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In recent work, distributed adaptive algorithms have been proposed to solve the

problem of estimation over distributed networks. In diffusion protocol, each node

in the network functions as an individual adaptive filter whose aim is to estimate

a parameter of interest through local observations. All the estimates obtained from

the nodes are then locally fused with their neighboring estimates in the network.

Several algorithms have been proposed to exploit this distributed structure in order

to improve estimation.

Diffusion techniques have been used based on the least mean square (LMS) or

recursive least square (RLS) algorithm in wireless sensor networks. The LMS

algorithm, unlike the RLS algorithm, is a very simple algorithm when the compu-

tational complexity is concerned. However, the performance of the LMS algorithm

deteriorates as the amount of correlation increases among the input data.

To address this problem, in this network, a diffusion normalized least mean

square (NLMS) algorithm is proposed. First, transient analysis of the proposed

algorithm are derived. Second, the steady-state analysis are derived. Finally, sim-

ulation results are carried out to prove the better performance of the proposed

algorithm and more importantly to corroborate the theoretical findings.
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ملخص الأطروحة
سيد عبد الباقي:الاسم

الانتشار المعدل ذو أقل متوسط تربيعي في شبكات الحساسات اللاسلكية :العنوان

ماجستير في العلوم:الدرجة

هندسة كهربائية:التخصص

2012مايو :تاريخالدرجة

في بروتوكول كل نقطة. حديثاً، تم اقتراح الخوارزميات التكيفية كحل لمشكلة  التقدير في الشبكات الموزعة
فرع في وظائف الشبكة تعمل كمرشح مستقل قابل للتكيف والذي يهدف الى تقدير المعاملات المرغوبة تالانتشارت

عليها من العقد يتم ربطها محليا بصمام مع التقديرات كل التقديرات التي تم الحصول . من خلال الملاحظات المحلية
.ااورة لها في الشبكة

وقد استخدمت تقنيات نشر . وقد اقترحت عدة خوارزميات لاستغلال هذه البنية الموزعة من أجل تحسين التقدير
لاستشعار في شبكات ا(RLS)أقل تربيع تكراري أو (LMS)تربيعي متوسط خوارزميات أقل استنادا إلى 

هي ،LMSأقل متوسط تربيعي خوارزميةفإن RLSعلى عكس خوارزميةأقل تربيع تكراري . اللاسلكية
أقل متوسط تربيعيومع ذلك، فإن أداء خوارزمية. التعقيد الحسابيالأمربخوارزمية بسيطة جدا عندما يتعلق

LMS دخلةبين البيانات المكلما زادت العلاقة الإحصاية  بينها وتتدهور.

في البداية . (NLMS)أقل متوسط تربيعي معدل : تخوارزمية الانتشارقترحاهذه المشكلة، في هذه الشبكة، لحل 
أخيرا، يتم تنفيذ نتائج المحاكاة . نقوم باستنتاج حالة الاستقرار: ثانيا. من الخوارزمية المقترحةانتقالي تحليل بنقوم 

.ثبيت النتائج النظريةلخوارزمية المقترحة، والأهم من ذلك للفضل الأداء الألإثبات 
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CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSNs) have become a hot topic of interest for re-

searchers due to the multiplicity of their uses [1] - [4]. WSN has potential for

numerous applications with several more in the pipeline [5]. Recently, WSN has

also attracted much attention for decentralized estimation of signals of interest

[6] - [15]. Here the objective is to enable each node to estimate a parameters of

interest from the observed data. Each node in the network is provided with local

learning abilities. Each node derives local estimates for the parameter of interest

and shares it with their neighbors. The resulting algorithm is distributed; Dis-

tributed algorithm outperforms traditional non-cooperative schemes in terms of

transient and steady-state mean-square error. Each node in the WSN functions

as an individual adaptive filter to estimate the parameter of interest through local

observations [16] - [18]. All the estimates obtained from the nodes are then locally

fused with their neighboring estimates in the network.
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Sensors need to be empowered with the required signal processing tools that

fully utilize the distributive nature of the network as well as provide optimal re-

sults. This need has been addressed recently and several algorithms proposed.

The aim of this thesis is to improve the signal processing capability of the dis-

tributed network in a novel way by applying diffusion normalized least mean

squares (NLMS) algorithm.

The chapter is organized as follows. A background for wireless sensor networks

and adaptive filtering is given in the context of the least mean square (LMS) and

normalized least mean square (NLMS) algorithms. This is followed by a detailed

literature survey. The aim of the thesis are then briefly explained.

1.1 Background

1.1.1 Wireless Sensor Network

A wireless sensor network (WSN) is a collection of spatially distributed autonomous

devices that use sensors to monitor physical or environmental conditions [20] - [21].

The WSN comprises of “nodes”, where each node is connected to one (or more)

sensors. Each sensor in the network node has typically several parts: a radio

transceiver, an antenna, a microcontroller, an electronic circuit for interfacing

with the sensors and a battery to fulfill energy requirement. The data collected

from the different node sensors are fused together. Generally two types of WSNs

2



are used in practice (see Fig. 1.1). One has a central processing unit known

as a Fusion Center (FC). The sensors usually sense the required data and then

transmit the data via a wireless channel to the fusion center. The sensors do not

perform much processing except quantizing and coding the data before transmit-

ting it to the fusion center. The fusion center acts as a data sink where data from

all sensors is collected and then processed in order to ascertain the estimates of

the parameters of interest. Unlike sensors, a fusion center has large processing

capability as well as storage capacity.

A network devoid of a fusion network is generally termed as an ad hoc net-

work. The sensors only communicate with neighboring sensors that are within

communication range. In such a network, the sensors have access to data from

their neighboring sensors only that can be attained via a wireless communication

link between the sensors. The sensors are required to do a two-fold process in such

cases. First, they need to acquire the available data from the nearby neighbors.

Then each sensor performs some signal processing on the available data in order

to estimate some parameter of interest.

Fusion Center-based WSN fails if the center fails, this is one of the major draw-

back. Also, the sensors located far from the center has problem communicating

with the center. Such far located sensors would require higher power to send data

to the center. However, this problem may be overcome by incorporating a multi-

hop system but, this adds additional complexity to the system. In comparison,

3



Figure 1.1: (a) A Fusion Center-based WSN; (b) An ad hoc topology

ad hoc networks are not prone to such limitation as they are working without any

such processing center. Even if some sensors fail, ad hoc WSNs still continues to

function with some performance degradation.

Currently, WSNs are beginning to be deployed at an accelerated pace. This

new technology is exciting with unlimited potential for numerous application ar-

eas including medical, surveillance, environmental, military, localization, power

spectrum estimation, target tracking and smart spaces [5]. However, recent study

shows that without empowering the sensors with some signal processing capa-

bility, this goals cannot be achieved. Sensors need to be empowered with the

required signal processing capability that fully utilize the distributive nature of

the network for better energy performance. This need has been addressed recently

and several algorithms proposed.
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1.1.2 Adaptive Filtering

An adaptive filter can be defined as a self-designing system which tries to adjust its

transfer function with the goal of meeting some well-defined target that depends

upon the state of the system and its surroundings. So the system adjusts itself

so as to respond to some phenomenon that is taking place in its surroundings.

Adaptive algorithm avoids the need to know the exact signal statistics, which

are rarely available in real practice. Also, these algorithms possess a tracking

mechanism that enables them to track variation in the signal statistics. Because

of these abilities adaptive filters are described as “smart systems” [18].

General application of adaptive filters is to estimate some unknown parameter.

For example, in wireless communications the channel is usually unknown and is

needed to be identified at the receiver in order to estimate the possible transforma-

tion that might have occurred on the transmitted information while propagating

through the wireless channel. System needs to adapt itself until there is an ap-

proximate match that of the channel. This is usually an iterative process. At

each iteration the adaptive filter outputs a certain value of the signal and tries to

match it to the received signal.

Different stochastic-gradient algorithms are Least Mean Square (LMS), Nor-

malized Least Mean Squares (NLMS), Affine Projective Algorithm (APA) and

Recursive Least Squares Algorithm (RLS). The performance of these adaptive al-

gorithms can be measured using the error. But the interesting point to note here

5



is that the actual measure to check the performance is not the error itself. Error

between the two outputs can be positive or negative and is generally a zero-mean

process. Therefore, it is not reliable to develop an algorithm for adaptation based

on just the error. A much better quantity would be the squared error or the ab-

solute error. The simplest algorithms usually tend to minimize the mean square

error. The error between the two outputs is squared and minimized. Repeating

this process over several experiments generally gives a measure of how well the

algorithm is performing. Hence the term mean square error (MSE). Recently,

another measure is being adopted by researchers called mean square deviation

(MSD). Instead of measuring the error between the channel output and the filter

output, performance is measured by looking at the error between the coefficients

of the channel and the filter. This shows how far off the filter is from reaching the

actual channel.

1.1.3 LMS Algorithm

The LMS algorithm is based on stochastic gradient descent method that relate to

producing the least mean squares of the error signal by mimicking a desired filter

by adjusting its transfer function [27]. The LMS algorithm is an approximation

of the steepest descent algorithm, which uses an instantaneous estimate of the

gradient vector. The estimate of the gradient is based on sample values of the tap

input vector and an error signal. The LMS algorithm incorporates an iterative

6



procedure over each tap weight in the filter to makes successive corrections to the

weight vector in the direction of the negative of the gradient vector which even-

tually leads to the minimum mean square error. The LMS algorithm is relatively

simple when compared to other algorithms. Assume that we have access to several

observations of regressor and desired data, given as

{u0,u1,u2, ...}

{d(0), d(1), d(2), ...}

Then LMS algorithm can be formulated as [27]:

wi = wi−1 + µui
∗[d(i)− uiwi−1] (1.1)

The LMS algorithm is the simplest adaptive filtering algorithm described by (1.1).

Because of its computational simplicity and ease of implementation, it is preferred

in most applications.

1.1.4 ε-NLMS Algorithm

The main drawback of the LMS algorithm is that it is sensitive to the scaling of

its input ui . This makes it very hard to choose a learning rate µ that guarantees

stability of the algorithm. The ε-NLMS algorithm solves this problem by normal-

7



izing with the power of the input. The ε-NLMS algorithm can be formulated as

[27]:

wi = wi−1 +
µ

ε+ ||ui||2
ui

∗[d(i)− uiwi−1] (1.2)

In ε-NLMS algorithm the step size µ will be proportional to the power of ui. The

positive constant ε avoids the possibility of division by zero, when the regressor

is zero or close to zero. Hence, ε-NLMS algorithm can be considered as a special

case of the LMS algorithm, where the step size depend upon the norm of ui. The

regressor ui with larger norm will lead to more substantial change to weight vector

wi−1, when compared to regressor with smaller norm.

There has been research in the past focusing on the comparison between the

LMS and the NLMS algorithms [22] - [24]. In 1993, Slock [24] studied the conver-

gence behavior of both the algorithms and concluded that the NLMS algorithm is

a potentially faster converging algorithm compared to the LMS algorithm. How-

ever, faster convergence comes at a cost of high computational complexity. More

recent studies towards adjustable step-size tries to relax this trade-off [25] - [26].

1.2 Literature Survey

Different WSN topologies including Fusion Center based, ad hoc ones are lacking

of hierarchies and depends on in-network processing to make agreement among

sensors on the estimate of interest. In recent years, a great body of literature
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has been proposed, building up the field of consensus-based distributed signal

processing. The tutorial in [28] gives idea about the general results and some list

of related works which is good reading for a beginner in the field.

In [29] authors develop the best possible method for getting the consensus

average in a distributed network by studying the results for several vast networks.

In [30] authors discuss consensus issues with various types of graphs and provide

some theoretical basis for their further development. Some authors suggests a

decentralized algorithm that utilizes consensus to produce results similar to a

centralized system [31] by projection into linear subspace. In all the schemes that

are mentioned so far, all the data is collected by sensors at once and after locally

exchanging messages it is reached to consensus.

In [32] authors discuss mobile environment tracking by providing algorithms

for sensor fusion using novel consensus filters and suggest methods for designing

such filters. In [33] authors suggest least squares solution in exchanging sequential

peer-to-peer data. The algorithm is not robust enough to tackle the problem of

estimating time-varying signals or dynamic systems. Apart from that, algorithm

also suffers with high computational cost and requires extensive communication

between sensors. Recently, ad hoc WSNs for distributed state estimation of dy-

namical systems has also received a lot of attention.

In many practical applications, sensors need to perform estimation in a con-

stantly changing environment without having available a (statistical) model for the
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underlying processes of interest. This motivates the development of distributed

adaptive estimation algorithms, the subject dealt with in the current work. Here

each sensor transmits its update to the next sensor in the cycle, which then uses

its own data to update this estimate. Such incremental schemes offer faster con-

vergence than a centralized solution at a very low complexity cost which make

the incremental algorithm very attractive. However, in case of any node failure,

the cycle is broken and the network turns down.

In [14] author proposed a new algorithm that fully exploited the distributed

nature of the network by getting rid of the topological constraints in [6]. The

overall solution was more practical even with increased computational cost. The

algorithm was termed as diffusion LMS. Each sensor forms a convex combination of

the local estimates acquired from the nearby neighbors and this combined estimate

is then used in the LMS recursion to update the local estimate. This new diffusion

LMS algorithm outperforms the previous algorithm. In [9] the performance is

further improved by diffusing not only the local estimates but also the sensor

observations to nearby neighbors. This results in improving the flow of data

across the WSN but can be computationally expensive, especially in the presence

of communication noise. A new variant is suggested in [10], where the network was

divided into several small networks, each with its own diffusion LMS algorithm

network. This hierarchical structure provides improved performance but at the

cost of extra computational cost. A distributed RLS scheme was introduced in [34]
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for applications where fast convergence is required and sensors can be burdened

with increased computational load. A detailed analysis and design of the diffusion

RLS scheme was given in [35].

In [36] authors discuss the diffusion algorithm used to synchronize the mobile

sensors moving towards a specific target. The proposed algorithm is robust in

estimating in constantly changing environment. Each sensor has access to a di-

rection vector as well its own position. The sensed data by each node is simply

the target position towards which the network has to travel. Due to the noise

present in sensed data, the exact position has to be estimated and make sure that

each node is moving in sync with the other nodes. Hence, target is estimated by

each node by updating its own position and speed with sync to its neighboring

sensors. Even though the work presented in [36] is application specific, yet it

can be extended for both systems working in stationary as well as non-stationary

environments.

So far discussed algorithms assume that each node has access to regressor data,

but with the assumption that there is no correlation among the data. In a real

scenario, however the absence of correlation cannot be neglected, therefore, this

work addresses this issue. In a slowly changing environment, data will show high

correlation. Moreover, one also needs to consider this correlation to fully exploit

the distributed system for a better energy performance. The ε-NLMS algorithm

is a variant of LMS algorithm that exhibits better performance in the presence of
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correlated data and provides generic solution.

1.3 Thesis Objectives

The aim of this thesis is to derive a distributed adaptive solution for ε-NLMS

algorithm under diffusion protocol. The proposed diffusion ε-NLMS algorithm is

then compared with diffusion LMS algorithm for non-white Gaussian data. The

thesis objectives can be enumerated as:

1. To develop the diffusion ε-NLMS algorithm.

2. To find the range of values for which the step size guarantees convergence

of the proposed algorithm.

3. To study the transient analysis of the diffusion ε-NLMS algorithm.

4. To study the steady-state analysis of the diffusion ε-NLMS algorithm.

5. To compare the performance of the diffusion ε-NLMS algorithm to that of

the diffusion LMS algorithm.
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CHAPTER 2

PROPOSED ADAPTIVE

ALGORITHM

2.1 Introduction

In this chapter, we discuss the proposed ε-NLMS adaptive algorithm for diffusion

protocol to implement cooperation among individual nodes in the network. We

will begin our discussion by defining the problem statement, and deriving the

proposed diffusion strategy for ε-NLMS algorithm. After that, the combined

effect of several interconnected nodes in the network is discussed. Following this,

in the coming sections we will discuss the transient and steady state analyses of

the diffusion ε-NLMS algorithm.

Before we begin further, we shall introduce the data model that we adopted

for the analysis, which has been used before in the adaptive literature, and rely
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on them to derive the performance measures.

A1 There exists a vector wo at each node k such that dk (i) = uk,iw
o + vk (i).

A2 The noise sequence vk (i) is zero mean i.i.d. with variance σ2
v,k, and with

possibly different statistical profile for each node k.

A3 The noise sequence vk (i) is independent of uk,j for all i, j.

A4 The initial conditionw−1
k at each node k is independent of all {dk (i) ,uk,i, vk (i)}.

2.2 Problem Statement

We have to estimate an Mx1 unknown vector w0 from the data collected from N

distributed nodes (see Fig. 2.1). The scalar measurement sensed by node k, dk at

any time instant i, is given as

dk (i) = uk,iw
o + vk (i) , (2.1)

where vk (i) is zero-mean additive white noise. The simplest solution to this

estimation problem is for each node to estimate the unknown vector using only

its own set of data. Such a case is termed as the no cooperation case as the nodes

are not communicating with each other. The spatial diversity of the nodes is not

being utilized here and so this case is counter productive as the poor performance

of the nodes with low SNR will result in poor performance of the network. In
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Figure 2.1: Adaptive Network of N (N=7) Nodes.

order to obtain a fully distributed estimation algorithm, a cost function is needed

that defines the complete network. Thus, the cost function is defined as follows:

J (w) =
N∑
k=1

Jk (w)

=
N∑
k=1

E
[
|dk − ukw|2

]
. (2.2)

Consequently, the steepest descent solution for this problem is given as

wi
k = w

(i−1)
k + µ

N∑
k=1

(
Rdu,k −Ru,kw

(i−1)
k

)
, (2.3)

where Rdu,k = E [dku
∗
k] is the cross-correlation between dk and uk, and Ru,k =

E [u∗
kuk] is the auto-correlation of uk. The recursion (2.3) requires full knowledge

of the statistics of the entire network. Moreover, it requires exact statistical
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knowledge of the data, which is not possible in a practical scenario. A more

practical solution utilizes the distributive nature of the network by dividing the

cost function into local cost functions that add up to the global cost function.

The solution to the local cost functions is similar to (2.3). However, a practical

approach leads to the use of the least mean square (LMS) algorithm as a solution.

The work in [14] gives a fully distributed solution, given as

ϕ
(i−1)
k =

∑
l∈Nk,i−1

cklψ
(i−1)
l (2.4a)

ψi
k = ϕ

(i−1)
k + µkuk,i

∗(dk(i)− uk,iϕ
(i−1)
k ) (2.4b)

where ψi
k is the intermediate update, ckl is the weight connecting node k to its

neighboring node l ∈ Nk and can be fixed according to a chosen rule [14], and µk

is the step-size for the kth node. Each node uses its own set of data, {dk(i),uk(i)},

to get an intermediate update for the estimate. Then intermediate updates from

neighbor nodes are combined together through a weighted sum to get the final

update for the estimate.

The author in [14] propose diffusion LMS-based algorithms, on the assumption

that there is no correlation among the data. In a real scenario, however the absence

of correlation cannot be neglected. In a slowly changing environment, data will

show high correlation. Moreover, one also needs to consider this correlation to

fully exploit the distributed system for a better energy performance.
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2.3 Diffusion ε-NLMS Algorithm

There are different types of cooperation strategy available in the literature. In

diffusion strategy, every node k has access to estimates of its neighbors. The

neighborhood of the nodes is defined in combiner matrix. Consider that at any

given time i− 1 node k has access to estimates ψ
(i−1)
k from its neighborhood.

Now these local estimates are fused together at node k

ϕ
(i−1)
k =

∑
l∈Nk,i−1

cklψ
(i−1)
l (2.5)

where ckl ≥ 0 are coefficients of combiner matrix. Here combiner matrix is gener-

ated using the Metropolis rule defined as follows

ckl =



1
max(nk,nl)

, if k ̸= l are linked

0, for k and l not linked

1−
∑

l∈Nk|k
ckl, for k = l

(2.6)

where nk and nl define the number of neighbor connections present for nodes k

and l respectively. Combiner matrix calculated using the equation (2.6) defines

the complete network topology. A non-zero entry ckl states that nodes k and l are

connected.

The coefficients of combiner matrix C must satisfy the following condition to
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ensure the stability and robustness of cooperative scheme

∑
l

ckl = 1, l ∈ Nk,i−1 (2.7)

Once we have the fused estimate ϕ
(i−1)
k at node k, the ε-NLMS recursion at

every node k can be given as

ψi
k = ϕ

(i−1)
k +

µk

ε+ ||uk,i||2
u∗

k,i
(dk(i)− uk,iϕ

(i−1)
k ) (2.8)

The above ε-NLMS recursion exhibits faster convergence behavior than LMS

recursion for slow changing environment where data are expected to show high

correlation. The positive constant ε avoids the possibility of division by zero,

when the regressor is zero or close to zero.

In summary, the diffusion strategy for ε-NLMS recursion is given as

ϕ
(i−1)
k =

∑
l∈Nk,i−1

cklψ
(i−1)
l (2.9a)

ψi
k = ϕ

(i−1)
k +

µk

ε+ ||uk,i||2
u∗

k,i
(dk(i)− uk,iϕ

(i−1)
k ) (2.9b)

where ckl are the coefficients of combiner matrix satisfying equation (2.6).
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2.4 Network Global Model

We now proceed to state-space representation. Let us introduce some global

quantities

ψi = col{ψ(i)
1 , ...,ψ

(i)
N }, ϕi−1 = col{ϕ(i−1)

1 , ...,ϕ
(i−1)
N },

Ui = diag{u1,i, ...,uN,i}, di = col{d1(i), ...,dN(i)},

H = diag{h1(i)I, ..., hN(i)I},

D = diag{µ1I, µ2I, ..., µNI}

where hk(i) is a scalar normalization term at node k at time instance i. It is given

as

hk(i) =
1

ε+ ||uk,i||2

The traditional model of the form

dk(i) = uk,iw
o + vk(i) (2.10)

where vk(i) is noise, which is independent in time and space with variance σ2
v,k.

Using the global quantities, equation (2.10) we can rewritten as

di = Uiw
(o) + vi (2.11)
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where w(o) = Qwo,

Q = col{IM, ..., IM} is (NM × M) with IM the M × M identity matrix,

vi = col{v1(i), v2(i), ..., vN(i)} is (N × 1). Using the above relations, equation

(2.9) can be represented in terms of global quantities:

ϕi−1 = Gψi−1 (2.12a)

ψi = ϕi−1 +DHU ∗
i (di −Uiϕ

i−1) (2.12b)

where G = C ⊗ IM is the transition matrix of order (NM × NM). ⊗ represent

kronecker product.

2.5 Comparison of Computational Complexity

In order to study the variation in performance of the two or more algorithms it is

necessary to look at the computational cost as it tells us how much an algorithm

gains in terms of computations as it loses in terms of performance. We first look at

the complexity of the diffusion LMS algorithm and then move on to the diffusion

ε-NLMS algorithm.
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2.5.1 Diffusion LMS Algorithm

Consider a WSN of N nodes each with an unknown vector of length M . This

means the complete data block matrix of size N × M . The correlation matrix

formed using this matrix will thus have the size M × M . Let us analyze the

computational complexity of each single node separately. The algorithm requires

the evaluation of the inner product uk,iϕ
(i−1)
k between two vectors of size M which

requires total of M multiplications and M − 1 additions. After this, evaluation

of the scalar (dk(i) − uk,iϕ
(i−1)
k ) requires 1 additions. Evaluation of the product

µk(dk(i) − uk,iϕ
(i−1)
k ) requires 1 multiplication. Further, multiplying the scalar

µk(dk(i) − uk,iϕ
(i−1)
k ) with u∗

k,i
requires M multiplications. The addition of two

vectors µku
∗
k,i
(dk(i) − uk,iϕ

(i−1)
k ) and ϕ

(i−1)
k requires M additions. Finally, the

calculation of aggregate estimate
∑

l∈Nk,i−1

cklψ
(i−1)
l at any node k requires NM

multiplications and NM additions.

2.5.2 Diffusion ε-NLMS Algorithm

Consider a similar model of WSN with N nodes each with an unknown vector of

length M . The computational complexity of ε-NLMS algorithm is same as LMS

algorithm, expect multiplication of additional vector 1
||uk,i||2

with µku
∗
k,i
(dk(i) −

uk,iϕ
(i−1)
k ), which requires additional M multiplications.

Table. 2.1 summarizes the computational complexity of diffusion LMS algo-

rithm and diffusion ε-NLMS algorithm.
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``````````````̀Computation
Algorithm

Diffusion LMS Diffusion ε-NLMS

Multiplication (2 +N)M + 1 (3 +N)M + 1

Addition (2 +N)M (2 +N)M

Table 2.1: Computational complexity of Diffusion LMS and Diffusion ε-NLMS algorithms.
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CHAPTER 3

TRANSIENT ANALYSIS OF

DIFFUSION NORMALIZED

LMS ALGORITHM

3.1 Introduction

The performance of the adaptive filters can be studied using transient analysis,

which shows how fast and how stable adaptive filters can adapt to the changes

in the signal. The study of the transient behavior of the adaptive algorithms is

an essential part of adaptive filter performance analysis. In this chapter, we will

discuss the stabilization effect of diffusion protocol on adaptive filter, in mean and

mean square sense. Followed by, derivation of the learning curves of mean square
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deviation (MSD) and excess mean square error (EMSE).

3.2 Mean Analysis

We now focus our attention on mean analysis of adaptive filter for cooperative

scheme. Recall global cooperative scheme defined by (2.12) can be represented as

ψi = Gψi−1 +DHU ∗
i (di −UiGψ

i−1) (3.1)

Introduce the global weight error vector

ψ̃i = w(o) −ψi (3.2)

Now subtractingw(o) from both sides of equation (3.1) and using the factGw(o) =

w(o), we get

ψ̃i = Gψ̃i−1−DHUi
∗(di −UiGψ

i−1)

ψ̃i = Gψ̃i−1−DHUi
∗(Uiw

(o) + vi −UiGψ
i−1)

ψ̃i = Gψ̃i−1 −DHUi
∗(UiGψ̃

i−1+vi) (3.3)

ψ̃i = (INM −DHUi
∗Ui)Gψ̃

i−1−DHUi
∗vi (3.4)
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Now taking expectation on both sides of (3.4) gives

E[ψ̃i] = {INM −DE[HUi
∗Ui]}GE[ψ̃i−1]−DH E[Ui

∗vi] (3.5)

In above equation, second term on right-hand side becomes zero using indepen-

dence assumption A3. Then equation (3.5) becomes

E[ψ̃i] = {INM −DE[HUi
∗Ui]}GE[ψ̃i−1] (3.6)

But unfortunately closed form for the term E[HUi
∗Ui] is not available in gen-

eral. And in order to continue our analysis, we consider the following assumption

[19], which has been used before in the adaptive literature to derive closed form

expressions.

E

[
u∗

k,iuk,i

ε+ ∥uk,i∥2

]
≈

E
[
u∗

k,iuk,i

]
E
[
ε+ ∥uk,i∥2

] = Ru,k

ε+ Tr(Ru,k)
(3.7)

We will show using the simulations that this assumption leads to good results.

Using assumption (3.7) equation (3.6) becomes

E[ψ̃i] = (INM −DHRu)GE[ψ̃i−1] (3.8)

25



Now the stability in the mean sense is guaranteed if the eigenvalues of

{INM −DE[HUi
∗Ui]}G lies inside a unit circle. Mathematically, the following

condition must be satisfied:

|λmax{INM −DE[HUi
∗Ui]G}| ≤ 1 (3.9)

Now using matrix 2-norms and the relation between transition matrix and com-

biner matrix (G = C ⊗ IM) we get,

∥C∥2 |λmax{INM −DE[HUi
∗Ui]}| ≤ 1 (3.10)

Since C is a stochastic and symmetric matrix whose coefficients are carefully

selected satisfying the condition (2.7), we get

|λmax{INM −DE[HUi
∗Ui]}| ≤ 1 (3.11)

The convergence in the mean for single node is guaranteed for step size in the

range [4]

0 < µ <
2

λmax

{
E
[

Ui
∗Ui

ε+||Ui||2

]} (3.12)
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Using Rayleigh-Ritz characterization for the maximum eigenvalue of any Hermi-

tian matrix [4], and noting that HUi
∗Ui is block diagonal, we get

λmax{E[HUi
∗Ui]} = max

||x||=1
x∗E[HUi

∗Ui]x (3.13)

= max
||x||=1

E[x∗HUi
∗Uix]

≤ 1

Hence (3.12) can be rewritten as,

0 < µ < 2. (3.14)

Therefore, convergence in the mean sense is guaranteed, if step size µ satisfies the

above condition. This is only a necessary condition for convergence in the mean

square sense, which will be dealt in the coming section.

3.3 Mean Square Analysis

In this section we focus our attention towards mean-square analysis, which is con-

cerned with the stability and convergence rate of the adaptive filter. This section

will deal with formulating a suitable model to study the convergence behavior of

adaptive filter for diffusion protocol, and the condition for which diffusion protocol

has stabilizing effect on network.
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3.3.1 Variance Relation

Let us begin our analysis by performing weighted energy balance and taking ex-

pectation on both sides of equation (3.3):

E
∥∥∥ψ̃i

∥∥∥2
Σ
= E

[
(Gψ̃i−1 −DHUi

∗(eGa,i + vi))
∗
Σ (Gψ̃i−1 −DHUi

∗(eGa,i + vi))
]

(3.15)

where global a priori and a posteriori weighted estimated error is given as:

eGa,i = UiGψ̃
i−1 (3.16a)

ep,i = Uiψ̃
i (3.16b)

E
∥∥∥ψ̃i

∥∥∥2
Σ
= E

∥∥∥ψ̃i−1
∥∥∥2
G∗ΣG

− E[ψ̃∗i−1G∗ΣDHUi
∗(eGa,i + vi)]

− E[(eGa,i + vi)UiH
∗D∗ΣGψ̃i−1]

+ E[(eGa,i + vi)
∗UiH

∗D∗ΣDHUi
∗(eGa,i + vi)] (3.17)

Using the fact that D and H are diagonal matrices, transpose condition can be

removed. And since input regressor Ui is independent of vi above equation can
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be rewritten as:

E
∥∥∥ψ̃i

∥∥∥2
Σ
= E

∥∥∥ψ̃i−1
∥∥∥2
G∗ΣG

− E[ψ̃∗i−1G∗ΣDHUi
∗(eGa,i)]

− E[(eGa,i)
∗UiHDΣGψ̃i−1]

+ E[(eGa,i)
∗UiHDΣDHUi

∗(eGa,i)]

+ E[vi
TUiHDΣDHUi

∗vi] (3.18)

Substituting global a priori and a posteriori error (3.16) in above equation gives,

E
∥∥∥ψ̃i

∥∥∥2
Σ
= E

∥∥∥ψ̃i−1
∥∥∥2
G∗ΣG

− E[(eHDΣG
a,i )∗(eGa,i)]− E[(eGa,i)

∗(eHDΣG
a,i )]

+ E[(eGa,i)
∗UiHDΣDHUi

∗(eGa,i)] + E[vi
∗UiHDΣDHUi

∗vi] (3.19)

This equality can be written more compactly as follows by introducing the random

weighting matrix Σ′ of order (NM ×NM)

E
∥∥∥ψ̃i

∥∥∥2
Σ
= E

∥∥∥ψ̃i−1
∥∥∥2
Σ′

+ E[v∗iUiHDΣDHUi
∗vi] (3.20)

where,

Σ′ = G∗ΣG−G∗ΣHDE[Ui
∗Ui]G−G∗E[Ui

∗Ui]DHΣG

+G∗E[Ui
∗UiHDΣDHUi

∗Ui]G (3.21)
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Note that H is global normalization matrix defined earlier, which can be treated

separately based on assumption (3.7). Above equation shows the time evolution

of E
∥∥∥ψ̃i

∥∥∥2
Σ

for some choices of interest for Σ of order (NM × NM). For mean

square deviation (MSD) value of Σ is I and for excess mean square deviation

(EMSE) value of Σ is Ru.

3.3.2 Colored Gaussian Data

To continue with the analysis of mean square behavior we need to calculate the

moments present in equation (3.20)-(3.21). For that we restrict our attention to

colored Gaussian input with block diagonal correlation matrix Ru. Let Ru =

QΛQ∗ denote the eigenvalue decomposition of the autocorrelation matrix, where

Λ is a diagonal matrix given as diag{Λ1,Λ2, ...,ΛN}, and Q is unitary matrix

(QQ∗ = Q∗Q = I). The block diagonal correlation matrix Ru can be given as:

Ru =



R1 0 · · · 0

0 R2 · · · 0

...
...

. . . 0

0 0 0 RN


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where,

Rk =



1 α · · · αM−1

α 1 · · · αM−2

...
...

. . .
...

αM−1 αM−2 · · · 1


1 ≤ k ≤ N,

where M is the length of the unknown system, and 0 < α < 1 is the correlation

coefficient. Evaluation of the moments in equation (3.21) can be simplified by

using the assumption (3.7) and defining the following transformed quantities:

ψ̄i = Q∗ψ̃i, Ūi = UiQ, Ḡ = Q∗GQ

Σ̄ = Q∗ΣQ, Σ̄′ = Q∗Σ′Q, D̄ = Q∗DQ

H̄ = Q∗HQ

Also D̄ =D and H̄ =H since both D and H are diagonal matrices. Using the

above transformed quantities, variance relation (3.20)-(3.21) can be rewritten as,

E
∥∥ψ̄i

∥∥2
Σ̄
= E

∥∥ψ̄i−1
∥∥2
Σ̄′ + E[vi

∗ŪiHDΣ̄DHŪi
∗
vi] (3.22)

Σ̄′ = Ḡ∗Σ̄Ḡ− Ḡ∗Σ̄DHE[Ūi
∗
Ūi]Ḡ

− Ḡ∗E[Ūi
∗
Ūi]HDΣ̄Ḡ

+ Ḡ∗E[Ūi
∗
ŪiHDΣ̄DHŪi

∗
Ūi]Ḡ (3.23)
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Before we begin further in evaluating the required data moments in equations

(3.22)-(3.23), we need to introduce some useful functions which will aid us in

evaluating the data moments.

Block Vector Notation

We are already familiar with vec{.} notation used for single node wireless sensor

to replace an M ×M arbitrary matrix by an M2 × 1 column vector by stacking

the successive columns of matrix on top of each other [18]. For wireless sensor

network with N nodes, we need to introduce a new notation bvec{.} which has

same function as vec{.} except that it will process the data block-by-block. For

block matrix Ru of order NM ×NM

Ru =



R11 R12 · · · R1N

R21 R22 · · · R2N

...
...

. . .
...

RN1 RN2 · · · RNN


(3.24)
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where each block Rkl is of order M×M . k, l = 1, 2, ..., N . Now consider the block

columns are stacked on top of each other, yielding the N2M ×M matrix

Rc
u =



R1

R2

...

RN


(3.25)

where Rl = col{R1l,R2l, ...,RNl}, l = 1, 2, ..., N . Once we have obtained Rc
u, we

can use the standard vec{.} to vectorize individual block Rkl, to obtain vector rkl

of order M2 × 1,

rkl = vec{Rkl} (3.26)

where rkl are the coefficients of column matrix

rk = col{r1l, r2l, ..., rNl} (3.27)

The final vectorized matrix r of order (N2M2 × 1) can be represented as,

r = bvec{Ru} (3.28)

The choice of notation is generally accepted as a two-directional operation, which

maps block diagonal matrices to vectors and vectors to block diagonal matrices.
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Therefore, we can write Ru = bvec−1{r} in order to recover the original block

matrix from the column vector r.

Block Kronecker Product

The Kronecker product [18] of two matrices A and B, of order Ma × Na and

Mb × Nb respectively is denoted by A ⊗B and is defined as the MaMb × NaNb

matrix

A⊗B =



a11B a12B · · · a1NaB

a21B a22B · · · a2NaB

...
...

. . .
...

aMa1B aMa2B · · · aMaNaB


(3.29)

This operation can be extended for wireless sensor network, where data will be

processed block-by-block. Now consider two block matrices A and B, for which

block Kronecker product is denoted by A⊙B. Its kl-block is represented as

[A⊙B]kl =



Akl ⊗B11 Akl ⊗B12 · · · Akl ⊗B1N

Akl ⊗B21 Akl ⊗B22 · · · Akl ⊗B2N

...
...

. . .
...

Akl ⊗BN1 Akl ⊗BN2 · · · Akl ⊗BNN


(3.30)

where k, l = 1, 2, ..., N . Block Kronecker product has several useful properties, but

the one which we will be using is for evaluating the data moments as following.
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For any matrices {A,Σ,B} of compatible dimensions, the following relation is

satisfied

bvec{AΣB} = (B ⊙AT )bvec{Σ} (3.31)

bvec{AΣB} = (B ⊙AT )σ (3.32)

where σ = bvec{Σ}.

Now that we have defined block vector notation and block Kronecker product, we

are equipped with the tools needed to evaluate the data moments present in (3.22)-

(3.23), namely, E[Ūi
∗
Ūi], E[vi

∗ŪiHDΣ̄DHŪi
∗
vi] andE[Ūi

∗
ŪiHDΣ̄DHŪi

∗
Ūi].

We will derive these moments based upon the assumption stated in (3.7). This

approximation is justified if fluctuation in the input signal from one iteration to

the next is small enough [19].

The first moment is immediate to compute and is given by E[Ūi
∗
Ūi] = Λ. So

that equation (3.23) can be rewritten as

Σ̄′ = Ḡ∗Σ̄Ḡ− Ḡ∗Σ̄DHΛḠ

− Ḡ∗ΛHDΣ̄Ḡ

+ Ḡ∗E[Ūi
∗
ŪiHDΣ̄DHŪi

∗
Ūi]Ḡ (3.33)

Second term on right-hand side of the above equation (3.33) can be evaluated
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using (3.32), which gives

bvec{Ḡ∗Σ̄DHΛḠ} = (Ḡ⊙ Ḡ∗T )bvec{INMΣ̄DHΛ}

= (Ḡ⊙ Ḡ∗T )(ΛHD ⊙ INM)bvec{Σ̄}

= (Ḡ⊙ Ḡ∗T )(ΛHD ⊙ INM)σ̄ (3.34)

Similarly third term on right-hand side of the above equation (3.33) can be given

as,

bvec{Ḡ∗ΛHDΣ̄Ḡ} = (Ḡ⊙ Ḡ∗T )bvec{ΛHDΣ̄INM}

= (Ḡ⊙ Ḡ∗T )(INM ⊙ΛHD)bvec{Σ̄}

= (Ḡ⊙ Ḡ∗T )(INM ⊙ΛHD)σ̄ (3.35)

To further proceed with the analysis we shall introduce the following assumption

E

[
u∗

k,iuk,iu
∗
k,iuk,i

(ε+ ∥uk,i∥2)(ε+ ∥uk,i∥2)

]
≈

E
[
u∗

k,iuk,iu
∗
k,iuk,i

]
E
[
ε+ ∥uk,i∥2

]
E
[
ε+ ∥uk,i∥2

] (3.36)

Since D and H are block diagonal matrices and using assumption (3.36), the
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fourth term on right-hand side of the equation (3.33) can be given as,

bvec{Ḡ∗E(Ūi
∗
ŪiHDΣ̄DHŪi

∗
Ūi)Ḡ} = (Ḡ⊙ Ḡ∗T )bvec{E(Ūi

∗
ŪiHDΣ̄DHŪi

∗
Ūi)}

= (Ḡ⊙ Ḡ∗T )(HD ⊙DH)bvec{E(Ūi
∗
ŪiΣ̄Ūi

∗
Ūi)}

= (Ḡ⊙ Ḡ∗T )(HD ⊙DH)bvec{A}

(3.37)

where A = E(Ūi
∗
ŪiΣ̄Ūi

∗
Ūi). For fourth-order moment of real Gaussian variables

following condition [18] hold for kl-block of A.

Akl = Eū∗
k,iūk,iΣ̄ū

∗
l,iūl,i =


ΛkTr(ΛkΣ̄kk) + γΛkΣ̄kkΛk, for k = l

ΛkΣ̄kl,Λl for k ̸= l

(3.38)

where γ = 1 for complex data and γ = 2 for real data. Let us decompose matrix

A as

A = [A1,A2, ...,AN ] (3.39)

where Al is the lth block column of A

Al = col {A1l,A2l, ...,ANl} (3.40)
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Now let us define block vectorized matrix of A as,

a = bvec{A} = col{a1,a2, ...,aN} (3.41)

where al is a column vector defined as,

al = col{a1l,a2l, ...,aNl} (3.42)

where akl is obtained by applying vec{.} operation on Akl,

akl = vec{Akl} =


(λkλ

T
k + γΛk ⊗Λk)σ̄kk, for k = l

(Λk ⊗Λl)σ̄kl for k ̸= l

(3.43)

where λk = vec{Λk}. Hence

al = col {(Λ1 ⊗Λl)σ̄1l, (Λ1 ⊗Λl)σ̄2l , ...,

(λlλ
T
l + γΛl ⊗Λl)σ̄1l, ..., (ΛN ⊗Λl) σ̄Nl}

= Alσ̄l (3.44)

where, Al = diag {(Λ1 ⊗Λl) , ..., (λlλ
T
l + γΛl ⊗ Λl), ..., (ΛN ⊗ Λl )} and σ̄l =

col{σ̄1l, σ̄2l, ..., σ̄Nl}. Hence,

bvec{A} = Aσ̄ (3.45)
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where, A = diag{A1,A2, ...,AN} and σ̄ = bvec{Σ̄}. Therefore substituting

(3.45) in (3.37), we get the closed form for fourth-order moment

bvec{Ḡ∗E(Ūi
∗
ŪiHDΣ̄DHŪi

∗
Ūi)Ḡ} = (Ḡ⊙ Ḡ∗T )(HD ⊙DH)Aσ̄ (3.46)

Now let us find the closed form of second term in right-hand side of (3.22)

E[vi
∗ŪiHDΣ̄DHŪi

∗
vi] = E[Tr(vivi

∗ŪiHDΣ̄DHŪi
∗
)]

= Tr(ΛvE[ŪiHDΣ̄DHŪi
∗
]) (3.47)

where Λv > 0 is a diagonal matrix given by

Λv = diag
{
σ2

v,1,σ
2
v,2, ...,σ

2
v,N

}

The kl-block of E[ŪiHDΣ̄DHŪi
∗
] is given by

{
E[ŪiHDΣ̄DHŪi

∗
]
}
kl
=


0 for k ̸= l

µ2
kh

2
kTr(ΛkΣ̄kk) = µ2

kh
2
kλ

T
k σ̄kk for k = l

(3.48)

so that (3.47) can be written as

Evi
∗ŪiHDΣ̄DHŪi

∗
vi = b

T σ̄ (3.49)
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where b = bvec{RvD
2H2Λ} and Rv = Λv ⊙ IM. Now substituting closed form

of all the data moments in (3.22)-(3.23), we get

E
∥∥ψ̄i

∥∥2
σ̄
= E

∥∥ψ̄i−1
∥∥2
F̄ σ̄

+ bT σ̄ (3.50)

F̄ = (Ḡ⊙ Ḡ∗T ) [IN2M2 − (INM ⊙ΛHD)

−(ΛHD ⊙ INM) + (HD ⊙DH)A] (3.51)

The transient behavior of the network is characterized by (3.50). The vector

weighting factor {σ̄, F̄ σ̄} in this expression is compact representation for the

actual weighting matrices {bvec{Σ̄}, bvec{Σ̄′}}. Equation (3.50) - (3.51) gives

the variance relation used to characterize the mean-square behavior of the filter

for diffusion protocol.

3.3.3 Constructing the Learning Curves

The desired quantity E
∥∥ψ̄i

∥∥2 can be obtained from variance relation (3.50) if Σ̄

is chosen as Σ̄ = INM. This corresponds to choosing σ̄ as

σ̄ = (1/N)bvec{INM} = qn (3.52)
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Equation (3.50), for successive time instants,

E
∥∥ψ̄i

∥∥2
qn

= E
∥∥ψ̄i−1

∥∥2
F̄ qn

+ bTqn

E
∥∥ψ̄i−1

∥∥2
F̄ qn

= E
∥∥ψ̄i−2

∥∥2
F̄ 2qn

+ bT F̄ qn

...

E
∥∥ψ̄0

∥∥2
F̄ iqn

= E
∥∥w̄(o)

∥∥2
F̄ i+1qn

+ bT F̄ iqn

where w̄(o) = Q∗w(o). Above equation can be written in more compact form as,

E
∥∥ψ̄i

∥∥2
qn

= E
∥∥w̄(o)

∥∥2
F̄ i+1qn

+ bT

(
i∑

k=0

F̄ k

)
qn (3.53)

From this result it can be verified that E
∥∥ψ̄i

∥∥2 satisfies the following recursion

E
∥∥ψ̄i

∥∥2
qn

= E
∥∥ψ̄i−1

∥∥2
qn

+ bT F̄ iqn −
∥∥w̄(o)

∥∥2
F̄ i(I−F̄)qn

(3.54)

This recursion describes the time evolution of E
∥∥ψ̄i

∥∥2. Global learning curve for

mean square deviation (MSD) can be obtained by iterating recursion (3.54). In

similar way, by selecting σ̄ = (1/N)bvec{Λ} = λς gives global learning curve for

excess mean square error as,

E
∥∥ψ̄i

∥∥2
λς

= E
∥∥ψ̄i−1

∥∥2
λς

+ bT F̄ iλς −
∥∥w̄(o)

∥∥2
F̄ i(I−F̄ )λς

(3.55)
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We can now use the above learning curves (3.54) - (3.55) of mean square devia-

tion (MSD) and excess mean square error (EMSE) to study the behavior of the

proposed diffusion ε-NLMS adaptive algorithm for colored Gaussian input data.

3.3.4 Mean Square Stability

Variance relation (3.50) - (3.51) is used in this section to discuss the stability of

the adaptive filter for diffusion protocol. Equation (3.51) can be rewritten in more

compact form as,

F̄ = (Ḡ⊙ Ḡ∗T )K (3.56)

where K = [IN2M2 − (INM ⊙ΛHD) −(ΛHD⊙ INM) + (HD⊙DH)A]. Step

size µ must satisfy
∣∣λ(F̄ )

∣∣ < 1 in order to guarantee stability in mean square

sense for cooperative strategy. Using matrix 2-norms

∥∥F̄∥∥
2
=
∥∥(Ḡ⊙ Ḡ∗T )K

∥∥
2

=
∥∥PT (Ḡ⊗ Ḡ∗T )P ·K

∥∥
2

=
∥∥Ḡ∥∥

2
·
∥∥Ḡ∗T∥∥

2
· ∥K∥2 (3.57)

where P is some permutation matrix. Recall G = C ⊗ IM, we get

∣∣λmax((Ḡ⊙ Ḡ∗T )K)
∣∣ ≤ ∥C∥22 · |λmax(K)| (3.58)

42



Since C is a stochastic and symmetric matrix whose coefficients satisfy the con-

dition (2.7), we get

∣∣λmax((Ḡ⊙ Ḡ∗T )K)
∣∣ ≤ |λmax(K)| (3.59)

From the above relation it is clear that cooperation under diffusion protocol has

stabilizing effect on the network in mean square sense. Since the largest eigenvalue

of (Ḡ⊙ Ḡ∗T )K is smaller when compared to largest eigenvalue of (K).

3.4 Simulation Results

In this section, the results of the computer simulations are presented which are

made to investigate the performance behavior of the diffusion ε-NLMS algorithm.

A number of simulation results are carried out to corroborate the theoretical

finding.

First, we will show how the diffusion ε-NLMS algorithm provides better per-

formance in terms of the mean-square deviation as compared to the diffusion

LMS algorithm for correlated input data. After this, we will present a number

of simulations which shows that there is a good match between the theoretical

and simulation results of the diffusion ε-NLMS algorithm. Fig. 3.1 defines the

network topological structure and statistics of the adaptive network following dif-

fusion protocol.
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Figure 3.1: Network topology and statistics.

3.4.1 Comparison of Diffusion LMS and Diffusion ε-NLMS

In this section, we will compare the diffusion ε-NLMS algorithm to the diffusion

LMS algorithm and show that, the diffusion ε-NLMS algorithm outperforms diffu-

sion LMS algorithm in mean square deviation and excess mean square error sense

for correlated input data.

Consider a network of 7 nodes each with tap length of 10. A non-white Gaus-

sian input process with correlation factor α was fed into both the diffusion LMS

and diffusion ε-NLMS algorithms while the output noise was set as a zero mean

random process with variance 0.01. The experiment was conducted for Gaussian

noisy environment and the results were averaged over 100 experiments.

The experiment results show that the performance of diffusion LMS and diffu-

sion ε-NLMS algorithms is almost identical for small correlation factor (α = 0.1),

which shows that the diffusion of data also helps to mitigate data correlation.
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However, when the correlation factor α is increased, diffusion ε-NLMS algorithm

provides better performance than diffusion LMS algorithm.
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Figure 3.2: Global MSD of the diffusion LMS and diffusion ε-NLMS algorithm
for α = 0.1.
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Figure 3.3: Global EMSE of the diffusion LMS and diffusion ε-NLMS algorithm
for α = 0.1.
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Figure 3.4: Global MSD of the diffusion LMS and diffusion ε-NLMS algorithm
for α = 0.6.
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Figure 3.5: Global EMSE of the diffusion LMS and diffusion ε-NLMS algorithm
for α = 0.6.

3.4.2 Comparison of Theoretical and Simulation Results

for Transient Analysis

In this section, we will try to see if the theoretical findings pertaining to the

transient analysis of the diffusion ε-NLMS algorithm agree with the simulation

results. A randomly generated normalized system weight vector with the number

of taps set at 5.
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Consider a network of 7 nodes each with tap length of 5. A non-white Gaus-

sian input process with correlation factor α was fed into the diffusion ε-NLMS

algorithm. The simulations were performed for Gaussian noise environment with

noise variance values selected were 0.1, 0.01 and 0.001. The experiment is re-

peated for various correlation factors α. As we see from the figures, there is a

good match between theory and simulation results.

100 200 300 400 500 600 700 800 900 1000

−20

−15

−10

−5

0

Iteration

M
S

D
 (

dB
)

 

 
Diffusion − Simulation
Diffusion − Theory

Figure 3.6: Global MSD of the diffusion ε-NLMS algorithm for α = 0.1 and Noise
Variance 0.1.
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Figure 3.7: Global EMSE of the diffusion ε-NLMS algorithm for α = 0.1 and
Noise Variance 0.1.
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Figure 3.8: Global MSD of the diffusion ε-NLMS algorithm for α = 0.1 and Noise
Variance 0.01.
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Figure 3.9: Global EMSE of the diffusion ε-NLMS algorithm for α = 0.1 and
Noise Variance 0.01.
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Figure 3.10: Global MSD of the diffusion ε-NLMS algorithm for α = 0.1 and Noise
Variance 0.001.
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Figure 3.11: Global EMSE of the diffusion ε-NLMS algorithm for α = 0.1 and
Noise Variance 0.001.

54



100 200 300 400 500 600 700 800 900 1000

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Iteration

M
S

D
 (

dB
)

 

 
Diffusion − Simulation
Diffusion − Theory

Figure 3.12: Global MSD of the diffusion ε-NLMS algorithm for α = 0.6 and Noise
Variance 0.1.
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Figure 3.13: Global EMSE of the diffusion ε-NLMS algorithm for α = 0.6 and
Noise Variance 0.1.
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Figure 3.14: Global MSD of the diffusion ε-NLMS algorithm for α = 0.6 and Noise
Variance 0.01.
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Figure 3.15: Global EMSE of the diffusion ε-NLMS algorithm for α = 0.6 and
Noise Variance 0.01.
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Figure 3.16: Global MSD of the diffusion ε-NLMS algorithm for α = 0.6 and Noise
Variance 0.001.
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Figure 3.17: Global EMSE of the diffusion ε-NLMS algorithm for α = 0.6 and
Noise Variance 0.001.

Above figures shows good match between theoretical and simulation results in

mean square deviation and excess mean square error sense for diffusion ε-NLMS

algorithm for fixed correlation factor α for allN nodes. However, we may also need

to consider the scenario when the correlation factor α of input Gaussian regressor

varies from one node to another. Fig. 3.18 shows the network statistical settings

for which inferences is drawn, which also shows good match between theory and

simulation results.
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Figure 3.18: Network statistical settings.
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Figure 3.19: Global MSD of the diffusion ε-NLMS algorithm for Noise Variance
0.1.
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Figure 3.20: Global EMSE of the diffusion ε-NLMS algorithm for Noise Variance
0.1.
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Figure 3.21: Global MSD of the diffusion ε-NLMS algorithm for Noise Variance
0.01.

64



100 200 300 400 500 600 700 800 900 1000

−35

−30

−25

−20

−15

−10

−5

0

Iteration

E
M

S
E

 (
dB

)

 

 
Diffusion − Simulation
Diffusion − Theory

Figure 3.22: Global EMSE of the diffusion ε-NLMS algorithm for Noise Variance
0.01.

65



100 200 300 400 500 600 700 800 900 1000

−40

−35

−30

−25

−20

−15

−10

−5

0

Iteration

M
S

D
 (

dB
)

 

 
Diffusion − Simulation
Diffusion − Theory

Figure 3.23: Global MSD of the diffusion ε-NLMS algorithm for Noise Variance
0.001.
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Figure 3.24: Global EMSE of the diffusion ε-NLMS algorithm for Noise Variance
0.001.
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CHAPTER 4

STEADY STATE ANALYSIS OF

DIFFUSION NORMALIZED

LMS ALGORITHM

4.1 Introduction

In this chapter, steady-state analysis of the diffusion ε-NLMS adaptive algorithm

is carried out. We will be using the same assumptions used in the previous chap-

ters. Using steady-state analysis the performance of learning mechanism of the

adaptive filter in terms of how well adaptive filter can learn the underlying sig-

nal statistics given sufficient time can be studied. In this chapter, we will derive

mean square deviation (MSD) and excess mean square error (EMSE) expressions
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for steady-state which will describe the global network performance.

4.2 Steady State Analysis

Let us define the global mean square deviation and global excess mean square

error as an average of the global quantities E
∥∥ψ̄i

∥∥2 and E
∥∥ψ̄i

∥∥2
Λ
respectively. So

we get,

MSD = (1/N) E
∥∥ψ̄i

∥∥2 (4.1a)

EMSE = (1/N) E
∥∥ψ̄i

∥∥2
Λ

(4.1b)

Now in order to evaluate E
∥∥ψ̄i

∥∥2 and E
∥∥ψ̄i

∥∥2
Λ
, let us use equation (3.50) in steady

state (i → ∞), which leads to

E
∥∥ψ̄∞∥∥2

σ̄
= E

∥∥ψ̄∞∥∥2
F̄ σ̄

+ bT σ̄ (4.2)

This equation gives the steady-state performance measure for the entire network,

which can be rewritten more compactly as,

E
∥∥ψ̄∞∥∥2

(I−F̄ )σ̄
= bT σ̄ (4.3)
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Comparing (4.1) and (4.3), the possible values for σ̄ can be derived as,

(I− F̄ )σ̄MSD = q (4.4a)

(I− F̄ )σ̄EMSE = λ (4.4b)

where q = bvec{INM} and λ = bvec{Λ}. Above equation (4.4) can be rewritten

as,

σ̄MSD = (I− F̄ )−1q (4.5a)

σ̄EMSE = (I− F̄ )−1λ (4.5b)

Substituting (4.5) in (4.3) leads to,

E
∥∥ψ̄∞∥∥2

(I−F̄ )σ̄
= bT (I− F̄ )−1q (MSD) (4.6a)

E
∥∥ψ̄∞∥∥2

(I−F̄ )σ̄
= bT (I− F̄ )−1λ (EMSE) (4.6b)

Now again substitute (4.6) in (4.1) which gives,

MSD = (1/N) bT (I− F̄ )−1q (4.7a)

EMSE = (1/N) bT (I− F̄ )−1λ (4.7b)
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Equation (4.7) defines the global network performance for cooperative strategy in

steady-state for MSD and EMSE.

4.3 Simulation Results

In this section, the results of the computer simulations are presented which are

made to investigate the performance behavior of the diffusion ε-NLMS algorithm.

A number of simulation results are carried out to corroborate the theoretical

finding. We will present a number of simulations which shows that there is a

good match between the theoretical and simulation results of diffusion ε-NLMS

algorithm. Figure. 4.1 defines the network topological structure and statistics of

the adaptive network following diffusion protocol.
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Figure 4.1: Network topology and statistics.
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4.3.1 Comparison of Diffusion LMS and Diffusion ε-NLMS

for Steady-state Analysis

In this section, the effectiveness of the proposed algorithm is illustrated by com-

paring the steady-state performance for individual nodes of diffusion LMS and

diffusion ε-NLMS algorithms.

A non-white Gaussian input process with correlation factor α was fed into

the diffusion LMS and diffusion ε-NLMS algorithms. The simulations were per-

formed for Gaussian noise environment with noise variance 0.01. The experiment

is repeated for varying correlation factors α.
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Figure 4.2: Local MSD performance for α = 0.1 and Noise Variance 0.01.
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Figure 4.3: Local EMSE performance for α = 0.1 and Noise Variance 0.01.
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Figure 4.4: Local MSD performance for α = 0.4 and Noise Variance 0.01.
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Figure 4.5: Local EMSE performance for α = 0.4 and Noise Variance 0.01.
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Figure 4.6: Local MSD performance for α = 0.6 and Noise Variance 0.01.
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Figure 4.7: Local EMSE performance for α = 0.6 and Noise Variance 0.01.

4.3.2 Comparison of Theoretical and Simulation Results

for Steady-state Analysis

In this section, we will try to see if the theoretical findings pertaining to the steady-

state analysis of the diffusion ε-NLMS algorithm agree with the simulation results.

All other parameters are same as for the transient analysis.

A non-white Gaussian input process with correlation factor α was fed into the

diffusion ε-NLMS algorithm. The simulations were performed for Gaussian noise

environment with noise variance 0.01. The experiment is repeated for varying
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correlation factors α. We can see from the figures that, there is a good match

between theoretical and simulation results.
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Figure 4.8: Global MSD of the diffusion ε-NLMS algorithm for α = 0.1 and Noise
Variance 0.01.
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Figure 4.9: Global EMSE of the diffusion ε-NLMS algorithm for α = 0.1 and
Noise Variance 0.01.
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Figure 4.10: Global MSD of the diffusion ε-NLMS algorithm for α = 0.4 and Noise
Variance 0.01.
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Figure 4.11: Global EMSE of the diffusion ε-NLMS algorithm for α = 0.4 and
Noise Variance 0.01.
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Figure 4.12: Global MSD of the diffusion ε-NLMS algorithm for α = 0.6 and Noise
Variance 0.01.
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Figure 4.13: Global EMSE of the diffusion ε-NLMS algorithm for α = 0.6 and
Noise Variance 0.01.
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CHAPTER 5

THESIS CONTRIBUTIONS

AND RECOMMENDATIONS

FOR FUTURE WORK

5.1 Thesis Contributions

This work successfully presented the diffusion ε-NLMS over wireless sensor net-

works. This algorithm was analyzed in terms of convergence properties, steady-

state and transient behavior. The performance of the algorithm has been sup-

ported by presenting the simulation results to assess the performance of the diffu-

sion ε-NLMS algorithm under various scenarios. The diffusion ε-NLMS algorithm

is formulated recursively and then applied for estimation in a wireless sensor net-

84



work environment. Following are the contribution of this thesis work:

1. Developed diffusion based ε-NLMS adaptive algorithm.

2. The transient analysis of the algorithm has been derived in mean and mean-

square sense.

3. The steady state analysis of the algorithm has been carried.

4. The analytical results were compared with the experimental results which

support the analyses.

5. Finally, the diffusion ε-NLMS algorithm is compared with diffusion LMS

algorithm and the computational complexity of the algorithms is compared.

5.2 Recommendations for Future Work

Based on the results achieved in this work, there are few suggestions regarding

the future work.

1. The proposed algorithm should be applied to applications such as radar

detection and tracking, medical imaging, and spectrum sensing in order to

study its effectiveness.

2. The work in this thesis is done using real-valued data only. The work should

be extended to complex-valued data sets. Further, the analysis should be

studied without using the independence assumptions.
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3. In this thesis, we have only considered inter-correlation present between the

regressor for which diffusion ε-NLMS algorithm shows impressive improve-

ment in performance over diffusion LMS algorithm. However, in many cases,

where nodes are placed in closed vicinity, data are expected to show spatial

correlation. One needs to further exploit these correlations for better energy

performance.
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