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Nowadays, large 3D stereoscopic displays are trending, requiring rendering at higher 

resolution and at high frame rates. This development aims at delivering more realistic 

details, but it also comes at a significant cost: bowing to the computational constraints, 

since synthesizing stereo image pairs separately doubles the rendering cost. This poses 

a problem for interactive applications viewed on those displays, especially if 

computationally expensive rendering techniques, such as ray tracing, are employed. 

In order to achieve high-quality rendering of stereo image pairs at a lower cost, one can 

exploit temporal coherence techniques: taking advantage of the inherent similarity of 
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efficiently in massively parallel processors; such as the graphics processing units. 
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THESIS ABSTRACT (ARABIC) 

 ملخص الرسالة

 ياصٌ عبذانعضٚض صانح انٓجش٘ :الاســــــــــــــم

 خٕاسصيٛت حخبع انشعاع عانٛت الأداء فٙ ٔحذة يعانجت انشسٕيٛاث العـــــــــــنوان:

 عهٕو انحاسب اٜنٙ ـصص:ـالتخـــــ

 ْـ 3311، جًادٖ اٜخشة :التخرجتاريخ 

شاشاث انعشض ثلاثٛت انبعذ أٔ الاسخٛشٕٚسكٕبٛت انضخًت بذأث حشٛع فٙ انٕقج انشاٍْ، يخطهبت حشكٛب انصٕس 

انًعشٔضت فٛٓا بًقاساث كبٛشة ٔبسشعاث عانٛت نًعذلاث عشض انصٕس فٙ انثاَٛت. ٚٓذف ْزا انخطٕس إنٗ عشض 

ع نقٕٛد قذساث انحٕسبت اٜنٛت؛ لأٌ حشكٛب صٔج انصٕس حفاصٛم أكثش قشباً نهٕاقع، نكُّ ٚأحٙ بكهفت عانٛت: انخضٕ

الاسخٛشٕٚسكٕبٛت ٚخُشجى إنٗ يضاعفت انجٓذ فٙ حال حصٛٛش كم صٕسة عهٗ حذة. ْزا انخضٕع ٚخهق يشكهت 

يثم  –نهخطبٛقاث انخفاعهٛت انًعشٔضت فٙ حهك انشاشاث، خصٕصاً إرا حى حٕظٛف حقُٛاث حصٛٛش يكهفت حاسٕبٛاً 

 فٙ ْزِ انخطبٛقاث. –اع حقُٛت حخبع انشع

يٍ أجم انحصٕل عهٗ حصٛٛش عانٙ انجٕدة نضٔج انصٕس الاسخٛشٕٚسكٕبٛت بكهفت أقم، يٍ انًًكٍ حسخٛش حقُٛاث 

ٚسُخغم انخشابّ انًخأصم يا بٍٛ صٔج انصٕس الاسخٛشٕٚسكٕبٛت نخحقٛق رنك. أحذ أكثش ْزِ  انخشاٚع انًؤقج؛ حٛث

 حخبع انشعاع حسًٗ "خٕاسصيٛت إعادة الإسقاط".انخقُٛاث فعانٛت نخٕنٛذ انصٕس الاسخٛشٕٚسكٕبٛت باسخخذاو طشٚقت 

يثم ٔحذاث  –اث انًخٕاصٚت انٓائهت َقٕو فٙ ْزِ الأطشٔحت بخعذٚم ْزِ انخقُٛت نجعهٓا حُفز بشكم كفؤ فٙ انًعانج

 يعانجاث انشسٕيٛاث.

فٙ فضاء انصٕسة، ٔحذاث يعانجت انشسٕيٛاث،  انخشاٚع انًؤقجحخبع انشعاع، الاسخٛشٕٚسكٕبٛت، كلمات مفتاحية: 

 انًعانجاث انًخٕاصٚت انٓائهت، إعادة الإسقاط.
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CHAPTER ONE 

INTRODUCTION 

To humans, the visual system is the most important sensory device, since the 

perception and recognition of the surrounding world heavily rely on it. For thousands 

of years, prehistoric humans spanning all cultures kept visual memories of their 

surroundings through simple paintings that exhibited little visual cues, lacking 

perspective and depth information. With the development of arts, paintings exhibited 

more sensory cues, including precise perspective drawings, shadows and even depth-

of-field. 

Artists of the renaissance era had realized that each human eye perceives a slightly 

different image, resulting in a depth cue that was impossible for a painter to portray in 

a single canvas. Stereopsis, the process of perceiving different depths from the two 

slightly different projections of the world onto the two eyes, was only well established 

in the 18
th

 century. Understanding this concept led to the invention of the stereoscopy 

technique, where an added depth cue of an image is enhanced by presenting two offset 

images, called stereo images pair or stereo pair, separately to the left and right eye of 

the viewer. The invention of photography made it easy to produce stereo images later 

on. 

The history of computer graphics started similar to that of human arts; where the first 

image-synthesis techniques produced simple 2D drawings. With the evolvement of 
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computer hardware, Graphics Processing Units (GPUs) and computer graphics 

algorithms, 3D and more realistic images could be produced. Modern techniques for 

realistic image synthesis include Ray-tracing [2, 3] and Radiosity [4]. However, it 

takes an ample amount of time to compute precise realistic images with these 

techniques. 

Nowadays, large displays are becoming mainstream, requiring rendering at higher-

resolution and at high frame rates. This development aims at delivering more realistic 

details and better accuracy, but it also comes at a significant cost: bowing to the 

computational constraints. Hence, interactive applications (such as video games) use 

rendering techniques that are less computationally-intensive, such as Rasterization [5], 

at the cost of producing less realistic images. 

Throughout the years, researchers have been competing to develop algorithms that are 

able to perform ray-tracing in real time. One of the earliest attempts to implement an 

interactive ray-tracer dates back to 1994, when Bishop et al. [6] introduced Frameless 

Rendering. The state of the art interactive ray-tracers implement various optimization 

techniques, including Acceleration Structures [7] and Temporal Coherence [8], the 

topic of interest in this thesis. Moreover, the recent advent of massively parallel 

processing units, CPUs and General Purpose GPUs (GPGPUs), also contributed to the 

realization of interactive ray-tracing [9, 10]. 
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1.1 Problem Statement 

Another challenge for interactive realistic rendering is being posed by large 

stereoscopic 3D displays that are currently trending. Even for the 3D displays at the 

lowest end, the 3D Stereo Displays, each frame of an animation sequence must be 

rendered twice as a stereo pair, doubling the rendering cost if naïvely implemented. 

Generally, in order to realize high-quality rendering at a lower cost, Temporal 

Coherence can be exploited. Temporal Coherence is the correlation of content in object 

space and image space between adjacent rendered frames. By taking advantage of 

temporal coherence, redundant computation can be avoided, and the rendering cost can 

be significantly reduced with a minimal decrease in quality.  

Temporal coherence was also exploited to render stereo images, where the second 

image of a stereo pair is computed by exploiting information computed in the first 

image, thus speeding up rendering. However, some of the existing techniques are 

sequential in nature, and are not optimized to run on modern massively parallel 

processing units or GPUs. 

1.2 Contribution 

This work will focus on devising an efficient ray-tracing algorithm, based on an 

existing one, which produces high quality stereo images using temporal coherence in 

image space. The resulting algorithm is expected to produce outputs of comparably 

high frame rates and at high resolution, and it will be completely executed on a state-

of-the-art GPU. 
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1.3 Motivation 

Our motivations for this work can be stated as follows: 

 The quest for higher performance in stereoscopic ray tracing. 

 The recent increased popularity of stereoscopic displays. 

 The need to re-invent resolutions for one of the most powerful algorithms that 

produce high-quality rendering at a lower cost; the reprojection algorithm [11], 

so that it can work in massively parallel environments. 

The rest of this work is organized as follows. Chapter 2 addresses a detailed literature 

review on ray tracing, temporal coherence, stereoscopy and massively parallel 

graphical processing units, alongside their related work. Then, the conceptual design of 

the proposed algorithms including the suggested resolutions to optimize existing 

algorithms to run them in a massively parallel manner, are presented in Chapter 3. 

Chapter 4 provides a detailed account of the experimental results and analysis of the 

approaches developed in this thesis when implemented in an existing GPU 

development platform. Finally, Chapter 5 presents the conclusion, detailing the main 

contributions of this work in addition to the limitations of the proposed solutions. Also, 

possible future improvements and refinements of the current work are drawn therein.  
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CHAPTER TWO 

LITERATURE SURVEY 

This thesis spans four different areas of computer graphics, display technologies and 

parallel architecture: ray tracing, temporal coherence, stereoscopy and massively 

parallel graphics processing units. This chapter provides the necessary background in 

each area, alongside the related state of the art work in each one of them. 

2.1 Ray Tracing 

Ray tracing is an image synthesis technique for generating images from a 3D model of 

a scene (Section  2.1.1). It is famous for producing images that exhibit effects with high 

degree of realism (Figure 1). However, it is also known for the associated high 

computational cost, due to the way it operates (Section  2.1.2). Due to this, its use in 

interactive applications is mostly limited to research. 

2.1.1 The 3D Scene Model 

A 3D scene model is a set of data structures, describing the attributes of a virtual scene 

elements, including the camera, image-plane, geometric primitives, lights, materials, 

etc. For our purposes, we will keep track of the following attributes as illustrated in 

Figure 2: 
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 Camera position in 3D space. 

 Image plane   , and pixels in the image plane    that correspond to a point   in 

3D space. 

 Image plane dimensions   and  . 

 Camera frustum, a region of the 3D space that specifies the field of view of the 

camera. 

 Distance from camera to image plane  . 

Figure 1: An image generated using ray-tracing [1]. 
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2.1.2 The Ray Tracing Algorithm 

The core algorithm of ray-tracing was presented by Whitted [2], and is illustrated in 

Figure 3. It represents the fundamental basis for many ray-tracing-based rendering 

algorithms. Whitted-style ray-tracing produces pleasing effects such as reflections, 

refractions, transparent surfaces and shadows. Later on, Cook extended this recursive 

ray-tracing approach to support additional effects such as glossy reflection, 

illumination by area light sources, motion blur, and depth of field. This extended 

approach is called distribution ray-tracing [3]. More advanced algorithms were 

illustrated later on and were capable of computing the complete global illumination 

within a scene, including indirect illumination and caustic effects [12, 13, 14, 15, 16]. 

Even though the purpose and supported accuracy of each algorithm is different, the key 

𝑤 

  

Camera frustum 

Camera 

Figure 2: 3D scene model. 

𝑑 
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point is that they all heavily rely on the core ray-tracing algorithm as their fundamental 

base. 

A ray is defined in the parametric equation  ( )           , where   is the ray 

origin and   the ray direction. According to the core ray tracing algorithm, a primary 

ray proceeds from the camera position to the scene through each pixel of the image 

plane. The first intersection, with the smallest distance      ,   ) between the ray 

and any 3D surface, is determined and tested for illumination by the light sources, and 

potential secondary reflection or refraction rays are generated. For each of these 

secondary rays, the contribution is recursively evaluated in the same way as for 

primary rays. Then, the corresponding pixel is shaded, depending on the material of the 

intersected surface. For detailed information on ray tracing, refer to these famous 

textbooks [17, 18, 19]. 

 

Figure 3: Illustration of the core ray tracing algorithm [20]. 
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Distribution ray-tracing achieves better visual outputs by emitting multiple diverse 

primary rays per pixel, and multiple diverse secondary rays per intersection point, and 

then averaging the computed values per each set of rays to, ultimately, illuminate the 

pixel. Therefore, distribution ray-tracing requires more computation than Whitted-style 

ray-tracing. To reduce computations, techniques for optimizing ray-tracing, such as 

acceleration structures and temporal coherence (Section  2.2), have been heavily 

exploited in the literature. 

2.1.3 Acceleration Structures 

As shown earlier, at the heart of most ray-tracing based algorithms is the idea of 

following a ray into a model 3D scene and finding the intersection point between this 

ray and the nearest object in the scene. Hence, for large scenes, it is important to 

efficiently exclude surfaces which the ray will not intersect. Otherwise, the ray would 

test against millions of surfaces before finding the nearest intersection point. 

This exclusion is accomplished through a data structure called acceleration structure. 

Broadly, there are two main type of acceleration structures used in ray-tracing: spatial 

acceleration structures, which subdivide the scene into several smaller regions which 

can be tested efficiently against each ray, and the geometry residing inside these 

regions that the ray does not interact with can be safely ignored; and bounding volumes 

that surround groups of complex objects in a simple shape, which are tested against 

each ray, and only if the ray intersects the bounding shape does the ray test against the 

enclosed geometry. Incorporating acceleration structures in a ray tracer can result in 

significant performance improvements. 
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In the literature, several different types of ray-tracing acceleration structures are 

explored. An excellent survey of several acceleration structures is provided by Walt et 

al. [6]. 

2.1.4 Parallel Ray-tracing 

Since the color of each pixel is computed independently, ray-tracing algorithms can be 

easily implemented in a fine-grain level of parallelism. Exploiting this is one way to 

bring ray tracing closer to interactive execution times. Although this observation was 

first established by Whitted [1], and many attempts were made towards implementing 

parallel ray-tracing [15-17], it was only recently that it proved efficient due to the 

emergence of multi-core CPUs and massively parallel General Purpose GPUs 

(GPGPUs) (Section  2.4). 

2.2 Temporal Coherence 

Computer animation can be achieved through displaying synthesized images/frames in 

rapid succession to create the illusion of motion. The naïve way of producing 

animations is by synthesizing each image separately. However, the inherent similarity 

of contents between adjacent synthesized frames can be exploited in order to reduce 

the associated cost. This similarity is called temporal coherence, and can either be 

between all elements of the scene model states at these frames, or between pixels 

representing the synthesized image of each of these frames. To distinguish between 

these two types of temporal coherence, the former is called object-space temporal 
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coherence, while the latter is referred to as image-space temporal coherence, which is 

of interest in this work. 

Temporal coherence has been exploited since the early days of computer graphics. For 

example, the term frame-to-frame coherence was first introduced by Sutherland et al. 

[21]. It has been used in all techniques of image synthesis, including ray tracing. The 

following section briefly reviews some of the existing image-space temporal coherence 

techniques. For object-space temporal coherence, refer to this [8] thorough survey 

presented by Scherzer et al. 

2.2.1 Image-Space Temporal Coherence 

Image-space temporal coherence can be adapted in all image synthesis techniques, 

including rasterization, ray tracing and radiosity (see [8]). One of the earliest 

adaptations of temporal coherence in ray traced animations was presented by Badt 

[11], where he introduced the reprojection algorithm. Reprojection is a key concept 

incorporated in almost all later developments of image-space temporal coherence 

techniques in ray tracing. It involves  moving the  pixels  in  one  image  of an 

animation to  their correct position  in  the  second, and  cleaning  up  the  image  by  

recalculating  only  those pixels  whose  value  is  unknown  or  in  question  after  the 

transformation, as we will discuss in the next section. Badt reported a speedup of 2.4 in 

rendering the second image. However, his technique was capable of computing diffuse 

shading (none view-dependent) only. Thereafter, Adelson and Hodges [16] extended 

this approach to ray tracing of arbitrary scenes, incorporating other view-dependent 
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sources of illumination. Although the results of their work exhibited little to no noise, 

their technique was slow and sequential in nature. 

Later, Bishop et al. [6] introduced frameless rendering. Here, the concept of frame-

based rendering is abandoned and, instead, a set of randomly sampled pixels are 

progressively rendered based on the most recent input, and gets immediately updated. 

Due to the delay introduced when the selective pixels are rendered, this method 

suffered from significant noise artifacts. This method was later improved by Dayal et 

al. [22] by adaptively biasing the sampled pixels towards the regions of change in 

scene objects, and this resulted in a relatively substantial reduction of noise artifacts. 

Still, this adaptive frameless rendering technique, although fast, suffers from noticeable 

noise. 

Walter et al. [23] introduced another technique for achieving interactive framerates in 

ray-traced animations. The technique decouples the rendering and the display 

processes to enable high interactivity, and utilizes a point based structure, called the 

render cache, that stores intersection positions and shading values for previous frames 

in order to reproject them in the current frames. Sampling heuristics and spatio-

temporal image coherence are used to refine the reprojections. Later, the authors 

extended the refinement with predictive sampling and interpolation filters [24]. Lastly, 

both Edgar Velázquez-Armendáriz et al. [25] and Zhu et al. [26] proposed an 

accelerated implementation of the render cache on modern GPUs. Yet, the render 

cache technique suffers from conspicuous artifacts in the produced animations. 
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2.2.2 Image-Space Temporal Coherence in Stereoscopic Ray Tracing 

To create a ray-traced stereo images pair, slightly different views of the same scene 

must be rendered, potentially doubling the required work. However, the stereo pair is 

temporally coherent to a high extent. 

Adelson and Hodges [27] were the first to exploit temporal coherence to produce the 

second view image of a stereo pair rendered using ray-tracing. Their work was based 

on Badt‟s reprojection algorithm [11], where the pixels generated in the left image are 

reprojected to the right image, and pixels of reprojection errors are ray-traced. Also, 

their technique was only limited to render diffuse shading (effects that are not affected 

by changing the position of the camera). At a later development [28], they extended 

their technique to render precise specular highlights, resulting in the first mature 

temporally coherent stereoscopic ray-tracing. Adelson and Hodges reported a speedup 

of 92% when rendering the right view using their technique. Following is a brief 

description of their technique. 

Assume, in a standard monoscopic scene, a perspective projection is used to project the 

3D scene model objects onto the image plane with a camera at position   (      ) 

for an image plane located at    , as depicted in Figure 4. Given a point   

(     ) in the scene, its corresponding image plane position    (     ) is: 

    
   

   
 (1) 

And, 
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Figure 4: Monoscopic Perspective Projection. 

For stereoscopic scenes (Section  2.3.2), as portrayed in Figure 5, two different 

projections, one per each camera, of the scene are required. Each of these cameras will 

have a different position; both horizontally displaced by the interaxial distance  . 

Therefore, the left camera is located at    (         ), and for the right camera 

   (        ). A point   (     ) in the scene is projected twice, one per each 

image plane of each camera, where the corresponding coordinates in the left image 

plane is     (       ), such that 

     
       

   
 (2) 

And, 

𝑃   (𝑥 𝑦 𝑧) 

Image plane 

 𝑌 axis 

 𝑋 axis 

 𝑍 axis 

 𝑑 

(𝑥𝑝 𝑦𝑝) 
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 (3) 

And the corresponding image plane coordinates of   for the right camera is     

(       ), where 

     
       

   
 (4) 

And, 

     
   

   
 (5) 

 

Figure 5: Stereoscopic perspective projection. 

To put it in a matrix form: 

 
[

   
   
 
]       

(6) 

𝑃   (𝑥 𝑦 𝑧) 
 

Image plane 

+Y axis 

+X axis 

+Z axis 
(𝑥𝑝𝑙  𝑦𝑝𝑙) 

Right camera 

Left Camera 

(𝑥𝑝𝑙  𝑦𝑝𝑙) 

e 
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And, 

 
[

   
   
 
]       

(7) 

Where, 

 
   

 

   
[
   

 

 
   
   

] 
(8) 

And, 

 
   

 

   
[
  

 

 
   
   

] 
(9) 

Also, notice that if the left image plane position     (       ) was computed, we can 

compute the right image positions     (       ) as follows: 

 
        

   

   
 

(10) 

With        .  In other words, a point   will move horizontally between the views 

by a distance  dependent  on  its depth   ,  the distance    from  the  cameras  position  

to  the  projection  plane,  and the interaxial distance   between the two cameras 

positions. This transformation from     to     is called the reprojection function, and 

can be formalized as: 
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 [

   

   

 

]     (     )  

[
 
 
   

   

   
   

   ]
 
 
 
[

   

   

 

] (11) 

Note that the reprojection does not yield a one-to-one correspondence between pixels 

in the two image planes. Moreover, the reprojection function produces a real valued 

    position for the reprojected pixel, which should be rounded to an integer value to 

be positioned correctly in the right image. This causes small errors in the color of the 

reprojected pixel, as opposed to the fully ray traced pixel (see Section  4.5.2). 

   and    represent world-to-image-space transformations, used to transform the 

model scene points for the left and right views of a stereoscopic scene, respectively; 

where the left image is rendered using    and the right image is rendered using   . To 

incorporate the reprojection technique, the left image    is fully ray-traced to be 

generated, and the intersection position for each primary ray is recorded per pixel in 

the set   . Then, to generate the second image, all the recorded positions of the left 

image    are transformed by the reprojection function to calculate pixel locations on 

the right image. As described in [28], and as shown in Figure 6, there are three possible 

reprojection errors: 

 Overlapped pixel problem: occurs when multiple pixels from one image 

reproject onto the same pixel in the other. In this case, the reprojection with the 

maximum   value is chosen to be the correct reprojection. 

 Missing pixel problem: takes place when no reprojections occur at one pixel in 

the right image. This can be solved by fully ray-tracing the missed pixels. 
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 Bad pixel problem: occurs when two horizontally adjacent pixels in one image 

reproject to nonadjacent positions, producing a gap of more than one pixel. 

Pixels on this gap are questionable and constitute bad pixel problem. 

 

Figure 6: Reprojection errors. (a) Overlapped pixels. (b) and (c) Bad pixels. [29] 

In order to rule-out reprojection errors, the “left image is ray traced scan-line by scan-

line from left to right. The status of all right image pixels    is set to NoHit initially. As 

the left image pixels    are ray traced, they are reprojected to the right image. 

Reprojected pixels in the right image are marked as Hit. If gaps are detected between 

any adjacent reprojected locations, the gap is marked as NoHit. After a scan-line is 

done, pixels marked as NoHit are ray traced for the right image”[29]. This algorithm is 

shown in Algorithm 1. 

For each scan line   in the both images,           do 

     For each pixel     in scan-line   of the right image,           do 

          hitStatus[   ] := NoHit 

     End for 
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     oldR :=    

     For each pixel     in in scan-line   of the left image,           do 

          Trace a ray through    : 

               intersec[   ] := Intersection Point or Miss 

               norm[   ] := Intersection Normal or Miss 

               color[   ] := Compute_color(intersec[   ], norm[   ], LeftCamPos) 

 

          rep[   ] :=      intersec[   ] 

          If rep[   ]     then 

               If oldR – rep[   ]     then 

                    For each pixel     in the right image, oldR     rep[   ] do 

                         hitStatus[   ] := NoHit 

                    End for 

                    hitStatus[   ] := Hit 

                    color[   ] := Compute_color(intersec[   ], norm[   ], RightCamPos) 

                    oldR := rep[   ] 

               Else 

                        :=     

                    oldR :=     

               End if 

          End if 

     End for 

End for 

Algorithm 1: Stereoscopic Reprojection Algorithm. 

The technique introduced by Adelson and Hodges is sequential by nature, and there is 

only one attempt in the literature to parallelize it, authored by Es and Isler [29]. 

Although Es and Isler‟s parallel technique was implemented on the GPU, the level of 

parallelism in their implementation is not fine enough to harness the full potential of 

the GPU; since they chose the obvious way of parallelizing the reprojections: parallel 
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scan-lines processing. Our implementation goes at a finer level of GPU- and ray-

tracing-friendly parallelism; pixel level, therefore it is expected to outperform their 

technique. 

2.3 Stereoscopy 

Several depth cues can enable depth perception in 2D scenes, images and paintings, 

including: 

 Relative size: objects of known sizes look smaller the farther away they are. 

 Lightening and shadows: closer objects look brighter, distant ones dimmer. 

 Perspective: the farther away the object, the smaller it looks, and parallel lines 

recede to a vanishing point. 

 Occlusion: closer objects occlude farther ones. 

 Haze: distant objects tend to diminish and look blurry. 

 Motion parallax: objects of same speed seem to move faster when closer to the 

viewer. 

As portrayed in Figure 7, these cues are called the monocular depth cues, and are the 

basis for the perception of depth in all 2D displays. Artists of renaissance era had 

realized that, due to retinal disparity, each human eye perceives a slightly different 

image than the other, resulting in a depth cue that was impossible for a painter to 

portray in a single canvas; the stereoscopic depth cue. Stereopsis, the process of 

perceiving depth produced by retinal disparity, was only well established in the 18th 

century. Understanding this concept led to the invention of the stereoscopy technique, 
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where an added depth cue of a scene is enhanced by presenting two offset images, 

called stereo images pair or stereo pair, separately to the left and right eyes of the 

viewer. 

2.3.1  Stereoscopic Displays 

Stereoscopic displays (commercially known as 3D displays) utilize stereoscopy to 

introduce the stereoscopic depth cue to the viewer. The main aim of all stereoscopic 

displays is to present each eye of the viewer with the corresponding image of a stereo 

(a) 
(b) 

(c) 

(d) 

(e) 

Figure 7: Monocular depth cues. (a) Relative size. (b) Lights and shadows. 

(c) Perspective. (d) Occlusion. (e) Haze. 



22 

 

pair. Multiple techniques are employed by various stereoscopic displays in order to 

achieve that, and each has its own advantages and disadvantages. Following is a list of 

the popular techniques used in modern stereoscopic displays. For a thorough 

description of most of existing techniques, refer to [30, 31]. 

 Anaglyph: where a stereo pair in which the right image of a scene, usually red 

in color, is superposed on the left image of a contrasting color to produce a new 

image, called the anaglyph image, which establishes a stereoscopic depth cue 

when viewed through correspondingly colored filters in the form of glasses. 

Typical contrasting colors used in anaglyph images and their corresponding 

filter glasses are red/blue, red/cyan and red/green.  This technique is cost-

effective since it requires no special hardware except for the cheap filter 

glasses, but it comes at the cost of degrading the original colors of the scene, 

and suffers from crosstalk, whereby each eye perceives a small portion of the 

image targeting the other eye, limiting the ability to successfully fuse the stereo 

pair in the brain and hence reducing the overall perceived quality [32]. 

 Polarization: in which the two images of a stereo pair are superimposed in the 

display through different polarizing filters. The viewer wears low-cost glasses 

which contain a pair of different polarizing filters. As each filter passes only 

that light which is similarly polarized and blocks the light polarized in the 

opposite direction, each eye sees a different image. Although the polarized 

glasses are cheap, the equipment required to generate polarized images is 

expensive. Moreover, crosstalk can occur if the viewer is not positioned 
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correctly in front of the display. It also suffers from reduced brightness due to 

the polarized filters [30]. 

 Shutter glasses: this technique requires a special display that alternately 

switches between left and right images of a stereo pair. The viewer wears 

special glasses, in which the lenses alternately darken over one eye, and then 

the other, in synchronization with the display. This technique produces the best 

output at the cost of expensive display equipment and viewing glasses. 

 Autostereoscopic: the main advantage of this method is that no special viewing 

equipment is required. Autostereoscopic techniques employ a wide range of 

technologies, mostly including lenticular lenses or parallax barriers. These 

techniques redirect each of the displayed stereo pair to the intended eye. 

However, they also suffer from limited viewing positions [31]. 

In this work, we use the anaglyph technique to produce stereoscopic images. Several 

methods has been proposed to do so [33, 34, 35], of which we employ the Dubois 

algorithm [35], due to its relative efficiency. 

2.3.2 Rendering Stereoscopic Images 

A monoscopic 3D scene model contains one camera in its description, and produces an 

image exhibiting only monocular depth cues when rendered. To render a stereo pair, 

the rendering algorithm has to be modified to account for two horizontally offset 

cameras (Figure 8(b)), each with its own image plane, such that each camera produces 

the corresponding image of a stereo pair when the scene is rendered. The stereo pair is 

then presented to the viewer based on the stereo display in use.  
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Besides the attributes used to describe a monoscopic scene model (including image 

plane width  , distance from camera to image plane   and camera viewing frustum), a 

stereoscopic 3D scene model, or a stereo scene, specifies a value for the horizontal 

distance between its cameras, called the interaxial distance, denoted by  . In principle, 

both   and   values can be specified arbitrarily. However, some guidelines shall be 

followed as to produce a correct „fusable‟ stereo pair. Following is a discussion of the 

most important guidelines. 

 If we denote the interocular distance between the human eyes (6.5 cm on 

average) by      , and the width of the target stereo display by         , then 

we should set a value for   such that: 

 
 

 
 

     
        

 (12) 

Otherwise, the produced stereo pair will not converge on the eyes of the viewer, 

and the experience might become painful [36]. 

(a) (b) 

camera 

image plane image planes 

left camera right camera 

Figure 8: (a) Monoscopic scene. (b) Stereoscopic scene. 
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 The horizontal parallax   is the distance between the projections of a 3D 

surface in the scene to the left and right image planes. As in Figure 9,   can 

take a negative, a zero or a positive value. When displaying the stereo pair, 

surfaces with a positive parallax will appear to be in the display, and surfaces of 

zero parallax will appear to be at the display, while surfaces of negative 

parallax will seem to float in front of the display. A negative parallax equal to 

the interaxial distance   occurs when the projected surface is at a distance of 

(a) 

(b) 

(c) 

Figure 9: (a) Positive parallax. (b) Zero parallax. (c) Negative parallax. 
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    from the center of the cameras position. As the surface moves closer to the 

viewer, the negative parallax diverges to infinity, and this should be avoided, 

since the projected surface will become impossible to fuse in the viewer‟s brain 

[37]. Based on this restriction, Figure 10 shows the safe visible area in which 

3D surfaces can be inserted in a stereo scene. 

 Many methods exist for setting up both cameras frustum in a stereo scene. 

Nevertheless, the vast majority of them introduce discomforting stereo pair to 

the viewer [38]. The correct way of building up the cameras frustum is 

portrayed in Figure 8(b), where each camera‟s point of focus is parallel to the z-

axis, and both image planes coincide. This methods is called the off-axis 

projection [37]. 

 

  

𝑑   

Safe visible area 

Visible area + 

 

Figure 10: Safe visible area for inserting 3D surfaces into a stereo scene. 
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In summary: 

 Keep the interaxial distance   value low. 

 Position all 3D surfaces in a scene at a distance              from the center 

of the cameras position. 

 Build cameras frustum based on off-axis projection. 

2.4 Massively Parallel Graphics Processing Units 

Recently, the performance of GPU has been increasing much faster than the CPU. 

Modern GPUs substantially outperform the CPUs, especially in floating point 

operations. As Figure 3 illustrates, the number of executed floating-point operations 

per second (FLOPS) in modern GPUs vastly exceeds that of CPU. Besides the 

computing capability, GPUs also have their own memory system, which offers 

substantially higher bandwidth than ordinary CPU systems. As a result, GPUs have 

been heavily used in research spanning multiple areas in the last decade, and have been 

shown to deliver orders-of-magnitude gains in performance over optimized CPU 

applications[39]. 

2.4.1 Taxonomy 

GPUs are massively parallel processors, and may contain hundreds of cores that can 

execute thousands of threads. They fall into the Single Instruction, Multiple Data 

(SIMD) family in the famous Flynn‟s taxonomy of parallel processors [40]. Generally, 

all SIMD processing units execute the same instruction at a given time, where each 

processing unit can operate on a different data element. 
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Figure 11: GPU vs. CPU performance trends in GFLOPS (    FLOPS) [41]. 

GPUs are designed to exploit problems that can be implemented at a fine-grain level of 

parallelism, such as graphics and image processing problems. Although GPUs are 

characterized by high throughput and performance, they add another layer of 

complexity for code development. For example, simple branching operations in GPU 

code can considerably slow down the performance. Also, moving data blocks back and 

forth between CPU and GPU is considered a bottleneck [42]. 

2.4.2 Trending Architectures 

Early GPUs had sophisticated programming languages. However, new simpler GPU 

programming interfaces has emerged recently, including NVidia Compute Unified 
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Device Architecture (CUDA)[43], OpenCL[44] and Microsoft DirectCompute. The 

programming models of these interfaces are conceptually similar. They provide 

abstract programming interfaces that include functions for managing memory 

allocations, performing CPU-GPU memory transfers, compiling GPU programs – 

kernels – and launching them. Once a kernel is launched, many threads containing 

identical code to it are spawned and executed in the GPU cores. 

Existing GPU programming interfaces are general purpose, and developing efficient 

ray tracers on them can be quite a challenge. Nevertheless, NVidia provides a platform 

for accelerating the development of ray tracing applications, called NVidia OptiX [45]. 

We use this platform for our experiments. 

2.4.2.1 NVidia OptiX 

The NVIDIA OptiX platform is a ray tracing engine that is built upon CUDA, and is 

intended to accelerate the development of ray tracers on modern GPUs. OptiX offers 

many features, such as out-of-the-box acceleration structures, threads scheduler and 

various ray tracing helper functions. OptiX also has its own programming model. A 

thorough description of OptiX can be found in [46].  
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CHAPTER THREE 

METHODOLOGY 

3.1 Parallel Reprojection 

As mentioned in Section  2.2.2, reprojection introduces three problems: missed pixel 

problem, overlapped pixel problem and bad pixel problem. Adelson and Hodges 

proposed a strictly sequential processing of each scan-line in order to resolve them. 

However, since we are targeting implementing reprojection in massively parallel 

GPUs, ray tracing and reprojection are better done at a finer level of parallelism: a 

thread per pixel. This will render the order of execution unguaranteed; therefore we 

devise new resolution mechanisms to the reprojection problems. 

We assume a stereo scene setup as shown in Figure 5, with fixed stereo cameras 

positions
1
 at (         ) and (         ). Our algorithms proceed as follows. 

First, all pixels     in the left image are fully ray-traced in parallel. Once the pixel value 

is determined, its scene depth     – related to the left camera – is stored. Then, the 

pixel is reprojected to its corresponding position to the right image. The following 

sections thoroughly discuss our resolution mechanisms to rule out the reprojection 

errors in parallel.  Table 1 summarizes those mechanisms. 

 

                                                 
1
 This algorithm can be easily modified to handle arbitrary positioning of the stereo cameras. 
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Method 
Missed Pixel 

Resolution 

Overlapped Pixel 

Resolution 

Bad Pixel 

Resolution 

Adelson and 

Hodges / Es-Isler 

(Sequential) 

Fully ray trace 

Proceed sequentially from left to right 

Buffer-Based 

(Parallel) 

Store all 

reprojected pixel in 

a 3D buffer, 

prevent race 

condition. Cast a length-

restricted ray 

Atomic-Based 

(Parallel) 

Use atomic 

operations to 

prevent race 

condition. 

Table 1: Comparison between different mechanisms for resolving reprojection 

problems. 

3.1.1 Missed Pixel Resolution 

We use the same strategy employed by the original authors to resolve this problem; by 

fully ray tracing the missed pixels in the right image, done in parallel. 

3.1.2 Overlapped Pixel Resolution 

Since the reprojection function does not yield a one-to-one correspondence between 

pixels in both image planes, multiple pixels from the left image reproject to the same 

position. Executing in parallel, this will introduce a race condition. Thus, we propose 

two different approaches to resolve this case of race condition, one of which assumes 

that the underlying parallel hardware provides atomic operations, while the other 

makes no assumptions about the hardware in use, but exploits a property exhibited by 

stereoscopic scenes when equipped with reprojection. We call the latter method Buffer-
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Based Overlapped Pixels Resolution, and the former Atomic-Based Overlapped Pixels 

Resolution. 

3.1.2.1 Buffer-Based Overlapped Pixels Resolution 

In this approach, all reprojected pixels from the left image, alongside their original 

horizontal position     in the left image, are stored in an intermediate 3D buffer of size 

     , such that no value is overwritten, and mutual exclusion is guaranteed. Then 

to find the correct pixel value in the right image, this buffer is traversed at each 

corresponding pixel position towards the depth, picking the pixel with the maximum 

related value of    . 

To determine the optimal depth   of the 3D buffer, this approach draws on the 

following lemma, which states that the maximum writes to a single pixel position in 

the right image when using reprojection is upper bounded by    , where the closet 

surface in the stereo scene is at a distance     from the center of cameras position, for 

some real value  . It can be concluded from the discussion in Section  2.3.2 that, so as 

to assure a comfortable viewing experience, the maximum value for   in most stereo 

scenes is set to 2, and therefore, their corresponding optimal depth of the 3D buffer is 

    . Notice there are rare cases in which this maximum can be reached is illustrated 

in Figure 12, where a geometrical object, located at a distance     in front of the right 

camera, extends to an infinite depth. 
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This approach is expected to underperform the atomic-based approach discussed next, 

especially for higher values of  ; since each pixel-generating thread in the right camera 

has to traverse over a vector of size    of the 3D buffer; even when the vector contains 

no values. 

Lemma 1: Assuming that the nearest surface in a stereo scene is positioned at a 

distance   away from the center of cameras positions, then the maximum number of 

pixels in the left image reprojecting to the same pixel position in the right image is 

equal to    . Formally, 

 ‖*        |     (      )   +‖      (13) 

 

 

𝑑   

Image plane 

…
 

Figure 12: A possible case when the reprojections to a single position reach a 

maximum. 
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Where     and   are pixel positions in the left and right images, respectively, and 

   (   ) is the reprojection function. 

Proof: 

Assume a scene, as in Figure 13, with fixed left and right cameras positioned at 

(         ) and (        ), respectively, such that     and    . Moreover, 

the nearest surface in the object space is positioned at a distance of     from the center 

of both cameras position for some real number    . Assume also two points 

   (        ) and    (        ) in the object space that correspond to different left-

image plane positions     (       ) and     (       ), respectively, such that 

   
 

 
  ,    

 

 
  ,        , and 

    (   )     (   ) (14) 

Therefore, 

     
    
    

     
    

    
 (15) 

         
    
    

 
    

    
 (16) 

Set          . Here,   represents the distance between two pixels in the left image 

such that their reprojection to the right-image plane is the same. At the extreme case, 

all the pixels in the set *    (       )|                         + reproject 

to the same pixel position in the right image    for the maximum value of  . In this 

case,   represents the maximum number of pixels in the left image that reproject to the 
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same pixel position in the right image. We can compute the maximum value for   as 

follows: 

         (
    
    

 
    

    
) (17) 

 Given that    
 

 
   and    

 

 
  . Solving this equation yields the following 

conclusion: 

         (18) 

3.1.2.2 Atomic-Based Overlapped Pixels Resolution 

Another proposed resolution to the race condition introduced by reprojection is through 

employing atomic operations, ensuring only one thread accessing the corresponding 

 

 

𝑑 𝑟 

𝑒 

𝑑 

Image plane 

Nearest surface 

Figure 13: Stereo scene parameters. 



36 

 

right image position when overwriting. Overwrites take place only if the reprojecting 

pixel has a higher corresponding position     than the residing value in the right image. 

This approach is best used when the following holds: 

 The underlying parallel architecture provides atomic operations. 

 The associated penalty of using atomic operations is not substantial. This can 

be confirmed if using this approach proves to perform better than the buffer-

based approach. 

Threads writing atomically into one memory position are processed linearly, and thus 

this approach introduces a slight linear overhead. Since, as shown in Lemma 1, a 

maximum of     threads can write to the same pixel position at rare cases, the linear 

overhead introduced by this approach is expected to be  (   ) per pixel position. 

Therefore, the runtime of this approach is upper-bounded by the buffer-based approach 

runtime. 

3.1.3 Bad Pixel Resolution 

Figure 14 illustrates the case when the bad pixel problem occurs. Sequentially 

processed, pixel K will be marked as a bad pixel in Adelson and Hodges 

implementation, because it was reprojected onto a gap between originally adjacent 

pixels; L and M. Bad pixels are fully ray traced once detected. 

In our parallel implementation, we mark all reprojected pixels as potentially bad pixels. 

Then, per each of them, a ray of restricted length is casted and tested for intersection. 

The length of this ray is determined by the depth of its corresponding reprojected pixel 
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in the original left image,    . If this ray intersects anything on its way, the linked 

reprojected pixel is discarded and fully ray traced. Otherwise, the reprojected pixel is 

approved as correct. This approach assumes that tracing a length-restricted ray is 

efficient; which holds in case of using acceleration structures in the scene. 

 

Figure 14: K is marked as a bad pixel and is fully ray traced. 

3.2 Complexity Analysis 

The following analysis provides an approximation to the runtime of the buffer-based 

algorithm, which can be generalized as an upper bound to the atomic-based algorithm. 

Assume a stereo scene to be ray traced, where the number of pixels is      , the 

number of objects is   and the number of lights is  . Assume also an arbitrary 

      

Image plane 
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acceleration structure is used in the scene, denoted by   . Since some traced rays in 

the right image are length-restricted, their corresponding    tree will be truncated [47]. 

As a result, we will use the following notation to differentiate between three possible 

scenarios of the cost incurred while tracing the rays:  

    (   ): cost of traversing a full    tree over   objects for an unrestricted 

ray, where an intersection is found, and   shadow rays are spawned and traced 

consequently. 

    (   ): cost of traversing a truncated    tree over   objects for a length-

restricted ray, where an intersection is found, and   shadow rays are spawned 

and traced consequently. At the worst case, the length of the restricted ray is set 

to  , and thus    (   )     (   ) in general. 

    ( ): cost of traversing a truncated    tree over   objects for a length-

restricted ray, where no intersection is found and hence no shadow rays are 

spawned. Even at the worst case, where the ray length is set to  , it is obvious 

that    ( )     (   )     (   ), because no shadow rays are traced. 

Based on this, it can be easily confirmed that the cost of computing one pixel value in 

each of the stereo pair, using the naïve approach, is  (   (   )), and therefore the 

total time it takes to render one image of the stereo pair is    (   (   )). 

Moreover, we can evaluate the total cost of computing the value of one pixel position 

in the stereo pair, using the buffer-based approach, as follows: 
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 Left image: the cost for tracing a ray through a pixel is  (   (   )). Also, 

each pixel is reprojected to the right image at a constant budget  ( ); 

independent of the input variables. Therefore, the total complexity of 

generating one pixel is  (   (   )). 

 Right image: to resolve overlapped pixel problem, the 3D buffer is traversed 

towards the depth at a cost of  (  ), which reduces to  (  )   ( ) for most 

stereo scenes. Then, one of the following scenarios takes place: 

o No pixel value is found at the 3D buffer (missed pixel), thus the pixel 

has to be fully ray traced at a cost  (   (   )). 

o Pixel value is found, but it constitutes a bad pixel. The cost of traversing 

the length-restricted ray to recompute the pixel value is  (   (   )). 

o Pixel value is found, marked as a potential bad pixel, but the traced 

restricted ray confirms that it is not. This costs  (   ( )). 

Let    denote the number of missed pixels,    denote the number of bad pixels and 

        denote the number of pixels in error in the right image. The overall cost 

of finding all pixel values in the right image can be given through the following 

equation: 

    ( )      (   (   ))      (   (   ))  (   )   (   ( )) (19) 

Since it can be empirically shown that    and   , and thus  , have smaller values 

relative to   (refer to [28] for details), most of the pixel-generating threads in the right 
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image will execute at a cost of  ( )   (   ( )), which can be less than the cost of 

fully tracing through the pixel at  (   (   )); especially for scenes with a small 

value of   and a number of lights    . Coupled with a dynamic or near-optimal 

threads scheduler, which executes threads of similar runtime together, the performance 

gain of the buffer-based approach is expected to outperform that of the naïve approach 

based on this analysis. Additionally, since the buffer-based approach constitutes an 

upper bound to the atomic-based approach, which runs at  ( )   (   ( )); the 

latter is expected to deliver the best performance.  

3.3 Kernels Pseudocode 

The two kernels, corresponding to each camera, that generate the stereo pair of a scene 

using the buffer-based resolution technique are presented in Algorithm 2 and 

Algorithm 3, respectively, while Algorithm 4 and Algorithm 5 describe the kernels that 

make use of the atomic-based resolution technique. For any technique, their 

corresponding pair of kernels should be executed one after the other, starting at the first 

kernel, to generate animations. The logic behind all kernels is dependent on the 

discussions of Section  3.1. 

3.3.1 Buffer-Based Kernels 

Kernel LeftCameraRayTrace – Buffer Based 

Inputs:   , shared left image 2D buffer of size     

   , shared buffer of size     

 repBuf, shared buffer of size        

1.     (i, j) = Retrieve thread index in 2D 
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2.     For k := 1      do 

3.         repBuf[i, j, k] := (rp := NiL, dp :=   , ip :=    ) 

4.     End for 

5.       [i, j] = Ray trace pixel at position i, j 

6.       [i, j] = Compute depth of pixel   [i] in scene space 

7.     rep[i, j] = reproject(  [i],   [i]) 

8.     if rep[i, j] x    then 

9.         depth := i mod (   )   

10.         repBuf[i, j, depth] := (rp := rep[i, j], dp := i, ip :=   [i, j]) 

11.     End if 

Algorithm 2: Kernel for generating the left image using the buffer-based 

resolution. 

Kernel RightCameraInfer – Buffer Based 

Inputs:   , shared right image 2D buffer of size     

   , shared buffer of size     

 repBuf, shared buffer of size        

1.     (i, j) = Retrieve thread index in 2D 

2.     rb := Retrieve refBuf[i, j, k] such that refBuf[i, j, k] dp is the maximum 

        value in the set {refBuf[i, j, 1]  dp, …, refBuf[i, j,    ]  dp} 

3.     If rb dp <> -1 do 

4.               := Ray trace a ray of restricted length based on   [i, j] at pixel 

position i, j 

5.     Else 

6.               := Ray trace a ray at pixel position i, j 

7.     End if 

8.     If       <> NiL do 

9.           [i, j] :=       

10.     Else 

11.           [i, j] := rb ip 
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12.     End if 

Algorithm 3: Kernel for generating the right image. 

3.3.2 Atomic-Based Kernels 

Kernel LeftCameraRayTrace – Atomic Based 

Inputs:   , shared left image 2D buffer of size     

   , shared buffer of size     

 iBuf, shared buffer of size    , initially all values set to -1 

1.     (i, j) = Retrieve thread index in 2D 

2.       [i, j] = Ray trace pixel at position i, j 

3.       [i, j] = Compute depth of pixel   [i] in scene space 

4.     rep[i, j] = reproject(  [i],   [i]) 

5.     if rep[i, j] x    then 

6.         Critical section begins 

7.             li := rep[i, j] x 

8.             If i > iBuf[li, j] then 

9.                 iBuf[li, j] := i 

10.             End if 

11.         End critical section 

12.     End if 

Algorithm 4: Kernel for generating the left image. 

 

Kernel RightCameraInfer – Atomic Based 

Inputs:   , shared left image 2D buffer of size     

   , shared right image 2D buffer of size     

   , shared buffer of size     

 iBuf, shared buffer of size     

1.     (i, j) = Retrieve thread index in 2D 
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2.     rb := iBuf[i, j] 

3.     If rb <> -1 do 

4.               := Ray trace a ray of restricted length based on   [i, j] at pixel 

position i, j 

5.     Else 

6.               := Ray trace a ray at pixel position i, j 

7.     End if 

8.     If       <> NiL do 

9.           [i, j] :=       

10.     Else 

11.           [i, j] :=   [i, j] 

12.     End if 

13.     iBuf[i, j] := -1 

Algorithm 5: Kernel for generating the right image. 

  



44 

 

CHAPTER FOUR 

EXPERIMENTAL RESULTS AND ANALYSIS 

Ray tracing on the GPU has proved to be more efficient than on CPU [45, 48]. 

Therefore, this chapter will discuss the implementation and results of the GPU-based 

stereoscopic ray tracers and their outcomes with respect to the hypotheses: our 

algorithms, buffer-based and atomic-based stereoscopic ray tracing, outperform the 

naïve stereoscopic ray tracing algorithm that generates the stereo pair by fully ray 

tracing through them. Also, it will be shown that they outperform Es-Isler‟s suggested 

method. 

4.1 Ray Tracer Implementations 

We implemented five different stereoscopic ray tracing algorithms on the GPU as 

NVidia OptiX kernels, two of which are based our algorithms (buffer-based and 

atomic-based algorithms, sections  3.3.1 and  3.3.2), and the other three are a naïve 

stereoscopic ray tracing implementation that generates the stereo pair by fully ray 

tracing them, a ray tracer based on the Es-Isler‟s technique, and an imaginary ideal 

implementation that generates the left image by fully ray tracing it, and generates the 

right image by merely copying the left image. The naïve implementation serves as the 

baseline in our benchmarks, while the imaginary ideal implementation sets an 

imaginary optimal runtime for a stereoscopic ray tracer. All implementations use the 
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Dubois algorithm, also implemented as an OptiX kernel, to fuse both stereo pair into a 

single anaglyph image (Section  2.3.2). Table 2 summarizes those ray tracers. 

Ray Tracer Platform 
Stereoscopic Ray 

Tracing Strategy 
Output 

Naïve 

NVidia OptiX 

version 2.5.0 

Fully ray trace both 

stereo pair 

Single anaglyph 

image 

Imaginary ideal 

Fully ray trace left 

image, copy left image 

to right image 

Buffer-based 
Using the buffer-based 

kernels 

Atomic-based 
Using the atomic-based 

kernels 

Es-Isler 

Fully ray trace left 

image, reproject in 

parallel scan-line by 

scan-line, fully ray trace 

missed/bad pixels in the 

right image 

Table 2: Benchmarked ray tracers. 

All implementations make use of the optimization techniques for GPUs. Specific to 

OptiX, this translates to minimizing the actual branching calls and lowering the 

transactions between CPU and GPU. Moreover, the implementations utilize the Split 

Bounding Volume Hierarchies (SBVH) [49] ray tracing acceleration structures 

(Section  2.1.3) offered by OptiX, as to increase performance based on the analysis in 

Section  3.2. OptiX provides an out-of-the-box scheduler, so we leave the scheduling of 

threads to it. 
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4.2 Testbeds 

To evaluate the performance of each ray tracer, we set up two different testbeds. The 

first, Testbed-1, is a workstation equipped with Intel Xeon processor, 88 GB of RAM 

and NVidia Quadro Plex 7000 graphics card. Testbed-2 is a laptop equipped with Intel 

Core i7-2640M processor, running at 2.80 GHz with 8 GB of RAM. It has an 

embedded NVidia Geforce GT 525M graphics card with dedicated 2 GB of VRAM.  

These specifications are summarized in Table 3. 

Testbed CPU RAM GPU OS 

Graphics 

Driver 

Version 

Testbed-1 Intel Xeon 88 GB 

NVidia 

Quadro 

Plex 7000 

Windows 

Server 2008 

R2 

Workstation 

301.32 

Testbed-2 

Intel Core 

i7-2640M 

@ 2.80 

GHz 

8 GB 

NVidia 

Geforce 

GT 525M 

Windows 7 301.27 

Table 3: Specifications of the testbeds. 

4.3 Stereo Scene Setup 

All benchmarked ray tracers are fed a unified stereoscopic scene model with the 

following setup: 

 Stereo cameras position: fixed in 3D space, with a variable interaxial distance   

in pixels, specified by the benchmark. 
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 Image planes: fixed in 3D space, with variable dimensions   and   in pixels, 

specified by the benchmark. 

 Light sources: benchmark-specific number of omni-directional light sources 

with fixed intensities. 

 3D geometric objects: we use 5 different setups for scene objects as illustrated 

in Table 4. 

 Materials: diffuse only. 

 A skymap. 

Figures 15-19 present the outputs of fully rendering the scene with different 3D 

objects. 

Scene 3D Objects 
Number of 

Polygons 
Output 

Fixed Spheres 

1000 randomly 

distributed 

spheres in fixed 

positions 

- Figure 15 

Animated 

Spheres 

1000 randomly 

distributed 

spheres, rotating 

around the Y-axis 

- Figure 16 

Sponza 
Sponza 3D model 

[50] 
279,163 Figure 17 

Buddha 
Happy Buddha 3D 

model [51] 
1,087,716 Figure 18 

Dragon 
Stanford Dragon 

3D model [51] 
1,132,830 Figure 19 

Table 4: 3D objects of the scenes. 

.
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(a) (b) 

Figure 15: Fixed Spheres scene. (a) Mono output. (b) Stereo output. 

 

  

(a) (b) 

Figure 16: Animated Spheres scene. (a) Mono output. (b) Stereo output. 
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(a) (b) 

Figure 17: Sponza scene. (a) Mono output. (b) Stereo output. 

 

  

(a) (b) 

Figure 18: Buddha scene. (a) Mono output. (b) Stereo output.
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(a) (b) 

Figure 19: Dragon scene (a) Mono output. (b) Stereo output. 

4.4 Benchmarks 

We run five different benchmarks over all the ray tracers. Three of these benchmarks 

are executed in both testbeds to test the performance of the ray tracers. These 

benchmarks alter the scene parameters, fixing two of the parameters and varying one. 

Each step in these benchmark is executed 5 times, each time runs for 25 seconds over 

each of the ray tracers; of which 5 seconds are for warming up the ray tracer, and the 

rest 20 seconds contribute to computing the average frames per seconds (fps) a ray 

tracer performs; which constitute the performance measure. To avoid unnecessary 

performance delays, the outputs of the ray tracers are not displayed on the monitor. We 

call these three benchmarks the performance benchmarks, and are summarized in 

Table 5. 
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The other couple of benchmarks, the pixel error benchmarks, test for the average pixel 

color error in the right image when tracing the Dragon scene with one of our methods 

against the naïve method. The details of these benchmarks are summarized in Table 6. 

Performance 

Benchmark 
Scene 

Dimensions 

    

Interaxial 

Distance   

Number of 

Lights 

Varying 

dimensions 

All five 

scenes 

        pixels 

up to 

          
pixels,  

step size: 

      pixels 

15 pixels 

5 

Varying 

interaxial 

distance 
Dragon         pixels 

       
pixels, step 

size: 10 pixels 

Varying 

number of 

lights 

15 pixels 
    , step 

size: 1 

Table 5: Performance benchmarks. 

Pixel Error 

Benchmark 

Images 

Generated 

Dimensions 

    

Interaxial 

Distance   

Number of 

Lights 

Varying 

dimensions 
Right images 

only, using 

the naïve ray 

tracer and the 

atomic-based 

ray tracer 

        
pixels 

up to 

          
pixels,  

step size: 

        
pixels 

15 pixels 

5 

Varying 

interaxial 

distance 

        
pixels 

       
pixels, step 

size: 10 pixels 

Table 6: Pixel-error benchmarks. 
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4.5 Results and Discussion 

4.5.1 Performance Benchmarks Results 

The performance in these benchmarks is measured by the average fps a ray tracer 

performs in 20 runs, each run execute for 25 seconds, of which 5 seconds are for 

warming up the ray tracer. 

4.5.1.1 Results on Testbed-1 

Figures 20-24 show the results of running the first performance benchmark, when 

varying image dimensions, spanning all ray tracers in all scenes. The average speedup 

per ray tracer in each scene is summarized in Figure 27, showing that the performance 

of the imaginary ideal ray tracer has an average speedup range of around 29% to 65% 

over the baseline. This is due to the penalty associated with copying the left image to 

the right image as implemented in this ray tracer. Moreover, our ray tracers are 

performing at speedup ranges of 14% to 47% for the atomic-based ray tracer, and 6% 

to 40% for the buffer-based ray tracer, relative to the baseline. As expected, the 

atomic-based ray tracer outperforms the buffer-based one. Surprisingly, Es-Isler ray 

tracer exhibited poor performance relative to the baseline. This is maybe due to the fact 

that their technique was not optimized for massively-parallel processors. The plotted 

performance trend-lines in this testbed show some fluctuations which we could not 

explain
2
. 

                                                 
2
 We are in contact with NVidia team in this regard. 



53 

 

Figure 25 plots the performance when applying the second benchmark to the ray 

tracers; increasing the interaxial distance   in the Dragon scene. Increasing  , as the 

figure shows and as expected, does not affect the performance of both the imaginary 

ideal and the naïve  ray tracers. Relevant to the complexity analysis in the previous 

chapter, incrementing   has a slight impact on the performance of the atomic-based ray 

tracer, due to the fact that increasing   will increase the number of missed pixels in the 

right image, alongside expanding the linear overhead incurred by using the atomic 

operations. Similar performance drop can be observed in the reprojection-based Es-

Isler ray tracer. Furthermore, the performance of the buffer-based ray tracer highly 

declines once   is increased. This is because increasing  reflects on the depth of the 3D 

buffer used in the ray tracer, rendering a slower traversal towards the depth 

(Section  3.1.2.1). It is worth mentioning that the suggested 3D buffer size,   , serves 

as a maximum size to handle extreme cases as presented in Figure 12, which rarely 

happen in a scene. It is therefore possible to set the buffer size in the buffer-based ray 

tracer to a small fixed value – independent of   – while getting correct outputs. This 

way, the only impact of increasing   in this modified ray tracer will be caused by the 

congruently increased number of missed pixels. 

Lastly, Figure 26 illustrates the performance of the ray tracers when increasing the 

number of lights in the scene as per the third benchmark. Generally, increasing scene 

lights reflects an exponential drop in any ray tracer‟s performance, due to the need of 

tracing a shadow rays per each light source in the scene. However, this drop in 

performance is slower on our ray tracers as opposed to the baseline, because only the 



54 

 

cost of computing pixels in error in the right image is expanded by increasing the 

number of lights. 

4.5.1.2 Results on Testbed-2 

Figures 28-34 show the performance of the corresponding benchmarks when applied to 

Testbed-2. We still get the same trendlines in each graph as of the previous testbed 

results, but with lower performance in general, and smoother trendlines when varying 

image dimensions. Figure 35 shows that the average speedup ratios are better in this 

testbed, with value ranges of 16%-58%, 32%-67%, and 71%-92% for the buffer-based, 

the atomic-based and the imaginary ideal ray tracers, respectively. It also shows that 

the Es-Isler ray tracer is again underperforming the baseline. 

4.5.2 Pixel Error Benchmarks Results  

Reprojection causes no visible structural differences in the produced right image when 

compared to a fully ray traced image (Figure 39(a) vs. Figure 40(a)). Therefore, it is 

sufficient to assess the quality of reprojected images using error sensitivity based 

techniques [52].  

Let   denote the right image produced by one of our techniques, and  ̅ denote a right 

image that is fully ray traced. To quantize the pixel error value, each pixel in both right 

images,   and  ̅, outputted by these benchmarks is represented as a vector    

(     ) in RGB space (           ), and the pixel error is computed as the 

Mean Squared Error (MSE): 
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   (   ̅)  
∑ ‖(     ̅)‖

    

   

     
 

Increasing the image dimensions while fixing the interaxial distance  , as Figure 36 

shows, reflects a better quality in the reprojected right image  . However, increasing   

seems to increasingly affect the quality of   in comparison to the fully ray traced 

image  ̅, as shown in Figure 37. 

4.5.3 Time Views 

Time views are grayscale images utilized to illustrate the amount of time each thread in 

a ray tracer spends on generating one pixel where, relative to other pixels, lighter pixels 

indicate high ray tracing time, and vice-versa. 

Figure 38 presents two time views for two kernels generating the right image, one 

using the naïve ray tracer and the other using the atomic-based ray tracer. It is evident 

that the threads of the naïve ray tracer spend much time ray tracing the geometry, while 

the time-consuming threads of the atomic-based ray tracer are only distributed around 

the edges of the geometry, where most of bad and missed pixels occur. 

4.5.4 Outputs 

Figures 39-41 show the outputs of the ray tracers. As established earlier, no visible 

differences can be spotted between the outputs. 
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Figure 20: Performance of ray tracing the Fixed Spheres scene when increasing 

image dimensions in Testbed-1.  
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Figure 21: Performance of ray tracing the Animated Spheres scene when 

increasing image dimensions in Testbed-1. 
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Figure 22: Performance of ray tracing the Sponza scene when increasing image 

dimensions in Testbed-1. 
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Figure 23: Performance of ray tracing the Buddha scene when increasing image 

dimensions in Testbed-1. 
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Figure 24: Performance of ray tracing the Dragon scene when increasing image 

dimensions in Testbed-1.  
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Figure 25: Performance of ray tracing the Dragon scene when increasing the 

interaxial distance   in Testbed-1. 

 

Figure 26: Performance of ray tracing the Dragon scene when increasing number 

of lights in Testbed-1. 
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Figure 27: Speedup summary relative to the naïve ray tracer, Testbed-1. 
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Figure 28: Performance of ray tracing the Fixed Spheres scene when increasing 

image dimensions in Testbed-2.  
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Figure 29: Performance of ray tracing the Animated Spheres scene when 

increasing image dimensions in Testbed-2. 
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Figure 30: Performance of ray tracing the Sponza scene when increasing image 

dimensions in Testbed-2. 
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Figure 31: Performance of ray tracing the Buddha scene when increasing image 

dimensions in Testbed-2. 

  

0

5

10

15

20

25

2
0

0
²

2
5

0
²

3
0

0
²

3
5

0
²

4
0

0
²

4
5

0
²

5
0

0
²

5
5

0
²

6
0

0
²

6
5

0
²

7
0

0
²

7
5

0
²

8
0

0
²

8
5

0
²

9
0

0
²

9
5

0
²

1
0

0
0

²

1
0

5
0

²

1
1

0
0

²

1
1

5
0

²

1
2

0
0

²

1
2

5
0

²

1
3

0
0

²

1
3

5
0

²

1
4

0
0

²

1
4

5
0

²

1
5

0
0

²

FP
S 

Frame Size 

Buddha, e = 15, lights = 5  
Testbed-2 

Ideal (Imaginary)

Naïve

Atomic-based

Buffer-based

Es-Isler



67 

 

 

Figure 32: Performance of ray tracing the Dragon scene when increasing image 

dimensions in Testbed-2.  
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Figure 33: Performance of ray tracing the Dragon scene when increasing the 

interaxial distance   in Testbed-2. 

 

Figure 34: Performance of ray tracing the Dragon scene when increasing number 

of lights in Testbed-2. 
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Figure 35: Speedup summary relative to the naïve ray tracer, Testbed-2. 
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Figure 36: MSE when increasing image dimensions. 

 

 

Figure 37: MSE when increasing the interaxial distance e.  
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(a) 

 

(b) 

Figure 38: Time views of the threads generating the right image using: (a) Naïve 

ray tracer. (b) Atomic-based ray tracer. 
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(a) (b) 

 

(c) 

Figure 39: Output of naïve ray tracer. (a) Left image. (b) Right image. 

(c) Anaglyph stereo image. 
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(a) (b) 

 

(c) 

Figure 40: Output of buffer-based ray tracer. (a) Left image. (b) Right image. 

(c) Anaglyph stereo image. 



74 

 

  

(a) (b) 

 

(c) 

Figure 41: Output of atomic-based ray tracer. (a) Left image. (b) Right image. 

(c) Anaglyph stereo image. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

5.1 Summary 

This work focuses on developing efficient stereoscopic ray tracing on the GPU, by 

utilizing image-space temporal coherence between the stereo pair. 

The recent explosion of GPU performance naturally grabbed the attention of 

researchers to develop existing algorithms on GPUs to harness their full potential; 

especially that an added layer of complexity is associated with GPU development due 

to its architecture. 

One of the most effective techniques for utilizing temporal coherence between a ray 

traced stereo pair is the reprojection algorithm, introduced by Badt and later developed 

by Adelson and Hodges. This technique produces high quality results when 

transferring pixels from the left image to the right image. However, the technique, 

targeting CPUs, is sequential in nature, and the existing attempts to make it run on 

parallel are not optimized for massively parallel processors. 

Novel resolutions to reprojection problems have been developed and presented 

throughout this work. These resolutions allowed the originally sequential reprojection 

to be implemented on massively parallel processors, such as GPUs. 
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The results show that our developed techniques outperform the naïve technique of fully 

ray tracing through both images of a stereo pair, and approach the performance of an 

imaginary ideal implementation. 

5.2 Contribution to Knowledge 

This work has achieved the following contributions that were never addressed in the 

literature before: 

 Re-invented the way reprojection errors are handled so that reprojection can 

work on massively parallel processors. 

 Lemma 1 set an upper bound to the maximum number of writes to one pixel 

position in the right image when using reprojection. 

5.3 Limitations 

Despite the good performance of the developed techniques in this work, there are some 

shortcomings: 

 Reprojection, and therefore our techniques, produces correct outputs only for 

surfaces of diffuse material, and can handle a narrow subset of camera-

dependent materials such as Phong [53]. Pixels produced from surfaces of other 

camera-dependent materials such as reflective and refractive materials do not 

reproject correctly. To mitigate this problem, Adelson and Hodges suggested to 

fully ray trace these pixels in the right view, downgrading the performance. 
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 The performance of our techniques can be shown to be independent of most 3D 

stereo scene attributes, except for the interaxial distance  . Large values of   

introduce more pixel problems and, therefore, will render our algorithms 

underperforming the naïve method. 

 For large values of  , i.e. if the nearest surface in the stereo scene is positioned 

at relatively small distance form cameras, the buffer-based approach will be 

rendered inefficient, because the 3D buffer will grow in depth and this will 

reflect on slowing the performance of the algorithm as showed earlier. 

5.4 Future Work 

Our techniques serve as a possible core for utilizing image-space temporal coherence 

in stereoscopic ray tracing implemented on massively parallel processors. Still, there is 

plenty of room to further optimize and enhance them. Following is a list of possible 

enhancements that are worth investigating in the future: 

 Implementing our techniques on a distribution ray tracer. 

 Use reprojections from previously rendered animation frames to reduce pixel 

errors, as suggested by Adelson and Hodges in another work [16]. 

 Allowing the 3D buffer depth in the buffer-based ray tracer to be set adaptively, 

relative to the scene being rendered. 

 Bad pixels heavily occur around the edges of the rendered geometry. This 

heuristic can be used to directly ray trace through edge-surrounding pixels 

without having to check if they constitute bad pixels. 
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 Nehab et al. [54] developed another technique for image-space temporal 

coherence using reverse reprojections alongside a caching technique. Applied 

to stereo rendering, this means fully ray tracing the left view, and „reversely‟ 

reprojecting pixel positions from the right view to the left view so as to find 

their corresponding colors. Their technique avoids reprojection errors, but 

comes at the cost of computing the depth of the pixels in the right image. 

Moreover, their technique is optimized for use in rasterization-based renderers. 

It would be interesting to investigate the possibility to adopt their technique 

with our techniques to achieve yet further optimizations. 

 Investigating other thread scheduling mechanisms as to assure load-balancing 

on the GPU cores, and possibly increasing the performance. 
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