI file, the tool has some limitations 

for it to be used as a complete use case description tool. The tool lacks a built-in diagram 

rendering engine and hence require users to have an active internet connection to view a 

diagrammatic representation of the structural view of a use case diagram. Another 

limitation is the lack of a glossary function as provided by other commercial tools in the 

market. Inclusion of this feature will enhance the use case analysis functionality provided 

by UCDesc.   
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6.2 IntegraUML: A multi-view UML Integration and Refactoring 

Tool 
 

Based on the proposed integrated metamodel, we have implemented a prototype tool 

called IntegraUML (UML Model Integration and Refactoring Tool). IntegraUML is a 

tool to support model integration and transformation on UML models imported in the 

form of an XMI file. The UML models accepted by IntegraUML are Class diagrams, 

Sequence diagrams and Use Case diagrams. XMI models are imported by the tool and 

integrated into an intermediate format, which then is used for refactoring. IntegraUML is 

implemented on Java programming platform and makes use of the standard XML Parser 

to analyze the UML models. In this section, we provide details of the implementation and 

usage of the IntegraUML tool. 

6.2.1 IntegraUML Architecture 

Figure 83 illustrates a high-level architecture of the IntegraUML tool. The inputs to the 

tool are XMI files representing the UML models. The format of the XMI file accepted by 

IntegraUML is described in the next subsection. The main engine is composed of several 

modules that collectively operate to integrate and refactor the input models. These 

modules are explained below: 

1. Integration Module: The Integration module makes use of the standard Java XML 

API to parse the input models and write them to a single integrated XMI file. 

Particularly, the Document Object Model (DOM) API is used. DOM represents XMI 

as trees of nodes.   A detailed description of the DOM API can be found in Appendix 

7.  
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2. Smell Detection Module: Model smells in the IntegraUML tool are defined in 

XQuery and stored in the Model Smell Repository. XQuery is conceived as a 

language for querying XML files, in the same way as SQL is used for querying 

relational databases. The smell detection module is build using the Saxon Query 

processor. Each smell, in the form of a query, from the repository is executed over the 

integrated model. If a smell exists in the integrated model, the model along with the 

smell is passed on to the Refactoring module. Model smells in the repository are 

organized in an order to minimize any side-effects and maximize refactoring 

opportunity detection over the integrated model. 

3. Refactoring Module: The refactoring module, based on the detected smell, applies a 

composite refactoring to remove the model smell. A composite refactoring is 

composed of several primitive refactorings which are applied in an error-free manner. 

IntegraUML is a semi-automatic refactoring tool. Hence all refactorings before 

application are confirmed from the user.   

After executing all the smells present in the repository, the final refactored model is 

stored and outputted in the form of an XMI file. 
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A platform-specific mapping of the IntegraUML architecture is given in Figure 84. 

Different components are represented by a platform-specific view of their realization. 

The <<java>> stereotype reflects a java implementation; the <<xmi>> stereotype 

Output Layer 

Refactored 

Integrated XMI 

Use Case Model 
Class Model 

Sequence Model 

UML 

Modeling Tool 
UML 

Modeling Tool 

Input Layer 

Integration Module 

Integrated XMI 

Smell Detection 

Module 
Model Smell 

Repository 

Refactoring 

Module 

Model, Smell 

Refactored Model 

Class Diagram 

XMI 

Sequence Diagram 

XMI 

Use Case Diagram 
XMI 

Figure 83 High-Level Architecture of the IntegraUML tool 
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reflects an XMI file; the <<java-saxon>> stereotype reflects a java implementation 

using the saxon xquery processor; the <<xquery>> stereotype reflects an xquery file; 

and the <<java-class>> stereotype reflects a compiled java class.  

 

 

6.2.2 IntegraUML Input Format 

XMI is a standard format for exchanging UML models between tools. Nonetheless, XMI-

based model exchange currently has one major shortcoming: an XMI file exported from 

one tool is different from an XMI file exported from another tool for the same UML 

<<java>> 

IntegraUML User Interface 

<<java>> 
Integration Module 

<<java>> 

Smell Detection Module 

<<java>> 
Refactoring Module 

Local File System 

<<xmi>> 

Integrated XMI 

<<xmi>> 

Source XMI 

1...3 +model_files 

+model 

+file_controller 

<<xquery>> 

Smell Repository 

<<java-saxon>> 

Query Processor 

+query_controller 

+model_smells 0...* 

+refactoring_controller 

<<java>> 
Refactoring Engine 

<<java-class>> 

Refactoring API 

+implementation 

Figure 84 Platform-specific Architecture of IntegraUML 
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model. There are many different reasons for these dissimilarities. Some prominent ones 

are: 

 There are a number of versions of the underlying standards. For appropriate usability, 

the same version of MOF, XMI and UML must be used in both the exporting and 

importing tools. 

 There are a number of ways in which a model can be serialized for export. 

 The exporting tool may use a proprietary metamodel that is not based on MOF, the 

effect of which compromises interoperability. 

 Finally, the most important one is the difference of tag names adopted by different 

tools.   

 

In order to be consistent in our approach, we decided to follow the current XMI Schema 

Version 2.1 and UML version 2.4. An XML Schema diagram for the accepted UML 

models of Class and Sequence Diagrams is shown in Figure 85 and Figure 86. The XML 

Schema diagram for the Use Case model is given in Appendix 5 as the standard UML 

CASE tool exported XMI does not include its behavioral information. To the best of our 

knowledge, the UML CASE tool that supports these schemas (provided by OMG) is 

Altova’s UModel [439].  

The type attribute of the packagedElement element identifies the context of the element 

whether it is a package (type="uml:Package"), class (type="uml:Class"), association 

(type="uml:Association"), association class (type="uml:AssociationClass") or a data type 

(type="uml:DataType").                
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Similar to the class diagram schema, the type attribute of the packagedElement element 

identifies the context of the element. It can either be a package (type="uml:Package"), 

interaction (type="uml:Interaction") or an event (type="uml:CallEvent"). 

  

Figure 85 XML Schema Diagram of the UML Class Diagram 
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6.2.3 IntegraUML Features 

IntegraUML is prototype UML model integration and refactoring tool built in java. Its 

main usage scenario is to import UML XMI models and generate an integrated model for 

the purpose of refactoring application. Figure 87 shows the high-level use cases that are 

most pertinent to a developer using IntegraUML. 

 

Figure 86 XML Schema Diagram of the UML Sequence Diagram 
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The main layout of IntegraUML is shown in Figure 88. It consists of a top menu bar and 

three panels. The Source UML Files panel is the main input panel. IntegraUML allows 

users to upload XMI files for the class diagram; sequence diagrams and use case diagram 

as individual files or combined as one. The browsing options are enabled based on the 

selection of an appropriate radio button at the top of the panel. XMI files can be browsed 

and parsed from this panel. The results of the parsing process are displayed in the 

Diagram Parse Log panel. Typical parse log information includes diagram version, tool 

exported from and statistical information like number of classes, number of interactions 

and so on.  

Figure 87 Use Case Diagram for IntegraUML 
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The Error Log panel displays any errors that occur during the model integration process. 

The Integrate and Refactor buttons are enabled upon successful model parsing and 

integration respectively. The refactoring process is an interactive one. Upon detection of 

a model smell, IntegraUML displays and confirms the refactoring operation from the user 

before its application. A detailed user manual for the IntegraUML tool is provided in 

Appendix 8. 

6.2.4 Current Limitations of IntegraUML Tool 

IntegraUML is a semi-automatic model refactoring tool. It requires the user to confirm 

refactoring actions before their application. A fully automated refactoring tool requires an 

additional module that could remember user actions and only confirm those not already 

applied. Another limitation of the IntegraUML tool is interoperability. As the output of 

IntegraUML is based on a proprietary metamodel, developed as part of this work, using it 

with other UML modeling tools is not suitable. Although this could be circumvented by 

Figure 88 IntegraUML Main Layout 
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using a model disintegration module, which disintegrates the refactored model into class, 

sequence and use case diagrams, and then using XSLT transformation to map the 

resultant XMIs to a particular tools requirement. This is put forward as a future work to 

the IntegraUML tool. Finally, IntegraUML accepts a particular format of XMI as input to 

the tool. As there are myriad formats of XMI available for UML models, providing 

support for each is difficult to achieve.   
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7 CHAPTER 7 

VALIDATION 

In this chapter, we establish a framework to evaluate the effect of refactoring the 

integrated model proposed in this work. Initially, we construct a validation framework to 

evaluate our approach against existing approaches in Section 7.1. Then we describe and 

summarize the case studies used for validation in Section 7.2. Finally, baseline is 

established by evaluating existing approaches from the literature over the case studies in 

Section 7.3. Baseline results are compared, analyzed and discussed thoroughly with our 

proposed approach in the next chapter.   

 

7.1 Validation Framework 

An important objective of model-driven refactoring is to show the effect of refactoring on 

quality of the software model. Although one of the most important activity in the 

refactoring process, it is addressed only by a few published studies. Lack of an evaluation 

approach severely affects the usability of model refactoring approaches in the industrial 

software development. It is evident that despite being one of the most important 

activities, it is still in its infancy. 

 The only available approach used by the proposed studies [21, 32, 451] use model 

metrics and compare these metrics before and after the application of refactoring to 

validate their approach. Lange and Chaudron [69] developed a quality model for UML. 
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Jalbani et al. [294] proposed an integrated quality engineering approach for UML models. 

They divided their approach into two parts: Quality Assessment and Quality 

Improvement. Quality assessment includes the Quality Model for UML based on the 

Lange and Chaudron model and metrics for UML. Quality Improvement includes model 

smell detection and model refactoring. The framework developed by Jalbani et al. is still 

in development phase.  

In this work, we also used model metrics to validate our proposed approach. We initially 

established an acceptable suite of UML model metrics for class, sequence and use case 

diagrams proposed in the literature. These metrics are catalogued in Appendix 9. The 

complete validation framework is depicted in Figure 89.  

The validation process is carried out in two phases. In phase 1, also referred in this work 

as Individual Refactoring, UML models specifically those used in this work are 

refactored separately. An intermediate parser based on Java is used to convert the 

imported models (in XMI) to an intermediate XMI format. The main motivation behind 

this conversion includes: 
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Figure 89 Validation Framework 
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1. The intermediate model provides a simple lexical view into the UML model. 

2. The XMI file exported by major UML Modeling tools includes deeper nesting and a 

significant amount of cross-references. This in turn makes the models harder to read 

and navigate. The intermediate model used in our approach removes the deep nesting 

by resolving diagram related attributes and including only relevant information as 

tags. Cross-references are also resolved by replacing IDREF and type elements within 

the XMI with their element names. This makes the intermediate model faster to 

process, refactor and evaluate.  

 

The intermediate models are then refactored. The refactoring rules and model smells for 

all the diagrams are obtained from published literature in the field of model-driven 

refactoring. A catalog of all the supported refactoring rules and models smells is included 

as part of Appendix 2 and Appendix 10 respectively. Model metrics collected as part of 

the framework are then applied to these refactored models. These metrics are used as 

baselines to be compared with the Integrated Refactoring approach proposed in this work. 

In phase two, the same models are integrated using the proposed IntegraUML prototype 

tool. Since the approach requires behavioral information of the use case diagram in order 

to construct the integrated model, UCDesc is used. As part of the Integrated Refactoring 

process, the individual models are initially checked for consistency. If inconsistencies are 

found, the integration process is stopped and the refactoring task is terminated. After the 

consistency check step, models are integrated and checked for syntactic and semantic 

compatibility against the Integrated Metamodel. Integrated model smells proposed in this 

work are then applied over the integrated model to detect refactoring opportunity. The 
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model is refactored if a model smell is detected. This process is repeated until all the 

smells included in the Integrated Model Smell repository are exhausted. The output of 

this phase is a refactored integrated model. In order to evaluate the model, it has to be 

decomposed into individual models. The Model Decomposition package takes as input 

the integrated model and outputs individual class, sequence and use case model. No 

information is lost during the decomposition step. Similar to the previous phase, model 

metrics are applied to these refactored models. In order to evaluate the effectiveness of 

the proposed approach, metric values for individual refactoring and integrated refactoring 

are compared. In this chapter, we perform phase one of the validation approach. Phase 2 

is performed and analyzed in the next chapter. 

 

7.2 Case Studies 

A major challenge encountered when working with UML based techniques is the 

availability of quality case studies. Since the UML Class diagram is the most commonly 

used diagram, most case studies only provide system design through class diagrams. This 

constrains multi-model approaches such as the one proposed in this work.  Hence, to 

overcome this issue, we decided to construct a suite of case studies collected from two 

separate yet distinct origin and domain. We used nine different software design case 

studies to evaluate our approach: five obtained from student projects and four obtained 

from published research, case studies and industrial white papers.  
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7.2.1 Student Projects 

The case studies from student projects are supplied by a group of undergraduate B.Sc. 

students with software engineering major of study. The models are the design models of 

the group’s senior project conducted at King Fahd University of Petroleum and Minerals, 

whose stakeholders are industrial organizations. Out of 16 projects considered, five were 

selected based on the criteria summarized below. 

1. Project is complete and includes all required diagrams: class, sequence, use case 

diagrams and use case description. 

2. Project uses UML 2 concepts such as Combined Fragments in sequence diagrams.  

3. Information across all diagrams is consistent and properly documented.  

4. Projects scored good grades for design and implementation from the evaluator and the 

stakeholder.   

 

In the rest of chapter, these case studies or projects are referred to as OFD (Online Form 

Designer), ESAP (Electronic Student Academic Portfolio), FOMS (Freelancing Online 

Management System), OG (Our Goal) and ME (My Events). Table 8 summarizes some 

vital characteristics of each of the student project case studies: use cases, actors, classes, 

average number of lifelines per sequence diagram, average number of messages per 

sequence diagram, total number of combined fragments used and total number of 

interaction use fragments used in the sequence diagram.  
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Table 8 Summary of each student project case study system 

Case 

Study 

# of Use 

Cases 

# of 

Actors 

# of 

Classes 

Avg. # 

of 

Lifelines 

Avg. # of 

Messages 

# of 

Combined 

Fragments 

# of 

Interaction 

Use 

OFD 22 2 23 4 8 14 10 

OG 35 7 15 5 9 11 0 

ESAP 39 6 28 4 8 19 24 

ME 62 9 18 4 11 39 4 

FOMS 35 5 16 3 5 0 0 

 

7.2.2 Published Case Studies 

Case studies in this category are gathered from two different origins and domains: small-

scale industrial systems and published case studies. In the rest of the chapters, these case 

studies are referred to as ATM (Automated Teller Machine), ORA (On-Road Assistance), 

SCM (Supply Chain Management System), and O-Comm (OS-Commerce). All these 

system designs came from multiple sources. ATM is a well-known case study in the field 

of UML based empirical studies published by Briand et al. [452, 453]. SCM [454], and 

O-Comm [455] are published case studies and ORA system [456, 457] is part of small-

scale industrial system design. Table 9 summarizes some vital characteristics of each of 

the published case studies.  

Table 9 Summary of each published case study system 

Case 

Study 

# of Use 

Cases 

# of 

Actors 

# of 

Classes 

Avg. # 

of 

Lifelines 

Avg. # of 

Messages 

# of 

Combined 

Fragments 

# of 

Interaction 

Use 

ATM 15 2 18 4 7 15 0 

SCM 8 5 21 4 5 7 3 

O-Comm 119 5 59 3 6 32 5 

ORA 13 4 14 4 4 1 11 
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7.3 Individual Refactoring 

7.3.1 OFD (Online Form Designer) 

(a) Class Diagram 

Table 10 Comparison of Class Diagram-level Metrics for OFD System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 23 21 

Number of The Associations (NASM) 12 10 

Number of The Aggregations (NAGM) 6 6 

Number of The Inheritance Relations (NIM) 10 10 
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Table 11 Comparison of Class Element-level Metrics for OFD System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 2 15 0.65 

After 0 2 15 0.71 

Number of Children (NOC) 
Before 0 4 10 0.43 

After 0 4 10 0.48 

Fan-In 
Before 0 3 21 0.91 

After 0 3 18 0.86 

Fan-out 
Before 0 3 21 0.91 

After 0 3 18 0.86 

# of Associations Linked to a Class (NASC) 
Before 0 5 36 1.57 

After 0 5 32 1.52 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 10 58 2.52 

After 0 10 58 2.76 

# of Attributes in a Class Weighted (NATC2) 
Before 0 3 11.5 0.50 

After 0 3 11.5 0.55 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 25 127 5.52 

After 0 29 127 6.05 

# of Operations in a Class Weighted (NOPC2) 
Before 0 25 127 5.52 

After 0 29 127 6.05 

# of Super Classes of a Class (NSUPC) 
Before 0 1 10 0.43 

After 0 1 10 0.48 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 2 15 0.65 

After 0 2 15 0.71 
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Discussion: Two instances of the Lazy Class Model Smell were found in the class 

diagram of OFD case study. Resolution of this smell although reduced the size of the 

design (in terms of number of classes) as shown in Table 10, but added more methods to 

the existing classes making them rich “God Classes” as evident by the NOPC1 and 

NOPC2 metric values in Table 11. 

(b) Use Case Diagram 

Table 12 Comparison of Use Case Diagram-level Metrics for OFD System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 22 22 

Number of Actors (NAM) 2 2 

 

Table 13 Comparison of Use Case Element-level Metrics for OFD System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 7 14 0.64 

After 0 7 14 0.64 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 2 14 0.64 

After 0 2 14 0.64 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Extension Points of The Use Case (ExtPts) 
Before 0 7 14 0.64 

After 0 7 14 0.64 

Depth of <<Include>> Relationship (DOIR) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

Depth of <<Extend>> Relationship (DOER) 
Before 0 1 7 0.32 

After 0 1 7 0.32 
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Discussion: No instances of any use case model smell were found for the OFD case 

study. Hence, the values remain unchanged before and after the application of refactoring 

as evident from Table 12 and Table 13. 

(c) Sequence Diagram 

Table 14 Comparison of Sequence Element-level Metrics for OFD System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 3 5 92 4.18 

After 3 5 92 4.18 

# of Messages (NMM) 
Before 5 15 169 7.68 

After 5 15 169 7.68 

# of Messages sent by the Instantiated Objects of a 

Class (NMSC) 

Before 1 6 169 1.59 

After 1 6 169 1.59 

# of Messages received by the Instantiated Objects 
of a Class (NMRC) 

Before 0 8 169 1.52 

After 0 8 169 1.52 

 

Discussion: Although quite a few instances of the middle man smell were found in the 

sequence models of OFD, but refactoring was not performed due to the use of MVC 

pattern in their application. Hence, the metric values shown in Table 14 remain 

unchanged.  
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7.3.2 OG (OurGoal) 

(a) Class Diagram 

Table 15 Comparison of Class Diagram-level Metrics for OG System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 15 15 

Number of The Associations (NASM) 14 14 

Number of The Aggregations (NAGM) 10 10 

Number of The Inheritance Relations (NIM) 4 4 
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Table 16 Comparison of Class Element-level Metrics for OG System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 1 4 0.27 

After 0 1 4 0.27 

Number of Children (NOC) 
Before 0 2 4 0.27 

After 0 2 4 0.27 

Fan-In 
Before 0 12 27 1.80 

After 0 12 27 1.80 

Fan-out 
Before 0 12 27 1.80 

After 0 12 27 1.80 

# of Associations Linked to a Class (NASC) 
Before 0 12 48 3.20 

After 0 12 48 3.20 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 19 81 5.40 

After 0 19 81 5.40 

# of Attributes in a Class Weighted (NATC2) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 17 42 2.80 

After 0 12 42 2.80 

# of Operations in a Class Weighted (NOPC2) 
Before 0 17 42 2.80 

After 0 12 42 2.80 

# of Super Classes of a Class (NSUPC) 
Before 0 1 4 0.27 

After 0 1 4 0.27 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 1 4 0.27 

After 0 1 4 0.27 
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Discussion: Seven instances of the Data Class Model Smell were found in the class 

diagram of OG case study. Resolution of this smell reduced the maximum number of 

operations in a class (NOPC1 and NOPC2) by moving related methods to the respective 

data classes from the behaviorally rich Profile class in the model as observed from Table 

16.   

(b) Use Case Diagram 

Table 17 Comparison of Use Case Diagram-level Metrics for OG System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 35 35 

Number of Actors (NAM) 7 7 

 

Table 18 Comparison of Use Case Element-level Metrics for OG System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 2 3 0.09 

After 0 2 3 0.09 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 2 3 0.09 

After 0 2 3 0.09 

# of Extension Points of The Use Case (ExtPts) 
Before 0 0 0 0 

After 0 0 0 0 

Depth of <<Include>> Relationship (DOIR) 
Before 0 1 2 0.06 

After 0 1 2 0.06 

Depth of <<Extend>> Relationship (DOER) 
Before 0 0 0 0 

After 0 0 0 0 
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Discussion: No instances of any use case model smell were found for the OG case study. 

Hence, the values remain unchanged before and after the application of refactoring as 

shown in Table 17 and Table 18. 

(c) Sequence Diagram 

Table 19 Comparison of Sequence Element-level Metrics for OG System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 4 6 175 5.00 

After 4 6 175 5.00 

# of Messages (NMM) 
Before 3 13 333 9.51 

After 3 13 333 9.51 

# of Messages sent by the Instantiated Objects of a 

Class (NMSC) 

Before 0 5 315 1.54 

After 0 5 315 1.54 

# of Messages received by the Instantiated Objects of 
a Class (NMRC) 

Before 1 5 313 1.53 

After 1 5 313 1.53 

 

Discussion: Although quite a few instances of the middle man smell were found in the 

sequence models of OG, but refactoring was not performed due to the use of MVC 

pattern in their application as evident from metric values shown in Table 19.  

7.3.3 ESAP (Electronic Student Academic Portfolio) 

(a) Class Diagram 

Table 20 Comparison of Class Diagram-level Metrics for ESAP System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 28 28 

Number of The Associations (NASM) 37 37 

Number of The Aggregations (NAGM) 6 6 

Number of The Inheritance Relations (NIM) 7 7 
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Table 21 Comparison of Class Element-level Metrics for ESAP System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 3 12 0.43 

After 0 3 12 0.43 

Number of Children (NOC) 
Before 0 3 7 0.25 

After 0 3 7 0.25 

Fan-In 
Before 1 8 78 2.79 

After 1 8 78 2.79 

Fan-out 
Before 1 8 78 2.79 

After 1 8 78 2.79 

# of Associations Linked to a Class (NASC) 
Before 1 8 85 3.04 

After 1 8 85 3.04 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 10 78 2.79 

After 0 10 78 2.79 

# of Attributes in a Class Weighted (NATC2) 
Before 0 1 1 0.04 

After 0 1 1 0.04 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 63 253 9.04 

After 0 53 240 8.57 

# of Operations in a Class Weighted (NOPC2) 
Before 0 63 253 9.04 

After 0 53 240 8.57 

# of Super Classes of a Class (NSUPC) 
Before 0 1 7 0.25 

After 0 1 7 0.25 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 3 12 0.43 

After 0 3 12 0.43 
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Discussion: Ten instances of the Duplication Model Smell were found in the class 

diagram of ESAP case study. Resolution of this smell reduced the maximum number of 

operations in a class (NOPC1 and NOPC2) by moving duplicated methods to their 

respective super classes as evident from Table 21.   

(b) Use Case Diagram 

Table 22 Comparison of Use Case Diagram-level Metrics for ESAP System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 39 39 

Number of Actors (NAM) 6 6 

 

Table 23 Comparison of Use Case Element-level Metrics for ESAP System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 5 27 0.69 

After 0 5 27 0.69 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 2 27 0.69 

After 0 2 27 0.69 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Extension Points of The Use Case (ExtPts) 
Before 0 5 27 0.69 

After 0 5 27 0.69 

Depth of <<Include>> Relationship (DOIR) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

Depth of <<Extend>> Relationship (DOER) 
Before 0 3 37 0.95 

After 0 3 37 0.95 
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Discussion: No instances of any use case model smell were found for the ESAP case 

study. Hence, the values remain unchanged before and after the application of refactoring 

as shown in Table 22 and Table 23. 

(c) Sequence Diagram 

Table 24 Comparison of Sequence Element-level Metrics for ESAP System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 0 6 155 3.97 

After 0 6 155 3.97 

# of Messages (NMM) 
Before 0 20 296 7.59 

After 0 20 296 7.59 

# of Messages sent by the Instantiated Objects of a 

Class (NMSC) 

Before 1 9 292 1.87 

After 1 9 292 1.87 

# of Messages received by the Instantiated Objects of 
a Class (NMRC) 

Before 1 9 293 1.83 

After 1 9 293 1.83 

 

Discussion: The ESAP case study included a number of packages to cluster related 

functionality together in the class diagram. Because of this, the Façade design pattern 

was used for communication between these packages. Although a Façade class may seem 

as a middle man lifeline in the sequence diagram, its main purpose is to allow a single 

point access to entity classes in the model. Hence, the middle man refactoring was not 

applied to the ESAP sequence diagrams. This is again evident from the sequence diagram 

metrics presented in Table 24. 
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7.3.4 ME (MyEvents) 

(a) Class Diagram 

Table 25 Comparison of Class Diagram-level Metrics for ME System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 18 15 

Number of The Associations (NASM) 13 12 

Number of The Aggregations (NAGM) 15 14 

Number of The Inheritance Relations (NIM) 6 5 
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Table 26 Comparison of Class Element-level Metrics for ME System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 2 7 0.39 

After 0 2 6 0.40 

Number of Children (NOC) 
Before 0 2 6 0.33 

After 0 2 5 0.33 

Fan-In 
Before 0 6 26 1.44 

After 0 6 24 1.60 

Fan-out 
Before 0 6 26 1.44 

After 0 6 24 1.60 

# of Associations Linked to a Class (NASC) 
Before 1 9 54 3.00 

After 1 9 50 3.33 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 16 103 5.72 

After 1 16 101 6.73 

# of Attributes in a Class Weighted (NATC2) 
Before 0 2 3 0.17 

After 0 2 3 0.20 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 18 105 5.83 

After 1 18 103 6.87 

# of Operations in a Class Weighted (NOPC2) 
Before 0 18 105 5.83 

After 1 18 103 6.87 

# of Super Classes of a Class (NSUPC) 
Before 0 1 6 0.33 

After 0 1 5 0.33 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 2 7 0.39 

After 0 2 6 0.40 
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Discussion: Two instances of the Functional Decomposition Model Smell and one 

instance of the Refused Bequest Model Smell were found in the class diagram of ME 

case study. Removal of the functionally decomposed classes that resulted in improved 

coupling (see Table 26) and the overall design size in terms of number of classes (see 

Table 25). Similarly, the removal of the sub-class with no functionality also affected the 

design size of the class model. 

(b) Use Case Diagram 

Table 27 Comparison of Use Case Diagram-level Metrics for ME System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 62 62 

Number of Actors (NAM) 9 9 

 

Table 28 Comparison of Use Case Element-level Metrics for ME System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 1 2 0.03 

After 0 1 2 0.03 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 1 2 0.03 

After 0 1 2 0.03 

# of Extension Points of The Use Case (ExtPts) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

Depth of <<Include>> Relationship (DOIR) 
Before 0 1 2 0.03 

After 0 1 2 0.03 

Depth of <<Extend>> Relationship (DOER) 
Before 0 0 0 0.00 

After 0 0 0 0.00 
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Discussion: No instances of any use case model smell were found for the ME case study. 

Hence, the values remain unchanged before and after the application of refactoring as 

shown in Table 27 and Table 28. 

(c) Sequence Diagram 

Table 29 Comparison of Sequence Element-level Metrics for ME System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 2 6 260 4.19 

After 2 6 260 4.19 

# of Messages (NMM) 
Before 2 25 703 11.34 

After 2 25 703 11.34 

# of Messages sent by the Instantiated Objects of a 

Class (NMSC) 

Before 1 10 678 1.80 

After 1 10 678 1.80 

# of Messages received by the Instantiated Objects 
of a Class (NMRC) 

Before 1 10 674 1.59 

After 1 10 674 1.59 

 

Discussion: Although quite a few instances of the middle man smell were found in the 

sequence models of ME, but refactoring was not performed due to the use of MVC 

pattern in their application as evident from metric values shown in Table 29.  

7.3.5 FOMS (Freelancing Online Management System) 

(a) Class Diagram 

Table 30 Comparison of Class Diagram-level Metrics for FOMS System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 16 16 

Number of The Associations (NASM) 8 8 

Number of The Aggregations (NAGM) 10 10 

Number of The Inheritance Relations (NIM) 7 7 
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Table 31 Comparison of Class Element-level Metrics for FOMS System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 2 9 0.56 

After 0 2 9 0.56 

Number of Children (NOC) 
Before 0 5 7 0.44 

After 0 5 7 0.44 

Fan-In 
Before 0 6 21 1.31 

After 0 6 21 1.31 

Fan-out 
Before 0 6 21 1.31 

After 0 6 21 1.31 

# of Associations Linked to a Class (NASC) 
Before 0 9 36 2.25 

After 0 9 36 2.25 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 16 84 5.25 

After 0 18 82 5.13 

# of Attributes in a Class Weighted (NATC2) 
Before 0 2.5 2.5 0.16 

After 0 2.5 2.5 0.16 

# of Operations in a Class Unweighted (NOPC1) 
Before 1 39 174 10.88 

After 1 39 174 10.88 

# of Operations in a Class Weighted (NOPC2) 
Before 1 37 156 9.75 

After 1 37 156 9.75 

# of Super Classes of a Class (NSUPC) 
Before 0 1 7 0.44 

After 0 1 7 0.44 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 2 9 0.56 

After 0 2 9 0.56 
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Discussion: Two instances of the Duplication Model Smell were found in the class 

diagram of FOMS case study. Resolution of this smell reduced the maximum number of 

attributes in a class (NATC1) by moving duplicated attributes to their respective super 

classes as shown in Table 31.   

(b) Use Case Diagram 

Table 32 Comparison of Use Case Diagram-level Metrics for FOMS System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 35 35 

Number of Actors (NAM) 5 5 

 

Table 33 Comparison of Use Case Element-level Metrics for FOMS System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 1 1 0.03 

After 0 1 1 0.03 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 1 1 0.03 

After 0 1 1 0.03 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 1 4 0.11 

After 0 1 4 0.11 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 3 4 0.11 

After 0 3 4 0.11 

# of Extension Points of The Use Case 

(ExtPts) 

Before 0 1 1 0.03 

After 0 1 1 0.03 

Depth of <<Include>> Relationship (DOIR) 
Before 0 1 2 0.06 

After 0 1 2 0.06 

Depth of <<Extend>> Relationship (DOER) 
Before 0 1 1 0.03 

After 0 1 1 0.03 
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Discussion: No instances of any use case model smell were found for the FOMS case 

study. Hence, the values remain unchanged before and after the application of refactoring 

as shown in Table 32 and Table 33. 

(c) Sequence Diagram 

Table 34 Comparison of Sequence Element-level Metrics for FOMS System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 2 8 109 3.11 

After 2 8 109 3.11 

# of Messages (NMM) 
Before 1 18 162 4.63 

After 1 18 162 4.63 

# of Messages sent by the Instantiated Objects of a 

Class (NMSC) 

Before 1 11 148 1.40 

After 1 11 148 1.40 

# of Messages received by the Instantiated Objects of 
a Class (NMRC) 

Before 1 9 154 1.62 

After 1 9 154 1.62 

 

Discussion: Although quite a few instances of the middle man smell were found in the 

sequence models of ME, but refactoring was not performed due to the use of MVC 

pattern in their application as shown in Table 34.  

7.3.6 ATM (Automated Teller Machine) 

(a) Class Diagram 

Table 35 Comparison of Class Diagram-level Metrics for ATM System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 18 14 

Number of The Associations (NASM) 3 3 

Number of The Aggregations (NAGM) 8 8 

Number of The Inheritance Relations (NIM) 6 2 
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Table 36 Comparison of Class Element-level Metrics for ATM System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 1 6 0.33 

After 0 1 2 0.14 

Number of Children (NOC) 
Before 0 4 6 0.33 

After 0 2 2 0.14 

Fan-In 
Before 0 2 11 0.61 

After 0 2 11 0.79 

Fan-out 
Before 0 2 11 0.61 

After 0 2 11 0.79 

# of Associations Linked to a Class (NASC) 
Before 0 8 22 1.22 

After 0 8 22 1.57 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 14 29 1.61 

After 0 14 29 2.07 

# of Attributes in a Class Weighted (NATC2) 
Before 0 3 4 0.22 

After 0 3 4 0.29 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 14 119 6.61 

After 0 14 77 5.50 

# of Operations in a Class Weighted (NOPC2) 
Before 0 14 119 6.61 

After 0 14 77 5.50 

# of Super Classes of a Class (NSUPC) 
Before 0 1 6 0.33 

After 0 1 2 0.14 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 1 6 0.33 

After 0 1 2 0.14 
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Discussion: Two instances of the Duplication Model Smell were found in the class 

diagram of ATM case study. The duplicated methods were moved from all the subclasses 

to their super class. Removal of the duplicated functionality resulted in the child classes 

being empty. Hence, they were removed from the class model. This refactoring 

application improved the overall design size in terms of number of classes and removed 

unnecessary speculative generality as shown in Table 35 and Table 36.  

(b) Use Case Diagram 

Table 37 Comparison of Use Case Diagram-level Metrics for ATM System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 15 15 

Number of Actors (NAM) 2 2 

 

Table 38 Comparison of Use Case Element-level Metrics for ATM System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 0 0 0 

After 0 0 0 0 

# of Extension Points of The Use Case 

(ExtPts) 

Before 0 0 0 0 

After 0 0 0 0 

Depth of <<Include>> Relationship (DOIR) 
Before 0 0 0 0 

After 0 0 0 0 

Depth of <<Extend>> Relationship (DOER) 
Before 0 0 0 0 

After 0 0 0 0 
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Discussion: No instances of any use case model smell were found for the ATM case 

study. Hence, the values remain unchanged before and after the application of refactoring 

as shown in Table 37 and Table 38. 

(c) Sequence Diagram 

Table 39 Comparison of Sequence Element-level Metrics for ATM System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 2 5 57 3.80 

After 2 5 57 3.80 

# of Messages (NMM) 
Before 3 25 102 6.80 

After 3 25 102 6.80 

# of Messages sent by the Instantiated Objects of 

a Class (NMSC) 

Before 0 21 97 1.65 

After 0 21 96 1.63 

# of Messages received by the Instantiated 
Objects of a Class (NMRC) 

Before 0 11 104 2.00 

After 0 11 103 1.98 

 

Discussion: A single instance of the middle man smell was found in one of the sequence 

models of ATM. Refactoring was performed to remove the middle man lifeline which 

barely affected the total number of messages sent and received in the overall sequence 

model of the system. 
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7.3.7 SCM (Supply Chain Management) 

(a) Class Diagram 

Table 40 Comparison of Class Diagram-level Metrics for SCM System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 21 21 

Number of The Associations (NASM) 23 23 

Number of The Aggregations (NAGM) 4 4 

Number of The Inheritance Relations (NIM) 2 2 
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Table 41 Comparison of Class Element-level Metrics for SCM System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 1 2 0.10 

After 0 1 2 0.10 

Number of Children (NOC) 
Before 0 2 2 0.10 

After 0 2 2 0.10 

Fan-In 
Before 0 5 50 2.38 

After 0 5 50 2.38 

Fan-out 
Before 0 5 50 2.38 

After 0 5 50 2.38 

# of Associations Linked to a Class (NASC) 
Before 1 5 54 2.57 

After 1 5 54 2.57 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 7 39 1.86 

After 0 7 39 1.86 

# of Attributes in a Class Weighted (NATC2) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 3 23 1.10 

After 0 3 23 1.10 

# of Operations in a Class Weighted (NOPC2) 
Before 0 3 23 1.10 

After 0 3 23 1.10 

# of Super Classes of a Class (NSUPC) 
Before 0 1 2 0.10 

After 0 1 2 0.10 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 1 2 0.10 

After 0 1 2 0.10 
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Discussion: Although a single instance of the Functional Decomposition was found in 

the class diagram of SCM case study, it was not removed. The main reason was that the 

class had multiple bi-directional and compositional associations with other classes. The 

detection of this smell was coincidental as the class was named in this manner. Hence, no 

refactoring operations were applied to the class diagram. 

(b) Use Case Diagram 

Table 42 Comparison of Use Case Diagram-level Metrics for SCM System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 8 8 

Number of Actors (NAM) 5 5 

 

Table 43 Comparison of Use Case Element-level Metrics for SCM System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 1 2 0.25 

After 0 1 2 0.25 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 1 2 0.25 

After 0 1 2 0.25 

# of Extension Points of The Use Case 

(ExtPts) 

Before 0 0 0 0 

After 0 0 0 0 

Depth of <<Include>> Relationship (DOIR) 
Before 0 1 2 0.25 

After 0 1 2 0.25 

Depth of <<Extend>> Relationship (DOER) 
Before 0 0 0 0 

After 0 0 0 0 
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Discussion: No instances of any use case model smell were found for the SCM case 

study. Hence, the values remain unchanged before and after the application of refactoring 

as evident from Table 42 and Table 43. 

(c) Sequence Diagram 

Table 44 Comparison of Sequence Element-level Metrics for SCM System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 3 5 29 3.63 

After 3 5 29 3.63 

# of Messages (NMM) 
Before 3 11 43 5.38 

After 3 11 43 5.38 

# of Messages sent by the Instantiated Objects of 

a Class (NMSC) 

Before 1 7 42 1.64 

After 1 7 42 1.64 

# of Messages received by the Instantiated 
Objects of a Class (NMRC) 

Before 1 4 43 1.51 

After 1 4 43 1.51 

 

Discussion: No instances of any sequence model smell were found for the SCM case 

study. Hence, the values remain unchanged before and after the application of refactoring 

as shown by the sequence model metrics in Table 44. 

7.3.8 O-Comm (OS Commerce) 

(a) Class Diagram 

Table 45 Comparison of Class Diagram-level Metrics for O-Comm System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 59 57 

Number of The Associations (NASM) 43 41 

Number of The Aggregations (NAGM) 2 2 

Number of The Inheritance Relations (NIM) 26 26 
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Table 46 Comparison of Class Element-level Metrics for O-Comm System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 2 31 0.53 

After 0 2 31 0.54 

Number of Children (NOC) 
Before 0 7 26 0.44 

After 0 7 26 0.46 

Fan-In 
Before 0 9 88 1.49 

After 0 9 84 1.47 

Fan-out 
Before 0 9 88 1.49 

After 0 9 84 1.49 

# of Associations Linked to a Class (NASC) 
Before 0 9 90 1.53 

After 0 9 86 1.51 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 15 211 3.58 

After 0 17 211 3.70 

# of Attributes in a Class Weighted (NATC2) 
Before 0 7.5 104.5 1.77 

After 0 8.5 104.5 1.83 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 15 244 4.14 

After 0 15 202 3.54 

# of Operations in a Class Weighted (NOPC2) 
Before 0 15 244 4.14 

After 0 15 202 3.54 

# of Super Classes of a Class (NSUPC) 
Before 0 2 26 0.44 

After 0 2 26 0.46 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 3 34 0.58 

After 0 3 34 0.60 
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Discussion: Two instances of the Functional Decomposition Model Smell were found 

and four instances of Duplication were found in the class diagram of O-Comm case 

study. The functionally decomposed classes were merged into their source class which 

although reduced the total number of classes in the model as shown in Table 45 but also 

increased the maximum number of attributes in the class as shown in Table 46. The 

duplicated methods were moved from all the subclasses to their super class. This 

refactoring application improved the overall design size in terms of number of operations 

in a class.  

(b) Use Case Diagram 

Table 47 Comparison of Use Case Diagram-level Metrics for O-Comm System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 119 119 

Number of Actors (NAM) 5 5 

 

 

 

 

 

 

 



319 

 

Table 48 Comparison of Use Case Element-level Metrics for O-Comm System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 0 0 0 

After 0 0 0 0 

# of Extension Points of The Use Case 

(ExtPts) 

Before 0 0 0 0 

After 0 0 0 0 

Depth of <<Include>> Relationship (DOIR) 
Before 0 0 0 0 

After 0 0 0 0 

Depth of <<Extend>> Relationship (DOER) 
Before 0 0 0 0 

After 0 0 0 0 

 

Discussion: No instances of any use case model smell were found for the O-Comm case 

study. Hence, the values remain unchanged before and after the application of 

refactoring. 

(c) Sequence Diagram 

Table 49 Comparison of Sequence Element-level Metrics for O-Comm System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 1 8 396 3.33 

After 1 8 396 3.33 

# of Messages (NMM) 
Before 1 35 675 5.67 

After 1 35 675 5.67 

# of Messages sent by the Instantiated Objects of 
a Class (NMSC) 

Before 1 44 675 5.67 

After 1 44 675 5.67 

# of Messages received by the Instantiated 
Objects of a Class (NMRC) 

Before 1 37 675 5.67 

After 1 37 675 5.67 
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Discussion: Although quite a few instances of the middle man smell were found in the 

sequence models of O-Comm, but refactoring was not performed due to the use of MVC 

pattern in their application. Hence, the metric values shown in Table 49 remain 

unchanged. 

7.3.9 ORA (On-Road Assistance) 

(a) Class Diagram 

Table 50 Comparison of Class Diagram-level Metrics for ORA System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 14 14 

Number of The Associations (NASM) 16 16 

Number of The Aggregations (NAGM) 0 0 

Number of The Inheritance Relations (NIM) 0 0 
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Table 51 Comparison of Class Element-level Metrics for ORA System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

Number of Children (NOC) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

Fan-In 
Before 0 4 16 1.14 

After 0 4 16 1.14 

Fan-out 
Before 0 4 16 1.14 

After 0 4 16 1.14 

# of Associations Linked to a Class (NASC) 
Before 1 5 32 2.29 

After 1 5 32 2.29 

# of Attributes in a Class Unweighted (NATC1) 
Before 1 4 33 2.36 

After 1 4 33 2.36 

# of Attributes in a Class Weighted (NATC2) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Operations in a Class Unweighted (NOPC1) 
Before 1 6 29 2.07 

After 1 6 29 2.07 

# of Operations in a Class Weighted (NOPC2) 
Before 1 6 29 2.07 

After 1 6 29 2.07 

# of Super Classes of a Class (NSUPC) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 0 0 0.00 

After 0 0 0 0.00 
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Discussion: No instances of any class model smell were found for the ORA case study. 

Hence, the values remain unchanged before and after the application of refactoring. 

(b) Use Case Diagram 

Table 52 Comparison of Use Case Diagram-level Metrics for ORA System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 13 13 

Number of Actors (NAM) 4 4 

 

Table 53 Comparison of Use Case Element-level Metrics for ORA System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 3 4 0.31 

After 0 3 4 0.31 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 1 4 0.31 

After 0 1 4 0.31 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 6 7 0.54 

After 0 6 7 0.54 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 1 7 0.54 

After 0 1 7 0.54 

# of Extension Points of The Use Case 

(ExtPts) 

Before 0 3 4 0.31 

After 0 3 4 0.31 

Depth of <<Include>> Relationship (DOIR) 
Before 0 2 8 0.62 

After 0 2 8 0.62 

Depth of <<Extend>> Relationship (DOER) 
Before 0 1 4 0.31 

After 0 1 4 0.31 

 

Discussion: No instances of any use case model smell were found for the ORA case 

study. Hence, the values remain unchanged before and after the application of 

refactoring. 



323 

 

(c) Sequence Diagram 

Table 54 Comparison of Sequence Element-level Metrics for ORA System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 3 8 49 3.77 

After 2 8 45 3.46 

# of Messages (NMM) 
Before 0 6 50 3.85 

After 0 4 42 3.23 

# of Messages sent by the Instantiated Objects of 
a Class (NMSC) 

Before 1 2 47 1.38 

After 1 2 39 1.13 

# of Messages received by the Instantiated 
Objects of a Class (NMRC) 

Before 1 2 50 1.37 

After 1 2 42 1.12 

 

Discussion: Multiple instances of the middle man smell were found in the sequence 

models of SCM Case Study. A few of these were not refactored or removed as the case 

study used the Orchestrator design pattern. Other four sequence diagrams simply used 

middle man classes for delegation and hence were refactored. This in turn reduced the 

total number of lifelines and the messages exchanged within the sequence models as 

shown in Table 54. 

 

7.4 Discussion 

7.4.1 Identification of Model Smells in Use Case Diagrams 

As observed from the results presented above, none of the case studies indicated the 

existence of models smells over use case diagrams. The main reason behind this is the 

fact that models smells for use case diagram are defined for the inappropriate use of the 
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generalization relationship. Generalization relationship in use case diagrams is the least 

used relationship. This is the reason why no instances of the use case model smells were 

identified among any of the included case studies. 

7.4.2 Identification of Model Smells in Sequence Diagrams  

Sequence diagram is the least used artifact for model-driven refactoring as evident from 

the literature. Hence, only one smell (“Middle Man”) is proposed for the sequence 

diagram. Since the first set of case studies was taken from student projects developed by 

senior software engineering students, they were motivated to use common design patterns 

such as Façade and Model-View-Controller (MVC). Since these design patterns make use 

of middle man lifelines in the sequence diagram to delegate messages from the interface 

to the entity classes through the controller class, removing them compromises the 

stability of the design. Hence, the middle man refactoring was not applied whenever the 

existence of design patterns were detected. Only the ATM (1 instance) and the ORA (4 

instances) case study exhibited a few instances of middle-man lifelines use and were 

refactored. Figure 90 depicts the number of case studies that use design patterns that 

promote the use of middle man for message delegation.  
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Figure 90 Number of middle-man using design patterns used in case studies 

 

7.4.3 Identification of Model Smells in Class Diagrams 

Quite a few instances of model smells proposed over the class diagram were found in the 

case studies. Figure 91 depicts a distribution of the number of instances of models smells 

found over the class models of the case studies.  
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Figure 91 Number of instances of model smells detected over UML Class Diagrams 
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8 CHAPTER 8 

ANALYSIS AND DISCUSSION 

As part of the validation strategy discussed in the previous chapter, baseline experiments 

were conducted over the selected case studies. Each model in these case studies was 

individually refactored. In this chapter, integrated refactoring operations are applied over 

the model composed of the class, sequence and use case models. After the detection and 

application of refactoring, the integrated models are decomposed and evaluated for 

comparison with the results of individual refactoring. A detailed analysis and discussion 

on positive and negative effects of integrated refactoring over individual refactoring is 

included in Section 8.2. 

 

8.1 Integrated Refactoring 

8.1.1 OFD (Online Form Designer) 

Two instances of the “Undue Familiarity” Model Smell, single instance of the “Spider’s 

Web” Model Smell and seven instances of the “Duplication” Model Smell were detected 

within the integrated model of the OFD case study. 
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(a) Class Diagram 

Table 55 Comparison of Class Diagram-level Metrics for OFD System 

Metrics Single-View Multi-View 

Number of The Classes (NCM) 21 23 

Number of The Associations (NASM) 10 10 

Number of The Aggregations (NAGM) 6 6 

Number of The Inheritance Relations (NIM) 10 12 
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Table 56 Comparison of Class Element-level Metrics for OFD System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Single 0 2 15 0.71 

Multi 0 2 17 0.74 

Number of Children (NOC) 
Single 0 4 10 0.48 

Multi 0 4 12 0.52 

Fan-In 
Single 0 3 18 0.86 

Multi 0 3 18 0.78 

Fan-out 
Single 0 3 18 0.86 

Multi 0 3 18 0.78 

# of Associations Linked to a Class (NASC) 
Single 0 5 32 1.52 

Multi 0 5 32 1.39 

# of Attributes in a Class Unweighted (NATC1) 
Single 0 10 58 2.76 

Multi 0 10 57 2.48 

# of Attributes in a Class Weighted (NATC2) 
Single 0 3 11.5 0.55 

Multi 0 3 12 0.52 

# of Operations in a Class Unweighted (NOPC1) 
Single 0 29 127 6.05 

Multi 0 25 109 4.74 

# of Operations in a Class Weighted (NOPC2) 
Single 0 29 127 6.05 

Multi 0 25 109 4.74 

# of Super Classes of a Class (NSUPC) 
Single 0 1 10 0.48 

Multi 0 1 12 0.52 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Single 0 2 15 0.71 

Multi 0 2 17 0.74 
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Discussion: As a result of the Duplication Model Smell, two super classes were created 

within the class model. Similarities between the operations of these classes were detected 

from the analysis of the sequence models. Although this refactoring resulted in increasing 

the number of classes and inheritance relations in the class model (from Table 55), it 

reduced the overall design modularity by reducing the maximum and total number of 

operations within a class as evident from Table 56.  

(b) Use Case Diagram 

Table 57 Comparison of Use Case Diagram-level Metrics for OFD System 

Metrics Single View Multi View 

Number of Use Cases (NUM) 22 21 

Number of Actors (NAM) 2 5 

 

Table 58 Comparison of Use Case Element-level Metrics for OFD System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Single 0 7 14 0.64 

Multi 0 7 7 0.33 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Single 0 2 14 0.64 

Multi 0 1 7 0.33 

# of Use Cases which this Includes 

(INCLUDING) 

Single 0 0 0 0.00 

Multi 0 0 0 0.00 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Single 0 0 0 0.00 

Multi 0 0 0 0.00 

# of Extension Points of The Use Case (ExtPts) 
Single 0 7 14 0.64 

Multi 0 7 7 0.33 

Depth of <<Include>> Relationship (DOIR) 
Single 0 0 0 0.00 

Multi 0 0 0 0.00 

Depth of <<Extend>> Relationship (DOER) 
Single 0 1 7 0.32 

Multi 0 1 7 0.33 
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Discussion: The detection and resolution of the Spider’s Web and Duplication Model 

Smell changed the complete landscape of the use case model of the OFD case study. 

Resolution of the Duplication model smell reduced the maximum number of extensions 

in the model by half which is considerable improvement in terms of use case complexity 

(See Table 58). Apart from that, the maximum number of use cases per actor metric was 

also reduced from 14 to 5 that although resulted in increasing the total number of actors 

in the system as shown in Table 57. 

(c) Sequence Diagram 

Table 59 Comparison of Sequence Element-level Metrics for OFD System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Single 3 5 92 4.18 

Multi 3 5 87 4.14 

# of Messages (NMM) 
Single 5 15 169 7.68 

Multi 5 15 156 7.43 

# of Messages sent by the Instantiated Objects 

of a Class (NMSC) 

Single 1 6 169 1.59 

Multi 1 6 156 1.60 

# of Messages received by the Instantiated 

Objects of a Class (NMRC) 

Single 1 8 169 1.52 

Multi 1 8 156 1.61 

 

Discussion: No much changed in the sequence diagram models other than decreasing the 

number of sequence diagrams as a result of the Duplication Model Smell. This mainly 

because of the instances of integrated refactoring smells detected all dealt with the 

sequence diagram as whole rather than its internal functionality except the undue 

familiarity model smell which did not affect the collected metrics. 
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8.1.2 OG (OurGoal) 

Eight instances of the “Undue Familiarity” Model Smell and seven instances of the 

“Duplication” Model Smell were detected within the integrated model of the OG case 

study. 

(a) Class Diagram 

Table 60 Comparison of Class Diagram-level Metrics for OG System 

Metrics Single View Multi View 

Number of The Classes (NCM) 15 15 

Number of The Associations (NASM) 14 14 

Number of The Aggregations (NAGM) 10 10 

Number of The Inheritance Relations (NIM) 4 4 
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Table 61 Comparison of Class Element-level Metrics for OG System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Single 0 1 4 0.27 

Multi 0 1 4 0.27 

Number of Children (NOC) 
Single 0 2 4 0.27 

Multi 0 2 4 0.27 

Fan-In 
Single 0 12 27 1.80 

Multi 0 12 27 1.80 

Fan-out 
Single 0 12 27 1.80 

Multi 0 12 27 1.80 

# of Associations Linked to a Class (NASC) 
Single 0 12 48 3.20 

Multi 0 12 48 3.20 

# of Attributes in a Class Unweighted (NATC1) 
Single 0 19 81 5.40 

Multi 0 19 81 5.40 

# of Attributes in a Class Weighted (NATC2) 
Single 0 0 0 0.00 

Multi 0 0 0 0.00 

# of Operations in a Class Unweighted (NOPC1) 
Single 0 12 42 2.80 

Multi 0 12 42 2.80 

# of Operations in a Class Weighted (NOPC2) 
Single 0 12 42 2.80 

Multi 0 12 42 2.80 

# of Super Classes of a Class (NSUPC) 
Single 0 1 4 0.27 

Multi 0 1 4 0.27 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Single 0 1 4 0.27 

Multi 0 1 4 0.27 
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Discussion: When it comes to the effect of the Undue Familiarity Model Smell from the 

Integrated Model Smell suite and the Data Class Model Smell from the Individual 

Refactoring Model Smell, the effect on class diagram is minimal. Hence, there is no 

apparent difference in the metric values depicted in Table 60 and Table 61. 

(b) Use Case Diagram 

Table 62 Comparison of Use Case Diagram-level Metrics for OG System 

Metrics Single View Multi View 

Number of Use Cases (NUM) 35 22 

Number of Actors (NAM) 7 5 

 

Table 63 Comparison of Use Case Element-level Metrics for OG System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Single 0 0 0 0 

Multi 0 0 0 0 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Single 0 0 0 0 

Multi 0 0 0 0 

# of Use Cases which this Includes 

(INCLUDING) 

Single 0 1 3 0.09 

Multi 0 1 3 0.14 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Single 0 2 3 0.09 

Multi 0 2 3 0.14 

# of Extension Points of The Use Case 

(ExtPts) 

Single 0 0 0 0 

Multi 0 0 0 0 

Depth of <<Include>> Relationship (DOIR) 
Single 0 1 2 0.06 

Multi 0 1 2 0.09 

Depth of <<Extend>> Relationship (DOER) 
Single 0 0 0 0 

Multi 0 0 0 0 
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Discussion: The resolution of the duplication model smell had a huge impact structure-

wise to the use case model of the OG case study as shown in Table 62. This is a result of 

identifying duplicate paths in the use case model and resolving it through their respective 

sequence models. Not only did this refactoring reduce the number of use cases, actors 

which no longer were associated with use cases were also merged. 

(c) Sequence Diagram 

Table 64 Comparison of Sequence Element-level Metrics for OG System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Single 4 6 175 5.00 

Multi 3 5 87 3.95 

# of Messages (NMM) 
Single 3 13 333 9.51 

Multi 3 13 201 9.14 

# of Messages sent by the Instantiated Objects 

of a Class (NMSC) 

Single 0 5 271 1.53 

Multi 1 5 178 1.45 

# of Messages received by the Instantiated 

Objects of a Class (NMRC) 

Single 1 5 269 1.51 

Multi 1 5 188 1.45 

 

Discussion: As a result of the resolution of the undue familiarity model smell, the 

minimum and maximum number of lifelines within the sequence diagrams also reduced. 

And as a resolution of the duplication model smell, the total number of messages and 

messages exchanged between lifelines also reduced considerably as shown in Table 64. 

Being at the center of the integrated model, the sequence diagram had the maximum 

effect as a result of detection and resolution of the identified integrated model smells. 
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8.1.3 ESAP (Electronic Student Academic Portfolio) 

Two instances of the “Specters” Model Smell and one instance of the “Duplication” 

Model Smell were detected within the integrated model of the ESAP case study. 

(a) Class Diagram 

Table 65 Comparison of Class Diagram-level Metrics for ESAP System 

Metrics Single View Multi View 

Number of The Classes (NCM) 28 26 

Number of The Associations (NASM) 37 35 

Number of The Aggregations (NAGM) 6 6 

Number of The Inheritance Relations (NIM) 7 7 
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Table 66 Comparison of Class Element-level Metrics for ESAP System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Single 0 3 12 0.43 

Multi 0 3 12 0.46 

Number of Children (NOC) 
Single 0 3 7 0.25 

Multi 0 3 7 0.27 

Fan-In 
Single 1 8 78 2.79 

Multi 1 8 74 2.85 

Fan-out 
Single 1 8 78 2.79 

Multi 1 8 74 2.85 

# of Associations Linked to a Class (NASC) 
Single 1 8 85 3.04 

Multi 1 8 81 3.12 

# of Attributes in a Class Unweighted (NATC1) 
Single 0 10 78 2.79 

Multi 0 10 78 3.00 

# of Attributes in a Class Weighted (NATC2) 
Single 0 1 1 0.04 

Multi 0 1 1 0.04 

# of Operations in a Class Unweighted (NOPC1) 
Single 0 53 240 8.57 

Multi 0 63 251 9.65 

# of Operations in a Class Weighted (NOPC2) 
Single 0 53 240 8.57 

Multi 0 63 251 9.65 

# of Super Classes of a Class (NSUPC) 
Single 0 1 7 0.25 

Multi 0 1 7 0.27 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Single 0 3 12 0.43 

Multi 0 3 12 0.46 
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Discussion: Since the Specters’ model smell target temporary classes within the class 

model identified from the sequence models, a significant impact can be seen from the 

improved coupling and design size of the class model as evident from Table 65 and Table 

66. 

(b) Use Case Diagram 

Table 67 Comparison of Use Case Diagram-level Metrics for ESAP System 

Metrics Single View Multi View 

Number of Use Cases (NUM) 39 38 

Number of Actors (NAM) 6 5 

 

Table 68 Comparison of Use Case Element-level Metrics for ESAP System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Single 0 5 27 0.69 

Multi 0 5 27 0.69 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Single 0 2 27 0.69 

Multi 0 2 27 0.71 

# of Use Cases which this Includes 

(INCLUDING) 

Single 0 0 0 0.00 

Multi 0 0 0 0.00 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Single 0 0 0 0.00 

Multi 0 0 0 0.00 

# of Extension Points of The Use Case (ExtPts) 
Single 0 5 27 0.69 

Multi 0 5 27 0.71 

Depth of <<Include>> Relationship (DOIR) 
Single 0 0 0 0.00 

Multi 0 0 0 0.00 

Depth of <<Extend>> Relationship (DOER) 
Single 0 3 37 0.95 

Multi 0 3 37 0.97 
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Discussion: Due to the detection of a single instance of the duplication model smell, the 

effect is barely noticeable with the reduction in the number of use cases and actors in the 

use case model of the ESAP case study. 

(c) Sequence Diagram 

Table 69 Comparison of Sequence Element-level Metrics for ESAP System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Single 0 6 155 3.97 

Multi 0 6 150 3.95 

# of Messages (NMM) 
Single 0 20 296 7.59 

Multi 0 20 288 7.58 

# of Messages sent by the Instantiated Objects of 

a Class (NMSC) 

Single 1 9 292 1.87 

Multi 1 9 282 2.01 

# of Messages received by the Instantiated 
Objects of a Class (NMRC) 

Single 1 9 293 1.83 

Multi 1 9 283 1.94 

 

Discussion: A combination of the specters’ and duplication model smell resolution 

reduced the number of lifelines, messages and messages exchanged in the sequence 

models of the ESAP case study as shown in Table 69. 

8.1.4 ME (MyEvents) 

Five instances of the “Duplication” Model Smell, single instance of the “Specters” Model 

Smell and a single instance of the “Spider’s Web” Model Smell were detected within the 

integrated model of the ME case study. 
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(a) Class Diagram 

Table 70 Comparison of Class Diagram-level Metrics for ME System 

Metrics Single View Multi View 

Number of The Classes (NCM) 15 14 

Number of The Associations (NASM) 12 12 

Number of The Aggregations (NAGM) 14 13 

Number of The Inheritance Relations (NIM) 5 5 
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Table 71 Comparison of Class Element-level Metrics for ME System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Single 0 2 6 0.40 

Multi 0 2 6 0.40 

Number of Children (NOC) 
Single 0 2 5 0.33 

Multi 0 2 5 0.33 

Fan-In 
Single 0 6 24 1.60 

Multi 0 6 23 1.53 

Fan-out 
Single 0 6 24 1.60 

Multi 0 6 23 1.53 

# of Associations Linked to a Class (NASC) 
Single 1 9 50 3.33 

Multi 1 9 49 3.27 

# of Attributes in a Class Unweighted (NATC1) 
Single 1 16 101 6.73 

Multi 1 15 90 6.00 

# of Attributes in a Class Weighted (NATC2) 
Single 0 2 3 0.20 

Multi 0 2 3 0.20 

# of Operations in a Class Unweighted (NOPC1) 
Single 1 18 103 6.87 

Multi 0 17 95 6.33 

# of Operations in a Class Weighted (NOPC2) 
Single 1 18 103 6.87 

Multi 0 17 95 6.33 

# of Super Classes of a Class (NSUPC) 
Single 0 1 5 0.33 

Multi 0 1 5 0.33 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Single 0 2 6 0.40 

Multi 0 2 6 0.40 
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Discussion: Due to the detection of a single instance of the specters’ model smell, the 

effect is barely noticeable with the reduction in the number of classes and associations in 

the class model of the ME case study. 

(b) Use Case Diagram 

Table 72 Comparison of Use Case Diagram-level Metrics for ME System 

Metrics Single View Multi View 

Number of Use Cases (NUM) 62 61 

Number of Actors (NAM) 9 12 

 

Table 73 Comparison of Use Case Element-level Metrics for ME System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Single 0 0 0 0.00 

Multi 0 2 4 0.07 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Single 0 0 0 0.00 

Multi 0 2 4 0.07 

# of Use Cases which this Includes 

(INCLUDING) 

Single 0 1 2 0.03 

Multi 0 1 22 0.36 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Single 0 1 2 0.03 

Multi 0 21 22 0.36 

# of Extension Points of The Use Case (ExtPts) 
Single 0 0 0 0.00 

Multi 0 2 4 0.07 

Depth of <<Include>> Relationship (DOIR) 
Single 0 1 2 0.03 

Multi 0 1 2 0.03 

Depth of <<Extend>> Relationship (DOER) 
Single 0 0 0 0.00 

Multi 0 1 3 0.05 
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Discussion: Although the ME case study had a huge number of use cases within the 

model, they were justified except that the maximum number of use cases per actor was 27 

which resulted in the spider’s web model smell. Resolution of this model smell resulted 

in increasing the total number of actors in the model but reducing the maximum number 

of use cases per actor to 12. The resolution of the duplication model smell although did 

not reduce the number of use cases within the system, but significantly improved the 

complexity and structure of the use case model by identifying and adding include and 

extend relationships within the model as shown in Table 73.   

(c) Sequence Diagram 

 

Table 74 Comparison of Sequence Element-level Metrics for ME System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Single 2 6 260 4.19 

Multi 2 6 264 4.26 

# of Messages (NMM) 
Single 2 25 703 11.34 

Multi 2 13 424 6.84 

# of Messages sent by the Instantiated Objects of 
a Class (NMSC) 

Single 1 10 678 1.80 

Multi 0 10 455 1.60 

# of Messages received by the Instantiated 

Objects of a Class (NMRC) 

Single 1 10 674 1.59 

Multi 0 10 471 1.51 

 

Discussion: As a result of the resolution of the duplication model smell, a huge impact 

was seen in terms of the maximum and total number of messages in the system as evident 

from the metric values in Table 74. This in turn also affected the number of messages 

sent and received by lifelines within the sequence models.  

 



344 

 

8.1.5 FOMS (Freelancing Online Management System) 

No instances of the Integrated Model Smells were detected within the integrated model of 

the FOMS case study. 

(a) Class Diagram 

Table 75 Comparison of Class Diagram-level Metrics for FOMS System 

Metrics Single View Multi View 

Number of The Classes (NCM) 16 16 

Number of The Associations (NASM) 8 8 

Number of The Aggregations (NAGM) 10 10 

Number of The Inheritance Relations (NIM) 7 7 
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Table 76 Comparison of Class Element-level Metrics for FOMS System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Single 0 2 9 0.56 

Multi 0 2 9 0.56 

Number of Children (NOC) 
Single 0 5 7 0.44 

Multi 0 5 7 0.44 

Fan-In 
Single 0 6 21 1.31 

Multi 0 6 21 1.31 

Fan-out 
Single 0 6 21 1.31 

Multi 0 6 21 1.31 

# of Associations Linked to a Class (NASC) 
Single 0 9 36 2.25 

Multi 0 9 36 2.25 

# of Attributes in a Class Unweighted (NATC1) 
Single 0 18 82 5.13 

Multi 0 16 84 5.13 

# of Attributes in a Class Weighted (NATC2) 
Single 0 2.5 2.5 0.16 

Multi 0 2.5 2.5 0.16 

# of Operations in a Class Unweighted (NOPC1) 
Single 1 39 174 10.88 

Multi 1 39 174 10.88 

# of Operations in a Class Weighted (NOPC2) 
Single 1 37 156 9.75 

Multi 1 37 156 9.75 

# of Super Classes of a Class (NSUPC) 
Single 0 1 7 0.44 

Multi 0 1 7 0.44 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Single 0 2 9 0.56 

Multi 0 2 9 0.56 
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Discussion: No instances of any integrated model smells were found for the FOMS case 

study. Hence, the values remain unchanged before and after the application of refactoring 

as shown in Table 75 and Table 76. 

(b) Use Case Diagram 

Table 77 Comparison of Use Case Diagram-level Metrics for FOMS System 

Metrics Single View Multi View 

Number of Use Cases (NUM) 35 35 

Number of Actors (NAM) 5 5 

 

Table 78 Comparison of Use Case Element-level Metrics for FOMS System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Single 0 1 1 0.03 

Multi 0 1 1 0.03 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Single 0 1 1 0.03 

Multi 0 1 1 0.03 

# of Use Cases which this Includes 

(INCLUDING) 

Single 0 1 4 0.11 

Multi 0 1 4 0.11 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Single 0 3 4 0.11 

Multi 0 3 4 0.11 

# of Extension Points of The Use Case 

(ExtPts) 

Single 0 1 1 0.03 

Multi 0 1 1 0.03 

Depth of <<Include>> Relationship (DOIR) 
Single 0 1 2 0.06 

Multi 0 1 2 0.06 

Depth of <<Extend>> Relationship (DOER) 
Single 0 1 1 0.03 

Multi 0 1 1 0.03 
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Discussion: No instances of any integrated model smells were found for the FOMS case 

study. Hence, the values remain unchanged before and after the application of refactoring 

as shown in Table 77 and Table 78. 

(c) Sequence Diagram 

Table 79 Comparison of Sequence Element-level Metrics for FOMS System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Single 2 8 109 3.11 

Multi 2 8 109 3.11 

# of Messages (NMM) 
Single 1 18 162 4.63 

Multi 1 18 162 4.63 

# of Messages sent by the Instantiated Objects of 

a Class (NMSC) 

Single 1 11 148 1.40 

Multi 1 11 148 1.40 

# of Messages received by the Instantiated 
Objects of a Class (NMRC) 

Single 1 9 154 1.62 

Multi 1 9 154 1.62 

 

Discussion: No instances of any integrated model smells were found for the FOMS case 

study. Hence, the values remain unchanged before and after the application of refactoring 

as shown in Table 79. 

8.1.6 ATM (Automated Teller Machine) 

Five instances of the “Duplication” Model Smell, three instances of the “Specters” Model 

Smell and a single instance of the “Undue Familiarity” Model Smell were detected within 

the integrated model of the ATM case study. 
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(a) Class Diagram 

Table 80 Comparison of Class Diagram-level Metrics for ATM System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 14 9 

Number of The Associations (NASM) 3 3 

Number of The Aggregations (NAGM) 8 5 

Number of The Inheritance Relations (NIM) 2 0 



349 

 

Table 81 Comparison of Class Element-level Metrics for ATM System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 1 2 0.14 

After 0 0 0 0.00 

Number of Children (NOC) 
Before 0 2 2 0.14 

After 0 0 0 0.00 

Fan-In 
Before 0 2 11 0.79 

After 0 2 8 0.89 

Fan-out 
Before 0 2 11 0.79 

After 0 2 8 0.89 

# of Associations Linked to a Class (NASC) 
Before 0 8 22 1.57 

After 1 5 16 1.78 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 14 29 2.07 

After 0 11 26 2.89 

# of Attributes in a Class Weighted (NATC2) 
Before 0 3 4 0.29 

After 0 1.5 2.5 0.28 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 14 77 5.50 

After 0 16 62 6.89 

# of Operations in a Class Weighted (NOPC2) 
Before 0 14 77 5.50 

After 0 16 62 6.89 

# of Super Classes of a Class (NSUPC) 
Before 0 1 2 0.14 

After 0 0 0 0.00 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 1 2 0.14 

After 0 0 0 0.00 
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Discussion: The resolution of the specters’ and undue familiarity model smells reduced 

the number of total number of classes and aggregation relationships within the class 

model for the ATM case study. Based on the duplication model smell, a number of 

classes were identified as “speculative generality” and were possibly overriding only a 

single operation with no attributes. Hence, these classes were removed and additional 

parameter added to the message in the super class to differentiate the call based on the 

type of the sequence diagram. This is the reason of reduction in the number of inheritance 

relations in the class model. 

(b) Use Case Diagram 

Table 82 Comparison of Use Case Diagram-level Metrics for ATM System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 15 17 

Number of Actors (NAM) 2 2 
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Table 83 Comparison of Use Case Element-level Metrics for ATM System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 0 0 0 

After 0 4 5 0.29 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 0 0 0 

After 0 1 5 0.29 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 0 0 0 

After 0 1 7 0.41 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 0 0 0 

After 0 4 7 0.41 

# of Extension Points of The Use Case 

(ExtPts) 

Before 0 0 0 0 

After 0 4 5 0.29 

Depth of <<Include>> Relationship (DOIR) 
Before 0 0 0 0 

After 0 1 3 0.18 

Depth of <<Extend>> Relationship (DOER) 
Before 0 0 0 0 

After 0 1 5 0.29 

 

Discussion: The removal of the duplication model smell resulted in the identification of 

include and extend relationships within the use case models as evident from the metrics 

in Table 83. Although this resulted in increasing the total number of use cases due to 

extraction of duplicate fragments from the sequence models of the respective use cases. 

(c) Sequence Diagram 

Table 84 Comparison of Sequence Element-level Metrics for ATM System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 2 5 57 3.80 

After 1 5 60 3.53 

# of Messages (NMM) 
Before 3 25 102 6.80 

After 1 13 74 4.35 

# of Messages sent by the Instantiated Objects of 
a Class (NMSC) 

Before 0 21 96 1.63 

After 0 12 72 1.05 

# of Messages received by the Instantiated 
Objects of a Class (NMRC) 

Before 0 11 103 1.98 

After 0 5 74 1.26 
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Discussion: The removal of the duplication model smell resulted in significantly 

improving the maximum number of messages within a sequence diagram. This is mainly 

due to the use of extract fragment refactoring applied to remove redundant fragments into 

an independent sequence model. 

8.1.7 SCM (Supply Chain Management) 

A single instance of the “Specters” Model Smell was detected within the integrated 

model of the SCM case study. 

(a) Class Diagram 

Table 85 Comparison of Class Diagram-level Metrics for SCM System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 21 20 

Number of The Associations (NASM) 23 22 

Number of The Aggregations (NAGM) 4 4 

Number of The Inheritance Relations (NIM) 2 2 
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Table 86 Comparison of Class Element-level Metrics for SCM System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 1 2 0.10 

After 0 1 2 0.10 

Number of Children (NOC) 
Before 0 2 2 0.10 

After 0 2 2 0.10 

Fan-In 
Before 0 5 50 2.38 

After 0 5 48 2.40 

Fan-out 
Before 0 5 50 2.38 

After 0 5 48 2.40 

# of Associations Linked to a Class (NASC) 
Before 1 5 54 2.57 

After 1 5 52 2.60 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 7 39 1.86 

After 0 7 39 1.95 

# of Attributes in a Class Weighted (NATC2) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 3 23 1.10 

After 0 4 25 1.25 

# of Operations in a Class Weighted (NOPC2) 
Before 0 3 23 1.10 

After 0 4 25 1.25 

# of Super Classes of a Class (NSUPC) 
Before 0 1 2 0.10 

After 0 1 2 0.10 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 1 2 0.10 

After 0 1 2 0.10 
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Discussion: Due to the detection of a single instance of the specters’ model smell, the 

effect is barely noticeable with the reduction in the number of classes and associations in 

the class model of the SCM case study. 

(b) Use Case Diagram 

Table 87 Comparison of Use Case Diagram-level Metrics for SCM System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 8 8 

Number of Actors (NAM) 5 5 

 

Table 88 Comparison of Use Case Element-level Metrics for SCM System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 0 0 0 

After 0 0 0 0 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 1 2 0.25 

After 0 1 2 0.25 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 1 2 0.25 

After 0 1 2 0.25 

# of Extension Points of The Use Case 

(ExtPts) 

Before 0 0 0 0 

After 0 0 0 0 

Depth of <<Include>> Relationship (DOIR) 
Before 0 1 2 0.25 

After 0 1 2 0.25 

Depth of <<Extend>> Relationship (DOER) 
Before 0 0 0 0 

After 0 0 0 0 
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Discussion: Since the detected instance of an integrated model smell did not affect the 

use case model of the SCM case study, the values remain unchanged before and after the 

application of refactoring as shown in Table 87 and Table 88. 

(c) Sequence Diagram 

Table 89 Comparison of Sequence Element-level Metrics for SCM System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 3 5 29 3.63 

After 2 5 28 3.50 

# of Messages (NMM) 
Before 3 11 43 5.38 

After 3 11 42 5.25 

# of Messages sent by the Instantiated Objects of 

a Class (NMSC) 

Before 1 7 42 1.64 

After 1 7 41 1.65 

# of Messages received by the Instantiated 
Objects of a Class (NMRC) 

Before 1 4 43 1.51 

After 1 4 42 1.51 

 

Discussion: Due to the detection of a single instance of the specters’ model smell, the 

effect is barely noticeable with the reduction in the minimum number of lifelines in a 

sequence model of the SCM case study. 

8.1.8 O-Comm (OS Commerce) 

Twenty three instances of the “Duplication” Model Smell, two instances of the “Undue 

Familiarity” Model Smell and a single instance of the “Multiple Personality” Model 

Smell were detected within the integrated model of the O-Comm case study. 
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(a) Class Diagram 

Table 90 Comparison of Class Diagram-level Metrics for O-Comm System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 57 57 

Number of The Associations (NASM) 41 41 

Number of The Aggregations (NAGM) 2 2 

Number of The Inheritance Relations (NIM) 26 26 
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Table 91 Comparison of Class Element-level Metrics for O-Comm System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 2 31 0.54 

After 0 2 31 0.54 

Number of Children (NOC) 
Before 0 7 26 0.46 

After 0 7 26 0.46 

Fan-In 
Before 0 9 84 1.47 

After 0 9 84 1.47 

Fan-out 
Before 0 9 84 1.47 

After 0 9 84 1.47 

# of Associations Linked to a Class (NASC) 
Before 0 9 86 1.51 

After 0 9 86 1.51 

# of Attributes in a Class Unweighted (NATC1) 
Before 0 17 211 3.70 

After 0 17 211 3.70 

# of Attributes in a Class Weighted (NATC2) 
Before 0 8.5 104.5 1.83 

After 0 8.5 104.5 1.83 

# of Operations in a Class Unweighted (NOPC1) 
Before 0 15 202 3.54 

After 0 15 202 3.54 

# of Operations in a Class Weighted (NOPC2) 
Before 0 15 202 3.54 

After 0 15 202 3.54 

# of Super Classes of a Class (NSUPC) 
Before 0 2 26 0.46 

After 0 2 26 0.46 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 3 34 0.60 

After 0 3 34 0.60 
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Discussion: As stated earlier, when it comes to the effect of the Undue Familiarity Model 

Smell from the Integrated Model Smell suite and the Data Class Model Smell from the 

Individual Refactoring Model Smell, the effect on class diagram is minimal. Hence, there 

is no apparent difference in the metric values depicted in Table 90 and Table 91. 

(b) Use Case Diagram 

Table 92 Comparison of Use Case Diagram-level Metrics for O-Comm System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 119 80 

Number of Actors (NAM) 5 5 

 

Table 93 Comparison of Use Case Element-level Metrics for O-Comm System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 0 0 0.00 

After 0 5 5 0.06 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 0 0 0.00 

After 0 1 5 0.06 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Extension Points of The Use Case 

(ExtPts) 

Before 0 0 0 0.00 

After 0 5 5 0.06 

Depth of <<Include>> Relationship (DOIR) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

Depth of <<Extend>> Relationship (DOER) 
Before 0 0 0 0.00 

After 0 1 5 0.06 
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Discussion: Due to the resolution of the integrated model smell instances detected, a 

significant improvement was seen in the complexity and structure of the use case model 

for the O-Comm case study. The resolution of the duplication model smell reduced the 

total number of use cases in the model as shown in Table 92. Identification of the 

Multiple personality model smell also added multiple extend relationships between use 

cases as evident from Table 93. 

(c) Sequence Diagram 

Table 94 Comparison of Sequence Element-level Metrics for O-Comm System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 1 8 396 3.33 

After 1 8 274 3.43 

# of Messages (NMM) 
Before 1 35 675 5.67 

After 1 24 631 7.89 

# of Messages sent by the Instantiated Objects of 

a Class (NMSC) 

Before 1 44 675 5.67 

After 1 24 605 7.56 

# of Messages received by the Instantiated 

Objects of a Class (NMRC) 

Before 1 37 675 5.67 

After 1 24 627 7.84 

 

Discussion: Although the detection and resolution of the duplication model smell 

improved the use case model metrics considerably, the average number of messages 

exchanged increased by a fair margin too in the sequence models. This is mainly because 

the refactoring operation to resolve the model duplication combines two sequence models 

with the same signature. Since the signature is made up the lifelines involved in a use 

cases sequence model, the refactoring did not affect the average number of lifelines per 

sequence model. On the positive side, the resolution of the multiple personality model 
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smell reduced the maximum number of messages in a sequence model significantly as 

evident from Table 94. 

8.1.9 ORA (On-Road Assistance) 

Four instances of the “Specters” Model Smell, three instances of the “Creeping 

Featurism” Model Smell and a single instance of the “Excessive Alternation” Model 

Smell were detected within the integrated model of the ORA case study. 

(a) Class Diagram 

Table 95 Comparison of Class Diagram-level Metrics for ORA System 

Metrics Before Refactoring After Refactoring 

Number of The Classes (NCM) 14 10 

Number of The Associations (NASM) 16 12 

Number of The Aggregations (NAGM) 0 0 

Number of The Inheritance Relations (NIM) 0 0 



361 

 

Table 96 Comparison of Class Element-level Metrics for ORA System 

Metrics 
 

Minimum Maximum Total Average 

Depth of Inheritance (DIT) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

Number of Children (NOC) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

Fan-In 
Before 0 4 16 1.14 

After 0 4 12 1.20 

Fan-out 
Before 0 4 16 1.14 

After 0 4 12 1.20 

# of Associations Linked to a Class (NASC) 
Before 1 5 32 2.29 

After 1 5 24 2.40 

# of Attributes in a Class Unweighted (NATC1) 
Before 1 4 33 2.36 

After 2 4 29 2.90 

# of Attributes in a Class Weighted (NATC2) 
Before 0 0 0 0.00 

After 0 0 0 0.0 

# of Operations in a Class Unweighted (NOPC1) 
Before 1 6 29 2.07 

After 1 6 24 2.40 

# of Operations in a Class Weighted (NOPC2) 
Before 1 6 29 2.07 

After 1 6 24 2.40 

# of Super Classes of a Class (NSUPC) 
Before 0 0 0 0.00 

After 0 0 0 0.00 

# of Elements in the Transitive Closure of the Super Classes of a Class (NSUPC*) 
Before 0 0 0 0.00 

After 0 0 0 0.00 
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Discussion: The resolution of the specters’ model smell reduced the number of total 

number of classes and association relationships within the class model for the ORA case 

study as evident from the class model metrics shown in Table 95 and Table 96. 

(b) Use Case Diagram 

Table 97 Comparison of Use Case Diagram-level Metrics for ORA System 

Metrics Before Refactoring After Refactoring 

Number of Use Cases (NUM) 13 9 

Number of Actors (NAM) 4 4 

 

Table 98 Comparison of Use Case Element-level Metrics for ORA System 

Metrics 
 

Minimum Maximum Total Average 

# of Use Cases which this Extends 

(EXTENDING) 

Before 0 3 4 0.31 

After 0 1 1 0.11 

# of Use Cases which Extend this Use Case 

(EXTENDED) 

Before 0 1 4 0.31 

After 0 1 1 0.11 

# of Use Cases which this Includes 

(INCLUDING) 

Before 0 6 7 0.54 

After 0 3 4 0.44 

# of Use Cases which Includes this Use Case 

(INCLUDED) 

Before 0 1 7 0.54 

After 0 1 4 0.44 

# of Extension Points of The Use Case 

(ExtPts) 

Before 0 3 4 0.31 

After 0 1 1 0.11 

Depth of <<Include>> Relationship (DOIR) 
Before 0 2 8 0.62 

After 0 2 5 0.56 

Depth of <<Extend>> Relationship (DOER) 
Before 0 1 4 0.31 

After 0 1 1 0.11 
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Discussion: As a result of the resolution of the creeping featurism model smell, a couple 

of functional use cases were merged into their “including” use cases. This in turn reduced 

the total number of use cases within the model. On the other hand, the resolution of the 

excessive alternation model smell reduced the number of extend relationships within the 

use case model. This effect of integrated refactoring on the relationships in the use case 

model for the ORA case study is evident from Table 98. 

(c) Sequence Diagram 

Table 99 Comparison of Sequence Element-level Metrics for ORA System 

Metrics 
 

Minimum Maximum Total Average 

# of Lifelines (LIFELINES) 
Before 2 8 45 3.46 

After 2 7 31 3.44 

# of Messages (NMM) 
Before 0 4 42 3.23 

After 0 9 35 3.89 

# of Messages sent by the Instantiated Objects of 

a Class (NMSC) 

Before 1 2 39 1.13 

After 1 4 33 1,20 

# of Messages received by the Instantiated 

Objects of a Class (NMRC) 

Before 1 2 42 1.12 

After 1 4 34 1.20 

 

Discussion: Although the resolution of the specters’ model smell reduced the maximum 

and total number of lifelines per sequence model, the resolution of the creeping featurism 

increased the number of messages exchanged within a sequence model. 

 

8.2 Analysis and Discussion 

In this chapter, we evaluated the effect of refactoring, considering both single model at a 

time and a multi-view integrated model, on indicative metrics for class, sequence and use 
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case models. The evaluation and discussion demonstrated that the impact of refactoring 

on these metrics was non-trivial. Hence, it is not feasible to generalize that any 

application of a refactoring to remove the identified smell improves or impairs one of the 

external quality attributes.  

Based on this information, instead of stating that refactoring a model smell has partial 

impact on the metrics, we found that it is beneficial if the effect on the metrics is 

described by an impact spectrum rather than specific values. A collection of metrics are 

loosely associated with a design characteristic such as size, modularity and so on. These 

associations are based on the work of Seidl and Sneed [458] who tried associating UML 

model metrics with characteristics such as quantity, complexity, quality and size. 

Although their work is intended for the application of testing, it can be used for our 

analysis as well. Each metric is then given a value from the set {+, -, =} which designates 

the impact as a result of refactoring.  
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Figure 92 Number of instances of Integrated Model Smells detected 
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Figure 92 shows the number of instances of integrated model smells detected over the 

selected case studies. It is evident that the Duplication model smell is the most popular 

among all the other smells. The only model smells instance not detected within the 

existing case studies is Ripple Effect.  

8.2.1 Integrated Refactoring Impact on Use Case Diagram 

Depicted in Figure 93 (a) and (b) are use case metric associations with their design 

characteristics.   

No. of Use Cases 

No. of Actors 

No. of UC / actor 

UC Design Size 

Max No. Inclusion / UC 

Max No. Extension / UC 

 

Avg. DOIR 

UC 
Complexity & 

Reusability 

Avg. DOER 

(a) 

(b) 

Figure 93 Use case metrics association with model 
characteristics 
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Table 100 Refactoring impact spectrum over use case design size metrics 

Case Study 
No. of Use 

Cases 

No. of 

Actors 

No. of 

UC/Actor 

OFD - + - 

OG - - - 

ESAP - - - 

ME - + - 

FOMS - + - 

ATM + = - 

SCM = = = 

O-Comm - = - 

ORA - = + 

 

When it comes to design size, the smaller the number of elements the better it is for 

analysis. Table 100 shows a consistent reduction in the number of use cases and number 

of use cases per actor metric as a result of integrated model refactoring. Few instances 

where there is an increase in the number of actors is mainly due to resolution of the 

Spider’s Web Model Smell which usually is accompanied by a significant reduction in 

the number of use cases associated with actors. There is only a single instance when the 

number of use cases per actor increases. This is because of the resolution of the Excessive 

Alternation Model Smell that associates extension use cases directly to the actor 

removing the extend relationship.  
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Table 101 Refactoring impact spectrum over use case complexity metrics 

Case Study 
Max No. of 

Inclusion/UC 

Max No. of 

Extension/UC 

Avg. 

DOIR 

Avg. 

DOER 

OFD = - = = 

OG = = = = 

ESAP = = = = 

ME + + = + 

FOMS + = = = 

ATM + + + + 

SCM = = = = 

O-Comm = + = + 

ORA - - - - 

 

With the set of metric chosen for use case complexity and reusability, the lower the value 

the better it is for use case analysis. Exceptions include increase in relationships when 

there are actually no relationships in the original model. As seen from the results 

summarized in Table 101, it is evident that most of the time the impact on relationships is 

either the same or increased. The three case studies (ME, ATM, O-Comm) that actually 

resulted in increasing the values of the metrics had no relationships between use cases 

within the use case model. Integrated Refactoring over these case studies identified these 

relationships mainly by removing duplication and adding structure to the overall model. 

Hence, the increase in these cases is more beneficial rather than considered a side-effect.  

8.2.2 Integrated Refactoring Impact on Class Diagram 

For the analysis of the impact of class diagrams, we used a slightly different approach. 

Based on the work of Seidl and Sneed [458], we analyze the impact of integrated 

refactoring on the case studies on the following characteristics: 

• Data Complexity: The more data attributes a class has the higher its complexity 
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• Functional Complexity: More methods a class have, the higher its complexity. 

• Hierarchical Complexity: More hierarchical levels, the more dependent the 

lower level classes are on the higher level ones.  

• Coupling: Classes with a high coupling have a greater impact domain. 

• Reusability: The more, associations and interactions there are, the more difficult 

it is to take out individual classes and methods from the current architecture and 

to reuse them 

Table 102 Refactoring impact spectrum over class metrics 

Case Study 

Data 

Complexity 

(NOA) 

Functional 

Complexity 

(NOM) 

Hierarchical 

Complexity 

(DIT) 

Coupling 

(DCC) 

Reusability 

(NASM + 

NAGM) 

OFD - - = = + 

OG = = = = = 

ESAP = + = - - 

ME - - = - - 

FOMS - - = - = 

ATM - - - - - 

SCM = + = - - 

O-Comm = = = = = 

ORA - - = - - 

 

As the characteristics of the class model analyzed deal with complexity and reusability, 

the lower the values the better it is for class diagram use and analysis. As seen from Table 

102, there are notable improvements in the degree of complexity, reusability and 

modularity of the class model after integrated refactoring. Although there are a few 

exceptions, these is mainly due to the resolution of undue familiarity wherein operations 

are distributed among classes resulting in increase in the NOM metric values. 
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8.2.3 Integrated Refactoring Impact on Sequence Diagram 

Depicted in Figure 94 (a) and (b) are sequence model metric associations with their 

design characteristics.  

 

 

 

 

 

 

 

 

Table 103 Refactoring impact spectrum over sequence model design size metrics 

Case Study 
Max No. of 

Lifelines 

Max No. of 

Messages 

OFD = = 

OG - = 

ESAP = = 

ME = - 

FOMS = - 

ATM = - 

SCM = = 

O-Comm = - 

ORA = + 

 

Max No. of Lifelines 

Max No. of Messages 

 

SEQ Design 

Size 

NMSC 

NMRC 

 

Message 
Exchange 
Frequency 

(a) 

(b) 

Figure 94 Sequence model metrics association with 
model characteristics 
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When it comes to design size, the smaller the number of elements the better it is for 

analysis. Table 103 shows a notable improvement to sequence diagram design size 

mainly in terms of the number of messages. Although there is an exception in one case 

study (ORA) where the max number of messages exchanged between lifelines has 

actually increased. This is mainly contributed due to the side-effect of the creeping 

featursm model smell resolution as the messages of the inclusion use case are typically 

combined with its base use case when the inclusion is a functional decomposition. 

Table 104 Refactoring impact spectrum over sequence model message frequency 

Case Study NMSC NMRC 

OFD - - 

OG - - 

ESAP - - 

ME - - 

FOMS - - 

ATM - - 

SCM = = 

O-Comm - - 

ORA - - 

 

As seen from the results summarized in Table 104, it is evident that the message 

exchange frequency had consistency improved as a result of integrated model refactoring. 
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9 CHAPTER 9 

CONCLUSION AND FUTURE WORK 

9.1 Summary 

Model-driven engineering, an emerging trend in software engineering, has enabled the 

application of refactoring to UML models. The concept of refactoring was initially used 

for source code restructuring. The main goal of refactoring is to reduce software 

complexity by modifying the system without altering its external behavior. With the 

popularity of MDE and UML, recent approaches for refactoring have elevated it to a 

more abstract level of design models. Hence the term model refactoring or model-driven 

refactoring was coined. 

An Object-Oriented system modeled by UML is built up from many different views. 

Model refactoring, in recent proposals, is applied to a single view at a given time. Hence, 

information from other views are either not considered or later synchronized for 

consistency preservation. The objective of this research was to develop a multi-view 

integrated approach to model-driven refactoring using UML models. Due to feasibility, 

we restricted our scope to one diagram from each UML view, class diagram (structural 

view), sequence diagram (behavioral view) and use case diagram (functional view). An 

integrated metamodel composed from the metamodels of the selected UML models was 

initially constructed. In order to ensure proper integration of metamodels, metamodels of 

the sequence diagram and use case diagram were initially extended prior to composition. 



372 

 

Refactoring opportunities and transformation operations were defined at the metamodel 

level (integrated), which is based on the M2 level of the UML architecture in order to 

utilize the extension capability of the language.   

Our approach to refactor the integrated model consisted of two main steps. First, we 

identified where to apply refactoring by detecting refactoring opportunities identified in 

this work. Finally, we applied a set of composite refactorings used to remove the model 

smell from the integrated model. We proposed a total of eight integrated refactoring 

opportunities that can be used to improve the design models where these opportunities 

appear. For each of the proposed refactoring opportunities, we also described a set of 

primitive refactorings that can be used to remove the identified smells. The main 

objective of identifying these refactoring opportunities was to make the design models 

more maintainable by improving the overall organization of the software system. 

We developed a tool that fully supported the integrated model refactoring approach from 

integration to refactoring and evaluation. We performed an empirical validation using 

nine case studies to explore the effectiveness of our approach. The validation study 

compared our integrated refactoring approach with refactoring applied to models 

individually in terms of quality improvement. From the results, we found that more 

opportunities can be detected using the integrated approach rather than the individual 

refactoring approach.  

Quality improvement through refactoring was measured by the difference between 

metrics before and after the application of refactoring. As a result of the evaluation and 

analysis we found that the use of an integrated model aided in identification of more 
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design flaws than individual refactoring of models. Inter-model flaws such as duplication, 

specters’, undue familiarity etc. were easy to detect and resolve when information from 

multiple views was considered. The resulting use case models depicted reusability 

through inclusion & extension and better responsibility assignment. The resulting 

sequence models depicted reduction in the total number of messages within each diagram 

and reduction in the message passing frequency. The resulting class models depicted 

modularity through reduction in coupling, distribution of behavior to their familiar 

classes and use of OO concepts such as inheritance and abstraction.  

 

9.2 Contributions 

The research work presented in this dissertation makes the following contributions to the 

field of model-driven software refactoring: 

1. Provides a state-of-the–art survey and systematic literature review in the field of 

model-driven software refactoring. 

2. Provides a process model consisting of a number of distinct activities essential for 

model-driven refactoring along with a comparison framework for evaluating 

existing refactoring approaches.   

3. Provides an extension to the UML metamodel for sequence diagram by adding 

model elements to enable model extensibility and enhance code traceability. 

4. Provides an extension to the UML metamodel for use case diagram that includes 

representation for all its elements and relationships (structural and textual) in a 
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conflict-free manner and one that includes information for model analysis, 

evaluation and interchange among modeling tools.  

5. Provides an integrated metamodel built taking into consideration the three views 

of UML models: structural, behavioral and functional. 

6. Provides a catalog of eight model smells based on the integrated metamodel. 

These smells take into consideration information from the functional, behavioral 

and structural view (in the form of an integrated metamodel) and propose 

refactoring opportunities to correct design defects and anti-patterns covering the 

different views of UML models. 

7. Provides a prototype tool to develop use case diagrams authoring both its 

structural and behavioral components.  

8. Provides automated tool support for model smell detection, resolution and 

evaluation over the proposed integrated metamodel. 

 

9.3 Threats to Validity 

Threats to validity for an empirical study are divided into three types: Construct Validity, 

Internal Validity and External Validity [459]. 

Construct Validity: This measures the extent to which the independent and dependent 

variables accurately model the study hypotheses. In our work, the dependent variable 

which is the quality improvement achieved by refactoring, has to address the degree the 

quality model accurately measures the quality of the software. Due to the lack of a quality 

model that is evaluated through empirical experiments and expert opinion in the field of 
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model-driven refactoring, we evaluated the effect of refactoring on indicative metrics for 

class, sequence and use case models. Another threat to construct validity is the choice of 

threshold values for a few smell detection strategies. These values were obtained from 

design guidelines and metric authors from the literature. The choice of a threshold value 

can vary the effectiveness of the strategy in identifying model smells in the integrated 

metamodel. 

Internal Validity: This measures the extent to which changes in the dependent variable 

can be safely attributed to changes in the independent variables. In our validation, there 

are two threats pertaining to this category: unavailability of a model quality framework 

and semi-automatic application of refactoring. Due to lack of a mapping framework 

between the internal quality metrics and external attributes, comparison between the 

internal quality metrics was performed. Second, although identification of refactoring 

opportunities is performed automatically through the proposed prototype tool, a semi-

automatic approach is employed for resolution. This means each refactoring operation 

before its application over the model is consulted from the user. There is a possibility that 

the we may have misclassified a few false-positive cases as opportunities for refactoring. 

This threat was considerably mitigated by the fact that we are well versed with the case 

studies and that the size of the case studies was relatively small.   

External Validity: This measures the extent to which results of the study are generic and 

negate the effects of environmental variables. In our validation, there is only one threat 

pertaining to this category: choice of case studies for evaluation. Case studies considered 

in this work were obtained from senior software engineering projects and small-sized 

case studies published in the literature and books. These case studies may not be 



376 

 

representative of all types of systems, specifically industrial case studies developed by 

professionals and practitioners. Due to the lack of usable large sized case studies in the 

domain of this research, the behavior of the integrated model refactoring approach could 

not be assessed on a wider scale.   

 

9.4 Future Works 

Refactoring software, especially models of software is a relatively new discipline and a 

highly active area of research. The work developed in this research considered 

application of refactoring over multiple views of UML in an integrated manner, which is 

a novel achievement in this constantly evolving area. Hence, the approach must go 

through several adjustments based on substantial experience of practical applications to 

obtain relevance in the industry. Based on our review of literature in the field of model-

driven refactoring and the work presented in this dissertation, several possible directions 

for future investigations were identified.  

Formal systems add preciseness to the process of refactoring at the expense of 

interoperability and ease of use. On the other hand, text based approaches (like XMI) are 

easy to understand and are portable but makes the task of model refactoring difficult due 

to size, manual handling of transformation and behavior preservation and impreciseness. 

Techniques to integrate formality within text-based approaches will improve usability of 

these approaches. 
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There is a significant gap between the model smells and anti-patterns proposed for source 

code and models. An initial attempt to bridge this gap has been proposed in this 

dissertation that considers more than one UML view to identify model smells. 

Identification of more refactoring opportunities based on the integrated model is hence 

required. Pattern-based model refactoring is another refactoring opportunity detection 

approach gaining immense popularity. The use of the integrated metamodel identifying 

the application of behavioral and structural design patterns can also be investigated. 

Apart from the UML class diagram, other diagrams are rarely used for refactoring. The 

use of multiple UML models for detection of smells may motivate the researchers to look 

into refactoring operations for other UML models. Defining refactoring opportunities 

including other models in the integrated framework, namely the state and object 

diagrams, will allow addition of more information to the structural and behavioral view.  

Research in the area of model quality evaluation is significantly lacking behind. Hence, 

there is a vital requirement of a model metrics catalog for all UML models, framework to 

establish correlation between these metrics and external model quality attributes and 

empirical studies to evaluate the effect of model metrics and design patterns over model 

refactoring techniques. 

Other avenues for future work include investigation of interaction information from 

models for behavior specification and preservation (call preservation). An plugin version 

of the Integrated Refactoring tool for popular CASE tools such as Eclipse can be 

developed for wider use. Finally, there is need for approaches to determine an appropriate 

model smell application and resolution schedule is required to maximize quality 
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improvements. Further studies should also be performed to evaluate the effectiveness of 

the proposed integrated model refactoring large real-world project designs. 
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Appendix 1: Formal Description for the UML Metamodel 

A1.1 Class Diagram 

A class diagram is a 4-tuple                 where 

   is a non-empty finite set of classes 

   is a finite set of associations 

         is the relationship between classes 

     is a set of well-formedness rules on the Class Diagram    

In this subsection, a detailed description of the abstract syntax of UML class diagrams is 

initially provided followed by a list of formalized well-formedness rules.  

 [CLASS] A class      consists of the following components:  

-                where      is the name space of a class diagram.  

-           is an optional integer specifying the upper multiplicity.  

-           is an optional integer specifying the lower multiplicity. 

-                specifies that the class does not provide a complete 

declaration.  

-            is a Boolean that specifies whether the class has ancestors or not. 

-            is a Boolean that specifies whether the class has descendents or 

not.  

 [ATTRIBUTE] A class is composed of a set of attributes and operations. An 

attribute         of a class is represented by instances of Property and consists of the 

following components: 

-                                              . 
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-            . 

-             which may be one of the basic types or other classes. 

-              is an optional integer specifying the upper multiplicity.  

-              is an optional integer specifying the lower multiplicity. 

-                which is an initial value of the attribute of type            . 

-                   is a Boolean that specifies whether the attribute is fixed 

(true) or changeable.  

-                  is a Boolean that specifies whether the attribute is derived 

from other attributes or not. 

The default syntax of an attribute declaration given in the UML specification is: 

                                                            

                     

 

 [OPERATION] An operation       of a class is a function that can be performed to 

alter the behavior of a class. It consists of the following components 

-                                            . 

-          . 

-               is an optional return type which may be one of the basic 

types or other classes. 

-              is a Boolean that specifies whether its execution changes that 

system state or not. 

-                 is a Boolean that specifies whether the details of the 

operation are provided or by a  descendent. 
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-               is a Boolean that specifies whether the return parameter is 

unique or not. 

   [PARAMETER] An operation is composed of a list of zero or more formal 

parameters           . Each parameter has the following components 

-             . 

-                                            . 

-              which may be one of the basic types or other classes. 

-               ) which is an initial value of the parameter of type 

          ). 

 The default syntax of an operation is given as 

                   

                                                     

and each parameter in the                  is described as  

                                                    

                 

Classes in a class diagram are related to each other by different types of relationships. 

Relationships in a UML class diagram are classified into three categories: Association, 

Generalization and Dependency. 

 [ASSOCIATION] An association   consists of an association name and a set of 

association ends End ( ). An association end    :     End ( )} consists of the 

following components: 

-           is the class connected to the end. 
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-             which can be used to traverse from the source end to the target 

end. 

-           is an integer that specifies the lower bound on the number of target 

instances that can be associated with a source instance. 

-           is an integer that specifies the upper bound on the number of target 

instances that can be associated with a source instance. 

-                     specifies whether the end is an aggregation with 

respect to another end.                                           . 

-               is a Boolean that specifies whether traversing from source to 

the target instances is possible or not. 

 [GENERALIZATION] A generalization     is a directed relationship between 

two classes. It consists of:  

-              is the super class. 

-             is the sub class.  

-                     is a Boolean.  

 [ASSOCIATION CLASS] In the UML Metamodel, an Association Class is a 

declaration between classes, which has a set of attributes of its own. Association 

Class is both an Association and a Class. An association class        consists of the 

following component: 

-                     where      is the name space of a class diagram. 
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Apart from the abstract syntax, the UML specification also provides a set of well-

formedness rules. Well-formedness rules for class diagrams written in a formal 

description can be found in [460]. These set of well-formedness rules (WF) for the UML 

class diagram are written here in a formal notation.  In this subsection, a detailed 

description of the well-formedness rules of UML class diagrams are provided. 

      Rule 1: A well-formed class has unique attribute names 

                         

                                                                

      Rule 2: Operations can have same names if they differ in scope, types or 

number of parameters or result type 

                       

                                                      

 (               

                            (                     )) 

In this rule            is an auxiliary function that checks whether the parameters 

(also known as message signature) of the operations are different. This function 

can be formally written as: 

                                  

      (          )         (          )  

 (            (          )       (          )

     (          )) 
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      Rule 3: A class with an abstract operation must be abstract 

                  

                                          

      Rule 4: An abstract class must have at least one abstract operation 

              (                            ) 

      Rule 5: Multiplicity of the class must be valid 

                   

      Rule 6: An abstract class must be inherited by another concrete class 

                         

      Rule 7: An operation can have at most one return parameter 

                  

                  (             (         )        )    

      Rule 8: An association is n-ary when n ≥ 2 

           (      )    

      Rule 9: Multiplicities of association ends must be well-formed 

                       

(                            ) 
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      Rule 10: An association end with one end as “shared” or “composite” 

aggregation-kind must be a binary association 

                       

            

                                                  

                                  

      Rule 11:   An association end with one end as “composite” aggregation-kind 

must be navigable 

                           

(                                                              

              ) 

      Rule 12: Only one end of an association can be “shared” or “composite” 

                        

((          

                                                  

        )                      

  

                                                    

         ) 
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      Rule 13: An association end with one end as “composite” aggregation-kind, 

that end cannot have multiplicity greater than 1 

                       

(                                                     ) 

      Rule 14: In an association, at least one end must be navigable 

                       

(                       ) 

      Rule 15: In a generalization relationship, the subclass cannot be a root 

                       

(            (       )) 

      Rule 16: In a generalization relationship, the super class cannot be a leaf 

                       

(            (         )) 

      Rule 17: In a generalization relationship, the subclass cannot redefine the 

attributes of the super class 

                       

     (            (         (         )            (       ))

                      ) 
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      Rule 18: Each class in the class diagram has a unique name 

                 

                                           

      Rule 19: Two different associations relating to a common class cannot have 

the same name 

                       

                                                           

     

      Rule 20: An abstract class in the class diagram must be the super class of at 

least one concrete class 

            

                                              

             

      Rule 21: There should be no loops among generalizations in a class diagram 

                  

        (                    ) 

In this rule                is an auxiliary function that returns the transitive 

closure of all the use cases included by this use case directly or indirectly. This 

function can be formally written as  
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            :         

                       |                

                        

                                   

                                                       

 

A1.2 Sequence Diagram 

A sequence diagram is a 7-tuple                                    where 

   is a finite set of lifelines 

     is a finite set of end locations  

     is a finite set of message labels 

                   is the relationship (event) between  lifelines 

             is a partial order providing the position of ends within each of the 

lifelines 

          is an ordered set of fragments in the sequence diagram 

      is a set of well-formedness rules on the Sequence Diagram     

 

Similar to that of the Class diagram, the UML Specification document also describes the 

Sequence Diagram metamodel by an abstract syntax in the form of a class diagram and 

the well-formedness rules. In this subsection, a detailed description of the abstract syntax 

of UML sequence diagrams will be provided.  
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 [LIFELINE] A lifeline      consists of the following components 

-         . 

-                  is a set of all end locations part of the lifeline whose 

ordering is provided by using the     relational operator. 

-                is a set of attributes that belongs to a lifeline. 

-                  is the name of the decomposed fragment that shows the 

interactions for the  decomposed lifeline. 

 [DECOMPOSITION] A decomposed fragment of a lifeline   is given by an external 

sequence diagram     . 

 [END LOCATION] An end location          consists of the following 

components: 

-           . 

-                  is the lifeline to which this end belongs to. 

-              is a Boolean that specifies whether the end is a gate or not. 

-                           is the fragment to which end belongs if the 

end is a gate.   

 [MESSAGE] A message      consists of the following components: 

-             . 

-                 

                                                . 

-                                               . 

-             is an optional attribute to which the return value is assigned. 

-            is the return value of the message. 
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-                 specifies the sending end of a message. 

-                    specifies the receiving end of a message. 

 [ARGUMENTS] A message is composed of a list of zero or more 

arguments       . Each argument has the following components: 

-           . 

-           is a value assigned to the argument or ‘-‘ if not assigned.  

The default syntax of a message is given as 

                                                           

and each argument in the                 is described as  

                  |     

 

Fragments          in a sequence diagram are classified into three categories: 

Combined Fragments, Interaction Use Fragments and State Invariants. 

 [COMBINED FRAGMENT] A combined fragment              consists of the 

following components: 

-                is a set of lifelines covered by the fragment. 

-               

                                                               . 

-              is a set of operands of the combined fragment. 

-                        is a set of gates between the fragment and its 

enclosing interaction.  
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o [OPERAND] An operand                  consists of an interaction 

constraint                 and an operand body. An operand body is given by an 

inline sequence diagram       .  

- [CONSTRAINT]                  is an interaction constraint given as a 

Boolean expression which guards the entry into an operand. It includes the 

following components: 

                     is an optional value or an expression that 

specifies the minimum number of iterations. 

                     is an optional value or an expression that 

specifies the maximum number of iterations. 

The default syntax of an interaction constraint is given by 

                         |        |         

 [INTERACTION USE] An interaction use               is given by the same 

default syntax as that of a message but the name in this case refers to the referred 

interaction. The referred interaction is an external sequence diagram       . An 

interaction use fragment also consists of                       is a set of gates 

between the fragment and its enclosing interaction. 

 [STATE INVARIANT] A state invariant               consists of the following 

components 

-                  is the lifeline covered by the state invariant. 

-                 is the constraint that should hold at runtime. 
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Also in this subsection, a detailed description of the well-formedness rules of UML 

sequence diagrams is provided. 

       Rule 1: If in a sequence diagram a lifeline is decomposed, the sequence of 

constructs in the diagram such as combined fragments and interaction use covering 

this lifeline must also appear in the decomposed interaction. This is also known as 

extra-global. 

                 

                                                     

In this rule          is an auxiliary function that returns all the fragments that the 

lifeline   is part of. This function can be formally written as 

       :                

           

    |              

                      

                                  

       Rule 2: The Send event must be ordered before the receive event if both the 

send and the receive event belonging to a message are on the same lifeline 

                

               (           )          (              )             
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       Rule 3:  If a return attribute is specified in a message, it must be an attribute 

of the lifeline sending the message 

                

             (              )                    

       Rule 4: Arguments of a message must be attributes of the sending lifeline or 

constants 

                

          (       )             (        (           ))          

       Rule 5:  Messages inside of a combined fragment should not cross its 

boundaries or its operands within the combined fragment  

                  

                                       

                                                                

     

       Rule 6: A combined fragment with operator opt, loop, break or neg must have 

exactly one operand 

                  

             

 (                                        

                                          )

     (            )     
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       Rule 7: The interaction constraint with        and        applies only to a 

combined fragment with operator loop 

                  

                                    

 (      (          (            ))   )

  (      (          (            ))   ) 

       Rule 8: A combined fragment with operator break should cover all the 

lifelines within the enclosing sequence diagram 

                  

                                                      

       Rule 9: A combined fragment with operator loop and        interaction 

constraint specified then the evaluation of         should be a non-negative integer 

                  

                            

       (      (          (            ))   )

 (               (          (            ) )   ) 
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       Rule 10: A combined fragment with operator loop and        interaction 

constraint specified then the evaluation of         should be a positive integer 

                  

                            

       (      (          (            ))   )

 (               (          (            ) )   ) 

       Rule 11: A combined fragment with operator loop and both        and 

       interaction constraint specified, then the evaluation of        should be 

greater than or equal to the evaluation of        

                 

                            

       (      (          (            ))   )

 (      (          (            ))   )

 (               (          (            ) )

                (          (            ) )) 

 

A1.3 Use Case Diagram 

A use case diagram is a 5-tuple                   where 

   is a finite set of use cases 

   is a finite set of actors  

          is a finite set of associations 

         is the relationship between use cases 
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     is a set of well-formedness rules on the Use Case Diagram    

 

In this subsection, a detailed description of the abstract syntax of UML use case diagrams 

will be provided.  

 [ACTOR] An actor     consists of the following components 

-        . 

  [USE CASE] A use case      consists of the following components 

-         . 

-             is a set of all extension points owned by the use case.  

  [EXTENSION POINT] An extension Point    belonging to a use case has a 

name         .  

The default syntax of an extension point is given by 

                       

 

 [ASSOCIATION] An association relationship      consists of the following 

components: 

-              is the actor. 

-            is the use case. 

Use cases in a use case diagram are related to each other by different types of 

relationships. These relationships are generalization, inclusion and extension. 

 [GENERALIZATION] A generalization relationship        consists of the 

following  components: 

-               is the general use case.  
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-              is the specialized use case.  

  [INCLUSION] An inclusion relationship        consists of the following 

components: 

-                   is the use case that is to be included. 

-                    is the use case that will include the addition.  

 [EXTENSION] An extension relationship        consists of the following 

components: 

-                   is the use case that is being extended (base). 

-                    is the use case that is represents the extension.  

-                is condition that must hold for the extension to take place.  

-             is an ordered list of extension points    where fragments of 

the extending use case are to be inserted. 

 [ACTOR GENERALIZATION] An actor generalization relationship     consists 

of the following components: 

-                 is the general actor. 

-               is the specialized actor.  

Also in this subsection, a detailed description of the well-formedness rules of UML use 

case diagrams is provided. 

      Rule 1: An actor must have a name 
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      Rule 2: A use case must have a name 

                  

                     

      Rule 3: A use case cannot include use cases that directly or indirectly include 

it. 

                  

        (                    ) 

 

In this rule                is an auxiliary function that returns the transitive 

closure of all the use cases included by this use case directly or indirectly. This 

function can be formally written as 

            :         

                 

        | 
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      Rule 4: An extension point must have a name 

                  

                    (     )      

      Rule 5: The extension locations referenced by the extend relationship must 

belong to the use case being extended  

                    

                             (              ) 
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Appendix 2: Model Refactoring Catalog 

This section provides the specification of all model level refactorings. These refactorings 

are grouped into three categories based on the model they transform: Use Case, Class and 

Sequence. Each refactoring is described in detail. Refactoring pre-conditions and post-

conditions are defined using notations and functions described in Appendix 1. These 

refactorings are provided as a Java API (library – jar). In order to invoke these 

refactorings, the UML model should be parsed and used as a DOM tree. The document 

node of that tree is passed on each invocation. 

A2.1 Use Case Model Refactoring 

1. Create Use Case 

Description: This refactoring creates a new empty use case without any associated actors 

and any associated interaction. 

Origin: From Rui [286] [page 134] 

Parameters: String newUC 

Preconditions: The name of the new use case (     ) does not conflict with the name 

of an existing use case within the model. 
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Post-conditions: 

                                

Mechanism &Verification: The behavior of the use case model is not affected with the 

addition of the newly created use case. The precondition ensures preservation of distinct 

entity name invariant. 

Implementation: 

 Method Name: create_UseCase 

 Arguments: Document doc, String name where 

 doc is the document node of the source model 

 name is the name for the use case  

 Return Value: String status 

 

2. Create Actor 

Description: This refactoring creates a new actor without any reference to a use case(s). 

Origin: From Rui [286] [page 135] 

Parameters: String newActor 

Preconditions: The name of the new actor (        ) does not conflict with the name 

of an existing actor within the model. 
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Post-conditions: 

                                

Mechanism &Verification: The newly created actor does not interact with any use case 

and is isolated from other actors. Therefore, the behavior of the use case model does not 

change with the addition of a new actor. The precondition ensures preservation of distinct 

entity name invariant. 

Implementation: 

 Method Name: create_Actor 

 Arguments: String name where 

 name is the name for the actor 

 Return Value: String status 

 

3. Delete Use Case 

Description: This refactoring deletes an unreferenced use case from the use case model. 

Origin: From Rui [286] [page 137] 

Parameters: Use case uc 

Preconditions: The use case is isolated from other use cases and actors. Isolation from 

other use cases means 

 No inclusions 

 No extensions 
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 Not included and extended by other use cases 

 Not a super use case to other use cases 

               

                       

                

                          

                                                               

                      

                                                 

 

Post-conditions: 

       

Mechanism &Verification: Since the use case is isolated from other use cases and actors, 

it does not affect interactions between them. Hence, this deletion does not change the 

behavior of the use case model. 

Implementation: 

 Method Name: delete_UseCase 

 Arguments: String name where 

 name is the name of the use case  

 Return Value: String status 

 

4. Delete Actor 

Description: This refactoring deletes an unreferenced actor from the use case model. 
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Origin: From Rui [286] [page 138] 

Parameters: Actor a 

Preconditions: The actor is isolated from other use cases and actors. Isolation from other 

actors means that the actor is not a super-actor to any other actor. 

            

                       

                    

                          

                        

 

Post-conditions: 

      

Mechanism &Verification: Since the actor is isolated from other use cases and actors, it 

does not participate in interactions between them. Hence, this deletion does not change 

the behavior of the use case model. 

Implementation: 

 Method Name: delete_Actor 

 Arguments: String name where 

 name is the name of the actor 

 Return Value: String status 
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5. Generalize Use Cases 

Description: This refactoring creates a generalization relationship between two or more 

use cases. This refactoring reduces redundancy in use cases by moving common 

interactions to the parent use case and hence improves reusability. 

Origin: From Rui [286] [page 154] 

Parameters: A set of use cases {uc1, uc2… ucn}, String newUC 

Preconditions: 

(i) The use cases {uc1, uc2… ucn} are used by the same set of actors. In order to formally 

write this condition, we define an auxiliary function that returns all the actors associated 

with a given use case. This function can be written as 

                      

               

     | 

             

                    

                                  

                 

 

Then the precondition can be written as  
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(ii) There is no relationship among the use cases {uc1, uc2… ucn}. These use cases are not 

referenced by any other use case. 

                               

                                            

 

(iii) The name of the new super use case (     ) does not conflict with the name of an 

existing use case within the model. 

                  

                        

Post-conditions: 

A new use case is created and it is the parent of use cases {uc1, uc2… ucn}.  

                                  

                      

                                                 

Mechanism &Verification: A new empty use case is created and is assigned as the parent 

or super use cases of the given use cases. In the behavioral view, common interaction 

fragment is moved to this use case. 

The precondition (i) ensures that the use cases {uc1, uc2… ucn} has the same set of actors. 

According to the definition of generalization relationship, moving common interaction 

elements to the parent use case does not change the behavior of the use cases. 
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Precondition (ii) ensures that the use cases are isolated. Precondition (iii) ensures distinct 

entity name for the newly added parent use case. 

Implementation: 

 Method Name: generalize_UseCases 

 Arguments: ArrayList subUCNames, String superUCName where 

 subUCNames are the names of the child use cases 

 superUCName is the name of the parent use case 

 Return Value: String status 

 

6. Generalize Actors 

Description: This refactoring creates a generalization relationship between two or more 

actors using a common set of use cases. A new actor is created which uses the above 

common set of use cases. 

Origin: From Rui [286] [page 157]  

Parameters: A set of actors {a1, a2… an}, String newActor 

Preconditions: 

(i) The actors {a1, a2… an} use a common set of use cases {uc1, uc2… ucn}. In order to 

formally write this condition, we define an auxiliary function that returns all the actors 

associated with a given use case. This function can be written as 
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      | 

                

                    

                                     

              

 

Then the precondition can be written as  

                        

                           

                    

(ii) There is no actor relationship among actors {a1, a2… an}, and any other actor does not 

reference them. 

                 

                 

                                     

(iii) The name of the new super actor (        ) does not conflict with the name of an 

existing actor within the model. 
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Post-conditions: 

(i) A new actor is created and it is the parent of actors {a1, a2… an}.  

                                  

                  

                                                   

(ii) The new actor has association relationship with use cases {uc1, uc2… ucn}. 

                    

                                              

(ii) Association relationships between use cases {uc1, uc2… ucn} and actors {a1, a2… an} 

are removed. Actors inherit these relationships from the parent actor newActor. 

                

                         

Mechanism &Verification:  

A generalization relationship between actors means that the child actors participate in all 

relationships of the parent actor. All common use cases are associated with the new 

parent actor and are removed from the child actors. 

No new association between actors and use cases are added. Actors {a1, a2… an} inherit 

association relationships between newActor and use cases {uc1, uc2… ucn}. Hence all 

interactions between actors and use cases are preserved. Precondition (ii) ensures that 

actors {a1, a2… an} are isolated from other actors so that the newActor does not affect 



410 

 

other actors. Precondition (iii) ensures distinct entity name for the newly added parent 

actor. 

Implementation: 

 Method Name: create_ActorGeneralization 

 Arguments: ArrayList subActorNames, String superActorName where 

 subActorNamesare the names of the child actors 

 superActorNameis the name of the parent actor 

 Return Value: String status 

 

7. Merge Use Cases 

Description: This refactoring merges two independent use cases that are used by the 

same set of actors. This refactoring helps manage the use case granularity by avoiding 

fragment use cases. 

Origin: From Rui [286] [page 152]  

Parameters: Use case uc1and uc2 

Preconditions: 

(i) Use cases uc1 and uc2 are not referenced by any use case. 
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(ii) Use cases uc1 and uc2 are used by the same set of actors. 

                     

                              

Post-conditions: 

The use case uc2 is deleted. 

        

Mechanism &Verification: This refactoring keeps one use case and deletes the other 

one. 

The precondition (i) ensures that the use cases {uc1, uc2} are isolated from other use 

cases. This ensures that merging them together does not affect the behavior of the use 

case model. Precondition (ii) ensures that the use cases are used by the same set of actors.  

Implementation: 

 Method Name: merge_UseCases 

 Arguments: String UC1, String UC2 where 

 UC1 andUC2 are the names of the use cases to be merged 

 Return Value: String status 
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8. Merge Actors 

Description: This refactoring merges two actors into one. This refactoring helps manage 

actors. 

Origin: From Rui [286] [page 156]  

Parameters: Actor a1and a2 

Preconditions: 

Actors a1 and a2 are not referenced by any other actor. However, actor a2 can be the 

parent of actor a1. 

                 

                 

                                                     

                                      

Post-conditions: 

(i) Use case references by actor a2 are used by the actor a1. 

                  

                                        

(ii) The actor a2 is deleted.  
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Mechanism &Verification: This refactoring keeps one actor and deletes the other one. 

The precondition ensures that the actors{a1, a2} are isolated from other actors. This 

ensures that merging them together does not affect the behavior of the use case model.  

Implementation: 

 Method Name: merge_Actors 

 Arguments: String A1, String A2 where 

 A1 andA2 are the names of the actors to be merged 

 Return Value: String status 

 

9. Merge Use Case Generalization 

Description: This refactoring merges two use cases that are related to each other by 

generalization and the interaction of the parent use case is empty (abstract). This 

refactoring helps maintain the abstraction level of use cases. 

Origin: From Rui [286] [page 146] 

Parameters: Use Case uc1 and its parent uc2 

Preconditions: 

(i) There is a generalization relationship between use cases uc1 and uc2. 
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(ii) The use cases uc2 is not referenced by any other use case except uc1. 

         

                       

                                                                

                

                      

                                                   

 

Post-conditions: 

(i) Use case uc1 takes over all association relationships between use case uc2 and its 

actors. 

               

                              

(ii) The generalization relationship between uc1 and uc2 is deleted. 

                                           

 

(ii) The use case uc2 is deleted.  

        

Mechanism &Verification: This refactoring merges the parent use case into the child use 

case. 

The precondition (i) ensures a generalization relationship between the use cases. 

Precondition (ii) isolates the use case uc2 from other use cases than uc1. Since the use case 
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uc2has an empty interaction, it can be merged into the use case uc1. The interaction 

between the use case uc2 and related actors is not changed. Hence behavior is preserved. 

Implementation: 

 Method Name: merge_UCGeneralization 

 Arguments: String subUC, String superUC where 

 subUC is the name of the child use case 

 superUC is the name of the parent use case 

 Return Value: String status 

 

10. Merge Use Case Inclusion 

Description: This refactoring merges two use cases that are related to each other by 

inclusion relationship. The included use case is merged into the base use case. This 

refactoring helps manage use case granularity and maintain the abstraction level of use 

cases. 

Origin: From Rui [286] [page 147] 

Parameters: Base Use Case uc1 and included Use Case uc2 

Preconditions: 

(i) There is an inclusion relationship between use cases uc1 and uc2. The use case uc1 

includes the use case uc2.  
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(ii) Use case uc2 is not referenced by other use cases except uc1. 

         

                       

                                                                

               

                      

                                                         

 

Post-conditions: 

(i) The inclusion relationship between uc1 and uc2 is deleted. 

                                                  

 

(ii) The use case uc2 is deleted.  

        

Mechanism &Verification: This refactoring merges the inclusion use case into the base 

use case at the point of inclusion. 

The precondition (i) ensures an inclusion relationship between the use cases. Precondition 

(ii) isolates the use case uc2 from other use cases than uc1. Merging the included use case 

into its base use case does not alter the behavior of the use case model. Hence behavior is 

preserved. 
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Implementation: 

 Method Name: merge_UCInclusion 

 Arguments: String incUC, String baseUC where 

 incUC is the name of the inclusion use case 

 baseUCis the name of the base use case 

 Return Value: String status 

 

11. Merge Use Case Extension 

Description: This refactoring merges two use cases that are related to each other by 

extension relationship. The extending use case is merged into the base use case. This 

refactoring helps manage use case granularity and maintain the abstraction level of use 

cases. 

Origin: From Rui [286] [page 148] 

Parameters: Base Use Case uc1and extending Use Case uc2 

Preconditions: 

(i) There is an extension relationship between use cases uc1 and uc2. The use case uc2 Push 

extends the use case uc1. 
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(ii) Use case uc2 is not referenced by other use cases except uc1. 

         

                       

                                                                 

                

                      

                                                         

 

Post-conditions: 

(i) The extension relationship between uc1 and uc2 is deleted. 

                                                  

 

(ii) The use case uc2 is deleted.  

        

Mechanism &Verification: This refactoring merges the extension use case into the base 

use case at the point of extension. 

The precondition (i) ensures an extension relationship between the use cases. 

Precondition (ii) isolates the use case uc2 from other use cases than uc1. Merging the 

extension use case into its base use case does not alter the behavior of the use case model. 

Hence behavior is preserved. 
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Implementation: 

 Method Name: merge_UCExtension 

 Arguments: String extUC, String baseUC where 

 extUC is the name of the extension use case 

 baseUCis the name of the base use case 

 Return Value: String status 

 

12. Split Use Case 

Description: This refactoring splits one use case into two use cases. This refactoring 

helps manage use case granularity. 

Origin: From Rui [286] [page 159] 

Parameters: Use Case uc and String newUC 

Preconditions: 

(i) The use case uc is not referenced by any other use case. 
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(ii) The name of the new use case (     ) does not conflict with the name of an 

existing use case within the model. 

                  

                        

Post-conditions: 

(i) The new use case newUC is created. 

                                

 (ii) The new use case newUC is used by all actors that have an association relationship 

with the use case uc.  

                

                               

(iii) There is no use case relationship between uc and newUC.  

                

                                              

 

Mechanism &Verification: This refactoring splits one use case into two use cases. The 

new use case has no relationship with the split use case.  

The precondition (i) ensures that the use case uc has no relationship with the other use 

cases so that splitting uc does not change the behavior of other use cases. Precondition 

(ii) ensures distinct entity name invariant.  
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Implementation: 

 Method Name: split_UC 

 Arguments: String UC, String newUC where 

 UC is the name of the use case to be used for splitting 

 newUC is the name of the new use case 

 Return Value: String status 

 

13. Split Actor 

Description: This refactoring splits one actor into two actors. This refactoring helps 

manage granularity. It also improves reusability of the use case model. 

Origin: From Rui [286] [page 166] 

Parameters: Actor a and String newActor 

Preconditions: 

(i) The actor a interacts with one use case in the use case model. 

        

          (        )    

 

(ii) The actor a has no actor relationship with any other actor. 
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(iii) The name of the new actor (        ) does not conflict with the name of an 

existing actor within the model. 

              

                         

Post-conditions: 

(i) A new actor a’ with name newActor is created. 

                                  

 (ii) The new actor newActor interacts with all use cases that the actor a interacts with.  

                  

                         

(iii) There is no actor relationship between a and a’.  

              

                        

                                                            

 

Mechanism &Verification: This refactoring splits one actor into two actors. The new 

actor interacts with the same use cases uc that the old actor interacts with. The interaction 

between actor a and the use case u is preserved by the interaction between the actor a’ 

and the use case u. Hence behavior is preserved.  

The precondition (i) ensures that actor a interacts with only one use case. This simplifies 

the definition if the refactoring. Precondition (ii) ensures that the actor a has no 
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relationship with the other actors so that splitting a does not change the behavior of other 

actors. Precondition (iii) ensures distinct entity name invariant.  

Implementation: 

 Method Name: split_Actor 

 Arguments: String Actor, String newActor where 

 Actor is the name of the actor to be used for splitting 

 newActor is the name of the new actor 

 Return Value: String status 

 

14. Use Case Generalize Generation 

Description: This refactoring splits one use case into two and creates a generalization 

relationship between two use cases. This refactoring helps manage use case granularity. It 

is a special case of the “Generalize Use Case” refactoring. 

Origin: From Rui [286] [page 161] 

Parameters: Use case uc, String newUC 

Preconditions: 

(i) The use case is not referenced by any other use case. 
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(ii) The name of the new use case (     ) does not conflict with the name of an 

existing use case within the model. 

                  

                        

Post-conditions: 

A new use case is created and it is the parent of the use case uc.  

                                  

                                                 

Mechanism &Verification: A new empty use case is created and is assigned as the parent 

or super use cases of the given use case uc. In the behavioral view, common interaction 

fragment is moved to this use case. 

The precondition (i) ensures that the use case is isolated. Precondition (ii) ensures distinct 

entity name for the newly added parent use case. 

Implementation: 

 Method Name: generate_UCGeneralization 

 Arguments: String subUCName, String superUCName where 

 subUCName is the names of the child use case 

 superUCName is the name of the parent use case 

 Return Value: String status 
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15. Use Case Inclusion Generation 

Description: This refactoring splits one use case into two and creates an inclusion 

relationship between the two use cases. This refactoring helps manage use case 

granularity and reduce redundancy.  

Origin: From Rui [286] [page 162] 

Parameters: Use case uc, String newUC 

Preconditions: 

(i) The name of the new use case (     ) does not conflict with the name of an existing 

use case within the model. 

                  

                        

Post-conditions: 

(i) A new use case uc’ with the name newUC is created.  

                                    

(ii) The use case uc includes the newly created use case uc’ 

                                                        

Mechanism &Verification: A new empty use case is created and is assigned as the 

inclusion use case of the given base use case uc. The precondition (i) ensures distinct 

entity name for the newly added inclusion use case. 
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Implementation: 

 Method Name: generate_UCInclusion 

 Arguments: String baseUC, String newUC where 

 baseUC is the name of the base use case 

 newUC is the name of the inclusion use case 

 Return Value: String status 

 

16. Use Case Extension Generation 

Description: This refactoring splits one use case into two and creates an extension 

relationship between the two use cases. This refactoring helps manage use case 

granularity and reduce redundancy.  

Origin: From Rui [286] [page 163] 

Parameters: Use case uc, String newUC 

Preconditions: 

(i) The name of the new use case (     ) does not conflict with the name of an existing 

use case within the model. 

                  

                        

Post-conditions: 

(i) A new use case uc’ with the name newUC is created.  
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(ii) The newly added use case uc’ extends the use case uc. 

                                                        

Mechanism &Verification: A new empty use case is created and is assigned as the 

extension use case of the given base use case uc. The precondition (i) ensures distinct 

entity name for the newly added extensionuse case. 

Implementation: 

 Method Name: generate_UCExtension 

 Arguments: String baseUC, String newUC where 

 baseUC is the name of the base use case 

 newUC is the name of the extension use case 

 Return Value: String status 

 

17. Actor Generalize Generation 

Description: This refactoring splits one actor into two and creates a generalization 

relationship between the two actors. This refactoring helps manage improve the 

understandability and reusability of the use case model. 

Origin: From Rui [286] [page 168] 

Parameters: Actor a, String newActor 
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Preconditions: 

(i) The actor does not have a parent actor. 

            

      

                        

 

(ii) The name of the new actor (        ) does not conflict with the name of an existing 

actor within the model. 

              

                         

Post-conditions: 

(i) A new actor a’ with the name newActor is created and it is the parent of actors a.  

                                     

                                             

Mechanism &Verification: A new actor is created and is assigned as the parent or super 

actor of the given actor a. The precondition (i) ensures unique parent. Precondition (ii) 

ensures distinct entity name for the newly added parent actor. 

Implementation: 

 Method Name: generate_ActorGeneralization 

 Arguments: String Actor, String newActor where 
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 Actor is the names of the actor used for splitting 

 newActor is the name of the new parent actor 

 Return Value: String status 

 

A2.2 Class Model Refactoring 

1. Pull Up Attribute 

Description: This refactoring removes one attribute from a class or a set of classes and 

inserts it into one of its superclasses. It is the analogous to Fowler et al.’s Pull Up 

Attribute for Code Refactoring. If you pull up an attribute, the new visibility should be 

set to the maximum visibility of this attribute in the subclasses. At least all subclasses 

should still have access to the attribute after refactoring. 

Origin: From Mantz [461] [page 95] 

Parameters: String superClass, String attr 

Preconditions:  

(i) The attribute (    ) is owned by the same type by all classes that has the super class 

(          ) as their parent class. 

                       

                                  

                                           (       )             

           (       )  
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(ii) The super class (          ) must not have an attribute with the same name. 

                       

                                  

                                           (         ) 

Post-conditions: 

(i) The super class (          ) has an attribute with the same name and type as the 

attributes in the subclasses.  

                                        (         ) 

(ii) The child classes of the super class (          ) has no attribute with the name 

     ). 

                                        (       ) 

Mechanism &Verification: The behavior of the class model is not affected with the 

pulling up of the attribute. Based on the laws of inheritance, these attributes can still be 

accessed from the super class and since the attribute visibility is changed to the maximum 

(either public or protected); they can be accessed from the subclasses without any 

restriction. 

Implementation: 

 Method Name: pullup_Attribute 

 Arguments: String superClass , String attr where 

 superClass is the name of the parent class 
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 attr is the name for the attribute to be pulled into the parent 

class  

 Return Value: String status 

 

2. Pull Up Method 

Description: This refactoring moves a method of a class to its super class. Usually this 

refactoring is used simultaneously on several classes which inherit from the same super 

class. The aim of this refactoring is often to extract identical methods. This refactoring is 

analogous to Fowler et al.’s Pull Up Method for Code Refactoring. In order to keep the 

view consistent, Pull Up Method is often used with Pull Up Attribute. In most cases, it is 

also important that the operation is still visible in the subclass after refactoring Pull Up 

Method. 

Origin: From Mantz [461] [page 106] 

Parameters: String superClass, String method, ArrayList signature 

Preconditions:  

(i) The super class (          ) must not have a method with the same name and 

signature. 

                       

                              

                                      (         ) 
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 (ii) All the sub classes of the parent (          ) must have a method with the same 

name and signature. 

                       

                              

                                   

   (       )                             (  (       ))  

In the above precondition, we define an auxiliary function            that checks 

whether the parameters (also known as method signature) of the methods are same. This 

Function can be formally written as  

          (                     )    

      (          )         (          ) 

               (          )      (          )      (          )  

Post-conditions: 

(i) The super class (          ) has a method with the same name and signature as the 

method in the subclasses.  

                                    (         ) 

(ii) The child classes of the super class (          ) has no method with the name 

       ) and signature. 

                                    (       ) 
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Mechanism &Verification: The behavior of the class model is not affected with the 

pulling up of the method. Based on the laws of inheritance, this method can still be 

accessed from the super class and since the method visibility is changed to the maximum 

(either public or protected); it can be accessed from the subclasses without any 

restriction. 

Implementation: 

 Method Name: pullup_Method 

 Arguments: String superClass , String method, ArrayList signature where 

 superClass is the name of the parent class 

 method is the name for the method to be pulled into the 

parent class  

 signature is the parameter list of the method to be pulled 

 Return Value: String status 

 

3. Push Down Attribute 

Description: Refactoring Push Down Attribute moves an attribute to all subclasses. In the 

literature, refactoring Push Down Attribute is often limited to subclasses that require the 

attribute. In case of code refactoring these classes can be indicated. In case of UML 

models this is usually not possible, but it can be nevertheless useful to push down a 

property to all subclasses e.g. as preparation before deleting the superclass. 

Origin: From Mantz [461] [page 109] 

Parameters: String superClass, String attr 
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Preconditions:  

(i) No direct subclass contains an attribute with the same name as the attribute that is 

being pushed down. 

                       

                                

                                           (       ) 

Post-conditions: 

(i) The attribute      ) is defined in all subclasses. 

                                        (       ) 

(ii) The attribute      ) does not exist in the super class any more. 

                                        (         ) 

Mechanism &Verification: The behavior of the class model is not affected with the 

pushing down of the attribute. Precondition (i) ensures that the attribute is not overwritten 

in the sub classes. Any subclass not using the attribute can be later deleted. 

Implementation: 

 Method Name: pushdown_Attribute 

 Arguments: String superClass , String attr, where 

 superClass is the name of the parent class 

 attr is the name for the attribute to be pushed down into the 

child classes  



435 

 

 Return Value: String status 

 

4. Push Down Method 

Description: The refactoring Push Down Method pushes a method down to all its 

subclasses. It is analogous to Fowler et al.’s refactoring Push Down Method. In the 

literature, the Push Down Operation refactoring is often limited to subclasses that really 

require the operation. In case of code refactoring these classes can be indicated. However, 

in case of UML models the necessity of pushing down an operation can usually not be 

automatically construed (a possible solution is to inspect sequence diagrams). 

Origin: From Mantz [461] [page 115] 

Parameters: String superClass, String method, ArrayList signature 

Preconditions:  

(i) The super class (          ) has subclasses. 

                       

                                   

(ii) The method (      ) does not exist in any direct subclass. 

                       

                              

                                      (       ) 
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Post-conditions: 

(i) The method (      ) does not exist anymore in the super class (          ). 

                                    (         ) 

(ii) The method (      ) exists in all subclasses. 

                                    (       ) 

Mechanism &Verification: The behavior of the class model is not affected with the 

pushing down of the method. Precondition (ii) ensures that the method is not overwritten 

in the sub classes. Any subclass not using the method can be later deleted. 

Implementation: 

 Method Name: pushdown_Method 

 Arguments: String superClass , String method, ArrayList signature where 

 superClass is the name of the parent class 

 method is the name for the method to be pushed into the 

child classes  

 signature is the parameter list of the method to be pushed 

 Return Value: String status 

 

 

5. Remove Empty Superclass 

Description: A set of classes has an empty super class which shall be removed. This 

refactoring often follows Push Down Attribute and Push Down Method Refactoring or in 
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the intermediate version also by the Pull Up Attribute or Pull Up Method Refactoring. In 

the intermediate version of this refactoring the empty super class inherits from a super 

class. 

Origin: From Mantz [461] [page 112] 

Parameters: String superClass 

Preconditions:  

(i) The super class (          ) has no attributes and methods (it should be empty). 

                       

                              

                                      (         ) 

Post-conditions: 

(i) The super class (          )  does not exist anymore. 

                                    (         ) 

(ii) All classes still inherit all operations and attributes of potential super classes of the 

(          ) 

                                    (       ) 

Mechanism &Verification: The behavior of the class model is not affected with the 

deletion of the superclass. Precondition (i) and (ii) ensures that the class is empty and 

isolated from other attribute and method references. Precondition (iii) ensures that no 



438 

 

behavior is lost with the refactoring as the super class was an abstract class. Postcondition 

(ii) ensures that any inheritance relationship that exists between the superClass and other 

classes (i.e. the deleted super class was a sub class to other super classes) is preserved as 

these features are inherited in all the sub classes. 

Implementation: 

 Method Name: remove_SuperClass 

 Arguments: String superClass where 

 superClass is the name of the parent class to be removed 

 Return Value: String status 

 

6. Remove Empty Subclass 

Description: Refactoring Remove Empty Subclass removes an empty subclass from the 

model.  

Origin: From Mantz [461] [page 99] 

Parameters: String subClass 

Preconditions:  

(i) The subclass (        ) has no attributes and methods (it should be empty). 
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                                  (       ) 

 

Post-conditions: 

(i) The subclass (        ) and its inheritance relation do not exist anymore. 

                                    (         ) 

Mechanism &Verification: The behavior of the class model is not affected with the 

deletion of the subclass. Precondition (i) ensures that the class is empty and isolated from 

other attribute and method references.  

Implementation: 

 Method Name: remove_SubClass 

 Arguments: String subClass where 

 subClass is the name of the child class to be removed 

 Return Value: String status 

 

7. Create Super Class 

Description: Refactoring Create Super Class is used to create a super class for at least 

one class which is normally followed by Pull Up Attribute and Pull Up Method 

Refactorings. In addition, this refactoring can create an intermediate super class that is a 

super class that is introduced between a set of classes and their former super classes. 

Origin: From Mantz [461] [page 103] 
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Parameters: String newClass, ArrayList subClasses, Boolean abstract_flag, Boolean 

intermediate 

Preconditions:  

(i) The class name for the new super class (        ) must be unique. 

                       

                              

                                      (         ) 

(ii) In the case that the (            ) flag is true, the classes within the selected set of 

classes (          ) must have at least one common super class. 

                       

                              

                                      (         ) 

Post-conditions: 

(i) The new Class (        ) exists in the Class Model. 

                                    (         ) 

(ii) There exists an inheritance relation to the super class (        ) for each input class 

in the set (          ). 

                                    (         ) 
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(iii) If the super class (        ) is an intermediate one, it must inherit from all common 

super classes of the selected set of subclasses (          ). Furthermore, there is no 

direct relation anymore between these super classes and the classes of this set 

(          ). 

                                    (         ) 

Mechanism &Verification: The behavior of the class model is not affected with the 

creation of the new super class. Precondition (i) ensures that the new class is unique to 

the class model. In case the new class is an intermediate class between an existing 

inheritance, Precondition (ii) and Postcondition (iii) ensure that the new class inherits 

from all the common superclasses of the set of subclasses and that these subclasses have 

no more direct access to the superclasses. 

 Implementation: 

 Method Name: create_SuperClass 

 Arguments: String newClass, ArrayList subclasses, Boolean isabstract, Boolean 

intermediate where 

 newClass is the name of the new class to be created 

 subClasses is the set of classes that will be child classes to 

the newly created super class 

 isabstract is a flag that identifies whether the newly created 

flag is set to either abstract or concrete. 
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 intermediate is a flag which is set when the newly created 

flag is an intermediate class in an existing inheritance 

relationship.  

 Return Value: String status 

 

A2.3 Sequence Model Refactoring 

1. Create Lifeline 

Description: Create Lifeline Refactoring is used to introduce a new lifeline into a 

sequence diagram.  

Origin: From Meng and Barbosa [462] 

Parameters: String newLifeline 

Preconditions:  

(i) The lifeline (           ) must be unique in the sequence diagram. 

                 

                            

Post-conditions: 

                                  

Mechanism &Verification: The behavior of the sequence model is not affected with 

adding a new lifeline since there is no message exchanges between the new lifeline and 
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the exisiting lifelines within the sequence diagram. The precondition (i) ensures that the 

new lifeline is unique to the sequence model.  

 Implementation: 

 Method Name: create_Lifeline 

 Arguments: String newLifeline where 

 newLifeline is the name of the new lifeline to be added  

 Return Value: String status 

 

2. Remove Lifeline 

Description: Refactoring Remove Lifeline is used to remove a lifeline that does not 

interact with other participants and has no local actions within the sequence diagram. 

Origin: From Meng and Barbosa [462] 

Parameters: String Lifeline 

Preconditions: The lifeline is isolated from other particpants of the sequence diagram. 

Isolation from other participants means 

 No message exchanges 

 No local actions 

 

 

          

                         (          )     



444 

 

 

Post-conditions: 

      

Mechanism &Verification: Since the lifeline is isolated from other participating lifelines 

within the sequence diagram, it does not affect interactions between them. Hence, this 

deletion does not change the behavior of the sequence model. 

Implementation: 

 Method Name: remove_Lifeline 

 Arguments: String lifeline where 

 lifeline is the name of the lifeline  

 Return Value: String status 
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Appendix 3: XML & Associated Standards 

This section introduces the Extensible Markup Language (XML) and other technologies 

associated with it such as the XML Schema, XPath, XSLT and XML Metadata 

Interchange (XMI) format. 

A3.1 eXtensible Markup Language (XML) 

XML [463] is a “World Wide Web Consortium (W3C)-recommended general-purpose 

specification for creating custom markup languages”. The Extensible Markup Language 

is a simple and flexible text format used widely in the exchange of varied data on the web 

and elsewhere. It is a free, platform-independent open-standard derived from the 

Standardized Generalized Markup Language (SGML) in order to meet the challenges of 

large-scale electronic publishing. Although a lot similar to the Hypertext Markup 

Language (HTML), XML was designed to describe data instead of focusing on how data 

looks and how it is displayed. For example, Figure A - 1 shows how XML can be used to 

describe this dissertation.  

<?xml version="1.0" encoding="UTF-8"?> 
<dissertation_file> 
 <dissertation> 
  <id>Fall2010_001</id> 
  <author>Mohammed Misbhauddin</author> 
  <title>Towards an Integrated Metamodel based approach to  
                                     Software Refactoring </title> 
  <advisor>Mohammad Alshayeb</advisor> 
  <co_advisor>Radwan Abdel-Aal</co_advisor> 
  <committee_member>Moataz Ahmed</committee_member> 
  <committee_member>Mohammed Elish</committee_member> 
  <committee_member>Aiman El-Maleh</committee_member> 
 </dissertation> 
</dissertation_file> 

Figure A - 1: XML Document for Dissertation Example 
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Elements inside an XML document represent structured values. Element names with or 

without attributes are referred to as tags. A general form of an XML element is given as  

<name attributes>content</name> 

All XML elements begin with the element's start tag (formatted as <name>) and close 

with the element's end tag (formatted as </name>). The end tag is mandatory but can be 

omitted if there is no content by using the format <name attributes />. The attributes is an 

optional list of attributes and their values. For instance, we can add an attribute to the 

<committee_member> tag mentioned in the above XML example as follows: 

<committee_member rank = "Associate">Moataz Ahmed</committee_member> 

Names used for elements and attributes in an XML document can contain nearly every 

letter, number or special character with the exception of white space characters and 

punctuation characters (such as :, &).  

One of the major advantages of XML is that it allows designers to create their own 

customized tags. Hence, tag names describe the data they contain and are regarded as 

metadata.  Tag names should be meaningful so that information labeled is reusable. 

Although flexible, XML still requires the document to be well-formed and valid to be 

considered correct and usable. An XML document is considered “well-formed” if it 

conforms to the rules of the XML specification (such as using lowercase letters in tags, 

including closing tags on all elements, and including single and double quotation marks 

on all attribute tags). 

The structure of an XML document can be defined by a schema language and is validated 

based on definitions in that language. A “valid” XML document apart from being well-
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formed also conforms to the rules defined by the schema language. Two of the most 

widely used schema languages are the Document Type Definition (DTD) language and 

XML Schema. 

A3.2 Document Type Definition (DFD) 

A DTD is used to define the building blocks of an XML document and describe the 

document structure with a list of valid elements. Defining a DTD allows an XML 

designer to build his own set of rules and restrictions to be enforced on the resulting 

XML document.  Figure A - 2provides a DTD for the example XML shown in Figure A - 

1.  

 

 

If an XML document has elements that match element declarations in a DTD, the 

document is considered a valid document. An element declaration in a DTD consists of 

the name of the element, its content and its attributes. The general format of an element 

declaration is as follows: 

<!ELEMENT name content> 

<!ATTLIST name attribute-decls> 

<?xml version="1.0" encoding="UTF-8"?> 
<!ELEMENT dissertation_file ((dissertation))> 
<!ELEMENT dissertation ((id, author, title, advisor, co_advisor,   
                                           committee_member+))> 
<!ELEMENT id (#PCDATA)> 
<!ELEMENT title (#PCDATA)> 
<!ELEMENT author (#PCDATA)> 
<!ELEMENT advisor (#PCDATA)> 
<!ELEMENT co_advisor (#PCDATA)> 
<!ELEMENT committee_member (#PCDATA)> 

Figure A - 2 DTD for the Dissertation example 
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The name is the tag name and content specifies what kind of data can be included. The 

content in an element declaration can be EMPTY, ANY (text of other XML elements) or 

#PCDATA (text). The attribute-decls is of the form <type default> where type can be 

CDATA (character data), set of valid values, ID, IDREF or IDREFS. The default is 

optional and can be #REQUIRED, #IMPLIED, #FIXED (along with a fixed value) or an 

attribute value. ID, IDREF and IDREFS enable XML elements to be related to each 

other.  

An XML parser (also known as a validating parser) can be used to validate an XML 

document. In order for the parser to know about the DTD of an XML document, it is 

specified as a DOCTYPE statement in the document to be validated. Its format is given 

as follow: 

<!DOCTYPE name SYSTEM " sample.dtd"> 

The name is the tag name of the root element and sample.dtd is the Uniform Resource 

Locator (URI) that specifies the location of the DTD. 

A3.3 XML Schema 

XML Schemas are another important leap in the evolution of XML. They deprecated the 

use of DTDs by allowing designers to specify more constraints on XML documents than 

DTDs. Since the discussion about XML Schemas is exhaustive, we include only the 

relevant ones in this section.  

The XML Schema language is also referred to as XML Schema Definition (XSD). A 

schema document is an XML document. The context of the XML elements is defined by 
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the schema namespace. All schema documents need to have a schema XML element as 

the root XML element.   

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

Schemas usually contain element and type declarations. Each element declared uses the 

XML element called element. The name attribute of that element is the name of the 

element. An example declaration is as follows: 

<xs:element name="id"> 

Schemas also allow the creation of types. These types actually do not appear in the XML 

documents, but are used to declare other elements and attributes that may appear. Types 

in schemas are of two kinds: simple and complex types. Simple types represent data 

values and complex types represent data structure. Contents of an XML element can be 

specified by using XML elements in the content of the complexType element. An 

example complex type declaration with content is as follows: 

  <xs:complexType> 

   <xs:sequence> 

    <xs:element name="dissertation"/> 

   </xs:sequence> 

  </xs:complexType> 

Schema designers can express repetition in element content by using the sequence XML 

element and express alternatives by using the choice XML element. In order to specify 

the number of occurrences of elements in the element content, we can use the minOccurs 

and maxOccurs attributes in the element, sequence or choice XML elements.  An 

example declaration that demonstrates this is as follows:  
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<xs:element name="committee_member" minOccurs="2" maxOccurs="3"/> 

    

Attributes can also be declared in schemas. The xs:attribute XML element can be used 

for this purpose. The attribute element has name, type, use, default and fixed as its 

attributes. The type should be simple and not complex. The use attribute constrains 

whether the attribute is optional, prohibited or required. A default value of an attribute 

can be assigned using the default XML attribute and a specific value can be assigned 

using the fixed XML attribute.  

An XML Schema for the XML example shown in Figure A - 1 is given in Figure A - 3.  

 

 

Similar to that of DTDs, an XML schema definition should be included in the XML 

document for it to be validated by an XML parser. This is done by including the 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:element name="dissertation_file"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="dissertation"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element>  
 <xs:element name="dissertation"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="id"/> 
    <xs:element name="author"/> 
    <xs:element name="title"/> 
    <xs:element name="advisor"/> 
    <xs:element name="co_advisor"/> 
    <xs:element name="committee_member" 
minOccurs="2" maxOccurs="3"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
</xs:schema> 

Figure A - 3 XML Schema Definition for Dissertation Example 
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xmlns:xsi attribute at the top level element and the schemaLocation attribute identifies 

the location of a particular XML schema.  

<dissertation_file xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:SchemaLocation="E:\sample.xsd"> 

 

A3.4 XML Path Language (XPath) 

The main purpose of XPath is to address parts of an XML document. It operates on the 

abstract, logical structure of an XML document, rather than its surface syntax. XPath gets 

its name from its use of a path notation as in Uniform Resource Locators (URL) for 

navigating through the hierarchical structure of an XML document. XPath can be seen as 

an expression language that works on a data model defined by XQuery/XPath Data 

Model (XDM). XDM provides a tree representation of XML documents. An XPath 

expression then can be used for the selection of nodes from the input documents.  

The main construct in XPath is the path expression. A path expression is used to locate 

nodes within an XML tree and consists of one or more steps. Each step in a path 

expression is separated by a / or //. Steps in the expression are either axis steps or filter 

steps. Axis steps define the direction of traversal within the tree and filter steps define 

conditional selection of nodes. All axes supported by XPath are given in Table A - 1. 

Some frequently used axes are abbreviated for ease of use. 
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Table A - 1 Axes provided by XPath 

Axis Description Abbreviations 

self:: The context node itself . 

attribute:: Attributes of the context node @ 

parent:: The parent of the context node .. 

child:: Children of the context node Can be omitted 

descendant:: All children of the context node  

descendant-or-

self:: 

The context node and its 

descendants 

// 

ancestor:: All ancestors of the context node  

ancestor-or-self:: The context node and all its 

ancestors 

 

preceding:: All nodes that precede the context 

node in the document 

 

preceding-sibling:: All the siblings of the context node 

that precede it 

 

following:: All nodes that follow the context 

node in the document 

 

following-sibling:: All siblings of the context node that 

follow it 

 

 

An example XPath expression to retrieve all committee members with a rank of associate 

is given as follows: 

// /committee_member[@rank='Associate'] 

Path expressions are evaluated from the left to the right side: the slashes // traverse the 

descendant-or-self axis of the XML tree starting from the root node, searching element 

nodes named committee_member, and selecting each as the current context node. A filter 

expression [condition] is now applied to the context node and the attribute axis is 

inspected for an attribute named rank holding a value “Associate”. If this condition is 

true, the context node is included in the resulting sequence. All matching nodes are 

returned. The result of an XPath expression can be a node-set (an unordered collection of 
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nodes without duplicates), Boolean, Number or a String. The manner in which an 

expression is evaluated is based on a context. 

The latest version XPath 2.0, is a superset of XPath 1.0 with added ability to support a set 

of new data types and also to make use of the  type information that becomes available 

when documents are validated using XML Schema. 

A3.5 XML Query Language (XQuery) 

XQuery is “a standardized language for combining documents, databases, Web pages, 

and almost anything else. It is very widely implemented. It is powerful and easy to learn.” 

[464]  It is a language maintained by W3C in order to express queries across XML 

documents. It allows designers to select XML elements from the source file, reorganize 

and transform them. XPath and XQuery go hand in hand with each other. XPath is a 

complete subset of XQuery. Both XPath and XQuery documents are built around 

expressions rather than statements. The major difference between XQuery and XPath is 

that XPath only allows the capability to retrieve nodes from an XML document. The 

former allows creation of new nodes and modification of existing nodes.  

The basic structure of most queries in XQuery is the FLWOR (pronounced as flower) 

expression. It stands for For, Let, Where, Order by and Return. An example XQuery 

expression using the FLWOR expression to restructure the Dissertation XML tree (Figure 

A - 1) and returning a sequence containing all committee members sorted by their rank is 

shown in Figure A - 4. 
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A3.6 eXtensible Stylesheet Language Transformations (XSLT) 

XSLT [465] is a functional transformation language for manipulating XML data. Being a 

functional language, rules have to be called explicitly. There is no built-in traceability 

support and rules are strictly unidirectional. Transformations are stateful, so there is no 

support for incremental transformation. XSLT transformation descriptions are themselves 

XML documents, so higher-order transformations can be realized.  

An XSL processor parses an XML source document and tries to find a matching template 

rule. If it does, instructions inside matching template are evaluated. A template rule is 

written as follows: 

<xsl:template match="string"> 

 instructions 

</xsl:template> 

 

Contents of the original elements from the source XML can be obtained by making use of 

the xsl:value-of construct. Location paths determine parts of XML document to which 

template should be applied. The required syntax is specified in the XPath specification. 

XPath along with XSLT is used in transformation of XML documents.   

 

xqueryversion"1.0"; 
for $committee in doc("dissertation.xml")    //committee_member 
let $rank := data($committee/@rank) 
orderby $rank 
return element committee-members { $committee} 

Figure A - 4 Example XQuery expression 
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A3.7 XML Metadata Interchange (XMI) 

XMI [35] is a standard interchange format for data objects in XML. It is defined and 

maintained by the Object Management Group (OMG). Since XMI provides a standard 

representation of objects in XML, it is used effectively to exchange objects using XML. 

The main purpose of XMI is to allow for exchange of objects from the OMG Object 

Design and Analysis Facility. These objects are more commonly known as UML 

(Unified Modeling Language) and MOF (Meta Objects Facility).  

An example UML class diagram is given in Figure A - 5 and its corresponding XMI 

created using the open-source UML modeling tool ArgoUML [445] is given in Figure A - 

6. Some attributes are left out and values for xmi.id and xmi.idref (which are 

automatically generated) are changed for brevity and readability.   

 

 

Faculty 

name : String 

rank : String 

 
getName() : 

String 

Advisor 

advisees : String[] 

 
addAdvisee() : Void 

Figure A - 5 UML Class Diagram: Class Advisor inherits from class Faculty 
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<UML:Class xmi.id=’_classAdvisor’ name=’Advisor’ visibility=’public’> 
 <UML:Generalization xmi.idref=’_genFacultyAdvisor’/> 
  <UML:Classifier.feature> 
   <UML:Attribute name=’advisees’ visibility=’private’/> 
   <UML:Operation name=’addAdvisee’ visibility=’public’/> 
  </UML:Classifier.feature> 
</UML:Class> 
<UML:Class xmi.id=’_classFaculty’ name=’Faculty’ visibility=’public’> 
 <UML:Generalization xmi.idref=’_genFacultyAdvisor’/> 
  <UML:Classifier.feature> 
   <UML:Attribute name=’name’ visibility=’private’/> 
   <UML:Attribute name=’rank’ visibility=’private’/> 
   <UML:Operation name=’getRank’ visibility=’public’/> 
  </UML:Classifier.feature> 
</UML:Class> 
<UML:Generalization xmi.id=’_genFacultyAdvisor’> 
 <UML:Generalization.child> 
  <UML:Class xmi.idref=’_classAdvisor’/> 
 </UML:Generalization.child> 
 <UML:Generalization.parent> 
  <UML:Class xmi.idref=’_classFaculty’/> 
 </UML:Generalization.parent> 
</UML:Generalization> 

Figure A - 6 XMI Representation of the UML Class Diagram in Figure A-5 
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Appendix 4: XQuery Functions for Integrated Model Smells 

A4.1 Creeping Featurism 

Listing 1 shows the XQuery function to detect instances of the bad smells Creeping 

Featurism. The function Func-Decompose is parameterized with the source model 

$model. Using a “for loop”, each use case in the integrated model is bound to the 

variable $x one after another in line 3. The function inclusion called in line 4 returns 

the number of times a use case is included in other use cases and is shown in Listing 2. If 

the inclusion count is exactly one and there are no actors associated with the use case, 

function inc is called for behavioral analysis of the use case.  

1 declare function local:Func-Decompose($model as node()) 
{ 
     for $x in $model//IntegratedModel/UseCase 
       return if ((count(local:inclusion($model, $x))=1) and (empty($x/@actor-ref))) 
        then local:inc($x,$model) 
                 else ()    
} ; 

2 
3 
4 
5 

6 
7 

Listing 1: XQuery function to detect the bad smell Creeping Featurism 

 

Listing 2 shows the function inclusion. Each use case in the integrated model is 

composed of a number of inclusion use cases identified by the “includes” tag in the XMI 

file. The function inclusion returns the number of times a use case is included in other 

use cases. 
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1 declare function local:inclusion($a as node(), $x as node()) 
{ 
   for $y in $a//IntegratedModel/UseCase/includes 
 return if (data($x/@name)=data($y/@uc-ref)) 
          then data($x/@name) 
             else ()    
} ; 

2 

3 
4 
5 
6 

7 

Listing 2: XQuery function to count the number of inclusions of a use case in other use cases 

 

Listing 3 shows the function inc. If this function returns a non-empty sequence, then the 

existence of this bad smell is confirmed. The “if statement” in lines 4-6 identifies the 

including use case of the parameter $uc. Then the value-intersect function, that 

returns the intersection of the values in two sequences, is used to first identify dissimilar 

lifelines in both the use cases. This intersection sequence is then checked to see if it 

consists of data classes. If true, this use case is returned as a candidate for refactoring. 

1 declare function local:inc($uc as node(),$model as node()) 

{ 

    for $y in $model//IntegratedModel/UseCase 

     return if (data($uc/@name) = data($y/includes/@uc-ref) and  

                                    hr:value-intersect(local:data-class($model), 

                                    hr:value-intersect(local:lifelines($uc),local:lifelines($y)))) 

                 then data($uc/@name) 

   else ()    

} ; 

2 

3 
4 
5 
6 

7 
8 
9 

Listing 3: XQuery function to analyze use case inclusion behavior 

 

A4.2 Multiple Personality 

Listing 4 shows the XQuery function to detect instances of the bad smell Multiple 

Personality. The function Multi-Personality is parameterized with the source model 

$model. Using a “for loop”, each use case in the integrated model is bound to the 
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variable $x one after another in line 3. The functions lifelines (see Listing 5) and 

transactions (see Listing 6) called in line 4 and 5 returns the number of lifelines and 

transactions in a use case respectively. The function lazy-class called in line 6 returns a 

sequence of all lazy classes in the model (see Listing 7). If the number of lifelines is 

greater than ten and the numbers of transactions are greater than seven and the number of 

lifelines that are subsets of the lazy class sequence are more than or equal to two, 

function middle-man (see Listing 8) is called for analyzing the inter-lifeline behavior in 

the use case. If this function returns a non-empty sequence, then the existence of this bad 

smell is confirmed.  

1 declare function local:Multi-Personality($model as node()) 
{ 
   for $x in $model//IntegratedModel/UseCase 
      return if ((count(local:lifelines($x)) > 10) and  
            (count(local:transactions($x)) > 7) and 
            count(hr:value-intersect(local:lazy-class($model),local:lifelines($x))) >= 2) 
       then local:middle-man($model,$x) 
                 else ()    
} ; 

2 
3 
4 

5 
6 
7 
8 

9 

Listing 4: XQuery function to detect the bad smell Multiple Personality 

 

Listing 5 and Listing 6 depicts the pseudo-code for two simple functions that return the 

number of lifelines and transactions within a use case behavior respectively. 

1 declare function local:lifelines($a as node()) 

{ 

    let $sequence := for $y in $a/Interaction/Lifeline 

     return data($y/@name)  

 return $sequence  

} ; 

2 

3 

4 

5 

6 

Listing 5: XQuery function to count the number of lifelines within a use case interaction 
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1 declare function local:transactions($a as node()) 

{ 

    let $sequence := for $y in $a/Interaction/Message 

     return data($y/@id)  

 return $sequence  

} ; 

2 

3 

4 

5 

6 

Listing 6: XQuery function to count the number of transactions within a use case interaction 

 

A class is termed as a lazy class when it has more attributes than functions. Listing 7 

provides the pseudo-code for detecting whether a class is a lazy class or not. 

1 declare function local:lazy-class($a as node()) 

{ 

    let $sequence := for $y in $a//IntegratedModel/Class 

     return if (count($y/Property) >count($y/Message)) 

     then data($y/@name) 

  else ()  

 return $sequence  

} ; 

2 

3 

4 

5 

6 

7 

8 

Listing 7: XQuery function to check whether a class is a Lazy Class 

 

In Listing 8, for each lifeline in the identified God Use Case, the patterns of the event 

ends are checked.  In line 5, if the number of ends incident to a lifeline are more than two 

and are even in number, a recursive function called mm-pattern (see Listing 9) is called 

to check the middle man pattern.  

1 declare function local:middle-man($model as node(), $uc as node()) 

{ 

 for $x in $uc/Interaction/Lifeline 

  let $val :=  count($x/end) 

  return if ($val > 2 and local:isEven($val)) 

        then local:mm-pattern($model, $x, count($x/end)) 

     else data(1) 

} ; 

2 

3 

4 

5 

6 

7 

8 

Listing 8: XQuery function to detect a middle-man lifeline within a use case interaction 
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Listing 9 shows the recursive function mm-pattern. This function breaks down the end 

list into sub-sequences of size 2 and compares them with the sequence {receiveEvent, 

sendEvent}. In case of a complete match, the lifeline can be safely classified as a middle-

man.  

1 declare function local:mm-pattern($Life as node(), $ends as xs:integer) 

{ 

    let $end-list := local:end-list($Life)  

 return if ($ends = 0) 

    then data(2) 

 else  

  if (subsequence($end-list, $ends, 2) = ('receiveEvent', 'sendEvent')) 

   then local:mm-pattern($Life, $ends - 2) 

  else data(1) 

} ; 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Listing 9: XQuery function to detect middle-man pattern recursively 

 

A4.3 Excessive Alternation 

Listing 10 shows the XQuery function to detect instances of the bad smell Excessive 

Alternation. The function Excessive-Alternation is parameterized with the source 

model $model. Using a “for loop”, each use case in the integrated model is bound to the 

variable $x one after another in line 3. The functions extPoints (see Listing 11) called 

in line 4 returns the number of extension points in a use case. If the number of extension 

points is greater than or equal to two, function analyse-interaction (see Listing 12) is 

called for analyzing the behavior of the use case interaction. If this function returns a 

non-empty sequence, then the existence of this bad smell is confirmed.  
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1 declare function local:Excessive-Alternation($model as node()) 
{ 
    for $x in $model//IntegratedModel/UseCase 
  return if (count(local:extPoints($x)) >= 3)  
         then local:analyze-interaction($model,$x) 
                  else ()    
} ; 

2 

3 
4 
5 
6 

7 

Listing 10: XQuery function to detect the bad smell Multiple Personality 

 

 

1 declare function local:analyze-interaction($model as node(), $uc as node()) 
{ 
 for $x in $uc/Interaction/Fragment/MessageOccurance 
       let $val :=  count($x/Message) 
                   return if (xs:integer(data($x/@order)) = 1 and ($val > 2) and      
                            (max(hr:value-union(hr:value-union(local:msg-occurance($x),   
                                                                               local:cf($x)),local:use($x)))=2))   
                                    then local:switch-pattern($model, $uc) 
                    else () 
} ; 

2 
3 
4 

5 
6 
7 
8 
9 
10 

Listing 12: XQuery function to Analyze the Interaction Behavior of the Use Case 

 

Listing 12 shows the function analyse-interaction. Interaction of a use case describes 

its dynamic behavior. Each interaction is composed of a number of lifelines and 

fragments. A fragment can be one of the three types acceptable by UML standards: 

Message Occurance, Combined Fragment and Interaction Use. In order to ensure that the 

interaction behavior is similar to that of a switch pattern, we check the preamble, body 

1 declare function local:extPoints($a as node()) 
{ 
    let $points := for $y in $a/ExtensionPoint 
     return data($y/@name)  
 return $points  
} ; 

2 
3 
4 

5 
6 

Listing 11: XQuery function to count the number Extension Points in the Use Case 
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and post sections of the interaction fragments. The functions msg-occurance, cf and 

use called in lines 6 and 7 returns the sequence of the fragments within the interaction of 

the use case. The function switch-pattern (see Listing 16) is called when the 

interaction has only two fragments and the preamble is composed of a sequence of 

messages (line 4) that are more than two. Listing 13, Listing 14, and Listing 15 show the 

functions msg-occurance, cf and use respectively. 

1 declare function local:msg-occurance($a as node()) 
{ 
    let $sequence := for $y in $a/Interaction/Fragments/MessageOccurance 
     return xs:integer(data($y/@order))  
 return $sequence  
} ; 

2 
3 
4 

5 
6 

Listing 13: XQuery function to sequence the Message Occurance Fragments in the Interaction 

 

1 declare function local:cf($a as node()) 
{ 
    let $sequence := for $y in $a/Interaction/Fragments/CombinedFragments 
     return xs:integer(data($y/@order))  
 return $sequence  
} ; 

2 
3 

4 
5 
6 

Listing 14: XQuery function to sequence the Combined Fragments in the Interaction 

 

1 declare function local:use($a as node()) 
{ 
    let $sequence := for $y in $a/Interaction/Fragments/InteractionUse 
     return xs:integer(data($y/@order))  
 return $sequence  
} ; 

2 

3 
4 
5 
6 

Listing 15: XQuery function to sequence the Interaction Use Fragments in the Interaction 
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Listing 16 shows the function switch-pattern. A Combined Fragment with an “alt” 

interaction operator and more than two operands indicates that the use case spends more 

time switching between extension use cases and is a candidate for refactoring.  

1 declare function local:switch-pattern($model as node(), $uc as node()) 
{ 
    for $x in $uc/Interaction/Fragment/CombinedFragment 
  let $val :=  count($x/Operands) 
  return if ($val > 2 and xs:integer(data($x/@order)) = 2 and   
                                                           data($x/@interactionOperator) = 'alt')  
        then data($uc/@name) 
     else () 
};    

2 
3 
4 

5 
6 
7 
8 
9 

Listing 16: XQuery function to detect switch pattern 

 

A4.4 Undue Familiarity 

Listing 17 shows the XQuery function to detect instances of the bad smell Undue 

Familiarity. The function Undue-Familiar is parameterized with the source model 

$model. Using a “for loop”, each association in the integrated model is bound to the 

variable $x one after another in line 3. The function isBidirectional called in line 4 

returns a value one if the association end of the particular association is both owned and 

navigable. The function isBidirectional is shown in Listing 18. If both ends of the 

association share ownership and are navigable, function analyze-association is called 

for behavioral analysis of the association.  
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1 declare function local:Undue-Familiar($model as node()) 
{ 
    for $x in $model//IntegratedModel/Association 
  return if (count(local:isBidirectional($x)) = 2 and   
                                                                    (empty($x/@aggregationKind))) 
         then local:analyze-association($model,$x) 
                  else ()    
} ; 

2 

3 
4 
5 
6 

7 
8 

Listing 17: XQuery function to detect the bad smell Undue Familiarity 

 

1 declare function local:isBidirectional($a as node()) 
{ 
            let $sequence := for $y in $a/AssociationEnd 
            return if (data($y/@isOwner) = 'true' and data($y/@isNavigable) = 'true') 
               then data(1) 
 else ()  
 return $sequence 
} ; 

2 
3 
4 

5 
6 
7 
8 

Listing 18: XQuery function to check ownership and navigability of an Association End 

 

Listing 18 shows the function analyze-association. The condition for the if statement 

in line 4 first finds an intersection set between a two sequences, one composed of the two 

classes involved in the association relationship (result of the function call class-list shown 

in Listing 20) and the other composed of all lifelines for a given use case (result of the 

function call lifelines shown in Listing 5). If the size of this intersection is equal to 

two, it is safe to say that both classes participate in the interaction of this use case. Hence, 

the function msg-frequency is called in line 6 to evaluate the communication frequency 

between the classes within the selected use case interaction. 
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1 declare function local:analyze-association($model as node(), $Assoc as node()) 
{ 
      for $x in $model//IntegratedModel/UseCase 
       return if (count(hr:value-intersect(local:class-list($model, $Assoc),  
                                                                         local:lifelines($x))) = 2) 
                               then local:msg-frequency($model, $x, $Assoc) 
       else () 
} ; 

2 

3 
4 
5 
6 

7 
8 

Listing 19: XQuery function to Analyze the Association Relationship 

 

Association Ends for an association include the reference id (type) of the class it 

associates with. In order for the function analyze-association to check whether these 

ends are participating in the lifelines of a use case, we needed to resolve its name from its 

reference. Function resolve-class called in line 4 of Listing 20 is implemented to carry 

out this purpose (see Listing 21). 

1 declare function local:class-list($model as node(), $a as node()) 
{ 
    let $sequence := for $y in $a/AssociationEnd 
     return local:resolve-class($model, $y)  
 return $sequence  
} ; 

2 
3 
4 
5 
6 

Listing 20: XQuery function to return the list of classes the Association is in between 

 

1 declare function local:resolve-class($model as node(), $type as node()) 
{ 
 for $x in $model//IntegratedModel/Class 
  return if (data($x/@id) = data($type/@type)) 
         then data($x/@name) 
                  else ()    
} ; 

2 
3 
4 
5 
6 
7 

Listing 21: XQuery function to resolve the name of a class given its id 
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A4.5 Spider’s Web 

Listing 22 shows the XQuery function to detect instances of the bad smell Spider’s Web. 

The function Spider-Web is parameterized with the source model $model. Using a “for 

loop”, each actor in the integrated model is bound to the variable $x one after another in 

line 3. The function NACU called in line 4 returns the Number of Actors per Use Case 

value and the function NAM returns the total number of Use Cases in the model. The 

codes for functions NACU and NUM are not shown as they are simple counting functions. 

As in line 4, if the number of use cases associated with an actor is more than 30% of the 

total number of use cases then the existence of Spider’s Web model smell is suspected 

and the function actor-uc (see Listing 23) is called to analyze the relationship between 

the actor and all its use cases.  

1 declare function local:Spider-Web($model as node()) 

{ 

 for $x in $model//IntegratedModel/Actor 

  return if (count(local:NACU($model, $x))>0.30*(local:NUM($model))) 

         then local:actor-uc($x,$model) 

                   else ()    

} ; 

2 
3 
4 
5 

6 
7 

Listing 22: XQuery function to detect the bad smell Spider's Web 

 

The actor-uc function shown in Listing 23 iterates through all the use cases associated 

with an actor (line 3-4) and checks whether the signature of each use case is similar or 

different. The function signature (see Listing 23) calculates the signature of each use 

case and the function spider (see Listing 24) confirms the existence of the model smell. 
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1 declare function local:actor-uc($a as node(), $iModel as node()) 

{ 

                 for $y in $iModel//IntegratedModel/UseCase 

         return if (data($a/@name)=data($y/@actor-ref)) 

  then local:spider($a, count(hr:value-intersect(local:signature($y,$iModel)) 

         else ()    

} ; 

2 

3 
4 
5 
6 

7 

Listing 23: XQuery function to analyze all use cases associated with an actor 

 

1 declare function local:spider($actor as node(),$val as xs:integer) 

{ 

    let $v := $val    

    return  

    if ($v > 2) 

     then data($actor/@name) 

} ; 

2 
3 
4 

5 
6 
7 

Listing 24: XQuery function to check if the more than two signatures are different 

 

The signature function shown in Listing 25 iterates through all the lifelines within the 

use case (line 3) and adds it to the signature sequence. If ant lifeline is a child class, then 

the check-parent (see Listing 26) function is invoked to add the parent to the signature. 

Finally, the returned sequence represents the signature of a use case.  

1 declare function local:signature($a as node(), $model as node()) 

{ 

    let $sequence := for $y in $a/Interaction/Lifeline 

     return local:check-parent($y,$model)  

 return $sequence  

} ; 

2 
3 
4 

5 
6 

Listing 25: XQuery function to compute the signature of a use case 
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The check-parent function shown in Listing 26 is a simple function that returns the 

parent class of a child class if the class is part of an inheritance hierarchy. 

1 declare function local:check-parent($x as node(),$model as node()) 

{ 

    for $y in $model//IntegratedModel/Class 

     return if (data($y/@name) = data($x/@name)) 

   then data($y/SuperClass/@name) 

  else data($x/@name) 

} ; 

2 
3 
4 

5 
6 
7 

Listing 26: XQuery function to return the parent of a child class 

 

A4.6 Specters’ 

Listing 27 shows the XQuery function to detect instances of the bad smell Specters’. The 

function Specters is parameterized with the source model $model. Using a “for loop”, 

each class in the integrated model is bound to the variable $x one after another in line 3. 

The function num-attr called in line 4 returns the Number of Attributes in a class and if 

this value is equal to zero, the function analyze-class (see Listing 28) is called to check 

the behavior of the class within the use cases it is included in. The codes for functions 

num-attr is not shown as they are simple counting functions. 

1 declare function local:Specters($model as node()) 

{ 

 for $x in $model//IntegratedModel/Class 

  return if (local:num-attr($x) = 0) 

         then local:analyze-class($model,$x) 

                  else ()    

} ; 

2 
3 
4 

5 
6 
7 

Listing 27: XQuery function to detect the bad smell Specters' 
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The analyze-class function shown in Listing 28 iterates through all the use cases 

within the Integrated Model which are “inclusion” use cases and checks whether the no-

attribute class found is part of any one of them. If found, the behavior of this class (or 

lifeline) within that inclusion use case is analyzed in function analyze-lifeline (see 

Listing 29). 

1 declare function local:analyze-class($a as node(), $x as node()) 

{ 

 for $y in $a//IntegratedModel/UseCase/includes 

  return if (hr:value-intersect(data($x/@name),local:lifelines($y))) 

   then local:analyze-lifeline($y,$x) 

  else () 

} ; 

2 
3 
4 

5 
6 
7 

Listing 28: XQuery function to analyze no-attribute classes 

 

The analyze-lifeline function shown in Listing 29 checks the event ends throughout 

the lifecycle of the lifeline within the use case. If all the end events are of type “send” 

(identified through the recv-Events function), then the class (or lifeline) is identified as 

a Specter class and needs to be refactored.  

1 declare function local:analyze-lifeline($a as node(), $x as node()) 

{ 

     for $y in $a/Lifeline 

        return if (data($y/@name) = data($x/@name) and (count(local:recv-Events($y))=0)) 

    then data($y/@name) 

        else () 

} ; 

2 
3 
4 

5 
6 
7 

Listing 29: XQuery function to analyze the no-attribute lifeline behavior in a use case 

 

The rec-Events function shown in  Listing 30 is a simple function to check whether the 

end type of an event over the lifeline is of type “receive” or not. 
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1 declare function local:recv-Events($a as node()) 

{ 

    for $y in $a/End 

     return if (data($y/@endType)="receiveEvent") 

   then data($y/@endType) 

 else ()  

} ; 

2 

3 
4 
5 
6 

7 

Listing 30: XQuery function to identify the number of receive events on a lifeline 

 

A4.7 Ripple Effect 

Listing 31 shows the XQuery function to detect instances of the bad smell Ripple Effect. 

The function Ripple-Effect is parameterized with the source model $model. Using a 

“for loop”, each use case in the integrated model is bound to the variable $x one after 

another in line 3. The function impact-factor called in line 4 returns the value of the 

impact factor metric proposed in this work in Section 5.4.8. 

1 declare function local:Ripple-Effect($model as node()) 

{ 

              for $x in $model//IntegratedModel/UseCase 

  return local:impact-factor($x, $model) 

} ; 

2 
3 

4 
5 

Listing 31: XQuery function to detect the bad smell Ripple Effect 

 

The function impact-factor shown in Listing 32 iterates through all the lifelines of a 

use case to calculate the metric NOEC (Number of external connections) for each lifeline. 

If this value is found to me more than 30% of the total number of classes (from the NCM 

function) then the use case is suspected of including a lifeline (or a class) that exhibits the 

ripple effect model smell. The function NOEC is shown in Listing 33 and the function code 

for NCM is not included as it is a simple counting function. 
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 1 declare function local:impact-factor($a as node(), $model as node()) 

{ 

 for $y in $a/Lifeline 

  return if (sum(local:NOEC($y,$model))=(0.3*(local:NCM($model)))) 

   then data($a/@name) 

  else () 

} ; 

2 

3 
4 
5 
6 

7 

Listing 32: XQuery function to calculate the impact factor 

 

The function NOEC shown in Listing 33 calculates the NOEC metric which is the 

difference between the number of associations of a class (NASC) and the Number of 

Internal Connection (NOIC) as evident from Line 5 of the function code. As earlier, the 

function code for NASC is not included as it is a simple counting function.  

1 declare function local:NOEC($x as node(), $iModel as node()) 

{ 

      for $y in $iModel//IntegratedModel/Class 

 return if (data($y/@name) = data($x/@name)) 

  then (local:NASC($y,$iModel) - local:NOIC($x,$iModel)) 

 else ()               

} ; 

2 

3 
4 
5 
6 

7 

Listing 33: XQuery function to calculate the NOEC metric 

 

Listing 34 shows the function code for NOIC. The function iterates through all the use 

cases in the integrated model and identifies all sequence diagrams of which the selected 

lifeline is part of. This is done using the built-in function in XQuery called is-value-

in-sequence and using the lifelines function to return all the lifelines participating in 

any use case (see Listing 5) at Line 4. If found, the number of distinct lifelines it interacts 

it with in the use case is counted (using the built in count function and the distinct 

function). The interacting lifelines are obtained using the function participating-ends (see 

Listing 35).  
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1 declare function local:NOIC($x as node(), $iModel as node()) 

{ 

 for $y in $iModel//IntegratedModel/UseCase 

  return if (is-value-in-sequence(data($x/@name),local:lifelines($y)) 

   then (count(distinct-values(local:particpating-ends($y,$x)))) 

  else ()               

} ; 

2 

3 
4 
5 
6 

7 

Listing 34: XQuery function to calculate the NOIC metric 

 

1 declare function local:particpating-ends($a as node(), $x as node()) 

{ 

        let $sequence := for $y in $a/Interaction/Message 

                          return if (data($y/@sender) = data($x/@name) or data($y/@reciever) =       

                                                                                                             data($x/@name))  

  then data($y/@name) 

        return $sequence 

} ; 

2 
3 
4 
5 

6 
7 
8 

Listing 35: XQuery function to identify the interacting lifelines 
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Appendix 5: XMI Schema for Extended Use Case Metamodel 

 

 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"  
attributeFormDefault="unqualified"> 

<xs:element name="UseCaseModel"> 
  <xs:annotation> 
   <xs:documentation>Schema for Extended Use Case Metamodel 
   </xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="UseCase" type="UseCase"  

maxOccurs="unbounded"/> 
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    <xs:element name="Actor" type="Actor"  
maxOccurs="unbounded"/> 

   </xs:sequence> 
   <xs:attribute name="name" type="xs:Name"/> 
   <xs:attribute name="id" type="xs:ID" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:complexType name="Actor"> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:Name" use="required"/> 
  <xs:attribute name="superActor" type="xs:IDREF" use="optional"/> 
  <xs:attribute name="type" type="enumActor" use="required"/> 
  <xs:attribute name="num_roles" type="xs:positiveInteger" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="UseCase"> 
  <xs:sequence> 
   <xs:element name="Supporting" minOccurs="0"/> 
   <xs:element name="Offstage" minOccurs="0"/> 
   <xs:element name="Description" minOccurs="0"/> 
   <xs:element name="interaction"/> 
   <xs:element name="includes" type="includes" minOccurs="0"  

maxOccurs="unbounded"/> 
   <xs:element name="extends" type="extends" minOccurs="0"  

maxOccurs="unbounded"/> 
   <xs:element name="AsyncExtend" minOccurs="0"  

maxOccurs="unbounded"/> 
   <xs:element name="ExtensionPoint" minOccurs="0"  

maxOccurs="unbounded"/> 
   <xs:element name="Precondition"/> 
   <xs:element name="Postcondition"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:Name" use="optional"/> 
  <xs:attribute name="actor-ref" type="xs:IDREF" use="required"/> 
  <xs:attribute name="superUC" type="xs:IDREF" use="optional"/> 
  <xs:attribute name="isAbstract" type="xs:boolean" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="Precondition"> 
  <xs:sequence> 
   <xs:element name="Constraint" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="Postcondition"> 
  <xs:sequence> 
   <xs:element name="Success"> 
    <xs:complexType> 
     <xs:sequence> 

<xs:element name="Constraint" 
maxOccurs="unbounded"/> 

     </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
   <xs:element name="Failure" maxOccurs="unbounded"> 
    <xs:complexType> 
     <xs:sequence> 
      <xs:element name="Constraint"  
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maxOccurs="unbounded"/> 
     </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="ExtensionPoint"> 
  <xs:sequence> 
   <xs:element name="Constraint"/> 
   <xs:element name="RejoinLocation"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
  <xs:attribute name="upper" type="xs:integer" use="optional"/> 
  <xs:attribute name="lower" type="xs:integer" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="includes"> 
  <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="extends"> 
  <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/> 
  <xs:attribute name="extPoint" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="interaction"> 
  <xs:choice> 
   <xs:element name="MainFlow"/> 
   <xs:element name="ChildFlow" minOccurs="0"/> 
   <xs:element name="SubFlow" minOccurs="0"  

maxOccurs="unbounded"> 
    <xs:complexType/> 
   </xs:element> 
   <xs:element name="AlternativeFlow" minOccurs="0"  

maxOccurs="unbounded"> 
    <xs:complexType/> 
   </xs:element> 
  </xs:choice> 
 </xs:complexType> 
 <xs:complexType name="MainFlow"> 
  <xs:sequence> 
   <xs:element name="Transaction" maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:string"/> 
 </xs:complexType> 
 <xs:complexType name="SubFlow"> 
  <xs:sequence> 
   <xs:element name="Transaction" maxOccurs="unbounded"/> 
   <xs:element name="SubFlow" minOccurs="0"  

maxOccurs="unbounded"/> 
   <xs:element name="AlternateFlow" minOccurs="0"  

maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:string" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="AlternateFlow"> 
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  <xs:sequence> 
   <xs:element name="Constraint"/> 
   <xs:element name="Transaction" maxOccurs="unbounded"/> 
   <xs:element name="SubFlow" minOccurs="0"  

maxOccurs="unbounded"/> 
   <xs:element name="AlternateFlow" minOccurs="0"  

maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:string" use="optional"/> 
  <xs:attribute name="VariationStep" type="xs:positiveInteger" use="required"/> 
  <xs:attribute name="SequenceNum" type="xs:positiveInteger" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Transaction"> 
  <xs:sequence> 
   <xs:element name="Step" maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="order" type="xs:positiveInteger" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Step"> 
  <xs:choice> 
   <xs:element name="event" type="event"/> 
   <xs:element name="anchor" type="anchor"/> 
  </xs:choice> 
  <xs:attribute name="step_no" type="xs:positiveInteger" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="event"> 
  <xs:sequence> 
   <xs:element name="sender" type="sender"/> 
   <xs:element name="receiver" type="receiver"  

maxOccurs="unbounded"/> 
   <xs:element name="arguments" type="arguments" minOccurs="0"  

maxOccurs="unbounded"/> 
   <xs:element name="action" type="action"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="sender"> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="receiver"> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="action"> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
  <xs:attribute name="type" type="actionType" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="arguments"> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="anchor"> 
  <xs:choice> 
   <xs:element name="ExternalInclusion"/> 
   <xs:element name="ExternalVariation"/> 
   <xs:element name="InternalInclusion"/> 
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  </xs:choice> 
 </xs:complexType> 
 <xs:complexType name="ExternalInclusion"> 
  <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="InternalInclusion"> 
  <xs:attribute name="ref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="ExternalVariation"> 
  <xs:attribute name="extPoint" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Constraint"> 
  <xs:sequence> 
   <xs:element name="Entity"/> 
   <xs:element name="Relation"/> 
   <xs:element name="Value"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="Entity"> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Relation"> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Value"> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="RejoinLocation"> 
  <xs:attribute name="step" type="xs:positiveInteger" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Supporting"> 
  <xs:attribute name="actor-ref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Offstage"> 
  <xs:attribute name="actor-ref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Description"> 
  <xs:sequence> 
   <xs:element name="SpecialREQ" minOccurs="0"  

maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="desc" type="xs:string" use="optional"/> 
  <xs:attribute name="goal" type="xs:string" use="optional"/> 
  <xs:attribute name="scope" type="enumScope" use="optional"/> 
  <xs:attribute name="level" type="enumLevel" use="optional"/> 
  <xs:attribute name="Priority" type="xs:string" use="optional"/> 
  <xs:attribute name="Frequency" type="xs:string" use="optional"/> 
  <xs:attribute name="OpenIssues" type="xs:string" use="optional"/> 
  <xs:attribute name="Performance" type="xs:string" use="optional"/> 
  <xs:attribute name="DueDate" type="xs:date" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="SpecialREQ"> 
  <xs:attribute name="category" type="xs:string"/> 
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  <xs:attribute name="desc" type="xs:string"/> 
 </xs:complexType> 
 <xs:complexType name="AsyncExtend"> 
  <xs:sequence> 
   <xs:element name="Constraint"/> 
  </xs:sequence> 
  <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:simpleType name="actionType"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Request"/> 
   <xs:enumeration value="DataValidate"/> 
   <xs:enumeration value="Expletive"/> 
   <xs:enumeration value="Response"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="enumActor"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="System"/> 
   <xs:enumeration value="NetworkSystem"/> 
   <xs:enumeration value="Human"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="enumScope"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Organization"/> 
   <xs:enumeration value="System"/> 
   <xs:enumeration value="Component"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="enumLevel"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Summary"/> 
   <xs:enumeration value="PrimaryTask"/> 
   <xs:enumeration value="Subfunction"/> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:schema> 
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Appendix 6: UCDesc User Manual 

In this section, we present the user manual for the prototype tool UCDesc. The user 

manual describes how to author use case descriptions using the UCDesc tool. 

A6.1 Creating a New Project 

To create a new project, click File -> New Project. A dialog box requesting the name of 

the project followed by its destination location appears. A project is then created at the 

destination location. All UCDesc project files are saved with a .ucdesc extension. Figure 

A - 7 shows the New Project dialog. On successful creation of the project, the user can 

add, edit and delete actors and use cases to the system. 

 Figure A - 7 UCDesc: Create New Project 
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A6.2 Adding an Actor 

Using the Edit Menu, users can add, edit and delete actors. Figure A - 8 shows the Add 

Actor dialog. In order to use an actor in a use case, it needs to be added before the adding 

the use case. The actor-id is automatically assigned by the system. If the actor is a 

specialization of an existing actor, the Parent Actor Drop-down list can be used to set the 

parent actor. If the parent actor is not yet added, the actor information can be edited later 

to set the parent actor.    

 

 

Successfully added actor appears in the Actors panel in the UCDesc UI. Actor 

information can be edited by selecting the desired actor from the Actors panel and using 

the Edit Menu to either edit or delete the actor from the system. 

Figure A - 8 UCDesc: Add New Actor 
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A6.3 Adding a Use Case 

Authoring a use case flows is the primary functionality of the UCDesc tool. Similar to the 

process of adding actors, users can add, edit and delete a use case from the Edit Menu. 

Figure A - 9 shows the Add Use Case dialog. 

 

 

Selecting the Add Use Case option from the Edit Menu opens the use case description 

editor. The editor is a tab-based input dialog. It includes eight tabs for adding the details 

for the use case, main flow description, sub flows, alternative flows and extension points. 

Use case ID is auto generated upon use case addition. The details required for each use is 

based on the extended use case metamodel proposed in this work. 

Figure A - 9 UCDesc: Add Use Case 
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The information required from the user for use case description, actor information and 

constraints are shown in Figure A - 10.  

A6.4 Adding Flow of Steps 

The Main Flow tab allows us to enter the steps required to fulfill the use case. Figure A - 

11 shows the main flow editor tab. At any step, we can include an anchor for include and 

extend using the buttons provided in the Insert panel at the bottom of the dialog box.  

Figure A - 10 UCDesc: Use Case Description 
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If a user wants to include or extend a use case, the use case must added before the base 

use case is authored. Another constraint for extending a use case is to add an extension 

point before adding it to the main flow. Figure A - 12 shows information required for 

adding an extension point.  

Adding Sub Flows and Alternative Flows to the Main Flow requires the user to indicate 

the step number in the flow description. If more than one sub or alternative flow is added 

to the same step, lower case alphabets are used to distinguish between them. Since the 

Sub Flow and Alternative Flow tab has the same basic architecture, we show only the 

Alternative Flow tab and the steps required to add an Alternative Flow in Figure A - 13. 

 

 

 

Figure A - 11 UCDesc: Main Flow Editor 
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Figure A - 12 UCDesc: Extension Point 

Figure A - 13 UCDesc: Alternative Flow 
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As use case relationships are added within the use case description (inclusion and 

extension), these are added simultaneously to the Relationship panel in the main UI as 

shown in Figure A - 14.  

 

 

Once the project is completed, it can be exported to an XMI file using File -> Export 

option. A structural view of the use case diagram created can be viewed using File -> 

Draw Diagram option. Since UCDesc uses a web-based diagram generator, the resultant 

diagram opens in a web browser. Figure A - 15 shows the rendered use case diagram for 

the above-created project. 

Figure A - 14 UCDesc: Main UI after use case addition 
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Figure A - 15 UCDesc: Use Case diagram rendered from yUML webserver 
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Appendix 7: XMI Schema for Integrated Metamodel 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- edited with XMLSpy v2009 (http://www.altova.com) by KING FAHD UNIVERSITY OF 
PETROLEUM & MINERALS (KING FAHD UNIVERSITY OF PETROLEUM & MINERALS) --> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"  

attributeFormDefault="unqualified"> 
 <xs:element name="IntegratedModel"> 
        <xs:annotation> 
  <xs:documentation>Schema for the Integrated Metamodel</xs:documentation> 
         </xs:annotation> 
         <xs:complexType> 

<xs:sequence> 
          <xs:element name="UseCase" type="UseCase" maxOccurs="unbounded"/> 
       <xs:element name="Actor" type="Actor" maxOccurs="unbounded"/> 
        <xs:element name="Class" maxOccurs="unbounded"> 
            <xs:complexType> 
    <xs:sequence> 
     <xs:element name="SuperClass" minOccurs="0"  

maxOccurs="unbounded"> 
            <xs:complexType> 
      <xs:attribute name="id" type="xs:IDREF"  

use="required"/> 
      <xs:attribute name="name" type="xs:string"  

use="required"/> 
             </xs:complexType> 
     </xs:element> 
     <xs:element name="Message" minOccurs="0"  

maxOccurs="unbounded"> 
     <xs:complexType> 
          <xs:sequence> 
          <xs:element name="Arguments"> 
     <xs:complexType> 
           <xs:attribute name="id" type="xs:ID"  

use="required"/> 
            <xs:attribute name="name" type="xs:string"  

use="required"/> 
                <xs:attribute name="type" type="xs:string"  

use="optional"/> 
            <xs:attribute name="direction"  

type="enumDirectionKind" use="optional"/> 
            <xs:attribute name="default" type="xs:string"  

use="optional"/> 
     </xs:complexType> 
           </xs:element> 
    </xs:sequence> 
    <xs:attribute name="id" type="xs:ID" use="required"/> 
    <xs:attribute name="name" type="xs:string" use="required"/> 
    <xs:attribute name="retAttr" type="xs:string" use="optional"/> 
    <xs:attribute name="visibility" type="enumVisibilityKind"  

use="optional"/> 
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<xs:attribute name="isQuery" type="xs:boolean"  
use="optional"/> 

     <xs:attribute name="isAbstract" type="xs:boolean"  
use="optional"/> 

     <xs:attribute name="isStatic" type="xs:boolean"  
use="optional"/> 

     <xs:attribute name="concurrency"  
type="enumConcurrencyKind"/> 

           </xs:complexType> 
        </xs:element> 
    <xs:element name="Association" maxOccurs="unbounded"> 
      <xs:complexType> 
         <xs:complexContent> 
     <xs:extension base="Association"> 
              <xs:sequence> 
      <xs:element name="AssociationEnd"  

minOccurs="2" maxOccurs="2"> 
      <xs:complexType> 
              <xs:attribute name="name" type="xs:string"  

use="required"/> 
             <xs:attribute name="type" type="xs:IDREF"  

use="required"/> 
              <xs:attribute name="lower" type="xs:string"  

use="optional"/> 
              <xs:attribute name="upper" type="xs:string"  

use="optional"/> 
        <xs:attribute name="isOwner"  

type="xs:boolean"  use="optional"/> 
              <xs:attribute name="isNavigable"  

type="xs:boolean" use="optional"/> 
      </xs:complexType> 
               </xs:element> 
               <xs:element name="AssociationClass"> 
      <xs:complexType> 
            <xs:attribute name="id" type="xs:ID"  

use="required"/> 
            <xs:attribute name="idref" type="xs:IDREF"  

use="required"/> 
      </xs:complexType> 
                </xs:element> 
            </xs:sequence> 
     </xs:extension> 
           </xs:complexContent> 
      </xs:complexType> 
    </xs:element> 
    <xs:element name="Property" type="Property"/> 
   </xs:sequence> 
   <xs:attribute name="id" type="xs:ID" use="required"/> 
   <xs:attribute name="name" type="xs:string" use="required"/> 
   <xs:attribute name="isFinalSpecialization" type="xs:boolean"  

use="optional"/> 
   <xs:attribute name="isAbstract" type="xs:boolean" use="optional"/> 
   <xs:attribute name="isLeaf" type="xs:boolean" use="optional"/> 
  </xs:complexType> 
          </xs:element> 
          <xs:element name="Constraint" type="Constraint"/> 
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</xs:sequence> 
 <xs:attribute name="name" type="xs:Name"/> 
 <xs:attribute name="id" type="xs:ID" use="required"/> 

</xs:complexType> 
       </xs:element> 
       <xs:complexType name="UseCase"> 

<xs:sequence> 
      <xs:element name="Supporting" minOccurs="0"/> 
      <xs:element name="Offstage" minOccurs="0"/> 
      <xs:element name="Include" type="Include" minOccurs="0"  

maxOccurs="unbounded"/> 
      <xs:element name="Extend" type="Extend" minOccurs="0"  

maxOccurs="unbounded"/> 
      <xs:element name="AsyncExtend" minOccurs="0" maxOccurs="unbounded"/> 
      <xs:element name="ExtensionPoint" minOccurs="0" maxOccurs="unbounded"> 
       <xs:complexType> 
  <xs:complexContent> 
            <xs:extension base="ExtPoint"> 
   <xs:sequence> 
          <xs:element name="RejoinLocation"/> 
        <xs:element name="Constraint" type="Constraint"/> 
   </xs:sequence> 
        </xs:extension> 
  </xs:complexContent> 
       </xs:complexType> 
     </xs:element> 
    <xs:element name="Precondition"> 
      <xs:complexType> 
  <xs:sequence> 
         <xs:element name="Constraint" type="Constraint" maxOccurs="unbounded"/> 
    </xs:sequence> 
       </xs:complexType> 
    </xs:element> 
    <xs:element name="Postcondition"> 
        <xs:complexType> 
  <xs:sequence> 
          <xs:element name="Success"> 
   <xs:complexType> 
          <xs:sequence> 
    <xs:element name="Constraint" type="Constraint"  

maxOccurs="unbounded"/> 
          </xs:sequence> 
   </xs:complexType> 
           </xs:element> 
           <xs:element name="Failure"> 
   <xs:complexType> 
          <xs:sequence> 
    <xs:element name="Constraint" type="Constraint"  

maxOccurs="unbounded"/> 
          </xs:sequence> 
   </xs:complexType> 
            </xs:element> 
   </xs:sequence> 
        </xs:complexType> 
    </xs:element> 
   <xs:element name="Interaction" type="Interaction"/> 
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          </xs:sequence> 
          <xs:attribute name="id" type="xs:ID" use="required"/> 
         <xs:attribute name="name" type="xs:Name"/> 
       <xs:attribute name="actor-ref" type="xs:IDREF" use="required"/> 
       <xs:attribute name="superUC" type="xs:IDREF"/> 
       <xs:attribute name="isAbstract" type="xs:boolean" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="ExtPoint"> 
        <xs:attribute name="id" type="xs:IDREF" use="required"/> 
        <xs:attribute name="name" type="xs:string" use="required"/> 
        <xs:attribute name="lower" type="xs:integer" use="optional"/> 
         <xs:attribute name="upper" type="xs:integer" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="Include"> 
        <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Extend"> 
         <xs:attribute name="uc-ref" type="xs:IDREF" use="required"/> 
         <xs:attribute name="extPoint" type="xs:integer" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Actor"> 
         <xs:attribute name="id" type="xs:ID" use="required"/> 
         <xs:attribute name="name" type="xs:Name" use="required"/> 
         <xs:attribute name="type" type="enumType" use="required"/> 
         <xs:attribute name="num_roles" type="xs:positiveInteger" use="optional"/> 
         <xs:attribute name="superActor" type="xs:IDREF" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="Interaction"> 
         <xs:sequence> 
   <xs:element name="Lifeline" type="Lifeline"/> 
  <xs:element name="Message" type="Message"/> 
  <xs:element name="Gate" minOccurs="0" maxOccurs="unbounded"/> 
  <xs:element name="Fragment" type="Fragment" minOccurs="0"  

maxOccurs="unbounded"/> 
           </xs:sequence> 
           <xs:attribute name="id" type="xs:ID" use="required"/> 
           <xs:attribute name="name" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Lifeline"> 
         <xs:sequence> 
  <xs:element name="End" maxOccurs="unbounded"> 
     <xs:complexType> 
        <xs:attribute name="endType" type="enumEvent" use="required"/> 
        <xs:attribute name="event-ref" type="xs:IDREF" use="required"/> 
    </xs:complexType> 
              </xs:element> 
  <xs:element name="StateInvariant" type="Constraint"/> 
           </xs:sequence> 
           <xs:attribute name="id" type="xs:IDREF" use="required"/> 
           <xs:attribute name="name" type="xs:string" use="required"/> 
           <xs:attribute name="class-ref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Property"> 
           <xs:attribute name="id" type="xs:ID" use="required"/> 
           <xs:attribute name="name" type="xs:string" use="required"/> 
           <xs:attribute name="type" type="xs:string" use="required"/> 
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           <xs:attribute name="lower" type="xs:integer"/> 
           <xs:attribute name="upper" type="xs:string"/> 
           <xs:attribute name="default" type="xs:string"/> 
        <xs:attribute name="isReadOnly" type="xs:boolean"/> 
        <xs:attribute name="isDerived" type="xs:boolean"/> 
        <xs:attribute name="visibility" type="enumVisibilityKind"/> 
 </xs:complexType> 
 <xs:complexType name="Association"> 
        <xs:attribute name="id" type="xs:ID" use="required"/> 
        <xs:attribute name="name" type="xs:Name"/> 
        <xs:attribute name="AggregationKind" type="enumAggregationKind"/> 
 </xs:complexType> 
 <xs:complexType name="MessageEnd"> 
         <xs:attribute name="name" type="xs:string"/> 
         <xs:attribute name="id" type="xs:IDREF" use="required"/> 
         <xs:attribute name="isGate" type="xs:boolean"/> 
 </xs:complexType> 
 <xs:complexType name="DataType"> 
         <xs:attribute name="id" type="xs:ID" use="required"/> 
         <xs:attribute name="name" type="xs:string"/> 
 </xs:complexType> 
 <xs:complexType name="Message"> 
          <xs:attribute name="id" type="xs:ID" use="required"/> 
          <xs:attribute name="name" type="xs:string" use="required"/> 
          <xs:attribute name="messageKind" type="enumMessageKind"/> 
          <xs:attribute name="messageSort" type="enumMessageSort"/> 
 </xs:complexType> 
 <xs:complexType name="Fragment"> 
          <xs:choice> 
  <xs:element name="SingleOperand"> 
         <xs:complexType> 
   <xs:sequence> 
    <xs:element name="InteractionOperand"  

type="InteractionOperand"/> 
            <xs:choice> 
     <xs:element name="Opt"/> 
     <xs:element name="Loop"> 
            <xs:complexType> 
      <xs:attribute name="maxint" type="xs:integer"/> 
      <xs:attribute name="minint" type="xs:integer"/> 
             </xs:complexType> 
     </xs:element> 
     <xs:element name="Break"/> 
     <xs:element name="Neg"/> 
              </xs:choice> 
   </xs:sequence> 
          </xs:complexType> 
      </xs:element> 
      <xs:element name="MultiOperand"> 
   <xs:complexType> 
           <xs:sequence> 
    <xs:element name="InteractionOperand"  

type="InteractionOperand" maxOccurs="unbounded"/> 
           <xs:choice> 
     <xs:element name="Par"/> 
     <xs:element name="Alt"/> 
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     <xs:element name="Assert"/> 
     <xs:element name="Strict"/> 
     <xs:element name="Seq"/> 
    </xs:choice> 
           </xs:sequence> 
           <xs:attribute name="isStrict" type="xs:boolean" use="optional"/> 
      </xs:complexType> 
   </xs:element> 
   <xs:element name="InteractionUse"> 
      <xs:complexType> 
              <xs:attribute name="interactionName" type="xs:IDREF"  

use="required"/> 
       </xs:complexType> 
   </xs:element> 
       </xs:choice> 
       <xs:attribute name="id" type="xs:ID" use="required"/> 
       <xs:attribute name="name" type="xs:string" use="required"/> 
  </xs:complexType> 
  <xs:complexType name="InteractionOperand"> 
         <xs:sequence> 
   <xs:element name="InteractionFragment" type="Fragment"/> 
   <xs:element name="Guard" type="Constraint" minOccurs="0"/> 
         </xs:sequence> 
  </xs:complexType> 
  <xs:complexType name="Arguments"> 
         <xs:attribute name="id" type="xs:ID"/> 
         <xs:attribute name="name" type="xs:Name"/> 
         <xs:attribute name="direction" type="enumDirectionKind"/> 
         <xs:attribute name="type" type="xs:IDREF"/> 
        <xs:attribute name="default" type="xs:string"/> 
  </xs:complexType> 
  <xs:simpleType name="enumMessageSort"> 
         <xs:restriction base="xs:string"> 
   <xs:enumeration value="syncCall"/> 
   <xs:enumeration value="asyncCall"/> 
   <xs:enumeration value="createMessage"/> 
   <xs:enumeration value="deleteMessage"/> 
   <xs:enumeration value="reply"/> 
          </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="enumMessageKind"> 
         <xs:restriction base="xs:string"> 
   <xs:enumeration value="complete"/> 
   <xs:enumeration value="lost"/> 
   <xs:enumeration value="found"/> 
   <xs:enumeration value="unknown"/> 
          </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="enumDirectionKind"> 
         <xs:restriction base="xs:string"> 
   <xs:enumeration value="in"/> 
   <xs:enumeration value="out"/> 
   <xs:enumeration value="inout"/> 
   <xs:enumeration value="return"/> 
        </xs:restriction> 
  </xs:simpleType> 



494 

 

  <xs:simpleType name="enumAggregationKind"> 
        <xs:restriction base="xs:string"> 
   <xs:enumeration value="none"/> 
   <xs:enumeration value="shared"/> 
   <xs:enumeration value="composite"/> 
         </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="enumVisibilityKind"> 
         <xs:restriction base="xs:string"> 
   <xs:enumeration value="public"/> 
   <xs:enumeration value="private"/> 
   <xs:enumeration value="protected"/> 
          </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="enumType"> 
          <xs:restriction base="xs:string"> 
   <xs:enumeration value="System"/> 
   <xs:enumeration value="NetworkSystem"/> 
   <xs:enumeration value="Human"/> 
            </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="enumEvent"> 
            <xs:restriction base="xs:string"> 
   <xs:enumeration value="sendEvent"/> 
   <xs:enumeration value="recieveEvent"/> 
   <xs:enumeration value="fragment"/> 
           </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="enumConcurrencyKind"> 
           <xs:restriction base="xs:string"> 
   <xs:enumeration value="sequential"/> 
   <xs:enumeration value="guarded"/> 
   <xs:enumeration value="concurrent"/> 
             </xs:restriction> 
  </xs:simpleType> 
  <xs:complexType name="Constraint"> 
            <xs:sequence> 
   <xs:element name="Expression" maxOccurs="unbounded"> 
          <xs:complexType> 
    <xs:sequence> 
     <xs:element name="Operator"  

maxOccurs="unbounded"/> 
    </xs:sequence> 
             </xs:complexType> 
   </xs:element> 
           </xs:sequence> 
               </xs:complexType> 

</xs:schema> 
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Appendix 8: IntegraUML User Manual 

In this section, we present the user manual for the prototype tool IntegraUML. The user 

manual describes how to user can create a project, import XMI files for the UML 

diagrams into the project, create and refactor the integrated model. 

To create a new project, click File -> New Project. A dialog box requesting the name of 

the project followed by its destination location appears. When you click the ‘Ok’ button, 

a project folder is created at the Project Location with the Name of the project. New 

Project dialog box is shown in Figure A - 16. 

 

If the selected project location already contains a folder of the same name, you will be 

prompted to rename the project or change the source location. To open an existing 

Figure A - 16 IntegrUML: New Project Dialog Box 
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project, choose the ‘File -> Open Project’ option from the menu. This will launch a 

project folder selector that will allow you to select and open a project. IntegraUML looks 

for a project file (Data.IntegraUML) within the project folder. This file identifies that the 

folder is an IntegraUML workspace. Failure to find this file in the selected folder will 

result in an error message.  If the file is found, clicking the ‘Ok’ button or pressing the 

‘Enter’ key opens the selected project.  

When a project is created or opened, the user can browse and upload the model files. This 

can be done through the Source UML Files panel. IntegraUML provides users with two 

options when uploading source model files.  Users can upload XMI files for the class 

diagram; sequence diagrams and use case diagram as individual files or combined as one 

XMI file. The browsing options are enabled based on the selection of an appropriate 

radio button at the top of the panel. Selecting one disables the other group as shown in 

Figure A - 17. 

 

 

Once the selection is made, the users can upload respective model XMI files using the 

Browse button. Upon successful selection of the model files, the parse buttons beside the 

browse buttons is enabled. All model files must be parsed before integration. Parsing 

Figure A - 17 IntegraUML: Source UML File Selection 
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starts the DOM API and generates a DOM tree for each UML model. The results of the 

parsing process is displayed in the Diagram Parse Log panel. Typical parse log 

information includes diagram version, tool exported from and statistical information like 

number of classes, number of interactions and so on as shown in Figure A - 18. 

 

 

The ‘Integrate’ button at the bottom of the UI is activated once all uploaded model files 

are parsed successfully. The model integration process is started once the user presses the 

‘Integrate’ button. Results of unsuccessful model integration are displayed in the Error 

Log as shown in Figure A - 19. The user is required to resolve these errors before 

proceeding with model integration.  

Figure A - 18 IntegraUML: UML Model Parsing Results 
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An integrated model XMI file is created in the project’s source location upon successful 

model integration and an appropriate feedback message dialog is show to the user. 

IntegraUML allows users to select and upload model files from any location in the user’s 

computer. However, the user is required to save the project in order to copy these files to 

the project location. To save an open project, choose the ‘File -> Save Project’ option 

from the menu. This will copy and rename all the model files as shown in Figure A - 20. 

 

 

 

 

 

 

Figure A - 19 IntegraUML: Model Integration Error 
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Figure A - 20 IntegraUML: File Structure 
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Appendix 9: UML Model Metrics 

A9.1 Class Diagram Metrics 

1. DEPTH OF INHERITANCE TREE (DIT) 

Level:  Class-Level 

Description:  This metric is useful for measuring the vertical hierarchy of 

an inheritance tree. The higher the value of DIT, the greater 

the chance of reuse becomes. However, a high value of DIT 

can cause program comprehension problem. 

Reference: [62]  

2. NUMBER OF CHILDREN (NOC) 

Level:  Class-Level 

Description:  This metric counts the number of direct children of a class. 

Reference: [62] 

3. FAN-IN  

Level:  Class-Level 

Description:  This metric counts the number of incoming association 

relations of a class. It measures the extent to which other 

classes use the class’ provided services. 

Reference: [290] 
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4. FAN-OUT  

Level:  Class-Level 

Description:  This metric counts the number of outgoing association 

relations of a class. It measures the extent to which the 

class uses services provided by other classes. 

Reference: [290] 

5. NUMBER OF THE ASSOCIATIONS (NASM) 

Level:  Model-Level 

Description:  An association is a connection, or a link, between classes. 

This metric counts the number of associations in a class 

model. This metric is useful for estimating the scale of 

relationships between classes. 

Reference: [287] 

6. NUMBER OF THE AGGREGATIONS (NAGM) 

Level:  Model-Level 

Description:  An aggregation is a special form of association that 

specifies a whole-part relationship between the aggregate 

(whole) and a component part. This metric counts the 

number of aggregations in a class model. 

Reference: [287] 
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7. NUMBER OF THE ASSOCIATIONS LINKED TO A CLASS (NASC) 

Level:  Class-Level 

Description:  The number of associations including aggregations is 

counted. This  metric is useful for estimating the static 

relationships between classes. 

Reference: [287] 

8. NUMBER OF THE ATTRIBUTES IN A CLASS UNWEIGHTED (NATC1) 

Level:  Class-Level 

Description:  This metric counts the number of attributes in a class. It 

does not apply a weighting scheme, meaning public, private 

and protected attributes are treated equal. 

Reference: [287] 

9. NUMBER OF THE ATTRIBUTES IN A CLASS WEIGHTED (NATC2) 

Level:  Class-Level 

Description:  This metric is a weighted version of NATC1. That is, it 

applies different weights to each metric depending on their 

visibility, i.e. 1.0 for public, 0.5 for protected and 0.0 for 

private attributes. This is more correct in a sense that the 

concept of encapsulation is more properly reflected in this 

weighting scheme. 

Reference: [287] 
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10. NUMBER OF THE OPERATIONS IN A CLASS UNWEIGHTED (NOPC1) 

Level:  Class-Level 

Description:  This is an un-weighted metric that counts the number of 

operations in a class. Inheriting Operations in case of 

generalization relationship with other classes is also 

included in this measure. 

Reference: [287] 

11. NUMBER OF THE OPERATIONS IN A CLASS WEIGHTED (NOPC2) 

Level:  Class-Level 

Description:  This metric is same as NOPC1 except different weights are 

applied. The weights are similar to the one used in NATC2. 

Reference: [287] 

12. NUMBER OF THE CLASSES (NCM) 

Level:  Model-Level 

Description:  This metric counts the number of classes in a model. This 

metric is comparable to the traditional LOC (lines of code) 

or a more advanced McCabe’s cyclomatic complexity 

(MVG) metric for estimating the size of a system [204]. 

Thus, in OOP this metric can be used to compare sizes of 

systems. 

Reference: [287] 
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13. NUMBER OF THE INHERITANCE RELATIONS (NIM) 

Level:  Model-Level 

Description:  This metric counts the number of generalization 

relationships between classes existing in a model. 

Reference: [287] 

14. NUMBER OF THE SUPER CLASSES OF A CLASS (NSUPC) 

Level:  Class-Level 

Description:  This counts the direct parents of a class. In a single 

inheritance implementation like Java, the value of this 

metric is either 0 or 1, whereas under multiple inheritance 

schemes it is greater than or equal to 0. 

Reference: [287]  

15. NUMBER OF THE ELEMENTS IN THE TRANSITIVE CLOSURE OF 

THE SUBCLASSES OF A CLASS (NSUBC*) 

Level:  Class-Level 

Description:  This counts the transitive closure of the subclasses of a 

class, and it is potentially useful for predicting the classes 

who might be affected if changes occur in this class. 

Reference: [287] 
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16. NUMBER OF THE ELEMENTS IN THE TRANSITIVE CLOSURE OF 

THE SUPERCLASSES OF A CLASS (NSUPC*) 

Level:  Class-Level 

Description:  This metric counts the transitive closure of the super 

classes of a class, and it is potentially useful for predicting 

the classes whose changes might affect this class. 

Reference: [287] 

A9.2 Sequence Diagram Metrics 

1. NUMBER OF MESSAGES SENT BY THE INSTANTIATED OBJECTS OF 

A CLASS (NMSC) 

Level:  Lifeline-Level 

Description:  This metric count the number of messages sent by the 

objects instantiated from the class. It can be used for 

finding out which classes are actively involved in 

interactions within a system. 

Reference: [287] 

2. NUMBER OF MESSAGES RECEIVED BY THE INSTANTIATED 

OBJECTS OF A CLASS (NMRC) 

Level:  Lifeline-Level 
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Description:  This metric is similar to the RFC metric of C&K metric 

suite. It counts the number of messages received by the 

objects instantiated from the class. It can be used for 

finding out which classes are actively involved in 

interactions within a system. 

Reference: [287] 

3. NUMBER OF MESSAGES (NMM) 

Level:  Model-Level 

Description:  Messages are exchanged between objects manifesting 

various interactions. This metric counts the number of 

messages within a sequence model. 

Reference: [287] 

4. NUMBER OF THE DIRECTLY DISPATCHED MESSAGES OF A 

MESSAGE (NDM) 

Level:  Message-Level 

Description:  According to the UML semantics, a message can be an 

activator of other messages. This metric counts the number 

of messages directly dispatched as a result of this message 

invocation. 

Reference: [287] 
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5. NUMBER OF THE ELEMENTS IN THE TRANSITIVE CLOSURE OF 

THE DIRECTLY DISPATCHED MESSAGES OF A MESSAGE (NDM*) 

Level:  Message-Level 

Description:  This metric counts the transitive closure of all the messages 

activated as a result of this message being dispatched. It is 

potentially useful for predicting the lifelines and messages 

that might be affected if this message is modified or 

removed.  

Reference: [287] 

6. NUMBER OF LIFELINES (LIFELINES) 

Level:  Model-Level 

Description:  The metric counts the number of lifelines on the sequence 

model. 

Reference: [466] 

A9.3 Use Case Diagram Metrics 

1. NUMBER OF THE USE CASES (NUM) 

Level:  Model-Level 

Description:  This metric counts the number of use cases in a use case 

model. The rationale behind the inclusion of this metric is 
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that a use case represents a coherent unit of functionality 

provided by a system, a subsystem, or a class. 

Reference: [287] 

2. NUMBER OF THE ACTORS (NAM) 

Level:  Model-Level 

Description:  This metric computes the number of actors in a use case 

model. 

Reference: [287] 

3. NUMBER OF THE ACTORS ASSOCIATED WITH A USE CASE (NACU) 

Level:  Use Case-Level 

Description:  This metric computes the number of actors that are 

associated with a use case, and it is useful to measure the 

importance of the requirement expressed by the use case. 

The reason for this argument is that the requirements that 

many actors concern are likely to be important for the 

system to function properly as a whole.  

Reference: [287] 

4. NUMBER OF USE CASES WHICH THIS EXTENDS (EXTENDING) 

Level:  Use Case-Level 
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Description:  This metric counts the number of use cases extended by 

this use case. 

Reference: [466] 

5. NUMBER OF USE CASES WHICH EXTEND THIS USE CASE 

(EXTENDED) 

Level:  Use Case-Level 

Description:  The metric counts the number of use cases which extend 

this use case. 

Reference: [466] 

6. NUMBER OF USE CASES WHICH THIS INCLUDES (INCLUDING) 

Level:  Use Case-Level 

Description:  The metric counts the number of use cases which this use 

case includes. 

Reference: [466] 

7. NUMBER OF USE CASES THAT INCLUDES THIS USE CASE 

(INCLUDED) 

Level:  Use Case-Level 

Description:  The metric counts the number of use cases, which include 

this use case. 

Reference: [466] 
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8. NUMBER OF EXTENSION POINTS OF THE USE CASE (ExtPts) 

Level:  Use Case-Level 

Description:  The metric counts the number of extension points in the use 

case. An extension point in a use case is a useful concept, 

but when too many are provided, it is a sign that perhaps 

the use case should be split up or modeled in a different 

way to improve readability. 

Reference: [466] 

9. DEPTH OF <<INCLUDE>> RELATIONSHIP (DOIR) 

Level:  Use Case-Level 

Description:  A series of nested <<include>> relationships in Use Case 

modeling is a sign of functional decomposition and makes 

for difficult reading. This metric computes the depth of the 

include relationship. 

Reference: [289] 

10. DEPTH OF <<EXTEND>> RELATIONSHIP (DOER) 

Level:  Use Case-Level 

Description:  An <<extend>> relationship is itself commonly 

misunderstood.  A number of nested <<extend>> 

relationships can be difficult to understand and should be 
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discouraged. This metric computes the depth of the extend 

relationship. 

Reference: [289] 
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Appendix 10: UML Model Smells 

Models smells are defined as elements within the model that are potential candidates for 

improvements and refactoring. Either model smells could be symptoms of design defects 

or bad alternatives to recurring design problems in OO design also known as anti-

patterns. Based on our detailed systematic literature review [18], we identified that 17 

published studies proposed model smells over UML models. Models smells used in our 

work for validation and comparison were selected based on the following criteria: 

1. Smells defined only over UML Class, Sequence and Use Case models. This is based 

on the scope of the work. 

2. Smells defined are either metric-based or rule-based (heuristics). Design pattern 

based model smells are not considered in line of the scope of the work. 

3. Smells defined should be measurable with threshold values clearly specified in the 

study. 

4. Studies proposing model smells should associate refactoring strategy (solutions) to 

the identified refactoring opportunities.  

 

A10.1 Class Model Smells 

In this section, we describe smells for class models. Thirteen smells related to class 

diagram have been proposed in the literature. Of these, only seven satisfy our selection 

criteria. However, some of these smells either use information from more than one model 

in the detection and resolution strategy. Since we are concerned with smells that can be 
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detected and resolved only over the class diagram, a table of these seven smells along 

with the study is presented in Table A - 2 to aid in the selection. Grayed out cells indicate 

that the study did not address the particular smell in their proposal.   

Table A - 2 Class Model Smells and their Information Dependence 

Studies GC FD LZC DUP Coup RB LF 

Ruhroth et al. [32] 

Strategy   
CD 

Z 
 CD CD  

Solution   
CD 

Z 
 CD CD  

Fourati et al. [19] 

Strategy 
CD 

SEQ 
CD     CD 

Solution 
CD 

SEQ 
CD     CD 

Stolc and Polasek [236] 
Strategy    CD    

Solution    CD    

Enckevort [21] 
Strategy CD       

Solution Man       

(GC: God Class, FD: Functional Decomposition, LZC: Lazy Class, DUP: Duplication, 

Coup: Strong Coupling, RB: Refused Bequest, LF: Lava Flow, CD: Class Diagram, 

SEQ: Sequence Model, Man: Manual Refactoring by Expert, Z: Method description in 

the form of Z Language notation.)  

 

Based on the information presented in Table A - 2, five class model smells were selected. 

These smells are described in this section.  

1. Functional Decomposition 

a. Smell Description: Functional Decomposition anti-pattern described by 

Brown et al. [17] is a “main” routine that accesses numerous subroutines. 

Moha et al. [24] described functional decomposition as a smell that 

consists of a main class in which Inheritance and Polymorphism are rarely 
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used i.e. associated with small classes, has private attributes and 

implements a few methods.  

b. Smell Detection: Fourati et al. [19] provided a rule based detection of this 

model smell. Moreover, an important constraint in their description is 

detecting whether the name of the class is functional or not (Hence, it is a 

semi-automated detection strategy). According to them, a functionally 

decomposed class has all private attributes (High Cohesion) and a single 

function. The detection rule proposed is shown below: 

(IsFunctional (C) = true) & (NPrAtt = high) & (NOM = 

low) & (DIT = 0) & (NOC = 0)  

IsFunctional: It tests if a class has a name as a function i.e. a verb or a 

noun action like ‘Creation’, ‘Making’ and so on. 

NPrAtt: The number of Private Attributes  

NOM: Number of Methods of a class including the constructor 

DIT: It is the depth in the inheritance tree. Maximum length is considered 

in case of multiple inheritance.  

NOC: It is the number of immediate subclasses subordinated to a class in 

the class hierarchy. 

 

The low and high thresholds delimiting each metric in the above rule are 

based on the maximum value of each used metric. Due to the lack of 

information, we used max and min values suggested by Gronback [288].  

c. Smell Resolution: Classes associated with the functionally decomposed 

class are merged together if the class is coupled with only one class (i.e. 

the functionally decomposed class accessing it).        
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2. Class Duplication 

a. Smell Description: This smell is derived from Fowler et al.’s Duplicate 

Code smell. Since a class model does not contain any code, its attributes, 

association ends and operations care used to identify duplication. 

b. Smell Detection:  Stolc and Polasek [236] detects duplication in classes 

that are subclasses of a common superclass. Attribute body of each 

attribute in a subclass is compared with attribute bodies of other siblings to 

identify redundancy. If an attribute with the same body exists in all 

subclasses, then refactoring is recommended. 

c. Smell Resolution: Pull up Property Refactoring is used on all sub-classes 

to remove the attribute from all subclasses and added to the common 

superclass.         

3. Too Strong Coupling 

a. Smell Description: Coupling in a class diagram measures the degree of 

dependency between classes. Two classes are coupled if at least one of 

them depends upon the other [62]. Strong Coupling is an indicator that 

classes in the model are too interdependent on others and is a sign of 

sensibility to changes and hence difficult to maintain. 

b. Smell Detection:   Ruhroth et al. [32] used a combination of the Direct 

Class Coupling (DCC) metric [467] and MaxUsedPL metric to identify the 

smell. The detection rule proposed is shown below: 

(DCC > UPDCC) & (MaxUsedPL > UPMaxUsedPL) 
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DCC: It counts the different number of classes that a class is directly 

related to. It includes classes that are directly related by attribute 

declarations and message passing (parameters) in methods. 

MaxUsedPL: Maximum length of all parameter lists used by a class. 

 

UP indicates the upper limit threshold for the metric. As indicated in their 

work UPDCC = 9 and UPMaxUsedPL = 5.  

c. Smell Resolution: Move Property Refactoring is used to move attributes 

to classes where they are used more often. In case moving attributes 

cannot be performed, Merge Class Refactoring is used to join strongly 

coupled classes.    

4. Refused Bequest 

a. Smell Description: Refused Bequest is also one of the code smells 

proposed by Fowler et al. Subclasses get to inherit methods and data of 

their parents. This smell arises when subclasses use either some or none of 

the features inherited from their superclass.  

b. Smell Detection: Ruhroth et al. [32] redefined the detection strategy for 

this traditional smell to detect it over class models. They used a 

combination of the OIF (Operations Inheritance Factor) metric and DIT to 

detect refused bequest model smell. The detection rule proposed is shown 

below: 

(OIF < LOWOIF) & (DIT >= 1) 
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OIF: It is a quotient between the number of inherited operations and the 

number of available operations (locally defined and inherited).  

 

LOW indicates the lower limit threshold for the metric. As indicated in 

their work LOWOIF = 0.2.  

c. Smell Resolution: In order to resolve this smell, a new sibling class is 

created and Push Down Operation and Push Down Property Refactoring 

is used to push all the unused methods to the sibling. Hence, the parent 

holds only what is common.  

5. Lava Flow 

a. Smell Description: Lava Flow is a software development anti-pattern 

described by Brown et al. as dead code in an isolated class which makes it 

uncoupled from other classes.  

b. Smell Detection: Fourati et al. [19] provided a rule based detection of this 

model smell. According to them, a class demonstrating lava flow model 

smell has large number of attributes and is complex and has no 

interactions. The detection rule proposed is shown below: 

(NAtt = high) & (NAss = low) & (NOM = high) & (DIT = 0) 

& (NOC = 0)  

NAss: The number of Associations (association link, aggregation, 

composition, dependency link) of a class. 

NAtt: The number of Attributes of a class  
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The low and high thresholds delimiting each metric in the above rule are 

based on the maximum value of each used metric. Similar to what we 

adopted for the Functional Decomposition Smell, we used max and min 

values suggested by Gronback [288].  

c. Smell Resolution: A semi-automatic solution is proposed for resolving 

this model smell. A class, if detected to contain lava flow smell, is 

presented to the user. If acceptable, the class is removed from the model.  

 

A10.2 Sequence Model Smells 

In this section, we describe smells for sequence models. This is the least studied topic in 

the field of model-driven refactoring. Although, Astels [251] was the first author to 

propose the use of sequence diagrams to detect the existence of Middle Man model smell, 

his approach was naïve and lacked a proper detection and resolution strategy. Only two 

studies discuss the identification of smells related to the UML sequence diagram. Liu et 

al. [263] proposed the duplication model smell over sequence diagrams using suffix trees 

as model representation. Since their approach is heavily based on a different 

representation formalism and tool support for detection and resolution is no longer 

available, we do not consider this model smell. The only other model smell Middle Man 

which is described below. 

1. Middle Man 

a. Smell Description: A Middle Man is a lifeline (or a class/object) that sits 

between two others and forwards method calls between them. A middle 
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man is apparent in the sequence diagram by the pattern of messages being 

simply delegated to another lifeline.  

b. Smell Detection: Dobrzanski and Kuzniarz [262] provided a rule based 

detection of this model smell. According to them, a class is considered a 

middle man if it has an attribute with at least two Simple Delegating 

Operations (SDO). A special metamodel (TAU) is used to describe the 

body of an operation. Nevertheless, based on the description provided by 

Wake [16] and included in their detection approach, “most methods of a 

class call the same or similar method on another object.” We use this 

definition to define a detection strategy that evaluates the incoming and 

outgoing messages to a class. If similar names are used, the methods is 

classified as a delegating operation.  

c. Smell Resolution: Remove Middle Man Refactoring is used to remove the 

middle man lifeline from the sequence diagram. It works for a pair of 

classes A and B, where A is a middle man of a delegate B. If the middle 

man delegates for more than one lifeline, the refactoring process is 

repeated for any pair consisting of A and a delegate class.  

 

A10.3 Use Case Model Smells 

Although quite a few studies proposed refactoring operations over Use Case (UC) 

diagrams, only one study by El-Attar and Miller [264]  is available in the literature that 
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identified anti-patterns and discussed their resolution with refactoring solution. They 

proposed a total of 21 anti-patterns. We classified these into three categories as follows: 

1. OMG: Anti-patterns that can be detected over the use case model conforming to 

the standard UML metamodel proposed by OMG (i.e. only the structural part of 

the use case model). 

2. Behavior: Anti-patterns that require information about the flow of steps within 

each use case model. This information is not available in the standard UML 

metamodel and requires alternate description formalisms such as text, template 

and other UML diagrams. Hence, anti-patterns in this category are not considered 

in this work. 

3. Consistency: Anti-patterns that describe violations to use case diagram well-

formedness rules. Since each diagram undergoes consistency (syntactic and 

semantic) before refactoring, these smells are also excluded from this work. 

 

Out of the all the anti-patterns presented in Table A - 3, only those conforming to the 

UML metamodel (1-8) were considered for our work. Based on our initial selection 

criteria, any smell without a quantitative threshold value is excluded from the work. 

Hence, anti-patterns 7 and 8 were also excluded as an upper limit threshold for “too 

many” was not provided and lack of detection strategy for classifying an actor as a 

device.  Selected anti-patterns are described in detail in this section. 
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Table A - 3 Classification of Use Case Anti-patterns [263] 

Use Case Anti-patterns 

OMG Consistency Behavior 

1 Using 

extension/inclusion 

UCs to implement an 

abstract UC 

9 
Two actors with the 

same name 
14 

Functional 

decomposition of 

UCs: Using the 

include relationship 

2 

Multiple generalizations 

of a UC 
10 

An actor inside the 

system boundary 
15 

Functional 

decomposition by 

using an extension UC 

to extend multiple 

UCs 

3 An actor associated 

with an unimplemented 

abstract UC 

11 An unassociated UC 16 
Using instances for 

actors instead of roles 

4 An actor associated 

with a generalized 

concrete UC 

12 
An association between 

two actors 
17 

An actor associated 

with an extension UC 

5 

Duplicating 

functionalities for the 

generalized and 

specializing UCs 

13 
An association between 

UCs 
18 

Functional 

decomposition by 

creating a call 

sequence between 

UCs using pre and 

post-conditions 

6 A UC that is used as an 

extension and inclusion 

UC 

  19 
Very large alternative 

flows 

7 
Too many UCs   20 

UC initiated by two 

actors 

8 Representing devices as 

actors 
  21 

Using the term “actor” 

in textual descriptions 

 

1. Using extension/inclusion UC’s to implement an abstract UC 

a. Smell Description: An actor is directly associated with an abstract UC. 

The implementation of this abstract UC is not done through a specializing 

UC but through extension or inclusion UCs instead. 

b. Smell Detection: The steps involved in the detection of this smell are as 

follows: 

i. Search for any abstract UC. 
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ii.  If the (UC is associated with an actor) AND (is extended by or 

includes other UCs) AND (has no child UC). 

c. Smell Resolution: The authors proposed a semi-automatic resolution 

strategy for this anti-pattern. If the inclusion or extension is justified, the 

UC is changed to concrete. If not, it is left to the modeler to add either 

specializing use case in the future or change relationship to inheritance 

instead of inclusion/extension. 

2. Multiple Generalizations of a UC 

a. Smell Description: A single UC specializes two or more UCs. Multiple 

generalization leads to violation of behavioral semantics of the use case 

model.  

b. Smell Detection: The steps involved in the detection of this smell are as 

follows: 

i. Search for a child UC. 

ii.  If the UC is specializing more than one UC. 

c. Smell Resolution: The specialization relationship is replaced by an 

include relationship. The include relationship is considered more 

appropriate since the shared UC contains common behavior not 

specializing behavior.    

3. An actor associated with an unimplemented abstract UC 

a. Smell Description: An actor is directly associated with an abstract UC 

that is not implemented by specializing UC(s). 
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b. Smell Detection: The steps involved in the detection of this smell are as 

follows: 

i. Search for an abstract UC. 

ii.  If the (UC is associated with an actor) AND (not specialized by at 

least one UC). 

c. Smell Resolution: The authors propose a semi-automatic resolution 

strategy for this anti-pattern. The UC is changed to concrete in order to 

allow initiation by an actor.  

4. An actor associated with a generalized concrete UC  

a. Smell Description: Often generalized UCs only contain fragments of 

general behavior that is used by its specializing UCs. Therefore, 

generalized UCs are often incomplete. Such incomplete generalized UCs 

contain “blanks” that are intended to be “filled” by special behavior 

contained in the specializing UCs. 

b. Smell Detection: The steps involved in the detection of this smell are as 

follows: 

i. Search for any generalized UC. 

ii.  If the (UC is concrete) AND (associated with an actor). 

c. Smell Resolution: Explicit associations between the actor and the 

specializing UCs is created in place of the association between the actor 

and the generalized UC. The explicit associations with the specializing 

UCs will enforce the service request to be performed through one of the 

specializing UCs. 
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5. Duplicating functionalities for the generalized and specializing UCs  

a. Smell Description: This anti-pattern detects duplication in the use case 

diagram. The relationships that a generalized UC has with other UCs are 

duplicated for the specializing UC. Hence, this leads to creation of 

duplicated or redundant code in the implementation phase. 

b. Smell Detection: The steps involved in the detection of this smell are as 

follows: 

i. Search for a generalization relationship between two UCs. 

ii.  If both the generalized and specializing UCs have similar 

relationships with other UCs. 

c. Smell Resolution: The authors proposed a semi-automatic resolution 

strategy for this anti-pattern. Modelers determine whether a given included 

or extending UC is applicable to all of the specializing UCs or only a 

subset of them. Based on this if it is applicable to all other children, 

redundant path is removed. Else, irrelevant associations with other use 

cases is removed from the diagram. 

6. A UC that is used as an extension and inclusion UC  

a. Smell Description: The reuse of a preexisting UC is achieved by making 

it both an extension UC and an inclusion UC. Object-oriented modeling 

and design strongly promotes the concept of reuse. However, when 

applying the concept of reuse, the include and the extend relationships can 

be misused leading to the creation of UCs containing both common and 

exception-handling behavior. 
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b. Smell Detection: The steps involved in the detection of this smell are as 

follows: 

i. Search for any included UCs. 

ii.  If inclusion UC is extending other UC’s. 

c. Smell Resolution: The authors proposed a semi-automatic resolution 

strategy for this anti-pattern. Resolution is based on the type of situation 

encountered and is described below: 

i. If the shared UC contains functionality suitable for only the base 

UC that includes it, the extend relationship is removed. A new 

extension UC is created to handle the exceptional situation 

generated by the other base UC. 

ii. If the shared UC contains functionality suitable only for the base 

UC that it extends, the include relationship is removed. A new UC 

is created and included by the other base UC. 

iii. If the shared UC does contain both common and exception 

behavior, the shared UC is split into two separate UCs. Each of the 

newly created UCs should only contain functionality appropriate to 

the base UC. 
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