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Today science is concerned with toxic emissions from refineries, such as NOX. This 

research work is concerned with studying NOX emission from oil refineries. When NOX 

exists in large amounts, it could cause different types of serious diseases and illnesses 

like lung and breathing problems to human being and animals. Due to the dangerous 

effects of NOX on the environment and human health, it becomes essential for science to 

do deep research in this area, in order to find optimal ways of NOX   reduction. The 

purpose of the study is to find how to reduce NOX emissions from oil refineries using 

different methods while maintaining profits at the maximum possible value. The three 

methods being used for NOX reduction are; balancing, fuel switching and use of 

technology for NOX reduction. I will try to reduce NOX emissions using the above three 

methods with different reduction percentage ranging from 20% to 80%. The profits of the 

oil refinery for each reduction target of NOX will be analyzed and looked at closely. As it 

should be stated in this research work, my goal is to find the optimal profits considering 

the required NOX reduction percentage through the use of the GAMS software General 

Algebraic Management System. GAMS will assist in calculating total cost and profits for 

different cases with different NOX reduction percentages. GAMS, in addition to giving 

profits values can tell us, among the three NOX reduction methods, which method will be 

used for each unit of the oil refinery in order to keep the profits at the maximum possible 

value. 
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 أو اكاسيد النيتروجين السامة   NOxثات السامة من المصانع وعلي سبيل المثال، الـــ   إن العلم مهتم اليوم بالإنبعا

 

 بكميات كبيرة قد تتسبب في كثير من الأمــراض: كأمــــراض الرئة   NOxهذا البحث معنى بدراسة انبعثات الــ  

 

 الصحة الإنسانية . أصبح من الضــــروريعلـــى البيئة و  NOxوالجهاز التنفسي . ويسبب التأثيرات السلبية لـــــ 

 

 أن يتجه العلم بشكل أعمق في هذه الناحية البحثية . إن الهدف من هذا البحث هو أيجاد الكيفية  لتقليــــل إنبعاثـــات

 

 من المعمل بعدة طرق وفي نفس الوقت محاولة الحصول على أقصى ربح ممكن إن الطرق العلـــمية  NOxالـــ   

 

 هي :  التوازن بين الوحدات المعملية في الوقود المستخدم وتغيير الوقــود    NOxوحة في البحث لتقليل الــ  المطر

 

 . سأقوم في هذا البحث باستخـــــدام هــــذه  NOxالمستخدم لنوع آخر من الوقود واستخدام تقنية حديثة لتقليل الـــ  

 

 %  . 01%   إلي   11معمل تكرير الزيت بنسب مختلفة تتراوح من  من NOxالطرق الثلاث لتقليل إنبعاثات الــ 

 

 . أن هـــدفي NOxسأقوم في هذا البحث بحساب الأرباح الصافية للمعمل لكل نسبة تقليل مقترحة لإنبعاثات الــــــ 

 

 نات والحصوللتحليل البيا   GAMSفي البحث  هو إيجاد الأرباح المثلي للمعمل من خلال استعمال برنامج الــ 

 

 ، بالإضافة NOxسيقوم بحساب الأرباح عند نسب مختلفة  لــ  GAMSعلى القيمة المثلى للأرباح الصافية . الــ 

 

 يقترح علينا أفضل طريقة من الطرق الثلاث  المذكورة لتقليل الـــ  GAMS لمعرفة الأرباح . فإن برنامج الــ
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Chapter 1 
 
 

Introduction 

 

Petroleum is a complex mixture of many compounds of organic liquids called 

crude oil and natural gas. These organic liquids occur naturally in the ground and they 

formed millions of years ago. Crude oil is not the same everywhere but it varies from one 

location to another location in color and composition. It varies in color from a pale 

yellow low viscosity liquid to heavy black ‘treacle’ consistency. Crude oil and natural gas 

are extracted from the ground, on land or under the oceans, by drilling an oil well. Then, 

oil is transported by pipeline and/or ship to refineries where their components are 

processed into refined products. Crude oil and natural gas are of little use in their raw 

state. However, their value lies in what is created from them: fuels, lubricating oils, 

waxes asphalt, petrochemicals and pipeline quality natural gas. An oil refinery is an 

organized and coordinated arrangement of manufacturing processes designed to produce 

physical and chemical changes in crude oil to convert it into everyday products like petrol 

diesel, lubricating oil, fuel and bitumen. Crude oil coming from wells contains mixture of 

hydrocarbon compounds and relatively small quantities of other materials such as 

sulphur, oxygen, nitrogen, salt and water. Most of these non-hydrocarbon substances are 

removed in the oil refinery processes where the oil is broken down into its various 

components, and blended into useful products. The crude contains hundreds of 
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compounds which vary in their properties and composition. A series of complex 

processes are required in order to convert the complex of hydrocarbons mixture into 

lighter compounds like gasoline and gas oil or diesel. The conversion process is the main 

task for an oil refinery. 

  A petroleum refinery is an extremely complex plant. However, in order to 

maximize profits from refinery, it requires that refinery operations optimize streams flow 

and process feed. Refining processes are central key components and a crucial link in oil 

supply chain. It is where crude petroleum is transformed into products that can be used as 

transportation and industrial fuels and for the manufacture of plastics, fibers, synthetic 

rubbers and many other useful commercial products. In general, an oil refinery is made 

up of several different parts.  Various processing units that separate crude oil into 

different fractions or cuts, upgrade and purify some of these cuts, and convert heavy 

fractions to light, more useful, fractions. Utility systems are referring for the systems and 

process that provide the refinery with fuel, flaring capability, electricity, steam , cooling 

water, effluent treatment, fire water, sweet water, compressed air, nitrogen, etc., all of 

which are necessary for a refinery operation. Tank farm is where all crude, finished 

products and intermediates are stored prior to usage or disposal. Tank farms are the 

facilities for receipt of crude oil and blending and dispatch of finished products. 

A modern oil refinery processes crude oil into high value products at minimal cost 

with minimal environmental burden. Refineries produce a wide range of petroleum 

products, including gasoline, diesel, heating oil, residual fuel, cock, lubricants asphalt, 

and waxes, as well non hydrocarbon products such as sulfur and vanadium. Petroleum 

products are used in many areas of our lives: gasoline to run cars, heating oil to warm 
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houses, asphalt to pave roads, as well as other petroleum-based products such as plastics, 

medicine, etc. . 

The critical objective of a refinery operation, as in any other business-oriented 

ventures, is to generate maximum profit by converting crude oils into valuable products. 

Expectedly, there are many decisions to be considered to achieve an optimal operation for 

a refinery. At the planning level, the need to decide the types of crude oil(s) to process, 

the types of products to produce, the operating route to use, the best operating mode for 

each process, the type of catalyst to select for each process, and others. At the process 

level, there is a necessity to determine detailed operating conditions. Namely, 

temperatures, pressures, detailed process flows, and other values of processing variables. 

All these decisions interact with another; for example, a temperature change in a reactor 

would result in different product yields and distribution, and also utility consumption, 

hence a different process performance would result. These are bound to implicate and 

affect the decisions made at the planning level to select raw material feeds for the process 

involved and even possibly influence the overall operating scheme. Consequently, 

integration of refinery optimization for short is considered one of the most difficult and 

challenging applications of large-scale optimization but the expected outcome would be 

commensurable with the effort, time, and resources invested. 

The chemical process industry has been increasingly pursuing the use of 

computing technology to gather, organize, disseminate, and exploit enterprise 

information and to closely coordinate the decisions made at various levels of the process 

operational hierarchy so as to optimize overall corporate objectives. In refinery 

management, computer software is commonly deployed to assist in terms of planning, 



 
 

4 
 

 
 

scheduling, and control functions by executing effective decisions chiefly pertaining to 

crude oil selection, production planning, inventory control, and logistics of transport and 

dispatch management. Continuous research and development in these aspects have 

gained practical significance, as observed. In this respect, we support the notion advanced 

by Li, Zhange and Zhu , Bassett et al  and Bodington, that the preferred approach for 

achieving integration of planning and operations functions is through the formulation and 

solution of suitably structured mathematical programming models as they have been 

proven to offer the most effective tools. Indeed, it is the governing theme of this work 

that mathematical optimization offer the most effective framework for the integration at 

the strategic, tactical, and operational levels of refineries. This shall provide the thrust for 

undertaking the current work in this thesis research with ultimate objective of developing 

better management tools for decision-makers. In particular, this work considers the 

mathematical programming approaches for modeling the problem parameters for the 

planning of an oil refinery. Moreover, we should consider constraints like NOX, SOX & 

CO2 reduction regulations which are enforced into the refinery. This is why optimization 

model builders should consider the air pollutants into their models. 

  Air pollutants produced by refineries are very risky to human health. In addition 

air pollutants can damage on the ozone layer, water and air. Table 1.1 below shows some 

of the major air pollutants emitted by refineries. 
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Table 1.1: Air Pollutants Produced by Oil Refinery 

Main Air 
Pollutants 

 
Main Sources 

 
 

CO2 

 

Process fumaces, broilers, gas turbines. Fluidized catalytic cracking 
regenerators, CO broilers, Flare systems, and Incinerators. 

 
SO x 

 

Process fumaces, broilers, gas turbines. Fluidized catalytic cracking 
regenerators, CO broilers, Coke calciners, Sulphur recovery unit (SRU) 

 
NO x 

 

Process fumaces, broilers, gas turbines. Fluidized catalytic cracking 
regenerator, Coke calciners, Flare systems, and Incinerators. 

 
CO 

Process furnaces and broilers. Fluidized catalytic cracking 
regenerators, CO broilers, Coke calciners. Sulphur recovery unit (SRU). 
Flare systems and Incinerators. 

 
Particulates 

Process furnaces and broilers, particularly when firing liquid refinery 
fuels. Fluidized catalytic cracking regenerators, CO broilers, Coke 
plants and Incinerators. 

                                    

In this research, only NOX reduction will be studied. It will be part of the final 

refinery optimized planning model to reduce the NOX emissions. We can summarize our 

objective of this research into the following points: 

 Build a planning model for oil refinery with visbreaker and CDU units based on 

arab heavy crude oil. 

 Quantify NOX emission from oil refinery for a typical oil refinery consisting of 

eight processing units. 

 Study different options of technologies for NOX reduction and their effect on cost 

and profits. 

 Application of the developed planning model of the arab heavy crude oil to 

different cases of NOX reduction target ranging from 0% to 80%. 
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 Study the effect of NOX reduction targets on profits and cost of the oil refinery 

based on 100,000 BBL of crude oil processed on a daily basis. 
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Chapter 2 

Literature Review 

 

2.1 Overview of Refinery Process  

An oil refinery or petroleum refinery is an industrial process plant where crude oil 

is processed and refined into more useful petroleum products, such as diesel, gasoline, 

fuel, asphalt base, kerosene, heating oil and liquefied petroleum  gas. A crude oil is a 

mixture containing thousands of different organic hydrocarbon molecules which has 

about 83-87% carbon, 11-15% hydrogen, 1-6% sulfur and other organic hydrocarbon 

compounds. Oil refineries are large sprawling industrial plants with extensive piping 

running throughout, carrying streams of fluids between large chemical processing units. 

In many ways, oil refineries use much of the petroleum technology and can be thought of 

as types of chemical plants. The crude oil feedstock has typically been processed by an 

oil production plant. Usually, there is an oil tank farm at or near an oil refinery for 

storage of bulk products. 

Oil can be used in various of ways because it contains hydrocarbons of varying 

molecular masses, forms and lengths such as aromatics, paraffins, naphthenes (or 

cycloalkanes), dienes, alkenes, and alkynes. While the molecules in crude oil include 

different atoms such as sulfur and nitrogen, the hydrocarbons are the most common form 

http://en.wikipedia.org/wiki/Industrial_process
http://en.wikipedia.org/wiki/Factory
http://en.wikipedia.org/wiki/Crude_oil
http://en.wikipedia.org/wiki/Petroleum_products
http://en.wikipedia.org/wiki/Gasoline
http://en.wikipedia.org/wiki/Diesel_fuel
http://en.wikipedia.org/wiki/Asphalt
http://en.wikipedia.org/wiki/Heating_oil
http://en.wikipedia.org/wiki/Liquefied_petroleum_gas
http://en.wikipedia.org/wiki/Industry
http://en.wikipedia.org/wiki/Piping
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Chemical_process
http://en.wikipedia.org/wiki/Chemical_plant
http://en.wikipedia.org/wiki/Oil_production_plant
http://en.wikipedia.org/wiki/Oil_depot
http://en.wikipedia.org/wiki/Molecular_mass
http://en.wikipedia.org/wiki/Aromatic
http://en.wikipedia.org/wiki/Paraffin
http://en.wikipedia.org/wiki/Naphthene
http://en.wikipedia.org/wiki/Cycloalkane
http://en.wikipedia.org/wiki/Alkene
http://en.wikipedia.org/wiki/Alkyne
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of molecules. Hydrocarbon molecules are molecules of varying lengths and complexity 

made of hydrogen and carbon atoms, and a small number of oxygen atoms. The 

differences in the structure of these molecules account for their varying physical and 

chemical properties, and it is this variety that makes crude oil useful in a broad range of 

applications. 

Once crude oil is separated and purified of any contaminants and impurities, the 

fuel or the lubricant can be sold without further processing. Octane number of gasoline 

can be improved by catalytic reforming, which involves removing hydrogen from 

hydrocarbons producing compounds with higher octane ratings such as aromatics. 

Intermediate products such as the gas oils can be reprocessed to break heavy, long-

chained oil into lighter short-chained ones, by various forms of cracking such as fluid 

catalytic cracking, thermal cracking and hydrocracking. The final step in the gasoline 

production is blending of fuels with different octane ratings, vapor pressures, and other 

properties to meet product specifications. 

Oil refineries are large scale plants that are processing about a hundred thousand 

to several hundred thousand barrels of crude oil on a daily basis. Because of high 

capacity, many of the units operate continuously, as opposed to processing in batches, at 

steady state or nearly steady state for months to years. The high capacity makes also 

process optimization and advanced process control very desirable. 

Petroleum products are usually grouped into three categories as follows: light 

distillates (LPG, gasoline, and naphtha), middle distillates (kerosene, diesel), heavy 

distillates and residuum (heavy fuel oil, lubricating oils, wax, and asphalt). This 

classification is based on the way crude oil is distilled and separated into fractions (called 

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Catalytic_reforming
http://en.wikipedia.org/wiki/Aromatics
http://en.wikipedia.org/wiki/Gasoil
http://en.wikipedia.org/wiki/Cracking_(chemistry)
http://en.wikipedia.org/wiki/Fluid_catalytic_cracking
http://en.wikipedia.org/wiki/Fluid_catalytic_cracking
http://en.wikipedia.org/wiki/Thermal_cracking
http://en.wikipedia.org/wiki/Hydrocracking
http://en.wikipedia.org/wiki/Vapor_pressure
http://en.wikipedia.org/wiki/Barrel_(volume)
http://en.wikipedia.org/wiki/Continuous_production
http://en.wikipedia.org/wiki/Batch_production
http://en.wikipedia.org/wiki/Steady_state
http://en.wikipedia.org/wiki/Process_optimization
http://en.wikipedia.org/wiki/Advanced_process_control
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distillates and residuum) Below is a list of the main product streams going out from CDU 

in oil refinery.  

 

 Liquefied petroleum gas (LPG),  

 Gasoline (also known as petrol),  

 Naphtha, 

 Kerosene and related jet aircraft fuels, 

 Diesel fuel,  

 Fuel oils,  

 Lubricating oils,  

 Paraffin wax,  

 Asphalt and tar,  

 Petroleum coke.  

 

The first oil refineries in the world were built by Ignacy Łukasiewicz near Jasło, 

Austrian Empire (commonly known as Poland) from 1854 to 56, but they were initially 

small as there was no real demand for refined fuel. As Łukasiewicz's kerosene lamp 

gained popularity, the refining industry grew. 

The world's first large refinery opened at Ploiești, Romania, in 1856-57, with 

United States investment. After being taken over by Nazi Germany, the Ploiești refineries 

were bombed in Operation Tidal Wave by the Allies during the Oil Campaign of World 

War II. Another early large refinery was Oljeön, Sweden (1875). It is now preserved as a 

museum at a UNESCO World Heritage Site Engelsberg Ironworks.  

http://en.wiktionary.org/wiki/distillate
http://en.wiktionary.org/wiki/residuum
http://en.wikipedia.org/wiki/Liquified_petroleum_gas
http://en.wikipedia.org/wiki/Gasoline
http://en.wikipedia.org/wiki/Naphtha
http://en.wikipedia.org/wiki/Kerosene
http://en.wikipedia.org/wiki/Jet_fuel
http://en.wikipedia.org/wiki/Diesel_fuel
http://en.wikipedia.org/wiki/Fuel_oil
http://en.wikipedia.org/wiki/Lubricant#Base_oil_groups
http://en.wikipedia.org/wiki/Paraffin_wax
http://en.wikipedia.org/wiki/Asphalt
http://en.wikipedia.org/wiki/Tar
http://en.wikipedia.org/wiki/Petroleum_coke
http://en.wikipedia.org/wiki/Ignacy_%C5%81ukasiewicz
http://en.wikipedia.org/wiki/Jas%C5%82o
http://en.wikipedia.org/wiki/Austrian_Empire
http://en.wikipedia.org/wiki/Poland
http://en.wikipedia.org/wiki/Kerosene_lamp
http://en.wikipedia.org/wiki/Ploie%C8%99ti
http://en.wikipedia.org/wiki/Romania
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Nazi_Germany
http://en.wikipedia.org/wiki/Operation_Tidal_Wave
http://en.wikipedia.org/wiki/Allies_of_World_War_II
http://en.wikipedia.org/wiki/Oil_Campaign_of_World_War_II
http://en.wikipedia.org/wiki/Oil_Campaign_of_World_War_II
http://en.wikipedia.org/w/index.php?title=Olje%C3%B6n&action=edit&redlink=1
http://en.wikipedia.org/wiki/Sweden
http://en.wikipedia.org/wiki/UNESCO
http://en.wikipedia.org/wiki/World_Heritage_Site
http://en.wikipedia.org/wiki/Engelsberg_Ironworks
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At sometime, the refinery in Ras Tanura, Saudi Arabia owned by Saudi Aramco 

was claimed to be the largest oil refinery in the world. For most of the 20
th

 century, the 

largest refinery was the Abadan Refinery in Iran. This refinery suffered extensive damage 

during the Iran-Iraq war in the eighties. Currently, the world's largest refinery complex is 

the Jamnagar Refinery Complex, consisting of two refineries side by side operated by 

Reliance Industries Limited in Jamnagar, India with a total production capacity of 

1,240,000 barrels per day. Now it is time to give a clear description about the main units 

in a refinery starting with CDU. 

2.1.1 Crude Distillation Unit (CDU): The main objective of the CDU unit is to 

distill and separate valuable distillates (naphtha, kerosene, and diesel) and atmospheric 

gas oil (AGO) from the crude feedstock. The CDU is using very complex distillation 

technique. The process starts with preheating of the crude feed utilizing recovered heat 

from the product streams. Then desalting and dehydrating the crude using electrostatic 

enhanced liquid/liquid separation (Desalter). 

After desalting, the crude oil is pumped through series of heat exchangers and its 

temperature is raised to about 550 
o
F (288 

o
C) by heat exchange with product and reflux 

stream. It is further heated to about 750
o
F (399 

o
C) in a furnace (by direct fired heater, 

etc…) and charged to the flash zone of the atmospheric fractionators. The furnace 

discharging temperature is high enough [650 
o
F to 750 

o
F (343 

o
C to 399 

o
C)] to cause 

vaporization of all products withdrawn above the flash zone plus about 10-20 % of the 

bottoms product. This 10 to 20 % over flash allows some fractionation to occur on the 

trays above the flash zone by providing internal reflux in excess of the side stream 

http://en.wikipedia.org/wiki/Ras_Tanura
http://en.wikipedia.org/wiki/Saudi_Arabia
http://en.wikipedia.org/wiki/Saudi_Aramco
http://en.wikipedia.org/wiki/Abadan_Refinery
http://en.wikipedia.org/wiki/Iran
http://en.wikipedia.org/wiki/Iran-Iraq_war
http://en.wikipedia.org/wiki/Reliance_Industries_Limited
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withdrawal. Reflux is provided by condensing the tower overhead vapors and returning a 

portion of the liquid to the top of the tower, and by pump around and pump back streams 

in the lower part of the tower. Each of the side stream products removed from the tower 

decreases the amount of reflux below the point of withdrawal.  

Maximum reflux and fractionation is obtained by removing all heat at the top of 

the tower, but these results in an inverted cone type liquid loading which requires very 

large diameter at the top of the tower. In order to reduce the top diameter of the tower and 

even the liquid loading over the length of the tower, intermediate heat removal streams 

are used to generate reflux below the side stream removal points. To accomplish this, 

liquid is removed from the tower, cooled by a heat exchanger, and then returned to the 

tower. Alternatively, a portion of the cooled side stream may be returned to the tower. 

This cold stream condenses more of the vapors coming up the tower and so increases the 

reflux below that point.  

The energy efficiency of distillation operation is also improved by using pump-

around reflux. When enough reflux was produced in the overhead condenser to provide 

for all side stream draw offs as well as the required reflux, all of the heat energy would be 

exchanged at the bubble point temperature of the overhead stream. By using pump  

around reflux at lower points in the column, the heat transfer temperatures are higher and 

a higher fraction of the heat energy can be recovered by preheating the feed.   Although 

crude towers do not normally use reboilers, several trays are generally incorporated 

below the flash zone and steams are introduced below the bottom tray to strip any 

remaining gas oil from the liquid in the flash zone and to produce a high flash point 

bottoms .The steam reduces the partial pressure of the hydrocarbons and thus lowers the 
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required vaporization temperature. The atmospheric fractionator normally contains 30 to 

50 fractionation trays. Separation of the complex mixtures in crude oils is relatively easy 

and generally 5 to 8 trays are needed for each side stream product in addition to the same 

number above and below the feed plate. Thus, a crude oil atmospheric fractionation tower 

with four liquid side stream draw offs is requiring between 30 to 42 trays. 

The liquid side stream withdrawn from the tower will contain low boiling components 

stripped from each side stream in the separate small stripping tower containing 4 to 10 

trays with steam introduced under the bottom one. The steam and stripped lighter ends 

are vented back to the vapor zone of the atmospheric fractionator above the 

corresponding side draw tray. Overhead condenser on the atmospheric tower condenses 

the pentane and heavier fraction of the vapors those pass out of the top of the tower. That 

is the light gasoline portion of the overhead, containing some propane and butanes and all 

of the higher boiling components in the tower overhead vapor. 

Some of this condensate is returned to the top of the tower as reflux, and the 

remainder is sent to the stabilization section of the refinery gas plant where the butanes 

and propane are separated from the C5 – 180 
o
F ( C5 +), LSR gasoline. 

Listed below are the the main products from a typical crude distillation unit per their 

boiling point from lighter to heavier one: 

  

 Fuel Gas: the fuel gas consists mainly of methane and ethane. In some refineries, 

propane in excess of LPG (Liquefied Petroleum Gas) requirement is also included 

in the fuel gas stream. This stream is also referred to as dry gas.  



 
 

13 
 

 
 

 Wet Gas:  the wet gas stream contains propane and butanes as well as methane 

and ethane. The propane and butanes are separated to be used for LPG and, in the 

case of butanes, for gasoline blending and alkylation unit feed.  

 LSR Naphtha: The stabilized LSR naphtha (or light straight naphtha gasoline) 

stream is desulfurized and used in gasoline blending or processed in an 

isomerization unit to improve octane before blending into gasoline. 

 HSR Naphtha or (heavy straight naphtha gasoline): The naphtha cuts are 

generally used as catalytic reformer feed to produce high octane reformate for 

gasoline blending and aromatics.  

 Gas Oils: The light atmospheric and vacuum gas oils are processed in a 

hydrocracker or catalytic cracker to produce gasoline, jet and diesel fuels. The 

heavier vacuum gas oils can be used as feed stocks for lubricating oil processing 

units. 

 Residuum: The vacuum still bottoms can be processed in a visbreaker, Coker, or 

deasphalting unit to produce heavy fuel oil or cracking or lube base stocks for 

asphalt. The residuum can be processed further to produce road or roofing 

asphalts.    

 2.1.2 Vacuum Distillation Unit (VDU): The objective of the VDU is to recover 

valuable gas oils from reduced crude via vacuum distillation. The primary process 

technique is first to reduce the hydrocarbon partial pressure through vacuum and 

stripping steam. Then, heat the reduced crude to the desired temperature using fired 

heaters. Later, flashing the reduced crude in the vacuum distillation column is 
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implemented. After flashing, utilize pump around cooling loops to create internal liquid 

reflux. Then, products are removed from top, bottom and sides. 

 

2.1.3 Visbreaking Unit: Visbreaking is a relatively mild thermal cracking operation 

mainly used to reduce the viscosities and pour points of vacuum tower bottoms to meet 

fuel oil specifications or to reduce the amount of cutting stock required to dilute the cutter 

stock requirements from 20% to 30% by visbreaking. The gas oil fraction produced by 

visbreaking is also used to increase catalytic cracker feed stocks and increase gasoline 

yields. 

Long paraffinic side chains attached to aromatic rings are the primary cause of 

high pour points and viscosities for paraffinic base residual. Visbreaking is carried out at 

conditions to optimize the breaking of these long side chains and their subsequent 

cracking to shorter molecules with lower viscosities and pour points. The amount of 

cracking is limited, since the operation is too severe. The resulting product becomes 

unstable and forms polymerization products during storage which causes filter plugging 

and sludge formation.  The objective is to reduce the viscosity as much as possible 

without significantly affecting the fuel stability. For most feedstocks, this reduces the 

severity to the production of less than 10 % gasoline and lighter materials. The degree of 

viscosity and pour point reduction is a function of the composition of the residual feed to 

the visbreaker. Waxy feed stocks achieve pour point reductions from 15 
o
F to 35 

o
F (-3 

o
C to 2 

o
C) and final viscosities from 25% to 75% of the feed high asphaltene content in 

the feed reduces the conversion ratio at which a stable fuel can be made, which results in 

smaller changes in the properties. The properties of the cutter stocks used to blend with 
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the visbreaker tars also have an effect on the severity of the visbreaker operation. 

Aromatic cutter stocks such as catalytic gas oils have a favorable effect on fuel stability 

and permit higher visbreaker conversion levels before reaching fuel stability limitations. 

The molecular structures of the compounds in petroleum which have boiling points above 

1000 
o
F (538 

o
C) are highly complex and historically have been classified arbitrarily as 

oils, resins, and asphaltenes according to solubility in the light paraffinic hydrocarbon. 

The oil fraction is soluble in propane. The resin fraction is soluble in either pentane, 

hexane, n-heptanes, or octane, depending upon the investigator. Usually either pentane or 

n-heptane is used. The solvent selected does have an effect on the amounts and properties 

of the fraction obtained. However, normally little distinction is made in terminology. 

Many investigators believe the asphaltenes are not in solution in the oil and resins but are 

very small, perhaps molecular size, solids held in suspension by the resins, and there is a 

definite critical ratio of resins to asphaltenes below which the asphaltenes will start to 

precipitate. During the cracking phase some of the resins are cracked to lighter 

hydrocarbons and others are converted to asphaltenes. Both reactions affect the 

resin/asphaltene ratio and the resultant stability of the visbreaker tar product serve to limit 

the severity of the operation. The principal reactions which occur during the visbreaking 

operation are:  

1- Cracking of the side chains attached to cycloparaffin and aromatic rings at or 

close to the ring so the chains are either removed or shortened to methyl or ethyl 

groups. 

2- Cracking of resins to light hydrocarbons (primarily olefins) and compounds which 

convert to asphaltenes. 
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3- At temperatures above 900 
o
F (480 

o
C), there will be some cracking of naphthene 

rings. There will be little cracking of naphthenic rings below 900 
o
F (480 

o
C). 

The severity of the visbreaking operation can be expressed in several ways like 

the yield of material boiling below 330 
o
F (166 

o
C), the reduction in product viscosity, 

and the amount of standard cutter stock needed to blend the visbreaker tar to fuel oil 

specifications as compared with the amount needed for the feedstock.  In the United 

States usually the severity is expressed as the vol% of product gasoline in a specified 

boiling range, and in the Europe as the wt% yield of gas plus gasoline (product boiling 

below 330 
o
F, or 165 

o
C).    

        There are two types of visbreaker operations, coil and furnace cracking and 

soaker cracking. The feed is introduced into the system and heated to the desired 

temperature in the furnace or coil cracking process. The feed is heated to cracking 

temperature [885 
o
F- 930 

o
F (474 

o
C- 500 

o
C)] and quenched as it exits the furnace with 

gas oil or tower bottoms to stop the cracking. 

In the soaker cracking operation, the feed leaves the furnace between 800
o
F to 

820
o
F (427

o
C to 438

o
C) and passes through a soaking drum, which provides the 

additional reaction time before it is quenched. Pressure is an important design and 

operation parameter with units being designed for pressures as high as 750 psig (5170 

kPa ) for liquid phase visbreaking and as low as 100 -300 psig (690kpa -2070kpa ) for 

20% -40% vaporization at the furnace outlet. For furnace cracking, fuel consumption 

accounts for about 80% of the operating cost with a net fuel consumption equivalent of  
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1-1.5 wt% on feed. Fuel requirements for soaker visbreaking are about 30-35 % lower. 

Many of the properties of the products of visbreaking vary with conversion and the 

characteristics of the feed stocks. However, some properties, such as diesel index and 

octane number, are more closely related to feed qualities, and others, such as density and 

viscosity of the gas oil, are relatively independent of both conversion and feed stock 

characteristics. 

2.1.4 Hydrotreating Process: In hydrotreating, the objective is to remove 

contaminants (sulfur, nitrogen, metals) and saturated olefins and aromatics to produce a 

clean product for further processing or finished product sales. The primary process 

technique is that hydrogenation occurs in a fixed catalyst bed to improve H/C ratios and 

to remove sulfur, nitrogen, and metals. The first feed is preheated using the reactor 

effluent. Then hydrogen is combined with the feed and heated to the desired 

hydrotreating temperature using a fired heater. Later, feed and hydrogen pass downward 

in a hydrogenation reactor packed with various types of catalyst depending upon 

reactions desired. The next stage is that the reactor effluent is cooled and enters the high 

pressure separator which separates the liquid hydrocarbon from the hydrogen/hydrogen 

sulfide/ammonia gas. Acid gases are absorbed from the hydrogen in the amine absorber. 

Hydrogen, minus purges, is recycled with make-up hydrogen. Further separation of LPG 

gases occurs in the low pressure separator prior to sending the hydrocarbon liquids to 

fractionation. 
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Some Common Types of Hydrotreating Units are as follows: 

 
Naphtha Hydrotreating: removes sulfur contaminant for downstream processes. 

Gasoline Hydrotreating: Sulfur removal from gasoline blending components to meet 

recent clean fuels specifications. 

Mid-Distillate Hydrotreating: Sulfur removal from kerosene for home heating,convert 

kerosene to jet through mild aromatic saturation and remove sulfur from diesel for clean 

fuels. 

2.1.5 Hydrocracking Process: The objective of the process is to remove feed 

contaminants like nitrogen, sulfur and metals and to convert low value gas oils to 

valuable products like naphtha, middle distillates, and ultra-clean lube base stocks. 

Primary Process technique is the hydrogenation occurs in fixed hydrotreating catalyst 

beds to improve H/C ratios and to remove sulfur, nitrogen, and metals. This is followed 

by one or more reactors with fixed hydrocracking catalyst beds to dealkylate aromatic 

rings, open naphthene rings, and hydrocrack paraffin chains. First of all, preheated feed is 

mixed with hot hydrogen and passes through a multi-bed reactor with interstage hydrogen 

quenches for hydrotreating. Later, hydrotreated feed is mixed with additional hot 

hydrogen and passes through a multi-bed reactor with quenches for first pass 

hydrocracking. Next is that reactor effluents are combined and pass through high and low 

pressure separators and are fed to the fractionator where valuable products are drawn 

from the top, sides, and bottom. Fractionator bottoms may be recycled to a second pass 

hydrocracker for additional conversion all the way up to full conversion. 
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2.1.6 Catalytic Reforming Process: The objective of the reforming process is to 

convert low-octane naphtha into a high-octane reformate for gasoline blending and/or to 

provide aromatics (benzene, toluene, and xylene) for petrochemical plants. Reforming 

also produces high purity hydrogen for hydrotreating processes. 

The primary process technique is reforming reactions occur in chloride promoted 

fixed catalyst beds; or continuous catalyst regeneration (CCR) beds where the catalyst is 

transferred from one stage to another, through a catalyst regenerator and back again. 

Desired reactions include: dehydrogenation of naphthenes to form aromatics; 

isomerization of naphthenes; dehydrocyclization of paraffins to form aromatics; and 

isomerization of paraffins. Hydrocracking of paraffins is undesirable due to increased 

light ends make. First the process starts where naphtha feed and recycle hydrogen are 

mixed, heated and sent through successive reactor beds. Each pass requires heat input to 

drive the reactions. Then, final pass effluent is separated with the hydrogen being 

recycled or purged for hydrotreating. Reformate product can be further processed to 

separate aromatic components or be used for gasoline blending. 

 

2.2 Planning and Optimization of Oil Refinery 

The main aim of   production planning is to decide what to produce, how much to 

produce and when to produce for a given plan horizon in a company. The production plan 

includes yearly plan, seasonal plan and monthly plan in terms of time frame. The 

objective of production planning in oil refinery is to generate many valuable products as 

possible, such as gasoline, jet fuel, diesel, and so on. Also, at the same time you need to 
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satisfy market demand and other constraints. Oil refining is one of the most complex 

chemical industries, which involves many different and complicated processes with 

various possible connections. It is typical for oil refineries to include tens of units. For 

this reason, the optimization of the production planning of the overall refinery is 

considered as one of the most difficult and challenging tasks, which is also often 

formidable, even impossible. Nevertheless, the production plan optimization is an 

important profit growth point. As a result, it also becomes a burning hot topic in both 

industry and academia. Various optimization models have been developed for individual 

units with specific technological characteristics. However, the optimization of the 

production units does not achieve the global economic optimization of the plant. Usually 

the objectives of the individual units are conflicting and many times infeasible thus many 

production paths are restricted or disabled. The production planning optimization for 

refinery-wide has been addressed by using linear programming in the past decades. 

Although the linear programming models are not good enough to consider the discrete 

features of the planning problem, such as the dynamic feature of demand, uneven features 

of the supplement of crude oil and the production of processing units in terms of time 

periods. Recently, studies for optimization of production planning have been toward the 

development of nonlinear programming and mixed integer linear programming models. 

There were many studies to propose a production planning model and algorithm for 

refinery wide optimization as stated in many journals like chemical engineering and 

research design journal. 

Changing in crude petroleum prices, fluctuation in production practices by the 

petroleum producing countries and changing market demands for different products are 
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main reasons for refiners to resorting advanced decision making strategies. Refinery 

production planning and scheduling are two such cases affected by market instability. As 

part of trying to resolve problems coming out from market instability, optimization with 

LP was included in early studies in oil industry to help in solving such issues. 

Linear programming is an approach to the solution of a particular class of 

optimization problems. It is concerned with finding values for a set of variables which 

maximize or minimize a linear objective function of the variables, subject to a set of 

linear inequality constraints. Linear programming was first proposed by Dantzig in 

(1947), which was mentioned by Edgar (2001), refering the optimization problems in 

which both the objective function and the constraints are linear. LP problems exhibit the 

special characteristic that the optimal solution of the problem must lay on some 

constraints or at the intersection of several constraints. Dantzig was the first to propose 

the most popular algorithm in LP called the simplex algorithm. 

Despite the many contributions those have been reported on planning models, 

very few can be found that specifically address the petroleum refining industry. Symonds 

(1956) developed an LP model for solving a simplified gasoline refining and blending 

problem. The advantage of LP is its quick convergence and useful of implementation. 

Allen (1971) presented in his paper an LP model for a simple refinery that consists 

mainly of three units: distillation, cracking and blending.  

Optimization, particularly linear programming (LP), has been traditionally used 

for such purposes. Other optimization algorithm such as non linear programming (NLP) 

and mixed integer have been introduced. Since the introduction of LP in the 1950, the 

optimization of production planning has become possible with non linear algorithms but 
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still the preferred method is LP. Symonds and Manne applied LP to long term supply and 

production planning of crude oil processing. Moreover availability of commercial 

software has increased use of this approach to real life problems. Due to complexity of 

NLP algorithms, their use in plant wide problems is limited and consequently previous 

studies have dealt with application of mixed integer Liner programming (MILP) 

algorithms to such problems. Zhang et al (2007) considers a refinery as a combination of 

process system and utility systems and develop a MILP algorithm for better energy 

utilization. Lundgren et al used a MILP algorithms to optimization of scheduling and 

production planning of one distillation unit and two hydro treatment units. Ready et al 

used a MILP for short term optimization of scheduling of refinery operations such as 

receiving crude from large crude carriers to the storage and CDU units. The plant is 

divided into subsystems. When these subsystems are coupled, it allows development of 

the representation of the main scheduling activities to develop new strategies. The new 

strategies will be incorporated in an automated planning and scheduling system. Hence, 

the planning system will bring out scheduling system that generates short term schedules.  

Since planning and scheduling activities in oil refineries is introduced, the 

potential benefits of optimizations for process operations in oil refineries with 

applications of linear programming in crude blend and product pooling have long been 

observed Symonds (1955).  

Planning in refinery has old histories which is worth mentioning in order to 

understand the work done before in the area of oil refinery planning. A number of 

contributions can be found in many of the science and engineering journals that consider 

design and planning over a long-term horizon. Sahinidis et al. (1989) presented a 
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multiperiod mixed integer linear programming (MILP) model whose decisions are to 

incorporate process design and capacity expansion and proposed four strategies to handle 

model complexity. Sahinidis and Grossmann (1991) improved the performance of the 

same model through reformulation. Varvarezos et al. (1992) developed an outer-

approximation method to solve convex nonlinear programming (NLP) and mixed integer 

nonlinear programming (MINLP) for multiperiod design problems. Boding ton (1992) 

also mentioned the lack of systematic methodologies for handling nonlinear blending 

relations.  

Production planning is a discipline related to the macro-level problem of 

allocation of production total capacity and production time with less emphasis on the raw 

materials, intermediate products, and final product inventories; as well as labor and 

energy resources. Its primary objective is to determine a feasible operating plan 

consisting of production goals that will optimize a suitable economic criterion. Typically, 

over the course of a few months to a few years.  

Cox head (1994) identifies several applications of planning models in the refinery 

and oil industry, such as crude selection, crude allocation for raw material supply and 

planning. Given marketing forecasts for prices, market demands for products, and 

considerations of equipment availability and inventories. In essence, planning 

fundamental function is the development of a good set of operating goals for the future 

period. In the present settings of the oil and gas or hydrocarbon industry, planning 

requirements have become increasingly more difficult. The demend is arising of the need 

to produce more varied, higher-quality products while simultaneously meeting 
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increasingly tighter environmental legislations and policies as it has been reported by 

Fisher and Zellhart Bodington (1995). 

On the other hand, production scheduling, in the context of the chemical 

processing industry, deals with micro-level problems embedded in production planning 

problems. Production scheduling involves deciding on the methodology that determines 

the feasible order or sequence and timing in which various products are to be produced in 

each piece of equipment. Final product should meet the production goals that are laid out 

by the planning model. Major objective of chemical processing industry is to efficiently 

utilize the available equipment among the multiple types of products to be manufactured, 

to an extent necessary to satisfy the production goals. This can be achieved through 

optimizing a suitable economic or systems performance criterion, typically, over a short 

term horizon ranging from several shifts to several weeks. Scheduling functions specify 

the task(s) of each stage of production and this includes defining and projecting the inputs 

and outputs from each production operation. It is particularly required whenever a 

processing system is used to produce multiple products by allocating the available 

production time between products as reported by Sahinidis et al (1989), Birewar et al 

(1995) and Bodington (1995). 

Fisher and Zellhart, Bodington (1995), also emphasize that a planning model differs from 

a daily schedule model or an operational process controller. For example, they pointed 

out that the product or process yields predicted or estimated in the planning model should 

not be expected to be used exactly in executing operating conditions. This is because 

planning models are almost always an average over time and not an accurate prediction 

of process conditions at any particular instant. As opposed to planning models, operations 
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are not averaged over the scheduling period as time and operations move continuously 

from the beginning of the particular period to the end. The schedule is revised as needed 

by operation team so that it always starts from what is actually happening with revisions 

typically occur on each day or on each shift. 

There are few commercial tools for production scheduling   and these do not 

allow a rigorous representation of plant particularities, Rigby Et al (1995). For this reason 

refineries are developing in house tools strongly, to obtain essential information for a 

given system. In many of the operational research journals, there are specific applications 

based on mathematical programming such as crude oil unloading and gasoline Blending 

Bodington (1992). 

Liu and Sahinidis (1996) proposed a cutting plane algorithm that exhibits fast 

convergence. Liu and Sahinidis (1997) presented a planning model where forecast 

parameters are assumed to be unclear. Still working on the long-range horizon of 

planning process networks, Iyer and Grossmann (1998) proposed a bi-level 

decomposition whereby the first step solves a design problem followed by the solution of 

an operation and expansion problem subject to the previous results. The same 

methodology was applied to solve a MILP formulation developed for synthesis and 

operation planning of utility systems over a long-term horizon, Iyer and Grossmann 

(1998). Bok et al (1998) formulated a long-range capacity expansion planning model for 

chemical processing networks that considers uncertain demand forecast scenarios. 

Increasingly, oil refinery management is concerned with improving the planning 

of their operations. The major factor, among others, is the dynamic nature of the 

economic environment. Companies must assess final product specifications, prices and 
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crude oil compositions or even be able to explore immediate market opportunities, 

Magathaes et al (1998). 

The chemical processing industry had to restructure in order to compete 

successfully in this new scenario where better economic performance with more efficient 

plant operation has been achieved, Moro et al (1998). Implementation of advanced 

control system in oil refineries generated significant gains in productivity of the plant 

units. These results increased the demand for a more complex automation system that 

takes into account production objectives; as a result, unit optimizers were introduced. 

Nevertheless, the optimization of production units does not assure the global economic 

optimization of the plant. The objective of individual units are usually conflicting and 

thus contributes to sub optimal and many times infeasible operation. The lack of 

computational technology for production scheduling is the main obstacle to the 

integration of production objective into process operations, Barton et al (1998). A more 

efficient approach would incorporate current and future constraints in the synthesis of 

production schedules. The short term production objective must be translated into 

operating condition for the processing units. Such an approach supplies an analytical tool 

for the effect of economic disturbances in the performance of the production system and 

provides mechanisms to account for commercial and technological uncertainties.  

Ramage (1998) refers to nonlinear programming (NLP and MINLP) as a 

necessary tool the refineries of the 21 century, as a result of the significant progress made 

in the nineties. Hartmann (1998) stresses on the differences between a planning model 

and scheduling model. In general, process manufacturing planning models consider 

economics of the operations by handling issues of what to do and how to do it. In the 
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other hand, whereas process manufacturing scheduling models consider feasibility of the 

operations by addressing the issues of when to do it. In particular, planning models ignore 

changeovers and treat products in groups of families. Conversely, scheduling models 

explicitly consider changeovers and consider products in greater detail, including the 

shipment of specific orders for specific products to specific customers. 

Alireza (2006) extended the LP approach to the optimal Simplex tableau, where 

he proposed an original two-stage methodology based on the marginal contribution of oil 

products and the production elasticity of unit processes to provide an additive CO2 

allocation scheme. We show that this procedure emerges from the equilibrium behavior 

of the refinery and is consistent with microeconomic theory.  

As it was mentioned in the previous chapter, oil refinery has hundreds of chemical 

units which are working simultaneously in a very complicated way. The aim of refinery 

operation is to generate as much profit as possible by converting crude oils into more 

profitable products. Mathematical optimization has become indispensable tools to realize 

this goal. Linear programming (LP) is the most widely used technique in refinery 

operation optimization, which is called planning and scheduling in industry. The main 

goal in planning is to determine high-level decisions such as production levels and 

product inventories for given marketing demands. 

One of the first contributors to consider nonlinearity in production planning is that 

of Moro et al. (1998). The main objective of their study was to develop a nonlinear 

planning model for refinery production. The model represented a general refinery 

topology and a real world application was developed for the planning of diesel 

production in one of the refineries in Brazil. The model was solved and the results were 
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compared to the current situation where no computer algorithm was being used. Pinto and 

Moro (2000) developed also a nonlinear planning model for refinery production. The 

model represents a general petroleum refinery and its framework allows for the 

implementation of nonlinear process models as well as blending relations. This model 

assumes the existence of several processing units, producing a variety of intermediate 

streams, with different properties, that can be blended to constitute the desired kinds of 

products. However, the model was based on assumption that many of the refinery 

processes are linear which affect the overall predictability of the model. 

Van den Heever and Grossmann (1999) used a disjunctive multiperiod approach, 

which incorporates design, operation, and expansion planning. The availability of LP 

based commercial software for refinery production planning, such as PIMS (Process 

Industry Modeling System), has allowed the development of general production plans for 

the whole refinery which can be interpreted as general trends. The major advance in this 

area is based on model refinement, notably through the use of nonlinear programming, as 

in picaseno- gamiz (1989) and more recently, Moro et al (1998. 2000).  

During 2000, Pinto et al. (2000) made a discussion on planning and scheduling 

application for oil refinery operations which is an improvement of Moro model. They 

presented a nonlinear planning model in the first part similar to the one developed by 

Moro et al. (1998). In the second part, they addressed scheduling problems in oil 

refineries that are formulated as mixed integer optimization models and relied on both 

continuous and discrete time representations. They have considered the development and 

solution of optimization models for short term scheduling of a set of operations including 

products received from processing units, storage and inventory management in 
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intermediate tanks, blending in order to attain oil specifications and demands, and  

sequence transporting in oil pipelines. They have also reported important real-world 

examples on refinery production and distribution. The diesel distribution problem at one 

refinery in Brazil and the production problems related to fuel oil, asphalt and LPG was 

addressed. Zhang and Zhu (2000) showed in their paper a novel decomposition strategy 

to tackle large scale overall refinery optimization problems. The approach is derived from 

an analysis of the mathematical structure of a general overall plant model. This 

understanding forms the basis for decomposing the model into two levels. These levels 

are the site level (Master Model) and the process model (submodels). The master model 

determines common issues among the processes. Then, submodels optimize individual 

processes. The results from these submodels are fed back to the master model for further 

optimization. Zhang et al. (2001) studied a simultaneous optimization strategy for overall 

integration in refinery planning. They have presented a method for overall refinery 

optimization through integration of the hydrogen network and the utility system with the 

material processing system. In order to make the problem of overall optimization 

solvable, the current practice adopts the decomposition approach, in which material 

processing is optimized first using linear programming (LP) techniques to maximize the 

overall profit. Then, supporting systems, including the hydrogen network and the utility 

system, are optimized to reduce operating costs for the fixed process conditions 

determined from the LP optimization.  

Sahinidis (2003) discussed the importance and challenges associated with 

modeling uncertainty in process operations and provided an overview of theory and 

methodology involving uncertainty. Neiro and pinto (2004) presented a general MINLP 
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model for petroleum supply chain with storage tanks and pipelines interconnected by 

intermediate streams, starting with processing units which were based on the model 

developed by Pinto et al. (2000). 

Lately, Li et al. (2005) conducted a thorough study on integrating crude 

distillation, FCC and product blending modules into refinery planning models. They  

have presented a refinery planning model utilizing simplified empirical nonlinear process 

models with considerations for crude characteristics, products yields and qualities.  

Also, Neiro and pinto (2005) studied multi-period optimization for production 

planning of petroleum refineries. The given model given is based on a nonlinear 

programming formulation that was developed to plan the production over a single period 

of time. Uncertainties related to petroleum and product prices as well as demand is then 

included as a set of discrete probabilities. Further work in optimization continued with 

considering refineries emission like SO2 and CO2. 

Ba shammakh (2007) has developed a mathematical model for oil refinery 

planning with CO2  reduction using MINLP. He also has developed a mathematical model 

for oil refinery planning and optimization with SO2 reduction using MINLP.  

 

2.3 Overview of Technology for NOX Emission Control 

Nitrogen dioxide (NO2) is a group of highly reactive gasses known as "oxides of 

nitrogen," or "nitrogen oxides (NOX)." Other nitrogen oxides include nitrous acid and 

nitric acid. While EPA’s National Ambient Air Quality Standard covers this entire group 

of NOX, NO2 is the component of greatest interest and the indicator for the larger group 
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of nitrogen oxides. NO2 forms quickly from emissions from cars, trucks and buses, power 

plants, and off-road equipment. In addition to contributing to the formation of ground-

level ozone, and fine particle pollution, NO2 is linked with a number of adverse effects on 

the respiratory system.  

EPA (Enviromental protection Agency) first set standards for NO2 in 1971, 

setting both a primary standard (to protect health) and a secondary standard (to protect 

the public welfare) at 0.053 parts per million (53 ppb), averaged annually.  The agency 

has reviewed the standards twice since that time, but chose not to revise the standards at 

the conclusion of each review.  All areas in the U.S. meet the current (1971) NO2 

standards. 

The Clean Air Act requires EPA to set national ambient air quality standards for 

“criteria pollutants.” Currently, nitrogen oxides and five other major pollutants are listed 

as criteria pollutants. The others are ozone, lead, carbon monoxide, sulfur oxides, and 

particulate matter. The law also requires EPA to periodically review the standards and 

revise them if appropriate to ensure that they provide the requisite amount of health and 

environmental protection and to update those standards as necessary. Current scientific 

evidence links short-term NO2 exposures, ranging from 30 minutes to 24 hours, with 

adverse respiratory effects including airway inflammation in healthy people and 

increased respiratory symptoms in people with asthma.  

Also, studies show a connection between breathing at elevated short-term NO2 

concentrations, and increased visits to emergency departments and hospital admissions 

for respiratory issues, especially asthma. NO2 exposure concentrations near roadways are 

of particular concern for susceptible individuals, including people with asthmatic. The 
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sum of nitric oxide (NO) and NO2 is commonly called nitrogen oxides or NOX. Other 

oxides of nitrogen including nitrous acid and nitric acid are part of the nitrogen oxide 

family. NOX react with ammonia, moisture, and other compounds to form small particles. 

These small particles penetrate deeply into sensitive parts of the lungs and can cause or 

worsen respiratory disease, such as emphysema and bronchitis.  

Ozone is formed when NOx and volatile organic compounds react in the presence 

of heat and sunlight. People with lung diseases such as asthma, and people who work or 

exercise outside are at risk for adverse effects from ozone. Risks include reduction in 

lung function and increased respiratory symptoms such as as respiratory-related 

emergency department visits, hospital admissions, and possibly premature deaths.  

Usually, emissions that lead to the formation of NO2 also lead to the formation of 

other NOX. Emissions control measures leading to reductions in NO2 is expected to 

reduce population exposures to all gaseous NOx. This may have the important co-benefit 

of reducing the formation of ozone and fine particles both of which pose significant 

public health threats. Many technologies have been invented for NOX reduction. Selective 

Catalytic Reduction is one of the leading technologies in the USA for oil refinery NOX 

reduction. SCR will be discussed in details in the next section. 

 

2.3.1 Selective Catalytic Reduction (SCR) 

Selective catalytic reduction is a mean of converting nitrogen oxides, also referred 

to as NOX with the aid of a catalyst into diatomic nitrogen, N2, and water. A gaseous 

reluctant, typically anhydrous ammonia, aqueous ammonia or urea, is added to a stream 

http://en.wikipedia.org/wiki/Nitrogen_oxide
http://en.wikipedia.org/wiki/Catalyst
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Reductant
http://en.wikipedia.org/wiki/Anhydrous_ammonia
http://en.wikipedia.org/wiki/Ammonium_hydroxide
http://en.wikipedia.org/wiki/Urea
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of flue or exhaust gas and is absorbed onto a catalyst. Carbon dioxide, CO2 is a reaction 

product when urea is used as the reductant. 

Selective catalytic reduction of NOX using ammonia as the reducing agent was 

patented in the United States by the Engelhard Corporation in 1957. Development of 

SCR technology continued in Japan and the US in the early 1960s with research focusing 

on less expensive and more durable catalyst agents. The first large scale SCR was 

installed by the IHI Corporation in 1978.  

Commercial selective catalytic reduction systems are typically found on large 

utility boilers, industrial boilers, and municipal solid waste boilers and have been shown 

to reduce NOX by 70-95%. More recent applications include diesel engines, such as those 

found on large ships, diesel locomotives, gas turbines, and even automobiles.  

Advantages and disadvantages of SCR: 

SCR has higher NOX reductions than low-NOX burners and selective Non-

Catalyctic Reduction (SNCR). It is also applicable to sources with low NOX 

concentrations. Reactions occur within a lower and broader temperature range than 

SNCR. The SCR unit does not require modifications to the combustion unit.  

On the other hand, SCR significantly has higher capital and operating costs than 

low-NOX burners and SNCR. Retrofit of SCR on industrial boilers is difficult and costly. 

The SCR requires a large volume of reagent and catalyst. SCR may require downstream 

equipment cleaning. In addition, it also results in ammonia in the waste gas stream which 

may impact plume visibility, and resale or disposal of ash. 

http://en.wikipedia.org/wiki/Flue_gas
http://en.wikipedia.org/wiki/Exhaust_gas
http://en.wikipedia.org/wiki/Catalyst
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Ammonia
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Engelhard
http://en.wikipedia.org/wiki/Japan
http://en.wikipedia.org/wiki/IHI_Corporation
http://en.wikipedia.org/wiki/Fossil_fuel_power_plant
http://en.wikipedia.org/wiki/Boiler
http://en.wikipedia.org/wiki/Incineration
http://en.wikipedia.org/wiki/Diesel_engine
http://en.wikipedia.org/wiki/Diesel_locomotives
http://en.wikipedia.org/wiki/Gas_turbine
http://en.wikipedia.org/wiki/Automobiles
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Beginning with diesel engines manufactured on or after January 1, 2010, the 

engines at the US are required to meet lowered NOx standards. All of the heavy duty 

engine (Class 7-8 trucks) manufactures, except for Navistar International, continuing to 

manufacture engines after this date have chosen to utilize SCR. This includes Detroit 

Diesel (DD13, DD15, and DD16 models), Cummins (ISX line), PACCAR, and 

Volvo/Mack. These engines require the periodical addition of Diesel Exhaust Fluid 

(DEF- a urea solution) to enable the process. DEF is available in a bottle from most truck 

stops, and sometimes have put in bulk DEF dispensers near the Diesel Fuel pumps. 

Navistar has chosen to utilize Enhanced Exhaust Gas Recirculation (EEGR) to comply 

with the Environmental Protection Agency (EPA) standards. 

2.3.2 Selective Non – Catalytic Reduction (SNCR) 

SNCR is a process to blow NH3 into the boiler section where the exhaust gas 

temperature is 850 
o
C-950 

o
C and breakdown NOX into N2 and H2O without the use of a 

catalyst. Despite the advantages of not requiring a catalyst and its lower installation costs, 

NOX removal efficiency is as low as 40% at an NH3/NOx molar ratio of 1.5. Because of 

this, it is used in regions or equipment where there is no need for a high NOx removal 

efficiency. More NH3 is also leaked than with the selective contact reduction method, 

requiring measures to cope with NH4HSO4 precipitation in the event of high SO3 

concentrations in the exhaust gas. This technology is mainly used at small commercial 

boilers and refuses incinerators. With respect to thermal power plant applications, this 

technology has only been installed at Chubu Electric Power’s Chita thermal power plant 

No. 2 unit (375kw) in 1997. 
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For about 20 years SNCR systems have been used in waste incineration plants, 

and rather occupied a niche position in the nineties. This was mainly due to lacking 

experience with this fairly new process, which made approval processes rather difficult 

and delayed them in an incalculable manner. Usually, operators were more interested in 

getting a speedy approval than in cost effectiveness, and therefore they mostly chose 

systems where least resistance was expected in the approval process. Rethinking started 

with the slow-down of the economy at the end of the nineties. Biomass plants, which are 

also operated under the same regulations are subjected to a much higher cost pressure. 

Because of that, solutions are preferred that fulfill all technical requirements of the 

regulations and are more cost-effective, instead of searching for the maximum technical 

solutions for these systems. In biomass incineration plants, the SCR technology 

practically does not play any major role. Furthermore, most of the waste incineration 

plants have been equipped with SNCR systems since the year 2000. Discussions about a 

reduction of the emission limit values for waste incineration plants have also challenged 

the NOx limit values. Currently, the draft of the 37th BlmSchV in Germany aims at NOx 

limits of <100 mg/Nm³ compared to the currently valid 200 mg/Nm³. In this connection, 

it is believed that clean gas values of < 100 mg/Nm³ with an acceptable NH3 slip can only 

be obtained in a SCR process, It means the end to the SNCR technology for waste 

incineration plants if this opinion prevails. In a selective non-catalytic reduction (SNCR) 

process of nitrogen oxides, reductants in an aqueous solution (ammonia water, urea) or in 

gaseous form (ammonia) are injected into hot flue gases. Following the overall post-

combustion reactions for urea,  
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   NH2CONH2 + 2NO + ½O2 = 2N2 + NOx + 2H2O 

 

or for ammonia molecular nitrogen, water and carbon dioxide are formed as per below 

equation. 

             4NH3 + 4NO + O2= 4N2 + 6H2O 

 

The optimum temperature range, where a noticeable NOx reduction is achieved, is 

between 900 and 1,100 °C depending on the composition of the flue gas. Above this 

temperature range ammonia is oxidized to an increasing extent and nitrogen oxides are 

formed.  At lower temperatures the reaction rate is slowed down, causing an ammonia 

slip which may result in the formation of ammonia salts in the further flue gas path and 

may lead to secondary problems. Therefore, the ammonia slip should be kept on a 

minimum. These chemical reactions are similar if catalysts are used and also take place in 

a limited temperature window which, however, is in a range outside the furnace or the 

boiler. 

2.3.3 Gas Conditioning Technology (GCT) 

The reduction of emission through the design and implementation of the 

appropriate combustion system is essential to offering maximum operational benefits. 

The ability to offer emission reduction through the use of the latest combustion 

technology promotes a method that achieves maximum emissions reduction, while 

avoiding the cost and complexity of back-end cleanup systems. Choosing the right 

system based on the operating conditions, furnace design, fuel supplies, and other 

mitigating factors is critical to implementing a successfully operating system. By 
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addressing all the aspects of the combustion process, the entire combustion system can be 

optimized to produce the lowest possible emissions. 

The gas conditioning involves a fuel dilution process whereby boiler flue gases 

are induced and mixed with the existing refinery gas fuel to generate a low BTU gas. The 

fuel dilution reduces thermal NOx by reducing the flame temperature and lowering the 

local oxygen concentration. Since it also increases the fuel mass flow, it improves fuel-air 

mixing, reduces the residence time under NOx forming conditions, and homogenizes the 

flame, which serves to further lower the peak flame temperature. Fuel delution 

technology also reduces the carbon radical concentrations in the combustion zone and 

thereby reduces prompt NOx formation. 

The Chevron refinery in Richmond, California needed to reduce their total plant 

NOx emissions to come into compliance with new local air quality regulations. An initial 

baseline survey of NOx emissions at the refinery indicated that the five utility boilers in 

their Power Plant #1 contributed about 25% of the total refinery NOx emissions, with 

observed NOx emissions levels ranging from 250 to 450 ppm. New regulations required 

then to reduce the NOx emissions on these boilers to less than 27 ppm. Initial planning 

called for the use of Selective Catalytic Reduction (SCR) to meet these requirements. 

Close cooperation between Chevron’s NOx Reduction Project Team, consultants, and 

equipment suppliers resulted in an alternate solution using new burners equipped with 

GCT. After initial testing on one unit it was demonstrated that the required NOx levels 

could be sustained without the addition of SCR’s and the remaining units were 

subsequently converted. Successful application of this technology on all five boilers 
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resulted in over 90% NOx reduction, allowing all the boilers meet the targeted limit and 

resulting in substantial cost savings. 

2.3.4 NOx-Reduction by Oil/Water Emulsification 

Within the recent years, much work has been done on the influence of water on 

NOx emission levels. Various fuel : water volumetric ratios from 1:1 to 19:1 have been 

tested for combustion properties. In most cases, volume percent surfactant was added for 

emulsion stabilization. 

An emulsion is a mixture of generally immiscible liquids (phases), such as oil and 

water. During the process of emulsification, the disperse phase (water) is introduced into 

the liquid phase (oil). By the application of high shear, the particle size (droplet size) of 

the disperse phase is reduced. The smaller the particle size, the more stable is the 

generated emulsion. Additional stability can be achieved by the introduction of 

surfactants or stabilizers.  

Approx. 90% of the NOX resulting from the fuel combustion process is NO 

(Nitrogen Oxide). The NO is primarily formed by the oxidation of atmospheric nitrogen 

(N2). Water added to the fuel lowers the combustion temperature due to water 

evaporation. When the water in the fuel-water emulsion evaporates, the surrounding fuel 

is vaporized, too. This increases the surface area of the fuel. Lower temperature and 

better fuel distribution leads to a lower formation of NOX. 

Introducing water into the fuel combustion has been shown in many functions to 

lower the NOX emissions. Water can be added by forming a fuel/water emulsion in the 

following two ways: 
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 unstabilized emulsion: Inline emulsification of water into the fuel prior to 

injection. 

 stabilized emulsion: Manufacture of a stable fuel/water emulsion to be used as a 

drop-in fuel alternative. 

 

Ratio for both stabilized and unstabilized emulsions are as follow: 

                                         Unstabilized emulsion ratio 

  water added vol%: 10 to 80% 

 NOx reduction by:   4 to 60% 

                                   Stabilized emulsion ratio 

                   water added vol%: 25 to 50% 

  NOx reduction by: 22 to 83% 

Canfield (1999) summarizes the NOX reduction by the use of water and other additives. 

2.3.5 Oxygen-Enhanced Combustion 

Praxair, Inc and its partners have developed a novel oxygen-based technology that 

can reduce NOX emissions from fired boilers, while improving combustion characteristics 

such as loss-on ignition (LOI). This novel technology replaces a small fraction of the 

combustion air with oxygen.  In order to support this concept, Praxair is also developing 

an oxygen transport membrane (OMT) process that uses pressurized ceramic members 

for separation of oxygen from air. 

Testing was conducted using Power’s pilot-scale combustion facility. The 

experiments demonstrated that the concept of oxygen-enhanced low NOX combustion 

http://www.hielscher.com/ultrasonics/oil_nox_reduction.htm?gclid=CNzMuufquagCFQjs7Qodl0wgBA#Canfield_1999
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could meet the emissions target of 0.15 lb/MMBtu with minimal impact on CO emissions 

and furnace performance. The pilot-scale test facility is a water-cooled tunnel furnace 

designed to test burners up to 50 MMBtu/hr firing rate with time-temperature histories 

similar to full-scale PC-fired boilers. The test facility has two locations for separated 

over-fire air (SOFA) injection. The burner was designed for a firing rate of 26 MMBtu/hr 

and was typically fired at 24 MMBtu/hr for these. 

An eastern bituminous coal, Mingo Logan, was then used in Phase I-B evaluating 

both the effect of a lower volatile coal and the effect of oxygen addition method. During 

Phase II, selected experiments were repeated with the Illinois No. 6 experiments showing 

that even when the baseline (air only) emissions are very low, oxygen addition can drive 

the NOX emissions even lower. Furthermore, the overall data further show the reductions 

are relatively independent of the initial NOX concentration. Data from the Mingo Logan 

experiments show that the concept works even with the lower volatile coal, and within 

that technique the oxygen has a large impact on NOX reduction. 

In addition to the reduction in NOx, benefits can be achieved in the areas of 

reduced LOI and opacity, increased boiler efficiency, and reduced fan limits. Subsequent 

testing at two utility boilers, City Utilities’ James River Unit 3 and Northeast Utilities’ 

Mt. Tom Generating Station, has demonstrated these benefits of the technology while 

decreasing NOx emissions. Preliminary economic analysis indicates that cost saving of 

50% can be realized when compared to SCR. 
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CHAPTER 3 

Model Development for Oil Refinery 

3.1 Mathematical Model Development 

In this section, a general mathematical model for an oil refinery is developed. The 

objective of this model is to maximize profit from selling the final products with 

specifications subject to reducing NOX emissions to a certain target using the different 

mitigation options presented in the chapter one. 

Prior to the master model development, which includes all units under 

consideration as shown in Figure 3.1, a model is developed for each unit (sub-models).  

 

 

 

 

 

 

 

 

Figure 3.1: Oil refinery layout showing all main process units 
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In total, there are eight major units and different blending pools. After developing 

the sub-model for each unit, they are connected together by specifying an outlet of one 

unit as inlet for the following unit. For simplicity, only the CDU model is shown in 

details as an example and a general model is given after.  

The CDU model can now be summarized as follows: 

                                                                                                                            (3.1) 

vp represents the total volume percent vaporized (volume %) from the crude at cut 

temperature Tp for product p, except the residual product, of the CDU unit (PCDU is the 

set of all CDU products). The volume % is a polynomial function in product cut-point Tp 

which is equivalent to the end point temperatures (EP). The product cut-point Tp or end 

point temperature (EP) is the temperature at which a given fraction or cut will be 

vaporized.  

Since the last cut is the residual of the crude, it will be assumed that the 

accumulative vaporized percent will be 100%. The residual cut volume percent will be 

expressed as: 

                                                
100Rsdpv

                                                  
(3.2) 
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For each product, cut and volume flow rate is calculated from subtracting its 

volume percent vaporized from the previous cut and multiply the product with the crude 

feed to the CDU: 

                                                                                                            (3.3) 

VCDU,p represents the volume flow rate of all the product streams (p) from the CDU unit. 

Where the FCDU is the crude oil feed to the CDU unit. 

Properties of each product from the CDU (API, sulphur etc.) are polynomial 

functions of mid-volume percent vaporized of the concerned product. Mid-volume for 

any product can be calculated from averaging the accumulative current cut volume 

percent with the previous cut volume percent vaporized as will be shown below. 

                                                                                                                                      (3.4) 

XCDU,p represent different properties (x) for each product (p) from the CDU unit. Xp is the 

set of all the properties calculated for the specified product stream (p). 

                                                                                                                                       (3.5) 

VCDU,p,d represents the volume flow rate of all the streams split from the CDU products 

(p) to different destinations (d).  



 
 

44 
 

 
 

All fractions for the CDU, except the residual, have upper and lower limit for their cut-

point: 

                              }{,,, RsdCDU

U

pCDUpCDU

L

pCDU PpTTT                            (3.6)                                                                                                                                                                     

TCDU,p is the cut-point temperature for product  (p) of CDU unit. 

Also, the crude feed to the unit cannot exceed its throughput capacity: 

                                                                  CDUCDU UmaxF                                        (3.7) 

Other sub-models for hydrotreaters, reformer and HC are developed with the aid 

of available correlations in the literature for the given units to calculate products amount 

with properties (Baird, 1987). Theses sub-models are coded in GAMS and are shown in 

Appendix B. 

3.2 Modeling of CDU for Arab Heavy Crude Oil  

      (Saudi Arabia)  
 
 The main products from CDU are: 

 LPG (liquefied petroleum gas) 

 LNSR (light naphtha straight run) 

 HNSR (heavy naphtha straight run) 

 Kerosene 
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 Diesel 

 LVGO (light vacuum gas oil) 

 HVGO (heavy vacuum gas oil) 

 Residual  

 

 The data in table 3.1 are taken from Research & Development Center from Saudi 

Aramco Company. The mid volume is calculated based on the following formula:         

    Mid Volume % = (Current Point Volume% + Previous point Volume %) / 2.0. 

 The data from R&D center in Saudi Aramco Company is the result of many years 

of experimental work executed through a small distillation unit in their laboratory. After 

calculating the mid volume, we should be able to get two more plots. The first one 

represents the volume percentage of crude oil evaporated or removed versus the cut point 

temperature (End Point Temperature). Admittedly, we can fit the data using Excel sheet 

to three or four degree polynomial. The second plot will be to plot API versus mid 

volume. 
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 As shown in the figure 3.2, the fitted data shows a two degree polynomial. The 

given polynomial in figure 3.2 was reduced from four to two degree polynomial since the 

coefficients of other terms are as small as 10
-5

.  So, now we have a model equation that is 

nonlinear which represent the percentage of crude volume removed at any desired cut 

temperature. That way, we can calculate how much are the quantity of each cut as long as 

we know the feed flow rate and the cut temperatures of the desired cut and the previous 

one using the model equation given in figure 3.2. Equation (3.8) shows the reduced form 

of the volume% vs cut temperature to the second degree polynomial. 

  
  

 

 

 
100 1.8 0.9  

200 7.4 4.6 77.6 

315 16.7 12.05 61.2 

400 23.8 20.25 49.7 

500 33 28.4 41.9 

600 41.7 37.35 35 

700 50.3 46 28.4 

800 58.7 54.5 23.8 

800 66 62.35 19.9 

1050 76.4 71.2 16.3 

1200 100 88.2 2.6 

   Cut Temperature (F) Volume of Crude Removed %    Mid. V. %       API 

 Table 3.1: Arab Heavy Crude Oil Data for Volume% Removed Versus Cut temperature 
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Figure 3.2: Accumulative Volume % removed vs Cut Temperature for AH Crude Oil 

 

                                             V = 0.0004x
2 

- 0.0096x – 0.0001    R
2
 = 0.9998               (3.8) 

 

 The second plot that we can obtain from the Table 3.1 is the API plot which is a 

function of the mid volume% of crude oil.  Figure 3.3 below shows the data from table 

3.1 plotted for API versus the mid volume % calculated using the mid volume formula 

mentioned earlier. The mid volume is a crude oil property that one ought to model and 

study. As done earlier and using a three degree polynomial, we obtain, as you can see 

from figure 3.3, a three degree polynomial where the small coefficients terms, fourth 

power term and above (less that 10
-5

), have b been removed. Inadvertently, now we can 

get the API of the crude oil knowing its mid volume. Equation (3.9) shows the API 
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versus mid volume % relationship in a mathematical reduced form to the second degree 

polynomial. 

 

Figure 3.3: API as a function of mid. V% for Arab Heavy Crude Oil 

 

                                      API=   
 
0.0444x

2 
– 2.5924x + 87.136      R

2
 =0.9989               (3.9)                

 

 Another two important properties to be considered are the nitrogen and sulphur 

contents in the crude at each cut temperature. The data in table 3.2 have been collected 

from Ras Tanurah laboratory Division in Saudi Aramco Company. 
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Table 3.2: Arab Heavy Crude Oil Data for Nitrogen & Sulfur Contents Versus cut 

                       Temperature 

Sulfur Content Wt. % 
 

Nitrogen Content ppm 

 
Cut Temperature (F) 

.0031 0.5 200 

0.024 0.5 340 

0.175 0.5 450 

1.69 44 700 

3.08 670 800 

3.49 860 900 

3.75 1043 1050 

4.38 4833 1200 

 

 We used the above data to produce two plots. Similar to what we have done 

earlier with API and volume % removed of crude oil models, here we used the three 

degree polynomial fit to the data above on an Excel sheet for the nitrogen plot. The 

output for the nitrogen data,  as shown below in figure 3.4, is very close to third degree 

polynomial since the terms after the third  order are very small and can be truncated (less 

than 10
-6

). 
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Figure 3.4:  N2 Content Versus Cut Temperature for Arab Heavy Crude Oil 

 

                       N= - 0.084x
3 

+ 4.0511x
2  

- 65.686x + 258.33         R
2 

0.9867             
 
(3.10) 

 

 Equation (3.10) shows the mathematical form for the arab heavy crude nitrogen 

content vs cut temperature. For the sulfur content for the heavy Arab crude, as shown in  

figure 3.5, the model equation can be approximated  to a second degree polynomial 

taking in consideration that higher degree terms can be ignored in this case. 
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Figure 3.5: Sulfur Content Wt% Versus Cut Temperature for Arab Heavy crude 

 

                       Sul (W%) =  0.0052x
2 
- 0.118x + 0.5306             R

2
=0.9857               (3.11) 

 

Model Equations for Arab Heavy crude oil: 

                       V% = 0.0004x
2 

- 0.0096x – 0.0001                      R
2
 = 0.9998               (3.8)                                                     

 

                     API= 0.0444x
2 

– 2.5924x + 87.136                        R
2
 =0.9989                (3.9)                 

 

                      N= 0.084x
3 
+ 4.0511x

2  
- 65.686x + 258.33          R

2 
0.9867                 (3.10)                        

 
 

                      Sul (W%) =  0.0052x
2 
- 0.118x + 0.5306              R

2
=0.9857               (3.11)                                     
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 3.3 Master Model Development 

 This section describes the overall (master) model that involves all units under 

consideration in this study. It is written as an optimization problem. The objective 

function is to maximize profits of selling the final products at the same time,  and meet 

the demand with quality specifications and reduce the NOX emissions. The main 

variables are the flows of each stream and products to be processed, intermediate and 

final products. These include also the properties of each stream such as API, sulphur 

content, octane number and others. Among the main equations, material balance 

equations are the most numerous. They usually express the equality between an available 

quantity of a given intermediate product (product yield at the exit of a unit multiplied by 

the quantity of feedstock processed) and the quantities used corresponding to the different 

possible destinations of this product. In this study, a sub-model for each unit, as discussed 

in the previous section is developed. The model is non-linear since it involves the 

equations for product properties blending.  

 The demand equations reflect the fact that the sum of the quantities of 

intermediate products used in blends to produce a finished product should serve to meet 

the demand for this product.  

 Quality equations express the obligation, for each finished product, to meet the 

legal specification as well as a number of technical requirements. For automotive fuels, 

these are specific gravity, octane number, sulphur content. For medium distillates and 

fuel oil legal specifications include specific gravity, sulphur content and cetane number.  
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 The capacity constraint reflects the capacity limitations of existing units. The 

NOX emissions constraints require that the overall refinery activity leads to NOX 

emissions that are less than current releases within a pre-specified percent level.  

 The main focus of this study is to provide methods of determining optimal 

production planning for a petroleum refinery processes. The most important variables 

will be the feed flow rate, feed properties, products flow rates, and the properties of the 

products.  

The objective is to maximize the total profit of the refinery as follows: 
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The refinery profit is expressed as revenues from selling products minus the costs of 

purchasing feedstock and costs of operating the process units in the refinery. In equation 

(3.12) BPi represents the set of blending units for the final products and their sales price 

Ai   in US$/bbl. The cost Bi (US$/bbl) of the feedstock purchased from external sources is 

defined under the set (E) for all the units that receive such material from outside. The 

third term represents the operating cost Ci in (US$/bbl) for each processing unit (i) in the 

refinery where it is usually expressed as a function of the quantity fed to the running unit. 

The cost of applying fuel switching is shown in the forth term where Z is a binary 

variable that represents which fuel (sw) to select. Di,sw (US$/yr) represents the annual  

cost of switching if fuel (sw) is being chosen. Finally, the profit should be affected by 
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applying NOX reduction technology, y, with cost Ei,y in (US$/yr) if necessary to meet a 

given NOX reduction target. 

 

Figure 3.6: Schematic Representation of unit (i) used in the Mathematical Model showing 

                   the inlet and outlet streams relations                     

A general model consists of the following sets of constraints: 

 Feed flow rate of processing unit: 

                                                     

IiVF
Np

ipj

Jj

i  


,,                        (3.13) 

 The feeds for any processing unit i (i belongs to I, the defined set for all the units 

in the refinery) are represented by Fi is summation of all the possible streams Vj,p,i that 

can be received by unit (i) from units (j), where (j) is defined as the set of all units that 

can send stream (p) to unit (i). Flow rates are in (bbl/yr). 

 Feed properties of processing units: 

                                         
  FpjipjFi XxIiXVfX  ,, ,,,,                           (3.14) 



 
 

55 
 

 
 

 Properties (Xi) of the feed to unit (i) are represented by Xi,F and Xi is the set of all 

feed properties to unit (i). The properties are functions of the streams quantities and 

properties from unit (j), Vj,p,i and Xj,p respectively. 

 Product flow rates of processing units : 

                                            
  iNiFiipi PpIiVXFfV  ,,, ,,,                       (3.15) 

 Product flow rate from unit (i) for stream (p) is represented by Vi,p (p belongs to P 

the set of all the streams produced from unit i) are functions of the feed quantity Fi and 

property Xi,F as well as the operating variables Vi,N for unit (i). 

 Products properties of processing units: 

                               
  iiNiFipi XxPpIiVXfX  ,,, ,,,             (3.16) 

Xi,p is the product property (X) for product stream (p) from unit (i) which is a function of 

feed properties of unit (i) and the operating variables of the unit (i) Xi,F and Vi,N 

respectively. 

 Processing unit capacity: 

                                                           
IiUmaxF ii                                   (3.17) 
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The feed of processing unit (i) cannot exceed its maximum capacity, which is represented 

by Umaxi. 

The possibility for each product from unit (i) to be split to many streams either as final 

product or feed to other processing unit: 

                                                         

idpipi PpIiVV  ,,,,                              (3.18)                     

 Product stream (p) from unit (i) is represented by Vi,p can be sent to different 

destinations (d) defined by streams Vi,p,d (d belongs to the set D defined as all the possible 

units or final products pool that can receive the splitted streams). 

 Fuel switching  

 For each unit i, one fuel should be selected for each furnace of a unit. This 

constraint is represented by introducing a binary variable Zi,sw that represents the fuel 

selection (current or new fuel with less NOX content): 

                                                             

IFiZ
sw

swi  1,

                                      

(3.19) 

This means that each unit has to run with a specific fuel, sw. sw is the set of fuels 

considered.  
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 NOX emissions 

The annual total NOX emissions from all units must satisfy a specific NOX reduction 

target, %NOX.  

                              

xx

IFi y

yiyiswi

sw

swi NONOYZNOx )%1(1 ,,,, 


































 


        (3.20)                        

 In the above equation, the nonlinearity is due to the multiplication of continuous 

variable NOX i,sw and binary variable, Zi,sw and also due to multiplication of two binaries 

Zi,sw and Yi,y. 

 Fuel switching or NOX reduction  

For each unit i, if the model choose to switch a specific unit i, no reduction technology 

will be applied on that unit.  

                                                  

IiZY swi

y

yi  1,,                              (3.21) 

 Selection of NOX reduction process to be installed 

This constraint will allow the model select only one reduction process for each unit i 

belongs to units furnaces set IF.  
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IiY
y

yi  1,

                                           

(3.22) 

 Equations (3.13) and (3.14) represent the feed quantity and properties of the 

processing unit model, which are playing an important role on the products flow rates and 

properties, defined by equation (3.15) and (3.16). Clearly, equations (3.13), (3.17) and 

(3.18) are linear functions. However, the mixing of the different streams properties 

coming to the unit as feed, and the calculating of the product flow rates and their 

properties, equations (3.14), (3.15) and (3.16), are nonlinear functions. All NOX 

emissions constraints are non linear.  

The developed model for an oil refinery is applied to different case studies in the next 

chapter.  

3.4 Estimation of NOX Emissions and Products 

      Blending Correlations 

 This section gives a general procedure for the estimation of NOX from fuel 

combustion. Fuel combustion is responsible for about 90% of total NOX emissions within 

an oil refinery. Another section is devoted to different blending correlations for refinery 

final products specifications.  
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Estimation of NOX Emissions from Combustion 

 
 Fuel combustion NOX emissions depend upon the amount of fuel consumed and 

the carbon content of the fuel. To estimate emissions from fuel combustion, the following 

methodology has been adopted.  

NOx emissions = Quantity of fuel combusted x EF per physical unit of fuel 

EF is emission factor for a specific fuel. These factors have been obtained and 

developed from a number of studies conducted by Canada, the United States 

Environmental Protection Agency (EPA) and other organizations.  

Products Blending Correlations  

Refinery products are typically the result of blending several components or 

streams. The purpose of the blending process is to obtain petroleum products from 

refined components that meet certain quality specification and market demand. Increased 

operating flexibility and profits result when refinery operations produce basic 

intermediate streams that can be blended to produce a variety of on-specification finished 

products. In this study, several blending properties are included in the master model. 

Blending index for each property is used throughout this thesis. This blending index is 

reported in the literature for each property. Then, the blending index can be averaged to 

calculate the blending property value. The following steps are used for that calculation: 
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First, find index value (n) for each property (X) using appropriate equation. Then find the 

blending index (b) for each property (X) by the following general equation: 

                                                                       





P

p

ppxx wnb
1

,                                                 (3.23) 

where bx represents the blending index for a property X. nx,p is the index for a property X 

for stream p and wp is either mass or volume fraction depends on the property. The 

properties covered in this study are as follows: 

API  

The density of petroleum oil is expressed in terms of API gravity rather than 

specific gravity. It is related to specific gravity in such a fashion that an increase in API 

gravity corresponds to a decrease in specific gravity. The blended API can be calculated 

by the following equation: (Gary, 1994) 
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Where RateVp is volumetric flow rate of a product stream.  

Specific gravity (sp.gr) can be averaged while API cannot.  

Sulphur content (wt%) 

Sulphur content is an important property which has a major influence on the value 

of crude oil. The sulphur content for a blended stream is the average sulphur content for 

all coming streams and should be expressed in weight percent. It can be calculated from 

the following equation: (Gary, 1994) 

                                                           











P

p

p

P

p

pp

blended

RateW

SulRateW

Sul

1

1                             (3.25) 

Where RateWp is the mass flow rate for stream s being blended. 
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Octane number (ON) 

Octane numbers are blended on a volumetric basis using the blending indexes of 

the components. True octane numbers do not blend linearly and it is necessary to use 

blending octane numbers in making calculations. Several blending approaches are 

provided in the literature and the simplest form has been converted to the following 

analytical relation (Riazi, 2005) 

        
103RON76         5.29912729.1552651 23  XXXN RON             (3.26) 

Where X = RON/100 

      





P

p

wpRONblend XNBI
1

,  

Where Wp is the volume fraction and NRON,p is the octane number blending index for 

product stream p.  

Reid Vapour Pressure (RVP) 

The RVP is one of the important properties of gasoline and jet fuels and it is used 

as a criterion for blending products. The Reid vapour pressure is the absolute pressure 

exerted by a mixture at 100
o
F (38

o
C). There are two methods, shown below, for 

calculating the RVP of a blend when several components with different RVPs are 
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blended. The first method is based on the simple mixing rule using mole fraction (Wp) of 

each product stream. (Riazi, 2005) 

                                                          

)(
1

)(



P

p

ppRVPblend wNRVP

                                   

(3.27) 

Where (RVP)p is the RVP of stream p in bar or psia.   

The second approach is to use blending index for RVP as: 

                                                          

25.1)()( pp RVPRVPBI 
                          

(3.28) 
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)()(                (3.29) 

                                                            
  8.0

)()( blendblend RVPBIRVP                             (3.30) 

Where (RVPBI) p is the blending index for (RVP)p and Wp is the volume fraction 

of stream p. Both units of bar or psia may be used in the above equation. This relation 

was originally developed by Chevron and is also recommended in other industrial 

manuals under Chevron blending number (Riazi, 2005).  
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Cetane Number and Diesel Index   

For diesel engines, the fuel must have a characteristic that favors auto-ignition. 

The ignition delay period can be evaluated by the fuel characterization factor called 

cetane number (CN). The behavior of a diesel fuel is measured by comparing its 

performance with two pure hydrocarbons: n-cetane or n-hexadecane (n-C16H34) which is 

given the number 100 and α-methylnaphthalene which is given the cetane number of 0. A 

diesel fuel has a cetane number of 60 if it behaves like a binary mixture of 60 vol% 

cetane and 40 vol% α-methylnaphthalene. Another characteristic of diesel fuels is called 

diesel index (DI) defined as: 

                                                 100

)328.1)(( 


APIAPI
DI       (Riazi, 2005)               (3.31) 

which is a function of API gravity and aniline point (AN) in 
o
C. Products containing 

aromatics or naphthenes have lower aniline points than products containing paraffins. 

Cetane index (CI) is empirically correlated to DI and API in the following form: 

                                                                   CI = 0.72DI+10                                         (3.32) 

It is reported in the literature that cetane number can be blended by volume basis (Baird, 

1987) as in the case of specific gravity.  
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Smoke point 

Smoke point is a characterization of aviation turbine fuels and kerosene and 

indicates the tendency of a fuel to burn with a smoky flame. Higher amount of aromatics 

in a fuel causes a smoky characteristic for the flame and energy loss due to thermal 

radiation. The equation to calculate the smoke point index is (Riazi, 2005): 

                                                                    SP
INSP

1
              (3.33) 

The methodology of finding the blended smoke point is via the blending index and then 

by applying equation (3.31). 

The previous blending correlations are implemented into the model for finding final 

product specifications. 
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Chapter 4 

 

Results and Discussion 
 

 

4.1 Introduction  

The mathematical model developed in chapter three for oil refinery is illustrated 

for different case studies.  The new contribution in this work in comparisson to the 

original model is the modeling of the CDU for heavy light crude oil and the addition of 

the viscobreaker unit into the mathematical model. The endorsed mathematical model is 

an extension of the previously applied model which was superstructed by Ba-Shammakh 

(2010). However, in this model, the viscobreaker effect is covered and investigated 

throughly.  The viscobreaker has been used in many oil refineries for a long time. 

However, the viscobreaker unit was not included in any of the previous mathematical 

models of oil refinery profit optimization. In addition, the NOX pollutant reduction from 

oil refinery has never been considered in previous studies for finding the optimal profits. 

NOX regulations are enforced into refinery has sector in USA and Canada. The cost due 

to removing of NOX from the plants is essentially must be included in our cost table since 

it can potentially come at premium.  
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In this work, the subject of NOX reduction is investigated using different 

techniques. There are many ways in reducing the NOX emissions. In order to decide how 

to make the NOX reduction for a specific unit in the refinery, we need substantial input 

data before setting anything conclusively. Equally it is important to include NOX 

reduction data in the mathematical model which will do the work to reach an optimal 

value for profits and simultaneously meet other constraints.  

There are two fundamental reasons for including NOX reduction into the refinery 

mathematical model. First, the cost of NOX reduction is very high and it becomes a 

regulation that must be strictly followed in many countries all over the world. Secondly, 

there are several ways in reducing the NOX from refinery and each method of NOX 

reduction has its own limitations and expense. Since the industry’s interest is profitable 

acquistions and reducing the losses, it is imperative to construct a mathematical model 

that considers these two factors: cost and limitation, abling to make a feasible solution 

with maximum profits. Inderterminately one must utilize the GAMS software in 

calculating the most economic approach in reducing NOX for a specific unit from the 

refinery to a specific level discerning the amount of NOX removed. The options 

considered here for the NOX reduction are the followings: 

1. Balancing:  

In which the production from units that emit less NOX is increased with decrease 

in the production from units that produce more NOX during the heating process. 

This is accurate because fuel burning for each unit is a function of inlet flow rate. 

2. Switching: 

In which the unit will be switched to operate with less NOX content fuel. 
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3. Applying NOX reduction technologies: 

Many technologies for NOX reduction are very common in industry and they vary 

in operating and maintenance costs. However, they are very effective and can 

remove more NOX than balancing and switching techniques. 

 

 The results for various case studies are given at the end of this chapter. The cases 

under study are:  

 Case A: Planning model (base case) without any NOX reduction target.  

 Case B: Planning model with all three mitigation options mentioned above (with 

NOX reduction). 

4.2 Problem Description for Case Studies  

Profitable operation of a refinery requires an optimization of streams flows and 

process feed. Notwithstanding, several trends in the oil refinery industry are leading to a 

compact production of different products because of new specifications and 

environmental regulations. The increased market for heavier crude oils force refineries to 

increase their use of conversion units. Hydrocracking and viscobreaking, as conversion 

units, are ways of upgrading heavy oils to more valuable products. More hydrocracking 

and viscobreaking,  in addition to the other units in the refinery, results in more burning 

which leads to more NOX   emissions to the air. The major source of NOX emission within 

an oil refinery is combustion source such as furnaces. An efficient model for the refinery 

planning will represent production planning with different NOX mitigation options in 



 
 

69 
 

 
 

order to meet a certain NOX emissions reduction. The model is illustrated for different 

case studies. The objective in the model is to maximize the profit of an oil refinery by 

producing certain amount of each product with specific quality and meet  NOX reduction 

target by implementing several mitigation options. The options being considered in this 

study, as mentioned earlier, are flow rate balancing, fuel switching and application of 

NOX reduction technology such as SCR.  

 

 

 

 

 

 

 

 

 

Figure 4.1: Oil Refinery layout showing all main process units 

 

The oil refinery shown in figure 4.1 consists of several processing units, splitters 

and mixers. The connections between these units, splitters and mixers draw the refinery 

network picture that general model aim to solve in meeting the objective of model 

planning. Refinery intermediate streams with different properties are blended in order to 

feed a processing unit or to be ready for sale as a final product. For both cases (Case A 

and B), the blended streams must meet a degree of required specifications. Nonlinear 
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models describe more accurately product flow rates and properties than linear models 

assuming fixed yield. Non linear models are presented and linked with nonlinear 

properties blending equations in order to build the over all Model. The overall model is 

integrated with a NOX management model in order to reduce NOx emission from 

combustion source within an oil refinery. The aim of the model is to optimize the flow 

rate and properties for each stream in order to maximize profit while reducing NOX 

emissions to a given target. The optimization quandary being studied in this chapter is 

stated: 

“For a given NOX reduction target, what is the best strategy or mix of strategies, 

for an oil refinery, among the considered options (flow rate balancing, fuel switching and 

NOX reduction technology) in order to meet the demand for each product with quality 

specifications while maximizing the profit?”. The objective is to maximize the profit of 

selling the final products to meet the demand with quality specifications and reduce the 

NOX emissions to a given level. The main variables are the flows of each stream and 

products to be processed, intermediate products and finished products. These include also 

the properties of each stream such as API, sulphur content, octane number, RVP, cetane 

number and smoke point. A binary variable, Z, is introduced into the model that 

represents fuel switching. Also another binary variable, Y shows whether NOX reduction 

technology has been applied. 

Individual nonlinear mathematical models (sub-models) were developed for the 

CDU and viscobreaker units, shown in figure 4.1, prior to the development of the 

planning model. The sub-models were developed for: the crude distillation unit (CDU), 

all the hydrotreaters, the reformer, viscobreaker and the HC. Visebreaker modeling is the 
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additional work done under this study to the original model developed by B-Shammakh 

(2010). 

The model is formulated as an MINLP since nonlinearity is present from the 

blending correlations and the binary variables introduced for the switching and NOX 

reduction options.  

Three different options are considered as discussed earlier: 

 Option 1: Flow rate balancing  

 Option 2: Fuel switching  

 Option 3: Existence of NOX reduction technology  

Fuel switching represents switching from current fuel to some new fuel with less 

NOx emissions. The NOX reduction process used in this study is SCR which is Selective 

Catalytic Reduction. 

The model developed in chapter 3 is solved in this chapter and is applied to different case 

studies.  

4.3 Results and Discussion 

4.3.1 Analysis of Visbreaker Converting crude to Final Products: 

As mentioned earlier, viscobreaker unit contribution into the optimization of oil 

refinery has never been considered in previous studies. In order to see how effective the 

viscobreaker, we will examine more details about the viscobreaker using some known 



 
 

72 
 

 
 

formulas. Figure 4.2 shows the inlet and outlet streams from the viscobreaker unit 

considered in an oil refinery.  

                                                   

 
Figure 4.2: Viscobreaker Inlet and Outlet Streams 

 

  

When connecting the viscobreaker to our mathematical model, the feed to the 

viscobreaker is coming from the outgoing stream from the bottom fraction for CDU 

residual hydrotreater. The CDU residual hydrotreater line is shown in figure 4.1 as 

“LSFO” stream (Light Straight Fuel Oil). This “LSFO” stream is extremely heavy crude 

oil and it is coming from residual hydrotreater bottom fraction. However, through the 

viscobreaker, the extremely heavy materials can be converted to product that can be sold 

as gasoline, diesel and naphtha. The viscobreaker through extreme heating can convert 

the residual hydrotreater bottoms to light naphtha, heavy naphtha, gas oil, and heavy 

bottoms. The streams are discussed in details below to show the contribution from 

visbreaker to the mathematical model. The feed stream “RateV” and “LSFO” stream 

from figure 4.2 are both in volume unit of (bbl).  Since original viscobreaker formulas are 
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in mass units, we need to convert to volume units to be consistent with the remaining 

model units. Below is the formula used to convert the volume to mass in (KIb). 

Mass (KIb) = Volume (BBL) x (SG) x (.3502) 

SG = Specific gravity of the stream 

The above equation is already implemented in the model. Table 4.1 shows the outlet 

stream products from viscobreaker unit in volume unit of BBL. 

 

Table 4.1: Visbreaker Inlet and Outlet Streams 

Stream Description Amount (in BBl) 

RateV (feed to viscobreaker) Feed stream to viscobreaker 53,399 bbl 

RateV1 (outlet stream) Light Naphtha              54 bbl 

RateV2 (outlet stream) Heavy Naphtha              113 bbl 

RateV3 (outlet stream) Gas oil             163 bbl 

RateV4 (outlet stream) Bottom fraction             18,229 bbl 

 

The light naphtha stream from viscobreaker is sent to the gasoline pool directly as 

shown in figure 4.1. The second stream, heavy naphtha is sent to the reformer then from 

the reformer it is sent to the gasoline pool.  The third stream from viscobreaker, gas oil 

stream, is sent to the diesel pool. The fourth and last stream is the heavy bottoms which 

are sent to the fuel oil pool. The selected destination of the outlet streams from the 

viscobreaker is based on its cut temperature. For example, the light naphtha stream cut 

temperature range is 0-180 
o
C. Similarly, other streams are distributed according to their 

cut temperatures. From table 4.2, we can see that per 100,000 barrels of crude processed 

on a daily basis, the viscobreaker can produce 19,170 barrels/year of light naphtha, 

41,248 bbl/year of heavy naphtha, 59,495 bbl/year of gas oil and 6,655,000 bbl/year of 

heavy bottoms (asphalt materials). The numbers mentioned so far indicate the power of 
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viscobreaker as a processing unit in the refinery. We need to emphasize that the products 

from visbreaker are based on 100,000 of crude oil processed on a daily basis. There are 

many refineries around the world that can produce double or triple this amount. That 

indicates that the products stream from the viscobreaker and profits related to these 

products can be double or triple the amounts mentoned in table 4.2. 

Table 4.2 shows the products streams from viscobreaker unit on a basis of 100,000 crude 

oil processed on a daily basis including the annual total sales in dollars for each product. 

 Table 4.2: Visbreaker product streams with total sales on yearly basis. 

 

 However, without the viscobreaker being included in the model, the total bottom 

fraction from residual hydro treater will be sold as fuel oil or asphalts. Table 4.3 below 

shows a comparison of sales with and without considering the viscobreaker. Table 4.3 

shows the effect of including the viscobreaker unit in the model of oil refinery to the 

refinery profits. 

 

 

 

 

Stream # Description 
Volume in (bbl/year) 

produced 

 

Total sales per year ($) 

 

1 Light Naphtha  19, 710 2, 128, 680 

2 Heavy Naphtha 41, 248 4, 455, 000 

3 Gas oil 59, 495 7, 140, 000 

4 Bottom Fraction 6,655,000 439, 000,000 
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Table 4.3: Comparison for Sales with and without Viscobreaker 

   

The difference between the total sales mentioned in the above table is estimately  

$82,000,000 annually. Signifying with considering the viscobreaker in the refinery 

model, the refinery profits can increase by $82,000,000 every year assuming that we are 

processing 100,000 barrels of crude per day. Now, we can conclude that it is extremely 

important for oil refinery planning model to include the viscobreaker products since it 

will, in addition to the extra significant profits, contribute in a significant amount to 

increasing production of gasoline, diesel and fuel oil. Resultantly, we discuss the two 

cases with and without NOX reduction. 

 

4.4 Mathematical Model with NOX Reduction  

      (Case A & Case B): 

 
The two cases we are discussing in our model are case A & case B as described earlier. 

Case A: Solve the planning model to meet demand and specifications without any NOX  

mitigation option which means 0% of NOX reduction requirement.           

Case B: Solve the planning model with quality constraints considering flow rate  

balancing, fuel switching and NOX reduction technology. The model is a MINLP. 

Total sales per year without considering 

the viscobreaker ($) 

Total sales per year considering the 

viscobreaker ($) 

370,961,910 

 

452,859,000 
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In order to illustrate the model, figure 4.1 for a petroleum refinery process is used. 

A 100,000 bbl/day arab heavy crude oil is selected to be the feed to the refinery. The 

refinery has to meet the market demands for different products which are shown in table 

4.4. The product price is given in the same table. The product prices are based on USA 

market in 2011. Also, product specifications have to be met as shown in table 4.5 in 

addition to a certain NOX emissions reduction target. The results are based on 100,000 

bbl/day of crude oil processed. However, most major refineries are producing above this 

number.  For example, in Saudi Arabia, Ras Tanura Refinery is processing around 

250,000 bbl a day. 

Case A is the case without considering the removal of NOX. Case B is the case 

where we start NOX reduction and hypothesize how this reduction will affect the total 

profits. Table 4.4, lists the four main products from refinery and these are the Gasoline, 

Kerosene, Diesel and Fuel oil. The demand assumed in this study is 20,000 bbl a day for 

all products except for the fuel oil which is assumed to be 18,000 bbl/day. The basis of 

my assumption is to make the model as simplistic as possible from demand point of view 

because the purpose of this study is to look after the NOX reduction analysis and profits 

changes. However, the mathematical model is flexible for changing the demand in order 

to look for different cases with different demand values. The prices shown for the four 

products in table 4.4 are in $/bbl as per USA market average price of March 2011. As 

seen in table 4.4, diesel has the highest price value among other products with $120/bbl. 

This is because diesel has higher demand than other products.  The lowest price product 

is the fuel oil with 66$/bbl since it has the lowest demand. Looking at the product prices 

one can say that the result of the optimized mathematical model should reflect more 
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diesel than other products since the demand of all main three products are the same. As 

mentioned, the prices of the four products are based on average USA local market prices. 

Looking at table 4.5, listed are the main properties of the four products which 

must be met. The mentioned properties are added as constraints in the mathematical 

model. Meaning the properties must be satisfied in all cases to reach an optimal solution. 

For example, from table 4.5 we can read that the specific gravity, S.G., for gasoline 

should not exceed 0.817. In the mathematical model it is been added as a constraint that 

the SG for gasoline should not exceed that value. Table 4.5 is showing all other 

properties constraints which have been added to our mathematical model. These 

constraints originate from international and oil industry standards to comply with high 

quality of the four products before they are sent to sale. Therefore, these properties are 

included into the mathematical model as constraints. 

 

Table 4.4: Products demand 

Final Product Demand bbl/day Price US$/bbl 

Gasoline 20,000 108 

Kerosene (Jet Fuel) 20,000 86 

Diesel 20,000 120 

Fuel Oil 18,000 66 

 

The objective function will be to maximize the overall refinery revenue while 

meeting market demand, quantity and quality with certain NOX reduction target. Meeting 

the quality demand includes meeting all properties constraints in table 4.5. This will 

make a powerful tool of this model for future plans in the refinery. It can also predict 
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whether we can meet a specific constraint, standard or requirements. The model is a 

complicated program that can operate for several changes of properties simultaneously. 

However, it is very sensitive to changes. For example, it may not reach an optimal value 

due to small changes in S.G. for any of the products. However, this can be solved 

sometimes by changing the upper limit of the S.G. of that product. 

 

Table 4.5: Products specification 

Final Product Property Specification requirement 

Gasoline 

S.Gr ≤0.817 

Sul% ≤0.05 

RON ≥89.0 

RVP, psi ≤9.0 

Jet Fuel 

S.Gr ≤0.85 

Sul% ≤0.25 

Smoke Point ≥20.0 

Diesel 

S.Gr ≤0.875 

Sul% ≤0.5 

CN ≥45 

Fuel Oil 
S.Gr ≤1.0 

Sul% ≤1.0 

The model was coded into the General Algebraic Modeling System (GAMS). The 

GAMS model optimizes all intermediate and final products streams across a crude oil 

H2 Plant 

   CCR 

HC 

JHT 

CNHT 

DHT 

NHT 

  Fuel 

   IS 4 

HC 

JHT 

CNHT 

DHT 

NHT 

300 psi 

300 psi 

1200 psi 

350 psi 

350 psi 

400 psi 

200 psi 

200 psi 

2000 psi 

500 psi 

500 psi 

600 psi 

300 psi 

300 psi 

Sources Sinks 

 

C1 

 

H2 Recovery 

C1 Compressor No. 1 

C2 Compressor No. 2 

Inlet Pressure for C1 & C2 = 300   psi 

Outlet Pressure for C1        = 2000 psi 

Outlet Pressure for C2        = 600   psi 
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refinery subject to connectivity, capacity, demand, and quality constraints with certain 

NOX reduction target. These constraints can be easily modified to incorporate new data.  

Now we will be discussing the two cases mentioned earlier (Cases A&B). 

Case A:  The model is solved and considered as our base case for comparison purposes 

later. NLP is the model technique used for the planning. A summary of every blending 

pool streams flow rate for  Case A  (without NOX reduction target) is illustrated in     

table 4.6 with a total profit of 7.25x10
8
 $/yr including satisfying  other constraints with 

total NOX emissions of 10,636 tonne/yr. That means the refinery is producing a total of 

10,636  ton of NOX every year which will go directly into the air. It is really huge amount 

of air pollutant and needs to be reduced. We will see later how we will reduce the NOX   

and its relation to the refinery profits. Table 4.7 shows the product properties that the 

model is trying to satisfy while meeting the demand. The last column represents the 

model results. 

It is clear from the two tables that the planning model tries to meet the demand 

requirement for each product and the properties required for meeting the quality 

constraint for each final product. The most profitable product among an oil refinery is 

diesel. So, the model tends to produce more diesels while meeting the demand for other 

products is also mandatory.  The model suggests that the diesel production is 28,875 bbl 

for every 100,000 bbl of crude oil processed. Ranking the diesel as the highest in final 

product, kerosene comes next with 23,587 bbl. We can see that although kerosene price is 

cheaper than gasoline, but still the model suggest producing more kerosene than gasoline. 

Gasoline volume produced per 100,000 bbl of crude is 21,226 bbl which is less than 

kerosene by around 2000 bbl. We can conclude that the model is considering other 
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factors in addition to the price of the product. These factors are the required specification 

of final products which are shown in table 4.5. 

 

Table 4.6: Blending products flow rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2 Plant 

   CCR 

HC 

JHT 

CNHT 

DHT 

NHT 

  Fuel 

   IS 4 

HC 

JHT 

CNHT 

DHT 

NHT 

300 psi 

300 psi 

1200 psi 

350 psi 

350 psi 

400 psi 

200 psi 

200 psi 

2000 psi 

500 psi 

500 psi 

600 psi 

300 psi 

300 psi 

Sources Sinks 

 

C1 

 

H2 Recovery 

C1 Compressor No. 1 

C2 Compressor No. 2 

Inlet Pressure for C1 & C2 = 300   psi 

Outlet Pressure for C1        = 2000 psi 

Outlet Pressure for C2        = 600   psi 
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Table 4.7: Product properties after running the model 

 

Final 

Product 
Property 

Specification 

requirement 
Model 

Gasoline 

S.Gr ≤0.817 0.816 

Sul% ≤0.05 0.000416 

RON ≥89.0 92.129 

RVP, psi ≤9.0 7.409 

Jet Fuel 

S.Gr ≤0.85 0.834 

Sul% ≤0.25 0.199 

Smoke 

Point 
≥20.0 21.38 

Diesel 

S.Gr ≤0.87 0.852 

Sul% ≤0.5 0.044 

CN ≥45 55.334 

Fuel Oil 
S.Gr ≤1.0 0.865 

Sul% ≤1.0 0.201 

 

 

There are three split points that we need to discuss here in order to show how the 

model can selectively send their products. As we said earlier, we tried to simplify the 

model as possible in order to make it easier to understand and be able to visualize the 

power of the results more clearly. Looking at the first split point, stream “KDHT” coming 

from unit “DHT” as shown in figure 4.1, the stream “KDHT” will split to the diesel pool 

and the jet fuel pool. However, reconnoitering model result, it showed that the “KDHT” 

stream product, which is about 2263 bbl, is contributing to the diesel pool. The model 

decided to send zero product to the jet fuel pool at the split point since the diesel price is 

higher than jet fuel price. The model decision is based on the fact that the model 

objective function is to maximize the profit while keeping other constraints satisfied.  The 

second split point is at the “DGOHT” stream which is emanates from the “GOHT” unit 
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as shown in figure 4.1. The “DGOHT” stream is splitted between the diesel pool and the 

fuel oil pool. The model result, as shown in table 4.6, is sending the total product, around 

1537 bbl, to the diesel pool while sending zero products to the fuel oil pool. Suitably, 

since the demand and other constraints are satisfied, the model tries to keep the objective 

function magnified by maximizing the profits. Inasmuch the model decided to send the 

entire “DGOHT” stream product to the diesel pool. Similarly, the “DRDHT” stream 

ensuing the “RDHT” unit is splitted between the diesel pool and the fuel oil pool. At the 

split point the model needs to make a decision on where to send the stream.  

It will send the product to either the diesel pool or the fuel oil pool. The model 

suggests sending these products, which is around 1321 bbl, to the diesel pool instead of 

the fuel oil. As seen from table 4.6, the total product amount of 1321 bbl is sent at the 

split point to the diesel pool in order to maximize the objective function which represents 

the profits. This demonstrates the satisfactions of all specifications mentioned in table 4.5 

while sending all products at the three split point to the diesel pool. If we could lower the 

demand for the fuel oil (or if it could be met by other intermediate products) the model 

will try to produce more diesels. This would be expected, when lowering the fuel oil 

demand, because the diesel has the highest price in the market. The model will tend to 

increase the profits as possible by increasing the diesel product. However, this will be 

done after satisfying the new lower demand of the fuel oil. 

As noticed from the tables above for case A (with no NOX reduction), the model 

result has met all properties specification and requirement. One Primary example is when 

the goal of diesel properties are being met. The specific gravity is near the desired value 

with 0.852 as the model result versus 0.87 as the maximum specification allowed for 
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diesel S.G. The difference is only 0.018 which indicates that the model is giving a very 

good value for the diesel S.G. For the diesel sulphur content we got from the model result 

a value of 0.044% versus 0.5% as the maximum allowed in the specification of diesel 

with sulphur content much lower than the specified range by 0.456%. The model aims to 

minimize the sulphur content as much as possible. The cetane number for the diesel 

should not be less than 45 as mentioned in the diesel specification. The model result for 

the CN was 55.33 which is above the specification limit by 10.33. This shows that our 

CN for the diesel is the safe side in terms of meeting product specification. The model 

tries to maximize the CN as much as possible while keeping other properties in the safe 

range.  

The properties for jet fuel are tighter than those for gasoline and they are all near 

the limit. For jet fuel, the specifications call for a maximum of 0.85 for the S.G and the 

model result was 0.834 with a difference of 0.016 only. However, it is still in the safe 

range.  For the sulphur content of jet fuel, the model result was 0.199% versus 0.25% as 

the maximum allowed per specifications with a difference of 0.051% showing lower 

value sulphur content than the specified one. The model showed 21.380 for the smoke 

point of jet fuel which is higher than the specified minimum of 20.0. For gasoline, all 

properties are met. For example, SG is very near to the specified value. The model 

showed a value of 0.816 for the S.G of gasoline while the specification is requiring an 

upper limit of 0.817 with a safe difference of 0.001. The sulphur content of gasoline as 

per the model result showed 0.000416 where the specifications are giving a limit of up to 

0.05. The RON of gasoline for the model result was 92 while the specification is giving a 

lower limit of 89. The fuel oil property constraints are all satisfied with specific gravity 
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constraint as the only binding one.  The fuel oil S.G from the model result was 0.865 

where the specifications upper limit is 1.0 showing an extremely acceptable difference. 

The sulphur content of fuel oil from the model output was 0.21 which is way lower than 

the specifications by around 0.8. Now we will investigate the NOX mitigation cases 

starting with base case (Case A). 

Figure 4.3 illustrates the NOX emissions from each unit (combustion source) 

without any mitigation options (Case A). The fuel used in combustion for all units is 

assumed to be fuel #6. The profit is 7.25x10
8
 $/yr with total NOX emission of 10,638 

ton/yr. 

This case will be used later for comparison with other NOX reduction cases to 

study and analyze the cost effect with NOX reduction percentage.  From figure 4.3, we 

noticed that CDU is producing 2929 ton/yr of NOX, reformer is producing 1980 ton/yr of 

NOX and GOHT (gas oil hydro treater) is producing 1895 ton/yr of NOX.  This indicates 

that around 64% of total NOX produced from the eight refinery units is coming from the 

CDU, reformer & GOHT units. These units are sharing the major part of the pollutant 

mass. 
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Figure 4.3:  Case with total emission from all units 

 

In the other hand, the NHT, DHT, Visc, HC and RDHT are the less producing 

units of NOX.   The five units are responsible for around 36% only of the total pollutant 

produced every year. Figure 4.3 is giving us a good idea about where the major pollutant 

is coming from. Next, we will be studying how to reduce the NOX, how much will be 

reduced and what is the optimal method for NOX reduction for each unit. Figure 4.3 will 

be used along with other reduction targets for comparsion to the changes happending at 

each reduction target. 

Case B: 

Planning model with quality constraints and NOX mitigation by balancing, fuel 

switching and application of NOX reduction technology are considered in this case study. 

The NOX reducing process under consideration is SCR process since it is commercially 

available at large scale. The cost for NOX reducing process is implemented in the model. 

A binary variable, Yi,k, is introduced in the model to find whether NOX reducing process 

is used in unit and what technology is being used. The binary variable will show whether 

a certain technology is being used. Another binary variable, Zi,SW  is introduced to 
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indicate whether current fuel or new fuel is being used to help us know about the second 

mitigation option which is  the fuel switching. If fuel switching option is applied, the 

binary variable Zi,SW will have a value of 1. If the switching is applied, the model will tell 

us what fuel to switch to. In our case here, we have one new fuel. So, when switching is 

applied, it means the model is switching to the new fuel. Also, the mathematical model 

will not allow both of fuel switching and SCR technology to be used at the same refinery 

unit.  There is a conditional equation that controls this situation of not allowing both of 

the SCR application and fuel switching to be selected for the same unit. 

 

Table 4.8: Emission factors for the three NOx mitigation options 

Option Emission Factor 

Fuel #6 (Current or old Fuel) 1.04 

Fuel #2 (Proposed New Fuel)   .46 

SCR Technology  .104 

 

Looking at the table above, it is evident how the three options of current fuel, new 

fuel and the use of SCR technology vary in terms of their power to reduce NOX emissions 

for refinery units. Since NOX is a function of the fuel required for heating the inlet 

stream, NOX is also a function of the feed to the refinery unit. The more feed comes into 

the oil refinery unit, the more fuel you need for heating. However, same amount of 

current fuel and new fuel produces different amount of NOX. New fuel produces less 

NOX than current fuel. However, only at low NOX reduction target, new fuel can help. 

The emission factor for SCR technology was calculated based on the fact that SCR can 

remove 90% of NOX produced by current fuel. Hence, by multiplying the emission factor 

for current fuel by 0.9, we the obtain SCR technology emission factor. 
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Figure 4.4:  Case with 20% Reduction in NOX 

 

By looking at figure 4.4, for 20% reduction target, we notice no SCR is 

implemented. Since the mathematical model can achieve the target of 20% NOX 

reduction without the need for implementing a high cost technology, it will automatically 

choose to switch to new fuel. For 20% NOX reduction, the model chose to switch only 

four units to new fuel (Viscobreaker, DHT, NHT & Ref.). We can see that three is around 

50% reduction in NOX emission from each of these units. The remaining units stayed 

with current (old) fuel. It means one can obtain 20% reduction of total NOX from the 

refinery by reducing around 50% of NOX emissions for each of the four mentioned units. 

As we noticed for the 20% reduction target, the model selected mostly the units with 

small to medium size in terms of NOX production. 
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Figure 4.5: Case with 40% Reduction in NOX 

Figure 4.5 shows the results for 40% NOX reduction. The model chose to switch 

six units (VISC, DHT, NHT, GOHT, HC and REF) to new fuel. Note that not all units 

have been switched to new fuel. Two units kept running with current (old) fuel. These 

units are CDU and RDHT. The differences are only in the number of switched units and 

in the resulting profit which decreases as NOX reduction target increases. The base case 

(Case A) is shown in each figure for easy comparison. As noticed, for the case of 40% 

NOX reduction, more units switched to new fuel than in the case of 20% NOX reduction. 

However, when 40% of NOX is required, the model switched more units to new fuel. 

Looking again at figures 4.4 & 4.5, we notice that the same fours units for the 20% and 

40% reduction were switched to new fuel with the same amount of reduction. However, 

for the 40% reduction, two more new units were affected by fuel switching and these are 

the GOHT & HC units. Both of these units were reduced by around 60% for each in order 

to reach the target of 40% total reduction of the refienry. That means switching the six 
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units to new fuel (four units reduced by 50% and two units reduced by 60%), can achieve 

the target of 40% reduction of total NOX. We can conclude that for the 40% reduction 

target six units have been switched to new fuel. Even at the 40% NOX reduction target, 

the model tried to avoid using the SCR technology as much as possible since the main 

target is to maximize profits and reduces losses by avoiding unnecessary additional cost 

of SCR technology. 

             

          

                                                                                                                                                                                                                                                                                                  

Figure 4.6: Case with 60% Reduction in NOX 

For higher reduction targets, such as 60% (see Figure 4.6), more NOX needs to be 

removed from more units. The model chose to remove NOX  by the SCR technology from 

two different units. These units are CDU, RDHT. These units have the highest impacts on 

the overall NOX emission.  These two units never have been subject for reduction by the 

model for the previous 20% and 40% reduction target cases. Six units are chosen to be 

switched to new fuel and these units are GOHT, NHT, VISC, HC, DHT and REF. These 
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units are reduced in a similar way to what the model did for the 40% reduction target, see 

figure 4.5. At the 60% reduction, we see a combination of SCR and new fuel options in 

the refinery. The model decided to switch some units to SCR technology and other units 

to new fuel option. Insofar, the model targeting is less use of SCR in reducing the total 

cost. It is seen that SCR technology was used for the removal of NOX from two units 

which have major emissions of NOX. The model tries to minimize the use of SCR 

technology as more NOX removal will increase the operational and maintenance cost of 

the SCR technology. But always remember that SCR can remove up to 90% of NOX 

produced by a refinery unit. The model tried to do a good balancing between the 

technology use (SCR) and the switching to the new fuel while maintaining the required 

reduction target of 60%.        

Figure 4.7 shows the result for 80% reduction target. The results show that NOX 

emissions should be removed by SCR from four units and only NHT, REF,VISC units 

have to be switched to new fuel as was done for the 60% reduction. Four units will be 

using the SCR technology to remove NOX and these are the CDU, RDHT, GOHT and 

HC. The CDU & RDHT units are similar to the 60% reduction case where the SCR 

technology was used. However, we see that one unit which is the DHT is remaining with 

the current fuel and it was not subject to switching or applying of technology. This is 

done to achieve the reduction target and maximize the profit. However, it is found that 

90% is the maximum possible reduction target when all NOX emissions from all units are 

removed by SCR. A summary of results for case A and B with NOX reduction is given in 

table 4.9. It shows that the profit decreases by about 1.5% at 40% NOX reduction target. 
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About 3.28% drop in profit noticeably at 80% NOX reduction when NOX emissions from 

seven units are removed.               

 

                                     Figure 4.7: Cases with 80% Reduction in NOX 

 

Table 4.9: Summary of Results for Variation in NOX Reduction and Profit Change 

% Reduction Profit (million $/yr) NOX emission 

(Ktonne/yr) 

% Reduction in Profit 

Base Case 725.3 733.0 0 

20 720.8 440 0.62 % 

40 714.7 293 1.5 % 

60 708.2 147 2.36 % 

80 701.5 73.3 3.28 % 
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Figure 4.8 shows the profit for each reduction target for this case study. Figure 4.8 

shows a semi linear relationship between profits and NOX reduction percentage target. 

Almost the profits drop by about 0.041% for each one percentage increase in NOX 

reduction percentage target. The profit decreases as more NOX emissions are removed 

from more units. By looking at figure 4.8, we can predict our profits drop when 

increasing the NOX reduction target. 

 

Figure 4.8: Effect of NOX reduction percentage on profits 

 

4.5 Sensitivity Analysis 

 

In this study, sensitivity analysis of final product prices, products demand, 

switching cost and NOX reduction technology cost were performed to analyze the impact 

on the profit for the different case studies shown in the previous section. 
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Case A: 

For case A there is no NOX reduction required. Meaning that our reduction target 

for Case A is 0% in NOx reduction. However, for this base case we will study the effect 

of inflation/deflation in the final product prices. The model tries to satisfy demand of 

each product by manipulating inlet flow rate for each unit to satisfy the demand. For an 

increase of 15% in final products price compared to the base case, the profit increases to 

about $1217 MM/yr while it decreases to about $233 millions/yr if the final products 

price decreases by 15%.  The profits with original prices (0% increase in product prices) 

is $725 MM/yr. That means the profits increased by around 68% of original profits when 

the product prices increases by 15%. For the drop of 15% in product prices, the profits 

drop to $233 MM/yr which is a drop of 68% in profits compared to the normal case with 

the original prices. So we can see and predict how much our profits will change when the 

product prices changes. 

Table 4.10: Inflation / Deflation effect of products prices 

Profit (million $/yr) 

15% increase 

in selling price 

of products 

15% decrease 

in selling price 

of products 

30% increase 

in selling price 

of products 

30% decrease 

in selling price 

of products 

1217.4 233.1 1709.6 (-259) 
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Figure 4.9: Inflation / Deflation effect of products prices 

 

Looking at the 30% incrtaese or decrease in product prices, when the product 

prices increase by 30% we see that profits will increase to $1709 MM/yr that is 

equivalent to more than double the original profits by almost a factor of 1.4. However, we 

can see at 30% decrease in product prices, the refinery loses reaches $-259 MM/yr. This 

negative value indicates that the refinery is not making any profit. However, the refinery 

is losing 259 million dollar every year. It means there is a critical price for the products of 

the refinery where the refinery should not go below it and must have a safe margin above 

their critical prices to avoid loses. 

Case B: 

The effect of demand growth is studied and albeit the final products quantity is 

affected. Any increase in demand will lead to a change in flow rates which means that 

balancing is taking place in order to meet demand and a certain reduction target. The 



 
 

95 
 

 
 

effect of final product selling price (increase by 15% and 30% in the price or decease 

by15% and 30%) is studied as in the previous case. In addition, effect of an increase by 

15% and 30% or decrease by 15% and 30% in the switching costs to new fuel and SCR 

technology costs are investigated. SCR cost is considered as $6,487/ton of NOx removed 

as mentioned by Hatton and Bullions (2008). The mentioned cost is based on USA 

market, labor cost and it includes annual capital and operating cost. As noticed, any 

increase or decrease either on final product selling price or switching cost and SCR 

technology cost does not affect the number of units to be switched to run with new fuel or 

the amount of NOX removed by SCR. The amount of each final product does not change 

much except when the demand change. The only affected variable is the profit as shown 

in the table 4.10, 4.11 & 4.12. The profit obviously increases with increasing price of 

final products and decreases with increasing the cost of switching to new fuel or 

increasing the cost of the SCR technology.  

 

Table 4.11: Profit changes for the case with change in new fuel Cost 

 Profit (million $/yr) 

 

%NOX  
Reduction 

 

30% decrease in 
new fuel Cost 

 

15% decrease in 
new fuel Cost 

 

15% increase in 
new fuel Cost 

 

30% increase in 
new fuel Cost 

20 % 722.4 721.6 720 719.74 

40 % 718.13 716.4 713.8 713.4 

60 % 712.4 710.3 707.6 707.3 

80% 702.2 701.0 700.7 700.13 
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Figure 4.10 and 4.11 show the sensitivity analysis results for price inflations.  As 

seen earlier, it is clear that final product price has the major effect on the profit. However, 

for case B where the reduction target increases, we are assuming the product prices are 

fixed as per the original values but we assume changes in cost of switching and SCR 

technology. Looking at figure 4.10, it shows the variation in total profits for each 

reduction target as the cost of fuel switching increases or decreases. For example, for the 

20% reduction, we noticed that for increase in fuel switching cost by 15%, the annual 

profits will drop to $720 MM. When the cost of switching increase to 30%, it shows that 

the profits will drop more to $719.74 MM/yr. This shows about a  drop of $0.018 

MM$/yr per 1.0% increase in fuel switching price. We can see that the drop in profits due 

to increase in cost of fuel switching is not very risky based on the values we got. We can 

see from figure 4.10 other reduction targets for the 40%, 60% and 80%. The slopes of the 

lines are very small indicating a low risk for price increase for the fuel switching cost.  
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Figure 4.10: Profit changes results for changes in cost of new fuel 

 

Table 4.12: Profit changes results for Case with change in SCR Cost 
 

 Profit (million $/yr) 

%NOX 
Reduction 

 

30% decrease in 
SCR Cost 

 

15% decrease in 
SCR Cost 

 

15% increase in 
SCR Cost 

 

30% increase in 
SCR Cost 

20 720.8 720.8 720.8 720.8 

40 714.7 714.7 714.7 714.7 

60 712.7 710.3 707.6 707 

80 708.2 704.7 698.5 695.4 
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Figure 4.11: Shows the Sensitivity Results for SCR Technology Cost Changes                             

(percentage wise) 

It is clear from figure 4.11 that the effect of NOX removal by SCR is more 

significant on the profit at higher reduction target. This is expected because more NOX 

will be removed as more reduction is required. For the 20% reduction target, we see that 

the profits is the same for all increase/decrease percentages of  the SCR technology cost 

and this is expected for the 20% reduction target. As we know already, at the 20% and 

40% reduction targets, the model did not select the use of SCR technology for any of the 

eight units in the refinery. This leads to the conclusion that the profits for the cases of 

NOX reduction by 20% and 40% are independent of the cost of the SCR technology since 

the model did not select them for use. However, for the 60% and 80%, the model selected 

some units to work with SCR technology in order to reach higher levels of NOX 

reduction. We can see that the profits for the 60% and 80% are changing as we change 
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the cost of the SCR technology. For example, for 80% reduction target, the model 

selected four units to work with the SCR technology. The profits at the 30% decrease in 

SCR technology cost is $708.2 MM/yr while at the 30% increase of the SCR technology 

cost the profits drop to $695.4 MM/yr. This gives us a very important conclusion. It 

shows that the profits will drop roughly by $0.213 MM/yr for each 1.00% increase in the 

cost of the SCR technology. This can help the refinery to predict the business loses or 

gains as the SCR technology cost changes in the market. It can assist in estimating the 

risk involved in the use of other technologies and making a comparison among other 

technology to select the best one with lower risk in affecting the refinery profits. For the 

case of the 80% reduction target of NOX, SCR was responsible for the removal of around 

55% of the total NOX produced by the refinery. Since the cost of the SCR is proportional 

to the total NOX removed by this technology, we see for the 80% reduction target case, 

the profits are more sensitive to the increase/decrease in the SCR cost. However, for the 

60% reduction target case, we see that the profits are less sensitive than the 80% 

reduction target case. This is because in the 60% reduction target, the SCR technology is 

responsible for the removal of around only 30% of the of the air pollutant (NOX). 
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Figure 4.12: Summary of Results 

                            Current fuel 
 
                           New fuel 
 
                           Application SCR Technology 
 

 

Figure 4.12 gives a summary of all results for different reduction targets. The blue 

color represents that the unit is still using the old fuel which is fuel oil #6. The white box 

with black slopped lines represents switching to new fuel while the green color box with 

black straight lines represents application of NOX reduction technology (SCR). 
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4.6 Summary 

A general refinery planning model was developed to meet product demands with 

quality specifications and at the same time meet NOX reduction targets. Different NOX 

mitigation options were considered in order to look for different ways of minimizing cost 

and maximizing profits. It also gives the model more flexibility for finding different 

solutions of NOX reduction. These methods are flow rate balancing, fuel switching and 

NOX reduction technology. It was shown that, in order to reduce NOX without fuel 

switching or NOX SCR technology, the model tends to blend streams into the most 

profitable pool unless demand of some product needs to be met. This kind of flow rate 

balancing can achieve up to small reduction in NOX emissions without considering 

quality constraints. When product specifications are taken into account, only very small 

reduction in NOX is achieved by decreasing slightly the inlet flow rate for the unit that 

emits more NOX.  

For higher reduction targets up to 40%, fuel switching is the option of choice. The 

final products quantity and quality remain unchanged. The profit is affected by the cost 

changes of the new fuel. The study shows also that any increase or decrease for final 

product selling prices or retrofit cost affect the profit. 

For NOX reduction of more than 40%, the SCR technology is a promising option 

since it can achieve up to 90% reduction. The profit is negatively affected when using the 
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SCR method because it is more expensive than fuel switching. The effect of increase or 

decrease in the total cost of SCR including operating cost and maintenance cost can affect 

the final profits.  

Up to 40% NOX reduction can be achieved by switching as shown in the 20% and 

40% NOX reduction target cases. It is fevered for low NOX reduction percentage to use 

fuel switching method instead of SCR Technology. The reason for that is the low cost of 

fuel switching compared to the use of SCR technology.  

 However, SCR application was selected at the next cases of 60% and 80% 

reduction targets. The use NOX reduction technology is a better alternative to achieve 

high percentage of NOX reduction. No NOX reduction technology needs to be applied if 

the reduction target is 40% or less.  

To sum up, the planning model tends to satisfy the product demand with quality 

specifications. Flow rate balancing is not a good option to reduce NOX emission if quality 

constraints are added into the model. Fuel switching can achieve up to 40% NOX 

reduction and beyond that, NOX SCR technology processes should be applied.  
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 Appendix A 

 

Table A.1:  Arab Light Crude Oil Data for Volume % Removed at Each Temperature and 

                   API Versus cut Temperature 

 

Cut Temperature ( F ) Volume % 
Accum. 

Volume % 
API Mid. Volume 

  2.2 1.1   2.2 

200 7 5.7 78.8 9.2 

315 11.3 14.85 59.5 20.5 

400 9.1 25.05 49.5 29.6 

500 11.6 35.4 42.1 41.2 

600 10.1 46.25 35.4 51.3 

700 9.5 56.05 28.6 60.8 

800 5.9 63.75 25.4 66.7 

900 8.7 71.05 21.5 75.4 

1050 10.2 80.5 17.6 85.6 

1200 14.4 92.8 5 100 
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Table A.2:  Arab Light Crude Oil Data for Nitrogen & Sulfur Contents Versus cut 

                         Temperature 

 

 

 

 

 

 

 

 

Sulfur Content Wt.% Nitrogen Content  ppm Cut Temperature ( F ) 

0.0184 0.5 200 

0.0362 0.5 340 

0.104 0.5 450 

1.4000 57.0 700 

2.321 500 800 

2.50 909.0 900 

2.80 1406 1050 

4.17 3340 1200 
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Figure A.1: Accumulative Volume % removed vs Cut Temperature for AL Crude Oil 
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Figure A.2: API as a function of mid. V% for AL Crude Oil 
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Figure A.3:  N2 Content Versus Cut Temperature for AL Crude Oil 
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Figure A.4: Sulfur Content Wt% Versus Cut Temperature for AL crude 
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APPENDIX B                               

GAMS CODE 

 

* Crude Distilation Unit CDU.mod 

 

* his submodel is for calculating utilities etc. for crude units. 

* Product yields and properties for a CDU are always calculated from assay 

* Products: LSR, HSR, Kerosene,SRDiesel, LVGO, HVGO, VacResid 

* Parameters: Cut1(180), Cut2(400), Cut3(530), Cut4(675), Cut5(900), Cut6(1050) 

 

* Feed Crude Volume flowrate and end point cuts for products 

Parameter RateV Rate in Volum BBl        /100000/ 

         LSREP  LSRN End Point (F)       / 180 / 

         HSREP  HSRN End Point (F)       / 400 / 

         KeroEP Kerosene End Point (F)   / 530 / 

         SRDEP  SR Diesel End Point (F)  / 675 / 

         LVGOEP LVGO End Point (F)       / 900 / 

         HVGOEP HVGO End Point (F)       / 1050 /; 

* Mid Volume % 

Parameter Gas  /1.80/ 

         LSRV   ,LSRMV 

         HSRV    ,HSRMV 

         KeroV   ,KeroMV 

         SRDV    ,SRDMV 

         LVGOV   ,LVGOMV 
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         HVGOV   ,HVGOMV 

         VRsdV   ,VRsdMV; 

 

* Calculating Mid Volume % for all products from the EP's 

* ProdV = 8.15312E-11*(EP^4) -2.84324E-07*(EP^3) +0.000324992*(EP^2) 

*         -0.047271899*(EP)   + 4.040637061 

 

LSRV  = 8.15312E-11*LSREP**4 -2.84324E-07*LSREP**3   

LSRMV = (LSRV+Gas) / 2 ; 

HSRV  = -2.84324E-07*HSREP**3  -0.047271899*HSREP  

HSRMV = ( LSRV + HSRV ) / 2 ; 

KeroV =  -2.84324E-07*KeroEP**-0.047271899*KeroEP  

KeroMV= ( HSRV + KeroV ) / 2 ; 

SRDV  = -2.84324E-07*SRDEP**3 -0.047271899*SRDEP 

SRDMV = ( KeroV + SRDV ) / 2 ; 

LVGOV = -2.84324E-07*LVGOEP**3  -0.047271899*LVGOEP; 

LVGOMV= ( SRDV + LVGOV ) / 2 ; 

HVGOV = -2.84324E-07*HVGOEP**3  -0.047271899*HVGOEP; 

HVGOMV= ( LVGOV + HVGOV ) / 2 ; 

VRsdV = 100 ; 

VRsdMV= ( HVGOV + VRsdV ) / 2 ; 

 

Display LSRMV,HSRMV,SRDMV,LVGOMV,HVGOMV,VRsdMV; 

* API 

Parameter LSRAPI,LSRSG 

         HSRAPI ,HSRSG 
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         KeroAPI,KeroSG 

         SRDAPI,SRDSG 

         LVGOAPI,LVGOSG 

         HVGOAPI,HVGOSG 

         VRsdAPI,VRsdSG; 

* Calculating API for all products from the Mid Vol% 

* ProdAPI = 7.19024E-06*(EP^4) +0.108882599*(EP^2) 

*         -3.564876491*(EP)    

LSRAPI  = -0.0015436414*LSRMV**3  +0.113288448*LSRMV**2  -3.778147973*LSRMV; 

LSRSG =141.5/(LSRAPI +131.5); 

HSRAPI  = -0.0015436414*HSRMV**3  +0.113288448*HSRMV**2  -3.778147973*HSRMV; 

HSRSG =141.5/(HSRAPI +131.5); 

KeroAPI = -0.0015436414*KeroMV**3 +0.113288448*KeroMV**2 -3.778147973*KeroMV  

KeroSG=141.5/(KeroAPI+131.5); 

SRDAPI  = -0.0015436414*SRDMV**3  +0.113288448*SRDMV**2  -3.778147973*SRDMV; 

SRDSG =141.5/(SRDAPI+131.5); 

LVGOAPI = -0.0015436414*LVGOMV**3 +0.113288448*LVGOMV**2 -

3.778147973*LVGOMV; 

LVGOSG=141.5/(LVGOAPI+131.5); 

HVGOAPI = -0.0015436414*HVGOMV**3 +0.113288448*HVGOMV**2 -

3.778147973*HVGOMV; 

HVGOSG=141.5/(HVGOAPI+131.5); 

VRsdAPI = 7.19024E-06*VRsdMV**4 +0.113288448*VRsdMV**2 -3.778147973*VRsdMV; 

VRsdSG=141.5/(VRsdAPI+131.5); 

* Specific gravity (SG) for all products 

 



 
 

112 
 

 
 

 

 

 

* Sulfur content 

Parameter LSRS 

         HSRS 

         KeroS 

         SRDS 

         LVGOS 

         HVGOS 

         VRsdS; 

* Calculating Sulfur conten for all products from the Mid Vol% 

* ProdS = 2.0301E-07*(MV^4) +0.001756678*(MV^2) 

*         -0.01690124*(MV)    

LSRS  = 2.0301E-07*(LSRMV**4) +0.001849373*(LSRMV**2)  -0.02036269*LSRMV; 

HSRS  = 2.0301E-07*(HSRMV**4) +0.001849373*(HSRMV**2)  -0.02036269*HSRMV; 

KeroS = 2.0301E-07*(KeroMV**4) +0.001849373*(KeroMV**2) -0.02036269*KeroMV; 

SRDS  = 2.0301E-07*(SRDMV**4) +0.001849373*(SRDMV**2)  -0.02036269*SRDMV; 

LVGOS = 2.0301E-07*(LVGOMV**4) -3.25656E-05*(LVGOMV**3) 

+0.001849373*(LVGOMV**2) -0.02036269*LVGOMV +0.050579083; 

HVGOS = 2.0301E-07*(HVGOMV**4) -3.25656E-05*(HVGOMV**3) 

+0.001849373*(HVGOMV**2) -0.02036269*HVGOMV +0.050579083; 

VRsdS = 2.0301E-07*(VRsdMV**4) +0.001849373*(VRsdMV**2) -0.02036269*VRsdMV; 

* Nitrogen content 

Parameter LSRN 

         HSRN 
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         KeroN 

         SRDN 

         LVGON 

         HVGON 

         VRsdN; 

* Calculating Nitrogen conten for all products from the Mid Vol% 

* ProdN = 6.76957E-09*(EP^4) -2.16091E-05*(EP^2) 

*         +0.000261549*(EP)   

LSRN  = 6.76957E-09*LSRMV**4 -2.2968E-05*LSRMV**2  +0.000304355*LSRMV; 

HSRN  = 6.76957E-09*HSRMV**4 -2.2968E-05*HSRMV**2  +0.000304355*HSRMV; 

KeroN = 6.76957E-09*KeroMV**4 -2.2968E-05*KeroMV**2 +0.000304355*KeroMV; 

SRDN  = 6.76957E-09*SRDMV**4 -2.2968E-05*SRDMV**2  +0.000304355*SRDMV; 

LVGON = 6.76957E-09*LVGOMV**4 -2.2968E-05*LVGOMV**2 +0.000304355*LVGOMV; 

HVGON = 6.76957E-09*HVGOMV**4 -2.2968E-05*HVGOMV**2 +0.000304355*HVGOMV 

; 

VRsdN = 6.76957E-09*VRsdMV**4 -2.2968E-05*VRsdMV**2 +0.000304355*VRsdMV; 

*  Volume % 

Parameter FLPG Vol folw rate of Off-Gas 

         FLSRN  Vol folw rate of LSR Naph 

         FHSRN  Vol folw rate of HSR Naph 

         FKERO  Vol folw rate of Kero 

         FDIESEL  Vol folw rate of SR Disel 

         FLVGO  Vol folw rate of LVGO 

         FHVGO  Vol folw rate of HVGO 

         FRSD  Vol folw rate of VRsd; 

FLPG   =Gas*RateV/100; 
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FLSRN  =(LSRV-Gas)*RateV/100; 

FHSRN  =(HSRV-LSRV)*RateV/100; 

FKero  =(KeroV-HSRV)*RateV/100; 

FDiesel=(SRDV-KeroV)*RateV/100; 

FLVGO  =(LVGOV-SRDV)*RateV/100; 

FHVGO  =(HVGOV-LVGOV)*RateV/100; 

FRSD  =(VRsdV-HVGOV)*RateV/100; 

* Mass Flow Rates 

Parameter RateWC3 

         RateWiC4 

         RateWnC4 

         RATEWLSRN 

         RATEWHSRN 

         RATEWKERO 

         RATEWDIESEL 

         RATEWLVGO 

         RATEWHVGO 

         RATEWRESD; 

* SG for C3, iC4 & nC4 are 0.5081, 0.5626 & 0.5835 respectivly. 

RateWnC4 =(0.48*RateV/100)*0.5835*0.3502; 

RATEWLSRN =FLSRN*LSRSG*.3502; 

RATEWHSRN =FHSRN*HSRSG*.3502; 

RATEWKERO=FKERO*KEROSG*.3502; 

RATEWDIESEL =FDIESEL*SRDSG*.3502; 

RATEWLVGO=FLVGO*LVGOSG*.3502; 

RATEWHVGO=FHVGO *HVGOSG*.3502; 



 
 

115 
 

 
 

RATEWRESD=FRSD*VRSDSG*.3502; 

* Products Properties 

*_____________________________________________________________________________

_ 

* L Naphtha 

Parameter ARO2    /6.1/ 

         NAPH2   /17.7/ 

         OLE2    /0/ 

         RVP2    /7.95/ 

         RON2    /70.2/ 

         MON2    /55/ 

         V1502   /64.3/ 

         V2002   /100/ 

         V3002   /100/ 

         V4002   /100/ 

* H Naphtha 

         RON3    /59.7/ 

         MON3    /55/ 

         V1503   /0/ 

         V2003   /15.4/ 

         V3003   /53.8/ 

         V4003   /92.3/ 

*Kero 

         VABP4   /465/ 

         FLSH4   /180/ 

         NAPH4   /0.1/ 
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         ARO4    /27.7/ 

         SMK4    /17.5/ 

         FRZ4    /-23/ 

         CS1224  /1.69/ 

         CS2104  /1.12/ 

         NI4     /0/ 

         VAN4    /0/ 

         CCR4    /0/ 

         OLE4    /0/ 

         V3004   /0/ 

         V4004   /11.8/ 

         V5004   /70.6/ 

         V6504   /100/ 

*Deisel 

         VABP5   /604/ 

         FLSH5   /249/ 

         ARO5    /4.4/ 

         CS1225  /4.58/ 

         CS2105  /1.77/ 

         NI5     /0.00538/ 

         VAN5    /0.00663/ 

         CCR5    /0.00901/ 

         OLE5    /0/ 

         V3005   /0/ 

         V4005   /0/ 

         V5005   /0/ 
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         V6505   /75.7/ 

*LVGO 

         VABP6   /786/ 

         Flsh6   /305/ 

         NI6     /0.2/ 

         VAN6    /0.3/ 

         CCR6    /0.4/ 

         V6506   /0/ 

         OLE6    /0/ 

         Por6    /81/ 

         CS1226  /35.68/ 

         CS2106  /6.18/ 

*HVGO 

         VABP7   /972/ 

         Flsh7   /337/ 

         NI7     /1.3/ 

         VAN7    /2.2/ 

         CCR7    /1.6/ 

         V6507   /0/ 

         OLE7    /0/ 

         Por7    /111/ 

         CS1227  /2077.9/ 

         CS2107  /60.27/ 

* Vac Residue 

         VAN8     VANADIUM       /151.2/ 

         NI8      NICKEL         /61.1/ 
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         CS1228   Viscosity @122F/4.19E+8/ 

         CS2108   Viscosity @210F/5111.3/ 

         POR8     Pour point     /130/ 

* Utility 

 

PARAMETER EF/1.04/ 

          EF2/ 

          EF3/; 

 

Parameter 

PowerCDU,LPSCDU,CWCDU,FuelCDU,CapitalCDU,NOXCDU,NOXCDU2,NOXCDU3; 

PowerCDU  = RateV; 

LPSCDU    = RateV; 

CWCDU     = RateV; 

FuelCDU   = RateV; 

CapitalCDU= -130*(RateV/100000)**0.65; 

NOXCDU=EF*(-FuelCDU); 

NOXCDU2=EF2*(-FuelCDU); 

NOXCDU3=EF3*(-FuelCDU); 

BINARY VARIABLE X1CDU,X2CDU,X3CDU; 

VARIABLE TNOXCDU; 

EQUATION Q11,QQ11,QQQ11; 

*----------------------------------------------------------------------- 

*----------------------------------------------------------------------- 

*_____________________________________________________________________________

_ 
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*_____________________________________________________________________________

_ 

* RDHT.mod  -  Vacuum Residue Hydrotreater 

 

* Use this submodel for hydrotreating with minimal cracking 

* Products: Naphtha, Distillate, LSFO   $ Naph:375-F, Dist:375-650F, LSFO:+650F 

 

* Feed (Residue from the CDU) properties 

Parameter RateVRDHT Vol flowrate of feed from CDU Residue 

         RateWRDHT   Mass flow rate from CDU Residue 

         SGRDHT      Specific gravity of feed from CDU Residue 

         APIRDHT     API of feed from CDU Residue 

         SulRDHT     SULFUR CONTENT (%) of feed from CDU Residue 

         NITRDHT     NITROGEN % of feed from CDU Residue 

         VANRDHT     VANADIUM % of feed from CDU Residue 

         NIRDHT      NICKEL of feed from CDU Residue 

         FlshRDHT    Flash point of feed from CDU Residue 

         VABPRDHT    Volume average boiling point of feed from CDU Residue 

         C5IRDHT     C5 insoluble of feed from CDU Residue 

         CCRRDHT     mass% of Conradson carbon of feed from CDU Residue; 

RateVRDHT = FRSD; 

SGRDHT    = VRsdSG; 

APIRDHT   = VRsdAPI; 

RateWRDHT = RateVRDHT*SGRDHT*.3502; 

SulRDHT   = VRsdS; 

NITRDHT   = VRsdN; 
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VANRDHT   = VAN8; 

NIRDHT    = NI8; 

CS122RDHT = CS1228; 

CS210RDHT = CS2108; 

PORRDHT   = POR8; 

FlshRDHT  = Flsh8; 

VABPRDHT  = VABP8; 

C5IRDHT   = C5I8; 

CCRRDHT   = CCR8; 

* Products Yeild 

Parameter SCFHYDRDHT 

         WTFRHYDRDHT      H2 mass fraction 

         C3SRDHT 

         IC4RDHT 

         NC4RDHT 

         NAPH            Naphtha mass fraction 

         RateW1RDHT      Naph mass  flow rate 

         Dist            Mid Distillate mass fraction 

         RateW2RDHT      Distt mass  flow rate 

         RateW3RDHT      Residue mass  flow rate 

         RATEV1RDHT 

         RATEV2RDHT 

         RATEV3RDHT; 

SCFHYDRDHT 

=(140*SGRDHT+0.39*(VANRDHT+NIRDHT)+91.5*NITRDHT)*(2.72*SGRDHT-1.61); 

WTFRHYDRDHT=(1/658.29)*(SCFHYDRDHT/SGRDHT); 
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H2RDHT     =-WTFRHYDRDHT*RateWRDHT/100; 

H2SRDHT    =0.85031*SulRDHT*RateWRDHT/100; 

NAPH       =(0.12*SulRDHT+0.0063*(VANRDHT+NIRDHT))*(2.035*SGRDHT-0.95); 

GASRDHT    =0.67*NAPH*RateWRDHT/100; 

C3SRDHT    =0.27*GASRDHT; 

IC4RDHT    =0.05*GASRDHT; 

NC4RDHT    =0.23*GASRDHT; 

RateW1RDHT =NAPH*RateWRDHT/100; 

Dist       =3.56*NAPH-0.16*NAPH**2; 

RateW2RDHT =Dist*RateWRDHT/100; 

RateW3RDHT =RateWRDHT-H2RDHT-H2SRDHT-GasRDHT-RateW1RDHT-RateW2RDHT; 

*  Products Properties 

* NAPHTHA (375-F) 

Parameter APINRDHT    /51.5/ 

         SGNRDHT 

         VABPNRDHT    /267/ 

         RVPNRDHT     /1.3/ 

         RONNRDHT     /55/ 

         MONNRDHT     /50/ 

         V150NRDHT    /2/ 

         V200NRDHT    /11/ 

         V300NRDHT    /0/ 

         V400NRDHT    /0/; 

SGNRDHT = 141.5/(APINRDHT +131.5); 

* Distillate (375-650F) 

Parameter APIDRDHT    /35.5/ 
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         SGDRDHT 

         VABPDRDHT    /502/ 

         ANLDRDHT     /150/ 

         CETDRDHT 

         FRZDRDHT     /-5/ 

         PorDRDHT     /-10/ 

* FLSHDRDHT IS DEFINED BY USER (210-250F) 

         FLSHDRDHT    /225/ 

         CS122DRDHT   /2.5/ 

         CS210DRDHT   /1.4/; 

SGDRDHT = 141.5/(APIDRDHT +131.5); 

CETDRDHT= (ANLDRDHT-32)/1.8-15.5; 

Parameter SulNRDHT  SULFUR CONTENT IN NAPH 

         SulDRDHT   SULFUR CONTENT IN MIDDLE DISTILLATE 

         SulLSFO   SULFUR OF RESID FUEL OIL 

         NITNRDHT   NITROGEN CONTENT OF NAPH 

         NITDRDHT   NITROGEN CONTENT OF MIDDLE DISTILLATE 

         NITLSFO   NITROGEN CONTENT OF RESID FUEL OIL 

         SGLSFO    SG OF RESID FUEL OIL 

         PORLSFO   POUR POINT OF RESID FUEL OIL 

         VGCF      FEED VISCOSITY-GRAVITY CONST 

         VGCRsd    RESID VISCOSITY-GRAVITY CONST 

         CS210LSFO VISCOSITY AT 210 OF RESID FUEL OIL 

         CS122LSFO VISCOSITY AT 122 OF RESID FUEL OIL 

         VANLSFO   VANADIUM % of RESID FUEL OIL 

         NILSFO    NICKEL of RESID FUEL OIL 
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         VABPLSFO  Volume average boiling point of RESID FUEL OIL 

         FlshLSFO  Flash point of RESID FUEL OIL 

         C5ILSFO   C5 insoluble of RESID FUEL OIL 

         CCRLSFO   mass% of Conradson carbon of RESID FUEL OIL; 

*NAPHTHA (375-F) 

NITDRDHT =0.16*NITRDHT; 

* RESIDUE (LSFO:+650F) 

SGLSFO  =SGRDHT-0.0195*SGRDHT*WTFRHYDRDHT+0.012*WTFRHYDRDHT; 

SulLSFO =(0.2*SulRDHT*RateWRDHT-SulNRDHT*RateW1RDHT-

SulDRDHT*RateW2RDHT)/RateW3RDHT; 

NITLSFO =(0.69*NITRDHT*RateWRDHT-NITNRDHT*RateW1RDHT-

NITDRDHT*RateW2RDHT)/RateW3RDHT; 

PORLSFO =PORRDHT/(0.6+0.0028*SulRDHT*PORRDHT); 

VGCF =(SGRDHT-0.1244*LOG10(4.664*CS210RDHT-31))/(0.9255-

0.0979*LOG10(4.664*CS210RDHT-31))-0.0839; 

VGCRsd=VGCF+0.56*(SGLSFO-SGRDHT); 

CS210LSFO=(31+10**((0.9255*VGCRsd-SGLSFO+0.0776)/(0.0979*VGCRsd-

0.1162)))/4.664; 

CS122LSFO=.85*CS122RDHT; 

NILSFO  =1600*NIRDHT/RateWRDHT; 

VANLSFO =1600*VANRDHT/RateWRDHT; 

VABPLSFO=VABPRDHT-25; 

*Volumetric flow rates 

Parameter FNRDHT RDHT Naph 

         FDRDHT  RDHT Distt 

         FLSFO   RDHT VRD; 

FNRDHT = RATEW1RDHT/(SGNRDHT*0.3502); 
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FDRDHT = RATEW2RDHT/(SGDRDHT*0.3502); 

FLSFO  = RATEW3RDHT/(SGLSFO*0.3502); 

* FDRDHT WILL SPLIT TO THREE STREAMS FDRDHTD(Diesel Pool) & FDRDHTF(FOil) 

Variable FDRDHTD,FDRDHTF; 

Equation Splt1; 

Splt1.. FDRDHT =E= FDRDHTD + FDRDHTF; 

* UTILITIES 

Parameter 

GasLHVRDHT,FuelRDHT,LPSRDHT,PowerRDHT,CWRDHT,ChemRDHT,CapitalRDHT,NO

XRDHT,NOXRDHT2,NOXRDHT3;; 

GasLHVRDHT = GasRDHT*21; 

LPSRDHT    = -RateVRDHT*(.004+.0000167*SCFHYDRDHT); 

PowerRDHT  = -RateVRDHT*(.769+.006154*SCFHYDRDHT); 

CWRDHT     = -RateVRDHT*(.0315+.0000923*SCFHYDRDHT); 

CapitalRDHT= -(8.65+5+.01423*SCFHYDRDHT+(NIRDHT+VANRDHT-

5)*.04)*(RateVRDHT/10000)**0.65; 

BINARY VARIABLE X1RDHT,X2RDHT,X3RDHT; 

VARIABLE TNOXRDHT; 

EQUATION Q12,QQ12,QQQ12; 

Q12..  TNOXRDHT =E= X1RDHT*NOXRDHT+X2RDHT*NOXRDHT2; 

QQ12..  X2RDHT+X3RDHT =l= 1; 

QQQ12.. X1RDHT+X2RDHT =E= 1; 

 

*---------------------------------------------------------------------------------------- 

*---------------------------------------------------------------------------------------- 

*----------------------------------------------------------------------------------------- 

* Viscobreaker 
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Parameter ConvVis  /0.8/ 

          SULVis   /0.1/ 

          APIVis /35.0/ 

          API1Vis /70.0/ 

          API2Vis / 50.0/ 

          API3Vis /35.0/; 

 

Parameter RateWVis, 

          H2SVis, GasVis 

          RateW1Vis, RateW2Vis 

          RateW3Vis, RateW4Vis 

          Sul1Vis, Sul2Vis 

          Sul3Vis, Sul4Vis, 

          API4Vis, SG1Vis, 

          SG2Vis, SG3Vis, 

          SG4Vis, RateV1Vis, 

          RateV2Vis, RateV3Vis, 

          RateV4Vis; 

 

 

 

 

 

RateWVis = RATEW3RDHT; 

GasVis = 0.003*ConvVis*RateWVis; 

RateW1Vis = 0.003*ConvVis*RateWVis; 
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RateW2Vis = 0.007*ConvVis*RateWVis; 

RateW4Vis = RateWVis-H2SVis-GasVis-RateW1Vis 

API4Vis = APIVis - 3.0; 

SG1Vis = 141.5/(API1Vis + 131.5); 

SG2Vis = 141.5/(API2Vis + 131.5); 

SG3Vis = 141.5/(API3Vis + 131.5); 

SG4Vis = 141.5/(API4Vis + 131.5); 

RateV1Vis = RateW1Vis/(SG1Vis*0.3502); 

RateV2Vis = RateW2Vis/(SG2Vis*0.3502); 

RateV3Vis  

Sul1Vis = SULVis; 

Sul2Vis = SULVis; 

Sul3Vis = SULVis; 

Sul4Vis = SULVis; 

 

*UTILITIES Viscobreaker 

*_____________________________________________________________________________ 

*_____________________________________________________________________________ 

PARAMETERS 

SGVis 

RATEVVis 

GASLHVVis 

FUELVis 

POWERVis 

CWVis 

HPSVis 
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BFWVis 

CAPITALVis 

NOXVis 

NOXVis2 

NoxVis3; 

 

SGVis=141.5/(APIVis+131.5); 

RATEVVis=RATEWVis/(SGVis*0.3502); 

GasLHVVis=GasVis*21; 

FuelVis = -RateVVis*0.088; 

PowerVis = -RateVVis*0.47; 

CWVis = -RateVVis*0.27; 

HPSVis=+RateVVis*0.052; 

BFWVis=-HPSVis; 

CapitalVis = -30*(RateVVis/30000)**0.65; 

 

NOXVis=EF*(-FuelVis); 

NOXVis2=EF2*(-FuelVis); 

NOXVis3=EF3*(-FuelVis); 

BINARY VARIABLE X1Vis,X2Vis,X3Vis; 

 

 

display H2SVis, RateWVis, FLSFO,GasVis, RateW1Vis, RateW2Vis,RateW3Vis,RateW4Vis, 

        RateV1Vis, RateV2Vis, RateV3Vis, RateV4Vis; 

*------------------------------------------------------------------------------- 

*------------------------------------------------------------------------------- 
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*_____________________________________________________________________________

__ 

*_____________________________________________________________________________

__ 

* GOHDS.mod  -  Gas Oil Hydrotreater 

 

* Use this submodel for hydrotreating with minimal cracking 

* Products: Naphtha, Distillate, HTGasOil 

* Parameters: Severity(50) 

* Severity 0=low pressure, high LHSV, 100=high pressure, low LHSV 

 

*Feed Rate and Properties 

Parameter 

RateWGOHT,RateVGOHT,SGGOHT,APIGOHT,VABPGOHT,SULGOHT,NITGOHT,NIGOH

T,VANGOHT 

           CCRGOHT,FlshGOHT,V650GOHT,OLEGOHT,PorGOHT,CS122GOHT,CS210GOHT; 

RATEVGOHT= FLVGO + FHVGO; 

SGGOHT   = (FLVGO*HVGOSG+FHVGO*LVGOSG)/RATEVGOHT; 

RATEWGOHT= RATEVGOHT*SGGOHT*.3502; 

APIGOHT  = 141.5/SGGOHT-131.5; 

VABPGOHT = (VABP6*FLVGO+VABP7*FHVGO)/RATEVGOHT; 

SULGOHT  = (LVGOS*RATEWLVGO+HVGOS*RATEWHVGO)/RATEWGOHT; 

NITGOHT  = (LVGON*RATEWLVGO+HVGON*RATEWHVGO)/RATEWGOHT; 

NIGOHT   = (NI6*RATEWLVGO+NI7*RATEWHVGO)/RATEWGOHT; 

VANGOHT  = (VAN6*RATEWLVGO+VAN7*RATEWHVGO)/RATEWGOHT; 

CCRGOHT  = (CCR6*RATEWLVGO+CCR7*RATEWHVGO)/RATEWGOHT; 

FlshGOHT = (Flsh6*FLVGO+Flsh7*FHVGO)/RATEVGOHT; 
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V650GOHT = (V6506*FLVGO+V6507*FHVGO)/RATEVGOHT; 

OLEGOHT  = (OLE6*FLVGO+OLE7*FHVGO)/RATEVGOHT; 

PorGOHT  = (Por6*FLVGO+Por7*FHVGO)/RATEVGOHT; 

CS122GOHT= (CS1226*RATEWLVGO+CS1227*RATEWHVGO)/RATEWGOHT; 

CS210GOHT= (CS2106*RATEWLVGO+CS2107*RATEWHVGO)/RATEWGOHT; 

 

* YIELDS 

Parameter SeverityGOHT/50/ 

         

KGOHT,convGOHT,SCFHYDGOHT,wtfrhydGOHT,H2GOHT,H2SGOHT,GasGOHT,C3SGO

HT,IC4GOHT 

         NC4GOHT,RateW1GOHT,APITGO,SGTGO,RateW3GOHT,RateW2GOHT; 

KGOHT      =(VABPGOHT+460)**.3333/SGGOHT; 

convGOHT   =4.5*SULGOHT; 

SCFHYDGOHT =(290+20*convGOHT*(1-

V650GOHT/100))*(1+.01*SeverityGOHT)+15*OLEGOHT+(VABPGOHT-700)*0.5; 

wtfrhydGOHT= SCFHYDGOHT/65800/SGGOHT; 

H2GOHT     =-wtfrhydGOHT*RateWGOHT; 

H2SGOHT    =0.010625*SULGOHT*RateWGOHT*(1-(1-convGOHT/100)*(.2-

.0016*SeverityGOHT)); 

GasGOHT    =(.004+.00001*convGOHT*convGOHT)*RateWGOHT; 

C3SGOHT    =0.49*GasGOHT; 

IC4GOHT    =(.001+.00015*convGOHT)*RateWGOHT; 

NC4GOHT    =IC4GOHT*.7; 

RateW1GOHT =(.02+.001*convGOHT)*RateWGOHT; 

APITGO     =APIGOHT+.004*SCFHYDGOHT; 

RateW2GOHT = RateWGOHT-H2GOHT-H2SGOHT-GasGOHT-IC4GOHT-NC4GOHT-

RateW1GOHT-RateW3GOHT; 



 
 

130 
 

 
 

 

* PROPERTIES 

 

* 400F & lighter naphtha 

Parameter APINGOHT   /55/ 

         SGNGOHT 

         RVPNGOHT    /4/ 

         RONNGOHT    /65/ 

         MONNGOHT    /60/ 

         NaphNGOHT   /18/ 

         OLENGOHT    /0/ 

         AroNGOHT    /12/ 

         V150NGOHT   /0/ 

         V200NGOHT   /35/ 

         V300NGOHT   /70/ 

         V400NGOHT   /100/ 

         VABPNGOHT   /0/ 

         SULNGOHT    /0/ 

         VANNGOHT    /0/ 

         CCRNGOHT    /0/ ; 

SGNGOHT = 141.5/(APINGOHT +131.5); 

 

* 400-650 Distillate 

Parameter APIDGOHT    /36/ 

         SGDGOHT 

         SULDGOHT    /.01/ 
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         FlshDGOHT   /255/ 

         AroDGOHT    /10/ 

         PorDGOHT    /-10/ 

         CS122DGOHT  /5.3/ 

         CS210DGOHT  /2.0/ 

         V400DGOHT   /10/ 

         V500DGOHT   /48/ 

         V650DGOHT   /90/ 

         VABPDGOHT   /0/ 

         VANDGOHT    /0/ 

         CCRDGOHT    /0/ 

         CetDGOHT  ; 

         SGDGOHT = 141.5/(APIDGOHT +131.5); 

         CetDGOHT=1.85*APIDGOHT-14; 

 

* 650+ gasoil 

Parameter 

VABPTGO,SULTGO,PorTGO,CS122TGO,CS210TGO,CCRTGO,NITTGO,OLETGO/0/,NITG

O/0/,VANTGO/0/; 

VABPTGO = (SGTGO*(KGOHT+SeverityGOHT/100))**3-460; 

CS210TGO= CS210GOHT; 

CCRTGO  = CCRGOHT*(.6-.005*SeverityGOHT); 

NITTGO  = NITGOHT*(.7-.005*SeverityGOHT); 

 

*Volumetric flow rates 

Parameter FNGOHT  GOHT Naph 
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         FDGOHT  GOHT Distt 

         FTGO  GOHT VGO; 

FNGOHT = RATEW1GOHT/(SGNGOHT*0.3502); 

FDGOHT = RATEW2GOHT/(SGDGOHT*0.3502); 

FTGO   = RATEW3GOHT/(SGTGO*0.3502); 

 

* FDGOHT WILL SPLIT TO TWO STREAMS FDGOHTD (Diesel Pool) FDGOHTF (FOil 

Pool) 

* FTGO WILL SPLIT TO TWO STREAMS FTGOFCC (FCC) FTGOHC (HC) 

Positive Variable FDGOHTD, FDGOHTF,FTGOFCC,FTGOHC; 

Equation Splt2,Splt3; 

Splt2..  FDGOHT =E= FDGOHTD + FDGOHTF; 

Splt3..  FTGO   =E= FTGOFCC + FTGOHC; 

* UTILITIES 

Parameter 

GasLHVGOHT,PowerGOHT,LPSGOHT,CWGOHT,FuelGOHT,ChemGOHT,CapitalGOHT,NO

XGOHT,NOXGOHT2,NOXGOHT3;; 

GasLHVGOHT = GasGOHT*21; 

FuelGOHT   = -RateVGOHT*(.0846+.0000769*SCFHYDGOHT); 

ChemGOHT   = - 

RateVGOHT*(.0169+.00001539*SCFHYDGOHT+(NIGOHT+VANGOHT)*.0008); 

CapitalGOHT= -(8.65+5+.01423*SCFHYDGOHT+(NIGOHT+VANGOHT-

5)*.04)*(RateVGOHT/10000)**0.65; 

NOXGOHT=EF*(-FuelGOHT); 

NOXGOHT2=EF2*(-FuelGOHT); 

NOXGOHT3=EF3*(-FuelGOHT); 

BINARY VARIABLE X1GOHT,X2GOHT,X3GOHT; 
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VARIABLE TNOXGOHT; 

EQUATION Q13,QQ13,QQQ13; 

Q13..  TNOXGOHT =E= X1GOHT*NOXGOHT+X2GOHT*NOXGOHT2; 

QQ13..  X2GOHT+X3GOHT =L= 1; 

QQQ13.. X1GOHT+X2GOHT =E= 1; 

*----------------------------------------------------------------------- 

*----------------------------------------------------------------------- 

* DHT_3Prod.mod;  Diesel/Kero Hydrotreater 

 

*Products: DHTNaph,DHTKero, DHTDist     $ Naphtha:400-F, Kero:400-530F, Diesel:530-650F 

*Parameters: Severity(20) 

*Note that severity of 10-simple desulfurize, 90-aromatics saturation 

 

*Feed Rate and Properties 

Parameter 

RATEVDHT,RATEWDHT,SGDHT,APIDHT,SULDHT,NITDHT,OLEDHT,ARODHT,V300D

HT 

         V400DHT,V500DHT,V650DHT; 

NITDHT  = SRDN; 

OLEDHT  = OLE5; 

ARODHT  = ARO5; 

V300DHT = V3005; 

V400DHT = V4005; 

V500DHT = V5005; 

V650DHT = V6505; 

* YIELDS 
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Parameter SEVERITYDHT/20/ 

Parameter 

SCFHYDDHT,WTFRHYDDHT,H2DHT,H2SDHT,GASDHT,C3SDHT,IC4DHT,NC4DHT 

         RATEW1DHT,DISTTWDHT,FRACKERODHT,RATEW2DHT,RATEW3DHT; 

SCFHydDHT  

=(150+OLEDHT*10+0.9*SULDHT*60)+(100+0.1*SULDHT*60+ARODHT*20)*SeverityDHT

/100; 

WtFrHydDHT = SCFHydDHT/65800/SGDHT; 

H2DHT      = -WtFrHydDHT*RateWDHT; 

H2SDHT     = 0.010625*SULDHT*(0.95+SeverityDHT*0.0005)*RateWDHT; 

GasDHT     = (0.005+0.000005*SeverityDHT*SeverityDHT)*RateWDHT; 

C3SDHT     = 0.35*GasDHT; 

IC4DHT     = 0.15*GasDHT; 

NC4DHT     = 0.20*GasDHT; 

RateW1DHT  = (0.001+0.0004*SeverityDHT)*RateWDHT; 

DisttWDHT  = RateWDHT-H2DHT-H2SDHT-GasDHT-RateW1DHT; 

* Products properties 

* Naphtha:400-F 

Parameter APINDHT/55/ 

         SGNDHT 

         RVPNDHT /2/ 

         RONNDHT /65/ 

         MONNDHT /60/ 

         NAPHNDHT/18/ 

         ARONDHT /12/ 

         V150NDHT/0/ 

         V200NDHT/40/ 
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         V300NDHT/70/ 

         V400NDHT/100/; 

SGNDHT = 141.5/(APINDHT +131.5); 

 

*  KERO 400-530 F 

Parameter PORKDHT  /-40/ 

         FRZKDHT   /-30/ 

         FLSHKDHT  /180/ 

         CS122KDHT /1.3/ 

         CS210KDHT /0.75/ 

         V650KDHT  /100/ 

Parameter APIDISTT9 KERO + DSL API , APIKDHT ASSUME KERO API IS 9 MORE 

THAN DSL 

         

SGKDHT,SULDISTT9,SULKDHT,ARODISTT9,AROKDHT,SMKKDHT,CETKDHT,V300K

DHT,V400KDHT,V500KDHT; 

APIDistt9  = APIDHT+.005*SCFHydDHT+.04*SeverityDHT; 

APIKDHT      = APIDistt9+9*(1-FracKeroDHT); 

SGKDHT       = 141.5/(APIKDHT+131.5); 

SulDistt9  = SulDHT*(0.1-.0009*SeverityDHT); 

SULKDHT      = SulDistt9/(FracKeroDHT+ 1.8*(1-FracKeroDHT)); 

AroDistt9  = AroDHT*(1-0.008*SeverityDHT); 

AROKDHT      = AroDistt9/(FracKeroDHT+ 1.4*(1-FracKeroDHT)); 

SMKKDHT      = 0.8*APIKDHT-11; 

CETKDHT      = 1.64*APIKDHT-15.4; 

 

*  Diesel:530-650F 
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Parameter 

GASLHVDHT,FUELDHT,LPSDHT,POWERDHT,CWDHT,CHEMDHT,CAPITALDHT,NOX

DHT,NOXDHT2,NOXDHT3; 

GASLHVDHT  = GasDHT*21; 

FUELDHT    = -RateVDHT*(.0846+.0000769*SCFHydDHT); 

LPSDHT     = -RateVDHT*(.004+.0000167*SCFHydDHT); 

POWERDHT   = -RateVDHT*(.769+.006154*SCFHydDHT); 

CWDHT      = -RateVDHT*(.0315+.0000923*SCFHydDHT); 

CHEMDHT    = -RateVDHT*(.0169+.00001539*SCFHydDHT); 

CAPITALDHT = -(8.65+.01423*SCFHydDHT)*(RateVDHT/10000+.0001)**0.65; 

NOXDHT=EF*(-FUELDHT); 

NOXDHT2=EF2*(-FUELDHT); 

NOXDHT3=EF3*(-FUELDHT); 

BINARY VARIABLE X1DHT,X2DHT,X3DHT; 

VARIABLE TNOXDHT; 

EQUATION Q14,QQ14,QQQ14; 

Q14..  TNOXDHT =E= X1DHT*NOXDHT+X2DHT*NOXDHT2; 

QQ14.. X2DHT+X3DHT =L= 1; 

QQQ14.. X1DHT+X2DHT =E= 1; 

*----------------------------------------------------------------------- 

*----------------------------------------------------------------------- 

*NHT_2PRD 

*Two products;Lt naphtha and Hvy naphtha 

*Parameter:LNEP(180)    usable range 150-200F 

 

* Feed Rate and Properties 
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Parameter 

RATEVNHT,SGNHT,RATEWNHT,SULNHT,OLENHT,ARONHT,NAPHNHT,RONNHT 

         V150NHT,V200NHT,V300NHT,V400NHT; 

RATEVNHT = FHSRN; 

SGNHT    = HSRSG; 

RATEWNHT = RATEVNHT*SGNHT*0.3502; 

SULNHT   = HSRS; 

ARONHT   = ARO3; 

NAPHNHT  = NAPH3; 

RONNHT   = RON3; 

V150NHT  = V1503; 

V200NHT  = V2003; 

V300NHT  = V3003; 

V400NHT  = V4003; 

OLENHT   = OLE3; 

 

* YIELDS 

Parameter LNEPNHT/180/,SCFHYDNHT,WTFRHYDNHT,H2NHT,H2SNHT,GASNHT, 

         RATENAPNHT,FRACLNNHT,RATEW1NHT,RATEW2NHT,RATEVNHT; 

SCFHydNHT =125+8.3*OLENHT; 

GasNHT    =0.003*RateWNHT; 

RateNapNHT= RateWNHT-H2NHT-H2SNHT-GasNHT; 

FracLNNHT =(V150NHT +(V200NHT-V150NHT)*(LNEPNHT-150)/50)/100; 

RateW1NHT =RateNapNHT*FracLNNHT*0.88; 

RateW2NHT =RateNapNHT-RateW1NHT; 
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* Products properties 

* Lt Naphtha 

Parameter RVPTLN/8/ 

         RONTLN/65/ 

         MONTLN/60/ 

         V200TLN/100/ 

         V300TLN/100/ 

         V400TLN/100/ 

         SGTLN; 

SGTLN   = 0.67 +(LNEPNHT-150)*.0006; 

Parameter AROTLN,NAPHTLN,V150TLN; 

AROTLN  = ARONHT*(LNEPNHT-150)*.005; 

NAPHTLN = (NAPHNHT+0.1*OLENHT)*(LNEPNHT-150)*.005; 

V150TLN = V150NHT/FracLNNHT; 

 

* Hvy Naphtha 

Parameter V150THN/0/ 

          RVPTHN /4/ 

*Variable  

Parameter 

SGTHN,AROTHN,NAPHTHN,RONTHN,MONTHN,V200THN,V300THN,V400THN; 

SGTHN  = (SGNHT-SGTLN*FracLNNHT)/(1-FracLNNHT); 

AROTHN = ARONHT+0.1*OLENHT; 

NAPHTHN= NAPHNHT+0.1*OLENHT; 

RONTHN = RONNHT; 

MONTHN = RONTHN-5; 
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V200THN= 100 -(100-V200NHT)/(1-FracLNNHT); 

V300THN= 100 -(100-V300NHT)/(1-FracLNNHT); 

V400THN= 100 -(100-V400NHT)/(1-FracLNNHT); 

 

* Volumetric Flowrate of products 

Parameter FTLN, FTHN; 

FTLN  = RATEW1NHT/(SGTLN*0.3502); 

FTHN  = RATEW2NHT/(SGThN*0.3502) + RateV2Vis; 

* UTILITIES 

Parameter 

GASLHVNHT,FUELNHT,LPSNHT,POWERNHT,CWNHT,CHEMNHT,CAPITALNHT,NOX

NHT,NOXNHT2,NOXNHT3; 

GASLHVNHT = GasNHT*21; 

FUELNHT   = -RateVNHT*(.0846+.0000769*SCFHydNHT); 

NOXNHT   = -FUELNHT*(55/1000)*(1/0.02380952); 

LPSNHT    = -RateVNHT*(.004+.0000167*SCFHydNHT); 

POWERNHT  = -RateVNHT*(.769+.006154*SCFHydNHT); 

CWNHT     = -RateVNHT*(.0315+.0000923*SCFHydNHT); 

CHEMNHT   = -RateVNHT*(.0169+.00001539*SCFHydNHT); 

CAPITALNHT= -(8.65+.01423*SCFHydNHT)*(RateVNHT/10000)**0.65; 

NOXNHT=EF*(-FUELNHT); 

NOXNHT2=EF2*(-FUELNHT); 

NOXNHT3=EF3*(-FUELNHT); 

BINARY VARIABLE X1NHT,X2NHT,X3NHT; 

VARIABLE TNOXNHT; 

EQUATION Q15,QQ15,QQQ15; 
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Q15..  TNOXNHT =E= X1NHT*NOXNHT+X2NHT*NOXNHT2; 

QQ15..  X2NHT+X3NHT =L= 1; 

QQQ15.. X1NHT+X2NHT =E= 1; 

*------------------------------------------------------------------------------- 

*----------------------------------------------------------------------- 

* HydCrk.mod   -  Gas Oil Hydrocracker 

* Full conversion hydrocracker-Jet Mode or diesel mode selected by user input 

 

* Products: HCLtNaph, HCHvyNaph, HCKero,HCDiesel 

* Parameters: Mode(1) 

* MODE to be 1 for Diesel, 2 for Kero or in between 

* Note : (1)Light Naphtha ~180F EP (2) Heavy Naphtha ~400F EP 

*        (3)Kero/Jet ~530F EP      (4)Diesel ~650F EP 

* Feed Properties:   VABP, OLE, NI, VAN 

 

* Feed Rate and Properties 

Parameter SGHC,APIHC,VABPHC,OLEHC,SULHC,NIHC,VANHC,CCRHC; 

SGHC   = SGTGO; 

APIHC  = 141.5/SGHC-131.5; 

VABPHC = VABPTGO; 

OLEHC  = OLETGO; 

SULHC  = SULTGO; 

NIHC   = NITGO; 

VANHC  = VANTGO; 

CCRHC  = CCRTGO; 

Variable RateWHC,RateVHC; 
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Equation RateWHC1,RateVHC1; 

RATEVHC1.. RATEVHC=E= FTGOHC; 

RATEWHC1.. RATEWHC=E= RATEVHC*SGHC*0.3502; 

 

*  YIELDS 

Parameter 

CONVHC/75/,ModeHC/1/,SCFHYDHC,WtFrHYDHC,LNapHC,HNHC,JetHC,DslHC,SubTotL

QHC; 

Variable H2HC,H2SHC,GasHC,C3SHC,IC4HC,NC4HC,SubTotLEHC,TotalHC,AdjFactHC 

         RateWLNHC Light Naph,RateWHNHC Hvy Naph,RateWKEROHC Jet,RateWDIESELHC 

Disel; 

Equation H2HC1,H2SHC1,GasHC1,C3SHC1,IC4HC1,NC4HC1,SubTotLEHC1,TotalHC1 

         AdjFactHC1,RateWLNHC1,RateWHNHC1,RateWKEROHC1,RateWDIESELHC1; 

 

H2SHC1..      H2SHC    =E= 0.010625*(SULHC-0.0281+.0102*ModeHC)*RateWHC; 

GasHC1..      GasHC    =E= (.001+.007*ModeHC)*RateWHC; 

C3SHC1..      C3SHC    =E=  (.005+.002*ModeHC)*RateWHC; 

IC4HC1..      IC4HC    =E=(.00682+.00347*ModeHC)*RateWHC; 

NC4HC1..      NC4HC    =E=IC4HC*.818; 

SubTotLEHC1.. 

SubTotLEHC=E=(H2HC+H2SHC+GasHC+C3SHC+IC4HC+NC4HC)/(RateWHC+.00001); 

 

*  Unnormalized LN, HN etc below 

LNapHC    = 1.86+3.39*ModeHC; 

HNHC      = 0.26+5.77*ModeHC; 

JetHC     = 6.91+34.86*ModeHC; 

DslHC     = 91.16-45.58*ModeHC; 
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SubTotLQHC=(LNapHC+HNHC+JetHC+DslHC)/100; 

TotalHC1..   TotalHC =E=SubTotLEHC+SubTotLQHC; 

AdjFactHC1.. AdjFactHC=E=RateWHC/100*(SubTotLQHC-TotalHC+1)/SubTotLQHC; 

RateWLNHC1..  RateWLNHC=E=LNapHC*AdjFactHC; 

RateWHNHC1..  RateWHNHC=E=HNHC*AdjFactHC; 

RateWKEROHC1.. RateWKEROHC=E=JetHC*AdjFactHC; 

RateWDIESELHC1.. RateWDIESELHC=E=DslHC*AdjFactHC; 

 

*  PROPERTIES 

* Light Naphtha 

Parameter RVPLNHC/10/,RONLNHC/82/,MONLNHC/77/,V150LNHC/70/,V200LNHC/80/ 

         V300LNHC/100/,V400LNHC/100/,KHC,KLNapHC,KHNHC,KJetHC,KDslHC,SGLNHC; 

KHNHC  =KLNapHC-.75; 

KJetHC =11.8+.4*(KHC-11.5); 

KDslHC =KJetHC; 

SGLNHC =(135+460)**.3333/KLNapHC; 

 

* Heavy Naphtha 

Parameter RVPHNHC/3/,RONHNHC/70/,MONHNHC/65/,V150HNHC/0/,V200HNHC/10/, 

         V300HNHC/60/,V400HNHC/95/,SGHNHC,NAPHHNHC,AROHNHC; 

SGHNHC  = (290+460)**.3333/KHNHC; 

NAPHHNHC= 40+3*(11.6-KHNHC); 

AROHNHC = 5+3*(11.6-KHNHC); 

 

* Kero/Jet 

* AROKEROHC IS DEFINED BY THE USER TO BE 18 
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Parameter SULKEROHC/.01/,FLSHKEROHC/165/,PORKEROHC/-70/,CETKEROHC/60/ 

         FRZKEROHC/-

65/,CS122KEROHC/1.5/,AROKEROHC/18/,SGKEROHC,SMKKEROHC; 

SGKEROHC = (465+460)**.3333/KJetHC; 

SMKKEROHC= 28+4*(KJetHC-11.4); 

 

* Diesel 

* CS210DIESELHC/1.2/ IS PREDICTED BY USER FROM CS122DIESELHC/2.0/ 

Parameter SGDIESELHC,SULDIESELHC/.03/,FLSHDIESELHC/200/,PORDIESELHC/-50/ 

         CETDIESELHC/62/,CS122DIESELHC/2.0/,CS210DIESELHC/1.2/,V650DIESELHC/90/; 

SGDIESELHC= (600+460)**.3333/KDslHC; 

 

*Volumetric Flowrates 

Variable FLNHC,FHNHC,FKEROHC,FDIESELHC; 

Equation RATEVLNHC1,RATEVHNHC1,RATEVKEROHC1,RATEVDIESELHC1; 

RATEVDIESELHC1.. FDIESELHC=E=RATEWDIESELHC/(SGDIESELHC*0.3502); 

 

*  UTILITIES 

Variable 

GasLHVHC,FuelHC,NOXHC,NOXHC2,NOXHC3,PowerHC,CWHC,CHEMHC,CapitalHC; 

Equation 

GasLHVHC1,FuelHC1,NOXHC1,NOXHC22,NOXHC33,PowerHC1,CWHC1,CHEMHC1,Capit

alHC1; 

GasLHVHC1..  GasLHVHC =E=GasHC*21; 

FuelHC1..    FuelHC   =E= -RateVHC*(.09+.03*ModeHC); 

NOXHC1..     NOXHC =E= EF*(-FuelHC); 

NOXHC22..    NOXHC2 =E= EF2*(-FuelHC); 
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NOXHC33..    NOXHC3 =E= EF3*(-FuelHC); 

PowerHC1..    PowerHC  =E= -RateVHC*(3+4*ModeHC); 

CWHC1..       CWHC     =E= -RateVHC*0.33; 

ChemHC1..     ChemHC   =E= -RateVHC*(.1*ModeHC+.003*(NIHC+VANHC)); 

CapitalHC1.. CapitalHC=E= (-

94*(RateVHC/30000)**.65)*((SCFHYDHC/1600)**.4)*(((NIHC+VANHC+30)/30)**.2); 

BINARY VARIABLE X1HC,X2HC,X3HC; 

VARIABLE TNOXHC; 

EQUATION Q16,QQ16,QQQ16; 

Q16..  TNOXHC =E= X1HC*NOXHC+X2HC*NOXHC2; 

QQ16..  X2HC+X3HC =L= 1; 

QQQ16.. X1HC+X2HC =E= 1; 

 

*--------------------------------------------------------------------- 

*---------------------------------------------------------------------- 

*  FCC.mod 

* Products: FCCLN, FCCHN, LCO, SlurryOil, Coke 

* Parameters: Conv(75),LNEP(250),HNEP(430) 

*             Note that Conv is Wt% conversion (100 minus percent 430F+) 

*             and LN,HN End points (must be DegF) 

* User entered end points must not be too far from default values to maintain accuracy. 

* Feed Properties used:   Con Carbon,VABP,VAN,NI 

 

* Feed Rate and Properties 

*Parameter SGFCC,APIFCC,VABPFCC,SULFCC,NIFCC,VANFCC,CCRFCC; 

*Variable RateWFCC,RateVFCC; 
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*Equation RateWFCC1,RateVFCC1; 

*RATEVFCC1.. RATEVFCC=E= FTGOFCC; 

*RATEWFCC1.. RATEWFCC=E= RATEVFCC*SGFCC*0.3502; 

*SGFCC   = SGTGO; 

*APIFCC  = 141.5/SGFCC-131.5; 

*VABPFCC = VABPTGO; 

*CCRFCC  = CCRTGO; 

*NIFCC   = NITGO; 

*VANFCC  = VANTGO; 

*SULFCC  = SULTGO; 

 

*YIELDS 

* First pass wt frac yields - have suffix a 

*Parameter CONVFCC/75/ 

*          LNEPFCC/250/ 

*         HNEPFCC/430/; 

*Parameter KPFCC,CokeaFCC,GasaFCC,H2SaFCC,LPGaFCC,LCOaFCC,SLRYaFCC 

*         NAPHaFCC      Total C5-430F cut naphtha 

*         LNaFCC        C5-160F light naphtha 

*         Inter1HNFCC    160-260 naphtha. Will be split and merged above-below 

*         HNaFCC        260-360 heavy naphtha 

*         Inter2LCOFCC    360-430 naphtha. Will be split and merged above-below; 

*Equation KPFCC1,CokeaFCC1,GasaFCC1,H2SaFCC1,LPGaFCC1,LCOaFCC1,SLRYaFCC1 

*         NAPHaFCC1,LNaFCC1,Inter1HNFCC1,HNaFCC1,Inter2LCOFCC1; 

*KPFCC     = 1.6667*(VABPFCC+460)**0.3333/SGFCC-19.67; 
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*LPGaFCC   = -.0279+.000839*CONVFCC+.00002343*CONVFCC**2 + KPFCC*(-

.1067+.003724*CONVFCC-.00003419*CONVFCC**2); 

*NAPHaFCC  = CONVFCC/100-CokeaFCC-GasaFCC-H2SaFCC-LPGaFCC; 

*LCOaFCC   = (0.7+(CONVFCC-75)*.005)*(1-CONVFCC/100); 

*SLRYaFCC  =1-CONVFCC/100-LCOaFCC; 

*LNaFCC    = NaphaFCC*(.29+(CONVFCC-75)*.005); 

*Inter1HNFCC= NaphaFCC*0.265; 

*HNaFCC    = NaphaFCC*0.275; 

*Inter2LCOFCC= NaphaFCC-LNaFCC-Inter1HNFCC-HNaFCC; 

 

* Final pass wt frac yields to account for LN,HN,LCGO endpoints entered by user 

* Intermediate cut Inter12 is split and light portion will merge with LN, hvy portion with HN 

*Parameter Light1HNFCC Light12 will be merged with LN 

*         Heavy1HNFCC  Heavy12 will be merged with HN 

*         Light2LCOFCC  Light23 will be merged with HN 

*         Heavy2LCOFCC  Heavy23 will be merged with LCO 

*        LNbFCC      Light Naphtha 

*         HNbFCC      Heavy Naphtha 

*         LCObFCC     Light C Oil; 

 

*Equation 

Light1HNFCC1,Heavy1HNFCC1,Light2LCOFCC1,Heavy2LCOFCC1,LNbFCC1,HNbFCC1,L

CObFCC1; 

*Light1HNFCC=Inter1HNFCC *(LNEPFCC-160)/100; 

*Heavy1HNFCC=Inter1HNFCC -Light1HNFCC; 

*Light2LCOFCC=Inter2LCOFCC *(HNEPFCC-360)/70; 

*Heavy2LCOFCC=Inter2LCOFCC -Light2LCOFCC; 
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* These are final weight fraction yields after merging the swing cuts into the four liquid products 

*LNbFCC = LNaFCC + Light1HNFCC; 

*HNbFCC = Heavy1HNFCC + HNaFCC + Light2LCOFCC; 

*LCObFCC= Heavy2LCOFCC + LCOaFCC; 

 

* Final weight rates from wt frac yields 

*Variable H2SFCC,GasFCC,C3UFCC,C3SFCC,IC4FCC,NC4FCC,IC4UFCC,C4UFCC 

*         RateWLNFCC,RateWHNFCC,RateWLCOFCC,RateWHCOFCC,RateW5FCC; 

*Equation 

H2SFCC1,GasFCC1,C3UFCC1,C3SFCC1,IC4FCC1,NC4FCC1,IC4UFCC1,C4UFCC1 

*         RateWLNFCC1,RateWHNFCC1,RateWLCOFCC1,RateWHCOFCC1,RateW5FCC1; 

*H2SFCC1..    H2SFCC   =E=RateWFCC*H2SaFCC; 

*GasFCC1..    GasFCC   =E=RateWFCC*GasaFCC; 

*C3UFCC1..    C3UFCC   =E=0.25*RateWFCC*LPGaFCC; 

*C3SFCC1..    C3SFCC   =E=0.09*RateWFCC*LPGaFCC; 

*IC4FCC1..    IC4FCC   =E=0.21*RateWFCC*LPGaFCC; 

*NC4FCC1..    NC4FCC   =E=0.07*RateWFCC*LPGaFCC; 

*IC4UFCC1..   IC4UFCC  =E=0.15*RateWFCC*LPGaFCC; 

*C4UFCC1..    C4UFCC   =E=0.23*RateWFCC*LPGaFCC; 

*RateWLNFCC1.. RateWLNFCC=E=RateWFCC*LNbFCC; 

*RateWHNFCC1.. RateWHNFCC=E=RateWFCC*HNbFCC; 

*RateWLCOFCC1.. RateWLCOFCC=E=RateWFCC*LCObFCC; 

*RateWHCOFCC1.. RateWHCOFCC=E=RateWFCC*SLRYaFCC; 

*RateW5FCC1.. RateW5FCC=E=RateWFCC*CokeaFCC; 
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*API Gravities 

*Parameter SG5FCC Coke (Ficticious SG to give zero liquid yld) 

*         APILNFCC,APIHNFCC,APILCOFCC,APIHCOFCC 

*         SGLNFCC,SGHNFCC,SGLCOFCC,SGHCOFCC; 

*SG5FCC = 10**20; 

*APILCOFCC= ((41+KPFCC*6)*Heavy2LCOFCC +(20+KPFCC*5+(75-

CONVFCC)*0.2)*LCOaFCC)/LCObFCC; 

*APIHCOFCC= 2+KPFCC*6+(75-CONVFCC)*0.2; 

*SGLNFCC = 141.5/(APILNFCC+131.5); 

*SGHNFCC = 141.5/(APIHNFCC+131.5); 

*SGLCOFCC= 141.5/(APILCOFCC+131.5); 

*SGHCOFCC= 141.5/(APIHCOFCC+131.5); 

 

*Sulfur 

*Parameter SulLNFCC,SulHNFCC,SulLCOFCC,SulHCOFCC; 

*SulLNFCC = SULFCC*(0.01*LNaFCC +0.05*Light1HNFCC)/LNbFCC; 

*SulHNFCC = SULFCC*(0.05*Heavy1HNFCC +0.08*HNaFCC +0.12*Light2LCOFCC) 

/HNbFCC; 

*SulLCOFCC= SULFCC*(0.12*Heavy2LCOFCC +1.3*LCOaFCC)/LCObFCC; 

*SulHCOFCC= SULFCC*2.5; 

 

* OTHER PROPERTIES (LNaph, HNaph & LCO) 

 

*Parameter RVPLNFCC/10/,V300LNFCC/100/,V400LNFCC/100/ 

*          RVPHNFCC/4/,FRZHNFCC/-10/,SMKHNFCC/10/,V150HNFCC/0/ 
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*          PORLCOFCC/5/,CETLCOFCC/25/,FRZLCOFCC/-

5/,CS122LCOFCC/2.2/,CS210LCOFCC/1.1/,SMKLCOFCC/10/,OLELCOFCC/30/,AROLCOFC

C/40/ 

*          

PORHCOFCC/50/,VABPHCOFCC/1000/,FLSHHCOFCC/260/,CS122HCOFCC/30/,CS210HC

OFCC/6/,CCRHCOFCC/30/; 

*Parameter RONLNFCC,MONLNFCC,OLELNFCC,AROLNFCC,V150LNFCC,V200LNFCC 

*         

RONHNFCC,MONHNFCC,OLEHNFCC,AROHNFCC,V200HNFCC,V300HNFCC,V400HNF

CC 

*         FLSHLCOFCC,V500LCOFCC,V650LCOFCC,VABPLCOFCC; 

* LNaph 

*RONLNFCC =(90*LNaFCC +93*Light1HNFCC)/LNbFCC; 

*MONLNFCC =RONLNFCC-10.5; 

*OLELNFCC =(40*LNaFCC +30*Light1HNFCC)/LNbFCC; 

*AROLNFCC =30*Light1HNFCC/LNbFCC; 

*V150LNFCC=90*LNaFCC/LNbFCC; 

*V200LNFCC=(100*LNaFCC+40*Light1HNFCC)/LNbFCC; 

 

* HNaph 

*AROHNFCC =(30*Heavy1HNFCC +35*HNaFCC +40*Light2LCOFCC)/HNbFCC; 

*V200HNFCC=60*Heavy1HNFCC/HNbFCC; 

*V300HNFCC=(100*Heavy1HNFCC +40*HNaFCC)/HNbFCC; 

*V400HNFCC=(100*Heavy1HNFCC +100*HNaFCC +65*Light2LCOFCC)/HNbFCC; 

 

* LCO 

*FLSHLCOFCC=(150*Heavy2LCOFCC +210*LCOaFCC)/LCObFCC; 

*V500LCOFCC=(100*Heavy2LCOFCC +LCOaFCC*40)/LCObFCC; 
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* Products: Reformate 

* Parameters: Severity(100), Pressure(150) 

* Note that Severity is product RON and Pressure must be psia (range 30-500) 

* Feed Properties: NAPH, ARO, V150, V300, V400 

 

*Feed Rate and Properties 

Variable 

RATEVREF,SGREF,RATEWREF,NAPHREF,AROREF,V150REF,V200REF,V300REF,V400R

EF; 

Equation 

RATEVREF1,SGREF1,RATEWREF1,NAPHREF1,AROREF1,V150REF1,V200REF1,V300RE

F1,V400REF1; 

RATEVREF1.. RATEVREF =E= FTHN + FNDHT + FNGOHT + FNRDHT +FHNHC; 

SGREF1..    SGREF*RATEVREF =E= 

FTHN*SGTHN+FNDHT*SGNDHT+FNGOHT*SGNGOHT+FNRDHT*SGNRDHT 

+FHNHC*SGHNHC; 

RATEWREF1.. RATEWREF =E= RATEVREF*SGREF*0.3502; 

NAPHREF1..  NAPHREF*RATEVREF=E= 

FTHN*NAPHTHN+FNDHT*NAPHNDHT+FNGOHT*NAPHNGOHT+FNRDHT*NAPHNRD

HT+FHNHC*NAPHHNHC; 

AROREF1..   AROREF *RATEVREF=E= FTHN*AROTHN +FNDHT*ARONDHT 

+FNGOHT*ARONGOHT +FNRDHT*ARONRDHT +FHNHC*AROHNHC; 

V150REF1..  V150REF*RATEVREF=E= 

FTHN*V150THN+FNDHT*V150NDHT+FNGOHT*V150NGOHT+FNRDHT*V150NRDHT+

FHNHC*V150HNHC; 

V200REF1..  V200REF*RATEVREF=E= 

FTHN*V200THN+FNDHT*V200NDHT+FNGOHT*V200NGOHT+FNRDHT*V200NRDHT+

FHNHC*V200HNHC; 

V300REF1..  V300REF*RATEVREF=E= 

FTHN*V300THN+FNDHT*V300NDHT+FNGOHT*V300NGOHT+FNRDHT*V300NRDHT+

FHNHC*V300HNHC; 
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V400REF1..  V400REF*RATEVREF=E= 

FTHN*V400THN+FNDHT*V400NDHT+FNGOHT*V400NGOHT+FNRDHT*V400NRDHT+

FHNHC*V400HNHC; 

 

* YIELDS 

Parameter SEVERITYREF/100/ 

         PressureREF psia/150/; 

Variable LVYLDREF,H2REF,GASREF,C3SREF,IC4REF,NC4REF,RATEW1REF; 

Equation LVYLDREF1,H2REF1,GASREF1,C3SREF1,IC4REF1,NC4REF1,RATEW1REF1; 

LVyldREF1..  LVyldREF =E=81.8-0.035*(PressureREF-50)+0.2*(NAPHREF+2*AROREF-39)-

1.0*(SeverityREF-100); 

H2REF1..     H2REF*100=E=RateWREF*(3.2-.0118*(PressureREF-50)-0.2*(LVyldREF-81.8)); 

*SCFHYDREF1.. SCFHYDREF=E=(3.2-.0118*(PressureREF-50)-0.2*(LVyldREF-

81.8))*658*SGREF; 

GasREF1..    GasREF   =E=RateWREF*(2.2-0.19*(LVyldREF-81.8))/100; 

C3SREF1..    C3SREF   =E=RateWREF*(2.0-0.2*(LVyldREF-81.8))/100; 

IC4REF1..    IC4REF   =E=RateWREF*(1.3-.055*(LVyldREF-81.8))/100; 

NC4REF1..    NC4REF   =E=IC4REF*58/42; 

RateW1REF1.. RateW1REF=E=RateWREF-H2REF-GasREF-C3SREF-IC4REF-NC4REF; 

 

* Products properties 

* Reformate 

RONREFORMAT =SeverityREF; 

MONREFORMAT =RONREFORMAT-9; 

Variable 

SGREFORMAT,FREFORMATE,BENZREFORMAT,V150REFORMAT,V200REFORMAT,V3

00REFORMAT,V400REFORMAT; 
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Equation 

SG1REFORMAT,RATEV1REFORMAT,BENZ1REFORMAT,V1501REFORMAT,V2001REF

ORMAT,V3001REFORMAT,V4001REFORMAT; 

SG1REFORMAT..    SGREFORMAT  =E=RateW1REF/(RateVREF*LVyldREF*0.3502/100); 

RATEV1REFORMAT.. FREFORMATE  =E=RATEW1REF/(SGREFORMAT*0.3502); 

BENZ1REFORMAT..  BENZREFORMAT=E=(V200REF-V150REF)*0.5*(1+(SeverityREF-

100)*.12); 

V1501REFORMAT..  V150REFORMAT=E=V150REF; 

V2001REFORMAT..  V200REFORMAT=E=V200REF; 

V3001REFORMAT..  V300REFORMAT=E=V300REF; 

V4001REFORMAT..  V400REFORMAT=E=V400REF; 

 

*   UTILITIES 

Variable 

FUELREF,HPSREF,BFWREF,POWERREF,CWREF,GASLHVREF,CAPITALREF,NOXREF,

NOXREF2,NOXREF3; 

Equation 

FUELREF1,HPSREF1,BFWREF1,POWERREF1,CWREF1,GASLHVREF1,CAPITALREF1,N

OXREF1,NOXREF22,NOXREF33; 

FuelREF1..    FuelREF   =E= -RateVREF*.258; 

HPSREF1..     HPSREF    =E= RateVREF*.1; 

BFWREF1..     BFWREF    =E= -HPSREF; 

PowerREF1..   PowerREF  =E= -RateVREF*1.0; 

CWREF1..      CWREF     =E= -RateVREF*0.6; 

GasLHVREF1..  GasLHVREF =E= GasREF*21; 

CapitalREF1.. CapitalREF=E= -48*(1-.0012*(PressureREF-50))*(RateVREF/20000)**0.65; 

NOXREF1..      

NOXREF22..     

NOXREF33..     
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BINARY VARIABLE X1REF,X2REF,X3REF; 

VARIABLE TNOXREF; 

EQUATION Q18,QQ18,QQQ18; 

Q18..  TNOXREF =E= X1REF*NOXREF+X2REF*NOXREF2; 

QQ18..   

QQQ18.. X1REF+X2REF =E= 1; 

 

*---------------------------------------------------------------------- 

*----------------------------------------------------------------------- 

* BLENDING 

 

 

Variable Z,FGASOLINE,FKEROSENE,FDSL,FFOIL; 

PARAMETER perred/0.0/; 

POSITIVE VARIABLE NOXTC; 

*BINARY VARIABLE Y; 

EQUATION NOXTOT1,Q2; 

NOXTOT1..  NOXTC=E=1*((TNOXCDU+TNOXRDHT+TNOXVis +TNOXHC+TNOXREF)- 

(X3CDU*NOXCDU+X3RDHT*NOXRDHT+X3Vis*NOXVis+X3GOHT*NOXGOHT 

+X3REF*NOXREF)); 

Q2..      NOXTC=L=(1-perred)*26437.0; 

 

Equation Obj,MOGAS,KERO,DIESEL,FUELOIL,Dem1,Dem2,Dem3,Dem4; 

* The Gases of all units can be seperated on GAS PLANT into MixC3 & MixC4 

* MixC3 = 2160 & MixC4 =  4470 Barrel 

* C3 & C4 price are 35.7 & 39.9, respectively 
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Obj..   Z=E= (1*(1.0*(108*FGASOLINE +86*FKEROSENE +120*FDSL +66*FFOIL) -

70*100000)+1*(-X1CDU*COST1-X2CDU*COST2CDU-X3CDU*COST3CDU 

-X1RDHT*COST1-X2RDHT*COST2RDHT-X3RDHT*COST3RDHT-X1Vis*Cost1-

X2Vis*Cost2Vis-X3Vis*Cost3Vis-X1GOHT*COST1-X2GOHT*COST2GOHT-

X3GOHT*COST3GOHT-X1DHT*COST1-X2DHT*COST2DHT-X3DHT*COST3DHT 

-X1NHT*COST1-X2NHT*COST2NHT-X3NHT*COST3NHT-X1HC*COST1-

X2HC*COST2HC-X3HC*COST3HC-X1REF*COST1-X2REF*COST2REF-

X3REF*COST3REF))*1; 

* The Gases of all units can be seperated on GAS PLANT into MixC3 & MixC4 

* MixC3 = 2160 & MixC4 =  4470 Barrel 

* C3 & C4 price are 35.7 & 39.9, respectively 

MOGAS..   FGASOLINE =E= RateV1Vis+FLSRN+FTLN+FREFORMATE+FLNHC; 

KERO..    FKEROSENE =E= FKERO+FKDHTK+FKEROHC; 

 

Positive Variable 

SGGASOLINE,SULGASOLINE,RONGASOLINE,RVPGASOLINE,V150GASOLINE,V200G

ASOLINE,V300GASOLINE,V400GASOLINE 

         SGKEROSENE,SULKEROSENE,SMKKEROSENE,FLSHKEROSENE 

         SGDSL,SULDSL,CETDSL,CS122DSL,FLSHDSL 

         SGFOIL,SULFOIL,CS122FOIL; 

Negative Variable FRZKEROSENE; 

Equation 

SGMOGAS,SULMOGAS,RONMOGAS,RVPMOGAS,V150MOGAS,V200MOGAS,V300MO

GAS,V400MOGAS 

         SGKERO,SULKERO,SMKKERO,FLSHKERO,FRZKERO 

         SGDIESEL1,SULDIESEL1,CETDIESEL1,CS122DIESEL1,FLSHDIESEL1 

         SGFUELOIL1,SULFUELOIL1,CS122FUELOIL1; 

* Gasoline properties 

SGMOGAS..   FGASOLINE*SGGASOLINE  =E= 

FLSRN*LSRSG+FTLN*SGTLN+FREFORMATE*SGREFORMAT+FLNHC*SGLNHC; 
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SULMOGAS..  (FGASOLINE*SGGASOLINE*0.3502)*SULGASOLINE =E= 

RATEWLSRN*LSRS; 

RONMOGAS..  FGASOLINE*RONGASOLINE =E= 

FLSRN*RON2+FTLN*RONTLN+FREFORMATE*RONREFORMAT+FLNHC*RONLNHC; 

*MONMOGAS..  FGASOLINE*MONGASOLINE =E= 

FLSRN*MON2+FTLN*MONTLN+FREFORMATE*MONREFORMAT+FLNHC*MONLNHC

+FLNFCC*MONLNFCC+FHNFCC*MONHNFCC; 

RVPMOGAS..  FGASOLINE*RVPGASOLINE**1.25 =E= 

FLSRN*(RVP2**1.25)+FTLN*(RVPTLN**1.25)+FREFORMATE*(RVPREFORMAT**1.25)

+FLNHC*(RVPLNHC**1.25); 

V150MOGAS.. FGASOLINE*V150GASOLINE=E= 

FLSRN*V1502+FTLN*V150TLN+FREFORMATE*V150REFORMAT+FLNHC*V150LNHC; 

V200MOGAS.. FGASOLINE*V200GASOLINE=E= 

FLSRN*V2002+FTLN*V200TLN+FREFORMATE*V200REFORMAT+FLNHC*V200LNHC; 

V300MOGAS.. FGASOLINE*V300GASOLINE=E= 

FLSRN*V3002+FTLN*V300TLN+FREFORMATE*V300REFORMAT+FLNHC*V300LNHC; 

V400MOGAS.. FGASOLINE*V400GASOLINE=E= 

FLSRN*V4002+FTLN*V400TLN+FREFORMATE*V400REFORMAT+FLNHC*V400LNHC; 

 

FRZKERO..  FKEROSENE*Exp(13.333*LOG((FRZKEROSENE+460)/600))=E= 

FKERO*Exp(13.333*LOG((FRZ4+460)/600))+FKDHTK*Exp(13.333*LOG((FRZKDHT+460)/

600))+FKEROHC*Exp(13.333*LOG((FRZKEROHC+460)/600)); 

* V300KERO.. FKEROSENE* =E= 

FKERO*V3004+FKDHTK*V300KDHT+FKEROHC*V300??; 

* V400KERO.. FKEROSENE* =E= 

FKERO*V4004+FKDHTK*V400KDHT+FKEROHC*V400??; 

* V500KERO.. FKEROSENE* =E= 

FKERO*V5004+FKDHTK*V500KDHT+FKEROHC*V500??; 

 

* Diesel properties 

SGDIESEL1..    FDSL*SGDSL   

=E=FTDIESEL*SGDDHT+FDRDHTD*SGDRDHT+FDGOHTD*SGDGOHT+FKDHTD*SGK

DHT+FDIESELHC*SGDIESELHC; 
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SULDIESEL1..   (FDSL*SGDSL*0.3502)*SULDSL  

=E=RATEW3DHT*SULDDHT+RATEW2RDHT*SULDRDHT+RATEW2GOHT*SULDGOH

T+RATEW2DHT*SULKDHT+RATEWDIESELHC*SULDIESELHC; 

CETDIESEL1..   FDSL*CETDSL  

=E=FTDIESEL*CETDDHT+FDRDHTD*CETDRDHT+FDGOHTD*CETDGOHT+FKDHTD*

CETKDHT+FDIESELHC*CETDIESELHC; 

CS122DIESEL1.. 

FDSL*LOG(LOG(CS122DSL+0.8))=E=FTDIESEL*(LOG(LOG(CS122DDHT+0.8)))+FDRDH

TD*(LOG(LOG(CS122DRDHT+0.8)))+FDGOHTD*(LOG(LOG(CS122DGOHT+0.8)))+FKDH

TD*(LOG(LOG(CS122KDHT+0.8)))+FDIESELHC*(LOG(LOG(CS122DIESELHC+0.8))); 

*CS210DIESEL1.. 

FDSL*LOG(LOG(CS210DSL+0.8))=E=FTDIESEL*(LOG(LOG(CS210DDHT+0.8)))+FDRDH

TD*(LOG(LOG(CS210DRDHT+0.8)))+FDGOHTD*(LOG(LOG(CS210DGOHT+0.8)))+FKDH

TD*(LOG(LOG(CS210KDHT+0.8)))+FLCOFCC*(LOG(LOG(CS210LCOFCC+0.8)))+FDIESE

LHC*(LOG(LOG(CS210DIESELHC+0.8))); 

*ARODIESEL1..   FDSL*   =E= 

FTDIESEL*ARODDHT+FDRDHTD*?????+FDGOHTD*ARODGOHT+FKDHTD*AROKDH

T+FLCOFCC*AROLCOFCC+FDIESELHC*; 

FLSHDIESEL1..  FDSL*EXP(-16.667*LOG((FLSHDSL+460)/600))=E=FTDIESEL*(EXP(-

16.667*LOG((FLSHDDHT+460)/600)))+FDRDHTD*(EXP(-

16.667*LOG((FLSHDRDHT+460)/600)))+FDGOHTD*(EXP(-

16.667*LOG((FLSHDGOHT+460)/600)))+FKDHTD*(EXP(-

16.667*LOG((FLSHKDHT+460)/600)))+FDIESELHC*(EXP(-

16.667*LOG((FLSHDIESELHC+460)/600))); 

 

* FuelOil properties 

SGFUELOIL1..    FFOIL*SGFOIL   =E= 

FLSFO*SGLSFO+FDRDHTF*SGDRDHT+FDGOHTF*SGDGOHT; 

SULFUELOIL1..   FFOIL*SULFOIL  =E= 

RATEW3RDHT*SULLSFO+RATEW2RDHT*SULDRDHT+RATEW2GOHT*SULDGOHT; 

CS122FUELOIL1.. FFOIL*LOG(LOG(CS122FOIL+0.8))=E= 

FLSFO*(LOG(LOG(CS122LSFO+0.8)))+FDRDHTF*(LOG(LOG(CS122DRDHT+0.8)))+FDG

OHTF*(LOG(LOG(CS122DGOHT+0.8))); 
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*CS210FUELOIL1.. FFOIL*LOG(LOG(CS210FOIL+0.8))=E= 

FLSFO*(LOG(LOG(CS210LSFO+0.8)))+FDRDHTF*(LOG(LOG(CS210DRDHT+0.8)))+FDG

OHTF*(LOG(LOG(CS210DGOHT+0.8)))+FHCOFCC*(LOG(LOG(CS210HCOFCC+0.8))); 

 

Equation pro1,pro2,pro3,pro5,pro6,pro7,pro8,pro9,pro10,pro11,pro13 

         pro14,pro15,pro16,pro17,pro18,pro19,pro21,pro22,pro23,pro24; 

PRO1..  SGGASOLINE   =L=0.817; 

PRO2..  SULGASOLINE  =L=0.05; 

PRO3..  RONGASOLINE  =G=89; 

*PRO4..  MONGASOLINE  =G= 

PRO5..  RVPGASOLINE  =L=9.0; 

PRO6..  V150GASOLINE =G=10; 

PRO7..  V200GASOLINE =G=27.5; 

PRO8..  V300GASOLINE =G=60; 

PRO9..  V400GASOLINE =G=92.5; 

PRO10.. SGKEROSENE   =L=0.85; 

PRO11.. SULKEROSENE  =L=0.25; 

*PRO12.. AROKEROSENE =G= 

PRO13.. SMKKEROSENE  =G=20; 

PRO14.. FLSHKEROSENE =G=136; 

PRO15.. FRZKEROSENE  =G=-50; 

PRO16.. SGDSL        =L=0.875; 

PRO17.. SULDSL       =L=0.5; 

PRO18.. CETDSL       =G=45; 

PRO19.. CS122DSL     =L=5.5; 

*PRO20.. CS210DSL     =L= 
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PRO21.. FLSHDSL      =G= 130; 

PRO22.. SGFOIL       =L=1.0; 

PRO23.. SULFOIL      =L=1.0; 

PRO24.. CS122FOIL    =L=5.0E+06; 

*PRO25.. CS210FOIL    =L= 

 

*----------------------------------------------------------------------- 

*----------------------------------------------------------------------- 

* Lower & upper limits and Initial values of the final properties 

 

*----------------------------------------------------------------------- 

*----------------------------------------------------------------------- 

* Lower & upper limits and Initial values of the streams and units variables 

 

* FINAL FLOWRATE variables Lower & upeer limits 

FGASOLINE.lo=0   ; FGASOLINE.up=40000    ; FGASOLINE.l=31170     ; 

FKEROSENE.lo=0   ; FKEROSENE.up=40000    ; FKEROSENE.l=23600     ; 

FDSL.lo=0        ; FDSL.up=40000         ; FDSL.l=25800          ; 

FFOIL.lo=0       ; FFOIL.up=40000        ; FFOIL.l=16200         ; 

FREFORMATE.lo=0  ; FREFORMATE.up=20000   ; FREFORMATE.l=15000    ; 

FDRDHTD.lo=0     ; FDRDHTD.up=2000       ; FDRDHTD.l=1310        ; 

FDRDHTF.lo=0     ; FDRDHTF.up=2000       ; FDRDHTF.l=0           ; 

FDGOHTD.lo=0     ; FDGOHTD.up=2500       ; FDGOHTD.l=1440        ; 

FDGOHTF.lo=0     ; FDGOHTF.up=1500       ; FDGOHTF.l=0           ; 

FKDHTK.lo=0      ; FKDHTK.up=13000       ; FKDHTK.l=2160         ; 

FKDHTD.lo=0      ; FKDHTD.up=13000       ; FKDHTD.l=5            ; 
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RateWHNHC.lo=0   ; RateWHNHC.up=1000     ; RateWHNHC.l=416       ; 

RateWKEROHC.lo=0 ; RateWKEROHC.up=4000   ; RateWKEROHC.l=2885    ; 

RateWDIESELHC.lo=0;RateWDIESELHC.up=4000 ; RateWDIESELHC.l=3148  ; 

GasLHVHC.lo=0    ; GasLHVHC.up=10000     ; GasLHVHC.l=850        ; 

FuelHC.lo=-2500  ; FuelHC.up=0           ; FuelHC.l=-1900        ; 

CHEMHC.lo=-5000  ; CHEMHC.up=0           ; CHEMHC.l=-1600        ; 

PowerHC.lo=-150000; PowerHC.up=0         ; PowerHC.l=-110000     ; 

CWHC.lo=-10000   ; CWHC.up=0             ; CWHC.l=-5200          ; 

CapitalHC.lo=-100; CapitalHC.up=0        ; CapitalHC.l=-66       ; 

 

*FCC variables Lower & upeer limits 

*RateVFCC.lo=10000; RateVFCC.up=25000     ; RateVFCC.l=10433      ; 

*RateWFCC.lo=3000 ; RateWFCC.up=7000      ; RateWFCC.l=3358       ; 

*H2SFCC.lo=0      ; H2SFCC.up=10          ; H2SFCC.l=1            ; 

*GasFCC.lo=0      ; GasFCC.up=300         ; GasFCC.l=122          ; 

*C3UFCC.lo=0      ; C3UFCC.up=400         ; C3UFCC.l=200          ; 

*C3SFCC.lo=-20    ; C3SFCC.up=200         ; C3SFCC.l=70           ; 

*IC4FCC.lo=-20    ; IC4FCC.up=400         ; IC4FCC.l=165          ; 

*IC4UFCC.lo=-20   ; IC4UFCC.up=300        ; IC4UFCC.l=118         ; 

*NC4FCC.lo=-20    ; NC4FCC.up=100         ; NC4FCC.l=55           ; 

*C4UFCC.lo=0      ; C4UFCC.up=200         ; C4UFCC.l=181          ; 

*RateWLNFCC.lo=0  ; RateWLNFCC.up=2000    ; RateWLNFCC.l=5650     ; 

*RateWHNFCC.lo=0  ; RateWHNFCC.up=5000    ; RateWHNFCC.l=4550     ; 

*RateWLCOFCC.lo=0 ; RateWLCOFCC.up=2000   ; RateWLCOFCC.l=2800    ; 

*RateWHCOFCC.lo=0 ; RateWHCOFCC.up=5000   ; RateWHCOFCC.l=1060    ; 

*RateW5FCC.lo=0   ; RateW5FCC.up=5000     ; 
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*GasLHVFCC.lo=0   ; GasLHVFCC.up=10000    ; GasLHVFCC.l=2600      ; 

*HPSFCC.lo=0      ; HPSFCC.up=1000        ; HPSFCC.l=475          ; 

*CHEMFCC.lo=-5000 ; CHEMFCC.up=0          ; CHEMFCC.l=-1600       ; 

*PowerFCC.lo=-150000; PowerFCC.up=0       ; PowerFCC.l=-95000     ; 

*BFWFCC.lo=-1000  ; BFWFCC.up=0           ; BFWFCC.l=-475         ; 

*CWFCC.lo=-10000  ; CWFCC.up=0            ; CWFCC.l=-8000         ; 

*CapitalFCC.lo=-100; CapitalFCC.up=0      ; CapitalFCC.l=-56      ; 

 

*Reformer variables Lower & upeer limits 

RateVREF.lo=0    ; RateVREF.up=29000     ; RateVREF.l=18020      ; 

SGREF.lo=0       ; SGREF.up=1.0          ; SGREF.l=0.7829        ; 

RateWREF.lo=0    ; RateWREF.up=5500      ; RateWREF.l=4940       ; 

AROREF.lo=0      ; AROREF.up=100         ; AROREF.l=18.0         ; 

NAPHREF.lo=0     ; NAPHREF.up=50         ; NAPHREF.l=30.8        ; 

V150REF.lo=0     ; V150REF.up=100        ; V150REF.l=0.5         ; 

V200REF.lo=0     ; V200REF.up=100        ; V200REF.l=9.1         ; 

V300REF.lo=0     ; V300REF.up=100        ; V300REF.l=52.6        ; 

V400REF.lo=0     ; V400REF.up=100        ; V400REF.l=92.5        ; 

LVYLDREF.lo=0    ; LVYLDREF.up=100       ; LVYLDREF.l=83.98      ; 

H2REF.lo=0       ; H2REF.up=200          ; H2REF.l=79            ; 

GasREF.lo=0      ; GASREF.up=200         ; GASREF.l=89           ; 

C3SREF.lo=0      ; C3SREF.up=200         ; C3SREF.l=78           ; 

IC4REF.lo=0      ; IC4REF.up=200         ; IC4REF.l=58           ; 

NC4REF.lo=0      ; NC4REF.up=200         ; NC4REF.l=81           ; 

RateW1REF.lo=0   ; RateW1REF.up=5500     ; RateW1REF.l=4546      ; 

SGREFORMAT.lo=0  ; SGREFORMAT.up=1.0     ; SGREFORMAT.l=.861     ; 
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BENZREFORMAT.lo=0; BENZREFORMAT.up=100   ; BENZREFORMAT.l=4.5    ; 

V150REFORMAT.lo=0; V150REFORMAT.up=100   ; V150REFORMAT.l=0.5    ; 

V200REFORMAT.lo=0; V200REFORMAT.up=100   ; V200REFORMAT.l=9.1    ; 

V300REFORMAT.lo=0; V300REFORMAT.up=100   ; V300REFORMAT.l=52.6   ; 

V400REFORMAT.lo=0; v400REFORMAT.up=100   ; v400REFORMAT.l=92.5   ; 

FuelREF.lo=-9000 ; FuelREF.up=0          ; FuelREF.l=-4548       ; 

HPSREF.lo=0      ; HPSREF.up=5000        ; HPSREF.l=1763         ; 

BFWREF.lo=-5000  ; BFWREF.up=0           ; BFWREF.l=-1763        ; 

PowerREF.lo=-50000; PowerREF.up=0        ; PowerREF.l=-17630     ; 

CWREF.lo=-25000  ; CWREF.up=0            ; CWREF.l=-10580        ; 

GasLHVREF.lo=0   ; GasLHVREF.up=8000     ; GasLHVREF.l=1810      ; 

CapitalREF.lo=-100; CapitalREF.up=0      ; CapitalREF.l=-39      ; 

 

Model Basic /all/; 

Solve Basic maximizing Z using minlp; 

Display 

NOXCDU,NOXCDU2,NOXCDU3,NOXRDHT,NOXRDHT2,NOXRDHT3,NOXVis,NOXVis2,

NOXVis3,NOXGOHT, 

NOXGOHT2,NOXGOHT3,NOXDHT,NOXDHT2,NOXDHT3,NOXNHT,NOXNHT2,NOXNH

T3,NOXHC.l,NOXHC2.l,NOXHC3.l, 

NOXREF.l,NOXREF2.l,NOXREF3.l,NOXTC.l; 

DISPLAY 

X1CDU.L,X2CDU.L,X3CDU.L,X1RDHT.L,X2RDHT.L,X3RDHT.L,X1Vis.l,X2Vis.l,X3Vis.l,

X1GOHT.L,X2GOHT.L,X3GOHT.L, 

X1DHT.L,X2DHT.L,X3DHT.L,X1NHT.L,X2NHT.L,X3NHT.L,X1HC.L,X2HC.L,X3HC.L, 

X1REF.L,X2REF.L,X3REF.L; 

 

Display FLPG,FLSRN,FHSRN,FKERO,FDIESEL,FLVGO,FHVGO,FRSD; 
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Display RateVHC.l; 

Display FGASOLINE.l,FKEROSENE.l,FDSL.l,FFOIL.l; 

Display FLSRN,FTLN,FREFORMATE.L,FLNHC.L; 

Display FKERO,FKDHTK.L,FKEROHC.L; 

Display FTDIESEL,FDRDHTD.L,FDGOHTD.L,FKDHTD.L,FDIESELHC.L; 

Display FLSFO,FDRDHTF.L,FDGOHTF.L; 

Display SGDSL.L,SULDSL.L,CETDSL.L,CS122DSL.L,FLSHDSL.L; 

Display SGFOIL.L,SULFOIL.L,CS122FOIL.L; 
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Nomenclature 

 
CDU-Crude Distillation Unit 

LPG-Liquefied Petroleum Gas 

LSR-Light Straight Run 

HSR-Heavy Straight Run   

VDU- Vacuum Distillation Unit 

H/C –Hydrocarbons 

CCR- Continuous Catalyst Regeneration   

LP-Linear Programming 

MILP-Mixed Integer Linear Programming 

MINLP-Mixed Integer Non Linear Programming 

NAAQS-National Ambient Air Quality Standard 

SCR-Selective Catalytic Reduction 

SNCR-Selective Non-Catalytic Reduction 

DEF-Diesel Exhaust Fluid 

EEGR-Enhanced Exhaust Gas Recirculation 

EPA-Environmental Protection Agency 

OMT-Oxygen Transport Membrane 

SOFA-Separated Over-Fire Air 
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ak – Constant coefficient for the variable temperature 

T p –  End point or max temperature for which which a specific product will be  

completely vaporized. 

p- product stream from CDU. 

PCDU  - Group contain all products of CDU. 

Rsd- Residual of bottom fraction from CDU. 

EP- End Point Temperature which is the same as Tp. 

VCDU,p – Volume flow rate of product stream (p) from CDU. 

FCDU – Crude oil feed volume to the CDU. 

X CDU,p – Different properties for each product stream (p) leaving CDU. 

X p –  The set of all properties for  a specific stream (p) leaving CDU. 

           - Lower limit for cut temperature for product (P). 

            - Cut temperature for product fraction (p) of CDU.  

                   - Upper limit for cut temperature of product (p) of CDU.              

UmaxCDU- Maximum feed that can be sent to CDU. 

GAMS – General Algebraic Modeling System 

Ai –  Price of selling product (i) in dollars / barrel.  

BPi  - Volume of blending unit (i) in barrel.  

Bi  - Cost of feed  (i) to refinery or CDUin dollars / barrel of crude oil. 

F i – Feed (i) of crude oil to CDU in barrels. 

C i - Operational cost for unit (i) dollar/year. 

Di,sw – Cost of switching to fuel  (sw) in unit (i) 

Zi,sw – Binary variable equal to zero or one, related to use of (sw) fuel in unit (i). 
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sw – Fuel type used. 

y- Technology type used for NOx reduction. 

Yi,y – binary variable equal to zero or one, related to the use of (y) technology in unit (i).      

Vj,p,i- Flowrate of product (p) going to unit (i) and coming from unit (j). 

Xi,F – Property (X) of feed (F) to unit (i). 

Xj,p – Property (X) of feed (j) for product (p). 

Vi,p – Volumetric flow rate of unit (i) of product (p). 

Fi  - Feed flow rate for unit (i). 

Vi,N – Variable N of unit (i). 

Vi,p,m – Volumetric flow rate of unit (i) and product (p) to split (m).  

Zi,sw – Binary variable of unit (i) for fuel switch to fuel type (sw).   

IF – Set of all units in the oil refinery. 

NOxi,sw – Amount of  NOx produced from unit (i) when switching to fuel (sw). 

Ei,y – Cost in dollar/Year for using technology (y) with unit (i). 

bx – blending index of property X. 

nx,p – index for property X of  product (p). 

wp – mass or volume fraction. 

sp.gr blended – specific gravity of  blended streams.  

RateVp – Volumetric flowrate of product stream (p). 

Sulblended – Sulfur content of blended streams. 

RateWp -  Mass flow rate of stream (p). 

Sulp – Sulphur content of product stream (p). 

NRON -  Research octane number. 
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NRON,p – Research octane number of product stream (p). 

RVP – Reid Vapour Pressure. 

RVPblend – Reid Vapour Pressure of blended streams. 

(RVPBI)p – blending index for RVP of strem (p) . 

CN – Cetane Number. 

DI – Diesel Index. 

INSP – Smoke Point Index. 

SP – Smoke Point 

RateV – Volumetric flow Rate of fuel to viscobreaker. 

RateV1- Volumetric flow rate of LN leaving viscobreaker. 

RateV2- Volumetric flow rate of HN leaving viscobreaker. 

RateV3- Volumetric flow rate of Gas Oil leaving viscobreaker. 

RateV4- Volumetric flow rate of Buttom Fraction leaving viscobreaker. 

LN –Light Naphtha 

HN – Heavy Naphtha  

Sul - Sulfur 

BBL – British Barrels 

SG – Specific Gravity 

LNSR- Light Naphtha Straight Run 

HNSR- Heavy Naphtha Straight Run 

LVGO- Light Vacuum Gas Oil 

HVGO- Heavy Vacuum Gas Oil 

RON – Research Octane Number 
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CDU- Crude Distillation Unit  

RDHT- Residual Hydrotreater 

Visc.- Viscobreaker 

GOHT- Gas Oil Hydrotreater 

DHT – Diesel Hydrotreater 

NHT- Naphtha Hydrotreater 

HC – Hydro Cracker 

REF - Reformer 
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