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In recent years, load forecasting has become one of the main fields of study and 

research. Short Term Load Forecasting (STLF) is an important part of electrical power 

system operation and planning. This work investigates the applicability of different 

approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to 

forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are 

based on model human modes behavior formulation. These human modes represent 

social, religious, official occasions and environmental parameters impact. The analysis 

is carried out on residential areas for three regions in two countries exposed to distinct 

people activities and weather conditions. The collected data are for Al-Khubar and 

Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the 

proposed models applied on residential load. For each region, two models are 

proposed. First model is next hour load forecasting while second model is next day 

load forecasting. Both models are analyzed using the two techniques. 

The obtained results for ANN next hour models yield very accurate results for 

all areas while relatively reasonable results are achieved when using hybrid analytical 

model. For next day load forecasting, the two approaches yield satisfactory results. 

Comparative studies were conducted to prove the effectiveness of the models 

proposed. 
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 : هندسة كهربائية           التخصص

 2102: أبريل     مناقشةتاريخ ال

 

أصبح التبؤ بالأحمال الكهربائية في السنوات الأخيرة أحد أهم مواضيع البحث و الدراسة. هذا العمل يدرس إمكانية 

تطبيق طرق مختلفة للتنبؤ بالأحمال على المدى القصير لمناطق سكنية في المملكة العربية السعودية. أقترحت 

نموذج التحليلي و الشبكات العصبية الاصطناعية. أقترح نموذجان في كل طريقة و طريقتان في هذا العمل و هي ال

هما التنبؤ بالأحمال السكنية في الساعة القادمة و في اليوم القادم. اعتمدت الطريقتان على دراسة نشاطات الناس 

ف المناخية. أجريت الدراسة اليومية كالمناسبات الاجتماعية و الدينية و المناسبات الرسمية بالإضافة إلى الظرو

على ثلاث مناطق سكنية في دولتين مختلفتين خاضعة لظروف مناخية و تصرفات بشرية مختلفة. تم جمع بيانات 

لمناطق سكنية من مدينة الخبر و مدينة ينبع الصناعية في المملكة العربية السعودية بالإضافة لبيانات من مدينة 

 ريكية و ذلك لإثبات قابلية تطبيق النماذج المقترحة على الأحمال السكنية.سياتل في الولايات المتحدة الأم

أظهرت الدراسة نتائج دقيقة جدا للتنبؤ بالأحمال للساعة القادمة باستخدام الشبكات العصبية بينما توصل لنتائج 

دراسة نتائج مرضية مرضية باستخدام النموذج التحليلي. بالنسبة للتنبؤ بالأحمال لليوم القادم فقد أظهرت ال

باستخدام الطريقتين. في النهاية أجريت مقارنة بين النتائج المتوصل إليها في هذا العمل مع أحد الأبحاث المنشورة 

 باستخدام طريقة أخرى و ذلك لإظهارفعالية النماذج المقترحة.
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

1.1 Overview 

In recent years, load forecasting has become one of the main fields of study and 

research. Electric power demand is growing rapidly throughout the world. The 

electricity industry is significantly affected by weather conditions and human 

behaviors both in terms of the operation of the network infrastructure and electricity 

consumption.  

Power load study has been an important task for utilities to provide the 

necessary information of demand side to improve the accuracy of load forecasting.  

When the increase of peak demand occurs, it will cause some serious problems. To 

prevent the excess of load demand, various interruptible load control strategies have 
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been performed. These strategies are the kind of post control and the best way is to 

control and prevent it beforehand. [1] 

For the applications of power flow analysis, it is important to predict the power 

demand of all loads within the network. This prediction is known as a load forecasting. 

The accurate forecasts are an important tool for power system planners to do several 

tasks such as economic scheduling of generating capacity, fuel purchasing scheduling, 

load switching, and infrastructure development. Load forecasting, however, is a 

difficult task because the load consumption is affected by many factors like weather 

conditions, holidays, economy situation, and social people activities. Load forecasts 

are extremely important for financial institutions, energy suppliers, and other 

participants in electric energy generation, transmission, distribution, and markets. 

 

1.2 Classification of Power System Load Forecasting 

The forecasts are divided into three categories: 

• Short term which is based on forecasting from one hour to one week ahead 

based on time factors and accurate weather prediction. 

• Medium term is from one week to one year ahead. 

• Long term is based on more than one year ahead forecasting, predominantly 

based on historical load and weather data as well as economic and 

demographic factors. 

1.2.1 Short Term Load Forecasting (STLF)  

These forecasts are normally needed for day by day economic operations of 

power generation plants. STLF can be performed in one of two modes which are 

online and offline forecasting. This division stems from the areas of application of the 
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load predictors. Offline load forecasting is primarily implemented in the scheduling of 

the large generating units of which the startup times may vary from few hours ahead to 

few days ahead. The scheduling process is termed unit commitment and ensures that 

there is sufficient operating generation capacity to meet the variable load demand with 

specified reliability. When load forecasting is poor, incorrect scheduling may happen. 

This results in higher daily operational cost caused by use of higher-cost quick-start 

units in the event of under scheduling or, alternatively, resulting in the uneconomic 

operation of large generating units in the event of over scheduling. [2] 

In Online operation of a power system, the economic load dispatching to 

various generating units, makes the generating mix dependent on calculations to 

minimize the cost function, which is based on the characteristics of the generating 

units. These calculations are based on values of load demand predicted few hours in 

advance, and as such the optimum generating mix is dependent on the accuracy of the 

online forecasts. In STLF, the future load on the power system is predicted by 

extrapolating a predetermined relationship between the load and its affecting factors. 

Determining this relationship is a two stage process requiring identifying the load and 

the related variables relationship, and quantifying this relationship through the use of a 

suitable parameter estimation technique. A prerequisite to the development of an 

accurate load-forecasting model is an in-depth understanding of the characteristics of 

the load to be modeled. This knowledge of the load behavior is gained from experience 

with the load and through statistical analysis of past load data. Utilities with similar 

climatic and economic environments usually experience similar load behavior, and 

load models developed for one utility can usually be modified to suit another. The load 

supplied by a power system is dynamic in nature and directly reflects the activities and 
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conditions in the surrounding environment. This load can be separated into a standard 

or base load, a weather dependent load, and a residual load. [3] 

1.2.2 Mid Term Load Forecasting (MTLF)  

Outage scheduling and maintenance of plants and networks are often roofed in 

these types of forecasts. Also, MTLF is used for estimating fuel (storage) requirements 

and for planning the execution of maintenance programs. For MTLF, the main 

influence factors are meteorological and casual. The influence of economic parameters 

is negligible due to the time horizon that is too short for the economics effects to be 

felt. [4]. 

1.2.3 Long Term Load Forecasting (LTLF)  

It is primarily intended for capital investments, capacity expansion plans, and 

corporate budgeting. LTLF is usually complex in nature because of future 

uncertainties such as economic situation, political factors, per capital growth, 

scheduling the construction of new generation facilities and in the development of 

transmission and distribution systems. An overestimate of long-term electricity 

demand will result in substantial wasted investment in the construction of excess 

power facilities, while an underestimate of demand will result in insufficient 

generation and unmet demand. [5] 

             In summary, the required forecasts can range from few minutes to over forty 

years. They can be divided based on the time horizon into three types, Table 1.1 shows 

the types of forecast and their applications.                                                                       
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Table 1.1 Different types of forecasting and their applications 

Applications Time Range Forecasting Type 

Daily operation, plant 

scheduling, load dispatching 

and reserve allocation 

Few minutes to one week Short  

Fuel and maintenance planning One week to a year Medium 

System planning, infra-structure 

developments 

One year and more Long 

 

1.3 Prerequisites of a Good STLF System 

Most of demand or load management programs used by electric utilities 

comprise STLF units. Every utility intends to have a reliable STLF system for 

economical operations of power systems. The reliability and robustness of the system 

primarily depend on the accuracy of the forecasts. Though, there are other important 

requirements for a good STLF system. These requirements include fast speed, 

accuracy, automatic data access, friendly interface, timely forecast, automatic 

performance evaluation of the obtained forecast and automatic bad data detection and 

forecasting report generation. [6] 

 

1.4 Saudi Load Characteristics 

Kingdom of Saudi Arabia (KSA) is a developing country. The rapid 

urbanization, economic developments, the substantial increase in oil revenue and the 

new infrastructure projects cause the electricity demand to grow rapidly, especially 

during the last decade. Generation of electricity, transmission and distribution in KSA 

are very important subjects for the decision makers in the Kingdom making the studies 

and research in the field of electricity demand to be very useful. Also, substantial 

savings can be achieved through suitable timing and proper selection of the main 
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generation and transmission works. So, the expansion in projects and developments in 

KSA have clearly affected the electric generation and consumption trend. As shown in 

figure 1.1, the yearly peak loads for a residential area in Eastern Province in KSA for 

the period from 2001 to 2005, show how the demand was rapidly increasing. 
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Figure 1.1: The annual peak load for a residential area in Al-khubar, Agrabiah distinct 

 

The weather in KSA is characterized by its high temperature values in summer, 

except for some places like southern region, and low temperature values in winter. The 

humidity is normally noticed in the east and west coasts where it reaches to 100 %. So, 

the load consumption is mainly affected by cooling appliances. Moreover, two types of 

calendars are available, namely, Hijra calendar which is the main calendar in KSA and 

Gregorian calendar. In Hijra calendar, there is the most important month for Muslims 

which is Ramadan. In Gregorian calendar, the known seasons of the year are available 

which are: winter, spring, summer and fall. In addition, there is a difference of 10 to 11 
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days between the Hijra and the Gregorian calendars and because of that; there is an 

overlapping between the two calendars seasons. However, in other countries like USA, 

Seattle, the very low temperature values in the winter lead to many uses of heating 

loads causing high levels of load consumption. As a result, the type of the load is 

mainly heating load. This is clearly shown in figure 1.2 which shows the load 

consumption and temperature profiles for the residential area in Al-Khubar, year 2002 

where the maximum demand has reached 50 MW at temperature 38 ᵒC. Also, figure 

1.3 shows the load consumption and temperature profiles for an aggregated load area 

in USA, Seattle, year 1989. The maximum demand has reached 4245 MW at 

temperature -11.27 ᵒC. It can be concluded that the temperature is the main influencing 

factor on load consumption for all types of loads. 
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       Figure 1.2: Power and temperature profiles for Agrabia substation, 2002    
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Figure 1.3: Power and temperature profiles for USA, Seattle, 1989 

 

In figure 1.2, the increase in the load is caused by the increase in the 

temperature values due to heavy uses of air conditioners and cooling apparatus overall 

the year and it can be concluded that the load is proportionally related to the 

temperature, i.e. when the temperature increases, the load consumption increases. By 

contrast, in figure 1.3, the increase in the load is caused by the decrease in the 

temperature because of using of heating appliances where very low temperature values 

are reached. So, there is an inversely proportional relation between load and 

temperature. i.e., when the temperature decreases, the load increases. 

        So, in summary, the problem of KSA load forecasting is very complicated and 

challenging. This is because the fact that there are many complex factors that affect the 

amount of the needed load each season and each year. Some of these factors are: 
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- The rapid commercial, economic and population growth of the Kingdom. 

- The large diversity of maximum and minimum temperature values over 

seasons. Normally, the high temperature period (July and August) is 

characterized by high ambient temperatures. 

- All special holidays and school days depend on the Hijra calendar which is 

a lunar calendar, constitutes a major factor that has a noticeable impact on 

the load consumption. The largest religious festivals in the country are: 

Ramadan (fasting month for Muslims), Eid Al-feter that marks the end of 

Ramadan, and first part of the month of Dul-Hijjah in which Hajj 

pilgrimage to Makah takes place. In these events, load consumption is 

subjected to significant changes. For example, during Ramadan month, the 

load is usually increased due to the increase in some residential and 

commercial activities. Moreover, religious holidays and schools are cyclic 

and irregular in some sense. The formation of these factors makes the 

process of demand forecasting difficult and more difficult than countries 

that have common behaviors for people. [7]  

 

1.5 Scope and Objective of the Work 

 -    This work studies the residential short term load forecasting (STLF) for different   

     types of loads under several human modes of behaviors                                            

-     To develop a hybrid analytical model function of influential factors to reflect these 

behaviors.                                                                                                                     

-    To reach an intelligent model for these behavioral variations using Artificial Neural 

      Networks (ANN) model.                                                                                              
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              The applicability of different ANN models on STLF will be studied. The 

models are divided into two classes: model for next hour load forecasting and the other 

is for next day load forecasting for three different load behaviors in two countries. The 

analysis is carried out on residential areas in Eastern Province and in Yanbu industrial 

city in KSA and in an aggregated load area in Seattle, USA.                                            

              Different patterns of load behaviors are presented in this study. For example, 

the residential area in Eastern Province is characterized by its high temperature and 

humidity values. Also, but in lower values, Yanbu industrial city has almost similar 

weather characteristics to Eastern Province. So, this is studying cooling load 

behaviors. However, Seattle is specialized by its very low temperatures in winter and 

medium in summer making the study to be mainly on heating load behavior.                 

            Another difference is the evacuating behavior for population in Yanbu 

industrial city where in vacations periods most of people leave this industrial city and 

travel to their original cities. Also, working days for companies is highly noticed in 

addition to school days.                                                                                                      

               In this work, we are interested in analyzing load models for three sources of 

data exposed to different weather conditions and human behavior. The analyses will be 

done in two different ways; ANN and hybrid analytical models based on actual 

realistic model behavior of residential load. This work concentrates more on STLF 

based on residential modes analyses which are group of days that have similar 

behavior like Ramadan, cold days, hot days, holidays…etc. Also, the impact of 

surrounding environmental conditions will be studied.                          .                         
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1.6 Structure of the Work 

This study is arranged according to the following structure:              .                           

Chapter two gives an overview of different techniques used in STLF. Also, some 

important published papers in the field of STLF will be overviewed and discussed. 

Chapter three will talk about data analysis, modes classification and sorting every 

special behavior to modes and analyzing them. Three different load behaviors in two 

different countries are presented in this chapter. In chapter four, the approaches used in 

this study are analyzed. It presents the concept of Fourier Transform analyses and its 

applications, ANNs analysis including Neuron Model, Network Architectures and 

learning. Also, analytical hybrid model and regression analyses are presented. Chapter 

five shows the proposed model and the results. Chapter six shows a comparison of the 

method used in this study with another published paper method applied to the same 

data. Finally, conclusion and recommendations are shown in chapter seven.                  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

 

Electrical load forecasting has been extensively studied in the past few 

decades. Several methods which are varying in the complexity of estimation 

approaches and functional forms have been proposed to improve the accuracy of load 

forecasting. The forecasted load system is a random process composed of thousands of 

individual components. So, the range of possible techniques of the forecasting is wide. 

The methods of STLF can be categorized into two main categories: artificial 

intelligence methods and statistical methods. Artificial intelligence methods are trying 

to imitate human brains and their way of thinking and reasoning to get the information 

from the past experience and forecast the future load, while in statistical methods, 

equations can be obtained which show the relationship between load (dependent 
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variable) and its relative affecting parameters (independent variables) after training the 

historical load data. 

In artificial intellegence, the models include Fuzzy Logic Inference, Expert 

systems, wavelet transform and artificial neural network (ANN), which will be 

introduced in chapter 4. However, in statistical methods, the models include multiple 

linear regression, similar day approaches, support vector regression (SVR), stochastic 

time series and state space models. Moreover, other methods were used like grey 

models, data mining methods and machine learning. In this section, an overview of 

some main various methodologies developed in recent years for STLF is carried out. 

 

2.1 Fuzzy Logic 

In the mid of 1960s, the term “fuzzy logic” is emerged in the theory 

development of fuzzy set which is pioneered by Dr. L.A. Zadeh. A fuzzy logic model 

is a logical-mathematical approach which is based on an “IF-THEN” rule system that 

mimics the thinking way of the human in computational form. In General, a fuzzy rule 

system has four modules: 

- Fuzzification of the input which is a process that transforms the “crisp” into a 

fuzzy input. 

- Fuzzy rules, it is an IF-THEN logic statement which connects the input to the 

output variables. 

- Fuzzy inference which is a process that elaborates and combines rule outputs. 

- Fuzzification of the output which is a process transforming the fuzzy output 

into a crisp output. [8] 
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         Fuzzy logic method has gained a wide recognition and a variety of products 

ranging from air conditioners, washing machines, cameras to medical instrumentation, 

industrial process control, system identification, signal processing and speech 

recognition. Specifically in load forecasting, fuzzy rules based on demand forecasts 

must be developed to provide domain specific information to improve the non-linear 

models. [6] 

   In power systems applications, fuzzy systems have been applied in diverse 

fields including stability evaluation, optimal power flow and dynamic dispatch. Zeng 

yanfei and Wu Yinbo [9], proposed STLF model based on fuzzy rule and 

Backpropagation Neural Network (BPNN). The load forecasting has been divided into 

basic load component which is completed by the BPNN; and the temperature and 

holiday load component which is completed the fuzzy logic.  

  In reference [10] by Ghanbari et al., the study used three of the most 

successful AI techniques in STLF area which are Adaptive Neuro-Fuzzy Inference 

System (ANFIS), Artificial Neural Networks (ANN) and Genetic Algorithm (GA). To 

improve forecasting accuracy, all these techniques are equipped with preprocessing 

concept, and effects of this concept on performance of each AI technique are 

investigated. The obtained results show that data preprocessing can significantly 

improve the AI techniques performance.  

In 2008, Pandian et al. [11] presented a fuzzy logic for STLF where the inputs 

are the temperature and the time of day whereas the output is the load. There are 4 

membership functions for the temperature, 8 for the time of day, and 8 for the load. 

The proposed method is tested using the data from a power station in India. 
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2.2 Expert Systems 

This method is derived by system developers and experts through experience 

and close interactions. Its main concept is to manipulate and encapsulate high level 

knowledge in an attempt to imitate the behavior of an expert. It does not require any 

specific model hierarchy or a historical trend. The forecasting procedure is rather 

encapsulated by rules that are derived from interviews with human expert. Once these 

rules are defined clearly, the uncertainties which may affect the load would be taken 

care of, thus this technique should be reliable. [6] 

Ho et al [12] proposed a knowledge-based expert system for the STLF of the 

Taiwan power system. Operators’ knowledge and the hourly observation of system 

load over the past five years are employed to establish eleven day-types. Weather 

parameters were also considered. 

In [13], Rahman and Hazim developed a site-independent technique for STLF. 

Knowledge about the load and its affecting factors is extracted and represented in a 

parameterized rule base which is complemented by a parameter database that changes 

from site to site. The method is tested in different sites in the United States with low 

forecasting errors. The load model, the rules and the parameters have been designed 

without using specific knowledge about any particular site. Results are improved if 

operators at a particular site are consulted. 

Expert systems are usually used in conjunction with other load forecasting 

techniques. Kim et al. in [14] used a two-step method to forecast the load for the Korea 

Electric Power Corporation. First, an ANN model forecasts the base load, then a fuzzy 

expert system model modifies the base load by considering temperature changes and 
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the load variation of the same special day in the previous year. However, this system 

had difficulties in forecasting the load over long weekends and consecutive holidays. 

Srinivasan et al. [15] combined fuzzy logic, ANNs and expert systems in a 

highly automated hybrid STLF approach with Kohonen’s self-organizing feature map 

and unsupervised learning. 

 

2.3 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization is a global minimization technique for dealing with 

problems in which a best solution can be represented as a point or and a velocity. Each 

particle assigns a value to the position they have, based on certain metrics. They 

remember the best position they have seen, and communicate this position to the other 

members of the swarm. The particles will adjust their own positions and velocity based 

on this information. The communication can be common to the whole swarm, or be 

divided into local neighborhoods of particles. [16] 

Azzam et al [17] present a new method to model STLF in which STLF-ANN 

forecaster is trained by optimizing its weights using swarm intelligence. They 

proposed smaller ANN models of STLF based on hourly load data and adjust its 

weights through the use of PSO algorithm. The technique gives better trained models 

able of performing well over varying time window and results fairly accurate forecasts. 

A new PSO approach is proposed by Huang et al. [18]. It is about identifying 

the autoregressive moving average with exogenous variable (ARMAX) model for one 

day to one week ahead hourly load forecasts. The proposed PSO has been tested on the 

different types of Taiwan Power (Taipower) load data and compared with the 

evolutionary programming (EP) algorithm and the traditional search-based stochastic 
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time series method. Testing results indicate that the proposed PSO has superior 

convergence characteristics, high-quality solution, and shorter computation time. 

In 2008, Wang et al [19] presented a hybrid approach of NN with PSO training 

algorithm to develop the predictions accuracy. The technique is applied to forecast 

daily peak loads of the Beibei, Chongqing electricity system based on past available 

data for electricity load demand. Traditional BP-NN and ARMA model are 

investigated as comparison basis. The experimental results show that the proposed 

method could achieve better prediction performance. 

 

2.4 Wavelets 

Wavelet (WT) is a linear transformation much like the Fourier transforms. 

However, it allows localization of time of different frequency components for a 

given signal; windowed Fourier transform, also partially achieves the same goal, 

but the fixed width windowing function is a limitation. In the case of the WT, the 

analyzing functions called wavelets which adjust the time width to the frequency 

in such a way that high frequency wavelets will be very narrow and lower 

frequency ones will be broader. [20] 

Yao et al. [21] proposed novel approach for STLF by combining the 

wavelet transform and NNs. Since electrical load at any specific time is usually 

assumed to be a linear combination of different components, from the signal 

analysis point of view, load can be also considered as a linear combination of 

different frequencies. Each component of load can be represented by one or 

several frequencies. The process decomposes the historical load into an 

approximate parts associated with low frequencies and several detailed parts 
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associated with high frequencies through the WT. Then, the forecast of the part 

of future load is developed using a neural approximation. 

Nengling et al. [22] presented techniques of applying WT into combined model 

for STLF. It is shown that the load can be described by the corresponding components 

in the time frequency domain. It is found that even the model performs well for certain 

load components; it will be not suitable for other components. This is because it 

cannot consider every factor. Therefore, different combined forecasting approaches are 

selected in each scale. The forecasting results can be obtained by reconstruction of 

these results in different scales. Case studies show that the proposed technique can 

offer high forecasting accuracy. 

In [23], Bashir and El-Hawari presented the application of the wavelet neural 

networks (WNNs) to STLF. The WNN has fast learning convergence and much higher 

generalization ability than a multilayer feed forward neural network. The network is 

trained by the 3-layer BP algorithm by learning the nonlinear relationship between 

network input and output. The results of the network have been compared with an 

ANN and show an improved forecast with fast convergence. 

 

2.5 Regression Methods 

Regression analysis is one of the most common and popular statistical 

modeling tools used. It is a technique that treats one variable as a function of another. 

Regression analysis gives information about the relationship between a response 

(dependent) variable and one or more (predictor) independent variables to the extent 

that information is contained in the data. It can be used to consider more complex 
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relationships by using more than two variables or combinations of different order 

equations. The aim of this technique is to express the response variable as a function of 

the predictor variables. The duality of fit and the accuracy depend on the data used. So, 

non-representative or improperly compiled data will result in poor fits and 

conclusions. Therefore, to reach to effective use of regression analysis one must, 

 investigate the data collection process, 

 discover any limitations in data collected, and 

 restrict conclusions accordingly. 

Once a regression analysis relationship is obtained, it can be used to predict the 

response variable values, identify which variables that affect the response mostly, or 

verify hypothesized causal models of the response. Each predictor variable value can 

be assessed through statistical tests on the estimated coefficients (multipliers) of the 

predictor variables. [24] 

The load model using regression method is expressed in the form as:  

             0 1
( ) ( ) ( )

n

n nn
y t a a x t a t


                                                         (2.1) 

Where: 

y(t) is the electrical load. 

x(t) is explanatory variables correlated with y (t). 

a(t) is a random variable with zero mean and constant variance.  

a(n) represents regression coefficients.  

The explanatory variables of this model are identified on the basis of 

correlation analysis on each of these independent variables with the load variable. 

Experience about the load to be modeled gives initial identification of the 
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suspected influential variables. Regression coefficients estimation is usually found 

using the least square estimation technique. Statistical tests are performed to 

determine the importance of these regression coefficients. The t-ratios resulting 

from these tests determine the significance of each of these coefficients, and 

correspondingly, the significance of the associated variables with these 

coefficients [25].  

           Slobodan Ružic´ [26], proposed a regression-based adaptive weather sensitive 

STLF algorithm which is developed and implemented in Electric Power Utility of 

Serbia. The model parameters are calculated and updated automatically using realized 

data in the identification period, which is similar to conditions of the expected period 

in the forecasted day, by using the Euclidean distance to measure the similarity.            

         AI-Kandari, et al. [27] proposed two possibility models for regression to forecast 

the load of 24-hour ahead in summer and winter seasons respectively. A multi linear 

regression model for STLF depends on how well the regression function fits the data, 

considering in addition to temperature, other related weather factors such as humidity 

and cloud cover which are presented in [28].                                               .                    

  

2.6 Similar Days Approach 

This approach is based on searching for historical data for days within one, two 

or three years with similar characteristics to the forecasted day. Similar characteristics 

include weather, day of the week and the date. The load of a similar day is considered 

as a forecast. Instead of a single similar day load, the forecasting can be a linear 

combination or regression procedure that can include many similar days. The trend 

coefficients can be used for similar days in the past years. [29]  
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In [30], the Mandal et al. presented a practical approach for STLF, using ANN 

combined similar days approach.  Euclidean norm with weighted factors is used to 

evaluate the similarity between the forecasted day and searched previous days. On the 

bases of similar days approach, load curve is forecasted using information of the days 

which are similar to weather conditions of the forecasted day. The obtained results 

confirm that ANN-based proposed approach provides reliable forecasts for several-

hour-ahead load forecasting. 

In 2005, Yu Jun He et al. [31] presented a new approach that is capable for 

choosing the training set for the NN. It uses similarity degree parameter to identify the 

suitable historical load data as training set for the NN. This similar days selection 

strategy can efficiently avoid the problem of holiday and sudden variations in the 

influential factors, that make some historical load data unlikely for training the 

network. The validity of the model has been tested using Hebei province daily load 

data. Using the presented model, the enhanced forecasting accuracy and learning 

potency can be achieved. 

 

2.7 Time Series 

A time series is a set of data generated sequentially in time. The time series 

models assume that in the absence of major disruptions to critical factors of a recurring 

event, the data of this event in the future will be related to that of the past events and 

can be expressed by models developed from the past events. [32] 

In [33], Amjady uses ARIMA for tuning the unknown parameters by using 

previous values of the load demand and previous values of the inputs. After that, the 

model is used to forecast the load demand for unknown points of the operating system. 
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In 2005, Marcelo et al. [34] use a periodic auto regression model for 

developing a set of 24 “seasonal” equations with 48 parameters for each one. The set 

of equations is extended to include exogenous variables that describe the temperature 

impacts and the monthly and weekly seasonal variations. 

Generally, time series approaches give satisfactory results if there is no change 

in the load demand affecting parameters. If there is a sudden change in any of these 

parameters, then time series methods are not as accurate. Moreover, as there is a need 

to use a large amount of historical data and a large number of complex relationships, 

time series techniques require a significant computational time and may result in 

numerical instabilities [35]. 

Amarawickrama and Hunt in 2008 [36] presented a time series analysis of 

electricity demand in Sri Lanka. They studied the performance of different time series 

estimation approaches in terms of modeling previous electricity demand, and 

forecasting future electricity consumption. 

 

2.8 Support Vector Machine (SVM) 

SVMs are a more recent powerful method to solve regression and classification 

problems. This approach was originated from Vapnik’s [37] statistical learning theory. 

Unlike ANNs, which attempt to define complex functions of the input feature space, 

SVMs perform a nonlinear mapping (by using so-called kernel functions) of the data 

into a high dimensional (feature) space. Then SVMs use simple linear functions to 

create linear decision boundaries in the new space. [38]. 

Chen et al. [39] proposed a SVM model to forecast daily load demand. Their 

program was the winning entry of the competition organized by the EUNITE network. 
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Jain and Satish [40] proposed new hybrid technique using SVM and ANN to 

forecast the next 24 hours load. The forecasted load for the next 24 hours is obtained 

by using four modules consisting of the Basic SVM, Peak and Valley ANN, Averager 

and Forecaster and Adaptive Combiner. The Basic SVM uses the historical data of 

load and temperature to predict the next 24 hours load, whereas the Peak and Valley 

ANN uses the past peak and valley data of load and temperatures respectively. The 

Averager captures the average variation of the load from the previous load behavior, 

while the Adaptive Combiner uses the weighted combination of outputs from the basic 

SVM and the Forecaster, to forecast the final load. 

In 2002, Mohandes [41] applied SVM technique for STLF. SVM performance 

is compared with the autoregressive method. The results indicate that SVMs produce 

better results against the autoregressive method. 
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CHAPTER 3 

 

DATA ANALYSIS  

AND MODES CLASSIFICATION 

 

 

 

3.1 Overview 

A sufficient period of historical data is very important to make and establish 

the relation between any input and output parameters. The availability of this data 

helps visualizing the effect of input variables on output variables. So, enough 

knowledge of the past is necessary for understanding what is happening in the present 

and what may occur in the future. 

This part shows the steps used to manipulate the data, arrange and organize the 

parameters and presents how the data are coded and represented to reach to the desired 

results.  
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3.2 Data Filtering  

Actually, dealing with this large amount of data is not simple. It requires 

manipulating these data, sorting of all parameters and dealing with data in a suitable 

way. Some of the data are missing while some are repeated. So, it is important to filter 

the data from any noise, rearrange it and remove any abnormal points and outliers 

from the original data. As a first step, the collected data are checked, filtered from any 

noises, repetitive data are removed and the data is validated for the proposed model. 

For statistics practice, the data preprocessing is executed to prevent the abnormal data 

from affecting the accuracy of load patterns derived. This process includes: ignoring 

missing values, smoothing noisy data and removing the abnormal points.  

3.3 Data Sources 

The data used in this study can be divided to three sources: 

1. Data collected from Agrabia substation, which is a residential substation of the 

Saudi Electricity Company (SEC) in Eastern Region Branch in Al-Khubar city. 

The available data are for the nine consecutive years from 1998 to 2006 

arranged in Excel files. 

2. Data supplied by Marafiq Company for a residential area in Yanbu industrial 

city from year 2009 to 10
 
December 2011. 

The measured data for the two cities includes: hour, temperature in Celsius, 

humidity, active power in MW, arranged in tabular form. All of these 

parameters were measured in hourly basis. 

3. The third data source consists of measured hourly load and temperature data 

for the Puget power utility, Seattle, USA, over the period 1 January 1985 to 31 

December 1990. 
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A Sample day from SEC data is shown in Tables 3.1 listing the hourly data for 

real power in MW, temperature in Celsius and humidity in percentage. 

 

Table 3.1: Sample day from SEC data for 1 January, 2002 

h P (MW) T ( 
ᵒ
C ) H (%) 

1 11 19 38 

2 10 19 39 

3 9 19 42 

4 9 19 43 

5 9 19 42 

     6 9 18 41 

7 10 18 41 

8 10 18 35 

9 13 18 38 

10 14 19 35 

11 15 23 35 

12 14 24 37 

13 13 24 38 

14 13 24 40 

15 13 24 40 

16 15 23 42 

17 17 22 39 

18 19 21 23 

19 18 21 21 

20 18 21 25 

21 18 20 29 

22 16 20 18 

23 14 21 8 

24 12 21 19 
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3.4 Data Analysis 

3.4.1 Overview 

Electricity demand is constantly changing over the time. During one year, it 

may vary greatly from month to month, from day to day and from hour to hour. In 

forecasting analysis, factors affecting the load have to be identified clearly according 

to people social activities and weather variables of the forecasted area. The daily load 

behavior will be studied and presented. Knowing the date and its relation with load 

behavior and weather parameters is important. Moreover, the link between week days 

and weekend days with the load curves will be shown and studied. This will help 

visualization it for every day behavior and its relationship with weather parameters. 

Then, the impact of seasons on load consumption will be presented as well as the 

annual load profile throughout the whole year.                                                

3.4.2 Load Variation 

The variation of the load with respect to time can be classified to three load 

patterns which are based on daily, seasonally and annually basis. The study will be 

done progressively during different consecutive days, then during consecutive months 

and then to cover the whole year. The data analyzed in this section is for SEC from 

years 1998 to 2000. 

        …………….       riation with time during the day (daily behavior):  3.4.2.1 Va

          The load varies during 24 hours in a cyclic manner as social life and activities of 

the consumers depend on the time of the day such as; working hours, school hours and 

prayer times. As a result of that, the power consumption is varying over the whole day. 

Figure 3.1 shows the active power, temperature and humidity versus hours for a typical 

day from the residential area in Al-Khubar city, 1
st
 February, 2000. Load drops 
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gradually at night and becomes minimal at the early morning. Then, with the starting 

of schools and working time, load starts to pick up due to the increase of people 

activities and temperature rising. Then, it dips at the period of lunch time. Before Asr 

prayer, almost all governmental facilities and schools end, and temperature starts to 

drop. As a result, load continues dropping till Asr prayer. After Asr prayer, the load 

increases due to the increase in people activities again and continues to increase till the 

sunset. After that, it keeps increasing gradually because of the lighting load and 

continuous people daily routine. This continues until Eisha prayer where the daily peak 

occurs almost at 19.00 and then before midnight at the time of closing all commercial 

activities and also the time for people to sleep, the load starts decreasing till the early 

morning.                                                                                                                              
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Figure 3.1: Active Power, Temperature and Humidity profiles for 1
st
 February, 2000, 

SEC, Agrabia substation 
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3.4.2.2 Variation with time during the season (seasonal behavior) 

            Once we move from one season to another, the effect of weather variation 

between seasons is clearly noticed. So, the load power behavior is also changing 

accordingly. This is clearly shown in figure 3.2 where active power, temperature and 

humidity for a sample day of winter, spring, fall and summer seasons are displayed for 

year 2000.                                                                                                                           
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Figure 3.2: Active Power, Temperature and Humidity profiles for a sample day from 

each season, 2000, SEC, Agrabia substation 
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3.4.2.3 Overall variation with time during the year (annual behavior) 

               In addition to a daily basis variation and seasonal variation, the annual 

behavior of the load will be analyzed. Figure 3.3 shows respectively the active power, 

temperature and humidity profiles of the year 2000.                                                         
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Figure 3.3: (a) Active Power, (b) Temperature and (c) Humidity profiles for year 2000, 

SEC, Agrabia substation 
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3.5 Special Days Analysis 

The impact of varying load consumption can be noticed at different times of 

the year.  Consumption behavior is different from one society to another since there is 

a difference in working periods and vacations intervals in different countries. Normal 

days could be classified by normal week working days and weekend days. Also, 

special events days such as Ramadan days, Eids days and after Eids days are fixed by 

date and occur always at the same date of the Hijra calendar. If special event day 

happens in any normal day, its impact dominates. Daily load data can be divided into 

distinct behavioral patterns called behavioral modes or, simply, modes each of which 

has common characteristics. By looking extensively to the whole power profile for one 

year as shown previously in figure 3.3, it can be seen that the load consumption shape 

is different from day to day or from mode to mode.                                               .                             

 

3.6 Modes Classification 

3.6.1 SEC Data 

This data is for a residential substation in Al-Agrabiah area in Al-Khubar city 

in the Eastern Province of KSA. The weather conditions for this area are characterized 

by high temperature and humidity values in summer season. Also, the nature of this 

area is non-evacuating population area meaning that people in this area are 

permanently living there. The available data from this area is form 1998 to 2006. 

During these nine years, two load switching were applied to the substation as seen 

from figure 3.4 which shows the hourly and the yearly peak load consumption, 

respectively for years 1998 to 2006. 
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Figure 3.4: (a) Hourly load profile for years 1998 to 2006, SEC data 

(b) Annual peak load for years 1998 to 2006, SEC data 

 

 

As seen from figure 3.4, the residential load area was fed from the same feeder 

at Agrabiah substation from the period 1998 to 2000 and the measurements were taken 

at this feeder. At year 2000, another feeder was installed to share the load. The 

measurements were still taken at the original feeder. This continued until the end of the 
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year 2005 where another load switching was applied causing the load measured value 

on the original feeder to decrease in 2006. 

One sample year is considered to identify the different existing modes. An 

extensive analysis is needed to define these modes according to the characteristics and 

behaviors of the area to be studied. For example, by taking a zooming view to the 11 

days period from Thursday 14/1/1999 to Saturday 23/1/1999 as shown in figure 3.5, it 

is clear that there is a difference between these days that include many periods like 

Ramadan, Eid Feter day and working day. 
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Figure 3.5: Sample 11 days for different modes in 1999 

 

Also, a sample week starting from Saturday to Friday for 1998, 1999 and 2000 

during the same period (winter period) can be seen in figure 3.6. It is obvious that 

there is a difference between the shape of the load on a typical weekend day, such as 

Friday and a working day like Saturday or Sunday. 
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Figure 3.6: Typical cold region week, 1998, 1999 and 2000 

 

Furthermore, there is a clear distinction between the shape of a typical winter 

day such as Saturday 13/3/1999 and summer day such as Monday 16/8/1999. This is 

shown in figure 3.7. This difference is due to the high change in temperature values 

between the two days. 
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Figure 3.7: Typical winter and summer days, 1999 

 

  From the previous analysis, it is clear that there are different characteristics of 

days or group of days during the year that enforce the data to be separated to different 

modes with special characteristics. So, it is revealed that the entire year can be divided 

to different modes which are Ramadan mode, Eid Feter day mode, after Eid Feter days 

mode, Eid Hajj day mode, after Eid Hajj day mode, cold normal days mode, cold 

Thursdays mode, cold Fridays mode, hot normal days mode, hot Thursdays mode and 

hot Fridays mode. Also, some additional modes may be included like before eid Hajj 

days, mid-year vacation days, summer vacation and mid-term vacation. This will 

increase the accuracy of the results. Every mode has its own behavior which is 

different from other modes characteristics.  
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3.6.1.1 Ramadan mode ( r ) 

An interesting period is Ramadan month which is the month of fasting. In this 

Hijra month, people activities are totally different than any other Hijra months. For 

example, Ramadan is characterized by less working hours, no difference between 

week days and weekend days. Also, almost there is no difference between vacations 

and non-vacations, new dining hours, etc. Figure 3.8 shows power profile for sample 

days of Ramadan, 1999. 
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Figure 3.8: Typical Ramadan days, 1999 

 

As shown, there is no clear distinction between weekends and weekdays, 

vacations and non-vacation days. This supports the decision to neglect the effect of 

week days and weekends characteristics in this period. Also, it is clear that Ramadan 
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month has its own characteristics which are totally different than other months. 

Because of fasting during day, there is no dip in the period of lunch time which is the 

case in other months.  

A closer look at figure 3.8 concludes that also the peak hour in Ramadan is 

different than other months, which ranges normally between 7 PM to 8 PM. However, 

in Ramadan, it ranges between 9 PM to 11 PM as seen from figure 3.9.    ….                                                 
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Figure 3.9: Typical Ramadan day, 1998, 1999 and 2000 

 

 

3.6.1.2 Eid Feter day ( ef )  

Eid Feter day has also special behavior. The load at this day is very low 

because people mostly in morning time stay outside their homes to perform Eid prayer 

and then meet with relatives, neighbors and friends. So, Eid Feter day, in addition to 
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Eid Hajj day, are mostly affected by people social habits. Figure 3.10 shows Eid Feter 

day for 1998, 1999 and 2000.  
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Figure 3.10: Eid Feter day, 1998, 1999 and 2000 

 

Also, as seen previously from figure 3.5, the interval of Eid Feter day is clearly 

compared with previous and next modes for year 1999. 

3.6.1.3  After Eid Feter days mode ( aef ) 

These days are the days coming directly after Eid Feter day period where a 

sharp decrease in the load curve is noticed in the Eid day load curve compared to the 

previous period. Then, the load increases gradually because of changeable people 

activities like preparing for schools and going back to normal dining hours which are 

totally different than those of Ramadan period. This gradual load rising continues until 
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the starting of the next mode which is cold normal days mode. This was also shown in 

figure 3.5 previously. 

3.6.1.4 Eid Hajj day mode ( eh ) 

As in Eid Feter day mode, a sharp decrease is clearly noticed in Eid Hajj day 

comparing to previous mode (cold days mode) and next mode (after Eid Hajj days 

mode). Figure 3.11 shows Eid Hajj day for 1999 and 2000.  

0 5 10 15 20 25
9

10

11

12

13

14

15

16

17

18

19

hours

P
o
w

e
r 

(M
W

)

 

 

1999

2000

 
 Figure 3.11: Eid Hajj day, 1999 and 2000 
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Also, figure 3.12 shows Eid Hajj day and its previous and next modes for 1999.            
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Figure 3.12: Eid Hajj day and its previous and next modes, 1999 

 

3.6.1.5 After Eid Hajj days mode ( aeh ) 

             As in after Eid day mode, the load curve is increasing gradually until the 

beginning of working days period as shown in figure 3.12. 

3.6.1.6 Cold normal days mode ( cn ) 

            This period is the period from Saturdays to Wednesdays which is the period of 

working days in KSA. As shown previously in figure 3.6, this figure shows the power 

demand for 1998, 1999 and 2000 for a typical week in February starting from Saturday 

to Friday. Similar behavior is noted for the five working days. The dip in the lunch 

time is also noticed clearly. Moreover, there is a fall in the load curve in the weekend 

days compared to the week days of this interval. So, it can be noted that electrical load 

in weekend (Thursday and Friday) is usually lower than of working days (Saturday to 
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Wednesday). This is due to the economical and social activities on working days are at 

higher level than on the weekend days.                                                                              

3.6.1.7 Cold Thursdays mode ( cthu ) 

The official weekend days in KSA are Thursdays and Fridays. Each day has its 

own characteristics. Thursday is clearly different than other days of the week and 

hence it will be classified as a mode. Figure 3.13 shows the load curve for typical 

Thursdays selected in winter season in the three years. 
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Figure 3.13: Typical Thursdays, cold region, 1998, 1999 and 2000 
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3.6.1.8 Cold Fridays mode ( cfri ) 

               In cold Friday mode, Juma’a prayer is an important activity of people that has 

a main impact on load curve behavior in Fridays. Figure 3.14 shows the load curve for 

typical Fridays selected from winter season for all the three years. 
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Figure 3.14: Typical Fridays, cold region, 1998, 1999 and 2000 

 

3.6.1.9 Hot normal days mode ( hn ) 

                 This period is the period of high temperature values during working and 

schools intervals. It is the most affected period by temperature and humidity conditions 

where high load values are reached during this period. As done in cold period, the hot 

normal days will be classified as a mode. Figure 3.15 shows the power demand for 
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1998, 1999 and 2000 for a typical week in hot period starting from Saturday to Friday. 
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Figure 3.15: Typical hot region week, 1998, 1999 and 2000 

 

3.6.1.10 Hot Thursdays mode ( hthu ) 

             As in cold period, Thursday is a vacation day and people activities differ from 

working and schools days. In hot Thursday mode, the shape of the load curve is also 

different than weekdays as shown in figure 3.15. Also, figure 3.16 shows a typical 

Thursday in hot period for the three years 1998, 1999 and 2000.                                      

3.6.1.11 Hot Fridays mode ( hfri ) 

Finally, Friday in hot region has also its own characteristics as shown in figure 3.15. 

Figure 3.17 shows a typical Friday in hot period for the three years 1998, 1999 and 

2000. 



44 

 

 

 

0 5 10 15 20 25
30

32

34

36

38

40

42

44

46

48

hours

P
o
w

e
r 

(M
W

)

 

 

1998

1999

2000

 
Figure 3.16: Typical Thursdays, hot region, 1998, 1999 and 2000 
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    Figure 3.17: Typical Fridays, hot region, 1998, 1999 and 2000 
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In addition, summer vacation could be classified as a separate mode or it may 

be included in hot period modes. Its behavior is almost similar to the hot period 

modes.  

3.6.2 Marafiq Data 

This residential area data is provided by Marafiq Company in Yanbu industrial 

city in KSA. The available data is from 1 January 2009 to 10 December 2011. For 

training and model building, 2009 and 2010 will be used to forecast the load of 2011. 

The data is for a residential area in Yanbu industrial city characterized by almost same 

weather conditions and social activities of Eastern Province. The difference is in the 

nature of people activities before and after vacations. This city is almost evacuated at 

official companies and schools vacation periods. In addition to schools periods, 

working companies’ days affect the load significantly where some companies’ 

employees stay at the city in time of short schools vacations like mid-term or mid-year 

vacations. Therefore, due to this similarity, modes classification will be almost similar 

to that in SEC data except for some modes such as mid-term and mid-year vacations 

modes. For this residential area at 2009, the hourly load and temperature profiles and 

the daily peak load and temperature values displayed in figure 3.18, show clearly that 

load consumption is affected by the temperature throughout the year.   
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Figure 3.18: (a) Power and temperature profiles for Marafiq data, 2009 

(b) Daily peak demands and temperatures for Marafiq data, 2009 

 

By looking to the load consumption curve for Ramadan 2009 as shown in 

figure 3.19, it is clear that the load curve is following the temperature curve and it 

drops sharply at the last day of working days of the companies which is Wednesday 

26
th

 of Ramadan. This is because at these days, official holidays for companies start 

and people leave the city. Consequently, the residential load drops. 
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Figure 3.19: Power and temperature profiles, Marafiq data, Ramadan, 2009 

 

So, companies’ holiday may be classified as a separate mode but since its 

shape is almost as other Ramadan days, it will be included in Ramadan mode and the 

shifting up or down will be analyzed when dealing with average daily power 

forecasting. Also, week days and weekends could be categorized as separate modes. 

So, Ramadan week days, Ramadan Thursday, and Ramadan Friday modes are present. 

Especially in Ramadan, considering week days and weekends as separate modes does 

not affect the results considerably since there is no much difference between week 

days and weekends load curve behavior and hence they may be included as Ramadan 

mode. It is only considered for better results. 

In addition, mid-year vacation for Yanbu industrial city is mainly affected by 

holidays of companies and as seen from figure 3.20, there is no clear distinction 
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between mid-year vacation and other cold normal days and hence it may be counted as 

normal cold days. Also, the impact of temperature is clearly noted. 
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Figure 3.20: Power and temperature profiles, Marafiq data, 14/2-13/3/2009 

 

 

Therefore, in summary, same modes used in SEC data will be used here. Also, 

some new modes will be added. These modes include Ramadan mode, Eid Feter day 

mode, after Eid Feter days mode, Eid Hajj day mode, after Eid Hajj day mode, cold 

normal days mode, cold Thursdays mode, cold Fridays mode, hot normal days mode, 

hot Thursdays mode and hot Fridays mode, summer period mode, mid-year and mid-

term vacations modes.  
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3.6.3 USA Data 

The data consists of measured hourly load and temperature data for the Puget 

power utility, Seattle, USA, over the period 1 January 1985 to 31 December 1990. The 

nature of people activities and weather variables are completely different from that of 

SEC and Marafiq data. So, different modes categorization will be considered in this 

type of data.  

Unlike KSA, the working days for USA are from Mondays to Fridays while 

weekend days are Saturdays and Sundays. Also, some holidays and special days are 

present in USA and not present in KSA like New Year’s Day, Labor Day, 

Thanksgiving Day and Christmas day.  

Regarding weather conditions, the seasonally change from winter to spring to 

fall to summer is noted clearly in USA, whereas in KSA, only summer and winter load 

curve behavior is present. So, in addition to special days modes, the modes could be 

classified to winter, spring, fall and summer shapes intervals. With the impact of 

weather conditions and seasons change, the daily load curve also changes.  

As in KSA, the effect of week days and weekend days is very significant; every 

interval will have week days mode (from Mondays to Fridays), Saturday mode and 

Sunday mode. Figure 3.21 shows typical weeks starting from Monday to Sunday for 

each season. Therefore, as expected, week days in every season are different in 

behavior and higher in consumption than weekend days. In special days analysis, there 

are special activities for people to do at these days. For example, in Thanksgiving Day, 

human behavior is completely different from any other normal day. So, every special 

day will be separated as a mode.  
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Figure 3.21: Load profile for sample week from each season, Seattle, USA, 1989 

 

All special days dates in USA were found from reference [42]. However, some 

of them are not official and cannot be identified to be special days or not. So, there is a 

problem of how to specify whether these days are special or not, or whether they have 

special characteristics that make the load curve to be unique. The solution to this is 

simply by plotting these days, and if any day seems to have special behavior, it will be 

clear and classified as a separate mode. If not, it will be considered as a normal day 

and will be classified within its previous days’ mode. Figure 3.22 show load profiles of 

some special days in Seattle, USA, 1989. For example, Columbus Day will be 

considered as a normal day since it does not have special characteristics that are 

different from its previous and next days. However, Thanksgiving Day has a unique 

and special behavior which is different from its previous and next days that support the 
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decision to separate it as a mode. So, same approach is applied to all official and 

Federal days.  
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Figure 3.22: Power profile for some special days in Seattle, USA, 1989 
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3.7 Summary and Conclusions of the Chapter 

The following points have been addressed in this chapter: 

- The main calendar in KSA is the Hijra calendar while the collected data are for 

Gregorian calendar. So, adjustments and transferring have been done between 

the two calendars. 

- The official working days for KSA are from Saturdays to Wednesdays whereas 

the weekend days are Thursdays and Fridays.  

- The official working days for USA are from Mondays to Fridays while the 

weekend days are Saturdays and Sundays.  

- The data is filtered, arranged and validated for the proposed model. 

- The affecting variables on load consumption have been identified to be weather 

conditions and people activities. 

- In terms of people activities and load shape affected by weather variables, the 

data for one year for each data source is divided into modes describing their 

behaviors. 

- Every mode has day or group of days that have similar characteristics. 

- Some submodes could be accommodated in the corresponding main mode and 

some others cannot, and have to be considered as separate modes. 

- Moreover, the days belonging to one mode in one year are similar in shape to 

the days in the same mode in other years. The difference is only shifting up or 

down because of the growth rate. 

- So, now, all parameters, modes, and weather variables are ready to be analyzed 

to find the best model. This will be discussed next chapter.  
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CHAPTER 4 

 

ANALYSIS OF THE APPROACHES USED 

 

 

 

In this study, two approaches will be used in STLF. The first method is 

Artificial Neural Network model analysis (ANN) while the second one is the hybrid 

analytical model. This chapter presents the concept and analysis of both methods. 

 

4.1 NN Model  

4.1.1 Overview 

NNs are composed of simple elements operating in parallel. These elements are 

inspired by biological nervous systems. As in nature, the network function is 

determined largely by the connections between elements. A NN can be trained to 

perform a particular function by adjusting the values of the connections (weights) 

between elements. Commonly NNs are adjusted, or trained, so that a particular input 
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leads to a specific target output. Such a situation is shown in figure 4.1. The network is 

adjusted, based on a comparison of the output and the target, until the network output 

matches the target. 

 

 

 

 

 

 

 

Figure 4.1: Concept of NN 

 

NNs have been trained to perform complex functions in various fields of 

applications including pattern recognition, identification, classification, speech, vision 

and control systems. [43] 

4.1.2 NNs Applications 

            ANNs have wide area of applications. For example, they are used in business 

works, aerospace, automotive, banking, credit card activity checking, entertainment, 

defense, industrial, electronics, financial, manufacturing, insurance, oil and gas 

exploration, telecommunications, speech, robotics, medical, securities and 

transportation applications. [43]                                                                                         

             The application of NNs in different power system operation and control 

strategies has led to acceptable results. NNs can be applied to the fields of load 

forecasting, fault diagnosis/fault location, economic load dispatch, optimization and 

Neural Network 

including connection 
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Target 

Input Output 

Adjust 

Weights 



55 

 

 

 

loss reduction. Moreover, NNs are used in security assessment and enhancement, 

frequency control, transient stability, voltage and reactive power control. [45]              .  

4.1.3 Neuron Model 

                 A neuron with a single scalar input and no bias appears on figure 4.2a. The 

scalar input p is transmitted through a connection that multiplies its strength by the 

scalar weight w to form the product wp, again a scalar. Here the weighted input wp is 

the only argument of the transfer function f, which produces the scalar output a. The 

neuron on the figure 4.2b has a scalar bias, b. one can view the bias as simply being 

added to the product wp as shown by the summing junction or as shifting the function f 

to the left by an amount b.                                                                  .                              

                                                                      

 

Figure 4.2: (a) Neuron with a single scalar input and no bias 

(b) Neuron with a scalar bias              

 

                 The bias is much like a weight, except that it has a constant input of 1. The 

transfer function net input n, again a scalar, is the sum of the weighted input wp and 
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the bias b. This sum is the argument of the transfer function f. Here f is a transfer 

function, typically a step function or a sigmoid function, that takes the argument n and 

produces the output a. It is important to note that w and b are both adjustable scalar 

parameters of the neuron. The central idea of NNs is that such parameters can be 

adjusted so that the network exhibits some desired or interesting behavior. Thus, the 

network can be trained to do a particular job by adjusting the weight or bias 

parameters, or the network itself will adjust these parameters to achieve some desired 

end. Many transfer functions are used in NNs analysis. The most commonly used 

functions are hard-limit, linear and log-sigmoid transfer functions. [43]                          

4.1.4 Network Architectures 

               Two or more of the neurons shown earlier can be combined in a layer, and a 

particular network could contain one or more such layers.  

4.1.4.1 A Layer of Neurons 

 
Figure 4.3: One-layer network 

 

 

                A one-layer network with R input elements and S neurons is shown in figure 

4.3. In this network, each element of the input vector p is connected to each neuron 
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input through the weight matrix W. The i
th

 neuron has a summer that gathers its 

weighted inputs and bias to form its own scalar output n(i). The various n(i) taken 

together form an S element net input vector n. Finally, the neuron layer outputs form a 

column vector a.  The expression for a is shown at the bottom of the figure. It is 

common for the number of inputs to a layer to be different from the number of neurons 

(i.e., R is not necessarily equal to S). A layer is not constrained to have the number of 

its inputs equal to the number of its neurons. The input vector elements enter the 

network through the weight matrix W.                                                                          . 

 

                      The row indices on the elements of matrix W indicate the destination 

neuron of the weight, and the column indices indicate which source is the input for that 

weight. Thus, the indices in w1,2 say that the strength of the signal from the second 

input element to the first (and only) neuron is w1,2. Figure 4.4 shows one layer network 

with R input elements and S neurons.                                                                              .  

 
Figure 4.4: One-layer network with R input elements and S neurons 
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                     Here p is an R length input vector, W is an SxR matrix, and a and b are S 

length vectors. As defined previously, the neuron layer includes the weight matrix, the 

multiplication operations, the bias vector b, the summer, and the transfer function 

boxes. [43]                                                                                                                        .  

4.1.4.2 Multiple Layers of Neurons 

                     A network can have several layers. Each layer has a weight matrix W, a 

bias vector b, and an output vector a. To distinguish between the weight matrices, 

output vectors, etc., for each of these layers in figures 4.5, the number of the layer is 

appended as a superscript to the variable of interest.              .                                          

 
Figure 4.5: Multiple Layers of Neurons 

 

                    The network shown in figure 4.5 has R1 inputs, S1 neurons in the first 

layer, S2 neurons in the second layer, etc. It is common for different layers to have 

different numbers of neurons. A constant input 1 is fed to the bias for each neuron. The 

outputs of each intermediate layer are the inputs to the following layer. Thus layer 2 
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can be analyzed as a one-layer network with S1 inputs, S2 neurons, and an S2xS1 weight 

matrix W2. The input to layer 2 is a1; the output is a2. Now that all the vectors and 

matrices of layer 2 have been identified, it can be treated as a single-layer network on 

its own. This approach can be taken with any layer of the network.                            

The layers of a multilayer network play different roles. A layer that produces the 

network output is called an output layer. All other layers are called hidden layers. The 

three-layer network shown earlier has one output layer (layer 3) and two hidden layers 

(layer 1 and layer 2). [43]                                                                                                 .  

4.1.5 Proposed NN Model  

               The model is implemented on two applications; next hour and next day load 

forecasting. These tests are applied on all sources of data mentioned previously in 

chapter 3, SEC data for KSA Eastern Province, Marafiq data for Yanbu industrial city 

and Seattle data, USA. The design of the model, process, and approach are explained 

in this section.                                                                                                                     

                According to the nature of each set of data, number of layers and hidden 

neurons are selected. Many previous works try to optimize the selection of these 

parameters values. However, there is no rule to decide these values. This is highly 

dependent on the application, nature of data and number of samples used. Normally, 

trial and error method is followed to specify the values of these parameters.                  

                In this work, the model is a feed-forward ANN with tan-sigmoid transfer 

functions in the hidden layers and linear function in the output layer. Number of layers 

and hidden neurons is different for each data. By trial and error, the assigned values for 

each set of data for next hour and day load forecasting models are shown in table 4.1.   

                   .                                                                                                                        
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 Table 4.1: Summary of parameters selected in the proposed models 

 

Next Hour Model Next Day Model 

 

number of number of hidden number of number of hidden 

 

hidden 

layers neurons for each layer 

hidden 

layers neurons for each layer 

SEC Data 1 3 2 10 , 5 

Marafiq Data 1 5 2 14 , 2 

USA Data 1 2 3 6 , 8 , 4 

 

4.1.5.1 Input Vector Configuration 

              For next hour load forecasting for all data sources, the input vector to the 

ANN includes hour, day sequence through the year, mode number, temperature and 

humidity (except for USA, where humidity data is not available), all of these inputs are 

for the forecasted hour. Also, previous hours load historical data include all previous 

24 hours load consumption including the previous hour to the forecasted one. Table 

4.2 depicts the details of the input vector and model structure for next hour load 

forecasting.                                                                                                                         

       Table 4.2: Input configuration for next hour load forecasting 

 

Inputs Output 

P(h-1),P(h-2)…………. 

………………....P(h-24) h dy(h) m(h) T(h) H(h) P(h) 

Previous 24 hours loads Forecasted Day sequence Mode Expected Expected   

to the forecasted hour  hour through the 

number of 

the temperature humidity 

Load 

of 

    

year of the 

day  day of the of the of the 

next 

hour 

    

of the 

forecasted forecasted forecasted forecasted   

    hour hour hour hour   
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Two approaches for training and testing are followed, namely, static and 

dynamic approaches. In the static approach, the number of training epochs is constant. 

The training is stopped at the hour 24 of the last day of the last trained year (2004 for 

SEC, 2010 for Marafiq and 1989 for Seattle). To forecast any hour from the evaluating 

year, the model is not re-built. However, in dynamic approach, the training is always 

updated and stopped at the previous hour to the forecasted one. So, to forecast any 

hour from the forecasted year, the model has to be updated to include all previous data 

to the forecasted hour. For example, to forecast the hour 9 from 5 August, 2011 from 

Marafiq data, the training is stopped at the hour 24 from 31 December, 2010 in static 

method and the corresponding number of epochs is 17352. However, the training is 

stopped at the hour 8 from 5 August, 2011 using dynamic approach with 22544 epochs 

number. In this work, dynamic approach is followed to utilize the most up to date 

weather conditions and load behavior of the forecasted hour. This example is shown in 

table 4.3. 

Table 4.3: Input parameters values to forecast hour 9 of 5 August, 2011 

Inputs Next Hour Output 

P(h-1),P(h-2)……...P(h-24) h dy(h) m(h) T(h) H(h) Load P(h) 

92.38,91.18,96.76,101.89           Forecasting  

104.8,107.23,107.75,110.83     

 

    Trained Static  Pactual(h)= 

111.65,114.56,114.52,114.46 9 5 6.7 32.7 94.82 & Dynamic 94.67 MW 

114.19,109.18,111.72,112.85     

 

    Neural Pforecasted(h)= 

114.24,113.23,110.59,107.46     

 

    Networks 95.12 MW 

107.02,104.49,98.86,95.3           Model  
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               For next day load forecasting, the input vector to the ANN includes following 

parameters related to the forecasted hour, h of day, d: 

-  Hour from 1 to 24 

- Temperature of the forecasted hour 

- Humidity of the forecasted hour 

- Mode number 

- Day sequence through the year from 1 to 365 

 The historical load data selected for the input vector of the next day load 

forecasting model are the load, temperature and humidity values at the same hour 

of the previous day, previous two days, previous three days and previous week. 

This is shown in table 4.4.  

 

       Table 4.4: Input configuration for next day load forecasting 

  

Inputs Output 

P(d,h-24),P(d,h-48),  

P(d,h-72),P(d,h-168)             

T(d,h-24),T(d,h-48),  

T(d,h-72),T(d,h-168) h dy(h,d) m(h,d) T(h,d) H(h,d) P(h,d) 

H(d,h-24),H(d,h-48),  

H(d,h-72),H(d,h-168)             

Previous 24,48,72 and 

168 hours Forecasted 

Day 

sequence Mode Expected Expected   

loads, temperatures 

and humidity   hour 

through 

the 

number 

of  temperature humidity Load for 

to the forecasted hour 

of next of next year of  next day of the of the hour h of 

day, d day d next day   forecasted forecasted next 

    

 

  hour hour day d 

        in next day in next day   
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As in next hour model, same static and dynamic approaches will be followed in 

next day model. In static model, the training is always stopped at the last day of the 

last training year whereas in dynamic approach, it includes all previous days to the 

forecasted day and the training is stopped at the previous day to the forecasted one.  

4.1.5.2 Data Preprocessing 

             Before training, it is useful for all the inputs and targets to be scaled so that 

they always fall within a specified range. Equation 4.1 is used for each input and target 

independently.                                                                                                                    

         (4.1)         max min min
min

max min

( )( )
s

y y x x
y y

x x

 
 


                  

where  is the scaled data element,  is the original data element for each input and 

target vectors,  and  are the maximum and minimum corresponding data 

element respectively. Due to nature of the sigmoid function, the outputs of the neurons 

fall in the interval of -1 and +1. Therefore,  and are set to 1 and -1, 

respectively. [46]                                                                                                                

 

4.2 Hybrid Analytical Model  

  As mentioned in Chapter 3, the yearly load consumption is divided to modes. 

Every mode has day or group of days characterized by special daily load behavior 

shape. Also, the parameters affecting the consumption are attributed to weather 

conditions and people activities. So, the formulation and building of the final 

analytical model will be analyzed extensively. Moreover, modes analysis (ac 

components) and average power (dc component) will be analyzed separately and then 

their impacts will be combined to reach to the proposed forecasting model. In modes 
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analysis, Fourier Transform concept will be applied, while ANN will be used to 

forecast next day average load. Since this ANN and Fourier Transform analysis are 

used in this method, it is called hybrid analytical model. So, initially, an overview 

about Fourier Transform will be shown. Next, the above mentioned modes and 

weather variables will be studied. Carrier function, which is considered as the average 

daily power or the dc component, will be processed by ANN. 

4.2.1 Fourier Transform Concept 

 The Fourier Transform, in essence, decomposes or separates a waveform or 

function into sinusoids of different frequency which sum to the original waveform. It 

identifies or distinguishes the different frequency sinusoids and their respective 

amplitudes. The Fourier Transform as a mathematical concept is based on the 

discovery that it is possible to take any periodic function of time x(t) and resolve it into 

an equivalent infinite summation of sine waves and cosine waves with frequencies that 

start at 0 and  increase in integer multiples of a base frequency f = 1/T, where T is the 

period of x(t). Any wave function can be defined in terms of amplitude, A, and wave-

length,  or frequency,   . A full description of such a wave also requires definition 

of a phase,   . A simple one-dimensional wave-function, f (t), specifies the height of 

the wave at any horizontal point t where t is defined in terms of wavelength such that 

t=1= . This wave function could be represented as either a sine or a cosine function 

as follows: 

                            f (t) = A cos 2 ( t +   )                                                       (4.2)                         

    or 

                            f (t) = A sin 2 ( t +   )                                                        (4.3) 
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The term 2  appears because there are 2 radians per wavelength. Fourier analysis of 

complex wave functions dissociates them into a Fourier series of simple wave 

functions such as f(t). We could write a Fourier series containing n terms as: 

    F(t) = A 0 cos 2 (0 t +  0  ) + A
1
cos 2 ( t +  1  ) 

           + A 2 cos 2 (2 t +  2  ) + …….+ A n cos 2 (n t +  n  )                        (4.4)                            

or 

            
0

( ) cos 2 ( )
n

F t A t 


  


                                                                      (4.5) 

This shows that any complex wave can be expressed as a composite of simpler cosine 

or sine waves. [47] 

Signals may be described as being of the same value either in the time or in the 

frequency domain. Therefore, it is possible to convert one domain into the other. The 

mathematical fundament of these conversions is the Fourier Transform. 

 

4.2.2 Modes Analysis  

In modes analysis, Fourier transform will be applied to the signal for one day 

containing 24 hours. So, the period of this signal is 24 h which means that the base 

frequency f  is 
1

24
 = 0.0417 Hz. First, the amplitudes and phase angles of this signal 

will be evaluated. The signal is reconstructed again by the decomposition of the 

evaluated amplitudes and phase angles using sum of cosines series. So, the amplitudes 

and phase angles at integer positive frequencies will be selected for reconstruction of 

the signal. At the end, an equation containing load consumption as a function of time 
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will be established. It is found that the first six harmonics are enough to reconstruct the 

signal. So, the model of each mode will be of the form: 

                
6

0

( ) cos( ( 1) )n n

n

F t A n t 


                                                              (4.6) 

where, 

- t is the time in hours. 

- A is the amplitude. 

- n is the frequency number from 0 to 7. 

-   is the frequency in rad/s which equals to 2 /24. 

-   is the phase angle. 

The approach used to model the equations of the modes will be as follows. 

Every mode will be represented by its average day. Since the days of any mode have 

similar behavior, this average day is the representative of the mode. Fourier Transform 

analysis will be applied to this average day using MATLAB program commands. A 

model of the form of equation 4.6 is built. So, this results into number of models equal 

to number of modes. Every model is representing a mode. All modes have same form 

of equation 4.6. The difference is in the values of amplitudes and phase angles. Now, 

this model is decomposed of two components, namely, dc component at frequency 

number 0 representing the average value of the signal and is considered as a carrier of 

the load consumption curve. The other component is the ac component at frequencies 

from 1 to 6 which represents the daily load shape only. After the model is built, the dc 

component is removed from the model making the mean value for the entire day to be 

zero. So, the model is now representing only daily load shape and its curve is placed at 

the zero axes. Steps of this approach are shown in figure 4.6. 
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Figure 4.6: Steps used in modes analysis modeling 

 

A sample data, Marafiq, will be used to show the analysis of this approach in 

details. Years 2009 and 2010 will be used in model building to forecast the year 2011. 

Figure 4.7 shows the power profile for years 2009 to 10 December 2011 for Marafiq 

data. Also, figure 4.8 shows the load profile for the year 2010 for Marafiq data along 

with the components of the signal which are the dc component (average daily power) 

and the ac component having zero mean value. 
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Figure 4.7: Power profile for years 2009 to 10 December 2011 for Marafiq data 
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Figure 4.8: Power profile with ac and dc components, Marafiq, 2009 
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It is clear from figure 4.8 that the signal is segregated into two parts; ac 

component and dc component from the original power profile. The idea is to identify 

each mode from other modes. All these modes have zero mean value. Moreover, the dc 

component will be predicted based on ANN analysis. Both modes and dc component 

are added together and expected to forecast the behavior of the load. 

In next pages, every mode will be analyzed individually. At the end, same 

model structure will be built for every mode as found in equation 4.6. Harmonics 

components for each mode are different and these harmonics are the major factors that 

cause the distinct behavior in the curve between the modes. A sample mode, hot 

Fridays, will be discussed and explained in details and then all other modes are 

analyzed in the same way. 

4.2.2.1 Hot Fridays Mode 

Hot Fridays mode means all Fridays from schools period characterized by high 

temperature values. All hot Fridays from years 2009 and 2010 will be displayed as 

shown in figure 4.9. The similarity between the days of this mode is clear. 
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Figure 4.9: (a) Hot Fridays for years 2009 and 2010, Marafiq 

              (b) Hot Fridays similarity for years 2009 and 2010, Marafiq 

 

So, the aim now is to find the daily load curve shape for this mode. Then, the 

average day for this mode is found. The way is simply by taking the mean of power 

values at each hour resulting in 24 average power values representing the average 

mode day. The average mode day for hot Fridays mode is shown in figure 4.10. 
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Figure 4.10: Average day for hot Fridays mode 

 

So, this average day is the representative of all days of the mode and it gives 

information of how the hot Fridays mode will be in the forecasted year, 2011. Then, 

Fourier Transform analysis will be applied to this average day to decompose its signal 

to its harmonics as seen from figure 4.11. Amplitudes and phase angles values for this 

signal are shown in table 4.3. 
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Figure 4.11: Amplitudes and phase angles of the average mode day 

 

Table 4.5: Amplitudes and phase angles values for the average day of hot Fridays 

mode 

Harmonic 

number 

0 

(dc comp) 

1 2 3 4 5 6 

Amplitude 81.8616 5.448 2.1344 0.8586 0.6978 0.3843 0.2363 

Phase angle 0 1.796 0.5895 2.6735 2.9737 1.3374 2.4156 

 

At the end, the dc component (the amplitude value at zero frequency) will be 

removed from the model which makes the mean value of the whole day equals zero. 

Figure 4.12 shows the final modeled general average day for hot Fridays mode.  
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Figure 4.12: Final average daily modeled load curve for hot Fridays mode 

 

So, same approach applied in hot Fridays mode will be applied to other modes. 

All other modes analysis will be shown in figures 4.13 to 4.26. 
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4.2.2.2 Ramadan Mode 
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Figure 4.13: (a) Ramadan days for years 2009 and 2010 

(b) Final average daily modeled load curve for Ramadan mode 

4.2.2.3 Eid Feter Day Mode 
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Figure 4.14: (a) Eid Feter days for years 2009 and 2010 

(b) Final average daily modeled load curve for Eid Feter mode 
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4.2.2.4 After Eid Feter Days Mode 
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Figure 4.15: (a) After Eid Feter days for years 2009 and 2010 

(b) Final average daily modeled load curve for After Eid Feter days mode 

 

4.2.2.5 Eid Hajj Day Mode 
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Figure 4.16: (a) Eid Hajj days for years 2009 and 2010 

(b) Final average daily modeled load curve for Eid Hajj mode 
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4.2.2.6 After Eid Hajj Days Mode 
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Figure 4.17: (a) After Eid Hajj days for years 2009 and 2010 

(b) Final average daily modeled load curve for After Eid Hajj mode 

 

4.2.2.7 Hot Week Days Mode 
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Figure 4.18: (a) Hot week days for years 2009 and 2010 

(b) Final average daily modeled load curve for hot week days mode 
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4.2.2.8 Hot Thursdays Mode 
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Figure 4.19: (a) Hot Thursdays for years 2009 and 2010 

(b) Final average daily modeled load curve for hot Thursdays mode 

 

4.2.2.9 Summer Vacation Week Days Mode 
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Figure 4.20: (a) Summer vacation week days for years 2009 and 2010 

(b) Final average daily modeled load curve for summer vacation week days mode 
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4.2.2.10 Summer Vacation Thursdays Mode 
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Figure 4.21: (a) Summer vacation Thursdays for years 2009 and 2010 

(b) Final average daily modeled load curve for summer vacation Thursdays mode 

 

4.2.2.11 Summer Vacation Fridays Mode 
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Figure 4.22: (a) Summer vacation Fridays for years 2009 and 2010 

(b) Final average daily modeled load curve for summer vacation Fridays mode 
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4.2.2.12 Mid-Year Vacation Mode 
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Figure 4.23: (a) Mid-year vacation days for years 2009 and 2010 

(b) Final average daily modeled load curve for mid-year vacation mode 

 

4.2.2.13 Cold Week Days Mode 
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Figure 4.24: (a) Cold week days for years 2009 and 2010 

(b) Final average daily modeled load curve for cold week days mode 



81 

 

 

 

4.2.2.14 Cold Thursdays Mode 
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Figure 4.25: (a) Cold Thursdays for years 2009 and 2010 

(b) Final average daily modeled load curve for cold Thursdays mode 

 

4.2.2.15 Cold Fridays Mode 
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Figure 4.26: (a) Cold Fridays for years 2009 and 2010 

(b) Final average daily modeled load curve for Cold Fridays mode 
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So, now, every mode is represented by its average day. Each average day is 

modeled by the structure of equation 4.6. Therefore, by specifying the mode number 

for any day of the forecasted year, 2011, its daily load curve shape is now ready and 

can be taken from the previous figures. All of these modeled days are placed at the 

zero axes and have zero mean value. So, a clear picture of how the shape of each day 

in 2011 is available now and all of these days are “waiting” for the carrier function 

which is the average daily load consumption value that shifts or carries the mode day 

to the original level. Next step is forecasting next day average load consumption for 

2011 which will be added to the mode days to reach to the final desired model. 

4.2.3 Carrier Analysis  

In carrier analysis, next day average power will be forecasted using NN 

analysis. By assuming that we are at day d-1, the aim is to forecast the average power 

value for next day d. The mode number for day d is known and its shape will be taken 

from its respected mode shape shown in modes analysis section. Then, by simple 

addition operation, this value will ‘carry’ the shape of the mode day for the day d. As 

explained in NN analysis in section 4.2.1, the same structure for the used models for 

STLF will be used here. For all sources of data, the model contains one hidden layer 

with 5 hidden neurons. The inputs to the model are day, month, year, day type, day 

sequence through the year, mode number and expected average temperature for the 

forecasted day d. Also, average temperature, humidity and average power for the 

previous seven days to the forecasted day are included in the inputs. The output is the 

average power for day d. This is shown in figure 4.27.  
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Figure 4.27: Input configuration for next day average power forecasting 

 

Finally, after evaluating next day average power, it will be added to the 

modeled equation for the mode of the day d to reach to the final model that will give 

the power values for all 24 hours for day d according to the equation: 

                P(d) = Pavg(d) + Pmodel_mode(d)                                                    (4.7) 
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4.3 Summary and Conclusions of the Chapter 

The following points have been addressed in this chapter: 

- The approaches used in this study are defined to be ANN analysis and hybrid 

analytical model. 

- Every method is defined and explained individually.  

- In NN model, the forecasting is for next hour and next day load forecasting and 

the inputs for each model are defined. 

- In the hybrid analytical model, it is divided to two parts. The first part is modes 

analysis to predict only the daily load curve shape of the forecasted day having 

zero mean value. 

- The second part is forecasting next day average power and its role is to carry 

the ac mode day shape to the actual level.   

- Finally, the two parts values are combined and added to reach to the final 

model which is for next hour and next day load forecasting. 
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CHAPTER 5 

 

RESULTS AND ANALYSIS 

 

 

 

In this chapter, the results and analyses of each approach mentioned previously 

will be presented. The data results shown in this chapter are for SEC and Marafiq data. 

USA data will be analyzed in chapter 6 to compare its results with published paper 

results using same set of data. Every data source will be analyzed individually to make 

a comparison for the results obtained from each approach. In NN approach, two 

models are analyzed, namely, next hour and next day load forecasting models. In 

hybrid analytical model, next hour and next day models will be the same. For next 

hour model, only the value of the mode average day at the forecasted hour, h is 

evaluated. However, in next day model, the entire mode average day at all 24 hours is 

calculated. SEC data will be analyzed first, and then Marafiq data analyses and results 

will be presented. 
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             The load forecast is compared to the actual load data and the error is 

calculated. The mean absolute percentage error (MAPE) is used to evaluate the 

performance of these models. It is defined as:                                                                   

 (5.1)   
1

1
100

n
i i

i i

t a
MAPE

n t


    

where  is the actual load (target value), and  is the forecasted load (output value), n 

is the number of data points.                                                                                               

 

5.1 SEC Data 

In this set of data, the used data for training and model building are from 2001 

up to 2004, whereas the forecasted year is 2005. Typical four intervals selected from 

different seasons will be shown and forecasted using all models. Each interval is a one 

week period starting from Saturday to Friday. The typical chosen dates for these 

seasons are depicted in table 5.1. 

Table 5.1: The selected dates to represent seasons for all models, SEC data 

 

Season 

Date 

From To 

Entire Cold Week 19/3/2005 25/3/2005 

Entire Hot Week 10/9/2005 16/9/2005 

Ramadan 8/10/2005 14/10/2005 

Summer Vacation 6/8/2005 12/8/2005 

 

The selected cold and hot weeks are complete weeks starting from Saturday to Friday 

in schools period.  
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5.1.1 Next Hour Load Forecasting 

 As mentioned previously, two techniques are used for next hour load 

forecasting which are ANN and hybrid analytical models. Firstly, ANN model results 

are shown. Then, hybrid analytical model results are analyzed. After that, analysis and 

comparison of the two approaches are presented. 

5.1.1.1 Neural Network Model Approach 

The approach, process and inputs variables for this model were shown in 

details in chapter 4. Comparison between the ANN model output and the actual load, 

in addition to MAPE values for the four intervals are shown in figures 5.1 to 5.4. 
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Figure 5.1: a) Actual and forecasted load for cold week period, SEC, 2005 

 b) Absolute error and MAPE, next hour, NN 
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Figure 5.2: a) Actual and forecasted load for hot week period, SEC, 2005 

 b) Absolute error and MAPE, next hour, NN 
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Figure 5.3: a) Actual and forecasted load for Ramadan season, SEC, 2005 

 b) Absolute error and MAPE, next hour, NN 
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Figure 5.4: a) Actual and forecasted load for summer vacation season, SEC, 2005 

 b) Absolute error and MAPE, next hour, NN 

 

So, next hour load forecasting model performance is tested for one week in 

four different seasons; cold week working period, hot week working period, Ramadan 

and summer vacation, which will evaluate the model performance across different load 

profiles. The performance of the model gives accurate results for implementation. 

MAPE for all four intervals varies between 0.6084 % and 0.9357 % in different load 

and weather conditions, different calendar times, day types and through special events. 

This indicates that the model is valid for application through the whole time horizon. 

5.1.1.2 Hybrid Analytical Model Approach 

Comparison between the hybrid analytical model output and the actual load, in 

addition to MAPE values for the four intervals are shown in figures 5.5 to 5.8. 
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Figure 5.5: a) Actual and forecasted load for cold week period, SEC, 2005 

 b) Absolute error and MAPE, next hour, analytical model 
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Figure 5.6: a) Actual and forecasted load for hot week period, SEC, 2005 

 b) Absolute error and MAPE, next hour, analytical model 
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Figure 5.7: a) Actual and forecasted load for Ramadan season, SEC, 2005 

 b) Absolute error and MAPE, next hour, analytical model 
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Figure 5.8: a) Actual and forecasted load for summer vacation season, SEC, 2005 

 b) Absolute error and MAPE, next hour, analytical model 
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It is clear from the previous figures that ANN model achieved better results 

than the hybrid analytical model. While ANN model results are very accurate, the 

results obtained using the hybrid analytical model are reasonable ranging from 2.22 % 

and 3.8 %. 

5.1.2 Next Day Load Forecasting 

As done in next hour model, two main approaches will be used to forecast next 

day load. First, neural network model approach results will be shown in figures 5.9 to 

5.12. Then, the hybrid analytical model approach results will be displayed in figures 

5.13 to 5.16. Moreover, results obtained using ANN iterative model are shown in 

figures 5.18 to 5.21. After that, comparison analysis of the three approaches will be 

presented. 

5.1.2.1 Neural Network Model Approach 
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Figure 5.9: a) Actual and forecasted load for cold week period, SEC, 2005 

 b) Absolute error and MAPE, next day, NN 
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Figure 5.10: a) Actual and forecasted load for hot week period, SEC, 2005 

 b) Absolute error and MAPE, next day, NN 
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Figure 5.11: a) Actual and forecasted load for Ramadan season, SEC, 2005 

 b) Absolute error and MAPE, next day, NN 
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Figure 5.12: a) Actual and forecasted load for summer vacation season, SEC, 2005 

 b) Absolute error and MAPE, next day, NN 

 

 

The performance of this model is satisfactory except for some few hours. This 

is because SEC data has many discontinuities in the data. Many days are missing and 

some of the days are omitted from the data because abnormality or data clipping. It is 

noted that the high error values appear in the discontinuity intervals. For example, 65 

days are not available from year 2003 and 73 days from the forecasted year 2005 are 

missing. Some of these days are within same period and some of them are in different 

periods. Especially if these days are in the same interval, this will affect the historical 

load inputs data for the previous days to the forecasted day. Also, the error may be 

caused by a change in the load profile which is reflected to several possible reasons. 
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The most affecting factor in this situation is the sudden and unpredicted change of 

weather conditions like sand storm, rainfall or significant change in wind direction.    

5.1.2.2 Hybrid Analytical Model Approach 
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Figure 5.13: a) Actual and forecasted load for cold week period, SEC, 2005 

 b) Absolute error and MAPE, next day, analytical model 
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Figure 5.14: a) Actual and forecasted load for hot week period, SEC, 2005 

 b) Absolute error and MAPE, next day, analytical model 
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Figure 5.15: a) Actual and forecasted load for Ramadan season, SEC, 2005 

 b) Absolute error and MAPE, next day, analytical model 
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Figure 5.16: a) Actual and forecasted load for summer vacation season, SEC, 2005 

 b) Absolute error and MAPE, next day, analytical model 

 

In hybrid analytical model, there are two main possible reasons for errors. This 

is due to forecasting two parameters which are daily shape behavior with zero mean 

value and next day average load consumption. In predicting daily load shape, some of 

the days may be transitional mode, meaning that they may be classified to a mode 

while they are belonging to other mode. This case is present, for example, in the 

intervals of seasons changing from winter to summer or vice versa. The shape does not 

change suddenly, but it changes gradually making it difficult to whether classify these 

days to winter mode or summer mode or even create a new mode called gradual 

change between winter and summer which is present in USA data. Moreover, within 

the same mode, there are some days that have abnormality in their shape for any 

reason like rainfall or sandstorm. Also, some days change the shape for unknown 
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reasons like a sudden occasion which could not be identified from either the academic 

calendar or the official calendar. As a result of that, people activities may be changed 

during these days and, consequently, the daily load shape is changing. After finding 

the average mode day, it is clear that these abnormal days are different in shape with 

their mode representative average day. The other factor is the error resulting from 

forecasting average power for next day using NN.  

5.1.2.3 Iterative Forecasting Model 

Next day load forecasting model can be also modeled by repetitive use of the NN 

next hour models. This is achieved by forecasting the load of next hour at a time. After 

that, this load is aggregated to the series, so that the forecasts for the later hours will be 

based on the forecasts of the earlier ones. Next hour models are heavily dependent on 

recent hourly loads on the forecasting day. Since these load values are forecasted and not 

measured, forecasting errors are accumulating and the error values will increase 

accordingly. However, the error is not always increasing with the increase of the 

forecasted hours. This depends on the nature of data to be analyzed, inputs parameters and 

the forecasted hour. The model gives very accurate results when forecasting next 4 to 6 

hours. There are some fluctuations of the error as clearly shown in figure 5.17 which 

displays the average MAPE for each number of forecasted hours over the entire evaluation 

year for SEC, Marafiq and USA data. 
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Figure 5.17: Average MAPE for each hour for: (a) SEC (b) Marafiq (c) USA data 

 

 

For SEC data, the same forecasted periods using ANN and hybrid analytical 

models will be forecasted using the iterative model. The results are shown in figures 

5.18 to 5.21. 
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Figure 5.18: a) Actual and forecasted load for cold week period, SEC, 2005 

b) Absolute error and MAPE, next day, iterative model 
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Figure 5.19: a) Actual and forecasted load for hot week period, SEC, 2005 

b) Absolute error and MAPE, next day, iterative model 



111 

 

 

 

20 40 60 80 100 120 140 160
25

30

35

40

45

50

hours

P
o
w

e
r 

(M
W

)
( a )

 

 
actual

forecasted

20 40 60 80 100 120 140 160
0

50

100
( b )

hours

%
 e

rr
o
r

 

 

MAPE =  3.9186 % absolute error

MAPE

 
Figure 5.20: a) Actual and forecasted load for Ramadan season, SEC, 2005 

b) Absolute error and MAPE, next day, iterative model 
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Figure 5.21: a) Actual and forecasted load for summer vacation season, SEC, 2005 

 b) Absolute error and MAPE, next day, iterative model 
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5.2 Marafiq Data 

In this data source, the used data for training and model building are 2009 and 

2010, while the forecasted period is up to 10 December 2011. As done in SEC data, 

typical four intervals selected from different seasons exposed to different 

characteristics will be shown. The typical selected dates for these seasons are shown in 

table 5.2. 

Table 5.2: The selected dates to represent seasons for all models, Marafiq data 

 

Season 

Date 

From To 

Winter 5/3/2011 11/3/2011 

Summer 28/5/2011 3/6/2011 

Ramadan 6/8/2011 12/8/2011 

Summer Vacation 9/7/2011 15/7/2011 

 

5.2.1 Next Hour Load Forecasting 

5.2.1.1 Neural Network Model Approach 

Same approach used in SEC data will be used here. Comparisons of the ANN model 

output and the actual load and MAPE for the four intervals are shown in figures 5.22 

to 5.25. 
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MAPE =  0.4973 % absolute error
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Figure 5.22: a) Actual and forecasted load for cold week period, Marafiq, 2011 

 b) Absolute error and MAPE, next hour, NN 

20 40 60 80 100 120 140 160
60

80

100

120

140

hours

P
o
w

e
r 

(M
W

)

( a )

 

 

actual

forecasted

20 40 60 80 100 120 140 160
0

20

40

60

80

100
( b )

hours

%
 e

rr
o
r

 

 

MAPE =  0.4826 %
absolute error

MAPE

 
Figure 5.23: a) Actual and forecasted load for hot week period, Marafiq, 2011 

 b) Absolute error and MAPE, next hour, NN 
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Figure 5.24: a) Actual and forecasted load for Ramadan season, Marafiq, 2011 

 b) Absolute error and MAPE, next hour, NN 
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Figure 5.25: a) Actual and forecasted load for summer vacation season, Marafiq, 2011 

 b) Absolute error and MAPE, next hour, NN 
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5.2.1.2 Hybrid Analytical Model Approach 

Comparison between the hybrid analytical model output and the actual load, in 

addition to MAPE values for the four intervals are shown in figures 5.26 to 5.29. 
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Figure 5.26: a) Actual and forecasted load for cold week period, Marafiq, 2011 

 b) Absolute error and MAPE, next hour, analytical model 
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Figure 5.27: a) Actual and forecasted load for hot week period, Marafiq, 2011 

 b) Absolute error and MAPE, next hour, analytical model 
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Figure 5.28: a) Actual and forecasted load for Ramadan season, Marafiq, 2011 

 b) Absolute error and MAPE, next hour, analytical model 



116 

 

 

 

20 40 60 80 100 120 140 160
70

80

90

100

110

120

hours

P
o
w

e
r(

M
W

)

( a )

 

 

actual

forecasted

20 40 60 80 100 120 140 160

20

40

60

80

100
( b )

hours

%
 e

rr
o
r

 

 
MAPE =  3.0889 % absolute error

MAPE

 
Figure 5.29: a) Actual and forecasted load for summer vacation season, Marafiq, 2011 

 b) Absolute error and MAPE, next hour, analytical model 

 

 

As in ANN next hour load forecasting model for SEC data, accurate results are 

obtained where MAPE values are ranging between 0.3509 % and 0.4973 % and hence 

the model is accurately satisfying next hour forecasting for both SEC and Marafiq 

data. As expected, ANN model forecasts next hour load in better performance than 

hybrid analytical model. Table 5.3 summarizes all MAPE values for the two models 

for each set of data. 
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Table 5.3: Summary of  MAPE results of next hour models for SEC and Marafiq data 

 

  SEC Marafiq 

Winter ANN   0.9357 %   0.4973 % 

Period Hybrid  3.4268 %  3.2846 % 

Hot ANN  0.6084 %  0.4826 % 

Period Hybrid  3.5889 %  3.7027 % 

Ramadan ANN  0.7881 %  0.3542 % 

Period Hybrid  3.8774 %  2.6181 % 

Summer ANN  0.6517 %  0.3509 % 

Period Hybrid  2.2295 %  3.0889 % 

 

 

5.2.2 Next Day Load Forecasting 

5.2.2.1 Neural Network Model Approach 

Comparison between the ANN model output and the actual load, in addition to 

MAPE values for the four intervals are shown in figures 5.30 to 5.33. 
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Figure 5.30: a) Actual and forecasted load for cold week period, Marafiq, 2011 

 b) Absolute error and MAPE, next day, NN 
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Figure 5.31: a) Actual and forecasted load for hot week period, Marafiq, 2011 

b) Absolute error and MAPE, next day, NN 
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Figure 5.32: a) Actual and forecasted load for Ramadan season, Marafiq, 2011 

b) Absolute error and MAPE, next day, NN 
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Figure 5.33: a) Actual and forecasted load for summer vacation season, Marafiq, 2011 

 b) Absolute error and MAPE, next day, NN 

 

 

Since Marafiq data are complete, consistent and organized, the obtained results 

from this model is very satisfactory and ranging within good limits. MAPE values for 

the four typical intervals are between 1.4494 % and 2.5818 % which shows a good 

indication for model validity.  

5.2.2.2 Hybrid Analytical Model Approach 

Figures 5.34 to 5.37 show a comparison between the hybrid analytical model 

output and the actual load, in addition to MAPE values for the four intervals. 
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Figure 5.34: a) Actual and forecasted load for cold week period, Marafiq, 2011 

 b) Absolute error and MAPE, next day, analytical model 
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Figure 5.35: a) Actual and forecasted load for hot week period, Marafiq, 2011 

 b) Absolute error and MAPE, next day, analytical model 
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Figure 5.36: a) Actual and forecasted load for Ramadan season, Marafiq, 2011 

 b) Absolute error and MAPE, next day, analytical model 
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Figure 5.37: a) Actual and forecasted load for summer vacation season, Marafiq, 2011 

 b) Absolute error and MAPE, next day, analytical model 
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Same reasons for errors mentioned in SEC data analysis can be considered in 

Marafiq data. This model shows also satisfactory results and the MAPE values are 

ranging between 2.6181 % and 3.7027 % and this is an indication of the validity of the 

hybrid analytical model. 

5.2.2.3 Iterative Forecasting Model 

The same forecasted periods using ANN and hybrid analytical models will be 

forecasted using the iterative model. The results are shown in figures 5.38 to 5.41. 
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Figure 5.38: a) Actual and forecasted load for cold week period, Marafiq, 2011 

 b) Absolute error and MAPE, next day, iterative model 
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Figure 5.39: a) Actual and forecasted load for hot week period, Marafiq, 2011 

 b) Absolute error and MAPE, next day, iterative model 
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Figure 5.40: a) Actual and forecasted load for Ramadan season, Marafiq, 2011 

 b) Absolute error and MAPE, next day, iterative model 
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Figure 5.41: a) Actual and forecasted load for summer vacation season, Marafiq, 2011 

 b) Absolute error and MAPE, next day, iterative model 
 

Therefore, forecasting next day load using iterative model achieved good 

results. With the exception of few hours where MAPE values are relatively high, the 

results show the effectiveness of this model especially when trying to forecast next 10 

to 12 hours.  

To compare between the results of the three approaches for both data sources, 

it is noted that all models give reasonable results except for few hours which are not 

comparable with several good results. Actually, there is no much difference for MAPE 

values of all models. Table 5.4 shows MAPE results obtained from each model for the 

two sources of data. 
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Table 5.4: Summary of MAPE results of next day models for SEC and Marafiq data 

 

  SEC Marafiq 

Winter NN 2.671 % 2.5818 % 

Week iterative 4.2673 % 2.9563 % 

Period Hybrid 3.4268 % 3.2846 % 

Hot NN 2.5059 % 2.5173 % 

Week iterative 2.6019 % 2.6228 % 

Period Hybrid 3.5889 % 3.7027 % 

Ramadan NN 2.5014 % 1.4494 % 

Week iterative       3.9186 % 2.8272 % 

Period Hybrid 3.8774 % 2.6181 % 

Summer NN 1.5839 % 2.5247 % 

Week iterative 2.3221 % 2.3754 % 

Period Hybrid 2.2295 % 3.0889 % 

 

 

5.3 Summary and Conclusions of the Chapter 

- This chapter shows the results of all models for SEC data and Marafiq data. 

- For each set of data, the proposed models are next hour and next day load 

forecasting using ANN and Hybrid analytical models. 

- Typical intervals exposed to different weather conditions and people activities 

are selected to check the validity of all models. 

- Results show accurate performance using ANN and reasonable results using 

hybrid analytical model for next hour load forecasting for both data sources. 

- For next day load forecasting using ANN and Hybrid analytical model, the 

results are in reasonable and satisfactory level except for some few points. 

- Iterative forecasting model is used to forecast next day load to compare the 

results with other models and to show the validity and effectiveness of all 

proposed models 
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CHAPTER 6 

 

MODELS COMPARISON WITH 

OTHER PUBLISHED WORK 

 

 

 

6.1 Introduction 

In this chapter, analysis and results of the models used in this work are 

compared with published work based on abductive networks [48]. Both approaches are 

applied to the same set of data. As mentioned previously, the used data source in this 

analysis consists of measured hourly load consumption in MW and temperature in 

Fahrenheit for the Puget power utility, Seattle, USA, over the period from 1 January 

1985 to 31 December 1990. Years from 1985 to 1989 are used for training and model 

building to forecast next hour and next day load for the year 1990. First, an overview 

of reference [48] is presented showing the concept and history of the abductive 

networks. Then, for next hour and next day load forecasting, inputs parameters, used 
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approach and results are shown. After that, for each model, the obtained results from 

abductive networks model are compared with the obtained results from the models 

used in this work; all are applied to the same set of data. 

 

6.2 Abductory Inductive Mechanism (AIM) Networks 

AIM is a supervised inductive machine-learning tool for synthesizing 

automatically abductive network models from a database of inputs and outputs to 

represent training set of solved examples. This tool can automatically synthesize 

sufficient models that embody the inherent structure of complex and highly nonlinear 

systems. The group method of data handling (GMDH) technique [49-50] is a 

formalized paradigm for iterated (multi-phase) polynomial regression that can produce 

a high-degree polynomial model in effective predictors. The process is naturally 

'evolutionary', using initially simple regression relationships to derive more accurate 

representations in the next iteration. The algorithm selects input combinations and 

polynomial relationships that help minimizing the prediction error in each phase. AIM 

builds networks of different forms of polynomial functional elements, according to 

prediction performance. The element types, network size, connectivity, and 

coefficients for the optimum model are determined automatically by using well-proven 

optimization criteria, thus reducing the need for user intervention compared to neural 

networks. This simplifies model development and considerably decreases the 

learning/development effort and time. The models take the form of layered feed-

forward abductive networks of functional elements (nodes) as shown in figure 6.1. 

[49] 
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Figure 6.1: A typical AIM abductive network model showing various types of 

functional elements. 

 

             The elements in the first layer operate on different combinations of the 

independent input variables (X's) and the element in the final layer produces the 

predicted output for the dependent variable y. In addition to the main layers of the 

network, an input layer of normalizers convert the input variables into an internal 

representation as Z scores with zero mean and unity variance.                 .                        

The used version of AIM supports the following main functional elements:                    

(i) A white element which consists of a constant plus the linear weighted sum of all 

outputs of the previous layer, i.e.: 

      ‘’White” Output=W0+W1X1+W2X2+W3X3+……+WnXn                               (6.1) 

Where X1, X2,..., Xn are the inputs to the element and W0, W1, ..., Wn are the element 

weights.  
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(ii) Single, double, and triple elements which implement a third-degree polynomial 

expression with all possible cross-terms for one, two, and three inputs respectively; for 

example,  

‘’Double” Output=W0+W1X1+W2X2+W3X1
2
+W4X2

2
+W5X1X2+W6X1

3
+W7X2

3
    (6.2) 

The database of input-output solved examples is divided into a training set and 

an evaluation set. AIM uses the training set to synthesize the model network layer by 

layer until no further improvement in performance is possible or a preset limit on the 

number of layers is reached. Within each layer, each element is computed and its 

performance scored for all combinations of allowed inputs. The best network structure, 

element types and coefficients, and connectivity are all determined automatically by 

minimizing the predicted squared error (PSE) criterion [51], which eliminates the 

problem of determining when to stop training in neural networks. This criterion selects 

the most accurate model that does not overfit the training data to strike a balance 

between the accuracy of the model in representing the training data and its generality 

which allows it to fit yet unseen future data. The user may optionally control this 

trade-off between accuracy and generality using the complexity penalty multiplier 

(CPM) parameter. Larger values than the default value of 1 lead to simpler models that 

are less accurate but may generalize well with previously unseen data, while lower 

values produce more complex networks that may overfit the training data and degrade 

actual prediction performance. [49] 
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6.3 Next Hour Load Forecasting 

6.3.1 Abductive Networks Model 

In this model, 24 models are developed to forecast the load at the next hour (h) 

within day (d) where the inputs are all hourly load data on day (d-1) 

(L1,L2,L3,…,L24) and all available hourly load data on day (d) up to, and including, 

the preceding hour (h-1) (NL1, NL2, …, NL(h-1)) in addition to extreme temperatures 

and day type information. In next hour load forecasting model, the number of load 

inputs is not fixed. It varies between 24 inputs for hour 1 and 47 inputs for hour 24. 

Moreover, other inputs include the average temperature Ta on day (d-1) and the 

forecasted average temperature ETa for day (d). Also, day type for the forecasting day 

(d) was represented by a single binary input (WRK) that is 1 for a working day and 0 

otherwise. A record in the training dataset for the model for hour h, where h=2,3,…,24 

takes the form of table 6.1: 

Table 6.1: Inputs parameters configuration for next hour load forecasting 

Inputs Output 

24 hourly 

loads 

 

(h-1) available 

hourly loads on 

day (d) 

Average 

temperature 

for day (d-

1) 

Forecasted 

average 

temperature 

for day (d) 

Day 

type 

code for 

day (d) 

Load for 

hour (h) 

for day (d-

1)     

on day 

(d) 

L1, L2, 

L3……L24 

NL1,NL2,.NL(h-

1) Ta ETa wrk L(d,h) 

 

Also, table 6.2 summarizes the model structure for all the 24 hourly models 

and lists the model inputs selected and the corresponding time lags in the load time 

series and shows a sketch of the model structure. 
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Table 6.2: Summary of the abductive network models for the 24 next-hour load 

forecasters 

 
 

6.3.2 ANN Model 

For next hour load forecasting modeled in this work, the inputs parameters and 

values arrangement follow the same approach done for SEC and Marafiq data. Figure 

6.2 shows the actual and forecasted load in addition to MAPE and absolute errors for 
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for the entire year 1990 of Seattle, USA on the basis of next hour load forecasting 

using NN. 
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Figure 6.2: a) Actual and forecasted load for year 1990, Seattle, USA 

b) Absolute error and MAPE, next hour, NN model 

 

It is clear that next hour load forecasting model using ANN has accurately 

forecasted next hour load for the year 1990. The performance of the model gives 

accurate results for implementation and indicates the validity of the proposed model. 

6.3.3 Hybrid Analytical Model 

For next hour load forecasting using the hybrid analytical model, the same 

approach followed for SEC and Marafiq data will be applied to USA data. The 

difference is in the nature of modes because of different characteristics of USA data. 

For example, some new modes like Thanksgiving day, Labor day, Christmas day are 

present here. Moreover, unlike KSA, weekend days in USA are Saturdays and 
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Sundays. Figure 6.3 shows the actual and forecasted load in addition to MAPE and 

absolute errors for for the entire year 1990 of Seattle, USA on the basis of next hour 

load forecasting using hybrid analytical model. 
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Figure 6.3: a) Actual and forecasted load for year 1990, Seattle, USA 

b) Absolute error and MAPE, next hour, Hybrid analytical model 

 

So, the hybrid analytical model gives relatively satisfactory results for next 

hour load forecasting for the year 1990. The hybrid analytical model forecasts the 

holidays in better accuracy than normal days because these holidays are mainly 

affected by people activities and the impact of weather variables is limited. For 

example, in Christmas day, people activities are the same each year and this gives a 

clear indication of the forecasted Christmas day based on the records of previous 

year’s Christmas days. Consequently, load behavior for the holidays does not change 

each year.  
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In comparing the results of all next hour models (abductive networks, ANN 

and hybrid analytical models), table 6.3 lists the MAPE values for all hours, giving the 

overall value for the evaluation year as 1.14 % reached by the abductive networks 

model and 0.4539 % reached by ANN model and 3.5364 % reached by the hybrid 

analytical model, which indicates the effectiveness of such models for STLF. 

 

Table 6.3: Performance of  next-hour load forecasting models over the evaluation year 

 

MAPE, % 

Forecasting Hour, 

h 

Abductive 

Networks 

ANN 

Model 

 

Hybrid 

Analytical 

 

Model 

 

Model 

1 1.14 0.3376 3.59 

2 1.01 0.3762     4.1279 

3 0.93 0.4142     4.3975 

4 0.88 0.4609     4.2138 

5 1.08 0.8437     3.9596 

6 1.27 1.2241     3.8487 

7 2.08 0.5297     3.8128 

8 1.55 0.6398     3.4294 

9 1.28 0.3797     2.6919 

10 0.82 0.297     2.1754 

11 0.94 0.2903     2.2216 

12 0.7 0.3982     2.5677 

13 0.8 0.323     3.1541 

14 0.69 0.3461     3.5914 

15 0.7 0.3835     3.9611 

16 0.77 0.4024     4.2641 

17 1.27 0.4207     4.7417 

18 1.31 0.4066     4.9125 

19 1.48 0.3769     4.3162 

20 1.25 0.4022     3.3791 

21 1.59 0.4228     2.9461 

22 1.23 0.4653     2.7521 

23 1.2 0.3675     2.8381 

24 1.29 0.3855     3.3131 

Average 1.14 0.4539 3.5364 
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Therefore, ANN next hour load forecasting model used in this work gives 

better results than the abductive networks and hybrid analytical models. The inputs 

used in the ANN model include all the previous hours (from h-1 up to h-24) loads to 

the forecasted hour. The model includes the most up to date load variation and the 

impact of the surrounding environment contribution.  

 

6.4 Next Day Load Forecasting 

6.4.1 Abductive Networks Model 

In next day load forecasting, 24 models are developed which forecast the full 

hourly load curve for the following day (d) in one go at the end of the preceding day 

(d-1). A model is dedicated for forecasting the load, EL (d,h), for each hour of the day. 

Unlike the case of next hour load forecasting where number of inputs is not fixed, all 

models here use the same set of inputs which includes: 24 hourly loads at day (d-1) 

(L1,L2,L3,…,L24), the measured minimum (Tmin) and maximum (Tmax) air 

temperatures on day (d-1), the forecasted minimum (ETmin) and maximum (ETmax) 

air temperatures on day (d), and the day type for forecasting day (d). The day type was 

coded as four mutually exclusive binary inputs representing a working day (Monday to 

Friday) (WRK), a Saturday (SAT), a Sunday (SUN), and an official holiday (HOLI). 

Tmin and Tmax were taken as the minimum and maximum values of the 24 hourly 

temperatures provided for the day. A record in the training dataset for the model for 

hour h (h=1,2,…,24) includes 32 input variables and takes the form of table 6.4. 

Moreover, table 6.5 summarizes the model structure for all the 24 models, listing the 

model inputs selected and the number of layers and elements. Models for the first two 

hours discard temperature and day type information, relying only on the load time 
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series. Forecasted temperature and day type inputs feature in all remaining models. 

Model complexity and nonlinearity increases as the forecasting hour progresses and 

the lead time increases.  

Table 6.4: Inputs parameters configuration for next day load forecasting 

Inputs Output 

24 hourly loads 

Extreme 

Temperatures 

Forecasted 

Extreme Day type code 

Load for hour 

(h) 

for day (d-1) for day (d-1) 

Temperatures 

for day (d) for day (d) on day (d) 

L1, L2, 

L3……L24 Tmin, Tmax 

ETmin, 

Etmax wrk,sun,sat,holi L(d,h) 

 

Full-day load curves were forecasted using all 24 models for four days of the 

evaluation year which represent a working day, a Saturday, a Sunday, and a holiday in 

the same season over the interval from 8 August to 3 September 1990. The results of 

these forecasted days using abductive networks are shown in figures 6.4a, 6.5a, 6.6a 

and 6.7a. 

6.4.2 ANN Model 

For next day load forecasting modeled in this work, the inputs parameters and 

values arrangement follow the same approach done for SEC and Marafiq data. The 

model utilizes the previous historical load values up to a day before the forecasted 

hour, h in the day, d. The results of the mentioned forecasted days using ANN are 

shown in figures 6.4b, 6.5b, 6.6b and 6.7b. 

6.4.3 Hybrid Analytical Model 

This model it is the same as the hybrid analytical next hour model. In next hour 

model, the mode equation is only evaluated at the forecasted hour; h. However, in next 

day model, the equation is evaluated at all hours of the day from 1 to 24. Forecasting 

next day average load is also same for both models. Therefore, hybrid analytical model 
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can be considered as next hour or next day load forecasting models. The results of the 

mentioned forecasted days using the hybrid analytical model are shown in figures 6.4c, 

6.5c, 6.6c and 6.7c. 

Table 6.5: Abductive network models for the 24 next-day hourly load forecasters 
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Figure 6.4: Actual and forecasted load profile for Wednesday 8 Aug, 1990 

(working day) using:(a) abductive networks (b) ANN (c) hybrid analytical model 
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Figure 6.5: Actual and forecasted load profile for Saturday 11 Aug, 1990 

 (week end day) using: (a) abductive networks (b) ANN (c) hybrid analytical model 
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Figure 6.6: Actual and forecasted load profile for Sunday 12 Aug, 1990 

 (week end day) using: (a) abductive networks (b) ANN (c) hybrid analytical model 
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Figure 6.7: Actual and forecasted load profile for Monday 3 Sep, 1990 

 (Labor Day holiday) using: (a) abductive networks, (b) ANN (c) hybrid analytical 

model 
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6.4.4 Iterative Model 

In addition, as done previously for SEC and Marafiq data, next day load 

forecasting can be modeled using repetitive use of next hour load models. Figure 6.8 

shows the above mentioned sample days forecasted using this method. 
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Figure 6.8: Actual and forecasted load profile using iterative model for: 

(a) Wednesday 8 Aug, 1990 (b) Saturday 11 Aug, 1990 

(c) Sunday 12 Aug, 1990 (d) Monday 3 Sep, 1990 
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Table 6.6 shows the MAPE comparison between the four models for each day 

for next day load forecasting.  

 

Table 6.6: MAPE comparison between the four models for 

 each day for next day load forecasting 

  MAPE, % 

  8-Aug 11-Aug 12-Aug 3-Sep 

ANN  1.1376  1.2683 1.5542 3.3031 

Iterative  2.5549 1.3484 2.0204 3.6159 

Hybrid  2.6276 2.8703  2.3703 1.2317  

Abductive 1.73   2.3 1.97 3.48  

 

For abductive networks model and ANN model, it is clear that the forecasting 

accuracy is the best for the working day and poorest for the holiday due to the fewer 

examples of holiday load patterns encountered during training. Moreover, the results 

obtained using iterative forecasting are very satisfactory. The best MAPE for the 

holiday day (Labor Day) is achieved by using the hybrid analytical model. This is 

because this day is considered as a mode and the model keeps its shape during all the 

model building years which are very similar in behavior as shown in figure 6.9. In 

holidays, load behavior is not affected by temperature considerably. The main 

affecting factor is people activities. 
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Figure 6.9: (a) Labor Day load profile for years 1985 – 1990 

(b) Similarity of Labor Day load profile for years 1985 – 1989 

(c) Ac components for Labor Day profile for years 1985 – 1989 

 

So, after isolating the dc component (average value) for each day and placing 

the figures at the zero axes as shown in figure 6.9c, it is very obvious that they have 

very identical behavior and this interprets the low MAPE for this day using hybrid 

analytical model.  
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So, after finding this average day, Fourier transform analysis mentioned in 

chapter 4 is applied to its waveform to reach to the final model equation of this mode. 

Figure 6.10 shows the actual Labor Day for 1990 decomposed to its dc and ac 

components. Also, table 6.7 shows the amplitudes and phase angles for the actual 

Labor Day and the average mode day. 
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Figure 6.10: Actual Labor Day for 1990 decomposed to its dc and ac components 
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Table 6.7: Amplitudes and phase angles for the actual Labor Day and the five 

years average ac mode day 

Amplitudes Phase Angles 

Actual Avg. ac Actual Avg. ac 

1668.41 0 0 3.14159 

175.402 175.4596 2.38011 2.37992 

92.499 92.61892 1.53799 1.53808 

33.8004 33.66315 -2.4279 -2.4308 

19.2711 19.19291 3.11999 3.11 

8.24533 8.01509 -1.7241 -1.7113 

5.34924 5.172116 -1.3687 -1.3217 

 

 

So, the equation for the 5 years average mode day is as follows:  

        PL-avg-ac= 175.46*cos(w(t-1)+2.38) + 92.62*cos(2w(t-1)+1.54)  

                        + 33.66*cos(3w(t-1)-2.43) + 19.19*cos(4w(t-1)+3.11)  

                        + 8.02*cos(5w(t-1)-1.71) + 5.17*cos(6w(t-1)-1.32)                      (6.3) 

Where w= 
2

24


 ,  

t is the hour number from 1 to 24 

 

Table 6.7 shows the high similarity between the actual Labor Day and the 

average ac mode day for the Labor Day. Since the mean value of the average mode 

day is zero, it is clear that its dc component is zero with phase angle π. Also, the dc 

component for the actual Labor Day is at zero frequency. The other harmonics 

amplitudes and phase angles are very identical for both days and these harmonics are 

the main responsible parameters for formatting the load curve shape. 
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6.5 Summary and Conclusions of the Chapter: 

- The aim of this chapter is to compare the results obtained from all models used 

in this thesis with a published work using different methods applied to the 

same data set. 

- For next hour load forecasting, NN model used in this work achieves MAPE of 

0.4539 % overall the entire 1990 year where it is 1.14 % when forecasting 

using abductive networks. So NN model outperforms the abductive networks 

model by 0.6861 %. 

- In next day load forecasting for the abductive networks and hybrid analytical 

models, the forecaster is limited to be at hour 24 of the day d-1 to forecast the 

day d. However, the advantage of the NN model is that it does not have such 

limitation. It is general for any hour in any day, and hence, it can be also 

considered as next 24 hours load forecasting rather than only next day load 

forecasting. 

- The advantage of the hybrid analytical model is forecasting the modes that 

have few days with high accuracy. This is always present in special days like 

Labor Day, Thanksgiving days…etc. where each mode contains only one day 

each year avoiding grouping many days that affect the accuracy of modeling 

the average ac mode day. 

- The obtained results for next day models conclude that when forecasting 

normal days, NN and abductive networks models achieve good results. 

However, to forecast special days or holidays, it is preferable to use hybrid 

analytical model. 
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CHAPTER 7 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

This work studies the applicability of different ANN and analytical models on 

STLF. Residential STLF models are presented and applied to different types of loads 

exposed to distinct people activities and weather conditions. The analysis is carried out 

on residential areas for three regions in two countries which are Al-Khubar and Yanbu 

industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed 

models applied on residential load. Various and diverse load characteristics are 

presented including high temperature, low temperature, high humidity, heating load, 

cooling load, different special days and different societies. 

For each region, two models are proposed which are next hour and next day 

load forecasting. For next hour load forecasting, the model is proposed using ANN 

utilizing the historical load data up to the previous hour to the forecasted one. The 

obtained results show very accurate results for all areas. The MAPE for the evaluation 
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year gives 0.8131 % for SEC, 0.4869 % for Marafiq and 0.4539 % for USA over the 

entire evaluation year for each region which show the validity of all next hour load 

forecasting models. 

In next day load forecasting, the analysis is conducted using two different 

techniques which are ANN and hybrid analytical model. In hybrid analytical model, 

days that have similar characteristics are classified to one group called mode. Then, 

representative average day for the mode is found and to construct the relevant model, 

Fourier Transform analysis is used. Then, ANN is used to forecast next day average 

power and finally the two components are combined to reach to the final next day 

forecasting using hybrid analytical model. 

In ANN model, same approach followed in next hour model is applied here but 

with different inputs parameters utilizing historical load parameters up to the load at 

same forecasted hour at previous day. The two next day forecasting models yield 

reasonable results where MAPE values for the evaluation year are 3.4496 % and 

4.2208 % for SEC, 3.2517 % and 4.3647 % for Marafiq, and % 2.6551 and 3.5364 % 

for USA, using ANN and hybrid analytical models, respectively. 

To show the effectiveness of the proposed models, techniques used in this 

work were compared with other published work with different method. For next hour 

ANN load forecast, the proposed model gives better results than abductive networks 

model. The obtained results show that MAPE for ANN model for the evaluation year 

is 0.4539 % and for the abductive networks model is 1.14 %. In next day models, 

ANN and abductive networks models yield similar and satisfactory MAPE results for 

normal days when compared to the results obtained from the hybrid analytical model. 

However, using hybrid analytical model, it gives better results when forecasting 
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special days and holidays. MAPE values for the evaluation year for ANN, abductive 

networks and hybrid analytical models are 2.6551 %, 2.67 % and 3.5364 %, 

respectively.    

As an extension of this work, further development models may include more 

weather parameters data such as wind speed and direction, rainfall and sky condition 

which have impact on the load. Also, this work is only to forecast next hour and next 

day loads. So, next week load forecasting could be a continuation for this work. 

Moreover, load type could be extended to include aggregated load, commercial and 

industrial loads. Hybrid analytical model could be used also for medium and long term 

forecasting but here the average daily load forecasting has to be extended to be not 

only next day average load forecasting but to include forecasting also to medium or 

long periods provided that accurate modes sorting should be achieved. 
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APPENDIX A: List of Some Different Modes for All Data 

 
SEC & Marafiq, KSA Seattle, USA 

Mode Code Mode Code 

Cold normal days 1.1 New Year's Day 6 

Cold Thursdays 1.6 Cold normal days 1.3 

Cold Fridays 1.7 Cold Saturdays 1.1 

Mid-year vacation 2 Cold Sundays 1.2 

Hot normal days 3.1 Spring  normal days 2.3 

Hot Thursdays 3.6 Spring Saturdays 2.1 

Hot Fridays 3.7 Spring Sundays 2.2 

Eid Hajj day 11 Summer normal days 3.3 

After Eid Hajj day 12 Summer Saturdays 3.1 

Summer vacation normal days 5.1 Summer Sundays 3.2 

Summer vacation Thursdays 5.6 Independence Day 11 

Summer vacation Fridays 5.7 Labor Day 12 

Ramadan days 6 Thanksgiving Day 14 

Eid Feter day 8 Black Friday 15 

After Eid Feter day 9 Christmas Day 17 
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APPENDIX B: Sample Modes Days for SEC Data 
 

SEC DATA 

 d m y h T(C) H(%) P(MW) dn dy mode 

 10 1 2002 1 17 46 11 6 10 1.6 

C
o

ld
 T

h
u

rsd
a
y
 , S

ch
o
o
ls P

erio
d

 

10 1 2002 2 12 11 10 6 10 1.6 

10 1 2002 3 12 11 9 6 10 1.6 

10 1 2002 4 12 6 8 6 10 1.6 

10 1 2002 5 12 2 8 6 10 1.6 

10 1 2002 6 12 6 9 6 10 1.6 

10 1 2002 7 13 10 9 6 10 1.6 

10 1 2002 8 13 10 11 6 10 1.6 

10 1 2002 9 13 19 13 6 10 1.6 

10 1 2002 10 14 19 14 6 10 1.6 

10 1 2002 11 18 26 15 6 10 1.6 

10 1 2002 12 18 31 13 6 10 1.6 

10 1 2002 13 19 36 13 6 10 1.6 

10 1 2002 14 19 41 13 6 10 1.6 

10 1 2002 15 19 44 12 6 10 1.6 

10 1 2002 16 19 41 14 6 10 1.6 

10 1 2002 17 19 37 16 6 10 1.6 

10 1 2002 18 19 35 19 6 10 1.6 

10 1 2002 19 19 35 17 6 10 1.6 

10 1 2002 20 19 32 17 6 10 1.6 

10 1 2002 21 19 32 16 6 10 1.6 

10 1 2002 22 18 34 15 6 10 1.6 

10 1 2002 23 18 35 14 6 10 1.6 

10 1 2002 24 19 36 12 6 10 1.6 

11 1 2002 1 19 35 11 7 11 1.7 

C
o

ld
 F

rid
a

y
 , S

ch
o

o
ls P

erio
d

 

11 1 2002 2 19 35 10 7 11 1.7 

11 1 2002 3 19 36 9 7 11 1.7 

11 1 2002 4 19 22 9 7 11 1.7 

11 1 2002 5 19 12 8 7 11 1.7 

11 1 2002 6 20 3 9 7 11 1.7 

11 1 2002 7 20 10 8 7 11 1.7 

11 1 2002 8 20 21 9 7 11 1.7 

11 1 2002 9 22 22 10 7 11 1.7 

11 1 2002 10 22 28 12 7 11 1.7 

11 1 2002 11 23 32 13 7 11 1.7 

11 1 2002 12 24 41 13 7 11 1.7 
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11 1 2002 13 23 44 13 7 11 1.7 

11 1 2002 14 22 46 13 7 11 1.7 

11 1 2002 15 22 44 12 7 11 1.7 

11 1 2002 16 22 46 13 7 11 1.7 

11 1 2002 17 22 45 15 7 11 1.7 

11 1 2002 18 20 32 16 7 11 1.7 

11 1 2002 19 20 19 16 7 11 1.7 

11 1 2002 20 20 31 16 7 11 1.7 

11 1 2002 21 20 32 16 7 11 1.7 

11 1 2002 22 13 34 15 7 11 1.7 

11 1 2002 23 12 35 13 7 11 1.7 

11 1 2002 24 12 36 13 7 11 1.7 

12 1 2002 1 12 35 10 1 12 1.1 

C
o
ld

 W
eek

 D
a
y
 , S

ch
o

o
ls P

erio
d

 

12 1 2002 2 12 22 9 1 12 1.1 

12 1 2002 3 14 24 9 1 12 1.1 

12 1 2002 4 14 25 8 1 12 1.1 

12 1 2002 5 14 31 9 1 12 1.1 

12 1 2002 6 14 37 11 1 12 1.1 

12 1 2002 7 13 29 11 1 12 1.1 

12 1 2002 8 11 42 12 1 12 1.1 

12 1 2002 9 13 41 13 1 12 1.1 

12 1 2002 10 13 42 13 1 12 1.1 

12 1 2002 11 13 42 13 1 12 1.1 

12 1 2002 12 14 43 12 1 12 1.1 

12 1 2002 13 14 42 13 1 12 1.1 

12 1 2002 14 14 44 13 1 12 1.1 

12 1 2002 15 14 41 12 1 12 1.1 

12 1 2002 16 14 43 14 1 12 1.1 

12 1 2002 17 14 49 15 1 12 1.1 

12 1 2002 18 12 50 19 1 12 1.1 

12 1 2002 19 11 49 17 1 12 1.1 

12 1 2002 20 11 49 18 1 12 1.1 

12 1 2002 21 11 48 17 1 12 1.1 

12 1 2002 22 11 46 16 1 12 1.1 

12 1 2002 23 11 49 14 1 12 1.1 

12 1 2002 24 10 51 12 1 12 1.1 
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APPENDIX C: Sample Modes Days for Marafiq Data 
 

Marafiq Data 

 d m y h T(C) H(%) P(MW) dn dy mode 

 14 8 2010 1 39.1087 18.0708 113.128 1 226 6.1 

R
a
m

a
d

a
n

 W
eek

 D
a
y
 

14 8 2010 2 37.2161 33.3944 112.402 1 226 6.1 

14 8 2010 3 35.9341 49.2064 112.378 1 226 6.1 

14 8 2010 4 34.3468 62.9426 113.101 1 226 6.1 

14 8 2010 5 33.7363 95.9096 111.558 1 226 6.1 

14 8 2010 6 32.6374 99.5116 107.142 1 226 6.1 

14 8 2010 7 33.7363 99.5116 101.326 1 226 6.1 

14 8 2010 8 35.5067 73.5653 103.059 1 226 6.1 

14 8 2010 9 33.9194 99.3895 106.855 1 226 6.1 

14 8 2010 10 34.4689 99.5116 109.449 1 226 6.1 

14 8 2010 11 35.9341 99.5116 114.283 1 226 6.1 

14 8 2010 12 36.4835 99.5116 118.726 1 226 6.1 

14 8 2010 13 36.4835 99.4505 121.412 1 226 6.1 

14 8 2010 14 37.4603 99.3895 125.105 1 226 6.1 

14 8 2010 15 35.9951 99.5116 127.193 1 226 6.1 

14 8 2010 16 36.6667 99.5116 129.051 1 226 6.1 

14 8 2010 17 35.9341 99.5116 128.962 1 226 6.1 

14 8 2010 18 34.2857 99.5116 128.25 1 226 6.1 

14 8 2010 19 33.7973 99.5116 120.716 1 226 6.1 

14 8 2010 20 33.3089 99.5116 125.416 1 226 6.1 

14 8 2010 21 33.1868 99.5116 124.471 1 226 6.1 

14 8 2010 22 32.6374 99.5116 122.257 1 226 6.1 

14 8 2010 23 32.6984 99.5116 121.63 1 226 6.1 

14 8 2010 24 32.6374 99.5116 119.801 1 226 6.1 

10 9 2010 1 35.3846 15.4457 65.3472 7 253 8 

E
id

 F
eter D

a
y
 

10 9 2010 2 35.3846 15.3236 63.5446 7 253 8 

10 9 2010 3 34.5299 19.7192 62.1494 7 253 8 

10 9 2010 4 32.0879 47.1306 60.5916 7 253 8 

10 9 2010 5 35.812 16.5446 60.6401 7 253 8 

10 9 2010 6 34.591 22.2222 58.5271 7 253 8 

10 9 2010 7 34.0415 20.8181 52.09 7 253 8 

10 9 2010 8 32.7595 64.1026 57.0911 7 253 8 

10 9 2010 9 36.7888 22.0391 60.3435 7 253 8 

10 9 2010 10 36.1783 26.6178 64.5703 7 253 8 

10 9 2010 11 34.4078 48.9011 66.8179 7 253 8 

10 9 2010 12 35.5067 58.8523 69.7519 7 253 8 
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10 9 2010 13 34.8352 80.525 70.8409 7 253 8 

10 9 2010 14 35.3236 85.1648 71.2737 7 253 8 

10 9 2010 15 35.1404 75.9463 70.5561 7 253 8 

10 9 2010 16 34.0415 99.5116 69.8504 7 253 8 

10 9 2010 17 33.6142 99.5116 67.8803 7 253 8 

10 9 2010 18 32.3932 99.5116 66.114 7 253 8 

10 9 2010 19 32.3932 99.5116 71.0527 7 253 8 

10 9 2010 20 32.3321 99.5116 71.8739 7 253 8 

10 9 2010 21 33.0647 99.5116 70.289 7 253 8 

10 9 2010 22 35.3236 37.6068 68.4604 7 253 8 

10 9 2010 23 34.7131 31.1966 64.7265 7 253 8 

10 9 2010 24 32.3321 56.4103 64.7134 7 253 8 

11 9 2010 1 31.4164 99.5116 64.4665 1 254 9.1 

A
fter E

id
 F

eter D
a
y
 

11 9 2010 2 31.8437 65.0794 63.6117 1 254 9.1 

11 9 2010 3 30.7448 99.5116 60.9827 1 254 9.1 

11 9 2010 4 31.8437 46.7643 58.9079 1 254 9.1 

11 9 2010 5 30.3175 54.9451 59.5111 1 254 9.1 

11 9 2010 6 29.2186 99.5116 59.5694 1 254 9.1 

11 9 2010 7 29.2186 99.5116 55.2265 1 254 9.1 

11 9 2010 8 31.9658 99.5116 57.0333 1 254 9.1 

11 9 2010 9 31.4164 58.486 61.6569 1 254 9.1 

11 9 2010 10 32.0879 70.696 64.7363 1 254 9.1 

11 9 2010 11 33.3089 66.3004 67.2959 1 254 9.1 

11 9 2010 12 34.2857 85.348 70.4059 1 254 9.1 

11 9 2010 13 34.0415 74.9695 72.8075 1 254 9.1 

11 9 2010 14 34.8352 65.0183 71.9531 1 254 9.1 

11 9 2010 15 35.1404 64.8352 70.9466 1 254 9.1 

11 9 2010 16 33.431 79.8535 70.5435 1 254 9.1 

11 9 2010 17 32.9426 99.5116 70.2485 1 254 9.1 

11 9 2010 18 32.0879 99.5116 68.0937 1 254 9.1 

11 9 2010 19 30.989 99.5116 72.8252 1 254 9.1 

11 9 2010 20 30.7448 99.5116 73.0765 1 254 9.1 

11 9 2010 21 30.989 99.5116 72.4852 1 254 9.1 

11 9 2010 22 31.2943 99.5116 69.921 1 254 9.1 

11 9 2010 23 30.8669 99.5116 67.908 1 254 9.1 

11 9 2010 24 32.3932 67.8266 65.3297 1 254 9.1 
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APPENDIX D: Sample Modes Days for USA Data 
 

USA DATA 

 d m y h T(C) P(MW) dn dy mode 

 2 1 1989 1 4.44444 1794 3 2 1.3 

W
in

ter W
eek

 D
a
y
 

2 1 1989 2 4.44444 1686 3 2 1.3 

2 1 1989 3 5 1661 3 2 1.3 

2 1 1989 4 5 1658 3 2 1.3 

2 1 1989 5 5 1698 3 2 1.3 

2 1 1989 6 5 1803 3 2 1.3 

2 1 1989 7 5 1974 3 2 1.3 

2 1 1989 8 5.55556 2184 3 2 1.3 

2 1 1989 9 5.55556 2472 3 2 1.3 

2 1 1989 10 5.55556 2733 3 2 1.3 

2 1 1989 11 5.55556 2892 3 2 1.3 

2 1 1989 12 5.55556 2885 3 2 1.3 

2 1 1989 13 6.11111 2799 3 2 1.3 

2 1 1989 14 6.66667 2687 3 2 1.3 

2 1 1989 15 7.22222 2579 3 2 1.3 

2 1 1989 16 7.22222 2578 3 2 1.3 

2 1 1989 17 7.22222 2698 3 2 1.3 

2 1 1989 18 7.22222 2851 3 2 1.3 

2 1 1989 19 7.22222 2811 3 2 1.3 

2 1 1989 20 7.22222 2748 3 2 1.3 

2 1 1989 21 7.22222 2613 3 2 1.3 

2 1 1989 22 7.77778 2408 3 2 1.3 

2 1 1989 23 7.77778 2128 3 2 1.3 

2 1 1989 24 8.33333 1839 3 2 1.3 

11 6 1989 1 15 1313 2 162 3.2 

S
u

m
m

er S
u

n
d

a
y
 

11 6 1989 2 15 1223 2 162 3.2 

11 6 1989 3 12.7778 1172 2 162 3.2 

11 6 1989 4 12.7778 1166 2 162 3.2 

11 6 1989 5 12.7778 1162 2 162 3.2 

11 6 1989 6 10.5556 1168 2 162 3.2 

11 6 1989 7 13.8889 1232 2 162 3.2 

11 6 1989 8 16.1111 1401 2 162 3.2 

11 6 1989 9 17.2222 1624 2 162 3.2 

11 6 1989 10 18.3333 1800 2 162 3.2 

11 6 1989 11 20.5556 1863 2 162 3.2 

11 6 1989 12 21.6667 1860 2 162 3.2 
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11 6 1989 13 22.2222 1809 2 162 3.2 

11 6 1989 14 25 1764 2 162 3.2 

11 6 1989 15 26.6667 1697 2 162 3.2 

11 6 1989 16 27.7778 1674 2 162 3.2 

11 6 1989 17 28.3333 1711 2 162 3.2 

11 6 1989 18 27.7778 1761 2 162 3.2 

11 6 1989 19 27.2222 1767 2 162 3.2 

11 6 1989 20 24.4444 1779 2 162 3.2 

11 6 1989 21 22.2222 1808 2 162 3.2 

11 6 1989 22 19.4444 1891 2 162 3.2 

11 6 1989 23 18.8889 1778 2 162 3.2 

11 6 1989 24 15.5556 1509 2 162 3.2 

4 9 1989 1 59 1288 3 247 12 

L
a
b

o
r D

a
y
 

4 9 1989 2 57 1208 3 247 12 

4 9 1989 3 58 1180 3 247 12 

4 9 1989 4 54 1173 3 247 12 

4 9 1989 5 52 1178 3 247 12 

4 9 1989 6 54 1236 3 247 12 

4 9 1989 7 54 1290 3 247 12 

4 9 1989 8 55 1455 3 247 12 

4 9 1989 9 60 1687 3 247 12 

4 9 1989 10 64 1893 3 247 12 

4 9 1989 11 66 2000 3 247 12 

4 9 1989 12 70 1968 3 247 12 

4 9 1989 13 70 1890 3 247 12 

4 9 1989 14 73 1808 3 247 12 

4 9 1989 15 74 1734 3 247 12 

4 9 1989 16 74 1717 3 247 12 

4 9 1989 17 73 1764 3 247 12 

4 9 1989 18 70 1839 3 247 12 

4 9 1989 19 68 1902 3 247 12 

4 9 1989 20 66 1953 3 247 12 

4 9 1989 21 63 2043 3 247 12 

4 9 1989 22 62 1886 3 247 12 

4 9 1989 23 60 1620 3 247 12 

4 9 1989 24 59 1395 3 247 12 
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APPENDIX E: MATLAB Codes 
 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% FINAL MODEL OF NEXT HOUR & DAY LOAD FORECASTING USING NEURAL 

NETWORKS FOR MARAFIQ DATA 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

clc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% calling the data 

[day,month,year,hour,temp,hum,power,dayn,daysq,modenum]=read_marafiq_

yan_data('marafiq_yan_data'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% the data matrix to be analyzed in next hour load forecasting: 

data=[h,dy,mode,Th,Hh,Ph_1,Ph_2_23,Ph_24,Ph]'; % next hour 

% 

data=[h,dn,dy,Th,Hh,Hh_24,Hh_48,Hh_72,Hh_96,Hh_168,Th_24,Th_48,Th_72,

Th_96,Th_168,Ph_24,Ph_48,Ph_72,Ph_96,Ph_168,Ph]';% next day 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% inputs: 

k=0; 

p=data(1:end-1,1:17352+k); 

% targets (outputs): 

t=data(end,1:17352+k); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% normalization 

[pn,ps]=mapminmax(p); 

[tn,ts]=mapminmax(t); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% next hour 

net=newff(minmax(pn),[5 1],{'tansig','purelin'},'trainbr'); 

 

% next day 

% net=newff(minmax(pn),[14 2 1],{'tansig' 

'tansig','purelin'},'trainbr'); 

  

net.trainParam.show   = 50;   % The result is shown at every # epoch 

net.trainParam.lr     = 0.05; % Learning rate used in some gradient 

schemes 

net.trainParam.epochs = 100;% Max number of iterations 

net.trainParam.goal   = 1e-3; % Error tolerance; stopping criterion 

net                   = init(net); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% train network 

[net,tr,Y,E] = train(net, pn, tn); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% To simulate the training data 

an = sim(net,pn); 

% denormaliz 

a = mapminmax('reverse',an,ts); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  load forecasting 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

start_test=17352+k+1; 

ih=167;  
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pt1=data(1:end-1,start_test:start_test+ih); % input for testing 

ta1 = data(end,start_test:start_test+ih) ; % output to be compared 

with the predicted one 

  

%model simulation 

pt1n = mapminmax('apply',pt1,ps); 

pf1n = sim(net,pt1n); 

pf1 = mapminmax('reverse',pf1n,ts); 

e1=100*(ta1-pf1)./ta1; 

  

mape1=mean(abs(e1)); 

  

subplot(211) 

plot(ta1,'LineWidth',1.5);hold on 

plot(pf1,'-.r','LineWidth',1.5);grid 

legend('actualal','forecasted') 

title('( a )');xlabel('hours');ylabel('Power (MW)') 

  

subplot(212) 

plot(abs(e1),'b','LineWidth',1.5);hold on 

plot(repmat(mape1,length(e1),1),'-.r','LineWidth',1.5);grid 

legend('absolute error','MAPE') 

title('( b )');xlabel('hours');ylabel('% error') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% FINAL MODEL OF (NEXT HOUR & DAY) LOAD FORECASTING 

% USING HYBRID ANALYTICAL MODEL FOR USA DATA 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

clc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% calling the data 

[day,month,year,hour,temp,power,dayn,daysq,modenum]=read_usaa_data('u

saa_data'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% data analyzed 

data=[day,month,year,hour,Ts,Ps,dayn,daysq,modenum]; 

data_tr=data(1:43824,:); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

A=data_tr; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

B = zeros(size(A, 1), 1);  

C = unique(A(:, 9));  

C(C==0)=[]; 

u = 1:24;  

  

for cx = [1 : length(C)],  

    c = C(cx);  

    for tx = [1 : length(u)];  

        v = u(tx);  

        I1 = find((A(:, 9) == c) & (A(:, 4) == v));  

        B(I1) = mean(A(I1, 6));  

    end  

end 

  

K=[B A(:,9) A(:,4)]; 

U=unique(K,'rows'); 

  

data_for=data(43825:end,:); 

  

P90s=data_for(:,6); 

R=P90s; 

for i=1:length(P90s) 

for j=1:length(U) 

if (data_for(i,9)==U(j,2)) & (data_for(i,4)==U(j,3)) 

R(i)=[U(j,1)]; 

else 

     

end 

end 

end 

  

N=[R data_for(:,9) data_for(:,4)]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Fourier Analysis: 

  

ts = 1; % time step 

t = [1:ts:24];  

fs = 1/ts; % frequency step 

f=[-length(t)/2:length(t)/2-1]/(length(t)*ts); % frequency formula 

  

Pmodes_model=[]; 
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e=reshape(R,24,[]); 

  

for i=1:length(e) 

  

P1 = fft(e(:,i))/length(t); 

P2=fftshift(P1); 

amp=abs(P2); % amplitude 

phi = angle(P2); % phase angle 

  

ampp=amp(13:19)'; 

phii=phi(13:19)'; 

  

[ampp' ;phii']; 

  

w=2*pi/24; 

  

% structure of equation 4.6: 

Pmodes_model=[Pmodes_model 0+2*(ampp(2)*cos(w*(t-

1)+phii(2))+ampp(3)*cos(2*w*(t-1)+phii(3))+ampp(4)*cos(3*w*(t-

1)+phii(4))+ampp(5)*cos(4*w*(t-1)+phii(5))+ampp(6)*cos(5*w*(t-

1)+phii(6))+ampp(7)*cos(6*w*(t-1)+phii(7)))]; 

  

  

end 

     

  

  

  

%  Now, the aim is to find next day average power that will carry the 

%  ac average modes model 

%  The used forecaster is next day Pavg forecasting using NN 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% NEURAL NETWORKS ANALYSIS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

M=[d;m;y;dyn;dy;mode;Tsavg;Tsavg_1;Tsavg_2;Tsavg_3;Tsavg_4;Tsavg_5;Ts

avg_6;Tsavg_7;Psavg_1;Psavg_2;Psavg_3;Psavg_4;Psavg_5;Psavg_6;Psavg_7

;Psavg]; 

  

k=0; 

p=M(1:end-1,1:1819+k);  

% targets (outputs) 

t=M(end,1:1819+k); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% normalization 

[pn,ps]=mapminmax(p); 

[tn,ts]=mapminmax(t); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

net=newff(minmax(pn), [5 1], {'tansig','purelin'},'trainbr'); 

net.trainParam.show   = 50;   % The result is shown at every # epoch 

net.trainParam.lr     = 0.05; % Learning rate used in some gradient 

schemes 

net.trainParam.epochs = 1000;% Max number of iterations 

net.trainParam.goal   = 1e-3; % Error tolerance; stopping criterion 

net                   = init(net); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% train network 

[net,tr,Y,E] = train(net, pn, tn); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% To simulate the training data 

an = sim(net,pn); 

% denormaliz 

a = mapminmax('reverse',an,ts); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Next day average load forecasting 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

start_test=1819+k+1; 

ih=6; 

  

pt1=M(1:end-1,start_test:start_test+ih); % input for testing 

ta1 = M(end,start_test:start_test+ih) ; % comparing 

  

%model simulation 

pt1n = mapminmax('apply',pt1,ps); 

pf1n = sim(net,pt1n); 

pf1 = mapminmax('reverse',pf1n,ts); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

P90savg_model=reshape(repmat(pf1,24,1),1,[]);  

P90s_model=Pmodes_model((24*k+1:24*k+24*(ih+1)))+P90savg_model;  

  

ta=P90s((24*k+1:24*k+24*(ih+1))); 

pf=P90s_model; 

  

e=100*(ta-pf')./ta; 

  

mape=mean(abs(e)); 

  

subplot(211) 

plot(ta1,'LineWidth',1.5);hold on 

plot(pf,'-.r','LineWidth',1.5);grid 

legend('actualal','forecasted') 

title('( a )');xlabel('hours');ylabel('Power (MW)') 

  

subplot(212) 

plot(abs(e),'b','LineWidth',1.5);hold on 

plot(repmat(mape,length(e),1),'-.r','LineWidth',1.5);grid 

legend('absolute error','MAPE') 

title('( b )');xlabel('hours');ylabel('% error') 
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