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 Due to its flexibility and capability for representing various kinds of 

data, XML has become a de facto standard for data exchange over the net. 

Recently, the use of XML has been increasing at tremendous pace. With the 

ever-increasing amount of data available in XML format, the ability to mine 

valuable information from them has become increasingly important. 

However mining useful information from the XML is difficult due to its 

hierarchical tree structure. In this thesis we are proposing a new and efficient 

algorithm for mining frequent structures from XML documents. Unlike 

general trees, XML trees have many repeated substructures. So the proposed 

algorithm exploits the presence of repeated substructures and does the 

following. First, it clusters the input XML dataset by structure; second, it 

encodes the XML dataset objects in order to minimize storage space and to 



xii 
 

avoid string manipulation; and third, it applies Apriori algorithm on the 

clustered and encoded XML dataset to find the frequently repeated 

substructures. The experimental results show that the proposed algorithm 

significantly outperforms the Apriori based algorithms.  
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 لملخصا
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أنواع  تمثيلعلى  قدرتهمرونته ول نظراً  لتبادل المعلومات على شبكة الانترنت، معياراً مقبولاً  XML ال أصبح

كمية المعلومات  نتيجة لتزايدو بشكل هائل. XML استخدام التزايد في الوقت الحاضر . البيانات مختلفة من

إستكشاف معلومات مفيدة  فإن المخزنة بهذا التنسيق، تزايدت أهمية إستكشاف معلومات قيمة منها. بكل الأحوال

هرمية. شجرية يعتبر مهمة صعبة، نتيجة لتمثيل البيانات في أنماط  XMLمن البيانات المخزنة بتنسيق ال 

فعالة لإستكشاف الأنماط المتكررة للبيانات في ملفات ال  سنقوم في هذه الأطروحة بتقديم خوارزمية جديدة و

XML.  بخلاف أنماط البيانات الشجرية العامة، تمتلك الأنماط الشجرية فيXML  العديد من الأنماط الفرعية

المتكررة. تستغل الخوارزمية المقترحة وجود الأنماط الفرعية المتكررة و تقوم بما يلي: أولا، تقوم بتجميع 

بناء على الأنماط الهيكلية لها. ثانيا، تقوم بتشفير مجموعة بيانات  XMLلات المتمثلة بمجموعات بيانات المدخ

من أجل تقليل مساحة التخزين اللازمة و من أجل تجنب التعامل مع النصوص. ثالثا، تقوم بتطبيق  XMLال 

يفر عليها، تقوم هذه بعد إجراء التجميع والتش XMLعلى مجموعة بيانات ال  Aprioriخوارزمية 
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الخوارزمية بإيجاد الأنماط الهيكلية الفرعية المتكررة بشكل مستمر. أظهرت النتائج التجريبية أن الخوارزمية 

 . Aprioriالمقترحة تعطي نتائج أفضل بشكل كبير من الخوارزمية المبنية على خوارزمية 

 

 

 

 

    



 
 

CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

Due to its flexibility and capability for representing various kinds of 

data, XML has become a de facto standard for data exchange over the net [1]. 

The ability of XML to represent structured, semi-structured, and 

unstructured data gives it flexibility to model a wide variety of datasets into 

XML documents. Recently, the use of XML has been increasing at a 

tremendous pace, especially in web applications [2]. 

With the ever-increasing amount of data available in the XML format, 

the ability to mine frequent patterns from them has become increasingly 

important. However, mining frequent patterns from the XML data is difficult 

due to its nested structure. The traditional frequent pattern mining 

algorithms cannot be applied directly to XML data [3]. 
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There are four types of frequent pattern mining algorithms used with 

XML data, namely, frequent content  mining, frequent element mining, 

frequent structures mining, and frequent content and structures mining. The 

frequent content mining algorithms mine only the values in XML documents; 

the frequent element mining algorithms mine only the tag names in XML 

documents; the frequent structures mining algorithms mine only the 

structural relationships among the elements in XML documents; and the 

frequent content and structures mining algorithms mine both content and 

structures in XML documents. 

Finding frequent patterns has many applications, such as, 

querying/browsing information sources [4], indexing [5], and building 

wrappers [6]. It also plays an essential role in many data mining tasks such as 

associations, correlations, classification, clustering, and many other 

interesting relationships among data. Thus, frequent structures mining has 

become an important data mining task and a focused theme in data mining 

research.  

1.2 PROBLEM STATEMENT 

Recently, many frequent structures mining algorithms have been 

proposed to mine XML data.  This is because many organizations have huge 

amount of data in XML format, and they need to discover rules and patterns 
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from the data to help them in decision making [7]. Due to the nested structure 

of the XML documents, the traditional frequent pattern mining algorithms for 

relational and transactional tables cannot be applied directly. Existing 

frequent structures mining algorithms are inefficient and are not scalable [8] 

[9]. Most of them suffer from high I/O cost when the input XML document is 

big.  This thesis will address the problem of researching a new, efficient, and 

scalable frequent structures mining algorithm for XML datasets. 

1.3 THESIS OBJECTIVES 

The main objective of this thesis is to propose and implement a new, 

efficient, and scalable algorithm to mine frequent structures from XML 

datasets. In order to accomplish this objective the following tasks were 

performed. 

1. Extensive survey of existing frequent structures mining algorithms 

was conducted. 

2. A new, efficient, and scalable frequent structures mining algorithm 

was proposed.  

3. The proposed algorithm was designed and implemented. 

4. The proposed algorithm was tested using benchmark XML datasets.  
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5. Performance of the proposed algorithm was evaluated and the factors 

that affect its performance were identified. 

6. The experimental results were analyzed and the drawn conclusions 

and future directions in the area of frequent structures mining are 

presented.   

 

1.4 THESIS CONTRIBUTIONS 

The contributions of our thesis are as follows: 

1) Extensive literature survey of all the existing algorithms that mine 

frequent structural patterns from XML data. 

2) Two new, efficient, and scalable algorithms to mine frequent 

structural patterns from XML dataset.  

3) To the best of our knowledge, the proposed algorithms are the first 

algorithm to use clustering for mining frequent substructures from 

XML datasets.  

4) An encoding scheme which improves the performance of the 

proposed algorithms by reducing their memory requirements and 
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by minimizing the number of string manipulations they need to 

perform. 

5) Implementation of the two proposed algorithms. 

6) Experimental results, analysis, and comparisons of the proposed 

algorithms.  

1.5 RESEARCH METHODOLOGY 

Our research methodology consisted of the following phases:  

Phase 1: Literature review 

In this phase, the existing algorithms which mine frequent structural 

patterns from XML datasets were studied and their limitations and strengths 

were identified. This phase helped us to thoroughly understand the area and 

to state the scope and the contributions of the thesis.  

Phase 2: Proposition of the new algorithm 

In this phase, we proposed the frequent structure mining algorithm 

which uses clustering, encoding, and mining using the principles of Apriori. 
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Phase 3: Implementation of the proposed algorithm  

In this phase, the proposed frequent structural pattern mining algorithm 

was implemented using C#.   

Phase 4: Performance analysis of the proposed algorithm  

In this phase, the proposed algorithm was tested using benchmark and 

synthetic datasets. From the collected experimental results, the performance 

of the proposed algorithm was analyzed and compared.  

Phase 5: Conclusions  

In this phase, conclusions from the research work were drawn; and 

future directions in the research of mining frequent structural patterns from 

XML data were identified. 

Thesis writing   

The writing of this thesis was done during all the phases. 

1.6 THESIS OUTLINE 

The remaining of this thesis is organized as follows. Chapter 2 presents 

basic terminology, background information on XML, and frequent pattern 

mining. We reviewed the related works in Chapter 3. Chapter 4 presents the 
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proposed frequent structural pattern mining algorithms. In Chapter 5, we 

present the experimental results and analysis of the proposed algorithms. 

Finally, Chapter 6 concludes this thesis and suggests some future work. 
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 CHAPTER 2 

BACKGROUND AND OVERVIEW 

This chapter presents some background information on XML and 

frequent pattern mining. The background information given is necessary to 

understand the rest of the chapter. Readers familiar with basic XML and 

frequent pattern mining can skip the chapter. 

The chapter is organized as follows. In Section 2.1 a brief introduction to 

XML is presented. Frequent pattern mining is discussed in Section 2.2. In 

Sections 2.3 and 2.4, two most common frequent pattern mining algorithms, 

namely, the Apriori and the FP-growth are briefly presented. Section 2.5 

gives an overview of frequent structural pattern mining in the context of 

XML. 

2.1 EXTENSIBLE MARKUP LANGUAGE (XML) 

XML stands for eXtensible Markup Language which is a language for 

representing structured, semi-structured, and unstructured data. An example 

of a small XML document is shown in Figure 2.1.  
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Figure 2.1: An Example XML document. 

 

An XML document basically consists of the following components: 

 Elements: Each element represents a logical component of a document. 

Elements can contain other elements, attributes, and/or values. The 

boundary of each element is marked with a start tag and an end tag. A 

start tag starts with the ‘<‘character and ends with the ‘>‘character. An 

end tag starts with ‘</’ and ends with ‘>‘. The root element contains all 

the other elements in the document. In the sample XML document shown 
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in Figure 2.1, the root element of the document is the “books” element. The 

children of an element are elements that are directly contained in that 

element. For example, in the sample document, the “title” element is a 

child of the “book” element.  

 Attributes: Attributes are descriptive information attached to elements. 

The values of attributes are set inside the start tag of an element. For 

example, in Figure 2.1, the expression <book id=”000-213”> sets the value 

of the attribute “id”. The main differences between elements and 

attributes are that attributes cannot have their own “attributes” and they 

cannot contain elements. Further information on XML specification can be 

found in [10]. 

 Values: Values are sequences of characters which appear between 

elements’ start-tag and end-tag. Like attributes, values cannot contain 

elements. In Figure 2.1, the expressions “XML”, “jane”, and “2000” are 

examples of values. 

2.2 FREQUENT PATTERN MINING 

Frequent patterns are itemsets, subsequences, or substructures that 

appear in a dataset with frequency greater than or equal to a user-specified 
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threshold. For example, a set of items, such as milk and bread that appear 

frequently together in a transaction dataset is a frequent itemset. A 

subsequence, such as first buying an iPhone, then an iPod, and then an iPad, 

if it occurs frequently in a shopping history database, is a frequent sequential 

pattern. A substructure can refer to different structural forms, such as sub-

graphs, subtrees, or sub-lattices. In the context of XML, a substructure refers 

to a path or a twig. If a substructure occurs frequently in an XML dataset, 

then it is called a frequent structural pattern.  Finding frequent patterns plays 

an essential role in many data mining operations, such as, classification, 

clustering, association rules, and correlations to mention a few. Among all 

these, mining of association rules is one of the most popular operations.  

Frequent pattern mining was first introduced by Agrawal et al. [11] to 

analyze the customer buying habits in retail databases. It analyses customer 

buying habits by finding associations between the different items that 

customers place in their ‘shopping baskets’. For instance, if customers are 

buying milk, how likely are they going to also buy bread on the same trip to 

the supermarket? Such information can lead to increased sales by helping 

retailers do selective marketing and arrange their shelf space. 

  Frequent pattern mining is closely related to mining association rules. 

The problem of mining association rules can be explained as follows: There is 
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the itemset I=i1, i2, …., in, where I is a set of n distinct items, and a set of 

transactions D, where each transaction t is a set of items such that ‘t’  ‘I’. ‘I’ 

is all the items in the supermarket and ‘t’ is the set of items purchased by a 

customer and D is the set of the transactions by all customers. Table 2.1 gives 

an example where a database D contains a set of transactions ‘T’, and each 

transaction consist of one or more items. 

Transaction-id Items bought 

1 Bread, Milk 

2 Bread, Coffee, Eggs, Sugar 

3 Milk, Coffee, Coke, Sugar 

4 Bread, Coffee, Milk, Sugar 

5 Bread, Coke, Milk, Sugar 

TABLE 2.1: TRANSACTION TABLE 

 

 An association rule is an implication of the form X ⇒ Y, where X, Y   I 

and X ∩ Y = φ. Before we demonstrate the example of finding the support and 

confidence, let us define these terms. 

Definition 2.1: Support Count: The support count of X, denoted p(X),   is equal 

to the number of transactions in D that contain X.   

Definition 2.2: Support: The support of X, denoted s(X), is equal to p(X)/|D|, 

where |D| is the number of transactions in D.  
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Definition 2.3: Confidence: The confidence of rule X ⇒ Y, denoted c(X ⇒ Y), is 

defined as a fraction of transactions that contain X that also contain Y, and is 

equal to s(X ∩ Y)/ s(X).   

Example 2.1: In this example we demonstrate the method of calculating the 

association rules. Consider the transaction database shown in Table 2.1.  In 

this transaction database, the association rule {milk, sugar} ⇒ coffee has a 

support of 0.4 and a confidence of 0.66. This means that 40% of the customers 

bought milk, sugar, and coffee together; and only 66% of the customers who 

bought milk and sugar also bought coffee.  

Support = p ({milk, sugar, coffee}) / Total transactions 

= 2/5 = 0.4 

Confidence = p ({milk, sugar, coffee}) / p ({milk, sugar}) 

= 2/3 = 0.66        

□ 

 

2.3 THE APRIORI ALGORITHM  

The Apriori algorithm was first introduced by Agrawal et al. in [12]. It 

was used to mine association rules. Given a set of transactions, the problem of 

mining association rules is to generate all the association rules that have 

support and confidence greater than the user-specified minimum support 



14 
 

(called minsup) and minimum confidence (called minconf) respectively. The 

algorithm makes many passes over the data. The supports of individual items 

are counted in the first pass to find the frequent itemsets. Frequent itemsets 

are those with support greater or equal to minsup. The next pass is started 

with the seed set of itemsets which are found to be frequent in the previous 

pass. The seed set is used to find the potentially frequent itemsets called 

candidate itemsets; the actual support of these candidates is counted during 

the pass over the data. At the end of the pass, the candidate itemsets which 

are frequent become the seed for the next pass. This process is repeated until 

no new frequent itemsets are found. 

Example 2.2: In this example we demonstrate the working of the Apriori 

algorithm. Consider the transactions shown in Table 2.2. 

Transaction-id Items bought 

1 Bread, Milk 

2 Bread, Coffee, Eggs, Sugar 

3 Milk, Coffee, Coke, Sugar 

4 Bread, Coffee, Milk, Sugar 

5 Bread, Coke, Milk, Sugar 

TABLE 2.2: TRANSACTION TABLE 

The user wants all the frequent patterns which have a minimum support 

count of 3. The working example of the Apriori algorithm is shown in Figure 

2.2 
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1-Itemset  2-Itemset 

Itemset Count  Itemset Count 

{Bread} 4  {Bread, Milk} 3 

{Coke} 2  {Bread, Coffee} 2 

{Milk} 4  {Bread, Sugar} 3 

{Coffee} 3  {Milk, Coffee} 2 

{Sugar} 4  {Milk, Sugar} 3 

{Eggs} 1  {Coffee, Sugar} 3 

     

  

3-Itemset 

Itemset Count 

{Bread, Milk, Sugar} 3 
 

Figure 2.2: Demonstrating Apriori principle 

 

The itemsets which have a count less than the minimum support are not 

used for generating the large itemsets in the next pass. The itemsets “coke” 

and “eggs” are not used for generating 2-Itemset in the second pass. And the 

itemsets “bread, coffee” and “milk, coffee” are not used for generating 3-Itemset 

in the third pass. 

 □ 

2.4 THE FP-GROWTH ALGORITHM  

The FP-growth algorithm was first proposed by Han et al. in [13]. The 

FP-tree structure is constructed first and then frequent patterns are mined by 

traversing the constructed FP-tree. The structure of an FP-tree consists of a 
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prefix-tree of frequent 1-itemset and a frequent header table. For every node 

in a prefix-tree there are three fields: item-name, count, and node-link. 

 Item-name is the name of the item. 

 Count is the number of transactions that consists of the frequent 

1-items on the path from root to this node. 

 Node-link is the link to the next same item-name node in the FP-

tree. Each entry in the frequent item header table has two fields: 

item-name and head of node-link. 

 Item-name is the name of the item. 

 Head of node-link is the link to the first same item-name node in 

the prefix-tree. 

 

An FP-tree is constructed by scanning the transactional database (TDB) 

twice. In the first scan it retrieves the frequent items and they are ordered 

according to their support count. In the second scan, a tree with a root labeled 

as null is created. When a new transaction is read it is checked to see whether 

it is present in the tree as a path. If it is present then its count is incremented 

otherwise a new path is created. An example of an FP-tree is shown in Figure 

2.3. This FP-tree is constructed from Table 2.3 with minsup of 2 [14].  
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Figure 2.3: FP-Tree constructed from Table 2.3 

 

TID Items  Frequent Items 

100 A, B, E A, B, E 

200 B, D B, D  

300 B, C B, C 

400 A, B, D A, B, D 

500 B, C B, C 

600 A, B, C, E A, B, C, E 

700 A, B, C A, B, C 

TABLE 2.3: SAMPLE TBD 

 

 

The FP-growth algorithm then traverses all the node-links in the FP-

tree’s header table and mines the frequent patterns.  

Example 2.3: We describe the process of mining all the frequent patterns 

including item A from the FP-tree shown in Figure 2.3. For node A, FP-

growth mines a frequent pattern (A: 4) by traversing A’s node-links through 
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node (A: 4). Then, it extracts A’s prefix paths; <B: 7>. To study which items 

appear together with A, the transformed path <B: 4> is extracted from <B: 7> 

because the support value of A is 4. The path {(B: 4)} is called A’s conditional 

pattern base. FP-growth then constructs A's conditional FP-tree containing 

only the paths in A’s conditional pattern base as shown in Table 2.4. As only 

B is an item occurring more than minsup appearing in A’s conditional pattern 

base, A’s conditional FP-tree leads to only one branch (B: 7). Hence, only one 

frequent pattern (BA: 4) is mined.  

 

Item Conditional 

pattern base 

Conditional 

FP-tree 

Frequent pattern 

generated 

E {(BAC:1), (BA: 1)} <B: 2, A: 2> BE:2, AE:2, BAE: 2 

D {(B:1), (BA: 1)} <B: 2> BD:2 

C {(BA:2), (B: 2)} <B: 4, A: 2> BC: 2, AC:2, BAC: 2 

A {(B:4)} <B: 4> BA: 4 

TABLE 2.4: MINING FP-TREE 

□ 

  

2.5 FREQUENT STRUCTURAL PATTERN MINING  

In this section we explain the frequent structural pattern mining in the 

context of XML. An XML document can be represented as a tree. Figure 2.4 

shows an example of an XML document represented as a tree.  Since an XML 
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document has a tree structure, mining XML association rules from XML 

documents is different than from traditional well-structured datasets. A 

transaction in an XML context is an XML fragment that defines the context in 

which the items must be counted. In other words, the transaction is a subtree. 

The root node of the subtree identifies the transaction. 

 
Figure 2.4: Sample XML Tree 

 

Figure 2.5 shows some examples of association rules based on content 

(values) and structure.  

Rule (1) states that, if there is a node labeled “conference” in the 

document, it probably has a child labeled “year” whose value is “2008”.  

Rule (2) states that, if there is a path composed by the following 

sequence of nodes: “conference/articles/article/author”, and the content of 

author is “Mark Green”, then the node “authors” probably has another child 

labeled “author” whose content is “John Black”.  
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Finally, rule (3) describes the structural association rule mining, it states 

that, if there is a path composed of “conference/articles/article”, then node 

“conference” probably has two other children labeled “name” and “place”[15]. 

The structural association rule does not contain values in the antecedent and 

precedent of the rule. 

 

 

Figure 2.5: Association Rules on Values (1 and 2) and on Structure (3) 
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CHAPTER 3 

LITERATURE REVIEW 

Algorithms that mine association rules from XML documents can be 

classified into three, namely, content-based algorithms, structure-based 

algorithms, and content-structure-based algorithms. The content-based 

algorithms mine association rules only from the contents (values) of an XML 

dataset. These algorithms are discussed in Section 3.1. The structure-based 

algorithms mine association rules only from the structural relationships 

found in an XML dataset. The structure-based algorithms are discussed in 

Section 3.2. Finally, the content-structure-based algorithms mine association 

rules from both the contents and the structural relationships found in an XML 

dataset, and they are discussed in Section 3.3. 

3.1 CONTENT-BASED ALGORITHMS 

The content-based algorithms mine association rules from the contents 

of an XML dataset [7] [11] [16] [17] [18] [19] [20] [21] [22] . Nearly all of these 

algorithms are based on the Apriori algorithm [11]. 
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Wang and Cao [18] algorithm starts by preprocessing the input XML 

document using the XSL and XSLT [23], which transforms the complex and 

irregular XML document into simple and regular XML document which 

helps in meeting the need of the mining algorithm. This type of preprocessing 

makes the algorithm more adaptable and universal and helps in identifying 

the mining context. The preprocessing goes through the following 3 steps.  

1. A standard data source template called SDST is defined where the tag 

<transaction> forms the root node and is also used to identify the set of 

transactions. The transactions in the transaction set are represented by the 

tag <itemset> whereas the purchased item in each transaction is 

represented by the tag <item>.  

2. The algorithm uses a modified Apriori algorithm to obtain large itemset to 

make it compatible with SDST.  

3. The XSL and XSLT are applied to transform the complex and irregular 

XML document into a simple XML document with a different structure.  

The association rules are then obtained from this transformed document 

using XQuery. 
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Khaing and Thein in [7] proposed an efficient association rule mining 

algorithm that mines association rules from large XML document. The XML 

data is represented as a binary table in which the value of ‘one’ for a 

particular item represents the existence of the item in the XML data and a 

value of 'zero’ represents its absence. The algorithm uses Apriori like method 

to find the frequent itemsets and to generate the association rules.   

The association rules are mined by converting the XML data into binary 

table format. The algorithm first computes the support count of the 1-

itemsets. The items which do not satisfy the user defined threshold are 

filtered out. Candidate n-itemsets are obtained by applying logical AND 

operation on the frequent (n-1)-itemsets. This continues until the algorithm 

runs out of candidates. Interesting association rules are obtained by applying 

logical XOR operation. The obtained association rules are then displayed in 

XML format. 

This algorithm cannot be applied to complex XML document and will 

be expensive when the XML document has numerous elements. 

Li et al. in [19] made the task of mining association rules efficient; they 

gave a new definition to transaction and item in the context of XML. Their 

algorithm extracts the XML transactions from an index table. The index table 

is a collection of docID which represents the XML document number; 
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nodeEncode which is the encoding of a node n in a document tree and it is 

the encoding of its parent, augmented by the index of n among its siblings, 

adding a dot to separate them. The problem of checking ‘include relation’ 

between item and transaction is reduced to checking of ancestor-descendent 

relation between two element nodes. Since the transaction is a sub-tree and its 

leaf-node is an item, root is used to identify a transaction. 

For extracting the transaction and item, the records (docID, 

nodeEncode) from the index table are selected where the given value is 

matched with the tag value. For each transaction (docID, nodeEncode) a 

transaction number (transID) is added. The relational table made up of 

transactions and items is generated. The columns are made up of XML items; 

rows are made up of XML transactions. If the ith transaction includes the jth 

item, then R(i,j)=1, otherwise, R(i,j)=0. Mining of association rules is done 

through XMLAssoMine algorithm which is based on plain Apriori algorithm. 

The performance of the algorithm was demonstrated by the results 

obtained by applying the algorithm on a small 500KB Sigmod record real life 

data. This doesn’t show the scalability of the algorithm. 

Porkodi et.al in [20] presented an improved framework for mining 

association rules from XML data using XQuery and .NET based 
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implementation of the Apriori algorithm. The framework proposed in [20] 

consists of 3 phases.  

1) XQuery phase: In this phase, XML transaction data files are stored in 

DB2 database. Each XML data file is uniquely identified using the 

transaction identifiers; using XQuery the items from the transaction 

database are accessed. 

2) Preprocessing Phase: This phase is used to acquire distinct items from 

the XML data file. Then an encoded binary array is created. If an item 

occurs in the transaction then the corresponding column is encoded as 

1, otherwise it is encoded as 0. 

3) Association Rule Mining Phase: Finally, large itemsets are computed 

using Apriori algorithm, and association rules are generated for 

itemsets that satisfy the minimum support and the minimum 

confidence. The generated association rules are represented in the 

XML format. 

The experimental results show that the algorithm works better for any 

size and number of XML data files. The algorithm also outperforms the 

existing java based implementation [24] in terms of CPU time by combining 

the features of XQuery and .Net based implementation of the Apriori 

algorithm. The performance of the algorithm is affected when the XML 
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dataset contains huge transactions because much time is spent in the 

communication with the DB2 database. 

Zhang et al. in [21] proposed a framework called XAR-Miner, which can 

be used to mine association rules efficiently from XML documents. The 

preprocessing step transforms the XML document into an Indexed Content 

Tree (IX-tree) or Multi-relational databases (Multi-DB), depending on the 

memory constraints of the system and the size of XML document. 

An indexed tree is a rooted tree <V, E, A> where V is vertex, E is edge 

set and A is the indexed array set. The intermediate node stores the address 

of the immediate parent and children. An edge connects the two vertices 

using a bidirectional link. The set of indexed array stores the data in the leaf 

element or attribute nodes in the original XML document. When the size of 

the XML data exceeds then the XML document is transformed into relational 

database.  

Data selection in IX-tree is facilitated by bidirectional link between 

parent and child nodes in a tree hierarchy. Nearest Common Ancestor Node 

(NCAN) is used to create the path connecting related concepts. In Multi-DB 

architecture the hierarchical information is maintained by creating SXS for 

each XML data and XPath of each relational database during data 

transformation. The SXS contain identical substrings of varied length. The 
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data is uniquely identified using the ordinal number of the NCAN of the 

concept. 

The raw-XML data is generalized and meta-patterns are obtained. Based 

on the user specified minimum support and confidence, association rules are 

generated using Apriori algorithm.   

Rahman et al. in [22] suggested a practical model which uses AR 

template for filtering data and generating virtual transactions which helps in 

efficiently finding the rules in which the user is interested. This work is an 

extension of XML-AR framework that was introduced by Feng [25]. 

The model consists of 5 steps namely Filtering, Generating Virtual 

Transactions, Finding Association Rules, Converting extracted rules to XML 

AR rules and Visualization. Filtering and Generating virtual transactions are 

the most important steps. XML-AR template is used in Filtering step to 

extract only those parts of XML in which the user is interested. Next, tag 

nesting in the XML document is used to define the transaction context; this is 

used to generate the virtual transactions which are used as input for 

association rule mining algorithm. The novel contribution of this algorithm is 

visualization of discovered association rules. 
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This work does not unveil all the association rules, the discovered rules 

are specific to the template used. There can be multiple templates for a single 

XML document based on the user’s interest. 

In some of works [14] [26] [27] the FP-Growth approach algorithm was 

used to mine the association rules.  

Chit and Hla in [14] proposed an XQuery implementation for the 

efficient FP-tree based mining method which avoids preprocessing or post 

processing of XML documents. It overcomes the problem of costly candidate 

set generation by adopting pattern fragment method and divide-conquer 

method. It saves several database scans by constructing a highly compact FP-

tree. The performance of the algorithm degrades significantly when applied 

on complex and irregular XML document. 

3.2 STRUCTURE-BASED ALGORITHMS 

The Structure-based algorithms mine frequent structures found in an 

XML dataset [3] [28] [29] [30] [28] [31] [6] [32] [33] [34]. Nearly all these 

algorithms are based on the Apriori Algorithm.  

Hido and Kawano in [32] proposed AMIOT algorithm which uses 

candidate tree enumeration through right and left tree joins. Since two 
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frequent trees are joined, it is possible to enumerate efficiently only those 

trees with a high probability of being frequent. This ensures that the 

infrequent candidate trees and wasteful data scans are avoided in comparison 

to the conventional techniques of enumeration.  

A partial tree excluding the leftmost leaf from a tree T is called the right 

tree ‘Right (T)’ and a partial tree excluding the rightmost leaf is called the left 

tree ‘Left (T)’. The tree excluding both the left and the rightmost leaf is called 

the center tree ‘Center (T)’. The tree expressed as a path from root vertex to 

the only leaf vertex is called a serial tree. Figure 3.1 shows the join operation 

of the right and left tree join. The serial tree cannot be enumerated with a 

right and left tree join. Therefore a new serial tree is obtained by adding a 

vertex to the only leaf vertex of T.  

 

Figure 3.1: Example of right-and-left Tree joins 

 



30 
 

The frequent subtrees are obtained by data scanning and candidate tree 

are enumerated by right and left tree join and serial tree extension. This 

procedure is repeated until all the frequent subtrees are found. The execution 

time is the sum of candidate tree enumeration and time for calculating the 

number of occurrence of each candidate tree. More than half of the time is 

used for calculating the number of occurrences. When the size of dataset is 

large, the candidate enumeration time remains same but the time for 

calculating the number of occurrences increases significantly. 

Experimental results showed that the AMIOT algorithm execution time 

was linear w.r.t to the data size. But, the enumeration technique with right-

and-left tree joining needs a lot of memory space. 

G. Cong et al. in [31] proposed a wild card mechanism which finds more 

complex and interesting substructures than existing techniques. Semi-

structured objects are stored in a vertical data format. The algorithm  has a 

powerful wildcard mechanism and overcomes the short coming of [6] by 

exploring the structure of irregular semi-structured data in a better way. 

Integers are used to code the labels of paths. The coding of path labels, 

introducing paths with wildcard and a special format of tidlist (tree id list) for 

paths with wildcard is done during the preprocessing phase.  The algorithm 

uses the partitioning algorithm presented in [35] for association rules mining. 
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The algorithm has a downward closure property. The frequent subtrees are 

generated by using the r-path-structure (r>1) where r denotes a subtree 

composed of r-paths. Fr is used to denote the frequent r-path structure. The 

candidates are generated, pruning is done based on the downward closure 

property and if ‘weaker than’ relation exist between f1[1] and f2[1] for r=2. 

Finally all the frequent final substructures are generated. Support counting 

for 2-tree expression is a major performance bottleneck with this approach. 

Since it uses partition based algorithm it has an I/O issue.  

Katsaros et al. in [33] proposed a fast mining of frequent tree structures 

by hashing and indexing. They identified the major performance bottleneck 

for WL algorithm [31] [6] which is that of support counting for 2-tree 

expressions. Repetitive tree-matching is avoided by using an efficient hashing 

scheme for ordered labeled trees.  

The algorithm begins by computing the frequent 1-path expressions 

using the technique presented in [36]. The paths which were not frequent are 

removed. In the second stage, the 2-tree-expressions are bottleneck for the 

performance so a labeled tree encoding algorithm was applied and the tree 

was represented using the hash structures. To count the support of candidate 

2-tree expression, the magic number of each 2-tree expression is calculated 

[31]. Hash structure is probed for each magic number, when a match is found 
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then a tree matching algorithm is used. When a match between 

corresponding trees is found then the count is increased by one.  The WL 

algorithm for candidate support counting is followed for rest of the phases. 

The experiment was performed using synthetic and real data and it was 

observed that the proposed algorithm is better than the WL algorithm. The 

results can be further improved by using Clustering approach. 

Paik et al. in [34] proposed a new algorithm called EFoX which is used 

to discover frequent subtrees. A special data structure called KidSet is used 

by the algorithm to manipulate frequent node labels and tree indexes. The 

algorithm does not use tree join operation to generate candidate sets. The 

algorithm consists of two steps. In the first step, the KidSet is created and 

maintained which avoids costly join operation and helps in reducing the 

number of candidates. In the second step, the data stored in the KidSet is 

used to extract the frequent subtrees. 

A KidSet [k]d is a set of pairs (kd,tid) of keys, list of tree indexes where 

the key is a collection of node labels assigned on the nodes at depth d in every 

tree in D. D is the set of trees. In a KidSet, a pair is a frequent set if its key is 

frequent; otherwise it is called a Candidate Set. The Frequent Set and 

Candidate Set are represented by [F]d and [C]d respectively. The cross-

reference operation consists of two phases. Phase 1 eliminates pairs from the 
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Candidate Set which are included in any previous Frequent Sets. Phase 2 is 

similar to Apriori style. In this phase, the Candidate Set is derived using 

union operation. Since the KidSet is a hierarchical structure, there is no need 

to generate candidate paths and additional candidate pairs by using join 

operations. Union operation is performed on the pairs which do not belong to 

any Frequent Set for all iterations. The processing of two consecutive 

Candidate Sets always produces frequent elements. The final sets of Frequent 

Sets contain all the keys which have frequency above the user specified 

threshold. The key of first non-empty frequent set is the root node of the 

frequent subtrees. Based on root nodes of the frequent subtrees, paths are 

formed with keys in the rest of Frequent Sets and the frequent subtrees are 

obtained incrementally.  

The algorithm was evaluated using only synthetic data. Testing it using 

real data is important to show its effectiveness. 

Paik et al. in [3] proposed EXiT-B which is a simple yet effective 

algorithm. According to the authors, this algorithm simplifies the process of 

mining maximal frequent subtrees. This was achieved in two distinct steps. 

All the string node labels are represented by some specified length of bits.  

Then, a PairSet, which is a specifically devised data structure, is used to avoid 

time-consuming tree join operation. The fundamental idea of the algorithm is 
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as follows: first, every node is mapped to an n-bit binary code. The bit 

sequences obtained by concatenation of each n-bit code are used to represent 

all the trees in the database. Each string label is transformed into an n-bit 

binary code by a hash function. Then, the algorithm mines the frequent 

subtrees using the binary code. 

3.3 CONTENT-STRUCTURE-BASED ALGORITHMS 

The content-structure-based algorithms mine association rules from 

both  the structure and the contents of an XML dataset [15] [37] [38] [39] [40]. 

Paik et al. in [39] presented a framework for data structure-guided 

association rules extraction from XML trees. The use of a special data 

structure called Simple and Effective Lists Structure (SELS) avoids 

computationally intractable problem in the number of nodes, and it can 

represent simple and complex structured association relationships in XML 

data. With the use of SELS data structure, useless fragment generation is 

avoided, computational complexity is reduced, and fast extraction of desired 

fragments is enhanced. SELS is a set of lists which includes tree characteristic 

information such as label, tree id, node id, and parent/ancestor relationships 

among nodes. 
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For a tree database D, under each node label, the node ids and tree ids 

are members of a single list. The list is divided into two parts; one part is for 

identifying list from among a number of lists which deals with label of node 

and node ids; the other part stores all the relevant frequency information of 

the tree database. The complete list is called Node and Tree List (NaTL) as it is 

composed of node ids and tree ids. The leading part is named head of NaTL, 

ntlhead for distinguishing each NaTL; the trailing part is used for counting 

frequency of each label and is called body of NaTL, ntlbody. 

Every ntlhead comprises of three fields which are label, node ids assigned 

the label, and pointer to corresponding ntlbody. The label is called the key of 

SELS for tree database. The corresponding ntlbody is a link list of several 

elements. Each element is composed of one pointer field for next element and 

two id fields; one is for tree which contains node(s) assigned the label in ntlhead 

and the other is for parent nodes of the node(s) in the tree. The count of the 

elements gives the information of the frequency of a label with respect to the 

database. The infrequent NaTLs whose body size is less than the threshold 

are filtered out. This filtered SELS is called shallowly-frequent SELS (sfS). To 

refine the sfS a candidate hash table is created, the purpose of refinement is to 

deal with every parent node in elements and to make sfS contain all frequent 

nodes. The obtained SELS is called deeply-frequent SELS, abbreviated dfS. 
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 Given a dfS, both ntlhead and ntlbody are associated together depending on 

ancestor-descendant relationship. Using this information, a Minimum Support 

Satisfying Tree (MSST) is derived. If the frequency of the edge is not frequent 

then that edge is deleted. Using this MSST and a given minimum support 

and minimum confidence, association rules can be generated. 

Shin et al. in [40] proposed HILoP (Hierarchical layered structure of 

PairSet) which prevents multiple XML data scans to mine Association Rules 

from collection of XML documents. Also the number of candidate set is 

reduced by introducing Cross filtering algorithm. This approach avoids 

multiple data scans and simplifies the mining process. 

The mining process consists of three phases: the first phase consists of 

constructing the tree structured data into a hierarchical structure called 

PairSets. A PairSet is a set of pair of element of XML tree and a tree in which 

the element appears. In second phase, the PairSets are operated according to 

minimum support. This minimum support is used to classify the PairSet into 

two class’s namely frequent fragment set and candidate fragment set. In 

order to manipulate the data stored in the PairSets, cross-filtering algorithm 

is used. This cross-filtering algorithm consists of two steps; a pruning step 

which eliminates the current candidate sets which are already included in the 

frequent fragments sets previously; and a merging step which is used to 
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obtain the frequent fragment set from the current candidate fragment set 

without using the join operation. The third phase of the mining process mines 

the association rule measures. This algorithm can only be applied to XML 

trees with limited depth only.  

Mazuran et al. in [15] extended the CMTTreeMiner which can be used 

to extract tree-based association rules from XML documents. The association 

rules are extracted without imposing any prior restriction on the structure 

and the content of the rules. The mined information is stored in XML format 

which can be queried later.  

Mining tree based association rules are obtained in two steps. In the first 

step, frequent subtrees are obtained from the XML document and in the 

second step, interesting association rules are computed from the mined 

frequent subtrees. The algorithm mines association rules starting from the 

maximally frequent subtrees of the tree based representation of a document. 

The inputs given to the extended CMTTreeMiner algorithm are frequent 

subtrees and the minimal threshold for the confidence of the rules.  
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3.4 SUMMARY 

Algorithms that mine association rules from XML documents can be 

classified into three, namely, content-based algorithms, structure-based 

algorithms, and content-structure-based algorithms. The content-based 

algorithms mine association rules only from the content (values) of XML 

dataset. The content based algorithms are not scalable, cannot be applied on 

the complex and irregular XML documents and some of them need XSLT 

according to the XML document structure. The structure-based algorithms, 

mine association rules only from the structural relationships found in an 

XML dataset. These algorithms have a major performance bottleneck for 2-

tree expression, and the bit representation used by algorithm can be further 

enhanced. The performance of mining association rules on the structure can 

be improved by using clustering. Finally, the content-structure-based 

algorithms mine association rules from both the content and the structural 

relationships found in an XML dataset, these algorithms can be applied to the 

XML trees with limited depth only. 
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CHAPTER 4  

PROPOSED ALGORITHM 

4.1 INTRODUCTION 

In this chapter the proposed two Frequent Structural Pattern Mining 

algorithms, namely, FSPM1 and FSPM2 are discussed in detail. Each of the 

two algorithms consists of four main procedures, namely, the XML Structural 

Clustering (XSC) procedure, the Encoder procedure, the Miner procedure, 

and the Embedded Tree-Expressions Counter (ETEC). The XSC, the Encoder, 

and the ETEC procedures are shared by both algorithms, but each has its own 

Miner procedure. Let the Miner procedure of FSPM1 be called Miner1 and 

that of FSMP2 be called Miner2. The XSC procedure clusters transactions by 

structure and is discussed in Section 4.3. The Encoder procedure maps each 

distinct element tag into a binary number. The Encoder is presented in 

Section 4.4. The Miner procedure mines the frequent structural patterns. 

Miner1 is discussed in Section 4.5 and Miner2 is discussed in Section 4.6. The 

ETEC procedure extracts tree-expressions embedded in the frequent tree-

expressions and counts them. ETEC is explored in Section 4.7. But before we 
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discuss any of these procedures in detail, let us define some terms that are 

used in the rest of this thesis. 

4.2 DEFINITIONS 

Definition 4.1: A transaction: is a sub-tree rooted by an element specified by 

the user. 

Definition 4.2: A transaction element: is the root element of a transaction. 

Definition 4.3: A tree-expression: is a sub-tree of a transaction. 

Definition 4.4: An n-tree-expression: is a tree-expression with n leaf nodes; 

where 0-tree-expression is a tree-expression with only one node. Let n-tree-

expression be denoted as TEn. 

Definition 4.5: Join-compatible: Two n-tree-expressions are join-compatible if 

their first n-1 labeled paths are identical and they only differ in the last 

labeled path.  
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4.3 THE XSC PROCEDURE 

The XSC procedure reads the input XML dataset and puts transactions 

with identical structure into the same cluster. To do this, the algorithm uses 

the following three tables.  

The Labeled-Paths table: This table contains all the distinct labeled 

paths found in all the transactions. It has 4 columns, namely, LP, LP-ID, LP-

count, and LP-code.   LP contains distinct labeled paths; LP-ID contains IDs of 

each labeled path; LP-count contains the number of transactions with the 

same LP-ID, and LP-code contains the binary encoding of the labeled-path 

and is generated by the Encoder algorithm.  

The Tags table: This table has 3 columns, namely, Tag-name, Tag-count, 

and Tag-code. XSC stores each distinct tag in the Tag-name column. The Tag-

count column contains the number of transactions that contain the 

corresponding tag. The Tag-code is a bit string assigned to each tag by the 

Encoder.  

The Clusters table:  This table has two columns, namely, Cluster-ID and 

Cluster-Count. XSC maps transactions with identical structure into the same 

row and assigns them the same Cluster-ID. Cluster-Count contains the 

number of transactions with the same Cluster-ID. 
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 Procedure 1 shows the XSC procedure. When the procedure reads a 

new transaction from the input XML dataset, it does the following: 

 For each new tag, XSC inserts it into the Tags table and makes its Tag-

count equals to 1. But if the tag is already in the Tags table and it is 

appearing for the first time in this transaction, then XSC increments its 

corresponding Tag-count by 1 (lines 3 to 9).  

 For each labeled path of the transaction, if the labeled path is not in the 

Labeled-paths table, XSC assigns this labeled path a unique LP-ID number 

and inserts the labeled path, the LP-ID, and an LP-Count of 1 into the 

Labeled-paths table. But if the labeled path is already in the Labeled-paths 

table and this is the first time it is appearing in this transaction, then XSC 

increments its corresponding LP-count by 1 (lines 10 to 14). 

 It forms a string called Cluster-ID by concatenating all the LP-IDs of the 

current transaction. The LP-IDs in the Cluster-ID are separated by a 

special character and they appear in the Cluster-ID in the same order they 

appear in the transaction (line 15).  

 If the Cluster-ID is not in the Clusters Table, then XSC inserts it into the 

table and makes its corresponding Cluster-Count equal to 1. If the Cluster-
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ID is already in the Clusters table, then it just increments its 

corresponding Cluster-Count by 1 (lines 17 to 21). 

 

Procedure 1: XML Structural Clustering (XSC) 
Begin 
1: foreach  transaction in the XML dataset 

2: Read all the labeled paths in the XML transaction 

3: foreach labeled path in the XML transaction 

4:            Get the Tags present in the labeled path 

5:            if the Tag present in Tags Table and first appearance in transaction 

6:                     Increment the Tag-count by ‘1’ 

7:           else 
8:                     Store the Tag-name and set Tag-count to ‘1’ 

9:     endif 

  

10:            if a path is present in LP-Table and first appearance in transaction  

11:                  Increment LP-count by ‘1’   

12:      else  

13:                                Store the path and set LP-count to ‘1’  

14:                    endif 
  

15:               Concatenate the LP-IDs of a transaction by adding ‘*’ as a separator  

        //concatenated LP-IDs are called cluster 

16:   endfor 

17:         if Cluster-ID is not present in Cluster Table 

18:                  Store the Cluster-ID and set Cluster-Count to ‘1’ 

19:        else 
20:             Increment the Cluster-Count by ‘1’  

21:                endif    
22: endfor 

End 

 
 
Example 4.1: Let us assume that the transaction element in the DBLP dataset 

shown in Figure 4.1 is the ‘inproceedings’. After XSC processes the first 

transaction, then the value of Cluster-ID will be equal to 

p1*p2*p3*p4*p5*p6*p7 and the states of the Tags table, Labeled-paths table, 

and Clusters table will be as shown in tables 4.1, 4.2, and 4.3 respectively.   
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Figure 4.1: DBLP Dataset 
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Tag-name Tag-count Tag-code 

inproceedings 1  

author 1  

title 1  

sub 1  

pages 1  

year 1  

booktitle 1  

TABLE 4.1: THE STATE OF THE TAGS TABLE AFTER PROCESSING THE FIRST 
TRANSACTION IN THE DBLP DATASET OF FIGURE 4.1 

 
 

LP-ID LP LP-code LP-count 

p1 /inproceedings  1 

p2 /inproceedings/author  1 

p3 /inproceedings/title  1 

p4 /inproceedings/title/sub  1 

p5 /inproceedings/pages  1 

p6 /inproceedings/year  1 

P7 /inproceedings/booktitle  1 

TABLE 4.2: THE STATE OF THE LABELED-PATHS TABLE AFTER PROCESSING THE 
FIRST TRANSACTION IN THE DBLP DATASET OF FIGURE 4.1 

 

Cluster-ID Cluster-Count  

p1*p2*p3*p4*p5*p6*p7 1 

  

  

TABLE 4.3: THE STATE OF CLUSTERS TABLE AFTER PROCESSING THE FIRST 
TRANSACTION IN THE DBLP DATASET OF FIGURE 4.1 

□ 

Example 4.2: After processing all the five transactions in the DBLP dataset of 

Figure 4.1, the states of the Tags table, the Labeled-paths table, and the 

Clusters table will be as shown in tables 4.4, 4.5, and 4.6 respectively. 
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Tag-name Tag-count Tag-code 

inproceedings 5  

author 5  

title 5  

sub 5  

pages 5  

year 5  

booktitle 4  

i 1  

crossref 2  

TABLE 4.4: THE STATE OF THE TAGS TABLE AFTER PROCESSING THE LAST 
TRANSACTION IN THE DBLP DATASET OF FIGURE 4.1 

 
LP-ID LP LP-code LP-count 

p1 /inproceedings  5 

p2 /inproceedings/author  5 

p3 /inproceedings/title  5 

p4 /inproceedings/title/sub  4 

p5 /inproceedings/pages  5 

p6 /inproceedings/year  5 

P7 /inproceedings/booktitle  4 

P8 /inproceedings/title/i  1 

P9 /inproceedings/title/i/sub  1 

P10 /inproceedings/crossref  2 

TABLE 4.5: THE STATE OF THE LABELED-PATHS TABLE AFTER PROCESSING THE 
LAST TRANSACTION IN THE DBLP DATASET OF FIGURE 4.1 

 
Cluster-ID Cluster-Count 

p1*p2*p3*p4*p5*p6*p7 3 

p1*p2*p3*p8*p9*p5*p6*p10 1 

p1*p2*p3*p4*p5*p6*p10*p7 1 

TABLE 4.6: THE STATE OF CLUSTERS TABLE AFTER PROCESSING THE LAST 
TRANSACTION IN THE DBLP DATASET OF FIGURE 4.1 

□ 
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4.4 THE ENCODER PROCEDURE 

The Encoder procedure takes the Tags table as input and populates its 

Tag-codes. The Tag-codes are binary numbers. The number of bits in a Tag-

code is equal to the minimum number of bits needed to represent all the tags 

in the Tags table including the blank tag. The need for the blank tag will be 

explained later in this section.  

Example 4.3: The number of tags required for Tag-names in Table 4.4 and the 

blank tag is 10. So the minimum number of bits needed to represent any Tag-

code is 4. Table 4.7 shows the state of the Tag table after the Encoder 

populates its Tag-codes.  

Tag-name Tag-count Tag-code 

inproceedings 5 0001 

author 5 0010 

title 5 0011 

sub 5 0100 

pages 5 0101 

year 5 0110 

booktitle 4 0111 

i 1 1000 

crossref 2 1001 

TABLE 4.7: THE STATE OF THE TAG-CODES TABLE AFTER PROCESSING THE TAGS 
TABLE SHOWN IN TABLE 4.4 

□ 

The Encoder assigns the blank tag a Tag-code of 0. It assigns the rest of 

the tags sequentially the Tag-codes of 1, 2, 3, and so on.  
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After the Encoder finishes populating the Tag table with Tag-codes, it 

reads the Labeled-paths table to populate its LP-code column. The LP-code is 

also a binary number. The Encoder generates the LP-code of a labeled path by 

substituting each of its tags by its Tag-code and then by concatenating all its 

Tag-codes as shown in the equation below. 

LP-code(LPi) = tag-code(ti,0) || tag-code(ti,1)|| … || tag-code(ti,n-1) 

where “||” is the concatenation operator, ti,j is the jth tag, from the root of  the 

labeled path LPi and n is the length of the longest labeled-path in the dataset. 

If the length of LPi is less than n, then the Encoder adds a number of blank 

tags until the length of LPi becomes n.  

Example 4.4: The state of the Labeled-paths table after it is populated by the 

Encoder is shown in Tables 4.8. The length of the longest labeled path in the 

table is 4 and the length of p2 is 2. Hence, the Encoder changes the length of 

the LP-code of p2 into 4 by concatenating two more blank Tag-codes. 
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LP-ID LP LP-code LP-count 

p1 /inproceedings 0001000000000000   5 

p2 /inproceedings/author 0001001000000000  5 

p3 /inproceedings/title 0001001100000000  5 

p4 /inproceedings/title/sub 0001001101000000  4 

p5 /inproceedings/pages 0001010100000000  5 

p6 /inproceedings/year 0001011000000000  5 

P7 /inproceedings/booktitle 0001011100000000  4 

P8 /inproceedings/title/i 0001001110000000 1 

P9 /inproceedings/title/i/sub 0001001110000100  1 

P10 /inproceedings/crossref 0001100100000000  2 

TABLE 4.8: THE STATE OF THE LABELED-PATHS TABLE AFTER THE ENCODER 
POPULATES THE LP-CODE COLUMN. 

□ 

 

Procedure 2: Encoder 
begin 
1: Get the count of tags from the Tag Table 

2: Bits-required = ⌈                            ⌉ 
 

3: foreach Tag-name in the Tag Table 

4:                  Assign Tag-code for each Tag-name 

5:    endfor 
6: Get the length of longest LP 

8: foreach LP in the labeled path Table 

9:         Substitute the Tag-code for each Tag 

10:                if length of LP-code not equal to the Longest LP-code 

11:                          Append blank tags  

12:               endif 
13: endfor 

End 

 

4.5 THE MINER1 PROCEDURE 

Miner1 mines the frequent structural patterns in the input XML dataset. 

The input to this procedure is the minimum support (minsup), the Tags table, 

the Labeled-Paths table, and the Clusters table and its output is a list of 
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frequent tree-expressions. The procedure uses the Apriori algorithm to 

generate the candidates and frequent tree-expressions. Let C(k) represent a 

set of candidate k-tree-expressions, F(k) a set of frequent k-tree-expressions, 

‘r’ a row of the Clusters table, and ‘r.C(k)’ the C(k) of r.    

Miner1 is shown in Procedure 3 and it goes through the following steps: 

 It generates C(0) elements from the Tags table (line 1).  

 It generates C(1) elements from the Labeled-Paths table (line 2). 

 Then for each row r in the Clusters table it does the following three steps:  

1. Initializes k to 1. 

2. Generates r.C(k+1) from the join-compatible r.C(k) elements (line 

5). 

3. If r.C(k+1) is not empty then it increments k by 1 and it goes back 

to step 2 (line 29).  

The support count of each r.C(k) is equal to the Cluster-Count of r. So to 

generate the C(k) members, Miner1 adds the Cluster-Counts of all the r.C(k) 

members. Then a C(k) member whose  support is higher than the minsup will 

be a member of F(k).  
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Procedure 3:  MINER1 
begin  
1: Generate 0-tree-expression from Tag Table 

2: Generate 1-tree-expression from Labeled Path Table 

3: foreach Cluster-ID 

4:      foreach LP-code of LP-ID in Cluster-ID 

           //   Check if the path[i] can be joined with the all the paths appearing after it.                   

5:            Join-Compatible ( ) 

 //join compatible method 

6:             If ‘n’ > 2 

8: If ‘n-1’ Labeled paths of n-tree expression are same 

9:     foreach Tag-code in LP-code 

10:      if Tag-code of LP1 and Tag-code of LP2 are same 

11:                 continue 

12:       elseif Tag-code of LP1 and Tag-code of LP2 not same 

13:                  if Tag-code of LP1 and Tag-code of LP2 not equal to zero 

14:                           RETURN joinable 

15:                  else 

16:                           RETURN not joinable 

17:        endif  

  

18:             elseif ‘n’ = 2 

19:     foreach Tag-code in LP-code 

20:      if Tag-code of LP1 and Tag-code of LP2 are same 

21:                 continue 

22:       elseif Tag-code of LP1 and Tag-code of LP2 not same 

23:                  if Tag-code of LP1 and Tag-code of LP2 not equal to zero 

24:                          RETURN joinable 

25:                 else 

26:                          RETURN not joinable 

27:        endif  

28:              endif 
         endfor 
29:     if C(k+1) not empty 

30:                Goto step 5 

31:     endif 

32: endfor 

33: Remove the non-frequent tree-expressions 

end 

 
 

In examples 4.5 and 4.6 we demonstrate the join compatibility of 1-tree-

expressions and 2-tree-expressions respectively. 

Example 4.5: The join-compatibility test of 1-tree-expressions is shown in 

Figure 4.4a and 4.4b. The join compatibility of Path1 and Path2 is shown in 
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Figure 4.4a and the join compatibility of Path2 and Path3 is shown in Figure 

4.4b.  

 

Figure 4.4a: Join-compatibility of Path1 and Path2 

 

Path1 and Path2 differ in their second tags from the left. One of them 

has a Tag-code of ‘0000’ and the other has a Tag-code ‘0010’.  Since one of 

these Tag-codes is ‘0000’, Path1 and Path2 cannot be joined to form a 2- tree-

expression.   

 

 

Figure 4.4b: Join-compatibility of Path2 and Path3 
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Path2 and Path3 differ in their second tag-codes which are ‘0010’ and 

‘0011’ respectively. Since none of these two tags-codes is equal to ‘0000’, 

Path2 and Path3 can be joined to form a 2-tree-expression. The LP-code of 

Path2 and Path3 are converted into integer as ‘4608*4864’. Where 4608 is the 

integer equivalent of the path ‘/inproceedings/author’ and 4864 is the 

integer equivalent of path ‘/inproceedings/title’.                                                                                      

□ 

Example 4.6: Figure 4.5 shows the join-compatibility of 2-tree-expressions. 

The two paths ‘/inproceedings/author’ and ‘/inproceedings/title’ form 2-

tree-expressions. Also the paths ‘/inproceedings/author’ and 

‘/inproceedings/pages’ form 2-tree-expressions. The representation of these 

2-tree-expression is ‘4608*4864’ and ‘4608*5376’ respectively.   
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Figure 4.5: Demonstrating join compatibility of 2 TE2 

 

In Figure 4.5 the (n-1)-tree-expression of the two paths is the same, ‘i.e.’ 

4608, ‘/inproceedings/Author’. The nth path of the first 2-tree-expression ‘i.e.’ 

4864 and the nth path of second 2-tree-expression ‘i.e.’ 5376 is checked for 

join-compatibility. The join compatibility returns true because the Tag-codes 

of the second Tags are not the same and none of them is ‘0000’. 

 The new tree-expression is represented by joining the first 2-tree-

expression with the nth labeled path of the second path to form 

‘/inproceedings/Author*/inproceedings/Title*/inproceedings/Pages’. The 

integer representation of the new 3-tree-expression is ‘4608*4864*5376’.  

□ 
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4.6 THE MINER2 PROCEDURE 

Miner2 mines the frequent structural patterns in the input XML dataset. 

The input to this procedure is the minsup, the Tags table, the Labeled-Paths 

table, and the Clusters table and its output is a list of frequent tree-

expressions.  Miner2 uses the Apriori algorithm to generate the candidate 

tree-expressions. Let C(k) be a set of candidate k-tree-expressions, F(k) a set 

of frequent k-tree-expression, ‘r’ a cursor which points to a row of the 

Clusters table,  and ‘r.C(k)’ the C(k) members of r.    

Miner2 is shown in Procedure 4, and it goes through the following 

steps: 

1. It generates F(0) elements from the Tags table (line 1).  

2. It generates F(1) elements from the Labeled-Paths table (line 2). 

3. Then for each row ‘r’ in the Clusters table it does the following four steps:  

i. Initializes k to 1. 

ii. For each row ‘r’ it generates r.C(k+1) from the join-compatible 

r.F(k) members (line 5). 
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iii. Puts the C(k+1) members with count greater than minsup to F(k+1) 

(line 31).  

iv. If C(k+1) is not empty, then it increments k by 1 and it goes back to 

step 2 (line 32).   

The support count of each C(k) is equal to sum of the Cluster-Counts of 

all the r.C(K)s from which it is generated. So to generate the C(k) members, 

Miner2 adds the Cluster-Counts of all the r.C(k) members from the Cluster it 

is generated. Then a C(k) member whose  support is higher than the minsup 

will be a member of F(k). The C(k+1) are always generated from the F(k). 
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Procedure 4:  MINER2 
begin  
1: Generate frequent 0-tree-expression from Tag Table 

2: Generate frequent 1-tree-expression from Labeled Path Table 

3: foreach Cluster-ID 

4:      foreach LP-code of LP-ID in Cluster-ID 

           //   Check if the path[i] can be joined with the all the paths appearing after it.                   

5:            Join-Compatible ( ) 

 //join compatible method 

6:             If ‘n’ > 2 

8: If ‘n-1’ Labeled paths of n-tree expression are same 

9:     foreach Tag-code in LP-code 

10:      if Tag-code of LP1 and Tag-code of LP2 are same 

11:                 continue 

12:       elseif Tag-code of LP1 and Tag-code of LP2 not same 

13:                  if Tag-code of LP1 and Tag-code of LP2 not equal to zero 

14:                          Store the n-tree-expression in the Cluster-ID 

15:                 else 

16:                          RETURN not joinable 

17:        endif  

  

18:             elseif ‘n’ = 2 

19:     foreach Tag-code in LP-code 

20:      if Tag-code of LP1 and Tag-code of LP2 are same 

21:                 continue 

22:       elseif Tag-code of LP1 and Tag-code of LP2 not same 

23:                  if Tag-code of LP1 and Tag-code of LP2 not equal to zero 

24:                           Store the n-tree-expression in the Cluster-ID  

25:                 else 

26:                           RETURN not joinable 

27:        endif  

28:               endif 
 //join compatible method  

29:         endfor 
30: endfor  

31: Remove the non-frequent tree-expressions from Cluster-ID 

32:     if r is not empty 

33:                Generate C(k+1) using Join-compatible( ) 

34:                Remove the non-frequent tree-expressions from Cluster-ID 

35:    else 

36:                 stop   

37:     endif 

End 

 

In example 4.7 we explain the process of removing non-frequent LP-IDs 

from clusters table and example 4.8 illustrates the process of storing tree-

expressions. 
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Example 4.7: The Labeled-Paths table is shown in Table 4.9. If the minimum 

support count, which is equal to the LP-count in this case, is 2, then ‘P8’ and 

‘P9’ are pruned because their support count is less than 2. 

LP-ID LP LP-code LP-count 

p1 /inproceedings 0001000000000000   5 

p2 /inproceedings/author 0001001000000000  5 

p3 /inproceedings/title 0001001100000000  5 

p4 /inproceedings/title/sub 0001001101000000  4 

p5 /inproceedings/pages 0001010100000000  5 

p6 /inproceedings/year 0001011000000000  5 

P7 /inproceedings/booktitle 0001011100000000  4 

P8 /inproceedings/title/i 0001001110000000 1 

P9 /inproceedings/title/i/sub 0001001110000100  1 

P10 /inproceedings/crossref 0001100100000000  2 

TABLE 4.9: LABELED-PATHS TABLE FOR DBLP DATASET  

 

So the LP-IDs ‘P8’ and ‘P9’ are removed from the cluster table. The 

cluster table after removing the non-frequent LP-IDs is shown in Table 4.11. 

Cluster-ID Cluster-Count 

p1*p2*p3*p4*p5*p6*p7 3 

p1*p2*p3*p8*p9*p5*p6*p10 1 

p1*p2*p3*p4*p5*p6*p10*p7 1 

TABLE 4.10: CLUSTER TABLE FOR DBLP DATASET  

 

Cluster-ID Cluster-Count 

p1*p2*p3*p4*p5*p6*p7 3 

p1*p2*p3*p5*p6*p10 1 

p1*p2*p3*p4*p5*p6*p10*p7 1 

TABLE 4.11: CLUSTER TABLE FOR DBLP DATASET AFTER REMOVING NON-
FREQUENT LP-IDS 

□ 
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Example 4.8: In this example we explain the process of storing tree-

expressions. When the first Cluster-ID ‘i.e.’ ‘p1*p2*p3*p4*p5*p6*p7’ is 

processed the tree-expressions generated from this Cluster-ID ‘i.e.’ 

‘4608*4864; 4608*4928; 4608*5376; 4608*5632; 4608*5888’ are stored in the 

Cluster table. Table 4.12 shows the Cluster table after processing the 2-tree-

expression for the first Cluster-ID. 

 

Cluster-ID Cluster-Count 

4608*4864;4608*4928;4608*5376;4608*5632;4608*5888; 3 

p1*p2*p3*p5*p6*p10 1 

p1*p2*p3*p4*p5*p6*p10*p7 1 

TABLE 4.12: CLUSTER TABLE AFTER 2-TREE-EXPRESSION  

 

Table 4.13 shows the Cluster table after processing the 2-tree-expression 

for all the Cluster-IDs. 

 

Cluster-ID Cluster-

Count 

4608*4864;4608*4928;4608*5376;4608*5632;4608*5888; 3 

4608*4864;4608*5376;4608*5632  1 

4608*4864;4608*4928;4608*5376;4608*6400;4608*5888;6400*5888 1 

TABLE 4.13: CLUSTER TABLE AFTER 2-TREE-EXPRESSION FOR ALL CLUSTERS  

 

The generated 2-tree-expressions are also stored in the Hashtable (called 

C(2)). Table 4.14 shows the Hashtable containing the 2-tree-expressions. 
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2-tree-expression Count 

4608*4864 5 

4608*4928 4 

4608*5376 5 

4608*5632 4 

4608*5888 4 

4608*6400 1 

6400*5888 1 

TABLE 4.14: HASHTABLE REPRESENTATION OF 2-TREE-EXPRESSION   

 
It can be seen that the 2-tree-expressions ‘4608*6400’ and ‘6400*5888’ 

have a count of 1 which is less than our minimum support count of 2. So 

these tree-expressions are removed from the Hashtable (now called F(2)) 

shown in Table  4.14 and also from the Cluster table shown in Table 4.15.  

Cluster-ID Cluster-Count 

4608*4864;4608*4928;4608*5376;4608*5632;4608*5888; 3 

4608*4864;4608*5376;4608*5632  1 

4608*4864;4608*4928;4608*5376;4608*5888; 1 

TABLE 4.15: CLUSTER TABLE AFTER REMOVING NON FREQUENT TREE- 
EXPRESSIONS 

□ 

4.7 THE ETEC PROCEDURE 

The frequent tree-expressions mined by Miner1 and Miner2 are only 

those tree-expressions whose root is the transaction-element. The remaining 

frequent tree-expressions are embedded inside the frequent tree-expressions 

found by Miner1 and Miner2.  To avoid counting the same embedded tree-

expression many times, only embedded k-tree-expressions are considered 
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from an embedding k-tree-expression. The ETEC procedure mines all the 

embedded k-tree-expressions from each frequent k-tree-expression. The 

count of each embedded k-tree-expression is equal to that of the embedding 

frequent k-tree-expression.  

Procedure 5 shows the ETEC algorithm. ETEC starts from the current 

(the embedding) k-tree-expression and goes through the following steps: 

1. It removes the root node from the current k-tree-expression (line 2). 

2. If the remaining nodes form a k-tree-expression, it makes the support 

count of the generated k-tree-expression to be equal to that of the 

embedding k-tree-expression (lines 6 and 7). 

3. If in step 2 a new embedded k-tree-expression is discovered, it makes this 

new k-tree-expression the current k-tree-expression and it goes back to 

step 1, otherwise it goes to step 4 (lines 3 to 5). 

4. Sums up the support count of the identical embedded k-tree-expressions 

and removes the duplicates (line 10). 
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Procedure 5:  ETEC 
begin  
 // sub n-tree-expression where n > 1 

1: foreach k-tree-expression 

2:               Remove the root node 

3:               if new embedded k-tree-expression found 

4:                        Make it the current k-tree-expression 

5:                            Goto step 2 

6:               elseif  nodes form a k-tree-expression 

7:                         Increment the count of k-tree-expression with the count of embedding                    

tree-expression 

8:               endif 

9: endfor   
10: Remove duplicates 

 // sub n-tree-expression where n = 1 

11: foreach Labeled-Path 

12:              if length of Labeled-Path not less than 2 

13:                       Remove the left Tag of the LP-code 

14:                       Store the Labeled-path and form a sub 1-tree-expression 

15:             else 

16:                        Stop 

end 

 

Example 4.9: Figure 4.6 shows how to find the embedded 2-tree-expression of 

the 2-tree-expression ‘P4*P5’ of Table 4.14. To discover the corresponding 

embedded 2-tree-expressions, ETEC removes the current root element, 

‘inproceedings’, and makes ‘title’ the new root. Since the sub-tree rooted at 

‘title’ is a 2-tree-expression, ETEC considers it as an embedded 2-tree-

expression.  
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Figure 4.6: Generating sub tree-expression 

□ 

4.8 SUMMARY  

Our proposed algorithms, FSPM1 and FSPM2, can be divided into four 

main procedures, namely, the XML Structural Clustering (XSC) procedure, 

the Encoder procedure, the Miner procedure, and the Embedded Tree-

Expressions Counter (ETEC). The XSC, the Encoder, and the ETEC 

procedures are shared by both algorithms, but each has its own Miner 

procedure. The FSPM1 algorithm mines all the candidates from the XML 

dataset and then removes the non-frequent tree-expressions. Whereas the 

FSPM2 algorithm removes the non-frequent tree expressions at each pass. 
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These procedures are explained using a small dataset. Experiments and 

analysis using the larger dataset is the topic of Chapter 5. 
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CHAPTER 5  

EXPERIMENTAL RESULTS 

5.1 INTRODUCTION 

In this chapter we present the experimental results and analysis of the 

proposed algorithms. To study the performance of the proposed algorithms, 

four sets of experiments were conducted. The first set of experiments was 

done to compare the performance of FSPM2 with the mabers algorithm [33]. 

The second set of experiments was done to study the scalability of FSPM2. 

The third set of experiments was done to check the performance of FSPM2 

when the average number of transactions per cluster varies.  The last set of 

experiments was done to compare the performance of FSPM1 and FSPM2. 

This chapter is organized as follows. Section 5.2 presents the 

experimental setup. The performance comparison of FSPM2 and mabers is 

presented in Section 5.3. Scalability analysis of FSMP2 is given in Section 5.4. 

The effect of the number of transactions on the performance of FSPM2 is 

discussed in Section 5.5. Section 5.6 presents the performance comparison of 

FSPM1 and FSPM2.   
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5.2 EXPERIMENTAL SETUP 

 This section presents the machine, the software, the datasets, and the 

performance measures used in the experiments.  

5.2.1 THE MACHINE AND THE SOFTWARE  

All the experiments were conducted using a Desktop computer with a 

Pentium IV processor 3.2 GHZ, 1 GB of RAM, and running Windows XP.  

The proposed algorithms were implemented in C#. Visual Studio 2010 

was used for executing the program. 

5.2.2 THE DATASETS  

In the experiments two benchmark (real) datasets and one synthetic 

dataset were used.  The benchmark datasets used were the DBLP and the 

LineItem datasets  obtained from the University of Washington repository 

[41]. A data generator code was developed in C# to produce the synthetic 

data.  
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To study the effect of the number of transactions on the performance of 

the proposed algorithms, we experimented with different numbers of 

transactions from each dataset.   

Dataset Name Dataset Segment No of transactions 

 

 

DBLP 

 

D1 15000 

D2 25000 

D3 50000 

D4 75000 

D5 100000 

D6 200000 

D7 400000 

D8 600000 

D9 800000 

D10 1000000 

LineItem 

L1 10000 

L2 20000 

L3 30000 

L4 40000 

L5 50000 

Synthetic 

S1 10000 

S2 20000 

S3 30000 

S4 40000 

S5 50000 

TABLE 5.1: THE DATASETS USED 

 

Table 5.1 shows the number of transactions in each dataset. The datasets 

were selected based on their uniformity factor. By uniformity here we mean 

the percentage of transactions per cluster of identically structured 

transactions. A highly uniform dataset has a high percentage of transactions 

per cluster. A dataset with a medium uniformity has a medium percentage of 

transactions per cluster. A non-uniform dataset has a very low percentage of 
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transactions per cluster. The LineItem dataset is highly uniform whereas the 

DBLP dataset is of medium uniformity. We made the synthetic dataset non-

uniform. 

5.2.3 THE PERFORMANCE MEASURE 

Elapsed time was used to evaluate the performance of the proposed 

algorithms. Elapsed Time is the total time spent to find the frequent 

structural patterns from an XML dataset. It is averaged over many runs. For 

FSPM1 and FSPM2, this time is the sum of the I/O time, the encoding time, 

the clustering time, and the mining time. 

5.3 FSPM2 VS. MABERS 

In this section we present the performance comparison of FSPM2 and 

the mabers algorithm. Three sets of experiments were done to compare the 

performance of the algorithms. These sets of experiments were done using 

the DBLP, the LineItem, and the synthetic datasets.  
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5.3.1 FSPM2 VS. MABERS USING THE DBLP DATASET  

In the first set of experiments, FSPM2 and the mabers algorithms were 

run several times using the D5 dataset segment. The experiments were done 

using a number of minsups varying from 0.0 to 0.9. Figure 5.1 shows the 

results of these experiments.   

As it can be seen from Figure 5.1, FSPM2 showed significantly better 

performance than mabers in all the experiments. FSPM2 was faster by up to 

182 times.  

FSPM2 performed better than mabers because the DBLP dataset 

contains many transactions with similar structure. As a result many 

transactions were put into the same cluster. FSPM2 processes one transaction 

per cluster whereas the mabers algorithm processes each transaction 

individually.  For example, if there are 50,000 transactions in a dataset and 

they were put into 100 clusters, FSPM2 will process only 100 transactions, one 

transaction from each cluster, whereas mabers will process all the 50,000 

transaction individually. The time taken by FSPM2 to cluster transactions is 

low because the clustering is done in one scan.   
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Figure 5.1: Elapsed Time: FSPM2 VS Mabers using D5  

 

D5 FSPM2 mabers  

Gain 
minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 10407 1313152 126.18 

10 4472 796830 178.18 

20 4255 775854 182.34 

30 4255 775854 182.34 

40 4052 643705 158.86 

50 3915 621831 158.83 

60 3877 605537 156.19 

70 3877 605537 156.19 

80 3877 605537 156.19 

90 3877 605537 156.19 

TABLE 5.2: ELAPSED TIME: FSPM2 VS MABERS FOR D5  

 

Table 5.2 shows the elapsed times for FSPM2 and mabers algorithms. 

The last column shows the gain, which is the elapsed time of mabers divided 
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by that of FSPM2. The gain was more when the minsup was 0.1, 0.2, or 0.3. 

This is because mabers was not able to prune many transactions earlier. The 

gain started decreasing when the minsup was 0.4 or 0.5. This is because the 

percentage of transactions in the dataset pruned earlier by mabers was less 

than the percentage of clusters of the dataset pruned by FSPM2. The mabers 

algorithm took less time when the minsup was 0.4 or 0.5 compared to the 

time it took when the minsup was 0.1, 0.2, or 0.3. The gain remained the same 

when the minsup was 0.6, 0.7, 0.8, and 0.9 as the count of tree-expressions 

remained the same at these minsups. The count of tree-expressions can be 

seen from Table 5.3. 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 TE11 

0 17 33 167 616 1307 1777 1626 1018 435 124 22 2 

0.1 17 11 28 56 70 56 28 8 1 0 0 0 

0.2 17 11 27 50 55 36 13 2 0 0 0 0 

0.3 17 11 27 50 55 36 13 2 0 0 0 0 

0.4 17 9 21 35 35 21 7 1 0 0 0 0 

0.5 17 7 16 23 18 7 1 0 0 0 0 0 

0.6 17 7 15 20 15 6 1 0 0 0 0 0 

0.7 17 7 15 20 15 6 1 0 0 0 0 0 

0.8 17 7 15 20 15 6 1 0 0 0 0 0 

0.9 17 7 15 20 15 6 1 0 0 0 0 0 

TABLE 5.3: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR D5 

 

For the results of dataset segments D1 to D4 please refer to Appendix A.  
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5.3.2 FSPM2 VS. MABERS USING THE LINEITEM DATASET  

In the second set of the experiments FSPM2 and the mabers algorithms 

were run several times using L1 to L5 LINEITEM dataset segments. Figure 

5.2 shows the results of the experiments.   

In all the experiments FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 49,516 times.  

 

Figure 5.2: Elapsed Time: FSPM2 VS Mabers for L1 – L5  
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FSPM2 performed better than mabers because the LINEITEM dataset 

consists of transactions with similar structure. As a result, all transactions 

were put into the same cluster. FSPM2 processes one transaction per cluster 

while mabers processes individual transactions. The clustering of the 

transactions by FSPM2 doesn’t take much time because it is achieved in one 

pass.    

  L1 – L5 FSPM2 mabers 
 

Gain 
Dataset 

Segments 

Elapsed Time 

 (in min) 

Elapsed Time 

 (in min) 

L1 7.95 79128.02 9953.21 

L2 7.96 158256.03 19881.41 

L3 7.97 237384.04 29784.70 

L4 7.98 316512.05 39663.16 

L5 7.99 395640.06 49516.90 

 TABLE 5.4: ELAPSED TIME: FSPM2 VS MABERS FOR L1 – L5 

 

Table 5.4 shows elapsed time for FSPM2 and the mabers algorithms. The 

last column shows the gain, which is the elapsed time of mabers divided by 

that of FSPM2. As the time required for mining tree-expressions from one 

cluster is more than 7 minutes, it will be time-consuming for mining tree-

expressions using the mabers algorithm. So for the mabers algorithm we took 

100 transactions. The time obtained by running the algorithm for the 100 

transactions is extrapolated to get the representative times for all the other 

dataset segments. The mining time for each of the dataset segments L1 to L5 
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remains the same as they all have the same structure. The clustering time is 

proportional to the size of the dataset segments. All the tree-expressions have 

a count equal to the number of transactions. The count of tree-expressions can 

be seen in Table 5.5. 

Dataset 

Segment TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 

L1 17 17 120 560 1820 4368 8008 11440 12870 

L2 17 17 120 560 1820 4368 8008 11440 12870 

L3 17 17 120 560 1820 4368 8008 11440 12870 

L4 17 17 120 560 1820 4368 8008 11440 12870 

L5 17 17 120 560 1820 4368 8008 11440 12870 
 

Dataset 

Segment TE9 TE10 TE11 TE12 TE13 TE14 TE15 TE16 

L1 11440 8008 4368 1820 560 120 16 1 

L2 11440 8008 4368 1820 560 120 16 1 

L3 11440 8008 4368 1820 560 120 16 1 

L4 11440 8008 4368 1820 560 120 16 1 

L5 11440 8008 4368 1820 560 120 16 1 

TABLE 5.5: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR L1 – L5 

 

5.3.3 FSPM2 VS. MABERS USING THE SYNTHETIC DATASET  

In the third set of experiments, FSPM2 and the mabers algorithms were 

run several times using the S5 SYNTHETIC dataset segment. The 

experiments were done using a number of minsups varying from 0.0 to 0.9. 

Figure 5.3 shows the results of the experiments.  
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In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 37 times.  

 

Figure 5.3: Elapsed Time: FSPM2 VS Mabers using S5  

 

The SYNTHETIC dataset contains few transactions with similar 

structure. The similar transactions were put into the same cluster. FSPM2 

processes one transaction per cluster while mabers processes individual 

transactions.  This is because the percentage of transactions in the dataset 

pruned earlier by mabers was less than the percentage of clusters of the 

dataset pruned by FSPM2. The mabers algorithm took less time when the 

minsup was 0.2 or 0.3 compared to the time it took when the minsup was 0.1. 

The count of tree-expression can be seen from Table 5.7.  
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S5 FSPM2 mabers 
 

Gain 
minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 1496 54413 36.37 

0.1 1302 48595 37.32 

0.2 1286 46005 35.77 

0.3 1267 44052 34.77 

0.4 1248 37789 30.28 

0.5 1248 37789 30.28 

0.6 1248 37789 30.28 

0.7 1248 37789 30.28 

0.8 1248 37789 30.28 

0.9 1248 37789 30.28 

TABLE 5.6: ELAPSED TIME: FSPM2 VS MABERS FOR S5  

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 

0 42 100 308 784 877 472 128 14 

0.1 40 7 15 20 15 0 0 0 

0.2 39 7 15 20 0 0 0 0 

0.3 39 7 15 0 0 0 0 0 

0.4 39 7 0 0 0 0 0 0 

0.5 37 7 0 0 0 0 0 0 

0.6 36 2 0 0 0 0 0 0 

0.7 34 1 0 0 0 0 0 0 

0.8 29 1 0 0 0 0 0 0 

0.9 29 1 0 0 0 0 0 0 

TABLE 5.7: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR S5 

 

For the results of dataset segments S1 to S4 please refer to Appendix B.  
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5.4 SCALIBILITY OF FSPM2  

In this set of experiments, FSPM2 and the mabers algorithms were run 

several times using the DBLP dataset segments D6 to D10. This DBLP dataset 

is available at [42]. For the scalability analysis we considered transactions of 

200k and kept increasing the transactions till 1 million. The numbers of 

transactions in the dataset segments were 200k, 400k, 600k, 800k, and 1 

million. Minsup of 0.1 was used while running the experiments. Figure 5.4 

shows the results of the experiments. 

In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 480 times. 

   

 

Figure 5.4: Elapsed Time FSPM2 VS Mabers using D6-D10  
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Scalability FSPM-2 Mabers 

Gain 

 Dataset 

Segment 

Clustering 

Time 

 (in sec) 

I/O Time 

 (in sec) 

Mining 

Time 

 (in sec)  

Total 

Time 

 (in sec) 

I/O Time 

 (in sec) 

Mining Time 

 (in sec)  

Total Time 

 (in sec)  

D6 7.09 2.81 3.78 13.69 5.62 5337.63 5349.25 390.88 

D7 12.17 5.69 5.60 23.46 11.37 11246.60 11266.47 480.30 

D8 18.50 8.86 6.59 33.94 17.71 14808.29 14837.20 437.15 

D9 24.25 11.09 7.23 42.58 22.18 19607.98 19645.41 461.41 

D10 24.64 11.55 7.23 43.42 23.10 19607.98 19646.33 452.46 

TABLE 5.8: ELAPSED TIME FOR D6-D10   

 

Table 5.8 shows the elapsed time for FSPM2 and the mabers algorithms 

for Dataset segments D6 to D10. The last column shows the gain, which is the 

elapsed time of mabers divided by that of FSPM2. The clustering time 

increases from segments D6 to D10 as the clustering time is proportional to 

the dataset size. The elapsed time increases linearly with the size of the 

dataset segment. The count of tree-expressions can be seen in Table 5.9 

Dataset 

Segment 
TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 

D6 21 10 37 84 126 126 84 36 9 1 

D7 22 10 37 84 126 126 84 36 9 1 

D8 22 10 37 84 126 126 84 36 9 1 

D9 22 10 37 84 126 126 84 36 9 1 

D10 22 10 37 84 126 126 84 36 9 1 

TABLE 5.9: COUNT OF TREE-EXPRESSIONS FOR D6-D10 
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5.5 FSPM2 VS. MABERS WITH NON-UNIFORM DATASETS 

This section explains how the performance of FSPM2 is affected when 

the input dataset is non-uniform. In the experiments a number of non-

uniform synthetic datasets were generated.  Each dataset had 50,000 

transactions. The number of transactions per cluster varied between 1 and 5, 

which is a small cluster size and also the worst case scenario for FSPM2. From 

Table 5.10 and Figure 5.5, we can conclude that in the worst case, the 

performance of FSPM2 is the same as that of mabers. 

 
FSPM2 Mabers 

Transactions 

per cluster 

Elapsed 

Time 

 (in msec)  

Elapsed 

Time 

 (in 

msec)  

1.2 3577 3725 

1.7 5767 5977 

1.9 6978 7144 

2.0 9624 9771 

2.7 30606 30974 

3.5 94363 95119 

TABLE 5.10: ELAPSED TIME FSPM2 VS. MABERS 
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Figure 5.5: Elapsed Time FSPM2 VS mabers 

 

5.6 COMPARISON OF FSPM1 VS. FSPM2  
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algorithm is recommended when we need to mine tree-expressions for 

minsup 0.0; and when all the tree-expressions are frequent as in the case of 

the LINEITEM dataset. 

We present the performance comparison of the FSPM1 and the FSPM2 

algorithms. Three sets of experiments were done to compare the algorithms. 

These sets of experiments were done using the DBLP, the LineItem, and the 

synthetic datasets. 

5.6.1 FSPM1 VS. FSPM2 USING THE DBLP DATASET  

In the first set of the experiments, FSPM1 and FSPM2 were run several 

times using the D5 DBLP dataset segment. The experiments were done using 

a number of minsups varying from 0.0 to 0.9. Figure 5.6 shows the results of 

these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 33 times.   

FSPM2 performed better than FSPM1 when the minsup greater than 

zero as FSPM2 removes non-frequent tree-expressions at the end of each level 

whereas FSPM1 doesn’t remove non-frequent tree-expressions between 
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levels. The tree expressions that don’t satisfy the minsup are called non-

frequent.  

 

Figure 5.6: FSPM1 VS FSPM2 Mining Time for D5 

 

FSPM2’s methodology reduces the candidate tree-expressions for the 

next level. Whereas FSPM1 takes constant time for generating the tree-

expressions and it takes some extra time for removing the non-frequent tree-

expressions at the end of last level. Therefore gain improves as the minsup is 

increased. The count of the tree-expressions at each level can be seen in Table 
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D5 FSPM1 FSPM2  

Gain 

minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 6630 6726 0.99 

0.1 6636 791 8.39 

0.2 6636 574 11.56 

0.3 6636 574 11.56 

0.4 6636 371 17.89 

0.5 6636 234 28.36 

0.6 6637 196 33.86 

0.7 6637 196 33.86 

0.8 6637 196 33.86 

0.9 6637 196 33.86 

TABLE 5.11: FSPM1 VS FSPM2 MINING TIME FOR D5 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 TE11 

0 17 21 33 167 616 1307 1777 1626 1018 435 124 22 

0.1 17 11 28 56 70 56 28 8 1 0 0 0 

0.2 17 11 27 50 55 36 13 2 0 0 0 0 

0.3 17 11 27 50 55 36 13 2 0 0 0 0 

0.4 17 9 21 35 35 21 7 1 0 0 0 0 

0.5 17 7 16 23 18 7 1 0 0 0 0 0 

0.6 17 7 15 20 15 6 1 0 0 0 0 0 

0.7 17 7 15 20 15 6 1 0 0 0 0 0 

0.8 17 7 15 20 15 6 1 0 0 0 0 0 

0.9 17 7 15 20 15 6 1 0 0 0 0 0 

TABLE 5.12: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR D5 

 

For the results of dataset segments D1 to D4 please refer to Appendix C.  
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5.6.2 FSPM1 VS. FSPM2 USING THE LINEITEM DATASET 

In the second set of experiments, FSPM1 and FSPM2 were run several 

times using the LINEITEM dataset segments L1 to L5. Figure 5.7 shows the 

results of these experiments.   

In all the experiments, FSPM1 showed better performance than FSPM2. 

FSPM1 was faster by 1.05 times.   

 

Figure 5.7: FSPM1 VS FSPM2 Mining Time for L1 – L5 

 

FSPM1 performs better than FSPM2 as all the tree-expressions in the 
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 L1 - L5 FSPM1  FSPM2 

Gain 

 

Dataset 

Segment 

Mining Time 

 (in min)  

Mining Time 

 (in min)  

L1 7.53 7.93 1.05 

L2 7.53 7.93 1.05 

L3 7.53 7.93 1.05 

L4 7.53 7.93 1.05 

L5 7.53 7.93 1.05 

TABLE 5.13: FSPM1 VS FSPM2 MINING TIME FOR L1 – L5 

 

The count of the tree-expressions at each level can be seen in Table 5.14. 

It can be noticed that the count of tree-expressions for the dataset segments 

L1 to L5 is the same as all of them have the same structure. This table is 

divided into two parts for better visualization.  

Dataset 

Segment TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 

L1 17 17 120 560 1820 4368 8008 11440 12870 

L2 17 17 120 560 1820 4368 8008 11440 12870 

L3 17 17 120 560 1820 4368 8008 11440 12870 

L4 17 17 120 560 1820 4368 8008 11440 12870 

L5 17 17 120 560 1820 4368 8008 11440 12870 
 

Dataset 

Segment TE9 TE10 TE11 TE12 TE13 TE14 TE15 TE16 

L1 11440 8008 4368 1820 560 120 16 1 

L2 11440 8008 4368 1820 560 120 16 1 

L3 11440 8008 4368 1820 560 120 16 1 

L4 11440 8008 4368 1820 560 120 16 1 

L5 11440 8008 4368 1820 560 120 16 1 

TABLE 5.14: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR L1 – L5 
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5.6.3 FSPM1 VS. FSPM2 USING THE SYNTHETIC DATASET 

In the third set of experiments, FSPM1 and FSPM2 were run several 

times using the S5 SYNTHETIC dataset segment. The experiments were done 

using a number of minsups varying from 0.0 to 0.9. Figure 5.8 shows the 

results of these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 3 times.   

 

Figure 5.8: FSPM1 VS FSPM2 Mining Time for S5 
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levels. The tree expressions that don’t satisfy the minsup are called non-

frequent. 

S5 FSPM1 FSPM2 
 

Gain 

minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 356 366 0.97 

0.1 358 172 2.08 

0.2 358 156 2.29 

0.3 359 137 2.62 

0.4 359 118 3.04 

0.5 359 118 3.04 

0.6 359 118 3.04 

0.7 359 118 3.04 

0.8 359 118 3.04 

0.9 359 118 3.04 

TABLE 5.15: FSPM1 VS FSPM2 MINING TIME FOR S5 

 

FSPM2’s methodology reduces the candidate tree-expressions for the 

next level. Whereas FSPM1 takes constant time for generating the tree-

expressions and it takes some extra time for removing the non-frequent tree-

expressions at the end of last level. Therefore gain improves as the minsup is 

increased.  

The count of the tree-expressions at each level can be seen in Table 5.16. 

It can be noticed that as the minsup increases the count of the tree-

expressions is reduced. 
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minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 

0 42 100 308 784 877 472 128 14 

0.1 40 7 15 20 15 0 0 0 

0.2 39 7 15 20 0 0 0 0 

0.3 39 7 15 0 0 0 0 0 

0.4 39 7 0 0 0 0 0 0 

0.5 37 7 0 0 0 0 0 0 

0.6 36 2 0 0 0 0 0 0 

0.7 34 1 0 0 0 0 0 0 

0.8 29 1 0 0 0 0 0 0 

0.9 29 1 0 0 0 0 0 0 

TABLE 5.16: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR S5 

 

For the results of dataset segments S1 to S4 please refer to Appendix D.  

5.8 SUMMARY  

In this section we presented the analysis of the proposed algorithms 

(FSPM1 and FSPM2) based on experiments on real XML benchmark datasets 

and synthetic datasets. Our proposed algorithms outperform the mabers 

algorithm. The proposed algorithms process one instance of several 

transactions. The gain obtained from running the algorithm is best for highly 

uniform datasets. The gain was about 49,516 times for the LineItem D5 

dataset segment. In the worst case, the performance of FSPM2 was the same 

as mabers. The scalability analysis confirms that our proposed algorithm 

FSPM2 is scalable to a huge number of transactions. 



 
 

CHAPTER 6 

 CONCLUSION AND FUTURE WORKS 

In this chapter we summarize our thesis and propose ways in which this 

work can be extended in the future. The summary of our thesis is given in 

Section 6.1. Then, Section 6.2 lists the future work. 

6.1 THESIS SUMMARY 

In this section we summarize our thesis. The main objective of this 

thesis was to propose an efficient frequent structure mining algorithm. To 

achieve this objective, first we presented a literature review on frequent 

structural pattern mining in Chapter 3. The review showed there are a few 

algorithms to mine frequent structural patterns. Algorithms that mine 

association rules from XML documents can be classified into three, namely, 

content-based algorithms, structure-based algorithms, and content-structure-

based algorithms. The content-based algorithms mine association rules only 

from the content (values) of an XML dataset. The structure-based algorithms, 

mine association rules only from the structural relationships found in an 
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XML dataset. Finally, the content-structure-based algorithms mine 

association rules from both the content and the structural relationships found 

in an XML dataset. 

The proposed algorithms were designed to efficiently mine frequent 

structural patterns from XML datasets. Two Frequent Structural Pattern 

Mining algorithms, namely, FSPM1 and FSPM2 are proposed. Each of the 

two algorithms consists of four main procedures, namely, the XML Structural 

Clustering (XSC) procedure, the Encoder procedure, the Miner procedure, 

and the Embedded Tree-Expressions Counter (ETEC). The XSC, the Encoder, 

and the ETEC procedures are shared by both algorithms, but each has its own 

Miner procedure. To the best of our knowledge, our proposed algorithms are 

the first algorithms to use clustering for mining frequent substructures from 

XML datasets.  

To validate the previous goals and solutions, experiments were 

conducted using synthetic and real life XML benchmark datasets. The results 

of these experiments are as follows: 

 The Clustering phase takes one dataset scan. 

 The Clustering time is proportional to the dataset size. 
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 The gain obtained from running the algorithm is best for highly 

uniform datasets. The gain was about 49,516 times.  

 In the worst case the performance of FSPM2 is the same as 

mabers. 

The proposed algorithms are used to find frequent structural patterns. 

Finding frequent patterns has many applications, such as, 

querying/browsing information sources, indexing, and building wrappers. It 

also plays an essential role in many data mining tasks such as associations, 

correlations, classification, clustering, and many other interesting 

relationships among data.  

6.2 FUTURE WORK 

Algorithms that mine association rules from XML documents can be 

classified into three, namely, content-based algorithms, structure-based 

algorithms, and content-structure-based algorithms. This thesis work focuses 

on mining frequent structural patterns using the structure of the XML 

document. The possible future work for this thesis is to come up with a new 

clustering algorithm which clusters the XML Dataset based on structure and 

content information. Another future work can be to use our algorithm to 
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mine the frequent patterns using content and structure information of an 

XML document. In this place I am keeping dummy text to align the text.



 
 

APPENDIX A 

FSPM2 VS. MABERS USING THE DBLP DATASET D1 

In this set of experiments, FSPM2 and the mabers algorithms were run 

several times using the D1 DBLP dataset segment. The experiments were 

done using a number of minsups varying from 0.0 to 0.9. Figure A.1 shows 

the results of the experiments.  

In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 162 times.  

 

  

Figure A.1: Elapsed Time: FSPM2 VS Mabers using D1  
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D1 FSPM2 mabers  

Gain 
minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 3196 204894 64.11 

0.1 1151 172863 150.19 

0.2 1062 172280 162.22 

0.3 1062 172280 162.22 

0.4 962 146106 151.88 

0.5 897 129392 144.25 

0.6 897 129392 144.25 

0.7 897 129392 144.25 

0.8 897 129392 144.25 

0.9 897 129392 144.25 

TABLE A.1: ELAPSED TIME: FSPM2 VS MABERS FOR D1  

 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 

0 14 23 108 359 705 901 773 440 159 33 3 

0.1 14 10 28 56 70 56 28 8 1 0 0 

0.2 14 10 27 50 55 36 13 2 0 0 0 

0.3 14 10 27 50 55 36 13 2 0 0 0 

0.4 14 10 21 35 35 21 7 1 0 0 0 

0.5 14 8 15 20 15 6 1 0 0 0 0 

0.6 14 8 15 20 15 6 1 0 0 0 0 

0.7 8 8 15 20 15 6 1 0 0 0 0 

0.8 8 8 15 20 15 6 1 0 0 0 0 

0.9 8 8 15 20 15 6 1 0 0 0 0 

TABLE A.2: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR D1 
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FSPM2 VS. MABERS USING THE DBLP DATASET D2 

In this set of experiments, FSPM2 and the mabers algorithms were run 

several times using the D2 DBLP dataset segment. The experiments were 

done using a number of minsups varying from 0.0 to 0.9. Figure A.2 shows 

the results of the experiments.  

In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 143 times.  

 

 

Figure A.2: Elapsed Time: FSPM2 VS Mabers using D2  
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D2 FSPM2 mabers 
 

Gain 

minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 3564 263244 73.86 

0.1 1456 209079 143.60 

0.2 1422 199706 140.44 

0.3 1422 199706 140.44 

0.4 1422 199706 140.44 

0.5 1219 102359 83.97 

0.6 1219 102359 83.97 

0.7 1219 102359 83.97 

0.8 1219 102359 83.97 

0.9 1219 102359 83.97 

TABLE A.3: ELAPSED TIME: FSPM2 VS MABERS FOR D2 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 

0 14 23 113 390 776 991 838 465 163 33 3 

0.1 14 10 28 56 70 56 28 8 1 0 0 

0.2 14 10 27 50 55 36 13 2 0 0 0 

0.3 14 10 27 50 55 36 13 2 0 0 0 

0.4 14 10 27 50 55 36 13 2 0 0 0 

0.5 14 8 15 20 15 6 1 0 0 0 0 

0.6 14 8 15 20 15 6 1 0 0 0 0 

0.7 13 8 15 20 15 6 1 0 0 0 0 

0.8 8 8 15 20 15 6 1 0 0 0 0 

0.9 8 8 15 20 15 6 1 0 0 0 0 

TABLE A.4: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR D2 
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FSPM2 VS. MABERS USING THE DBLP DATASET D3 

In this set of experiments, FSPM2 and the mabers algorithms were run 

several times using the D3 DBLP dataset segment. The experiments were 

done using a number of minsups varying from 0.0 to 0.9. Figure A.3 shows 

the results of the experiments.  

In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 223 times.  

 

 

Figure A.3: Elapsed Time: FSPM2 VS Mabers using D3 
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D3 FSPM2 mabers  

Gain 
minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 5051 618464 122.44 

0.1 2418 541173 223.81 

0.2 2310 510458 220.98 

0.3 2310 510458 220.98 

0.4 2294 496509 216.44 

0.5 2171 344657 158.75 

0.6 2086 278954 133.73 

0.7 2086 278954 133.73 

0.8 2086 278954 133.73 

0.9 2086 278954 133.73 

TABLE A.5: ELAPSED TIME: FSPM2 VS MABERS FOR D3  

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 

0 14 26 126 438 874 1118 944 520 179 35 3 

0.1 14 10 28 56 70 56 28 8 1 0 0 

0.2 14 10 27 50 55 36 13 2 0 0 0 

0.3 14 9 27 50 55 36 13 2 0 0 0 

0.4 14 9 25 47 54 36 13 2 0 0 0 

0.5 14 8 21 35 35 21 7 1 0 0 0 

0.6 14 8 15 20 15 6 1 0 0 0 0 

0.7 8 8 15 20 15 6 1 0 0 0 0 

0.8 8 8 15 20 15 6 1 0 0 0 0 

0.9 8 8 15 20 15 6 1 0 0 0 0 

TABLE A.6: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR D3 
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FSPM2 VS. MABERS USING THE DBLP DATASET D4 

In this set of experiments, FSPM2 and the mabers algorithms were run 

several times using the D4 DBLP dataset segment. The experiments were 

done using a number of minsups varying from 0.0 to 0.9. Figure A.4 shows 

the results of the experiments.  

In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 237 times.  

 

 

Figure A.4: Elapsed Time: FSPM2 VS Mabers using D4  
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D4 FSPM2 mabers  

Gain 
minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 9082 1093364 120.39 

0.1 3615 856970 237.06 

0.2 3477 690314 198.54 

0.3 3477 690314 198.54 

0.4 3270 611711 187.07 

0.5 3270 611711 187.07 

0.6 3115 519848 166.89 

0.7 3115 519848 166.89 

0.8 3115 519848 166.89 

0.9 3115 519848 166.89 

TABLE A.7: ELAPSED TIME: FSPM2 VS MABERS FOR D4 

 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 TE11 

0 16 31 156 567 1203 1654 1539 981 426 123 22 2 

0.1 16 10 28 56 70 56 28 8 1 0 0 0 

0.2 15 10 27 50 55 36 13 2 0 0 0 0 

0.3 15 10 27 50 55 36 13 2 0 0 0 0 

0.4 15 9 21 35 35 21 7 1 0 0 0 0 

0.5 15 9 21 35 35 21 7 1 0 0 0 0 

0.6 14 7 15 20 15 6 1 0 0 0 0 0 

0.7 8 7 15 20 15 6 1 0 0 0 0 0 

0.8 8 7 15 20 15 6 1 0 0 0 0 0 

0.9 8 7 15 20 15 6 1 0 0 0 0 0 

TABLE A.8: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR D4 
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APPENDIX B 

FSPM2 VS. MABERS USING THE SYNTHETIC DATASET S1 

In this set of experiments, FSPM2 and the mabers algorithms were run 

several times using the S1 SYNTHETIC dataset segment. The experiments 

were done using a number of minsups varying from 0.0 to 0.9. Figure A.5 

shows the results of the experiments.  

In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 19 times.  

 

 

Figure A.5: Elapsed Time: FSPM2 VS Mabers using S1  
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S1 FSPM2 mabers 
 

Gain 

minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 490 8600 17.55 

0.1 474 7906 16.68 

0.2 471 7803 16.57 

0.3 461 7602 16.49 

0.4 459 7398 16.12 

0.5 459 7398 16.12 

0.6 459 7398 16.12 

0.7 459 7398 16.12 

0.8 459 7398 16.12 

0.9 459 7398 16.12 

TABLE A.9: ELAPSED TIME: FSPM2 VS MABERS FOR S1  

 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 

0 30 65 116 171 112 30 2 

0.1 29 7 15 20 15 0 0 

0.2 28 7 15 20 0 0 0 

0.3 28 7 15 0 0 0 0 

0.4 27 7 0 0 0 0 0 

0.5 25 7 0 0 0 0 0 

0.6 25 6 0 0 0 0 0 

0.7 24 1 0 0 0 0 0 

0.8 20 1 0 0 0 0 0 

0.9 14 1 0 0 0 0 0 

TABLE A.10: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR S1 
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FSPM2 VS. MABERS USING THE SYNTHETIC DATASET S2 

In this set of experiments, FSPM2 and the mabers algorithms were run 

several times using the S2 SYNTHETIC dataset segment. The experiments 

were done using a number of minsups varying from 0.0 to 0.9. Figure A.6 

shows the results of the experiments.  

In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 27 times.  

  

 

Figure A.6: Elapsed Time: FSPM2 VS Mabers using S2 
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S2 FSPM2 mabers 
 

Gain 
minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 795 19782 24.88 

0.1 697 19261 27.63 

0.2 689 18914 27.45 

0.3 687 18143 26.41 

0.4 676 16688 24.69 

0.5 676 16688 24.69 

0.6 676 16688 24.69 

0.7 676 16688 24.69 

0.8 676 16688 24.69 

0.9 676 16688 24.69 

TABLE A.11: ELAPSED TIME: FSPM2 VS MABERS FOR S2 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 

0 19 37 100 229 254 138 31 

0.1 19 7 15 20 15 0 0 

0.2 18 7 15 20 0 0 0 

0.3 17 7 15 0 0 0 0 

0.4 17 7 0 0 0 0 0 

0.5 17 7 0 0 0 0 0 

0.6 17 6 0 0 0 0 0 

0.7 17 1 0 0 0 0 0 

0.8 17 1 0 0 0 0 0 

0.9 14 1 0 0 0 0 0 

TABLE A.12: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR S2 
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FSPM2 VS. MABERS USING THE SYNTHETIC DATASET S3 

In this set of experiments, FSPM2 and the mabers algorithms were run 

several times using the S3 SYNTHETIC dataset segment. The experiments 

were done using a number of minsups varying from 0.0 to 0.9. Figure A.7 

shows the results of the experiments.  

In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 35 times.  

  

 

Figure A.7: Elapsed Time: FSPM2 VS Mabers using S3  
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S3 FSPM2 mabers 
 

Gain 
minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 1002 35158 35.09 

0.1 911 32869 36.08 

0.2 903 29798 33.00 

0.3 893 28846 32.30 

0.4 877 20616 23.51 

0.5 877 20616 23.51 

0.6 877 20616 23.51 

0.7 877 20616 23.51 

0.8 877 20616 23.51 

0.9 877 20616 23.51 

TABLE A.13: ELAPSED TIME: FSPM2 VS MABERS FOR S3 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 

0 19 37 98 217 222 103 18 

0.1 19 7 15 20 15 0 0 

0.2 19 7 15 20 0 0 0 

0.3 19 7 15 0 0 0 0 

0.4 19 7 0 0 0 0 0 

0.5 18 7 0 0 0 0 0 

0.6 18 3 0 0 0 0 0 

0.7 18 1 0 0 0 0 0 

0.8 17 1 0 0 0 0 0 

0.9 16 1 0 0 0 0 0 

TABLE A.14: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR S3 
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FSPM2 VS. MABERS USING THE SYNTHETIC DATASET S4 

In this set of experiments, FSPM2 and the mabers algorithms were run 

several times using the S4 SYNTHETIC dataset segment. The experiments 

were done using a number of minsups varying from 0.0 to 0.9. Figure A.8 

shows the results of the experiments.  

In all the experiments, FSPM2 showed significantly better performance 

than mabers. FSPM2 was faster by up to 91 times.  

  

 

Figure A.8: Elapsed Time: FSPM2 VS Mabers using S4 
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S4 FSPM2 mabers 
 

Gain 
minsup 

Elapsed Time 

 (in msec) 

Elapsed Time 

 (in msec) 

0 1110 95998 86.48 

0.1 1022 93032 91.03 

0.2 1016 89184 87.78 

0.3 1013 88755 87.62 

0.4 994 64402 64.79 

0.5 994 64402 64.79 

0.6 994 64402 64.79 

0.7 994 64402 64.79 

0.8 994 64402 64.79 

0.9 994 64402 64.79 

TABLE A.15: ELAPSED TIME: FSPM2 VS MABERS FOR S4  

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 

0 19 37 98 214 201 79 10 

0.1 19 7 15 20 15 0 0 

0.2 18 7 15 20 0 0 0 

0.3 17 7 15 0 0 0 0 

0.4 17 7 0 0 0 0 0 

0.5 17 7 0 0 0 0 0 

0.6 17 3 0 0 0 0 0 

0.7 17 1 0 0 0 0 0 

0.8 16 1 0 0 0 0 0 

0.9 16 1 0 0 0 0 0 

TABLE A.16: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR S4 
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APPENDIX C 

FSPM1 VS. FSPM2 USING THE DBLP DATASET D1 

In this set of experiments, FSPM1 and FSPM2 were run several times 

using the D1 DBLP dataset segment. The experiments were done using a 

number of minsups varying from 0.0 to 0.9. Figure A.9 shows the results of 

these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 18 times.   

 

 

Figure A.9: FSPM1 VS FSPM2 Mining Time for D1 
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D1 FSPM1 FSPM2  

Gain 

minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 2386 2426 0.98 

0.1 2389 381 6.27 

0.2 2389 292 8.18 

0.3 2389 292 8.18 

0.4 2389 192 12.44 

0.5 2389 129 18.52 

0.6 2389 127 18.81 

0.7 2389 127 18.81 

0.8 2389 127 18.81 

0.9 2389 127 18.81 

TABLE A.17: FSPM1 VS FSPM2 MINING TIME FOR D1 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 

0 14 23 108 359 705 901 773 440 159 33 3 

0.1 14 10 28 56 70 56 28 8 1 0 0 

0.2 14 10 27 50 55 36 13 2 0 0 0 

0.3 14 10 27 50 55 36 13 2 0 0 0 

0.4 14 10 21 35 35 21 7 1 0 0 0 

0.5 14 8 15 20 15 6 1 0 0 0 0 

0.6 14 8 15 20 15 6 1 0 0 0 0 

0.7 8 8 15 20 15 6 1 0 0 0 0 

0.8 8 8 15 20 15 6 1 0 0 0 0 

0.9 8 8 15 20 15 6 1 0 0 0 0 

TABLE A.18: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR D1 
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FSPM1 VS. FSPM2 USING THE DBLP DATASET D2 

In this set of experiments, FSPM1 and FSPM2 were run several times 

using the D2 DBLP dataset segment. The experiments were done using a 

number of minsups varying from 0.0 to 0.9. Figure A.10 shows the results of 

these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 18 times.   

 

 

Figure A.10: FSPM1 VS FSPM2 Mining Time for D2 
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D2 FSPM1 FSPM2  

Gain 

minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 2466 2476 0.996 

0.1 2470 368 6.71 

0.2 2470 334 7.40 

0.3 2470 334 7.40 

0.4 2470 334 7.40 

0.5 2470 131 18.85 

0.6 2470 131 18.85 

0.7 2470 131 18.85 

0.8 2470 131 18.85 

0.9 2470 131 18.85 

TABLE A.19: FSPM1 VS FSPM2 MINING TIME FOR D2 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 

0 14 23 113 390 776 991 838 465 163 33 3 

0.1 14 10 28 56 70 56 28 8 1 0 0 

0.2 14 10 27 50 55 36 13 2 0 0 0 

0.3 14 10 27 50 55 36 13 2 0 0 0 

0.4 14 10 27 50 55 36 13 2 0 0 0 

0.5 14 8 15 20 15 6 1 0 0 0 0 

0.6 14 8 15 20 15 6 1 0 0 0 0 

0.7 13 8 15 20 15 6 1 0 0 0 0 

0.8 8 8 15 20 15 6 1 0 0 0 0 

0.9 8 8 15 20 15 6 1 0 0 0 0 

TABLE A.20: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVEL FOR D2 
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FSPM1 VS. FSPM2 USING THE DBLP DATASET D3 

In this set of experiments, FSPM1 and FSPM2 were run several times 

using the D3 DBLP dataset segment. The experiments were done using a 

number of minsups varying from 0.0 to 0.9. Figure A.11 shows the results of 

these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 19 times.   

 

 

Figure A.11: FSPM1 VS FSPM2 Mining Time for D3 
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D3 FSPM1 FSPM2  

Gain 
minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 3067 3120 0.98 

0.1 3071 487 6.31 

0.2 3071 379 8.10 

0.3 3071 379 8.10 

0.4 3071 363 8.46 

0.5 3071 240 12.80 

0.6 3071 155 19.81 

0.7 3071 155 19.81 

0.8 3071 155 19.81 

0.9 3071 155 19.81 

TABLE A.21: FSPM1 VS FSPM2 MINING TIME FOR D3 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 

0 14 26 126 438 874 1118 944 520 179 35 3 

0.1 14 10 28 56 70 56 28 8 1 0 0 

0.2 14 10 27 50 55 36 13 2 0 0 0 

0.3 14 9 27 50 55 36 13 2 0 0 0 

0.4 14 9 25 47 54 36 13 2 0 0 0 

0.5 14 8 21 35 35 21 7 1 0 0 0 

0.6 14 8 15 20 15 6 1 0 0 0 0 

0.7 8 8 15 20 15 6 1 0 0 0 0 

0.8 8 8 15 20 15 6 1 0 0 0 0 

0.9 8 8 15 20 15 6 1 0 0 0 0 

 TABLE A.22: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVEL FOR D3 
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FSPM1 VS. FSPM2 USING THE DBLP DATASET D4 

In this set of experiments, FSPM1 and FSPM2 were run several times 

using the D4 DBLP dataset segment. The experiments were done using a 

number of minsups varying from 0.0 to 0.9. Figure A.12 shows the results of 

these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 32 times.   

 

 

Figure A.12: FSPM1 VS FSPM2 Mining Time for D4 
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D4 FSPM1 FSPM2 
 

Gain 

minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 5984 6150 0.97 

0.1 5989 683 8.77 

0.2 5989 545 10.99 

0.3 5989 545 10.99 

0.4 5989 338 17.72 

0.5 5989 338 17.72 

0.6 5990 183 32.73 

0.7 5990 183 32.73 

0.8 5990 183 32.73 

0.9 5990 183 32.73 

TABLE A.23: FSPM1 VS FSPM2 MINING TIME FOR D4 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 TE10 TE11 

0 16 31 156 567 1203 1654 1539 981 426 123 22 2 

0.1 16 10 28 56 70 56 28 8 1 0 0 0 

0.2 15 10 27 50 55 36 13 2 0 0 0 0 

0.3 15 10 27 50 55 36 13 2 0 0 0 0 

0.4 15 9 21 35 35 21 7 1 0 0 0 0 

0.5 15 9 21 35 35 21 7 1 0 0 0 0 

0.6 14 7 15 20 15 6 1 0 0 0 0 0 

0.7 8 7 15 20 15 6 1 0 0 0 0 0 

0.8 8 7 15 20 15 6 1 0 0 0 0 0 

0.9 8 7 15 20 15 6 1 0 0 0 0 0 

TABLE A.24: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVELS FOR D4 
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APPENDIX D 

FSPM1 VS. FSPM2 USING THE SYNTHETIC DATASET S1 

In this set of experiments, FSPM1 and FSPM2 were run several times 

using the S1 SYNTHETIC dataset segment. The experiments were done using 

a number of minsups varying from 0.0 to 0.9. Figure A.13 shows the results of 

these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 1.31 times.   

 

 

Figure A.13: FSPM1 VS FSPM2 Mining Time for S1 
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S1 FSPM1 FSPM2 
 

Gain 
minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 115 120 0.96 

0.1 117 104 1.13 

0.2 117 101 1.16 

0.3 117 91 1.29 

0.4 117 89 1.31 

0.5 117 89 1.31 

0.6 117 89 1.31 

0.7 117 89 1.31 

0.8 117 89 1.31 

0.9 117 89 1.31 

TABLE A.25: FSPM1 VS FSPM2 MINING TIME FOR S1 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 

0 30 65 116 171 112 30 2 

0.1 29 7 15 20 15 0 0 

0.2 28 7 15 20 0 0 0 

0.3 28 7 15 0 0 0 0 

0.4 27 7 0 0 0 0 0 

0.5 25 7 0 0 0 0 0 

0.6 25 6 0 0 0 0 0 

0.7 24 1 0 0 0 0 0 

0.8 20 1 0 0 0 0 0 

0.9 14 1 0 0 0 0 0 

TABLE A.26: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVEL FOR S1 
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FSPM1 VS. FSPM2 USING THE SYNTHETIC DATASET S2 

In this set of experiments, FSPM1 and FSPM2 were run several times 

using the S2 SYNTHETIC dataset segment. The experiments were done using 

a number of minsups varying from 0.0 to 0.9. Figure A.14 shows the results of 

these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 2 times.   

 

 

Figure A.14: FSPM1 VS FSPM2 Mining Time for S2 
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S2 FSPM1 FSPM2  

Gain 

minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 221 228 0.97 

0.1 222 130 1.71 

0.2 222 122 1.82 

0.3 222 120 1.85 

0.4 222 109 2.04 

0.5 222 109 2.04 

0.6 222 109 2.04 

0.7 222 109 2.04 

0.8 222 109 2.04 

0.9 222 109 2.04 

TABLE A.27: FSPM1 VS FSPM2 MINING TIME FOR S2 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 

0 19 37 100 229 254 138 31 

0.1 19 7 15 20 15 0 0 

0.2 18 7 15 20 0 0 0 

0.3 17 7 15 0 0 0 0 

0.4 17 7 0 0 0 0 0 

0.5 17 7 0 0 0 0 0 

0.6 17 6 0 0 0 0 0 

0.7 17 1 0 0 0 0 0 

0.8 17 1 0 0 0 0 0 

0.9 14 1 0 0 0 0 0 

TABLE A.28: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVEL FOR S2 
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FSPM1 VS. FSPM2 USING THE SYNTHETIC DATASET S3 

In this set of experiments, FSPM1 and FSPM2 were run several times 

using the S3 SYNTHETIC dataset segment. The experiments were done using 

a number of minsups varying from 0.0 to 0.9. Figure A.15 shows the results of 

these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 2 times.   

 

 

Figure A.15: FSPM1 VS FSPM2 Mining Time for S3 
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S3 FSPM1 FSPM2 
 

Gain 
minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 220 227 0.97 

0.1 221 136 1.63 

0.2 221 128 1.73 

0.3 221 118 1.87 

0.4 221 102 2.17 

0.5 221 102 2.17 

0.6 221 102 2.17 

0.7 221 102 2.17 

0.8 221 102 2.17 

0.9 221 102 2.17 

TABLE A.29: FSPM1 VS FSPM2 MINING TIME FOR S3 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 

0 19 37 98 217 222 103 18 

0.1 19 7 15 20 15 0 0 

0.2 19 7 15 20 0 0 0 

0.3 19 7 15 0 0 0 0 

0.4 19 7 0 0 0 0 0 

0.5 18 7 0 0 0 0 0 

0.6 18 3 0 0 0 0 0 

0.7 18 1 0 0 0 0 0 

0.8 17 1 0 0 0 0 0 

0.9 16 1 0 0 0 0 0 

TABLE A.30: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVEL FOR S3 
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FSPM1 VS. FSPM2 USING THE SYNTHETIC DATASET S4 

In this set of experiments, FSPM1 and FSPM2 were run several times 

using the S4 SYNTHETIC dataset segment. The experiments were done using 

a number of minsups varying from 0.0 to 0.9. Figure A.16 shows the results of 

these experiments.   

In all the experiments, FSPM2 showed better performance than FSPM1 

except when minsup was 0.0. FSPM2 was faster by up to 2 times.   

 

 

Figure A.16: FSPM1 VS FSPM2 Mining Time for S4 
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S4 FSPM1 FSPM2 
 

Gain 
minsup 

Mining Time 

 (in msec)  

Mining Time 

 (in msec)  

0 196 209 0.94 

0.1 197 121 1.63 

0.2 197 115 1.71 

0.3 197 112 1.76 

0.4 197 93 2.12 

0.5 197 93 2.12 

0.6 197 93 2.12 

0.7 197 93 2.12 

0.8 197 93 2.12 

0.9 197 93 2.12 

TABLE A.31: FSPM1 VS FSPM2 MINING TIME FOR S4 

 

minsup TE0 TE1 TE2 TE3 TE4 TE5 TE6 

0 19 37 98 214 201 79 10 

0.1 19 7 15 20 15 0 0 

0.2 18 7 15 20 0 0 0 

0.3 17 7 15 0 0 0 0 

0.4 17 7 0 0 0 0 0 

0.5 17 7 0 0 0 0 0 

0.6 17 3 0 0 0 0 0 

0.7 17 1 0 0 0 0 0 

0.8 16 1 0 0 0 0 0 

0.9 16 1 0 0 0 0 0 

TABLE A.32: COUNT OF TREE-EXPRESSIONS AT DIFFERENT LEVEL FOR S4 
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