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In recent work, distributed adaptive algorithms have been proposed to solve the
problem of estimation over distributed networks. In diffusion protocol, each node
in the network functions as an individual adaptive filter whose aim is to estimate
a parameter of interest through local observations. All the estimates obtained from
the nodes are then locally fused with their neighboring estimates in the network.
Several algorithms have been proposed to exploit this distributed structure in order
to improve estimation.

Diffusion techniques have been used based on the least mean square (LMS) or
recursive least square (RLS) algorithm in wireless sensor networks. The LMS
algorithm, unlike the RLS algorithm, is a very simple algorithm when the compu-
tational complexity is concerned. However, the performance of the LMS algorithm
deteriorates as the amount of correlation increases among the input data.

To address this problem, in this network, a diffusion normalized least mean
square (NLMS) algorithm is proposed. First, transient analysis of the proposed
algorithm are derived. Second, the steady-state analysis are derived. Finally, sim-
ulation results are carried out to prove the better performance of the proposed

algorithm and more importantly to corroborate the theoretical findings.
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NOMENCLATURE

Abbreviations

FC . Fusion Center

WSN . Wireless Sensor Network

LMS . Least Mean Square algorithm

NLMS . Normalized Least Mean Square algorithm
RLS . Recursive Least Square algorithm

APA . Affine Projection algorithm

DLMS . Diffusion Least Mean Square algorithm
DNLMS : Diffusion Normalized Least Mean Square algorithm
MSD : Mean Square Deviation

EMSE . Excess Mean Square Error
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Notations

Q. Q. ~.

g

Iteration number

Measured value

Measured value vector for entire network

Input regressor vector

Input regressor matrix for entire network
Unknown vector

Unknown vector for entire network

Estimation vector for node k

Estimation vector for entire network
Intermediate estimation vector for node k
Intermediate estimation vector for entire network
Scalar noise value

Noise vector

Cost function

Expectation operator

Step-size

Positive constant; which avoids the possibility of divide by zero
Correlation factor

Length of unknown vector

Number of nodes (for a network)

Node number

Number of neighbor nodes for node k
Auto-correlation matrix for input regressor matrix for entire network

Cross-correlation vector between input and output for entire network

xil



Conjugate

Transpose

Combiner weight between nodes k and [
Step-size matrix for entire network
Combiner matrix

Identity matrix

Eigenvalue

Eigenvalue matrix

Weighting vector

Weighting matrix

Kronecker product

Block Kronecker product

Block vector operator
Auto-Correlation matrix for noise

Noise variance
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CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSNs) have become a hot topic of interest for re-
searchers due to the multiplicity of their uses [1] - [4]. WSN has potential for
numerous applications with several more in the pipeline [5]. Recently, WSN has
also attracted much attention for decentralized estimation of signals of interest
[6] - [15]. Here the objective is to enable each node to estimate a parameters of
interest from the observed data. Each node in the network is provided with local
learning abilities. Fach node derives local estimates for the parameter of interest
and shares it with their neighbors. The resulting algorithm is distributed; Dis-
tributed algorithm outperforms traditional non-cooperative schemes in terms of
transient and steady-state mean-square error. Each node in the WSN functions
as an individual adaptive filter to estimate the parameter of interest through local
observations [16] - [18]. All the estimates obtained from the nodes are then locally

fused with their neighboring estimates in the network.



Sensors need to be empowered with the required signal processing tools that
fully utilize the distributive nature of the network as well as provide optimal re-
sults. This need has been addressed recently and several algorithms proposed.
The aim of this thesis is to improve the signal processing capability of the dis-
tributed network in a novel way by applying diffusion normalized least mean
squares (NLMS) algorithm.

The chapter is organized as follows. A background for wireless sensor networks
and adaptive filtering is given in the context of the least mean square (LMS) and
normalized least mean square (NLMS) algorithms. This is followed by a detailed

literature survey. The aim of the thesis are then briefly explained.

1.1 Background

1.1.1 Wireless Sensor Network

A wireless sensor network (WSN) is a collection of spatially distributed autonomous
devices that use sensors to monitor physical or environmental conditions [20] - [21].
The WSN comprises of “nodes”, where each node is connected to one (or more)
sensors. Each sensor in the network node has typically several parts: a radio
transceiver, an antenna, a microcontroller, an electronic circuit for interfacing
with the sensors and a battery to fulfill energy requirement. The data collected

from the different node sensors are fused together. Generally two types of WSNs



are used in practice (see Fig. 1.1). One has a central processing unit known
as a Fusion Center (FC). The sensors usually sense the required data and then
transmit the data via a wireless channel to the fusion center. The sensors do not
perform much processing except quantizing and coding the data before transmit-
ting it to the fusion center. The fusion center acts as a data sink where data from
all sensors is collected and then processed in order to ascertain the estimates of
the parameters of interest. Unlike sensors, a fusion center has large processing
capability as well as storage capacity.

A network devoid of a fusion network is generally termed as an ad hoc net-
work. The sensors only communicate with neighboring sensors that are within
communication range. In such a network, the sensors have access to data from
their neighboring sensors only that can be attained via a wireless communication
link between the sensors. The sensors are required to do a two-fold process in such
cases. First, they need to acquire the available data from the nearby neighbors.
Then each sensor performs some signal processing on the available data in order
to estimate some parameter of interest.

Fusion Center-based WSN fails if the center fails, this is one of the major draw-
back. Also, the sensors located far from the center has problem communicating
with the center. Such far located sensors would require higher power to send data
to the center. However, this problem may be overcome by incorporating a multi-

hop system but, this adds additional complexity to the system. In comparison,



(a) (b)

Figure 1.1: (a) A Fusion Center-based WSN; (b) An ad hoc topology

ad hoc networks are not prone to such limitation as they are working without any
such processing center. Even if some sensors fail, ad hoc WSNs still continues to
function with some performance degradation.

Currently, WSNs are beginning to be deployed at an accelerated pace. This
new technology is exciting with unlimited potential for numerous application ar-
eas including medical, surveillance, environmental, military, localization, power
spectrum estimation, target tracking and smart spaces [5]. However, recent study
shows that without empowering the sensors with some signal processing capa-
bility, this goals cannot be achieved. Sensors need to be empowered with the
required signal processing capability that fully utilize the distributive nature of
the network for better energy performance. This need has been addressed recently

and several algorithms proposed.



1.1.2 Adaptive Filtering

An adaptive filter can be defined as a self-designing system which tries to adjust its
transfer function with the goal of meeting some well-defined target that depends
upon the state of the system and its surroundings. So the system adjusts itself
so as to respond to some phenomenon that is taking place in its surroundings.
Adaptive algorithm avoids the need to know the exact signal statistics, which
are rarely available in real practice. Also, these algorithms possess a tracking
mechanism that enables them to track variation in the signal statistics. Because
of these abilities adaptive filters are described as “smart systems” [18].

General application of adaptive filters is to estimate some unknown parameter.
For example, in wireless communications the channel is usually unknown and is
needed to be identified at the receiver in order to estimate the possible transforma-
tion that might have occurred on the transmitted information while propagating
through the wireless channel. System needs to adapt itself until there is an ap-
proximate match that of the channel. This is usually an iterative process. At
each iteration the adaptive filter outputs a certain value of the signal and tries to
match it to the received signal.

Different stochastic-gradient algorithms are Least Mean Square (LMS), Nor-
malized Least Mean Squares (NLMS), Affine Projective Algorithm (APA) and
Recursive Least Squares Algorithm (RLS). The performance of these adaptive al-

gorithms can be measured using the error. But the interesting point to note here



is that the actual measure to check the performance is not the error itself. Error
between the two outputs can be positive or negative and is generally a zero-mean
process. Therefore, it is not reliable to develop an algorithm for adaptation based
on just the error. A much better quantity would be the squared error or the ab-
solute error. The simplest algorithms usually tend to minimize the mean square
error. The error between the two outputs is squared and minimized. Repeating
this process over several experiments generally gives a measure of how well the
algorithm is performing. Hence the term mean square error (MSE). Recently,
another measure is being adopted by researchers called mean square deviation
(MSD). Instead of measuring the error between the channel output and the filter
output, performance is measured by looking at the error between the coefficients
of the channel and the filter. This shows how far off the filter is from reaching the

actual channel.

1.1.3 LMS Algorithm

The LMS algorithm is based on stochastic gradient descent method that relate to
producing the least mean squares of the error signal by mimicking a desired filter
by adjusting its transfer function [27]. The LMS algorithm is an approximation
of the steepest descent algorithm, which uses an instantaneous estimate of the
gradient vector. The estimate of the gradient is based on sample values of the tap

input vector and an error signal. The LMS algorithm incorporates an iterative



procedure over each tap weight in the filter to makes successive corrections to the
weight vector in the direction of the negative of the gradient vector which even-
tually leads to the minimum mean square error. The LMS algorithm is relatively
simple when compared to other algorithms. Assume that we have access to several

observations of regressor and desired data, given as

{uwo, uy, us, ...}

{d(0),d(1),d(2),...}

Then LMS algorithm can be formulated as [27]:

w; = Ww;_1 + ,U/U,l*[d(l) - 'u,z-'w,»_l] (11)

The LMS algorithm is the simplest adaptive filtering algorithm described by (1.1).
Because of its computational simplicity and ease of implementation, it is preferred

in most applications.

1.1.4 e-NLMS Algorithm

The main drawback of the LMS algorithm is that it is sensitive to the scaling of
its input w; . This makes it very hard to choose a learning rate p that guarantees

stability of the algorithm. The e-NLMS algorithm solves this problem by normal-



izing with the power of the input. The e-NLMS algorithm can be formulated as
[27):

In e-NLMS algorithm the step size p will be proportional to the power of w;. The
positive constant € avoids the possibility of division by zero, when the regressor
is zero or close to zero. Hence, e-NLMS algorithm can be considered as a special
case of the LMS algorithm, where the step size depend upon the norm of u;. The
regressor u; with larger norm will lead to more substantial change to weight vector
w;_1, when compared to regressor with smaller norm.

There has been research in the past focusing on the comparison between the
LMS and the NLMS algorithms [22] - [24]. In 1993, Slock [24] studied the conver-
gence behavior of both the algorithms and concluded that the NLMS algorithm is
a potentially faster converging algorithm compared to the LMS algorithm. How-
ever, faster convergence comes at a cost of high computational complexity. More

recent studies towards adjustable step-size tries to relax this trade-off [25] - [26].

1.2 Literature Survey

Different WSN topologies including Fusion Center based, ad hoc ones are lacking
of hierarchies and depends on in-network processing to make agreement among

sensors on the estimate of interest. In recent years, a great body of literature



has been proposed, building up the field of consensus-based distributed signal
processing. The tutorial in [28] gives idea about the general results and some list
of related works which is good reading for a beginner in the field.

In [29] authors develop the best possible method for getting the consensus
average in a distributed network by studying the results for several vast networks.
In [30] authors discuss consensus issues with various types of graphs and provide
some theoretical basis for their further development. Some authors suggests a
decentralized algorithm that utilizes consensus to produce results similar to a
centralized system [31] by projection into linear subspace. In all the schemes that
are mentioned so far, all the data is collected by sensors at once and after locally
exchanging messages it is reached to consensus.

In [32] authors discuss mobile environment tracking by providing algorithms
for sensor fusion using novel consensus filters and suggest methods for designing
such filters. In [33] authors suggest least squares solution in exchanging sequential
peer-to-peer data. The algorithm is not robust enough to tackle the problem of
estimating time-varying signals or dynamic systems. Apart from that, algorithm
also suffers with high computational cost and requires extensive communication
between sensors. Recently, ad hoc WSNs for distributed state estimation of dy-
namical systems has also received a lot of attention.

In many practical applications, sensors need to perform estimation in a con-

stantly changing environment without having available a (statistical) model for the



underlying processes of interest. This motivates the development of distributed
adaptive estimation algorithms, the subject dealt with in the current work. Here
each sensor transmits its update to the next sensor in the cycle, which then uses
its own data to update this estimate. Such incremental schemes offer faster con-
vergence than a centralized solution at a very low complexity cost which make
the incremental algorithm very attractive. However, in case of any node failure,
the cycle is broken and the network turns down.

In [14] author proposed a new algorithm that fully exploited the distributed
nature of the network by getting rid of the topological constraints in [6]. The
overall solution was more practical even with increased computational cost. The
algorithm was termed as diffusion LMS. Each sensor forms a convex combination of
the local estimates acquired from the nearby neighbors and this combined estimate
is then used in the LMS recursion to update the local estimate. This new diffusion
LMS algorithm outperforms the previous algorithm. In [9] the performance is
further improved by diffusing not only the local estimates but also the sensor
observations to nearby neighbors. This results in improving the flow of data
across the WSN but can be computationally expensive, especially in the presence
of communication noise. A new variant is suggested in [10], where the network was
divided into several small networks, each with its own diffusion LMS algorithm
network. This hierarchical structure provides improved performance but at the

cost of extra computational cost. A distributed RLS scheme was introduced in [34]

10



for applications where fast convergence is required and sensors can be burdened
with increased computational load. A detailed analysis and design of the diffusion
RLS scheme was given in [35].

In [36] authors discuss the diffusion algorithm used to synchronize the mobile
sensors moving towards a specific target. The proposed algorithm is robust in
estimating in constantly changing environment. Each sensor has access to a di-
rection vector as well its own position. The sensed data by each node is simply
the target position towards which the network has to travel. Due to the noise
present in sensed data, the exact position has to be estimated and make sure that
each node is moving in sync with the other nodes. Hence, target is estimated by
each node by updating its own position and speed with sync to its neighboring
sensors. Even though the work presented in [36] is application specific, yet it
can be extended for both systems working in stationary as well as non-stationary
environments.

So far discussed algorithms assume that each node has access to regressor data,
but with the assumption that there is no correlation among the data. In a real
scenario, however the absence of correlation cannot be neglected, therefore, this
work addresses this issue. In a slowly changing environment, data will show high
correlation. Moreover, one also needs to consider this correlation to fully exploit
the distributed system for a better energy performance. The e-NLMS algorithm

is a variant of LMS algorithm that exhibits better performance in the presence of

11



correlated data and provides generic solution.

1.3 Thesis Objectives

The aim of this thesis is to derive a distributed adaptive solution for e-NLMS
algorithm under diffusion protocol. The proposed diffusion e-NLMS algorithm is
then compared with diffusion LMS algorithm for non-white Gaussian data. The

thesis objectives can be enumerated as:

1. To develop the diffusion e-NLMS algorithm.

2. To find the range of values for which the step size guarantees convergence

of the proposed algorithm.
3. To study the transient analysis of the diffusion e-NLMS algorithm.
4. To study the steady-state analysis of the diffusion e-NLMS algorithm.

5. To compare the performance of the diffusion e-NLMS algorithm to that of

the diffusion LMS algorithm.

12



CHAPTER 2

PROPOSED ADAPTIVE

ALGORITHM

2.1 Introduction

In this chapter, we discuss the proposed e-NLMS adaptive algorithm for diffusion
protocol to implement cooperation among individual nodes in the network. We
will begin our discussion by defining the problem statement, and deriving the
proposed diffusion strategy for e-NLMS algorithm. After that, the combined
effect of several interconnected nodes in the network is discussed. Following this,
in the coming sections we will discuss the transient and steady state analyses of
the diffusion e-NLMS algorithm.

Before we begin further, we shall introduce the data model that we adopted

for the analysis, which has been used before in the adaptive literature, and rely

13



on them to derive the performance measures.

A1 There exists a vector w® at each node k such that dj (i) = wy; w® + vy ().

A2 The noise sequence vy (i) is zero mean i.i.d. with variance o2, and with

possibly different statistical profile for each node k.
A3 The noise sequence vy, (¢) is independent of wy, ; for all 4, j.

A4 The initial condition w; * at each node k is independent of all {d, (i) , ws;, vy (4)}.

2.2 Problem Statement

We have to estimate an Mx1 unknown vector wy from the data collected from N
distributed nodes (see Fig. 2.1). The scalar measurement sensed by node k, dj, at

any time instant 7, is given as

dk (2) = uk,iwo + vg (Z) s (2.1)

where vy (i) is zero-mean additive white noise. The simplest solution to this
estimation problem is for each node to estimate the unknown vector using only
its own set of data. Such a case is termed as the no cooperation case as the nodes
are not communicating with each other. The spatial diversity of the nodes is not
being utilized here and so this case is counter productive as the poor performance
of the nodes with low SNR will result in poor performance of the network. In
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Figure 2.1: Adaptive Network of N (N=7) Nodes.

order to obtain a fully distributed estimation algorithm, a cost function is needed

that defines the complete network. Thus, the cost function is defined as follows:

J(w) = i (w)

WE

k

= Y E[ld — wew/’]. (2.2)

1

1

i

Consequently, the steepest descent solution for this problem is given as
w’k = ’UJ](:_I) + 1% Z (Rdu,k — Ru,kwg_l)» (23)

where Ry, = E[dyuj] is the cross-correlation between dy and uy, and R, =
E [ujug] is the auto-correlation of uy. The recursion (2.3) requires full knowledge

of the statistics of the entire network. Moreover, it requires exact statistical
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knowledge of the data, which is not possible in a practical scenario. A more
practical solution utilizes the distributive nature of the network by dividing the
cost function into local cost functions that add up to the global cost function.
The solution to the local cost functions is similar to (2.3). However, a practical
approach leads to the use of the least mean square (LMS) algorithm as a solution.

The work in [14] gives a fully distributed solution, given as

=3 cuy Y (2.42)

l€NK,i—1
i (1) () — Y 9 4
v =&+ g (de (i) — upidy ) (2.4b)

where 1! is the intermediate update, ¢, is the weight connecting node k to its
neighboring node [ € Ny and can be fixed according to a chosen rule [14], and
is the step-size for the k" node. Each node uses its own set of data, {dy (i), us(i)},
to get an intermediate update for the estimate. Then intermediate updates from
neighbor nodes are combined together through a weighted sum to get the final
update for the estimate.

The author in [14] propose diffusion LMS-based algorithms, on the assumption
that there is no correlation among the data. In a real scenario, however the absence
of correlation cannot be neglected. In a slowly changing environment, data will
show high correlation. Moreover, one also needs to consider this correlation to

fully exploit the distributed system for a better energy performance.
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2.3 Diffusion e-NLMS Algorithm

There are different types of cooperation strategy available in the literature. In
diffusion strategy, every node k has access to estimates of its neighbors. The
neighborhood of the nodes is defined in combiner matrix. Consider that at any
given time ¢ — 1 node k£ has access to estimates 'z/),(:_l) from its neighborhood.

Now these local estimates are fused together at node k

FY = > cupy (2.5)

lENg, i—1

where ¢, > 0 are coefficients of combiner matrix. Here combiner matrix is gener-

ated using the Metropolis rule defined as follows

1 if k # larelinked

max(ng,n;)’

=14 0, for k and I not linked (2.6)

1-— Z Ckl, fork =1

1EN |k

\

where n; and n; define the number of neighbor connections present for nodes k
and [ respectively. Combiner matrix calculated using the equation (2.6) defines
the complete network topology. A non-zero entry ¢, states that nodes k and [ are
connected.

The coefficients of combiner matrix €' must satisty the following condition to
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ensure the stability and robustness of cooperative scheme

chl =1, le Nk,i—l (27)
l

Once we have the fused estimate qb,(f_l) at node k, the e-NLMS recursion at
every node k can be given as

[ = (iil) L * d AN . (iil) 28
1/)1: ¢k + e+ Huk,i||2uk’i< k(z) uk,l¢k ) ( : )

The above e-NLMS recursion exhibits faster convergence behavior than LMS
recursion for slow changing environment where data are expected to show high
correlation. The positive constant € avoids the possibility of division by zero,
when the regressor is zero or close to zero.

In summary, the diffusion strategy for e-NLMS recursion is given as

= N Y (2.9a)

l€NK;—1

i (i=1) Kk () — L (i-1) 2.0h
1/)1: ¢k + e+ Huk,i||2Uk’i< k(z) uk,l¢k ) ( : )

where ¢y, are the coefficients of combiner matrix satisfying equation (2.6).
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2.4 Network Global Model

We now proceed to state-space representation. Let us introduce some global

quantities

Wi =col{p\”, .. W}, @t =col{plV . o\,
UZ' = dz'a,g{ulji, ey 'U'N,i}a dz = COl{dl(i), ey dN(Z)},
H = diag{h(i)1, ..., hx(i)I},

D = diag{1, pol, ..., unI}

where hy (i) is a scalar normalization term at node k at time instance 7. It is given

as
1
hp(l) = ———
Sy RIE
The traditional model of the form
dk (Z) == u;w-wo —+ U (2) (210)

where vg(i) is noise, which is independent in time and space with variance o2 .

Using the global quantities, equation (2.10) we can rewritten as

d; = Uw'"” + v, (2.11)
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where w© = Qw?°,
Q = col{In, ..., Inm} is (NM x M) with Ing the M x M identity matrix,
v; = col{v1(i),v2(7),...,un(i)} is (N x 1). Using the above relations, equation

(2.9) can be represented in terms of global quantities:

¢ =Gyt (2.12a)

V' =¢" '+ DHU; (d; — U;¢p'™) (2.12b)

where G = C ® I is the transition matrix of order (NM x NM). ® represent

kronecker product.

2.5 Comparison of Computational Complexity

In order to study the variation in performance of the two or more algorithms it is
necessary to look at the computational cost as it tells us how much an algorithm
gains in terms of computations as it loses in terms of performance. We first look at
the complexity of the diffusion LMS algorithm and then move on to the diffusion

e-NLMS algorithm.
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2.5.1 Diffusion LMS Algorithm

Consider a WSN of N nodes each with an unknown vector of length M. This
means the complete data block matrix of size N x M. The correlation matrix
formed using this matrix will thus have the size M x M. Let us analyze the
computational complexity of each single node separately. The algorithm requires
the evaluation of the inner product uk7i¢l(€i_1) between two vectors of size M which
requires total of M multiplications and M — 1 additions. After this, evaluation
of the scalar (dy(7) — uk7i¢,gi_1)) requires 1 additions. Evaluation of the product
o (di(7) — uk7i¢§;_l)) requires 1 multiplication. Further, multiplying the scalar
e (dy (i) — ukyi(b,(ffl)) with w?  requires M multiplications. The addition of two
vectors ppuy (di(i) — umq’)g_l)) and qb,(j_l) requires M additions. Finally, the

calculation of aggregate estimate ckﬂ,bl(ifl) at any node k requires NM
l€NK ;-1

multiplications and N M additions.

2.5.2 Diffusion e-NLMS Algorithm

Consider a similar model of WSN with N nodes each with an unknown vector of
length M. The computational complexity of e-NLMS algorithm is same as LMS
algorithm, expect multiplication of additional vector m with ppuy (di(i) —
uk,igb,(f*l)), which requires additional M multiplications.

Table. 2.1 summarizes the computational complexity of diffusion LMS algo-

rithm and diffusion e-NLMS algorithm.
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. Algorithm Diffusion LMS Diffusion e-NLMS
Computation
Multiplication 24+ N)M +1 B+ N)M +1
Addition 24+ N)M 2+ N)M

Table 2.1: Computational complexity of Diffusion LMS and Diffusion e-NLMS algorithms.
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CHAPTER 3

TRANSIENT ANALYSIS OF

DIFFUSION NORMALIZED

LMS ALGORITHM

3.1 Introduction

The performance of the adaptive filters can be studied using transient analysis,
which shows how fast and how stable adaptive filters can adapt to the changes
in the signal. The study of the transient behavior of the adaptive algorithms is
an essential part of adaptive filter performance analysis. In this chapter, we will
discuss the stabilization effect of diffusion protocol on adaptive filter, in mean and

mean square sense. Followed by, derivation of the learning curves of mean square
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deviation (MSD) and excess mean square error (EMSE).

3.2 Mean Analysis

We now focus our attention on mean analysis of adaptive filter for cooperative

scheme. Recall global cooperative scheme defined by (2.12) can be represented as

V' = Gy’ + DHU; (d; — UG’ ™) (3.1)

Introduce the global weight error vector

P =w — (3.2)

Now subtracting w(® from both sides of equation (3.1) and using the fact Gw®) =
'w(o), we get

P =Gt ~DHU;*(d; — U;Gvy'™)
P =GP —DHU; (U + v; — UGy ")
Y = Gy —DHU(U,G 4" +v,) (3.3)

¢! = (Inu — DHU;U,))G 4"~ ~DHU;" v, (34)
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Now taking expectation on both sides of (3.4) gives

E[¢'] = {Ixm — DE[HU;"U;]}G E[¢/' ] —DH E[U;*v;] (3.5)

In above equation, second term on right-hand side becomes zero using indepen-

dence assumption A3. Then equation (3.5) becomes

E['] = {Inn — D E[HU U} G E[$] (3.6)

But unfortunately closed form for the term E[HU,"U,| is not available in gen-
eral. And in order to continue our analysis, we consider the following assumption
[19], which has been used before in the adaptive literature to derive closed form

expressions.

(3.7)

* *
Uy, Uk, ]N E[uk,iuk,i] R,

£+ |lug|” E[e+ ||wm||2} e+ Tr(Ruy)

We will show using the simulations that this assumption leads to good results.

Using assumption (3.7) equation (3.6) becomes

E[¢'] = (Inmu — DHR,)GE[¢" '] (3.8)
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Now the stability in the mean sense is guaranteed if the eigenvalues of
{Inm — DE[HU;"U;|} G lies inside a unit circle. Mathematically, the following

condition must be satisfied:

| Amax{Inm — D E[HU;"U;|G}| < 1 (3.9)

Now using matrix 2-norms and the relation between transition matrix and com-

biner matrix (G = C ® In1) we get,

ICl; [Amax{Inm — DE[HU;UjJ}| < 1 (3.10)

Since C is a stochastic and symmetric matrix whose coefficients are carefully

selected satisfying the condition (2.7), we get

Amax{Inv — DE[HUUJ} < 1 (3.11)

The convergence in the mean for single node is guaranteed for step size in the

range [4]

(3.12)
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Using Rayleigh-Ritz characterization for the maximum eigenvalue of any Hermi-
tian matrix [4], and noting that HU,;"U; is block diagonal, we get
)\max{E[HUz*Uz]} = ﬁll‘léli .Z'*E[HUZ*UJIE (313)

= max E[lz"HU,;"U,z|

l|l=1

<1

Hence (3.12) can be rewritten as,
0<p<2. (3.14)

Therefore, convergence in the mean sense is guaranteed, if step size p satisfies the
above condition. This is only a necessary condition for convergence in the mean

square sense, which will be dealt in the coming section.

3.3 Mean Square Analysis

In this section we focus our attention towards mean-square analysis, which is con-
cerned with the stability and convergence rate of the adaptive filter. This section
will deal with formulating a suitable model to study the convergence behavior of
adaptive filter for diffusion protocol, and the condition for which diffusion protocol

has stabilizing effect on network.
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3.3.1 Variance Relation

Let us begin our analysis by performing weighted energy balance and taking ex-

pectation on both sides of equation (3.3):

E H¢ 22 _E [(Gz/ii—l — DHU;*(cG, + v;)) B (G’ — DHU;(cC, + vi))]

(3.15)

where global a priori and a posteriori weighted estimated error is given as:
S, = UGy’ (3.16a)
e,; = Ui’ (3.16b)

2

—E [ ~E["'\G'SDHU;(¢C, + v))]

2
>

g

G*XG

—E[(e€, + v,)U,H"D*SG'" ']

+E[(C; + v))'U;H*D*SDHU;" (e, + v;)] (3.17)

Using the fact that D and H are diagonal matrices, transpose condition can be

removed. And since input regressor U; is independent of v; above equation can
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be rewritten as:

E H¢ 22 =E H&”‘I) S "' G*SDHU; (¢S]

G*YXG
—E[(e€)'U:HDEG' ']
+ E[(efi)*UiHDZDHUi*(eﬁi)]

+ E[v;"U;H DX DHU;*v,] (3.18)

Substituting global a priori and a posteriori error (3.16) in above equation gives,

2 . E[(eHDEG)*(eG )} . E[(eG )*(eHDEG)}

~ 112 ~
' i—1

GG

+E[(eS)) U HDESDHU;* (¢5,)] + Elv;UHDXDHU;*v;] (3.19)

This equality can be written more compactly as follows by introducing the random

weighting matrix 3 of order (NM x NM)

~ .12 - 2
E Hzp _=E H’W‘l _ +E[;UHDEDHU; v] (3.20)

where,

Y = G*SG — G*'SHDE[U;'U)|G — G*E[U;*U]|DHEG

+ G'E[U;U,HDXDHU;"U,)G (3.21)
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Note that H is global normalization matrix defined earlier, which can be treated
separately based on assumption (3.7). Above equation shows the time evolution

ofEHt/}i

2
for some choices of interest for ¥ of order (NM x NM). For mean
>

square deviation (MSD) value of ¥ is I and for excess mean square deviation

(EMSE) value of ¥ is R,,.

3.3.2 Colored Gaussian Data

To continue with the analysis of mean square behavior we need to calculate the
moments present in equation (3.20)-(3.21). For that we restrict our attention to
colored Gaussian input with block diagonal correlation matrix R,. Let R, =
QAQ* denote the eigenvalue decomposition of the autocorrelation matrix, where
A is a diagonal matrix given as diag{A;, As, ..., Ay}, and Q is unitary matrix

(QQ* = Q*Q =1). The block diagonal correlation matrix R, can be given as:

R 0 -+ 0
0 Ry -~ 0

R, =
0
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where,

R, = 1<k<N,

where M is the length of the unknown system, and 0 < o < 1 is the correlation
coefficient. Evaluation of the moments in equation (3.21) can be simplified by

using the assumption (3.7) and defining the following transformed quantities:

Y =Q%, U, =UQ, G=QGQ
S=Q'2Q, ¥ =Q'YQ, D=Q'DQ

H=QHQ

Also D = D and H = H since both D and H are diagonal matrices. Using the

above transformed quantities, variance relation (3.20)-(3.21) can be rewritten as,

E|¢|y =E||¢"! |y + Elvi'U;HDEDHU; v)] (3.22)

+ G'E[U;U;HDEDHU, U;|G (3.23)



Before we begin further in evaluating the required data moments in equations
(3.22)-(3.23), we need to introduce some useful functions which will aid us in

evaluating the data moments.

Block Vector Notation

We are already familiar with vec{.} notation used for single node wireless sensor
to replace an M x M arbitrary matrix by an M? x 1 column vector by stacking
the successive columns of matrix on top of each other [18]. For wireless sensor
network with N nodes, we need to introduce a new notation bvec{.} which has
same function as vec{.} except that it will process the data block-by-block. For

block matrix R, of order NM x NM

Rll R12 e RlN
R21 R22 T R2N

R, = (3.24)
RNI RN2 e RNN
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where each block Ry, is of order M x M. k,l =1,2,..., N. Now consider the block

columns are stacked on top of each other, yielding the N2M x M matrix

R,

R,
RS = (3.25)

Ry

where R, = col{Ry;, Ry, ..., Rni}, 1 = 1,2, ..., N. Once we have obtained R, we
can use the standard vec{.} to vectorize individual block R,;, to obtain vector r,
of order M? x 1,

T = vec{ Ry } (3.26)

where 7, are the coefficients of column matrix

rr = col{ry, ro, ..., "N} (3.27)

The final vectorized matrix 7 of order (N?M? x 1) can be represented as,

r = bvec{R,} (3.28)

The choice of notation is generally accepted as a two-directional operation, which

maps block diagonal matrices to vectors and vectors to block diagonal matrices.
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Therefore, we can write R, = bvec '{r} in order to recover the original block

matrix from the column vector 7.

Block Kronecker Product

The Kronecker product [18] of two matrices A and B, of order M, x N, and

M, x N, respectively is denoted by A ® B and is defined as the M,M, x N,N,

matrix

A®B =

CL11B

a21B

CL12B

CL22B

aMalB aMagB

alNaB

CLQNaB

CLMaNaB

(3.29)

This operation can be extended for wireless sensor network, where data will be

processed block-by-block. Now consider two block matrices A and B, for which

block Kronecker product is denoted by A ® B. Its kl-block is represented as

[A® B =

Ay ® By

Aj ® By

Ay ® By Ak @ Byo

Ay ® By

Aj ® Boy

Ay ® By

Ay ® By

Ay ® Byy

(3.30)

where k,1 = 1,2, ..., N. Block Kronecker product has several useful properties, but

the one which we will be using is for evaluating the data moments as following.
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For any matrices {A, X, B} of compatible dimensions, the following relation is
satisfied

wec{AXB} = (B ® A")bvec{Z} (3.31)

bec{AXB} = (Bo Ao (3.32)

where o = bvec{X}.

Now that we have defined block vector notation and block Kronecker product, we
are equipped with the tools needed to evaluate the data moments present in (3.22)-
(3.23), namely, E[U; Uj|, E[v;*U;HDEXDHU; v;) and E[U; U, HDXDHU,; U;).
We will derive these moments based upon the assumption stated in (3.7). This
approximation is justified if fluctuation in the input signal from one iteration to
the next is small enough [19].

The first moment is immediate to compute and is given by E[U;"U;] = A. So

that equation (3.23) can be rewritten as

¥ =G'SG - G'EDHAG
— G*AHDXG

+ G*E[U;"U;HDEDHU, U;|G (3.33)

Second term on right-hand side of the above equation (3.33) can be evaluated
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using (3.32), which gives

wec{G*EDHAG} = (G © G bvec{InyEDHA}
= (G ®G*")(AHD & Inm)bvec{X}

= (GO GT)(AHD & Inun)o (3.34)

Similarly third term on right-hand side of the above equation (3.33) can be given

as,

wec{G*AHDEG} = (G © G*")bwec{ \AHDXIxm}
= (G © G")(Inm © AHD)bvec{E}

= (GoG")(Inm © AHD)& (3.35)

To further proceed with the analysis we shall introduce the following assumption

* * * *
U Ui Uy U g E [ukzuklukzukz}

~

2 2 ~ 2 2
(e + Nluwnall*) (e + Nlunall”) | B e+ lurill*]E [+ [lura]l”]

(3.36)

Since D and H are block diagonal matrices and using assumption (3.36), the
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fourth term on right-hand side of the equation (3.33) can be given as,

wec{G*E(U; U HDEDHU,;'U;)G} = (G © G*"bvec{E(U;; U HDEDHU; U,)}
= (G oG (HD & DH)bwec{E(U;"U,XU;"U;)}
= (GG (HD ©® DH)bvec{ A}

(3.37)

where A = E(Ui*Uif}Ui*U}). For fourth-order moment of real Gaussian variables

following condition [18] hold for ki-block of A.

_ AkT’f’(Akgkk) + 7Ak2kkAka fork =1
Akl - Eﬁz’iﬁk,iﬁﬂziﬁl’i = (338)

AkiklaAl for k 75 {

where v = 1 for complex data and v = 2 for real data. Let us decompose matrix
A as

A: [Al,AQ,...,AN] (339)

where A; is the [** block column of A

Al = col {AlhAQl,...,AN[} (340)
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Now let us define block vectorized matrix of A as,

a = bvec{A} = col{ay,as,...,ay} (3.41)

where a; is a column vector defined as,

a; = col{au,a%..‘,am} (342)

where ay; is obtained by applying vec{.} operation on Ay,

()\k)\z -+ "}/Ak &® Ak)c_rkk, fork =1
ap; = UGC{Akl} = (343)

(Alc X Al)(rkl for k 7& l

where Ay = vec{A}. Hence

a; = col {(A1 @ Ay)oy, (A @ Ay)oy ...,

(Al)\lT —f- ’}/Al ® Al)6ll, cees (AN ® Al) 6Nl}

= Ao, (3.44)

Where, A1 = dZCLg{(Al ® Al> ey ()\ZAZT + ’7Al X Al), ceey (AN X Al )} and o =

col{@, 09, ...,0N}. Hence,

bvec{A} = A& (3.45)
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where, A = diag{A;,Az,...,Ax} and & = bvec{Z}. Therefore substituting

(3.45) in (3.37), we get the closed form for fourth-order moment

ec{G*E(U;U HDEDHU; U,)G} = (G® G*")(HD © DH)AG (3.46)

Now let us find the closed form of second term in right-hand