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ABSTRACT

NAME: DIA EDDIN MOHAMMAD ASAD ABUZEINA

TITLE OF STUDY: UTILIZING DATA-DRIVEN AND KNOWLEDGE-
BASED TECHNIQUES TO ENHANCE ARABIC
SPEECH RECOGNITION

MAJOR FIELD: COMPUTER SCIENCE AND ENGINEERING

DATE OF DEGREE: DECEMBER, 2011

Pronunciation variation is a well-known phenomenon which leads to performance
reduction in speech recognition systems. This performance reduction factor occurs
mainly in two forms: within-word pronunciation variation, and cross-word pronunciation
variation. The within-word variation occurs inside the word, while the cross-word
variation occurs when two successive words interact leading to a different pronunciation
in one or two letters. Furthermore, the two words could merge together creating one
continuous utterance with no clear boundary between them. In speech recognition,
within-word and cross-word pronunciation variations alter the phonetic spelling of words
beyond their listed forms in the pronunciation dictionary, leading to a number of out-of-
vocabulary word forms, and consequently reducing the speech recognition performance.
Pronunciation variation problems could also arise in the form of an incorrectly
recognized word sequence with out-of-language syntax. In this thesis we propose
knowledge-based and data-driven techniques to solve these three problems (i.e. within-

word, cross-word, and out of correct order syntactical structures).

XV



The proposed methods were investigated on a modern standard Arabic speech
recognition system using Carnegie Mellon University Sphinx speech recognition engine.
The first problem (within-word variations) was modeled using the data-driven approach
which utilizes a dynamic programming method (sequence alignment for phonemes) to
distill variants from the pronunciation corpus. The results showed that this technique

achieved significant improvements of 1.82%.

The second problem (cross-word variations) was modeled using three different
tracks: a knowledge-based approach (using Arabic phonological rules), a knowledge-
based approach (using part of speech tagging), and a data-driven approach (by merging
small words). The results showed that the three above mentioned tracks achieved
significant improvements. The part of speech tagging approach achieved the highest
improvement of 2.39%, followed by the phonological rules approach, achieving 2.30%

and finally the merging small words approach achieving 2.16%, over the baseline system.

The third problem was modeled using a data mining algorithm to extract the best
language syntax rules, that can be later used for rescoring the N-best hypotheses. A
Stanford Arabic tagger was used for the tagging process. This method, nevertheless, did

not lead to a significant improvement.

XVi
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The fast pace of the advancement in information and communications technology
is reshaping our society and vastly increasing our capabilities for faster learning, higher
achievements, better and wider communication, in addition to more effective and

productive human-computer interface.

One of the important frontiers of communication technology is the user-interface,
namely how the man-machine interface can be designed in a more natural environment
and immersive environment, which captures the essential attributes of a human-like
exchange between human and machine. To address this important issue, researchers from
various areas have been hard at work to equip machines with vital human-like
capabilities, such as speech communication and vision. It is fair to say that despite many
staggering technological successes achieved in these areas, the machine capabilities
developed so far remain rather primitive compared to their human counterparts. This has
propelled human-machine system designers to continue their relentless effort to achieve

this far reaching goal.

One such general area where research is continuing persistently is the speech
processing area. Speech is the natural form of communication between humans. Its

1



production is a highly nonlinear process that is strongly influenced by the high variability
of factors such as, age, gender, rate of speech, different dialects and regional accents,
emotional state, and more. Speech perception is a hard task in that, in addition to the
above-cited production-related difficulties, it has to contend with other equally variable
and adverse factors such as background noise, interference from other speakers, room
acoustics, recording equipment, and channel characteristics in the case of telephone
conversation. Automatic Speech Recognition (ASR) is a key technology for a variety of
applications, such as automatic translation, hands-free operation and control (as in cars
and airplanes), automatic query answering, telephone communication with information
systems, automatic dictation (Speech-to-text transcription), government information
systems, etc. In fact, speech communication with computers and household appliances is
envisioned to be the dominant human-machine interface in the near future. However,
despite many impressive achievements in the area of speech recognition, reaching well-

functioning human performance levels still remains a possibly unattainable goal.

During the last few decades, much research was carried out in the ASR area
resulting in numerous practical and commercial successes with impressive high
recognition performances, but only if the environment and the speaking manner are

constrained such as with using isolated keywords.

No doubt, conversational or continuous speech recognition introduces many
challenges to ASRs. One of these challenges is the pronunciation variation problem,
which is known to reduce recognition accuracy. Pronunciation variation appears in the
form of insertions, deletions, or substitutions of phoneme(s) relative to the canonical

transcription of the words in the pronunciation dictionary. Within-word variations and



cross-word variations (words’ junctures merging) are well known variation problems in
continuous speech. Additionally, syntactically incorrect ASRs outputs are also another
types of error sources in ASRs. Accordingly, handling these phenomena is a major

requirement to have robust ASRs.

This thesis focuses on Arabic speech recognition, which has gained increasing
importance in the last few years. Arabic is a Semitic language spoken by more than 330
million people as a native language [1]. In this thesis, we consider the modern standard
Arabic (MSA) which is currently used in writing and in most formal speech. MSA is also
the major medium of communication for public speaking and news broadcasting [2] and

is considered to be the official language in most Arabic-speaking countries [3].

This thesis contains necessarily many examples in Arabic; Appendix 1 is

provided for the Arabic terminologies used in this thesis.

1.2  Thesis Statement

In this thesis, the most noticeable Arabic ASRs performance reduction factors
were investigated. These factors include within-word and cross-word pronunciation
variations, which also lead to syntactically incorrect ASRs outputs. To enhance speech
recognition accuracy, data-driven and knowledge-based techniques have been utilized to
model the above mentioned problems at two ASRs components: the pronunciation
dictionary and the language model. While modeling the within-word and cross-word
variations shows a significant enhancement, our investigations show that knowledge-
based technique to model syntactically incorrect ASRs outputs does not enhance the

recognition Accuracy.



1.3 Motivation

Speech recognition is often used as the front-end for many natural language
processing (NLP) applications. Some of these typical applications include voice dialing,
call routing, data entry, dictation, control, commands, and computer-aided language
learning. Intuitively, improving the speech recognition performance will improve the
related NLP applications. Generally, this thesis explores new methods to improve the

recognition performance of Arabic ASR systems.

1.4 Objectives

The main objective of this thesis is to enhance the accuracy of Arabic ASRs

systems. The objectives are divided as follows.

First, the direct data-driven approach was investigated to model within-word
pronunciation variations, in which the pronunciation variants were distilled from the
training speech corpus. The proposed method consists of performing phoneme
recognition, followed by a sequence alignment between the observation phonemes
generated by the phoneme recognizer and the reference phonemes obtained from the
pronunciation dictionary. A phoneme-to-grapheme conversion is then used to generate
the transcription forms of the unique variants, which will be added to the pronunciation

dictionary and the language model.

Second, the cross-word problem was investigated and modeled in three different
ways: Arabic phonological rules, speech tags merging, and small words merging. The
small words’ merging is considered as a data-driven approach while the phonological

rules and tags merging are considered as knowledge-based methods. Using these



methods, the cross-word problem is tackled by merging the consequent words, according
to pre-specified rules, to be then added to the pronunciation dictionary and the language

model.

Third, we present a syntax-mining approach to rescore N-best hypotheses for
Arabic speech recognition systems. The method depends on a machine learning tool
(weka-3-6-5) to extract the N-best syntactic rules from the baseline tagged transcription
corpus. The extracted rules are then used to rescore N-best hypotheses to choose the best

one.

Carnegie Mellon University (CMU) Sphinx speech recognition engine was used
to investigate the above cited objectives. The Sphinx engine was applied on the baseline
system, which contains a pronunciation dictionary of 14,234 words from a 5.4 hours

corpus of Arabic broadcast news.

1.5 Contributions

The main contribution of this thesis is the enhancements achieved in the Arabic
speech recognition over the baseline system. These enhancements are pursued by
utilizing data-driven and knowledge-based techniques as a preprocessing and a prost-

processing stages. Our results show the following findings:

= For within-word variation: Data-driven approach which is based on extracting

variants from pronunciation corpus, leads to a significant enhancement.

= For cross-word variation: Knowledge-based (phonological rules and part of
speech tagging) approaches to combine consecutive words lead to significant

enhancements.



= For cross-word variation: Data-Driven (compounding consecutive small-words)

leads to a significant enhancement.

= For N-best hypotheses rescoring: Rescoring N-best hypotheses using data-mining

syntactic structures does not lead to a performance enhancement (for Arabic).

= A set of tools has been developed specifically for Arabic language. these tools

will be made available for the academic community.

1.6 Thesis outline

The rest of this thesis is organized as follows. Chapter 2 presents the preliminaries
and the background of this research work. Chapter 3 presents the literature review and the
Arabic speech recognition challenges. Then, in chapter 4, the baseline system is
described. Chapter 5 discusses the within-word pronunciation variations phenomenon,
the suggested solution, and the results. Chapter 6 presents the cross-word pronunciation
variations, the modeling techniques, and the results. Chapter 7 discusses the N-best
hypotheses and the rescoring procedure as well as our findings. Finally, the closing
remark concludes the thesis with the recommended research directions in Arabic speech

recognition research area.



CHAPTER 2

PRELIMINARIES AND

BACKGROUND

2.1 Theory and background

A speech recognizer is a program that converts speech into texts for many
purposes; facilitating human computer interface is the major advantage. A wider reach of
the information technology (IT) in the society can be achieved if users can verbally
communicate with computer. In fact, being able to speak fluently with computer may
eliminate handwriting problems and, therefore, increases the productivity of people.
Nowadays, big companies utilize this technology to automate their processes. With huge
number of customers, companies tend to offer their services more smoothly as a user can
verbally inquire, order, and pay. In addition to the commercial applications, speech
recognition is also employed in elLearning, training, and education of students with
learning disabilities. Khasawneh et al. in [4] listed some speech recognition applications,
which include banking by telephone, automatic teller machines, compact size computers,
browsing computer networks and databases by voice, and operating machinery from a
distance in dangerous working sites. However, there are drawbacks. Speech recognition

systems require high computational machines with large memory. Additionally, a high



rate of misrecognitions and errors is still a major problem in speech recognition systems,

which hinders its widespread adaptation in the IT applications.

Benzeghiba et al. in [5] presented a comprehensive study on pronunciation
variations as major sources of errors in automatic speech recognition. They demonstrated
some of the speech variability sources: foreign and regional accents, speaker physiology,
speaking style and spontaneous speech, rate of speech, children speech, emotional state,

and more.

A typical large vocabulary speech recognizer would first convert speech
waveform into a sequence of feature vectors to be used to identify the phones (the
acoustic speech unit). The recognized phones are used to specify the words and then the

sequence of words.

Rabiner and Juang [6] demonstrated that the statistical approach has dominated
ASR research over the last few decades. The statistical approach is itself dominated by
the powerful statistical technique called Hidden Markov Model (HMM). Based on the
initiating research work of Baker [8], the HMM-based ASR technique has led to
numerous successful applications requiring large vocabulary speaker-independent
continuous speech recognition as mentioned by Jelinek in [7], Morgan and Bourlard in

[9], and Young in [10].

The HMM-based technique essentially consists of recognizing speech by
estimating the likelihood of each phone at contiguous, small frames of the speech signal
([6], [11]). Words in the target vocabulary are modeled into a sequence of phonemes and
then a search procedure is used to find, among the words in the vocabulary list, the

phoneme sequence that best matches the sequence of phones of the spoken word. Each
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phoneme is modeled as a sequence of HMM states. In standard HMM-based systems, the
likelihoods (also known as the emission probabilities) of a certain frame observation
being produced by a state are estimated using traditional Gaussian mixture models
(GMMs). The use of HMM with Gaussian mixtures has several notable advantages such
as a rich mathematical framework, efficient learning and decoding algorithms, and an

easy integration of multiple knowledge sources.

Two notable successes in the academic community in developing high
performance large vocabulary, speaker-independent, continuous speech recognition
systems are the HMM tools, known as the Hidden Markov Model Toolkit (HTK),
developed at Cambridge University ([12], [13]), and the Sphinx system developed at
CMU ([14], [15]). HTK is a general purpose toolkit for building HMMs and has been
used in many applications. On the contrary, CMU Sphinx system was built specifically
for speech recognition applications. In this thesis, we used Sphinx-based ASR system for

testing and evaluation.

The Sphinx Group at CMU has been supported for many years by funding from
the Defense Advanced Research Projects Agency (DARPA) and industries to assess and
develop speech recognition techniques. In 2000, the Sphinx group released Sphinx-II, a
real-time, large vocabulary, speaker-independent speech recognition system as free
software. The source code is freely available for educational institutions. The extensive
source code resources represent an excellent research infrastructure and a powerful test
bed for researchers to pursue further state-of-the-art research in the area of speech

recognition techniques. CMU Sphinx toolkit has a number of packages for different tasks



and applications, Open Source Toolkit for Speech Recognition [16]. Some tools are as

follows:

= PocketSphinx—recognizer library written in C

= Sphinxbase—support library required by PocketSphinx

= Sphinx 3—adjustable, modifiable recognizer written in C

= Sphinx 4—adjustable, modifiable recognizer written in Java
=  CMUcImtk—Ilanguage model tools

= SphinxTrain—acoustic model training tools
2.2 Speech recognition architecture

Modern large vocabulary, speaker-independent, continuous speech recognition
systems have three knowledge sources: acoustic model, language model (LM), and
pronunciation dictionary (also called lexicon). A lexicon provides pronunciation
information for each word in the vocabulary in phonemic units, which are modeled in
detail by the acoustic models. The language model provides the priori probabilities of
word sequences. Figure 2-1 shows Sphinx-engine architecture.

Application
a X )

Recognizer Linguist

AcousticModel

Language
Model

SearchGraph

Decoder

ActiveList

FronEnd

Features

Figure 2-1 Sphinx-engine architecture
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Figure 2-1 illustrates the sub-systems available in Sphinx tools and the
relationships between them. The following is a brief description of the main sub-

functions of Sphinx engine:

The Front-End: The purpose of this sub-system is to extract speech features, and
it plays a crucial role for better recognition performance. Speech features includes Linear
Predictive Cepstral Coefficients (LPCC), Mel-Frequency Cepstral Coefficients (MFCC)
and Perceptual Linear Predictive (PLP) coefficients. The Sphinx engine used in this work

relies on the (MFCCs).

The Linguist: This part contains the modifications required for a particular
language. It contains three parts: acoustic model, language model, and pronunciation
dictionary. Acoustic model contains the HMMs used in recognition process. The
language model contains language’s words and its combinations, each combination has
two words or above. A pronunciation dictionary contains the words of the language. The

dictionary represents each word in terms of phonemes.

The Decoder (Recognizer): With help from the linguistic part, the decoder is the
module where the recognition process takes place. The decoder uses the speech features
presented by the Front-End to search for the most probable words and, then, sentences
that correspond to the observation speech features. Hence fore, the recognition process
starts by finding the likelihood of a given sequence of speech features based on the

phonemes HMMs.
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The speech recognition problem is to transcribe the most likely spoken words

given the acoustic observations. If O=o0,,0,,....0, IS the acoustic observation, and

n
W =w,,w,,...w, isaword sequence, then:

W= arg max P(W)P(O|W)

for all words

Where W is the most probable word sequence of the spoken words, which is also
called maximum posteriori probability. P(W) is the prior probability computed in the
language model, and P(O|W) is the probability of observation likelihood computed using
acoustic model. The following subsections contain more details of a typical speech

recognition system.

2.2.1 Front-End signal processing

The features extraction stage aims to produce the spectral properties (features
vectors) of the speech signal. These properties consist of a set (39 coefficients) of
MFCCs. The speech signal is divided into overlapping short segments that will be
represented using MFCCs, the widely used feature vectors for speech signals. Figure 2-2

shows the steps to extract the MFCCs of a speech signal [17].

Continuoui waveform MFCCs
Sampling and Quantization Deltas and Energy
v 4
Preemphasis Inverse Discrete Fourier Transform
2 [ )
Windowing Log of the Mel spectrum values
v 4
Discrete Fourier Transform > Mel Filter Bank

Figure 2-2 Feature vectors extraction
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Sampling and Quantization: sampling and quantization are the two steps for
analog-to-digital conversion. The sampling rate is the number of samples taken per

second, while quantization is the process of representing real-valued numbers as integers.

Preemphasis: this stage is to boost the high frequency part that was suppressed
during the sound production mechanism, so making the information more available to the

acoustic model.

Windowing: a stationary portion of speech is extracted using a window which can
be characterized by width (20~30ms), offset or optional overlap (around 10ms), frame

size (around 320 sample points), and frame rate (around 100 frames per second).

Discrete Fourier Transform: the goal of this step is to obtain the magnitude
frequency response of each frame. Therefore, the output is a complex number

representing the magnitude and phase of the frequency component in the original signal.

Mel Filter Bank: A set of triangular filter banks is used to approximate the
frequency resolution of the human ear. The Mel frequency scale is linear up to 1000 Hz
and logarithmic thereafter. For 16 KHz sampling rate, Sphinx uses a set of 40 Mel filters

[18].

Log of the Mel spectrum values: The range of the values generated by the Mel
filter bank is reduced by replacing each value by its natural logarithm. This is done to

make the statistical distribution of the spectrum approximately Gaussian [18].

Inverse Discrete Fourier Transform: This transform is used to compress the
spectral information into a set of low order coefficients. This representation is called the

Mel-cepstrum [18].
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Deltas and Energy: the previous step provides the 12 cepstral coefficient for each
frame. This step is to add the 13" feature: the energy from the frame. It is useful to

identify phone identity.

Figure 2-3 shows the feature vector of a speech file after completing the feature

extraction process. Each column represents the 13 features of a 25.6 milliseconds frame.

L= RN R [ select data ke
Eﬂ Featuretectors <13x358 double =

1 z 3 4 5
1 -1,3030 -1,1439 -1.2332 -1.1225 -1,3957
z -1.2602 -1.2450 -1.2588 -1.1915 -1.2575
3 -0, 0457 -0,2290 -0.0345 -0.0404 -0,0535
4 -0.1191 -0.2934 -0.1264 -0.1076 -0, 1466
5 0.0257 -0.1424 0.0330 0.1451 -0, 0065
G -0,0395 -0,0243 0,0356 0.0135 -0,04587
7 -0.0970 -0.0554 0.0969 0.0252 0,064z
g 0,009z -0,0489 -0,0104 0.0079 0,1567
9 0.1431 0,0946 0.1227 0.0366 -0.0541
10 00,0034 0,0942 0,1510 0.1100 -0,0273
11 0.0925 -0.0315 0.0419 0.0439 0.0590
12 00,0653 00,0674 -0.0610 0.0697 -0,0102
13 0.0459 -0.0267 -0.0058 0.0375 0.0270
14

Figure 2-3 MFCCs of a speech file

2.2.2 Acoustic model

Acoustic model is a statistical representation of the phone. Precise acoustic model
is a key factor to improve recognition accuracy as it characterizes the HMM of each
phone. Sphinx uses 39 English phonemes [19]. The acoustic model uses a 3- to 5-state
Markov chain to represent the speech phone [14]. Figure 2-4 shows a representation of a
3-state phone’s acoustic model. In Figure 2-4, S1 is the representation of phone at the
beginning, while S2 and S3 is a representation of the phone at the middle and the end
states, respectively. S1, S2, and S3 are mixture Gaussian densities that describe the

behavior of the feature vectors of the phone.
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Figure 2-4 A 3-state phone acoustic model

An HMM, A, is described by the following set of parameters [11]:

The number of states N.

= The state transition probabilities, A, a; = P(s.,, = j|s, =i), where s is

t+1
the state at time t.
= The observation symbol probability, B, b;(x,) = P(x, | s, = j), Where X is

the observation at time t.

The initial state probabilities,IT. 7, = P(s, =1)

In continuous speech, each phoneme is influenced in different degrees by its
neighboring phonemes. Therefore, for better acoustic modeling, Sphinx uses triphones.
Triphones are context dependent models of phonemes; each triphone represents a
phoneme surrounded by specific left and right phonemes [20]. For example the phoneme

/B/ when /EY/ appears on its left and /L/ appears on its right is the triphone /B(EY, L)/.

Sphinx uses two different techniques for parametrizing the probability
distributions of the state emission probabilities: continuous HMM (CHMM), and semi-
continuous HMM (SCHMM) ([21], [22], [23]). The semi-continuous technique requires

substantially smaller number of parameters and is faster in decoding, but is only good for
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limited vocabulary. The continuous HMM, however, uses more parameters, slower in

decoding, but proves to be successful for large vocabulary applications.

In CHMM, for example, the Gaussian mixture density is used. The probability of

generating the observation x; given the transition state j, P(x, | J) becomes

b, (%)= POX 16, = 1) = D Wy, Ny (%) ()

Where N, is the k-th Gaussian distribution, w;j are the mixture weights, and

ij,k =1. CHMM is the most popular method today for large vocabulary speech
k

recognition systems. However, its main drawback is the extremely large number of

parameters needed to describe the Gaussian distributions.

Reducing the number of parameters to describe all the acoustic models of all
triphones can be achieved by using the concept of shared distributions [20]. In this
technique, all the states of all triphones of a given phoneme share a common pool of

probability distributions. These shared distributions are called Senones.

2.2.3 Decoding Using Viterbi algorithm

Given the acoustic model, the purpose of the decoding phase is to find the HMMs
sequence that is more likely to have the observation sequence. The Baum-Welch (any
path) and Viterbi (best path) are two approaches used to find the best-state sequence. The
HMMs scoring the maximum are considered as the most probable sequence of the
observation speech. Therefore, a basic step in recognition is to calculate the probability of

observing a sequence of speech features X ={X,, X,,...X; }, given a phoneme HMMs, A,

P(X | 1). We need then to enumerate every possible state sequence of length T.
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Consider the sequence S =[s,,s,....s; ], the probability of observing such sequence

of feature vectors given the model is obtained by summing up all possible state sequences

of length T.

P(X|A4)= ZP(X |S,A)P(S| )

alls
T
P(X | ﬂ’) = zﬂ-slbsl(xl)]:[ ast—l,stbst (Xt) (2)
all S t=2

Equation (2) can be efficiently calculated using an iterative procedure called
Forward-Backward procedure. For isolated word recognition or recognition of limited
number of sentences, Forward-Backward procedure can be performed by selecting the
model of the sentence which gives the highest probability of observations. In large
vocabulary system, where there could be large possibilities of phoneme sequences, a
recognition procedure is needed for matching the observed sound wave with the nearest

sequence of phones.

Viterbi algorithm is used to find the highest scoring state sequence, q=S1,S,...,ST

for a given observation sequence X = X;,X,,.., X,,..X; i.e. find S, =argmax P(S | X)
S

which is equal to:

arg{mgx l lP(Xi |si,Si) P(Si |Si0)} 3

Let us define ¢(t,i) to be the probability of the most likely partial state sequence

or path until time t, and ending at the i state, the algorithm proceeds in the following

steps ([6], [11], [23]):

Step 1: Initialization ¢(1, j)=a, ;b; (x,) (4)

Step 2: Induction
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. max .
#t.0) = {A(t-Li)a, 3y (x) )
i=12..N;andt=23,.T

Uti) = arg{m?X{(;ﬁ(t—l, Da; 3, (x )},
j=12,..,N;andt=2,3,..M

(6)

Step 3: Best Path: The maximum likelihood of the best path is then given by:

P(xModel)=¢(N,T)={m?x{¢(N,j)} j=12,...n,(M)}}

U(M,ip) = arg{mj."x{¢<M DY =120, (M)} (7)

Step 4: Backtracking

IM = Ibest

i, =U(i); fort=M,M -1,.....2 (8)
S =5,Si, e Sim

2.2.4 Training Using Baum-Welch algorithm

Training speech recognition system consists of building two models, the language

model and the acoustic model. In natural language speech recognition system, the

language model is statistically based model using unigram, bigrams, and trigrams of the

language for the text to be recognized. On the other hand, the acoustic model builds the

HMMs for all the triphones and the probability distribution of the observations for each

state in each HMM.

Sphinx training tools have a set of executable and Perl scripts that cooperate to

create acoustic models for Sphinx speech applications. The models can be built and

configured directly using the provided scripts, or by manually running the executable.
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The training process for the acoustic model consists of three phases, as shown in
Figure 2-5, each phase consists of three stages (model definition, model initialization, and
model training) and makes use of the output of its previous phase. The following phases

are:

Progress in time

]
]

Model Definition

Model Initialization

:T aseuyd

/\Tuapuedapm 1X21U0D
/\Tuepuadepqxamoo

'z aseyd
¢ aseyd

salels pall

Model Training

Figure 2-5 The various tasks involved in building the acoustic model

Context-independent phase (Cl): The context-independent phase creates a
single HMM for each phoneme in the phoneme list. The number of states in an HMM
model can be specified by the developer; in the model definition stage, a serial number is
assigned for each state in the whole acoustic model. Additionally, the main topology for
the HMM s is created. The topology of an HMM specifies the possible state transitions in
the acoustic model, the default is to allow each state to loop back and move to the next
state; however, it is possible to allow states to skip to the second next state directly. In the
model initialization, some model parameters are initialized to some calculated values.
The model training stage consists of number of executions of the Baum-Welch algorithm

(5 to 8 times) followed by a normalization process.
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Untied context-dependent phase (CD): In this phase, triphones are added to the
HMM set. In the model definition stage, all the triphones appearing in the training set
will be created, and then the triphones below a certain frequency are excluded.
Specifying a reasonable threshold for frequency is important for the performance of the

model.

After defining the needed triphones, states are given serial numbers as well
(continuing the same count). The initialization stage copies the parameters from the CI
phase. Similar to the previous phase, the model training stage consists of number of

executions of the Baum-Welch algorithm followed by a normalization process.

Tied context-dependent phase: This phase aims to improve the performance of
the model generated by the previous phase by tying some states of the HMMs. These tied
states are called Senones. The process of creating these Senones involves building some
decision trees based on some "linguistic questions” provided by the developer. For
instance, these questions could be about the classification of phonemes according to some
acoustic property. If the user did not supply these questions, SphinxTrain could guess
these questions by analyzing the voice transcriptions provided in the training data. In this
research work, we used the Sphinx 3 default setting. After the new model is defined, the
training procedure continues with the initializing and training stages. The training stage
for this phase may include modeling with a mixture of normal distributions. This may

require more iterations of Baum-Welch algorithm.

Determination of the parameters of the acoustic model is referred to as training
the acoustic model. Estimation of the parameters of the acoustic models is performed

using Baum-Welch Re-Estimation, which tries to maximize the probability of the
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observation sequence given the model. The algorithm proceeds iteratively, starting from

an initial model A. The steps in this algorithm may be summarized as follows

Step 1: Calculate the forward and backward probabilities for all states j and times t.
Step 2: Update the parameters of the new model as follows:

7; = expected frequency of the state j at time t=1 9)

~ _ expected number of transition from statei tostate j

, 10
! expected number of transitions from statei (10)

expected number of times in state jand observation symbole x,

—— : (11)
expected number of times in state

b; (k) =
If for each state the output distribution is a single component Gaussian, the
parameters of the distribution can be found by:
T
glL,-(t)xt

H; =+5———  The mean value of the observation vectors emitted at state j.

>L0

t=1

ZLj(t)(Xt _ﬁj)(xt _/'_lj)’

T = .
ZL,-(t)

: The covariance matrix of the observation

J

vectors emitted at state |

Where L;(t) is probability of being in state j at the time t, given the observation

sequence and the model.
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Step 3: If the value of P(X | A1) for this iteration is not higher than the value at the

previous iteration then stop, otherwise repeat the above steps using the new re-estimated

parameter values.

2.2.5 Language model

Speech recognition systems treat the recognition process as one of maximum a-
posteriori estimation, where the most likely sequence of words is estimated, given the
sequence of feature vectors for the speech signal. Mathematically, this can be represented

as [91]:

Wordl Word2 Word3 ... =

argmaxwai wdz .. {P(feature vectors|Wd1 Wd2 ...) P(Wd1 Wd2 ...)} (12)

Where Word1.Word?2... is the recognized sequence of words and Wd1.Wd2... is
any sequence of words. The argument on the right hand side of Equation (12) has two
components: the probability of the feature vectors, given a sequence of words P(feature
vectors|Wd1 Wd2 ...), and the probability of the sequence of words itself, P(Wd1 Wd2 ...).
The first component is provided by the acoustic model. The second component, also
called the language component, is provided by a language model. The most commonly
used language models are N-gram language models. These models assume that the
probability of any word in a sequence of words depends only on the previous N words in

the sequence. Thus, a bigram language model would compute P(Wd1 Wd2 ...) as:
P(Wd1 Wd2 Wd3 Wd4...)=P(Wd1)P(Wd2|Wd1)P(Wd3|Wd2)P(Wd4|Wd3)... (13)
Similarly, a trigram model would compute it as
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P(Wd1.Wd2.Wd3...)=P(Wd1)P(Wd2|Wd1)P(Wd3|Wd2,Wd1)P(Wd4{Wd3,Wd2).. (14)

The N-gram language model is trained by counting N-gram occurrences in a large
transcription corpus to be then smoothed and normalized. In general, an N-gram language

model is constructed by calculating the following probability for all combinations that

exist in the transcription corpus:

Pw}) = [ T p(w, o)

Where n is limited to include the words’ history as bigram (two consequent
words), trigram (three consequent words), 4-gram (four consequent words), etc. for

example, by assigning n=2, the bigram is calculated for the words sequence as follows:

P(Wlwz) = p(W2|W1) p(Wl)

The CMU statistical language tool is described in [24]. The CMU statistical
language tool kit is used to generate our Arabic statistical language model. The steps for

creation and testing the language model [38], shown in Figure 2-6, are as follows:
= Compute the word unigram counts.
= Convert the word unigram counts into a vocabulary list.
= Generate bigram and trigram tables based on this vocabulary.

The tool generates the language model in two formats; a binary format to be used

by the Sphinx decoder, and a portable text file in the standard ARPA format.
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N-gram N-gram
Word frequency calculations tables
Word frequency N-gram to
to vocabulary Vocabulary language
Perplex_ity Language
calculation Model
Perplexity

Figure 2-6 Steps for creating and testing language model

The language modeling tool comes with a tool for evaluation the language model.
The evaluation measures the perplexity as indication of the goodness of the language

model. For more information of the perplexity, please refer section 4.6.3 in chapter 4.

2.2.6 Pronunciation dictionary

Both training and recognition stages require a pronunciation dictionary which is a
mapping table that maps words into sequences of phonemes. A pronunciation dictionary
is basically designed to be used with a particular set of words. It provides the
pronunciation of the vocabulary for the transcription corpus using the defined phoneme
set. Like acoustic model and language model, the performances of the speech recognition

systems depend critically on the dictionary and its phoneme set. In decoding stage, the

24



dictionary serves as intermediary between the acoustic model and the language model.
There are two types of dictionary, closed vocabulary and open vocabulary. In closed
vocabulary, all corpus transcription words are listed in the dictionary. In contrast, it is
possible to have non-corpus transcription words in the open vocabulary dictionary.
Typically, Phoneme set, that is used to represent dictionary words, is manually designed
by language experts. However, when human expertise is not available, the phoneme set is
possible to be selected using data-driven approach as demonstrated by [24]. In addition to
providing the words phonemic transcriptions of the target vocabulary, the dictionary is

the place where alternative pronunciation variants are added.
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CHAPTER 3

LITERATURE REVIEW

3.1 Overview of speech recognition modeling techniques

The statistical approach using HMM has been the dominant technique for speech
recognition systems for the last two decades. HMM-based speech recognition systems
started around 1975 when James Baker applied statistical method to speech recognition
([8],[94). Rabiner and Juang in [17] outlined the major components of a HMM-based
modern speech recognition and spoken language understanding systems. Bilmes in [25]
presented a list of possible HMM properties. From speech recognition point of view,
Bilmes found that HMMs are extremely powerful, given enough hidden states and
sufficiently rich observation distributions. Baker in [26] presented a report to survey
historically significant events in speech recognition and understanding which have
enabled this technology to become progressively more capable and cost effective in a
growing number of everyday applications. Deng and Huang in [27] demonstrated a
number of fundamental and practical limitations in speech recognition technology, which
hinder ubiquitous adoption of this widely used technology. Gales and Young in [28]
demonstrated that almost all present day large vocabulary continuous speech recognition
(LVCSR) systems are based on HMMs. They described the various refinements which

are needed to achieve state-of-the-art performance. Ye-Yi et al. in [29] categorized
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spoken dialog technology into form filling, call routing, and voice search, and reviewed
the voice search technology. Sainath et al. in [30] explored applying a complete LVCSR
HMM-based system to a small vocabulary corpus. By taking advantage of speaker
adaptation and discriminative training techniques commonly used in LVCSR systems,
they achieved an error rate of 20%, the best results reported on the TIMIT corpus to date.
TIMIT is a speech corpus worked on by many sites, including Texas Instruments and
Massachusetts Institute of Technology (MIT). Recent results have shown that HMMs are
remarkably good even for difficult conversational speech-to-text ,the latest Switchboard

word error rates are at around 13% [25].

Zweig and Nguyen in [31] proposed a segmental conditional random fields (CRF)
approach to large vocabulary continuous speech recognition systems. They achieved
improvement of 2% compared to the HMM-based baseline. Luo in [32] proposed an
improved speech recognition algorithm based on a hybrid support vector machine (SVM)
and HMM architecture. The experimental results showed that the recognition rate had
increased greatly. To overcome the flaws of the HMM paradigm, Xi et al. [33] designed a
hybrid HMM/artificial neural networks (ANN) model where the nonparametric
probabilistic model (a BP neural network) was used to substitute the Gauss blender to
calculate the observed probability that was necessary for computing the states of the
HMM. Sloin and Burshtein [35] presented a discriminative training algorithm that used
SVMs, to improve the classification of discrete and continuous output probability
HMMs. The presented algorithm used a set of maximum-likelihood (ML)-trained HMMs
as a baseline system, and an SVM training scheme to rescore the results of the baseline

HMMs. Xian in [36] presented the use of a hybrid HMM and ANNs for ASR. The
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proposed hybrid system for ASR was to take advantage from the properties of both HMM
and ANN, improving flexibility and recognition performance. Schwenk in [41] described
the use of a neural network language model for large vocabulary continuous speech
recognition. The underlying idea of his approach was to alleviate the data sparseness
problem by performing the language model probability estimation in a continuous space.
Yuecheng et al. in [42] suggested using a gating network to modulate the effects of the
context to improve the performance of a neural network language model. It was found

that it was a very effective way.

Beutler in [40] demonstrated a method to bridge the gap between statistical
language models and elaborate linguistic grammars. He introduced precise linguistic
knowledge into a medium vocabulary continuous speech recognizer. His results showed a
statistically significant improvement of recognition accuracy on a medium vocabulary

continuous speech recognition dictation task.

Xiao and Qin in [34] demonstrated that feature coefficients based on MFCC were
not fully reflecting speech information as a result of speech signal movement and overlap
of frames, especially noisy effect. They presented a new method for noise robust speech
recognition based on a hybrid model of HMM and Wavelet Neural Network (WNN).
Their experimental results showed a better noise robustness model. Middag et al. in [37]
presented a novel methodology that utilized phonological features to assess the
pathological state of the speaker using ASR. Table 3-1 shows the word error rate (WER)

from state-of-the-art systems on different English pronunciation corpuses [94].
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Pronunciation Corpus Vocabulary WER %
TI Digits 11 (zero-nine, oh) 0.5
Wall Street Journal read speech 5,000 3
Wall Street Journal read speech 20,000 3
Broadcast News 64000+ 10
Conversational Telephone Speech (CST) 64000+ 20

Table 3-1 Rough word error rates for a number of ASRs (English corpuses)

3.2 Literature of Arabic speech recognition Systems

This section presents a literature survey of Arabic speech recognition systems.
Development of an Arabic speech recognition is a multidiscipline effort, which requires
integration of Arabic phonetics ([43],[44],[45]), Arabic speech processing techniques
([46],[47],[45]), and natural language processing [48]. A number of researchers have

recently addressed development of Arabic speech recognition systems.

Al-Otaibi in [49] provided a single-speaker speech dataset for MSA. He also
proposed a technique for labeling Arabic speech. He reported a recognition rate for
speaker dependent ASR of 93.78% using his technique. The ASR was built using the
HTK. Hyassat and Abu Zitar in [50] described an Arabic speech recognition system
based on Sphinx 4. They also proposed an automatic toolkit for building pronunciation
dictionaries for the Holy Qur’an and standard Arabic language. Three corpuses were
developed in Hyassat and Abu Zitar [50] work, namely, the Holy Qura’an corpus of
about 18.5 hours, the command and control corpus of about 1.5 hours, and the Arabic

digits corpus of less than 1 hour of speech.
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A workshop was held in 2002 at John Hopkins University where Kirchhofl et al.
in [51] proposed to use Romanization method for transcription of Egyptian dialectic of
telephone conversations. Soltau et al. in [52] reported advancements in the IBM system
for Arabic speech recognition as part of the continuous effort for the Global autonomous
language exploitation (GALE) project. The system consisted of multiple stages that
incorporate both diacritized and non-diacritized Arabic speech model. The system also
incorporated a training corpus of 1,800 hours of unsupervised Arabic speech. Azmi et al.
in [53] investigated using Arabic syllables for speaker-independent speech recognition
system for Arabic spoken digits. The database used for both training and testing consisted
of 44 Egyptian speakers. In a clean environment, experiments showed that the
recognition rate obtained using syllables outperformed the rate obtained using
monophones, triphones, and words by 2.68%, 1.19%, and 1.79%, respectively. Also in
noisy telephone channel, syllables outperformed the rate obtained using monophones,
triphones, and words by 2.09%, 1.5%, and 0.9%, respectively. Abdou et al. in [54]
described a speech-enabled computer-aided pronunciation learning system. The system
was developed for teaching Arabic pronunciations to non-native speakers. The system
uses a speech recognizer to detect errors in user recitation. A phoneme duration
classification algorithm was implemented to detect recitation errors related to phoneme
durations. Performance evaluation using a dataset that includes 6.6% wrong speech
segments showed that the system correctly identified the error in 62.4% of pronunciation
errors, reported “Repeat Request” for 22.4% of the errors, and made false acceptance of
14.9% of total errors. Khasawneh et al. in [4] compared the polynomial classifier that was

applied to isolated-word speaker-independent Arabic speech and dynamic time warping
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(DTW) recognizer. They concluded that the polynomial classifier produced better
recognition performance and much faster testing response than the DTW recognizer.
Choi et al. in [55] presented recent improvements to their English/Iraqi Arabic speech-to-
speech translation system. The presented system-wide improvements included user
interface , dialog manager, ASR, and machine translation components. Rambow et al. in
[56] addressed the problem of parsing transcribed spoken Arabic. They examined three
different approaches: sentence transduction, treebank transduction, and grammar
transduction. Overall, grammar transduction outperformed the other two approaches.
Parsing can be used to check the speech recognizer N-best hypothesis to rescore them
according to most syntactically accurate one. Nofal et al. in [57] demonstrated a design
and implementation of stochastic-based new acoustic models suitable for use with a
command and control system speech recognition system for the Arabic language. Park et
al. in [58] explored the training and adaptation of multilayer perceptron (MLP) features in
Arabic ASRs. Three schemes had been investigated. First, the use of MLP features to
incorporate short-vowel information into the graphemic system. Second, a rapid training
approach for use with the perceptual linear predictive (PLP) + MLP system was
described. Finally, the use of linear input networks (LIN) adaptation as an alternative to
the usual HMM-based linear adaptation was demonstrated. Shoaib et al. in [59] presented
an approach to develop a robust Arabic speech recognition system based on a hybrid set
of speech features. This hybrid set consists of intensity contours and formant frequencies.
Imai et al. in [60] presented a new method for automatic generation of speaker-dependent
phonological rules in order to decrease recognition errors caused by pronunciation

variability dependent on speakers. Choueiter et al. in [61] concentrated their efforts on

31



MSA, where they built morpheme-based LMs and studied their effect on the OOV rate as
well as the word error rate (WER). Bourouba et al. in [62] presented a new HMM/support
vectors machine (SVM) (k-nearest neighbor) for recognition of isolated spoken words.
Sagheer et al. in [63] presented a visual speech features representation system. They used
it to comprise a complete lip-reading system. Taha et al. in [64] demonstrated an agent-
based design for Arabic speech recognition. They defined the Arabic speech recognition
as a multi-agent system where each agent had a specific goal and deals with that goal
only. Elmisery et al. in [65] implemented a pattern matching algorithm based on HMM
using field programmable gate array (FPGA). The proposed approach was used for
isolated Arabic word recognition and achieved accuracy comparable with the powerful
classical recognition system. Mokhtar and EIl-Abddin in [66] represented the techniques
and algorithms used to model the acoustic-phonetic structure of Arabic speech
recognition using HMMs. Gales et al. in [67] described the development of a phonetic
system for Arabic speech recognition. A number of issues involved with building these
systems had been discussed, such as the pronunciation variation problem. Bahi and
Sellami in [68] presented experiments performed to recognize isolated Arabic words.
Their recognition system was based on a combination of the vector quantization

technique at the acoustic level and markovian modeling.

A number of researchers investigated the use of neural networks for Arabic
phonemes and digits recognition ([69], [70], [59]). For example, EI-Ramly et al. in [69]
studied recognition of Arabic phonemes using an Artificial Neural Network. Alimi and
Ben Jemaa in [71] proposed the use of a fuzzy neural network for recognition of isolated

words. Bahi and Sellami in [70] investigated a hybrid of neural networks and HMMs for
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NN/HMM for speech recognition. Alotaibi in [72] reported achieving high- performance
Arabic digits recognition using recurrent networks. Essa et al. in [73] proposed different
combined classifier architectures based on Neural Networks by varying the initial
weights, architecture, type, and training data to recognize Arabic isolated words. Emami
and Mangu in [74] studied the use of neural network language models (NNLMs) for

Arabic broadcast news and broadcast conversations speech recognition.

Alghamdi et al. in [75] developed an Arabic broadcast news transcription system.
They used a corpus of 7.0 h for training and 0.5 h for testing. The WER they obtained
ranged from 14.9 to 25.1% for different types and sizes of test data. Satori et al. in [79]
used Sphinx tools for Arabic speech recognition. They demonstrated the use of the tools
for recognition of isolated Arabic digits. The data were recorded from six speakers. They
achieved a digits recognition accuracy of 86.66%. Lamel et al. in [3] described the
incremental improvements to a system for the automatic transcription of broadcast data in
Arabic, highlighting techniques developed to deal with specificities (no diacritics,
dialectal variants, and lexical variety) of the Arabic language. Afify et al. in [80]
compared grapheme-based recognition system with explicitly modeling short vowels.
They found that a short vowel modeling improves recognition performance. Billa et al. in
[81] described the development of audio indexing system for broadcast news in Arabic.
Key issues addressed in Billa’s [81] work revolve around the three major components of
the audio indexing system: automatic speech recognition, speaker identification, and

named entity identification.

Messaoudi et al. in [82] demonstrated that by building a very large vocalized

vocabulary and by using a language model including a vocalized component, the WER
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could be significantly reduced. ElImahdy et al. in [83] used acoustic models trained with
large MSA news broadcast speech corpus to work as multilingual or multi-accent models
to decode colloquial Arabic. Vergyri et al. in [84] showed that the use of morphology-
based language models at different stages in a large vocabulary continuous speech
recognition (LVCSR) system for Arabic leads to WER reductions. To deal with the huge
lexical variety, Xiang et al. in [85] concentrated on the transcription of Arabic broadcast
news by utilizing morphological decomposition in both acoustic and language modeling
in their system. Selouani and Alotaibi in [86] presented genetic algorithms to adapt
HMMs for non-native speech in a large vocabulary speech recognition system of MSA.
Saon et al. in [87] described the Arabic broadcast transcription system fielded by IBM in
the GALE project. Key advances included improved discriminative training, the use of
subspace Gaussian mixture models (SGMM), neural network acoustic features, variable
frame rate decoding, training data partitioning experiments, unpruned n-gram language
models, and neural network based language modeling (NNLMSs) . These advances were
instrumental in achieving a WER of 8.9% on the evaluation test set. Kuo et al. in [88]
studied various syntactic and morphological context features incorporated in an NNLM
for Arabic speech recognition. Abushariah et al. in [90] reported the design,
implementation, and evaluation of a research work for developing a high performance
natural speaker-independent Arabic continuous speech recognition system. Muhammad
et al. in [92] evaluated conventional ASR system for six different types of voice disorder
patients speaking Arabic digits. MFCC and Gaussian mixture models (GMM)/HMM
were used as features and classifier, respectively. Recognition result was analyzed for

recognition for types of diseases.
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3.3 Challenges of Arabic Speech Recognition

Arabic speech recognition faces many challenges. For example, Arabic has short
vowels which are usually ignored in text. Therefore, more confusion will be added to the
ASR decoder. Additionally, Arabic has many dialects where words are pronounced
differently. Elmahdy et al. in [83] summarized the main problems in Arabic speech
recognition which include Arabic phonetics, diacritization problem, grapheme-to-
phoneme, and morphological complexity. Diacritization is represented by different
possible diacritizations of a particular word. As modern Arabic is usually written in non-
diacritized scripts, lots of ambiguities for pronunciations and meanings are introduced.
Elmahdy et al. in [83] also showed that grapheme-to-phoneme relation is only true for
diacritized Arabic script. Arabic morphological complexity is demonstrated by the large
number of affixes (prefixes, infixes, and suffixes) that can be added to the three
consonant radicals to form patterns. Farghaly and Shaalan in [1] provided a
comprehensive study of Arabic language challenges and solutions. Lamel et al. in [3]
presented a number of challenges for Arabic speech recognition such as no diacritics,
dialectal variants, and very large lexical variety. Alotaibi et al. 2008 in [89] introduced
foreign-accented Arabic speech as a challenging task in speech recognition. A number of
Arabic speech challenges were presented in a workshop held in John Hopkins University
[51]. Billa et al. 2002 in [81] discussed a number of research issues for Arabic speech
recognition, e.g., absence of short vowels in written text and the presence of compound
words that are formed by the concatenation of certain conjunctions, prepositions, articles,

and pronouns, as prefixes and suffixes to the word stem.
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CHAPTER 4

THE BASELINE SYSTEM

4.1 Introduction

This chapter presents the main components of the baseline system that was used
to test the proposed method. A number of Arabic speech recognition components were
described. These components include the Arabic speech corpus, Arabic phoneme set,
Arabic language model, and Arabic pronunciation dictionary. The chapter also provides
the details of how to build each one of these Arabic ASR components. The performance

metrics (WER, Perplexity, and OOV) also provided in this chapter.

4.2 Arabic speech corpuses

This research work utilized the large vocabulary, speaker independent, natural
Arabic continuous speech recognition system developed at King Fahd University of
Petroleum and Minerals (KFUPM), Alghamdi et al. in [75]. This system is based on
CMU Sphinx 3 ASR system. The baseline system used 3-emmiting states HMM for
triphone-based acoustic models. The state probability distribution uses a continuous
density of 8 Gaussian mixture distributions. The baseline system was trained using audio
files recorded from several TV news channels at a sampling rate of 16 k samples per

seconds. Two speech corpuses were used in this work: the first speech corpus contains of
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249 business/economics and sports stories (144 by male speakers, 105 by female
speakers), summing up to 5.4 hours of speech. The 5.4 hours (1.1 hours used for testing)
were split into 4572 files with an average file length of 4.5 seconds. The length of wave
files ranges from 0.8 seconds to 15.6 seconds. An additional 0.1 second silence period is
added to the beginning and end of each file. The 4572 wav files were completely
transcribed with fully diacritized text. Although care was taken to exclude recordings
with background music or excessive noise, some of the files still contain background
noise such as low level or fainting music, environmental noise such as that of a reporter
in an open area, e.g., a stadium or a stock market, and low level overlapping foreign
speech, occurring when a reporter is translating foreign statements. The transcription is
meant to reflect the way the speaker has uttered the words, even if they were
grammatically wrong. It is a common practice in MSA and most Arabic dialects to drop
the vowels at the end of words; this situation is represented in the transcription by either
using a silence mark (Sukun or unvowelled) or dropping the vowel, which is considered
equivalent to the silence mark. The transcription file contains 39,217 words. The
vocabulary list contains 14,234 words. The baseline (first speech corpus) WER is

12.21%. using sphinx 3.

The second speech corpus summing up to 7.57 hours (0.57 hours used for testing).
The recorded speech was divided into 6146 audio files. The total words in the corpus are
52,714 words, while the vocabulary is 17,236 words. other specifications are same as the
first speech corpus. The Baseline (second corpus) system WER is reported at 16.04%

using PocketSphinx.

37



4.3 Arabic phoneme set

Before proceeding in discussing the Arabic phoneme set, it would be appropriate
for the reader if we start first by providing a Romanization [2] of the Arabic letters and
diacritical marks as shown in Appendix 2. The short vowels Fatha, Damma, and Kasra

are represented using a, u, and i, respectively.

A phoneme is the basic unit of speech that is used in ASR systems. Appendix 3
shows the listing of the Arabic phoneme set (40 phonemes) used in the training, and the
corresponding phoneme symbols. This phoneme set is chosen based on the previous
experience with Arabic text-to-Speech systems ([43], [76], [46]), and the corresponding
phoneme set which was successfully used in the CMU English pronunciation dictionary
[77]. Although the Arabic phoneme set was found to be good enough, we believe that this
set is far from being optimal, and further work is needed to derive an optimize phoneme

set for Arabic.

4.4 Arabic pronunciation dictionary

Pronunciation dictionaries are essential components of ASRs. They contain the
phonetic transcriptions of all the vocabulary in the target domain of the conversation. A
phonetic transcription is a sequence of phonemes that describes how the corresponding
word should be pronounced. Ali et al. in [78] developed a software tool to generate
pronunciation dictionaries for Arabic texts using Arabic pronunciation rules. We utilized
this tool to generate the enhanced dictionary (i.e. after modeling cross-word problem).
This tool takes care of some of within-word variation such as: The context in which the

words are uttered, for example, Hamzat Al-Wasl () at the beginning of the word and the
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Ta’al marbouta ( 3 ) at the end of the word, and words and letters that have multiple
pronunciations due to dialect issues. They also defined a set of rules based on regular
expressions to define the phonemic definition of words. The tool scans the word letter by
letter, and if the conditions of a rule for a specific letter are satisfied, then the replacement
for that letter is added to a tree structure that represents all the possible pronunciations for

that words.

The baseline dictionary contains 14234 words (without variants) and 23840 words
(with within-word variants). A sample from the developed pronunciation dictionary is
listed below. This example shows the within-word variants of (S;esj <> ’dinbara ), in the

baseline dictionary:

s EAE D IHM B R AA H (default)
s5500(2) EAEDIHMBRAAT
s500(3) EAEDIHNBRAAH

s50(4) EAEDIHNBRAAT
4.5 Arabic language model

The CMU language toolkit (Open Source Toolkit for Speech Recognition
2011,[16]) was used to build a statistical language model from the transcription of the full
diacritized transcription of 5.4 hours of the audio. Table 4-1 shows the total count of 1-
grams, 2-grams, and 3-grams of the Arabic baseline language model with examples. for

more information of language models, please refer to section 2.2.5.
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Table 4-1 N-grams in the baseline system

n-grams n-grams
Examples
Type count

sl <> ’DHaw
1-grams 14234 Cileal <> *Deaafi
¢alal < *DHat
A3y uladll <> almaijlis al’tHaadyi
2-grams 32813 Galall (uladll <> almailis al‘aalamyi
LBl (ulazll <> almajlis t‘amulatiha
e aS85 4mal) <> alma‘niya walta’kiid ‘ala

3-grams 37771 <l ke el Liaall <> alma‘niya khmsh mlyarat

Jadll & &iall<> alma‘niya fy almatar

4.6 Performance Metrics

Three performance metrics were used to measure the performance enhancement:

the word error rate (WER), out of vocabulary (OOV), and perplexity (PP).

4.6.1 Word Error Rate (WER):

WER is a common metric to measure performance of ASRs. WER is computed

using the following formula:

S+D+1
WER = ——

Where:

= S is the number of substitutions words errors,
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= D is the number of the deletions words errors,
= | is the number of the insertions words errors,
= N is the number of words in the testing set.
The word accuracy can also be measured using WER as the following formula:

Word Accuracy =1 - WER

4.6.2 Out-Of-Vocabulary (OOV):

OQV is a metric to measure the performance of ASRs. OOV is known as a source
of recognition errors, which in turn could lead to additional errors in the words that
follow [93]. Hence fore, increasing OOVs plays a significant role in increasing WER and
deteriorating performance. In this research work, the baseline system is based on a closed
vocabulary. The closed vocabulary assumes that all words of the testing set are already
included in the dictionary. Jurafsky and Martin in [94] explore the differences between
open and closed vocabulary. In our method, we calculate OOV as the percentage of
recognized words that are not belonging to the testing set, but to the training set. The

following formula is used to find OOV:

_ |Non-Testing Set Words|
Beselesysen | Testing Set Words|

ooV 100

4.6.3 Perplexity (PP)

The perplexity of the language model is defined in terms of the inverse of the
average log likelihood per word [95]. It is an indication of the average number of words
that can follow a given word, a measure of the predictive power of the language model,

[96]. Measuring the perplexity is the common way to evaluate N-gram language model. It
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iIs a way to measure the quality of a model independent of any ASR system. The
measurement is performed on the testing set. The lower perplexity system is considered

better than one of higher perplexity. The perplexity formula is:

PP(W) = N\/ .

PW,,W,,..,W,)

Where PP is the perplexity, P is the probability of the word set to be tested W=w,

Wy, ..., wn, and N is the total number of words in the testing set.

4.7 Significance measurement

The performance detection method proposed by Plétz in [97] was used to
investigate the achieved recognition results. A 95% is used as a level of confidence. The
WER of the baseline system (12.21 %) and the total number of words in the testing set
(9288 words ) are used to find the confidence interval [e]l , €h]. The boundaries of the
confidence interval are found to be [12.21 — 0.68 , 12.21 + 0.68] =» [11.53,12.89]. If the
changed classification error rate is outside this interval, this change can be interpreted as

statistically significant. Otherwise, they were most likely caused by chance.
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CHAPTER 5

WITHIN-WORD PRONUNCIATION

VARIATION MODELING

5.1 Introduction

The main goal of automatic speech recognition systems (ASRs) is to enable
people to communicate more naturally and effectively. However, this ultimate dream
faces many obstacles such as variability in speaking styles and pronunciation variations,
as explored in Chapter 2. Accordingly, handling these obstacles is a major requirement

to enhance ASR performance.

In speech recognition, pronunciation variation causes recognition errors in the
form of insertions, deletions, or substitutions of phoneme(s) relative to the phonemic
transcription in the pronunciation dictionary. Pronunciation variations which reduce
recognition performance, as indicated by McAllester et al. in [98], occur in continuous
speech in two types: cross-word variation and within-word variation. Within-word
variations cause alternative pronunciation(s) within words. In contrast, a cross-word
variation occurs in continuous speech in which a sequence of words forms a compound

word that should be treated as one entity. Hofmann et al. in [99] demonstrated that
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conversational speech poses high challenge to nowadays’ ASR as people tend to combine

or even miss words out.

The pronunciation variations are often modeled using two approaches: knowledge
based and data driven. The knowledge-based approach depends on linguistic criteria that
have been developed over decades. These criteria are presented as phonetic rules that can
be used to find the possible pronunciation alternative(s) for word utterances. On the
contrary, data-driven methods depend solely on the training pronunciation corpus to find
the pronunciation variants (direct data-driven) or transformation rules (indirect data-
driven). That is, the direct data-driven approach distils variants, while the indirect data-
driven approach distils rules that are used to find variants. As pros and cons of both
approaches, the knowledge-based approach is not exhaustive; not all of the variations that
occur in continuous speech can be described, whereas obtaining reliable information
using the data-driven approach is extremely difficult [100]. However, Amdal and Fosler-
Lussier in [101] mentioned that there is a growing interest in data-driven methods over
knowledge-based methods due to the lack of domains’ expertise. Wester and Fosler-
Lussier in [102] compared between knowledge- based and data-driven approaches. The
comparison showed that the latter leads to more significant improvement than
knowledge-based methods which lead to a small improvement in recognition accuracy.
Figure 5-1 illustrates the two types of pronunciation variations and the modeling
techniques. In Figure 5-1, the underlined bold text (i.e., modeling within-word

pronunciation variation using data-driven) shows the goal of this chapter.
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Pronunciation variation modeling techniques

Within-Word

\ 4

A 4

Knowledge-Based

v

Data-Driven

Indirect Data-Driven

Direct Data-Driven

Cross-Word

\ 4

Knowledge-Based

\ 4

Data-Driven

A 4

Figure 5-1 Pronunciation Variation Modeling Techniques

This chapter presents a direct data-driven approach to model within-word
pronunciation variations, in which the pronunciation variants are distilled from the
training speech corpus. The proposed method consists of performing phoneme
recognition, followed by a sequence alignment between the observation phonemes
generated by the phoneme recognizer and the reference phonemes obtained from the
pronunciation dictionary. The unique collected variants are then added to dictionary as
well as to the language model. Since the phoneme recognizer output has no boundary
between the words, the direct data-driven approach is a good candidate to extract variants
where no boundary information is present. This approach is usually used in the

bioinformatics field to align gene sequences.

45



5.2 Related work

There have been many studies on modeling within-word pronunciation variations
for improving ASRs performance. They are divided into two approaches: Knowledge-
based and data-driven. Knowledge-based variants are derived from linguistic
phonological rules, whereas data-driven variants are extracted from the pronunciation
corpus. There are three levels where variants can be modeled: pronunciation dictionary,
language model, and acoustic model. Helmer Strik in [103] mentioned that pronunciation
variations modeling should be considered at the three mentioned levels. However, adding
variants to the pronunciation dictionary is the classical approach that is usually employed,

also called lexical adaptation.

Sloboda and Waibel in [104] demonstrated that having dictionaries, rich with
more alternative pronunciations is a key fact in improving the performance in continuous
ASRs. McAllister et al. in [98] showed that using pronunciation variations enhances the
performance over the baseline system that had no variants. Another study that was
performed by Fosler-Lussier et al. in [105] showed that the mismatch between the phones
recognized and the word’s phonetic transcription in the dictionary increases WER and
degrades performance. A study was performed by Saraclar et al. in [106] showed that the
ASR performance will be highly improved if there is a closer match between the phonetic
sequence recognized by the decoder and the phonetic transcription in the dictionary.
Therefore, the dictionary should be carefully designed to include high quality

pronunciations.

Knowledge-based approaches received great interest for modeling Arabic within-
word pronunciation variations at the pronunciation dictionary level. Alghamdi et al. in
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[75] developed MSA broadcast news transcription system. They used a multi
pronunciations dictionary developed in [78]. Ali et al. in [78] used MSA knowledge-
based method to generate Arabic multi pronunciations dictionaries for large ASRs. Al-
Haj et al. in [107] demonstrated knowledge-based approach to add variants to dictionary.
They worked on Iragi-Arabic speech and focused on short vowels. Biadsy et al. in [108]
showed that the use of linguistic pronunciation rules could significantly improve phone
recognition and word recognition results. They developed a set of pronunciation rules
that encapsulate some of MSA features for within-word variation. Billa et al. in [81]
discussed a number of research issues for Arabic speech recognition, e.g., absence of
short vowels in written text and the presence of compound words that are formed by the
concatenation of certain conjunctions, prepositions, articles, and pronouns, as prefixes
and suffixes to the word stem. While the knowledge-based ( for within-word variation) is

applied in Arabic ASRs, no data-driven research work has been found.

For other languages, the knowledge-based approach for within-word variations
also investigated by Tajchman et al. in [109] for ten US English phonological rules. Finke
and Waibel in [110] used a set of US English phonological rules to generate
pronunciation variants. Wester et al. in [100] demonstrated Dutch phonological rules to
model pronunciation variations. Kessens et al. in [111] applied five optional Dutch
phonological rules to the words in the baseline lexicon to generate within-word
pronunciation variants. Kyong-Nim and Minhwa in [112] analyzed Korean phonological
rules and implemented a rule-based pronunciation variants generator to produce a
pronunciation lexicon with context-dependent multiple variants. Jeon et al. in [113]

demonstrated Korean phonological rules to generate pronunciation variants. Liu and
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Fung in [114] applied phonological rules to produce variants for Cantonese accented
Mandarin speech. The knowledge-based approach was also implemented by Seman and

Jusoff in [115] for spontaneous Standard Malay.

In spite of the advantages of using knowledge-based, Amdal and Fossler-Lussier
in [101] mentioned that there is a migration from knowledge-based methods to data-

driven methods due to lack of domains’ expertise.

Data-driven approaches use the acoustic signal to distill pronunciation variants
(direct data-driven) or the underlying rules (indirect data-driven). Amdal and Fossler-
Lussier in [101] presented indirect data-driven approach for US English. Wester in [100]
used the same method for Dutch. For spontaneous Standard Malay, Seman and Jusoff in
[115] used decision trees as pruning method after applying the indirect data-driven

approach.

With regard to the direct data-driven approaches, Sloboda and Waibel in [104]
proposed a direct data-driven approach to add new German pronunciations to dictionary.
They used an already existing recognizer with good performance to find new
pronunciation variants by applying the recognizer to the available training speech corpus.
Sloboda and Waibel [104] work is close to what we propose. However, there are two
differences: we propose to extract variants using sequence alignment between reference
phonemes and the observation phonemes, whereas they used speech recognizer to decode
the training speech, followed by phoneme recognition to collect words with their actual
pronunciations. They consider the high frequency used variants in the modeling stage.
The other difference is that we generate orthographic forms of variants and represent

them in the language model, instead of modeling variants in the dictionary alone.
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5.3 Motivation

In ASRs, the canonical pronunciation is the one that is usually included in the
dictionary. The ultimate goal of ASR research is to have the canonical pronunciation as
close as possible to the actual pronunciation. Generally, many pronunciation variation
sources cause these differences as mentioned in chapter 2. Fortunately, some of these

variations can be discovered and consequently modeled to reduce its undesirable effects.

The actual pronunciation can be obtained using the Phoneme recognizer. The
observed phonemes will then be compared with the reference phonemes to discover the
variations. Before displaying some illustrative examples, we emphasize that our phoneme
set had a thorough verification process. Therefore, the occurrence of variations in the
observation phonemes as compared to the reference phonemes is unavoidable. Therefore,
they are true changes that should be considered in the within-word pronunciation
variation modeling. Table 5-1 shows some changes occurring in speech signals. Example
1 demonstrates a change in phoneme /L/ (J), which was replaced by the phoneme /N/ (o).
This is an example of the phoneme substitution phenomenon. Example 2 shows that the
generated variant has two changes: a new phoneme /D/ (2) is inserted, and the phoneme

/UH/ (: Damma) is switched to /IH/ (- Kasra). Example 3 has three changes.

The orthographic form of the variant is the text form of the extracted variant. The
variant’s phonemes are replaced with the corresponding letters to produce the
orthographic form of the variant, which is the artificially generated word that will be

added to the dictionary and the language model.
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Table 5-1 Within-Word Pronunciation Variations Examples

Example 1

A vocabulary

ER S

Reference phonemes

TAESTAELIHMUH

Observed phonemes

TAESTAENIHMUH

R

Orthographic form R
Example 2
A vocabulary a3

Reference phonemes

TAEQAADUHM AE

Observed phonemes

TAEQAADDIHM AE

Orthographic form paas
Example 3
A vocabulary Cillasdl

-

Reference phonemes

TAEKHFIYDDAH: TIHN

Observation phonemes

TAEKHTITWIY DD AH: TUHN

Orthographic form

Oi\, .“’ ] .=

The Levenshtein Distance (LD) is a metric for measuring the difference between

two sequences. In our case, the difference is between the observation phonemes and the
reference phonemes. In Table 5-1, Example 1 has one difference and example 3 has three
differences. The LD is used as a metric to accept or reject the distilled variants. If we set
the LD threshold to 3, no variant with more than 3 changes, as compared to the reference

phonemes, will be taken as an accepted variant.
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http://en.wikipedia.org/wiki/String_metric

In the proposed approach, the extracted variants will be added to the language
model. One reason for adding the variants to the language model is the Viterbi limitation.
Jurafsky and Martin in [94] illustrated that the Viterbi algorithm is an approximation
algorithm. It actually computes an approximation of the most probable word sequence,
instead of computing the most probable word sequence given the acoustic of the speech
signal. In multiple pronunciations dictionaries, the Viterbi decoder finds the best phone
string rather than the best word string. This means that the Viterbi algorithm is biased
against words with many pronunciations. The reason for this is that the probabilities’
mass is split up among different pronunciations. Thus, because the Viterbi decoder can
only follow one of these pronunciation paths, it may ignore the correct word that has
many-pronunciations and favor an incorrect word with only one pronunciation path.
Table 5-2 illustrates the method that is usually used when modeling pronunciation

variants in ASRs dictionaries including Sphinx.

Table 5-2 Pronunciation Variation Modeling Techniques

Default pronunciation
Variant 1: vi

Word 1 Variant 2: vi+1
Variant 3: vi+2

Default pronunciation
Variant 1: vi

Word 2 Variant 2: vi+1
Variant 3: vi+2

Default pronunciation
Variant 1: vi

Word n Variant 2: vi+1
Variant 3: vi+2
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Table 5-3 illustrates our proposed method. It shows that instead of having a word
with many pronunciations, each variant will be considered as a single word, where we
will have m words corresponding to the n words and their variants. Hence, the Viterbi
approximation will not panelize any word, since all variants are considered as

independent words, each with its own pronunciation.

Table 5-3 Proposed pronunciation variation technique

Word 1 Word 1 Pronunciation
Word 2 Word 2 Pronunciation
Word m Word m Pronunciation

5.4 Dynamic Programming

Dynamic programming (DP) is a technique to design a powerful algorithm that is used to
solve combinatorial optimization problems, Alsuwaiyel in [117]. The problems include:
sequence alignment, traveling salesman, all-pairs shortest path, etc. In our method, we
used the sequence alignment method to find the maximum similarity between two input
sequences: (the reference phonemes and the observation phonemes). In order to find the
maximum similarity, three scores are required: a match score, a mismatch score, and a
gap score. Table 5-4 shows two sequences, the alignment between these two sequences

shows 6 matches, 1 mismatch, and 2 gaps.
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Table 5-4 An alignment between two sequences

Sequence 1 A T - C G A T C G
| :match

Null :gap | | | | || X | |
X :mismatch

Sequence 2 A T A C G - T G G

These scores are used to calculate the total alignment score for all possible
alignments to choose the optimal score. Dynamic programming usually consists of three
components: Recursive relation, Tabular computation, Traceback. The recursive relation

is as follows[116]:

F(i—1,j—1)+ s(xi,yj) (match/mismatch)
F(@i,j) =max{F(i—1,j)—d (gap iny)
F(i,j—1)—d (gap inx)

Where F is scoring matrix, d is the gap penalty, and s is the score function.

5.5 The Proposed Method

Obtaining variants by applying the direct data-driven approach is performed using
a sequence alignment process between the observation phonemes and the reference
phonemes. The sequence alignment itself is performed using a dynamic programming
algorithm. The following are the steps to distill the variants directly from the training

pronunciation corpus:
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Step 1:

Observations phonemes are generated using the phoneme recognizer that
generates the phonemes as they are actually pronounced without any restriction. Figure 5-

2 shows the transcription of a speech file with its corresponding phonemes:

D5 sl i gl L Lafand Al

SIL T AE DH UH L UW GH UX Q IX IX...

Figure 5-2 The baseline corpus transcription and its phonemes

Note that each observation phonemes string starts and ends with silences as it is
intentionally added at the beginning and at the end of each speech file in our

pronunciation corpus.

Step 2:

Sequence alignment is usually used to align characters without gaps. As some of
our phonemes have two character representations, we convert all of these two character
representations into one character representation. Therefore, we convert all observation
phonemes generated in step 1 into single character representations. For example, /T/ is
left as /T/, whereas we assigned /#/ to represent /DH/, as an example. The reason for this
representation is that we need each phoneme to be represented as a single character.
Otherwise, the sequence alignment may take part of the phoneme and leave the other,

resulting in a non-phoneme character. We also remove spaces between phonemes of the
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observation phonemes. The same action is taken with the dictionary reference phonemes
in order to have a single character representation without gaps as illustrates in Figure 5-3.

The mapping table is found in the Appendix 4.

4}hx§ Q>MATAHO

@,0,9 Q>MATOHC
i3 Q>MATOHO

Figure 5-3 baseline dictionary after transforming the phonemes

Step 3:

For all dictionary words, perform a sequence alignment between the reference
phonemes and the observation phonemes. The alignment is performed only in the
sentence containing the related word. For example, if I want to find the variants of
(%éeﬁ‘); the alignment is exclusively carried out in the sentences containing this word
(%.éeﬂ\). Therefore, we do not search for variants blindly in all observation phonemes.

Figure 5-4 shows an illustrative example.

Dictionary

ETANMXYAH

\\
AN

Ml 4_)“_9_)_)\_” ;5—904"—75* (CiL/b_ﬁ_H 343
ETANMXYAH
.DAWORIELQ{E&/+CEL=Q<$F}ETCNMXYCTXEL. .

A

Phoneme Recognizer

Figure 5-4 Finding variants process
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Step 4:

For all variants collected in the previous step (step3), remove duplicates and

switch phonemes back to their original forms (i.e. their two character representation, if

any).
Step 5:

For all unique variants, generate the orthographic forms. That is, produce a new
artificial word that represents the phonemes in terms of letters. For example: we have a
variant for the word (%<i) which is (E T AE: N M IH Y AE: T IH). The
orthographic representation is («wise). This new generated word will be added to the

dictionary and transcription corpus in step 6.

Step 6:

Add the new artificially generated words to the corpus transcription by replacing
each variant with its corresponding regular form. The original sentences are also added to
the new transcription corpus. For example: the variant (wtwicsc) is replaced with (4l

wherever it appears in the transcription. Some cases are as follows:

G5 )aal il (§5dila aa <1

e bld 3485l <2

a3l ol 3 Al 35 A e ST 58 i e 56 R <3
e laia s BalaBy) ciliaie cilial dad ) iz S <4

S 8 3 8 Jaall) e 23505 (AR 13 lopaibie a )lia 8 G laas a5t (e <5
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Once all orthographic variants are added to the transcription corpus, we build the

enhanced language model.

Step 7:

After decoding and before testing, we transform the variants into their regular

word form, as the following example shows:
Luelgde 31GAN 8 ans) eay (DU

TG Al 8 aa ) lens (OUERL

5.6 Testing and Evaluation

Initially, the following are a number of assumptions applied during testing phase:
First, The sequence alignment method is good option to find variants for long words, so
we performed our experiments on word lengths (WL) starting from 7 characters
(including diacritics). Small words such as (% are avoided as short sequences may
introduce errors in the alignment process. Therefore, finding variants of long words such
as (s0L4l) is better than finding variants of (.2). Second, We do not use the same LD
threshold for all words length. We use a small LD threshold for small words and larger
LD thresholds for long words. Third, We use the following sequence alignment scores:

Match score=10, Mismatch score=-7, Gap score=-4.

Table 5-5 shows the recognition output achieved for different choices of LD
threshold. We performed eight experiments with different specifications. The highest
accuracy was found in Experiment 6 with the following specifications: the WL starts at
12 characters. For WL with 12 or 13 characters, LD = 1 or 2. This means that once a

variant is found, LD should be 1 or 2 to be an accepted variant. For the other LWs in
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representation of our enhanced system.

Experiment 6, LDs are also applied in the same way. We used Experiment 6 as a

Table 5-5 Recognition outputs for different specifications

Experiment 1 2 3 4
WL WL WL WL
LD=1-2 7-8 8-9 9-10 10-11
LD=1-3 9-12 10-13 11-14 12-15
LD=1-4 >=13 >=14 >=15 >=16
Accuracy % 89.1 89.25 89.45 89.42
Enhancement % 1.31 1.46 1.66 1.63
Used variants 298 248 181 140
Experiment 5 6 7 8
WL WL WL WL
LD=1-2 11-12 12-13 13-14 14-15
LD=1-3 13-16 14-17 15-18 16-19
LD=1-4 >=17 >=18 >=19 >=20
Accuracy % 89.54 89.61 89.31 88.48
Enhancement % 1.75 1.82 1.52 0.69
Used variants 97 60 34 15

In Table 5-5, the used variants are the total number of variants transformed into
their original forms after the decoding process. In Experiment 1, we replaced 298
variants, as an example. It should be clear that the performance is not correlated with the
total number of variants used in the decoding process. Experiment 1 has the highest
variants used; however, Experiment 6 has the highest accuracy achieved (1.82%

reduction in WER).
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Figure 5-5 shows the achieved accuracy in the eight experiments. Figure 5-5 is

produced according to the data provided in Table 5-5.

Enhancement acheived
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©
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=== =0 == Enhanced

Accuracy

(o]
oo

[0}
N
wn

(o]
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1 2 3 4 5 6 7 8 9 Experiment

Figure 5-5 Accuracy achieved using pure data-driven variants

The maximum accuracy achieved (experiment 6) using direct-data driven

approach for within-word variation is summarized in Table 5-6.

Baseline system accuracy (%) | Enhanced system accuracy (%) | WER reduction (%)

87.79 89.61 1.82

Table 5-6 the accuracy achieved using within-word modeling

Table 5-7 provides statistical information about the variants. It shows the total
variants found using the proposed method. It also shows how many variants (among the
total) are already found in the dictionary, alleviating the need to be accepted. After
discarding the found variants, we will be left with the candidate variants that will be

considered in the modeling process. After discarding the repetitions, we end up with what
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we called unique variants, which will be used for modeling process. The column on right

in Table 5-7 shows how many variants used (i.e. replaced back) after decoding process.

Table 5-7 Statistical information about the variants collected

Total Variants | Candidate | Unique Variants
Experiment | variants | foundin | variants | variants used
dictionary
1 7120 2965 4155 3793 298
2 5118 1901 3217 2959 248
3 3660 1224 2436 2259 181
4 2412 771 1641 1513 140
5 1533 446 1087 994 97
6 854 241 613 569 60
7 455 119 336 313 34
8 217 56 161 150 15

Table 5-7 shows that 26%-42% among suggested variants are already known to
the dictionary. This metric could be used as an indicator of the selection process. In
general, it should be as low as possible in order to introduce new variants. Table 5-7 also
shows that 8% of the variants are discarded due to the repetitions. This repetition is an
important issue in pronunciation variation modeling as it may use the highest frequency
variants in the modeling process. We considered this point and collected information

about the variants' frequencies as shown in Table 5-8.
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Table 5-8 Variants' frequencies.

Variants frequency
Experiment 1 2 3 4 5 6 7 8
5 1034 | 38 7 3 0 1 1 3
95% | 3.5% | =0 ~0 | =0 | = ~0 | =0
6 584 23 4 0 0 0 1 1
95% | 3.7% | = =0 =0 = ~ ~

Table 5-8 lists information from two experiments (5 and 6), which have the
highest accuracy. The table shows that most variants have a one-time repetition. The
table also shows that the repetition could reach 8 times for some variants. In Table 5-8,
we found that three variants had repeated 8 times in Experiment 5 and 1 variant had
repeated 8 times in Experiment 6. This information highlights our inability to pick only
the high frequency variants, instead of taking all variants. In fact, almost all variants are

repeated one time.

In order to compare our method that is based on modeling variants in the
dictionary and the language model, to the method of modeling the collected variants only
in the dictionary, we performed 2 experiments, 9 and 10 as shown in Table 5-9. In this
case, the language model was not involved, and the baseline language model was used.
We used the variants of two experiments (3 and 6) to check the performance after adding

the variants as multi pronunciations words. This option is provided by Sphinx 3 such as:

s WAESAEBAIIYNAE
mass(1) WAESAEBAEIY NAE
Oms(2) WAESAEBIHAY NAE

Oms(3) WAE:SAEBAITY NAE
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Table 5-9 shows that instead of achieving improvement, the performance was less
than the baseline system. This result can be justified by the notice mentioned by Helmer
Strik in [103] as he stated that pronunciation variations modeling should be considered at
the three ASR levels: acoustic model, the pronunciation dictionary, and the language

model.

Table 5-9 Pronunciation variation modeling without language model.

Experiment | Total variants | Accuracy % Enhancement
9 2259 86.50 No enhancement
10 569 86.55 No enhancement

We used the performance detection method suggested by Plotz in [97] to
investigate the significance of the achieved enhancement. Since the enhanced method
achieved a WER of (10.39%) which is out of the confidence interval [11.53,12.89] ( see
chapter 4, the baseline system), it is concluded that the achieved enhancement is

statistically significant.

The OOV was also measured for both systems. It was found that the baseline
system has an OOV equal to 3.53%, which was reduced to 3.39% in the enhanced
system. Our ASR system is based on a closed vocabulary, so we assume that there are no
unknown words. The OOV was calculated as the percentage of recognized words that are
not belonging to the testing set, but to the Training Set. So OOV (baseline system) =
(none Testing set words) / (total words in the testing set) = 328/9288*100= 3.53%. For
the enhanced system, OOV=315/9288*100= 3.39%. Clearly, the lower OOV is better

which was achieved in the enhanced system.

62



One common way to evaluate the N-gram language model is perplexity. It is a
way to measure the quality of the language model independent of any ASR system. The
perplexity for both the baseline and the enhanced language models (experiment 6) are
34.08 and 6.73, respectively. The measurement was performed on the testing set, which
contains 9288 words. Therefore, the enhanced system is clearly better since lower
perplexity is better. The reason why both perplexities are low is due to the specific

domains that we used in our corpus(economics and sports).

The great impact on the perplexity could be understood in two ways: First, the
robustness occurred in the language model increases the probability of the testing set

W=w1,w2,...,wn., therefore reducing the perplexity according the perplexity formula:

1
PP(W) = N\/

PW,,W,,..,W,)

Second, the perplexity is defined as the average number of words that can follow
a given word, [96]. Accordingly, the 569 variants (in the experiment 6) added to
transcription as new words have extremely low perplexities, which reduce the overall

perplexities.

Figure 5-6 and Figure 5-7 provide a sample of the recognition results of the
baseline and the enhanced systems. The sample contains a deletion and insertion cases,

respectively.

63



An original speech signal to be

g A e sl (e ikl 28 45 Ll ol 1) i dy)

tested .. ¢
A e Y1
As recognized by the baseline £ AN sV e kA 8 Al o ) Qe ()
system S e Sy
As recognized by the enhanced | £33 ¢ slgiied (o <€l 835 kil ol 53l Qe ()
system S e Sy
Final output after replacing the £ AN o sl (e il 38 45l o gl Qe ()
variant S5 e SY)

Figure 5-6 A deletion case problem fixed in the enhanced system

An original speech signal to be
tested

s gl s8a) 51 A8 55 ey un Ukl slaadl Gl 58

As recognized by the baseline

system

O 58131 A8 55 e Cua Jodl) sliiadl Wl 58
353 gl

As recognized by the enhanced

system

AGd gaid ofal 48,5 ety Bt el slaad L

Final output after replacing the

variant

s gl 58a) 51 58 55 ey Cua Jdl) sliiad Gl 58

Figure 5-7 An insertion case problem fixed in the enhanced system

Since our method artificially creates new words and adds them to the dictionary

as well as to the language model, it introduces a major change in the n-grams (in term of
their total and probabilities). Table 5-10 shows the differences between the baseline and
the enhanced systems (experiment 6) in terms of n-grams. The enrichment that affects the

language mode will lead (most likely) to a better word recognition, which in turn will
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lead to another better recognition in the 2-grams and 3-grams. In contrast, error

recognition of a word may lead to another error in the word sequence and so on.

Table 5-10 N-grams in the baseline and the enhanced systems

experiment | System 1-grams 2-grams 3-grams
baseline 14234 32813 37771
6 enhanced 14803 38680 48082

Figure 5-8 provides an example of enhancement occurring in the testing speech

that has no variants (indirectly positive effect of modeling pronunciation variation).

An original speech signal to be

tested b 53 pnh Bl 0 AT 2 550 ke 8 Slamd
este

Gl

As recognized by the baseline § %y 2000 kel PR . P
! ]! ;9 “ ’~.‘ :w..a§1 £ ’.: : . ‘\\ '.!
system '

As recognized by the enhanced g (oo sl Tadill (p 3AT Lo 5Ty 43ing (e Slad

system Call
No variants to be replaced .
Cad)

Figure 5-8 Indirect enhancement in the enhanced system.

However, some ambiguity has been introduced in the language model. The
language model is like a pool of probabilities, when new words are introduced in the

language mode, it will increase some probabilities and reduce others. This is why some

65



correctly recognized speech in the baseline system became incorrectly recognized in the

enhanced system as shown in Figure 5-9.

An original speech signal to be

tested s 2158 (e del) (AN (S ¢ 5lasa
As recognized by the baseline
system 328 215 e Al) B S 5l sa

As recognized by the enhanced . e s
e #1550 (e 0 ol (Sai g simsa
system ’

_ BLE 215 (s 0 gl (S § siasn
No variants to be replaced ’

Figure 5-9 The negative effect of recalculating n-grams

5.7 Execution time

The recognition time is compared with the baseline. The comparison includes the
testing set, which include 1144 speech files. The specification of the machine where we
conduct the experiment is as follows : a desktop computer which contains a single
processing chip of 3.2GHz and 2.0 GB of RAM. We found that the recognition time for
the enhanced method is larger than the recognition time of the baseline system as shown
in Table 5-11. This means that the time complexity of the proposed method is a little

higher than the baseline system.

Table 5-11 Recognition time of the baseline and the enhanced systems

Execution time (in minutes) for the whole testing set

The baseline system The enhanced system

34.14 37.06

66



CHAPTER 6

CROSS-WORD PRONUNCIATION

VARIATION MODELING

6.1 Introduction

This chapter presents the cross-word problem of the Arabic language. It also
includes the main sources of this problem: Idgham (merging), Iglaab (changing), Hamzat
Al-Wasl deleting, and merging of two consecutive unvoweled letters. the chapter also
presents three methods to model the cross-word problem, the methods include:
phonological rules, tags merging, and small-word merging. The proposed methods are
used to capture the variations occurring at words’ junctures. The proposed method is
illustrated in Figure 6-1. In the figure, the underlined bold text (i.e. cross-word variations)
shows the subject research areas of this chapter. Figure 6-1 also distinguishes between the
types of variations and the modeling techniques by a dashed line. The variation types are

above the dashed line whereas the modeling techniques are under the line.
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Pronunciation Variations

Cross-word variations Within-word variations

Data-driven Knowledge-based  Knowledge-based  Data-driven

Small-words  phonological ~ Words-tags Direct-data Indirect-data
merging rules merging driven driven

Figure 6-1 Pronunciation variations and modeling techniques

6.2 Effectiveness of compound-word on performance

It has been often noticed that short words are more frequently misrecognized in
speech recognition system. In general, errors resulting from small words are much more
than errors resulting from long words [96]. Therefore, compounding some words (small
or long) to produce longer words is welcome by speech recognition decoders. Figure 6-2
shows an example. The first sentence represents the sentence to be tested, while the other
sentence represents some of hypotheses that were considered during decoding process.
This example shows that small words have many options, while long words are almost
constant. Figure 6-2 shows that this relatively long words (¢ 48 4.l ) have no
choices as the small words (&), as an example. In figure 6-2, the diacritics are

intentionally removed for explanation purpose. Otherwise, so many hypotheses will be

displayed with no differences at words level.
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OV e el s 2my g it Al 3 ¢l ) i o )
V) (e el A 2y o5 A8 Al 3 6] ) Ji o )
IV (e el A 2y 85 488 Al 3 6] ) Ji o )
DAY Ga el A aay 85 A8 Al 50 61 pa) U o )
alad) (e e A ay g A8 A 33 ) ) Ui oy ]
GaY) a el Qs 2y g8 4 Al )3 6] ya) i oy gl
IV (n el s my (g8 438 Al 3 ¢ ya) Ui oy (40
eV e el A 2y i A Al 53 61 ) i oy

Figure 6-2 The difference between small and long words during decoding

The effect of compounding word was investigated by Saon and Padmanabhan in
[96]. They mathematically demonstrated that compound words enhance the language
model performance, therefore, enhancing the overall recognition output. They
demonstrated that the compound words have the effect of incorporating a trigram in
dependency in a bigram language model, as an example. In general, the compound words
are most likely to be correctly recognized more than separated words. Consequently,
correct recognition of a word might lead to another correct word through the enhanced n-
grams language model. In contrast, error recognition of a word may lead to another error

in the word sequence and so on.
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6.3 Cross-word modeling using phonological rules

In the acoustic model, the triphones concept has been introduced to capture the
phonological effects in continuous speech. Therefore, instead of training a single HMM
for each phoneme, several models are trained according to the context of the phoneme.
That is, each model will be trained using one preceding and following phoneme context
[118]. Hazen et al. in [119] examine the advantages and disadvantages of accounting for
general phonological variation explicitly with phonological rules using distinct

allophonic models versus implicitly within context-dependent models.

However, this chapter attempts to model Arabic phonological rules at two ASR
levels: the dictionary and the language model. In fact, we need to measure the effect of
phonological rules using the same acoustic model for a baseline and an enhanced system.

Figure 6-3 shows the levels where we want to add the variants.

T
~

ASNR database: N
Speech _Dictionary q—%

waweform - Lanouage model 'd
Enowledge-based

- Aooustic model

Information
\T/ (Phonological Rules)
W12
Front End » Decoder .
Features Spoken words

Figure 6-3 Cross-word adaptation levels
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Most speech recognition systems rely on the pronunciation dictionaries that
usually contain a few alternate pronunciations for most words. Additionally, the words’
pronunciations in the dictionary are phonemically transcribed as if it will be uttered in
isolation, which, consequently, leads to the cross-word problem. In fact, the utterance of a
word in isolation is different from the same word utterance in continuous speech. The
cross-word problem occurs at word junctures and is represented by coarticulation of word
boundary phonemes. Figure 6-4 shows the cross-word problem that occurs at the juncture
between two adjacent words (w2 and w3). The merging between w2 and w3 forms a new
phoneme sequence, which the recognizer cannot match to any single word in the
pronunciation dictionary. Notice that the Arabic text is read from right to left. However,

we provide this example to be read as English from left to right for simplicity.

Werging at
Initial phoneme junctures Final phoneme
W1 WErJ:“I“:T W3 ]
(v J[werywe | (-

L J

WOWord

Figure 6-4 Cross-word problem

Figure 6-4 also shows that the continuous speech recognition systems face a
discrimination problem when two consequent words are merged. Consequently, if the
merged word is not available in the dictionary, errors may be presented in the recognition

output.

With the successful use of context-dependent triphone to capture within-word and

cross-word variations, the linguistic information can also be used for further enhancement
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for both variation types (i.e., cross-word and within-word). The language phonological
rules could predict the variation at word’s junctures. Consequently, knowing the potential
variations may lead to having them correctly represented in the dictionary, language
model, and/or acoustic model. Certainly, four well-known Arabic phonological rules can
be applied: Idgham (merging), Iglaab (changing), Hamzat Al-Wasl deleting, and merging
of two unvoweled letters. Idgham is also called assimilation, is the merging of two
consecutive phonemes. Iglaab is the replacement of one phoneme into a completely
different phoneme. Even though we studied ldgham and Iglaab of two separated words,
both phenomena might occur within words as discussed by Ali et al. in [78] . Hamzat Al-
Wasl is an extra Hamza that helps to start pronouncing an unvoweled letter in continuous
speech. Hamzat Al-Wasl can be omitted to merge the adjacent words. To avoid the
problem of meeting two unvoweled (Saakin) letters, one of them can be omitted or
vowelled. In our method to model the cross-word problem, we used the Qur’an Tajweed

rules as the basis of the implemented phonological rules.

6.3.1 Sources of cross-word problem

The pronunciation dictionary is designed to be used with a particular set of words.
However, an ASR decoder will not always be able to find a perfect match between the
phonemic transcription in the dictionary and the phonetic transcription of a recognizer.
This ambiguity increases the OOV, which is undesirable. OOV is a words’ set of
unsatisfied requests among all queries to the dictionary. In the case of unsatisfied request,
another dictionary word with a nearest match pronunciation will be chosen, consequently
increasing errors and reducing performance. Intuitively, to ameliorate the ASR

performance, OOV should be reduced as much as possible. This reduction in OOV will
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alleviate the difficulties that may rise during the decoding process. OOV problem is
partially solved by extending the dictionary with some possible variants. This technique
is used in modern ASRs such as Sphinx, which provide an option to add some variants

such as:

;56 EAEDIHMBR AAH (default)
s50(1) EAEDIHMBRAAT
5550(2) EAEDIHNBRAAH

s503)EAEDIHNBRAAT

Cross-word variation occurs between two separated words to produce a new
compound word that, of course, is not listed in the dictionary. For example, “%2i’%” is a
new merged word of “le=d) (17, “aeMae” is a contraction of “ed e and “( Lo 1S
a coarticulation of “;. 5 ”. In general, merging, contraction, coarticulation, and
compounding are alternatives. There are four main sources of cross-word pronunciation
variations problem, ldgham, Iglaab, Hamzat Al-Wasl deletion, and merging of two
unvowelled letters. Idgham has three types as shown in Figure 6-5 Next chapter has more
elaboration of these Arabic speech pronunciation variation phenomena. Figure 6-5 shows
four reasons for cross-word merging, however, only two of them were proposed and

implemented in this thesis: (Idgham and Iglaab).
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Cross-word variations sources

L 4

Tdgham

# Idgham of Moon Saakina and Tanween

Idgham of adjacent 1dentical letters

h

—»| Idgham of cloge in pronunciations

» Tglaak

Humzate Al-Wasl deletion

L 2

» Merging of two unvowelled letters

Figure 6-5 Cross-word variations sources

6.3.2 Arabic cross-word variations examples

In this section, we present some illustrative examples to show the effect of these
variation sources. The explanation is performed with the help of the phoneme set
described in chapter 4. The examples aim to disclose the phonemes variations at the word
junctures. Three illustrative cases will be presented: an Idgham case (Nuun Saakina or
Tanween), an Iglaab case, and an Idgham case (close-in-pronunciation letters case). The
actual speech pronunciation can be obtained using a phoneme recognizer. The phoneme
recognizer output will then be compared with the canonical pronunciation to discover the
resulting variations. So, a phoneme recognizer is used to produce the actual phoneme
pronunciation, also called observation phonemes. Figure 6-6 shows that the phoneme /N/
( the phonemes were presented in chapter 4) is converted to phoneme /AY/. This is an
Idgham case where two letters are merging to generate a double letter of the second type

(i.e., IAY)).
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Rule Name Idgham ( Nuun and Yaa)

In Arabic, an unvowelled consonant N (¢;) at the end of
a word can be merged with a vowelled consonant Y ()

Rule Description at the beginning of the next word to produce a new word
with double consonant AY () at the connecting words

junctures.

A speech signal with its

- gl e o
transcription iy

wa’n yaHmiya almustaHIlik
canonical pronunciation | WAEEAENYAEHHMIHYAEELMUHST
(Dictionary) AEHLIHK
Actual pronunciation |WAEEAYYAEHHMIHYAEELMUHST AE
(Phoneme recognizer) |HLIHK

Figure 6-6 The effect of Idgham in Arabic speech

Figure 6-7 shows that the phoneme /N/ is converted to /M/. This is an Iglaab case

in which one of two consequent letters is replaced while the other /B/ remains the same.

Rule Name Iglaab ( Nuun and Baa)

In Arabic, an unvowelled consonant N (&) at the
end of a word can be merged with a vowelled
Rule Description consonant B (<) at the beginning of the next word
to produce a new unvowelled consonant M(3) at
the connecting words junctures.

A speech signal with its

transcrlptlon -

min bayniha siltil altabi‘a
Canonical pronunciation |MIHNBAYNIHHAE:SIHLTIHLET AE:
(Dictionary) BIHAIAEH
Actual pronunciation MIHMBAYNIHHAE:SAELSTTRIXE
(Phoneme recognizer) LEAETEAEB IH AI AE:

Figure 6-7 The effect of Iglaab in Arabic speech
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Figure 6-8 shows that the phoneme /T/ is converted to /D/. This is an Idgham case

of two close-in-pronunciation letters.

Idgham two close in pronunciation letters
( Taa and Dal)

Rule Name

In Arabic, an unvowelled consonant at the end of
a word Taa’ (&) can be merged with a close in
Rule Description pronunciation vowelled consonant Daal () at the
beginning of the next word to produce a double
consonant of the second type.

A speech signal with its

transcription TSR PCRT S B SR AN

(A wav file) aZharat dirasatun ’a‘daha majlisu
canonical pronunciation | EAEDH2HAERAATDIHRAA:SAET

(Dictionary) UHNEAEAIAEDAEHAE:MAEJHL ...

Actual pronunciation EAEDH2UHHAE:RAADDIHR AE SS
(Phoneme recognizer) | AETTUHENEAEAIDAE:HAE:MB ...

Figure 6-8 Idgham of two close in pronunciation case

Therefore, the one-to-one mapping that is usually used between the corpus
transcription words and the dictionary entries cannot resolve the cross-word cases. As
such, a technique for handling continuous speech cross-word merging is needed to
achieve better performance. In the next section, we introduce the Arabic phonological

rules that were considered to model the cross-word phenomenon for Arabic speech.

6.3.3 Arabic Phonological Rules

Arabic is a morphologically rich language in which many utterance changes can
be captured by MSA phonological rules. The MSA phonological rules explained in this

thesis include Idgham and Iqlaab.
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In order to generate a compound word of two consecutive words, two letters are
required: the final letter of the first word, and the initial letter of the second word.
Modeling cross-word problem starts with the corpus transcription by searching for all
cases that satisfy the modeled phonological rules. In Figure 6-9, when words w3 and w4
satisfy the constraint of a particular phonological rule, such as Idgham or Iglaab, the two

words are merged.

An Enghsh language sentence But
Arabic iz read from right to left

4

F 3

& phonological rule

Eead in this djrec:tion_

r——pF—=

(o J[we | [

L

v v ! '

G ) ) ()

W W ord
Figure 6-9 Generating a compound word

The following subsections describe the MSA phonological rules that produce the

cross-word problem.

6.3.4 ldgham

Idgham is a merging of two consecutive letters (could be in one word or in two
separated words) to produce a single geminated letter. Idgham has three different forms:
Idgham of Nuun Saakina and Tanween, ldgham of two consecutive identical letters, and

Idgham of two letters close in pronunciation.
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6.3.4.1 Idgham of Nuun Saakina and Tanween:
It is a merging between unvowelled nuun (Nuun Saakinah: &) or Tanween (=« :

«-) and one of the following consonents (o <5 «d < < «s ). Table 6-1 shows examples of
unvowelled nuun followed by the letters of Idgham {0 <5 «J «» <, «s}. For each case in
Table 6-1, the first sentence is the original sentence as it is in the corpus transcription,
while the second one is the sentence after merging process. Table 6-2 provides examples

only for Nuun Saakina. Tanween ( 2« 2 <.) is similar.

6.3.4.2 Idgham of two consecutive identical letters ( Idgham almutmathlan <> ale.)
Olilaiall):

It is a merging between two consecutive identical letters shown in the following
Iist{g._j,k“_l,k#_l,c,c,é,J,S,J,j,w,uz'ua'u'a’.b,.b’&"&’q’é’d’d’o}.
The rule means that any unvowelled Arabic letter followed by the same Arabic vowelled
letter will be doubled in a single merged word. Note that { !, 5, « } are not included in

the list. (i.e. this rule is not applicable for these Arabic letters). Table 6-2 shows merging

cases of consecutive identical letters.

6.3.4.3 Idgham of two close in pronunciation letters (Idgham almutajanisan <> al&.)

It is a merging between two consecutive different letters that are close in
pronunciation. Among of these letters, we applied the following :{ taa’/ & and daal / 2,
taa’ / & and Taa’ /-, daal / &> > and taa’ /<, dhaal / & > and Zaa /%, gaaf/ & and kaaf

/&, thaa’ / & and dhaal /2, laam /J and raa’ / » }. Table 6-3 shows these rules with

examples.
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Table 6-1 Idgham cases of Nuun Saakina

The final letter Of the first
word (unvowelled)

Boundary

The initial letter Of the
second word (Vowelled)

&/ nuun space < / yaa’

Ga ST Gl 3l 85880 (g
wamina almutawaq‘ an yastaDiifa ’kthar min
o S ] 50

wamina almutawaq‘ ayyastaDiifa "kthar min

&/ nuun | space | o/ raa’

Bl Gad) (e 2505 e o
b‘d shahrin waHidin min raf¢iha lilhazr
AL Gai'he aaly e

b‘d shahrin waHidin mirraf¢iha lilhazr

&/ nuun | space | » /miim

S e 5 ST G B
tujbiruha ‘ala al’bti‘adi ‘an mala‘ibi altanis
ol e Sae Ay e B ad

tujbiruha ‘ala al’bti‘adi ‘ammala‘ibi altanis

&/ nuun space | J/ laam

L) AUl G Winmy A83laa) 13855
mu’kidan ’sti ‘adatahu b‘dan min layagatihi ’Ibadaniya

mu’kidan ’sti ‘adatahu b‘dan milayaqgatihi ’lbadaniya

&/ nuun space s/ waaw

g Gsile Gy 22y Ga S
akthara min waHid wasitiin milyon shakhS
oadd §sila Gy 25 i

akthara miwwaHid wasitiin milyon shakhS

&/ nuun space o/ nuun

alall gl s 3 e mlaal) aia

man ‘a aljamahiir min nuzwl ’rd almal‘ab
alall (m g e alaall aia

man ‘a aljamahiir minnuzwl ’rd almal‘ab
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Table 6-2 Idgham of two consecutive identical letters

The final letter Of the first word | Boundary The initial letter Of the

(Unvowelled) second word (Vowelled)

O/ Siin space o=/ Siin

kil 55 5 (e Sy ulaall 138 ()
"na hadha ’Imajlis sayushrifu ‘ala ’ltharwati ’InifTiya
A3kaill 35 8 e o ,8ildaall 15 ()

"na hadha ’Imajlissayushrifu ‘ala ’Itharwati ’InifTiya

¢ / ‘ayn space ¢ / ‘ayn

P

Gl (S i ke aa dlald
khaSatan ma‘ ‘adam tawafur *makin lilbna’
sUdl (Slal 58 pika ALalS

khaSatan ma‘‘adam tawafur makin lilbna’

Jd/ laam space J/laam

g2 sl gibal Qoo S LGN 2

"ltaqriir ’ltaly lilzamyl lutfy almas‘wdy
(525l il 5 SN s 580

"ltaqriir ’ltaly lilzamyllutfy almas‘wdy

</ taa’ space </ taa’

LTS 5 S il
wabalaghat taklifatu ’stihwadhi sharikati ’lmamlakati
ASLaal) 38 5 3 paid ARICHT

wabalaghattaklifatu ’stihwadhi sharikati ’lmamlakati

s/ Faa’ space </ Faa’

ST LY 3 Gallagl

"Imutawaqa ° lilwaZa’f fy °I’iqtiSadi "I’'mryky
GSapl Sy sl ol

Imutawaqa © lilwaZa’ffy ’I’iqtiSadi "I’'mryky
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Table 6-3 Idgham of two close in pronunciation letters

aul Initial letter Of first | Final letter Of second Connecting letter
He word (Unvowelled) word (Vowelled) (Double)
1 taa’/ & daal / > daal / 3
iy s Gl dias S0 Cii
kashafat dirasatun Hadythatun na brytanya
Gilay 2 Sl s AL R
kashafaddirasatun Hadythatun *na brytanya
2 taa’ / & Taa’ /= Taa/ kb
Gl Z;,\';uw U\J:\L 7«5).” é)ﬁa_"i
t‘tazim sharikatu Tayaran ’I’marat Talab
Calla ey ol ik 48 )% 4 S
t‘tazim sharikatu Tayaran ’I’maraTalab
3 daal / & 2 taa’ /& ‘ taa’ /:il
A AR5 B ) e O sk
yaqwlu muntaqidwha ’naha gad tu ]1]u ’ItaDakhum
AL 2258 ) B N 55
yaqwlu muntaqidwha ’naha gattu’jiju ’ltaDakhum
4 dhaal / & 3 Zaa /% | Zaa /L
denall 5l 3 2631 5
walaw ‘nahum ’Z Zalamw ’nfusahm
el | sall) 23l 53
walaw ‘nahum ’ZZalamw 'nfusahm
5 qaaf/ 3 kaaf /& kaaf /&
JE (5 0 5 mall ST 5155 G
> ‘lana wazyru ’1’tiSalat *ImaSry Tarlg kamal
ok 08 Ja& o (5 end) WLAIY! 155 Gl
> ‘lana wazyru ’I’tiSalat *ImaSry Tarikkamal
6 thaa’ / & dhaal /3 ‘ dhaal / < 3
(,3'33\ Jia &Sbi@si&’“ )
’w tatrukhu yalhath dhalk mathalu ’lqawrn
o580 e alifehad i 5
’w tatrukhu yalhatdhdhalk mathalu *lgawm
7 laam /J raa’ / O ‘ raa’ /
a1 D) (ol Jaa il 50
"ltaqryr llzamyl ramy *brahym
ol gal el s SERD

"ltaqryr llzamyrramy ’brahym
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6.3.5 Iglaab

Iglaab is a replacement of Nuun Saakinah (&) or Tanween that comes before
voweled Baa (<) by Meem Saakinah (2). The following are examples of Iglaab. Note
that instead of geminating the connecting letter, it is unvoweled (3). Figure 6-10 shows

some examples.

Aases 0 O (gallad) 253410 B 1 s
lil’shtiraki fy ’Imazadi ’1‘alamyi min bayni sab“ati
o i (ol 350 3 )53

lil’shtiraki fy ’Imazadi ’1‘alamyi mimbayni sab‘ati

alall A glay Fre 4500 453N
’ljawlati ’Ithaniya min buTwilati ’1‘alam
a0 4 gha Cana 4t 150

’ljawlati ’lthaniya mimbuTwlati ’1‘alam

tujbiruha ‘ala al’bti‘adi ‘an mala‘ibi altanis
ol e Sae Ay e el

tujbiruha ‘ala al’bti‘adi ‘ammala‘ibi altanis

0alaBY) 3533 ) oS Sl

’hlan bikum ’la ’Inashrat ’I’gtiSadiya

5

5By 5580 ) sl

“hlambikum ’la ’Inashrat ’I’gtiSadiya

Figure 6-10 Iglaab examples
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6.3.6 Proposed method

In this section, we present our proposed method to model cross-word problem.
The method is based on knowledge-based approach, certainly, two well-known MSA
phonological rules are applied, merging (ldgham) and changing (lglaab). The used
phonological rules were obtained from a Tajweed book written by Abdullah Heloz
(2008). The modeling process includes two ASR level, the dictionary and the language
mode. Therefore, the dictionary and the language model are both expanded according to
the cross-word cases found in the corpus transcription. The following are the steps
required in our method, the steps from 1 to 6 are offline steps ( i.e. conducting one time
before recognition process), while step 7 is online step, which has to be run whenever a

test file is in recognition process.

Step 1: Extracting the cross-word starts from the corpus transcription. Figure 6-11 shows
a part of the baseline corpus transcription. In Figure 6-11, we chose small sentences for

illustration purpose.

Joio L waosl B 10500 of s Lagn s

L ouad! olisgdl sde 55L0) odgs S

pLdl gulaadl slael sie Jlax| Jsbh o8 e}l pS LaS
Jpih ]

Irasll ped 03 W3 GLOLLII oLy

oo LY b Ladas ooddl o 85001 g gatwl dao A3
Slaadl 35131 i) ae Uinlhis ol ad Goylkll 5055 51

Figure 6-11 A sample of the transcription corpus used

Step 2: Specify the phonological rules to be applied.. In this thesis, we are interested in

Idgham and Iglaab.
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Step 3: Using an appropriate programming language, a tool is developed to extract the
compound rules from the baseline corpus transcription. In thesis, we use C as a

programming language to apply our methods.

Step 4: After extracting the compound words using the developed C program, the
compound words are then added to the corpus transcription within their sentences. Figure
6-12 shows some sentences which include compound words. Note that the original
sentences (i.e., without merging) remain in the enhanced corpus transcription. In fact, we

need our method to maintain both cases, merged and separated words.

Loty &1 Bows SLuigs &daas

o S1yLeY 1 ol jab 45,3 pisas

by lay ! olaadb 45,3 pibes

ek 08 IS GyLb Gpandl oV LaSYI 503y ol
exb 08 JLaS) b (sguandl oY LaSY ! 5% Gl

Figure 6-12 A sample of the enhanced corpus transcription

Step 5: We use the enhanced corpus transcription generated in Step 4 to build the
enhanced dictionary. Figure 6-13 shows some entries of the enhanced dictionary. The
figure shows some cross-word entries, even though it contains all words of the enhanced

corpus transcription (i.e., merged and non-merged words).

Partial Pronunciation Dictionary

k5% MIHRAAF Al IH H AE:
ceMac Al AEM AE L Al IHB IH
e M IHM B AE AY N IH

Figure 6-13 A sample of the dictionary entries
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Step 6: Build the language model according to the enhanced corpus transcription. This
means that the compound words in the enhanced corpus transcription will be involved in

the unigrams, bigrams, and trigrams of the language model.

Step 7: During recognition process, the recognition result is scanned for decomposing
compound words to their original state (two separated words). This process is done using
a lookup table such as:
285 (mirrafiha) = &2 & (min rafiha)
e Sae (‘ammala‘ib) = —e& (e (‘an mala‘ib)
(e (mimbayn) = (&G e (Min bayn)

It is worth noting that each transformation case is represented in a separate

sentence. For example, the following sentence:

Gz ) 3l s 1) Gldl 00U s
satasrifu khilala yamin ratiba shahrin waHidin lirub‘i muwaZafyi

has been modeled using four separated sentences (the original one plus three
transformation cases), as shown below.
Gibish o 2l el Sl ol 038 Gipuais (1
satasrifu khilala yamin ratiba shahrin waHidin lirub‘i muwaZafyi
Glash il 2l e i3l DA ol (2
satasrifu khilala >yamratiba shahrin waHidin lirub‘i muwaZafyi
(et pdbaaly e 0 o OB Gl (3
satasrifu khilala *yamin ratiba shahrin waHidlirub‘i muwaZafyi
Gl s ) aal g oy o DA G sl (4

satasrifu khilala "yamin ratiba shahrwaHidin lirub‘i muwaZatyi
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the steps for modeling cross-word phenomenon can be described in the algorithm

shown in Figure 6-14.

For all sentences in the transcription file
For each two adjacent words of each sentence
If the adjacent words satisfy a phonological rule
Generate the compound word
Represent the compound word in the transcription
End if
End for
End for
Based on the new transcription, build the enhanced dictionary

Based on the new transcription, build the enhanced language model

Switching the variants back to its original separated words

Figure 6-14 Cross-word modeling using phonological rules

6.3.7 Testing and evaluation

This section presents the results achieved by modeling cross-word pronunciation
variation problem of MSA. We investigated two MSA phonological rules (Idgham and
Iglaab) which significantly enhanced the recognition accuracy. Three ASR’s metrics

were measured: word error rate (WER), out of vocabulary (OOV), and perplexity (PP).

The metrics (WER, OQV, and perplexity) explained in the previous section were

measured. The enhanced system achieved a WER of 9.91% on the testing set. The WER
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significant decreased by 2.3% compared to the WER of the baseline system which was

12.21%, as summarized in Table 6-4.

Table 6-4 Performance improvement using phonological rules

System WER %
baseline 12.21
enhanced 9.91
enhancement =>» 2.30

The OOV was also measured for both systems. It was found that the baseline
system has an OOV equal to 3.53%. The OOV was then reduced to 2.89% in the
enhanced system. The OOV of both the systems (baseline and enhanced) was measured

by dividing none testing set words over the total words in the testing set as follows:

none testing set words
*
total words in the testing set

00V (baseline system) = 100

328
i = —_— — 0,
00V (baseline system) 9288 100 = 3.53%

269
OO0V (enahanced system) = 9288

* 100 = 2.89%

Clearly, the enhanced system is better.

Regarding perplexity, it was measured for both systems (baseline and enhanced)
and found to be 34.08 and 4.00, respectively. The measurement was performed on the
testing set, which contains 9,288 words. Therefore, the enhanced system is clearly better

as the lower perplexity is better. The reason why both perplexities are low is that the
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specific domains of our corpus are limited to the economics and sports news. For more

information about our corpus, please refer chapter 4.

The three metrics used to measure the performance clearly show that our method
achieved a certain enhancement. To check whether this enhancement is statically
significant, we used the performance detection method suggested by PI6tz in [97]. Since
the enhanced method achieved a WER of (9.91%) which is out of the confidence
interval [11.53,12.89] ( see chapter 4, the baseline system), it is concluded that the

achieved enhancement is statistically significant.

Appendix 5 shows some statistical information collected during the testing stages.
It shows that the total cases of Idgham are 1,818 and the total cases of Iglaab are 200. The
Idgham of Nuun Saakina and Tanween is the highest to occur among all Idgham forms.
This shows that Idgham occurred more than Iglaab in MSA. Appendix 5 also shows that
Lam (J) followed by Lam (J) is the highest frequency to occur in Idgham of identical
latter. It has showed up 49 times in the corpus transcription. Other statistical information

collected during testing stage is available in Appendix 5.

6.3.8 Execution time

The recognition time is compared with the baseline. The comparison includes the
testing set, which include 1144 speech files. The specification of the machine where we
conduct the experiment is as follows: a desktop computer which contains a single processing

chip of 3.2GHz and 2.0 GB of RAM.

We found that the recognition time for the enhanced method is less than the
recognition time of the baseline system as shown in Table 6-5. This means that the

proposed method is better than baseline system in term of time complexity. From decoder
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point of view, it is much better to use one compound word instead of using two separated

words. therefore, discarding half of the overhead needed when using one long word.

Table 6-5 Execution time comparison of the enhanced and the baseline systems

Execution time (in minutes) for the entire testing set

The baseline system The enhanced system
34.14 33.49

Even though 2,018 compound words have been found in the corpus, only 1,639
compound words have been actually added to the dictionary after excluding the
repetition. Figure 6-15 to 6-17 provide samples of the recognition results of the baseline
and the enhanced systems. The samples show how the added compound words help to

improve the performance.

Original speech to be Balllad) Go 2aly jed 3
tested b‘d shahrin wahidin min raf*iha lilhazr

As recognized by the oBall ad) aaly el 3
baseline system b‘d shahrin wahidin raf*iha lilhazr

As recognized by the oBall leaite aals jed da
enhanced system b‘d shahrin wahidin mirraf*iha lilhazr
Final output after Balllad) Go 2aly Hed 3
decomposing the merging b‘d shahrin wahidin min raf*iha lilhazr

Figure 6-15 Idgham case: unvowelled nuun (nuun Saakinah) followed by raa’
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Orlglnaisgzzch to be e AEEYI LR et
tujbiruha ‘ala al’bti‘adi ‘an mula‘ib

As recognized by the e S G Ay s
baseline system tujbiruha al’bti‘adi ‘an ’lla‘ib

As recognized by the e Slae Ay e bl
enhanced system tujbiruha ‘an al’bti‘adi ‘ammula‘ibi
Final output after e Ge i) e byl
decomposing the merging tujbiruha ‘an al’bti‘adi ‘an mula‘ibi

Figure 6-16 Idgham case: unvowelled nuun (nuun Saakinah) followed by miim

Original speech to be

2100 G eallad) 215l d gl Taad
tested 008 (s Geallal) 215AN B A aadd

lil’shtiraki fy ’lmazadi ’1‘alamyi min bayn
BB R FET
lil’shtiraki fy ’lmazadi ’1‘alamyi bayn

As recognized by the
baseline system

As recognized by the Criae Sallal) 21 5al 8 el s
enhanced system lil’shtiraki fy ’Imazadi ’1‘alamyi mimbayni
O O eallad) 23l (3 )il

lil’shtiraki fy ’lmazadi ’1‘alamy min bayni

Output after decomposing
the merging

Figure 6-17 Iglaab case: unvowelled nuun (nuun Saakinah) followed by baa’

During recognition, 117 compound words were provided by the enhanced
dictionary. After recognition process, these compound words were switched back to its
separated form. However, this does not mean that they were misrecognized in the
baseline system. Many of them were correctly recognized in the baseline system as

separated words.
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For more clarification, we carefully analyzed the recognizer outputs. We
measured the percentage of recognition in both systems among all tested files. Table 6-6
shows that the proposed method leads to improvement in some speech files and,
however, to decrease in performance in others. Figure 6-18 demonstrates the information

provided in Table 6-6 in Pie chart.

Table 6-6 A comparison between the baseline and the enhanced systems

Among the 1144 speech files

Recognized files in (baseline, enhanced)

1047 speech files
(91.5%)

Both systems (the baseline and the
enhanced) agreed upon recognition of these
files, either correctly or incorrectly (We ignored
light diacritic differences).

23 speech files
(2.01%)

Recognized correctly in the baseline

system but are not in the enhanced system.

74 speech files

Recognized correctly in the enhanced

System 6.5%

Correct
results in the
baseline
System 2%

(6.46%) system but are not in the baseline system.
Correct
resultsin the Among the 1144 speech files
enhanced

Same results
in both
systems

(baseline and

enhanced)
91.5%

Figure 6-18 A comparison between the baseline and the enhanced systems
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We mentioned in Table 6-6 that some correctly recognized words in the baseline
were misrecognized in the enhanced system. The following are two illustrative examples
listed in the following order: original speech to be tested, baseline system recognition
results, and enhanced system recognition results, respectively.

JA G 5l Al Ganadll )58 8004

fasayutraku qararu altakhsiisi lihy’ti swq ’Imal
J G5 s Bgd aneadl) )8 & il

fasayutraku gararu altakhsiisi lihy’ti swq ’Imal
Jl (3 ks ) (B Garadill 08 A
fasayutraku qararu altakhsiisi lihy’ti swq ’lmal

* K ok ok K *
SN i) 550l ) A0 S Gl

’laty ladyha Sarafatun ’liya *w muSadira lilbitagati aldhakiya
SN Bl 5 5amd o A3 EaI5a 1l )

’laty ladyha Sarafatun ’liya *w muSadira lilbitagati aldhakiya
SN ) 550l cpdl S 33T S8 5 el

’laty ladyha Sarafatun ’liya *w ’ldayn muSadira lilbitaqati aldhakiya

We noticed that most of the errors that occur in the enhanced system (i.e., they are
correct in the baseline) have no relation with compound words. None of them made
cross-word transformation process. We believe that the source of these errors is the
language model as it is recalculated according to the enhanced corpus transcription.

Recalculation of the language model probabilities according to the new transcription
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presented a major change in the n-gram probabilities. Table 6-7 shows the total count of
1-grams, 2-grams, and 3-grams of the language model for both the baseline system and
the enhanced system. So, the new language model might be biased to some word

sequences on the account of others.

Table 6-7 N-grams of both systems (baseline and enhanced)

System 1-grams 2-grams 3-grams
baseline 14234 32813 37771
enhanced 15873 37852 45858

According to the data provided in Table 6-7, we found that n-grams have been
increased according to the compound words. This increase in the total of n-grams will
provide an opportunity for enhancement. Saon and Padmanabhan in [96] showed
mathematically that compound words will enhance the performance. They demonstrated
that the compound word has the effect of incorporating a trigram in dependency in a
bigram language model, as an example. Generally, compound words are most likely to
be correctly recognized more than separated words. Consequently, correct recognition of
a word might lead to another correct word through the enhanced n-gram language model.

In contrast, misrecognition of a word may lead to another error in the word sequence and

SO on.

Table 6-8 gives an example of the robustness we described above which leads to

indirect enhancement. It shows the enhancement of a sentence that has no transformation
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process, i.e., the enhancement is there while there is no cross-word phenomenon in the

sentence to be tested.

Table 6-8 Samples of indirect improvements by the language model

xgll I CSaY) R e
min ’lghaz ’l ’iirany ’la ’lhind
Loshy¥) 53 (e 238 G (liads

wamumathiliina ‘an ‘adadin min ’lduwal ’I’wrwbiya

Original
speech to be

tested o 1 .
ol gsin oA

bimaraD junwn ’lbagar

AR ) ey S e

min ’lghaz ’l ’iirany ’la ’1Halaba
B0 J531 &) e culiady

wamumathiliina ‘an ’na ’lduwal ’I’'wrwbiya

As recognized
by the baseline

system P
el o5 plalay (A
fy bimaraD junwn ’ltaga ‘ud
gl ) 301 S (e
As recognized mn alghaz alayrany ala alhnd
by the Bs)s¥ I3 e 2 o Gttt
enhanced wamumathiliina ‘an ‘adadin min ’lduwal ’I’wrwbiya
system A O5ih aba A

fy bimaraD junwn ’lbaqar

We can conclude that the new language model, generated by the expanded
transcription, introduces both improvement and ambiguity. This is why 2.01% among

testing files were misrecognized in the enhanced system.
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Although our method enhanced the overall performance of the speech recognizer,
however, we have observed a few cases in which the application of the method created
misrecognition cases, which were properly recognized before. The performance
enhancement together with the introduction of new errors is related to the language
model’s n-grams recalculation. It is clear that the more cross word cases we append to the
language model, the more cross-word errors we remove from the error set, though not in
a linear proportion. In the meantime, the modification in the language model may
negatively change the n-gram probabilities of some words, leading to new recognition
errors. This phenomenon may raise a question for further research about possible
optimality of the modified language model, a language model that makes the best

compromise between removing the cross-word errors, and generation of other errors

The great impact on the perplexity could be understood in two ways: first, the
robustness that occurred in the language model increases the probability of the testing set

W =wl, w2,.. .,wy, therefore reducing the perplexity according to:

- N 1
PPIW) = P(wl,w2,..,w,)

The perplexity formula explained in chapter 4.

According to the formula, it is clear that increasing P will reduce the PP. Second,
the 1,639 compound words added to the transcription as new words have an extremely
low perplexity. For example, consider the two words (c«) and (»=). These two words
have an average certain perplexity. When the compound word (2=<) is represented in the
language model, it will share others with its low perplexity, so reducing the overall

perplexities. Finally, our method was implemented as a preprocess step to extend the
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span of the dictionary and the language model. The training stage has not evolved, i.e.,
the acoustic models of all training utterances have not been changed during the

experiment.

6.4 Cross-word modeling using Part of Speech Tagging

One major source of suboptimal performance in automatic continuous speech
recognition systems is misrecognition of small words. In general, errors resulting from
small words are much more than errors resulting from long words. Therefore,
compounding some words (small or long) to produce longer words is welcome by speech

recognition decoders.

Therefore, we expect that if we compound some words as one word, better
performance could be achieved. We consider two pronunciation cases: nouns followed by
an adjective, and prepositions followed by any word. Our proposed method is not
restricted to small words, but any word length satisfying the aforementioned two word

sequences: <noun, adjective> and<preposition, any word>.

Figure 6-19 shows the merging that occurs between two words: a noun ()
and an adjective (3:25). The first row shows the waveform of an Arabic sentence with its
text form. The dashed line in the waveform indicates the boundary of these two words. In
the second row, we enlarged the waveform of these two words for more elaboration, to
show the connection spot between these two words. It is clear that the connection spot is
not silence. In fact, we checked many Arabic speech waveforms and found that nouns

followed by adjectives are usually pronounced together as one compound word.
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A waveform with its text

form for a sentence

A noun followed by an

adjective waveform

The boundary spot

waveform

No silence in the boundary between the
noun and the adjective.

Figure 6-19 A connection spot between a noun and an adjective

6.4.1 Proposed method

Our proposed method is based on the Arabic tags that are generated by the
Stanford Arabic tagger, which consists of 29 tags as shown in Table 6-9.Since the scope
of our work is focused on adjectives, nouns, and prepositions, only the first 13 tags listed

in Table 6-9 were examined. In Table 6-9, DT is a shorthand for the determiner article ( J!

«a =ill) that corresponds to “the" in English.

Table 6-9 also shows that nouns and adjectives have many forms, all of which
were considered in our method. In this thesis, we will use the Noun-Adjective as
shorthand for a compound word generated by merging a noun and an adjective. We also
use preposition-word as shorthand for a compound word generated by merging a

preposition with a subsequent word. The prepositions used in our method include: ( ¢ ¢
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da ¢ GFae S Jde o ge o JI). Other prepositions were not included as they are rarely used

in MSA. Table 6-10 shows the tagger output for a simple sentence.

Table 6-9 The Arabic tags of Stanford Tagger.

Meaning with examples
Tag
#
1 ADJ NUM Adjective, Numeric
Zi.a_.abl\c@u\
2 DTJ DT + Adjective
3 DTJR Adjective, comparative
Lledlecs Sl
4 DTNN DT + Noun, singular or mass
Laalall ddadaiall
5 DTNNP DT + Proper noun, singular
Eﬁ\ﬂ\cé\‘)ﬂ\
6 DTNNS DT + Noun, plural
LY el !
7 IN Preposition or subordinating
conjunction
Srde mda
&i d:m L;JLAA &JJ;
8 JJ Adjective
EERELTATEEN
9 JIR Adjective, comparative
L;)..\Ss‘;'mi
10 NN Noun, singular or mass
11 NNP Proper noun, singular
Olalecly sl
12 NNS Noun, plural
Gilallaechlad g3
13| NOUN_QUANT Noun, quantity
b el
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Table 6-10 An Arabic sentence and its tags

An input sentence to the tagger S ey & e b Jle YT ) 45535

Tagger output 4a 3 5/NN dis /NN JleeY/DTNN ¥/IN

(read from left to right) JUas/NN < sSI/DTNNP JAs2/DTJI

The tagger output is used to generate compound words by searching for noun-
adjective and preposition-word sequences. Table 6-10 shows two possible compound
words: (@jﬁtejil\) and ( j—ia;;\é) for noun-adjective case and for preposition-word case,
respectively. These two compound words are, then, appended to the baseline dictionary.
Additionally, these two compound words are also represented in the language model.
Modeling the compound words in the language model require adding them to the baseline
transcription corpus. Note that the original sentence (without compound words) also
exists in the baseline transcription corpus. The following two new sentences are
appended in the baseline transcription corpus to fulfill the compound words
representation:

LR a3 Jee Y1 Js da 3
AT RUIES ISRV R PPN EE P

Figure 6-20 highlights the process of reading a tagged Arabic sentence, generating
a compound word upon encountering a noun followed by an adjective. The preposition-
word case is handled similarly. It is noteworthy to mention that our method is

independent from handling pronunciation variations that may occur at words junctures.
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A Tagged Arabic Sentence —>

A

[ Compound Word ]

Ll M[V%][W][ )

Figure 6-20 A noun-adjective compound word generation

The steps for modeling cross-word phenomenon can be described by the

algorithm shown in Figure 6-21.

Using a PoS tagger, have the transcription corpus tagged
For all tagged sentences in the transcription file
For each two adjacent tags of each tagged sentence
If the adjacent tags are adjective/noun or word/preposition
Generate the compound word
Represent the compound word in the transcription
End if
End for
End for
Based on the new transcription, build the enhanced dictionary

Based on the new transcription, build the enhanced language model

Switching the variants back to its original separated words

Figure 6-21 Cross-word modeling algorithm using tags merging
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6.4.2 Testing and evaluation

Table 6-11 shows the enhancements for different experiments. To check whether
the achieved enhancement is significant, we used the performance detection method
suggested by Pl6tz in [97] to investigate the significance of the achieved enhancement.
Since the enhanced method (in Noun-Adjective case) achieved a WER of (9.82%) which
is out of the confidence interval [11.53,12.89] (see chapter 4, the baseline system), it is
concluded that the achieved enhancement is statistically significant. The other cases are

same, i.e. (Preposition-word, and Hybrid cases achieved significant improvement).

Table 6-11 Accuracy achieved

# Experiment Accuracy (%)
baseline System 87.79

1 Noun-Adjective 90.18

2 Preposition-Word 90.04

3 Hybrid (1 & 2) 90.07

Table 6-11 shows that the highest accuracy achieved is in noun-adjective case.
The reduction in accuracy in the hybrid case is due to the confusion introduced in the
language model. For more clarification, our method depends on adding new sentences to
the corpus transcription that is used to build the language model. Therefore, adding too
many sentences will finally cause the language model to be biased for some n-grams (1-

grams, 2-grams, and 3-grams) on the account of others.

The common way to evaluate the N-gram language model is using perplexity. The

perplexity for the baseline is 34.08. For the proposed cases, the language models’
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perplexities are displayed in Table 6-12. The measurements were taken based on the
testing set, which contains 9288 words. The enhanced cases are clearly better as their
perplexity is lower. The reason for the low perplexities is the specific domains that we

used in our corpus, viz. economics and sports.

Table 6-12 Perplexities and OOV in different experiments made

# Experiment Perplexity OQV (%)

baseline System 34.08 328/9288 = 3.53%

1 Noun-Adjective 3.00 287/9288 = 3.09%

2 Preposition 3.22 299/9288 = 3.21%

3 | Hybrid (1 &2) 2.92 316/9288 = 3.40%

The OOV was also measured for the performed experiments. Our ASR system is
based on a closed vocabulary, so we assume that there are no unknown words. The OOV
was calculated as the percentage of recognized words that do not belong to the testing set,

but to the training set. Hence,

none testing set words

00V (baseline system) = 100

*
total words in the testing set

which is equal to 328/9288*100= 3.53%. For the enhanced cases, Table 6-12
shows the resulting OOVs. Clearly, the lower the OOV the better the performance is,

which was achieved in all three cases.

Table 6-13 shows some statistical information collected during experiments. The
“compound words collected” is the total number of noun-adjectives found in the corpus

transcription. The “unique compound words” indicates the total number of noun-

102



adjectives after removing duplicates. The last column, “compound words replaced” is the
total number of compound words that were replaced back to their original two disjoint

words after the decoding process and prior to the testing stage.

Table 6-13 Statistical information for compound words

# Experiment compound words unique compound words
collected compound words replaced

1 | Noun-Adjective 3328 2672 377

2 Preposition 3883 2297 409

3 | Hybrid (1&2) 7211 4969 477

Despite the claim that the Stanford Arabic tagger accuracy is more than 96%, a
comprehensive manual reviewing was performed on the tagger output in order to accurate
our method based on high accurate data. It was reasonable to review the collected
compound words as our transcription corpus is small (39217 words). For large corpuses,
the accuracy of the tagger is crucial for the results. For example, Table 6-14 shows an

error that occurred in the tagger output. The word “J5¥" should be DTIJ instead of

DTNN.
Table 6-14 An error in the tagger
An input sentence for the PERRAR I el i
tagger
Tagger output S¥IN <aaill/NOUN_QUANT JsY/DTNN

(read from left to right) lIN A=/DTNN s Jal/DTIJ
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Figure 6-22 shows an illustrative example of the enhancement that was achieved
in the enhanced system. It shows that the baseline system missed one word (c<) while it
appears in the enhanced system. Introducing a compound word in this sentence avoided

the misrecognition that occurred in the baseline system.

A waveform of a speech

sentence with its text form 2380 3780 LY (o5 (e AN AL 40 el

As recognized by the baseline SO N )
Al 3781 ZSuy) 5y sAll DA Al AL yall
system

As recognized by the e e )
) 308 Cabu YL ) sall e SN Aajlll Als el
enhanced system

Final output after P b e s i
_ _ 238 378 ELY oy sAll (e DN Al AL ) g
decomposing the merging

Figure 6-22 An example of enhancement in the enhanced system

According to the algorithm, each sentence in the enhanced transcription corpus
can have a maximum of one compound word, since sentences are added to the enhanced

corpus once a compound word is formed.

After the decoding process, the results are scanned in order to decompose the
compound words back to their original form (two separate words). This process is
performed using a lookup table such as:

ARSI SAPHREN
SoadP la B
6.4.3 Execution time
The recognition time was compared with the baseline. The comparison includes

the testing set which includes 1144 speech files. The specification of the machine where
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we conduct the experiment is as follows: a desktop computer which contains a single

processing chip of 3.2GHz and 2.0 GB of RAM.

We found that the recognition time for the enhanced method is less than the
recognition time of the baseline system as shown in table 6-15. This means that the

proposed method is better than baseline system in term of time complexity.

Table 6-15 Execution time comparison of the enhanced and the baseline systems

Execution time (minutes)

The baseline system The enhanced system

34.14 33.05

6.5 Cross-word modeling using small words merging

Unlike isolated speech, continuous speech is known to be a source of augmenting
words. This augmentation depends on many factors such as the phonology of the
language and the lengths of the words. In this section, our work is focused on adjacent
small words being a source of this merging of words. During our previous research work
in Arabic speech recognition, it became evident that adjacent small words contribute
negatively to achieving high performance. Figure 6-23 presents an example of the small-

word problem.

A speech sentence to be

wd 2 { - z2 - i/) -
LByl s¥ J3 e 238 08 Galiady
tested

Recognized as (baseline): Tsosdl 50 5] o cabiars

Figure 6-23 A small-word problem explanation
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Figure 6-23 shows that small words were negatively affected by the
concatenations. The decoder mistakenly recognized two separated small words as one
word, although it recognized longer words correctly. Therefore, we expect that if we

compound the small words as one word, a better performance will be achieved.

6.5.1 Proposed method

Modeling the small-word problem is a data-driven approach in which a compound
word is distilled from the corpus transcription. The compound word length is the total
length of the two adjacent small words that form the corresponding compound word. The
small word’s length could be 2, 3, 4 letters, or more. During training, several experiments
were made to choose the best small word’s length. As an illustrative example, suppose as
shown in Figure 6-24 that the sentence has many words, and that w2 and w3 are small
words. According to our method, w2 and w3 will be merged to generate a compound
word. It is worth mentioning that no phonological rules or any kind of knowledge-based
approaches are involved in this merging. Figure 6-24 also shows that the boundary

appearing between word 2 and word 3disappears after merging.

J A sentence -
| W2 & W3 |
v J[we][we )l ow ][]
A
Boundary W: word

Figure 6-24 The concept of modeling small-word
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The generated compound words are then filtered to remove all duplicates. Finally,
the unique compound words are added to the dictionary and to the language model. The

process can be explained in the following example:

s S I 8 )

(s R 5 i L)

The first sentence is from the baseline corpus transcription sentences, where the
text in bold represent two words, one 2-letter word followed by one three-letter word.
The second one shows that the two small words found in the first sentence were merged
to generate the new compound word. In this example, the total length of the small words
is 9, as the diacritics are included in computing the length. Both sentences will be
appended during corpus transcription to generate the enhanced pronunciation dictionary
and the enhanced language model. The expansion of the pronunciation dictionary and the
language model depends on the length of small words chosen for merging. As it gets
larger, the dictionary and the language model expand more. The proposed method can be

described in the algorithm provided in figure 6-25.
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For all sentences in the transcription file
For each two adjacent words of each sentence
If the adjacent words less than a certain threshold
Generate the compound word
Represent the compound word in the transcription
End if
End for
End for
Based on the new transcription, build the enhanced dictionary

Based on the new transcription, build the enhanced language model

Switching the variants back to its original separated words

Figure 6-25 Cross-model pronunciation variation algorithm using small words

6.5.2 Testing and evaluation

In order to test our proposed method, we used the baseline proposed in chapter 4.
In order to analyze the effect of the length of the small words on the system performance,
we compare the results of our approach when applied on compound words of lengths
5,6,7,8,9,10,11,12 and 13. Table 6-16 summarizes the results of executing the 9

experiments. We use the following shorthand for the keys in Table 6-16:
TL: Total Length of the two adjacent small words.
TC: Total Compound words found in the corpus transcription.
TU: Total Unique compound words without duplicates.
TR: Total Replaced words after recognition process.

AC: Accuracy achieved.
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EN: enhancement achieved. It is also the reduction in WER.

Table 6-16 Results for different small word lengths

TL TC TU TR | AC (%) | EN (%)
5 8 6 25 8780 | 001
6 103 48 41 88.23 | 0.44
7 235 153 51 8853 | 0.74
8 794 447 132 89.42 1.63
9 1618 985 216 89.74 1.95
10 3660 | 2153 374 89.95 | 216
11 5805 | 3687 462 89.69 1.90
12 8518 | 5776 499 89.68 1.89
13 11785 | 8301 510 88.92 113

Table 6-16 shows that the best reduction of 2.16% in WER is achieved when the
length of the compound word is 10. It also shows that performance noticeably decreases

when the number of characters in the compound words exceeds 10. Figure 6-26 shows

the accuracy of the system with respect to the words length.

o O
o

Accuracy

0O 00 00
A N o0 L

—,,I"ﬁ

id{W —¢—Baseline

== Enhanced

5 6 7 8 9 10 11 12 13
Compound word's length

Figure 6-26 A comparison of accuracy for different compound words lengths
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With 87.79% accuracy of the baseline system, Figure 6-25 shows that the
accuracy of the enhanced system starts increasing until a specific compound word’s
length (10), and then starts decreasing. The reason of this reduction in accuracy is the
confusion introduced in the language model. Figure 6-27 shows that using a high number
of compound words does not unconditinaly increase the performance. There is a
maximum limit to utilize these compound words, after this limit the performance start
decreasing due to the ambiguity occurred in the language model. Figure 6-27 shows that
510 compound words used (see Table 6-16, TL=13) do not help to maintain the

performance.

00
500 /,—_
400
Total of /
compund 300

words 200 //
100

5 & 7 8 9 10 11 12 13
compund word's length

Figure 6-27 Compound words usage

The standard measure for language model quality is perplexity. The perplexity for
the baseline language model is 32.88, which is based on 9288 words (testing set words)
words. For the enhanced system, the perplexity is 7.14 computed based on the same
testing set words (9288 words). This means that the performance of the enhanced system

is better than the baseline system since it has a lower perplexity value.
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To check whether the achieved enhancement is significant, We used the
performance detection method suggested by PI6tz in [97] to investigate the significance
of the achieved enhancement. Since the enhanced method ( at TL=10, see Table 6-16)
achieved a WER of (10.05%) which is out of the confidence interval [11.53,12.89] ( see
chapter 4, the baseline system), it is concluded that the achieved enhancement is

statistically significant.

6.5.3 Execution time

The recognition time is compared with the baseline. The comparison includes the
testing set which include 1144 speech files. The specification of the machine where we
conduct the experiment is as follows: a desktop computer which contains a single processing

chip of 3.2GHz and 2.0 GB of RAM.

We found that the recognition time for the enhanced method is almost the same
as the recognition time of the baseline system as shown in Table 6-17. This means that

the proposed method is almost equal to the baseline system in term of time complexity.

Table 6-17 Execution time comparison of the enhanced and the baseline systems

Execution time (minutes)

The baseline system The enhanced system
34.31
34.14 (for the experiment with highest

recognition accuracy, experiment 10)
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6.6 A comparison between cross-word modeling approaches

Table 6-18 shows a results comparison of the suggested methods for cross-word
modeling. It shows that part of speech tagging approach outperform the other methods (
i.e. the phonological rules and small word merging). However, more research should be
conducted for more confidence. This conclusion, however, is subject to change as more
cases need to be investigated for both techniques. Cross-word modeling used two rules of
the Arabic phonological rules, while only two compounding schemes were applied in part

of speech tagging approach.

Table 6-18 A comparison between combined proposed techniques

Execution Time
# System Accuracy (%) _
(minutes)
baseline 87.79 34.14
1 Phonological rules 90.09 33.49
2 PoS tagging 90.18 33.05
3 Small word merging 89.95 34.31
Combined system
4 88.48 30.31
(1,2,and3)
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6.7 Combining of within-word and cross-word methods

Table 6-19 shows the accuracy and the execution time of a combined system. The
PoS tagging compounding method was selected (as it has the highest accuracy among
cross-word modeling techniques) to be combined with the within-word technique
explored in chapter 5. The results show no enhancement. this means that the PoS tagging
method achieved the highest accuracy among within-word and cross-word pronunciation

variations. two reason to justify that no noticeable enhancement: the increase in the total

number of words, and the also increase the n-grams in the langue model.

Table 6-19 A comparison between compound words techniques

Combined method

Accuracy (%)

Execution Time

(minutes)

Within-word and merging

based on PoS tagging

90.15

32.17
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CHAPTER 7

RESCORING N-BEST HYPOTHESES

7.1 Introduction

Improving speech recognition accuracy through linguistic knowledge is a major
research area in automatic speech recognition systems. In this chapter, we present a
syntax-mining approach to rescore N-best hypotheses for Arabic speech recognition
systems. The proposed method depends on a machine learning tool (weka-3-6-5) to
extract the N-best syntactic rules of the baseline tagged transcription corpus, which was
tagged using Stanford Arabic tagger. The chapter presents the modeling technique of

syntactically incorrect structure of the baseline output. The syntactically incorrect output structure
problem appears in the form of different orders of words, out of the Arabic correct syntactic

structure.

Figure 7-1 demonstrates an example of one baseline output sentence with its
corresponding hypotheses. In this figure, the output sentence (to be released to the user)
is the first hypothesis, while the correct sentence is the second one, the highlighted
sentence. The sentences in Figure 7-1 are called N-best hypotheses (also called N-best

list), where N is chosen to be 6.
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6-best-hypotheses of this test file:
2o gl b G5 Rl Jy sl e Al AL 3l

sl 5 ) Jysalll e Aia 30050 3l
20 sl b (5 Rl Jy sl e Al AL
apals G JEad) Jpelll 2 Hind ALy
B 5Ll (g i) sl e H5an 3l X
B3 pald) 3 (5 R sl 0 Hoa Ao ]

4o sis (5 )l Josll (2 Gt 00 X

Figure 7-1 An example of 6-best hypotheses of a sentence

To model this problem (i.e. out of language syntactic structure results), the tags of
the words were used as a criterion for rescoring and sorting the N-best list. The tags use
the word’s properties instead of the word itself. We used “language syntax rules” to
indicate for the most frequently tags relationships appearing in the Arabic language. The
rescored hypotheses are then sorted to pick the top score hypothesis. Figure 7-2 shows

the idea behind the proposed rescoring model.

N-grams Language

language
model

syntax rules

Speech
Waveform / ~Top
N-best list /' Ordered list " choice

Figure 7-2 Illustration of rescoring N-best list
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7.2 Related work

Using linguistic knowledge to improve speech recognition systems was used by
many researchers. Salgado-Garza at al. in [39] demonstrated the usefulness of syntactic
trigrams in improving the performance of a speech recognizer for Spanish. They achieved
a significant enhancement. Wang et al. in [123] compared the efficacy of a variety of
language models for rescoring word graphs and N-best lists generated by a large
vocabulary continuous speech recognizer. These language models differ based on the
level of knowledge used (word, lexical features, syntax) and the type of integration of
that knowledge. Xiang et al. in [124] presented advanced techniques that improved the
performance of IBM Malay-English speech translation system significantly. They
generated linguistics-driven hierarchical rules to enhance the formal syntax-based
translation model. In [133], Jeon et al. integrated prosodic information for ASR using an
n-best rescoring scheme. Their rescoring method achieved a WER reduction of 3.64%
and 2.07% using two different ASR systems. Ganapathiraju et al. in [134] addressed the
use of a support vector machine as a classifier in a continuous speech recognition system.
A hybrid SVM/HMM system has been developed that uses SVMs to rescore an N-best
list hypotheses generated by a conventional HMM system. Birkenes et al. in [135] used
logistic regression to rescore N-best list for continuous speech recognition systems. Jang
[136] proposed an unsupervised learning algorithm that learns hierarchical patterns of
word sequences in spoken language utterances. It extracts cluster rules from training data
based on high n-gram probabilities to cluster words or segment a sentence. The learned

cluster rules were used to improve the n-best utterance hypothesis list.
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As Arabic Part of speech (PoS) tagging is an essential component in our method,
we performed the following literature review. The stochastic method dominates PoS
tagging models. Diab et al. in [125] presented an SVM based approach to automatically
tag Arabic text. Al-Shamsi and Guessoum in [126] presented a PoS Tagger for Arabic
using a HMM approach. El-Hadj et al. in [127] presented an Arabic PoS tagger that uses
an HMM model to represent the internal linguistic structure of the Arabic sentence. A
corpus composed of old texts extracted from books written in the ninth century AD was
created. They presented the characteristics of the Arabic language and the set of tags
used. Albared et al. in [128] presented an HMM approach to tackle the PoS tagging
problem in Arabic. Finally, the Stanford Natural Language Processing Group developed

an Arabic tagger [129] with an accuracy range between 80% and 96%.

According to the literature review, and to the best of our knowledge, we have not
found any research work that employs a machine learning algorithm to distill N-best
syntactic rules to be used for rescoring N-best hypotheses for large vocabulary

continuous speech recognition systems.

7.3 Data-Mining Approach (WEKA tool)

Weka is a collection of machine learning algorithms for data mining tasks which
represents a process developed to examine large amounts of data routinely collected.
Extracting N-best syntactic rules using weka tool was described by Tobias Scheffer in
[130]. He presented a fast algorithm that finds the n best rules which maximize the
resulting criterion. The strength of this tool is the ability to find the relationships between

tags with no consecutive constraint. For example, if we have a tagged sentence, then it is
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possible to describe the relations between its tags as follows: if the first word’s tag is
noun and the sixth word’s tag is adjective, then the ninth word’s tag is adverb with
certain accuracy. This also could be used for words, i.e. an extracted rule could have n
words with its relationships and accuracy. Data mining is used in most areas where data
are collected such as health, marketing, communications, etc. it is worth noting that data
mining algorithms require high performance computing machines. For more information
about weka tool, Please refer to Machine Learning Group at University of Waikato in

[131].

7.4 The Proposed Method

Rescoring N-best hypotheses is the basis of our method. The rescoring process
was performed for each hypothesis to find the new score. A hypothesis new score is the
total number of the hypothesis’ rules that are already found in the language syntax rules
(extracted from the tagged transcription corpus). The hypothesis with the maximum

matched rules is considered as the best one. Our method can be described using Figure 7-

Decoder It ger)erated sentenge _,
1 while sentence 3 is

the correct one

3.

Original N- Rescored N- (T
best list best list J
Sentence 1 Sentence 3
Sentence 2 Language Sentence 1
Sentence 3 syntax Sentence 2
Sentence 4 rules Sentence 4

| s

Figure 7-3 Generation of rescored N-best list
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In Figure 7-3, suppose that the third sentence is the correct sentence that should
be returned by the decoder. If the N-best hypotheses list was rescored using language
syntax rules, we expect, hopefully, to get a better result since the final output will be
syntactically evaluated. In this case, the hypothesis with maximum number of rules is
chosen since the other hypotheses are less likely to be the best one. Hence instead of
returning the previously top choice (sentence 1) of N-best list, it will return the top choice
of Rescored N-best list (sentence 3) as shown in Figure 7-3. For more clarification,

suppose that the two hypotheses of a tested file are as follows:

(1) VBD NN NNP DTNNP NN NNP NNP DTJJ DTNN

(2) VBD NN NNS DTNNP JJ NNP NN DTJJ DTNNS

Each hypothesis is evaluated by finding the total number of the hypothesis’ rules
already found in the language syntax rules. Suppose that hypothesis number (2) has 4
matching rules while hypothesis number (1) has only 3. In this case, hypothesis number
(2) will be chosen as output since it has the maximum matching rules. Since the N-best
hypotheses are sorted according to the acoustic score, if two hypotheses have the same
matching rules, the first one will be chosen as it has the highest acoustic score. Therefore,
two factors are contributed to decide which among hypothesis in N-best list would be the
best one: acoustic score and the total number of language syntax rules belong the

hypothesis.

Before using weka tool, the transcription corpus was tagged using Stanford

Arabic tagger which contains 29 tags as shown in Appendix 6.
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Finding language syntax rules was performed using a machine learning tool
(weka-3-6-5). This tool was called to find N-best syntactic rules. In our method, we
choose to find the best 3000 syntactic rules. For more elaboration, Table 7-1 shows the

first best five rules.

Table 7-1 First 5-Best syntactic rules of 3000 extracted rules

Rule Syntactic relations
1 TAG4=CD TAG6=DTNN ==> TAG5=IN
acc: (0.95635)
2 TAG1=VBD TAG3=DTJJ TAG7=DTNN ==> TAG2=DTNN
acc: (0.95635)
3 TAG7=CD TAG8=IN ==> TAGY9=DTNN
acc: (0.95222)
4 TAG7=CD TAGY9=DTNN ==> TAGS8=IN
acc: (0.95222)
5 TAG2=DTNN TAG3=IN TAGS5=DTNN ==> TAG4=NN
acc: (0.94985)

Our transcription corpus contains sentences that include up to 30 words.
Therefore, our rules have the relationships between tags in the range from 1 to 30. The
first rule in Table 7-1 shows that if the fourth word’s tag is a number and the sixth word’s
tag is a noun, then the fifth word’s tag will be preposition with rule accuracy of 95.635%.
Rule 2 in Table 7-1 shows the relationships between not neighboring tags (tagl, tags,
tag7, tag2). That is, Weka tool can be used to find the relationships between long-
distance tags. As example, the following rule provides the relationships between 6 not-

consecutive tags.

TAG1=VBD TAG3=DTNN TAG4=DTJJ TAG5=NN TAGl2=NN ==> TAG2=NN
acc: (0.92298)
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As we mentioned in section 7-3 that extracting association rules in a large data
require a high performance computing (HPC) environment. In our experiments, we found
that a desktop computer which contains a single processing chip of 3.2GHz and 2.0 GB
of RAM could obtain no more than 530 rules. Therefore, extracting high number of rules
in a large corpus requires HPC. Extracting 3000 rules using HPC took around 4 hours

while it had taken around 24 hours in the desktop.

HPC is the application of "supercomputers™ to computational problems that are
either too large for standard computers or would take too long. HPC environment consists
of a network of nodes, each of which contains one or more processing chips, as well as its
own memory. In our method, we choose to extract 3000 rules, so we used the HPC at

KUPM which has the following hardware characteristics, [120]:
- 128 compute-node e1350 IBM eServer cluster.
- The cluster has 128 compute nodes. Each compute node of the cluster is dual-
processor having two 2.0 GHz x3550 Xeon Quad-core E5405 — processors.
- The total number of cores in the cluster is 1024.
- Each master node has 45 GB of RAM.
- Each compute node has 4 GB of RAM.

Our method can be described in the following algorithm:
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N-best Hypothesis Rescoring Algorithm

Have the transcription corpus tagged

Using the tagged corpus, extract N-best rules

Generate the N-best hypotheses for each tested file

Have the N-best hypotheses tagged for tested files

For each tested file
For each hypothesis in the tested files

Count the total number of matched rules*

Return the hypothesis of the maximum matched rules
End for

End for

* Matched rules: Hypothesis rules that are also found in the language syntax rules

We used the CMU PocketSphinx to generate the 50-Best hypotheses for each

utterance in the test set. After intensive investigation of our method, we did not find

significant enhancement. However, we found enhancements in some tested files as well

as new errors introduced in others. Figure 7-4 and Figure 7-5 show enhancement in some

tested files.
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A waveform of a speech
sentence with its text

form

Coll e IS el b 555 3,5 4 885 Slaa il 5 15

-

- :\,}

As recognized by the

Al 22 O3S Gl 55 550 25 38,3 Blaga L 55 15

-

baseline system el
Found at = Hypothesis # 36

As recognized by the Ol ole 008 Colall (8 5558 5h 058 3850 Sl il 285 15

enhanced system el

Figure 7-4 A perfect enhancement in a tested file

A waveform of a speech
sentence with its text

form

GIISE G 2yl Al pe B350 A 03 30 &g s
le g b Aokl A

As recognized by the

Lldle (e 2al) adla e Ayl gldll J53 G130 &) J3s

baseline system e a4l
Found at = Hypothesis # 50

As recognized by the L3l (e 2 5all mla (e L Dall ddll J50 1530 Sl His

enhanced system e 5 b 4kl

Figure 7-5 A perfect enhancement in a tested file

For the tested file in Figure 7-4, the best hypothesis was found at position #36,

while the hypothesis #50 was found to be best one in Figure 7-5. The previous two

examples show a perfect enhancement where a wrong word was switched to a correct

one. The following are two other examples to show partial enhancements in the tested

files. Figure 7-6 found the best choice to be the hypothesis #8, while the hypothesis #4

was found to the best one in Figure 7-7.
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A waveform of a speech
sentence with its text

form

il 3 ke 5 15Y 6

As recognized by the

baseline system

Oamaad s 40l oy 55 hilll e 3 AL jaw Laliin Oy 80 K

il 3 ke 5 15Y 6

Found at =

Hypothesis # 8

As recognized by the

enhanced system

Al ol A jialos jed A AL e laligia Gy ) X

Gl 3 pbe 5 15Y 68 el

Figure 7-6 A partial enhancement in a tested file

A waveform of a speech
sentence with its text

form

Y1 58 8

As recognized by the

baseline system

s Y1 308 O

Found at =

Hypothesis # 4

As recognized by the

enhanced system

A A& (558 G

Figure 7-7 A partial enhancement in a tested file

The previous examples show that our method is a promising method to enhance

shown in Figure 7-8.

speech recognition accuracy. However, with enhancements in some tested files, we found

new errors (i.e. previously correct recognized words) introduced in some tested files as
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A waveform of a speech
sentence with its text O pns Gy Jael Ja ) e 258 485 Al

form

As recognized by the R T i, e
) o sals G’y Jlael Jla ) G 238 485U, S
baseline system

Found at = Hypothesis # 9

As recognized by the O sals G yeafins’s Jlael JB ) a3 485U, SIS

enhanced system

Figure 7-8 A wrong hypothesis selection example

We also would like to present a case where the N-best hypotheses already has the
correct choice but was not selected after the rescoring process. Figure 7-9 shows as

example.

A waveform of a speech
sentence with its text B0 a Ll A R el 8 45s ALy i3

form

As recognized by the I P .
A gl G laal) by gl e Alas Ay 3
baseline system ] ]

The chosen = Hypothesis # 4

As recognized by the e . e e i
Lo gl (o laall Jysaill (e 4308 ALl sl
enhanced system ]

The correct =» Hypothesis # 3

Neither baseline nor I . o ore L x e
Ao gl A (o laall Ju sl e Aliaa 4L 5 )
enhanced ] ]

Figure 7-9 Not-selected correct hypothesis example

In our method, part of speech tagging was crucial to support the correctness of the

method used. Even though the Stanford tagger which was used in our method has many

125



correct tagged sentences, however, there are many mistakenly tagged sentences. We
provide two examples of a correct tagged sentence and a wrong tagged one as shown in

Table 7-2.

Table 7-2 Two examples of tagged sentences

A correct tagged sentence

</ \V/BD 48 3/NN - sSal Jl/NNP 432 s+ud/DTNNP 4< 53 /NN JI/NNP

SaaS/NNP 485 5<Y1/DTJJ 2 s3/DTNN

A wrong tagged sentence

JE /NN 25e/J] OY/NN 4 5622/ DTNN e3uY/DTI) deasas/ VN

S/IN GIINN sSVBP 135 30/ VN Lall/ NN Yd/NN | saa o/ NN &881L/J)

In Table 7-2, the highlighted texts were wrongly tagged. Therefore, extracting the
language syntax rules using many errors will not be strong enough for rescoring the N-
best hypotheses. This is our justification of our result, enhancement in some tested files

and new errors in others.

In addition to the tagger problem, we finalize this section by explaining the effect
of diacritics in this research work. Not like English, Arabic sentences are diacritized.

Accordingly, the N-best hypotheses will also be diacritized.
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9106- a5 skball L3 3 LaJl s Lall
9179- idssrull 3 jLall Ladials adl
9320- idssrall 3 §Laldl Ladial al
9130- i3y 4iball b 5 Lidl il i)
9203- L3y 4kball b 5 Lidl iadies il
9344- Ldysrall 3 5 Ladl Ladas o

9564— d52 4zl il
9588- diHyaxuwll jLall
9609- i53axuwll jLall
9633- diHoaxwll jLall
9655- 53 axw ! jLall
9679- iS5y axwll 3 Lall
9756 45 exwll LaJl
9780- i5saxwll jLall
9909- idysrull Juaal

FEEEEEEEEREER L
b

Figure 7-10 10-Best list of a tested file.

The problem is the gap between diacritized hypothesis and non-diacritized tagger
used. Therefore, the highlighted hypothesis in Figure 7-10 are considered the same from
tagger point of view. This same-tags case prevents the diversity that should be presented
in the N-best hypotheses. One case, among 300-best hypotheses, we found 16 distinct
hypotheses, (i.e. at words level). As the acoustic scores are sorted in decreasing order, the
problem showed up when, as example, finding the first 50 hypotheses with same words
and different diacritics. So, instead of searching among first different hypotheses like
English, the search will be deep (in diacritized Arabic) which in the same time moving
away from the best hypotheses group, i.e. the beginning of hypotheses which have high

acoustic scores.
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CLOSING REMARKS

Within-word: Extracting pronunciation variants directly from training
pronunciation corpus and have it represented in the dictionary and the language model
shows significant enhancement for MSA ASRs. The sequence alignment method was
used to extract a number of variants to model them in the dictionary and the language
model. The experiments show that as we move away from the small words, the system
gives better performance. The enhancement we achieved has not only come from the
pronunciation variation modeling in the dictionary, but was an indirect result of the

recalculated bigrams and trigrams probabilities in the language model.

As future work, we propose to try the indirect data-driven approach to mine the
transformation rules that can be used to generate the variants. Then a comparison could
be made between both approaches. Other sequence alignment scores and LD measures

can also be investigated.

Cross-word: The proposed knowledge-based approach achieved feasible
improvement for cross-word variation modeling. Mainly, two MSA phonological rules
were applied, the Idgham and Iglaab. The experiment results clearly showed that the
Idgham occurred more than Iglaab. The ldgham rules dominate the generation of the
cross-word variants. The significant enhancement we achieved has not only come from
the cross-word pronunciation modeling in the dictionary, but also indirectly from the

recalculated n-grams probabilities in the language model.
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We conclude that Viterbi algorithm works better with long words. Speech
recognition research should consider this fact when designing dictionaries. We found that
merging words based on their types, viz. the tag, leads to significant improvement in
Arabic ASRs. The third approach we implemented in merging words was small words
merging which also gives a significant enhancement. We also found that adding
compound words to the dictionary as well as to the language model reduces the

perplexity and enhances the performance as compared to the baseline system.

As future work, we propose to check more phonological rules more than just two
cases as we did, Arabic has more rules to be investigated. We also propose investigating
more word-combination cases for merging using PoS tagging. In particular, we expect
that the construct phrases (4éLxY¥') make a good candidate. Examples include :( ¢o=28ll 4
Jua il ey m jdas). Another suggested candidate is the Arabic "and" connective ( s's

cakall)) such as: (Azsad s dnal o) ga ¢l guall (51 yall Llialy (3la),

N-best rescoring: We conclude that N-best rescoring for Arabic speech

recognition (using Arabic data-driven syntax) does not provide significant enhancement.
However, more investigation can be performed with a high accurate part of speech

tagging model.

As future work, we recommend to utilize linguistic knowledge at the decoder
level, i.e. before releasing the decoder output. We also recommend to do further research
on Arabic part of speech tagging, especially for diacritized text. we also propose to
review Arabic phoneme set to be extracted using data-driven technique as an alternative
method of the currently used linguistic method. additionally, the high frequently syntactic

rules appearing in the language could be used in the modeling, instead of using all rules.
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APPENDICES

Appendix 1 : Arabic Terminologies

Al-Alta’rif The determiner ().
Damma An Arabic short vowel (2) , pronounced like (u).

Dammatan Two Damma (or doubling of Damma), pronounced like (n). Also called
Tanween of Damma.

Fatha An Arabic short vowel (=), pronounced like (a).

Fathatan Two Fatha (doubling of Fatha), pronounced like (n). Also called Tanween of
Fatha.

Hamzat Al-Wasl It is an extra Hamza that helps to start pronouncing an unvowelled
letter in Arabic continuous speech.

Idgham Also called geminating or assimilation, it is a merging of two consecutive letters
of the second type letter.

Idgham almutajanisan It is a merging between two consecutive different letters that are
close in pronunciation. Some of these cases include: taa’/ < and daal / 2, taa’ / < and
Taa’ /%, dhaal / < 3 and Zaa /%, qaaf / & and kaaf /<, laam /J and raa’ / .

Idgham almutmathlan It is a merging between two consecutive identical letters shown
inthe following list { =, <, &z ,2,¢,2,3,0,0,0¢, 6, 0a,0a,b,b ¢, &,
3,49, d, o} The rule means that any unvowelled Arabic letter followed by the same
Arabic vowelled letter will be doubled in a single merged word. Note that { !, 5, ¢ } are
not included in the list.

Iglaab it is a replacement of unvowelled nuun (Nuun Saakinah <> &) or Tanween ( =« :
«-) that comes before vowelled baa’ (<) by unvowelled miim (Miim Saakinah <> 3).

Kasra An Arabic short vowel (-) , pronounced like (i).
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Kasratan Two Damma (doubling of Kasra), preannounced like (n). Also is called
Tanween of Kasra.

Nuun Saakina An unvowelled nuun symbolized as (&)
Shadda It is a doubling of consonant and symbolized as ( < )

Shamsi group Arabic letters include (taa’, thaa’, daal, dhaal, raa’, zaay, siin, shiin, Saad,
Daad, Taa’, Zaa’, laam, and nuun).

Sukun Absence of vowel, symbolized by ( <)

Ta’al marbouta It is an Arabic letter symbolized as (&) and shown at the end of the
words.

Tanween Includes any one of Dammatan, Fathatan, or Kasratan. It is symbolized as ( = «

Zes).
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Appendix 2 : Arabic—Roman letters mapping table

Arabic | Roman | Arabic |Roman | Arabic | Roman | Arabic | Roman
¢ (hamza) ’ 2 (daal) d = (Daad) D < (kaaf) k

< (baa’) b 3 (dhaal) dh Lk (Taa’) T d (laam) I

< (taa’) t U (raa’) r L (Zaa’) z a (miim) m

< (thaa”) th D (zaay) z ¢ (‘ayn) ‘ o (nuun) n

z (jiim) J o= (siin) S ¢ (ghayn) gh s (haa’) h

z (Haa’) H s (shiin) sh < (faa’) f s(waaw) | woru
¢ (khaa’) kh o= (Saad) S & (gaaf) q ¢ (yaa’) | yorii
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Appendix 3 : The phonemes set used in the baseline system (IPA)

Phoneme And Letter and Phoneme And Letter
IPA Examples IPA

IAE/ & &« &- Fatha /IDH/ 0 3 (Thal)
IAE:/ &1 e I IRl r » (Raa)
IAA/ a ¢« - Hard Fatah 1Z] z J (Zain)
/AH/ a: 3« :Soft Fatah ISl s o= (Seen)
/UH/ u &<« 2 Damma ISHI [ Ui (Sheen)
JUW/ uz ond £ IS o= (Sad)
JUX/ 0 BRI /DD/ df o= (Dad)
/IH/ e <u« - Kasra ITT/ L (Taa)
Nyl iz Jéd IDH2/ &F L (Thaa)
NXI i o - IAIl § ¢ (Ain)
IAW/ © R IGHI y ¢ (Ghain)
IAY/ g1 g~ IFI f < (Faa)
JE/ ? ¢ (Hamza) IQ/ g & (Qaf)
/Bl b < (Baa) IKI K 4 (Kaf)
Tl t < (Taa) Il d(Lam)
ITH/ 0 & (Thaa) M/ m ¢ (Meem)
1JH/ d3 =i (Jeem) | /N/ n & (Noon)
[HH/ h z (Haa) IHI h > (Haa)
G & (Khah) IWI W s (Waw)
/DI d > (Dal) Yl j < (Yaa)
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http://en.wikipedia.org/wiki/Near-open_front_unrounded_vowel
http://en.wikipedia.org/wiki/Voiced_dental_fricative
http://en.wikipedia.org/wiki/Near-open_front_unrounded_vowel
http://en.wikipedia.org/wiki/Alveolar_trill
http://en.wikipedia.org/wiki/Open_back_unrounded_vowel
http://en.wikipedia.org/wiki/Voiced_alveolar_sibilant
http://en.wikipedia.org/wiki/Open_back_unrounded_vowel
http://en.wikipedia.org/wiki/Voiceless_alveolar_sibilant
http://en.wikipedia.org/wiki/Close_back_rounded_vowel
http://en.wikipedia.org/wiki/Voiceless_palato-alveolar_sibilant
http://en.wikipedia.org/wiki/Close_back_rounded_vowel
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Close-mid_back_rounded_vowel
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Close-mid_front_unrounded_vowel
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Close_front_unrounded_vowel
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Close_front_unrounded_vowel
http://en.wikipedia.org/wiki/Voiced_pharyngeal_fricative
http://en.wikipedia.org/wiki/Near-close_near-back_vowel
http://en.wikipedia.org/wiki/Voiced_velar_fricative
http://en.wikipedia.org/wiki/Close-mid_front_unrounded_vowel
http://en.wikipedia.org/wiki/Voiceless_labiodental_fricative
http://en.wikipedia.org/wiki/Glottal_stop
http://en.wikipedia.org/wiki/Voiceless_uvular_plosive
http://en.wikipedia.org/wiki/Voiced_bilabial_plosive
http://en.wikipedia.org/wiki/Voiceless_velar_plosive
http://en.wikipedia.org/wiki/Voiceless_alveolar_plosive
http://en.wikipedia.org/wiki/Alveolar_lateral_approximant
http://en.wikipedia.org/wiki/Voiceless_dental_fricative
http://en.wikipedia.org/wiki/Bilabial_nasal
http://en.wikipedia.org/wiki/Voiced_palato-alveolar_affricate
http://en.wikipedia.org/wiki/Alveolar_nasal
http://en.wikipedia.org/wiki/Voiceless_pharyngeal_fricative
http://en.wikipedia.org/wiki/Voiceless_glottal_fricative
http://en.wikipedia.org/wiki/Voiceless_uvular_fricative
http://en.wikipedia.org/wiki/Voiced_labio-velar_approximant
http://en.wikipedia.org/wiki/Voiced_alveolar_plosive
http://en.wikipedia.org/wiki/Palatal_approximant

Appendix 4: Phoneme-Character mapping

Unique character

# ) Phoneme Arabic representation
representation
1 A AE :
2 C AE: S
3 | AA :
4 J AH =
) @) UH -
6 P uw g
7 U UXx =
8 X IH ,
9 } Y -
10 { IX -
11 ] AW 5
12 [ AY i
13 TH &
14 , JH d
15 ! HH c
16 @ KH ¢
17 # DH 3
18 $ SH o
19 % SS o=
20 A DD o=
21 & TT L
22 * DH2 L
23 + Al &
24 = GH ¢
25 E 3
26 B <
27 T <
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*D

9.

28
29
30
31

32

33
34

35

36
37

38
39
40
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Appendix 5: Rules usage in the entire transcription corpus

Final letter of first word Initial letter of second Usage
Rule (unvowelled) word (vowelled) times
A letter Identical with the
previous letter

baa’ / < baa’ / < 17

taa’ /& taa’ /& 38

thaa’ /& thaa’ /& 0

jiim/z jiim/ ¢z 0

Haa’ /¢ Haa’ / 0

khaa’ / ¢ khaa’ / ¢ 0

daal / » daal / » 2

dhaal / 2 dhaal / 3 0

raa’ / O raa’ / L 16

zaay /) zaay /) 1

siin / o= siin / o= 7

1 shiin /s shiin /& 0

Saad /o= Saad /o= 0

Daad /= Daad /o= 0

Taa’ /= Taa’ /& 0

Zaa /h Zaa /h 0

‘ayn /g ‘ayn /g 18

ghayn/ ¢ ghayn /¢ 0

faa’ /— faa’ /— 12

gaaf/ & gaaf/ & 3

kaaf / & kaaf / & 0

laam /J laam /J 49

miim / o miim/ » 42

nuun/ ¢ nuun/ o 0

haa’ /e haa’ /e 0
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yaa’ /s 1531
) raa’ /0
Nuun Saakinah and y
miim /»
2 Tanween
laam /J
waaw /s
nuun /o
Nuun Saakinah and 200
3 baa’ / «
Tanween
A close in pronunciation
A letter
letter
4 taa’ /<& daal / 2 25
5 taa’ /& Taa’ /b 4
6 daal / 2 taa’ / < 32
7 baa’ / « miim/ » 14
8 dhaal / 2 zaay /b 0
9 kaaf /3 kaaf /& 1
10 laam /J raa’/ 6
Total 2018
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Appendix 6: Stanford tagging set

# Tag Meaning with examples
1 ADJ NUM Adjective, Numeric
Ayl il
2 DTJ DT + Adjective
A,gd;.“s:\:dnéﬂ\
3 DTJR Adjective, comparative
Llalle s Sl
4 DTNN DT + Noun, singular or mass
Laalall ddadaiall
5 DTNNP DT + Proper noun, singular
E)Am\cé\ﬂ\
6 DTNNS DT + Noun, plural
Q\,}‘}I}ﬂ “L!\‘)lzmﬂ\
7 IN Preposition or subordinating conjunction
ek SO RSN FEN
u\ d:\A Q.QJMA &J);
8 JJ Adjective
e RELITATEES
9 JIR Adjective, comparative
S
10 NN Noun, singular or mass
11 NNP Proper noun, singular
Olalecly i
12 NNS Noun, plural
13 | NOUN_QUANT Noun, quantity
B g M
14 CC Coordinating conjunction
e
15 CD Cardinal number
ol (A
16 DT Demonstrative pronouns
EKRTY
17 PRP Personal pronoun
R A
18 PRP$ Possessive pronoun
(‘.\A
19 RB Adverb
Cua cllia
20 RP Particle
Y el
21 VB Verb, base form
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22 VBD Verb, past tense
lld e
23 VBG Verb, gerund or present participle
el @y
24 VBN Verb, past participle
22y ¢aldy
25 VBP Verb, non3rd person singular present
Jazy eyl 5
26 VN Verb, 3rd person singular present
aAJQAA crd;um
27 WP Whpronoun
Calll
28 WRB Whadverb
29 UNK Unknown word
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NOMENCLATURE

ASR
ANN
CD
CHMM
Cl
CMU
CRF
DARPA
DP
DTW
FPGA
GALE
GMM
HMM
HPC
HTK

LD

LIN
LM
LPCC
LVCSR
MFCC
ML
MMSE
MSA
MLP

Automatic speech recognition

Artificial neural networks

Untied context-dependent phase
Continuous HMM

Context-independent phase

Carnegie Mellon University

Conditional random fields

Defense Advanced Research Projects Agency
Dynamic programming

Dynamic time warping

Field programmable gate array

Global autonomous language exploitation
Gaussian mixture models

Hidden Markov Model

High performance computing

Hidden Markov Model Toolkit
Information technology

Levenshtein Distance

linear input networks

Language Model

Linear Predictive Cepstral Coefficients
Large vocabulary continuous speech recognition
Mel Frequency Cepstrum Coefficients
Maximum-likelihood

Minimum mean-square-error

Modern standard Arabic

multilayer perceptron
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NLP
NNLMs
ooV
PLP
PoS

PP
SCHMM
SGMM
SGMM
SVM
WER
WNN

Natural language processing
Neural Network Based Language Modeling
Out Of Vocabulary

perceptual linear predictive

Part of Speech

Perplexity (PP)

Semi-continuous HMM

Subspace Gaussian mixture models
subspace Gaussian mixture models
Support vector machine

Word Error Rate

Wavelet Neural Network
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