
i

ii

FINAL APPROVAL

iii

DEDICATION

For my father, Dr. Abdulaziz Saleh,

my mother, Awatef Salem,

my wife, Noora Mohammed,

and my son, Laith.

iv

ACKNOWLEDGEMENT

Acknowledgement is due to King Fahd University of Petroleum and Minerals for

supporting this research. I would also like to acknowledge my sponsors, Hadhramout

Establishment for Human Development, for granting me this outstanding opportunity

to obtain my Master‟s degree, and for their generous financial support.

Moreover, I wish to express my deepest appreciations to the chairman and co-chairman

of the thesis committee, Dr. Tarek Helmy and Dr. Adel Ahmed, for their effective

advice and support. Also, it gives me great pleasure to appreciate the other committee

members, Dr. Moustafa El-shafei, Dr. Lahouari Ghouti and Dr. Sami Zhioua, for their

fruitful remarks and comments.

Last but not least, thanks to my dear wife who supported me with love, inspiration and

patience. Finally, to everybody who contributed to this achievement either directly or

indirectly; thank you.

v

TABLE OF CONTENTS

Final Approval ... ii

Dedication... iii

Acknowledgement .. iv

Table of Contents .. v

Table of Figures .. viii

List of Tables .. xi

List of Algorithms ... xii

Thesis Abstract (English) ... xiii

Thesis Abstract (Arabic)... xiv

Chapter One: Introduction ... 1

1.1 Problem Statement .. 3

1.2 Contribution .. 3

1.3 Motivation ... 4

Chapter Two: Literature Survey .. 5

2.1 Ray Tracing... 5

2.1.1 The 3D Scene Model ... 5

2.1.2 The Ray Tracing Algorithm .. 7

vi

2.1.3 Acceleration Structures ... 9

2.1.4 Parallel Ray-tracing ... 10

2.2 Temporal Coherence ... 10

2.2.1 Image-Space Temporal Coherence.. 11

2.2.2 Image-Space Temporal Coherence in Stereoscopic Ray Tracing 13

2.3 Stereoscopy ... 20

2.3.1 Stereoscopic Displays ... 21

2.3.2 Rendering Stereoscopic Images .. 23

2.4 Massively Parallel Graphics Processing Units ... 27

2.4.1 Taxonomy .. 27

2.4.2 Trending Architectures .. 28

Chapter Three: Methodology .. 30

3.1 Parallel Reprojection... 30

3.1.1 Missed Pixel Resolution .. 31

3.1.2 Overlapped Pixel Resolution ... 31

3.1.3 Bad Pixel Resolution ... 36

3.2 Complexity Analysis... 37

3.3 Kernels Pseudocode .. 40

3.3.1 Buffer-Based Kernels .. 40

vii

3.3.2 Atomic-Based Kernels... 42

Chapter Four: Experimental Results and Analysis .. 44

4.1 Ray Tracer Implementations ... 44

4.2 Testbeds .. 46

4.3 Stereo Scene Setup.. 46

4.4 Benchmarks .. 50

4.5 Results and Discussion ... 52

4.5.1 Performance Benchmarks Results ... 52

4.5.2 Pixel Error Benchmarks Results .. 54

4.5.3 Time Views ... 55

4.5.4 Outputs .. 55

Chapter Five: Conclusion and Future Work .. 75

5.1 Summary ... 75

5.2 Contribution to Knowledge .. 76

5.3 Limitations .. 76

5.4 Future Work .. 77

References ... 79

Vita .. 86

viii

TABLE OF FIGURES

Figure 1: An image generated using ray-tracing [1]. .. 6

Figure 2: 3D scene model. ... 7

Figure 3: Illustration of the core ray tracing algorithm [20]. .. 8

Figure 4: Monoscopic Perspective Projection. .. 14

Figure 5: Stereoscopic perspective projection. .. 15

Figure 6: Reprojection errors. (a) Overlapped pixels. (b) and (c) Bad pixels. [29] 18

Figure 7: Monocular depth cues. (a) Relative size. (b) Lights and shadows. (c)

Perspective. (d) Occlusion. (e) Haze. .. 21

Figure 8: (a) Monoscopic scene. (b) Stereoscopic scene. ... 24

Figure 9: (a) Positive parallax. (b) Zero parallax. (c) Negative parallax. 25

Figure 10: Safe visible area for inserting 3D surfaces into a stereo scene. 26

Figure 11: GPU vs. CPU performance trends in GFLOPS (FLOPS) [41]. 28

Figure 12: A possible case when the reprojections to a single position reach a

maximum. .. 33

Figure 13: Stereo scene parameters. .. 35

Figure 14: K is marked as a bad pixel and is fully ray traced. 37

Figure 15: Fixed Spheres scene. (a) Mono output. (b) Stereo output............................ 48

Figure 16: Animated Spheres scene. (a) Mono output. (b) Stereo output. 48

Figure 17: Sponza scene. (a) Mono output. (b) Stereo output. 49

Figure 18: Buddha scene. (a) Mono output. (b) Stereo output. 49

Figure 19: Dragon scene (a) Mono output. (b) Stereo output. 50

file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494252
file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494253
file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494258
file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494258
file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494259
file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494260
file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494261
file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494263
file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494263
file:///C:/Users/student/Downloads/Mazen%20-%20Thesis.docx%23_Toc326494264

ix

Figure 20: Performance of ray tracing the Fixed Spheres scene when increasing image

dimensions in Testbed-1. ... 56

Figure 21: Performance of ray tracing the Animated Spheres scene when increasing

image dimensions in Testbed-1. .. 57

Figure 22: Performance of ray tracing the Sponza scene when increasing image

dimensions in Testbed-1. ... 58

Figure 23: Performance of ray tracing the Buddha scene when increasing image

dimensions in Testbed-1. ... 59

Figure 24: Performance of ray tracing the Dragon scene when increasing image

dimensions in Testbed-1. ... 60

Figure 25: Performance of ray tracing the Dragon scene when increasing the interaxial

distance in Testbed-1. ... 61

Figure 26: Performance of ray tracing the Dragon scene when increasing number of

lights in Testbed-1. .. 61

Figure 27: Speedup summary relative to the naïve ray tracer, Testbed-1. 62

Figure 28: Performance of ray tracing the Fixed Spheres scene when increasing image

dimensions in Testbed-2. ... 63

Figure 29: Performance of ray tracing the Animated Spheres scene when increasing

image dimensions in Testbed-2. .. 64

Figure 30: Performance of ray tracing the Sponza scene when increasing image

dimensions in Testbed-2. ... 65

Figure 31: Performance of ray tracing the Buddha scene when increasing image

dimensions in Testbed-2. ... 66

x

Figure 32: Performance of ray tracing the Dragon scene when increasing image

dimensions in Testbed-2. ... 67

Figure 33: Performance of ray tracing the Dragon scene when increasing the interaxial

distance in Testbed-2. ... 68

Figure 34: Performance of ray tracing the Dragon scene when increasing number of

lights in Testbed-2. .. 68

Figure 35: Speedup summary relative to the naïve ray tracer, Testbed-2. 69

Figure 36: MSE when increasing image dimensions. ... 70

Figure 37: MSE when increasing the interaxial distance e. .. 70

Figure 38: Time views of the threads generating the right image using: (a) Naïve ray

tracer. (b) Atomic-based ray tracer. ... 71

Figure 39: Output of naïve ray tracer. (a) Left image. (b) Right image. (c) Anaglyph

stereo image. .. 72

Figure 40: Output of buffer-based ray tracer. (a) Left image. (b) Right image. (c)

Anaglyph stereo image. ... 73

Figure 41: Output of atomic-based ray tracer. (a) Left image. (b) Right image. (c)

Anaglyph stereo image. ... 74

xi

LIST OF TABLES

Table 1: Comparison between different mechanisms for resolving reprojection

problems. ... 31

Table 2: Benchmarked ray tracers. .. 45

Table 3: Specifications of the testbeds. ... 46

Table 4: 3D objects of the scenes. ... 47

Table 5: Performance benchmarks. ... 51

Table 6: Pixel-error benchmarks. .. 51

xii

LIST OF ALGORITHMS

Algorithm 1: Stereoscopic Reprojection Algorithm.. 19

Algorithm 2: Kernel for generating the left image using the buffer-based resolution. . 41

Algorithm 3: Kernel for generating the right image. ... 42

Algorithm 4: Kernel for generating the left image. ... 42

Algorithm 5: Kernel for generating the right image. ... 43

xiii

THESIS ABSTRACT (ENGLISH)

NAME: Mazen Abdulaziz Saleh Al-Hagri

TITLE: High Performance Stereoscopic Ray Tracing on the GPU

MAJOR FIELD: Computer Science

DATE OF DEGREE: May, 2012

Nowadays, large 3D stereoscopic displays are trending, requiring rendering at higher

resolution and at high frame rates. This development aims at delivering more realistic

details, but it also comes at a significant cost: bowing to the computational constraints,

since synthesizing stereo image pairs separately doubles the rendering cost. This poses

a problem for interactive applications viewed on those displays, especially if

computationally expensive rendering techniques, such as ray tracing, are employed.

In order to achieve high-quality rendering of stereo image pairs at a lower cost, one can

exploit temporal coherence techniques: taking advantage of the inherent similarity of

contents between both stereo pairs to reduce the rendering cost. This work attempts to

modify one of the most effective techniques for utilizing temporal coherence between a

ray traced stereo pair, called the reprojection algorithm, in order to make it run

efficiently in massively parallel processors; such as the graphics processing units.

Keywords: Ray Tracing, Stereoscopy, Image-Space Temporal Coherence, Graphics

Processing Unit (GPU), Massively Parallel Processors, Reprojection.

xiv

THESIS ABSTRACT (ARABIC)

 ملخص الرسالة

 ياصٌ عبذانعضٚض صانح انٓجش٘ :الاســــــــــــــم

 خٕاسصيٛت حخبع انشعاع عانٛت الأداء فٙ ٔحذة يعانجت انشسٕيٛاث العـــــــــــنوان:

 عهٕو انحاسب اٜنٙ ـصص:ـالتخـــــ

 ْـ 3311، جًادٖ اٜخشة :التخرجتاريخ

شاشاث انعشض ثلاثٛت انبعذ أٔ الاسخٛشٕٚسكٕبٛت انضخًت بذأث حشٛع فٙ انٕقج انشاٍْ، يخطهبت حشكٛب انصٕس

انًعشٔضت فٛٓا بًقاساث كبٛشة ٔبسشعاث عانٛت نًعذلاث عشض انصٕس فٙ انثاَٛت. ٚٓذف ْزا انخطٕس إنٗ عشض

ع نقٕٛد قذساث انحٕسبت اٜنٛت؛ لأٌ حشكٛب صٔج انصٕس حفاصٛم أكثش قشباً نهٕاقع، نكُّ ٚأحٙ بكهفت عانٛت: انخضٕ

الاسخٛشٕٚسكٕبٛت ٚخُشجى إنٗ يضاعفت انجٓذ فٙ حال حصٛٛش كم صٕسة عهٗ حذة. ْزا انخضٕع ٚخهق يشكهت

يثم –نهخطبٛقاث انخفاعهٛت انًعشٔضت فٙ حهك انشاشاث، خصٕصاً إرا حى حٕظٛف حقُٛاث حصٛٛش يكهفت حاسٕبٛاً

 فٙ ْزِ انخطبٛقاث. –اع حقُٛت حخبع انشع

يٍ أجم انحصٕل عهٗ حصٛٛش عانٙ انجٕدة نضٔج انصٕس الاسخٛشٕٚسكٕبٛت بكهفت أقم، يٍ انًًكٍ حسخٛش حقُٛاث

ٚسُخغم انخشابّ انًخأصم يا بٍٛ صٔج انصٕس الاسخٛشٕٚسكٕبٛت نخحقٛق رنك. أحذ أكثش ْزِ انخشاٚع انًؤقج؛ حٛث

 حخبع انشعاع حسًٗ "خٕاسصيٛت إعادة الإسقاط".انخقُٛاث فعانٛت نخٕنٛذ انصٕس الاسخٛشٕٚسكٕبٛت باسخخذاو طشٚقت

يثم ٔحذاث –اث انًخٕاصٚت انٓائهت َقٕو فٙ ْزِ الأطشٔحت بخعذٚم ْزِ انخقُٛت نجعهٓا حُفز بشكم كفؤ فٙ انًعانج

 يعانجاث انشسٕيٛاث.

فٙ فضاء انصٕسة، ٔحذاث يعانجت انشسٕيٛاث، انخشاٚع انًؤقجحخبع انشعاع، الاسخٛشٕٚسكٕبٛت، كلمات مفتاحية:

 انًعانجاث انًخٕاصٚت انٓائهت، إعادة الإسقاط.

1

CHAPTER ONE

INTRODUCTION

To humans, the visual system is the most important sensory device, since the

perception and recognition of the surrounding world heavily rely on it. For thousands

of years, prehistoric humans spanning all cultures kept visual memories of their

surroundings through simple paintings that exhibited little visual cues, lacking

perspective and depth information. With the development of arts, paintings exhibited

more sensory cues, including precise perspective drawings, shadows and even depth-

of-field.

Artists of the renaissance era had realized that each human eye perceives a slightly

different image, resulting in a depth cue that was impossible for a painter to portray in

a single canvas. Stereopsis, the process of perceiving different depths from the two

slightly different projections of the world onto the two eyes, was only well established

in the 18
th

 century. Understanding this concept led to the invention of the stereoscopy

technique, where an added depth cue of an image is enhanced by presenting two offset

images, called stereo images pair or stereo pair, separately to the left and right eye of

the viewer. The invention of photography made it easy to produce stereo images later

on.

The history of computer graphics started similar to that of human arts; where the first

image-synthesis techniques produced simple 2D drawings. With the evolvement of

2

computer hardware, Graphics Processing Units (GPUs) and computer graphics

algorithms, 3D and more realistic images could be produced. Modern techniques for

realistic image synthesis include Ray-tracing [2, 3] and Radiosity [4]. However, it

takes an ample amount of time to compute precise realistic images with these

techniques.

Nowadays, large displays are becoming mainstream, requiring rendering at higher-

resolution and at high frame rates. This development aims at delivering more realistic

details and better accuracy, but it also comes at a significant cost: bowing to the

computational constraints. Hence, interactive applications (such as video games) use

rendering techniques that are less computationally-intensive, such as Rasterization [5],

at the cost of producing less realistic images.

Throughout the years, researchers have been competing to develop algorithms that are

able to perform ray-tracing in real time. One of the earliest attempts to implement an

interactive ray-tracer dates back to 1994, when Bishop et al. [6] introduced Frameless

Rendering. The state of the art interactive ray-tracers implement various optimization

techniques, including Acceleration Structures [7] and Temporal Coherence [8], the

topic of interest in this thesis. Moreover, the recent advent of massively parallel

processing units, CPUs and General Purpose GPUs (GPGPUs), also contributed to the

realization of interactive ray-tracing [9, 10].

3

1.1 Problem Statement

Another challenge for interactive realistic rendering is being posed by large

stereoscopic 3D displays that are currently trending. Even for the 3D displays at the

lowest end, the 3D Stereo Displays, each frame of an animation sequence must be

rendered twice as a stereo pair, doubling the rendering cost if naïvely implemented.

Generally, in order to realize high-quality rendering at a lower cost, Temporal

Coherence can be exploited. Temporal Coherence is the correlation of content in object

space and image space between adjacent rendered frames. By taking advantage of

temporal coherence, redundant computation can be avoided, and the rendering cost can

be significantly reduced with a minimal decrease in quality.

Temporal coherence was also exploited to render stereo images, where the second

image of a stereo pair is computed by exploiting information computed in the first

image, thus speeding up rendering. However, some of the existing techniques are

sequential in nature, and are not optimized to run on modern massively parallel

processing units or GPUs.

1.2 Contribution

This work will focus on devising an efficient ray-tracing algorithm, based on an

existing one, which produces high quality stereo images using temporal coherence in

image space. The resulting algorithm is expected to produce outputs of comparably

high frame rates and at high resolution, and it will be completely executed on a state-

of-the-art GPU.

4

1.3 Motivation

Our motivations for this work can be stated as follows:

 The quest for higher performance in stereoscopic ray tracing.

 The recent increased popularity of stereoscopic displays.

 The need to re-invent resolutions for one of the most powerful algorithms that

produce high-quality rendering at a lower cost; the reprojection algorithm [11],

so that it can work in massively parallel environments.

The rest of this work is organized as follows. Chapter 2 addresses a detailed literature

review on ray tracing, temporal coherence, stereoscopy and massively parallel

graphical processing units, alongside their related work. Then, the conceptual design of

the proposed algorithms including the suggested resolutions to optimize existing

algorithms to run them in a massively parallel manner, are presented in Chapter 3.

Chapter 4 provides a detailed account of the experimental results and analysis of the

approaches developed in this thesis when implemented in an existing GPU

development platform. Finally, Chapter 5 presents the conclusion, detailing the main

contributions of this work in addition to the limitations of the proposed solutions. Also,

possible future improvements and refinements of the current work are drawn therein.

5

CHAPTER TWO

LITERATURE SURVEY

This thesis spans four different areas of computer graphics, display technologies and

parallel architecture: ray tracing, temporal coherence, stereoscopy and massively

parallel graphics processing units. This chapter provides the necessary background in

each area, alongside the related state of the art work in each one of them.

2.1 Ray Tracing

Ray tracing is an image synthesis technique for generating images from a 3D model of

a scene (Section 2.1.1). It is famous for producing images that exhibit effects with high

degree of realism (Figure 1). However, it is also known for the associated high

computational cost, due to the way it operates (Section 2.1.2). Due to this, its use in

interactive applications is mostly limited to research.

2.1.1 The 3D Scene Model

A 3D scene model is a set of data structures, describing the attributes of a virtual scene

elements, including the camera, image-plane, geometric primitives, lights, materials,

etc. For our purposes, we will keep track of the following attributes as illustrated in

Figure 2:

6

 Camera position in 3D space.

 Image plane , and pixels in the image plane that correspond to a point in

3D space.

 Image plane dimensions and .

 Camera frustum, a region of the 3D space that specifies the field of view of the

camera.

 Distance from camera to image plane .

Figure 1: An image generated using ray-tracing [1].

7

2.1.2 The Ray Tracing Algorithm

The core algorithm of ray-tracing was presented by Whitted [2], and is illustrated in

Figure 3. It represents the fundamental basis for many ray-tracing-based rendering

algorithms. Whitted-style ray-tracing produces pleasing effects such as reflections,

refractions, transparent surfaces and shadows. Later on, Cook extended this recursive

ray-tracing approach to support additional effects such as glossy reflection,

illumination by area light sources, motion blur, and depth of field. This extended

approach is called distribution ray-tracing [3]. More advanced algorithms were

illustrated later on and were capable of computing the complete global illumination

within a scene, including indirect illumination and caustic effects [12, 13, 14, 15, 16].

Even though the purpose and supported accuracy of each algorithm is different, the key

𝑤

Camera frustum

Camera

Figure 2: 3D scene model.

𝑑

8

point is that they all heavily rely on the core ray-tracing algorithm as their fundamental

base.

A ray is defined in the parametric equation () , where is the ray

origin and the ray direction. According to the core ray tracing algorithm, a primary

ray proceeds from the camera position to the scene through each pixel of the image

plane. The first intersection, with the smallest distance ,) between the ray

and any 3D surface, is determined and tested for illumination by the light sources, and

potential secondary reflection or refraction rays are generated. For each of these

secondary rays, the contribution is recursively evaluated in the same way as for

primary rays. Then, the corresponding pixel is shaded, depending on the material of the

intersected surface. For detailed information on ray tracing, refer to these famous

textbooks [17, 18, 19].

Figure 3: Illustration of the core ray tracing algorithm [20].

9

Distribution ray-tracing achieves better visual outputs by emitting multiple diverse

primary rays per pixel, and multiple diverse secondary rays per intersection point, and

then averaging the computed values per each set of rays to, ultimately, illuminate the

pixel. Therefore, distribution ray-tracing requires more computation than Whitted-style

ray-tracing. To reduce computations, techniques for optimizing ray-tracing, such as

acceleration structures and temporal coherence (Section 2.2), have been heavily

exploited in the literature.

2.1.3 Acceleration Structures

As shown earlier, at the heart of most ray-tracing based algorithms is the idea of

following a ray into a model 3D scene and finding the intersection point between this

ray and the nearest object in the scene. Hence, for large scenes, it is important to

efficiently exclude surfaces which the ray will not intersect. Otherwise, the ray would

test against millions of surfaces before finding the nearest intersection point.

This exclusion is accomplished through a data structure called acceleration structure.

Broadly, there are two main type of acceleration structures used in ray-tracing: spatial

acceleration structures, which subdivide the scene into several smaller regions which

can be tested efficiently against each ray, and the geometry residing inside these

regions that the ray does not interact with can be safely ignored; and bounding volumes

that surround groups of complex objects in a simple shape, which are tested against

each ray, and only if the ray intersects the bounding shape does the ray test against the

enclosed geometry. Incorporating acceleration structures in a ray tracer can result in

significant performance improvements.

10

In the literature, several different types of ray-tracing acceleration structures are

explored. An excellent survey of several acceleration structures is provided by Walt et

al. [6].

2.1.4 Parallel Ray-tracing

Since the color of each pixel is computed independently, ray-tracing algorithms can be

easily implemented in a fine-grain level of parallelism. Exploiting this is one way to

bring ray tracing closer to interactive execution times. Although this observation was

first established by Whitted [1], and many attempts were made towards implementing

parallel ray-tracing [15-17], it was only recently that it proved efficient due to the

emergence of multi-core CPUs and massively parallel General Purpose GPUs

(GPGPUs) (Section 2.4).

2.2 Temporal Coherence

Computer animation can be achieved through displaying synthesized images/frames in

rapid succession to create the illusion of motion. The naïve way of producing

animations is by synthesizing each image separately. However, the inherent similarity

of contents between adjacent synthesized frames can be exploited in order to reduce

the associated cost. This similarity is called temporal coherence, and can either be

between all elements of the scene model states at these frames, or between pixels

representing the synthesized image of each of these frames. To distinguish between

these two types of temporal coherence, the former is called object-space temporal

11

coherence, while the latter is referred to as image-space temporal coherence, which is

of interest in this work.

Temporal coherence has been exploited since the early days of computer graphics. For

example, the term frame-to-frame coherence was first introduced by Sutherland et al.

[21]. It has been used in all techniques of image synthesis, including ray tracing. The

following section briefly reviews some of the existing image-space temporal coherence

techniques. For object-space temporal coherence, refer to this [8] thorough survey

presented by Scherzer et al.

2.2.1 Image-Space Temporal Coherence

Image-space temporal coherence can be adapted in all image synthesis techniques,

including rasterization, ray tracing and radiosity (see [8]). One of the earliest

adaptations of temporal coherence in ray traced animations was presented by Badt

[11], where he introduced the reprojection algorithm. Reprojection is a key concept

incorporated in almost all later developments of image-space temporal coherence

techniques in ray tracing. It involves moving the pixels in one image of an

animation to their correct position in the second, and cleaning up the image by

recalculating only those pixels whose value is unknown or in question after the

transformation, as we will discuss in the next section. Badt reported a speedup of 2.4 in

rendering the second image. However, his technique was capable of computing diffuse

shading (none view-dependent) only. Thereafter, Adelson and Hodges [16] extended

this approach to ray tracing of arbitrary scenes, incorporating other view-dependent

12

sources of illumination. Although the results of their work exhibited little to no noise,

their technique was slow and sequential in nature.

Later, Bishop et al. [6] introduced frameless rendering. Here, the concept of frame-

based rendering is abandoned and, instead, a set of randomly sampled pixels are

progressively rendered based on the most recent input, and gets immediately updated.

Due to the delay introduced when the selective pixels are rendered, this method

suffered from significant noise artifacts. This method was later improved by Dayal et

al. [22] by adaptively biasing the sampled pixels towards the regions of change in

scene objects, and this resulted in a relatively substantial reduction of noise artifacts.

Still, this adaptive frameless rendering technique, although fast, suffers from noticeable

noise.

Walter et al. [23] introduced another technique for achieving interactive framerates in

ray-traced animations. The technique decouples the rendering and the display

processes to enable high interactivity, and utilizes a point based structure, called the

render cache, that stores intersection positions and shading values for previous frames

in order to reproject them in the current frames. Sampling heuristics and spatio-

temporal image coherence are used to refine the reprojections. Later, the authors

extended the refinement with predictive sampling and interpolation filters [24]. Lastly,

both Edgar Velázquez-Armendáriz et al. [25] and Zhu et al. [26] proposed an

accelerated implementation of the render cache on modern GPUs. Yet, the render

cache technique suffers from conspicuous artifacts in the produced animations.

13

2.2.2 Image-Space Temporal Coherence in Stereoscopic Ray Tracing

To create a ray-traced stereo images pair, slightly different views of the same scene

must be rendered, potentially doubling the required work. However, the stereo pair is

temporally coherent to a high extent.

Adelson and Hodges [27] were the first to exploit temporal coherence to produce the

second view image of a stereo pair rendered using ray-tracing. Their work was based

on Badt‟s reprojection algorithm [11], where the pixels generated in the left image are

reprojected to the right image, and pixels of reprojection errors are ray-traced. Also,

their technique was only limited to render diffuse shading (effects that are not affected

by changing the position of the camera). At a later development [28], they extended

their technique to render precise specular highlights, resulting in the first mature

temporally coherent stereoscopic ray-tracing. Adelson and Hodges reported a speedup

of 92% when rendering the right view using their technique. Following is a brief

description of their technique.

Assume, in a standard monoscopic scene, a perspective projection is used to project the

3D scene model objects onto the image plane with a camera at position ()

for an image plane located at , as depicted in Figure 4. Given a point

() in the scene, its corresponding image plane position () is:

 (1)

And,

14

Figure 4: Monoscopic Perspective Projection.

For stereoscopic scenes (Section 2.3.2), as portrayed in Figure 5, two different

projections, one per each camera, of the scene are required. Each of these cameras will

have a different position; both horizontally displaced by the interaxial distance .

Therefore, the left camera is located at (), and for the right camera

 (). A point () in the scene is projected twice, one per each

image plane of each camera, where the corresponding coordinates in the left image

plane is (), such that

 (2)

And,

𝑃 (𝑥 𝑦 𝑧)

Image plane

 𝑌 axis

 𝑋 axis

 𝑍 axis

 𝑑

(𝑥𝑝 𝑦𝑝)

15

 (3)

And the corresponding image plane coordinates of for the right camera is

(), where

 (4)

And,

 (5)

Figure 5: Stereoscopic perspective projection.

To put it in a matrix form:

[

]

(6)

𝑃 (𝑥 𝑦 𝑧)

Image plane

+Y axis

+X axis

+Z axis
(𝑥𝑝𝑙 𝑦𝑝𝑙)

Right camera

Left Camera

(𝑥𝑝𝑙 𝑦𝑝𝑙)

e

16

And,

[

]

(7)

Where,

[

]
(8)

And,

[

]
(9)

Also, notice that if the left image plane position () was computed, we can

compute the right image positions () as follows:

(10)

With . In other words, a point will move horizontally between the views

by a distance dependent on its depth , the distance from the cameras position

to the projection plane, and the interaxial distance between the two cameras

positions. This transformation from to is called the reprojection function, and

can be formalized as:

17

 [

] ()

[

]

[

] (11)

Note that the reprojection does not yield a one-to-one correspondence between pixels

in the two image planes. Moreover, the reprojection function produces a real valued

 position for the reprojected pixel, which should be rounded to an integer value to

be positioned correctly in the right image. This causes small errors in the color of the

reprojected pixel, as opposed to the fully ray traced pixel (see Section 4.5.2).

 and represent world-to-image-space transformations, used to transform the

model scene points for the left and right views of a stereoscopic scene, respectively;

where the left image is rendered using and the right image is rendered using . To

incorporate the reprojection technique, the left image is fully ray-traced to be

generated, and the intersection position for each primary ray is recorded per pixel in

the set . Then, to generate the second image, all the recorded positions of the left

image are transformed by the reprojection function to calculate pixel locations on

the right image. As described in [28], and as shown in Figure 6, there are three possible

reprojection errors:

 Overlapped pixel problem: occurs when multiple pixels from one image

reproject onto the same pixel in the other. In this case, the reprojection with the

maximum value is chosen to be the correct reprojection.

 Missing pixel problem: takes place when no reprojections occur at one pixel in

the right image. This can be solved by fully ray-tracing the missed pixels.

18

 Bad pixel problem: occurs when two horizontally adjacent pixels in one image

reproject to nonadjacent positions, producing a gap of more than one pixel.

Pixels on this gap are questionable and constitute bad pixel problem.

Figure 6: Reprojection errors. (a) Overlapped pixels. (b) and (c) Bad pixels. [29]

In order to rule-out reprojection errors, the “left image is ray traced scan-line by scan-

line from left to right. The status of all right image pixels is set to NoHit initially. As

the left image pixels are ray traced, they are reprojected to the right image.

Reprojected pixels in the right image are marked as Hit. If gaps are detected between

any adjacent reprojected locations, the gap is marked as NoHit. After a scan-line is

done, pixels marked as NoHit are ray traced for the right image”[29]. This algorithm is

shown in Algorithm 1.

For each scan line in the both images, do

 For each pixel in scan-line of the right image, do

 hitStatus[] := NoHit

 End for

19

 oldR :=

 For each pixel in in scan-line of the left image, do

 Trace a ray through :

 intersec[] := Intersection Point or Miss

 norm[] := Intersection Normal or Miss

 color[] := Compute_color(intersec[], norm[], LeftCamPos)

 rep[] := intersec[]

 If rep[] then

 If oldR – rep[] then

 For each pixel in the right image, oldR rep[] do

 hitStatus[] := NoHit

 End for

 hitStatus[] := Hit

 color[] := Compute_color(intersec[], norm[], RightCamPos)

 oldR := rep[]

 Else

 :=

 oldR :=

 End if

 End if

 End for

End for

Algorithm 1: Stereoscopic Reprojection Algorithm.

The technique introduced by Adelson and Hodges is sequential by nature, and there is

only one attempt in the literature to parallelize it, authored by Es and Isler [29].

Although Es and Isler‟s parallel technique was implemented on the GPU, the level of

parallelism in their implementation is not fine enough to harness the full potential of

the GPU; since they chose the obvious way of parallelizing the reprojections: parallel

20

scan-lines processing. Our implementation goes at a finer level of GPU- and ray-

tracing-friendly parallelism; pixel level, therefore it is expected to outperform their

technique.

2.3 Stereoscopy

Several depth cues can enable depth perception in 2D scenes, images and paintings,

including:

 Relative size: objects of known sizes look smaller the farther away they are.

 Lightening and shadows: closer objects look brighter, distant ones dimmer.

 Perspective: the farther away the object, the smaller it looks, and parallel lines

recede to a vanishing point.

 Occlusion: closer objects occlude farther ones.

 Haze: distant objects tend to diminish and look blurry.

 Motion parallax: objects of same speed seem to move faster when closer to the

viewer.

As portrayed in Figure 7, these cues are called the monocular depth cues, and are the

basis for the perception of depth in all 2D displays. Artists of renaissance era had

realized that, due to retinal disparity, each human eye perceives a slightly different

image than the other, resulting in a depth cue that was impossible for a painter to

portray in a single canvas; the stereoscopic depth cue. Stereopsis, the process of

perceiving depth produced by retinal disparity, was only well established in the 18th

century. Understanding this concept led to the invention of the stereoscopy technique,

21

where an added depth cue of a scene is enhanced by presenting two offset images,

called stereo images pair or stereo pair, separately to the left and right eyes of the

viewer.

2.3.1 Stereoscopic Displays

Stereoscopic displays (commercially known as 3D displays) utilize stereoscopy to

introduce the stereoscopic depth cue to the viewer. The main aim of all stereoscopic

displays is to present each eye of the viewer with the corresponding image of a stereo

(a)
(b)

(c)

(d)

(e)

Figure 7: Monocular depth cues. (a) Relative size. (b) Lights and shadows.

(c) Perspective. (d) Occlusion. (e) Haze.

22

pair. Multiple techniques are employed by various stereoscopic displays in order to

achieve that, and each has its own advantages and disadvantages. Following is a list of

the popular techniques used in modern stereoscopic displays. For a thorough

description of most of existing techniques, refer to [30, 31].

 Anaglyph: where a stereo pair in which the right image of a scene, usually red

in color, is superposed on the left image of a contrasting color to produce a new

image, called the anaglyph image, which establishes a stereoscopic depth cue

when viewed through correspondingly colored filters in the form of glasses.

Typical contrasting colors used in anaglyph images and their corresponding

filter glasses are red/blue, red/cyan and red/green. This technique is cost-

effective since it requires no special hardware except for the cheap filter

glasses, but it comes at the cost of degrading the original colors of the scene,

and suffers from crosstalk, whereby each eye perceives a small portion of the

image targeting the other eye, limiting the ability to successfully fuse the stereo

pair in the brain and hence reducing the overall perceived quality [32].

 Polarization: in which the two images of a stereo pair are superimposed in the

display through different polarizing filters. The viewer wears low-cost glasses

which contain a pair of different polarizing filters. As each filter passes only

that light which is similarly polarized and blocks the light polarized in the

opposite direction, each eye sees a different image. Although the polarized

glasses are cheap, the equipment required to generate polarized images is

expensive. Moreover, crosstalk can occur if the viewer is not positioned

23

correctly in front of the display. It also suffers from reduced brightness due to

the polarized filters [30].

 Shutter glasses: this technique requires a special display that alternately

switches between left and right images of a stereo pair. The viewer wears

special glasses, in which the lenses alternately darken over one eye, and then

the other, in synchronization with the display. This technique produces the best

output at the cost of expensive display equipment and viewing glasses.

 Autostereoscopic: the main advantage of this method is that no special viewing

equipment is required. Autostereoscopic techniques employ a wide range of

technologies, mostly including lenticular lenses or parallax barriers. These

techniques redirect each of the displayed stereo pair to the intended eye.

However, they also suffer from limited viewing positions [31].

In this work, we use the anaglyph technique to produce stereoscopic images. Several

methods has been proposed to do so [33, 34, 35], of which we employ the Dubois

algorithm [35], due to its relative efficiency.

2.3.2 Rendering Stereoscopic Images

A monoscopic 3D scene model contains one camera in its description, and produces an

image exhibiting only monocular depth cues when rendered. To render a stereo pair,

the rendering algorithm has to be modified to account for two horizontally offset

cameras (Figure 8(b)), each with its own image plane, such that each camera produces

the corresponding image of a stereo pair when the scene is rendered. The stereo pair is

then presented to the viewer based on the stereo display in use.

24

Besides the attributes used to describe a monoscopic scene model (including image

plane width , distance from camera to image plane and camera viewing frustum), a

stereoscopic 3D scene model, or a stereo scene, specifies a value for the horizontal

distance between its cameras, called the interaxial distance, denoted by . In principle,

both and values can be specified arbitrarily. However, some guidelines shall be

followed as to produce a correct „fusable‟ stereo pair. Following is a discussion of the

most important guidelines.

 If we denote the interocular distance between the human eyes (6.5 cm on

average) by , and the width of the target stereo display by , then

we should set a value for such that:

 (12)

Otherwise, the produced stereo pair will not converge on the eyes of the viewer,

and the experience might become painful [36].

(a) (b)

camera

image plane image planes

left camera right camera

Figure 8: (a) Monoscopic scene. (b) Stereoscopic scene.

25

 The horizontal parallax is the distance between the projections of a 3D

surface in the scene to the left and right image planes. As in Figure 9, can

take a negative, a zero or a positive value. When displaying the stereo pair,

surfaces with a positive parallax will appear to be in the display, and surfaces of

zero parallax will appear to be at the display, while surfaces of negative

parallax will seem to float in front of the display. A negative parallax equal to

the interaxial distance occurs when the projected surface is at a distance of

(a)

(b)

(c)

Figure 9: (a) Positive parallax. (b) Zero parallax. (c) Negative parallax.

26

 from the center of the cameras position. As the surface moves closer to the

viewer, the negative parallax diverges to infinity, and this should be avoided,

since the projected surface will become impossible to fuse in the viewer‟s brain

[37]. Based on this restriction, Figure 10 shows the safe visible area in which

3D surfaces can be inserted in a stereo scene.

 Many methods exist for setting up both cameras frustum in a stereo scene.

Nevertheless, the vast majority of them introduce discomforting stereo pair to

the viewer [38]. The correct way of building up the cameras frustum is

portrayed in Figure 8(b), where each camera‟s point of focus is parallel to the z-

axis, and both image planes coincide. This methods is called the off-axis

projection [37].

𝑑

Safe visible area

Visible area +

Figure 10: Safe visible area for inserting 3D surfaces into a stereo scene.

27

In summary:

 Keep the interaxial distance value low.

 Position all 3D surfaces in a scene at a distance from the center

of the cameras position.

 Build cameras frustum based on off-axis projection.

2.4 Massively Parallel Graphics Processing Units

Recently, the performance of GPU has been increasing much faster than the CPU.

Modern GPUs substantially outperform the CPUs, especially in floating point

operations. As Figure 3 illustrates, the number of executed floating-point operations

per second (FLOPS) in modern GPUs vastly exceeds that of CPU. Besides the

computing capability, GPUs also have their own memory system, which offers

substantially higher bandwidth than ordinary CPU systems. As a result, GPUs have

been heavily used in research spanning multiple areas in the last decade, and have been

shown to deliver orders-of-magnitude gains in performance over optimized CPU

applications[39].

2.4.1 Taxonomy

GPUs are massively parallel processors, and may contain hundreds of cores that can

execute thousands of threads. They fall into the Single Instruction, Multiple Data

(SIMD) family in the famous Flynn‟s taxonomy of parallel processors [40]. Generally,

all SIMD processing units execute the same instruction at a given time, where each

processing unit can operate on a different data element.

28

Figure 11: GPU vs. CPU performance trends in GFLOPS (FLOPS) [41].

GPUs are designed to exploit problems that can be implemented at a fine-grain level of

parallelism, such as graphics and image processing problems. Although GPUs are

characterized by high throughput and performance, they add another layer of

complexity for code development. For example, simple branching operations in GPU

code can considerably slow down the performance. Also, moving data blocks back and

forth between CPU and GPU is considered a bottleneck [42].

2.4.2 Trending Architectures

Early GPUs had sophisticated programming languages. However, new simpler GPU

programming interfaces has emerged recently, including NVidia Compute Unified

29

Device Architecture (CUDA)[43], OpenCL[44] and Microsoft DirectCompute. The

programming models of these interfaces are conceptually similar. They provide

abstract programming interfaces that include functions for managing memory

allocations, performing CPU-GPU memory transfers, compiling GPU programs –

kernels – and launching them. Once a kernel is launched, many threads containing

identical code to it are spawned and executed in the GPU cores.

Existing GPU programming interfaces are general purpose, and developing efficient

ray tracers on them can be quite a challenge. Nevertheless, NVidia provides a platform

for accelerating the development of ray tracing applications, called NVidia OptiX [45].

We use this platform for our experiments.

2.4.2.1 NVidia OptiX

The NVIDIA OptiX platform is a ray tracing engine that is built upon CUDA, and is

intended to accelerate the development of ray tracers on modern GPUs. OptiX offers

many features, such as out-of-the-box acceleration structures, threads scheduler and

various ray tracing helper functions. OptiX also has its own programming model. A

thorough description of OptiX can be found in [46].

30

CHAPTER THREE

METHODOLOGY

3.1 Parallel Reprojection

As mentioned in Section 2.2.2, reprojection introduces three problems: missed pixel

problem, overlapped pixel problem and bad pixel problem. Adelson and Hodges

proposed a strictly sequential processing of each scan-line in order to resolve them.

However, since we are targeting implementing reprojection in massively parallel

GPUs, ray tracing and reprojection are better done at a finer level of parallelism: a

thread per pixel. This will render the order of execution unguaranteed; therefore we

devise new resolution mechanisms to the reprojection problems.

We assume a stereo scene setup as shown in Figure 5, with fixed stereo cameras

positions
1
 at () and (). Our algorithms proceed as follows.

First, all pixels in the left image are fully ray-traced in parallel. Once the pixel value

is determined, its scene depth – related to the left camera – is stored. Then, the

pixel is reprojected to its corresponding position to the right image. The following

sections thoroughly discuss our resolution mechanisms to rule out the reprojection

errors in parallel. Table 1 summarizes those mechanisms.

1
 This algorithm can be easily modified to handle arbitrary positioning of the stereo cameras.

31

Method
Missed Pixel

Resolution

Overlapped Pixel

Resolution

Bad Pixel

Resolution

Adelson and

Hodges / Es-Isler

(Sequential)

Fully ray trace

Proceed sequentially from left to right

Buffer-Based

(Parallel)

Store all

reprojected pixel in

a 3D buffer,

prevent race

condition. Cast a length-

restricted ray

Atomic-Based

(Parallel)

Use atomic

operations to

prevent race

condition.

Table 1: Comparison between different mechanisms for resolving reprojection

problems.

3.1.1 Missed Pixel Resolution

We use the same strategy employed by the original authors to resolve this problem; by

fully ray tracing the missed pixels in the right image, done in parallel.

3.1.2 Overlapped Pixel Resolution

Since the reprojection function does not yield a one-to-one correspondence between

pixels in both image planes, multiple pixels from the left image reproject to the same

position. Executing in parallel, this will introduce a race condition. Thus, we propose

two different approaches to resolve this case of race condition, one of which assumes

that the underlying parallel hardware provides atomic operations, while the other

makes no assumptions about the hardware in use, but exploits a property exhibited by

stereoscopic scenes when equipped with reprojection. We call the latter method Buffer-

32

Based Overlapped Pixels Resolution, and the former Atomic-Based Overlapped Pixels

Resolution.

3.1.2.1 Buffer-Based Overlapped Pixels Resolution

In this approach, all reprojected pixels from the left image, alongside their original

horizontal position in the left image, are stored in an intermediate 3D buffer of size

 , such that no value is overwritten, and mutual exclusion is guaranteed. Then

to find the correct pixel value in the right image, this buffer is traversed at each

corresponding pixel position towards the depth, picking the pixel with the maximum

related value of .

To determine the optimal depth of the 3D buffer, this approach draws on the

following lemma, which states that the maximum writes to a single pixel position in

the right image when using reprojection is upper bounded by , where the closet

surface in the stereo scene is at a distance from the center of cameras position, for

some real value . It can be concluded from the discussion in Section 2.3.2 that, so as

to assure a comfortable viewing experience, the maximum value for in most stereo

scenes is set to 2, and therefore, their corresponding optimal depth of the 3D buffer is

 . Notice there are rare cases in which this maximum can be reached is illustrated

in Figure 12, where a geometrical object, located at a distance in front of the right

camera, extends to an infinite depth.

33

This approach is expected to underperform the atomic-based approach discussed next,

especially for higher values of ; since each pixel-generating thread in the right camera

has to traverse over a vector of size of the 3D buffer; even when the vector contains

no values.

Lemma 1: Assuming that the nearest surface in a stereo scene is positioned at a

distance away from the center of cameras positions, then the maximum number of

pixels in the left image reprojecting to the same pixel position in the right image is

equal to . Formally,

 ‖* | () +‖ (13)

𝑑

Image plane

…

Figure 12: A possible case when the reprojections to a single position reach a

maximum.

34

Where and are pixel positions in the left and right images, respectively, and

 () is the reprojection function.

Proof:

Assume a scene, as in Figure 13, with fixed left and right cameras positioned at

() and (), respectively, such that and . Moreover,

the nearest surface in the object space is positioned at a distance of from the center

of both cameras position for some real number . Assume also two points

 () and () in the object space that correspond to different left-

image plane positions () and (), respectively, such that

 ,

 , , and

 () () (14)

Therefore,

 (15)

 (16)

Set . Here, represents the distance between two pixels in the left image

such that their reprojection to the right-image plane is the same. At the extreme case,

all the pixels in the set * ()| + reproject

to the same pixel position in the right image for the maximum value of . In this

case, represents the maximum number of pixels in the left image that reproject to the

35

same pixel position in the right image. We can compute the maximum value for as

follows:

 (

) (17)

 Given that

 and

 . Solving this equation yields the following

conclusion:

 (18)

3.1.2.2 Atomic-Based Overlapped Pixels Resolution

Another proposed resolution to the race condition introduced by reprojection is through

employing atomic operations, ensuring only one thread accessing the corresponding

𝑑 𝑟

𝑒

𝑑

Image plane

Nearest surface

Figure 13: Stereo scene parameters.

36

right image position when overwriting. Overwrites take place only if the reprojecting

pixel has a higher corresponding position than the residing value in the right image.

This approach is best used when the following holds:

 The underlying parallel architecture provides atomic operations.

 The associated penalty of using atomic operations is not substantial. This can

be confirmed if using this approach proves to perform better than the buffer-

based approach.

Threads writing atomically into one memory position are processed linearly, and thus

this approach introduces a slight linear overhead. Since, as shown in Lemma 1, a

maximum of threads can write to the same pixel position at rare cases, the linear

overhead introduced by this approach is expected to be () per pixel position.

Therefore, the runtime of this approach is upper-bounded by the buffer-based approach

runtime.

3.1.3 Bad Pixel Resolution

Figure 14 illustrates the case when the bad pixel problem occurs. Sequentially

processed, pixel K will be marked as a bad pixel in Adelson and Hodges

implementation, because it was reprojected onto a gap between originally adjacent

pixels; L and M. Bad pixels are fully ray traced once detected.

In our parallel implementation, we mark all reprojected pixels as potentially bad pixels.

Then, per each of them, a ray of restricted length is casted and tested for intersection.

The length of this ray is determined by the depth of its corresponding reprojected pixel

37

in the original left image, . If this ray intersects anything on its way, the linked

reprojected pixel is discarded and fully ray traced. Otherwise, the reprojected pixel is

approved as correct. This approach assumes that tracing a length-restricted ray is

efficient; which holds in case of using acceleration structures in the scene.

Figure 14: K is marked as a bad pixel and is fully ray traced.

3.2 Complexity Analysis

The following analysis provides an approximation to the runtime of the buffer-based

algorithm, which can be generalized as an upper bound to the atomic-based algorithm.

Assume a stereo scene to be ray traced, where the number of pixels is , the

number of objects is and the number of lights is . Assume also an arbitrary

Image plane

38

acceleration structure is used in the scene, denoted by . Since some traced rays in

the right image are length-restricted, their corresponding tree will be truncated [47].

As a result, we will use the following notation to differentiate between three possible

scenarios of the cost incurred while tracing the rays:

 (): cost of traversing a full tree over objects for an unrestricted

ray, where an intersection is found, and shadow rays are spawned and traced

consequently.

 (): cost of traversing a truncated tree over objects for a length-

restricted ray, where an intersection is found, and shadow rays are spawned

and traced consequently. At the worst case, the length of the restricted ray is set

to , and thus () () in general.

 (): cost of traversing a truncated tree over objects for a length-

restricted ray, where no intersection is found and hence no shadow rays are

spawned. Even at the worst case, where the ray length is set to , it is obvious

that () () (), because no shadow rays are traced.

Based on this, it can be easily confirmed that the cost of computing one pixel value in

each of the stereo pair, using the naïve approach, is (()), and therefore the

total time it takes to render one image of the stereo pair is (()).

Moreover, we can evaluate the total cost of computing the value of one pixel position

in the stereo pair, using the buffer-based approach, as follows:

39

 Left image: the cost for tracing a ray through a pixel is (()). Also,

each pixel is reprojected to the right image at a constant budget ();

independent of the input variables. Therefore, the total complexity of

generating one pixel is (()).

 Right image: to resolve overlapped pixel problem, the 3D buffer is traversed

towards the depth at a cost of (), which reduces to () () for most

stereo scenes. Then, one of the following scenarios takes place:

o No pixel value is found at the 3D buffer (missed pixel), thus the pixel

has to be fully ray traced at a cost (()).

o Pixel value is found, but it constitutes a bad pixel. The cost of traversing

the length-restricted ray to recompute the pixel value is (()).

o Pixel value is found, marked as a potential bad pixel, but the traced

restricted ray confirms that it is not. This costs (()).

Let denote the number of missed pixels, denote the number of bad pixels and

 denote the number of pixels in error in the right image. The overall cost

of finding all pixel values in the right image can be given through the following

equation:

 () (()) (()) () (()) (19)

Since it can be empirically shown that and , and thus , have smaller values

relative to (refer to [28] for details), most of the pixel-generating threads in the right

40

image will execute at a cost of () (()), which can be less than the cost of

fully tracing through the pixel at (()); especially for scenes with a small

value of and a number of lights . Coupled with a dynamic or near-optimal

threads scheduler, which executes threads of similar runtime together, the performance

gain of the buffer-based approach is expected to outperform that of the naïve approach

based on this analysis. Additionally, since the buffer-based approach constitutes an

upper bound to the atomic-based approach, which runs at () (()); the

latter is expected to deliver the best performance.

3.3 Kernels Pseudocode

The two kernels, corresponding to each camera, that generate the stereo pair of a scene

using the buffer-based resolution technique are presented in Algorithm 2 and

Algorithm 3, respectively, while Algorithm 4 and Algorithm 5 describe the kernels that

make use of the atomic-based resolution technique. For any technique, their

corresponding pair of kernels should be executed one after the other, starting at the first

kernel, to generate animations. The logic behind all kernels is dependent on the

discussions of Section 3.1.

3.3.1 Buffer-Based Kernels

Kernel LeftCameraRayTrace – Buffer Based

Inputs: , shared left image 2D buffer of size

 , shared buffer of size

 repBuf, shared buffer of size

1. (i, j) = Retrieve thread index in 2D

41

2. For k := 1 do

3. repBuf[i, j, k] := (rp := NiL, dp := , ip :=)

4. End for

5. [i, j] = Ray trace pixel at position i, j

6. [i, j] = Compute depth of pixel [i] in scene space

7. rep[i, j] = reproject([i], [i])

8. if rep[i, j] x then

9. depth := i mod ()

10. repBuf[i, j, depth] := (rp := rep[i, j], dp := i, ip := [i, j])

11. End if

Algorithm 2: Kernel for generating the left image using the buffer-based

resolution.

Kernel RightCameraInfer – Buffer Based

Inputs: , shared right image 2D buffer of size

 , shared buffer of size

 repBuf, shared buffer of size

1. (i, j) = Retrieve thread index in 2D

2. rb := Retrieve refBuf[i, j, k] such that refBuf[i, j, k] dp is the maximum

 value in the set {refBuf[i, j, 1] dp, …, refBuf[i, j,] dp}

3. If rb dp <> -1 do

4. := Ray trace a ray of restricted length based on [i, j] at pixel

position i, j

5. Else

6. := Ray trace a ray at pixel position i, j

7. End if

8. If <> NiL do

9. [i, j] :=

10. Else

11. [i, j] := rb ip

42

12. End if

Algorithm 3: Kernel for generating the right image.

3.3.2 Atomic-Based Kernels

Kernel LeftCameraRayTrace – Atomic Based

Inputs: , shared left image 2D buffer of size

 , shared buffer of size

 iBuf, shared buffer of size , initially all values set to -1

1. (i, j) = Retrieve thread index in 2D

2. [i, j] = Ray trace pixel at position i, j

3. [i, j] = Compute depth of pixel [i] in scene space

4. rep[i, j] = reproject([i], [i])

5. if rep[i, j] x then

6. Critical section begins

7. li := rep[i, j] x

8. If i > iBuf[li, j] then

9. iBuf[li, j] := i

10. End if

11. End critical section

12. End if

Algorithm 4: Kernel for generating the left image.

Kernel RightCameraInfer – Atomic Based

Inputs: , shared left image 2D buffer of size

 , shared right image 2D buffer of size

 , shared buffer of size

 iBuf, shared buffer of size

1. (i, j) = Retrieve thread index in 2D

43

2. rb := iBuf[i, j]

3. If rb <> -1 do

4. := Ray trace a ray of restricted length based on [i, j] at pixel

position i, j

5. Else

6. := Ray trace a ray at pixel position i, j

7. End if

8. If <> NiL do

9. [i, j] :=

10. Else

11. [i, j] := [i, j]

12. End if

13. iBuf[i, j] := -1

Algorithm 5: Kernel for generating the right image.

44

CHAPTER FOUR

EXPERIMENTAL RESULTS AND ANALYSIS

Ray tracing on the GPU has proved to be more efficient than on CPU [45, 48].

Therefore, this chapter will discuss the implementation and results of the GPU-based

stereoscopic ray tracers and their outcomes with respect to the hypotheses: our

algorithms, buffer-based and atomic-based stereoscopic ray tracing, outperform the

naïve stereoscopic ray tracing algorithm that generates the stereo pair by fully ray

tracing through them. Also, it will be shown that they outperform Es-Isler‟s suggested

method.

4.1 Ray Tracer Implementations

We implemented five different stereoscopic ray tracing algorithms on the GPU as

NVidia OptiX kernels, two of which are based our algorithms (buffer-based and

atomic-based algorithms, sections 3.3.1 and 3.3.2), and the other three are a naïve

stereoscopic ray tracing implementation that generates the stereo pair by fully ray

tracing them, a ray tracer based on the Es-Isler‟s technique, and an imaginary ideal

implementation that generates the left image by fully ray tracing it, and generates the

right image by merely copying the left image. The naïve implementation serves as the

baseline in our benchmarks, while the imaginary ideal implementation sets an

imaginary optimal runtime for a stereoscopic ray tracer. All implementations use the

45

Dubois algorithm, also implemented as an OptiX kernel, to fuse both stereo pair into a

single anaglyph image (Section 2.3.2). Table 2 summarizes those ray tracers.

Ray Tracer Platform
Stereoscopic Ray

Tracing Strategy
Output

Naïve

NVidia OptiX

version 2.5.0

Fully ray trace both

stereo pair

Single anaglyph

image

Imaginary ideal

Fully ray trace left

image, copy left image

to right image

Buffer-based
Using the buffer-based

kernels

Atomic-based
Using the atomic-based

kernels

Es-Isler

Fully ray trace left

image, reproject in

parallel scan-line by

scan-line, fully ray trace

missed/bad pixels in the

right image

Table 2: Benchmarked ray tracers.

All implementations make use of the optimization techniques for GPUs. Specific to

OptiX, this translates to minimizing the actual branching calls and lowering the

transactions between CPU and GPU. Moreover, the implementations utilize the Split

Bounding Volume Hierarchies (SBVH) [49] ray tracing acceleration structures

(Section 2.1.3) offered by OptiX, as to increase performance based on the analysis in

Section 3.2. OptiX provides an out-of-the-box scheduler, so we leave the scheduling of

threads to it.

46

4.2 Testbeds

To evaluate the performance of each ray tracer, we set up two different testbeds. The

first, Testbed-1, is a workstation equipped with Intel Xeon processor, 88 GB of RAM

and NVidia Quadro Plex 7000 graphics card. Testbed-2 is a laptop equipped with Intel

Core i7-2640M processor, running at 2.80 GHz with 8 GB of RAM. It has an

embedded NVidia Geforce GT 525M graphics card with dedicated 2 GB of VRAM.

These specifications are summarized in Table 3.

Testbed CPU RAM GPU OS

Graphics

Driver

Version

Testbed-1 Intel Xeon 88 GB

NVidia

Quadro

Plex 7000

Windows

Server 2008

R2

Workstation

301.32

Testbed-2

Intel Core

i7-2640M

@ 2.80

GHz

8 GB

NVidia

Geforce

GT 525M

Windows 7 301.27

Table 3: Specifications of the testbeds.

4.3 Stereo Scene Setup

All benchmarked ray tracers are fed a unified stereoscopic scene model with the

following setup:

 Stereo cameras position: fixed in 3D space, with a variable interaxial distance

in pixels, specified by the benchmark.

47

 Image planes: fixed in 3D space, with variable dimensions and in pixels,

specified by the benchmark.

 Light sources: benchmark-specific number of omni-directional light sources

with fixed intensities.

 3D geometric objects: we use 5 different setups for scene objects as illustrated

in Table 4.

 Materials: diffuse only.

 A skymap.

Figures 15-19 present the outputs of fully rendering the scene with different 3D

objects.

Scene 3D Objects
Number of

Polygons
Output

Fixed Spheres

1000 randomly

distributed

spheres in fixed

positions

- Figure 15

Animated

Spheres

1000 randomly

distributed

spheres, rotating

around the Y-axis

- Figure 16

Sponza
Sponza 3D model

[50]
279,163 Figure 17

Buddha
Happy Buddha 3D

model [51]
1,087,716 Figure 18

Dragon
Stanford Dragon

3D model [51]
1,132,830 Figure 19

Table 4: 3D objects of the scenes.

.

48

(a) (b)

Figure 15: Fixed Spheres scene. (a) Mono output. (b) Stereo output.

(a) (b)

Figure 16: Animated Spheres scene. (a) Mono output. (b) Stereo output.

49

(a) (b)

Figure 17: Sponza scene. (a) Mono output. (b) Stereo output.

(a) (b)

Figure 18: Buddha scene. (a) Mono output. (b) Stereo output.

50

(a) (b)

Figure 19: Dragon scene (a) Mono output. (b) Stereo output.

4.4 Benchmarks

We run five different benchmarks over all the ray tracers. Three of these benchmarks

are executed in both testbeds to test the performance of the ray tracers. These

benchmarks alter the scene parameters, fixing two of the parameters and varying one.

Each step in these benchmark is executed 5 times, each time runs for 25 seconds over

each of the ray tracers; of which 5 seconds are for warming up the ray tracer, and the

rest 20 seconds contribute to computing the average frames per seconds (fps) a ray

tracer performs; which constitute the performance measure. To avoid unnecessary

performance delays, the outputs of the ray tracers are not displayed on the monitor. We

call these three benchmarks the performance benchmarks, and are summarized in

Table 5.

51

The other couple of benchmarks, the pixel error benchmarks, test for the average pixel

color error in the right image when tracing the Dragon scene with one of our methods

against the naïve method. The details of these benchmarks are summarized in Table 6.

Performance

Benchmark
Scene

Dimensions

Interaxial

Distance

Number of

Lights

Varying

dimensions

All five

scenes

 pixels

up to

pixels,

step size:

 pixels

15 pixels

5

Varying

interaxial

distance
Dragon pixels

pixels, step

size: 10 pixels

Varying

number of

lights

15 pixels
 , step

size: 1

Table 5: Performance benchmarks.

Pixel Error

Benchmark

Images

Generated

Dimensions

Interaxial

Distance

Number of

Lights

Varying

dimensions
Right images

only, using

the naïve ray

tracer and the

atomic-based

ray tracer

pixels

up to

pixels,

step size:

pixels

15 pixels

5

Varying

interaxial

distance

pixels

pixels, step

size: 10 pixels

Table 6: Pixel-error benchmarks.

52

4.5 Results and Discussion

4.5.1 Performance Benchmarks Results

The performance in these benchmarks is measured by the average fps a ray tracer

performs in 20 runs, each run execute for 25 seconds, of which 5 seconds are for

warming up the ray tracer.

4.5.1.1 Results on Testbed-1

Figures 20-24 show the results of running the first performance benchmark, when

varying image dimensions, spanning all ray tracers in all scenes. The average speedup

per ray tracer in each scene is summarized in Figure 27, showing that the performance

of the imaginary ideal ray tracer has an average speedup range of around 29% to 65%

over the baseline. This is due to the penalty associated with copying the left image to

the right image as implemented in this ray tracer. Moreover, our ray tracers are

performing at speedup ranges of 14% to 47% for the atomic-based ray tracer, and 6%

to 40% for the buffer-based ray tracer, relative to the baseline. As expected, the

atomic-based ray tracer outperforms the buffer-based one. Surprisingly, Es-Isler ray

tracer exhibited poor performance relative to the baseline. This is maybe due to the fact

that their technique was not optimized for massively-parallel processors. The plotted

performance trend-lines in this testbed show some fluctuations which we could not

explain
2
.

2
 We are in contact with NVidia team in this regard.

53

Figure 25 plots the performance when applying the second benchmark to the ray

tracers; increasing the interaxial distance in the Dragon scene. Increasing , as the

figure shows and as expected, does not affect the performance of both the imaginary

ideal and the naïve ray tracers. Relevant to the complexity analysis in the previous

chapter, incrementing has a slight impact on the performance of the atomic-based ray

tracer, due to the fact that increasing will increase the number of missed pixels in the

right image, alongside expanding the linear overhead incurred by using the atomic

operations. Similar performance drop can be observed in the reprojection-based Es-

Isler ray tracer. Furthermore, the performance of the buffer-based ray tracer highly

declines once is increased. This is because increasing reflects on the depth of the 3D

buffer used in the ray tracer, rendering a slower traversal towards the depth

(Section 3.1.2.1). It is worth mentioning that the suggested 3D buffer size, , serves

as a maximum size to handle extreme cases as presented in Figure 12, which rarely

happen in a scene. It is therefore possible to set the buffer size in the buffer-based ray

tracer to a small fixed value – independent of – while getting correct outputs. This

way, the only impact of increasing in this modified ray tracer will be caused by the

congruently increased number of missed pixels.

Lastly, Figure 26 illustrates the performance of the ray tracers when increasing the

number of lights in the scene as per the third benchmark. Generally, increasing scene

lights reflects an exponential drop in any ray tracer‟s performance, due to the need of

tracing a shadow rays per each light source in the scene. However, this drop in

performance is slower on our ray tracers as opposed to the baseline, because only the

54

cost of computing pixels in error in the right image is expanded by increasing the

number of lights.

4.5.1.2 Results on Testbed-2

Figures 28-34 show the performance of the corresponding benchmarks when applied to

Testbed-2. We still get the same trendlines in each graph as of the previous testbed

results, but with lower performance in general, and smoother trendlines when varying

image dimensions. Figure 35 shows that the average speedup ratios are better in this

testbed, with value ranges of 16%-58%, 32%-67%, and 71%-92% for the buffer-based,

the atomic-based and the imaginary ideal ray tracers, respectively. It also shows that

the Es-Isler ray tracer is again underperforming the baseline.

4.5.2 Pixel Error Benchmarks Results

Reprojection causes no visible structural differences in the produced right image when

compared to a fully ray traced image (Figure 39(a) vs. Figure 40(a)). Therefore, it is

sufficient to assess the quality of reprojected images using error sensitivity based

techniques [52].

Let denote the right image produced by one of our techniques, and ̅ denote a right

image that is fully ray traced. To quantize the pixel error value, each pixel in both right

images, and ̅, outputted by these benchmarks is represented as a vector

() in RGB space (), and the pixel error is computed as the

Mean Squared Error (MSE):

55

 (̅)
∑ ‖(̅)‖

Increasing the image dimensions while fixing the interaxial distance , as Figure 36

shows, reflects a better quality in the reprojected right image . However, increasing

seems to increasingly affect the quality of in comparison to the fully ray traced

image ̅, as shown in Figure 37.

4.5.3 Time Views

Time views are grayscale images utilized to illustrate the amount of time each thread in

a ray tracer spends on generating one pixel where, relative to other pixels, lighter pixels

indicate high ray tracing time, and vice-versa.

Figure 38 presents two time views for two kernels generating the right image, one

using the naïve ray tracer and the other using the atomic-based ray tracer. It is evident

that the threads of the naïve ray tracer spend much time ray tracing the geometry, while

the time-consuming threads of the atomic-based ray tracer are only distributed around

the edges of the geometry, where most of bad and missed pixels occur.

4.5.4 Outputs

Figures 39-41 show the outputs of the ray tracers. As established earlier, no visible

differences can be spotted between the outputs.

56

Figure 20: Performance of ray tracing the Fixed Spheres scene when increasing

image dimensions in Testbed-1.

0

20

40

60

80

100

120

140
2

0
0

²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Fixed Spheres, e = 15, lights = 5
Testbed-1

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

57

Figure 21: Performance of ray tracing the Animated Spheres scene when

increasing image dimensions in Testbed-1.

0

20

40

60

80

100

120

140

160

180

200

2
0

0
²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Fixed Spheres, e = 15, lights = 5
Testbed-1

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

58

Figure 22: Performance of ray tracing the Sponza scene when increasing image

dimensions in Testbed-1.

0

20

40

60

80

100

120

140

2
0

0
²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Sponza, e = 15, lights = 5
Testbed-1

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

59

Figure 23: Performance of ray tracing the Buddha scene when increasing image

dimensions in Testbed-1.

0

20

40

60

80

100

120

140

160

180

2
0

0
²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Buddha, e = 15, lights = 5
Testbed-1

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

60

Figure 24: Performance of ray tracing the Dragon scene when increasing image

dimensions in Testbed-1.

0

20

40

60

80

100

120

140
2

0
0

²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Dragon, e = 15, lights = 5
Testbed-1

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

61

Figure 25: Performance of ray tracing the Dragon scene when increasing the

interaxial distance in Testbed-1.

Figure 26: Performance of ray tracing the Dragon scene when increasing number

of lights in Testbed-1.

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

FP
S

Interaxial Distance e

Dragon, lights = 5, dimensions = 600x600
Testbed-1

Ideal (Imaginary) Naïve

Atomic-based Buffer-based

Es-Isler

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

FP
S

Number of Lights

Dragon, e=15, dimensions=600x600
Testbed-1

Ideal (Imaginary)
Naïve
Atomic-based
Buffer-based
Es-Isler

62

Figure 27: Speedup summary relative to the naïve ray tracer, Testbed-1.

Spheres
(Animated)

Spheres
(Fixed)

Sponza
Happy

Buddha
Dragon

Ideal (Imaginary) 28.67% 42.22% 65.14% 50.87% 60.69%

Atomic-Based 13.86% 22.93% 36.96% 38.82% 47.42%

Buffer-Based 5.85% 13.29% 31.67% 28.53% 39.57%

Es-Isler -23.22% -23.29% -22.00% -20.31% -15.65%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Sp
e

e
d

u
p

 (
O

ve
r

B
as

e
lin

e
)

63

Figure 28: Performance of ray tracing the Fixed Spheres scene when increasing

image dimensions in Testbed-2.

0

10

20

30

40

50

60

70

80

90
2

0
0

²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Fixed Spheres, e = 15, lights = 5
Testbed-2

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

64

Figure 29: Performance of ray tracing the Animated Spheres scene when

increasing image dimensions in Testbed-2.

0

10

20

30

40

50

60

70

80

2
0

0
²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Animated Spheres, e = 15, lights = 5
Testbed-2

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

65

Figure 30: Performance of ray tracing the Sponza scene when increasing image

dimensions in Testbed-2.

0

5

10

15

20

25

30

35

40

2
0

0
²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Sponza, e = 15, lights = 5
Testbed-2

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

66

Figure 31: Performance of ray tracing the Buddha scene when increasing image

dimensions in Testbed-2.

0

5

10

15

20

25

2
0

0
²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Buddha, e = 15, lights = 5
Testbed-2

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

67

Figure 32: Performance of ray tracing the Dragon scene when increasing image

dimensions in Testbed-2.

0

5

10

15

20

25
2

0
0

²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S

Frame Size

Dragon, e = 15, lights = 5
Testbed-2

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

68

Figure 33: Performance of ray tracing the Dragon scene when increasing the

interaxial distance in Testbed-2.

Figure 34: Performance of ray tracing the Dragon scene when increasing number

of lights in Testbed-2.

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100

FP
S

Interaxial Distance e

Dragon, lights = 5, dimensions = 600x600
Testbed-2

Ideal (Imaginary) Naïve

Atomic-based Buffer-based

Es-Isler

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

FP
S

Number of Lights

Dragon, e=15, dimensions=600x600
Testbed-2

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler

69

Figure 35: Speedup summary relative to the naïve ray tracer, Testbed-2.

Spheres
(Animated)

Spheres
(Fixed)

Sponza
Happy

Buddha
Dragon

Ideal (Imaginary) 78.01% 89.57% 92.28% 70.81% 81.27%

Atomic-Based 31.76% 41.96% 57.45% 55.52% 65.53%

Buffer-Based 15.78% 28.17% 49.51% 45.80% 58.30%

Es-Isler -7.66% -7.05% -3.34% -8.77% -6.09%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Sp
e

e
d

u
p

 (
O

ve
r

B
as

e
lin

e
)

70

Figure 36: MSE when increasing image dimensions.

Figure 37: MSE when increasing the interaxial distance e.

0

50

100

150

200

250

300

200² 400² 600² 800² 1000² 1200² 1400² 1600²

M
SE

Frame size

Mean Squared Error

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

M
SE

Interaxial distance e

Mean Squared Error

71

(a)

(b)

Figure 38: Time views of the threads generating the right image using: (a) Naïve

ray tracer. (b) Atomic-based ray tracer.

72

(a) (b)

(c)

Figure 39: Output of naïve ray tracer. (a) Left image. (b) Right image.

(c) Anaglyph stereo image.

73

(a) (b)

(c)

Figure 40: Output of buffer-based ray tracer. (a) Left image. (b) Right image.

(c) Anaglyph stereo image.

74

(a) (b)

(c)

Figure 41: Output of atomic-based ray tracer. (a) Left image. (b) Right image.

(c) Anaglyph stereo image.

75

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

5.1 Summary

This work focuses on developing efficient stereoscopic ray tracing on the GPU, by

utilizing image-space temporal coherence between the stereo pair.

The recent explosion of GPU performance naturally grabbed the attention of

researchers to develop existing algorithms on GPUs to harness their full potential;

especially that an added layer of complexity is associated with GPU development due

to its architecture.

One of the most effective techniques for utilizing temporal coherence between a ray

traced stereo pair is the reprojection algorithm, introduced by Badt and later developed

by Adelson and Hodges. This technique produces high quality results when

transferring pixels from the left image to the right image. However, the technique,

targeting CPUs, is sequential in nature, and the existing attempts to make it run on

parallel are not optimized for massively parallel processors.

Novel resolutions to reprojection problems have been developed and presented

throughout this work. These resolutions allowed the originally sequential reprojection

to be implemented on massively parallel processors, such as GPUs.

76

The results show that our developed techniques outperform the naïve technique of fully

ray tracing through both images of a stereo pair, and approach the performance of an

imaginary ideal implementation.

5.2 Contribution to Knowledge

This work has achieved the following contributions that were never addressed in the

literature before:

 Re-invented the way reprojection errors are handled so that reprojection can

work on massively parallel processors.

 Lemma 1 set an upper bound to the maximum number of writes to one pixel

position in the right image when using reprojection.

5.3 Limitations

Despite the good performance of the developed techniques in this work, there are some

shortcomings:

 Reprojection, and therefore our techniques, produces correct outputs only for

surfaces of diffuse material, and can handle a narrow subset of camera-

dependent materials such as Phong [53]. Pixels produced from surfaces of other

camera-dependent materials such as reflective and refractive materials do not

reproject correctly. To mitigate this problem, Adelson and Hodges suggested to

fully ray trace these pixels in the right view, downgrading the performance.

77

 The performance of our techniques can be shown to be independent of most 3D

stereo scene attributes, except for the interaxial distance . Large values of

introduce more pixel problems and, therefore, will render our algorithms

underperforming the naïve method.

 For large values of , i.e. if the nearest surface in the stereo scene is positioned

at relatively small distance form cameras, the buffer-based approach will be

rendered inefficient, because the 3D buffer will grow in depth and this will

reflect on slowing the performance of the algorithm as showed earlier.

5.4 Future Work

Our techniques serve as a possible core for utilizing image-space temporal coherence

in stereoscopic ray tracing implemented on massively parallel processors. Still, there is

plenty of room to further optimize and enhance them. Following is a list of possible

enhancements that are worth investigating in the future:

 Implementing our techniques on a distribution ray tracer.

 Use reprojections from previously rendered animation frames to reduce pixel

errors, as suggested by Adelson and Hodges in another work [16].

 Allowing the 3D buffer depth in the buffer-based ray tracer to be set adaptively,

relative to the scene being rendered.

 Bad pixels heavily occur around the edges of the rendered geometry. This

heuristic can be used to directly ray trace through edge-surrounding pixels

without having to check if they constitute bad pixels.

78

 Nehab et al. [54] developed another technique for image-space temporal

coherence using reverse reprojections alongside a caching technique. Applied

to stereo rendering, this means fully ray tracing the left view, and „reversely‟

reprojecting pixel positions from the right view to the left view so as to find

their corresponding colors. Their technique avoids reprojection errors, but

comes at the cost of computing the depth of the pixels in the right image.

Moreover, their technique is optimized for use in rasterization-based renderers.

It would be interesting to investigate the possibility to adopt their technique

with our techniques to achieve yet further optimizations.

 Investigating other thread scheduling mechanisms as to assure load-balancing

on the GPU cores, and possibly increasing the performance.

79

REFERENCES

[1] G. Tran. (2012, 25/5/2012). Available:

http://www.oyonale.com/modeles.php?lang=en&page=40

[2] T. Whitted, "An improved illumination model for shaded display," Commun.

ACM, vol. 23, pp. 343-349, 1980.

[3] R. L. Cook, T. Porter, and L. Carpenter, "Distributed ray tracing," SIGGRAPH

Comput. Graph., vol. 18, pp. 137-145, 1984.

[4] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, "Modeling the

interaction of light between diffuse surfaces," SIGGRAPH Comput. Graph.,

vol. 18, pp. 213-222, 1984.

[5] J. D. Foley, A. v. Dam, S. K. Feiner, and J. F. Hughes, Computer graphics:

principles and practice (2nd ed.): Addison-Wesley Longman Publishing Co.,

Inc. , 1990.

[6] G. Bishop, H. Fuchs, L. McMillan, and E. J. S. Zagier, "Frameless rendering:

double buffering considered harmful," presented at the Proceedings of the 21st

annual conference on Computer graphics and interactive techniques, 1994.

[7] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker, and

P. Shirley, "State of the Art in Ray Tracing Animated Scenes," Computer

Graphics Forum, vol. 28, pp. 1691-1722, 2009.

[8] D. Scherzer, L. Yang, O. Mattausch, D. Nehab, P. V. Sander, M. Wimmer, and

E. Eisemann, "A Survey on Temporal Coherence Methods in Real-Time

http://www.oyonale.com/modeles.php?lang=en&page=40

80

Rendering," in In State of the Art Reports Eurographics, ed. Llandudno UK,

2011.

[9] M. Shih, Y.-F. Chiu, Y.-C. Chen, and C.-F. Chang, "Real-Time Ray Tracing

with CUDA," presented at the Proceedings of the 9th International Conference

on Algorithms and Architectures for Parallel Processing, Taipei, Taiwan, 2009.

[10] J. Gunther, S. Popov, H. P. Seidel, and P. Slusallek, "Realtime Ray Tracing on

GPU with BVH-based Packet Traversal," in Interactive Ray Tracing, 2007. RT

'07. IEEE Symposium on, 2007, pp. 113-118.

[11] S. Badt, "Two algorithms for taking advantage of temporal coherence in ray

tracing," The Visual Computer, vol. 4, pp. 123-132, 1988.

[12] E. P. Lafortune and Y. D. Willems, "Bi-Directional Path Tracing," in

Proceedings of Third International Conference on Computational Graphics

and Visualization Techniques (Compugraphics ’93, ed, 1993, pp. 145-153.

[13] M. Cohen, J. Wallace, J. Radiosity, I. Artificial, L. Iii, C. G. Langton, and E.

Addison-wesley. (1993). Radiosity and Realistic Image Synthesis.

[14] E. Veach and L. J. Guibas, "Metropolis light transport," presented at the

Proceedings of the 24th annual conference on Computer graphics and

interactive techniques, 1997.

[15] Shirley, P. a. Morley, and R. Keith, Realistic Ray Tracing, 2nd ed. Natick, MA,

USA: A. K. Peters, Ltd., 2003.

[16] S. J. Adelson and L. F. Hodges, "Generating exact raytraced animation frames

by reprojection," IEEE Computer Graphics Applications, vol. 15, pp. 43–52,

1995.

81

[17] A. S. Glassner, An Introduction to Ray Tracing. London, UK: Academic Press

Ltd., 1989.

[18] K. Suffern, Ray Tracing from the Ground Up: A. K. Peters, Ltd. , 2007.

[19] P. Shirley, M. Ashikhmin, and S. Marschner, Fundamentals of Computer

Graphics: A K Peters, 2009.

[20] Wikipedia. (2012, 25/5/2012). Ray Tracing. Available:

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)

[21] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, "A Characterization of

Ten Hidden-Surface Algorithms," ACM Computer Survey, vol. 6, pp. 1-55,

1974.

[22] A. Dayal, C. Woolley, B. Watson, and D. Luebke, "Adaptive frameless

rendering," presented at the ACM SIGGRAPH 2005 Courses, Los Angeles,

California, 2005.

[23] B. Walter, G. Drettakis, and S. Parker, "Interactive Rendering using the Render

Cache," in Rendering techniques '99 (Proceedings of the 10th Eurographics

Workshop on Rendering), 1999, pp. 235-246.

[24] B. Walter, G. Drettakis, and D. Greenberg, "Enhancing and optimizing the

render cache," in EGRW '02: Proceedings of the 13th Eurographics workshop

on Rendering, 2002, pp. 37-42.

[25] E. Velázquez-Armendáriz, E. Lee, K. Bala, and B. Walter, "Implementing the

render cache and the edge-and-point image on graphics hardware," presented at

the Proceedings of Graphics Interface 2006, Quebec, Canada, 2006.

82

[26] T. Zhu, R. Wang, and D. Luebke, "A GPU accelerated render cache," Pacific

Graphics (short paper), 2005.

[27] S. J. Adelson and L. F. Hodges, "Visible surface ray-tracing of stereoscopic

images," presented at the Proceedings of the 30th annual Southeast regional

conference, Raleigh, North Carolina, 1992.

[28] S. J. Adelson and L. F. Hodges, "Stereoscopic Ray-Tracing," The Visual

Computer, vol. 10, pp. 127-144, 1993.

[29] A. Es and V. Isler, "GPU based real time stereoscopic ray tracing," in

Computer and information sciences, 2007. iscis 2007. 22nd international

symposium on, 2007, pp. 1-7.

[30] I. Sexton and P. Surman, "Stereoscopic and autostereoscopic display systems,"

Signal Processing Magazine, IEEE, vol. 16, pp. 85-99, 1999.

[31] N. S. Holliman, "3D display systems," in Handbook of optoelectronics., J. P.

Dakin and R. G. W. Brown, Eds., ed: IOP Press, 2006.

[32] A. J. Woods and C. R. Harris, "Comparing levels of crosstalk with red/cyan,

blue/yellow, and green/magenta anaglyph 3D glasses," Proceedings of SPIE

Stereoscopic Displays and Applications XXI, vol. 7253, pp. 0Q1-0Q12, 2010.

[33] E. Dubois, "A projection method to generate anaglyph stereo images," in

Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01).

2001 IEEE International Conference on, 2001, pp. 1661-1664 vol.3.

[34] I. Ideses and L. Yaroslavsky, "New Methods to Produce High Quality Color

Anaglyphs for 3-D Visualization Image Analysis and Recognition." vol. 3212,

83

A. Campilho and M. Kamel, Eds., ed: Springer Berlin / Heidelberg, 2004, pp.

273-280.

[35] W. R. Sanders and D. F. McAllister, "Producing anaglyphs from synthetic

images," Santa Clara, CA, USA, 2003, pp. 348-358.

[36] S. Gateau and S. Nash, "Implementing Stereoscopic 3D in Your Applications ",

ed: NVIDIA, 2010.

[37] P. Bourke. (1999, 21/4/2012). Calculating Stereo Pairs. Available:

http://paulbourke.net/miscellaneous/stereographics/stereorender/

[38] L. F. Hodges, "Tutorial: time-multiplexed stereoscopic computer graphics,"

Computer Graphics and Applications, IEEE, vol. 12, pp. 20-30, 1992.

[39] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,

"GPU Computing," Proceedings of the IEEE, vol. 96, pp. 879-899, 2008.

[40] M. J. Flynn, "Some computer organizations and their effectiveness," IEEE

Trans. Comput., vol. 21, pp. 948-960, 1972.

[41] E. H. Phillips, Y. Zhang, R. L. Davis, and J. D. Owens, "Rapid Aerodynamic

Performance Prediction on a Cluster of Graphics Processing Units," in

Proceedings of the 47th AIAA Aerospace Sciences Meeting, ed. Orlando, FL,

2009.

[42] D. Kirk and W.-m. Hwu, Programming massively parallel processors : a

hands-on approach: Morgan Kaufmann Publishers, 2010.

[43] Nvidia, NVIDIA CUDA Programming Guide 2.0, 2008.

http://paulbourke.net/miscellaneous/stereographics/stereorender/

84

[44] J. Stone, D. Gohara, and G. Shi, "OpenCL: A Parallel Programming Standard

for Heterogeneous Computing Systems," Computing in Science & Engineering,

vol. 12, pp. 66-73, 2010.

[45] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D.

McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich, "OptiX: a

general purpose ray tracing engine," ACM Trans. Graph., vol. 29, pp. 1-13,

2010.

[46] NVidia, NVIDIA® OptiX™ Ray Tracing Engine Programming Guide: NVIDIA

Corporation, 2012.

[47] M. Pharr and G. Humphreys, Physically Based Rendering, Second Edition:

From Theory To Implementation: Morgan Kaufmann, 2010.

[48] L. Holger and A. C. Elster, "Real-Time Ray Tracing Using Nvidia OptiX,"

presented at the EUROGRAPHICS 2010, Norrköping Sweden, 2010.

[49] M. Stich, H. Friedrich, and A. Dietrich, "Spatial splits in bounding volume

hierarchies," in Proceedings of the Conference on High Performance Graphics

2009, ed. New Orleans, Louisiana: ACM, 2009, pp. 7-13.

[50] M. Dabrovic. (2002). Available: http://hdri.cgtechniques.com/~sponza/files/

[51] B. Curless and M. Levoy, "A volumetric method for building complex models

from range images," in SIGGRAPH '96: Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, 1996, pp. 303-

312.

http://hdri.cgtechniques.com/~sponza/files/

85

[52] Z. Wang, A. C. Bovik, and L. Lu, "Why is image quality assessment so

difficult?," in Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE

International Conference on, 2002, pp. IV-3313-IV-3316.

[53] B. T. Phong, "Illumination for computer generated pictures," Commun. ACM,

vol. 18, pp. 311-317, 1975.

[54] D. Nehab, P. V. Sander, J. Lawrence, N. Tatarchuk, and J. R. Isidoro,

"Accelerating real-time shading with reverse reprojection caching," presented at

the Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium

on Graphics hardware, San Diego, California, 2007.

VITA

Mazen Abdulaziz Al-Hagri was born on October 2
nd

, 1984 in Mukalla, Yemen. He

obtained a B.S. degree in Computer Science with first honors from Al Al-Bayt

University in Mafraq, Jordan. Upon graduation, he enrolled the College of Medicine in

Hadhramout University of Science and Technology (HUCOM) in Yemen, where he

established the HUCOM Information Technology Center. After one year and a half of

directing the center, he started pursuing his M.S. degree in Computer Science in King

Fahd University of Petroleum and Minerals. His research interests include computer

graphics, parallel computing and bioinformatics. Mazen can be reached on

mazen@hucom.org or mazen.abdulaziz@gmail.com.

