




iii 
 

 

DEDICATION 
 

 
This dissertation is dedicated to my parents. 

 



iv 
 

 

ACKNOWLEDGMENTS 
 

In the name of Allah, Most Gracious, Most Merciful 

 

All praise and glory to Almighty Allah (SWT) who gave me courage and patience to 

carry out this work. Peace and blessing of Allah be upon last Prophet Muhammad (Peace 

Be upon Him). 

Performing this research turned out to be a larger challenge than I ever imagined. I could 

not have completed it without the care and support of many wonderful people and 

organizations, and I’m delighted to be able to acknowledge them here. 

My unrestrained appreciation goes to my advisor, Dr. Sadiq Sait. I couldn’t have had a 

better mentor. He always made time to see me, no matter how busy his schedule was. He 

was a constant source of good ideas and a perfect detector of bad ones. More than 

anything, he has been a true friend. 

I also wish to thank my thesis committee members, Dr. Mohammed Al-Mulhem, Dr. 

Tarek Sheltami, Dr. Aiman Al-Maleh and Dr. Radwan Abdel-Aal for their support and 

contribution. Thanks are also due to Dr. Basem Madani, the Computer Engineering 

Department Chairman, for his contribution and guidance. Also, my sincere appreciation 

goes to my friend Anas Al-Mousa for his assistance in scripting the initial DDS code. 

I also thank Saudi Aramco for granting the permission to conduct this research on the 

High Performance Computing facilities available at the EXPEC Computer Center 

(ECC).Special thanks goes to RTI Co. for providing trial licenses to conduct this research. 



v 
 

TABLE OF CONTENTS 

 

DEDICATION ................................................................................................................................ iii 

ACKNOWLEDGMENTS ............................................................................................................... iv 

LIST OF TABLES ........................................................................................................................ viii 

LIST OF FIGURES ......................................................................................................................... ix 

DISSERTATION ABSTRACT ....................................................................................................... xi 

CHAPTER1: INTRODUCTION ...................................................................................................... 1 

1.1  Motivation ........................................................................................................................ 4 

1.2  Objectives ......................................................................................................................... 5 

1.3  Contributions .................................................................................................................... 6 

CHAPTER 2: Recent QoS and Failure-Recovery Studies in Distributed Systems .......................... 8 

2.1  QoSin Tightly-Coupled Distributed Systems ................................................................... 8 

2.1.1  PromisQoS ................................................................................................................ 8 

2.1.2  QoS Aware MPI for Infiniband .............................................................................. 12 

2.1.3  Other Related Work on Fault Tolerant MPI ........................................................... 13 

2.2  QoS in Loosely-Coupled Distributed Systems ............................................................... 18 

2.2.1  Applying DDS for Large Scale Distributed Applications ...................................... 18 

2.2.2  Information Management for High Performance Autonomous Systems ............... 21 

2.2.3  Grid Technology and Information Management for Command and Control ......... 24 

2.2.4  Open Grid Service Architecture (OGSA) ............................................................... 25 

2.2.5  Other Related Work on QoS on Loosely-Coupled Distributed Systems ................ 28 

CHAPTER 3: HPC Background and Terminologies...................................................................... 30 

3.1  The Communication Paradigms in Distributed Systems ................................................ 30 

3.2  Classification of Clusters ................................................................................................ 32 



vi 
 

3.3  Resource Management System (RMS) and Scheduling ................................................. 34 

3.4  HPC Interconnects .......................................................................................................... 35 

3.4.1  Infiniband Architecture ........................................................................................... 36 

3.4.2  Myricom Myrinet ................................................................................................... 38 

CHAPTER 4: The HPC Systems Design and Performance Baseline ............................................ 40 

4.1  The System Architecture ................................................................................................ 41 

4.2  High Performance LINPACK Benchmark ..................................................................... 43 

4.3  Intel IMBBenchmark ...................................................................................................... 46 

4.4  Performance Evaluation and Results .............................................................................. 48 

4.5  Conclusion ...................................................................................................................... 54 

CHAPTER 5: Reducing Failure Rate Using Diskless HPC Clusters ............................................. 55 

5.1  Introduction .................................................................................................................... 55 

5.2  Related Work .................................................................................................................. 57 

5.3  The Diskless Cluster Design ........................................................................................... 60 

5.4  HPL Experimental Results ............................................................................................. 61 

5.5  BLAST Experimental Results ........................................................................................ 68 

5.6  Conclusion and Future Work .......................................................................................... 72 

CHAPTER 6: QoS and Performance Evaluation of the Infiniband Interconnect ........................... 74 

6.1  InfiniBand and QoS ........................................................................................................ 75 

6.2  Infiniband Routing Algorithms ...................................................................................... 77 

6.3  Performance Evaluation and Results .............................................................................. 81 

6.4  Conclusion ...................................................................................................................... 85 

CHAPTER 7: Importing DDS-QoS into HPC and Grid Computing ............................................. 87 

7.1  The General Publish-Subscribe Framework in Data Distribution Services ................... 88 

7.1.1  QoS in DDS ............................................................................................................ 90 

7.2  The HPC-DDS Integration Model .................................................................................. 92 



vii 
 

7.2.1  Implemented Quality of Service Policies ............................................................... 97 

7.3  Experimental Setup and Methodology ......................................................................... 100 

7.3.1  The Matrix Multiplication Application ................................................................ 101 

7.3.2  The Primes Search Application ............................................................................ 108 

7.3.3  The Node-to-Node Streaming Application ........................................................... 113 

7.4  Conclusion .................................................................................................................... 116 

CHAPTER 8: Conclusion and Future Work ................................................................................ 117 

8.1  Overview ...................................................................................................................... 117 

8.2  Conclusion .................................................................................................................... 118 

8.3  Future Work .................................................................................................................. 119 

Appendix 1: The DDS QoS (as defined in www.omg.org) .......................................................... 121 

Appendix 2: The Matrix-Multiplication  Pseudo-code Using DDS ............................................. 127 

Appendix 3: The Primes Search Pseudo-code Using DDS .......................................................... 128 

Appendix 4: The Node-to-Node Pseudo-code Using DDS .......................................................... 129 

REFERENCES ............................................................................................................................. 130 

Vitae ............................................................................................................................................. 136 

 

 
 
 
 
 
 
 
 
 
 
 



viii 
 

LIST OF TABLES 
 

Table 1: Performance numbers of different Infiniband technologies ............................................. 37 

Table 2: Myrinet performance of M3F-PCIXE-2 and M3F-PCIXF-2 HCAs. ............................... 39 

Table 3: Test results for 32, 64 and 126 nodes LINPACK runs. .................................................... 46 

Table 4: Temperature and power consumption for diskfull vs. diskless HPC ............................... 67 

Table 5: Serial BLAST comparison using the two cluster configurations ..................................... 70 

Table 6: mpiBLAST performance benchmark using Drosoph database ........................................ 70 

Table 7: mpiBLAST performance benchmark using the Human genome database ....................... 71 

Table 8: Infiniband routing Ping Pong Test (in MB/s) ................................................................... 81 

Table 9: Infiniband routing SendRecv Test (in MB/s) ................................................................... 82 

Table 10: Infiniband routing Exchange Test (in MB/s) .................................................................. 82 

Table 11: Communication overhead ratio in DDS while running on 32 nodes ............................ 107 

Table 12: MPI vs. DDS Primes Search runtime while varying the number of nodes .................. 111 

Table 13: MPI vs. DDS Primes Search runtime while varying the inputsize on 32 nodes .......... 112 

Table 14: The delay when engaging a new node in DDS while running Primes Search ............. 112 



ix 
 

LIST OF FIGURES 
 

Figure 1: PromisQoS Architecture ................................................................................................... 9 

Figure 2: Distributed Broker Architecture for HPC, as proposed byN. Wang ............................... 24 

Figure 3: The DPIM Architecture as proposed by Scott E. Spetka et al. ....................................... 25 

Figure 4: Interaction between Globus Toolkit components. .......................................................... 27 

Figure 5: Globus Toolkit version 5 major components. ................................................................. 28 

Figure 6: Generic HPC Cluster Architecture .................................................................................. 33 

Figure 7: The HPC scheduler workflow. ........................................................................................ 35 

Figure 8: The DDR Infiniband interconnect topology of a 126 nodes cluster. .............................. 42 

Figure 9: The HPL file configuration for a 126 nodes cluster with N value set ............................. 45 

Figure 10: IMB Ping Pong Test ...................................................................................................... 49 

Figure 11: IMBSendRecv Test ....................................................................................................... 50 

Figure 12: IMB Exchange Test ...................................................................................................... 51 

Figure 13: IMBAllReduce Test ...................................................................................................... 51 

Figure 14: IMB Reduce Test. ......................................................................................................... 52 

Figure 15: IMB Reduce Scatter Test. ............................................................................................. 53 

Figure 16: IMB All Gather Test. .................................................................................................... 53 

Figure 17: IMB Bcast Test. ............................................................................................................ 54 

Figure 18: HPL efficiency for diskless and diskfull HPC. ............................................................. 62 

Figure 19: Execution speed in terms of GFLOPS for diskless and diskfull HPC. ......................... 63 

Figure 20: HPL execution time for diskless and diskfull HPC. ..................................................... 63 

Figure 21: Disk I/O measured at the disk node during the bootup of diskless compute nodes. ..... 65 

Figure 22: Network activities at the disk node during the bootup of diskless compute nodes. ...... 66 

Figure 23: Infiniband Service Levels to Virtual Lanes mapping.................................................... 76 



x 
 

Figure 24: Infiniband DAPL Architecture ...................................................................................... 77 

Figure 25: Infiniband routing AllReduce Test................................................................................ 83 

Figure 26: Infiniband routing Reduce Test ..................................................................................... 83 

Figure 27: Infiniband routing Reduce Scatter Test ......................................................................... 84 

Figure 28: Infiniband routing All Gather Test ................................................................................ 84 

Figure 29: Infiniband routing Bcast Test ........................................................................................ 85 

Figure 30: The general Publish-Subscribe modelwith persistence service ..................................... 89 

Figure 31: MPI vs. DDS layers ...................................................................................................... 92 

Figure 32: HPC-DDS integration model ........................................................................................ 94 

Figure 33: The general HPC-DDS flowchart for implementing parallel programs........................ 95 

Figure 34: The HPC programming pseudo-code using DDS paradigm ......................................... 96 

Figure 35: The QoS policy file for our DDS-HPC design. ............................................................. 99 

Figure 36: MPI vs. DDS Mat. Mult.runtime when varying the number of nodes ........................ 104 

Figure 37: MPI vs. DDS Mat. Mult.runtime when varying the matrices size on 32 nodes .......... 105 

Figure 38: The communication overhead for computing 1100x1100 matrices ............................ 106 

Figure 39: Network delay when engaging a new node in DDSwhile running Mat. Mult. ........... 107 

Figure 40: The network utilization for running Matrix Multiplication on 32 nodes .................... 108 

Figure 41: Node-to-Node Throughput .......................................................................................... 115 

Figure 42: Failing the receiver in DDS while running the Node-to-Node application ................. 116 



xi 
 

DISSERTATION ABSTRACT 
 
 
Name: Raed A. Al-Shaikh 

Title: Adopting QoS Real-Time DCPS Models and Other Reliability Measures on High 
Performance and Grid Computing 

Major: Computer Science and Engineering 

Date: February, 2012 

 

In recent years, we have witnessed a growing interest in improving the reliability when 
running parallel batch jobs on the High Performance Computing (HPC) environments. 
However, existing distributed memory HPC systems do not provide proper quality of 
service (QoS) controls and reliability features because of two limitations. First, standard 
communication libraries such as Message Passing Interface (MPI) and Parallel Virtual 
Machine (PVM) do not provide means for applications to specify service quality for 
computation and communication. Secondly, modern high-speed interconnects such as 
Infiniband, Myrinet and Quadrics are optimized for performance rather than fault-
tolerance and QoS control. On the other hand, Data-Centric Publish-Subscribe (DCPS) 
model, which is the core of Data Distribution Service (DDS) systems, defines standards 
that enable applications running on heterogeneous platforms to control various QoS 
policies in a net-centric system. Notably, a number of DDS standards are comparable to 
those for High Performance Computing (HPC) systems. In this research, we present a 
comprehensive survey of the studies exploring the reliability factors of distributed 
computing in general and the Real Time Publish-Subscribe (RTPS) models for HPC and 
Grid computing in particular. We then investigate the QoS and reliability measures on the 
different HPC layers, such as the high speed interconnects and the diskless HPC. Finally, 
we present our model of incorporating DDS QoS and reliability controls into HPC. Our 
results show that DDS integration into HPC adds considerable overheard in terms of 
performance and network utilization when the application is mainly communication-
bound, while the performance is comparable to those MPI-based applications when the 
program is computation-bound. In both cases, the solution is a viable option for those 
applications in which QoS is considered a priority, or for those HPC batch jobs that 
would run on commodity hardware, where the probability of failure is not negligible. 



xii 
 

 ملخص الرسالة

  

  رائد عبدالله الشيخ    الاسم:

 في مجال الحاسبات فائقةوالإشتراك -تفعيل جودة الخدمة المطبقة بأنظمة النشر  عنوان الرسالة:
  .السرعة والحوسبة الشبكية

  .علوم وھندسة الحاسب الالي التخصص:

  ھـ1433، صفر سنة التخرج:

  

 في تشغيل البرامج المتوازيةالفعالّة لزيادة الإعتمادية  الطرقزاد الإھتمام في الاونة الأخيرة بايجاد 

على  بالتركيزالحاسبات فائقة السرعة حاليا تقنيات تقتصر  حيث أنه .السرعةة الحاسبات فائقعلى 

مثل اعادة تشغيل البرامج  -أو الاعتمادية  غير الاھتمام الكامل بجودة الخدمة ومن - الأداءسرعة 

تعتبر أنظمة . ومن ناحية أخرى، ال أو اضافة موارد مساعدة عند الحاجةتلقائيا عند حدوث الأعط

في نقل البيانات والإعتمادية دة الخدمة لجووالمطبقة من أفضل النظم المتوافقة  "والإشتراك- النشر"

كر أن ذوالجدير بال. للند) - ظير (أو ما يعرف بالندللن-كبرامج النظير المعالجة الموزعة تطبيقاتل

ھي نفسھا الرئيسية، وكذلك البنية التحتية لھا،  "والإشتراك -النشر"أنظمة  قوانينمصطلحات و

بحثا شاملا  نقدم الرسالة، هفي ھذ ام.الحاسبات فائقة السرعة، مع اختلاف المھ مجال الموجودة في

في  قمنا كما. والاعتمادية في مجال الحسابات الفائقة السرعة وبطبقاتھا المختلفةجودة الخدمة  دماجلإ

ومدى تأثيرھا على الأداء عند تطبيقھا المضافة والإعتمادية فعالية الجودة  ومقارنة ا البحث بتقييمذھ

والاعتمادية في مجال جودة الخدمة تستنتج ھذه الدراسة بأن تطبيق . في مجال الحاسبات فائقة السرعة

تعتمد على التواصل  التي في بعض التطبيقاتيضيف حملا اضافيا قد الحسابات الفائقة السرعة 

على المعالجة بشكل رئيسي توفر سرعة مضاھية للتطبيقات التي تعتمد لكن قد بشكل كبير، و الشبكي

يتيح لمستخدمي الحاسبات الفائقة السرعة  المركزية. وفي كلا الحالتين، فإن تطبيق جودة الخدمة

ً دمة، وخصوصا عندما يالخيار باضافة الإعتمادية والتحكم بجودة الخ تنفيذ كما في  كون وجودھا مھما

  تشغيلھا على الحاسبات الفائقة السرعة.ويلا عند بعض التطبيقات التي تستغرق وقتا ط



1 
 

 

  

 

Chapter 1 

INTRODUCTION 

 

In recent years, there has been a growing interest in the field of distributed computing, 

where diverse machines and sub-systems are interconnected to provide computational 

capabilities and execute larger application tasks that have various requirements. These 

environments may be of different types, including parallel, distributed, clusters, and grids, 

and they can be found in industrial, laboratory, government, academic, and military 

settings, and may be used in production, computing center, embedded, or real-time 

environments [3].  

The drive behind the interest in distributed computing in general, and high performance 

computing (HPC) in particular, is the fact that they offer several advantages over the 

conventional, tightly-coupled supercomputers and Symmetric Multiprocessing (SMP) 

machines. First, High Performance Clusters are intended to be a cheaper replacement for 

the more complex/expensive supercomputers to run common scientific applications such 

as simulations, biotechnology, financial market modeling, data mining and stream 



2 
 

processing [14]. Second, cluster computing can scale to very large systems; hundreds or 

even thousands of machines can be networked to suit the application needs. In fact, the 

entire Internet can be viewed as one gigantic cluster [15]. The third advantage is 

availability, in the sense that replacing a "faulty node” within a cluster is trivial compared 

to fixing a faulty SMP component, resulting in a lower mean-time-to-repair (MTTR) for 

carefully designed cluster configuration [71]. 

Despite the advantages of these distributed systems, they present new challenges not 

found in typical homogeneous environments. One key challenge is the ever-increasing 

number of hardware components in today’s HPC systems. This increase in the hardware 

components is drastically affecting the probability of hardware failures in such systems - 

and thus the productivity of the end users - since every single failure on such HPC 

clusters would cause the whole running job to abort, resulting in tens of hours of 

computations to be wasted.  

Although this challenge is known, existing distributed memory HPC clusters cannot 

provide extensive QoS-based communication and reliability controls because of two 

limitations: first, standard communication libraries such as Message Passing Interface 

(MPI) and Parallel Virtual Machine (PVM), do not provide alternatives for applications to 

control the quality of service for computation and communication. Second, modern high-

speed interconnects such as Infiniband, Myrinet and Quadrics provide high-throughput 

and low-latency communication. However, low-level messaging interconnects are 

optimized for performance rather than fault-tolerance and QoS control. 

One of the attempts to address the lack of extensive QoS-based and reliable 

communication in generic distributed systems is the foundation of the Data Distribution 

Service (DDS) [22], which is the first open international middleware standard directly 



3 
 

addressing heterogeneous communication for real-time systems, utilizing the 

publish/subscribe communication paradigm. While the publish/subscribe model can be 

the solution for the generic heterogeneous computing, one research interest is to support 

DDS specifications and its pre-defined QoS reliability controls in the more-specialized 

High Performance Computing environments (HPC) and incorporate its most important 

QoS polices, which is one of the main aims of this research work. 

Other efforts to address the HPC reliability and availability at scale is done though 

investigating the hardware failure rate in HPC systems, and studying the reliability and 

QoS controls in the different layers of HPC architecture [88, 89], such as the high-speed 

interconnect [63], the operating system, and the HPC scheduler [76]. 

The rest of the dissertation chapters are organized as follows: in chapter 2, we present a 

comprehensive survey describing the recent research done for incorporating QoS controls 

in HPC and distributed systems. Chapter 3describes the main HPC components and 

defines the fundamental terminologies used in such systems. In chapter 4, we conduct a 

system baseline to set the stage for our performance and reliability measurements done in 

the subsequent chapters. Chapters 5 investigates the performance and reliability 

measurements for diskless HPC clusters, as one of the techniques to enhance the HPC 

reliability in the hardware layer, while chapter6 explores the limited QoS and reliability 

measures in the Infiniband interconnect. In chapter 7, we present our work of 

incorporating the DDS QoS into HPC, as an approach to increase the reliability and QoS 

control on HPC systems in the middleware layer, and report on its performance. We state 

our conclusion and future work in the last chapter. 



4 
 

1.1 Motivation 

The trend of today’s High Performance Clusters and other loosely-coupled distributed 

systems is that they are increasing in terms of nodes and hardware components. To 

illustrate, looking at the top500 worldwide supercomputers [66], we may see that what 

used to be the #1 HPC cluster (i.e. The RoadRunner) in November 2008 had 129,600 

cores, while in June 2010, the #1 Jaguar cluster had 224,162 cores. Noticeably, this 

increase in the number of cores would drastically increase the probability of hardware 

failures in such systems.  

Several studies were conducted to explore the correlation between scalability in HPCs and 

failure rates [87,88,89]. B. Schroeder and G. Gibson [87] advocated that the success of 

Petascale computing will depend on the ability to provide reliability and availability at 

scale. In their research, the authors collected and analyzed a number of large data sets of 

failures from real large-scale HPC systems for a period of ten years. Specifically, they 

collected data about: (a) complete node outages in HPC clusters, and (b) disk storage 

failures in HPC systems. In terms of complete node outages, the authors identified that 

hardware is the single largest component responsible for these outages, with more than 

50% of failures assigned to this category, while software is the second largest category 

with 20%. The remaining percentage is related to human, environment and network 

outages. Further, the node failure rate for large-scale systems can be as high as 1100 

failures per year. Given this extreme rate, an application running on such systems will be 

interrupted and forced into recovery more than two times per day [87]. 

In terms of storage and hard drive failures, the authors found out that the average annual 

failure and replacement rate (ARR) for hard drives in HPC systems is between 3% and 



5 
 

5%. This means that in a cluster of 512 nodes, the average failure rate for hard drives is 

around 1-2 drives every two weeks, which matches our findings in [74].  

The authors concluded their research by stating that “the failure rate of a system grows 

proportional to the number of processor chips in the system”. Furthermore, as the number 

of sockets in future systems increases to achieve higher Petascale and even Exascale 

systems, it is expected that the system wide failure rate will only increase [88]. 

Conversely, nowadays there is little attention on QoS-based communication and 

reliability control on HPC. The reason is that users have witnessed a dramatic increase in 

performance over the last 10 years with regard to the HPC systems. What used to take one 

month of computation time in the 2000, it is taking only a few hours to run in the current 

systems. This advancement made it easier for users to resubmit their applications after 

offlining (i.e. fencing) the problematic node/core, rendering the wasted hours of the 

crashed job to be neglected. The goal of this study, therefore, is to focus on the HPC QoS 

and reliability controls - and in different HPC layers - to benefit those very long users’ 

jobs that require large-scale clusters. 

1.2 Objectives 

As demonstrated earlier, the need for extensive QoS controls and reliable HPC 

environments is unavoidable when HPC jobs would last for several days or even weeks to 

run. Therefore, the main objective of this research is to enhance the reliability of HPC 

parallel jobs by first investigating the limited reliability and QoS controls in the HPC 

hardware layer, particularly through examining the Infiniband interconnect and the 

diskless HPC clusters. Then, we present our model of incorporating DDS QoS controls 



6 
 

into HPC middleware by experimenting with three different parallel applications of 

different computation nature (compute-intensive, communication intensive, and hybrid 

parallel applications), where a number of benchmarks are done to examine the effect of 

this integration in terms of reliability, scalability, throughput and fault-tolerance. As 

demonstrated in the subsequent chapters, the integration of DDS into HPC provides the 

ability to control QoS properties on HPC and Grids that affect performance, reliability, 

and fault-tolerance. To the best of our knowledge, this is the first research focusing on the 

integration of DDS QoS policies into HPC computing. 

1.3 Contributions 

The contributions of this research work are: 

 Present a comprehensive survey on the attempts made to incorporate QoS in 

Distributed Systems 

A number of studies were made tackling particular areas for expanding the Real 

Time Publish Subscribe (RTPS) model and other QoS standards to the high 

performance (HPC) and Grid computing environments. As described in chapter 2, 

we classify these studies into two main groups: studies that are geared towards 

tightly-coupled systems [26, 32], and other studies that are concerned with 

loosely-coupled decoupled environments [1, 2, 3, 12, 29]. Examples of such 

efforts are: Applying DDS for Large-scale Distributed Applications [1], 

Information Management for High Performance Autonomous Intelligent Systems 

[2], Grid Technology and Information Management for Command and Control [3] 

and Sensor Event Processing on Grid Environments [4]. 



7 
 

 Investigate the limited QoS and other reliability and performance-related 

issues in the HPC environment. 

To some extent, HPC does offer limited QoS and reliability controls in its multi-

layer architecture. In this research, we shall investigate the QoS and reliability 

controls in the HPC environment through examining the Diskless HPC clusters, 

and the Infiniband QoS and routing techniques as specified by the Infiniband 

Architecture Specifications (IBA), using a Westmere-based HPC cluster. 

 Implement DDS Reliability and other QoS policies on the HPC and Grid 

environment. 

Existing distributed memory HPC clusters cannot provide QoS based 

communication because of the already mentioned limitations. Thus, this research 

also focuses on adopting DDS QoS and reliability policies into HPC and Grid 

middleware. This integration will provide the ability to control QoS properties in 

HPC and Grids that affect performance, reliability and fault-tolerance, and align 

the resources to the most critical requirements. 

 Perform Performance Evaluation for QoS HPC. 

A number of evaluation experiments are done to examine the effect of adopting 

DDS QoS on HPC environment, in terms of reliability, scalability, throughput and 

fault-tolerance. It is also part of this work to study the performance when using 

state-of-art HPC technologies, such as the Quad-rate (4x) Infiniband interconnect 

and the latest Intel Westmere processor. 



8 
 

 

 

 

Chapter 2 

Recent QoS and Failure-Recovery Studies in 

Distributed Systems 

 

Studies in this area have resulted in a number of proposals discussing QoS and failure-

recovery and control on distributed systems and high performance computing, and their 

implementations and designs in the middleware layer. In this chapter, we classify these 

studies into two main categories: studies that are geared towards tightly-coupled systems 

[26, 32, 47, 78], and other studies that are concerned with loosely-coupled decoupled 

environments [1, 2, 3, 12, 29]. 

2.1 QoS in Tightly-Coupled Distributed Systems 

2.1.1 PromisQoS 

The PromisQoS developers [26] conducted research work that attempts to provide a 



9 
 

tightly-coupled cluster platform that can guarantee access to computational and 

communication resources to distributed applications by the means of adopting QoS. The 

authors have developed PromisQoS as an architecture that is capable of executing hard 

real-time parallel applications on Linux clusters while providing high throughput and low-

latency communication using Myrinet interconnect. PromisQoS attains the objective by 

the use of message-passing API (MPI/RT), an in-house implementation of a Linux based 

real-time scheduler (Turtle) [26] and a deterministic low-level messaging library (BDM-

RT) running on the Myrinet network. 

 

 

Figure 1: PromisQoS Architecture 

 

 

PromisQoS uses the time-based channel of the Real-Time Message Passing Interface 

(MPI/RT), which was found to develop a standard that meets both requirements of high 

performance and QoS based communication without compromising portability. The 

design philosophy behind MPI/RT is that only MPI/RT implementers need to be experts 



10 
 

in platform-dependent communication features, while application developers provide only 

communication structure and QoS requirements of their applications. The MPI/RT 

transforms these QoS requirements to rules suited for the underlying platform. MPI/RT 

programs execute in two stages: non real-time and real-time. In the non real-time phase 

MPI/RT applications specify all resource requirements before execution, such as the 

number of communication channels and communication buffers, while QoS conditions 

can be specified as channel priority, upper bound on communication latency …etc. Once 

all the requirements are specified, the application requests the MPI/RT library to perform 

an admission test by calling the MPIRT_Commit function [26]. The MPI/RT middleware 

then evaluates the request in terms of resource availability from the underlying system. If 

the requirements can be met, the resources are allocated and the application continues to 

run in the real-time phase. Although the applications need to specify their requirements 

up-front, i.e. before admission test, resources allocation is suspended until the admission 

test is complete. This two-stage arrangement assists the MPI/RT library to optimize 

resource allocation and make full use of the available system. 

MPI/RT provides three types of QoS policies for channel message transfers [26]: time-

based, event-based and priority-based QoS. In the time-based model, message transfers 

are scheduled at specific time intervals (specified by the application). The application 

typically specifies the time requirement in the form of a triplet – Period, Start-time and 

Deadline. In the event-based QoS, messages are scheduled based on their related events 

when they are triggered, and then messages are sent accordingly. In the priority-based 

schedule, messages are transferred based on the priority given to each node in the 

environment. 

The second component of PromisQoS is “Turtle”, which is a modified version of RT-



11 
 

Linux that adopts its scheduling policy and uses the “Critical deadline first'” algorithm for 

its scheduling. In Turtle, as in the Earliest Deadline First algorithm (EDF), the periodic 

hard real-time tasks are represented by five parameters: the computation time for the task, 

the period of the task, the deadline of the task, the start time of the task, and the end time 

of the task.  The Linux OS runs as a special real-time task that is guaranteed at least 1ms 

CPU-time every 10ms of real-time. Linux runs at all time periods that no other real-time 

task is ready to run on CPU. Also, Turtle provides mechanisms for early identification of 

possible deadline misses, thereby letting the application have an option of a graceful 

shutdown or recovery. 

The last component of PromisQoS is BDM-RT, which is the real-time communication 

sub-system of PromisQoS over Myrinet [26]. BDM-RT consists of a message passing 

library that runs in kernel space, and a Myrinet Control Program (MCP) that hasbeen 

designed to provide predictable message latency. 

BDM-RT offers deterministic node-to-node communication latency at a minimal cost to 

performance by reducing contention of shared communication resources that include the 

PCI bus, LANai Myrinet processor time, and Myrinet switch ports. BDMRT supports 

techniques such as “blocking DMA”, a global clock implemented in software, and uses 

PCI DMA transfers for communication between host memory and on-board LANai 

memory. BDM-RT synchronizes PCI DMA transfers with the application's CPU 

schedules to control contention for the PCI bus between transmissions. For example, the 

BDMRT_Send call returns only when the message is completely transferred from host to 

LANai memory. BDM-RT holds the CPU for the duration of the host-to-LANai PCI 

transfer to ensure that other PCI transfer calls are not initiated by other real-time 

schedulers as well as by Linux processes. Similarly, at the recipient’s side, sending 



12 
 

messages from the recipient’s LANai memory to host memory is conducted only during 

the blocking call to BDMRT_Recv function. This guarantees that the PCI bus is always 

available for LANai-to-host transfer when the receiving task is active. Thus, by 

coordinating local resource accesses and network protocol calls with local CPU schedules, 

BDM-RT reduces contention for PCI bus bandwidth. 

Although PromisQos is well suited to support the development of distributed hard real-

time applications, Turtle does not support admission control. That is, it accepts all tasks 

and flags errors at run-time if it cannot satisfy the computational requirements of the 

admitted tasks. Furthermore, Turtle supports scheduling of tasks in the kernel space alone. 

Thus, all real-time applications execute in kernel mode. 

2.1.2 QoS Aware MPI for Infiniband 

H. Subramoni et al. [32] explore multiple options to effectively utilize the QoS concepts 

to enhance the tightly-coupled clusters performance. Their model is broadly classified into 

Inter-Job and Intra-Job schemes. 

The rationale behind Inter-job scheme is that the jobs running in a large scale computing 

system can be in various types and have different QoS requirements, i.e., short-term or 

long-term jobs, jobs requiring high bandwidth and jobs sensitive to latency, … etc. 

Treating all jobs equally will result in performance degradation for some, or all of the 

jobs. For example, the large application will create various congestion points in the 

network, resulting in bad performance for the delay sensitive application. To address this, 

the authors’ solution is to provide job-level QoS. They define multiple “Service Levels” 

with varying performance metrics. Jobs can be mapped to different service levels. In 

particular, at the job launch time, the scheduler assigns a specific priority to a job. The 



13 
 

MPI library internally converts this priority to an InfiniBand service level (SL), which 

will, in turn, be used for all InfiniBand network communications. Based on this technique, 

the network elements will prioritize and classify the packets, ensuring the same QoS for 

the packet anywhere on the network. 

As for the Intra-job scheme, the authors’ modify the design of the MPI library to utilize 

different service levels for small and large messages. Their initial design is based on the 

Reliable Connected (RC) transport. According to the InfiniBand specification, the service 

level parameter can be changed only when initializing the Queue Pair (QP) (QP consists 

of a send queue and a receive queue. The send queue keeps instructions for sending data 

and the receive queue comprises of the instructions relating to the location of the receive 

buffer). Given this setup, the authors create two QPs for each process and associate one 

with the higher priority service level and another with the lower priority service level. The 

QP associated with the higher priority SL is used solely for small message transfers while 

the other SL is used for larger messages. As most of the control messages in MPI are 

small messages, granting higher priorities to small messages will not only enhance their 

performance, but also the performance of large messages whose progress relies on small 

control messages. 

2.1.3 Other Related Work on Fault Tolerant MPI 

Many fault tolerant and QoS-aware MPI implementations exist, such as LAM/MPI, Open 

MPI, WMPI (Windows implementation), and FT-MPI …etc. The main difference 

between these implementations is the way they respond to process or nodes failures and 

their interaction with the hardware and communication layers. In particular, several 

implementations direct their fault tolerant techniques to the application level, while other 



14 
 

techniques target their implementation to the transport and data-link levels. It is important 

to mention that up to writing this research, all fault tolerant MPI implementations are still 

R&D and have not proven their practicality or to be generally available. 

2.1.3.1 StarFish MPI 

The initial implementation of StarFish runs on Linux and supports both Myrinet and 

Ethernet communication links [78]. Each node in a Starfish cluster runs a process, and all 

Starfish processes form a process group. Starfish processes maintain some data for each 

application running on the system, as well as some shared state that describes the existing 

cluster configuration and settings. These processes are responsible for interacting with 

clients, spawning the application processes, tracking and recovering from failures, and 

maintaining the system configuration [2].  Further, each application process is composed 

of 5 major components. These are: a group handler, which is responsible for 

communicating with the process in a node, an application part, which includes the MPI 

code to be run, a checkpoint/restart module, an MPI module, and a virtual network 

interface. These components communicate using an object bus based listener model [78]. 

To guarantee low latency and minimal impact on performance, the application part has a 

separate fast data path to and from the MPI module. 

Starfish provides two forms of fault-tolerance for applications: The first fault-tolerant 

approach implemented in Starfish is checkpoint/restart. The checkpoint/restart module of 

Starfish is capable of performing both coordinated and uncoordinated checkpoints, which 

is either system driven or application driven [78]. Thus, when a node failure occurs, 

Starfish can automatically restart the application from the last checkpoint. The other fault-

tolerance technique provided by Starfish is more application dependent, and it fits mostly 



15 
 

applications that can be easily parallelized by the system. For such applications, if a node 

that runs one of the application processes crashes, a notification signal is delivered to all 

surviving compute nodes. Once the surviving nodes receive the notification about the 

failing node, they redistribute the data sets on the living computes, and resume the 

application without any intervention from the user.  

When an application is submitted to Starfish, the client determines the fault tolerant 

technique that should be used for this application, i.e., should automatic checkpoint/restart 

or nodes notifications be used, and some guidelines regarding how to choose the node on 

which a process will be started after a partial failure. 

2.1.3.2 FT-MPI 

FT-MPI is a fault tolerant MPI implementation that changes the semantics of the original 

MPI to allow the application to tolerate process failures [47]. In particular, FT-MPI can 

tolerate the failure of n-1 processes in an n-process job, provided that the application 

recovers the data structures and the data of the failed processes. 

Managing failures in FT-MPI involves three phases: the first two phases are failure 

detection and notification. In these two phases, the run-time environment discovers 

failures and all remaining processes in the parallel job are notified about them. The third 

step is recovery, which consists of recovering the MPI library, the run-time environment, 

and the application. 

There are two modes that can be specified when launching an FT-MPI application, these 

are [47]:  



16 
 

1) The communicator mode: this mode indicates the status of an MPI object after 

recovery. FT-MPI offers four different communicator modes that can be specified when 

starting the application: 

a) ABORT: this mode makes the application abort when an error occurs. 

b) BLANK: in this mode, failed processes are not replaced and all living processes 

will continue with the same rank as before the crash. 

c) SHRINK: in this mode, failed processes are not replaced. However, processes 

might be assigned new ranks after recovery. 

d) REBUILD: this is the default mode in FT-MPI. Failed processes are re-spawned, 

surviving processes have the same rank as before. 

2) The “communication mode”: this mode indicates how to treat the messages that are on 

the way while an error takes place. FT-MPI provides two different communication modes 

for this situation: 

a) CONT/CONTINUE: in this mode, all operations which returned the error code 

MPI_SUCCESS will finish successfully, even if a process failure occurs during 

the operation. 

b) NOOP/RESET: in this mode, all ongoing messages are dropped and the 

application returns to its last consistent state. All currently ongoing messages are 

ignored.  

2.1.3.3 Other Fault Tolerant Message Passing Implementations 

As mentioned previously, MPI has a rich set of communication functions, which makes 

MPI favored over other implementations [72]. However, there are other popular parallel 

interfaces, such as PVM (Parallel Virtual Machine), and its various fault tolerant 



17 
 

implementations, such as DynamicPVM and MPVM that are able to provide the same 

MPI functionality. PVM is different than MPI in a way that it is built around the concept 

of a virtual machine, so it has the advantage when the application is going to run over a 

networked collection of hosts, especially if the hosts are heterogeneous. Moreover, PVM 

contains resource management and process control functions that are important for 

creating portable applications that run on clusters of workstations. L. Dikkenet et. al. [79] 

explore more on the differences between PVM and MPI. 

For completeness, we view one of PVM implementations and study how it handles fault 

tolerant in parallel applications. 

2.1.3.3.1 DynamicPVM 

In general, PVM transmit communication messages using daemons, i.e. a message is first 

transferred to the sender’s daemon, then forwarded to the daemon of the receiver and then 

delivered to the receiver. While standard PVM offers only a static process assignment to 

the application, DynamicPVM[79] provides dynamic process assignment and task 

scheduling, so that processes are migrated during runtime during failures. In particular, 

when a process failure is triggered in DynamicPVM, the local daemon on a new node 

prepares itself to receive the messages from the failing node, and sets its message buffer. 

The routing information of the local daemon on the old node gets updated so that 

messages which are still being sent to the old node are forwarded to the daemon on the 

new node. The sender daemon is informed about the new location of the process so that, 

in future, it sends directly to this process. One limitation in the current DynamicPVM 

implementation is that it is only possible to migrate one process at a time [79]. 



18 
 

2.2 QoS in Loosely-Coupled Distributed Systems 

In this section, we present the related work done for QoS in loosely-coupled distributed 

systems, as in the geographically-separated environments and large scale systems. 

2.2.1 Applying DDS for Large Scale Distributed Applications 

Most DDS implementations, such as OpenDDS [25], adopt multicast communication 

protocols to enable efficient and reliable data distribution to multiple recipients. However, 

setting up underlying multicast protocols means static pre-configuration of compute 

nodes, which defeats the purpose of data distribution, especially in highly dynamic WAN, 

HPC or computing Grid environments. One main concept in deploying dynamic DDS 

over a WAN-based net-centric environment is a “discovery framework” that supports the 

DDS infrastructure in automating the re-configuration of the underlying multicasting 

mechanisms to deliver the needed information to the right subscribers. 

Nanbor Wang et al. [1] propose an adaptive discovery service for DDS-based applications 

in large-scale and highly dynamic Network-Centric systems. Their study is based on the 

need for the Department of Defense (DoD)’s to achieve the goal of information control, 

which resulted in adopting the standard of net-centric operations and warfare (NCOW). In 

their research, the authors identified the needs that earlier version of OMG DDS lacks to 

satisfy DoD’s NCOW requirements. These are:  

1) Increased dynamism – which refers to the scalability of DDS; where not every node 

participating in an information exchange needs to know about every other entity in the 

exchange, or even the topology of the overall connection. In a net-centric 

environment, however, new and arbitrary nodes may need to join and participate in 



19 
 

information exchange in the domain. However, the nature of net-centric systems 

makes it difficult to pre-configure all systems as it will make the overall system 

vulnerable to minor changes, such as node joining and leaving multicast groups. 

2) Predictability and dependability – Real-Time applications have rigid timing 

constraints. Environments with such constraints need to start reacting to incoming 

information as soon as they subscribe to the information. Similarly, information 

publishers anticipate the information they send to be handled immediately once 

published. Further, these highly-available applications must be able to tolerate faults, 

since nodes joining the information exchange may accidently leave the network (e.g. 

hardware failure). 

3) More diversified environment – most WAN-based net-centric systems are 

comprised of different interconnection technologies and hardware systems. Since net-

centric middleware attempt to integrate the overall entities over the WAN, a pub/sub-

based net-centric system should be compatible with all network types, including high-

bandwidth, low-latency fiber optic connections; conventional LANs; and high-latency, 

narrow-bandwidth, and unreliable wireless links.  

With these challenges identified, the authors addressed the essential requirements and 

needs for implementing an adaptive discovery service in pub/sub environment: 

1) Efficiently associating DDS entities with shared mutual interests. There are many 

layers where DDS entities can participate in sharing data. Different DDS 

implementations require different techniques to define shared interests, and thus 

different programming techniques exist (such as domain participants in a Real-Time 

Publish-Subscribe (RTPS)). Regardless of each implementation, the components 

accountable for establishing the communication paths within the same domain share 



20 
 

the same interest based on the data available in this domain. It is important to note that 

identifying and matching these shared interests, however, not only involves a common 

topic, but also various QoS properties associated with the topic.  

2) Supporting robust communication hints. WAN-DDS detection service should 

provide an automated way to reach the entities participating in the domain. For 

example, a combination of Internet address, port number describe the most basic 

information for reaching an entity using low level transports such as IP Multicast. 

More advanced multicast mechanisms used by a DDS implementation may provide 

better QoS support. For example, a domain may have a pool of prioritized entities that 

can be reached easily by providing communication hints and/or other automated 

mechanisms. 

3) Seamless integration with standards. To enable information exchange between 

senders and receivers that use different implementations of DDS, a separate OMG 

DDS Interoperability Wire Protocol Specification defines the network protocol based 

on the RTPS wire protocol specification [5], which is a networking mechanism for 

industrial control and measurement based on LAN. All DDS implementations must be 

compatible with this specification when they communicate with other 

implementations. 

Taking into account other characteristics of discovery services, the authors have identified 

the following key features needed for a WAN-DDS discovery service once information 

about other aspects of systems is available: 

1) The discovery service should permit the use of other detection techniques to adjust to 

the already defined heterogeneous environment. For example, a hierarchical discovery 

service using a fixed set of servers may scale well for DDS applications running over 



21 
 

an enterprise network. On the other hand, a discovery service built on peer-to-peer 

protocols, may better serve DDS environments running over mobile ad-hoc network. 

2) The discovery service should be incorporated with the underlying DDS configuration 

system transparently to allow dynamic reconfiguration of multicasting network. This 

incorporation would fulfill DDS applications from the need to use multicasting 

network that incorporates all possible participants by establishing smaller segregated 

multicasting networks. 

3) An adaptive discovery service framework needs to tackle the scalability issue in RTPS 

protocol by decreasing the amount of messages sent by new participants to join a new 

DDS environment. 

2.2.2 Information Management for High Performance Autonomous 

Systems 

The publisher/subscriber architecture permits autonomous systems to interact without the 

need for a centralized brokering system. However, when each system is responsible for 

part of the whole brokering function, each system imposes cost for its local system 

resources and may reduce the functionality of each node of that system. This raises the 

concern of whether there should be defined rules where each autonomous system can 

utilize, in order to circumvent over-committing resources for brokering, such that the local 

nodes of that system are not affected.  

Scott Spetka et al. [2] address the mentioned issues which affect autonomy in a 

publisher/subscriber system, where it can operate across HPC systems to allow load 

balancing and support processing for jobs that require more processors than may be 



22 
 

available on any other HPC systems. Computations can also be distributed across hybrid 

HPC platforms (i.e. forming a Grid) when part of the computation may be performed 

more efficiently on particular architectures. For example, some parts of HPC codes 

perform better on shared memory systems, like the IBM P6, while other parts of the 

computation can take advantage of message passing on Linux clusters.  

However, system resources to support distributed brokering activities on behalf of remote 

dedicated systems have the highest impact on autonomy [2]. Specifically, system 

performance will be degraded due to the support for other communicating systems that 

share the common publisher/subscriber infrastructure. Further, brokering systems call for 

increased distributed state information, which results in increased bandwidth, storage and 

processing for each system participating in the domain. Therefore, the proposed HPC 

brokering system, implemented on an HPC cluster, provides a capability for offloading 

processing, thereby enhancing autonomy for brokers and improving QoS processing. 

Autonomy in HPC Broker Implementation 

In a brokering system, cooperating brokers can offload tasks to other brokers, which result 

in an improving global system performance. However, forcing specific operations on a 

broker may impact its ability to meet the pre-defined QoS controls.  

In the authors’ proposal, processing nodes may be committed to either do the brokering 

job or process other HPC programs within each HPC environment. When supplementary 

brokering nodes are required, for example due to increasing demands, they can be added 

to the HPC where the additional load will be supported. The decision to allocate the load 

to a particular HPC, and whether the allocated processing load should be accepted, does 

impact the autonomy of the system. 



23 
 

There are two scenarios for adding brokering resources: If HPCs make local decisions to 

voluntarily add supplementary resources to the pool, other HPCs would work in smaller 

number of brokering nodes, resulting in an unfair distribution of brokers. On the other 

hand, adding advance automation to increase the number of broker nodes causes 

additional overhead and can lead to group decisions to allocate additional brokers at a 

given HPC, resulting in breaking the autonomy for the HPC which must supply resources. 

In the authors’ HPC publisher/subscriber implementation, increased communication 

requirements are supported by gradually reducing available processing resources to 

maintain an appropriate level of communications support for applications where 

processing is distributed across HPC systems. Figure 2 shows four HPC systems sharing 

resources to provide an execution environment for three parallel applications. One of the 

applications is performing digital signal processing, another is performing cryptanalysis 

and another is running the atmospheric analysis program. These applications rely on the 

publish/subscribe architecture, which is crossing all four HPCs, for their communications 

needs. Each HPC center is providing a subset of the compute nodes for use by the 

publisher/subscriber system in supporting the entire enlivenment. 

 



24 
 

 

Figure 2: Distributed Broker Architecture for HPC, as proposed by N. Wang 

 

 

2.2.3 Grid Technology and Information Management for Command 

and Control 

Two paired systems, a Distributed Processing (DP) system and an Information 

Management (IM) system, are created to process data flows immediately and satisfy the 

need for data manipulation in the Grid environments [3]. Under DPIM, required compute 

power can be seamlessly added to the HPC infrastructure, in order to satisfy the increased 

processing requirements. Scott E. Spetka et al. [3] propose a combined system (DPIM) 

that addresses the performance and the scalability required for future Command and 

Control (C2) systems. 

Figure 3 illustrates the author’s DPIM Architecture. This architecture can be implemented 

on different HPC and distributed systems, where clients are allowed to communicate 

directly with grid services to call for various QoS controls and other system functions. For 

instance, a client can call for a QoS change in the publication rate for status information 



25 
 

or can send requests to the HPC job scheduler directly to check for compute availability 

and usability.  

 

 

Figure 3: The DPIM Architecture as proposed by Scott E. Spetka et al. 

 

Both the client and HPC infrastructure use the Java Business Integration (JBI) 

information management services [11] for publication and subscription. Clients send 

requests for service and subscribe to results. Requests and results can be considered 

information objects that are forwarded through the JBI, allowing the system to adapt to 

the changing infrastructure. Further, the HPC job scheduler receives requests, and then 

forwards them for execution and publishes the results. When an HPC sub-system 

encounters a partial failure, processing requests can be forwarded to other HPC systems 

that are defined in the domain. 

2.2.4 Open Grid Service Architecture (OGSA) 

The Open Grid Service Architecture (OGSA) is a distributed computing architecture that 

is built around different sub-systems. The main purpose of OGSA is to ensure 



26 
 

interoperability on distributed systems, and hide complexity of the different architectures. 

Alternatively, OGSA has been described as a refinement of the emerging Web Services 

architecture, specifically designed to support Grid requirement [34].Recently, OGSA 

standards have been adopted as grid architecture by a number of grid projects such as the 

Globus Alliance [12]. 

The latest OGSA version 1.5 defines multiple of requirements, such as: how jobs should 

be executed within the grid, how data should be accessed, the minimum security 

requirements that should be included in the grid environment, and so on. One of these 

OGSA specifications is QoS assurance that focuses on availability, security, and 

performance. In general, they can be classified as: 

 Service level agreement: QoS are defined through agreements between clients and 

servers prior to service execution. Standard protocols should be provided to form 

and manage such agreements. 

 Service level attainment: mechanisms for monitoring service quality, assessing 

resource utilization, and planning for and controlling resource usage are needed. 

 Migration: it should be possible to migrate executing services or applications to 

adjust workloads for performance or availability. 

2.2.4.1 Globus Toolkit 

Globus toolkitv.4.0 (GT4) [12], developed by Globus Alliance, is an implementation of 

the OGSA standard. The toolkit is basically a set of libraries and programs that address 

common problems that occur when building distributed system services and applications. 

Based on OGSA specifications, it addresses the following grid requirements by the 

following software: 



27 
 

1. Resource management: by using Grid Resource Allocation & Management 

Protocol (GRAM) 

2. Information Services: by using Monitoring and Discovery Service (MDS) 

3. Security Services: by using Grid Security Infrastructure (GSI) 

4. Data Movement and Management: by using Global Access to Secondary Storage 

(GASS) and GridFTP. 

 

 

Figure 4: Interaction between Globus Toolkit components. 

 

Figure 4 illustrates various components of GT5 architecture. Based on their functions, 

these blocks can be grouped into the following three sets of components: 

- A set of infrastructure services to address infrastructure tasks, such as execution 

management (GRAM), data access and movement (GridFTP, RFT, OGSA-DAI[28]), 

replica management (RLS, DRS), monitoring and discovery (Index, Trigger, WebMDS), 



28 
 

credential management (MyProxy, Delegation, SimpleCA), and instrument management 

(GTCP) [28]. 

- Three containers that can be utilized to serve the user-defined applications written in 

Java, Python, and C. 

- A set of client libraries to permit user programs to invoke operations on both GT4 and 

user-developed services. 

 

 

Figure 5: Globus Toolkit version 5 major components. 

 

2.2.5 Other Related Work on QoS on Loosely-Coupled Distributed Systems 

Other studies were done to apply QoS on loosely-coupled distributed systems, such as in 

multimedia applications and resource management. In this section, we present some of the 

work done to create middleware-based solutions that can provide QoS to specific 

environments. 

Hafid et al. [27] designed a QoS manager that supports running multimedia applications 

on distributed systems. Based on the user’s request, the QoS manager looks for potential 

system configurations, and selects the best option to run the applications, for example the 



29 
 

compute resources, and the network bandwidth. This search is also supported during the 

run of the multimedia. If a different system configuration is selected and the needed 

resources are reserved, the QoS manager then seamlessly adapts to the new system setup.  

Chu et al. [28] designed another Soft Real-time (SRT) system for multimedia 

applications. SRT supports multiple CPU service classes for real-time processes based on 

the usage pattern of these processes. They use the concept of ‘contracts’ to specify the 

CPU service level together with a flag used to reserve the required CPU time. If for 

example the number of frame changes, then the required CPU time would automatically 

adjust for some processes, and hence the contract parameters suit these changes. One 

obvious advantage of this adaptation is the capability to use just enough CPU time to 

execute the required processes, even in the case of partial failures in the environment.  

In the context of resource management adaptation, Cardei et al. [30] presented a Real-

Time Adaptive Resource Manager (RTARM), developed at the Honeywell Technology 

Center. RTARM middleware architecture focuses on real-time mission critical distributed 

applications, to better control the integrated services in such environments. RTARM 

focuses three scenarios where QoS for an application may change: (i) QoS decline when a 

new application begins,(ii) QoS improvement when an application terminates and releases 

resources, and (iii) feedback adaptation. Cases (i) and (ii) result in contract alteration 

because of such adaptation. Feedback adaptation, on the other hand, monitors the 

environment for the offered QoS and the actual usage of these services, and adapt 

accordingly. Similar to the other systems in described earlier, the main purpose of this 

architecture is to utilize ‘just enough’ resources, while ensuring adequate QoS and 

reliability controls on such distributed real-time systems. 



30 
 

 

 

 

Chapter 3 

HPC Background and Terminologies 

 

In this chapter, we shed some light on the common communication paradigms and 

technologies used in the HPC and distributed environments, with a further focus on the 

components having the most of the QoS and reliability controls defined. These are: the 

HPC job scheduler and the interconnect technologies. MPI will be discussed in more 

detail in chapter 7 when exploring the QoS controls in the middleware layer. 

3.1 The Communication Paradigms in Distributed Systems 

Three major middleware communication paradigms [25] have emerged for distributed 

computing, these are: client-server, message passing, and publish-subscribe 

communication model.  

Client-server is fundamentally a many-to-one design that works well for systems with 

centralized information, such as databases, transaction processing systems, and central file 

servers. However, if multiple nodes generate and share information, client-server 



31 
 

architectures require that all the information be sent to the server for later redistribution to 

the clients, resulting in inefficient client-to-client communication. The central server is a 

potential bottleneck and single-point of failure. It also adds an unknown delay (and 

therefore indeterminism) to the system, because the receiving client does not know when 

it has a message waiting.  

Message-passing architectures work by implementing queues of messages. Processes can 

create queues, send messages, and service messages that arrive. This extends the many-to-

one client-server design to a more distributed topology. Message passing allows direct 

peer-to-peer connection; it is much easier to exchange information between many nodes 

in the system with a simple messaging design. However, the message-passing architecture 

does not support a data-centric model. Applications have to find data indirectly by 

targeting specific sources (e.g., by process ID or "channel" or queue name) on specific 

nodes. So, this architecture doesn't address how applications know where a 

process/channel is, what happens if that process/channel doesn't exist …etc. The 

application must determine where to get data, where to send it, and when to perform the 

transaction. In the message-passing architecture, there is a model of the means to transfer 

data but no real model of the data itself. 

Publish-subscribe scheme adds a different data model to messaging in the heterogeneous 

environments. Publish-subscribe systems basically "publish" information they have and 

"subscribe" to information they need. Messages logically pass directly between the 

communicating nodes. The fundamental communications model involves both discovery 

(i.e. what information should be sent) and delivery (i.e. when and where to send the 

information). This design adopts information delivery systems in everyday life (e.g. 

publications, broadcasts, magazines) [90]. Publish-subscribe systems are adequate for 



32 
 

distributing large amount of information quickly, even in case of unreliable 

communication means. Publish-subscribe can be efficient in some cases because the data 

flows directly from source to destination without the need for file servers or hubs. 

Multiple sources and destinations are easily defined within the domain, making 

redundancy and fault tolerance fundamental elements in its design.  

In summary, client-server systems can be the best fit for centralized data environments 

and for systems that are service-oriented by design, such as file servers and web services. 

Client-server architecture, however, is not suitable for systems that involve many, often 

poorly-defined data paths.  

Since message passing uses dedicated data-paths and prior information to know where the 

data resides, it suits systems with clear and simple dataflow needs. Therefore, message 

passing architecture is better than client-server middleware at free-form data sharing. 

Publish-subscribe architecture, on the other hand, can be classified as a data-centric 

information distribution system. It suits well data-sharing environments by providing both 

discovery and messaging, and implements nodes communication simply by sending the 

data the publishers have to specific participants asking for this data. 

3.2 Classification of Clusters 

In this section, we classify the cluster systems according to their purpose: High Available 

Clusters, Load-balancing, HPC clusters and Grid Clusters: 

High-availability (HA) clusters: High-availability clusters are designed primarily to 

increase the uptime of services that are running on the platform. They usually have hot-

spare nodes, which are then utilized to provide service when the primary platform fails.  



33 
 

Load-balancing clusters: Load-balancing clusters attempt to distribute the load on many 

available nodes or sub-clusters. Although they are designed mainly for best performance, 

they usually include high-availability features as well. 

High-performance (HPC) clusters: High-performance clusters are designed mainly to 

sustain the highest performance possible by segmenting a parallel program across many 

different nodes in the cluster, and are most commonly used in scientific applications. One 

of the more known HPC implementations is a cluster with commodity hardware nodes 

Linux as the OS and open source codes to implement the parallelism. This configuration 

is often called a Beowulf cluster, which is illustrated in figure 6. 

 

HPC Interconnect

Workstation

Operating System

Network Interface

Cluster Middleware

HPC Scheduler

Parallel ApplicationsSerial Applications Parallel Applications
Parallel Applications

Serial ApplicationsSerial Applications

Workstation

Operating System

Network Interface

Workstation

Operating System

Network Interface

 

Figure 6: Generic HPC Cluster Architecture 

 

Grid Clusters: In short, a grid is a collection of other nodes or sub-clusters. The main 

differences between grids and HPC clusters are that grids interconnect collections of 

computers or sub-clusters that may not process the same data or application, whereas HPC 

clusters are tightly coupled and function as a single image. In other words, Grids are 



34 
 

designed to manage jobs distribution to computers which in turn will perform the work 

independently of the rest of the grid cluster. In addition, resources such as storage pools 

may be shared by all the nodes, but staging results of one application do not affect other 

running applications on other nodes of the grid. 

3.3 Resource Management System (RMS) and Scheduling 

As loosely-coupled computing clusters grow in size and speed, providing proper controls 

running jobs becomes critical. This requirement is more important in larger clusters where 

chances for congestion are higher. 

In an HPC cluster, a resource management system (or job scheduler) manages the 

processing load by preventing jobs from competing with each other for limited compute 

resources and enables effective and efficient utilization of resources available. This 

software consists of Resource Manager and a job scheduler. The scheduler communicates 

with the resource manager to get information about queues, loads on compute nodes, and 

resource availability to make scheduling decisions.  

Resource Manager: Resource Managers perform basic node state monitoring, receive 

job submission requests and execute the requests on the compute node. Some resource 

managers have basic scheduling or policy controls. On complex cluster environments, a 

resource manager can increase the utilization of a system from 40% up to 70% by 

effectively managing the resources on the cluster. 

Job Scheduler: Job scheduler guides the resource manager on the actions need to be 

taken, and when the schedule the subsequent jobs, and on which nodes. It imposes 

reservations and set priorities on running jobs, controls resources, and imposes policies 



35 
 

and events in line with the pre-defined HPC objectives. Thus, the scheduler permits users 

to submit jobs on the needed resources at the right time, and helps to speed up the overall 

scheduling of the workload. Figure 7 illustrates the interaction between the resource 

manager and the job scheduler in an HPC environment. 

The RMS architecture is based on the client-server communication paradigm. To run a 

batch job, a user provides the job information to the system via the RMS client. This 

information consists of the physical job location, the location of the input data, the desired 

location for the results, the required resources such as CPU time and memory size, and so 

on. Once the job has been submitted to the RMS environment, it uses job details to place, 

scheduler and run the job in the appropriate way. 

 

 

Figure 7: The HPC scheduler workflow. 

 

3.4 HPC Interconnects 

There are several network interconnects that provide ultra-low latency (less than 1 

microsecond) and high bandwidth (several gigabytes per second). Some of these 



36 
 

interconnects provide flexibility by allowing user-level access to the network interface 

cards to perform communication, and also supporting access to remote processes’ 

memory address spaces [35]. Examples of these interconnects are Myrinet from Myricom 

Inc., Quadrics and Infiniband [35]. All experiments in this chapter are done on the 

Infiniband architecture, which is one of the latest industry standards, offering low latency 

and high bandwidth as well as many advanced features such as Remote Direct Memory 

Access (RDMA), atomic operations, multicast and QoS [2]. Currently, available 

Infiniband products can achieve latency of 200 nanoseconds as hardware overhead for 

small messages, and a bandwidth of up to 4GB/s [35]. As a result, it is becoming 

increasingly popular as a high-speed interconnect technology option for building high 

performance clusters. 

3.4.1 Infiniband Architecture 

Infiniband is a technology that provides a high bandwidth I/O communication over a high 

speed serial data bus [33]. InfiniBand uses a switched fabric topology, rather than a 

hierarchical switched network like Ethernet. It is designed to directly route data from one 

point to another point through a switch, where all transmissions begin or end at a channel 

adapter (CA). The Infiniband serial connection signaling rate is 2.5 Gbit/s in single data 

rate (SDR) technology, 5.0 Gbit/s in double data rate (DDR) technology or 10 Gbit/s in 

quad data rate (QDR), in each direction per connection. Moreover, the links can be 

aggregated in units of 4 or 12, designated as 4X and 12X. However, Infiniband uses 

8B/10B encoding (14B/16B for the recent FDR and EDR technologies), which implies 

four fifths of the traffic is useful, therefore DDR 4X link curries 20 Gbit/s raw, or 



37 
 

16Gbit/s of useful (users) data [35]. Table 1 summarizes the different Infiniband 

technologies with their associated theoretical performance numbers. 

 

IB 
Technology 

SDR 
InfinBand 
Data rate 

DDR 
InfiniBand 
Data rate 

QDR 
InfiniBand 
Data rate 

FDR 
Infiniband 
Data rate 

EDR 
Infiniband 
Data rate 

1x 2 Gbps 4 Gbps 8 Gbps 14 Gbps 25Gbps 

4x 8 Gbps 16 Gbps 32 Gbps 56Gbps 100Gbps 

12x 24 Gbps 48 Gbps 96 Gbps 168Gbps 300 Gbps 

Table 1: Performance numbers of different Infiniband technologies 

 

Infiniband uses a hardware-offload protocol stack. Extra memory copies that are sent 

from the application to an adapter can be avoided by the zero copy mechanism that 

optimizes the message transfer time. Moreover, Infiniband allows moving data from local 

memory to remote memory using RDMA (Remote Direct Memory Access), which allows 

the zero copy mechanism without involving the receiver host processor [35]. 

The number of user-kernel context switching and memory copies can be reduced by the 

direct access to the Infiniband HCA through the RDMA (Remote Direct Memory 

Access). Obviously, enabling communication between devices and hosts, without the 

traditional system resource overhead associated with network protocols, off-loads data 

movement from the server CPUs to the InfiniBand HCA. Through virtual lanes (VLs), 

InfiniBand offers traffic management, creating multiple virtual links within a single 

physical link that allows a pair of linked devices to isolate communication interference 

from other connected devices.  



38 
 

3.4.2 Myricom Myrinet 

Myrinet was developed by Mycirom to provide high speed network technology that is 

used to interconnect system to form a cluster of computing machines [62]. It has much 

less protocol overhead than Ethernet, which therefore, provides better performance using 

the host CPU. Due to the flexible size of the Myrinet packet, it can encapsulate other 

types of packets, each with an identifier, without an adaptation layer. The two low-level 

message passing provided by Myricom thee are GM and GX. They both support other 

message passing interfaces such as MPI, DAPL, and PVM, as well as emulated Ethernet 

[62]. GM and MX systems provide protected user-level access to the Myrinet reliable 

ordered delivery of messages, network mapping and route computation, in order to ensure 

robust and error-free communication. 

Myrinet is available in two series: Myrinet-2000 and Myri-10G, as an alternative to 

Gigabit Ethernet and 10 Gigabit Ethernet (10GigE). Both Myrinet series employ the same 

network architecture and protocols. One good advantage of Myri-10G is that it can run on 

the same physical layer of 10GigE and its NIC can work as 10GigE as well. With MX 

unidirectional data rate can reach 495 Mbytes/s for Myrinet-2000 and 1.2 Gbyte/s for 

Myri-10G. [62]. Table 2 shows the performance matrix for the different Myrinet 

technologies. 

 

 

 



39 
 

Performance Matrices M3F-PCIXE-2 M3F-PCIXF-2 

Sustained one-way data rate for 
large messages 

495 MByte/s 248 MByte/s 

Sustained two-way data rate for 
large messages 

912 MByte/s 495 MByte/s 

Latency for short messages 2.6 µs 2.5 µs 

Table 2: Myrinet performance of M3F-PCIXE-2 and M3F-PCIXF-2 HCAs. 



40 
 

 

 

 

Chapter 4 

The HPC Systems Design and Performance 

Baseline 

 

As stated earlier, this research focuses on exploring the limited QoS and reliability 

capabilities that are available in native HPC systems, and also on adopting DDS QoS 

policies into HPC and Grid environments. Before exploring these objectives in detail, we 

first conduct a performance baseline for our HPC system to set the stage for our 

performance and reliability measurements done in the subsequent chapters. 

Tuning HPC clusters is considered one of the most critical tasks in any HPC evaluation 

process, due to the fact that these HPC clusters consist of several tunable layers, such as 

the interconnect, the operating system, the system nodes, and the MPI stack. Any miss-

configuration to any of these layers could result in wrong readings to the evaluation 



41 
 

process. To draw the baseline for our HPC cluster, we used two sets of benchmark tools, 

these are High Performance LINPACK (HPL) [49] and Intel IMB benchmark [64]. The 

first benchmarking tool is used to make sure that the actual TFlops (trillion Floating Point 

Operations Per Second) is very close to the theoretical figure with high efficiency 

percentage, which means that the cluster components (interconnect, OS, firmware 

configuration …etc) are tuned to perform at their best configuration. The latter 

benchmarking tool is used to make sure that the MPI layer is tuned to deliver the best 

performance possible and is not affected by increasing the number of nodes participating 

in the communication. For HPL testing, it is sufficient to test only one cluster to conclude 

that our tune up is correct, since all the other three clusters would have the same. Intel 

IMB benchmark, however, will be carried on all the clusters since the MPI layer is tuned 

differently in every MPI implementation. 

4.1 The System Architecture 

To perform our experimental tests, a cluster of DELL PowerEdge M610 Blade Servers 

was used. The cluster consisted of 126 nodes with dual sockets and Intel Hexa-Core 

(Westmere) 2.93GHz processors. The operating system running on the nodes was RedHat 

Enterprise Linux Server 5.3 with the 2.6.18-128.el5 kernel. Each node was equipped with 

an Infiniband Host Channel Adapter (HCA) supporting 4x Dual Data Rate (DDR) 

connections with the speed of 16Gbps, and 1Gbps Ethernet connection. The Infiniband 

connection was used for the actual inter-process communication while the Ethernet 

connection was mainly used for the OS image boot-up and remote access. Each node also 



42 
 

had 12 GB (6 x 2GB) DDR3 1333MHz of memory, therefore, the total amount of 

memory the system had was around 1.5TB. 

The physical layout of our cluster consists of six racks, each rack contains two chassis, 

and each chassis can host up to 12 blade nodes. That is, each rack supports 24 nodes. 

From each node we had a 4x-DDR Infiniband connection going to a central 144-port 

Qlogic Infiniband switch. Figure 8 shows the Infiniband interconnection design as 

described. It is important to mention that this design is considered non-blocking as each 

node guarantees to have the full 4x DDR 16Gbps interconnect speed.  

Our Infiniband interconnect topology uses three types of switches. A top-level switch that 

connects two leaf switches, and the chassis switches.  Each leaf switch can support up to 

72 nodes, as it connects 3 racks with each rack supporting 24 compute nodes. Under this 

configuration, IPC communication among nodes of 32 and 64 clusters is localized to one 

leaf switch, but for the cluster of 126 nodes, the top-level switch is involved to support 

more nodes.   

 

 

Figure 8: The DDR Infiniband interconnect topology of a 126 nodes cluster. 

 

 



43 
 

4.2 High Performance LINPACK Benchmark 

To compare performance and build a baseline for our machines, we use the High 

performance LINPACK (HPC). HPL is one of the standard benchmarking tools for HPC. 

It is a collection of subroutines that analyze and solve linear equations and linear least-

squares problems. The package solves linear systems whose matrices are general, banded, 

symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square. In 

addition, the package computes the QR and singular value decompositions of rectangular 

matrices and applies them to least-squares problems. HPL uses column-oriented 

algorithms to increase efficiency by preserving locality of reference [49]. 

The HPL benchmark uses Basic Linear Algebra Subprograms (BLAS), which is a 

collection of routines to perform basic vector and matrix operations. Therefore, the HPL 

benchmark performance heavily depends on the implementation of the BLAS package 

being used. In our evaluation, we used the version provided by Intel’s Math Kernel 

Libraries (MKL) since it is the one recommended to be used with Intel’s Nehalem 

processor in order to make the most use of the processor’s enhanced features. 

Tuning the input file parameters for HPL can be a challenging task. For each cluster size 

that we were evaluating, a different tuned HPL input file had to be generated. We describe 

next HPL’s main input parameters that were of interest to us to tune. We also discuss our 

methods and criteria in choosing these input parameters. The four parameters of interest 

were P, Q, N, and NB.         

The (P x Q) value represents the size of the computational grid that HPL resolves, which 

is equal to the number of processors the system has. We have noticed that the best 

performances were achieved when we chose the value of (P x Q) to be as “square” as 



44 
 

possible as a grid shape, so we chose them to be approximately equal keeping in mind that 

Q needs to be slightly larger than P.  

The next important parameter for HPL’s input is “N”, which is the size of the problem. 

Our goal was to find the largest problem size N that would fit in our system’s memory and 

would give us the tuned performance. We have chosen “N” to be close to our system’s 

total memory size (in double precision 8 bytes), but keeping in mind not to make it equal 

to 100% of the memory size since some of the memory needs to be used by the system. It 

is important to note that when we choose a small value for “N”, this will result in not 

enough work performed on each CPU and will give us low performance results and low 

efficiency. While if we choose a value of “N” exceeding our memory’s size, swapping 

will take place and the performance will go down. From our experiment with various 

values of N, the best performance was achieved when N was equal to 92% of the size of 

the system’s total memory. 

The last parameter that we discuss is “NB”, which is the block size in our grid. Usually 

block sizes giving good results are within the (96, 104, 112, 120, 128, …, 256) range, and 

from our experimental runs, the value of 224 for NB has shown to give the best results 

compared to the various test runs we did with other values of NB. 

Figure 9 shows an example of the HPL input file that was used for our 126-node 

benchmark runs with the tuned input parameters. Two other HPL input files were 

generated using the same techniques above for choosing the values of P, Q and N, one to 

be run on a system with 32 nodes and the other to be run a system with 64 nodes. 

 

 



45 
 

 
HPLinpack benchmark input file 
Innovative Computing Laboratory, University of Tennessee 
HPL.out output file name (if any) 
file   device out (6=stdout,7=stderr,file) 
1      # of problems sizes (N) 
414400 Ns 
1      # of NBs 
224    NBs 
0 PMAP process mapping (0=Row-,1=Column-major) 
1   # of process grids (P x Q) 
16     Ps 
63     Qs 
16.0   threshold 
1      # of panel fact 
0      PFACTs (0=left, 1=Crout, 2=Right) 
1      # of recursive stopping criterium 
4      NBMINs (>= 1) 
1      # of panels in recursion 
2      NDIVs 
1      # of recursive panel fact. 
0      RFACTs (0=left, 1=Crout, 2=Right) 
1      # of broadcast 
0      BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM) 
1      # of lookahead depth 
0      DEPTHs (>=0) 
2      SWAP (0=bin-exch,1=long,2=mix) 
128    swapping threshold 
0   L1 in (0=transposed,1=no-transposed) form 
0   U  in (0=transposed,1=no-transposed) form 
1      Equilibration (0=no,1=yes) 
8      memory alignment in double (> 0) 

Figure 9: The HPL file configuration for a 126 nodes cluster with N value set 

to 92% of available memory. 

 
To evaluate the performance of our system, the theoretical peak execution speed of the 

system had to be calculated in GFLOPS to know the maximum theoretical speed which 

cannot be exceeded. In the Top500 supercomputers terminology [48], the maximum 

theoretical system speed is referred to as “Rpeak”, while “Rmax” is the actual speed 

obtained when HPL is run. The “Efficiency” of the system is the ratio of Rmax to Rpeak 

(Rmax/Rpeak). The efficiency can be affected by the underlying interconnect technology 

used for IPC communication among compute nodes, the amount of RAM available for 



46 
 

individual compute nodes, as well as the MPI implementation used for communication 

among cluster nodes of the system [57]. 

For example, to calculate the theoretical Rpeak value for a system that consists of 126 

nodes each with 8 Nehalem cores capable of 4 operations per cycle with a speed of 

2.93GHz per core, the following formula is used: 

GFLOPS  11813

4)1268(93.2

/)(




 CyclesOpsCoresTotalGHzSpeedCPURpeak

 

Once we calculated the theoretical performance (Rpeak) for each of our various size 

systems (32, 64, and 126 node systems), we proceeded with running the HPL benchmark, 

using the corresponding HPL input file for each system size, to get the actual performance 

(Rmax) of each system. Table 3 shows the results of our HPL tests and confirms the 

consistency of the system. 

 

Number of nodes HPL results Theoretical results 

32 2,598 Gflops 2,953 Gflops 

64 5,256 Gflops 5,906.5 Gflops 

126 10,395 Gflops 11,813 Gflops 

Table 3: Test results for 32, 64 and 126 nodes LINPACK runs. 

 

4.3 Intel IMB Benchmark 

IMB 3.2 was used during this evaluation and it is the successor of PMB 2.2 from Pallas 

GmbH, Intel MPI Benchmarks 2.3, 3.0, and 3.1 [56]. This is a popular set of benchmarks 

which provides an efficient way to measure the performance of some of the important 



47 
 

MPI functions. It consists of three parts: IMB-MPI1, IMB-MPI2 and IMB-IO. We will 

focus on IMB-MPI1 which is used in our evaluation and it mainly replaces the formerly 

known Pallas benchmarks. The IMB-MPI1 benchmarks are classified into 3 groups, 

single transfer benchmarks, parallel transfer benchmarks, and collective benchmarks. 

Single transfer benchmarks focus on measuring startup and throughput of a single 

message sent between two processes. For our evaluation we used the two benchmarks in 

this category, the ping-pong and ping-ping benchmarks. In ping-pong a process sends a 

single message to another process then the second process sends it back to the first 

process. For ping-ping benchmark, both processes send a message at the same time.  

Parallel Transfer benchmarks focus on calculating the throughput of concurrence 

messages sent or received by a particular process in a periodic chain. For our evaluation 

we used two benchmarks in this category, the SendRecv and Exchange benchmarks. The 

SendRecv is based on the mpi_sendrecv function where each process in the 

communication chain sends to the process on its right and receives from the process on its 

left. In the exchange benchmark, each process exchanges data with both right and left 

process in the communication chain. 

Collective benchmarks measure the time needed to communicate between a group of 

processes in different behaviors. There are several benchmarks of this category and the 

following is description of the collective benchmarks that was used in our evaluation: 

 Reduce: each process sends a number to the root then the total number is calculated by 

the root. 

 Allreduce: same as reduce but the final result is sent to all processes. 



48 
 

 Scatter: the root of the process sends a message to all processes. The size of the 

message equals to the chosen size * number of processes. 

 Reduce_scatter: same as reduce but followed by scatter. 

 Gather: all processes send the same message to the root. 

 Alltoall: all processes send a message of a size equal to the chosen size * number of 

processes to all processes.  

 Bcast: the root process broadcasts data to all processes. 

4.4 Performance Evaluation and Results 

In this section, we discuss our measurement criteria and interpret the obtained IMB 

benchmark results. In order to evaluate the performance of the two implementations of the 

MPI, the benchmarks were run on the cluster starting with 8 and up to 1,512 processes of 

the entire 126 nodes (remember that each node has 6x2 cores) [75]. 

We started with the IMB Ping Pong test, which is the classical pattern for measuring 

startup and throughput of a single message sent between two processes. In this test, we 

compared the latency for the two different types of MPI; they are about the same (~200 

ns). As the message size gets bigger (>128k), Intel MPI starts to pick up and match the 

performance of MVAPICH. As shown in figure 10, both implementations are capable of 

delivering up to around 3039MB/s with a message size of 8M. We notice a dip in 

performance when using Intel MPI at a message size of 64k due to caching effect. This 

caching effect is common to some MPI implementations [86] whose large-message 

communication schemes suffer from high CPU utilization and cache pollution because of 

the use of a double-buffering strategy. This method results in two copies, one from the 



49 
 

source buffer (i.e. source node) into the copy buffer and another out of the copy buffer 

into the destination buffer (i.e. destination node).While this technique is useful for small 

message sizes (< 32 K bytes), it slows down the overall program for large message sizes, 

since it requires both nodes to actively take part in the transfer, which prevents them from 

performing useful application computation [86]. 

 

 

Figure 10: IMB Ping Pong Test 

 

In the Pallas SendRecv test, each process sends to the right and receives from the left 

neighbor in the chain. The turnover count is two messages sample (1 in, 1 out) for each 

process. It is observed that MVAPICH gets faster between message sizes 4 Kbytes to 256 

Kbytes, as shown in figure 11. The reason for this behavior is that while Intel MPI takes 

advantage of the double buffers for smaller message transfers, it requires to synchronize 

its source node double buffers with its adjacent nodes sequentially, starting with the left 

node and then synchronize again with the right node. Since the communication overhead 

takes precedence in the small message transfer phases, this effect is clearly shown in 



50 
 

messages smaller than 256 K bytes. For larger message sizes, both MPI versions turn to 

be equal at around 1600MB/s. 

 

 

Figure 11: IMB SendRecv Test 

 

Pallas Exchange test is a communications pattern that often occurs in grid splitting 

algorithms. The group of processes is seen as a periodic chain, and each process 

exchanges data with both left and right neighbor in the chain. Figure 12 shows the Pallas 

Exchange test and it is observed that for large size message > 16MB, MVAPICH 

performance starts to decrease, matching the performance of Intel MPI. Throughout the 

runs beyond 16 MB messages, the MVAPICH implementation started to swap to disk, 

causing the decrease in performance. We also notice a dip in performance at message size 

of 16k. This is due to caching effect in exchange since each processor will have 

essentially 32k. 

 



51 
 

 

Figure 12: IMB Exchange Test 

 

The following set of tests measures the time needed to communicate between a group of 

processes in different behaviors. Figure 13 shows IMB Allreduce test. Allreduce reduces 

vectors of length L float items from every process to a single vector and distributes it to 

all processes. As shown in the figure, the time increases as we increase the message size 

for all type of interconnects. Intel MPI performs slightly better when the message size 

exceeds 256KB. 

 

 

Figure 13: IMB AllReduce Test 



52 
 

Reduce test, which also reduce vectors of length L float items from every process to a 

single vector but in the root process. The root of the operation is changed cyclically. 

Clearly, Intel MPI performs better when the message size exceeds 2 MB, as shown in 

figure 14, as MVAPICH implementations started to swap to disk. 

 

 

Figure 14: IMB Reduce Test. 

 

Figure 15 shows the same case for Reduce Scatter test, which as well reduces vectors (of 

length float items) from every process to a single vector but, this time, the L items are 

split as evenly as possible between all processes. Again, Intel MPI suffers from the 

caching effect when the message size is about 512 K bytes, as a result of the use of the 

double-buffering strategy explained earlier.  

On All Gather test, as in figure 16, every process sends X bytes and receives the gathered 

X*(#processes) bytes from the receivers. As in Reduce test, MVAPICH implementation 

swapped to disk beyond 2 MB message sizes. 

 



53 
 

 

Figure 15: IMB Reduce Scatter Test. 

 

 

Figure 16: IMB All Gather Test. 

 

In Pallas Bcast test, the root process broadcasts X bytes to all other processes, Intel MPI is 

still faster than MVAPICH, see figure 17. In particular, as we increase the message size, 

the number of performance difference increases. For large message size (16MB) we see 

the time to do bcast using Intel MPI is about 15000 usec where the time using MVAPICH 

is about 18000 usec. 

 



54 
 

 

Figure 17: IMB Bcast Test. 

 

4.5 Conclusion 

In this chapter, we evaluated a large-scale Infiniband cluster, equipped with Intel’s latest 

Westmere processor using two MPI implementations. These experiments help us to draw 

the baseline for our HPC performance, in order to assure that it is properly tuned for our 

next experiments. The chapter presents the cluster configuration and evaluates its 

performance using High Performance LINPACK (HPL) and Intel MPI (IMB) 

benchmarks. Our results show that system scalability can still be achieved with up to 87% 

efficiency when considering the right combination of MPI, interconnect and CPU 

technologies. Further, our tests showed that in such a cluster, MVAPICH implementation 

excels in single-transfer communication where a single message is sent between two 

processes, while Intel MPI performs better in collective communication between groups 

of processes. 

 



55 
 

 

 

Chapter 5 

Reducing Failure Rate Using Diskless HPC 
Clusters 

 

5.1 Introduction 

As illustrated in chapter 1, component failure in large-scale HPC installations is becoming 

an ever larger problem as the number of hardware components in a single cluster 

approaches a million. Additionally, power and cooling have become a major issue in 

designing High Performance Computing (HPC) solutions. Green Top500 [36] was 

established primarily to address this concern. For all those reasons, many HPC providers 

and HPC centers are striving to attain all these goals (increasing the systems reliability 

while decreasing the power and cooling requirements) with the least amount of side-

effects possible. One of these attempts is researching the diskless HPC systems. 

Diskless HPC clusters consist of compute nodes with no local disks. Instead, the compute 

nodes get their OS image during boot-up by using a centrally located device (or disk 

node) over a local LAN. In some designs, an internal network (e.g. 1 Gbps Ethernet) is 

used to provide not only inter-processor communications (IPC) among compute nodes but 



56 
 

also a medium for booting and file transmission. In other advanced designs, as exhibited 

in Section 6.3, the IPC communication is carried out on a separate extremely high-speed 

interconnect technology such as Infiniband or Myrinet. Each diskless compute node boots 

through the NIC’s boot ROM with a small bootstrap, and then use either protocols such as 

BOOTP, DHCP, or NIC’s Preboot Execution Environment (PXE) to get the OS image 

from a remote machine (in our case the disk node).  Typically, a broadcast BOOTP 

request is first sent to a DHCP server to obtain an IP address. Then, the compute node 

sends a request to the TFTP server to get the boot image, point to the OS image, and start 

the booting process. During booting, all the necessary system files get transmitted through 

the network. The compute node completes the bootup when the remote file system is 

mounted as root file system (NFS_ROOT). 

There are a number of obvious advantages to diskless clusters. First, the cost per cluster 

node becomes lower. Nowadays, the average cost of a server-level disk is about $200 

[74]. This translates to $102,400 for a 512 nodes cluster. Second, diskless clusters have 

smaller footprints, i.e., lower power and cooling requirements. Third, cluster 

configuration and setup are consistent. In a diskfull cluster, system administrators spend 

considerable amount of time in developing and running script to ensure identical 

installations of OS images and files for all individual cluster nodes. In diskless cluster, 

since all nodes bootup over a network from a centralized disk server, identical OS images 

and installation files are ensured, thereby achieving system and file consistency across all 

compute nodes.  

The real advantage to diskless clusters, however, is the reduced maintenance, or 

downtimes. With diskless systems, all mechanical parts – apart from the internal fans – 

are eliminated. For example, the mean time between failures (MTBF) of an internal disk 



57 
 

is reported to be 300,000 hours, or 34 years of continuous operation [74]. Thus, if there is 

a cluster of 100 nodes, 3 to 4 disks will be replaced every year. If there is a cluster with 

12,000 nodes, then on average, a disk fails every 25 hours, or around every day. 

On the other hand, there are clearly obvious drawbacks associated with diskless HPC. The 

most obvious drawback is the added network traffic. Since the compute nodes load their 

OS image by using a centrally located device over a local LAN, a diskless HPC cluster 

configuration generates more network traffic than a diskfull HPC cluster by reading the 

image over LAN. Moreover, if the network connection or the centralized OS image is not 

available, none of the compute nodes will be accessible. Solutions exist for these 

drawbacks [3], such as creating a RAM disk on each compute node by allocating part of 

the compute node's main memory as a partition for the file system. The RAM disk will be 

used for storing the most frequently accessed files. Therefore, the compute node can 

access some files from local memory instead of through the network. 

Probably the most undesired situation that occurs during diskless HPC computation is 

disk swapping [38]. When the size of the main memory is not sufficient for the 

application running on the compute node, swapping to disk occurs and performance 

decreases dramatically. Swapping can have a particularly deleterious effect on 

performance in diskless clusters; all data accesses caused by swapping must travel 

through the network because the swap files are created on the centralized storage space. 

5.2 Related Work 

In this section, we present the related work and previous experiments done on diskless 

HPC implementations, compared to the traditional diskfull clusters. 



58 
 

Many benchmarks were conducted in the past to measure the performance of diskless 

HPC systems. Most these benchmarks [38,39,40] were done using the Ethernet LAN as a 

local cluster interconnect for communication, as well as for loading the diskless computes 

with the OS image. In our benchmark, however, we separate the compute nodes 

communication in a different Infiniband interconnect, while utilizing the LAN for booting 

the OS image.  

Guler, et al. [39] configured two identical HPC clusters, except that one is diskless and 

one is diskfull, to compare performance and to identify what kind of applications is 

suitable for each configuration. On both clusters, the nodes had 2 GB of memory and dual 

Intel Xeon™ 2.4GHz processors. In the diskfull HPC cluster, each compute node had one 

Ultra3 SCSI hard disk, with the Red Hat® Linux 7.3 OS installed. The authors ran the 

first HPL benchmark on a single node of each cluster. One node was configured for the 

diskless HPC cluster and another for the standard HPC cluster. For larger problem sizes, 

the diskfull node performed approximately 5% better than the diskless one. Another HPL 

benchmark was run to measure the performance of 32 nodes on each cluster. This test 

allowed the team to determine whether any scalability issues would arise with the NFS 

server. Yet, no scalability, manageability, or operating problems occurred with this 

diskless configuration. Not only did the diskless configuration perform as well as the 

standard one, but the diskless cluster also outperformed the standard configuration by a 

few GFLOPS (around 2% increase). Moreover, the problem scaled very well from one 

node to 32 nodes with approximately 4.5 GFLOPS per node. 

Chao-Tung Yang and Yao-Chang Chang [40] used a low cost Beowulf-type class HPC to 

prove the capability of their diskless cluster. The cluster consisted of one server node and 

eight computes as slave nodes. The server node had two Intel Pentium-III 690MHz 



59 
 

processors and 256MBytes of local memory, while the other eight nodes were dual 

Celeron-based SMP machines. Each individual processor was rated at 495MHz. The 

authors implemented a PVM-based matrix multiplication and also examined PVMPOV 

for parallel rendering. Their small-small sized cluster scaled very well when utilizing all 

the 8 compute nodes (16 CPUs). The authors, however, did not compare their diskless 

results with diskfull experiments. 

James H. Laros and Lee H. Ward [43] performed their diskless HPC experiments on a 126 

node test cluster that is comprised entirely of HP Alpha XP1000 nodes. Their cluster was 

built using the Bootable Hierarchy Architecture, a term they used to describe the layout of 

the NFS image used to support the diskless cluster. In their test system, the nodes served 

the role of leader or compute. The leader nodes are nodes that provide infrastructure 

services to other nodes. The compute nodes make up the bulk of the cluster. The authors’ 

analysis only focused on the initialization of the cluster and the commands execution time 

when they are distributed among the diskless compute nodes. No experiments were done 

to demonstrate the performance of the cluster when running HPL or compute-intensive 

operations. 

As described, many benchmarks were done in the past to measure the performance of 

diskless HPC systems. Most these benchmarks were done using the Ethernet LAN as a 

local cluster interconnect for communication as well as for loading the diskless computes 

with the OS image.  

Our diskless HPC is distinguished from the earlier experiments in the following ways: 

First, our test cluster is more practical as it is using state-of-the-art hardware for nodes and 

advanced interconnect technology. In our experiment and setup, we separate the IPC 

communication among compute nodes from LAN communications. We use the popular 



60 
 

and industry standard Infiniband-interconnect technology for IPC communication.  

Gigabit Ethernet links are used only for management purposes and for having the 

compute nodes obtain their OS images to bootup. Second, our testbed out-scale other 

prior testbeds. Our cluster consists of a 126 compute nodes, with each node having a 

quad-core processor. These nodes with multi-core processors would impose high demands 

on the communication network. Third, in sharp contrast to other related and prior 

experimental work, we study and measure the performance of diskless clusters in terms of 

a variety of key metrics and measures of engineering and design importance. Such 

performance measures include execution speed, efficiency, network utilization, and disk 

swapping. For all of these measures, we study the impact of the cluster size on the 

performance measures. Fourth, the temperature and power consumption are also measured 

and reported in order to quantify the benefit of using diskless clusters in terms of power 

saving. Performance measurements are reported and compared for both diskfull and 

diskless clusters. 

5.3 The Diskless Cluster Design 

To perform our diskless vs. diskfull benchmark evaluation, we used the same cluster setup 

that was described in section 5.1 with some modifications. A disk node in the cluster was 

sharing a Linux ext3 file system as a network file system (NFS) among the cluster nodes. 

This file system contained the home directory of the test user that was launching the High 

Performance LINPACK (HPL) benchmarks as well as the HPL binary, Intel compilers, 

Intel Math Kernel Libraries (MKL), and Intel MPI libraries. The disk node was also 



61 
 

hosting the NFS_ROOT file system containing the operating system that will be shared 

among the diskless clients via network. 

In case of diskless configuration, we had to increase the number of concurrent NFS 

threads running on the disk node hosting NFS_ROOT to handle the diskless clients’ NFS 

requests, by adjusting the default value of "$RPCNFSDCOUNT" variable in the NFS 

process file. This value depends greatly on the I/O load pattern, the network speed, the 

concurrency in the access and similar things. Red Hat recommends that systems 

administrators do a dynamic sizing of the number of nfsd threads [20]. During our tests, 

64 concurrent threads were found to be the optimal number. Nevertheless, the NFS I/O 

load on the disk node went up to 55 (uptime command figure), or:  [(55 / 8 cores) – 1 * 

100 = 587%] over-utilization when the diskless cluster first booted. 

5.4 HPL Experimental Results 

In this section, we present and discuss our HPL experimental results based on the same 

system and benchmark methodology explained in chapter 4. All reported measurements in 

this section are the average readings of three runs. The performance is measured and 

compared for both diskless and diskfull clusters while varying the cluster size. We study 

and measure the performance in terms of HPL efficiency, GFLOPS, HPL runtime and I/O 

node disk and network utilizations. We also examined the disk swapping effect on the 

diskless high performance cluster. 

Figures 18, 19 and 20 show the HPC system efficiency, execution speed in GFLOPS and 

execution time (in seconds) of both diskfull and diskless configurations. HPL efficiency is 

obtained by dividing the theoretical peak speed (Rpeak) by the maximal HPL speed 



62 
 

achieved (Rmax). As shown in Figure 18, diskless cluster provides comparable efficiency 

to the diskfull. In addition, as exhibited in both Figures 19 and 20, diskless slightly 

outperforms diskfull in terms of execution speed and run time.   

It is important to note that the HPL efficiency was slightly reduced when using 126-node 

cluster for both diskfull and diskless configuration. The reason for this small reduction is 

due to the added communication introduced by the Infiniband top-level switch.  For 

clusters of 32 and 64 nodes, the top-level switch is not involved and IPC communication 

among nodes is localized and only done via the leaf switch.  However, when extending 

the cluster to 126 nodes, both top-level switch and the two leaf switches are involved in 

communication. As described earlier in, one leaf switch can support up to 72 nodes, as it 

connects 3 racks with each rack supporting 24 nodes.   

 

85.67

87.07

86.63

85.67

86.93

86.53

84.50 85.00 85.50 86.00 86.50 87.00 87.50

126 Nodes/diskless

64 Nodes/diskless

32 Nodes/diskless

126 Nodes/diskfull

64 Nodes/diskfull

32 Nodes/diskfull

Efficiency (%)

 

Figure 18: HPL efficiency for diskless and diskfull HPC. 

 

 



63 
 

10120

5224

2599

10120

5216

2596

0 2000 4000 6000 8000 10000 12000

126 Nodes/diskless

64 Nodes/diskless

32 Nodes/diskless

126 Nodes/diskfull

64 Nodes/diskfull

32 Nodes/diskfull

Speed (GFLOPS)

 

Figure 19: Execution speed in terms of GFLOPS for diskless and diskfull HPC. 

 

4685

3505

2487

4689

3510

2490

0 1000 2000 3000 4000 5000

126 Nodes/diskless

64 Nodes/diskless

32 Nodes/diskless

126 Nodes/diskfull

64 Nodes/diskfull

32 Nodes/diskfull

Run Time (Seconds)

 

Figure 20: HPL execution time for diskless and diskfull HPC. 

 

It is observed from Figure 20 that the execution time of HPL increases when the cluster 

size increase, although larger cluster size would have more memory and more processing 

speed (i.e. GPFLOPS). The reason for this increase is due to the way that HPL benchmark 

works. HPL provides three separate benchmarks that can be used to evaluate the 

performance of a dense system. The first is computing a 100 by 100 matrix, the second is 

for a 1000 by 1000 matrix, while the third benchmark, of a particular interest, is 

dependent on the algorithm chosen by the manufacturer and the size and speed in addition 



64 
 

to the available memory of the system being benchmarked [57]. The third benchmark was 

the one used.  In other words, the benchmark execution size is made proportional to the 

size of the cluster in terms of memory, GFLOPS, and nodes. Large clusters will have 

larger benchmarks to run. This clearly explains the increase of execution time exhibited 

under clusters of 64 and 126 nodes. 

Another experiment was performed where the cluster nodes were forced to swap to disk, 

by increasing the HPL required memory (i.e. N as an HPL input value) to 95%. The 

intension of this experiment was to measure the effect of disk swapping on the diskless 

cluster. While the diskfull system continued to run with typical swapping activities, Out-

of-Memory (OOM) process was seen on the diskless compute nodes, causing the nodes to 

kill system processes randomly when they ran out of memory. The diskless HPC did not 

succeed running the benchmark when swapping is needed. Obviously, that is one 

limitation of running diskless HPC cluster. 

We also measured the Gigabit Ethernet network utilization and disk I/O activities at the 

disk node throughout the experiment run time. It was noticed that obvious network and 

disk I/O activities occurred only when all the 126 nodes were booting up and loading the 

OS image via the network. However, after bootup, negligible activities were observed.  

Such observation is expected as access to disk node is needed only during the bootup of 

the 126 compute node, and IPC communication among computer nodes is carried out by 

the Infiniband links. The Red Hat Linux native dstat command was used to collect such 

statistics for a period of 5 minutes. Figure 21 illustrates the disk I/O activity on the image 

node while the diskless nodes are booting. As shown, the first read burst at 29s was 

caused by loading the kernel image into the diskless nodes, while the second burst at 

approximately 70s was caused by the start of actual loading OS files. Beyond 146s, the 



65 
 

OS image was entirely loaded into memory and minimal disk reads were taking place. On 

the other hand, disk writes continued as the diskless nodes were writing their states on the 

disk node, such as system and kernel logs (e.g. /var). These writes, however, did not 

exceed 8MB/s aggregate. 

 

0

2

4

6

8

10

12

14

16

18

1 30 59 88 117 146 175 204 233 262 291

Disk 
Read

Disk 
Write

Time (seconds)

D
is
k
A
ct
iv
it
y 
(M

B
)

 

Figure 21: Disk I/O measured at the disk node during the bootup of diskless compute 
nodes. 

 

Figure 22 shows the network IO on the disk node while booting the diskless compute 

nodes. As indicated, the network first high sending burst took place at 29s when the 

kernel image was being sent to the booting nodes to be loaded into their memory, while 

the second sending burst starting at 60s and lasting until 262s was caused by loading the 

actual OS files. These two bursts maxed to approximately 118MB/s, which is the 

maximum throughput of a 1Gbps connection. These bursts indicate a clear network 

contention on the disk node while the diskless nodes were booting up. In between the two 

bursts, the network activity goes down as the kernel image (initrd) scans for hardware in 

these diskless nodes, in which it does not need much of network activity. On the other 

hand and after completing the bootup process, the network activity decreased at 265s for 



66 
 

both network send and receive down to 500KB/s, as the diskless nodes had the OS image 

loaded into memory, and minimal access to disk node would be required. Such minimal 

access is primarily caused by Linux activities related to /proc and other virtual file 

systems for collecting and reporting system statistics.   

 

0

20

40

60

80

100

120

1 30 59 88 117 146 175 204 233 262 291

Network 
Receive

Network 
Send

Time (seconds)

D
is
k
A
ct
iv
it
y 
(M

B
)

 

Figure 22: Network activities at the disk node during the bootup of diskless compute 
nodes. 

 

During the time of HPL run on all 126 nodes, the temperature of both CPUs, the mother 

board’s temperature, and the power consumption for all 126 nodes were monitored while 

running diskless and on disk. DELL’s version of Intelligent Platform Management 

Interface (IPMI) tool [52] was used to collect such readings from all 126 nodes while the 

benchmarks were running on the nodes and fully utilizing the CPU and memory. In terms 

of temperature and heat dissipation, the diskfull and diskless readings were about the 

same at C18o  while performing the HPL test. In terms of power consumption, however, 

the diskless nodes operated with an average of 277 Watts per node, compared to 280 

Watts per node for the diskfull configuration. That is about 2% saving in power. This 



67 
 

difference in power saving matches the hardware specifications of the published DELL 

internal disks power consumption [53] where they consume around 5 Watts per node. 

According to the United States’ Department of Energy statistics for 2009, the average 

price for electricity in the USA is 10.01 cents per kW hour [58]. This would translate to 

an annual saving of U.S. $31,567 for a diskless cluster consisting of 12,000 nodes 

compared to a diskfull cluster of the same size. 

 

#Nodes/State 
Avg. Cluster Temp. 

( Co )  
Avg. Cluster Power 

(Watts) 
126 Nodes/diskfull 18 280 
126Nodes/diskless 18 277 

Table 4: Temperature and power consumption for diskfull vs. diskless HPC 

 

Furthermore, selected tests were conducted to examine the behavior of diskless system 

under various conditions, one of which is the effect of NFS_ROOT crash while the cluster 

is being utilized. Particularly, the NFS service was stopped (i.e. NFS_ROOT) on the disk 

node that was serving the OS image to the compute nodes.  The NFS crash caused the 

compute nodes to completely stall with no network access. This is expected because 

during HLP run, there was still access to disk node, but minimal in the range of 500 KB/s. 

The system was back to normal operation, however, when the NFS service was back 

online. This behavior is expected as the NFS protocol is stateless [54]. That is, the NFS 

server should not need to maintain any protocol state information about any of its clients 

in order to function correctly. With stateless servers, a client needs only retry requests 

until the server responds; it does not even need to know that the server has crashed, or the 

network temporarily went down.  



68 
 

5.5 BLAST Experimental Results 

Our second mechanism to measure our HPC diskless performance is by using the Basic 

Local Alignment Search Tool (BLAST) [80], which is a suite of programs designed to 

search all available sequence databases for similarities between a protein or DNA query 

and known sequences, using sequence alignment technique. Sequence alignment provides 

an accurate mapping between the elements in the two strings. Given a pair of strings, 

there are many possible alignments, and each one can be assigned a quality score; by 

giving positive scores to exact letter matches and negative scores to substitutions (i.e., 

where one letter in a sequence is mapped to a different letter in the second sequence) and 

gaps (i.e., where mapped letters are the same, but they occur in different positions in the 

sequences). This scoring system for matches and substitutions is normally done in the 

form of a “scoring matrix” in which the entries reveal the biological impact of the 

corresponding matches or substitutions [81]. The global similarity score of a pair of 

sequences is simply the score of the best (i.e., highest-scoring) alignment of the two 

sequences. It is important to mention that even if the global similarity score is low, there 

may still be portions of the sequences that match extremely well, and such local 

alignments are often of higher biological interest than the best global alignment. 

Clearly, projects such as BLAST and other Biomedical Informatics projects in general, 

require data analysts and computing expertise as well as medical research talents to 

analyze and manage billions of data elements. On top, it has been estimated that the 

collective amount of genetic information doubles every twelve to eighteen months. This 

increased volume of information boosts the amount of computation required when 



69 
 

comparing an unknown sequence to the databases of known sequences. For those reasons, 

we elected to use BLAST tool in order to evaluate the performance of our diskless cluster. 

In order to evaluate the performance, the benchmarks were run on the first diskless node 

for the serial BLAST tests, and ranging from one node and up to 32 nodes for the MPI 

experiments. We used both the NCBI BLAST [80] and mpiBLAST packages [82] for the 

tests. Both implementations are freely available, whereas mpiBLAST is the parallel 

implementation of the tool. The main benefit to using mpiBLAST versus the serial 

BLAST is performance. mpiBLAST can increase performance by several orders of 

magnitude [82] while still retaining identical results as output from the serial BLAST. 

Particularly, through the use of database fragmentation, mpiBLAST performs a BLAST 

search in parallel. Database fragmentation partitions a database into multiple fragments 

and by distributing the fragments across many computational-resources (e.g. cluster-

nodes), where each fragment can be searched simultaneously. Furthermore, by 

segmenting the query into multiple, independent searches, multiple BLAST searches can 

be simultaneously performed.  

In our experiments, we used two different databases against our two 560 and 1,410 

nucleotides input sequences to examine the scalability of our BLAST runs, namely: the 

Drosoph database for having the Drosophila sequences with a size of 120MB, and the 

human genomes database with around 9.8GB of sequence records. Table 5 shows the 

performance benchmark of the serial BLAST using both the diskless and diskfull 

configurations.  

 

 



70 
 

Cluster 
Type 

Database Elapsed Time (560 
nucleotides sequence 
input) 

Elapsed Time (1,410 
nucleotides sequence 
input) 

Diskless Drosoph 6.3 seconds 10.1 seconds 
Diskfull Drosoph 6.5 seconds 10.5 seconds 
Diskless Human genomes 212 seconds 280 seconds 
Diskfull Human genomes 221 seconds 289 seconds 

Table 5: Serial BLAST comparison using the two cluster configurations 

 

In this serial BLAST benchmark, the diskless runs slightly superseded the diskfull 

configuration in all iterations. Specifically, the diskless cluster performed around 3% 

better than the diskfull version. The rationale behind this slight increase is the elimination 

of disk accesses when referencing the OS was needed.   

 

No. of 
nodes 

Diskless (560 
nucleotides) 

Diskfull (560 
nucleotides) 

Diskless (1,140 
nucleotides) 

Diskfull (1,140 
nucleotides) 

time time time time 
1 7.2 7.6 11.7 12.4 
2 3.9 4 9 9.5 
4 2.5 2.6 7.9 8.1 
8 0.7 0.73 3 3.1 
16 0.3 0.31 1.5 1.5 
32 0.2 0.2 0.2 0.2 

Table 6: mpiBLAST performance benchmark using Drosoph database 

 

Table 6 shows the performance of the mpiBLAST code using the Drosoph database. In 

this test, the mpiBLAST was compiled using MVAPICH while retaining all the default 

options. In addition, the database was fragmented prior in each run to a number of 

partitions that is equal to the number of the cluster nodes, in order to achieve the optimal 

performance.  



71 
 

It is noticeable that the diskless-runs on a single node took around 7.2 seconds when using 

the 560-nucleotides sequence, whereas it took only 6.3 seconds when using the serial 

BLAST (in fact this observation applies to all single MPI-node runs vs. serial BLAST 

runs). This effect is due to the fact that the MPI-based BLAST code has more routines and 

functions to call, making the code more complex, and thus more time to run. Another 

observation is the degradation in performance increase rate when reaching 6 nodes. This 

degradation is related to the additional communication overhead with respect to the 

computation time. This communication is lessened in the Human genome database runs as 

the computation time gets larger with respect to the communication overhead. Similar to 

the serial BLAST tests, the diskless cluster outperformed the diskfull setup in both 

database runs.  

 

No. of 
 nodes 

Diskless (560 
nucleotide seq.) 

Diskfull (560 
nucleotide seq.) 

Diskless (1,140 
nucleotide seq.) 

Diskfull (1,140 
nucleotide seq.) 

time time time time 
1 230 239 296 303 
2 121.7 127 164 168 
4 85 88 105 108.1 
8 22 25 35 37.2 
16 15 16.1 23.2 24 
32 4 4.3 5 5.3 

Table 7: mpiBLAST performance benchmark using the Human genome database 

 

Table 7 presents the performance using the 9.8GB Human genome database. Again, both 

the 560 and 1,140 nucleotides sequences were used in the runs. Overall, the performance 

of the diskless setup supersedes the diskfull cluster by around 2-4%. This percentage was 

lessened when exceeding 12 nodes as the MPI communication overhead became the main 



72 
 

contributor to the running time. It is also noticeable that that performance scalability is 

somewhat linear when using up to 12-15 nodes. 

5.6 Conclusion and Future Work 

Diskless HPC clusters are becoming a compelling alternative with greater benefits when 

compared to diskfull clusters, particularly in terms of reducing power consumption and 

failure rate. In this chapter, we have presented a design and a configuration of a state-of-

the-art diskless cluster using Infiniband-interconnect technology.  Our cluster consisted of 

126 compute nodes equipped with quad-core processors. We measured and evaluated the 

performance of such a cluster in terms of key metrics which include overall efficiency, 

execution speed (in GFLOPS), and execution time. We also measured temperature and 

power consumption. These measurements of diskless cluster were compared to its 

respective diskfull cluster, considering three cluster sizes of 32, 64, and 126 compute 

nodes. Our results show that diskless clusters yield comparable performance to diskfull 

clusters, and in some cases outperform the diskfull. In terms of power consumption, 

diskless clusters clearly win with power saving of at least 3 Watts per node.  On the other 

hand, diskless clusters have shortcomings. For one, diskless clusters require ample of 

RAM. It was demonstrated that if compute nodes are forced to perform disk swapping by 

decreasing their available memory, the compute nodes will freeze.  Another obvious 

shortcoming is that the disk node in a diskless cluster can be a single point of failure.  

However, these two shortcomings can be alleviated by increasing the RAM of compute 

nodes and by having more reliable disk nodes that use advanced network storage 

technologies such as NAS and RAID technology. 



73 
 

As a future study, we plan to expand the size of the Infiniband diskless cluster to include 

512 compute nodes, and then investigate its performance. We also plan to evaluate 

diskless cluster performance when using other popular benchmarks such as the Pallas 

MPI benchmarking tool [56] which gives more insight on MPI behavior and performance. 

We are also considering measuring the performance of diskless clusters when using 

10Gbps Ethernet for IPC communication instead of Infiniband. 

  



74 
 

 

 

 

Chapter 6 

QoS and Performance Evaluation of the 

Infiniband Interconnect 

  

With the ever increasing number of scattered clusters around the globe, there has been a 

growing need to look for ways to interconnect these smaller clusters into larger, and 

potentially more powerful, HPC systems. Controlling the QoS for applications in such 

heterogeneous environments, however, has been one of today’s challenges in this field, 

which in turn, has led system administrators to explore QoS for high performance 

networks.  

Considerably, the Infiniband Architecture (IBA) Specification provides six different 

routing algorithms to better provide QoS and optimize the HPC internetwork traffic [84]. 

In this chapter, we present these algorithms and then evaluate QLogic’s dispersive routing 

using a large-scale Infiniband cluster, equipped with Intel’s latest Westmere processor. 

Our results show that whilst the default MinHop algorithm suits most of the serial and 



75 
 

point-to-point benchmarks, the dispersive routing algorithm exhibits improved 

performance when running specific computational and parallel transfer routines. 

6.1 InfiniBand and QoS 

IBA supports QoS at two levels: at the routing level, which is the scope of this chapter, 

and at the link level.  

Fundamentally, IBA has three mechanisms to support QoS at the link level. These are: 

using service levels (SL), virtual lanes (VL), and virtual lane arbitration (VLArb). The 

Infiniband administrator may define up to16 service levels (SLs) using the Subnet 

Manager (SM), but by default, this definition does not specify what characteristics or 

traffic type of each service level. Therefore, it depends on the implementation or the 

administrator how to partition the different existing traffic types among these SLs.  

Once the SLs are defined, the network maintains a Service Level to Virtual Lane 

(SL2VL) mapping table that specifies to which VL we need to send packets belonging to 

one SL. The network maintains virtual lane arbitration (VLArb) table which defines two 

priority levels: high and low priorities. In each level, a weighted round-robin scheme of 

arbitration between the virtual lanes is defined. These two priority tables together ensure 

that each packet will be forwarded according to its designated SL across the network. A 

ceiling can also be defined on the number of credits that can be sent by all the high 

priority entries combined before allowing the low priority entries to be sent. This 

mechanism prevents starvation for those applications using the low priority queues. 

 



76 
 

 

Figure 23: Infiniband Service Levels to Virtual Lanes mapping 

 

Another newly introduced QoS layer in the Infiniband is the Direct Access Programming 

Library (DAPL) [83]. This library allows the MPI to use multiple fabrics independently 

and seamlessly. The rationale behind developing this library is that over the past several 

years, multiple networks appeared that provide Remote Direct Memory Access (RDMA) 

capabilities, such as the Infiniband, Myrinet and Quadrics. Some of these interconnects 

define their own APIs and of them do not define APIs at all. In addition, users of these 

networks who develop applications that take advantage of the RDMA semantics want to 

have a common set of APIs for all the networks. The work DAPL fills this need, as shown 

in figure 24. It is important to mention that depending on the design of the MPI layer, the 

performance impact of using the underlying DAPL might be negligible [83]. 



77 
 

 

Figure 24: Infiniband DAPL Architecture 

 

6.2 Infiniband Routing Algorithms 

In this section, we briefly describe the five standard Infiniband routing algorithms, as 

specified by the Infiniband Architecture (IBA) Specifications, as well as QLogic’s 

proprietary Dispersive Routing. The Mellanox manual [84] describes the first five routing 

implementation in more details. 

The Min Hop Algorithm 

The Min Hop algorithm is based on the minimum hops to each cluster node where the 

path length is optimized. The Min Hop is default algorithm, where it is activated when no 

other routing mechanism is specified. The Min Hop algorithm is simply based on two 

routines: computation of MinHop tables on every IB switch and Linear Forwarding Table 

(LFT) output port assignment for the forwarding mechanism. 

 

 



78 
 

The UPDN Algorithm 

The Infiniband Up/Down (UPDN) routing algorithm is designed to avoid loops on the 

network. It is based on the minimum hops to each node, but it is bound to ranking rules. 

Loop-deadlock may occur when it is no longer possible to send data between any two 

hosts connected through the loop. Therefore, the UPDN routing algorithm should be used 

if the subnet is not a pure Fat Tree, and there is a potential for deadlocks. 

In short, the UPDN algorithm initialization is done as follows: first, the firmware does an 

auto-detect for root nodes in the fabric. Then, the ranking process assigns all root switch 

nodes a rank of #0. Using the Breadth-First-Search (BFS) algorithm, the remaining nodes 

in the subnet are ranked incrementally. Then, another BFS algorithm is run in each node 

in the subnet. During the BFS process, the Forwarding Database (FDB) table of each 

switch node traversed by BFS gets updated, in reference to the root node of each sub-tree. 

At the end of the process, the updated FDB tables ensure loop-free paths through the 

subnet. 

Fat-tree Routing Algorithm 

The fat-tree algorithm can be selected if the Infiniband network is balanced or almost 

semi-balanced fat-tree of various types. As in UPDN, fat-tree is also an option to avoid 

credit-loop-deadlocks. 

If the root Globally Unique Identified (GUID) file is not manually provided, the topology 

has to be pure fat-tree network for the algorithm to be initialized automatically. In 

addition, the tree rank should be between two and eight, and switches of the same rank 

should have the same number of UP-going port groups, unless they are root switches. 

Similarly, switches of the same rank should have the same number of DOWN-going port 

groups, unless they are leaf switches. 



79 
 

If the root GUID file is given as an argument, however, then the topology doesn't need to 

be pure fat-tree, and it should only comply with two conditions: first, the tree rank should 

be between two and eight, and that all the compute nodes have to be at the same tree level. 

The subnet manager performs a light sweep of the fabric it is managing every 10 seconds 

(by default). Thus, it is important to mention that if the IB networks do not comply with 

the above constraints (due to a link failure), the topology is no longer a “pure” fat-tree and 

the network will fall back to the default Min Hop routing. 

LASH Routing Algorithm 

LASH (Layered SHortest) routing algorithm is a deterministic shortest path routing 

algorithm, providing a deadlock-free routing within the Infiniband network. The concept 

assumes the presence of virtual channels divided into virtual networks (layers) to avoid 

deadlocks. Other than that, LASH routing requires no special functionality within the 

switches. 

When computing the routing function, LASH analyzes the network topology for the 

shortest-path routes between all pairs of <sources, destinations> and groups these paths 

into virtual layers. Then, the algorithm begins a Virtual Level (VL) assignment process 

where a physical route is assigned to a layer if the addition of that route does not cause 

deadlock within that layer. This is achieved by maintaining a channel dependency graph 

for each virtual layer. If a deadlock exists, the algorithm creates a new virtual layer and 

continues the assignment process. It is noted that once this stage is complete, it is highly 

likely that the first layers processed will contain more paths than the latter ones. 

Therefore, to better balance the use of layers, LASH moves paths from one layer to 

another so that the number of paths in each layer is balanced. 



80 
 

It has been shown that for both regular and irregular topologies, LASH outperforms 

Up/Down [84]. The reason for this is that LASH distributes the traffic more evenly 

through a network via the VLs, avoiding the bottleneck issues related to a root node and 

always routes shortest-path. 

DOR Routing Algorithm 

The Dimension Order Routing algorithm is based on the Min Hop algorithm and so 

implements shortest paths. Instead of sending traffic via multiple paths that have the same 

shortest distance, DOR chooses among the available shortest paths based on an ordering 

of dimensions. Each port must be consistently cabled to represent a hypercube dimension 

or a mesh dimension. When there are multiple links between any two switches or nodes, 

they still represent only one dimension and traffic is balanced across them. This way, the 

algorithm is kept simple and dead-lock free, however, it eliminates path diversity in a 

mesh network and thus lowers throughput. Without path diversity, the routing algorithm 

is unable to route around faults in the network or avoid areas of contention.  

QLogic’s Dispersive Routing Algorithm 

QLogic introduced Infiniband Dispersive Routing algorithm as part of its Infiniband 

Fabric Suite (IFS) version 6.0. The algorithm’s idea is to optimize routing the HPC 

interconnection traffic using multiple paths between the HCA adapters. That is, instead of 

sending all the internetwork packets to a destination on a single path, the algorithm 

monitors multiple paths to a destination through the Infiniband Fabric Suite (IFS), 

distributes traffic over those paths, and ensures that the packets are reassembled in the 

proper order for processing at their destination. The technique also maximizes the speed 

of transfer, ensuring that the InfiniBand fabric is operating efficiently. 



81 
 

6.3 Performance Evaluation and Results 

In this section, we discuss our measurement criteria and interpret the obtained IMB 

benchmark results. In order to evaluate the performance of the dispersive routing and 

compare it with the default MinHop algorithm, the benchmarks were run on the cluster 

starting with 8 and up to 1,512processes of the entire 126 (remember that each node has 

6x2 cores). 

In table 8, we used IMB Ping Pong test, which is the classical pattern for measuring 

startup and throughput of a single message sent between two processes. In this test, we 

compared the latency for the two different algorithms. Noticeably, they are about the 

same (~200 ns). Further, both algorithms are capable of delivering up to 3100MB/s with a 

message size of 16M. 

 

 
128KB 256KB 512KB 1MB 2MB 4MB 8MB

Dispersive Routing 1625 1935 2325 2681 2820 2993 3039

MinHop Routing 1622 1933 2336 2684 2817 2992 3036

Table 8: Infiniband routing Ping Pong Test (in MB/s) 

 
Tables 9 and 10 show the performance during the parallel transfer benchmarks. In the 

Pallas send recev test, each process sends to the right and receives from the left neighbor 

in the chain. The turnover count is two messages sample (1 in, 1 out) for each process. 

Pallas Exchange test, on the other hand, is a communications pattern that often occurs in 

grid splitting algorithms. The group of processes is seen as a periodic chain, and each 



82 
 

process exchanges data with both left and right neighbor in the chain. It is observed that 

both algorithms perform the same in these two tests. 

 

 
128KB 256KB 512KB 1MB 2MB 4MB 8MB

Dispersive Routing 1100 1351 1535 1544 1577 1622 1603

MinHop Routing 1078 1344 1539 1551 1580 1618 1608

Table 9: Infiniband routing SendRecv Test (in MB/s) 

 

 
 

128KB 256KB 512KB 1MB 2MB 4MB 8MB

Dispersive Routing 1255 1343 1362 1360 1366 1385 1420

MinHop Routing 1248 1338 1360 1370 1374 1402 1455

Table 10: Infiniband routing Exchange Test (in MB/s) 

 
 

The following set of tests measure the time needed to communicate between a group of 

processes in different behaviors. Figure 25 shows IMB Allreduce test. Allreduce reduces 

vectors of length L float items from every process to a single vector and distributes it to 

all processes. As shown in the figure, the time increases as we increase the message size 

for all type of interconnects. In this test, the dispersive routing algorithm performs slightly 

better when the message size exceeds 1MB. 

 



83 
 

 

Figure 25: Infiniband routing AllReduce Test 

 

Reduce test, which also reduce vectors of length L float items from every process to a 

single vector but in the root process. The root of the operation is changed cyclically. 

Clearly, dispersive routing performs better when the message size exceeds 1MB, as 

shown in figure 26. This observation - as well as AllReduce test - support the fact that 

dispersive routing works well in the case of parallel communication, or when the switch 

handles intensive broadcast transfers. 

 

 

Figure 26: Infiniband routing Reduce Test 



84 
 

Figure 27 shows the same case for Reduce Scatter test, which as well reduces vectors (of 

length float items) from every process to a single vector but, this time, the L items are 

split as evenly as possible between all processes. On All Gather test, as in figure 28, every 

process sends X bytes and receives the gathered X*(#processes) bytes from the senders. 

 

 

Figure 27: Infiniband routing Reduce Scatter Test 

 

 

Figure 28: Infiniband routing All Gather Test 

 

In Pallas Bcast test, the root process broadcasts X bytes to all other processes, Dispersive 

routing is still faster than MinHop, see figure 29. In particular, as we increase the message 



85 
 

size, the number of performance difference increases. For large message size (8MB) we 

see the time to do bcast using dispersive routing is about 14330 usec, while the time using 

MinHop is about 15000 usec. 

 

 

Figure 29: Infiniband routing Bcast Test 

 

6.4 Conclusion 

As high performance clusters (HPC) expand in terms of nodes count and processing 

cores, internetwork congestion and bottlenecks at the host and network levels become one 

of the main challenges in clustered computing. Considerably, the Infiniband Architecture 

(IBA) Specification provides six different routing algorithms to better optimize the HPC 

internetwork traffic. In this chapter, we presented these algorithms and then evaluated 

QLogic’s dispersive routing using a large-scale Infiniband cluster, equipped with Intel’s 

latest Westmere processor. The chapter presented the cluster configuration and evaluates 

its performance using HPL and Intel MPI (IMB) benchmarks. Our results show that 

whilst the default MinHop algorithm suits most of the point-to-point benchmarks, the 



86 
 

dispersive routing algorithm exhibits improved performance when running specific 

computational and parallel transfer routines. 



87 
 

 

 

 

Chapter 7 

Importing DDS-QoS into HPC and Grid 

Computing 

 

In this chapter, we present our work of adopting DDS standards into HPC, in order to 

circumvent the MPI shortcomings and provide QoS and reliability controls in the 

middleware layer. It is also part of this research to examine the effect of adopting DDS 

QoS on HPC, in terms of scalability, performance and fault-tolerance, by testing three 

different computational models. All of our tests were conducted using state-of-art HPC 

technologies, such as the Quad Data Rate Infiniband interconnect and multi-core 

processors. 



88 
 

7.1 The General Publish-Subscribe Framework in Data 

Distribution Services 

Data Distribution Service is a specification of a publish/subscribe middleware for 

distributed systems, created for the need to standardize a data-centric programming model 

for distributed systems [22]. The DDS standard, which is maintained by the Object 

Management Group’s (OMG),offers a portable and scalable middleware infrastructure, 

designed for heterogeneous computing environments, to facilitate data transfers between 

data publishers and subscribers. DDS also provides various quality-of-service (QoS) 

policies that span across the multiple communication layers. 

The DDS standard implements the publish/subscribe communication model for sending 

and receiving signals, commands, or even user-defined data between the nodes in the 

environment. As shown in figure 30, nodes that are sending data create "topics" of certain 

data types. These topics can be thought of as dedicated “data channels” that participants 

can join and share data through them. Using these topics, the different samples (which are 

different versions of data related to that topic) are communicated between the senders and 

recipients in the domain. The communication speed depends primarily on the DDS 

implementation and the communication medium that is used, where some DDS 

implementations [23] are reported to achieve latency as low as 65 microseconds between 

nodes, and high throughput up to 950Mbps, where any node can be a publisher, 

subscriber, or both simultaneously.  

To enhance scalability, topics may have several independent data channels that are tagged 

with "keys." This technique allows recipients to subscribe to different data flows with a 



89 
 

single subscription. When data is received, the middleware arranges using the keys and 

deliver it to the recipients for processing.  

 

 

Figure 30: The general Publish-Subscribe model with persistence service 

 

 
The main advantage of the DDS model is that applications can be entirely distributed. 

Also, the middleware handles the interaction and communication between the entities in 

the environment through the use of DDS libraries. Unlike MPI or other distributed 

computing middleware, the applications do not need information about the node in the 

domain, including their existence or locations. These features are achieved by the use of 

the automatic-discovery mechanisms as one of the DDS QoS parameters, and by 

specifying the behavior used when sending and receiving messages, including: 

 Determining who should receive the messages, 

 Where recipients are located, 

 What happens if messages cannot be delivered, 

 Maximum-waiting and minimum-separation times 



90 
 

7.1.1 QoS in DDS 

As described earlier, having control over Quality of Service (QoS) is one of the most 

important features of the DDS standard. Each group of senders and receivers in the 

system can define independent QoS policies, whereas the middleware assures if the QoS 

agreement can be satisfied, thus establishing the communication or indicating an 

incompatibility error. Some information about some important QoS policies is highlighted 

below, and more policies are listed in Appendix 1: 

Deadline: Data publishers may set the speed at which they can send data by offering 

certain update deadlines. By setting a deadline, the sender assures to send new updates at 

a minimum rate. Recipient son the other end may then request data at that or any slower 

rate. 

Liveliness: This QoS determines whether an entity or a node is “active” (i.e. alive). The 

application can also be informed via a listener when an Entity is no longer responsive.  

Strength: The middleware can have several publishers that are sending data using the 

same defined topic, each with its own “strength” indicator. Recipients receive the samples 

from the strongest active publisher. This technique provides automatic failover to the 

system, in a way that if a publisher with high strength parameter fails, then all subscribers 

can immediately switch to the second strong publisher in the same domain. 

Durability: Publishers can declare "durability," a parameter that determines how long 

previously published data is saved. Late-joining subscribers to durable publications can 

then be updated with past values. 

Lifespan: The purpose of this QoS is to avoid delivering outdated data to the recipients. 

Each data sample written by the publisher has an associated ‘expiration time’ beyond 



91 
 

which the data should not be delivered to any application or recipient. Once the sample 

expires, the data will be deleted from the caches as well as from the transient and 

persistent information storages. 

Resource Limits: This QoS policy controls the resources that the middleware can use in 

order to meet the requirements imposed by the application and other QoS settings. For 

example, if the Publishers’ objects are communicating samples faster than they are 

ultimately taken by the Subscriber’s objects, the middleware will eventually hit against 

some of the QoS-imposed resource limits. Note that this may occur when just a single 

Subscriber cannot keep up with its corresponding Publisher. The behavior in this case 

depends on the setting for Data Distribution Service for Real-time Systems. That is, if 

reliability is set to BEST_EFFORT, then the middleware is allowed to drop samples. If 

the reliability, however, is set to RELIABLE, the middleware will block the Publisher or 

discard the sample at the Subscriber in order not to lose existing samples. 

Partition: This QoS control permits partitioning the global domain into other smaller 

logical partition, possibly into different smaller domains. Therefore, in order for the 

recipient to receive data from the publisher, not only the Topic must match, but also they 

must subscribe into the same partition, or “domain”.  

Other QoS parameters exist to control the resources of the entire system, suggest latency 

budgets, set delivery order, attach user data, prioritize messages, set resource utilization 

limits and partition the system into namespaces. 

 



92 
 

7.2 The HPC-DDS Integration Model 

To the best of our knowledge, the DDS QoS implementations usage has been limited to 

the generic heterogeneous computing environments. None of these attempts, however, 

were done specifically to incorporate DDS QoS policies into HPC batch jobs, and replace 

the de facto standard MPI middleware. Thus, one of the main aims of this study is to 

research the feasibility of incorporating DDS QoS policies into HPC environments and 

take advantage of the well-established reliability and fault-tolerance features in DDS. 

When comparing the properties of both DDS and HPC, a number of DDS standards and 

requirements are similar to those for HPC architectures, as shown in figure 31. In 

particular, both DDS and HPC deal with intercommunication models, middleware layers, 

hardware infrastructure, and timing-related and QoS issues.  

 

 

Figure 31: MPI vs. DDS layers 

 

In DDS basic model, commutation between participants is achieved by having six 

essential entities, these are [90]: DomainParticipant, DataWriter, DataReader, Publisher, 



93 
 

Subscriber, and Topic. Working on these entities, our mapping of the DDS standard into 

HPC is illustrated in figure 32 and can be described as follows: the HPC master node is 

represented by the DDS Publisher/DataWriter entity, since its main responsibility in 

conventional HPC systems is reading data from input sources, sending the partial data to 

compute nodes (Subscribers/DataReaders in DDS), and then collecting the results back. 

Typically, HPC environments use one master node for their message passing 

communication, and therefore, we apply the same concept by having one 

Publisher/DataWriter in all of our DDS-HPC applications. 

Similarly, compute nodes are represented as Subscribers/DataReaders and they act as the 

worker nodes. The association of a DataWriter with DataReader objects (or Master to 

compute nodes in HPC terms) is done by means of Topics, which act as the messaging 

interface “or channels” between all the entities, similar to the message passing interface 

(MPI) in conventional HPC systems. Samples in the Topics are transferred by utilizing 

the communication medium, which is represented by the high speed interconnect in the 

HPC systems.  

As to control the QoS policies and add the Persistence Service in our DDS-HPC model, 

we dedicate an additional node to host the Persistence Service libraries. In our integration, 

we utilize the standard HPC management node for this task. 



94 
 

 

Figure 32: HPC-DDS integration model 

 

Most of nodes’ interactions in the conventional DDS implementations are one-way 

communication, that is, from the publishers to subscribers. These publishers and 

subscribers have to reverse their roles in order to establish two-way communication in the 

HPC environment. To mimic the two-way interaction between the master and compute 

nodes and have it similar to the MPI-based systems, we spawn two threads in the 

Publisher/DataWriter (i.e. master node), where thread 0 acts as the publisher for sending 

data, while thread 1 acts as a Subscribers/DataReaders for receiving the final data from 

the computes. Likewise, all compute nodes have the same structure for their two-way 

communication. Figure 33 shows our general flowchart for implementing parallel 

programs using the HPC architecture by following the DDS model, while figure 34 shows 

our generic pseudo-code for porting parallel programs to this architecture. 



95 
 

 

Figure 33: The general HPC-DDS flowchart for implementing parallel programs 

 

 

 

 



96 
 

Master node:  
Thread 0:   

Create an instance of publisher P0 with selected QoS profile in domain: Domain‐0 
Create a DDS topic [name: send_data] 
Create and register a DataWriterDW‐0 for the publisher P0 that uses the created 

topic 
Create an instance of the topic (data sample) 
Read the input data [from input] 
Initialize the data structure Source Sample SS (data parameters, no. of workers). 

Publish the Source sample SS‐0 through DataWritersDW‐0 
 
  Thread 1: 

Create an instance of subscriber S0 with selected QoS profile in domain: Domain‐0 
Create and register a DataReaderDR‐0 for the subscriber S0 that uses topic [name: 
Recv_result] 

    While (Result sample RS‐0 not complete) 
      If new data from sample RS received 
        Get worker number i 
        Output the processed result 
      End if 

End while 
 
Worker nodes (Wi): 
Create an instance of subscriber Si with selected QoS profile in domain: Domain‐0 
Create and register a DataReader DR‐i for the subscriber Si that uses topic [name: send_data] 
While (!timeout && data !received) 
  If sample SS‐0 received 
    Get worker number 
    Do partial computation in Wi 
  End if 
End while 
 
Create an instance of publisher Pi with selected QoS profile in domain: Domain‐0 
Create a DDS topic [name: Recv_result] 
Create and register a DataWriter DW‐i for the publisher Pi that uses the created topic 
Create an instance of the topic (data sample) 
 
Initialize the data structure Result Sample RSi: (the result data, number of workers, i). 
Publish the Result sample RS‐0 through DataWriters DW‐i 

 

Figure 34: The HPC programming pseudo-code using DDS paradigm 

 



97 
 

7.2.1 Implemented Quality of Service Policies 

In order to enable the DDS reliability QoS on our DDS-HPC design, we adopted three 

main QoS policies in our implementation; these are: durability, reliability and history.  

During the execution of our DDS-HPC implementation, the independent “persistence 

service” is run on a separate physical server (i.e. the management node) in order to 

support the “durability” QoS policy. This persistence service saves the published data 

samples so that they can be delivered to subscribing recipients that join the system at a 

later time, even if the publishing application has already terminated. The persistence 

service can use a file system or a relational database to save the status of the system. In 

case of a failure in the persistence service, the system administrator may initialize a new 

instance of the service (or reboot the down service if possible) to resume the functionality 

of the system without losing the current status. The newly initialized persistence service 

would read the written checkpointed status as defined in the policy file.  

The second QoS policy, which is reliability, indicates the level of reliability requested by 

a DataReader or offered by a DataWriter. Data senders may set different settings of 

reliability, indicated by the number of past issues they can keep in their storage (or 

memory) for the purpose of retrying transmissions. Subscribers may then demand 

differing levels of reliable delivery, ranging from fast-but-unreliable "best effort" to 

highly reliable in-order delivery. This provides per-data stream reliability control. In case 

the reliability type is set to “RELIABLE”, the write operation on the DataWriter might be 

blocked if there is a possibility that the data can be lost, or if the resources limits specified 

in the RESOURCE_LIMITS QoS to be consumed. In these cases, the RELIABILITY 



98 
 

option “max_blocking_time” configures the maximum duration the write operation may 

block. 

Further, if the reliability type is set to “RELIABLE”, data-samples generated from a 

single DataWriter cannot be made available to the receiving nodes if there are older data-

samples that have not been delivered yet due to a communication issue. In other words, 

the DDS middleware will attempt to find other paths and retransmit data-samples in order 

to reconstruct a correct snapshot of the DataWriter history before it is accessible by the 

recipients. 

On the other hand, if the reliability type is set to “BEST_EFFORT”, the service will not 

resend the missing data-samples, but will ensure that data sent will be stored in the 

DataReader(s)history, in the same order they were created by the DataWriter. Therefore, 

the recipient node may lose some data-samples but it will never see the value of a data-

object change from a newer value to an older value.  

The third policy, history, controls the reaction of the middleware when the value of an 

instance changes before it is finally communicated to some of its existing DataReader 

entities. If the type is set to “KEEP_LAST”, then the middleware will only attempt to 

keep track the latest values of the data and discard the older ones. In this case, the value 

controls the maximum number of values the middleware will maintain and deliver. The 

default (and most frequently used setting) for this QoS is one, indicating that only the 

most recent value should be delivered.  

If the history type is set to “KEEP_ALL”, then the middleware will attempt to keep and 

deliver all the values of the sent data to existing recipients. Similar to the RELIABILITY 

QoS, the resources that the middleware can use to retain the different values are limited 

by the settings of the RESOURCE_LIMITS QoS. If the limit is reached, then the reaction 



99 
 

of the middleware will depend on the RELIABILITY QoS. That if, if the reliability is set 

to “BEST_EFFORT”, then the old values will be dropped, while if reliability is set to 

“RELIABLE”, then the middleware will block the sender until it can send the ongoing  

old values first to all recipients. 

 

<datawriter_qos> 
<reliability> 
 <kind>RELIABLE_RELIABILITY_QOS</kind> 
<max_blocking_time> 
 <sec>60</sec> 

 </max_blocking_time> 
 </reliability> 

<history> 
 <kind>KEEP_ALL_HISTORY_QOS</kind> 

 </history> 
<durability> 
 <kind>PERSISTENT_DURABILITY_QOS</kind> 

 </durability> 
<protocol> 
<rtps_reliable_writer> 
 <min_send_window_size>50</min_send_window_size> 
 <max_send_window_size>50</max_send_window_size> 

 </rtps_reliable_writer> 
 </protocol> 
 </datawriter_qos> 
 

<datareader_qos> 
<reliability> 
 <kind>RELIABLE_RELIABILITY_QOS</kind> 

 </reliability> 
<history> 
 <kind>KEEP_ALL_HISTORY_QOS</kind> 

 </history> 
<durability> 
 <kind>PERSISTENT_DURABILITY_QOS</kind> 

 </durability> 
 </datareader_qos>

Figure 35: The QoS policy file for our DDS-HPC design. 

Figure 35 shows the implemented QoS with their values. Other DDS QoS policies were 

set to their default values, since they are either not applicable to the HPC implementation, 

or not suitable for the type of applications (i.e. single master/publisher, multiple 

computes/subscribers) that we have tested in our experiments. Appendix 1 shows these 

QoS policies and their default values. 



100 
 

7.3 Experimental Setup and Methodology 

In order to evaluate the feasibility and impact of adopting the DDS QoS into HPC, we 

implemented three applications with different computational models. The first program 

“the parallel matrix multiplication” presents the hybrid type of parallel applications where 

it involves both intensive communication between nodes as well as relatively high 

computational power, and that the amount of communication between the master and 

compute nodes is proportional to the size of the input matrices. On the other hand, the 

second program “the prime numbers search”, which is a modified version of Blaise’s MPI 

Prime [91],represents the computation-bound type of applications, since the collective 

calls in the program are used to reduce two data elements only; these are: the number of 

primes found and the largest prime in the sequence. The third application “Node-to-Node 

Streaming” represents the communication-bound type of applications, in which it is used 

for streaming large amount of data between compute nodes. The complete pseudo-codes 

for the three applications can be found in appendices 2, 3 and 4 of this dissertation work. 

To perform benchmark evaluation, we used the same cluster setup that was described in 

section 5.1.In all of our three implementations, we attempted to make our programming 

structure as close as possible to the typical MPI model, where we have single 

master/several computes hierarchy. This approach was followed in order to have a fair 

comparison between the two programming models in terms of runtime and complexity. 

Further and similar to MPI, a copy of the DDS libraries were placed in every master and 

compute nodes of the cluster in order for it to work in our design.  



101 
 

7.3.1 The Matrix Multiplication Application 

In order to evaluate the performance of the DDS over HPC and compare it with MPI, we 

implemented the parallel matrix multiplication algorithm using both paradigms (i.e. DDS 

and MPI) and evaluated them on the mentioned HPC cluster. Beside it is computationally 

intensive with )( 3nO iterations, we represented the hybrid type of applications by the 

matrix multiplication algorithm since it is a fundamental operation in many numerical 

linear algebra applications. Its efficient implementation on parallel computers is an issue 

of prime importance when providing such systems with scientific software libraries [70]. 

The implementation starts by designating the master node of the cluster as the main 

publisher. This node, in turn, spawns two threads using OpenMP to parallelize its two 

main functions: the first thread is responsible for initializing the node to be a publisher 

(P0) with selected QoS profile, which is predefined in an XML file as shown in figure 35. 

The thread also specifies the domain where all the publishers and subscribers would work 

on, which is domain-0 in our implementation. Specifying the domain is necessary in order 

to allow multiple groups of publishers and subscribers to work independently, segmenting 

the cluster into several smaller sub-clusters, if needed. 

Next, a topic with the name ‘send_matrix_data’ is created and a DataWriter (DW-0) is 

initialized under P0 using the created topic. The reason for his hierarchy is that there exist 

algorithms (i.e. other than the matrix multiplication application) that would require 

different topics (i.e. datasets) to be sent independently by the same publisher, and each of 

these topics may have several DataWriters for redundancy.  

After that, the publisher reads the two matrices from input and initializes the data 

structure for the source sample (SS) by defining the matrices dimension and the number 



102 
 

of workers. The source sample then starts sending the Source sample SS-0 through the 

DataWriter DW-0. 

The second thread on the master node reveres the function of thread 0 by creating an 

instance of a subscriber S0 with selected QoS profile in Domain-0, in preparation to 

receive the partial results from the workers (workers act as subscribers at the beginning 

and then publishers at the end). Specifically, it creates and registers a DataReader (DR-0) 

for the subscriber S0 (the workers) that uses topic ‘recv_matrix_result’. It then listens to 

the workers through the receiving sample RS-0 and outputs the partial results. 

On the subscribers’ side (i.e. the workers), each node initiates itself as a subscriber to the 

main publisher P0, assigns an ID to itself (Wi), and starts receiving the rows and columns 

for computation. The distribution of which rows go to which node is done dynamically in 

a way that is determined by first identifying the row-wise range taken by each node using 

the formula: 

row_range_max = [(no. of total rows / no. of workers) * i] – 1.  
 

And then identifying the minimum rows range using the formula: 

row_range_min = row_range_max – [(no. of total rows / no. of 
workers) - 1] 

 

Subsequently, the computation starts by the three nested-for loops, similar to the matrix 

multiplication implementation via MPI, using the formula: 

result_matrix [x][y] += matrix1[x][z] * matrix2[z][y] 
 

Each worker then sends its output through its DataWriter (DW-i) to the master node for 

result collection. 



103 
 

In case of a node failure on the workers’ side, the system administrator may initiate a new 

node with the same ID of the failed worker. The new worker would read the written 

checkpointed status as defined in the policy, re-read the sample from the persistence 

service, and resume the operation of the system. 

It is important to mention that as a requirement for the durability QoS, all sent topics 

require DataWriters to match the configuration of the persistent QoS policy configuration 

with the DataReaders. As a consequence, a DataWriter that has an incompatible QoS with 

respect to what the topic specified will not send its data to the persistent service, and thus 

its status will not be saved. Similarly, a DataReader that has an incompatible QoS with 

respect to the specified in the topic will not get data from it. 

7.3.1.1 Performance Evaluation and Results 

In this section, we present our experimental results using the HPC system illustrated in 

section 5.1. All measurements reported in this section are the average readings of three 

runs. The performance is measured and compared for both MPI and DDS 

implementations while varying the cluster size. In our tests, we measured the performance 

in terms of scalability, total runtime, execution version initialization times, 

communication overhead and fault recovery delay (for DDS-based runs).  

Figure36shows our benchmarks to test the scalability and runtime of MPI and DDS while 

varying the number of nodes. During our first trials with DDS, the 

DDS_ASYNCHRONOUS_PUBLISH_MODE QoS was used when sending and receiving 

the matrices elements between the nodes. This QoS option, however, did not scale well 

when extending the matrices size beyond 60 elements. Applying the 

DDS_SYNCHRONOUS_PUBLISH_MODE QoS, on the other hand, enabled us to 



 

en

th

D

re

m

D

(D

D

 

 

In

ne

fr

U

A

th

nlarge the m

he applicatio

DDS_Publish

eliably, spec

middleware to

DDS Publ

DDS_Asynch

DataWriter in

Figure 3

n DDS terms

etwork trans

ragment the 

UDP/IP.  

Another twea

he “stack res

matrices up to

on thread 

hModeQosPo

cify how D

o use its own

lisher sp

hronousPub

nstances.  

36: MPI vs. D

s, "large data

sport. Accor

data and se

ak that was d

serve size” to

o 500 elemen

spends send

olicy and D

DDS sends a

n thread to se

awns a 

lisherQosPo

DDS Mat. M

a" means tha

rding to RTI

end it async

done to exte

o 32MB (de

104 

nts. The latte

ding data. 

DDS Flow

application 

end data, ins

single 

olicy::thread)

Mult. runtime

at the data th

I manual [77

hronously w

nd the size o

efault is 1MB

er QoS polic

Typically, 

Controller 

data on the

stead of the u

asynchron

) to serve 

e when varyi

hat cannot b

7], the appli

when sendin

of the comp

B) when com

cy reduces th

it is used 

policies to 

e network, 

user thread. 

nous pub

all its asy

ing the numb

e sent as a s

cation must 

ng data large

puted matrice

mpiling the D

he amount of

along with

send large 

and instruc

In that case,

lishing t

ynchronous 

 

ber of nodes

single packet

be configur

er than 63K

es was to en

DDS-based 

f time 

h the 

data 

ct the 

, each 

thread 

DDS 

s 

t by a 

red to 

K over 

nlarge 

code. 



105 
 

The reserve value specifies the total stack allocation in virtual memory for the running 

program. This option enabled the code to compute up to 1100x1100 size matrices. The 

application, however, did not perform well when enlarging the matrices beyond 1100 

elements.  

 
 

 

Figure 37: MPI vs. DDS Mat. Mult. runtime when varying the matrices size on 32 nodes 

 

Figure 37 also demonstrates the runtime of both the DDS and MPI implementations while 

varying the matrices size. Clearly, the MPI version outperformed the DDS version by 

taking around 3.3 seconds to compute 500x500 size matrices, compared with 6.2 seconds 

using DDS. This performance difference was more observable when extending the 

matrices size up to 1100.  

Another observation when looking at the MPI implementation is the slight increase in the 

run time when multiplying the 500x500 size matrices on 32 nodes. This increase is related 

to the additional communication overhead with respect to the computation time. This 

communication is lessened in the 1100x1100 multiplication as the computation time gets 

larger with respect to the communication overhead.  



106 
 

To magnify the effect of MPI communication overhead with respect to computation time, 

we extended the MPI matrix multiplication benchmark runs to 126 nodes. Figure 38 

shows the effect of this communication overhead as the number of nodes increases. 

Obviously, finding the right combination of nodes to gain the best performance depends 

on the nature of the application and can only be found by performing empirical runs. In 

this range on nodes, DDS shows lesser overhead bounce than MPI. 

 

 

Figure 38: The communication overhead for computing 1100x1100 matrices 

 

As shown in table 11, most of the communication overhead when using the DDS-based 

code was spent in the preparation phase (ratio: 2.86 for preparation-to-computation times) 

in the 500x500 test. This overhead is especially evident when the matrices size is small, as 

it took 5.8 seconds to initialize the publishers, the DataWriters, the instances, and then 

send 100x100 matrices to the compute nodes. Again, the ratio of the preparation-to-

computation time was lessened when increasing the matrices size up to 1100x1100 

elements. 

 

 



107 
 

 DDS 
(100x100)

DDS 
(500x500) 

DDS 
(1100x1100) 

Preparation time + Communication 5.8 sec. 4.3 sec. 4.8 sec. 

Computation time 0.9 sec. 1.5 sec. 2.8 sec. 

Total 6.7 sec. 6.2 sec. 7.6 sec. 

Ratio 6.45 2.86 1.71 

Table 11: Communication overhead ratio in DDS while running on 32 nodes 
 

 

Figure 39 shows the delay in engaging a new node in the DDS domain, replacing a 

crashed node, while using the persistent service and durability, reliability and history 

QoS. This test is not applicable to the MPI implementation. As indicated in the figure, the 

delay is proportional to the size of the matrices as the persistent service needs to re-send 

all the previously published instances to this new node. At the 100x100 matrices 

benchmark, the overhead to re-send matrices data was about 0.8 seconds, while this 

overhead has increased to about 2 seconds in the 1100x1000 test. 

 

 

Figure 39: Network delay when engaging a new node in DDS while running Mat. Mult. 
  
 



108 
 

Figure 40 illustrates the network utilization when computing the matrices using DDS and 

MPI implementations. As illustrated in the figure, the total Megabytes sent and received 

for MPI implementation is around 11.5MB when computing the 1100x1100 matrices, 

while it is around 15.7MB for the DDS implementation. It is also noticeable that the DDS 

implementation has lower negative scalability-overhead when the matrix size increases, as 

opposed to MPI implementation. 

 

 

Figure 40: The network utilization for running Matrix Multiplication on 32 nodes 
 

7.3.2 The Primes Search Application 

The goal of this parallel application is to pass a large interval of integers, divide it evenly 

among the compute nodes, and search for prime numbers in each sub-interval while 

finding the largest prime. We implemented the primes search algorithm using both 

paradigms (i.e. DDS and MPI) and evaluated them on the mentioned HPC cluster. Unlike 

the parallel matrix-multiplication experiment, this application is purely computation-

bound and requires minimal inter-nodes communication, since the collective 

communications calls on the nodes are used to collect the only two data elements 



109 
 

requiring communications: the number of primes found and the largest prime, regardless 

of the interval size. 

Following our model of adopting DDS into HPC, the application starts by designating the 

master node as the main publisher, and spawning two threads using OpenMP to 

parallelize its two main functions: the first thread is responsible for initializing the node to 

be a publisher (P0) with the given QoS profile, while the second thread is set for receiving 

the results from the compute nodes.  

A topic with the name ‘send_interval_data’ is created and a DataWriter (DW-0) is 

initialized under P0 using the created topic. The master node (P0) reads the interval start 

and end points for searching the primes, and initializes the data structure for the source 

sample (SS) by defining the number of workers, and the size of the interval to be 

searched. The source sample then starts sending the Source sample SS-0 through the 

DataWriter DW-0. 

The second thread on the master node reveres the function of thread 0 by creating an 

instance of a subscriber S0 with selected QoS profile in Domain-0, in preparation to 

receive the partial results from the workers. It uses topic ‘recv_primes_result’ and listens 

to the workers through the receiving sample RS-0 and outputs the partial results. 

On the subscribers’ side, each node initiates itself as a subscriber to the main publisher 

P0, assigns an ID to itself (Wi), and starts receiving the sub-intervals for searching the 

primes. The distribution of which sub-interval goes to which compute node to search for 

primes is determined by first identifying the start of the sub-interval for each compute 

node using the formula: 

my_interval_start = (myID*2)+1 
 
Where myID is the node ID in the cluster nodes’ sequence. 



110 
 

Then, the subsequent elements for each sub-interval are calculated by adding apace 

starting from my_interval_start, where the pace is equal to the number of compute 

nodes: 

pace= LastNode_ID 
for (n=my_interval_start; n<=last_element; n=n+pace) 
PrimeTest(n) 

 

The Workers test the odd numbers in their intervals and up to the last element in the sub-

interval, using the function:  

PrimeTest { 
SqrRoot = (int) sqrt(n); 
 for (i=3; i<=SqrRoot; i=i+2) 
  if ((n%i)==0) 
  print “prime n found’; 
  else print “n is composite”; 

  } 
 

Running through each sub-interval, each worker sends its output through its DataWriter 

(DW-i) to the master node for results collection. 

Similar to the matrix multiplication example, in case of a node failure on the workers’ 

side, the system administrator may initiate a new node with the same ID of the failed 

worker. The new worker would read the written checkpointed status as defined in the QoS 

policy, re-read the sample from the persistence service, and resume the operation of the 

system. 

7.3.2.1 Performance Evaluation and Results 

In this section, we present our experimental results using the motioned HPC system. In 

our benchmarks, we measured the performance in terms of scalability, total runtime, 

execution version initialization times, and fault recovery delay (for DDS-based runs). We 



111 
 

skipped the communication overhead and the network utilization benchmarks since inter-

nodes communication is insignificant in this application. Similar to our previous 

experiments, all measurements reported in this section are the average readings of three 

runs. 

Table12 shows our benchmark to assess the scalability and runtime of MPI and DDS, 

while varying the number of nodes and fixing the search interval to 500 million integers. 

Clearly, the two MPI and DDS implementations have comparable results when scaling the 

Primes Search application up to 32 nodes. The slight DDS performance degradation is 

due to the QoS parameters are that communicated at the runtime. 

 

 Number of nodes 

 2 4 8 16 32 

MPI 517.2 sec. 258.1 sec. 130.5 sec. 66.3 sec. 33.9 sec. 

DDS 517.5 sec. 258.7 sec. 131.1 sec. 67.0 sec. 34.7 sec. 

Table 12: MPI vs. DDS Primes Search runtime while varying the number of nodes 

 

Table 13 presents our benchmark while varying the size of the interval to be searched 

while fixing the number of compute nodes to 32. The benchmark shows that both MPI 

and DDS implementations scaled almost linearly when processing up to 500 million 

elements input. Another observation is the sustained performance when the number of 

nodes was fixed at 32 while the size of the interval was reduced to 10 million elements. 

The reason for this linear performance is the minimal interaction between the nodes (i.e. 



112 
 

communication overhead), regardless of the number of computes and the size of the 

interval to be searched. 

 

 Number of elements to be searched (in millions) 

 10 50 100 200 300 400 500 

MPI 0.61 sec. 3.15 sec. 6.59 sec. 13.2 sec. 19.46 sec. 26.7 sec. 33.9 sec. 

DDS 0.62 sec. 3.21 sec. 6.73 sec. 13.5 sec. 19.83 sec. 27.28 sec. 34.7 sec. 

Table 13: MPI vs. DDS Primes Search runtime while varying the input size on 32 nodes 

 

Table14presents the added delay in engaging a new node in the DDS domain, replacing a 

crashed node while the application is running. This test is not applicable to the MPI 

implementation, due to the lack of the fault-tolerance feature. As indicated in the table, 

the delay is almost constant since the sent data from the publisher to the newly engaged 

node has a fixed size on all tests (the sub-interval, and the number of workers). 

 

 Number of elements to be searched (in millions) 

 100 200 300 400 500 

DDS (no failure) 6.73 sec. 13.5 sec. 19.83 sec. 27.28 sec. 34.7 sec. 

DDS (w/failure) 7.21 sec. 14.1 sec. 20.20 sec. 27.53 sec. 35.1 sec. 

Table 14: The delay when engaging a new node in DDS while running Primes Search 

 



113 
 

7.3.3 The Node-to-Node Streaming Application 

The goal of this application is to send large random data from one node in the cluster to 

another and send it back, for the purpose of simulating point-to-point communication 

using the high speed Infiniband interconnect. This application represents the native 

communication-bound type of applications and it heavily relies on the HPC interconnect 

throughput.  

Using the same described DDS-HPC model, the application begins by designating the 

master node as the main publisher, and spawning two threads using OpenMP to 

parallelize its two main functions: the first thread is responsible for initializing the node to 

be a publisher (P0) with selected QoS profile, while the second thread is set for receiving 

the results from the compute node.  

The first thread creates a topic with the name ‘send_stream_data’ and initializes a 

DataWriter (DW-0). Then, the input file is read and the data structure is initialized for the 

source sample (SS) while specifying the number of workers (one node in this application). 

The second thread on the master node reveres the function of thread 0 by creating an 

instance of a subscriber S0 with selected QoS profile in Domain-0, in preparation to 

receive the file back from the worker. It uses topic ‘recv_stream_result’ and listens to the 

worker through the receiving sample RS-0 and outputs the results. 

On the receiver side, the node initiates itself as a subscriber to the main publisher P0, 

assigns an ID to itself (W0),in preparation to start receiving the data stream.  

The routine for creating large data is done by the following functions: 

 

 



114 
 

const long int K = 1048576; 
const long intmsgsize = 32*K;   
 
  // Initialize X and Y 
  for (i=0; i<msgsize; i++) { 
    X[i] = 1; 
    Y[i] = 2; 
} 

 

While sending the receiving data is done through the following MPI function: 

MPI_Comm_rank(MPI_COMM_WORLD, &ID);  
 
 if (ID == 0) { 
MPI_Send(X, msgsize, MPI_INT, 1, tag, MPI_COMM_WORLD); 
MPI_Recv (Y, msgsize, MPI_INT, 1, tag, MPI_COMM_WORLD, &status); 
 
  } else { /* ID == 1 */ 
 
MPI_Recv (Y, msgsize, MPI_INT, 0, tag, MPI_COMM_WORLD, &status); 
MPI_Send (Y, msgsize, MPI_INT, 0, tag, MPI_COMM_WORLD); 
 
  } 
 

The complete pseudo-code for the HPC-DDS version can be found in Appendix 4. 

7.3.3.1 Performance Evaluation and Results 

This section presents our experimental results for testing the Node-to-Node streaming 

application. In the experiments, we tested both DDS and MPI implementations by 

streaming5GB and 10GB of data, while all reported measurements are the average 

readings of three runs. 

Figure41 illustrates our benchmark to evaluate the scalability and runtime of MPI and 

DDS, using 10GB and 50GB of streamed data. Clearly, the MPI superseded the DDS 

implementation with the use of the low-level MPI_Send and MPI_Recv functions, where 

it was capable of achieving maximum one-way throughput of1,519MB/s with the 50GB 

test, compared to a maximum throughput of 1,323MB/s for the DDS implementation. 

 



115 
 

 

Figure 41: Node-to-Node Throughput 
 

Similar to the matrix multiplication application, the QoS policy 

DDS_SYNCHRONOUS_PUBLISH_MODEhad to be set to enable sending large data 

and instruct the middleware to use its own thread to send data, instead of the user thread. 

The synchronous communication, on the other hand, adds additional overhead as 

indicated in the test. 

Figure42 shows the elapsed time for engaging a new node in the DDS domain, replacing a 

crashed node, and resending the data again. By the setting the DURABILITY QoS to 

TRANSIENT, the DataWriter stores all the sent samples in memory and resends them to 

the new node once it joins the domain. This setting was only applicable to the 10GB input 

size, since the 50GB input can only be stored in the DataWriter’s permanent storage (by 

setting the DURABILITY QoS to PERSISTENT). Using the PERSISTENT setting, 

however, resulted in unrealistic readings due to the excessive storage access overhead. 

This test is also not applicable to the MPI implementation, due to the lack of the fault-

tolerance feature. 

 

0
5
10
15
20
25
30
35
40

10 50

MPI DDS

Ti
m
e 
(s
e
c)

Input Size (in GB)



116 
 

 

Figure 42: Failing the receiver in DDS while running the Node-to-Node application 

 

7.4 Conclusion 

In this chapter, we presented our work of adopting DDS standard into HPC in order to 

circumvent the MPI shortcomings and provide QoS for HPC applications. As 

demonstrated in our tests, DDS integration into HPC adds considerable overheard in 

terms of performance and network utilization when the application is mainly 

communication-bound, while the performance is comparable to those MPI-based 

applications when the program is computation-bound. In both cases, the solution is a 

viable option for those applications in which QoS is considered a priority, or for those 

HPC batch jobs that would run on commodity hardware, where the probability of failure 

is not negligible. 

0

2

4

6

8

10

12

14

16

DDS (no failure) DDS (w/failure)
Ti
m
e 
(s
ec
)

Input Size: 10GB



117 
 

 

 

 

Chapter 8 

Conclusion and Future Work 

 

8.1 Overview 

The ever increasing demand for computing power in scientific applications has 

accelerated the process of deploying HPC systems that deliver Peta-scale performance. 

Current HPC systems that are capable of running large-scale parallel applications may 

span multi-thousands of nodes. For parallel applications, the failure probability increases 

significantly with the increase in number of nodes. Thus, ignoring failures or system 

reliability can have severe effect on the performance of the HPC cluster, and quality of 

service.  

In this research work, we investigated the reliability and QoS controls in the high 

performance computing environments through examining the Diskless HPC clusters and 

the Infiniband routing and QoS techniques as specified by the Infiniband Architecture 

Specifications (IBA), using a Westmere-based HPC cluster. Then, we presented our work 



118 
 

of adopting DDS reliability QoS into HPC. This integration provided the ability to control 

QoS properties on HPC and Grids that affect performance, reliability, and fault-tolerance. 

To the best of our knowledge, this is the first research focusing on the integration of DDS 

QoS policies into HPC computing. 

8.2 Conclusion 

Our results obtained show that while controlling QoS and reliability in HPC can be a 

challenging task, we were able to achieve comparable performance when QoS and other 

reliability-related techniques were enabled in specific HPC layers, such as the Infiniband 

interconnection and the HPC cluster storage disks.  

Looking at the diskless HPC, the setup proved to be a compelling alternative with greater 

benefits when compared to diskfull clusters. In particular, the tests showed that diskless 

clusters yield similar GFLOPS performance to diskfull clusters, and in some cases 

outperform the diskfull. In terms of power consumption, diskless clusters clearly win with 

power saving of at least 3 Watts per node. That said, the biggest shortcoming of this setup 

is the need for large memory nodes to host the OS, as it was demonstrated that if compute 

nodes are forced to perform disk swapping by decreasing their available memory, the 

compute nodes will freeze. Another obvious shortcoming is that the disk node in a 

diskless cluster can be a single point of failure. However, these two shortcomings can be 

alleviated by increasing the RAM of compute nodes and by having more reliable disk 

nodes that use advanced network storage technologies such as NAS and RAID 

technology. 



119 
 

In terms of HPC-DDS integration, we adopted three main QoS policies in our 

implementation that affect reliability; these are: DURABILITY, RELIABILITY and 

HISTORY, while keeping all other non-used policies at their default values. We also used 

the DDS Persistence Service to maintain a backup of the communication data and have a 

centralized control of the QoS policies. Our results showed that our model adds up to 20% 

overheard in terms of performance and network utilization when the application is mainly 

communication-bound, due to the additional QoS parameters send during nodes 

communication, while the performance is comparable to those MPI-based applications 

when the program is computation-bound, as it was presented in the Primality Test 

application. In both cases, the solution is considered a viable option for those parallel 

applications that would last for several days or even weeks to run or for those jobs where 

QoS is considered a priority. Furthermore, the solution is feasible for those HPC batch 

jobs that would run on commodity hardware, where the probability of failure is not 

negligible. 

8.3 Future Work 

Research studies are continuing to discuss QoS on the different layers of the distributed 

and high performance computing systems. 

In terms of diskless HPC, we plan to expand the size of the Infiniband diskless cluster to 

include 512 compute nodes, and then investigate its performance. We also plan to 

evaluate diskless cluster performance when using other popular benchmarks such as the 

Pallas MPI benchmarking tool which gives more insight on MPI behavior and 



120 
 

performance. We are also considering measuring the performance of diskless clusters 

when using 10Gbps Ethernet for IPC communication instead of Infiniband. 

In terms of DDS integration into HPC, we plan to import other advance MPI-based 

applications and examine the effect of QoS on their reliability and performance. We 

believe that there are other compute-intensive applications that require large clusters and 

long run-times, where they can benefit from the addition of QoS properties, despite the 

added overhead to their performance. 



121 
 

Appendix 1: The DDS QoS (as defined in www.omg.org) 
 

QoS Policy Value Meaning Concerns 

TOPIC_DATA A sequence of octets: 
“value” 
 

User data not known by the middleware, but 
distributed by means of built-in topics. 
The default value is an empty (zero sized) 
Sequence. 
 

Topic 

GROUP_DATA A sequence of octets: 
“value” 
 

User data not known by the middleware, but 
distributed by means of built-in topics. 
The default value is an empty (zero sized) 
sequence. 
 

Publisher, 
Subscriber 

 

DURABILITY 
 

A “kind”: VOLATILE, 
TRANSIENT_LOCAL, 
TRANSIENT, or 
PERSISTENT 
 

This policy expresses if the data should 'outlive' 
their writing time. 
 

Topic, 
DataReader, 
DataWriter 

 

 VOLATILE 
 

The Service does not need to keep any samples 
of data-instances on behalf of any DataReader 
that is not known by the DataWriter at the time 
the instance is written. In other words the 
Service will only attempt to provide the data to 
existing subscribers. This is the default kind. 
 

 

 TRANSIENT_LOCAL, 
TRANSIENT 
 

The Service will attempt to keep some samples 
so that they can be delivered to any potential 
late joining DataReader. Which particular 
samples are kept depends on other QoS such as 
HISTORY and RESOURCE_LIMITS. 
For TRANSIENT_LOCAL, the service is only 
required to keep the data in the memory of the 
DataWriter that wrote the data and the data is 
not required to survive the DataWriter.  
For TRANSIENT, the service is only required 
to keep the data in memory and not in 
permanent storage; but the data is not tied to the 
lifecycle of the DataWriter and will, in general, 
survive it. Support for TRANSIENT kind is 
optional. 
 

 

 PERSISTENT 
 

[optional] Data is kept on permanent storage, so 
that they can outlive a system session. 

 

DURABILITY_ 
SERVICE 
 

A duration 
"service_cleanup_delay" 
A HistoryQosPolicy 
Kind "history_kind" 
And three integers: 
history_depth, 
max_samples, 
max_instances, 
max_samples_ 
per_instance 

Specifies the configuration of the durability 
service. That is, the service that implements the 
DURABILITY kind of 
TRANSIENT and PERSISTENT 
 

Topic, 
DataWriter 

 



122 
 

 service_cleanup_delay
 

Control when the service is able to remove all 
information regarding a data-instance. By 
default, zero 
 

 

 history_kind, 
history_depth 
 

Controls the HISTORY QoS of the fictitious 
DataReader that stores the data within the 
durability service. The default 
settings are history_kind=KEEP_LAST 
history_depth=1 
 

 

 max_samples, 
max_instances, 
max_samples_ 
per_instance 
 

Control the RESOURCE_ LIMITS QoS of the 
implied DataReader that stores the data within 
the durability service. By default they are all 
LENGTH_UNLIMITED. 

 

PRESENTATION 
 

An “access_scope”: 
INSTANCE, TOPIC, 
GROUP And two 
booleans: “coherent_ 
access” 
“ordered_access” 
 

Specifies how the samples representing changes 
to data instances are presented to the subscribing 
application. This policy affects the application’s 
ability to specify and receive coherent changes 
and to see the relative order of changes. 
access_scopedetermines the largest scope 
spanning the entities for which the order and 
coherency of changes can 
be preserved. The two Booleans control whether 
coherent access and ordered access are 
supported within the scope access_scope. 
 

Publisher, 
Subscriber 

 

 INSTANCE 
 

Scope spans only a single instance. Indicates 
that changes to one instance need not be 
coherent nor ordered with respect to changes to 
any other instance. In other words, order and 
coherent changes apply to each instance 
separately. This is the default access_scope. 
 

 

 TOPIC 
 

Scope spans to all instances within the same 
DataWriter(or Data Reader), but not across 
instances in different DataWriter(or Data 
Reader).  
 

 

 GROUP 
 

[optional] Scope spans to all instances 
belonging to DataWriter(or DataReader) 
entities within the same Publisher (or 
Subscriber). 
 

 

DEADLINE 
 

A duration “period” DataReader expects a new sample updating the 
value of each instance at least once every 
deadline period. DataWriter indicates that the 
application commits to write a new value (using 
the DataWriter) for each instance managed by 
the DataWriter at least once every deadline 
period. It is inconsistent for a DataReader to 
have a DEADLINE period less than its 
TIME_BASED_FILTER's 
minimum_separation. The default value of the 
deadline period is infinite. 
 

Topic, 
DataReader, 
DataWriter 

LATENCY_ 
BUDGET 

A duration “duration”  Specifies the maximum acceptable delay from 
the time the data is written until the data is 
inserted in the receiver's application-cache and 
the receiving application is notified of the fact. 
This policy is a hint to the Service, not 
something that must be monitored or enforced. 

Topic, 
DataReader, 
DataWriter 



123 
 

The Service is not required to track or alert the 
user of any violation. The default value of the 
duration is zero indicating that the delay should 
be minimized. 
 

OWNERSHIP  A “kind” SHARED 
EXCLUSIVE 

[optional] Specifies whether it is allowed for 
multiple DataWriters to write the same instance 
of the data and if so, how these modifications 
should be arbitrated 
 

Topic 
DataReader, 
DataWriter 

  SHARED  Indicates shared ownership for each instance. 
Multiple writers are allowed to update the same 
instance and all the updates are made available 
to the readers. In other words there is no concept 
of an “owner” for the instances. This is the 
default behavior if the OWNERSHIP QoS 
policy is not specified or supported. 

 

  EXCLUSIVE  Indicates each instance can only be owned by 
one DataWriter, but the owner of an instance 
can change dynamically. The selection of the 
owner is controlled by the setting of the 
OWNERSHIP_STRENGTH QoS policy. The 
owner is always set to be the highest-strength 
DataWriter object among the ones currently 
“active” (as determined by the LIVELINESS 
QoS). 
 

 

OWNERSHIP_ 
STRENGTH 

An integer “value”  [optional] Specifies the value of the “strength” 
used to arbitrate among multiple DataWriter 
objects that attempt to modify the same instance 
of a data-object (identified by Topic + key). 
This policy only applies if the OWNERSHIP 
QoS policy is of kind EXCLUSIVE. The default 
value of the ownership_strengthis zero. 
 

DataWriter 

LIVELINESS  A “kind”: AUTOMATIC, 
MANUAL_BY_ 
PARTICIPANT, 
MANUAL_BY_ TOPIC 
and a duration 
“lease_duration” 

Determines the mechanism and parameters used 
by the application to determine whether an 
Entity is “active” (alive). The “liveliness” status 
of an Entity is used to maintain instance 
ownership in combination with the setting of the 
OWNERSHIP QoS policy. The application is 
also informed via listener when an Entity is no 
longer alive. The DataReader requests that 
liveliness of the writers is maintained by the 
requested means and loss of liveliness is 
detected with delay not to exceed the 
lease_duration. The DataWriter commits to 
signalling its liveliness using the stated means at 
intervals not to exceed the lease_duration. 
Listeners are used to notify the DataReader of 
loss of liveliness and DataWriterof violations to 
the liveliness contract. The default kind is 
AUTOMATIC and the default value of the 
lease_duration is infinite. 
 

Topic, 
DataReader, 
DataWriter 

  AUTOMATIC  The infrastructure will automatically signal 
liveliness for the DataWriters at least as often as 
required by the lease_duration 
 

 

  MANUAL modes  The user application takes responsibility to 
signal liveliness to the Service using one of the 
mechanisms described, “LIVELINESS,” on 

 



124 
 

page 113. Liveliness must be asserted at least 
once every lease_duration otherwise the 
Service will assume the corresponding Entity is 
no longer “active/alive.” 
 

  MANUAL_BY_ 
PARTICIPANT 

The Service will assume that as long as at least 
one Entity within the DomainParticipant has 
asserted its liveliness the other Entities in that 
same DomainParticipant are also alive. 
 

 

  MANUAL_BY_ TOPIC  The Service will only assume liveliness of the 
DataWriter if the application has asserted 
liveliness of that DataWriter itself. 
 

 

TIME_BASED_ 
FILTER 

A duration "minimum_ 
separation" 

Filter that allows a DataReaderto specify that it 
is interested only in (potentially) a subset of the 
values of the data. The filter states that the 
DataReaderdoes not want to receive more than 
one value each minimum_separation, 
regardless of how fast the changes occur. It is 
inconsistent for a DataReader to have a 
minimum_separation longer than its 
DEADLINE period. By default 
minimum_separation=0 indicating DataReader 
is potentially interested in all values. 
 

DataReader 

PARTITION  A list of strings “name”  Set of strings that introduces a logical partition 
among the topics visible by the Publisher and 
Subscriber. A DataWriter within a Publisher 
only communicates with a DataReader in a 
Subscriber if (in addition to matching the Topic 
and having compatible QoS) the Publisher and 
Subscriber have a common partition name 
string. The empty string ("") is considered a 
valid partition that is matched with other 
partition names using the same rules of string 
matching and regular-expression matching used 
for any other partition name. The default value 
for the PARTITION QoS is a zero-length 
sequence. The zero-length sequence is treated as 
a special value equivalent to a sequence 
containing a single element consisting of the 
empty string. 
 

Publisher, 
Subscriber 

RELIABILITY  A “kind”: RELIABLE, 
BEST_EFFORT and a 
duration 
“max_blocking_ time” 

Indicates the level of reliability 
offered/requested by the Service. 

Topic, 
DataReader, 
DataWriter 

  RELIABLE  Specifies the Service will attempt to deliver all 
samples in its history. Missed samples may be 
retried. In steady-state (no modifications 
communicated via the DataWriter) the 
middleware guarantees that all samples in the 
DataWriter history will eventually be delivered 
to all the DataReader a objects. Outside steady 
state the HISTORY and RESOURCE_LIMITS 
policies will determine how samples become 
part of the history and whether samples can be 
discarded from it. This is the default value for 
DataWriters. 
 

 



125 
 

  BEST_EFFORT  Indicates that it is acceptable to not retry 
propagation of any samples. Presumably new 
values for the samples are generated often 
enough that it is not necessary to re-send or 
acknowledge any samples. This is the default 
value for DataReaders and Topics. 
 

 

  max_blocking_ time  The value of the max_blocking_timeindicates 
the maximum time the operation 
DataWriter::write is allowed to block if the 
DataWriterdoes not have space to store the 
value written. The default 
max_blocking_time=100ms. 
 

 

TRANSPORT_ 
PRIORITY 

An integer “value”  This policy is a hint to the infrastructure as to 
how to set the priority of the underlying 
transport used to send the data. The default 
value of the transport_priorityis zero. 
 

Topic, 
DataWriter 

LIFESPAN  A duration “duration”  Specifies the maximum duration of validity of 
the data written by the DataWriter. The default 
value of the lifespan duration is infinite. 
 

Topic, 
DataWriter 

DESTINATION_ 
ORDER 

A “kind”: 
BY_RECEPTION_ 
TIMESTAMP, 
BY_SOURCE_ 
TIMESTAMP 

Controls the criteria used to determine the 
logical order among changes made by Publisher 
entities to the same instance of data (i.e., 
matching Topic and key). The default kind is 
BY_RECEPTION_TIMESTAMP. 

Topic, 
DataReader, 
DataWriter 

  BY_ RECEPTION_ 
TIMESTAMP 

Indicates that data is ordered based on the 
reception time at each Subscriber. Since each 
subscriber may receive the data at different 
times there is no guaranteed that the changes 
will be seen in the same order. Consequently, it 
is possible for each subscriber to end up with a 
different final value for the data. 
 

 

  BY_SOURCE_ 
TIMESTAMP 

Indicates that data is ordered based on a 
timestamp placed at the source (by the Service 
or by the application). In any case this 
guarantees a consistent final value for the data 
in all subscribers. 
 

 

HISTORY  A “kind”: KEEP_LAST, 
KEEP_ALL And an 
optional integer 
“depth” 

Specifies the behavior of the Service in the case 
where the value of a sample changes (one or 
more times) before it can be successfully 
communicated to one or more existing 
subscribers. This QoS policy controls whether 
the Service should deliver only the most recent 
value, attempt to deliver all intermediate values, 
or do something in between. On the publishing 
side this policy controls the samples that should 
be maintained by the DataWriter on behalf of 
existing DataReader entities. The behavior with 
regards to a DataReader entities discovered 
after a sample is written is controlled by the 
DURABILITY QoS policy. On the subscribing 
side it controls the samples that should be 
maintained until the application “takes” them 
from the Service. 
 

Topic, 
DataReader, 
DataWriter 

  KEEP_LAST and optional  On the publishing side, the Service will only  



126 
 

integer “depth”  attempt to keep the most recent “depth” samples 
of each instance of data (identified by its key) 
managed by the DataWriter. On the subscribing 
side, the DataReader will only attempt to keep 
the most recent “depth” samples received for 
each instance (identified by its key) until the 
application “takes” them via the DataReader’s 
take operation. KEEP_LAST is the default kind. 
The default value of depth is 1. If a value other 
than 1 is specified, it should be consistent with 
the settings of the RESOURCE_LIMITS QoS 
policy. 

  KEEP_ALL  On the publishing side, the Service will attempt 
to keep all samples (representing each value 
written) of each instance of data (identified by 
its key) managed by the DataWriter until they 
can be delivered to all subscribers. On the 
subscribing side, the Service will attempt to 
keep all samples of each instance of data 
(identified by its key) managed by the 
DataReader. These samples are kept until the 
application “takes” them from the Service via 
the take operation. The setting of depth has no 
effect. Its implied value is 
LENGTH_UNLIMITED. 
 

 

RESOURCE_ 
LIMITS 

Three integers: 
max_samples, 
max_instances, 
max_samples_ 
per_instance 

Specifies the resources that the Service can 
consume in order to meet the requested QoS. 

Topic, 
DataReader, 
DataWriter 

  max_samples  Specifies the maximum number of data-samples 
the DataWriter(or DataReader) can manage 
across all the instances associated with it. 
Represents the maximum samples the 
middleware can store for any one DataWriter(or 
DataReader). It is inconsistent for this value to 
be less than max_samples_per_instance. By 
default, LENGTH_UNLIMITED. 
 

 

  max_instances  Represents the maximum number of instances 
DataWriter(or DataReader) can manage. By 
default, LENGTH_UNLIMITED. 
 

 

  max_samples_ 
per_instance 

Represents the maximum number of samples of 
any one instance a DataWriter(or DataReader) 
can manage. It is inconsistent for this value to 
be greater than max_samples. By default, 
LENGTH_UNLIMITED. 

 

WRITER_DATA 
_LIFECYCLE 

A boolean: 
“autodispose_ 
unregistered_ 
instances” 

Specifies the behavior of the DataWriterwith 
regards to the lifecycle of the data-instances it 
manages. 

DataWriter 

 



127 
 

Appendix 2: The Matrix-Multiplication  Pseudo-code Using 
DDS 
 

Master node:  
Thread 0:   

Create an instance of publisher P0 with selected QoS profile in domain: Domain‐0 
Create a DDS topic [name: send_matrix_data] 
Create and register a DataWriterDW‐0 for the publisher P0 that uses the created topic 
Create an instance of the topic (data sample) 
Read the 2 matrices [dimensions, matrix elements, number of workers] from input  
Initialize the Source Sample SS: (the 2 matrices, the mxm dimension, no. of workers). 

Publish the Source sample SS‐0 through DataWritersDW‐0 
  Thread 1: 

Create an instance of subscriber S0 with selected QoS profile in domain: Domain‐0 
Create and register a DataReaderDR‐0 for the subscriber S0 that uses topic [name: 
recv_matrix_result] 

    While (Result sample RS‐0 not complete) 
      If new data from sample RS received 
        Get worker number i 
        Output the row,column result in its matrix cell 
      End if 

End while 
 
Worker nodes (Wi): 
Create an instance of subscriber Si with selected QoS profile in domain: Domain‐0 
Create and register a DataReader DR‐i for the subscriber Si that uses topic [name: send_matrix_data] 
While (!timeout && data !received) 
  If sample SS‐0 received 
    Get worker number 
    row_range_max (Wi) = [(no. of total rows / no. of workers) * i] ‐ 1 
    row_range_min (Wi) = row_range_max – [(no. of total rows / no. of workers) ‐ 1] 
      for x from row_range_max (Wi) to row_range_min (Wi) 
        for y from 0 to last_column (matrix#1) 
          for z from 0 to last_row (matrix#2) 
          result_matrix [x][y] += matrix1[x][z] * matrix2[z][y] 
          end for 
        end for 
      end for 
  End if 
End while 
 
Create an instance of publisher Pi with selected QoS profile in domain: Domain‐0 
Create a DDS topic [name: recv_matrix_result] 
Create and register a DataWriter DW‐i for the publisher Pi that uses the created topic 
Create an instance of the topic (data sample) 
 
Initialize the data structure Result Sample RSi: (the result matrix, number of workers, i). 
Publish the Result sample RS‐0 through DataWriters DW‐i 



128 
 

Appendix 3: The Primes Search Pseudo-code Using DDS 
 

Master node:  
Thread 0:   

Create an instance of publisher P0 with selected QoS profile in domain: Domain‐0 
Create a DDS topic [name: send_interval_data] 
Create and register a DataWriterDW‐0 for the publisher P0 that uses the created topic 
Create an instance of the topic (data sample) 
Read the complete interval from file 
Initialize the data structure Source Sample SS: (the interval size, no. of workers). 

Publish the Source sample SS‐0 through DataWritersDW‐0 
  Thread 1: 

Create an instance of subscriber S0 with selected QoS profile in domain: Domain‐0 
Create and register a DataReaderDR‐0 for the subscriber S0 that uses topic [name: 
recv_primes_result] 

    While (Result sample RS‐0 not complete) 
      If new data from sample RS received 
        Get worker number i 
        Output the largest prime found 
      End if 

End while 
 
Worker nodes (Wi): 
Create an instance of subscriber Si with selected QoS profile in domain: Domain‐0 
Create and register a DataReader DR‐i for the subscriber Si that uses topic [name: send_interval_data] 
While (!timeout && data !received) 
  If sample SS‐0 received 
    Get worker number (Wi) 
    mystart = (Wi*2)+1 
    For every element n in the partial interval:     
      SqrRoot = integer:sqrt(n); 
      for i from 1 to SrqRoot 
        i = i +2 
        if ((n%i)==0) 
        output the prime numbern 
        else “it is composite” 
  End if 
End while 
 
Create an instance of publisher Pi with selected QoS profile in domain: Domain‐0 
Create a DDS topic [name: recv_primes_result] 
Create and register a DataWriter DW‐i for the publisher Pi that uses the created topic 
Create an instance of the topic (data sample) 
 
Initialize the data structure Result Sample RSi: (the interval size, number of workers, i). 
Publish the Result sample RS‐0 through DataWriters DW‐i 

 



129 
 

Appendix 4: The Node-to-Node Pseudo-code Using DDS 
 

Master node:  
Thread 0:   

Create an instance of publisher P0 with selected QoS profile in domain: Domain‐0 
Create a DDS topic [name: send_stream_data] 
Create and register a DataWriterDW‐0 for the publisher P0 that uses the created topic 
Create an instance of the topic (data sample) 
Initialize the input data 
  for (i=0; i<msgsize; i++) { 
  X[i] = 1; 
  Y[i] = 2; 
Initialize the data structure Source Sample SS: (the input size, no. of workers). 

Publish the Source sample SS‐0 through DataWritersDW‐0 
  Thread 1: 

Create an instance of subscriber S0 with selected QoS profile in domain: Domain‐0 
Create and register a DataReaderDR‐0 for the subscriber S0 that uses topic [name: 
recv_stream_result] 

    While (Result sample RS‐0 not complete) 
      If new data from sample RS received 
        Set worker number = 0 
        Output the values of x[0] and y[0] for confirmation 
      End if 

End while 
 
Worker node (W0): 
Create an instance of subscriber Si with selected QoS profile in domain: Domain‐0 
Create and register a DataReaderDR‐0 for the subscriber S0that uses topic [name: send_stream_data] 
While (!timeout && data !received) 
  Wait for SS‐0 data to completion   
End while 
If sample SS‐0 received 
  Set worker number (W0) 
End if 
 
Create an instance of publisher P0 with selected QoS profile in domain: Domain‐0 
Create a DDS topic [name: recv_primes_result] 
Create and register a DataWriter DW‐0 for the publisher Pi that uses the created topic 
Create an instance of the topic (data sample) 
 
Initialize the data structure Result Sample RS0: (the input size, number of workers). 
Publish the Result sample RS‐0 through DataWriters DW‐0 
 



130 
 

REFERENCES 
 
[1] N. Wang, Schmidt, D.C., V. Hag, H. Corsaro, A., “Toward an adaptive data 

distribution service for dynamic large-scale network-centric operation and warfare 
(NCOW) systems”, in Military Communications Conference, 2008. MILCOM 2008. 
IEEE, Nov. 2008. 

[2] S.Spetka, S. Tucker, G. Linderman, "Information Management for High 
Performance Autonomous Intelligent Systems", in Performance Metrics for 
Intelligent Systems Workshop, PerMIS '07, Courtyard Gaithersburg Washingtonian 
Center, Gaithersburg, MD, August, 2007. 

[3] Spetka, S.E., Ramseyer, G.O., Linderman, R.W., "Grid Technology and Information 
Management for Command and Control", 10th International Command and Control 
Research and Technology Symposium, the Future of C2, McLean, Virginia, VA, 
June, 2005. 

[4] Eui-Nam Huh, “Sensor Event Processing on Grid”, Technical report. Department of 
Computer Engineering Kyung Hee University 2005. 

[5] Jeffery Steinman, “The Wrap VI Simulation Kernel”, Proceedings of the 19th 
Workshop on Principles of Advanced and Distributed Simulation, 2005. 

[6] K.H. Kim, “Wide-area Real-Time Distributed Computing in a Tightly Managed 
Optical Grid: An Optiputer Vision”, in: Proceedings of the 18th International 
Conference on Advanced Information Networking and Applications, AINA ’04, vol. 
2, March, IEEE Computer Society, 2004. 

[7] P. Grace, G. Coulson, G. Blair, et al. "GRIDKIT: Pluggable Overlay Networks for 
Grid Computing", in Proceedings Distributed Objects and Applications (DOA'04), 
Lecture Notes in Computer Science 3291, Springer-Verlag. ISBN: 3-540-23662-7. 

[8] S. Oh, J. Kim, G. Fox, “Real-Time Performance Analysis for Publish/Subscribe 
Systems”, Future Generation Computer Systems, Sep., 2009. 

[9] Y. Wang1, S. Yang1, Alan Grigg2, Julian Johnson, “DDS Based Framework for 
Remote Integration over the Internet”, in the 7th Annual Conference on Systems 
Engineering Research 2009 (CSER 2009). 

[10] L. Srinivasan, J. Treadwell, “An Overview of Service-oriented Architecture, Web 
Services and Grid Computing”, HP Software Global Business Unit, Nov. 2005. 

[11] Java Business Integration. Available at:  www.rl.af.mil/programs/jbi/ 

[12] Globus Toolkit. Available at: www.globus.org/toolkit/ 

[13] R. Eduardo, M. Gil, B. Joao, “The use of real-time publish-subscribe middleware in 
networked vehicle systems", 1st IFAC Workshop on Multivehicle Systems 
(MVS'06), Brazil, Oct., 2006. 



131 
 

[14] D. Prabu, et al., “An Efficient Run Time Interface for Heterogeneous Architecture 
of Large Scale Supercomputing System”, World Academy of Science, Engineering 
and Technology, 2006. 

[15] F. Pister, L. Hess and V. Lindenstruth, “Fault Tolerant Grid and Cluster Systems”, 
Kirchhoff Institute of Physics (KIP), University Heidelberg, Germany. 

[16] I. Haddad, C. Leangsuksun, R. Libby, T. Liu, Y. Liu, S. Scott, “Highly Reliable 
Linux HPC Clusters: Self-awareness Approach”, Proc. of the 2nd International 
Symposium on Parallel and Distributed Processing and Applications, 2004. 

[17] A. Azagury, D. Dolev, G. Goft, John M. Marberg, J. Satran, “Highly Available 
Cluster: A Case Study”, FTCS 1994: 404-413. 

[18] Fagg, G., Dongarra, J., “Building and using a Fault Tolerant MPI implementation”, 
Int’l Journal of High Performance Applications and Supercomputing, 2004. 

[19] A. Gidenstam, B. Koldehofe, M. Papatriantafilou, and P. Tsigas, “Dynamic and 
Fault-Tolerant Cluster Management”. In Proceedings of the Fifth IEEE International 
Conference on Peer-to-Peer Computing, pages 237–244, Aug. 2005 

[20] W. Gropp, E. Lusk, “Fault Tolerance in MPI Programs”, Journal of High 
Performance Computing and Applications, 2003. 

[21] J. Mugler, T. Naugthon, S. Scott, C. Leangsuksun, “OSCAR Clusters”, Proceeding 
of The Linux Symposium 2003, July 23rd-26th, 2004.  

[22] “Data Distribution Service for Real-time Systems, v1.0,” Object Management 
Group Specification Document, Dated 2004-12-02, available athttp://www.omg.org. 

[23] G. Pardo-Castellote, “DDS Spec Outfits Publish-Subscribe Technology for the 
GIG,” COTS Journal, April 2005. 

[24] Adams, J., Laverell, D., Ryken, M. MBH’99: A Beowulf Cluster Capstone Project, 
Proceedings of the 14th Annual Midwest Computer Conference, Whitewater, WI, 
March 2000. 

[25] Open DDS Specifications. Available at: www.opendds.org 

[26] J. Neelamegam, S. Chakravarthi, M. Apte, A. Skjellum, “PromisQoS: An 
Architecture for Delivering QoS to High-Performance Applications on Myrinet 
Clusters”, 28th Annual IEEE International Conference on Local Computer 
Networks (LCN'03), Oct., 2003. 

[27] A. Hafid, G.Bochmann, and B. Kerherve. “A Quality of Service Negotiation 
Procedure for Distributed Multimedia Presentational Applications”. In HPDC ’96, 
pages 330–339, 1996. 

[28] H. Chu, K Nahrstedt, “A CPUServiceClasses for Multimedia Applications”,. In 
IEEE Multimedia Systems Journal, 1999. 

[29] I. Foster, A. Roy, and V. Sander. “A Quality of Service Architecture That Combines 
Resource Reservation and Application Adaptation”, In Proceedings of the 8th 
International Workshop on Quality of Service (IWQOS), pages 181–188, Pittsburgh, 
PA, June 2000. 



132 
 

[30] I. Cardei, R. Jha,M. Cardei, and A. Pavan. “Hierarchical Architecture for Real-Time 
Adaptive Resource Management”, In IFIP/ACM International Conference on 
Distributed Systems Platforms, pages 415–434, 2000. 

[31] N.J.Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, 
and W. K. Su. “A Gigabit-per-second Local Area Network”, IEEE Micro15 ,pp 29-
36 Feb.,1995 

[32] HariSubramoni, Ping Lai, and Dhabaleswar K. Panda, “Designing QoS Aware MPI 
for InfiniBand”, Technical Report, Department of Computer Science and 
Engineering, The Ohio State University. 

[33] The Open Fabric Alliance, available at: http://www.openfabrics.org/ 

[34] The Open Grid Services Architecture (OGSA). Available at: 
http://www.globus.org/ogsa/ 

[35] M. Ghuson, R. AlShaikh, M. Baddourah, “Performance Evaluation of Myrinet and 
Cisco Infiniband Using Intel MPI Middleware", the 9th LCI International 
Conference on High Performance Computing, NCSA, University of Illinois, USA, 
May 2008. 

[36] The Green Top500 List. Available at: http://www.green500.org/ 

[37] J. Sloan, “High performance Linux clusters with OSCAR, Rocks, openMosix, and 
MPI”, O’Reilly Publication, 2005. 

[38] J. Laros and L. Ward, “Implementing Scalable Diskless Clusters Using the Network 
File System”, Proceedings of the Los Alamos Computer Science Institute (LACSI) 
Symposium 2003, USA, October, 2003. 

[39] B. Guler, M. Hussain; T. Leng, and V. Mashayekhi, “The Advantages of Diskless 
HPC Clusters using NAS”, DELL Inc., Nov. 2002. 

[40] C. Yang and Y. Chang, “A Linux PC Cluster with Diskless Slave Nodes for Parallel 
Computing”, High-Performance Computing Laboratory, Department of Computer 
Science and Information Engineering, Tunghai University, Jan, 2003. 

[41] C. Engelmann, H. Ong and S. Scott, “Evaluating the Shared Root File System 
Approach for Diskless High-Performance Computing Systems”, Proceedings of the 
10th LCI International Conference on High-Performance Clustered Computing (LCI-
09), Colorado, 2009. 

[42] Terry Jones, Andrew Tauferner, Todd Inglett, et al., “HPC Colony: Linux at Large 
Node Counts Report from Experiments Conducted on Sixth BGW Day”, August 10, 
2007 

[43] J. Laros, C, Segura and N. Dauchy, “A Minimal Linux Environment for High 
Performance Computing Systems”, The 10th World Multi-Conference on 
Systemics, Cybernetics and Informatics, Florida, July 2006, pp.130-138. 

[44] C. Lu., “Scalable Diskless Checkpointing for Large Parallel Systems”, MSc. Thesis, 
University of Illinois at Urbana-Champaign, 2002. 



133 
 

[45] B. Maher, “Techniques to Build a Diskless Boot Linux Cluster of JS21 Blades”, 
IBM Red Book, 2006. 

[46] T. Morgan JR., “DRBL: Diskless Remote Boot in Linux”, Master’s Capstone 
Project on High Performance Computing, April, 2006. 

[47] Z. Chen, G. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and J. Dongarra. 
“Building fault survivable MPI programs with FT-MPI using diskless 
Checkpointing”, Proceedings of the 10th ACM SIGPLAN symposium on Principles 
and Practice of Parallel Programming (PPoPP), Chicago IL, June 2005, pp.213-223. 

[48] TOP500 Supercomputers. Available at:  http://www.top500.org 

[49]  HPL - High-Performance Linpack Benchmark. Available at: 
http://www.netlib.org/benchmark/hpl 

[50] S. Frank and R. Haskin, “GPFS: A Shared-Disk File System for Large Computing 
Clusters”, Proceedings of 1st Conference on File and Storage Technologies (FAST), 
USA, Jan., 2002, pp. 231–244. 

[51] P. Reisner and L. Ellenberg, “Replicated Storage with Shared Disk Semantics”, 
Proceedings of the 12th International Linux System Technology Conference (Linux-
Kongress), Germany, Oct, 2005, pp.111-119. 

[52] DELL IPMI. Available at: http://linux.dell.com/ipmi.shtml 

[53] DELL Blades Server for HPC M610. Available at: 
http://www.dell.com/us/en/enterprise/servers/server-poweredge-m610. 

[54] C. Juszczak, “Improving the Write Performance of an NFS Server”, Proceedings of 
the USENIX Winter 1994 Technical Conference, USENIX, Association  Berkeley, 
CA, USA, pp. 20-20, 1994. 

[55] Red Hat Knowledge Base: The Optimal Number of nfsd Threads. Available at: 
http://kbase.redhat.com/faq/docs/DOC-2237 

[56] Pallas Benchmarking tools. Available at: 
http://people.cs.uchicago.edu/~hai/vcluster/PMB/ 

[57] J. Dongarra, J. Luszczek, and A. Petitet, “The LINPACK benchmark: past, present 
and future”, in the Journal of Concurrency and Computation: Practice and 
Experience, 2003, pp. 803-820. 

[58] Energy Information Administration, USA Department of Energy 
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_b.html. 

[59] V. Tipparaju, G. Santhanaraman, J. Nieplocha, and D. K. Panda, “Host-Assisted 
Zero-Copy Remote Memory Access Communication on InfiniBand”, Int’l Parallel 
and Distributed Processing Symposium (IPDPS 04), April, 2004.  

[60] C. Bell, D. Bonachea, Y. Cote and et al. “An Evaluation of Current High-
Performance Networks”, Int’l Parallel and Distributed Processing Symposium 
(IPDPS’03), April 2003. 



134 
 

[61] J. Liu, B.   Chandrasekaran, J. Wu and et al., “Performance Comparison of MPI 
Implementations over InfiniBand, Myrinet and Quadrics”, Supercomputing, 
ACM/IEEE,  pages 58- 58, Nov. 2003. 

[62] Myrinet, Myricom. Available at: http://www.myri.com 

[63] R. Fatoohi, K. Kardys, S. Koshy and el at. “Performance evaluation of high-speed 
interconnects using dense communication patterns”, Parallel Computing Volume 32, 
Issue 11-12, pages 794-807, 2006. 

[64] Intel Inc. Available at:  http://www.intel.com 

[65] Portland PGI. Available at: http://www.pgroup.com/ 

[66] The top500 supercomputers. Available at: http://www.top500.org 

[67] MVAPICH: MPI over InfiniBand and iWARP. Available at: 
http://mvapich.cse.ohio-state.edu 

[68] T. Typou, V. Stefanidis, P.D. Michailidis and K.G, “ Margaritis, Implementing 
Matrix Multiplication on an MPI Cluster of Workstations”, in Proceedings of the 1st 
In’t Conference "From Scientific Computing to Computational Engineering" (IC-
SCCE'2004), Athens, Greece, vol. II, pp. 631-639, 2004 

[69] Lawrence Livermore National Laboratory – OpenMP tutorial. Available at: 
https://computing.llnl.gov/tutorials/openMP/ 

[70] Simple matrix multiplication on MPI. Available at: 
http://sushpa.wordpress.com/2008/05/20/simple-matrix-multiplication-on-mpi/ 

[71] A. Boukerche, R. Al-Shaikh, “Towards Highly Available and Scalable High 
Performance clusters”, as a special issue on Network-Based Computing in the 
Journal of Computer and System Sciences (in conjunction with IPDPS’06), 2006. 

[72] B. Madani, R. Al-Shaikh, “Towards RTPS Models for High Performance and Grid 
Computing”, the 14th International Conference on Petroleum Data Integration, 
Information and Data Management, USA, TX, May, 2010. 

[73] M. Al-Mulhem, R. Al-Shaikh, “Performance Evaluation of Intel and Portland 
Compilers Using Intel Westmere Processor”, in the 2nd IEEE conference on 
Intelligent Systems, Modeling and Simulation, Phnom Penh, Cambodia, January, 
2011. 

[74] K Salah, R. Al-Shaikh, M. Sindi, “Towards Green Computing Using Diskless High 
Performance Clusters”, in the 7th IEEE Int’l Conference on Network and Service 
Management (CNSM’11), Paris, France, October 2011. 

[75] B. Madani, R. Al-Shaikh, “Performance Modeling and MPI Evaluation Using 
Westmere-based Infiniband HPC Cluster”, the 4th IEEE European Symposium in 
Mathematical Modeling and Computer Simulation”, Pisa, Italy, November, 2010. 

[76] Cluster Resources. Available at: http://www.clusterresources.com 

[77] Real-Time Innovations (RTI). Available at: http://www.rti.com 

 



135 
 

[78] A. Agbaria, R. Friedman, “Starfish: Fault-Tolerant Dynamic MPI Programs on 
Clusters of Workstations”, In the 8th IEEE International Symposium on High 
Performance Distributed Computing, 1999. 

[79] L. Dikken, F. Linden, J. Vesseur and P. Sloot, “DynamicPVM: Dynamic Load 
Balancing on Parallel Systems”, In W. Gentzsch and U. Harms, editors, High 
Performance Computing and Networking, pp. 273-277, April 1994, Springer, LNCS 
797. 

[80] NCBI BLAST, available at: http://blast.ncbi.nlm.nih.gov/Blast.cgi 

[81] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, W. Feng, “Massively parallel genomic 
sequence search on the Blue Gene/P architecture”, SC '08 Proceedings of the 2008 
ACM/IEEE conference on Supercomputing. 

[82] A. Darling, L. Carey, and W. Feng, “The Design, Implementation, and Evaluation of 
mpiBLAST”, 4th International Conference on Linux Clusters: The HPC Revolution 
2003 in conjunction with ClusterWorld Conference & Expo, June 2003. 

[83] L. Chai, R. Noronha, P. Gupta, G. Brown and D. K. Panda, "Designing a Portable 
MPI-2 over Modern Interconnects Using uDAPL Interface", Recent Advances in 
Parallel Virtual Machine and Message Passing Interface”, Lecture Notes in 
Computer Science, 2005, Volume 3666/2005, pp. 200-208.  

[84] Mellanox OFED User’s Manual. Available at: www.mellanox.com 

[85] QLogic Infiniband. Available at: www.qlogic.com 

[86] D.Buntinas, B.Goglin, D.Goodell, G. Mercier, S.Moreaud, “Cache-Efficient, 
Intranode, Large-Message MPI Communication with MPICH2-Nemesis”, 
International conference on Parallel Processing (ICPP’09), Vienna, 2009.  

[87] B. Schroeder, G. Gibson, “Understanding Failures in PetascaleComputers,” Journal 
of Physics: Conference Series 78 (2007),SciDAC 2007. 

[88] B. Murphy and T. Gent, “Measuring System and Software Reliability Using an 
Automated Data Collection Process”. Qualityand Reliability Engineering 
International, 11(5), 1995. 

[89] B. Schroeder, G. Gibson, “A Large Scale Study of Failures in High-performance-
computing Systems”, Int’l Symposium on Dependable Systems and Networks (DSN 
2006). IEEE Transactions on Dependable and Secure Computing (TDSC). 

[90] G. Pardo-Castellote, “OMG Data-Distribution Service: Architectural Overview”, 
MILCOM'03 Proceedings of the 2003 IEEE conference on Military communications 
- Volume I, 2003. 

[91] The MPI Prime Search. Available at: https://computing.llnl.gov/tutorials/mpi/ 

 



136 
 

Vitae 
 

 

 Raed Abdullah Al-Shaikh. 

 Saudi Nationality. 

 BorninAugust4, 1978. 

 Earned a Bachelors of Science degree in Computer Engineering from King 

FahdUniversity of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia, in 

June 2001. 

 Earned a Master in Business Administration (MBA) degree from the University of 

Bahrain (UOB), Issa Town, Bahrain, in December 2004. 

 Earned a Master degree in Computer Science (MCS) from the University of 

Ottawa (UofO), Ottawa, Canada, in May 2006. 

 E-mail: raed.shaikh@aramco.com 


	scan0017
	Thesis Signatures
	PhD_Thesis-Feb19,2012

