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CHAPTER 1                                                               

INTRODUCTION 

Radio frequency spectrum is a limited natural resource. Modern wireless service 

providers aim to provide high data rate applications to numerous customers 

simultaneously. These high data rate applications require more radio frequency spectrum.  

Licenses are usually required for operation on certain frequency bands. Government 

agencies provide licenses to wireless service providers for use of certain frequency band. 

Over past years fixed spectrum allocation scheme was working fine but with the dramatic 

increase in requirement of more spectrum reinforces the scarcity mindset. National 

telecommunications and information administration's (NTIA) frequency allocation chart, 

as shown in Figure 1.1, shows unavailability of the spectrum for future wireless service 

providers [1]. 

Federal communications commission (FCC) carried out various surveys to investigate 

the spectrum scarcity. Observed rationale behind the spectrum scarcity was 

underutilization of spectrum rather than the unavailability of spectrum [2]. 

Underutilization of spectrum leads us to think of the spectrum holes i.e. primary user is  
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Figure 1.1: NTIA’s Frequency Allocation Chart  

not using the available radio spectrum all the time. Figure 1.2 shows typical usage of the 

frequency spectrum in Annapolis, United States [3]. 

According to FCC [2], the spectrum utilization varies from 15% to 85% with high 

variance in time and space. Spectrum occupancy measurement project concluded that the 

average spectrum occupancy over multiple locations is 5.2%, with a maximum of 13.1% 

[4]. These statistics raises the question on appropriateness of the current regulatory 

regime. Solving this question leads to solution of the spectrum scarcity. 

Developing a new spectrum allocation chart (as shown in Figure 1.1) could be one of 

the possible solutions. But is this a practical or implementable solution for current and   
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Figure 1.2: Measured spectrum utilization vs. frequency for the measurements 

recorded in Annapolis 

future wireless systems? Of course not! Future wireless communication systems cannot 

be predicted. Agitating spectrum allocation scheme of the current wireless service 

providers is not a good option. 

Dynamic Spectrum Access (DSA) is proposed as a solution to solve the spectrum 

scarcity versus underutilization phenomena. In DSA unlicensed users (or secondary user) 

are allowed to utilize the vacant bands of licensed (or primary user) users provided 

interference is minimal. Cognitive Radio (CR) is the enabling technology behind 

opportunistic access of licensed user’s spectrum. 
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1.1 COGNITIVE RADIO 

CR is the evolution of Software Defined Radio (SDR). SDR has capability to operate 

in different standards (air interfaces) with different frequency bands and leads to 

development of multiband base stations [5]. CR is an intelligent wireless communication 

system which upon interaction with the environment exploits any available spectrum 

opportunities. In 1991, J. Mitola introduces the notation of SDR. In 1999, J. Mitola with 

G. Maguire used the term CR for the first time [6].  FCC has defined CR as [7] 

“A Cognitive Radio is a radio that can change its transmitter parameters 

based on interaction with the environment in which it operates.” 

Based on the above definition, in contrast to traditional radio, CR is an intelligent 

radio that changes its parameters on the go. CR keeps track of the spectrum and 

accomplishes opportunistic accesses whenever possible. Primary goal of any CR is to 

utilize the spectrum efficiently. Figure 1.3 [6], pictorially explains aforementioned 

discussion. Assume that green blocks represent the spectrum occupancy by primary user 

(or licensed user). The spaces (or spectrum holes) between these blocks point the 

opportunity for CR. 

1.1.1 COGNITIVE RADIO CHARACTERISTICS 

Cognitive functionality is achieved by two main characteristics of CR i.e. cognitive  
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Figure 1.3: Opportunistic Access for Cognitive Radio  

capability and reconfigurability. 

1.1.1.1 Cognitive Capability 

Cognitive capability refers to ability of CR to interact with the surrounding 

environment and acquire the information of vacant bands or spectrum holes in the 

corresponding spectrum [8]. Spectrum holes can be classified in two categories: temporal 

spectrum holes and spatial spectrum holes. 

1- Temporal Spectrum Hole 

Temporal spectrum hole refers to the situation where no primary user activity is 

observed over corresponding spectrum and hence CR can avail spectrum during current 

time slot. Figure 1.4a [9], depicts the scenario of temporal spectrum hole detection. 

Secondary user lies in the same coverage area of primary transmission. Sensing in this 

case is relatively easy as the CR requires similar detection sensitivity as primary receiver. 
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Figure 1.4: a) Temporal Spectrum Hole Detection b) Spatial Spectrum Hole Detection  

2-  Spatial Spectrum Hole 

Spatial spectrum hole exists when the secondary user resides outside the coverage 

area of primary user and still can access corresponding spectrum. This is depicted in 

Figure 1.4b [9]. Secondary user can use the available spectrum provided there is no 

interference to primary user. In such scenario, detection sensitivity of the secondary user 

must be higher than that of primary user. Also the secondary user must be at considerable 

distance from primary receiver so that chance of interference between secondary user and 

primary communication is negligible. 
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Figure 1.5 shows the cognitive radio operation also called as “Cognitive cycle” [8], 

[10].  Cognitive cycle involves 

Spectrum Sensing is the most important task of cognitive cycle. CR has to detect the 

spectrum hole on which it will transmit its data. 

Spectrum Analysis helps CR to predict the available channel capacity in spectrum 

hole for secondary user. 

Spectrum Decision chooses the best available spectrum hole to meet user 

requirements. 

Hence, cognitive capability ensures the availability of best available spectrum for 

secondary user. 

 

Figure 1.5: Cognitive Cycle  
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1.1.1.2 Reconfigurability 

Reconfigurability adds adaptive capability in a CR, making it an example of feedback 

communication system [8]. When primary user starts transmission, CR has to leave that 

band and has to shift to a new band (or spectrum hole). Reconfigurability ensures that CR 

transmission parameters must be changed accordingly so that CR again chooses the best 

available spectrum for secondary user. 

1.1.2 SPECTRUM SENSING   

Spectrum sensing is the essence of CR. As soon CR starts its functioning, its first and 

most basic operation is to detect spectrum holes. Spectrum holes detection is done using 

spectrum sensing. Efficient performance of spectrum sensing is necessary so that 

whenever there is a vacant band CR makes full use of it. 

1.1.2.1 Key Challenges in Spectrum Sensing 

Spectrum sensing enables a CR to scan wide range of frequencies to efficiently use 

any vacant band. In order to analyze spectrum sensing problem, it is appropriate to first 

investigate the practical challenges associated with it. Some of the key challenges faced 

by spectrum sensing are discussed below. 

1-  Restricted Sensing Ability 

CR has no information regarding the primary user. CR has to scan a multidimensional 

environment with limited scanning ability. These issues makes spectrum sensing a 

challenging task. 
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Possible solution to this problem could be usage of cooperative communication 

between secondary users.  

2-  Hardware Requirements 

CR has to sense multiple frequency bands for identification of spectrum holes. This 

comes with additional cost on the wideband antennas, power amplifier, high sampling 

rate analog to digital converters etc. 

In [11], it is suggested to allow a CR to scan only a limited range of frequency band. 

This solution leads to usage of multiple CRs for multiple frequency bands.   

3- Primary User Detection Sensitivity Requirement 

Shadowing and severe fading effects can decrease the sensitivity of CR to detect 

primary user. This problem has been shown in Figure 1.6 [12]. Poor CR sensing ability 

can cause interference with the primary user. 

Cooperative sensing approach can be used in this respect [13]. In cooperative sensing 

multiple CRs cooperate with each other in a given geographical area and try to improve 

overall sensing performance. 

4- Detecting Spread Spectrum Primary User 

Primary users some time incorporate the spread spectrum techniques for 

establishment of a secure communication. In such situation, primary user spreads the 

power over whole frequency range. It is difficult for the CR to detect the primary user in  
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Figure 1.6: Hidden Primary User Problem in CR  

the presence of such patterns. Without apriori knowledge of the hopping patterns and 

synchronization pulses CR cannot detect such signals [14]. 

5- Sensing Duration and Frequency 

Sensing duration is related to the efficiency of a CR. Efficient CR uses less time for 

sensing but they have to pay price on sensing reliability. Sensing frequency depends on 

how often a CR has to perform the sensing operation. Optimum values of these 

parameters depend upon the CR abilities and primary user temporal characteristic in the 

radio environment [12]. 

6- Security 

In multiuser environment, there is a possibility that, a secondary user may act as a 

primary user by intruding its data. This scenario is discussed in [15] and is called Primary 

user Emulation Attack (PUE). 
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1.2 SCOPE OF WORK 

As described in section 1.1.2.1, spectrum sensing has some challenges associated 

with its implementation. Performing spectrum sensing in the wideband regime is a major 

challenge. In the wideband regime, CR has to sense a wide range of frequency band. To 

completely recover an analog signal from its samples the Nyquist sampling theorem has 

been followed i.e. sampling frequency must be twice the maximum frequency (�� ≥

2	���� ). In order to sense a wideband signal following two approaches have been 

proposed in the literature [16]. 

1- Radio front end can be designed to have a bank of narrowband (tunable) band 

pass filters to search multiple narrow frequency bands (at a time). This scheme 

requires lots of RF components; and tuning range of each filter is predefined. 

2- Radio front end can have the wideband circuitry followed by high speed digital 

signal processor which search over multiple bands concurrently.  

In the wideband regime, Nyquist sampling theorem requires huge amount of samples. 

Spectrum sensing is a time dependent process. Due to timing constraints there is a 

possibility that small number of samples (as compared to required) are acquired. This 

amount of information may not be sufficient to perform spectrum sensing efficiently.  

If a signal is sparse in some domain, it can be acquired (at sub-Nyquist sampling rate) 

and reconstructed using the compressive sensing technique. As a result of this, sub-

Nyquist sampling rate solutions can be provided for the observed problems. In spectrum 
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sensing, the observed spectrum is sparse in frequency domain (as shown in Figure 1.2). 

Compressive sensing technique can be used to perform spectrum sensing on the signal 

that is acquired at sub-Nyquist sampling rate.  

1.3 CONTRIBUTIONS OF THE THESIS 

In this thesis, spectrum sensing problem for the wideband signals has been discussed. 

Two different problems were faced while working with the wideband signals and solution 

to them has been provided respectively.  

In Chapter 4, the wavelet edge detection technique was applied on the observed 

wideband spectrum. This technique generates peaks which contains the frequency band 

boundaries information. In the presence of noise, the random noisy peaks make it hard to 

calculate the frequency band boundaries efficiently. A threshold value based on the blind 

source separation technique was obtained. This value is used to suppress the noisy peaks. 

In Chapter 5, a solution for performing spectrum sensing in the wideband regime is 

provided. Sensing problem is time dependent and in situations it may not be possible for 

a cognitive radio to acquire the required amount of data. To overcome this problem, 

spectrum sensing has been performed on the sub-Nyquist rate sampled data. The structure 

based Bayesian sparse reconstruction (SBBSR) algorithm has been used in this context. 

Different cases, based on the various assumptions taken in the literature, are considered 

and analyzed. 
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CHAPTER 2                                                            

FUNDAMENTAL CONCEPTS 

In this chapter brief overview of the compressive sensing and blind source separation 

techniques is given. Recently these techniques have found exciting applications in the 

field of signal processing and communications. Here we provide a brief description about 

these techniques. 

2.1 COMPRESSIVE SENSING 

Traditional trend in data reconstruction, from the observed signals or images, follows 

the well-known Nyquist sampling theorem. According to theorem, sampling must be 

done at least two times faster than the signal bandwidth. This principal is basis for most 

of the present stage devices like analog to digital convertors, medical imaging or audio 

and video devices [17]. In some applications samples collected at the Nyquist rate, results 

in enormous amount of data and require compression before transmission or storage. 

Theory of compressive sensing – also comes under terminology compressive sampling or 

sparse recovery – provides an efficient way of data acquisition, that overcomes the  
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Nyquist criteria. Compressive sensing (CS) captures and represents sparse signals at a 

rate lower than the Nyquist rate [18]. 

2.1.1 HISTORY 

A precursor to CS was first used in 1970s when the seismologists reconstructed 

images of reflective layers within the earth based on data that did not seem to satisfy 

Nyquist criterion [19]. Concept of CS came into picture in 2004 when David Donoho, 

Emmanuel Candes, Justin Romberg and Terence Tao reconstructed an image based on 

the data that seems insufficient by Nyquist criteria. 

2.1.2 MOTIVATION 

Consider a scenario where few sensors (as compared to required amount) are 

available to acquire the desired information. For instance, it is very expensive to design 

sensors when performing the imaging in infrared domain. Designing of pixels in the 

infrared domain is very expensive. So less amount of sensors than required are available 

[20]. Measurements can also be expensive for example, fuel cell imaging [21]. In fuel 

cell imaging neutron scattering technique is used. Neutrons are fired at the fuel cells and 

the scattering patterns are observed. Neutron shooting process is very expensive process. 

In medical resonance imaging (MRI), the image of a living tissue is captured. 

Imaging here means acquiring information about an object by collecting the Fourier 

coefficients. Acquiring the Fourier coefficients is time consuming process. One has to 
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spend plenty of time on scanner to collect these coefficients. Problems that can occur 

during this process are as follows 

1- Observer starts to move, after a while, so the measurements are not accurate. 

2- Throughput of scanner is limited. 

Figure 2.1 portrays process of the MRI [22]. Figure 2.1a shows the image, to be 

acquired, in spatial domain and Figure 2.1b shows the frequency domain equivalent of 

that image. The Fourier coefficients are calculated along the radio lines. Assume Figure 

2.1a is 1000 × 1000 pixel image, which according to today imaging is not that large. 

There are 1 million pixel values and assume there are 22 radio lines in Figure 2.1b. On 

each radio line 1000 Fourier coefficients are required. Observed problem is an under-

determined system of equations i.e. 22000 coefficients are available whereas originally 

this picture consists of 1 million pixels. So 98% of the information is missing. Question 

here rises: how to perform reconstruction? 

2.1.3 THEORY OF COMPRESSIVE SENSING 

Compressive sensing provides reconstruction for sparse signals. Normally the signals 

are sparse in some domain/basis and hence CS can be used for reconstruction. We wish to 

acquire a discrete-time signal i.e. � ∈ 
�  (� × 1 length vector) which is �  sparse in 

some domain. This can be thought as a digital image with � pixels and with � significant 

coefficients in the wavelet domain [20]. Any signal can be represented in terms of  
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Figure 2.1: Example of MRI a) in space domain b) in Frequency domain  

a basis of � � 1 vectors ������� . Corresponding basis matrix (of dimension � � �) can 

be formed as 

 � � 	
�|	
�|…	|
�� (2.1) 

Using equation (2.1) any signal � can be expressed as 

 � � ���
�

�

���

 (2.2) 

or in vector form 

 � � �� (2.3) 

where � is the � � 1 column vector of weighting coefficients. In equation (2.3) � and 

� represents the same signal in different domains i.e. one in time and other in Ψ [23]. CS 

is applicable to the signals that have sparse representation. Such signal � is a linear 

combination of � basis vectors (� ≪ �) i.e. only � of the �  coefficients in equation 

(2.2) are nonzero.  
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2.1.3.1 The Sensing Problem 

Let’s consider the linear measurement process that computes � < � inner products 

between � and a collection of vectors �����	
�  as in 

 �� = 〈�,��〉 (2.4) 

Equation (2.4) can be written in vector form as  

 � = ��+ � = ���+ � = ��+ � (2.5) 

where matrix � is obtained by stacking the measurement vectors ���as rows. � is 

� × � sized matrix. Figure 2.2 shows illustration of equation (2.5) [23]. 

Two fundamental concepts that are basis of compressive sensing are 

1- Sparsity 

2- Incoherence 

Sparsity 

Consider the image in Figure 2.3a [24]. Observe that it is not sparse in the spatial 

domain. If it is viewed in appropriate basis then it becomes approximately sparse. Figure 

2.3b shows this image in the wavelet domain. Observe that few coefficients contain most 

of the signal energy and rest coefficients are very small. This image can be regarded as 

(approximately) sparse in wavelet domain.  
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Figure 2.2: Compressive Sensing measurement process  

Incoherence 

Basic goal is to reconstruct � length signal � from � length measurements �. There 

are two different domains i.e. one in which the signal is sparse 
� and other in which the 

measurements are done i.e. ��. Coherence between the sparsity and sensing domain is 

defined as [25] 

 

Figure 2.3: a) 1 Megapixel Image b) Wavelet coefficients  
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 ���,�� = √�	���
��< �
 , � >�	 (2.6) 

whereas correlation values according to linear algebra lies in range 

 1 ≤ ���,�� ≤ √� (2.7) 

We are interested in the pairs ��,�� that are coherent by value of 1 i.e. they are 

incoherent. For instance, coherence between the time and frequency domain is minimal 

i.e. equal to 1. Another incoherent pair is wavelets and noise-lets where the coherency is 

between 1 ≤ ���,�� ≤ 3 [25]. Some favorable distributions to represent � are [23] 

1- Gaussian: !
�~"#0,



�
$ 

2- Bernoulli:	!
� = %+



�
		&'(ℎ	)*+,�,'-'(� 


�

−



�
		&'(ℎ	)*+,�,'-'(� 


�

 

3- Database-friendly:	!
� =

./0
/1+




�
		&'(ℎ	)*+,�,'-'(� 


�

0							&'(ℎ	)*+,�,'-'(� �
�

−



�
		&'(ℎ	)*+,�,'-'(� 


�

 

Choosing Gaussian measurement matrix has useful property i.e. matrix �  is also 

independent and identically Gaussian regardless of the choice of �.  

Restricted isometry property had been proposed by Candes and Tao [26]. This 

property is used to study the general robustness of measurement matrix �. According to 

this property, for each value of  2 = 1,2, …	,  define an isometry constant 3�  for 

measurement matrix � as the smallest number such that  
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 (1 − 3�)‖�‖�� ≤ ‖��‖�� ≤ (1 + 3�)‖�‖�� (2.8) 

holds for all 2 -sparse vectors � . If this property holds then measurement matrix 

approximately preserves the Euclidean length of 2-sparse signals. 

2.1.3.2 Sparse Signal Recovery 

Incoherency property defined in previous section ensures that sparse signal can be 

fully described with � measurements. But this property does not provide information 

regarding reconstruction of signal. Reconstruction algorithm helps in recovering � length 

signal � from � length � measurements.  

Problem discussed in equation (2.5) is an under-determined system of equations. An 

infinite number of solutions can be provided to solve this system. Let’s define ) − (ℎ 

power of -� norm of vector � as  

 (‖�‖�)� = 5|7
|��


	


 (2.9) 

If  ) = 0, equation (2.9) results in -� norm. This norm counts the total number of non-

zero entries in a given vector. For instance, a � sparse signal has -� norm of �. Basic idea 

behind sparse signal reconstruction is to identify smallest subset of matrix 8 whose linear 

span contains the observations � [23]. 

Various approaches are proposed in the literature to recover the sparse signal. One 

approach opted greedy search to recover the sparse signal. Some examples for greedy 

search algorithms are matching pursuit, projection pursuit [27], orthogonal matching 
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pursuit [28] and tree based matching pursuit [29]. Another approach recursively solves a 

sequence of iteratively re-weighted linear least squares (IRLS) problems [30].  

Total number of measurements required to reconstruct the sparse signal with high 

probability depends on following parameters 

1- Length of signal i.e. �. 

2- Sparsity level i.e. � of the signal 

3- Value of coherence between sparse domain � and measurement domain �. 

According to [25], if we have a � length signal � i.e. �-sparse in � and we select � 

measurements uniformly at random in the � domain as 

 � ≥ ����,�� × � × log(N)	 (2.10) 

than the sparse signal can be recovered with overwhelming probability by solving the -
-
norm minimization problem. 

2.2 BLIND SOURCE SEPARATION 

The goal of blind source separation (BSS) technique is to recover the source signals 

from the observed mixture at receiver. Typically observations are obtained at the output 

of a set of sensors, where each sensor receives a different combination of the source 

signals. The aim of the BSS technique is to separate source signals from the received 

mixture of source signals. The adjective “blind” stresses two facts [31] 
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1- Source signals are unknown at the receiver. 

2- No information is available about the mixing system.  

Since its first development, nearly twenty years ago, the BSS has developed into an 

important signal processing technique. In fact BSS has become a quite important topic of 

research in many domains like speech enhancement, biomedical engineering, 

communication, remote sensing system and geophysics etc. Figure 2.4 shows the block 

diagram for BSS [32]. 

2.2.1 MIXING MODELS FOR BSS TECHNIQUES 

Consider the source signal vector	�����, �	���,… , ���
 , the mixture vector 

	�����, �	���,… , ���
  and the noise signal vector 	�����, �	���,… , ���
 , where � 

denotes the number of sources and � denotes the number of sensors (or mixtures). Figure 

2.5 shows the block diagram illustrating BSS technique [33]. 

 

Figure 2.4: Block Diagram for Blind Source Separation  
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Figure 2.5: Block Diagram illustrating BSS system  

There are two types of models considered for mixing of the source signals in BSS  

1- Instantaneous Mixing Model 

2- Convolutive Mixing Model 

In instantaneous mixing model, observations at time 9 are only a linear combination 

of the sources at the same time 9. Output of the sensor/receiver is called instantaneous 

mixture and can be described by the following equation [33] 

 �
�9� = 	5��
(9)���9��

�	


		&ℎ:*:			'	 ∈ 	 ;1, … ,�< (2.11) 

where ��
 represents the element of mixing system. In the presence of noise received 

signal can be written as 

Unknown 
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 �
�9� = 	5��
�9����9� + 9
(9)

�

�	


		&ℎ:*:			'	 ∈ 	 ;1, … ,�< (2.12) 

For the mixing model given in equations (2.11) and (2.12), effects such as in-

homogeneities, diffraction of medium and refraction are assumed to be negligible and as 

a result sources are linearly super imposed by the channels. However from basic concepts 

of digital signal processing, physical properties of propagation channel are often 

mathematically modeled as convolution operator and thus a linear time-invariant model 

may sometimes be more accurate. 

Assume FIR filter model for the propagation channel. Convolutive mixtures can be 

described as  

 �
�9� = 	55��
(=)

�

�	


���9 − =��

�	


		&ℎ:*:			'	 ∈ 	 ;1, … ,�< (2.13) 

Where ��
(=) is the k-th coefficient of the filter corresponding to the path between 

sources > and sensor ', ? is the filter length. For the noisy case, the model becomes [33] 

 �
�9� = 	55��
(=)

�

�	


���9 − =� + 9
(9)

�

�	


		&ℎ:*:			'	 ∈ 	 ;1, … ,�< (2.14) 

Convolutive model fits most of the real world scenarios excluding some special cases. 

For instance, for time varying transfer functions or when some nonlinearity is added to 

the mixtures. 
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An important feature of the BSS problem is the relationship between � and � i.e. 

between the number of sources and number of observed mixtures. Three different 

scenarios can be described as 

1- � = �: Problem becomes determined case. 

2- � < �: Problem become over determined case. 

3- � > �: Problem become under determined case. 

These scenarios actually represent two level of difficulty in solving the BSS problem. 

Determined and over determined represent the easy level while under determined 

represents higher difficulty level [33].  

2.3 CONCLUSION 

In this chapter we discussed the compressive sensing technique and the blind source 

separation technique. Compressive sensing provides sub-Nyquist rate sampling solution 

to the sparse signals. This helps working at less than Nyquist sampling rate. Blind source 

separation provides a robust solution for separating the observed mixed signals at the 

receiver. Both techniques had found stimulating applications in signal processing and 

communications.  
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CHAPTER 3                                                                    

LITERATURE SURVEY 

Spectrum sensing in the wideband regime requires huge amount of samples. Sensing 

problem is time dependent and consequently creates burden on analog to digital 

converters and the digital signal processors. In this chapter previous work done on the 

spectrum sensing using both Nyquist and sub-Nyquist rate sampling is discussed. In 

addition a new algorithm for sparse signal reconstruction is also discussed.  

3.1 SPECTRUM SENSING TECHNIQUES FOR COGNITIVE RADIO 

In this section some of the most common techniques used for spectrum sensing are 

discussed. Present literature for the spectrum sensing is still in its early stages of 

development [12]. 

3.1.1 ENERGY DETECTION 

Energy detection is the simplest form of signal detection technique. In classical 

literature it is also given the name of radiometry. This technique measures the presence 
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of signal by computing the energy of a received signal in a particular frequency band and 

comparing it with a threshold which depends on the noise floor. Sometimes spectral 

environment is analyzed in the frequency domain and Power Spectral Density (PSD) of 

the observed signal is estimated. This approach is referred as periodogram. Figure 3.1 

shows the energy detection approach using Welch’s periodogram [34]. 

Some of the challenges involved with the energy based detection are poor 

performance under low SNR, setting threshold value for the incoming signal and poor 

efficiency while detecting spread spectrum signals [12]. 

3.1.2 WAVEFORM BASED SENSING 

Some times in the wireless communication system known pattern like preambles, 

midambles, spread spectrum sequences etc are transmitted with the signal to assist 

synchronization. Such signals information is recovered by correlating the incoming signal 

with a known waveform. This type of signal detection is called waveform based sensing 

where extra information is merged in the signal at the transmitter and then signal is  

 

Figure 3.1: Energy Detection using Welch’s Periodogram  
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recovered at receiver with some apriori information. This sort of sensing is only 

applicable to the systems with known signal patterns. The waveform based sensing is 

better in both convergence time and reliability than the energy based detection [35]. 

3.1.3 CYCLOSTATIONARITY-BASED SENSING 

Cyclostationarity or feature detection exploits the cyclostationarity feature presents in 

the incoming signal. Detection of the primary user signal is based on these features. 

Wireless modulated signals are generally cyclostationary as in the modulation process 

they are coupled with sine wave carriers, pulse trains, repeating spreading or hopping 

sequence etc. These processes induce periodicity in the signal making them 

cyclostationary. The cyclostationary based detection algorithm can differentiate between 

the noise and the primary transmission. They are also capable of distinguishing between 

different type of the primary users [12]. This sensing technique outperforms the energy 

based sensing scheme at low SNR. High accuracy comes with the cost of higher 

computational complexity. In addition, this technique also requires prior knowledge of 

cyclic frequencies of primary transmission. 

3.1.4 MATCHED FILTERING 

Matched filtering is considered as the optimum method for detection of primary user 

provided the receiver has perfect knowledge of the transmitted signal. This scheme 

demodulate the receive signal and hence requires the complete knowledge of the 
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bandwidth, pulse shaping, operating frequency etc. These requirements make the 

implementation cost of CR quite expensive [12]. 

3.2 SPECTRUM SENSING USING COMPRESSIVE SENSING 

In 2007 [16], Z. Tian and G.B. Giannakis performed spectrum sensing using the 

compressive sensing technique. Observed signal is sparse in the frequency domain. 

Figure 3.2 shows the frequency response of the observed signal �((). Assumed signal 

(�(() ) consists of @  bands with the frequency spacing between @  bands is given as 

[��, �
	. . . ��]. Following assumptions were used to solve the problem 

• PSD of each band is almost flat. 

• Frequency boundaries of the overall observed spectrum i.e. �� and �� are known 

at cognitive radio. 

• Number of bands i.e. [�
, ��	. . . ���
] are unknown at cognitive radio. 

• Noise effect on the signal is additive and white. 

Assume the sensing timing window is defined as ( ∈ [0,�A�] . A�  represents the 

Nyquist sampling rate. According to the Nyquist theorem, �  samples are required to 

reconstruct �(() without aliasing. Sampling process at a digital receiver can be expressed 

as 

 



30 
 
 

 
 

 

   

 

 

 

 

Figure 3.2: PSD of assumed Signal  

 �(() = 	 B���(() (3.1) 

where �(() represents � × 1 length vector and B��  is an � × � projection matrix. The 

process defined in equation (3.1) can be explained as a conversion of continuous domain 

signal �(()  into the discrete sequences �(() ∈ C� , performed by digital receiver. In 

equation (3.1) when � = �,  Nyquist rate uniform sampling is performed. Using � < �, 

performs reduced rate sampling scheme [16]. In the scenario when � < �  is used, 

reconstruction of the received signal spectrum is performed using compressive sensing  

 �(�) = �*D�'9�(�)‖�(�)‖
 ,																				7. (						EB��
��
F�(�) = �� (3.2) 
 

where 

 B��
��
�(�) = 	 B���(() 
(3.3) 

Bn 
PSD 

fZ fn fc,n f2 fn-1 f1 f0 

Wide band of Interest 
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where B�� represents identity matrix of dimensions � × � (� < �) and 
� represents 

the discrete Fourier transform matrix. This matrix corresponds to the basis matrix in 

which incoming signal is sparse. Since the observed signal is sparse in the frequency 

domain so the basis matrix is equivalent to discrete Fourier time (DFT) matrix. Any 

methodology like basis pursuit or matching pursuit or orthogonal matching pursuit can be 

used to recover the spectrum [16]. 

PSD of the incoming signal is flat within each band. Transition occurs at the 

beginning of a new band. Hence spectrum sensing can be considered as the edge 

detection problem. These edges provide the information of start and end location of a 

frequency band. Once the frequency spectrum is reconstructed, next step is to estimate 

band locations i.e. [�
, ��, . . . , ���
] using the wavelet edge detection technique. 

Continuous wavelet transform of incoming signal is given as follows 

 �� = �(�) ∗ 	G�(�) (3.4) 

Where G�(�) is the dilated wavelet smoothing function, ∗ defines the convolution 

operator and 7 depicts the dilation factor of the wavelet smoothing function and takes 

values in terms of power of 2. Common example of the wavelet smoothing function is 

Gaussian function. For detection of edges first derivative of the wavelet transform can be 

used which is given as [36]  
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��� = 	7 HH� �� ∗ 	G����� 
																					= 			�(�) ∗ (7 HH� �	G��)(�) 

(3.5) 

Local maximum of the first derivative provides information of edges which 

corresponds to the start and end location of a frequency band. It is also mentioned in [36], 

second derivative of equation (3.5) can be used to detect the frequency band edges.  

Once the frequency boundaries i.e. ;��<�	���
 are detected, next step is to calculate the 

PSD within each band and decide about the presence or absence of primary user. 

Calculation of the PSD is given as  

 I� = 	 1�� − 	���
J �(�)H���

����

 (3.6) 

Based on the PSD values and noise variance decision regarding presence or absence of 

the primary user in a particular frequency band is made.  

In 2009, Xi Chen et al. improved the work of Giannakis [16]. Parallel spectrum 

sensing structure for a cognitive radio is proposed for improved probability of detection. 

Incoming signal is passed to number of branches. Each branch is provided with its own 

sensing matrix. Each branch reconstructs its own frequency spectrum of the received 

signal. Using the wavelet edge detection technique, each branch locates the frequency 

boundaries present within the received signal. Finally decision regarding presence or 

absence of primary user is made based on the results from all branches. This technique 
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shows better probability of detection results in comparison to [16] in the presence of 

noise. Figure 3.3 portrays this phenomenon [37].  

In 2010, V.H. Nassab et al. came with a different approach of using the wideband 

filters. Assume that the observed spectrum is K LM wide. Each primary user needs N	LM 
for transmission of their data. Total number of available frequency bands in K	LM are 

defined as � = 
 

!
 . Total number of filters, say �, at a CR are less than number of bands 

present within a signal i.e. � ≪ �. It is assumed that the number of bands present in 

incoming signal is fixed. Received signal is convolved with the wideband filters. Energy 

of each wideband filtered output is calculated. Obtained energy vector is sparse in the  

 

Figure 3.3: A parallel structure for spectrum sensing based on CS  
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frequency domain. Now from the measurements of energy vector (that are less in number 

than original energy vector) reconstruction of complete � length energy vector is done. 

Based on this reconstructed energy vector decisions are made regarding the presence or 

absence of primary user. This technique is computationally less complex than afore 

mentioned techniques [38]. 

In 2010 [39], D. Sundman et al. modified the idea presented in [40]. Autocorrelation 

vector achieved in [40] deals with the wide-sense stationary (WSS) signals only. 

However, the signal at the output of AIC is non-WSS. Autocorrelation vector is modified 

which can deal with the non-WSS signals. Memory based spectral detection concept is 

also proposed. According to this proposition overall reduction in computational 

complexity is achieved. It is assumed that mostly wireless signals are static over certain 

period of time. For instance, TV or radio broadcast is almost static. Since spectrum 

sensing is performed almost every second so mobile phone calls and wireless internet can 

also be assumed as static signals. Earlier estimation of the correlation matrix (for 

instance) requires ? samples. Convex problem of the compressive sensing requires (for 

instance) � samples. Thus, each realization of power spectrum requires ? ×� samples 

which are not much less than total � samples required for conventional sampling. It is 

proposed that by calculating spectral detection with memory assumptions these ? ×� 

samples are reduced in a great percentage over time. Despite of above stated pros there is 

also a cost associated with this procedure. If error occurs on any realization calculation 

than this error will be carried on until full procedure is performed again. 
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In 2010 [41], Y. Liu and Q. Wan used the apriori knowledge of spectrum distribution 

(within a region) and proposed mixed -�/-
  norm de-noising operator. Normally the 

knowledge of allocated frequency band (to a primary user) can be achieved in advance 

from regulatory authorities. For instance, information regarding the frequency band 

occupancy by Global System for Mobile communications (GSM) can be gathered from 

regulatory authority. According to the algorithm, assuming block sparsity within each 

primary user frequency band, first calculation of -� norm of each block is done. Then 

minimization of sum of these -� norms is performed using -
 norm. It is concluded that by 

knowing the band gaps and the block sparsity in advance, proposed technique 

performance is better when compared to standard mixed -�/-
 norm de-noising operator 

(which do not incorporates the aforementioned information). 

3.3 DRAWBACKS OF COMPRESSIVE SENSING APPROACH 

Compressive sensing provides reconstruction for the sparse signals. Most signals are 

sparse in some domain/basis and hence CS can be used to reconstruct such signals. In the 

presence of noise, equation (2.5) can be written as 

 � = O�+ � (3.7) 

where O is � × � sensing matrix that is assumed to be incoherent with the domain in 

which � is sparse. � is the complex additive white Gaussian noise vector 
"�0,P��Q�. 
Above posed problem is an under-determined system of equations. An infinite number of 

solutions can be provided to solve this system. Assuming signal �  is �  sparse; ℓ� 
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minimization problem can be used to reconstruct this signal using only � ≥ 2� 

measurements.  

 �� = �'9
�
‖�‖� 																					7R,>:S(	(+			‖�−O�‖� ≤ T (3.8) 

where T is dependent on P�� i.e. noise variance. Solving the ℓ�minimization problem is 

impractical as it is non-deterministic polynomial time hard [42]. Over the years 

alternative sub-optimal approaches has been presented in the literature. Instead of using 

ℓ�minimization, a relaxed ℓ
  minimization has been considered. These algorithms 

reconstruct the signal � with high probability using convex relaxation approaches. The 

convex relaxation approaches solve the ℓ
  minimization problem using linear 

programming.  

The convex relaxation approaches are good replacement of ℓ�minimization. Though 

they reconstruct the signal � with high probability but there are also some problems 

associated with these approaches. Some of these issues are discussed below. 

3.3.1 COMPUTATIONAL COMPLEXITY 

Convex relaxation approach cannot be used to reconstruct a signal with large 

dimensions. Linear programming is used to solve the ℓ
minimization problem. This 

method has computational complexity of U(���� �" ) [43]. In literature this problem is 

solved by using the greedy approaches to solve ℓ
minimization problem. Computational 

complexity of the greedy approaches is U(��V) where V is the number of iterations. 



37 
 
 

 
 

Numerous greedy approaches have been proposed in literature as Orthogonal matching 

pursuit (OMP) [44], Regularized orthogonal matching pursuit (ROMP) [45] and 

Compressive sampling matching pursuit (CoSamp) [46]. 

3.3.2 STRUCTURE OF SENSING MATRIX 

Convex relaxation approaches do not use the structure inhibited by sensing matrix. 

Normally, in practical scenarios, the sensing matrix exhibits some structure, for instance 

partial DFT matrix or Toeplitz matrix. Best results are generated by convex relaxation 

approaches when the sensing matrix is random. This requires random sampling which 

provides a constraint, as currently uniform sampling architectures are being used. 

3.3.3 EVALUATION OF PERFORMANCE 

Normally it is easy to work with familiar performance quantifying terms like Mean 

Square Error (MSE) or bias etc [47]. In convex relaxation approaches it is difficult to 

obtain these estimates. 

3.3.4 USAGE OF APRIORI INFORMATION 

Convex relaxation approaches do not use the apriori statistical information about the 

signal support and noise. Sparsity is the only information that is used by these 

approaches. Any other apriori information is used on the estimates generated by them. 
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Hence performance is bottlenecked by the reconstruction ability. Every other information 

can play role to refine the recovered signal. Apriori statistical information has been 

studied in [48], [49] and [50] in context of Bayesian estimation and belief propagation. In 

[51] and [52] apriori information have been applied to the cases when signal is Gaussian. 

Study of the non-Gaussian case is still unsolved question. 

3.3.5 Bottleneck on Performance 

Traditionally, increasing computational complexity means improvement in the 

performance. But in convex relaxation approaches this does not happen. Complexity of 

these algorithms is fixed. To improve performance one has to increase the amount of 

measurements i.e. �. 

Considering above discussion a suitable sparse signal recovery approach is required 

that overcomes the shortcoming of convex relaxation approach.  

3.4 STRUCTURE BASED BAYESIAN SPARSE RECONSTRUCTION  

Structure based Bayesian sparse reconstruction (SBBSR) approach mentioned in [47] 

is a sparse signal recovery approach based on the Bayesian estimation technique. While 

reconstructing the signal it uses 

• Apriori statistical information 

• Apriori sparsity information 
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• Sensing matrix Structure 

Nonetheless like the convex relaxation approaches, apriori sparsity and statistical 

information can be used while implementing this technique. Assuming the same signal 

model given in equation (3.2) or (3.3), the sparse vector �� can be modeled as 

 �(�) = �!⨀�# (3.9) 

where ⨀ represents dot multiplication between two vectors. �! is an independent and 

identically distributed (i.i.d) Bernoulli random variable and the entries �# can be drawn 

from any distribution (like Gaussian). This model of �(�)  provides a sparse signal. 

Sparsity information is indulged by i.i.d. Bernoulli random variable and the amplitudes of 

these observations are drawn from some other distribution. 

If the support 2 of �(�) is known we can write (3.7) as [47] 

 

� = O��(�) + � 

		= 	��(�) + � 

�|2 = 	�$��(�) + �� 
(3.10) 

�$ is the sub-matrix formed from � containing only those columns represented by 2. 
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3.4.1 ESTIMATION OF SPARSE SIGNAL 

Focus here is to obtain the optimal estimate of observed signal �(�). Estimation of 

this signal has been done using the SBBSR algorithm [47]. As earlier mentioned, this 

technique helps us to use the apriori statistical and sparsity information as well as the 

sensing matrix structure. Normally in convex relaxation approaches such information is 

neglected. Two different Bayesian parameter estimation techniques have been proposed 

in [47] for reconstruction of  �(�). They are based on minimum mean square error 

(MMSE) and maximum a posteriori probability (MAP). 

In spectrum sensing, information regarding locations of frequency bands which are 

occupied by primary users is acquired. Traditional approaches like the energy detection 

or the matched filtering require complete knowledge of signal and that requires a 

complete spectrum in frequency domain with corresponding PSDs and frequency 

locations. These traditional approaches are also interested in observing the occupied 

frequency locations. However in such cases calculation of complete signal information is 

a necessity. If an algorithm can detect the locations only, it is enough for spectrum 

sensing purpose. Hence the MAP will suffice our needs. It provided the estimate of 

occupied locations which helped to find out vacant bands. These vacant bands can be 

used for transmitting the data of secondary user. 

MAP estimate of observed signal �(�) can be written as 
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 ���%&(�) = �*D	���
�
)(�/2) )(2) (3.11) 

where )(2) is the probability of a given support. Assuming the signal model of �(�) 

given previously we can determine the probability of support as 

 )�2� = 	 )��1 − )���� (3.12) 

which actually refers to Binomial distribution. Support of signal is dependent on the 

Binomial distribution so is the corresponding probability. 

Now the problem of calculating MAP remains to calculate  )(�/2). This probability 

can be calculated depending on whether the observed signal given support �(�)|2 is 

Gaussian or not. Thus, there are two cases; one when the primary user data has Gaussian 

distribution and second when it has non-Gaussian distribution. 

Case 1: �(�)|2 is Gaussian 

If the primary user data has Gaussian distribution, �(�)|2 is Gaussian, then �|2 will 

also be Gaussian (because of linear system model) with zero mean and covariance W�. 
Corresponding probability is calculated as [47] 

 )(�/2) 	= 	 :�)	(−
1P�� 	�'X��
�)H:(	(X�)  (3.13) 

where covariance matrix is given as 
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 X� = Y + 	 P��P��8�8�' (3.14) 

Case 2: �(�)|2 is unknown 

If the primary user data distribution is unknown i.e. �(�)|2 distribution is unknown 

then no information can be deduced about	�|2. In such case, the observed signal � is 

acquired from a projection of � onto some subspace spanned by the sensing matrix with 

addition of white Gaussian noise. Corresponding probability is calculated as [47] 

 )(�/2) 	= :�)	(−
1P�� 	Z[(�) �Z�) (3.15) 

where [*�)  is the orthogonal projector onto the orthogonal complement of the 

subspace spanned by the columns of �$ and is given by 

 [(�) = Y−8�(8�'8�)�
8�' (3.16) 

3.4.2 EVALUATION OVER � 

Information about the corresponding estimates to recover the sparse signal is 

available but knowledge about the range of 2 on which to evaluate these estimates is 

unavailable. Possible supports could be present anywhere in the � length signal. This 

requires narrowing down the search space in order to reduce complexity. Otherwise, the 

whole � length signal will be searched for possible support size. Two possible solutions 

have been proposed in literature. One suggests using the convex relaxation approaches in 
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finding the most probable support of the sparse vector [25]. However the other (Fast 

Bayesian Matching Pursuit (FBMP) [51]), suggests performing a greedy tree search over 

all the combinations. Convex relaxation approach uses the apriori sparsity information 

while reconstructing the sparse signal. On contrary, FBMP uses both apriori sparsity and 

statistical information. None of them had used the structure of sensing matrix to gain 

more reduction in computational complexity. 

Normally sensing matrix bears some structure like the partial DFT matrix or Toeplitz 

matrix. In [47], in addition to apriori sparsity and statistical information the sensing 

matrix structure is also used to achieve reduction in computational complexity. Sensing 

matrix is not orthogonal because of its dimensions � × � (where � ≪ �). However in 

matrix like partial DFT or Toeplitz an orthogonal matrix of size � ×� could be found. 

Remaining � −� columns usually group around these � orthogonal columns to form 

semi-orthogonal clusters. This orthogonality information helps in reducing computational 

complexity of algorithm. 

Assume 2 is the possible support of ��. Corresponding �$ columns can be grouped 

into \1 semi-orthogonal clusters i.e. �$ = [�
��… 	�+]. Using semi-orthogonality the 

overall likelihood is the product of likelihoods of individual clusters. Hence the 

corresponding MAP metric for the Gaussian case is given as  

                                                 
1 As ‖�‖�is a Binomial distribution ~ B(N,p), it can be approximated by a Gaussian distribution ~ 

����,��	1 − �
� when ��	 > 	5. Thus in this case, 
	‖�‖� > 

 = 	 �
�
���� � 	
���

�

���
��

�
�. P can be set 

equal to ����(����
�	10
�
�2��	1 − �
 +��) [51]. 
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ℒ� = 	 )��1 − )����	:�)	(−
\ − 1P�� 	‖�‖�)]:�)	(−

1P�� 	�'X
�
�)H:(	(X
)
&


	


 (3.17) 

whereas for the unknown signal distribution case the corresponding MAP estimate is 

given as [47] 

ℒ� = 	 )��1 − )����	:�)	(−
\ − 1P�� 	‖�‖�)]:�)	(−

1P�� 	Z[*�) �Z�)	&


	


 (3.18) 

3.4.3 SIGNAL RECONSTRUCTION METHODOLOGY USING 

SBBSR 

In this section the SBBSR based sparse signal recovery approach is explained. The 

sub-Nyquist rate sampled signal � is correlated with sensing matrix. Based on correlation 

result clusters are made. Within each cluster the MAP estimates are calculated and 

decision regarding presence or absence of the primary user is made. Figure 3.4 describes 

main steps of the SBBSR algorithm.  

3.4.3.1 Correlation of Signal and Sensing Matrix 

Assume the signal model given in equation (3.10)   

 � = 8�(�) + � (3.19) 
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Begin 

Correlate Observation vector � with sensing matrix 8 

Form \ semi-orthogonal clusters of length ? each around 
the positions with high correlation values 

Process each cluster independently and in each cluster 
calculate the likelihoods for support of size - = 1,2, …\� 

Evaluate MAP estimate 

END 

 

Figure 3.4: Flow Chart of Orthogonal Clustering Algorithm  

Correlate signal � with the sensing matrix  

 �� = 	 ��8 (3.20) 

where �� represents the correlation result. Maximum values of the correlation result 

will help in finding the possible locations where support of sparse vector �(�) can exist. 

3.4.3.2 Semi-Orthogonal Cluster Formulation 

From �� select the index which corresponds to the maximum correlation value. Make 

a cluster of length ? around this location. Cluster length ? is dependent on the correlation 

between the columns of sensing matrix. This value can be calculated by correlating any 

column of sensing matrix with the whole sensing matrix. Make \ clusters in the similar 

fashion. 
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3.4.3.3 Find Supports and Likelihoods 

From previous step \ semi orthogonal clusters are attained. Assume \�1 denotes the 

maximum possible support size in a cluster. For each support size -	 = 	1,2 … 	\� calculate 

the corresponding likelihoods values within a cluster. Repeat this process for all clusters. 

As a result from each cluster, likelihood vector of length \� is acquired.  

3.4.3.4 Evaluate MAP Estimate 

We have \ clusters and \� likelihood values (which correspond to the support of size 

-	 = 	1,2 … 	\� ) within each cluster. To obtain the MAP estimates, multiply each 

likelihood value with its corresponding probability of support. Select the maximum MAP 

estimates from each cluster. Corresponding locations of that estimates provides the 

information for non-zero locations of the sparse signal �(�). 

3.5 CONCLUSION 

In this chapter, various spectrum sensing algorithms based on both the Nyquist and 

sub-Nyquist sampling rate were discussed. Sub-Nyquist rate sampling algorithms provide 

solution to spectrum sensing problem in the wideband regime.  

 

                                                 
1 
�  is calculated in the similar way as 
 . As support within a cluster is also based on Binomial 

Distribution ~ �(�, �). Thus we set 
� = (����
�	10
�
�2��	1 − �
 + ��) [47]. 
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CHAPTER 4                                                                          

BLIND SOURCE SEPERATION BASED THRESHOLD 

CALCULATION 

In this chapter, the wideband spectrum sensing using wavelet edge detection 

technique is addressed. This technique does not require information of frequency bands 

locations and calculate it from the received wideband signal. Hence dependency on the 

regulatory authority is waived.  

Observed spectrum consists of numerous frequency bands (each band depicts 

occupancy by primary user). The power spectral density (PSD) within each frequency 

band is smooth. Transition of the PSD from one band to another band is considered as 

irregularity in the PSD. Such irregularities can be studied using the wavelet transforms 

which are capable of characterizing local regularity of a signal [53]. 

Applying wavelet transform on the incoming signal results in peaks at locations 

where the signal PSD is irregular. In absence of noise these peaks provides the 

information of frequency band boundaries.  However, in presence of noise these peaks  
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are accompanied by the random peaks which may corrupt information of the frequency 

band boundaries. In [36], multiscale wavelet products were used to extract the frequency 

band boundaries from observed peaks. This technique requires multiplication of various 

wavelet transform gradients. As a result, peaks representing the frequency band 

boundaries were exposed whereas random peaks were suppressed. The multiscale 

wavelet products require apriori knowledge about total number of active frequency bands 

in a spectrum. This information is normally unknown at the CR. The proposed algorithm 

in this chapter, calculates a threshold value for the observed peaks at output of wavelet 

transformed signal. Only those peaks are considered which have amplitude greater than 

threshold value whereas others are neglected. Blind source separation technique is used 

to calculate the threshold value.  

4.1 SYSTEM MODEL 

Spectrum sensing approach presented in [36] assumes that a total of N	LM in the 

frequency range [��, ��] is available for the wideband wireless network and is known to 

the CR. The frequency bands locations and PSD levels within this N	LM are unknown. 

Moreover the number of bands within a time remains same. Frequency response of the 

incoming signal is flat within each band. Figure 3.2 illustrates the PSD structure of 

incoming signal. Incoming signal consists of @ spectrum bands whose frequency location 

and PSD levels required detection. The received signal PSD can be written as follows  



49 
 
 

 
 

 ���� = 5^������� + 	 2,���,									� ∈ [��, ��]

�

�	


 (4.1) 

Where ̂ �
�is defined as the signal power density in corresponding band and ����� is 

the normalized power spectral shape within each band and is given as 

 ����� = 	 _ 1,						∀�	 ∈ N�
0,							∀�	 ∉ N�	 (4.2) 

2,��� is the zero mean additive white noise. Time domain equivalent of equation 

(4.1) is 

 ��(� = 5^����(� + 	9(()�

�	


 (4.3) 

���(� can be a pulse train and is defined as follows  

 ���(� = 	 5 ,�ℎ(( − =A�):��-��,��.

�	�.

 (4.4) 

For the model given above we have to determine the number of frequency bands, 

their locations and the signal power density i.e. @, ;��<�	
��
	�9H	;^��<�	
� . 

4.2 PROBLEM STATEMENT 

PSD of the incoming signal is flat within each frequency band. Hence spectrum 

sensing can be considered as the edge detection problem. These edges provide the 

information of start and end location of a frequency band. Wavelet transform is applied 
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on the received signal using equation (3.4). For detection of edges, first derivative of 

wavelet transform can be used (as shown in equation (3.5)). Local maxima of first 

derivative provide the information of edges which corresponds to start and end location 

of a frequency band. Once frequency boundaries i.e. ;��<�	���
 are detected then next step 

is to calculate the PSD within each band and decide about presence or absence of a 

primary user. PSD within each frequency band is calculated using equation (3.6).  

The edge detection provides us with knowledge of frequency band boundaries using 

equation (3.5). For the noiseless case calculation of the frequency band boundaries is 

simple. Figure 4.1a, illustrates incoming signal PSD for the noiseless case and Figure 

4.1b illustrates the corresponding edges located using the edge detection technique.  

Now consider the case when the incoming signal is contaminated by noise. Figure 

4.2a, illustrates this scenario. Output of the edge detection technique provides us with 

mixed edges as illustrated in Figure 4.2b. Observe the combination of true peaks and 

noisy peaks. The frequency boundaries for given bands cannot be determined directly (as 

in noiseless scenario). In the next section, solution to this problem using blind source 

separation algorithm has been provided. 

 

 

 

 



51 
 
 

 
 

 

 

(a) 

 

(b) 

Figure 4.1: (a) Incoming Signal PSD; (b) Output of Edge Detection technique. 
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(a) 

 

(b) 

Figure 4.2: (a) Incoming Signal PSD; (b) Output of Edge Detection technique. 
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4.3 BLIND SOURCE SEPARATION APPROACH TO EDGE 

DETECTION 

Blind source separation has found very useful applications in the area of signal 

processing and neural networks [54]. The blind source separation does not require the 

knowledge of the channel and the transmitted signal. In fact its goal is to recover the 

unobserved signals i.e. ‘source signals’ from a set of observed signals. Term ‘Blind’ 

refers to following two facts [31] 

• Source signals are not observed. 

• There is no apriori knowledge available about the mixing system. 

Since the development of blind source separation technique many new algorithms 

have been suggested. Some of these algorithm depend on exploiting the second order 

statistics and stationary or non-stationary conditions of the received signal, others need 

higher order statistics and some exploits the time-frequency diversities [55]. All these 

algorithms obtain cost function through some optimization process which normally is 

computationally complex. 

In [54], the blind source separation algorithm was presented. The maximum signal to 

noise ratio (SNR) is achieved when the sources are separated completely. Cost function 

of this algorithm is based on the SNR definition. The algorithm achieved low 

computational complexity solution based on the instantaneous mixing method. The 
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assumption was that the source signals come from different sources and could be 

considered as statistically independent. The received signal can be written as  

 �
	�(� = 	5 �
���(()�

�	

 (4.5) 

where �
� represents the instantaneous mixing matrix (', >) element. In vector form, 

we can write equation (4.5) as  

 ��`� = a	�(`) (4.6) 

where ��`�  is a vector of the mixed signals. The BSS algorithms only have 

information of the mixed signals and statistical independence property of the source 

signals. Assuming 	 is an un-mixing matrix for the aforementioned problem, the BSS 

problem can be stated as follows  

 ���`� = 		��`� = 			a	��`� (4.7) 

where ��(`) is the estimate of the source signals i.e. �(`). The difference between the 

original signal and the estimated signal is the noise signal. The SNR may be defined as 

[54] 

 2�V = 10-+D �.��b. b� = 10-+D �.����− ���. (�− ��)�
 (4.8) 

Optimized processing of equation (4.8) results in the Eigen value problem. The 

resultant Eigen vector matrix corresponds to the un-mixing matrix 	. Once un-mixing 
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matrix is achieved the source signals can be obtained using equation (4.7). The un-mixing 

matrix is obtained by solving singular value decomposition problem that satisfies  

 ����� ×	 = #���% − �����% − ���$×	 ×c (4.9) 

where ��% is the moving average estimate of � and c is the diagonal matrix of the 

generalized Eigen values. 

In [56], it is mentioned that (for energy detection technique) the received signal can 

be written in terms of its sample covariance matrix i.e. 

 d0�e� = 	 d��e�+ 	P�Y (4.10) 

where    d0(e) 	= 	 (

�
∑ ������(�)��

�	� ) 

and       d�(e) 	= 	 (

�
∑ �����(�)��

�	� )  

are the received and transmitted signal sample covariance matrices, respectively. Also, 

P�	 is the noise variance. The transmitted signal sample covariance matrix cannot be 

calculated as no information regarding the transmitted (or source) signal is available. It is 

given in [56] that the blind source separation algorithm can calculate the un-mixing 

matrix for the received signal. Using the un-mixing matrix and received signal an 

estimate of transmitted signal (as shown in equation (4.7)) and its corresponding sample 

covariance matrix can be acquired. The noise variance can be calculated as  
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 P�Y = 	 1�5 ������(�)

��


�	�

−
1�5	������(�)	���


�	�

			 (4.11) 

In our case, signal � is the output of wavelet edge detection technique (��� ) (as in 

Figure 4.2b). The noise variance is not sufficient to threshold one such signal. In order to 

calculate exact threshold values, the noise variance have been normalized with the 

sample mean of received signal (as in Figure 4.2a). Hence the threshold value can be 

written as 

 A =
P�

1�∑ |g���9�|��

�	�

 (4.12) 

Using A  output of the edge detection technique can be thresholded and hence can 

calculate the frequency edges locations.  

Based on aforementioned discussion we can summarize the whole algorithm as 

• Calculate ���  by applying the wavelet edge detection technique to the received 

signal. 

• Apply the blind source separation technique on ���  to calculate 	. 

• Calculate the noise variance using equation (4.11). 

• Calculate the sample mean of ���  . 
• Calculate the threshold value T using equation (4.12). 

• Threshold the output of edge detection technique ���  using T. 
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• Compute the frequency band boundary locations (i.e. start and end) iteratively 

from the output of previous step. 

• Compute the PSD within these frequency band boundaries. 

Figure 4.3 shows above steps in flow chart form for proposed algorithm. 

4.4 SIMULATION 

Here it is assumed that the observed wideband signal of interest lies in the range of 

h0, 1000i∆	Hz, where ∆ is the frequency resolution. During the transmission there are 

total of N = 11 bands in the wideband signal with frequency boundaries ;��<�	�
�  = [0, 

100, 119, 300, 319, 500, 519, 700, 719, 900, 919, 1000]. Out of these 11 bands only 5 

bands are carrying the primary user transmission and rest 6 bands are available for 

secondary user i.e. they are spectrum holes. In simulation, the Gaussian wavelet is used 

for edge detection technique. The effect of noise on the spectrum sensing performance 

has been studied. 

Success ratio and probability of detection curves were obtained over range of SNR. 

Success ratio is defined as probability of accurately detecting the frequency band 

boundaries. Probability of detection is defined as accurately detecting the whole 

frequency band. Figure 4.4 shows the calculated success ratio over the range of SNR 

values and its comparison with the multiscale wavelet products technique. The proposed  
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Figure 4.3: Flowchart of proposed algorithm 

 

 

Begin

Calculate �
�

� by applying wavelet edge detection technique to received signal

Calculate � by applying blind source separation technique on �
�

�

Calculate noise variance σ2

Calculate sample mean of �
�

�

Calculate threshold value T

Threshold �
�

� using T

Compute frequency band boundaries iteratively from thresholded signal 

Compute PSD within obtianed frequency band boundaries

End
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 Figure 4.4: Success ratio versus SNR 

technique had shown improvement of 4 dB for the success ratio plot. Figure 4.5 

shows the probability of detection over range of SNR values. This result shows that 

proposed technique gained 8dB improvement for the probability of detection plot. 

 

Figure 4.5: Probability of Detection versus SNR 
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4.5 CONCLUSION 

In this chapter, a threshold value is proposed for detecting true peaks from the signal 

obtained at the output of wavelet edge detection technique. The noisy peaks are 

suppressed by thresholding the signal. This procedure directly affects the performance of 

spectrum sensing process. The proposed algorithm gained 4 dB improvements in terms of 

success ratio and 8 dB improvements in terms of probability of detection when compared 

with multiscale wavelet product technique. Proposed algorithm improves the 

performance of spectrum sensing process using the low complexity blind source 

separation algorithm. 
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CHAPTER 5                                                                         

SPECTRUM SENSING USING SBBSR APPROACH 

In this chapter, spectrum sensing problem has been addressed using the SBBSR 

algorithm. In section 3.2, the compressive sensing based algorithms for spectrum sensing 

were discussed. The compressive sensing based algorithm used apriori sparsity 

information. Performance of these algorithms is dependent on number of measurements. 

The sensing matrix structure is not used in implementation of these algorithms. Efficient 

results are generated when the sensing matrix structure is random. This requires random 

sampling techniques which provides a constraint, as currently uniform sampling 

architectures are being used. The SBBSR algorithm uses apriori statistical and sparsity 

information. In addition the sensing matrix structure is also used. The sensing matrix 

structure proved helpful in reduction of computational complexity. The SBBSR 

algorithm provides much flexible implementation in comparison to the CS based 

techniques. Taking advantage of this flexible implementation different condition has been 

imposed on the SBBSR algorithm and corresponding results are analyzed.  
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5.1 SBBSR APPROACH FOR SPECTRUM SENSING 

The SBBSR algorithm is based on Bayesian estimation approach for reconstruction of 

sparse signals. As discussed in section 3.4, this algorithm uses apriori statistical and 

sparsity information as well as the sensing matrix structure. Section 3.4.3 provides 

detailed description of the algorithm. In this section, spectrum sensing using the SBBSR 

algorithm is discussed. 

Assume the case when the transmitted signal (primary user signal) distribution is 

known and is Gaussian. The sensing matrix in case of spectrum sensing is a partial 

inverse discrete Fourier transform (IDFT) matrix and is given as 

 � = B�	�
��
 (5.1) 

where B� is the identity matrix of size � ×� and 
��
 is the IDFT matrix of size 

� × �.  In this case the observation vector can be written as 

 � = 	 B�	�
��
�(�) + � (5.2) 

Here it is assumed that the wideband signal of interest lies in the range of 

h0, 100i∆	Hz, where ∆ is frequency resolution. Spectrum occupancy is sparse and has a 

sparsity level of 6% , 6  out of 100  coefficients are non zero. Assume that non-zero 

coefficients are the frequency locations where the transmission is being done by primary 

user and rest is the vacant band. Here, goal is to sense this signal and inform secondary  
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Figure 5.1: Received Signal at CR 

user which locations are vacant for transmission of data. Figure 5.1 shows the signal 

discussed above. This signal is modeled as a Bernoulli-Gaussian (as described in section 

3.4).  

The length of observed signal � is �	 =
�

ℓ
 (where	ℓ is 2). Cluster length ? is observed 

from the correlation among the columns of the sensing matrix and equals 3. The number 

of clusters \ equals 9 and the support size \� equals 2. Number of clusters and support 

size are calculated using Binomial to Gaussian assumption described in section 3.4.3. The 

signal is corrupted using AWGN noise model with SNR of 30	HN. Observe columns 

> ∈ 0, ℓ, 2ℓ, … , (� − 1)ℓ of sensing matrix correspond to the orthogonal matrix �1. 

Figure 5.2 shows the correlation among the columns of sensing matrix. The 50th 

column of sensing matrix is correlated with the sensing matrix itself. Column 50 is in fact 

25ℓ and is orthogonal with column 52 (which is 26ℓ) and 48 (which is 24ℓ) 
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Figure 5.2: Correlation among Columns of Sensing Matrix  

which entails the fact that columns > ∈ 0, ℓ, 2ℓ, … , (� − 1)ℓ of the sensing matrix are 

orthogonal. 

Figure 5.3 shows the correlation result of observed signal with the sensing matrix. 

This figure shows the sorted result of correlation. On y- axis it is representing the  

 

Figure 5.3: Correlation of Observed Signal with Sensing Matrix 
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column number of sensing matrix and on �-axis it is representing the total number of 

columns. Recall that, the sensing matrix is of size � × � and the result of correlation is a 

vector of size 1 × �. The correlation result is displayed in descending order. Hence index 

1 represents column of the sensing matrix which has highest correlation, index 2 

represents the column which has next maximum correlation value and so on. 

Since information of (column) indexes corresponding to the high correlation values is 

available, we can make \  clusters around them and calculate the corresponding 

likelihoods and the MAP estimates within each of them. TABLE 5-1 shows the indexes 

which fall into clusters. 

Index corresponding to the highest correlation value is the center of cluster 1. Next, 

look at the index corresponding to second highest correlation value. If this index is  

TABLE 5-1: CLUSTER INFORMATION 

Cluster 

Number 

Indexes Covered by 

Cluster 

Useful Index in 

Cluster 

1 [89 90 91]  90 

2 [49 50 51]  50 and 51 

3 [11 12 13] 11 and 12 

4 [69 70 71] 70 

5 [52 53] None 

6 [8 9 10] 10 

7 [86 87 88] None 

8 [29 30 31] 30 

9 [84 85] None 
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already present in the previous cluster discard this index and move to the next. In this 

way, \ clusters have been created. These clusters could have variable lengths or a fixed 

length depending on the availability of correlating indexes. Also, there are some clusters 

which do not contain any true location like clusters 5, 7 and 9 in TABLE 5-1. 

After creating the clusters, calculation of likelihoods and the MAP estimate of each 

cluster is required. Calculation of the likelihoods/MAP estimates for the support of size 

0, 1, 2	… 	\� within each cluster is required. Here, \� equal 2 so estimates for supports of 

size 0, 1,2 has been calculated within each cluster. TABLE 5-2 shows the corresponding 

MAP estimates for these support sizes. 

The MAP estimate of support being zero is also required. Observe from TABLE 5-1, 

clusters 5, 7 and 9 do not contain any useful information. The MAP estimate of zero 

support helped in limiting the search over only those clusters which contain true 

locations. Observe from TABLE 5-2, the MAP estimate of support zero for cluster 5 is 

larger than other estimates within same cluster. 

Searching of true locations inside clusters is quite simple. An example for calculation 

of true locations in cluster 1 is given as follows. 

1. Find the maximum estimate value in cluster 1 from all support sizes (-1581.1 

from support of size 1). 

2. Compare this estimate value with that (estimate value) of zero support 

(compare -1581.1 with -2532.2).   
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TABLE 5-2: MAP ESTIMATES FOR CORRESPONDING SUPPORT SIZES 

Cluster Likelihood of 
Support = 0 

Likelihood of Support = 1 Likelihood of Support = 2 

1 -2532.2 
 

[-2102.2  -1581.1   -2201.4] 
[89              90                91] 

[-1585.8   -1771.5   -1585.0] 
[89,90       89,91        90,91] 

2 -2532.2 
 

[-2292.1   -1676.3   -1963.1] 
[49               50                51] 

[-1643.6   -1723.0   -1615.6] 
[49,50          49,51       50,51] 

3 -2532.2 
 

[-2308.0   -2297.6   -2432.2] [-2290.9   -2348.0   -2398.0] 

4 -2532.2 
 

[-2369.4   -2267.2   -2514.7] [-2337.8   -2351.9   -2357.1] 

5 -2532.2 
 

[-2685.0   -2576.7   -2532.2] [-2582.2   -2532.2  -2532.2] 

6 -2532.2 
 

[-2436.1   -2377.7   -2339.9] [-2444.8   -2343.8   -2311.2] 

7 -2532.2 
 

[-2521.8   -2484.0   -2535.3] [-2353.5   -2524.9   -2478.9] 

8 -2532.2 
 

[-2537.2   -2310.7   -2540.6] [-2497.4   -2545.6   -2499.0] 

9 -2532.1 
 

[-2515.2   -2537.3 -2532.1] [-2516.8    -2532.1  -2532.1] 

 

3. If it is greater than estimate value of zero support, it means that 

corresponding cluster contains true locations. The corresponding indexes of 

maximum estimate provides true locations information. (-1581.1 is greater 

than -2532.2 and corresponding true index is 90) 

The MAP estimate for zero support can be calculated as 

 ℒ� = 	 �1 − )��	:�)	(−
1P�� 	‖�‖�) (5.3) 
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Figure 5.4: Recovered Spectrum  

Figure 5.4 shows the recovered sparse signal �(�). Indexes obtained from the SBBSR 

algorithm corresponds to occupancy by the primary users with in observed frequency 

spectrum. 

5.2 SIGNAL MODEL FOR SIMULATION 

In the following simulations the wideband signal model is same as defined in 

equation (5.2) and displayed in Figure 3.2. Choosing this model for the spectrum 

definition proves fruitful while performing comparison analysis between the SBBSR 

algorithm and the compressed sensing based spectrum sensing. Active frequency bands 

can be designed as nonzero mean Gaussian signal. Since equations (3.13), (3.14), (3.15) 

and (3.16) mentioned in section 3.4.2 are defined for zero mean Gaussian signal. 

Modification of equation (3.13) and (3.14) for the nonzero mean Gaussian signal is 
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necessary whereas equation (3.15) and (3.16) are designed for the cases when signal 

distribution is unknown. So, whether the transmitted signal is Gaussian with zero mean or 

nonzero mean does not affects its performance. Hence these equations do not require 

modification. Corresponding (modified) equations for (3.13) and (3.14) are  

 )(�/2) 	= 	 :�)	(−
1P�� 	(�− ���)'X��
(�− ���))H:(	(X�)

 (5.4) 

and 

 X� = Y−
��P��8�8�' + 	 P��P��8�8�' (5.5) 

Correspondingly calculation of likelihood for the zero support is given as 

 ℒ� = 	 �1 − )��	:�)	(−
1P�� 	‖�− ���‖�) (5.6) 

The sensing matrix structure is same (a partial IDFT matrix) as defined in equation 

(5.1). Here it is assumed that the wideband signal of interest lies in the range of 

h0, 1000i∆	Hz, where ∆ is frequency resolution. The observed spectrum is sparse and has 

a sparsity level of 6%. Figure 5.5 shows above discussed wideband signal. In addition to 

the wideband spectrum mentioned in Figure 5.5, spectrum sensing is also performed for 

the spectrum designed using zero mean Gaussian signal as shown in Figure 5.6. This 

signal specification is same as for the wideband spectrum shown in Figure 5.5.  
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Figure 5.5: Assumed Wideband Signal – Flat PSD 

5.3 SIMULATION RESULTS 

In this section, discussion on simulation results of the spectrum sensing using the 

SBBSR algorithm has been carried out. Contributions added to the SBBSR algorithm are 

also explained along with simulations. Simulations are divided into two parts based on 

following cases: 

• When the transmitted signal distribution is known and is Gaussian 

• When the transmitted signal distribution is unknown. 

Separate simulations and discussion on aforementioned cases have been done. The 

SBBSR algorithm performance is compared with the compressive sensing based 

spectrum sensing. It was assumed in [16] that the PSDs of received signal at the CR  
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Figure 5.6: Assumed Wideband Signal - Non Flat PSD 

should be flat. The spectrum was recovered from sub-Nyquist rate samples using the -
 
minimization approach. The wavelet edge detection technique was applied on the 

recovered spectrum to obtain the frequency band edges. The PSD is calculated within 

these frequency bands and decision regarding presence or absence of the primary user 

was made. The wideband signal shown in Figure 5.5 has been considered. 

5.3.1 TRANSMITTED SIGNAL DISTRIBUTION IS KNOWN 

Consider the scenario where the transmitted signal, or the primary user signal, 

distribution is known and is Gaussian. In order to recover the locations where 

transmission is done by primary user we used the SBBSR algorithm. The SBBSR 

algorithm supports flexible implementation (as discussed in upcoming text). Numerous 
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conditions can be imposed to enhance sensing ability of a CR. Based on these conditions 

corresponding simulations can be described as 

• Case 1: Performing spectrum sensing using the SBBSR algorithm without any 

condition on the received signal. 

• Case 2: Performing spectrum sensing using the SBBSR algorithm considering 

fixed (same) length frequency bands in the received signal. 

• Case 3: Performing spectrum sensing using the SBBSR algorithm considering 

variable length frequency band in the received signal. 

5.3.1.1 Case 1  

In this case following apriori information (regarding the received signal) is 

considered 

• Received signal is sparse. 

• Received signal distribution is known. 

Consider the wideband signal shown in Figure 5.5. There are two primary users 

present in the observed spectrum. Goal of spectrum sensing is to recover the locations of 

these two primary users.  

The SBBSR algorithm provides sub-Nyquist rate sampling solution. The observation 

(the �  length vector) � is sub-Nyquist rate sampled signal. Ratio of Nyquist to sub-

Nyquist rate sampling is � =
�

2
, where � is the number of samples required according to 

the Nyquist rate sampling. Since here we have the block sparse signals so we made some 

changes in the SBBSR algorithm to make it compatible with the block sparse signals. The 



73 
 
 

 
 

spectrum sensing problem discussed here is same as described in section 5.1. In section 

5.1 block sparsity was not taken into consideration however here the block sparse signal 

is considered. Solution to the problem is somewhat same but there are minor changes as 

described in following steps. 

1- Make a fixed length cluster based on correlation between the clusters of sensing 

matrix as   

 ?j =
�� + 1 (5.7) 

If working with variable measurement sizes (�) than choose maximum possible 

value of ?j and fix it for all �. After choosing ?j make clusters as mentioned in section 

3.4.3.2. 

2- Instead of calculating likelihoods for support of size 0,1,2, …\� calculate them for 

0,1,2, …\j� where \j� is defined as 

 \j� = 2?j − 1 (5.8) 

3- Instead of making \ clusters, form \j clusters of length ?j where \j is defined as 

 \j = \ × \j� × ) (5.9) 

where ) is the probability of support as defined in equation (3.12). Using above 

methodology the modified SBBSR algorithm is explained in Figure 5.7. 

We are dealing with block sparse signal as shown in Figure 5.5 and Figure 5.6. 

Instead of explaining each step, as did earlier in section 5.1, required values are explained  
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Begin 

Correlate Observation vector � with sensing matrix 8 

Form \j semi-orthogonal clusters of length ?j each around 
the positions with high correlation values 

Process each cluster independently and in each cluster 
calculate the likelihoods for support of size - = 1,2, …\j� 

Evaluate MAP estimate 

END 

 

Figure 5.7: Flow Chart of Modified SBBSR Algorithm 

in tabular form. Spectrum sensing is performed using the modified SBBSR algorithm as 

mentioned in Figure 5.7. Corresponding values for performing spectrum sensing on the 

wideband signals are mentioned in TABLE 5-3. Instead of showing recovery of one 

signal we opted for probability of detection curves. As described earlier in section 4.4, 

probability of detection plots explains the probability of detecting true occupied locations 

by the primary users over range of SNR. 

TABLE 5-3: REQUIRED VALUES BY SBBSR ALGORITHMS FOR CASE 1 

Observation 
Vector Size 

 
 � 

Number 
of 

Clusters \j 
Maximum 
Support 

Size 
 \j� 

Cluster 
Size 
 
 ?j �

4
 

29 9 9 
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Probability of detection curves for both Figure 5.5 and Figure 5.6 are shown in Figure 

5.8. Corresponding result for spectrum sensing performed using the compressive sensing 

is also shown in this figure.  

Discussion of Results 

IEEE has defined a standard IEEE 802.22 for wireless regional area network 

(WRAN) devices [57]. According to this standard, probability of detection should be 

higher than 90% for the WRAN devices to work. Working ranges for aforementioned 

results (according to IEEE 802.22 standard) are shown in TABLE 5-4. Observe from 

TABLE 5-4, spectrum sensing results for the SBBSR algorithm (in flat PSDs case) is 

better than the compressive sensing technique. Former case shows improvement of more 

than 5dB.  

Spectrum sensing based on the sub-Nyquist rate samples is useful when we have high  

 

Figure 5.8: Probability of Detection for Known Primary User Distribution - Case 1 
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TABLE 5-4: WORKING RANGE FOR KNOWN PRIMARY USER 

DISTRIBUTION - CASE 1 

Observation Vector 
Size � 

 
Working Range for Figure 5.8 

 �
4

 
2�V ≥ 7.1HN  2�V ≥ 32.75HN 2�V ≥ 12.95HN 

 

SNR available. Though sensing problem is solved using four times less measurements 

(than required) but we are trading it off at the cost of performance. Hence these 

algorithms are applicable to the sensing problems where high SNR is available but we 

have timing constraint to perform spectrum sensing. Limited time means limited amount 

of measurements. Traditional spectrum sensing algorithms will not be able to work under 

such circumstances and will give poor performance. However, proposed procedure gives 

good results with limited measurements. At low SNR, signal loses its sparsity because of 

the high amplitude noise samples. So it is difficult to provide recovery at low SNR. 

5.3.1.2 Case 2 

Let us assume the scenario in which apriori information about Primary user’s band 

length (or bandwidth) is available. As mentioned in [41], the primary/licensed users have 

been assigned frequencies based on static spectrum allocation scheme. For instance, the 

bands 1710-1755 MHz and 1805-1850 MHz are allotted to GSM 1800. This also gives a 

hint that on certain frequency band the primary users will appear in the form of clusters. 

So for a certain band these details can be gathered apriori from regulatory authority. Here 

it is assumed that on a given spectrum all primary users have been assigned known 



77 
 
 

 
 

(fixed) length bands. As mentioned earlier, the SBBSR algorithm has capability of 

including apriori statistical and sparsity information. Band length information is 

considered as apriori length information regarding incoming signal bands. In this section, 

this information is exploited and corresponding probability of detection plots are 

analyzed. 

Small changes have been made to the SBBSR algorithm mentioned in Figure 3.4. 

Since apriori knowledge of primary user band length is present so calculation of the 

MAP/Likelihood estimates for various support sizes i.e. - = 1, 2, … 	\�  is not required. 

Actually the support size is already known so the MAP estimates are only calculated for 

that particular support size. Modified procedure for the SBBSR algorithm is described 

below and shown in Figure 5.9. 

1- Correlate observation vector � with sensing matrix 8. 

2- Make clusters of known (fixed) length ? around maximum correlation values. 

3- Compute likelihood for known length within each cluster. 

4- Calculate corresponding MAP estimates of each cluster. 

One key advantage is the reduction of computational complexity. Earlier calculation 

of estimates for various support sizes - = 1, 2, … 	\� was required. So 2&� estimates were 

calculated. Now with the band length knowledge estimates for various support sizes is 

not required. One estimate is calculated for each cluster.  

Consider the signal at the input of a CR as described in Figure 5.5 and Figure 5.6. 

Assume that both primary users have same band length. Here spectrum sensing have been  
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Begin 

Correlate Observation vector � with sensing matrix 8 

Form \ semi-orthogonal clusters of known length ? each 
around the positions with high correlation values 

Process each cluster independently and in each cluster 
calculate the likelihood for support of a known size  

Evaluate MAP estimate 

END 

 

Figure 5.9: SBBSR Algorithm for apriori Length Knowledge 

performed for these fixed length frequency bands. Steps followed here are same as 

discussed in section 5.1. Corresponding required values of cluster size, observation 

vector, number of cluster and support size for performing spectrum sensing on the 

wideband signals (shown in Figure 5.5 and Figure 5.6) are shown in TABLE 5-5. Instead 

of showing recovery of the spectrum we focused at the corresponding probability of 

detection  

TABLE 5-5: REQUIRED VALUES BY SBBSR ALGORITHMS FOR CASE 2 

Observation 
Vector Size 

 
 � 

Number 
of 

Clusters \ 

Maximum 
Support 

Size 
 \� 

Cluster 
Size 

 
 ? �

4
 

79 1 31 
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curves. Probability of detection curves are obtained by averaging the result of 100 Monte 

Carlo realizations as shown in Figure 5.10. 

Discussion of Results 

Observe from Figure 5.10, apriori knowledge showed promising results for both cases 

i.e. flat and non-flat PSDs in comparison to the compressive sensing technique. 

Acceptable working ranges according to IEEE 802.22 standard are given in TABLE 5-6. 

Improvement in working range of the algorithm is not the only key advantage. 

Incorporating the length information also results in reduction of computational 

complexity. A simple example would be: Earlier (in Case 1) various support sizes 

- = 1,2, … ,\� were considered inside a cluster to calculate the MAP estimates. Now with 

the apriori length information we don’t have to calculate these estimates for various  

 

Figure 5.10: Probability of Detection for Known Primary User Distribution - Case 2 
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TABLE 5-6: WORKING RANGE FOR KNOWN PRIMARY USER 

DISTRIBUTION - CASE 2 

Observation Vector 
Size � 

 
Working Range for Figure 5.10 

 �
4

 
2�V ≥ 7.8HN  2�V ≥ 7.8HN 2�V ≥ 12.95HN 

 

support sizes. Only one estimate is calculated for known length. Hence computation 

complexity while calculating estimates is reduced by \�. 
In summary, apriori knowledge regarding length of primary user’s band helped in 

achieving reduction in computational complexity as well as gain in probability of 

detection.  

5.3.1.3 Case 3 

In section 5.3.1.2, it was assumed the received signal at CR consists of fixed length 

frequency bands. Now assume that in the observed spectrum, variable length frequency 

bands are present. Length of these frequency bands is assigned based on some probability 

distribution function. Assume that this apriori length information is also known at the 

receiver. 

This case is quite similar to Case1 where no information regarding the bandwidth of 

primary users is available. In Case1, the maximum support size was dependent on \�. 
Estimates were calculated corresponding to support sizes of - = 1,2 …\� within a cluster. 

This procedure was repeated for the \  clusters. Corresponding indexes of maximum 
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valued estimates provides the information regarding occupancy of frequency locations by 

the primary user. Now, in this section estimate calculation is only done for known 

support sizes within each cluster. 

This apriori information helped in achieving reduction in computational complexity 

in comparison to Case 1. Earlier in Case1, calculation of the estimates for support sizes 

- = 1,2 …\�  within a cluster was required. Now the estimates are only calculated for 

known lengths within a cluster. This apriori knowledge provides reduction in 

computational complexity. 

Consider Figure 5.5 and Figure 5.6 as the received signals at CR. Both signals contain 

variable length primary users. Assume that these lengths are based on the Rayleigh 

distribution. Rayleigh distribution is also known at the CR and so are the corresponding 

lengths of each primary user. This information has been used while calculating the MAP 

estimates. Same steps, except one, have been followed for performing spectrum sensing 

as described in section 5.1. Instead of calculating estimates for support sizes - = 1,2 …\� 
calculate them for the known support sizes. Corresponding required values of cluster size, 

observation vector, number of cluster and support size for performing spectrum sensing 

on the wideband signals (shown in Figure 5.5 and Figure 5.6) are shown in TABLE 5-7. 

Resultant probability of detection curves, averaged over 100 Monte Carlo realizations, 

for Figure 5.5 and Figure 5.6 have been shown in Figure 5.11 
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TABLE 5-7: REQUIRED VALUES BY SBBSR ALGORITHMS FOR CASE 3 

Observation 
Vector Size 

 
 � 

Number 
of 

Clusters \ 

Maximum 
Support 

Size 
 \� 

Cluster 
Size 

 
 ? �

4
 

79 3 [25 31] 

 

Discussion of Results 

Observe from Figure 5.11, considerable improvements have been achieved for both 

the flat and non-flat PSD cases in contrast to the compressive sensing result. Acceptable 

working ranges according to IEEE 802.22 standard are given in TABLE 5-8. Apriori 

knowledge regarding bandwidth of the primary users showed considerable improvement 

in the performance of the SBBSR algorithm based spectrum sensing. This knowledge 

also helped in reducing computational complexity of algorithm. 

 

Figure 5.11: Probability of Detection for Known Primary User Distribution - Case 3 
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TABLE 5-8: WORKING RANGE FOR KNOWN PRIMARY USER 

DISTRIBUTION - CASE 2 

Observation Vector 
Size � 

  
Working Range for Figure 5.11 

 �
4

 
2�V ≥ 1.8HN  2�V ≥ 8.5HN 2�V ≥ 12.9HN 

 

5.3.2 TRANSMITTED SIGNAL DISTRIBUTION IS UNKNOWN 

Earlier in section 5.3.1, it was assumed that the transmitted signal distribution is 

known at the receiver. Now in this section no knowledge regarding the transmitted signal 

distribution is available. Equation (3.18) provides the corresponding MAP estimate for 

current scenario. 

Numerous cases (as considered earlier) can be described as follows 

• Case 1: Performing spectrum sensing using the SBBSR algorithm without any 

condition on the received signal. 

• Case 2: Performing spectrum sensing using the SBBSR algorithm considering 

fixed (same) length frequency bands in the received signal. 

• Case 3: Performing spectrum sensing using the SBBSR algorithm considering 

variable length frequency band in the received signal. 
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5.3.2.1 Case1 

This case is same as defined in section 5.3.1.1. Only sparsity is considered as the 

apriori information. Consider the wideband signal shown in Figure 5.5 and Figure 5.6. 

There are two primary users present in the observed spectrums. Goal of spectrum sensing 

is to recover the locations of these two primary users. Here spectrum sensing is 

performed using the modified SBBSR algorithm as mentioned in Figure 5.7. Steps 

followed here are same as described in section 5.1. For likelihood calculation equation 

(3.15) has been used. Corresponding values for performing spectrum sensing on the 

wideband signals (shown in Figure 5.5 and Figure 5.6) are same as mentioned in TABLE 

5-3. Corresponding probability of detection plots have been shown in Figure 5.12. 

Discussion of results as in section 5.3.1.1 is applicable to this section also. Spectrum 

sensing using the SBBSR algorithm showed considerable improvement when compared  

 

Figure 5.12: Probability of Detection for Un-Known Primary User Distribution - Case 1 
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with the compressive sensing based results. This proves the fact that the SBBSR 

algorithm formulation for the case when we don’t know about the signal statistics is 

equally good. TABLE 5-9 provides working ranges according to IEEE 802.22 standard. 

5.3.2.2 Case 2 

This case is same as defined in section 5.3.1.2. Here it is assumed that on a given 

spectrum all primary users have been assigned known (fixed) length bands. As mentioned 

earlier, the SBBSR algorithm has capability of including apriori statistical and sparsity 

information. Band length information is considered as the apriori length information 

regarding the incoming signal frequency bands. In this section, this information is 

exploited and corresponding probability of detection plots are analyzed.  

Consider Figure 5.5 and Figure 5.6 as the received signal at a CR. Spectrum sensing 

performed here is same as defined in section 5.3.1.2 and explained in Figure 5.9. Same 

assumptions were taken as in section 5.3.1.2. Corresponding required values of cluster 

size, observation vector, number of cluster and support size for performing spectrum 

sensing on the wideband signals (shown in Figure 5.5 and Figure 5.6) are same and  

TABLE 5-9: WORKING RANGE FOR UN-KNOWN PRIMARY USER 

DISTRIBUTION - CASE 1 

Observation Vector 
Size � 

  
Working Range for Figure 5.12 

�
4

 
2�V ≥ 6.5HN  2�V ≥ 35.3HN 2�V ≥ 12.9HN 
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mentioned in TABLE 5-5. Corresponding probability of detection plots, for Figure 5.5 

and Figure 5.6, averaged over 100 Monte Carlo realizations are shown in Figure 5.13 

Working ranges according to IEEE 802.22 standard are shown in TABLE 5-10. 

Observe the probability of detection curve shown in Figure 5.13 and compare them to 

case when no knowledge regarding the signal and length of primary user is available, as 

shown in Figure 5.12. The apriori length knowledge helped in improving the probability 

of detection. In Figure 5.12 at SNR of 0dB we have poor probability of detection whereas 

in Figure 5.13 we still have reasonable probability of detection. Another advantage is the 

reduction in computational complexity. Results obtained in this section are quite similar 

to section 5.3.1.2. In conclusion, apriori knowledge of length helped in lesser 

computational complexity and better probability of detection. 

 

Figure 5.13: Probability of Detection for Un-Known Primary User Distribution - Case 2 
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TABLE 5-10: WORKING RANGE FOR UN-KNOWN PRIMARY USER 

DISTRIBUTION - CASE 2 

Observation Vector 
Size � 

  
Working Range for Figure 5.13 

�
4

 
2�V ≥ 0.9HN  2�V ≥ 6.8HN 2�V ≥ 12.9HN 

 

5.3.2.3 Case3 

In this section a more generalized scenario is discussed in comparison to the previous 

scenario. Earlier, it was assumed that the CR is sensing a spectrum in which multiple 

primary users were present. Each primary user has same (fixed) length bandwidth and is 

known at the CR. Now assume that multiple primary users are present in observed 

spectrum and they have variable (length) bandwidth. These lengths are assigned based on 

some probability distribution function. Assume knowledge of these lengths and 

probability distribution function is also available at the CR. 

This case is similar to the case described in 5.3.1.3. We perform spectrum sensing of 

the received spectrums shown in Figure 5.5 and Figure 5.6. Assumptions taken and steps 

performed for spectrum sensing here are same as described in section 5.3.1.3. 

Corresponding required values of cluster size, observation vector, number of cluster and 

support size for performing spectrum sensing on the wideband signals are also same and 

shown in TABLE 5-7. Probability of detection curves averaged over 100 Monte Carlo 

realizations are shown in Figure 5.14.  Working range according to IEEE 802.22 standard  
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Figure 5.14: Probability of Detection for Un-Known Primary User Distribution - Case 3 

are shown in TABLE 5-11. Inculcating apriori knowledge regarding length helped us in 

improving the performance of algorithm. Comparing current scenario results with Case 2 

(section 5.3.2.2) leads us to same conclusion. In fact current scenario is generalization of 

the same (fixed) length scenario and hence their performance should be same. 

Another advantage of using the apriori knowledge is reduction in computational 

complexity. Earlier estimates were calculated for the various support sizes - = 1,2 …\� 
and know they are only calculated for the fixed and known support sizes.  

Summing up, the apriori knowledge of length helped in lesser computational 

complexity and better probability of detection. 
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TABLE 5-11: WORKING RANGE FOR UN-KNOWN PRIMARY USER 

DISTRIBUTION - CASE 3 

Observation Vector 
Size � 

 
Working Range for Figure 5.14 

 �
4

 
2�V ≥ 1.3HN  2�V ≥ 6.3HN 2�V ≥ 12.9HN 

 

5.4 CONCLUSION 

In this chapter spectrum sensing was performed using the SBBSR algorithm. 

Observed spectrum is block sparse. Accordingly few modifications were made in the 

SBBSR algorithm to make it work for the block sparse signals. Based on signal 

knowledge at the receiver different cases were dealt. The apriori information regarding 

frequency band length proved helpful. Comparisons were made to the compressed 

sensing based spectrum sensing approach. In all cases more than (approximately) 6dB 

improvement was achieved. In addition, lesser computational complexity proved a big 

edge.  
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CHAPTER 6                                                                           

SPECIAL CASE: OFDM SIGNAL 

In this chapter spectrum sensing is performed on a real time signal model. It is 

considered that the primary users are using the Digital Video Broadcasting-Terrestrial 

(DVB-T) OFDM system for the transmission of their data. Spectrum sensing is 

performed using the modified SBBSR algorithms as described in Chapter 5. Different 

cases are dealt based on the knowledge regarding the incoming signal at a CR. 

Corresponding probability of detection curves are obtained and analyzed.  

6.1 DIGITAL VIDEO BROADCASTING-TERRESTRIAL OFDM 

SYSTEM 

The digital video broadcasting (DVB) is a European standard for the broadcast 

transmission of the digital terrestrial television (DTV). The DVB standard is first 

published in 1997 [58] and the first transmission using this standard was done in 1998, 

UK. IEEE has established a group named Wireless Regional Area Network (WRAN) and  
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had given it a standard IEEE 802.22. This group is established to create standards for the 

CR Physical/MAC interfaces. These standards will be used by the CR to operate in 

licensed spectrum of the DTV [59]. 

Let’s review the DVB-T OFDM System. In [60] expression for one OFDM symbol, 

starting at ( = (� is given as 

��(� =

./0
/1V:

.0
1 5 H


3
��
�
:�)k>2l m�� −

' + 0.5A 	n �( − (��o
��
� �



	�
��
� pq

r
, (� ≤ ( ≤ (� + A

0																																																																												, ( < (�	+*	( > (� + A
 (6.1) 

where, 

H
 are complex modulation symbols 

�� are the number of sub-carriers 

�� is the carrier frequency 

A is the symbol duration 

Similar expression for the generalized OFDM system based on the DVB-T system is 

given in [61] as 

 ��(� = V: %:��-���55 5 S�,4,�s�,4,�(()5���

�	5���

�6

4	�

.

�	�

t (6.2) 

where, 
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Ψ�,�,���� = �exp	(�2� ��	� �� − Δ − 
	� − 68�	��, (
 + 68�)	� ≤ � ≤ (
 + 68� + 1)	�
0						,				�

�  (6.3) 

Corresponding variables in equation (6.2) and (6.3) are explained in TABLE 6-1. 

Equation (6.2) represents a working system that has been used and tested since March, 

1997. For one symbol i.e. from ( = 0 to ( = A�  equation (6.2) becomes [61] 

 ��(� = 	V: %:��-��� 5 S�,�,�:��-��(��∆)/��5���

�	5���

t (6.4) 

TABLE 6-1: DESCRIPTION OF VARIABLES FOR GENERALIZED DVB-T 

SYSTEM 

VARIABLE DESCRIBES 

u Carrier number 

v OFDM symbol number 

w Transmission frame number 

x Number of transmitted carriers 

y� Symbol duration 

y7 Inverse of carrier spacing 

z Guard interval 

{� Carrier frequency 

u’ Carrier index relative to the center frequency i.e. =� = = −
5���35���

�
 |8,9,: Complex symbol for carrier = of the data symbol number ' in frame 

number � 
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There are two modes of the DVB-T standard i.e. 2=  and 8= . Here 2=  mode is 

considered. This mode is intended for the mobile reception of a standard definition DTV. 

Other specification regarding OFDM symbol in DVB-T 2= mode are given in TABLE 6-

2 [61]. 

For our simulation work we considered only one OFDM symbol. We used a scaled 

down version of the DVB-T 2= mode i.e. based on 2= mode but has specifications 

TABLE 6-2: NUMERICAL VALUES FOR OFDM SYMBOL IN DVB-T 2= MODE  

Parameter DVB-T 2= Mode 

Elementary Period A 7

64
	μ7:S 

Number of carriers � 1705 

Value of carrier number ��
� 0 

Value of carrier number ���� 1704 

Duration A; 224	μ7:S 
Carrier spacing 




��
 4,464	LM 

Spacing between carriers ��
� and 
5���<5�
=

��
 

7.61	�LM 
Allowed Guard Interval 1

4
,

1

8
,

1

16
,

1

32
 

Duration of Symbol part A; 2048 × A 
 

224	μ7:S 
Duration of Guard Interval ∆ 512 × A           256 × A      128 × A      64 × A 

 
56	μ7:S        28	μ7:S       14	μ7:S       7	μ7:S 

Symbol Duration A� = ∆ + T> 2560 × A    2304 × A     2176 × A   2112 × A 
 

280	μ7:S     252	μ7:S     238	μ7:S   231	μ7:S 
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that take smaller duration to compute. These scaled down specifications have been shown 

in TABLE 6-3. The input signal (observed spectrum) at a CR may consist of single 

primary user or multiple primary users. Input signal generation is shown in Figure 6.1. 

TABLE 6-3: SIMULATED OFDM SYMBOL IN DVB-T 2= MODE 

Parameter DVB-T 2= Mode 

Elementary Period A 1.4	�7:S 
 Number of carriers � 32 

Value of carrier number ��
� 0 

Value of carrier number ���� 31 

Duration A; 22.4	�7:S 
Carrier spacing 

 



��
 

44.64	LM 
Spacing between 

carriers 
1.4285	�LM 

Allowed Guard 
Interval 

1

4
,

1

8
,

1

16
,

1

32
 

Duration of Symbol 
part A; m�

2
n × A 

 

22.4	�7:S 
Duration of Guard 

Interval Δ 
(
�.?5

2
) × A          #�.?5

@
$ × A         #�.?5


�
$× A        #�.?5

��
$ × A 

 
5.6	�7:S           2.8	�7:S           1.4	�7:S           0.7	�7:S 

Symbol Duration 
 A� = Δ + T>  

(0.5� + ��.�	


�) × �  (0.5� + ��.�	

�
�) × �  (0.5� + ��.�	

�

�) × � 

 
28	�7:S                      25.2	�7:S               23.8	�7:S 
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Figure 6.1: OFDM Signal Generation 

6.2 SIMULATION RESULTS 

In this section spectrum sensing using the SBBSR algorithm is performed. Primary 

users in the observed spectrum are using DVB-T 2k mode for transmission of their data. 

Parameters of this mode are described in TABLE 6-3. In following text, a detailed 

description for performing spectrum sensing using the SBBSR algorithm (considering the 

DVB-T system) is given.  

6.2.1 SPECTRUM SENSING USING SBBSR ALGORITHM 

The observed spectrum consists of one active primary user. Assume the situation 

where single primary user is present in the observed spectrum. Total available spectrum 

is 14.28	�LM where the primary user is centered at 7.14	�LM. Primary user is using the 

same signal model as described in TABLE 6-3. Cyclic prefix is of length (
��
2

). The 

primary user band extends from 6.52 − 7.95	�LM and uses QAM modulation scheme. 

Figure 6.2 shows the observed spectrum which consists of a primary user at 7.14	�LM. 
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Figure 6.2: Observed Spectrum 

Same steps are considered as described in section 5.1. First, correlate the received 

signal with the sensing matrix. Observed vector at a CR � has length of � =
�

�
. Upper 

bound on cluster length ? is 3. Total number of the clusters \ and maximum number of 

the supports \�  are 41 and 2. Sparsity level is set to 10%. On linear scale occupied 

locations correspond to indexes 181, 182 … 219, 220.   

Make \  clusters around high correlation values. TABLE 6-4 provides the cluster 

information. Since the total numbers of clusters are huge, only few are displayed to 

illustrate the concept. Observe, some of the clusters contain no useful information for 

sparse recovery. Next compute the MAP estimate corresponding to the support of sizes 

- = 0, 1, 2 within each cluster. TABLE 6-5 provides this information. 
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TABLE 6-4: CLUSTER INFORMATION FOR DVB-T SYSTEM 

Cluster 
Number 

Indexes Covered 
by Cluster 

Useful Index in 
Cluster 

1 [210   211   212] All 

2 [191   192   193] All 

3 [206   207   208] All 

4 [195   196   197] All 

. . . 

. . . 

. . . 

40 [357   358   359] None 

41 [123   124   125] None 

 

Since complete information regarding the MAP estimates is achieved, find the largest 

estimates and compare them and deduce information regarding the true location (as did in 

section 5.1). Figure 6.3 shows the transmitted OFDM signal and the recovered OFDM 

signal. 

6.2.2 PRIMARY USER SIGNAL DISTRIBUTION IS KNOWN 

Here same scenario is considered as described in section 5.3.1, where the primary 

user signal distribution is known. In order to recover the locations where transmission is 

done by primary user the SBBSR algorithm is used. The SBBSR algorithm supports  
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TABLE 6-5: MAP ESTIMATES FOR CORRESPONDING SUPPORT SIZES - 

DVB-T SYSTEM 

Cluster 
Number 

Likelihood of  
Support = 0 

Likelihood of Support = 1 Likelihood of Support = 2 

1 -7636.5 [-6283.2   -6097.8    -6931.2] 
[210             211             212] 

[-5422.9  -5579.6  -5609.1] 
[210,211   210,212   211,212] 

2 -7636.5 [-6998.3   -6220.9   -6401.7] 
[191                192             193] 

[-5798.3   -5765.2   -5633.6] 
[191,192   191,193  192,193] 

3 -7636.5 [-6711.6   -6535.3   -7434.0] [-6321.4   -6511.2   -6463.3] 

. . . . 

. . . . 

. . . . 

40 -7636.5 [-7645.5   -7644.1   -7646.3] [-7653.9   -7655.3   -7653.7] 

41 -7636.5 [-7.6449   -7.6441   -7.6468] [-7.6536   -7.6552   -7.6509] 

 

flexible implementation. As in section 5.3.1, numerous conditions have been imposed to 

enhance the sensing ability of a CR. Based on these conditions corresponding simulations 

can be described as 

• Case 1: Performing spectrum sensing using the SBBSR algorithm without any 

condition on the received signal. 

• Case 2: Performing spectrum sensing using the SBBSR algorithm considering 

fixed (same) length frequency bands in the received signal. 
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Figure 6.3: Reconstruction of Spectrum - DVB-T System 

Here (and in next section), the signal model shown in TABLE 6-3 has been considered. 

Earlier in Figure 6.2 the observed spectrum has only one active primary user. Now 

consider the case where multiple primary users are present in the observed spectrum. 

Assume there are two primary users exploiting the spectrum. The observed spectrum is of 

bandwidth 28.571	�LM. User 1 is centered on 7.1426	�LM and user 2 is centered on 

21.43	�LM. Both users have the same bandwidth i.e. 1.428	�LM. Both users are using 

the OFDM modulation for transmission. Sparsity level is set to 10%. For both users the 

cyclic prefix length is same and equals 
��
2

. Figure 6.4 describes the aforementioned 

scenario.  

6.2.2.1 Case 1 

In this case no additional apriori information regarding the received signal other than 

sparsity is considered. Consider the spectrum shown in Figure 6.4. There are two  
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Figure 6.4: Observed Spectrum with Multiple Primary Users – DVB-T System 

primary users present in the observed spectrum. This case is exactly similar to the case 

discussed in section 5.3.1.1. Spectrum sensing is performed using the modified SBBSR 

algorithm as mentioned in Figure 5.7. The steps followed here are same as described in 

section 6.2.1. Corresponding values for performing spectrum sensing on the observed 

spectrum are mentioned in TABLE 6-6. Probability of detection curve for sensing 

primary users in the observed spectrum (as shown in Figure 6.4) are shown in Figure 6.5. 

Here we cannot compare our results with that of the compressed sensing based spectrum 

sensing as PSDs in observed spectrum are not flat. This also provides us a fact that 

spectrum sensing based on the SBBSR algorithm can handle more realistic cases in 

contrast to [16]. Working range according to IEEE 802.22 standard is for SNR greater 

than 36 dB. 
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TABLE 6-6: REQUIRED VALUES BY SBBSR ALGORITHM – DVB-T Case 1 

Observation 
Vector Size 

 
 � 

Number 
of 

Clusters \j 
Maximum 
Support 

Size 
 \j� 

Cluster 
Size 
 
 ?j �

4
 

72 9 9 

 

6.2.2.2 Case 2 

Assume the scenario in which apriori information about the primary user’s band 

length (or bandwidth) is available. Assume that in a given spectrum all primary users 

have been assigned known (fixed) length bands. Band length information is considered as 

apriori length information regarding the incoming signal bands. In this section, this 

information is exploited and corresponding probability of detection plots are analyzed. 

 

Figure 6.5: Probability of Detection for Known Primary User Distribution – DVB-T 
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As described earlier, this apriori information helps in achieving reduction in 

computational complexity. 

Consider the spectrum shown in Figure 6.4. Spectrum sensing here is performed 

using the modified SBBSR algorithm as described in Figure 5.9. Steps followed here are 

same as discussed in section 6.2.1 except few changes as discussed in Figure 5.9. 

Corresponding required values of the cluster size, observation vector, number of cluster 

and support size for performing spectrum sensing on the observed spectrum are shown in 

TABLE 6-7. Probability of detection curve has been achieved by averaging the result of 

100 Monte Carlo realizations as shown in Figure 6.6. Observe, working range according 

to IEEE 802.22 standard is for SNR greater than 12 dB.  

Observe the apriori knowledge improved the performance of the SBBSR algorithm 

by 22dB. Also observe, apriori length knowledge provides better probability of detection 

than spectrum sensing performed using the compressed sensing (Figure 5.10). The 

algorithm described in [16], is only applicable for the spectrum where we have flat PSD’s 

whereas the SBBSR algorithm can handle both cases. This proves the fact that spectrum 

sensing based on the SBBSR algorithm can accommodate, with better probability of 

detection, real time scenarios in contrast to the compressed sensing based technique. 

TABLE 6-7: REQUIRED VALUES BY SBBSR ALGORITHM – DVB-T Case 2 

Observation 
Vector Size 

 
 � 

Number 
of 

Clusters \ 

Maximum 
Support 

Size 
 \� 

Cluster 
Size 

 
 ? �

4
 

103 1 40 
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Figure 6.6: Probability of Detection for Known Primary User Distribution – DVB-T 

Case 2 

6.2.3 PRIMARY USER SIGNAL DISTRIBUTION IS UN-KNOWN 

In this section, assume no knowledge about the transmitted signal distribution is 

available. Equation (3.18) provides the corresponding MAP estimate for current scenario. 

In this section we consider the same spectrum as shown in Figure 6.4. Various cases 

can be described as follows 

• Case 1: Performing spectrum sensing using the SBBSR algorithm without any 

condition on the received signal. 

• Case 2: Performing spectrum sensing using the SBBSR algorithm considering 

fixed (same) length frequency bands in the received signal. 
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6.2.3.1 Case1 

This case is same as defined in section 5.3.1.1. Only sparsity of the signal is 

considered as apriori information. Consider the observed spectrum as shown in Figure 

6.4. There are two primary users present in the observed spectrums. Here for spectrum 

sensing purpose the modified SBBSR algorithm as mentioned in Figure 5.7 has been 

used. Steps followed here are same as described in section 6.2.1. For likelihood 

calculation equation (3.15) is used. Corresponding values for performing spectrum 

sensing on the spectrum shown in Figure 6.4 are same as mentioned in TABLE 6-6. 

Probability of detection plot for the observed spectrum (shown in Figure 6.4) is shown in 

Figure 6.7. Observe the working range according to IEEE 802.22 standard is for SNR 

greater than 33dB. 

 

Figure 6.7: Probability of Detection for Un-Known Primary User Distribution – 

DVB-T Case 1 
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6.2.3.2 Case 2 

This case is same as defined in section 5.3.1.2. Here it is assumed that on a given 

spectrum all primary users have been assigned known (fixed) length bands. Band length 

information is considered as apriori length information regarding the incoming signal 

bands. In this section, this information is exploited and corresponding probability of 

detection plots are analyzed.  

Consider Figure 6.4 as the observed spectrum at a CR. The spectrum sensing 

performed here is same as defined in section 5.3.1.2 and explained in Figure 5.9. 

Corresponding required values of the cluster size, observation vector, number of cluster 

and support size for performing spectrum sensing on the observed spectrum are same and 

shown in TABLE 6-7. Probability of detection plot, for the observed spectrum averaged  

 

Figure 6.8: Probability of Detection for Un-Known Primary User Distribution – 

DVB-T Case 2 
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over 100 Monte Carlo realizations is shown in Figure 6.8. Working range according to 

IEEE 802.22 standard is for SNR greater than 11dB. Apriori knowledge improved the 

performance of the SBBSR algorithm by 22 dB. Observe that performance under apriori 

knowledge provides better probability of detection than spectrum sensing performed 

using the compressed sensing technique. The algorithm described in [16], is only 

applicable for the spectrum with flat PSDs. This proves the fact that spectrum sensing 

based on the SBBSR algorithm can accommodate, with better probability of detection, 

real time scenarios in contrast to the compressed sensing based technique. 

6.3 CONCLUSION 

In this chapter spectrum sensing was performed using the SBBSR algorithm. A more 

realistic signal model (Digital Video Broadcasting-Terrestrial) was assumed for the 

primary user. Transmission done by the primary user in observed spectrum is block 

sparse. The modified SBBSR algorithm was used while performing spectrum sensing. 

Based on the signal knowledge at the receiver different cases were dealt. Apriori 

information regarding the frequency band length proved helpful in all cases. The 

compressed sensing based spectrum sensing approach cannot handle such realistic 

scenario as PSDs of the frequency bands (in observed spectrum) are not flat. The cases 

considering apriori knowledge showed better results compared to the compressive 

sensing based spectrum sensing approach.  In all the cases more than (approximately) 

1dB improvement was achieved. In addition, lesser computational complexity proved a 

big edge.  
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CHAPTER 7                                                             

CONCLUSION AND FUTURE WORK 

7.1 CONCLUSION 

Efficient utilization of radio spectrum has gained recent attention. It has been 

observed that utilization of spectrum by the licensed wireless systems, for instance TV 

broadcasting, is quite low. Some of the frequency bands are overcrowded and some are 

barely used. Cognitive radio seems a tempting solution to resolve the perceived 

bandwidth scarcity versus under-utilization dilemma. Spectrum sensing is used to locate 

the unoccupied frequency bands or spectrum holes. 

In Chapter 4, wavelet transform was applied on the received wideband signal at 

cognitive radios. The wavelet transform generates peaks at the locations where 

transmission is done by the primary users. In absence of noise, these peaks are sufficient 

to calculate the frequency band edges information whereas in presence of noise these 

peaks are accompanied by the noisy peaks as well. A threshold value was calculated 

using blind source separation technique. This value helped in suppressing the noisy 

peaks. 
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In Chapter 5, spectrum sensing for the wideband signal was performed using the 

structure based Bayesian sparse reconstruction algorithm (SBBSR). The SBBSR 

algorithm provides sub-Nyquist rate sampling solution to the wideband spectrum sensing 

problem. Spectrum sensing was performed for various cases using both, the SBBSR 

algorithm and the compressed sensing based technique. Results obtained from the 

SBBSR algorithm showed better performance compared to results obtained from the 

compressed sensing based spectrum sensing technique. In Chapter 6, it was assumed that 

the primary users are using the DVB-T OFDM system for transmission of their data. 

Spectrum sensing was performed using the SBBSR algorithm and better probability of 

detection results were achieved compared to the compressed sensing based spectrum 

sensing technique.  

7.2 FUTURE WORK 

There is a possibility that a single cognitive radio may suffer from the multipath or 

shadowing effects. In such situation, results generated by spectrum sensing may cause 

interference between the cognitive radio and the primary user. Cooperative 

communication between the multiple cognitive radios can provide a solution to this 

problem. In such environment, multiple cognitive radios work together and improve the 

sensing performance. The proposed work in this thesis is based on the autonomous 

cognitive radio. This work can be extended to cooperative communication environment 

and hence sensing performance of all the cognitive radios can be improved. 
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