

iii

Dedication

To my beloved family:

My inspirer, my parents, my brother, my sisters

and my lovely fiancée.

iv

Acknowledgements

I would like to take this chance to acknowledge King Fahd University of Petroleum and

Minerals (KFUPM) for all support extended during this research.

Furthermore, I would like to deeply thank my thesis advisor, Dr. Mohammad

Alshayeb, for his continuous support, unlimited help, patience, valuable guidance and

advice since we first met. My gratitude is also due to the thesis committee members, Dr.

Moataz Ahmed and Dr. Sajjad Mahmood for their help and enlightening comments.

I would like to thank my inspirer and my mentor (Ahmed) for inspiring me,

encouraging me and for showing me the way.

I would also like to thank my parents (Salman and Ghefrah), my brother (Sameer),

my sisters (Sallam and Rudinah), for their prayers, encouragement, and continuous

support.

Last, but not least, I would also like to thank my fiancée (Hadeel) for her love,

support, encouragement and her sincere belief in me.

v

Table of Contents

Page

List of Tables .. vi

List of Figures ... viii

Abstract (English) .. xiv

Abstract (Arabic) .. xv

Chapter 1: Introduction ... 1

Chapter 2: Background .. 6
2.1 UML .. 6

2.2 Meta-models ... 18

2.3 UML Extension Types .. 25

2.3.1 UML lightweight extension ... 25

2.3.2 UML heavyweight extension ... 28

Chapter 3: Literature Review .. 30
3.1 Class diagram .. 31

3.2 Sequence diagram ... 46

3.3 Use case diagram .. 50

Chapter 4: Extension Integration .. 62
4.1 The Integration Process .. 62

4.2 Applying the Integration Process .. 65

4.2.1 Integration of graphical symbols ... 66

4.2.2 Integration of the meta-model extensions .. 77

Chapter 5: Tool Support .. 132

Chapter 6: Validation ... 137
6.1.1 Case study # 1: Secured Health Care System 137

6.1.2 Case study # 2: Grade Recording System ... 150

6.1.3 Case study # 3: Meeting Scheduling System 159

6.2.1 Case study # 4: Elevator Control System ... 163

6.3.1 Case study # 5: E-Commerce System ... 168

6.3.2 Case study # 6: Elevator Control System ... 172

Chapter 7: Conclusion .. 177

7.1 Contribution .. 178

7.2 Threats to Validity .. 178

7.3 Future work ... 179

References .. 181

VITA .. 184

vi

List of Tables

Table Page

Table 3.1: Summary of the new elements and their meanings proposed by Fontoura et

al.[22] ... 31
Table 3.2: Stereotypes for Design Patterns proposed by Sanada and Adams [26] 35
Table 3.3: Tags in UML Profile for Design Patterns proposed by Sanada and Adams [26]

 .. 36
Table 3.4: Stereotypes for Frameworks proposed by Sanada and Adams [26] 36
Table 3.5: Tags in UML Profile for Frameworks proposed by Sanada and Adams [26] .. 37
Table 3.6: Proposed Stereotypes in Conceptual Process Design by Jantan et al. [27] 38
Table 3.7: Summary of Navigational Access Stereotypes in ComHDM proposed by by

Jantan et al. [27] ... 40
Table 3.8: Mapping Rules between Navigation Design and User Interface Design in

ComHDM proposed by Jantan et al. [27] ... 41
Table 3.9: <<REcomponent>> as defined by Cortellessa and Pompei [32] 49
Table 3.10: <<REconnector>>as defined by Cortellessa and Pompei [32] 49
Table 3.11: <<REuser>>as defined by Cortellessa and Pompei [32] 49
Table 3.12: <<REservice>>as defined by Cortellessa and Pompei [32] 49
Table 3.13: <<REhost>>as defined by Cortellessa and Pompei [32] 49
Table 3.14: WA-UML notations for use cases proposed by Djemaa et al. [17] 52
Table 3.15: UML extensions sorted by domain ... 54
Table 3.16: UML extensions sorted by type of extension .. 57
Table 3.17: UML extensions sorted by diagram .. 59
Table 4.1: Library of proposed graphical symbols (class diagram) 67
Table 4.2: Integrated graphical extensions ... 70
Table 4.3: Library of proposed graphical symbols (sequence diagram) 73
Table 4.4: Integrated graphical extension .. 74
Table 4.5: Library of proposed graphical symbols (use case diagram) 75
Table 4.6: Integrated graphical extension .. 76
Table 4.7: The three extended functionalities proposed by Djemaa et al. 2006 [16] 77
Table 4.8: The modeling elements of UML class diagram extensions 78
Table 4.9: Mapping iUML class diagram graphical symbols into the meta-model 100
Table 4.10: The modeling elements of UML sequence diagram extensions 106
Table 4.11: Mapping iUML sequence diagram graphical symbols into the meta-model 114
Table 4.12: The modeling elements of UML use case diagram extensions 118
Table 4.13: Mapping iUML use case diagram graphical symbols into the meta-model.. 127
Table 6.1: Excerpt of iUML library ... 139
Table 6.2: Different types of Hospital’s records .. 142
Table 6.3: iUML security roles and levels ... 143
Table 6.4: Excerpt of iUML library ... 152
Table 6.5: iUML modeling elements (stereotypes) .. 155

vii

Table 6.6: Excerpt of iUML library ... 160
Table 6.7: iUML modeling elements (stereotypes) .. 164
Table 6.8: Excerpt of iUML library ... 169
Table 6.9: iUML modeling elements (stereotypes) .. 173

viii

List of Figures

Figure Page

Figure 2.1: UML 2.4.1 diagrams .. 8

Figure 2.2: Class icon ... 10

Figure 2.3: Composition relationship ... 11

Figure 2.4: Aggregation relationship .. 11

Figure 2.5: Association relationship ... 12

Figure 2.6: Inheritance relationship .. 12

Figure 2.7: Dependency relationship .. 13

Figure 2.8: Class diagram for course registration and library systems 13

Figure 2.9: Object's lifeline .. 14

Figure 2.10: Messages between objects ... 15

Figure 2.11: Guarded message ... 15

Figure 2.12: Sequence diagram for Check handling system .. 16

Figure 2.13: Use case icon ... 16

Figure 2.14: Actor icon .. 17

Figure 2.15: Association link between Actor and Use case ... 17

Figure 2.16: Use case diagram for e-commerce website .. 18

Figure 2.17: Four-layered UML architecture ... 20

Figure 2.18: Class diagram meta-model ... 22

Figure 2.19: Sequence diagram meta-model .. 23

Figure 2.20: Use case diagram meta-model ... 24

Figure 2.21: Stereotype .. 26

Figure 2.22: Tagged value .. 26

Figure 2.23: GUI Profile proposed by Cabot et al. [20] ... 27

Figure 2.24: Example of using GUI profile proposed by Cabot et al. [20] 27

Figure 2.25: Dependencies between packages as presented by Przybylek [21]................. 29

Figure 3.1: UML-F extended class diagram proposed by Fontoura et al. [22] 32

Figure 3.2: Graphical representation of class meta-model element proposed by Byeon et

al.[23] ... 33

Figure 3.3: Example of geo-referenced class presented by Byeon et al.[23] 33

Figure 3.4: Class diagram integrated with UMLpac for security features proposed by

Peterson et al. [24] .. 34

Figure 3.5: RClass proposed by Mahmood and Lai [28] ... 43

Figure 3.6: CClass proposed by Mahmood and Lai [28] ... 43

file:///D:/Masters/4th%20Year/Thesis/Work/Write-Up/Complete%20Work/iUML%202012-04-15.docx%23_Toc322220376

ix

Figure 3.7: Satisfy mapping relationship proposed by Mahmood and Lai [28] 44

Figure 3.8: Crosscutting Bar and Invocation with Crosscutting Bar proposed by Zhou et

al. [14] .. 47

Figure 3.9: Alarm use case proposed by Fei and Yan [16] .. 51

Figure 3.10: Actors of WA-UML proposed by Djemaa et al. [17] 52

Figure 4.1: First part of original UML class diagram meta-model elements and integrated

elements .. 81

Figure 4.2: Second part of original UML class diagram meta-model elements and

integrated elements ... 82

Figure 4.3: Third part of original UML class diagram meta-model elements and integrated

elements .. 83

Figure 4.4: Stereotype and Tagged Value categories applied to the first part of modeling

elements .. 85

Figure 4.5: Stereotype and Tagged Value categories applied to the second part of

modeling elements .. 86

Figure 4.6: Stereotype and Tagged Value categories applied to the third part of modeling

elements .. 87

Figure 4.7: Meta-classes defined in the first part of modeling elements 89

Figure 4.8: Meta-classes defined in the second part of modeling elements 90

Figure 4.9: Meta-classes defined in the third part of modeling elements 91

Figure 4.10: The first part of integrated domain model elements 93

Figure 4.11: The second part of integrated domain model elements 94

Figure 4.12: The third part of integrated domain model elements 95

Figure 4.13: Crosscutting Feature derivation ... 96

Figure 4.14: Przybylek’s UML heavyweight extension mechanism in [21] 97

Figure 4.15: UML lightweight extension mechanism by Sharafi et al. in [28] 98

Figure 4.16: Excerpt of iUML class diagram meta-model ... 99

Figure 4.17: First part of iUML class diagram meta-model ... 103

Figure 4.18: Second part of iUML class diagram meta-model .. 104

Figure 4.19: Third part of iUML class diagram meta-model ... 105

Figure 4.20: First part of original UML sequence diagram meta-model elements and

integrated elements ... 108

Figure 4.21: Second part of original UML sequence diagram meta-model elements and

integrated elements ... 109

Figure 4.22: Categorizing first part of elements as Stereotypes and Tagged Values 111

Figure 4.23: Categorizing second part of elements as Stereotypes and Tagged Values .. 112

Figure 4.24: Boolean type classifier ... 113

Figure 4.25: First part of iUML sequence diagram meta-model 116

Figure 4.26: Second part of iUML sequence diagram meta-model 117

Figure 4.27: First part of original UML use case diagram meta-model elements and

integrated elements ... 120

Figure 4.28: Second part of original UML use case diagram meta-model elements and

integrated elements ... 121

Figure 4.29: Third part of original UML use case diagram meta-model elements and

integrated elements ... 122

file:///D:/Masters/4th%20Year/Thesis/Work/Write-Up/Complete%20Work/iUML%202012-04-15.docx%23_Toc322220428

x

Figure 4.30: Stereotype category of the first part of elements ... 124

Figure 4.31: Stereotype category of the second part of elements 125

Figure 4.32: Stereotype category of the third part of elements .. 126

Figure 4.33: First part of iUML use case diagram meta-model 129

Figure 4.34: Second part of iUML use case diagram meta-model 130

Figure 4.35: Third part of iUML use case diagram meta-model 131

Figure 5.1: Environment of Dia ... 132

Figure 5.2: Properties of Class ... 133

Figure 5.3: iUML sheet .. 134

Figure 5.4: iUML integrated classes created using Dia ... 135

Figure 5.5: iUML class diagram example created using Dia ... 136

Figure 6.1: Excerpt of iUML class diagram meta-model ... 140

Figure 6.2: Excerpt of iUML class diagram meta-model ... 141

Figure 6.3: Hierarchy of users as suggested by Fernandz-Medina et al in [12] 141

Figure 6.4: Levels of security as suggested by Fernandz-Medina et al. in [12] 142

Figure 6.5: iUML security tile # 1 .. 143

Figure 6.6: iUML security tile # 2 .. 144

Figure 6.7: iUML security tile # 3 .. 144

Figure 6.8: iUML security tile # 4 .. 144

Figure 6.9: iUML security package (Secure Access) ... 145

Figure 6.10: iUML security package (Secure Attribute Access) 145

Figure 6.11: iUML classes Admission created using Dia .. 145

Figure 6.12: Integrated UML class diagram (Secured Health Care System) 147

Figure 6.13: iUML security package .. 148

Figure 6.14: iUML classes Admission created using Dia .. 148

Figure 6.15: iUML stereotypes .. 149

Figure 6.16: Excerpt from the integrated class diagram meta-model 153

Figure 6.17: iUML classes' design inspired by Byeon et al. [22] created using Dia 153

Figure 6.18: The GPA requirement class created using Dia .. 154

Figure 6.19: The Student component class created using Dia ... 154

Figure 6.20: RSatisfy relationship created using Dia ... 155

Figure 6.21: iUML UML class diagram (Grade Recording System) 156

Figure 6.22: iUML student class created using Dia ... 157

Figure 6.23: Excerpt from the integrated class diagram meta-model 160

Figure 6.24: Class diagram for the Meeting system ... 161

Figure 6.25: Integrated UML class diagram (Meeting Scheduling System) 162

Figure 6.26: Excerpt from the integrated sequence diagram meta-model 165

Figure 6.27: Sequence diagram for Select Destination System 166

Figure 6.28: Integrated UML sequence diagram (Elevator Control System) 167

Figure 6.29: Excerpt from the integrated use case diagram meta-model 170

Figure 6.30: E-commerce system environment .. 171

Figure 6.31: The verification process ... 171

Figure 6.32: Excerpt from the integrated use case diagram meta-model 174

Figure 6.33: Use case diagram for Select Destination System... 174

Figure 6.34: Extended use case diagram .. 175

file:///D:/Masters/4th%20Year/Thesis/Work/Write-Up/Complete%20Work/iUML%202012-04-15.docx%23_Toc322220467

xi

Figure 6.35: Integrated UML use case diagram (Elevator Control System) 175

xiv

Abstract

Name: Nasser Salman Khashan

Title: Integrated Unified Modeling Language (iUML)

Major Field: Computer Science

Date of Degree: April 2012

The Unified Modeling Language (UML) is one of the most commonly used modeling

languages in the software industry. It simplifies the complex process of design by

providing a set of graphical notations which helps expressing the object-oriented analysis

and design of software projects. Although UML is applicable to different types of

systems, domains, methods and processes, it was found unable to express certain problem

domain needs. Researchers realized that UML is not enough to model all aspects of

software, therefore, many researchers proposed extensions to UML. In this thesis, we

propose a framework for integrating the UML extensions and by using the framework we

propose an Integrated Unified Modeling Language (iUML) that integrates the existing

UML extensions into one integrated form. This includes an integrated diagram for UML

class, sequence and use case diagrams and also includes modifications to the UML meta-

model as a result of the integrated diagrams. In addition to that, a number of case studies

were developed in order to validate the proposed iUML and build UML system models.

xv

 ملخص الرسالة

 ناصر سلمان خشان :ــــــمـالاســــــــ

 المتكاملةلغة النمذجة الموحدة :الرسالة عنوان

 علوم الحاسب الآلي :ــصــالتخصــــ

 ۲۱۰۲أبريل :رجــالتخ تاريخ

تقوم هذه اللغة بتسهيل عملية .في سوق البرمجيات المستخدمة لغات النمذجةكثر أواحدة من لغة النمذجة الموحدة هي

التصميم المعقدة عن طريق توفير مجموعة من الرموز الرسومية والتي تساعد في نمذجة التحليل و التصميم

مناهج و , نطاقات, و مع أن لغة النمذجة الموحدة يمكن تطبيقها على عدة نظم. للبرمجيات الموجهة نحو الهدف

فقد أدرك الباحثون أن لغة النمذجة . رة على نمذجة متطلبات بعض النطاقاتإلا أنها قد وُجدت غير قاد, عمليات

في . العديد من الباحثين ملحقات إلى لغة النمذجة الموحدة اقترح, لذا, الموحدة لا تكفي لنمذجة جميع جوانب البرمجيات

لغة النمذجة الموحدة المتكاملة ح م ملحقات لغة النمذجة الموحدة وباستخدام هذا الاطار نقترإطار لض، نقترح االبحثهذ

رسم متكامل لكل من اقتراحوهذا يشمل . والتي تربط ملحقات لغة النمذجة الموحدة الموجودة في نموذج واحد متكامل

ملحقاتهم وكذلك يتضمن سيتضمنالخاص بلغة النمذجة الموحدة والذي الاستخدامالتتابع و وقائع , رسم الصنفيات

, بالإضافة إلى ذلك. نموذج الفوقية للغة النمذجة الموحدة كنتيجة للرسومات المتكاملة المقترحةتعديلات مقترحة على

 .باستخدامهاتم بناء عدة دراسات لحالات من أجل التحقق من صحة لغة النمذجة الموحدة المتكاملة وبناء نماذج نظم

1

CHAPTER 1

1. Introduction

The Unified Modeling Language (UML) [1] is a modeling language used to specify,

visualize, construct and document the aspects of system-development process. UML

gained a lot of popularity in the software industry due its unique ability to capture,

communicate and model knowledge. UML also is applicable to different types of systems,

domains, methods and processes which puts it on top of the molding languages list. It was

originally created by Grady Booch, James Rumbaugh and Ivar Jacobson from Rational

Software Corporation [2]. The language then got approved by the Object Management

Group (OMG) [3] as a standard in 1997.

Although UML provides a set of graphical notations that help in expressing the object-

oriented analysis and design of software projects, yet some software engineers and

designers found that UML was unable to cover some problem domains. For that reason,

UML allows its users to customize it to address the desired problem domains. This is done

by UML extensions mechanisms which enable UML to be more adapted to a variety of

different systems, domains, methods and processes. These mechanisms allow the user to

leverage the existing UML specifications to the desired level, hence, making modeling

easier. In the meantime, the extension has to be sufficient and consistent in order to extend

UML in a robust manner. In that sense, people behind this extension must understand the

2

accepted conceptual framework for modeling, UML's extension mechanisms and the

governing rules and the proper application of such extensions.

There are two types of UML extension mechanisms; UML lightweight extension and

heavyweight extension. UML lightweight extension involves using profiles. UML profile

defines limited extensions to the meta-model elements. It uses three main constructs;

stereotypes, tag definitions and constraints. This type of UML extensions mechanisms is a

simple and straightforward mechanism for customizing existing UML modeling elements

to a particular domain. It does not change UML behavior but it can add to or modify UML

structure.

The second type is UML heavyweight extension; it involves the reuse technique of UML

package. It also involves two steps; selecting the desired modeling elements that one

wants to extend, and merging them with the elements from the targeted problem domain.

It can customize UML behavior and operations but its development is difficult and costly.

Deciding whether to extend UML lightly or heavily depends on two issues: the nature of

the problem domain and the intended use of the extended model. UML lightweight

extension would be the perfect choice if the user wants simple customization to UML;

adding new modeling elements, setting new properties or modifying existing ones, etc. On

the other hand, if the user wants to extend the behavior of UML, restrict a set of modeling

elements and other complex issues, then the heavyweight extension would be a better

choice.

UML extensions, in general, add new terminologies, properties and define new semantics

in order to make the language suitable to a specific problem domain. The problem is after

3

extending UML; it becomes only suitable for a specific domain, which may make it

unusable for other domains even if they differ in small details. In this research we

propose a framework for integrating the UML extensions and by using the framework we

integrate the available UML extensions in the literature to form an integrated UML

(iUML). The motivation for this research is to reduce the time and effort invested during

modeling the targeted system using UML extensions. iUML saves a lot of time and effort

when it comes to modeling since it provides one integrated form for all required problem

domains, and secondly iUML provides the designers with a flexible way to model the

targeted systems. iUML provides a one comprehensive set of graphical and meta-model

concepts that is ready to model any domain or multiple domains at the same time.

The surveyed extensions address certain problem domains, hence, solve particular

problems. Domains vary from security software designs, aspect-oriented modeling to

component-based software systems and data warehouse modeling. Each extension

proposed new modeling elements, properties, constraints and mapped them to UML

specifications in order to make UML suitable for the targeted domain. This work

integrates the introduced elements from the extensions into one diagram and one meta-

model for each model type.

At first, the extensions, whether they were done lightly or heavily, were selected and

studied carefully to make sure no problems will be caused from the integration process. In

this research, we considered only the extensions that are made to three UML diagrams in

the integration process. These UML diagrams are; class, sequence and use case diagrams.

There are two reasons why those diagrams were the only selected diagrams; first, each

UML diagram represents a different view of the modeled system. The class diagram

4

describes the system's structure, the sequence diagram describes the system’s behavior

and the use case describes the system functionality. The second reason is that most of the

extensions found in the literature are applied to those diagrams.

The integration process is applied to two different types of extensions; the first type

addresses UML extensions that provided graphical symbols only. The second type goes

beyond the graphical representations in UML diagrams and deals with the proposed

modeling elements that add to the meta-models. For example, the graphical modifications

to UML class diagram are integrated all at once. The next step is to take the modifications

deeper, to the next level, i.e. the meta-model level. Each graphical modification cast its

shadow on the meta-model. In other words, the non-conflicting extended meta-model

elements are integrated. At the end of the second type of integration, the obtained

graphical elements are checked for consistency. Each graphical symbol is mapped into

iUML meta-model.

In order to validate the integrated model, a number of case studies are used. These case

studies put the introduced iUML under test to make sure that it covers the wide range of

domains effectively. The whole idea behind the validation process is to provide some kind

of practical proof that the iUML is capable in an effective way to solve problems and

cover domains in a way where UML is not. Each case study combines a number of

problem domains and applies the integration process, in its two stages, to show how the

iUML works and how this new integrated form can be applied to a number of domains.

 The rest of this thesis is organized as follows: Chapter 2 gives a background on UML,

UML extension types and meta-models. Chapter 3 surveys the literature for UML

5

extensions. Chapter 4 explains the integration process. Chapter 5 discusses the tool

support for this work. Chapter 6 provides the validation to iUML using a number of case

studies. Finally, Chapter 7 discusses the concluding points, threats to the validity of iUML

and future work.

6

CHAPTER 2

2. Background

This chapter gives a background on UML, UML extension types and meta-models.

2.1 UML

Modeling languages are artificial languages that express information in graphical or

textual format. This information, whether it is graphical or textual, is driven by a set of

rules. The graphical modeling languages use diagrams with modeling elements like

symbols and lines, symbols represent the introduced concepts and lines represent

relationships between these concepts. On the other hand, textual modeling languages use a

set of well-defined keywords set by parameters to synthesize computer-interpretable

expressions.

Graphical modeling languages have been available in the software industry for a long time

[4].Unlike programming languages, these languages are used due to their high level of

abstraction that can aid discussions and analyses about software design. Some examples

of such languages are; EXPRESS [5], is a standard general-purpose data modeling

language that displays entity and type definitions, relationships and cardinality. Behavior

Trees [6] is another formal, graphical modeling language that represents natural language

requirements to express the stakeholders requirements needs for software-integrated

system.

7

Unified Modeling Language (UML) [1] is a graphical modeling language used to model

the analysis and the design of software systems. UML simplifies the complex process of

design by providing a set of graphical notations which helps expressing the object-

oriented analysis and design of software projects. In that sense, UML helps acquire an

overall view of the system.UML is maintained by object management group (OMG) [3], it

combines three famous modeling notations: Booch method [7], Rumbaugh’s Object

Modeling Technique (OMT) [8] and Jacobson’s Object Oriented Software Engineering

(OOSE) [9].

Fowler explained in his book [4] that there are three modes in which UML can be used:

sketch, blue print and programming language. The essence of sketching is selectivity.

With sketching, a team of designers can meet and write some issues in code. The ultimate

aim is to use the sketches to help deliver ideas. As blueprint, UML revolves around

completeness. Developed blueprints help the programmer to do the coding. In other

words, the design decisions should be stated so the programmer can follow them. UML as

a programming language, the developers build UML diagrams that can be compiled

directly to executable code, hence, UML becomes the source code.

UML contains a variety of diagrams types. The current UML version (version 2.4.1)

contains 14 diagrams [10] divided into two categories: structural and behavioral diagrams

as shown in Figure 2.1 [10].

8

The Structure diagrams

These diagrams describe the required elements in the system. They focus on the overall

structure of the modeled system.

1- Class diagram: depicts the system's structure using classes. Furthermore, it

shows the attributes of such classes and their relationships.

2- Component diagram: describes the division of a system into a number of

components and displays the dependencies among these components.

3- Composite structure diagram: shows the internal structure of a class and the

possibility of collaborations.

4- Deployment diagram: models the hardware-related artifacts of the system by

showing the system's implementations and the execution environments.

5- Object diagram: shows complete or partial views of the structure of the

targeted system.

6- Package diagram: depicts the split of packages by pointing out the

dependencies between these packages.

 Figure 2.1: UML 2.4.1 diagrams

9

7- Profile diagram: works at the meta-model level to show the introduced

stereotypes and profiles.

The Behavior diagrams

Behavior diagrams are divided into two groups: behavior diagrams that represent the

functionality of the system (activity diagram, state machine diagram and use case

diagram) and interaction diagrams that focus on the flow of data and control among the

parts of the system (communication diagram, interaction overview diagram, sequence

diagram and timing diagrams).

1- Activity diagram: shows step-by-step activities of the system. It shows the

complete, overall flow of control.

2- State machine diagram: describes the behavior of the system in a number of

states.

3- Use case diagram: shows the functionality of a system in terms of actors, use

cases, and the dependencies between those use cases.

4- Communication diagram: shows the interactions between objects in terms of

sequential messages. These messages represent the static structure and

dynamic behavior of a system.

5- Interaction overview diagram: is a type of activity diagram that describes

nodes and represent them as interaction diagrams.

6- Sequence diagram: shows the interaction of objects through messages. It also

shows the life spans of related objects.

10

7- Timing diagram: describes and focuses on the timing constraints placed over

the components of a modeled system. It is a specific type of interaction

diagram.

In this research, only three UML diagrams are considered; class, sequence and use case

diagrams. The reason behind this consideration is because each one of these diagrams

represents a different view of the modeled system. The class diagram describes the

structure of the system. On the other hand, the remaining two diagrams focus on the

behavior but more precisely, the sequence diagram emphasizes the interactions that

happen between the objects of the system while the use case diagram focuses on the

provided functionality of the modeled system. In addition to that, those three UML

diagrams are the most popular ones in the literature and this research's nature of work is

an integration effort, so the most common UML diagrams are to be considered. The next

three sections, section 2.1.1-2.1.3, discuss the class, sequence and use case diagrams in

more details.

2.1.1 UML class diagram

The class diagram depicts the structure of a modeled system through a number of classes.

These classes have attributes, operations and relationships with other classes. Figure 2.2

shows the main elements of the class.

Figure 2.2: Class icon

11

It is a three-compartment rectangle. The first compartment contains the name of the class.

The second one contains the attributes that the class has, and the last one contains the

included operations.

Classes interact with each other through relationships. There are a number of relationships

that happen between classes:

2.1.1.1 Composition relationship: denotes that one class is composed of or contains

another. Figure 2.3 shows the composition relationship.

Figure 2.3: Composition relationship

The lifetime of class Point depends entirely on the lifetime of class Line.

2.1.1.2 Aggregation relationship: represents the whole/part relationship. Figure 2.4

denotes that the class Chair is the whole and the class Shape is the part. Figure 2.4 shows

an aggregation relationship between class Chair and class Shape. In other words, class

Chair has many Shape instances.

Figure 2.4: Aggregation relationship

12

2.1.1.3 Association relationship: denotes the standard relationships that happen

between classes. Its indication is mostly simple. Figure 2.5 shows that Student can have

zero or more Courses and a Course can have 20 students only.

Figure 2.5: Association relationship

2.1.1.4 Inheritance relationship: happens between classes in the class diagram. Figure

2.6 shows class Child inherits the attributes and operations from class Father.

Figure 2.6: Inheritance relationship

2.1.1.5 Dependency relationship: states that one class depends on another class.

Figure 2.7 shows that class Refrigerator depends in its operation "Operate" on class

Electricity.

13

Figure 2.7: Dependency relationship

Figure 2.8 displays a UML class diagram that describes part of a course registration

system and a library system.

Figure 2.8: Class diagram for course registration and library systems

14

2.1.2 UML sequence diagram

The sequence diagram shows the interactions that happen between the system's objects in

a sequential order. It focuses more on the order of the messages rather than the messages

themselves.

One of the key elements of the sequence diagram is the lifeline. It represents the roles or

object instances in the system. Figure 2.9 shows an instance "Accountant" with its lifeline

descending from its containing box.

Figure 2.9: Object's lifeline

The messages that are sent and received by the objects represent means of interaction.

They represent methods or operations that the sending object requests and the receiving

object implements. Figure 2.10 shows an example of simple messages.

15

Figure 2.10: Messages between objects

Sequence diagram also allows representing modeling issues like conditions, alternatives,

loops, options, etc. For example, to represent a condition that must be met for a certain

message to be sent, we can use what is called Guards. To show an example of that, the

previous example in Figure 2.10 is edited to include a guarding condition on the sent

message.

Figure 2.11: Guarded message

Figure 2.12 shows a sequence diagram of Checks handling system.

16

Figure 2.12: Sequence diagram for Check handling system

2.1.3 UML use case diagram

The purpose of using use case diagram is to depict the functionality of the modeled

system through the use of actors and use cases. It is a type of behavioral diagram that

shows the interactions and dependencies between use cases.

The main elements of the use case diagram are:

1- Use case: describes a set of actions useful to the actor. Graphically, the use

case is depicted as in Figure 2.13.

 Figure 2.13: Use case icon

17

2- Actor: represents a single person, organization, working system that plays a

certain role and interacts with the system. Graphically, the actor is represented

as a stick person.

 Figure 2.14: Actor icon

3- Associations: represent the interactions that happen between the actors and use

cases of the system. They are drawn as solid lines connecting the two sides

with an optional arrow heads to indicate the direction.

 Figure 2.15: Association link between Actor and Use case

4- System Boundary: the use of the system boundary shows the scope of the

modeled system. It is optional and it is drawn as a rectangle that surrounds the

environment.

There are four types of interactions/relationships that connect use cases in the use case

diagram. The first one is the Include relationship. It is a relationship that happens between

two use cases which indicates that the behavior of the included use case is inserted into

including one’s behavior. The second type is the Extend relationship. This relationship

indicates that the behavior of the extension use case is inserted into the extended one’s

18

behavior. The third and the fourth type of relationship are the Generalization and the

Specialization relationships. These relationships are used to represent common behaviors,

requirements, constraints, etc. The goal is to have more generalized or specialized use

cases. In that sense, behaviors, requirements and constraints can be shifted up or down to

the designated use cases. Figure 2.16 depicts an e-commerce system. The figure shows the

fundamental elements of use case diagram.

Figure 2.16: Use case diagram for e-commerce website

2.2 Meta-models

A meta-model specifies the model for a system [11]. It defines informative statements as a

valid model using a modeling language. The meta-model concept is a major issue for

software modeling because it is considered the basis for UML definition.

The OMG [11] defined a four-layered UML architecture that consists of different

conceptual levels that make up a model: the instances, the model of the system, the

19

modeling language, and the meta-model of that language. In OMG terminology these

layers are called M0, M1, M2, and M3.

2.2.1 Layer M0 (user model layer): instances

The M0 layer consists of the elements that model the actual system. The concepts in this

level are instances of concepts in the model layer.

2.2.2 Layer M1: The model of the system

The elements of the M1 layer are instances of the elements in the meta-model layer. The

elements in this layer are used to model problems and solutions.

2.2.3 Layer M2: The model of the model (the meta-model)

The elements of layer M2 are the modeling languages. They include concepts from the

object-oriented and component-oriented paradigms. The concepts in this layer are

instances of meta-meta-model concepts.

2.2.4 Layer M3: The model of M2 (the meta-meta-model)

Finally, layer M3 includes the elements that define the modeling languages.

20

Figure 2.17: Four-layered UML architecture

This research's focal point is the third layer; the meta-model layer. The meta-model

elements are the elements that constitute UML. As stated above, this layer includes

concepts from the object-oriented and component-oriented paradigms. The "meta" notion

is used to indicate a relationship between two sets of concepts; non-meta concepts (the

model concepts) and their meta-concepts (the meta-model concepts). The “meta” notion

illuminates the role that the model plays. Aspects of this relationship are shown through

Abstraction and Manifestation. The Abstraction extracts common features from the non-

meta concepts in order to define meta-concepts with such features. On the other hand,

Manifestation instantiates meta-concepts to define non-meta concepts with common

features. Other aspects of the relationship between non-meta concepts and their meta-

concepts include extending (discussed in section 2.3).

21

Figure 2.18 shows the constituting elements of UML class diagram meta-model [10, 12,

13]. The meta-concepts define the role that the model plays. The meta-concepts are just

abstracts from where the non-meta concepts can be driven, particularly from the leaf

nodes. The meta-concepts themselves are internally driven from each other. The Model

Element is driven from Element and Feature, NameSpace, Generalizable Element,

Parameter, Constraint and Relationship are driven from the ModelElement and so on.

Another example is the Classifier which classifies three meta-concepts; Class, Data Type

and Interfaces. Figure 2.19 shows the original elements of UML sequence diagram meta-

model [14, 15] and finally, Figure 2.20 shows the same for UML use case diagram meta-

model [16, 17].

22

Figure 2.18: Class diagram meta-model

23

Figure 2.19: Sequence diagram meta-model

24

Figure 2.20: Use case diagram meta-model

25

2.3 UML Extension Types

UML provides notations to satisfy the needs of typical software modeling projects but for

certain projects, UML was unable to express certain problem domain needs. UML

provides model elements with a particular set of properties. In addition to that, UML

provides means to add new properties and modify the existing ones. In that sense, UML

can be customized and extended to represent the non-core UML concepts in order to make

it suitable to specific problem domains. There are two types of UML extension

mechanisms; UML lightweight extension and heavyweight extension. UML lightweight

extension defines limited extensions to the meta-model elements. It does not change UML

behavior but it can add to or modify UML structure. It mainly provides graphical

modifications to UML diagrams. The second type is UML heavyweight extension and it

involves editing the meta-model through the reuse technique of UML package. It can

customize UML behavior and operations but its development is difficult and costly [18].

2.3.1 UML lightweight extension

UML profile mechanism customizes the MOF's (Meta Object Facility) meta-models by

introducing a new terminology and specializing the semantics of UML.UML profile

extends UML by three main constructs; stereotypes, tag definitions and constraints.

Stereotypes introduce domain specific terminology into the modeling language. They

extend the meta-classes and can be applied only to instances of the extended meta-classes.

The way to represent a stereotype is by placing the name of the stereotype above the name

26

of UML element and it needs to be between <<>> sign. Figure 2.21 illustrates a modeling

stereotype.

 Figure 2.21: Stereotype

Tag definitions are considered properties of stereotypes, they introduce additional

attributes, and they also specify values, called tagged values. Graphically, they are shown

as a tag-value pair where the tag represents the newly defined property and the value

represents the assigned value to that property. As stated above, tagged values can set

properties for stereotypes. Figure 2.22 shows a tagged value placed in the topmost

compartment of the class. It indicates that the admission year of the student is a tag with a

certain value.

 Figure 2.22: Tagged value

Finally, the modeling constraints can be written and specified by the OCL (Object

Constraint Language) [19]. OCL constraints represent rules and conditions that must be

held and fulfilled by the modeling elements.

27

The following example is merely mentioned to give more explanation on UML profiles.

This example of extending UML lightly is done by Cabot et al. [20]. The goal is to create

a UML profile to represent GUI components. The proposed GUI contains Forms (which

can also be dialog boxes) and Buttons. In general, there are two constraints; the first one is

that the Form can invoke a dialog box and the second constraint is that the Form, as well

as the dialog box, can contain Buttons. The GUI profile is depicted in Figure 2.23.

Figure 2.23: GUI Profile proposed by Cabot et al. [20]

To put this profile into action, Cabot et al. [20] made the following instance diagram.

Figure 2.24: Example of using GUI profile proposed by Cabot et al. [20]

28

2.3.2 UML heavyweight extension

In comparison with the lightweight extension, UML heavyweight extension is much

harder [18]. It changes UML meta-model level by adding new modeling elements or

modifying the existing ones. What differentiates UML heavyweight extension from the

lightweight extension is the ability to change the behavior of UML and the advantage of

having more features from UML such as redefine, subset, or derivation of meta-types

properties.

The way UML heavyweight extension works is by package re-using techniques such as

merge and import. The procedure of extending UML heavily starts first with selecting

UML modeling elements that need to be extended, these elements will be taken by

importing the Kernel package, and then these elements will be merged with the other

elements coming from the newly introduced package. Figure 2.25 shows the work of

Przybylek [21] in extending UML heavily. Figure 2.25 also depicts the introduced

package, called AoUML, in which Przybylek [21] reused elements from UML

infrastructure and superstructure specifications by importing the Kernel package.

29

Figure 2.25: Dependencies between packages as presented by Przybylek [21]

UML heavyweight extension mechanism requires a combination of notations. First, a

UML diagram, mostly UML class diagram, to show the existing constructs and the way

they are built. The second notation is OCL constraints. The last one is natural language to

describe the semantics of the newly introduced meta-classes.

Finally, this mechanism is extensible and scalable, but lacks package re-use modularity

and its development is relatively costly. In addition to that, it is difficult to develop and

maintain.

 <<import>>

Infrastructure :: Core

PrimitiveType

s

Constructs

Superstructure :: Classes

Kernel

+ Advice + DeclarationKind

+ AdviceKind + Introduction

+ Aspect + MemberKind

+ AspectKind + ParentDeclaration

+ Crosscut + Pointcut

+ CrosscuttingFeature + StaticCrosscuttingFeature

AoUML

<<merge>

>

<<merge>

>

30

CHAPTER 3

3. Literature Review

This chapter surveys the literature on the extensions of class, sequence and use case

diagrams. Those three diagrams are considered the most famous representatives for three

distinctive views of the modeled system. The class diagram depicts the system's structure,

the sequence diagram represents the interactions between the system's objects and the use

case diagram describes the provided functionality of the system. Another reason why this

survey considers those diagrams only is because that most of the extensions done in the

literature are applied to these three diagrams and since this research's goal is to integrate

extensions from the literature, class, sequence and use case diagrams had to be picked out

from the entire set of UML diagrams.

The methodology of the review is as follows; categorizing the papers into four categories;

class, sequence, use case and other diagrams, and then categorizing the papers in each

diagram's category into three types of UML extensions; lightweight (graphical, meta-

model) and heavyweight.

31

3.1 Class diagram

3.1.1 UML class diagram lightweight extension (graphical)

Fontoura et al. [22] proposed a new profile called UML-F which describes how to

represent framework variation points in UML diagrams to describe the structure and

behavior of these variation points. Fontoura et al. [22] modeled the variation points using

tagged values of Boolean type. UML diagrams are extended by the following tags;

{variable} to represent variable methods and {extensible} to represent extensible classes.

Also the tags {static} and {dynamic} are used to classify method and classes according to

their runtime requirements. The {incomplete} tag is used to identify extensible interfaces.

The tag {app-class} place holds classes that are defined as part of the instantiated

applications. {for all new methods} is used to describe the behavior of methods. In other

words, {for all new methods} indicates that the OCL constraint applies to the added

methods during instantiation. Finally, the {optional} tag indicates that certain interaction

patterns (actions) are not mandatory. Table 3.1 summarizes the introduced tags.

Table 3.1: Summary of the new elements and their meanings proposed by Fontoura et

al.[22]

Name of

extension

Type of

extension

Applies to

notational element

of UML

Description

{appl-class} Boolean Tag Class “Classes that exist only in

framework instances, New

application classes may be

defined during the framework

instantiation.”

{variable} Boolean Tag Method “The method that is

implemented during the

framework instantiation.”

{extensible} Boolean Tag Class “The class interface depends on

32

the framework instantiation: new

methods may be defined to

extend the class functionality. “

{static} Boolean Tag Extensible Interface,

Variable Method,

and Extensible

Class

“The variation point does not

require runtime instantiation.

The missing information must

be provided at compile time.”

{dynamic} Boolean Tag Extensible Interface,

Variable Method,

and Extensible

Class

“The variation point requires

runtime instantiation. The

missing information may be

provided only during runtime.”

{incomplete} Boolean Tag Generalization and

Realization

“New subclasses may be added

in this generalization or

realization relationship.”

{for all new

methods}

Boolean Tag OCL Constraint “Used to indicate that the OCL

constraint must be met by the

introduced methods.”

{optional} Boolean Tag Events “Used to indicate optional

event.”

In Figure 3.1, Fontoura et al. [22] used a couple of the proposed Boolean tags to indicate

certain issues. For example, they applied the tag {appl-class} to the class Librarian to

show that this class exists only in framework instances.

Figure 3.1: UML-F extended class diagram proposed by Fontoura et al. [22]

33

Byeon et al. [23] extended UML to model GNSS (Global Navigation Satellite System).

GNSS is an environment that requires accurate measurements and calculation of real-

world geographical entities with the aid of GPS (Global Position System) in two specific

areas; temporal and spatial.

Byeon et al. [23] used a diagrammatic tool called "Stereotype Creator" to create iconic

stereotypes to model GNSS application. The main elements of geo-referenced classes are:

a graphical representation with a symbolistic icon, an iconic notation to indicate the

geographic type, class name, attributes and operations.

Figure 3.2: Graphical representation of class meta-model element proposed by Byeon et

al.[23]

The authors have put the following example;

Figure 3.3: Example of geo-referenced class presented by Byeon et al.[23]

34

Figure 3.4: Class diagram integrated with UMLpac for security features proposed by

Peterson et al. [24]

Dong [25] presented notations to represent individual and composed design patterns. The

author believes that identifying design patterns is extremely difficult, especially when

they are composed, because some pattern-related information may get truncated or even

lost when using the traditional UML diagrams.

Dong [25] showed a number of annotations for design patterns. To name a few; Venn

Diagram-Style Pattern Annotation, Dotted Bounding Pattern Annotation, UML

Collaboration Notation, Pattern: Role Annotations, Stereotype Annotations, Tagged

Pattern Annotation.

35

Dong [25] noticed that the Venn Diagram-Style Pattern Annotation and UML

Collaboration cause confusion when the class participates in a huge number of patterns.

As for the Dotted Bounding Pattern Annotation and Pattern: Role Annotations, the author

found them difficult to identify precisely the roles of modeling elements and as for the

Stereotype Annotations, the author found the notations expensive to design , use and

maintain, plus they are not scalable.

The Tagged Pattern Annotation is the notation that the author suggested. Its core idea is

that, for each class, new tagged values are created to hold pattern and participant names

associated with the class and the same goes for the class's operations and attributes. If the

tagged values cause any confusion, the participants’ names will only be shown.

Sanada and Adams [26] defined a new UML profile to model design patterns and

frameworks in design class diagrams. This work distinguishes between design class

diagrams, detailed design class diagrams and design pattern class diagrams.

The authors provided new stereotypes for design patterns: <<InstanceClass>>,

<<forAllNewMethods>>, <<Template>> and <<Hook>> as shown in Table 3.2.

Table 3.2: Stereotypes for Design Patterns proposed by Sanada and Adams [26]

Stereotype Base Class Parent Tags Constraints

InstanceClass

<<InstanceClass>>

Class N/A Extensible,

instantiation, final

None

ForAllNewMethods

<<ForAllNewMethods>>

Constraint N/A None None

Hook <<Hook>> Method N/A None None

Template <<Template>> Method N/A None None

36

<<InstanceClass>> is used to model the varying concept encapsulated by the pattern.

<<ForAllNewMethods>> is used to indicate that the constraint will be held for all the new

methods, and as for <<Template>> and <<Hook>>, they are used to indicate the roles of

methods in the pattern.

Sanada and Adams also provided new tags: extensible, instantiation and final as shown in

Table 3.3.

Table 3.3: Tags in UML Profile for Design Patterns proposed by Sanada and Adams [26]

Tag Stereotype Type Multiplicity

Extensible N/A UML::Datatypes::Boolean 1

Instantiation InstanceClass UML::Enumeration:{replace,

extend}

1

Final N/A UML::Datatypes::Boolean 1

The tag (extensible) is used to add new attributes and methods for the new class. The

(instantiation) tag is used to indicate the instantiation of classes and the tag (final) are used

to indicate that the final class has no decedent classes (leaf).

On the other hand, Sanada and Adams [26] have also added stereotypes and tags to model

frameworks as shown in Table 3.4.

Table 3.4: Stereotypes for Frameworks proposed by Sanada and Adams [26]

Stereotype Base Class Parent Tags Constraints

InstanceClass

<<InstanceClass>>

Class N/A Extensible,

instantiation,

final

None

ForAllNewMethods

<<ForAllNewMethods>>

Constraint N/A None None

37

Hook <<Hook>> Method N/A None None

Template <<Template>> Method N/A None None

The stereotypes in Table 3.5 are the same ones for Design Patterns except for

<<ApplicationClass>> which indicates classes that exist only in the framework instance.

As for the tags, three of them are especially made for frameworks.

Table 3.5: Tags in UML Profile for Frameworks proposed by Sanada and Adams [26]

Tag Stereotype Type Multiplicity

Variation N/A UML::Datatypes::Boolean 1

Extensible N/A UML::Datatypes::Boolean 1

Binding N/A UML::Enumeration:{static,

dynamic}

1

Instantiation ApplicationClass UML::Enumeration:{replace,

extend}

1

Final N/A UML::Datatypes::Boolean 1

PatternName-

Role

N/A UML::Datatypes::String 1

The tag (variation) means that the method’s implementation is the same as the varying

concept that the pattern encapsulates. The tag (building) indicates whether the variation

points require runtime instantiation. Finally, the tag (PatternName-Role) is used to specify

the participants’ roles in the patterns.

3.1.2 UML class diagram lightweight extension (meta-model)

Jantan et al. [27] proposed a hypermedia design method called ComHDM which is a

UML profile. The authors proposed modeling elements to model the conceptual,

navigational and user interface artifacts of web hypermedia applications.

38

Jantan et al. [27] claimed that the effort of developing web applications has risen a

number of design issues, such as; modeling complex business processes, navigation

access structures, activities and transactional workflows, user dependent processes, and so

on.

The proposed method separates design stages: conceptual, navigational and user interface.

It also uses UML stereotypes to model the application domain. The navigational

stereotypes define navigation classes and their associated access mechanisms. Finally, the

method defines user interface modeling elements to provide interaction mechanisms

between the users and the application.

Jantan et al. [27] proposed the stereotypes shown in Table 3.6 to model complex

processes in web applications.

Table 3.6: Proposed Stereotypes in Conceptual Process Design by Jantan et al. [27]

Stereotype/ Graphical Notation Descriptions

<<process class>> Process_Class “Defined as the similar way as action

taken by user to perform an activity.

This can be done easily by referring to

the use case definition in functional

requirement analysis.”

 “Instance or object would be used by

users during the execution of a

sequence of pre-defined processes.”

<<atomic class>> Atomic_Class “Inherits the definition of process class.

Determined by the action taken in use

case definition.”

 “Can be performed in sequential order

(they might have dependencies from

each other).”

<<non-atomic class>>

NonAtomic_Class

 “Inherits the definition of process class.

Determined by the action taken in use

case definition.”

 “The execution of non-atomic or pre-

defined processes must be performed in

sequential order (they might have

39

dependencies from each other).”

<<database class>> Database_Class “Models the experience of database in

design (to provide a logical view of

database operations between process

class and database class).”

 “Database class must owned by at least

one process class.”

<<process container>>

Process_Container

 “Group and partition process class and

all of its objects/ instances in order to

indicate their relationships or

dependencies. “

 “Determine which partition an instance

of processes belongs to.”

<<Process_Link>> (Stealth

Arrow)

 “Association between two separated

classes; conceptual class to process

class and vice versa.”

 “Also known as external link.”

<<Action_Link>> (Dashed-

Stealth Arrow)
 “Association between operations taken

by users in the same process class

(process class to process class).”

 “To force dependencies of processes

and information flow in particular

process class.”

<<Database_Link>> (Bold

Arrow)

 “Association between conceptual class

or process class to database class.”

 “Represent the information and data

operations such as query, lookup, entry,

etc., that involved with database.”

After defining the conceptual process design stereotypes, Jantan et al. [27] also defined a

set of navigation classes connected through hyperlinks. The purpose of doing that is to

present navigation classes, interaction classes and hyperlinks.

The following UML stereotypes in Table 3.7 are proposed to model the navigational

access:

40

Table 3.7: Summary of Navigational Access Stereotypes in ComHDM proposed by by

Jantan et al. [27]

Stereotype/ Graphical Notation Descriptions

<<navigational class>> Navigational

Class

 “Derived from the Conceptual Class

Model (CCM) – Has similar name as

Conceptual Class name. “

 “Instance or object would be used by

users during the navigation access. “

<<interaction class>> Interaction Class “Derived from the Conceptual Process

Model (CPM) “

 “Presents the existence of Used to

represent complex interaction between

users and web application. “

<<navigation link>> Hyperlink “Presents the association / hyperlinks

between navigation classes (from

source code to the target code). “

 “Equipped by "role name" and

"multiplicity".“

<<index>> Index “An access element that contains a

number of listed items/ target name

with a link to the target navigation

class.”

<<guided tours>> Guided Tours “To provide an ordered sequential

access to instances/ objects of a

navigation class. It can be controlled by

either web users (interactive) or system

(temporal/ time-based). “

<<textQuery>> Text Query “An interactive access element that

provide an input field (string or

character) mainly for search

mechanism. “

<<selectableList>> Selectable List “An interactive access element that

provide frozen listed items (selectable

items). “

 “An alternative access element for non-

text (input) query. “

<<tree>> Tree
 “Uses for classifying instances- for

orientation purpose, it helps users for

browsing a kind of hierarchical

structure of information (listed items

can be expanded or collapsed). “

 “An alternative access element for

nested index. “

<<page>> Page “Provides direct access to group of

instances in a navigation class. Each

41

page is numbered or named and has its

own link to target instance location. “

 “An alternative access element for

guided tours. “

<<menu>> Menu
 “A group of homogenous items that

provide access links to target navigation

classes or access structure elements. “

 “Each item has its own link to a target

location and they are all frozen items. “

<<trail menu>> Trail Menu “Inherits the definition of menu. An

alternative access element of menu if

they consist of menu sub-items. “

 “Sub-items can be expanded or

collapsed. “

<<tab menu>> Tab Menu “Provides variety options of views in

menu. The menu items are partitioned

(separated) into different number of

tabs (normally in horizontal view). “

Finally, the Jantan et al. [27] provided user interface elements for every single web page.

They presented user interface mapping rules to ensure correct mapping between

navigation stereotypes and user interface stereotypes as shown in Table 3.8.

Table 3.8: Mapping Rules between Navigation Design and User Interface Design in

ComHDM proposed by Jantan et al. [27]

Navigation Stereotype Map to – User Interface Stereotypes

<<navigation class>> “<<UIPage>><<framePage>><<UIElement>>“

<<interaction class>> “<<UIInteraction>><<framePage>> ||

<<UILogin>><<framePage>> || <<UISession>> ||

<<UIElement>>“

<<navigation link>> “<<accessElement>> || <<hyperlink>> ||

<<formElement>>“

<<access structure>> “<<UIElement>><<accessElement>> ||

<<standardElement>> || <<formElement>>“

Fernandez-medina et al. [12] addressed the confidentiality problems for Data Warehouses

by specifying security constraints in the conceptual Multidimensional Database modeling

42

to design secured Data Warehouses. The reason why the authors emphasized Data

Warehouses’ security is because Data Warehouses and other applications like

Multidimensional Databases and On-Line Analytical Processing applications are

considered very powerful mechanisms for discovering important business information;

hence, security for such applications is considered a major issue.

The proposed UML extension reused a number of previously defined stereotypes and

defined new ones of their own. Fernandez-medina et al. [12] have also added a number of

tagged values and constraints to model the Multidimensional Databases properly. The

new elements helped in specifying security measures, such as; security levels and user

roles on the main elements like; facts, dimensions and classification hierarchies. In

addition to that, Fernandez-medina et al. [12] used OCL constraints on the new defined

elements in order to avoid misuse.

Simons and Wirtz [13] presented Context Modeling Profile (CMP), a UML profile for

modeling mobile distributed systems. They defined stereotypes and well-formedness

rules.

Mahmood and Lai [28] presented an extension to UML called RE-UML, to support the

phases of Requirements Analysis and Assessment Process (RAAP). RE-UML extends

UML class diagram with two specialized classes, Rclass to specify stakeholder

requirements and Cclass to specify component features.

RClass, shown in Figure 3.5, is a special class divided into four sections:

43

 1
st
 section: stereotyped requirement text + name of the class + abstraction level to

differentiate the requirement level.

 2
nd

 section: the objective of the RClass.

 3
rd

 section: scenario which is the set of interactions necessary to achieve the objective.

 4
th

 section: rank of the RClass.

<<requirements >> - Abstraction Level

Goal

Scenario

Rank

Figure 3.5: RClass proposed by Mahmood and Lai [28]

CClass is another special class divided into three sections:

 1
st
 section: stereotyped component text+ name of the class.

 2
nd

 section: the functionality provided by the component.

 3
rd

 section: the dependency on elements and their relationships.

<<component >> Name

Features

Context Dependency

Figure 3.6: CClass proposed by Mahmood and Lai [28]

As for Associations, there are two types of associations were introduced:

44

1- Interaction relationship (association): between two RClasses.

2- Mapping relationship (association): between RClass and CClass (RSatisfy).

Figure 3.7: Satisfy mapping relationship proposed by Mahmood and Lai [28]

Similarly, UML sequence diagram is extended with the frame <<Rsatisfaction>> to

model the satisfaction process that happens between stakeholder requirements and

component features.

Sharafi et al. [29] presented an UML extension to capture crosscutting concerns in aspect-

oriented modeling. The novelty of their work is in their model, which was created to be

language-independent, plus, it was abstracted away from any platform specific details.

The reason why the authors have done that is because they wanted their model to make

the transformations that happen during maintenance.

The defined model included the following elements:

 A set of core concepts.

45

 A set of sound relationships between the core concepts.

 A set of constraints.

 A concrete syntax or graphical representation of the domain model.

 Semantics of the domain model.

The next step in their work was a mapping process. Sharafi et al. [29] mapped the domain

model to UML meta-model. For example, they mapped the Aspect to UML meta-model.

The following step was providing a graphical representation for modeling crosscutting

concerns using UML tools. Finally, the authors claimed that to be able to deploy the

defined profile in CASE tools, it is necessary to provide a robust interchange format. The

authors selected XMI [30] (XML Meta-data Interchange) for three reasons, first; it has a

wide market and tool support and secondly, it is compatible with UML and finally it uses

XML syntax.

3.1.3 UML class diagram heavyweight extension

Przybylek [21] extended UML meta-model to support aspect-oriented modeling.

Przybylek's work [18] is an integration of previous works, existing AO extensions. It also

defines a MOF meta-model based on UML but with means to model AOM. The

specification of this extension uses a combination of notations; UML class diagram, OCL

constraints and natural language.

El-Kady et al. [18] developed a MAS-UML (Multi-Agent System UML) by extending

UML meta-model heavily. The goal of their work was to represent the MAS conceptual

model.

46

The added meta-classes have the following relationships:

1- “AgentType represents the meta-class for the agent instances that have the same

features specification. The agentType internal structure contains beliefs, goals and

agentStates features.”

2- “Belief meta-class represents the belief component as part of an agent.”

3- “Goal represents the goal that should be achieved by the owner.”

4- “AgentTypePermission meta-class represents the permission that an agentType

instances can achieve for a specific resource.”

5- “Environment meta-class represents the environment where agents and resources

can exist.”

6- “Behavior meta-class is an abstract meta-class representing the root of the MAS

actions pattern.”

3.2 Sequence diagram

3.2.1 UML sequence diagram lightweight extension (graphical)

Zhou et al. [14] presented three things; first they proposed UML extension profile for

aspect-oriented modeling. Secondly, they built a framework with UML and finally, they

presented a way to model the dynamic behaviors that happen in aspect-oriented software.

Their main objective was to propose architecture for aspect-oriented modeling, and

address the separation of concerns properly.

47

Zhou et al. [14] extended UML sequence diagram from two angles: the first one is by

presenting joint points in sequence diagram and the other is by adding new crosscutting

bar that is used to send crosscutting message. Figure 3.8 shows the addition of

crosscutting bar to UML sequence diagram.

Figure 3.8: Crosscutting Bar and Invocation with Crosscutting Bar proposed by Zhou et

al. [14]

Hausmann et al. [15] specified the operational semantics of UML behavioral diagrams.

Since Fontoura et al. [21] believe that UML has no agreed specification of its semantics,

Hausmann et al. [15] presented an approach that specifies the semantics of modeling

languages.

OMMMA-L (Object-oriented Modeling of Multi-Media Applications - Language) [31]

has been proposed as an extension of UML to specify interactive multimedia

presentations. OMMMA model basically consisted of:

1- “A class diagram that forms the application aspect. It contains application classes

related to media classes. (Application)“

Before call (fo())

After call (fo())

48

2- “A state chart diagrams that represent state machines to specify the media aspects.

(Dynamic and event-driven system behavior)“

“An (Extended) sequence diagrams that model sequences of presentation

behavior.“

3.2.2 UML sequence diagram lightweight extension (meta-model)

Cortellessa and Pompei [32] focused their work on integrating UML with non-functional

attributes (aspects). Their goal was representing issues related to the reliability modeling

of component-based systems. Issues like Quality of Service and Fault Tolerance.

Cortellessa and Pompei [32] defined a domain model, and then mapped its concepts to

UML viewpoint. The elements of the defined model are; REservice, which is a set of

actions and interactions that happen among a set of REcomponents that interact through

REconnectors. The goal of REservice is to serve REuser that requests the service and

finally, a REhost that performs the hosting of a set of components.

After defining the core concepts, a set of relations were defined.

1- “One REuser requires many REservices and one REservice can be required from

many REusers.”

2- “A REservice can be triggered either by a REuser or a REcomponent.”

3- “Each REcomponent can have a hierarchical structure.”

4- “A set of REcomponents is hosted by a REhost.”

49

5- “Each REconnector can be a logical link between two REcomponents. It also can

be a physical link between two REhosts.”

The next step was a mapping step. The newly defined elements were mapped to UML

viewpoint as follows:

Table 3.9: <<REcomponent>> as defined by Cortellessa and Pompei [32]

Stereotype Base Class Tags

<<REcomponent>> Classifier

ClassifierRole

Component

Instance

REcompfailprob

REbp

Table 3.10: <<REconnector>>as defined by Cortellessa and Pompei [32]

Stereotype Base Class Tags

<<REconnector>> Message

Stimulus

AssociationRole

REconnfailprob

REnummsg

Table 3.11: <<REuser>>as defined by Cortellessa and Pompei [32]

Stereotype Base Class Tags

<<REuser>> Classifier

ClassifierRole

Interactor

Instance

REaccessprob

REserviceprob

Table 3.12: <<REservice>>as defined by Cortellessa and Pompei [32]

Stereotype Base Class Tags

<<REservice>> Classifier

REprob

Table 3.13: <<REhost>>as defined by Cortellessa and Pompei [32]

Stereotype Base Class Tags

<<REhost>> Node

Classifier

ClassifierRole

REindexHost

50

3.3 Use case diagram

3.3.1 UML use case diagram lightweight extension (graphical)

Dong et al. [33] believe that UML lacks support for the distributed system. So they

proposed an extension to UML to address this problem. Their UML extension [33]

changes the use case diagram to be active and multi-level for requirements engineering of

distributed system.

The proposed changes to the use case diagram were the following:

1- “Change Use Case Diagram to be multi-level: It divides the use case diagram

into three levels; user-system level (Level 1), sub-network and sub-network

level (level 2) and node and sub-network level (level 3).“

2- “Introduce the concept of Abstract Actor: The goal is to specify the actors

who have uncertain types but their roles are the same. “

3- “Introduce the concept of Abstract Connection: The goal is to specify the

relationship between Abstract Actors and Use Cases.“

3.3.2 UML use case diagram lightweight extension (meta-model)

Fei and Yan [16] analyzed a real application called SPAERIS using an UML extension

called Agent UML. SPAERIS (Shipping pollution accident emergence reflecting

information system) is an application used to monitor and control the ships’ security. Fei

and Yan [16] used Agent UML to design a distributed management information system.

51

In the analysis stage, they used symbols like <> as an extension to UML made by the

Agent UML to express that the entity is seen as an agent instead of a class.

Figure 3.9: Alarm use case proposed by Fei and Yan [16]

Agents are specified by three classifiers; agent classifier, agent physical classifier and

agent role classifier. Agent classifiers are used to classify agents. An agent role classifier

is an agent classifier that is used to classify agents according to their given roles. Finally,

agent physical classifier is used to define common features that exist in all agents.

Djemaa et al. [17] presented WA-UML (Web Adaptive - UML) which is a UML profile

to model adaptive web applications. This profile added labels and notations to UML

diagrams in order to express UML more effectively.

Djemaa et al. [17] chose Use Case diagram to express the added labels and notations. In

terms of actors, three categories of actors were proposed. These actors are classified as

follows:

52

1- “Physical actor: represents the human user who visits the Web application.“

2- “Logical actor: represents the role played by a human user (physical actor) to

maintain the Web application.“

3- “System Actor: represents the hardware aspect of the system, whether it is a

computer system, device hardware or web service. “

Figure 3.10: Actors of WA-UML proposed by Djemaa et al. [17]

And in terms of functionalities, Three types of functionalities were pointed at; Static

Informational Functionality (SIF), Dynamic Informational Functionality (DIF) and

Professional Functionality (PF).

Table 3.14: WA-UML notations for use cases proposed by Djemaa et al. [17]

Notation Description

“SIF: Static Informational Functionality

used to represent a static Web page.”

“DIF: Dynamic Informational Functionality

used to represent a dynamic Web page. “

53

“PF: Profession Functionality used to

represent a dynamic Web page using update

request.”

3.4 Other diagrams

3.4.1 Class, component, activity, state chart and interaction

diagram

Romero et al. [34] focused their work on open distributed processing (ODP)

computational viewpoint which describes the functionality and the environment of a

system. UML Profile for the ODP computational viewpoints consists of three parts. First,

it defines the ODP computational viewpoint meta-model. Second, it maps ODP concepts

to UML elements. Finally, it defines a set of OCL constraints.

3.4.2 State chart diagram

Andre et al. [35] used SysML (System Modeling Language) which extends UML to

model real-time systems. SysML is a modeling language for systems engineering

applications. Their time model, which adds meta-classes to represent time and duration,

uses: value property and constraint block. The value property specifies values and the

constraint block embeds equations to define the value constraints.

54

3.4.3 Class and activity diagram

Majzik et al. [36] introduced a UML extension to integrate platform-specific development

environment of time-triggered systems and a visual design tool based on UML. In their

UML extension, Majzik et al. [36] extended two main elements from UML meta-model;

classes and association classes. Classes were used to model concepts within the system

while association classes were used when associations have class properties. The authors

used a number of stereotypes to define the new modeling elements, a number of tagged

values to attach properties to the elements and a set of constraints to specify conditions

held onto the elements. Using this profile, designers are able to create time-triggered

architecture cluster in the form of class diagrams and specify task behavior using activity

diagram.

3.4.4 Activity diagram

Pllana and Fahringer [37] claimed that the semantics of specific diagrams are not always

clear in order to decide how to model specific aspects of parallel applications. The

presented UML extension solved this problem by adding new stereotypes, tagged values

and some OCL constraints. The new defined modeling elements were used to represent

the important concepts of sequential and shared memory basic constructs which allows

modeling enormous applications.

The following tables summarize all of the discussed extensions.

Table 3.15: UML extensions sorted by domain

Ref. Domain Purpose of Extension Type of

Extension

Diagram

Agents (2)

55

Fei and

Yan 2008

[16]

Agent UML Enhance the analysis

and design of an agent

system.

Lightweight Use Case

Diagram

El-kady et

al. 2008

[18]

Multi-agent

systems

Represent the MAS

conceptual model.

Heavyweight Class

Diagram

Aspect-Oriented (3)

Zhou et al.

2008 [14]

Aspect-oriented

modeling (AOM)

Model the functional

crosscutting concerns

and integrate the AOM

architecture.

Lightweight Sequence

Diagram

Przybylek

2008 [21]

Aspect-oriented

modeling (AOM)

Support aspect-oriented

modeling by adding its

concepts to the design

phase.

Heavyweight Class

Diagram

Sharafi et

al. 2010

[29]

Aspect-oriented

modeling (AOM)

Capture crosscutting

concerns.

Lightweight Class

Diagram

Component-based (2)

Mahmood

and Lai

2009 [28]

Component-based

software system

Specify satisfaction and

risk assessment to

evaluate customer

demands against

component features.

Lightweight Class

Diagram

Cortellessa

and

Pompei

2004 [32]

Component-based

systems

Integrate UML profiles

for Quality of Service

and Fault Tolerance.

Lightweight Use Case &

Sequence

Diagram

Design Pattern (2)

Dong 2002

[25]

Design patterns Represent design

patterns in the

applications and

compositions of design

patterns and maintain

pattern-related

information.

Lightweight Class

Diagram

Sanada

and

Adams

2002 [26]

Design patterns Model design patterns

and frameworks in

design class diagrams

(DCDs).

Lightweight Class

Diagram

Others (14)

Jantan et

al. 2008

[27]

Web hypermedia

applications

Model complicated

design issues.

Lightweight Class &

Activity

Diagram

Romero et

al. 2007

Open distributed

processing (ODP)

Provide notations to be

used in the individual

Lightweight Class,

Component,

56

[34] computational

viewpoint.

viewpoints. Activity,

State Chart,

Interaction

Diagram

Fontoura

et al. 2000

[22]

Object-oriented

frameworks

Model variation points

in UML diagrams.

Lightweight Class &

Sequence

Diagram

Byeon et

al. 2004

[23]

Global navigation

satellite system

Provide notational help

to accurate calculations

of real-world

geographical entities.

Lightweight Class

Diagram

Peterson et

al. 2006

[24]

Security Incorporate security

techniques into software

class design.

Lightweight Class

Diagram

Hausmann

et al. 2001

[15]

UML semantics

specification

Integrate extensions’

specific semantic with

UML semantics.

Lightweight Sequence

Diagram

Li and

Lilius

1999 [38]

Time analysis

Give a solution for

timing analysis of

sequence diagrams.

Heavyweight Sequence

Diagram

Djemaa et

al. 2006

[17]

Adaptive Web

Application

Model AWA Lightweight Use Case

Diagram

Dong et

al.2002

[33]

Distributed

systems

Change Use Case

Diagram to multi-level

for requirement

engineering of

distributed system.

Lightweight Use Case

Diagram

Andre et

al. 2007

[35]

Real-time

embedded

applications

Model time-dependent

events and behaviors.

Lightweight State Chart

Diagram

Simons

and Wirtz

2007 [13]

Mobile distributed

systems

Model context for

mobile distributed

systems.

Lightweight Class

Diagram

Fernandez-

medina et

al.2007

[12]

Data

warehouses

Address confidentiality

problems and set

security constraints in

the conceptual modeling

of data warehouses.

Lightweight Class

Diagram

Majzik et

al. 2004

[36]

Time triggered

systems

Integrate time-triggered

(TT) systems’

environment with visual

design tools.

Lightweight Class &

Activity

Diagram

Pllana and

Fahringer

Parallel

applications

Model structural and

behavioral patterns of

Lightweight Activity

Diagram

57

2002 [37] parallel programming

paradigms.

Table 3.16: UML extensions sorted by type of extension

Ref. Domain Purpose of Extension Type of

Extension

Diagram

Lightweight (20)

Jantan et

al. 2008

[27]

Web hypermedia

applications

Model complicated

design issues.

Lightweight Class &

Activity

Diagram

Fei and

Yan 2008

[16]

Agent UML Enhance the analysis

and design of an

agent system.

Lightweight Use Case

Diagram

Romero et

al. 2007

[34]

Open distributed

processing (ODP)

computational

viewpoint.

Provide notations to

be used in the

individual viewpoints.

Lightweight Class,

Component,

Activity,

State Chart,

Interaction

Diagram

Zhou et al.

2008 [14]

Aspect-oriented

modeling (AOM)

Model the functional

crosscutting concerns

and integrate the

AOM architecture.

Lightweight Sequence

Diagram

Fontoura

et al. 2000

[22]

Object-oriented

frameworks

Model variation

points in UML

diagrams.

Lightweight Class &

Sequence

Diagram

Byeon et

al. 2004

[23]

Global navigation

satellite system

Provide notational

help to accurate

calculations of real-

world geographical

entities.

Lightweight Class

Diagram

Peterson et

al. 2006

[24]

Security Incorporate security

techniques into

software class design.

Lightweight Class

Diagram

Hausmann

et al. 2001

[15]

UML semantics

specification

Integrate extensions’

specific semantic with

UML semantics.

Lightweight Sequence

Diagram

Djemaa et

al. 2006

[17]

Adaptive Web

Application

Model AWA Lightweight Use Case

Diagram

Dong et

al.2002

[33]

Distributed systems Change Use Case

Diagram to multi-

level for requirement

engineering of

distributed system.

Lightweight Use Case

Diagram

58

Andre et

al. 2007

[35]

Real-time embedded

applications

Model time-

dependent events and

behaviors.

Lightweight State Chart

Diagram

Simons

and Wirtz

2007 [13]

Mobile distributed

systems

Model context for

mobile distributed

systems.

Lightweight Class

Diagram

Mahmood

and Lai

2009 [28]

Component-based

software system

Specify satisfaction

and risk assessment to

evaluate customer

demands against

component features.

Lightweight Class

Diagram

Sharafi et

al. 2010

[29]

Aspect-oriented

modeling (AOM)

Capture crosscutting

concerns.

Lightweight Class

Diagram

Fernandez-

medina et

al.2007

[12]

Data

warehouses

Address

confidentiality

problems and set

security constraints in

the conceptual

modeling of data

warehouses.

Lightweight Class

Diagram

Dong 2002

[25]

Design patterns

compositions

Represent design

patterns in the

applications and

compositions of

design patterns and

maintain pattern-

related information.

Lightweight Class

Diagram

Sanada

and

Adams

2002 [26]

Design patterns Model design patterns

and frameworks in

design class diagrams

(DCDs).

Lightweight Class

Diagram

Majzik et

al. 2004

[36]

Time triggered

systems

Integrate time-

triggered (TT)

systems’ environment

with visual design

tools.

Lightweight Class &

Activity

Diagram

Cortellessa

and

Pompei

2004 [32]

Component-based

systems

Integrate UML

profiles for Quality of

Service and Fault

Tolerance.

Lightweight Use Case &

Sequence

Diagram

Pllana and

Fahringer

2002 [37]

Parallel applications Model structural and

behavioral patterns of

parallel programming

paradigms.

Lightweight Activity

Diagram

Heavyweight (3)

59

Przybylek

2008 [21]

Aspect-oriented

modeling (AOM)

Support aspect-

oriented modeling by

adding its concepts to

the design phase.

Heavyweight Class

Diagram

El-kady et

al. 2008

[18]

Multi-agent systems Represent the MAS

conceptual model.

Heavyweight Class

Diagram

Li and

Lilius

1999 [38]

Time analysis

Give a solution for

timing analysis of

sequence diagrams.

Heavyweight Sequence

Diagram

Table 3.17: UML extensions sorted by diagram

Ref. Domain Purpose of Extension Type of

Extension

Diagram

Class (9)

Przybylek

2008 [21]

Aspect-oriented

modeling (AOM)

Support aspect-

oriented modeling by

adding its concepts to

the design phase.

Heavyweight Class

Diagram

El-kady et

al. 2008

[18]

Multi-agent systems Represent the MAS

conceptual model.

Heavyweight Class

Diagram

Byeon et

al. 2004

[23]

Global navigation

satellite system

Provide notational

help to accurate

calculations of real-

world geographical

entities.

Lightweight Class

Diagram

Peterson et

al. 2006

[24]

Security Incorporate security

techniques into

software class design.

Lightweight Class

Diagram

Simons

and Wirtz

2007 [13]

Mobile distributed

systems

Model context for

mobile distributed

systems.

Lightweight Class

Diagram

Sharafi et

al. 2010

[29]

Aspect-oriented

modeling (AOM)

Capture crosscutting

concerns.

Lightweight Class

Diagram

Fernandez-

medina et

al.2007

[12]

Data

warehouses

Address

confidentiality

problems and set

security constraints in

the conceptual

modeling of data

warehouses.

Lightweight Class

Diagram

Dong 2002

[25]

Design patterns Represent design

patterns in the

applications and

Lightweight Class

Diagram

60

compositions of

design patterns and

maintain pattern-

related information.

Sanada

and

Adams

2002 [26]

Design patterns Model design patterns

and frameworks in

design class diagrams

(DCDs).

Lightweight Class

Diagram

Sequence (3)

Zhou et al.

2008 [14]

Aspect-oriented

modeling (AOM)

Model the functional

crosscutting concerns

and integrate the

AOM architecture.

Lightweight Sequence

Diagram

Hausmann

et al. 2001

[15]

UML semantics

specification

Integrate extensions’

specific semantic with

UML semantics.

Lightweight Sequence

Diagram

Li and

Lilius

1999 [38]

Time analysis

Give a solution for

timing analysis of

sequence diagrams.

Heavyweight Sequence

Diagram

Use Case (3)

Fei and

Yan 2008

[16]

Agent UML Enhance the analysis

and design of an

agent system.

Lightweight Use Case

Diagram

Djemaa et

al. 2006

[17]

Adaptive Web

Application

Model AWA Lightweight Use Case

Diagram

Dong et

al.2002

[33]

Distributed systems Change Use Case

Diagram to multi-

level for requirement

engineering of

distributed system.

Lightweight Use Case

Diagram

Others (8)

Jantan et

al. 2008

[27]

Web hypermedia

applications

Model complicated

design issues.

Lightweight Class &

Activity

Diagram

Romero et

al. 2007

[34]

Open distributed

processing (ODP)

computational

viewpoint.

Provide notations to

be used in the

individual viewpoints.

Lightweight Class,

Component,

Activity,

State Chart,

Interaction

Diagram

Fontoura

et al. 2000

[22]

Object-oriented

frameworks

Model variation

points in UML

diagrams.

Lightweight Class

&Sequence

Diagram

Andre et

al. 2007

Real-time embedded

applications

Model time-

dependent events and

Lightweight State Chart

Diagram

61

[35] behaviors.

Mahmood

and Lai

2009 [28]

Component-based

software system

Specify satisfaction

and risk assessment to

evaluate customer

demands against

component features.

Lightweight Class &

Sequence

Diagram

Majzik et

al. 2004

[36]

Time triggered

systems

Integrate time-

triggered (TT)

systems’ environment

with visual design

tools.

Lightweight Class &

Activity

Diagram

Cortellessa

and

Pompei

2004 [32]

Component-based

systems

Integrate UML

profiles for Quality of

Service and Fault

Tolerance.

Lightweight Use Case &

Sequence

Diagram

Pllana and

Fahringer

2002 [37]

Parallel applications Model structural and

behavioral patterns of

parallel programming

paradigms.

Lightweight Activity

Diagram

62

CHAPTER 4

4. Extension Integration

In this chapter, the integration process of the previously mentioned UML extensions is

provided. First, the process of integration is explained and then the process is applied to

the UML extensions for the three selected models: class, sequence, use case diagrams.

The results section shows the integrated diagram elements and the meta-model for each of

the selected models.

4.1 The Integration Process

The integration process is applied to two different types of extensions; the first type

addresses the UML extensions that provide graphical symbols only, and the second type

goes beyond the graphical representations in the UML diagrams and deals with the

proposed modeling elements that add to the meta-models. At the end of the second type of

integration, the obtained graphical elements are checked for consistency. Each graphical

symbol is mapped to iUML meta-model. As for the constraints, they are still valid as they

accompany the modeling elements during the integration process.

The integration process of the first type, the graphical symbols type of extensions,

requires a creation of a graphical library that contains the proposed graphical symbols

63

themselves and their descriptions. After having this collection of symbols, one can look

for symbols that can be soundly integrated. To check for soundness, the symbols must not

cause any graphical conflict in a way that keeps the original intent of the symbols clear. In

other words, the final symbol must deliver the idea behind it without any confusion. The

following process explains the integration of graphical symbols:

1- Creation of Library: Create a library for the graphical symbols. The library shall

contain the graphical symbols themselves and their descriptions.

2- Case A: Combination: For each type of UML diagram, combine possible

graphical symbols that cause no graphical conflicts but make sure that the final

symbol is still displaying its intended goal.

3- Case B: Conflict: In case of a graphical conflict, insert each graphical symbol on

its own into the library.

The integration of the second type, the meta-model type of extensions, takes the proposed

stereotypes and tag definitions and inserts them properly into the original meta-models of

each model. The proper placement of modeling elements in the meta-model is crucially

important. Therefore, one must correctly place the modeling elements (instances in the

meta-model) under their classifiers. Categorizing these elements is also important. There

are two categories of modeling elements in the meta-model; <<Stereotype>> and

<<TaggedValue>>. In addition, each UML extension’s elements must be clearly shown

using distinguished colors. To integrate two or more extensions in the meta-model, each

extension must be also clearly identified. The following process explains the integration

of meta-model elements:

64

1- Adding the Elements: Add the newly introduced modeling elements under the

appropriate classifier in the meta-model. The introduced modeling element

will be an instance of that classifier. The classifier describes the behavioral and

the structural features and the instance describes the operations and the state of

iUML meta-model elements. Adding the elements is a fundamental step. It has

to be applied correctly because it affects the soundness of the resulting meta-

model. Every modeling element has to be carefully and correctly placed under

the appropriate classifier in the meta-model.

2- Categorizing the Elements: Categorize each introduced element as

<<Stereotype>> or <<TaggedValue>>. These two categories are the main

categories of the extended modeling elements. This step is crucially important.

Failing to correctly categorize the modeling elements will result in an invalid

system model. The two categorizes are significantly different; Stereotypes

represent new terminologies while Tagged Values represent properties or

values to those terminologies.

3- Defining Meta-classes or other classifiers: State the introduced meta-classes

with the symbol [class] or other classifiers below their names and categories.

The importance of this step revolves around the introduction of meta-classes

and/or other classifiers, for example: Boolean, String, etc. They are essentials

because they define classes or other data types in the diagrams. However, the

introduction of meta-classes will only give results in the integration of UML

class diagram extensions since UML sequence and use case diagrams do not

include any classes.

65

4- Case A: Combination: Combine modeling elements of the same domain as

one instance. Each modeling element must be clearly distinguished in that

instance. The goal is to show the integrated modeling elements as they share

the same domain. The integration process enhances the organization of the

meta-model. It provides the end-user with one comprehensive domain-specific

set of modeling elements.

5- Case B: Conflict: In case two extensions have a conflict, gather only the most

common modeling elements from both extensions and place them in the

integrated meta-model. Conflicts between extensions can be caused for

example by the removal of essential UML infrastructure and superstructure

elements. The goal of having this step is to resolve the conflicts that might

happen between two or more extensions. The results of this step depend on the

process and the results of step # 4, Case A: Integration.

4.2 Applying the Integration Process

In this section, the Integration Process, mentioned above, is applied to the three UML

diagrams; class, sequence and use case diagram. In each sub-section, a step-by-step

explanation of the Integration Process is shown.

We defined the below inclusion/exclusion criteria; only extensions that meet our inclusion

criteria were included in iUML while others are excluded. The inclusion criteria:

1- UML lightweight and heavyweight extensions.

2- UML class, sequence and use case diagrams extension only.

66

3- UML domain-specific extensions that can be combined with the other same

domain-specific extensions, preferably working on different areas of the

extension but at the same level of extension.

4- UML domain-specific extensions that can be combined with the other different

domain-specific extensions, preferably general extensions.

5- When two UML extensions focus on one particular area and on one type of

UML diagram, combine them together or choose the more general one.

And the exclusion criteria are:

1- UML activity, component, state chart, interaction diagrams.

2- UML heavyweight extensions that manipulate the UML meta-model whether

by editing or deleting UML packages.

3- Theoretical and algorithmic UML extensions.

4.2.1 Integration of graphical symbols

This sub-section addresses the application of the Integration Process on the UML class,

sequence and use case diagrams graphical extensions. This process has three steps;

Creation of Library, Integration and Conflict. Each UML diagram will be subjected to

these steps and the results will be shown as the process is applied.

4.2.1.1 Class diagram

In the literature, 9 out of the 23 reviewed extensions were applied to UML class diagram.

67

Step 1: Creation of Library

In this process of graphical integration, a library is created to include the proposed

graphical extensions. All of the graphical symbols are inserted along with their

descriptions. The idea behind having such library is to have a graphical database for

iUML. Such database lists all the symbols and their descriptions, plus, their original

source. The Description column informs the user of the intended objective of the symbol.

Table 4.1 shows the created library for UML class diagram graphical extensions.

Table 4.1: Library of proposed graphical symbols (class diagram)

Modeling element Source Use of the Symbol

Jantan et

al. 2008

[27]

Used to represent single

process.

Jantan et

al. 2008

[27]

Used to represent database in

the class diagram design.

Jantan et

al. 2008

[27]

Used to represent the

information and data

operations such as query,

lookup, entry, etc., that

involved with database.

Jantan et

al. 2008

[27]

Used to represent complex

interaction between users and

web application.

Jantan et

al. 2008

[27]

Used to represent hyperlinks

in the class diagram design.

68

Jantan et

al. 2008

[27]

Used to represent pre-defined

and complex processes.

Jantan et

al. 2008

[27]

Used to represent the user’s

action to perform activities.

Fontoura

et al. 2000

[22]

Used to represent the

implemented methods during

the framework instantiation.

Fontoura

et al. 2000

[22]

Used to represent classes that

are defined as framework

instances.

Fontoura

et al. 2000

[22]

 Used to represent the

extensibility of class

functionality.

Fontoura

et al. 2000

[22]

Used to represent variation

points of non-runtime

instantiation.

Fontoura

et al. 2000

[22]

Used to represent variation

points of runtime

instantiation.

Fontoura

et al. 2000

[22]

Used to represent the

possibility of adding new

subclasses.

Fontoura

et al. 2000

[22]

Used to indicate that the

OCL constraint must be met

by the introduced methods.

Fontoura

et al. 2000

[22]

Used to indicate optional

event.

Sanada

and

Adams

2002 [25,

26]

Used to indicate that the final

class has no decedent classes

(leaves).

Byeon et

al. 2004

[23]

The geo-referenced class is

used to represent the class

icon with the aid of graphical

notations. The main elements

of geo-referenced classes are:

a graphical representation

with a symbolistic icon, an

69

iconic notation to indicate

the geographic type, class

name, attributes and

operations.

Mahmood

and Lai

2009 [28]

RClass is used to represent to

stakeholder requirements,

and it is divided into four

sections: First, stereotyped

requirement text, name of the

class and abstraction level to

differentiate the requirement

level. Secondly, the objective

to of the RClass. Thirdly,

scenario which is the set of

interactions necessary to

achieve the objective. The

last one is rank of the

RClass.

Mahmood

and Lai

2009 [28]

CClass is used to represent

component features, and it is

divided into three sections:

First, stereotyped component

text and name of the class.

Secondly, the functionality

provided by the component.

The last section is the

dependency on elements and

their relationships.

Fernandez-

medina et

al.2007

[12]

Used to represent security

information and constraints.

Fernandez-

medina et

al.2007

[12]

Used to represent dimensions

within a multidimensional

model.

70

Fernandez-

medina et

al.2007

[12]

Used to represent facts

within a multidimensional

model.

Fernandez-

medina et

al.2007

[12]

Used to represent dimension

hierarchy levels within a

multidimensional model.

Step 2: Case A: Combination

If some of the already existing symbols in the library can be combined together with other

existed symbols, combine them both into one symbol and add that symbol to the library.

Table 4.2 shows the integrated graphical symbols.

Table 4.2: Integrated graphical extensions

Modeling element Source Use of the Symbol Method of

Combination

Peterson

et al. [24]

and

Fernandz-

Medina et

al. [12]

The security

package will be

inserted into the

class diagram and

will be attached to

the classes that need

to be protected from

security attacks.

Each security

package has three

attributes: Risk

Factor; which

calculates the

probability the

security attack,

Security Tile;

protects the main

parts of a system

The design of

the security

package was

adopted from

the work of

Peterson et al.

[24]. While

the security

information

were

suggested by

Fernandz-

Medina et al.

in [12].

71

and finally, Security

Descriptor: protects

specific parts of the

system.

Peterson

et al. [24]

and

Fernandz-

Medina et

al. [12]

A Security Tile

which protects the

main parts of the

system. It mostly

contains tagged

values specified by

security analysts

and it can be

attached to security

packages to cover

more security

concerns.

The design of

the security

package was

adopted from

the work of

Peterson et al.

[24]. While

the security

information

was suggested

by Fernandz-

Medina et al.

in [12].

Byeon et

al. 2004

[23]&

Mahmood

and Lai

2009 [28]

The new main

elements of the class

are three vertical

compartments to

indicate symbolistic

icons, iconic

notations and class

name, and

<<requirements>>

to specify

stakeholder

requirements. It will

be used to represent

requirements with

the aid of graphical

notations.

The three

vertical

compartments

that will

contain some

graphical and

textual

information

was suggested

by Byeon et

al. [23]. The

requirements

stereotype and

the other

requirements-

related

information

were proposed

by Mahmood

and Lai

in[28].

72

Byeon et

al. 2004

[23]&

Mahmood

and Lai

2009 [28]

The new main

elements of the class

are three vertical

compartments to

indicate symbolistic

icons, iconic

notations and class

name, and

<<component>> to

specify component

features. It will be

used to represent

components with

the aid of graphical

notations.

The three

vertical

compartments

that will

contain some

graphical and

textual

information

was suggested

by Byeon et

al. [23]. The

component

stereotype and

the other

component-

related

information

were proposed

by Mahmood

and Lai

in[28].

Step 3: Case B: Conflict

If a graphical conflict happens between two or more extensions, these extensions will be

inserted individually in the library. This case happens when the final integrated symbol

becomes unclear due to the process of integration. In the process of integrating UML class

diagram no graphical extensions found to have conflict.

4.2.1.2 Sequence diagram

In the literature, 3 out of the 23 reviewed extensions were applied to UML sequence

diagram.

73

Step 1: Creation of Library

The following table, Table 4.3, shows the created library for UML sequence diagram

graphical extensions.

Table 4.3: Library of proposed graphical symbols (sequence diagram)

Modeling element Source Use of the Symbol

Fontoura

et al. 2000

[22]

Used to represent the

methods that must be

implemented during the

framework instantiation.

Fontoura

et al. 2000

[22]

Used to represent classes that

are defined and used as

framework instances.

Fontoura

et al. 2000

[22]

 Used to represent the

extensibility of class

functionality.

Fontoura

et al. 2000

[22]

Used to represent variation

points of non-runtime

instantiation.

Fontoura

et al. 2000

[22]

Used to represent variation

points of runtime

instantiation.

Fontoura

et al. 2000

[22]

Used to represent the

possibility of adding new

subclasses.

Fontoura

et al. 2000

[22]

Used to indicate that the

OCL constraint is meant to

hold for all newly introduced

methods.

Fontoura

et al. 2000

[22]

Used to indicate that a given

event is optional.

Sanada

and

Adams

2002 [25,

26]

Used to indicate that the final

class has no decedent classes

(leaves).

74

Zhou et al.

2008 [14]

Crosscutting bar to indicate

join points between two

events

Hausmann

et al. 2001

[15]

Synchronization bold bars to

be placed between

activations. They mean that

the activities must start and

end at the same time.

Step 2: Case A: Combination

The result of this step is one integrated symbol. Table 4.4 shows that symbol.

Table 4.4: Integrated graphical extension

Modeling element Source Use of the Symbol Method of

Integration

Zhou et al.

2008 [14]

and

Hausmann

et al. 2001

[15]

The red

crosscutting bar

indicates join

points that must

start and end at the

same time.

The red

crosscutting bar

was suggested

by Zhou et al.

[14] to show the

join points

between two

events.

Hausmann et al.

[15] proposed

the other

graphical

symbol to

enforce

synchronization

between two

activities. Both

symbols focus

on the start time

of the activity,

hence, the final

integrated

75

symbol

indicates

synchronizing

join points.

Step 3: Case B: Conflict

The only process of integration that was attempted was the one in Table 4.4 and it did not

cause any conflict.

4.2.1.3 Use case diagram

In the literature, 3 out of the 23 reviewed extensions were applied to UML use case

diagram.

Step 1: Creation of Library

The following table, Table 4.5, shows the created library for UML use case diagram

graphical extensions.

Table 4.5: Library of proposed graphical symbols (use case diagram)

Modeling element Source. Use of the Symbol

Fei and

Yan 2008

[16]

Used to represent agents.

Djemaa et

al. 2006

[17]

Used to represent the human

user who visits the web

application.

Djemaa et

al. 2006

[17]

Used to represent the role

played by a human user

(physical actor) to maintain

the web application.

76

Djemaa et

al. 2006

[17]

Used to represent the

hardware aspect of the

system, whether it is a

computer system, device

hardware or web service.

Djemaa et

al. 2006

[17]

SIF: Static Informational

Functionality used to

represent a static Web page.

Djemaa et

al. 2006

[17]

DIF: Dynamic Informational

Functionality used to

represent a dynamic Web

page.

Djemaa et

al. 2006

[17]

PF: Profession Functionality

used to represent a dynamic

Web page using update

request

Step 2: Case A: Combination

The result of this step is one integrated symbol. Table 4.6 shows that symbol.

Table 4.6: Integrated graphical extension

Modeling element Source Use of the Symbol Method of

Integration

Fei and

Yan 2008

[16] and

Djemaa et

al. 2006

[17]

Used to represent the

human user who

visits the web

application. It could

also represent agents

in agent-oriented

systems.

The human

user symbol

suggested by

Djemaa et

al. in [17] is

more

general,

hence, can

represent

agents in

agent-

oriented

systems.

77

Step 3: Case B: Conflict

One conflict occurred during the attempt of integrating three graphical extensions. Table

4.7 Table 4.7 shows the three symbols that could not be integrated.

Table 4.7: The three extended functionalities proposed by Djemaa et al. 2006 [16]

Modeling element Source Use of the Symbol

Djemaa et

al. 2006

[17]

SIF: Static Informational

Functionality used to

represent a static Web page.

Djemaa et

al. 2006

[17]

DIF: Dynamic Informational

Functionality used to

represent a dynamic Web

page.

Djemaa et

al. 2006

[17]

PF: Profession Functionality

used to represent a dynamic

Web page using update

request

The goal behind integrating these functionalities was to have one abstract use case. But

during the creation of the diagram, the abstract use case would make the diagram

confusing because every time there will be a need for a specific functionality; one has to

refer to the abstract use case. In conclusion, it is better to have three independent

functionalities where each one presents a different type of information.

4.2.2 Integration of the meta-model extensions

The goal in this type of integration is to integrate the proposed modeling elements

(stereotypes and tag definitions) into the original UML class, sequence and use case

diagram meta-models.

78

4.2.2.1 Class diagram

The reviewed literature contains 23 extensions; 9 of which are applied to UML class

diagram meta-model. Table 4.8 shows the modeling elements accompanied with some

constraints from the class diagram extensions. The main objective of this table is to show

constituting elements of the integrated class diagram along with their specified

constraints.

Table 4.8: The modeling elements of UML class diagram extensions

Modeling Element Extended from

(Meta Class)

Use of the Modeling

Element

Associated

Constraints

ContextItem [13] Class Models the types of

context items.

Must have a basic

type (Integer or

String), a composite

type, an

enumeration type or

another context item

type.

ContextItemEnum

[13]

Enumeration Models the types of

context items

enumeration.

Must have a type

with a stereotype

CompositeType.

ContextAssociation

[13]

Association Models the

characteristics of context

items.

Must have one

stereotype to

represent the access

prevention and one

stereotype to

represent the source.

Aspect [29] Class Models static and

dynamic features.

Has a behavioral

feature (Advice) and

an operation

(Pointcut).

Advice [29] -- Behavioral

feature

(Operation)

Encapsulates behavior

during the execution.

Defined by (after,

before, around) and

attached to

(Pointcut).

Pointcut [29] -- Behavioral

feature

(Operation)

Defines a place during

the execution where the

aspect interacts with the

core functionally.

Level [12] Enumeration Orders enumeration of

the security levels.

Must have a correct

value of tagged

79

values.

Levels [12] Primitive Represents an interval of

upper and lower levels.

Must have a correct

value of tagged

values.

Role [12] Primitive Represents the hierarchy

of user roles.

Compartment [12] Enumeration Enumerates the user

compartments.

Privilege [12] Enumeration Orders enumeration of

the privileges.

AccessAttempt [12] Enumeration Orders enumeration of

the access attempts.

InstanceClass [25,

26]

Class Models the varying

concepts encapsulated by

the pattern.

ApplicationClass

[25, 26]

Class Models the framework

classes (instances).

ForAllNewMethods

[25, 26]

Constraint Models that the constraint

must be held for all the

new methods.

Hook [25, 26] Method Models the role of

methods in the pattern.

(Supply the concrete

implementation)

Template [25, 26] Method Models the role of

methods in the pattern.

(Define the generic

instantiation in

interaction between

classes)

Step 1: Adding the Elements

The goal of this step is to add the newly introduced modeling element under the

appropriate classifier in the meta-model. The introduced modeling element will be an

instance of that classifier. The classifier describes the behavioral and structural features

and the instance describes the operations and the state. Due to its large size, the meta-

model will be divided into three parts to show the addition of extensions’ modeling

elements. The first part of the meta-model is shown in Figure 4.1. The white boxes in

80

Figure 4.1 represent the original elements of UML and the colored ones represent the

extensions. Figure 4.2 shows the second part of the meta-model and Figure 4.3 shows the

last part.

81

Figure 4.1: First part of original UML class diagram meta-model elements and integrated elements

82

Figure 4.2: Second part of original UML class diagram meta-model elements and integrated elements

83

Figure 4.3: Third part of original UML class diagram meta-model elements and integrated elements

84

Step 2: Categorizing the Elements

Categorize each introduced element as <<Stereotype>> or <<TaggedValue>>.Due to the

large size of the meta-model, categorizing the extensions’ modeling elements will be done

in three parts. The first part of the meta-model is shown in Figure 4.4. The second part is

shown in Figure 4.5 and the third part is shown in Figure 4.6.

85

Figure 4.4: Stereotype and Tagged Value categories applied to the first part of modeling elements

86

Figure 4.5: Stereotype and Tagged Value categories applied to the second part of modeling elements

87

Figure 4.6: Stereotype and Tagged Value categories applied to the third part of modeling elements

88

Step 3: Defining Meta-classes

State the meta-classes with the symbol [class] below its name and category. Due to the

large of the meta-model, defining meta-classes will be done in three parts. The first part of

the meta-model is shown in Figure 4.7. The second part is shown in Figure 4.8 and the

third part is shown in Figure 4.9.

89

Figure 4.7: Meta-classes defined in the first part of modeling elements

90

Figure 4.8: Meta-classes defined in the second part of modeling elements

91

Figure 4.9: Meta-classes defined in the third part of modeling elements

92

Step 4: Case A: Combination

Combine modeling elements of the same domain as one instance. Each modeling element

must be clearly distinguished in that instance. Due to the large size of the meta-model,

combining extensions’ modeling elements will be done in three parts. The first part of the

meta-model is shown in Figure 4.10. The second part is shown in Figure 4.11 and the

third part is shown in Figure 4.12.

93

Figure 4.10: The first part of integrated domain model elements

94

Figure 4.11: The second part of integrated domain model elements

95

Figure 4.12: The third part of integrated domain model elements

96

Some extensions not only add instances to the meta-model but also classifiers. Such

classifiers are considered instances of the original UML meta-model classifiers. For

example, in Figure 4.13, Przybylek [21] defined Crosscutting Feature as a meta-class

derived from the element Feature. From that meta-class a stereotype named Static

Crosscutting Feature was presented.

Figure 4.13: Crosscutting Feature derivation

Step 5: Case A: Conflict

In case if a conflict occurred between two or more extensions, the two extensions should

be reviewed thoroughly and only the common modeling elements from both extensions

should be added to the integrated meta-model.

In the Integration Process of UML class diagram extensions, only one conflict was found.

Przybylek [21] and Sharafi et al. [29] both worked on aspect-oriented modeling but

97

Przybylek extended the UML heavily while Sharafi et al. extended it lightly. Przybylek

defined a whole new meta-model that uses UML to reuse elements from its infrastructure

and superstructure. Przybylek also defined a whole new package that contains modeling

elements for aspect-oriented concepts. In other words, the behavior of UML was altered.

This alteration of behavior came from specifying the attributes and semantics of the

defined modeling elements.

Figure 4.14 shows the proposed package by Przybylek, called Aspect-oriented UML

which imports the Kernel package.

Figure 4.14: Przybylek’s UML heavyweight extension mechanism in [21]

Sharafi et al., on the other hand, simply mapped their domain model to the UML meta-

model. Sharafi et al. used UML meta-classes such as Class and Behavioral Feature to

 <<import>>

Infrastructure :: Core

PrimitiveType

s

Constructs

Superstructure :: Classes

Kernel

+ Advice + DeclarationKind

+ AdviceKind + Introduction

+ Aspect + MemberKind

+ AspectKind + ParentDeclaration

+ Crosscut + Pointcut

+ CrosscuttingFeature + StaticCrosscuttingFeature

AoUML

<<merge>

>

<<merge>

>

98

represent their domain model elements, such as; Aspect, Advice, etc. Figure 4.15 shows

the proposed methodology by Sharafi et al. where their second main step was a simple

mapping procedure of Aspect-oriented constructs into UML profile components.

Figure 4.15: UML lightweight extension mechanism by Sharafi et al. in [28]

Both authors worked on the same domain elements but Przybylek specified more

attributes and restricted the behavior of the elements on a meta-model that became less

similar to the UML meta-model. If Przybylek’s extended the UML lightly, the integration

with the work of Sharafi et al. would have been straightforward, since both extensions

would have been just a plain procedure of mapping and the differences would have been

unmentionables.

Nevertheless, Przybylek’s modeling elements were gathered and only the common ones

were acquired to be fitted in the integrated meta-model. The other modeling elements

were excluded because they contradict with the intended goal and purpose of the common

modeling elements. For example: the modeling element Crosscut was excluded because it

alters the behavior of the element: Aspect. The common modeling elements were; Aspect,

Advice, Introduction, Point-cut, Abstract, Privileged, Instantiation, Precedence and Parent

Select a language

independent subset of

Aspect-oriented

Constructs (Core AO)

Map Core AO

constructs to

UML profile

components

Provide a

graphical

representation

Propose UML

profile using model

interchange format

Core AO

Domain Model

UML profile for

Core AO

A crosscutting

concern graphical

schema

“.ecore” file in

XMI format

99

Declaration. Figure 4.16 is an excerpt of iUML class diagram meta-model where the red

boxes represent the acquired modeling elements proposed by Przybylek. The green tails

below the red boxes indicate that there is another extension, Sharafi et al. extension,

which shares the same modeling elements proposed by Przybylek.

Figure 4.16: Excerpt of iUML class diagram meta-model

Consistency between the Class Diagram Graphical Symbols and the Class Diagram

Meta-Model

The class diagram graphical symbols found in iUML library are checked for consistency

with the iUML meta-model. The goal of the checking process is to make sure that each

graphical element reflects an existing meta-model element.

Table 4.9 lists every class diagram graphical symbol found in iUML library and its

location in iUML meta-model.

100

Table 4.9: Mapping iUML class diagram graphical symbols into the meta-model

Modeling element Source Location in iUML meta-model

Jantan et

al. 2008

[27]

Jantan et

al. 2008

[27]

Jantan et

al. 2008

[27]

Jantan et

al. 2008

[27]

Jantan et

al. 2008

[27]

Jantan et

al. 2008

[27]

Jantan et

al. 2008

[27]

Fontoura et

al. 2000

[22]

Fontoura et

al. 2000

[22]

Fontoura et

al. 2000

[22]

101

Fontoura et

al. 2000

[22]

Fontoura et

al. 2000

[22]

Fontoura et

al. 2000

[22]

Fontoura et

al. 2000

[22]

Fontoura et

al. 2000

[22]

Sanada and

Adams

2002 [25,

26]

Byeon et

al. 2004

[23]

Mahmood

and Lai

2009 [28]

Mahmood

and Lai

2009 [28]

102

Fernandez-

medina et

al.2007

[12]

Fernandez-

medina et

al.2007

[12]

Fernandez-

medina et

al.2007

[12]

Fernandez-

medina et

al.2007

[12]

Results of integrating meta-model concepts

The final integrated meta-model is shown in Figure 4.17 to Figure 4.19. The white boxes

are the original elements of the class diagram meta-model [10, 12, 13] and the colored

boxes are the UML extensions.

103

Figure 4.17: First part of iUML class diagram meta-model

104

Figure 4.18: Second part of iUML class diagram meta-model

105

Figure 4.19: Third part of iUML class diagram meta-model

106

4.2.2.2 Sequence diagram

The reviewed literature contains 23 extensions; 3 of which are applied to UML sequence

diagram. Table 4.10 shows the modeling elements accompanied with some constraints

from the sequence diagram extensions. The main objective of this table is to show

constituting elements of the integrated sequence diagram along with their specified

constraints.

Table 4.10: The modeling elements of UML sequence diagram extensions

Modeling

Element

Extended from

(Meta Class)

Use of the

Modeling

Element

Associated Constraints

REservice [32] Classifier Represents a

sequence of

actions and

interactions.

A REservice can be requested by a

REuser or from a REcomponent.

REcomponents

[32]

Classifier Represents the

main

interacting

objects.

REhost hosts a set of

REcomponents. Each

REcomponent has a structure of

possibly other REcomponents.

REconnectors

[32]

AssociationRole Represents the

means in which

the

REcomponents

interact

through.

Each REconnector links

REcomponents.

REuser [32] Classifier Represents the

party that

triggers the

actions.

One REuser requires many

REservices and one REservice is

requested by many REusers.

REhost [32] Classifier Represents the

hosting party of

REcomponents.

REhost hosts a set of

REcomponents. Each

REconnector links REcomponents.

Step 1: Adding the Elements

The first step is the addition of newly introduced modeling elements under the appropriate

classifier in the meta-model. Figure 4.20 represent the original elements of UML and the

107

colored ones represent extensions. Due to its large size, the meta-model will be divided

into three parts to show the addition of extensions’ modeling elements. The first part of

the meta-model is shown in Figure 4.20. The second part is shown in Figure 4.21.

108

Figure 4.20: First part of original UML sequence diagram meta-model elements and integrated elements

109

Figure 4.21: Second part of original UML sequence diagram meta-model elements and integrated elements

110

Step 2: Categorizing the Elements

Next is categorizing elements as <<Stereotype>> or <<TaggedValue>>. Figure 4.22

shows the two types of meta-model concepts; stereotype and tagged value. Due to the

large size of the meta-model, categorizing the extensions’ modeling elements will be done

in two parts. The first part of the meta-model is shown in Figure 4.22. The second part is

shown in Figure 4.23.

111

Figure 4.22: Categorizing first part of elements as Stereotypes and Tagged Values

112

Figure 4.23: Categorizing second part of elements as Stereotypes and Tagged Values

113

Step 3: Defining Meta-classes or other classifiers

As for meta-classes, no meta-classes were found in the reviewed literature to be integrated

into the meta-model. In Figure 4.24, there is an example that shows an introduction of a

classifier by Fontoura et al. [22]. This classifier is Boolean which derives the tag

definitions beneath it. The Boolean classifier is considered an original element in the

UML meta-model but Fontoura et al. emphasized it and showed it to be able to use the

proposed tag definitions in their model.

Figure 4.24: Boolean type classifier

Step 4: Case A: Combination

In the process of integrating UML sequence diagram extensions, no extensions shared the

exact same domain; therefore, the extensions were separately integrated in the meta-

model.

114

Step 5: Case A: Conflict

No conflicts were found as no attempts of combining extensions of the same domain

happened.

Consistency between the Sequence Diagram Graphical Symbols and the Sequence

Diagram Meta-Model

The sequence diagram graphical symbols found in iUML library are checked for

consistency in iUML meta-model. Table 4.11 lists every sequence diagram graphical

symbol found in iUML library and its location in iUML meta-model.

Table 4.11: Mapping iUML sequence diagram graphical symbols into the meta-model

Modeling element Source Location in iUML meta-model

Fontoura et

al. 2000 [22]

Fontoura et

al. 2000 [22]

Fontoura et

al. 2000 [22]

Fontoura et

al. 2000 [22]

Fontoura et

al. 2000 [22]

Fontoura et

al. 2000 [22]

Fontoura et

al. 2000 [22]

Fontoura et

al. 2000 [22]

Sanada and

Adams 2002

[25, 26]

115

Results of integrating meta-model concepts

Figure 4.25 and Figure 4.26 show the meta-model for the UML sequence diagram

extensions. The white boxes are the original elements of the sequence diagram meta-

model [14, 15] and the colored boxes are the UML extensions.

116

Figure 4.25: First part of iUML sequence diagram meta-model

117

Figure 4.26: Second part of iUML sequence diagram meta-model

118

4.2.2.3 Use case diagram

The reviewed literature contains 23 extensions; 3 of which are applied to UML use case

diagram. Table 4.12 shows the modeling elements accompanied with some constraints

from the use case diagram extensions. The main objective of this table is to show

constituting elements of the integrated use case diagram along with their specified

constraints.

Table 4.12: The modeling elements of UML use case diagram extensions

Modeling

Element

Extended from (Meta

Class)

Use of the

Modeling

Element

Associated Constraints

Agent [16]

AgentClassifer Provides a way

to classify

agents.

Responsible for classifying

agents.

AgentPhysicalClassifier Provides

features for the

agents.

Responsible for providing

agents with features.

AgentRoleClassifer Provides roles

for the agents.

PhysicalActor

[17]

ActorClassifier

Represents a

human user who

visits the Web

application.

Visits the Web

Application.

LogicalActor

[17]

 Represents a

role played by a

human user to

assure the

maintenance of

Web

application.

Maintains the Web

Application.

SystemActor

[17]

 Represents a

computer

system, device

hardware or

Web service,

etc.

UseCaseSIF

[17]

Meta-scenario SIF Displays static

Web Page.

119

UseCaseDIF

[17]

Meta-scenario DIF Displays

dynamic Web

Page.

UseCasePF

[17]

Meta-scenario PF Displays

dynamic Web

Page using

UPDATE

request.

REservice [32] Classifier Represents a

sequence of

actions and

interactions.

A REservice can be

requested by a REuser or

from a REcomponent.

REcomponents

[32]

Classifier Represents the

main interacting

objects.

REhost hosts a set of

REcomponents. Each

REcomponent has a

structure of possibly other

REcomponents.

REconnectors

[32]

AssociationRole Represents the

means in which

the

REcomponents

interact through.

Each REconnector links

REcomponents.

REuser [32] Classifier Represents the

party that

triggers the

actions.

One REuser requires many

REservices and one

REservice is requested by

many REusers.

REhost [32] Classifier Represents the

hosting party of

REcomponents.

REhost hosts a set of

REcomponents. Each

REconnector links

REcomponents.

Step 1: Adding the Elements

The first step is to insert the newly introduced modeling elements under the appropriate

classifier in the meta-model. Figure 4.27 represents the original elements of UML and the

colored ones represent extensions. Due to its large size, the meta-model will be divided

into three parts to show the addition of extensions’ modeling elements. The first part of

the meta-model is shown in Figure 4.27. The second part is shown in Figure 4.28 and the

third part is shown in Figure 4.29 .

120

Figure 4.27: First part of original UML use case diagram meta-model elements and integrated elements

121

Figure 4.28: Second part of original UML use case diagram meta-model elements and integrated elements

122

Figure 4.29: Third part of original UML use case diagram meta-model elements and integrated elements

123

Step 2: Categorizing the Elements

Next is categorizing elements as <<Stereotype>>. No Tagged Value elements were found

in the literature. Figure 4.30 shows the stereotype category. Due to the large size of the

meta-model, categorizing the extensions’ modeling elements will be done in three parts.

The first part of the meta-model is shown in Figure 4.30. The second part is shown in

Figure 4.31 and the third part is shown in Figure 4.32.

124

Figure 4.30: Stereotype category of the first part of elements

125

Figure 4.31: Stereotype category of the second part of elements

126

Figure 4.32: Stereotype category of the third part of elements

127

Step 3: Defining Meta-classes or other classifiers

No meta-classes or other classifiers were also found in the reviewed literature to be

integrated into the meta-model.

Step 4: Case A: Combination

In the process of integrating UML use case diagram extensions, no extensions shared the

exact same domain. The extensions were separately integrated in the meta-model.

Step 5: Case A: Conflict

No conflicts occurred since no attempts of combining extensions of the same domain

happened.

Consistency between the Use Case Diagram Graphical Symbols and the Use Case

Diagram Meta-Model

The use case diagram graphical symbols found in iUML library are checked for

consistency in iUML meta-model. Table 4.13 lists every use case diagram graphical

symbol found in iUML library and its location in iUML meta-model.

Table 4.13: Mapping iUML use case diagram graphical symbols into the meta-model

Modeling element Source. Location in iUML meta-model

Fei and Yan

2008 [16]

128

Djemaa et al.

2006 [17]

Djemaa et al.

2006 [17]

Djemaa et al.

2006 [17]

Djemaa et al.

2006 [17]

Djemaa et al.

2006 [17]

Djemaa et al.

2006 [17]

Results of integrating meta-model concepts

Figure 4.33 through Figure 4.35 show the meta-model for the UML use case diagram

extensions. The white boxes are the original elements of the use case diagram meta-model

[16, 17] and the colored boxes are the UML extensions.

129

Figure 4.33: First part of iUML use case diagram meta-model

130

Figure 4.34: Second part of iUML use case diagram meta-model

131

Figure 4.35: Third part of iUML use case diagram meta-model

132

CHAPTER 5

5. Tool Support

All of the UML extensions’ modeling elements and the integrated meta-model were

modeled and integrated by a special diagram editor tool, called Dia [39]. Dia is free

software that allows the user to create diagrams with the aid of a wide selection of

modeling elements. Elements come from domains like Cisco, Database, Electric, Flow

Chart, UML and others. Dia tool is known for its simple and easy-to-use environment.

Dia makes it easier to control and manage the drawn elements of diagrams through the

provided properties attached to each element. The drawing mechanism in Dia is as easy as

using the Paint tool found in Microsoft Windows releases. It is easy-to-handle and

flexible. Figure 5.1 shows Dia environment interface.

Figure 5.1: Environment of Dia

133

Using Dia, the user can insert text, control the size of the drawn elements and enter

properties for such elements. What makes Dia more interesting than the other diagram

editor tools is its ability to control and specify the diagram elements. Each element in the

diagram has properties. For example, the element Class has properties like name,

attributes, operations, etc., can be specified by the user by double clicking the element in

the diagram and then entering the desired information. The user can also choose if he

wants the class to be an abstract or the class’s attributes to be visible or not. Another

feature is the ability to create stereotype for the user’s class which makes the procedure of

extending the diagram easier, just a simple text-entering procedure. Figure 5.2 shows a

screen shot of how Dia allows the user to specify the properties of a class.

Figure 5.2: Properties of Class

134

Another extraordinary feature found in Dia is the option to create a sheet of modeling

elements, in other words, drawing elements from scratch and save them in a special

library or sheet. This sheet can be then listed in the main menu of sheets and can be easily

used.

In this research, Dia was used to help in creating the integrated graphical extensions. The

need was for a diagram editing software that provides flexible editing tools that makes the

process of integrating graphical symbols easy and straightforward. Besides that, there was

a need for software like Dia to store the final integrated symbols in a ready-to-use library

and as mentioned earlier, Dia provides a way to store the created symbols in sheets. After

saving the symbols in a sheet, they will be easily selected and used during the creation of

diagrams.

An iUML sheet was created using Dia [39]. This sheet contains modeling elements from

the collected UML extensions, plus, the integrated ones. Figure 5.3 shows the iUML

sheet.

Figure 5.3: iUML sheet

135

An example of created modeling elements is the three integrated classes proposed by

Fernandz-Medina et al. [12] and Byeon et al. [23] is shown in Figure 5.4. Fernandz-

Medina et al. proposed security constraints, like security levels and roles to be placed on

the elements of a hospital system and Byeon et al. suggested that the class graphic format

can be vertically divided to include helpful graphical iconic notations. The result is

integrated classes like the ones shown in Figure 5.4.

Figure 5.4: iUML integrated classes created using Dia

The class diagram shown in Figure 5.5 is created using Dia. Three classes are created;

Student, GPA and Registrar. Class Student is a component class that satisfies the

requirements of class GPA, a requirement class. The three classes (symbols) in this

136

example are iUML symbols. The way the classes are drawn is the result of integrating two

extensions, Mahmood and Lai [28] and Byeon et al.[23].

Figure 5.5: iUML class diagram example created using Dia

137

CHAPTER 6

6. Validation

6.1 Class diagram case studies

This chapter gives a number of case studies derived from the literature to show the use of

the integrated UML extensions.

6.1.1 Case study # 1: Secured Health Care System (Data Warehouse

+ Security + GNSS)

This case study addresses the issue of systems’ security, especially, health care systems’.

Health care systems, placed in hospitals, handle tremendous amounts of indoor and

outdoor patients’ records. Such records store information about patients, like; personal

information, financial issues, physical tests results, medical history background, current

health condition, etc.

6.1.1.1 Problem Description

Some of the hospital information are considered private matters and need to be only

checked and accessed by the concerned staff or in other words, treating physicians. The

health care system must be secured for many reasons. For example, patients’ confidential

and sensitive data need to be tightly locked away not only from outsiders but also from

138

non-concerned personnel, like; receptionists or laboratories staff who are privileged to

access certain information only.

Using UML to enforce security measures would require extensions to UML that add

different modeling elements with different techniques which ensure that the modeled

system is secured enough. It would also focus on only one domain.

In iUML, the user uses one integrated form to cover security concerns for multiple

domains; data warehouse and secured class diagram design. The previous extensions to

UML, by Fernandz-Medina et al. [12] and Peterson et al. [24], are security techniques that

are limited to specific domains. On the other hand, in iUML, the user can take advantage

of all the integrated security techniques available to address security concerns using

modeling elements, i.e. stereotypes and tagged values that are general enough to work on

any problem domain.

6.1.1.2 Applying the iUML

To create the class diagram for this system, we can take advantage of the stored graphical

symbols in the library. Table 6.1 shows the iUML graphical symbols that will be adopted

and used in the creation of class diagram.

139

Table 6.1: Excerpt of iUML library

Modeling element Source Use of the Modeling element

Peterson et

al. [24] and

Fernandz-

Medina et al.

[12]

The security package will be

inserted into the class diagram

and will be attached to the classes

that need to be protected from

security attacks. Each security

package has three attributes: Risk

Factor; which calculates the

security attack, Security Tile;

protects the main parts of a

system and finally, Security

Descriptor: which describes the

security categories that protect

specific parts of the system.

Peterson et

al. [24] and

Fernandz-

Medina et al.

[12]

A Security Tile which protects

parts of a system. It mostly

contains tagged values specified

by security analysts and it can be

attached to security packages to

cover more security concerns.

Fernandz-

Medina et al.

[12] and

Byeon et al

[23]

A class icon with iconic

representation to display

graphical information along with

textual information such as,

class’s name, security levels and

roles.

Fernandez-

medina et

al.2007 [12]

Used to represent security

information and constraints.

Fernandez-

medina et

al.2007 [12]

Used to represent dimensions

within a multidimensional model.

140

The following figure, Figure 6.1, shows the meta-model elements. The white boxes

represent the original UML elements and the red-boxed ones represent the iUML

stereotypes that are used in this case study from the iUML meta-model.

Figure 6.1: Excerpt of iUML class diagram meta-model

Figure 6.2 shows the iUML stereotype association “Protects” that will link the classes that

need to be secured with the specified security packages.

141

Figure 6.2: Excerpt of iUML class diagram meta-model

The overall goal is to incorporate security packages and tiles that are previously specified

into the main elements of the system, i.e. elements that need security measures, such as;

patient’s history records, diagnosis files, financial arrangements, etc. These security

measures will ensure that these important data are only accessed by privileged users.

First, we have to define users of the system. Figure 6.3 specifies the health and non-health

employees of the hospital. This helps in defining the privileged and non-privileged users

of the system.

Figure 6.3: Hierarchy of users as suggested by Fernandz-Medina et al in [12]

HospitalEmployee

Health nonHealth

Doctor Nurse Maintenance Administrative

142

The next step is defining the levels of security. These levels will be assigned to patients’

data in their stored records. The constraints on these levels are placed on their values. The

security levels must have values range only from [confidential, secret and top secret].

Figure 6.4 shows the defined levels of security.

Figure 6.4: Levels of security as suggested by Fernandz-Medina et al. in [12]

After defining the users and levels of security, we have to define the information that has

to be secured. We will define the privileged users who have access to the information

(Security Role) and what levels of security will be placed over such information (Security

Level). The following table, Table 6.2, describes the different types of records that need to

be secured.

Table 6.2: Different types of Hospital’s records

Element Description

Admission Contains individual admissions of patients of one or more

hospitals.

Diagnosis Contains the information of each user diagnosis.

Patient Contains the patients’ information.

Diagnosis

Group

Contains a set of groups of diagnosis.

City Contains the information of cities.

User

Profile

Contains the users who will access the model.

Table 6.3 shows the assignment of security roles and levels over the hospital’s records.

Security roles and levels are expressed as sets of tagged values.

<<enumeration>>

Level

Confidential

Secret

TopSecret

143

Table 6.3: iUML security roles and levels

Element Tagged Value

Admission Access by users who have:

Security Level = Secret & Top Secret &

Security Role = Health & Administrative

 The attribute "Cost" is accessed only by:

Security Role = Administrative

Diagnosis Access by users who have:

Security Level = Secret &

Security Role = Health

Patient Access by users who have:

Security Level = Secret &

Security Role = Health & Administrative

 The attribute "Address" is accessed only by:

Security Role = Administrative

 The attribute "Race" is accessed only by:

Security Role = Health

Diagnosis

Group
 Access by users who have:

Security Level = Confidential

City Access by users who have:

Security Level = Confidential

The tagged values shown in Table 6.3, will now be inserted into security tiles, as shown in

Figure 6.5 through Figure 6.8.

Figure 6.5: iUML security tile # 1

144

Figure 6.6: iUML security tile # 2

Figure 6.7: iUML security tile # 3

Figure 6.8: iUML security tile # 4

The next step is creating security packages. Security packages have to refer to the

previously defined security tiles. This is done by writing the security tile’s name next to

<<Security Package>> label in the package, as shown in Figure 6.9 and Figure 6.10.

145

Figure 6.9: iUML security package (Secure Access)

Figure 6.10: iUML security package (Secure Attribute Access)

The next step is to create the classes that represent the main elements of the system,

Admission, Patient, Diagnosis, Diagnosis Group and City. Figure 6.11 shows an example

of iUML class Admission. The goal of this design is to have unique and helpful graphical

notations attached to the created classes.

Figure 6.11: iUML classes Admission created using Dia

146

The final step is integrating security packages into the UML class diagram, as shown in

Figure 6.12. Each security package protects a certain type of hospital’s records, which are

represented as classes in the diagram.

147

Figure 6.12: Integrated UML class diagram (Secured Health Care System)

148

6.1.1.3 Discussion

For this case study, some modeling elements were used from iUML to consider some

issues that were not handled and addressed by UML. The graphical symbols found in this

case study were used to emphasize the issue of security and how to map it graphically to

iUML class diagram. Figure 6.13 shows an example of a security package that was

especially created to be used in domains that require security measure.

Figure 6.13: iUML security package

Attaching graphics to classes also helps the classes to be more readable. Having the first

row of the class vertically divided helps attaching more and more information about the

class in small compartments, such as; iconic notations, class’s name, security levels and

roles. Figure 6.14 shows iUML design of an Admission class.

Figure 6.14: iUML classes Admission created using Dia

149

Beyond that level, the meta-model elements were introduced to make UML more specific

to the introduced domains. For example, the iUML stereotypes shown in Figure 6.15 were

used to add security levels and roles on every element in their domain model.

Figure 6.15: iUML stereotypes

The essence of UML is the ability to model the targeted system using a set of graphical

notations. The limited set of UML graphical notations can help the system’s designer to

better visualize the system’s internal and external elements but at the same time and as

mentioned before, this set is limited. Unfortunately, UML was found unable to address

some problem domains. UML has to be adapted and extended for such domains.

Fernandez-Medina et al.[12]applied their extension to UML for the conceptual design of a

secure Multi-dimensional model within the context of a typical health care system. Byeon

et al.[23] provided notational help to obtain precise measurements and precise

calculations of real-world geographical entities. And Peterson et al. in [24] used a UML

class diagram to represent an ATM model integrated with UMLpac for possible security

considerations. Without extending UML, it would be challenging for UML to model the

secured health care system using the regular notations and other modeling elements.

150

Stereotypes and especially tag definitions must be defined in order to enforce secured

access to patients’ records. Along with that, security packages and tiles, mentioned in this

case study, create another shield to prevent such important records from security attacks.

The key issue is to specify more and more security measures and techniques to protect the

stored information.

iUML integrates different extensions, concerning different and similar domains, for the

sake of using one comprehensive set of graphical and meta-model concepts when dealing

with a number of domains. Without using iUML, one cannot place more security

techniques over the multidimensional elements like patient, admission, diagnosis, etc.

iUML handles the security by setting tagged values and constraints in the data warehouse

application domain and that can be greatly enhanced, security-wise, by attaching security

packages to the elements found in the data warehouse domain.

6.1.2 Case study # 2: Grade Recording System (GNSS + Component +

Design Patterns)

The presented grade recording system in this case study is not something new. But what

makes this system different than the other grading systems is its framework. The proposed

framework involves a combination of three ideas; requirements and requirements

satisfaction, helpful graphical notations and composed design patterns visualizations. This

case study shows a normal grade recording system but from a different point of view; a

requirement satisfactory point of view. The simple idea of a student is being or not being

able to register in a course due to his GPA will be presented as a requirement. The

151

student, with his grades recorded in a database, will have to score a certain GPA in order

to be able to register. This GPA condition is shown as a requirement.

6.1.2.1 Problem Description

The proposed grade recording system requires three ideas; requirements and requirements

satisfaction, helpful graphical notations and composed design patterns visualizations.

UML has to be extended to achieve the objective of this case study. It must include

Mahmood and Lai work in [28] where they suggested a requirement-component

relationship that states a certain component has to satisfy the customer’s requirements

through the presented features. In addition to that, UML has to be graphically extended to

include the new graphical representation of classes which was suggested by Byeon et al.

in [23]. The new format of the class icon allows the designer to attach helpful graphical

notations.

In that sense, UML will not be able to model the targeted system, it has to be extended.

The problem with the needed UML extensions is that each extension is specific to one and

only one problem domain, hence, the needed extensions cannot work together to achieve

the objective of this case study.

6.1.2.2 Applying the iUML

The modeling elements of the class diagram for this case study will be taken from the

iUML graphical library. Table 6.4 shows the iUML graphical symbols that will be used in

this case study.

152

Table 6.4: Excerpt of iUML library

Modeling element Ref. Description

Byeon et al.

2004 [23]&

Mahmood

and Lai 2009

[28]

The new main elements of the class

are three vertical compartments to

indicate symbolistic icons, iconic

notations and class name, and

<<component>> to specify

component features.

Byeon et al.

2004 [23]&

Mahmood

and Lai 2009

[28]

The new main elements of the class

are three vertical compartments to

indicate symbolistic icons, iconic

notations and class name, and

<<requirements>> to specify

stakeholder requirements.

The following figure, Figure 6.16, shows the meta-model elements. The white boxes

represent the original UML elements. The red-colored boxes clarify the proposed

modeling elements from [23], [26] and [28].

153

Figure 6.16: Excerpt from the integrated class diagram meta-model

The first step is to create the classes that represent registrar, students, teachers, lectures

and tests. Figure 6.17 shows the iUML classes. The goal of this design is to have unique

and helpful graphical notations attached to the created classes.

 Figure 6.17: iUML classes' design inspired by Byeon et al. [22] created using Dia

154

The following classes are advanced iUML classes. The GPA class is a requirement class

that is handled by the registrar to represent a certain requirement that must be satisfied by

a component class, a student class.

Figure 6.18: The GPA requirement class created using Dia

Figure 6.19: The Student component class created using Dia

The GPA requirement class are handled by the registrar class where each student who

wants to register the course (or lecture) has to satisfy the requirment (GPA > 3).

155

Figure 6.20: RSatisfy relationship created using Dia

The stereotypes that are used in this case study are presented in Table 6.5. Stereotypes

“Template” is used to define abstract behavior and “Hook” is used for implementation.

For example, to compute the grades, a method called “Compute” will be used as a

Template method in class “Test” while the implementation of this method is handled in a

Hook method in another class, the Lecture class.

Table 6.5: iUML modeling elements (stereotypes)

Stereotype Base Class

Hook <<Hook>> Method

Template <<Template>> Method

The previous concepts are presneted in the following iUML class diagram, Figure 6.21.

156

Figure 6.21: iUML UML class diagram (Grade Recording System)

157

6.1.2.3 Discussion

This case study was presented and discussed only to show another advantage of using

iUML. Grade recording systems’ design can be created and illustrated using UML

constructs but using the iUML helps this kind of systems from two perspectives; graphical

and analytical.

The graphical advantage of iUML is the use of graphical notations that are attached to the

classes. Attaching graphics to classes helps the classes to be more readable and

distinguishable. Also having the first row of the class to be vertically divided helps

attaching more information about the class in these small compartments, such as; iconic

notations and class’s name. Other information may include references to other classes or

dependencies on other classes. Figure 6.22 shows iUML design of a student class.

Figure 6.22: iUML student class created using Dia

In iUML, the graphical symbols are integrated and can be used to graphically model any

problem domain or multiple domains at the same time. In Figure 6.22, the class icon

integrates three graphical notations in which can be used to present both textual and

graphical information about that class. One of these extensions suggested adding

graphical icon, another extension proposed dividing the first row of the class icon

158

vertically so it can include textual and graphical information. The last extension proposed

adding the tag “component” or in other cases “requirement” to include more information

about what this class can present or require to or from other classes. Using UML would

require using the three extensions one at a time and each in a different problem domain.

On the other hand, the analytical advantage of using iUML comes from the use of

requirement and component classes. These classes help the analysts of the system under

study to enforce requirements satisfaction between classes. In other words, a requirement

class will require a certain condition that must be met by a component class and then and

only then the relationship between both classes would be labeled as a satisfactory

relationship. In this case study, the GPA and student classes were presented as

requirement and component classes, respectively.

UML has to be extended in order to address the covered domains. It has to be extended to

include Byeon et al. work in [23] where they provided notational help to obtain precise

measurements and precise calculations of real-world geographical entities. UML has to be

also extended to cover the component-based systems which come from [28] where

Mahmood and Lai specified satisfaction and risk assessment for evaluating customer

demands against component features. Finally, and in order to model and visualize

composed design patterns and represent frameworks., UML has to be extended to include

Sanada and Adams work in [26]. All of the previous extensions have to be done

separately using UML while iUML provides an integration of these extensions that can be

integrated altogether to achieve the objective of this case study.

159

6.1.3 Case study # 3: Meeting Scheduling System (Object-Oriented +

Mobile Distributed System)

Meetings scheduler is a needed system in companies, universities and other forms of

organizations. This system can be embedded in an available system to handle and arrange

upcoming meetings. It can look up for available dates, available meeting rooms, and

available participants. It also can send memos regarding upcoming and previous meetings.

6.1.3.1 Problem Description

The meeting scheduling system is considered a mobile distributed system, with elements

like Person, Meeting, Calendar, Current Activity, etc. Some of these elements need to be

shown as static or dynamic elements in the model. This type of indication is needed in

systems like mobile distributed systems due to their changing statuses. An example of that

is the status of a staff’s availability whether he is available or not available for an

upcoming meeting.

This issue can be modeled using UML but it requires tag definitions, the ones proposed by

Fontoura et al. in [22]. A tag definition can be attached to an element of a class diagram to

indicate that the element is a static or a dynamic element. In other words, using UML, the

user has to extend UML and adopt specific modeling elements to model mobile

distributes systems. In other words, UML will not be able to model the targeted system

unless it is extended. But each UML extension is specific to one problem domain, hence,

the needed extensions cannot work together to achieve the objective of this case study.

160

6.1.3.2 Applying the iUML

One modeling element is used on the class diagram for this case study that is taken from

the iUML graphical library. Table 6.6 shows the iUML graphical symbols that will be

used in this case study.

Table 6.6: Excerpt of iUML library

Modeling element Ref. Description

Fontoura et

al. 2000 [22]

Used to indicate runtime variation

point.

Figure 6.23 shows excerpt from the integrated class diagram meta-model. The red-colored

boxes represent the proposed modeling elements from [22] and [13].

Figure 6.23: Excerpt from the integrated class diagram meta-model

For this case study, a Person class must be created. This class has a personal public

calendar to show the occupied Time Slots. The current status of this Person must be

161

presented as Available or Busy. A Meeting class must also be created and it must show

certain information such as; meeting's participants, meeting date, meeting place and topic

description. Meeting Notes are attached with the Meeting class and can be accessed to all

the particpants. Finaly, a Room class must be created as the meeting place. Figure 6.24

shows the UML class diagram composed of the previous elements.

Figure 6.24: Class diagram for the Meeting system

The next step would be integrating the graphical extensions (Boolean tag) from Table 6.6

into the UML class diagram shown above. The Boolean tag, dynamic, was applied to the

classes; Activity and Room since their information must be provided only during runtime.

The integrated UML class diagram is shown in Figure 6.25.

162

Figure 6.25: Integrated UML class diagram (Meeting Scheduling System)

6.1.3.3 Discussion

iUML integrates two UML extensions from the literature to model the system in hand.

The first UML extension comes from [22] where Fontoura et al. proposed a UML

extension that contains a set of Boolean tags to describe the structure of variation points in

the object-oriented framework. The second extension comes from [13] where Simons and

Wirtz presented the Context Modeling Profile (CMP), an extension to the UML to

support the development of context-aware mobile applications. The drawback of UML

manifests in its inability to cover the previous domains at the same time. UML can be

extended to address one and only one problem domain while in iUML, a set of integrated

modeling elements can be easily applied to model different domains at the same time.

163

Using iUML has enriched this case study in two ways; the first one is by using a new kind

of association between classes that is considered an extension to UML. iUML provides an

extended type of association called ContextAssociation and it is composed of two types;

Source and Access. The ContextAssociation allows classes to associate with each other in

new forms of relationship. The context concept enforces handheld or mobile devices in a

system to create a specific type of association that implies that these devices can

communicate with each other by exchanging signals, hence, update their status or

behavior based on other devices’ current status. To model that, iUML uses a new type of

associations between classes. This also implies the role of having indicators attached to

active or non-active classes. For this case study, a tag definition named Dynamic was

placed on such classes to focus more on the idea of having classes or objects with a

dynamic status in the environment. Their status will be only known during runtime.

6.2 Sequence diagram case studies

6.2.1 Case study # 4: Elevator Control System (Quality of Service +

Component)

The elevator system is a simple system and can be easily modeled using UML. The

functions available for the system are straightforward and require an input from the user.

But using UML with its limited set of modeling elements and notations do not focus on

issues like the quality of the provided service through its modeling techniques. UML had

to be extended to cover such issues in order to be able to model domains like component-

based systems more effectively. In iUML, such concerns are considered by including all

164

the necessary notations. The modeling of an elevator control system can be improved to a

certain degree to handle issues like quality of service in a requirement satisfactory point of

view. The stakeholder or user requires a certain requirement (calling the elevator), the

working system has a set of components and each one of them covers a specific angle of

that working system in a way that makes the whole system responds to that requirement,

hence, satisfying the user’s requirement.

6.2.1.1 Problem Description

The system has to schedule elevators and control the motion of the between floors. To

ensure the quality of the provided service, the interacting components of this system must

provide the desired features that fulfill the requirements of the user. Using UML, the user

can only use one domain-specific set of stereotypes to model one and only one domain.

6.2.1.2 Applying the iUML

The following table, Table 6.7, describes iUML stereotypes that will be used to model the

elevator control system.

Table 6.7: iUML modeling elements (stereotypes)

Stereotype Description

REservice Represents a sequence of actions and interactions.

REcomponents Represents the main interacting objects.

REconnectors Represents the means in which the REcomponents interact through.

REuser Represents the party that triggers the actions.

REhost Represents the hosting party of REcomponents.

165

Figure 6.26 shows excerpt from the integrated sequence diagram meta-model. The red-

colored boxes represent the proposed modeling elements from [28] and [32].

Figure 6.26: Excerpt from the integrated sequence diagram meta-model

Cortellessa and Pompei in [32] developed the following sequence diagram based on the

proposed stereotypes.

166

Figure 6.27: Sequence diagram for Select Destination System

iUML Requirements Class and Component Class will replace REuser and REcomponent

in the previous diagram. The goal is to treat the service as a requirement inquired by the

user and provided by the system.

Figure 6.28 shows the replacement of <<REuser>> with <<Rstakeholder>> and

<<REcomponent>> with <<Rcomponent>>Cn and finally place Satisfaction box around

the interactions.

167

Figure 6.28: Integrated UML sequence diagram (Elevator Control System)

6.2.1.3 Discussion

As mentioned before, the elevator controlling system can be modeled using UML but to

focus on the issue of quality of service, UML has to be extended in a way to include more

modeling elements such as stereotypes that model a set of connected components that

provides services to the user’s system. UML can work on a single domain at a time. In

other words, it has to be extended once to represent only the non-functional attributes such

as Quality of Service and Fault Tolerance and once again to address only component-

based systems.

The novelty of iUML is its integration of two extensions that helped modeling this case

study, i.e. the elevator controlling system. It models the non-functional issues such as

quality of service and fault tolerance and models also requirements engineering issues.

168

The way this system was modeled is as a requirement satisfaction system. The system

schedules elevators to respond to requests from users at various floors and controls the

motion of the elevators between floors. The system is composed of a set of components;

these components must provide features that are required by the user or stakeholder.

6.3 Use case diagram case studies

6.3.1 Case study # 5: E-Commerce System (Agent + Adaptive Web

Application)

Electronic commercial websites like Amazon and eBay provide electronic shopping

experience for the users. Such websites store large amounts of merchandises and build a

database to include information about their names, categories, quantities and descriptions

and they made them available to be accessed by users when they search for them. This

kind of websites requires a very robust monetary transaction embedded system that is

linked to the user’s credit card account. For that reason, modeling a commercial system

must show and enforce a secured and easy to use model.

6.3.1.1 Problem Description

Electronic commercial systems require modeling two important things; first, by enforcing

easy to use interface to the user and secondly by securing user’s financial information and

transaction. The former one is a favored concern but focusing on the issue of security is a

mandatory matter.

169

This system can be done using UML, but the user has to extend UML to address agent-

oriented systems once and address adaptive web applications once again. The point is the

user cannot model both domains at the same time; he can only use one domain-specific set

of stereotypes to model one and only one domain.

6.3.1.2 Applying the iUML

To create the use case diagram for this system, we can take advantage of the stored

graphical symbols in iUML library. Table 6.8 shows the iUML graphical symbols that

will be used in this case study.

Table 6.8: Excerpt of iUML library

Modeling element Source. Description

Fei and

Yan 2008

[16]

Expresses that the entity is

seen as an agent instead of a

class.

Djemaa et

al. 2006

[17]

Represents the human user

who visits the web

application.

Djemaa et

al. 2006

[17]

Represents the role played by

a human user (physical actor)

to maintain the web

application.

Djemaa et

al. 2006

[17]

Represents the hardware

aspect of the system, whether

it is a computer system,

device hardware or web

service.

Djemaa et

al. 2006

[17]

“SIF: Static Informational

Functionality used to

represent a static Web page.”

170

Djemaa et

al. 2006

[17]

“DIF: Dynamic

Informational Functionality

used to represent a dynamic

Web page.“

Djemaa et

al. 2006

[17]

“PF: Profession Functionality

used to represent a dynamic

Web page using update

request.”

Figure 6.29 shows excerpt from the integrated use case diagram meta-model. The red-

colored boxes represent the proposed modeling elements from[16] and [17].

Figure 6.29: Excerpt from the integrated use case diagram meta-model

The system offers to the client when he logs in a number of options represented by use

cases. These options are; Consult new, Search for book, Manage the basket and Pass

command. Figure 6.30 depicts the system's environment.

171

Figure 6.30: E-commerce system environment

A verification party (agent) will be added to the E-Commerce system. This verification

party will be a System actor where it will ask the client for his/her credentials (User name

& Password) by Static Information Functionality use case and when the client enters the

correct information, the System actor will allow him to log in. Figure 6.31 shows the

verification process.

Figure 6.31: The verification process

6.3.1.3 Discussion

One of the advantages of using iUML is the ability to specify more functions (use cases)

required to display information about the system in terms of static and dynamic

information. For example, a special use case called Profession Functionality is used to

display the dynamic elements of the commercial system like the user’s basket that has a

changing status. This advantage helps the system to be built in a defined and robust

172

manner. On the other hand, the static functionalities, like recommending products to the

user, help the designers to add more ways to make the targeted system easier to use.

Using UML to achieve the objective of this case study is almost impossible, as UML

cannot address different domains at the same time. It can be extended to cover one

specific domain only. On the other hand, iUML models the e-commerce system by

integrating two UML extensions from the literature. The first one comes from [16], where

Fei and Yan presented a system called SPAERIS "Shipping Pollution Accident

Emergence Reflecting Information System" using AUML (Aspect Unified Modeling

Language). The second UML extension comes from [17], where Djemaa et al. proposed a

UML profile called WA-UML (Web Adaptive-UML) to model Adaptive Web

Applications.

6.3.2 Case study # 6: Elevator Control System (Quality of Service +

Adaptive Web Application)

The elevator system is a simple system and can be easily modeled using UML. The

functions available for the system are straightforward and require an input from the user.

But using UML with its limited set of modeling elements and notations do not focus on

issues like the quality of the provided service through its modeling techniques. UML has

to be extended to cover such issues in order to be able to model domains like component-

based systems more effectively. In iUML, such concerns are considered by including all

the necessary notations. It also models and displays the functions of the system in a set of

static and dynamic information. This way of modeling helps the analyst builds a

notational and graphical bridge between the analysis and design of the system.

173

6.3.2.1 Problem Description

The system has to schedule elevators and control the motion of the between floors. To

ensure the quality of the provided service, the components of this system must be

categorized whether they provide static service or a dynamic one. Using UML, the user

can only use one domain-specific set of stereotypes to model one and only one domain.

6.3.2.2 Applying the iUML

The following table, Table 6.9, describes iUML stereotypes that will be used to model the

elevator control system.

Table 6.9: iUML modeling elements (stereotypes)

Stereotype Description

REservice Represents a sequence of actions and interactions.

REcomponents Represents the main interacting objects.

REconnectors Represents the means in which the REcomponents interact through.

REuser Represents the party that triggers the actions.

REhost Represents the hosting party of REcomponents.

Figure 6.32 shows excerpt from the integrated use case diagram meta-model. The red-

colored boxes represent the proposed modeling elements from [17] and [32].

174

Figure 6.32: Excerpt from the integrated use case diagram meta-model

Cortellessa and Pompei in [32] developed the following Use Case diagram based on the

proposed stereotypes.

Figure 6.33: Use case diagram for Select Destination System

175

iUML replaces<<REuser>> actors in the previous Use Case diagram with iUML actors.

The (Elevator User [32]) actor will be replaced by a (Physical Actor [17]) and the (Arrival

Sensor [32]) by a (System Actor [17]) as shown in Figure 6.34.

Figure 6.34: Extended use case diagram

iUML also replaces the <<REservice>> use cases with iUML use cases (functionalities).

The <<REservice: Select>> and <<REservice:Request>> use cases are replaced by a SIF

use case and <<REservice:Stop>> use case by a DIF use case as shown in Figure 6.35.

Figure 6.35: Integrated UML use case diagram (Elevator Control System)

6.3.2.3 Discussion

As mentioned before, the elevator controlling system can be modeled using UML but to

focus on the issue of quality of service, UML has to be extended in a way to include more

modeling elements such as stereotypes that model a set of connected components that

176

provides services to the user’s system. But unfortunately, UML can cover one and only

one specific domain. In other words, it has to be extended once to represent only the non-

functional attributes such as Quality of Service and Fault Tolerance and once again to

address only adaptive web applications.

The novelty of iUML is its integration of two extensions that helped modeling this case

study, i.e. the elevator controlling system. It models the non-functional issues such as

quality of service and fault tolerance and also models the adaptive functionalities. The

way this system was modeled is as a display of functionalities in terms of static or

dynamic. The selection and request functionalities were static because the elevator’s

status in that instant is idle, on other hand; the elevator in the stop request is busy.

177

CHAPTER 7

7. Conclusion

The rationale behind the integration process was to come up with one form of UML in

order to address a variety of problem domains. In the literature many UML extensions

were proposed; each addressed a particular domain. Examples of these domains are; web

hypermedia applications, aspect-oriented modeling, distributed systems, component-based

software systems, data warehouses, design patterns, etc., but those UML extensions were

specific to particular problem domains, in other words, such extensions are not applicable

to other domains. The novelty of this research is to provide an integrated UML that

supports, not just a single domain but a number of domains.

The first stage in this research was conducting a deep review of the literature in order to

collect as much UML extensions as possible. The result was 23 UML extensions. Twenty

extensions were categorized as lightweight and only three were heavyweight extensions.

The second stage was studying those extensions in terms of domain, purpose of extension,

type of extension and extended UML diagram. In this research, extensions that are made

to three UML diagrams were only considered in the integration process. These UML

diagrams are; class, sequence and use case diagrams. The third stage was the integration

process. The process was applied to two types of extensions; the first type addresses the

UML extensions that provide graphical symbols only, and the second type goes beyond

178

the graphical representations in the UML diagrams and deals with the proposed modeling

elements that add to the meta-models. In this research, a diagram editor tool, called Dia,

was used to create UML diagram notations and meta-model modifications. The last stage

was developing case studies to validate the iUML. The case studies were inspired by

examples and case studies from the literature. The result was 6 case studies. The case

studies encompassed domains like data warehouse and security, object-oriented and

mobile distributed system, quality of service and component, agent and adaptive web

application and so much more.

7.1 Contribution

The contribution of this research is:

 Developed iUML framework:

A framework for integrating UML extension was introduced. By following iUML

integration processes, one can add any new graphical symbols and meta-model

element extensions to be part of iUML.

 Developed iUML:

The proposed iUML is capable of modeling any problem domain since it has

enough number of integrated extensions to cover current and possibly future

domains.

7.2 Threats to Validity

The validity of iUML is threatened by two main threats; the validity of the available

extensions and the reliability of the integration process. In the former threat, the validity

179

of the available extensions, each UML extension must provide a rich and robust extension

to UML. Having incorrect extensions would halt the integration process in its early stages.

For example, having invalid modeling elements (stereotypes or tagged values) excludes

the extension from the set of extensions to be integrated since the modeling elements

cannot be added to iUML meta-model. The selection process of UML extensions must

follow a systematic procedure that yields a reliable set of extensions. In this research, we

assumed the validity of the available extensions, and thus, no validation of the available

extensions was done from our side.

In the second threat, reliability of the integration process, applying the integration process

in its two types; graphical and meta-model, must be also done carefully, especially the

integration of meta-model elements since the integrated elements constitute the

infrastructure of iUML. The steps of the integration process must be revised repeatedly to

make sure whether the placement of the meta-model elements or even the integration of

these elements was applied correctly. Failing to do so would ultimately produce an invalid

model. In this research, the proposed integration process worked well while integrating

the available extensions in the literature, however, new extensions may require the

process to be modified.

7.3 Future work

Additional research directions that need to be explored in future work include the

following:

 Consider UML diagrams other than class, sequence and use case diagrams to

cover more areas in the software development systems.

180

 Integrate iUML with available IDEs like Rational Rose or Enterprise Architect.

 Automate correctness and verification tasks (e.g., conflict analysis, etc.).

181

References

[1] Grady Booch , James Rumbaugh and Ivar Jacobson, The Unified Modeling

Language User Guide, Second Edition ed.: Addison Wesley Professional, 2005.

[2] Rational Software Corporation Website, Available: http://www-

01.ibm.com/software/rational/.

[3] OMG, Unified Modeling Language, Available: http://www.uml.org/.

[4] Martin Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling

Language, Third Edition ed.: Addison Wesley, 2003.

[5] (2010). OMG Version 1.0 of EXPRESS, available

http://www.omg.org/spec/EXPRESS/1.0.

[6] (2007). Behavior Trees, Article: http://aigamedev.com/open/article/bt-overview/.

[7] Grady Booch, Object-oriented Analysis and Design with Applications, 2nd ed.:

Redwood City: Benjamin Cummings, 1993.

[8] OMT Introduction, Available:

http://www.smartdraw.com/resources/tutorials/rumbaugh-omt-

diagrams/#/resources/tutorials/Introduction-to-OMT.

[9] Ivar Jacobson, Magnus Christerson, Patrik Jonsson and Gunnar Overgaard,

Object-Oriented Software Engineering: A Use Case Driven Approach: Addison-

Wesley, 1992.

[10] (2009). OMG, UML Superstructure Specification Version 2.2. Available:

http://www.omg.org/spec/UML/2.2/.

[11] Lidia Fuentes-Fernahndez and Antonio Vallecillo-Moreno "An Introduction to

UML Profiles," The European Journal for the Informatics Professional, vol. V,

No. 2, 2004.

[12] Eduardo Fernandez-Medinaa, Juan Trujillo, Rodolfo Villarroel and Mario Piattini,

"Developing secure data warehouses with a UML extension," Information

Systems, vol. 32, pp. 826–856, 2007.

[13] C. Simons and G. Wirtz, "Modeling context in mobile distributed systems with the

UML," Journal of Visual Languages and Computing, vol. 18, pp. 420 - 239, 2007.

[14] Xiao-cong Zhou, Chang Liu, Yan-tao Niu and Tai-zong Lai, "Towards a

Framework of Aspect-Oriented Modeling with UML," in International Symposium

on Computer Science and Computational Technology, 2008.

[15] Jan Hendrik Hausmann, Reiko Heckel and Stefan Sauer, "Towards Dynamic Meta

Modeling of UML Extensions: An Extensible Semantics for UML Sequence

Diagrams," in International Symposium on Human-Centric Computing Languages

and Environments (HCC 2001), Stresa, Italy, 2001.

[16] Chen Fei and Chen Yan, "Spaeris: A Multi-Agent System Specified by Agent

UML," in International Seminar on Future Information Technology and

Management Engineering, 2008.

[17] Raoudha Ben Djemaa, Ikram Amous and Abdelmajid Ben Hamadou, "WA-UML:

Towards a UML extension for modelling Adaptive Web Applications," presented

at the IEEE International Symposium on Web Site Evolution, 2006.

[18] Manar El-Kady, Reem Bahgat and Aly Fahmy, "A UML Heavyweight Extension

for MAS Modeling," in International Conference on Quality Software, 2008.

http://www-01.ibm.com/software/rational/
http://www-01.ibm.com/software/rational/
http://www.uml.org/
http://www.omg.org/spec/EXPRESS/1.0
http://aigamedev.com/open/article/bt-overview/
http://www.smartdraw.com/resources/tutorials/rumbaugh-omt-diagrams/#/resources/tutorials/Introduction-to-OMT
http://www.smartdraw.com/resources/tutorials/rumbaugh-omt-diagrams/#/resources/tutorials/Introduction-to-OMT
http://www.omg.org/spec/UML/2.2/

182

[19] OMG, OCL, Available: http://www.omg.org/spec/OCL/.

[20] Jordi Cabot, "Representing Temporal Information in UML.," presented at the

LNCS, 2003.

[21] Adam Przybylek, "Separation of crosscutting concerns at the design level: An

extension to the UML metamodel," in International Multiconference on Computer

Science and Information Technology, Wisla, Poland, 2008.

[22] Marcus Fontoura, Wolfgang Pree and Bernhard Rumpe, "UML-F: A Modeling

Language for Object-Oriented Frameworks," in European Conference on Object-

Oriented Programming, London, UK, 2000.

[23] Wan-Seob Byeon, Bo Wang, Sa-Kyun Jeong and Ok-Bae Chang, "Extension and

Implementation of Iconic Stereotype for GNSS Application in the UML Class

Diagram," in International Conference on Cyberworlds, 2004.

[24] Matthew J. Peterson, John B. Bowles and Caroline M. Eastman, "UMLpac: An

Approach for Integrating Security into UML Class Design," 2006.

[25] Jing Dong, "UML Extensions for Design Pattern Compositions," Journal of

Object Technology, vol. 1, 2002.

[26] Yasunobu Sanada and Rolf Adams, "Representing Design Patterns and

Frameworks in UML: Towards a Comprehensive Approach," Journal of Object

Technology, vol. 1, 2002.

[27] Azrul Hazri Jantan, Putra Sumari and Shahida Sulaiman, "ComHDM: Extending

UML Profiles for Modeling Complex Web Hypermedia Applications," in

International Conference on Advanced Computer Theory and Engineering, 2008.

[28] Sajjad Mahmood and Richard Lai, "RE-UML: An extension to UML for

specifying Component-Based Software System," in Australian Software

Engineering Conference, Australia, 2009.

[29] Zohreh Sharafi, Parisa Mirshams, Abdelwahab Hamou-Lhadj and Constantinos

Constantinides, "Extending the UML metamodel to provide support for

crosscutting concerns," in ACIS International Conference on Software

Engineering Research, Management and Applications, 2010.

[30] (2007-12-02). XML metadata interchange (XMI). Available:

http://www.omg.org/cgi-bin/doc?formal/2007-12-02

[31] St. Sauer and G. Engels, "Extending UML for modeling of multimedia

applications," presented at the IEEE Symposium on Visual Languages (VL’99),

1999.

[32] Vittorio Cortellessa and Antonio Pompei, "Towards a UML profile for QoS: a

contribution in the reliability domain," in Proceedings of the 4th international

workshop on Software and performance, 2004.

[33] Ying Dong, Mingshu Li and Qing Wang, "A UML Extension of Distributed

System," in First International Conference on Machmc Learning and Cybernetics,

Beijing, China, 2002.

[34] Jose´ Raul Romero, Jose´ M. Troya and Antonio Vallecillo, "Modeling ODP

Computational Specifications using UML," The Computer Journal, vol. 51, 2007.

[35] C. Andre, F. Mallet and M-A. Peraldi-Frati, "Multiform Time in UML for Real-

time Embedded Applications," in IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications, Washington, DC, USA,

2007.

http://www.omg.org/spec/OCL/
http://www.omg.org/cgi-bin/doc?formal/2007-12-02

183

[36] Istvan Majzik, Gergely Pinter and Peter Tamas Kovacs, "UML Based Design of

Time Triggered Systems," in IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing, 2004.

[37] S. Pllana and T. Fahringer, "Modeling Parallel Applications with UML," in

International Conference on Parallel and Distributed Computing Systems, 2002.

[38] Xuandong Li and Johan Lilius, "Timing Analysis of UML Sequence Diagrams,"

Turku Centre for Computer Science1999.

[39] Dia software, Available: http://dia-installer.de/.

http://dia-installer.de/

184

VITA

Personal Information

 Name: Nasser Salman Abed Khashan

 Born: 5/13/1985, Riyadh, Saudi Arabia

 Nationality: Jordanian

Education

 B.S., Computer Information Systems, 2007, Applied Science University,

Amman, Jordan.

 M.S., Computer Science, 2012, King Fahd University of Petroleum and

Minerals, Dahran, Saudi Arabia.

Research Interests

I have broad interests in software engineering topics, particularly in software

requirements engineering, software design, software validation and verification.

Contact Information

 Present Address: Corniche Street, Khobar, Saudi Arabia.

 Permanent Address: Al-Malaz, Al-Nahda Street, Riyadh, Saudi Arabia.

 E-mail Address: khashan@live.com

 Cell Phone Number: +966-569-843-813 / +966- 555-203-405

 Telephone Number: +966 -1448-7287 / +966-1472-4210

mailto:khashan@live.com

