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Chapter 1

Introduction

Mobile robots have wide applications in such areas as automatic material handling in
warehouse, transportation and health care in hospital, and exploration in hazardous
environments. At the same time, the progress in the development of parallel robots
(PRs) is accelerated since PRs possess many advantages over their serial counterparts

in terms of high accuracy, velocity, stiffness, and payload capacity. However, the
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major drawback of PRs is their limited workspace that restricts their wide variety of

applications.

Up to now, several researchers have proposed parallel mobile robot using mobile
joints between the legs and the fixed platform with each leg driven by an
asynchronous unit, that allows the robot have a theoretically unlimited workspace in
the horizontal plane [1], [2]. Nevertheless, the position accuracy of the robot needs to
be improved due to odometric errors. In addition, a simple parallel mechanism mobile
robot is presented in [3] by mounting a 4R or 5R closed kinematic chain on a crawler
mechanism to perform such tasks as getting over a bump or going up to a high level,
etc. And a combination of a mobile robot and a Stewart platform is proposed in [4],

[5] for active acceleration compensation so as to transport objects smoothly.

In order to increase the effective workspace of parallel robots while maintaining their
inherent advantages, the novel design of a mobile parallel manipulator (MPM) is
proposed in [6] by adding a wheeled mobile platform to a parallel robot, which
provides extra mobility to the robotic system and thus enlarges its reachable
workspace extensively. Since in most cases, the mobile robot is subjected to
nonholonomic constraints and the parallel robot introduces many complex kinematic
constraints, the integration of a parallel robot and a mobile one induces a large
number of challenging difficulties involving of how to decompose a given task into

fine motions to be achieved by the parallel robot and the gross motions to be carried
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out by the mobile robot, and how to establish the dynamic model of the hybrid system

in a systematic way, etc.

Since a MPM possesses advantages of both a mobile robot and a parallel robot, it is a
potential competitor in extensive applications where high accuracy operation, and
high rigidity and payload capacity are required, such as an autonomous guidance

vehicle, service robots and personal robots, underwater robots, and space robots, etc.

The remainder of this thesis is organized as follows. Chapter 2 proposed a literature
review on the trajectory planning, parallel robots, and mobile parallel robots. The
kinematic modeling is derived in Chapter 3 and the dynamic modeling described in
Chapter 4. Then in Chapter 5, the problem of the thesis is formulated. The kinematic
initialization solution is solved in Chapter 6, followed by oftf-line trajectory planning
of the MPM in chapter 7. Finally, conclusions and suggestion for future work are

shown Chapter 8.
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Chapter 2

Literature Review

2.1 Trajectory planning of robotic systems

A problem of trajectory planning is an active field of the research so there is a vast

literature treating this issue.

A new method for smooth trajectory planning of robot manipulators is developed by
Gasparetto and Zanotto [7]. They worked out an objective function containing a term

proportional to the integral of the squared jerk and the second term, proportional to




.| King Fahd University of Petroleum & Minerals

the total execution time. Saramago and Ceccarelli [8] formulated optimization
problem physical constraints, input torque and force constraints and payload limits.
They proposed the optimization of trajectory path planning taking into account robot

actuating energy and grasping forces in manipulator gripper.

Minimum cost problem of manipulator motion is solved by Saramago and Steffen [9].
A multi-objective function is build using the optimal traveling time and the minimum
mechanical energy of the actuators. Chettibi et al. [10] study the problem of minimum
cost trajectory planning by transforming the optimal control problem via clamped
cubic spline model of joint temporal evolutions into a non-linear constrained
optimization problem by the SQP method (sequential quadratic programming). Using
a genetic algorithm (GA)-enhanced optimization of the pose ruled [11] presented a
unified approach to optimal pose trajectory planning for robot manipulators in

cartesian space.

A trajectory motion planning in environments with obstacles are discussed by some
research papers. Using the concept of APF (artificial potential fields) Agirrebeitia et
al. [12] solving planning of mobile robot motion as well as high redundant multi-body
systems. This strategy is valid for 2D and 3D environments, static or dynamic. Using
algorithm capable of obtaining a sequence of feasible robot configurations between
the given initial robot configuration and the goal robot configuration, Valero et al.

[13] planning trajectory for industrial robots in workspaces with obstacles.
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A method for optimal trajectory planning of robot manipulators in the operational
space with moving obstacles is presented by Saramago and Steffen [14]. The
algorithm regards the non-linear manipulator dynamics, actuator constraints, joint

limits and obstacle avoidance.

2.1.1 Trajectory planning of mobile manipulator

Mobile manipulator contains mobile platform carrying a serial manipulator. A
common approach in motion planning for this type is to conduct trajectory planning
on the basis of a path generated by a path planner. A notable framework is the elastic
strip method [15], which can deform a trajectory for a robot locally to avoid moving
obstacles inside a collision-free “tunnel” that connects the initial and goal locations of
the robot in a 3-D workspace. Such a “tunnel” is generated from a decomposition
based path planning strategy [16]. Another approach is to conduct path and trajectory
planning simultaneously. However, the offline algorithms takes the most effort in this
category which is focused on assuming that the environment is completely known
beforehand, i.e., static objects are known, and moving objects are known with known
trajectories [17; 18; 19; 20]. As for dealing with unknown moving obstacles, only

recently some methods were introduced for mobile robots [21; 22].

The coordination of the mobile base and the manipulator is the major issue of motion
planning of mobile manipulators. This issue presents both challenges and

opportunities since it involves redundancy resolution. There exists a lot of literature
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addressing this issue from many aspects. Some researchers treat the manipulator and
the mobile base together as a redundant robot in planning its path for place-to-place
tasks [23; 24; 25]. Some focused on planning a sequence of “commutation
configurations” for the mobile base when the robot was to perform a sequence of
tasks [26; 27] subject to various constraints and optimization criteria. Others focused
on coordinating the control of the mobile base and the manipulator in a contour-
following task [28; 29] by trying to position the mobile base to maximize

manipulability.

Most of the existing research assumes that the environments is known with the
obstacles for a mobile manipulator, but a few local collision avoidance of unknown,
moving obstacles online is considered. One method as in [30] used RRT as a local
planner to update a roadmap originally generated by PRM to deal with moving
obstacles. For contour-following tasks, an efficient method [31] allows the base to
adjust its path to avoid a moving obstacle if possible while keeping the end-effector
following a contour, such as a straight line. Another method [29] allowed the base to
pause in order to let an unexpected obstacle pass while the arm continued its contour-
following motion under an event-based control scheme. Other methods include one
based on potential field [32] to avoid unknown obstacles and one based on a neuro-
fuzzy controller [33] to modify the base motion locally to avoid a moving obstacle
stably. There is also an online planner for the special purpose of planning the motions

of two robot arms getting parts from a conveyer belt [34].
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Zhijun Li and Weidong Chen proposed adaptive neuro-fuzzy (NF) control for
coordinated multiple mobile manipulators for robust force/motion tracking on the

constraint surface while it is in motion [35].

John Vannoy, Jing Xiao introduced a novel and general real-time adaptive motion
planning (RAMP) approach suitable for planning trajectories of high-DOF or
redundant robots such as mobile manipulators in dynamic environments with moving
obstacles of unknown trajectories under various optimization criteria, such as

minimizing energy and time and maximizing manipulability [36].

2.1.2 Parallel robots

One of the widely types of robotics research is the parallel robots, their design dates
back to the work by Gough [37], who was behind the establishing of the basic
principles of a manipulator in a closed loop structure. His machine was able to
position and orientate an end-effector (EE), for testing tire wear and tear. After one
decade, a platform manipulator for the use as an aircraft simulator is proposed by
Stewart [38]. After that, extensive research efforts lead to the realization of several

robots and machine tools with parallel kinematic structures [39].

Parallel machines have two basic advantages over conventional machines of serial
kinematic structures. On one hand, the high structural stiffness and rigidity caused by
the connection between the base and the EE is made with several kinematic chains.

On the other hand, this structure, make it possible to mount all drives on or near the
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base. Which allow large payloads capability and low inertia. Indeed, the ratio of
payload to the robot load is usually about 1/10 for serial robots, while only 1/2 for

parallel ones. Despite these advantages, PKMs are still rare in the industry.

The small workspace is one of the major reasons of this gap, also the complex
transformations between joint and Cartesian space and singularities comparing to
their serial counterparts. These issues lead to a lot amount of research in design and
customization [39]. The under consideration of the dynamics of these machines is

another reason which is identified [40].

Comparing to serial robots the architecture-dependent performance associated with
the strong coupled nonlinear dynamics makes the trajectory planning and control
system design for parallel robotics more difficult. There is a plentiful literature
published for serial robots, on the topics of off-line and online programming, from
both types: computational geometry and kinematics, and optimal control including

robots dynamics [41; 42; 43; 44].

A relatively large amount of literature For PKMs is devoted to the computational
kinematics and workspace optimization issues. For PKMs trajectory, the overwhelm
criteria considered planning are essentially design-oriented. These include singularity
avoidance and dexterity optimization [45; 46; 47; 48; 49]. The authors had developed
a clustering scheme to isolate and avoid singularities and obstacles for a PKM path

planning in [50]. In [51], a kinematic design and planning method had been described




for a four-bar planar manipulator mechanism. It had been shown that a motion

planning with singularity-free pose change is possible for PKMs in [52].

Planning a singularity-free minimum-energy path between two end-points for
Gough—Stewart platforms using variational approach is described in [53]. This
method is based on a penalty optimization method. But as shown in [54]penalty
methods, have several disadvantages. Using of PKMs in industry (in a machining
process, for example) is one of the major and practical issue for off-line
programming, the control system should guarantee the predetermined task completion
within the workspace, for a given set up of the EE. This issue has been considered
with design methodologies involving workspace limitations and actuator forces

optimization using optimization techniques [55; 56].

Khoukhi et al presented a new approach to multi-objective dynamic trajectory
planning of parallel kinematic machines (PKM) under task, workspace and
manipulator constraints [57]. It minimizes electrical and kinetic energy, robot
traveling time separating two sampling periods, and maximizes a measure of
manipulability allowing singularity avoidance. The discrete augmented Lagrangean
technique is used to solve the resulting strong nonlinear constrained optimal control

problem.

10
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2.1.3 Mobile Parallel robots

A literature survey on mobile parallel robots shows that the working on parallel
mobile robot is a hot area of researcher, and the study of the topic is still open. Rene
Graf and Rudiger Dillmann proposed the use of a Stewart platform mounted on a
mobile platform to compensate the unwanted accelerations in the way that the Stewart
platform generates anti-acceleration [4]. The necessary movement of the platform is
calculated by a so called washout filter. Applications of this combination are either
the transport of liquids in open boxes or medical transports, where the patients must

not be affected by any acceleration.

M. W. Decker et al implemented and compared several different approaches for the
motion planning of Gough-Stewart Platform mounted on mobile robot [58], they
aimed to enhance the capabilities of transport vehicles so that they can carry delicate
objects of various shapes and sizes without requiring extensive packaging to protect

them.

Shraga Shoval and Moshe Shoham presented a novel design for a mobile robot [59],
the kinematic of this robot is combines techniques of parallel mechanisms with
conventional wheeled units. The robot consists of three legs, each driven by an
asynchronous mechanism connected to the legs with a spherical joint. Each leg is also
connected to an upper platform with a revolute joint, resulting in a mobile, six DOF,

parallel mechanism.

11



Figure 2.1: Schematic description of Shraga’s mobile parallel mechanism [59]

The direct and inverse dynamic problems of [59] manipulator are solved by P. Ben
Horin et al in [60]. It is shown that the Jacobian associated with the direct problem
becomes identically singular when used to solve the inverse problem, and hence must
be redefined; and that once redefined, it loses its standard structure and cannot be
used to solve the direct problem. Three solution methods to the inverse problem are

presented and are shown to lead to indistinguishable results.

T. Yamawaki et al proposed a self-reconfigurable parallel robot, which can be
configured to 4R and 5R closed kinematic chains [61]. They proposed a parallel
mechanism mobile robot by mounting it on a crawler mechanism. The combined
mobile robot can gain some useful functionality from the advantage of its parallel
mechanism other than just locomotion, such as getting over a hump by control of its
center of gravity and carrying an object by making use of its shape. They analyzed the

motions of the functionalities and verified them experimentally using the robots.

Yangmin Li, et al proposed a novel design and modeling of mobile parallel

manipulator (MPM) [6]. This MPM composed of a three-wheeled nonholonomic

12
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mobile platform and a 3-RRPaR translational parallel robot is designed and
investigated in details. The position kinematics solutions are derived and the Jacobian

matrix relating output velocities to the actuated joint rates is generated.

= Moving Platform

Base Platform

Driving Wheel (Right) Driving Wheel (Lefty

Figure 2.2: the mobile parallel manipulator studied by Yangmin Li, et al [6]

Huapeng Wu et al presented a novel mobile parallel robot, which is able to carry
welding and machining processes from inside the international thermonuclear
experimental reactor (ITER) vacuum vessel (VV) [62; 63; 64; 65]. The kinematic

design of the robot has been optimized for ITER access.

2.2 Off-line trajectory planning of robotic systems

2.2.1 Approaches to Off-line trajectory Planning

A lot of researchers have been working over the last two decades on computational
methods to generate optimal control for general manipulator robots for both offline
and online programming. Motion planning for robots had been considered from two
different points of view. First, from computational kinematics and CAD standpoints,

it consists merely to assimilate the robot, workspace, and environment to that of a
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Windows application using a dedicated CAD/CAM graphics-based interactive
simulation system, with menus, toolbars and icons and implements advanced 3D
modeling, drawing, and simulation tools to obtain as accurate positioning results as
possible in 3D space. Examples of such software packages are CATIA-Robotics,

IGRID, Robot Master, and ROBCAD.

On the other hand, from control systems standpoint, the problem consists in finding
the sequence of optimal torques to achieve the displacement of the robot from a
starting to an ending poses, while optimizing a cost function. One way of thought to
the trajectory planning is that of making the analysis and planning over the phase
space rather than the configuration space. The trajectory planning is solved by
optimizing a performance index from a state-space representation and applying
optimal control theory and variational calculus techniques using a system of
differential equations [43]. From this, several criteria and constraints to satisfy in the
course of the trajectory planning process by introducing dynamic parameters of the
robot. Several works had been published, especially those dealing with minimum
time path planning of serial manipulators. This is widely justified as to increase
production by efficient use of the robot capacity, which is demonstrated by executing
tasks as fast as possible. However, minimum time control is essentially of Bang-Bang
type, which has several drawbacks [57]. Several other criteria had been proposed,
such as minimum energy planning, minimum time-energy planning and obstacle

avoidance.
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2.2.2 Off-line trajectory Planning Systems for Mobile Parallel
Manipulator (MPM)

In this research, an integrated off-line programming approach will be developed for
MPM. A decoupling and linearizing approach to MPM multi-objective optimal
control is introduced in order to handle some intractable computation issues within
the non linear and non decoupled formulation. The multi-objective optimization
procedure will performed within a proper balance between time and energy
minimization, singularity avoidance, actuators, sampling periods, link lengths and
workspace limitations, and task constraints. From a state space representation by a
system of differential equations, the trajectory planning is formulated using a
variational calculus framework. The resulting constrained nonlinear programming

problem will solved using an augmented Lagrangian (AL) with decoupling technique.

AL algorithms have proven to be robust and powerful to cope with difficulties related
to non-strictly convex constraints as compared to optimization methods employing
only penalty. The decoupling technique is introduced in order to solve difficult
computations, related mainly to the co-states, in the original coupled formulation.
Another advantage of the proposed method is that one might introduce several criteria

and constraints to satisfy in the trajectory planning process.
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2.3 On line trajectory planning of robotic systems

2.3.1 Approaches to On-line trajectory planning through soft
computing

Neuro-fuzzy systems represent a newly developed class of hybrid intelligent systems
combining the main features of artificial neural networks with those of fuzzy logic
systems. The main purpose in this issue is to overcome difficulties of applying fuzzy
logic for systems represented by numerical knowledge (data sets), or conversely in
applying neural networks for systems represented by linguistic information (fuzzy
sets). As it known that neither fuzzy reasoning systems nor neural networks are by
themselves capable of solving problems involving at the same time, both linguistic

and numerical knowledge.

Using a set of simple “if-then” rules, fuzzy logic theory permits the accurate
representation of a given system behavior, but it unable to processing knowledge
stored in the form of numerical data. For this common type of system, “if-then” rules
have to be extracted manually from the data sets, a process that becomes very tedious
or even impossible to achieve for data sets with large numbers of patterns. But also
the problem may become harder when the knowledge about the system is stored in
both forms: linguistic (fuzzy sets) and numerical (data sets). This is the case for large-

scale systems characterized by complex dynamics and ill-defined behavior.
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On the other hand neural networks are universal approximators which have the ability
learn virtually any (smooth) nonlinear mapping, and in the same time providing a
high degree of accuracy. Neural networks are excellent classifiers and predictors. In
spite of their versatility, neural networks have drawback which is the implicit

representation of knowledge (known among researchers as the black box structure).

It was noticed that it is very difficult to quantitize the meaning of weights among the
nodes of the network once the systems have been trained. As such, neural networks
are not very clear in explaining their decision-making process. In addition, it is
difficult to incorporate additional knowledge into the system without retraining it. It
is even more difficult to extract from the data patterns linguistic representation of

knowledge [66].

This leads us to find a way to overcome the limitations of both system representations
(fuzzy and neural); researchers in the area have proposed incorporating fuzzy logic
reasoning within a learning architecture of some sort. Neural networks have been
shown to be excellent candidates for this task. Automating the generation of fuzzy
rules using neural networks and optimizing the parameters of the fuzzy sets have been

among the major objectives of several researchers in this field for recently.

2.3.2 On-line trajectory Planning Systems for MPM
Adaptive neuro-fuzzy network, called NeFOTC (Neuro-Fuzzy Optimal-Time

Controller) in this research. It is based on a Tsukamoto fuzzy inference system will be
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used to learn the premise parameters as well as the crisp outputs of the fuzzy rules. It
starts with a subtractive clustering of input—output data and then the fuzzy inference
parameters are learnt with a gradient back-propagation error function thereby giving
the optimal time actuator torques. The Levenberg—Marquard version of the gradient
back propagation algorithm is again used to learn premise and consequent parameters

of the fuzzy rules.
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Chapter 3

Kinematic Modeling

3.1 Architecture Design of the MPM

A mobile parallel manipulator (MPM) can be designed to have much different
architecture. For the sake of this work, a 4-DOF MPM is chosen; it can be described
as follows: A three-wheeled nonholonomic mobile robot with two fixed driving
wheels and one castor wheel is chosen to construct the mobile platform. Additionally,
a modified version of DELTA parallel robot with three translational DOF is selected

to mount on the mobile platform [6].
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(a) Orthographic view. (b) Top view.

Figure 3.1: Schematic representation of a mobile parallel manipulator [6]

Utilizing only revolute joints, the parallel robot is designed to have special
arrangements of fixed motors, which result in a more compact structure with a larger
reachable workspace than the original “DELTA robot”. Moreover, the fixed actuators
make it possible that the moving components of the parallel robot do not bear the load
of actuators. This enables large powerful actuators to drive relatively small structures,
facilitating the design of a robot with faster, stiffer, and stronger characteristics.
Figure 3.1 illustrates a CAD model of the designed MPM, which possesses four DOF

including three spatial translational DOF and one rotary DOF around the z axis.

With respect to the mechanism design, the selection of MPM architecture heavily
depends on the task to be performed. Other types of mobile robots and parallel robots

can also be employed to meet the requirement for a specified task performed by a

MPM [6].
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3.2 Kinematic Modeling

3.2.1 Architecture Description

In this research we use the architecture of [6] which consists of a three-wheeled
nonholonomic mobile robot and a modified version of DELTA parallel robot (Fig.1).
Figure 3.2 represents the schematic diagram of the designed MPR. The notation of R

and Pa stands for the revolute and parallelogram joints, respectively [6].

Refers to Figure 3.3, the MPM is assumed just move on a plane. a fixed Cartesian
frame (global frame) O{Xo, Yo, Zo} is assigned on the plane of motion, a moving
frame M{Xy;, Yu, Zy} on the mobile platform, a moving frame B{X3, Y5, Zz} at the
centered point B of the base platform AA;4,A43, and another moving Cartesian frame

P{Xp, Yp, Zp} on the triangle moving platform AC;C,Cs; at the centered point P.

Now, for frame M, the Yj, axis is along the coaxial-line of the two fixed wheels, Xy, is
perpendicular to Y, and passes through the midpoint of the line segment connecting
the two fixed wheel centers, and the Zj, axis is vertical to the mobile platform. In
addition, the Xp and Xp axes are parallel to the X), axis and the Yz and Yp axes are

parallel to the Y, axis, respectively [6].

In order to get a compact structure such as in parallel manipulator, both the base and
moving platforms are designed to be isosceles right triangles described by parameters
of e and u, respectively, i.e., BA; = e and PC; = u, for i =1, 2, and 3. Also, the actuated

variable of the ith limb is denoted by angle ;. The connecting joints between the
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upper and lower links are denoted as B;, and the lengths of upper and lower links for

each limb are a and b respectively.

The plane of motion can be described as follows: the kinematics of the mobile
platform can be consists of three parameters of coordinates of point M (x,, y,) and
the heading angle (¢,,). Referring to Figure 3.2(b), let d be the distance between the
two fixed wheels, /, be the offset of the base platform of the parallel robot with
respect to the origin of frame M, and /, denote the offset of the mass center A of the
mobile platform with respect to frame M. Additionally, P'(x}, , yi , ¢k) and
Pl (x| i+l - pi+1y represent coordinates of the mobile platform at time # and
respectively; f; and r; are the corresponding yaw angle and steering radius at time
t; AS;, AS,, and AS,, denote the advance of the left wheel, right wheel, and the origin

i+l

of frame M in the time interval (At = ¢ 7') respectively.

3.2.2 Position Kinematics Analysis

Referring to figure 3.5, it can be shown that

= 226, +6,) 3
T

d)ng

Jf o = 22 (8, + 6,)

(gr - BL)
With ¢ stands for cosine, s stands for sine, and r is the radius of each driving wheel,
also 6, and 6, denote respectively the rotating angles of the left and right driving

wheels.
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Now, the general coordinates of the mobile platform to be
E=[Xm Ym ®mb. 6,]7. Solving eq. 3.1 for the nonholonomic constraints of the

MPR, which can be written as:,

D($).¢ =0, 3.2
Where

chbm  sby —d/2—r 0
D(f) = |chm SOm /2 0 -—r 33
sbyp —cdp, 0 0 O

The forward kinematics problem is very complex for a parallel robot, while the
inverse kinematics problem is extremely straightforward in general [44]. In this

subsection, the forward kinematics solution is generated for the designed MPM.

Assuming that linear (v,,) and angular (w,,) velocities of the mobile platform and the
actuated inputs of the actuators (8;, i =1, 2, 3), the position (x, y, z) and orientation (¢)

of the mobile platform are solved using the forward kinematics.

In this research we assume that there is no slip in the wheels of mobile platform on all
directions. As At — 0, the velocities during this time interval can be considered as a

constant, and referring to Figure 3.6(b).
|PLPH| = AS,, = vy, At

oty = =t = (PP iy = i .y
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Ay, = it — yi =~ |PIPHY . sl, = v At. s,
B~ ApL, = ¢t — @' = wyy,. At 3.4

Since eq. 3.4 applied in all the motion of the mobile platform, we can delete the

superscript i. Thus,
. . Ax
Xm = limaeso (A_zn) = Vi Chp,
T Aym\ _
Ym = llmAt—>0 (T) - Um-Sd)m: 3.5

d)m = limyo (AZ%) = Wy

Integration of eq. 3.5, gives the posture of the mobile platform:

X (6) = [} % dt = [0 (6). c(Pm(D)). dL,
V(&) = [ Jm- dt = [ v (£). 5 (P (D)., 3.6

G (6) = [, P dt = [ 0 (). d.

Let us assume that the wheels of mobile platform have no slip in any direction. Let
P=[x ¥y Z]"and BP=[Xp Yp Zp]T are the vectors of point P in the fixed
frame O and the moving frame B, respectively. Also, in frame B, let B e = T&,
Bb; = A,B, and B¢; = P—C{ Referring to Figure 3.1 we obtain

Pe; =[ecp; esp; 0], Pe; = [ucp; usp; 0],

®b; = [beBice; bcbise;  bse;]” 37
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Where ¢; = %n,fori =1,2,and 3

Since the distance between B; and C;is a constant a, we have

| P + Bei— Pei— Pbi|| =a 3.8

By substituting eq. 3.7 in eq. 3.8, we get

xp + (yp + u—e —bcb;)? + (z, — bsB;)* = a?, 3.9
X, — U+ e+ bch,)? +y2 + (z, — bsh,)? = a?, 3.10
( p 2 Yp p 2

X5 + (yp —u+ e+ bch3)? + (z, — bs63)* = a?, 3.11

In order to solve these equations, first we used Maplel2 (codes appear in appendix A)
to solve (3.9) and (3.10) to get x, and y, as a function of z,, we get the following

result:
X, = — (b(2b691C93W — bcO,wch; — bcB,wcl; — w2ch; — w?chs + 2w?ch,
+ 22,560,w + 2,bs0,c03 — wz,50; —wz,s60; + bz,,c0,560,
— bz,c0,56, — bzpc93562)) /(=bwcO; — bwcB; — 2bwch,

+ b%cO,cO, + b?cH;cH, + 2w?)

Yp = —b(wcO; —wcbs + 2,50, — 2,5603) /(—2w + bcb, + bcO3)

Where w = u —e.
Now substitute x, and y, in (3.11) and solve for z,, then solving eq. 3.10 and eq. 3.11

leads to solutions for the forward kinematics of the parallel robot, i.e.

—hi+ /h%—z}hzho 310

Xp = f12p + fo, Yp = €12, + €y, 2, = o
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h, =1+ e? + f?

hy =2[e;(eg + u—e —bcby) + fifo — bsb,],
hy = (eg + u—e — bch;)? + f¢ — a? + b?s%6,,
ms;=u—e—bcl,,my, =u—e—bch,

my; = b(s6; — s6,),

mo = b(u — e)(ct; — cb,),

n, = 2(u—e) — b(ch; + ch),
n, = b(s6; — s65),
nyg = b(u —e)(ch; —ch,),

The parallel robot has only a translation motion, so the rotation around the Z axis is
the only factor to determine the orientation of the MPM, i.e., ¢ = ¢,,. Referring to Fig.

3.1, one can derive the position of the mobile platform to be:

p=b+RBp 3.13

With
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b=0B =[xy — lpchdm Ym — lpSPm h]T, 3.14
And
chpm —SP, O
R=|s¢p,, cpnm O 3.15
0 0 1

Is the rotation matrix of the moving frame B regarding to the fixed frame O.

3.2.3 Differential Kinematics Analysis
Let the vector for the output velocities of the moving platform to be x =
[x yz &]T, and the vector of input joint rates is represented by

a=1[6, 6,6, 6, 6,]T. Differentiating eq. 3.13 with respect to time, leads to
p=b+RP°p+RPp 3.16

Also, let q, = [6, 6, 63]Tto be the vector of actuated joint rates for the parallel

robot. Taking the derivative of both sides of (3.9)-(3.11) with respect to time and

rewriting them into a matrix form, yields
A®p = Bq, 3.17

The 3x3 forward and inverse Jacobean matrices A and B of the parallel robot can be

written as
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ayp Az A13 b;; O 0
A=]a1 az; az|,B= [ 0 by, O ] 3.18
dz; dszy dsz 0 0 bss

With a3 =xp, a1z =y, +tu—e—>bcb,, a3 =127,—bso,,
A1 =X, —u+e+bcl,, a; =y,, Qz3 =2, — bsh;,
az1 = Xp, A3z = Yp—Uu+e+bcl;, az3 =2z, — bsbs,
b, = —b[(yp +u-— e)501 — chel],
by, = b[(xp —u+ e)st — zpcez],
bz; = b[(yp -—u+ e)593 — z,c03]

It can be derived from eq. 3.17, that when the parallel robot is away from the

singularity
p =J,4, 3.19
Where J, = A™1B is the Jacobian matrix of a 3-RRPaR parallel robot.

By substituting eq. 3.14, 3.15 and 3.19 into eq. 3.16 and consider of eq. 3.1, will give

n

x=]q 3.20
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Define J 4X5 to be the Jacobean matrix of the MPM, that relating the output

velocities to the actuated joint rates and it can be rewritten as shown in the following

matrix
Jir Ji2 .
— ]21 ]22 RA™'B
] = 0 0 3.21
-r/d r/d 0 0 O
With Ji, = (3 + y—p)rcqb — Zsp(l, — x3)
11 =\, d m d m\‘b b/
1y
iz = (5= ) retm + = shmly — x5),
1,y
Jor = (G+ 22) 15 + = chmly — 1),
1y
Joz = (5= 2) 7S + = cpm (U — x).
Taking differentiation eq. 3.20 with respect to time, gives
x=Jq+]q 3.22
Also, solving eq. 3.20, leads to
q=J"%+ (Isxs — I, 3.23
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Where JT = ]JT(JJT)™? is the generalized pseudo inverse of J, and g5 € R°*! is an
arbitrary vector which can be chosen to achieve a secondary task, this will be shown

clearly in section 3.2.5.

3.2.4 Kinematic Singularity Characterization

The robot Jacobian allows motion and force transformation from the actuators to
the End Effector, so the forces demand at a given point on the trajectory needed to be
continuously checked for possible violation of the preset limits as the robot moves
close to singularity. The condition number of the Jacobian is used as a local
performance index for evaluating the velocity, accuracy, and rigidity mapping
characteristics between the joint variables and the moving platform. In this research a

detailed characterization of robot singularities is given as follows.

From equation (3.17) it is clear that singularity in the MPM structure occurs in the

following cases:
1% case: |A| = 0,and |B| # 0. This corresponds to a type-1 singularity.
2" case: |A| # 0,and |B| = 0. This is a type-2 singularity.

3" case: |A| = 0,and |B| = 0. This is a type-3 singularity for which both the

determinant of A and B will equal to zero.

These cases are programmed to be calculated during running the simulation.
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3.2.5 Redundancy Resolution through Joint Limits and Singularity
Avoidance

To include a secondary task criterion by a performance index g(q), qs in eq. 3.22 is
chosen to be qs = +kVg(q), where k is a positive real number and Vg(q) the
gradient of g(q), with positive sign indicating that the criterion is to be maximized

and a negative sign indicating minimization.
To avoid joint limits we chose g as follows:
ds1 = (Amax — DW(Q ~ qmin) 3.24
Where: W = %(qmax — Qmin) 3.25

The related criterion to avoid the singularity is to maximize the manipulability, 1.e.

we choose (g as follows:
452 = vdet (JJ) W 3.26
Where:Wj is weight vector with appropriate dimension.

Now the formula of the augmented function to avoid singularity and joint limits is

as follow:

qs = qs1 + Q52 3.27
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Chapter 4

Kinematic Initialization

4.10ptimal time trajectory parameterization

Considering the MPM, the task of the robot is to move its end-effector within a
limited workspace and time interval. Also, each robot joint has to produce zero rates
and accelerations at the ends of the interval of motion. A cycloidal function is chosen
to achieve this purpose for modeling the trajectory time (t) from O to T with the

normalized time s as

The cycloidal function is described as follows:
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q(s) =s — isin(Zns), 4.1
Where the first and second derivatives obtained as

q(s) = 1 — cos(2ms), 4.2

4(s) = 2msin(s) 4.3

The cycloidal motion and its derivatives are defined within the range (-1, 1). With
zero velocity and acceleration at the ends of the interval, i.e. s =0 and s = 1, the initial

and final joint values be detailed as q'and ¢".

The maximum velocity for the motion of joint j is attained at the center of the

interval, i.e. s = 0.5, the maximum being §.x = §(0.5) = 2, so that,

(A7) 0 ® = 710} = a 4.4

In the same way, it can be shown that the acceleration of joint j allows its maximum
and minimum values at s = 0.25 and s = 0.75, the maximum being §,.x = G(0.25) =

G(0.75) = 2m, and hence

(@) () =] —d| 45

And finally, the maximum jerk of joint j is achieved at s = 0.0, and s = 1.0, the

maximum being
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Gmax = G(0) = ¢(1) = 4n® Thus,

2
(&) () == |af —qf 4.6

The motion of the robot is constrained by the maximum joint velocity, accelerations

and jerk which the motors produce, this can be interpreted as

qj < (qj)motor' q; = (qj)motor' and q] = (dj)motor' 47

This means the strongest constraint among the (q j)motor’ (c']' j)motor and ('Q'j)motor

limits the minimum-time trajectory of joint j, which means that:

T, = Max |q] 2n |q — (q; | (—|q |)1/3 4.8
J J)motor (q] motor J v (q )motor ) '

Now, the overall minimum-time trajectory (for all the five joints together of the

MPM) is written as
Tumin = Max{Ty, T, T3, Ty, T5 } 4.9

Thus, the resulting minimum-time trajectory characterized by joints position, velocity

and acceleration is obtained as

)

q(t) = —'(1 — cos (27T T;in)) 4.10

Min
T n)
Mi

a() = 4"+ (" — 4" (5= — 5 sin (2

q(t) = 4’ 27 sin (27‘[

M1n
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4.2 Neuro-fuzzy inverse Kinematics

One of the most important challenges in robotics is the inverse kinematics problem
which is the problem of finding the joint coordinates (g1, g2, g3, ¢4, ¢s), from
Cartesian coordinates (x, y, z, ¢), Where the starting and ending Cartesian positions of

the manipulator are specified in the workspace of the robot.

A neuro-fuzzy system called NeFIK is proposed to be used here for resolving the
redundancy of the inverse kinematic problem. The NeFIK is going to be trained to
produce joint position in a preferred configuration. The training dataset is generated

with the forward kinematic (FK) equations of the manipulator described in chapter 3.

(91, 92, g3, Ga, G5)

FK

(X, y.2,¢)

Figure 4.1: The use of the FK to the learning of the NeFIK module

A set of derivatives of (g1, ¢2, g3, g4, gs) 1s used to construct the true derivatives (x, y,
z, ¢, xn), and thus to get an error on which to apply the back-propagation algorithm.

As mentioned here we add x, related to gsto remove the redundancy of the system.

NeFIK is a multi-layer feed forward adaptive network. The first layer is a two input

layer, characterizing the Cartesian position crisp values. The last layer is a three
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output-layer characterizing the corresponding crisp joint values. NeFIK involves three
hidden layers. The first one is the fuzzification layer, which transfers the crisp inputs
to linguistic variables, through sigmoidal transfer functions. The second is the rule
layer, which applies the Product t-norm to produce the firing strengths of each rule.
This is followed by a normalization layer. The training rule option is the Levenberg—
Marquard version of the gradient back propagation algorithm. This choice allows
speeding up the learning process substantially with less iteration as compared to

standard back-propagation (e.g. gradient descent).
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Figure 4.2: NeFIK performance — root mean square error output with respect to
learning epochs for derivatives of (qi, 92, 93, 94, gs)

To construct NeFIK, the forward kinematic equations are applied. Its learning is

obtained through 400 samples, among which 320 are considered for training, whereas
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testing and validation datasets, each of them is obtained using 10 entry samples. Fig.
4.2 shows the training performance for NeFIK, which is interesting as it reaches a
very small root mean square error (RMSE), less than 107 in less than 10 epochs. It is
noted that the configuration used for the learning is determined among infinitely

many solutions that exist for each input.
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Figure 4.3: NeFIK performance — difference between real and estimated values of the
MPR angles

Figure 4.3 shows the difference between the real and estimated values of the joint

angles at the 8000 samples. The model derived by the NeFIK structure is used to
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illustrate two trajectories motion of the MPR, in the first trajectory the motion is
subjected to the parallel mechanism only (figure 4.4 and 4.5), and the combine

motion of both the mobile and parallel structures are shown in figures 4.6 and 4.7.
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Figure 4.4: variation of the EEF coordinates for the motion of the parallel mechanism
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Figure 4.5: variation of the joint angles for the motion of the parallel mechanism
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4.3 Dynamic trajectory generation

The robot dynamic model is developed using a Lagrangian formalism, which includes
actuators and friction models. This model allows closed-form expression of joint rates
and accelerations characterizing the motion resulting from joint torques as in eq.
(3.33). Now, using the minimum-time trajectory of Eq. (4.10) and the inverse

dynamic solution of Eq. (4.33), one can write

T= szl (211 sin (21‘[ ﬁ)) D(q) + ﬁ [(1 — cos (21‘[#)) (C(q,q) +

Min in

Fv+Fc sgnl—cos2ntTMinqF—qIT 4.11

Eq. (4.11) allows to compute the torques T corresponding to the joint motion (q, g, 4)
and then to project T onto the admissible domain of torque limits (as provided by the

manufacturer), i.e.

T = Max(Min(t;, Tj max), Ti Min) 4.12
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Chapter 5

Dynamic Modeling

In order to get the dynamic modeling of the hybrid MPM system the Lagrange
method is used. This can be done by applying Lagrange equation to the mechanical
systems with either holonomic or nonholonomic constraints, along with the equations
of constraint and their first and second derivatives involved into the equations of

motion to produce the number of equations that is equal to the number of unknowns.

Considering & which contains the variables of the mobile platform, Let the
generalized coordinates to be ¢{=[¢' 0, 6, 03 x ¥ Z]T, notice that
{contains all the variable of both the mobile platform and the parallel manipulator. In
order to use the approach of Lagrangian equations for the derive the dynamic
equations of the MPM, the kinetic and potential energies for all components of the
manipulator must be expressed in terms of the chosen generalized coordinates and

their derivatives. In this way we will get number of equations equal to the number of
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the generalized coordinates (11 equations), later we will see how this helps to get the

dynamic model.

5.1 Dynamic Model Analysis

Using the same simplification of [6] in this model while dealing with the mechanical
structure. Concerning a 3-RRPaR parallel manipulator, the upper parallelogram links
cause the complexity of the dynamic model. These connecting links can be made of
light materials such as aluminum alloy, because of that the dynamic modeling can be
simplified by the following hypotheses: The mass of each upper link is equally
divided into two portions and placed at its two extremities, i.e., one half at its lower
extremity (the end of lower link) and the other half at its upper extremity (moving
platform). Thus, the rotational inertias of upper links can be neglected. Also, the
castor of the mobile platform can be made to be very light, so its dynamics is

neglected.

1) Constraint Equations: The mobile robot cannot move in the lateral direction,
i.e., it satisfies the conditions of pure rolling and non-slipping. Then, the three

constraints for the mobile platform can be represented by eq. 3.2.
Another three constraint equations for the MPM can be derive from eq. 3.8, i.e.

[y =x5+ (¥, +u—e—bcb;)* + (z, — bs6;)* — a?,
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['s = (x, —u+e+bch)* +y; + (2, — bsb,)* — a?, 5.1

T = x5 + (yp —u+ e+ bchs)* + (z, — bsbs)* — a?,
2) Dynamic Equations: because of moving on a horizontal plane, no change in the
potential energy U, of the mobile platform. While the kinetic energy can be

calculated by:

1 . . H 1 H 1 . 1 .
T = ;M (%h + Vi + 1G9R) + S Leph + S 107 + S1:67 5.2

where m. is the mass of cart including the mobile platform, the base platform and

three actuators for the parallel robot, while without the two driving wheels and rotors

of the two motors;

1. 1s the moment of inertia of the mobile cart about a vertical axis through the

mass center A;

Iy denotes the moment of inertia of each driving wheel and the motor rotor

about the wheel axis.

The potential energy of the parallel manipulator is:
3 1
Up = (mp + Sma)ng + )i, (5 my, + ma) bgs6; 53

Where, my, m,, and m, represent the mass of lower link, each connecting rod of upper

link, and the moving platform, respectively.
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The kinetic energy for the parallel manipulator consists of kinetic energy of the upper

moving platform, the upper links, and the connecting rods. It is derived to be

1 . . . 1 H 3 . .
T, =5 (mp +3mg) (8% + 2 + 22) + S Ly di + 5 (my + me) (47 + 37 +

lhte2gm2+i=131213mb+mab26r 54

Where, I, denotes the moment of inertia of the moving platform about a vertical axis

through its mass center.
Thus, the Lagrange function for the MPM becomes
L=T,+T,—Uy,—U, 5.5

The constrained dynamics for the entire system of the MPM can be determined by

(L) _oL _ 5 4yy6 .90 -
dt (661-) ay; - Q] + Zl=lll 3’ G=12,..,11)

: =4 (oL)_0L g6 5 O .
Or: Q= dat <0Zj) 3, i=1Aj 3y’ G=12..,11) 5.6

Where Q=[0 0 0 Tt Tr T1 7, 73 0 0 0]7 are the generalized forces

under the assumption of no external forces/torques exerted.

A (1=1,2, ..., 6)are Lagrange multipliers associated with the constraints eq.

3.2 and eq.3.22,
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Now, the Lagrange multipliers can be calculated from the first set of linear equations

ofeq.4.6 forj=1,2,3,9,10,and 11.

Once the Lagrange multipliers are found, the actuated torques
t=[Tt Tr T1 1, 73]7can be solved from the second set of equations of eq.

3.27 forj=4,5, 6,7, and 8, which can be written into a matrix form:
H(Q4 +V(3,4)q +G(@) =T+ C@A 5.7
Here, Matlab is used to get complete expressions of eq. 5.7 as follows:

The dynamic parameters are: m, = 0.2 kg, m, = 0.5 kg, m, = 0.8 kg, m. = 7.5 kg, I, =

0.00034 kg.m?, I, =0.13982 kg.m?, and Iy = 0.00045 kg.m” [6].
Solving the augmented Lagrange equation gives:
Qi =24 81j(9) + A5 82) (D) + X6 83j(0) + g4j(¢), where i=1,2,3, .., 11

H(Q) = diag([A1, Ay, AsA;, A ]) € RS is the symmetric and positive definite

inertial matrix.
A1 =A,=9/20000, As=A7=A=11/750
V(Z, () € RS is the centripetal and Coriolis forces matrix, here equal to zero.

G(Q) =[0; 0; As; Ag; Aqq] € R°*! represents the vector of gravity forces,
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As=0.8829¢c0,,  As=0.8829cO,,  A;=0.8829 c;

A=A Az.. Ag] € R*denotes the vector for Lagrange multipliers.

fi b B[
A= [fS f6 f7 ] [fg ], and,

fo fio fis fi2
fi =—0.4 s¢,,,c0,— 0.08 s¢,,— 0.2 cp + 2(Xm — X)
£, =—0.28 c¢p— 0.4ch, €0, + 2(Xm — X)
f3=0.08 s¢,,+ 0.4 s¢,,c03— 0.2 ¢+ 2(Xm — X)
f,=14%
fs = 2(Ym — y) — 0.2 s¢p,,,+ 0.08 c¢p,,+ 0.4¢ch,,,c04
fo =2(ym—y) — 0.28 s¢,,— 0.4s¢h,,,c0,
t7=2(ym—y)— 0.2 s¢p,,,— 0.08 cgp,, +— 0.4ch,,,cO5
fs=14y
fo=-2z+0.4+0.4s0,
fio=-2z+0.4+0.4 56,

f11 =27z+04+04 s63
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fln=147Z+13.734

[000 0 0 0 7
[00o0 0 0 O |

C(Q) =1000—A; 0 O |e& R is the parameter matrix for .
000 0 —A6 0|
looo 0 0 —Al

Az =0.45018¢,,, (X — X)) — 0.4 01 (y + ym) +0.016 s6;+ 0.4c0,z — 0.08¢cO,
Ag=0.450,c¢,,, (X — Xm) + 0.4 30,50, (Y — Ym) 10.056 s8,+ 0.4c0,z — 0.08cH,
Ag=—0.4 50350, (X —Xm) + 0.4 583D, (Y — Ym) + 0.016 s03+ 0.4c63z — 0.08cO;
Recalling eq. 3.20

q = JT% + (Isxs —JT)4s

Let J,, € R*! be the normalized base of n(J) which is the null space of J, then we

have

Jn = 04x1, ]E]n =1,

Ja)T = 0144, Juln = Isxs — 7] 5.8
By definition of x, = JIqs and taking eq. 3.29, eq. 3.30 and eq. 5.1 into
consideration, it can be shown that

q=J"%+ JuXs

q = ]Ti_]-rj]-rx'l']nin _].I-ann 59
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With the definition of x; = [x” x,7]7,and J{ = [Jt J,] then substituting eq. 5.2
into eq. 3.28, we can get the derivation of the dynamic equations described in

Cartesian space, which is described by the following equation:

HQxg + V(3 )xg + G =7 5.10
with H(Q) = I} HQOJ,

V(2.9) =1t [v(.8) - noriL,

GO =i [6() - €A

and7=Ji 7.

5.1.1 Discrete Time Dynamic Model
From a state-space form of the continuous-time dynamic model of the MPM we
obtain the approximate state space discrete-time model. By deleting the time index

and the contact forces, from eq. 5.3 we obtain:
kg = AT - A9 (V(3, Q)% + G(D) 5.11

Let us use define the state x;, and its time derivative x,, such that x; = Xg and

x, =Xgie,x=[x] xI]7, eq.5.8 is rewritten as

HQx, +V(3,{)x, + G =7 5.12
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Also, eq. 5.9 can be transformed to following form:

T 5.13

0
. Osxs  Isks 5x1 ] 0sxs
x= T ICSNE
[ H™1(?)

O5y5 05x5] x- lﬁ_l(() (‘7((; Q)x, + (_;(())

Now, to obtain the discrete time dynamic model of the MPM, eq. 5.10 is expressed as

following:
x=Fx—-D(x)+BX)T 5.14
With

F— Osxs l5x5]
05X5 05x5 ’

05X1
D) = lﬁ-l(o (V(3Q)xz + 6(())]'
0sx
B(x) = [H_ié) 5.15

By defining the sampling period ashy, such that hy <t < hy,, and Yh_, by =T,
with being the total traveling time and the robot state is defined between two

sampling points k£ and k+1 as
x(t) = x(h), fork=1,2,..,N. 5.16

The discrete time model to modeleq.5.11is written as
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X1 = Fa(hp)xy — Dg(xg, hy) + Bg(xg, hy) Ty 5.17

WithF 4, D andB jare the discrete equivalents to F, D, and B matrices, and described

below.

Fy(h) = Fy(k + 1, k) = e = Isxs hklsxs]
05X5 l5)(5

Da(ti hi) = fo* Fa(hi — DG (R — H(D(x))dt

L
=A1©Q [715"5 (V(Z Oz + G@D)

kISXS

g
h —1 T
Ba(xi hu) = fy“ Fa(hye — OB(x)dt = [z ZSIH(Q) 5.18

hilsxs

So, the discrete time state-space dynamic model of the MPM is rewritten in the final

form:

H 1@ V(3 {)x2 + GQ)

h2
Isxs  hylsks =3
Xit1 = ]Xk —[2 >

05x5 I5X5

kISXS

2

hi
7 I5x5

+ H (7, 5.19

thSXS
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5.2 Constraints Modeling

The task of robotics simulation requires taking in the consideration many
constraints, such as: the nominal values of kinematic and dynamic parameter, for
example, the length of the link, velocities, accelerations, and also nominal torques
which the actuators supported. These constraints are defined in joint space and in task

space.

5.2.1 Robot Constraints
e Nonholonomic constraints: The mobile robot cannot move in the lateral direction,
i.e., it satisfies the conditions of pure rolling and non-slipping. Then, the three

constraints for the mobile platform can be represented by eq. 3.2.

e Dynamic state equations: These consists of eq. 5.16, which can be rewritten in the

following formula:
Xpr1 = fa, (X, Th D) 5.20

e Limits on the intermediate lengths of links: expressed by eq. 3.22, from which the
limits of the angles is found as: each angle of the parallel manipulator is between
0.65 and 1.65 radian, and for the mobile platform it is between -10 and 10 radian.

e Singularity avoidance: as described in section 3.2.4

e Torque limits:
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Another major issue for trajectory planning is not violating the control torque limits.
In this research we assume that the robot torques is belong to a bounded set C ¢ RV

as shown in the following formula:

C={t, €RY, suchthat: Ty < Tk < Tmarr k=0,.,N—1} 521

e Sampling period limits:

Since the torque constraints bound indirectly the path traversal time, to achieve
admissible solution to the optimal control problem the overall robot traveling time T
should not be too small. Also in order to achieve system controllability, the sampling
period must be smaller than the system smallest time mechanical constant between
two control times. In this research time mechanical constant and limits of sampling

periods are assumed to be available previously
Now, define H to be the sampling period:
H = {hy € R*, suchthat: hyj, < hg < hpal 5.22
5.2.2 Task and Workspace Constraints
Task and workspace constraints are basically geometric and kinematic, from which

the size and shape of the manipulator workspace is determined. These constraints are

expressed by imposing to the end effector (EE) to pass through a set of specified
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poses. These constraints represent equality constraints and are written for simplicity

as:

Si(x) = [lp—pill - TPassThlp =0

s5(x) = |lvectR™RYI| — Tpassthiy =0, 1=1,..,L 5.23
The above inequality constraints are written in the following simplified forms:

gl(x) = qwmin — @(x) <0, gz(x) = G(x) — qQuax <0,

g;(0) =ty —t<0, g,(V)=7T— Tygx <0, 5.24

Where qmin/max@ndTuin/maxare for (01, 02, 03), all inequality constraints will be
noted as g i (x,t,h) <0,j =1,...,4, regardless if they depend only on state, control
variables or both. Hence, we turn up with J = 12 inequality constraints, 2L equality
constraints (imposed passages), and 6 equality constraints representing state dynamics

equations.

5.3 Model Validation

To validate the effectiveness of the established dynamic model for the MPM, the
dynamic control in task space is implemented by resorting to a model-based
controller. Since the number of coordinates in task space is less than that in joint
space, the proposed MPM possesses self motion with one degree of redundancy. In

this research, a simple solution is presented to stabilize the redundant robotic system.
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5.3.1 Model-based controller design

The desired trajectories, velocities and accelerations (Xq4, X4, X4q) can be determined
in advance, and the desired self motions X4, X,q, andX, 4 can be selected so as to
perform secondary tasks besides the one in task space. Here, the self motion is

exploited to optimize the problem of minimizing {q7, q}, subject to x = Jq.

zeta

ke _dbl_dot :
C- — —P>Matrix taw_bar
——pultiply taw [zeta_dot
Constant Product] taw hen y f—P{taw e b—
Embedded xe_dot I
MATLAB Function4 Robot
@
Out1 In1 @———
Out2 In2 ¢
Out2 Out2
xed_dot xed Out3 In3 | —————
Subsystem1 Subsystem Subsystem3

Figure 5.1: Block diagram of the model-based controller
Let xgq = [x4T Xnq']7, then the error system can be defined by

€ = Xgq — XES 5.25
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The adopted model-based controller is expressed in (5.36), and the control system

block is illustrated in Fig. 5.1

T =] [H(Xgq + Kpé + Kpe) + VXg + G] 5.26
where K and Kp are positive definite constant gain matrices.
Substituting (5.35) into (5.3), allows the generation of error equations

&+ Kpé + Kpe = 0 5.27

5.3.2 Simulation result for model validation
The dynamic control algorithm is implemented in task space such that the moving
platform can track a desired trajectory, and the simulations are carried out via Matlab

and Simulink software.

Two desired trajectory is selected such that no kinematic singularity is encountered.
A linear locus shown in Fig. 5.2 and a parabola like special locus shown in Fig. 5.4 is
considered in this simulation. Regarding the heading angle, it is assigned as ¢p; =0 in
the first curve and 0.1t in the second. The architectural parameters of the designed
MPMare:a=02m,b=02m,e=0.16 m,u=0.12m,d=04m,h=02m, r=0.08
m, [, = 0.2 m and /, = 0.1. The dynamic parameters are: m, = 0.2 kg, m, = 0.5 kg, m,
= 0.8 kg, m. = 7.5 kg, I, = 0.00034 kg.m’, I, =0.13982 kg.m’, and I = 0.00045 kg.m".

In the simulation, all parameters are supposed to be accurate enough. And the
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actuated joint angles are initialized to be at home position. Additionally, the
simulation time interval is selected as 10 seconds, and the gain matrices are selected

as Kp = diag {10} and Kp = diag {25} [6].

Figures 5.2 and 5.4 show both the desired locus and the controlled one. And the
position tracking errors and the heading angular tracking errors are illustrated in Fig.
5.3 and Fig. 5.5. It can be observed that both the position and heading angular errors
can be eliminated by the proposed model-based controller. Moreover, if proper gains

are chosen, the initial errors can be decreased rapidly.

0.55

Figure 5.2: Desired and controlled loci for the linear trajectory
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Figure 5.3: Position and angular tracking error for the linear trajectory
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Figure 5.4: Desired and controlled loci for the curve trajectory
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Figure 5.5: Position and angular tracking error for the curve trajectory

Two extra simulations are carried out to see the effect of choosing ¢ in eq. 3.30, in
the first g is put to equal to a vector of 0.001s and 0.0001 in the second, in each case
we calculate the condition number of the Jacobean matrix J and plot it with time,
clearly we find the value of g affect the condition number of J, in fig. 5.6 the
condition number is increasing highly as time increase, while it becomes stable in fig.

5.7 around 1.8 which indicating good behavior.

i /
/
EA

A ———

Time (S)

Figure 5.6: variation of the condition number for unstable system
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ondition number of J

Conditi
N
E—

Time (S)

Figure 5.7: variation of the condition number for stable system

It should be noticed that by combining a mobile platform with a parallel robot, the
problem of stability may occur since in some postures the external forces would cause
the manipulator to topple. In addition, regarding the accurate navigation of the MPM,
the odometric error containing both systematic and nonsystematic components should

be taken into account for practical applications [6].
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Chapter 6

Problem Formulation

In general, any cost function with a physical sense can be optimized, and in robotic
several criteria have been implemented to obtain control optimization problem. The
cost function can be defined according to task and planning objectives. The general
objective function for a robot controlled in discrete time can be written in the

following formula (P1):
Eq = Flxn] + XRZ0 Llxg, 7 6.1

Where F[xy] is a cost associated to the final state, whereas the second term the

second term in the right-hand side of the equation is related to the instantaneous state
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and control input variables (i.e. at time # = k#k). The robot state and input vector x;

and T, are related by the discrete dynamic model represented by eq.4.12.

6.1 Minimum Time Control Problem

The Minimum Time Control of robotic systems corresponds to F =0, L =1 in the
mentioned criterion (P1) had been widely considered by several authors. This is of
obvious interest considering production targets in industrial mass production process.
But, the major disadvantage of this control method is its Bang-Bang character, which
produces non smooth trajectories, which fastens the mechanical fatigue of the
machine. The sampling periods are defined such that the overall robot traveling time

1S
T = Y325 h 6.2

where hy, is the robot traveling time between two successive discrete configurations k

andk+1,k=0, ..., N-1.
There are two basic approaches to the minimum time control problem:

1** Approach: in this approach we consider a fixed sampling period 4 and search for
a minimum number N of discretizations of the trajectory. Which is equivalent to bring

the robot from an initial configuration x; to a final imposed one x7, within a minimum

61



2| King Fahd University of Petroleum & Minerals

number N of steps. For highly non linear and coupled mechanical systems like what

we have with MPM it is impractical, even by using symbolic calculations.

2"! Approach: in this approach we consider a fixed number of discretizations N and
vary the sampling time /;. This is means that the robot moves from an initial
configuration x; to a final imposed one x7, within a fixed number of steps N while

varying the sampling period’s /.

6.2 Minimum Energy Control Problem

In this case while minimizing an electric energy cost, the robot moves from a starting

point x; to a target point x7, so, we obtain that
F=0andL = YN~} 13 Ry 6.3

Using this criterion, or in general, using quadratic criterion, such as kinetic-energy
criterion, (L = YN-g ViRV, Vv is the velocity vector), the obtained trajectory is

smoother, as it away from discontinuous trajectories.

6.3 Redundancy Resolution and Singularity Avoidance Control
Problem

Because of the redundancy robots, the Jacobian J is not a square matrix. The
kinematic redundancy might be used to solve the inverse kinematics, by optimizing a

secondary criterion. This was discussed previously in sections 3.2.4 and 3.2.5.
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6.4 The Objective Functional for the Considered Problem

In this research the performance index considered, relates energy consumption,
traveling time, and singularity avoidance. For time criterion, as shown in the previous
section, there are two basic ways to perform optimization: The first one fixes the
sampling period 4 and searches for a minimum number N of discretizations. The
second one fixes the number of discretizations N and varies the sampling periods 4.
In this research, the number of sampling periods from an initial feasible kinematic
solution is guessed. Then the sampling periods and the actuator torques are
considered as control variables. In continuous-time, the constrained optimal control

problem can be stated as follows:

Choosing all admissible control sequences T(t) € C and h € H, which cause the robot
to move from an initial state x(z,) = xs to a final state x(¢7) = xr, find those that
minimize the cost function E:

E = min pec fttOT {[r(t)UrT(t) +t, + %xz QL + 8w(x1(t))] dt} 6.4

to,tT€H
Subject to constraints (5.14)-(5.21).

with C, H, U, Q,tand 8 being, respectively, the set of admissible torques, the set of
admissible sampling periods, electric energy, kinetic energy, and time weights, and a
weight factor for singularity avoidance. The corresponding discrete-time optimal

control problem consists of finding the optimal sequences (t,, T, ..., Ty_1) and (%,
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hy, ..., hx.p), allowing the robot to move from an initial state x, = xs to a target state

xy = x7, while minimizing the cost E,:

Tr(rtl)iélc Eq = {Zkoo [ThUTE + t + X2,Qx% + 8w (21, (1)) ]Iy} 6.5
to,tT€EH

Subject to Xk+1 — fdk(xk,‘l'k, hk),k = 0, ,N -1
gj(xk,‘tk,hk) < 0, ] = 1, ...,], k= O,...,N -1

si(x) =0,i=1,..,2L, k=0,..,N
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Chapter 7

Offline Trajectory Planning

7.1 Augmented Lagrangian Approach

For solving the stated Minimum Time-Energy Singularity-Free Trajectory Planning
(MTE-SF-TP) n constrained on-linear control problem there are two basic
approaches; which are: dynamic programming and variational calculus through the

Maximum principle of Pontryagin. In the dynamic programming is used to find a
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global optimal control. The optimal feedback control through Hamilton-Jacobi-

Bellman partial differential equations (HIB-PDE) [67].

For linear-quadratic regulator problems, the HIB-PDE can be solved analytically or
numerically by solving either an algebraic or dynamic matrix Riccati equation. For a
general case, however, the PDE can be solved numerically for very small state

dimension only [68].

Adding the inequality constraints on state and control variables makes the problem
harder. In this research we propose to use the second approach [69] to solve this
problem. The Augmented Lagrangean (AL) is used to solve the resulting non linear

and non convex constrained optimal control problem.

Powell and Hestens originated independently the method of using the AL [70], [71].
The AL function transforms the constrained problem into a non-constrained one,
where the degree of penalty for violating the constraints is regulated by penalty

parameters. After that, several authors improved it [72; 73; 74; 75].

Moreover, AL might be convexified to some extent with a judicious choice of the
penalty coefficients [76]. This procedure had been previously implemented by the
first author on several cases of robotic systems [77]. The AL function transforming

the constrained optimal control problem into an unconstrained one is written as:

L,(x, T, h 4, p,0) = YR_1[thUT) + t + X3, QX2 + 8w (x1s) |y
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+ X80 {‘1};+1 (xk+1 - fdk(xkfrkfhk))} + Y20 hue [EzL WX (%13 (xk))

%) b, (P8t )| + 22 by, (0% sH(x)) 7.1

where the function fgq, (xy, Ty, hy) is defined by the discrete state eq. (5.25) at the

sampling time k, N is the total sampling number, A € R*?N designates the ajoint (or
co-state) obtained from the adjunct equations associated to state equations, p, o are
Lagrange multipliers with appropriate dimensions, associated to equality and
inequality constraints and pg, s are the corresponding penalty coefficients. The
penalty functions adopted here combine penalty and dual methods. This allows
relaxation of the inequality constraints as soon as they are satisfied. Typically, these

penalty functions are defined by:

T
Hs 1 2
lljp.s(ar b) = (a + ?b) b, andq)ug = E{”Max(o, a+ ”gb)” - ||a||2} 72
Where a and b refer respectively to Lagrange multipliers and the left hand side of

equality and inequality constraints.

The requirements for the Karush-Kuhn-Tucker first order optimality necessary
conditions that, there must exist some positive Lagrange multipliers (A, px),
unrestricted sign multipliers o, and finite positive penalty coefficients (ug, us), for

Xy, Tk, hy, k=0, ..., N to be solution to the problem, such that:

oL oL oL oL oL oL
—+£ =0, " 0 " =0,—+=0,-—£=0, "—O,and

ox daa O
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Prg(x,T,h) =0, os(x) =0, gxT,h)<0 7.3

Applying of these conditions allows deriving the iterative formulas to solve the
optimal control problem by adjusting control variables, Lagrange multipliers as well
as penalty coefficients and tolerances. But, existing of the inverse of the total inertia

matrix H™'of the MPM in equation (5.24), f4, (X, Ty, hy), including struts and

actuators, as well as their Coriolis and centrifugal wrenches \7({ ¢ ) These might
very long to display contains. In developing the first necessary optimality conditions
and computing the co-states 4;, one has to determine the inverse of the mentioned
inertia matrix and its derivatives with respect to state variables. This results in an

intractable complexity even by using symbolic calculation.

7.2 Constrained Linear-Decoupled Formulation

The major computational difficulty mentioned earlier cannot be solved by performing
with the original non linear formulation. Instead, it is solved using a linear-decoupled

formulation [78].

Theorem:
Provided that the inertia matrix is invertible, then the control law in the Cartesian

space is defined as:

u=HQv+ V({,)x, + G(Q) 7.4
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Leads the robot to have a linear and decoupled behavior with a dynamic equation:

X, =v 7.5

where v is an auxiliary input

This follows simply by substituting the proposed control law (7.4) into the dynamic
model (4.12). One gets

H(Dx; = HQv 7.6

Since H(Q) is invertible, it follows that &, = v

This brings the robot to have the decoupled and linear behavior described by the

following linear dynamic equation written in discrete form as:

Xis1 = FaXi + B(hi) (0i) = £, Xk, Vi, lu) 1.7
with

2
I h; 1 iy
fgk(xklvk, hy) = OSXS ;( SXS] Xk — [2 5X5] Vg
5x5 5x5 hk15x5

Notice that this formulation reduces drastically the computations, by alleviating us the
calculation at each iteration of the inertia matrix inverse and its derivatives with
respect to state variables, which results in ease calculation of the co-states. The non-

linearity is however transferred to the objective function.
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One problem of this formula which is the Euler’s method is less of accuracy, in order
to improve the accuracy, and because the MPM structure contains highly nonlinear
equations as shown in the previous chapters, we use the Adams-Bashforth Formula

given by the following general formula:

i

h 5
yier = ¥i +5 Bfi —fio1) + S b, 7.8

Now, applying Adams-Bashforth Formula eq. 7.7 into the dynamic equation 7.7 will

gives:
_ 5hi
X1k+1 = Xlk + 1.5th2k + O.SthZk_l + ?Uzk 79
shy .
X2k+1 = sz + 1.5hkv2k + O.Shkvzk_l + ?Uzk 710

Since it is difficult to get the derivative of vy, To improve the accuracy the following

formulas from numerical differentiation methods are used:

y1= (2 —y1)/h 7.11
Y2 = (y3 —y1)/2h; 7.12
Yk = (=Yi+2 + 8Yi+1 — 8Yr-1 + Yr—2)/12hy 7.13
yn-1 = (YN —Yn-2)/2h, 7.14
yn = (YN —¥Yn-1)/h2 7.15
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Now, the decoupled formulation transforms the discrete optimal control problem into
finding optimal sequences of sampling periods and acceleration inputs
ho, hy, ..., Ay_1, Vo, V3, ..., Vy_1,, allowing the robot to move from an initial state x, =

X to a final state xy = x7, while minimizing the cost function:
. i lr= . — T r— — .
ER = Minyey {(EN2{[A@V + V(2 9)x, + G@)] U[AQV + V(T {)x, +
k

GO + t+ x5, Qx5 + 8wy |y} 7.16

under the above mentioned constraints, which remain the same, except actuator

torques, which become:

Tnin < HQV + V(4 {)x, + G()) < Tax 7.17

Henceforth, inequality constraints g; and g4 can be rewritten as:

85 (X1 Vi) = Tmin — [HQV + V(3 O)x, + G(@)] < 0 7.18
g2 (x,, vi) = [HQV + V(,0)x; + G[@)] — Trax < 0 7.19

Similarly to the non-decoupled case, the decoupled problem might be written in the

following form:

MinE?
veV
hy

SUbjeCt to Xk+1 — dek(xk,Tk,hk), k= 0,..N—-1
92 (v k) <0, jE{L2,..,]}

sP(x) =0, i€{1,2,..,1}, k=0,..,N 7.20
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7.3 Augmented Lagrangian for the Decoupled Formulation

Now, the augmented Lagrangian associated to the decoupled formulation (P)

Ly(x,v,h,4,p,0) =

=

-1

([ +9(¢,0)x, + GO V[A@v + (¢, O)x, + GO + ¢t

0

=
Il

T
I

+ xngka + S(D(xm)]hk} + {/1%"'1 (xk+1 ~Ja (X Tro hk))}

&
I
o

N-1 L-1 2
+ z hk[ Z‘I’us (ai,s?l(xk)) + Z] Dy, (Pi:g?(xk"fk' hk))
i

=0 =1 i=1 J=1
+ 32, hay, (ol sP(x) 7.21

where the function fg, (X, Ty, hy)is defined by eq. (7.7) at time k, N is the total

sampling number, other parameters appearing in (7.15) are defined above.

The first order Karush-Kuhn-Tucker optimality necessary conditions require that for
X, Vi, hg, k=0,..,N to be solution to the problem (P), there must exist some
positive Lagrange multipliers (4, py), unrestricted sign multipliers o, and finite
positive penalty coefficients g = (g, s) such that equations (7.3) are satisfied for

the decoupled formulation.
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The co-states A, are determined by backward integration of the adjunct state equation

yielding:

My = —2hy AROVEDCO] 15 g3y 4 (3, )x, + G(D)] -
6Xk
T L—1y2 i DI
2Qxsichy — 8V, (1) — Fih — hye [T 22, Vo 0y, (o sPU(xi0) )| -
hy [Z,Ll Vi Pug (PL g7 (X, vy, hk))] 7.22
The gradient of the Lagrangian with respect to sampling period variables is
— — . — T — — .
Vil = |[A@Qv + V(3.)x, + G@)]" U[AQv + V(.{)x, +
G@]x5Qxz +t + S0 (xp) | + TITE 0, (0 sP'(x) +
5] 0y, (Pl g2 i) 7.23

The gradient of the Lagrangian with respect to acceleration variables is

VoklD = 2H@QUT[H@Qv + V(g {)x, + G(Q)|hy + Zghk

+ hy [Z,Ll Vi Py, (pL, g7 (Xi, v, hk))] 7.24
hi
where Z, = (I)SXS h;‘ISXS] Xy — [2 15"5] Vy, k=0,2,...,N-1
5x5 5x5 thSXS

A[HQV+V(,0)x2+G(Q)]
an

In the previous equations Vi @(X1x), Vi by, and Vy, by are

calculated using numerical differentiation formulas in equation 7.11 —7.15.
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7.4 Implementation issues

7.4.1 Initial solution:

To fasten convergence of AL algorithm — although it converges even if it starts from
an unfeasible solution — a kinematic-feasible solution is defined. It is based on a
optimal time trajectory parameterization. The initial time discretizations is assumed

an equidistant grid for convenience, i.e.

he =tess —te =Lk =1,2,..,N -1 7.25

Upon this parameterized minimum time trajectory, a model predictive planning is
built in order to achieve a good initial solution for the AL.

At the calculation of the inertia matrix and Coriolis and centrifugal dynamics
components, we can use the approach developed initially for serial robots by Walker
and Orin and based on the application of Newton-Euler model of the robot dynamics.

This method is straightforwardly general is able to the case of MPM robots.

7.4.2 Search Direction Update
A limited-memory quasi-Newton-like method is used at each iteration of the
optimization process to solve for the minimization step at the primal level of AL,

because of the fact that the considered problem is of large scale type.
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7.4.3 Overall Solution Procedure

In this research a systematic procedure is used for solving the augmented Lagrangian
implementation, see fig 7.1 above. In this procedure, the first step is selecting robot
parameters, task definition, (such as starting, intermediate and final poses), workspace
limitations and simulation parameters. Then, the kinematic unit defines a feasible
solution satisfying initial and final poses. After that, the inner optimization loop
solves for the ALD minimization with respect to sampling periods and acceleration
control variables to give the MPM dynamic state.

In the following step, this state is tested within against feasibility tolerances. The
feasibility is done by testing the norms of all equality and inequality constraints
against given tolerances. If the feasibility test fails, restart inner optimization unit.
Otherwise, if the feasibility test succeeds, i.e., the current values of penalty are good
in maintaining near-feasibility of iterates, a convergence test is made against optimal
tolerances. If convergence holds, display optimal results and end the program. If non-
convergence, go further to the dual part of ALD, to test for constraints satisfaction
and update multipliers, penalty and tolerance parameters.

If the constraints are satisfied with respect to a first tolerance level (judged as good,
though not optimal), then the multipliers are updated without decreasing penalty. If
the constraints are violated with respect to a second tolerance level, then keep
multipliers unchanged and decrease penalty to ensure that the next sub-problem will

place more emphasis on reducing the constraints violations. In both cases the
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tolerances are decreased to force the subsequent primal iterates to be increasingly

accurate solutions of the primal problem.

7.5 Simulation and results for offline trajectory planning

The algorithm described in the previous section is build using Matlab. The following
simulation figures show different scenarios of minimizing time, energy, and both
together.

In the following cases the initial values of thetas are as follows:

0, = 0;
0, = 0;

0, = 1.3;
0, = 0.8;
05 = 1.4;

O, =1,

O, = 0.8;
0, = 1.1;
0, =1.2;
O; = 1.1;
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Case 1: Minimizing Time
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Figure 7.2: Variations of the angels due to minimization of time
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Figure 7.3: Variations of the end effector position due to minimization of time
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Figure 7.4: Variations of the end effector velocity due to minimization of time
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Figure 7.6: Variations of the time steps due to minimization of time
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Case 2: Minimizing Energy
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Figure 7.7: Variations of the angels due to minimization of energy
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Case 3: Minimizing time and energy (scale 1:1)
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Figure 7.12: Variations of the angels due to minimization of both time and energy
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Figure 7.13: Variations of the end effector position due to minimization of both time
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Figure 7.15: Variations of the torque due to minimization of both time and energy
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Figure 7.16: Variations of the time step due to minimization of both time and energy
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The figures above include the results of the minimization of time alone, energy alone,
and both time and energy. The figures show the variation of angles from start position
to the end position, also the variation of the position of the end effector and the
variation of its velocity, also it show the variation of torque during the interval, and
the variation of time steps along the path.

All the previous figures show that the minimization of both h and v gives result
closed to the desired values with small and acceptable error. Moreover, the figures of
thetas show differences between the desired values and the achieved one, which are

very closed to the target points.

7.6 Simulation and results for online trajectory planning

In this section, ANFIS is used to construct an online trajectory planning as shown in
Fig. 7.17, the result of the offline trajectory planning is used to run 50 different
trajectories, each one contains 21 points along the trajectory, this gives 1050 samples,
among which 950 are considered for training, whereas testing and validation datasets,

each of them is obtained using 100 entry samples.

Figure 7.18 shows the training performance for AL-ANFIS, which is interesting as it
reaches very small root mean square error (RMSE), less than 0.1 in less than 10
epochs. It is noted that the configuration used for the learning is determined among

infinitely many solutions that exist for each input.
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Figure 7.17: AL-ANFIS, The use of AL solution for the learning of ANFIS module
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Figure 7.18: AL-ANFIS performance — root mean square error output with respect to
learning epochs
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Figure 7.19 shows the difference between the real and estimated values of the joint
angles at the 1050 samples. It is believe that a better fine tuning of the ANFIS
parameters will improve in the accuracy of the matching between ANFIS outcomes

and the AL provided results. This is being undertaken in an ongoing work.
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Figure 7.19: AL-ANFIS performance — difference between real and estimated values
of the MPM values
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Chapter &

Conclusions and Future Work

In this work, the problem of kinematic, dynamic modeling and motion planning of
mobile parallel manipulators is considered. This relatively new generation of
machines combines the large space of mobile robots and high accuracy and payload
of the parallel machines; this allows wide application of these machines. Comparison
shows complexity of the result hybrid structure which contains a high level of

nonlinearities. According to their complexity, the forward and inverse kinematics
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models of mobile parallel manipulator are difficult to derive. In this research, the
forward and inverse kinematic models of a mobile parallel manipulator (MPM) are
derived. An MPR composed of a three-wheels non-holonomic mobile platform and a

3-RRPaR translational parallel robot is used for this purpose.

The position and differential kinematic solutions are derived and the Jacobian matrix
relating output velocities to the actuated joint rates is generated. By resorting to the
Neuro-fuzzy structure, the inverse kinematic is obtained using ANFIS. Moreover,
joint limit and singularity avoidance is achieved taking the advantage of the minimum
time cycloidal parameterization and the additional factor. The dynamic modeling for
the MPM is derived. And since it possesses self motion with one degree of
redundancy, the dynamic control in task space is carried out by utilizing a model-
based controller, and validate the effectiveness of the derived models is validated by
the simulation results. The minimum time energy optimal control of the MPM is then
solved using an augmented Lagrangian technique. Upon this solution a dataset of
trajectories is built and used to train an ANFIS system. Simulation results of both

parts are encouraging.

As a future trend of this work, two main recommendations are to optimize the ANFIS
structure to achieve better online planning accuracy. The second perspective consists

of including obstacle avoidance for both offline and online planning.
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Appendix A: Maple Solution for Position Kinematic Analysis

> el:=2*w*y + 2*w*x - 2*b* (y+w) *cos(thl) - 2*b* (x-
w) *cos (th2) - 2*z*b* (sin(thl)-sin(th2))=0;
el =2wy +2wx—2b(y+ w)cos(thl) —2b (x — w) cos(th2)
— 2z b (sin(thl) — sin(th2)) =0

> e2:=4*w*y - 2*b* (y+w) *cos (thl) - 2*b* (y-w)*cos(th3) -
2*z*pb* (sin(thl)-sin (th3))=0;
e2 =4wy —2b (y+ w)cos(thl) —2b (y — w) cos(th3)
— 2z b (sin(thl) — sin(th3)) =0

> e3:=x"*2 + (y+u-e-b*cos(thl))*2 +(z-b*sin(thl))*2 =a*2;
e3:=x>+ (y+u—e—bcos(thl))* + (z — bsin(thl))?* = a*
> solve({el,e2},{y,x});

{x = —(b (—b cos(th3) wcos(th2) + 2 cos(th2) w? — cos(thl) w?
+ z b sin(thl) cos(th3) + 2z sin(th2) w
— z bsin(th2) cos(thl) — z b sin(th2) cos(th3) — w z sin(thl)
— wzsin(th3) + 2 b cos(thl) cos(th3) w
+ b cos(thl) z sin(th3) — cos(th3) w?
— b cos(thl) w cos(ch)))/(—b cos(thl) w — b cos(th3) w
—2bcos(th2) w+ b> cos(th2) cos(thl)

+ b? cos(th2) cos(th3) + 2 wz),y

_ b (=cos(thl) w+ cos(th3) w — z sin(thl) + z sin(th3)) }
-2w + bcos(thl) + b cos(th3)
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