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The thesis addresses the problem of channel estimation in Impluse-Radio Ultra-

Wideband (IR-UWB) communication system. The IR-UWB communications uti-

lize low duty cycle pulses to transmit data over the wireless channel. The trans-

mitted energy is distributed over a large number of multipath components (MPCs).

At the receiver, these MPCs need to be estimated accurately to capture sufficient

energy for successful communications. In our work, the IEEE 802.15.4a channel

model is used where the channel is assumed to be Linear Time Invariant (LTI)

and thus the problem of channel estimation becomes the estimation of the sparse

channel taps and their delays. Since, the bandwidth of the signal is very large

and the Nyquist rate sampling (� 16 GHz.) is impractical therefore we estimate

the channel taps from the subsampled versions of the received signal profile. The
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transmitted pulse shape considered is the second derivative of the Gaussian pulse.

We decompose the channel estimation problem into two parts: (i) estimation of

the channel support, followed by, (ii) estimation of the support co-efficients (chan-

nel amplitudes). We exploting the signal sparsity and reduce the search space for

the channel support by using three different methods: Genetic Algorithm, Corre-

lation and Compressive Sensing. In the classical estimation approach we develop

Low-Complexity Maximum Likelihood (LCML) estiamtor by leveraging the under-

lying structure of the problem. In the Bayesian framework, first we estimate the

decomposed channel by incorporating the a priori multipath arrival time statis-

tics for three different cases of amplitude statistics, namely (i) non-Gaussian, (ii)

non-Gaussian with known second order statistics from the IEEE model, and (iii)

Gaussian. Second, we jointly estimate the channel support and co-efficients by

deveopling an Approximate Minimum Mean Square Error Estimator (AMMSE).

We leverage the structure to reduce the computational complexity and propose a

Low-Complexity MMSE (LCMMSE) channel estimator. The performance of the

various methods in terms of the Normalized Root Mean Square Error (NRMSE)

in estimation of MPC arrival times and energy capture were compared in the pres-

cence of AWGN. The novel low-complexity estimators, namely LCML, AMMSE

and LCMMSE, presented in the thesis outperform other conventional UWB chan-

nel estimators. Furthermore, the computational complexity is much less as com-

pared to that of Compressive Sensing, ML and MMSE estimators.
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الاتصالات إن ). UWB - IR(تعالج ھذه الرسالة مشكلة تقدير القناة في الاندفاع للإذاعة لنظام الاتصالات فائقة الاتساع 
UWB - IR حيث يتم توزيع الطاقة المنقولة عبر عدد . تستفيد من انخفاض نبضات دورة العمل لنقل البيانات عبر قناة لاسلكية

بدقة لالتقاط ما يكفي من ) MPCs(عند الاستقبال نحتاج الى تقدير المكونات المتعددة . )MPCs(كبير من المكونات المتعددة 
وعلى افتراض أن القناة خطية ثابتة من ) IEEE 802.15.4a(تم في ھذا العمل استخدام نموذج قناة . الطاقة للاتصالات ناجحة

و بسبب أن عرض النطاق . ناة المتفرقة والتأخير بھمتصبح مشكلة تقدير القناة عبارة عن تقدير الصنابير للق) LTI(الزمن 
غير عملي ولذلك فإننا نقدر الصنابير القناة من .) غيغاھيرتز Nyquist ) ~16الترددي للإشارة كبيرة جدا وأخذ العينات معدل 

ي تم اعتبار شكل نبضة المرسلة ھو المشتق الثاني للنبض غاوس. من ملف ردت إشارة subsampledالإصدارات 
)Gaussian .(تم تقسيم مشكل تقدير القناة إلى قسمين : )سعة (التقدير لمعاملات الدعم ) 2(التقدير لدعم القناة ويتبع ذلك ) 1

, الخوارزمية الوراثية: تم استغلال تبعثر الإشارة لتقليل مساحة البحث عن دعم القناة باستخدام ثلاث طرق مختلفة). القناة
من ) ML  - LC(في تقدير النھج الكلاسيكي تم تطوير مقدر قليل التعقيد الأقصى احتمال . ضغوطالارتباط والاستشعار الم

أولا نقدر القناة متحللة من خلال دمج وكلما كانت ) Bayesian(في الإطار البايزي . خلال الاستفادة من البنية الأساسية للمشكلة
) 2(  غير الغاوسي ) 1(وبالتحديد , مختلفة من الإحصاءات السعة الإحصاءات المتعددة وصول الوقت مسبقا لمدة ثلاث حالات 

ثانيا تم بشكل مشترك تقدير لدعم القناة . الغاوسي ) IEEE  )3غير الغاوسي مع معرفة إحصاءات الدرجة الثانية من نموذج 
 - MMSE )LCالتعقيد  والمعاملات والاستفادة من ھيكل المشكلة للحد من التعقيد الحسابي واقتراح مقدر قناة منخفض

MMSE.( 
  

في تقدير أوقات وصول ) NRMSE(خطأ سكوير تمت مقارنة الأداء بالأساليب المختلفة من حيث الجذر تطبيع متوسط 
وقد تفوق المقدر منخفض التعقيد بالمسمى تحديدا . AWGNمن حيث والتقاط الطاقة في حضور )  MPC(المكونات المتعددة 

إضافة الى ذلك . UWBوالذي تم تطويره في ھذه الرسالة على المقدرات التقليدية لقناة ) LC -ML and LC-MMSE(ب 
  ). MMSEو   ML(فان التعقيد الحسابي اقل بكثير مقارنة لاستشعار الضغط 

  
  

 
 
 
 
 
 
 
 
 



CHAPTER 1

INTRODUCTION AND

MOTIVATION

1.1 Introduction

The Thesis is concerned with the application of state of the art digital signal

processing techniques to a problem in wireless communication. Specifically, we

develop methods to estimate the channel impulse response for an Impulse-Radio

Ultra-Wideband (IR-UWB) communication system.

1.2 Motivation

UWB technology is a promising technology for very high speed short range wireless

communication and as well as for precision ranging and positioning applications.

UWB systems have attracted renewed attention in recent years and many research

work has been directed to solve the issues in UWB communications. Channel

1



estimation is an important step for successful communication over the wireless

channel. It also assists in mitigation of interference from other signals which is

an important requirement of UWB systems. Since the wireless channel changes

with time, accurate and efficient methods are required to enable the receiver to

periodically estimate the channel correctly and quickly to decipher the information

from the received signal. UWB channel have some specific characteristics such as

large bandwidth, low-power transmission and rich multipath propagation which

makes the channel estimation of UWB channels a unique challenge. There are

several estimation techniques proposed for estimating UWB channels, but a lot of

work is still to be done to arrive at the best estimation tehcnique which provides

reliable estimates and is of low complexity. The received UWB signal is sparse and

also rich in structure. Our motivation in this thesis is to develop accurate channel

estimators for UWB channel which exploits the sparsity of the received UWB

signal and the rich underlying structure to reduce the computational complexity

of the estimators.

1.3 Thesis Objective

The objective of the thesis is to develop a Low-Complexity Channel estimators

for IR-UWB communication systems by taking into consideration the following:

1. Sparsity of the received UWB signal profile

2. Rich structure of the sensing matrix

2



3. A priori statistical information about the UWB channel

1.4 Thesis Contributions

The main contributions of the thesis are the development of novel channel esti-

mators for IR-UWB communication systems, as follows:

1. Development of channel support estimators by exploiting sparsity where

each of the following, (i) Genetic Algorithm, (ii) Correlation and (iii) Com-

pressive Sensing are used to obtain the coarse estimates and hence reduce

the search space

2. In the classical estimation framework, development of the Low-Complexity

Maximum Likelihood (LCML) channel estimator by leveraging the structure

of the model

3. In the Bayesian framework for the decomposed channel, development of

Low-Complexity Maximum A Posteriori (LCMAP) estimator for the case of

both Gaussian and non-Gaussian channel co-efficients

4. In the Bayesian framework, development of Low-Complexity Minimum

Mean Square Error (LCMMSE) estimator for jointly estimating the channel

support and co-efficients for the case of both Gaussian and non-Gaussian

channel co-efficients

3



1.5 Thesis Organization

In Chapter 2 background about the UWB channel, IR-UWB communication sys-

tems and different UWB receivers is presesnted. Some of the popular UWB chan-

nel estimation techniques in the literature are also briefly discussed. A concise

review of linear estimation theory is also provided in the chapter. In Chapter 3,

the IR-UWB communication model is discussed and the problem of UWB channel

estimation is formulated based on our model. We exploit the sparsity of the sig-

nal in Chapter 4 where Genetic Algorithm, Correlation, Compressive Sensing and

their combinations are employed to estimate the IR-UWB channel. In Chapter 5,

the IR-UWB channel estimation is performed in a Classical Estimation framework

and a Low-Complexity Maximum Likelihood estiamtor is developed. In Chapter

6, the IR-UWB channel estimaton is performed in a Bayesian framework where

both Low-Complexity MAP and MMSE estimators are developed by consider-

ing three different statistical priors for the channel fading amplitudes. Chapter 7

provides a discussion and concludes the thesis.
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CHAPTER 2

BACKGROUND

2.1 Introduction

In this chapter the background to the work in this thesis is presented. We begin

by defining the UWB communication systems in Section 2.2 and the specific char-

acteristics of the UWB channel model in Section 2.3. Thereafter, the different

types of receivers for UWB communication are briefly presented in section 2.4

followed by the definition of the UWB channel estimation task in Section 2.5. We

also discuss several channel estimation techniques for UWB systems available in

the literature. Lastly in Section 2.6 a review of estimation theory is summarized,

in particular parametric linear estimation and Bayesian estimation are revisited.

2.2 Ultra-Wideband (UWB) Systems

Ultra-Wideband (UWB) radio is a rapidly evolving technology, which is aimed

primarily for indoor wireless communications and precision positioning appli-

5



cations. UWB technology has been around since 1960s, when it was mainly

used for radar and military applications [2]. The United States Federal Com-

munications Commission (FCC) allowed UWB waveforms to overlay over other

systems which resulted in an exponential increase in interest towards UWB

technology from academia, industry, and global standardization bodies. In

2002, FCC allocated limited use of a huge chunk of spectrum between 3.1 GHz

and 10.6 GHz to allow UWB systems to overlay over existing narrowband systems.

The history of UWB can be traced back a century to Guglielmo Marconi’s

spark gap transmitters which conducted radio communications using an enor-

mous bandwidth. However, modern UWB technology as we know it today has

been around since the 1960s and began with the invention of the impulse radars

which found strong application in military primarily due to its robusteness to

jamming. The academic interest in UWB technology was pioneered by Prof.

Scholtz and his group in the 1990’s where the focus was on low-rate applications.

With recent developments in high-speed switching and narrowband pulse

generation a renewed interst in UWB technology has resulted. These efforts

lead to a spread of UWB from military applications to consumer electronics.

The principle of UWB is based on transmitting low energy signals over a large

bandwidth which results in immunity to frequency flat fading.

6



UWB technology finds itself applications in wide and diverse areas:

� Wireless networks

� Sensor networks

� Imaging systems

� Vehicular radar systems

UWB transmitter is defined by the FCC as a transmitter that has a fractional

bandwidth equal to or greater than 0.2 or has a UWB bandwidth equal to or

greater than 500 MHz. The UWB bandwidth is the frequency band bounded by

the points that are 10 dB below the highest radiated emission, as based on the

complete transmission system including the antenna [3]. To specifically define

what is meant by an Ultra-Wideband signal, the following fractional bandwidth

definition is often employed:

Bf = 2
fH − fL
fH + fL

(2.1)

where fL and fH are the lower and upper end of the signal bandwidth, respectively.

The FCC spectral mask for UWB indoor communication is shown in Fig. 2.1.

For indoor systems, the average output power spectral density is limited to −41.3

dBm/MHz, which complies with the long standing Part 15 general emission limits

to successfully control radio interference. A typical UWB impulse radio employs

short pulses with ultra low power for communication and ranging. UWB impulse

radio system does have several advantages over other conventional systems:

7



Figure 2.1: FCC Spectral Mask

� High data rate wireless transmission - Due to the ultra-wide bandwidth of

several GHz, UWB systems can support more than 500 Mb/s data trans-

mission rate within the range of 10 m, which enables various new services

and applications.

� High precision ranging - Due to the sub-nanosecond duration of typical UWB

pulses, UWB systems have good time-domain resolution and can provide

sub-centimeter accuracy for location and tracking applications.

� Low loss penetration - UWB systems can penetrate obstacles and thus op-

erate under both line-of-sight (LOS) and non-line-of-sight (NLOS) environ-

ments.

8



� Fading robustness - UWB systems are immune to multipath fading and

capable of resolving multipath components even in dense multipath envi-

ronments. The resolvable paths can be combined to enhance system perfor-

mance.

� Security - For UWB signal, the power spectral density is very low. Since

UWB systems operate below the noise floor, it is extremely difficult for

unintended users to detect UWB signals.

� Coexistence - The unique character of low power spectral density allows

UWB system to coexist with other services such as cellular systems, wireless

local area networks (WLAN), global positioning systems (GPS), etc.

� Low cost transceiver implementation - Because of low power of UWB signals,

the RF and baseband can be integrated into a single chip. The up-converter,

down-converter, and power amplifier commonly used in a narrowband sys-

tem are not necessary for UWB systems.

Industrial standards such as IEEE 802.15.3a Task Group (TG3a) [1] and IEEE

802.15.4a Task Group (TG4a) [4] have been introduced within 802.15 work group

to develop standards based on UWB technology. The TG3a group was formed

in January 2003 with the objective of providing a higher speed physical layer

(PHY) enhancement amendment to IEEE 802.15.3. The group aimed to develop

PHY standards to support data rates between 110− 450 Mb/s over short ranges

(i.e., < 10 m). Among many proposed UWB systems for IEEE 802.15.3a were
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two major proposals: the Multi-Band OFDM Alliance (MBOA) proposal and

the direct-sequence UWB (DS-UWB) proposal. The MBOA system employs or-

thogonal frequency-division multiplexing (OFDM) modulation to solve the severe

multipath problem. The DS-UWB system uses direct-sequence spread-spectrum

technology and relies on the RAKE receiver to capture signal energy dispersed

over a large number of paths. After 3 years, TG3a group decided to dissolve

the group in 2006 [5]. The TG4a group was formed in March 2004 with the

objective of providing an amendment to IEEE 802.15.4 for an alternative PHY.

The aim was to provide communications and high precision ranging/location

capability, high aggregate throughput, and ultra low power. The baseline

consisted of two optional PHYs consisting of a UWB Impulse Radio (operating

in unlicensed UWB spectrum) and a Chirp Spread Spectrum (operating in

unlicensed 2.4 GHz spectrum). In March 2007, P802.15.4a was approved as a

new amendment to IEEE Std 802.15.4-2006 by the IEEE-SA Standards Board [1].

However, there are some technical challenges that remain to be solved in

order to develop a UWB system, such as optimum UWB reception, transceiver

structure, UWB pulse generation, antenna, low noise amplifiers, ultra-high speed

(GHz) analog to digital converter (ADC), coding and modulation, timing acquisi-

tion and synchronization, and optimal channel estimation for coherent reception.

Generally speaking, the difficulty of UWB system design and development is

to handle the ultra-wide bandwidth and to manage the trade-off between low
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complexity and high performance.

The initial idea of UWB communication is based on impulse radio commu-

nication systems which employ very sharp pulse trains to carry information bits

without mixers, oscillators and bandpass filters. There are two main differences

between UWB systems and other narrowband or general wideband systems.

First, the bandwidth of UWB systems is much greater than the bandwidth

used by any current technology for communications. Second, UWB systems

are typically implemented as carrierless whereas conventional systems use radio

frequency (RF) carriers to move the signal from baseband frequency to the actual

carrier frequency region. Conversely, IR-UWB implementations can directly

modulate an impulse that has a very sharp rise and fall time, thus resulting in a

waveform that occupies a very wide bandwidth.

One of the most attractive property of a UWB system is the ultra high

speed communication. From the work of Claude Shannon in the late 1940s,

we know that a communication system if subjected only to additive white

Gaussian noise (AWGN), then it offers the maximum rate for reliable transfer of

information as follows,

C = B log2

(
1 +

P

N0

)
(2.2)
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where, C is the channel capacity (bits/s), B is the transmission bandwidth (Hz),

P is the received signal power (W) and N0 is the single-sided noise power spectral

density (W/Hz). Since for UWB systems B is huge therefore, the capacity C of

the UWB channel is very high which results potentially in very high data rates.

The main limiting factor of UWB wireless systems is power spectral density

rather than bandwidth.

UWB signals have certain advantages for communications specifically im-

proved penetration through materials as well as improved performance in dense

multipath environments where the UWB signals can be resolved in time making

the use of a RAKE receiver possible. Both of these advantages make UWB

communication systems well suited for urban and indoor wireless applications

where many local objects act as scatterers and absorbers of the transmitted elec-

tromagnetic energy. Also, these specific advantages allow for reduced transmitted

signal power, which in turn result in low probability of detection or interception.

UWB signals carry data using a low signal level below the thermal noise

floor through a dense multipath channel. There has been considerable research

on designing suitable (optimal) signal waveforms to satisfy the requirements of

the FCC spectral mask. In view of the system design, UWB pulse shape can be

chosen for the purpose of simplifying a design. A pulse shape is an important

factor affecting the overall system performance. An applicable pulse shape
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should be easy to implement and be convenient for theoretical analysis. There

are many conceivable signals which will have the required fractional bandwidth

to be termed UWB signals. Generally there are three main waveforms used in

UWB systems: the Gaussian-like pulse, the monocycle pulse, and the polycycle

pulse [6]. Specifically in IR-UWB communication, the pulse shape of choice is a

baseband pulse that is shaped as a derivative of the Guassian pulse. Generally

the 2nd or the 5th derivative is used due to the radiation properties [7]. The

desired order of the pulse comes from the application of a lower order Gaussian

derivative pulse to the transmit antenna. The electromagnetic wave radiated

by an antenna, for wideband signals, is approximated to be proportional to the

time derivative of the antenna’s driving current [8] while similarly an additional

derivative results from the receive antenna. In narrowband systems employing

carriers, this derivative is well approximated as a time-shift [9]. In this thesis we

have assumed that the ideal Gaussian pulse is transmitted and therefore, at the

receiver we assume the known pulse shape to be given by the second derivative

of the Gaussian pulse shape. The second derivative of the Gaussian pulse shape

is defined as:

p(t) =

√
4

3σ
√
π

(
1−

(
t

σ

)2
)
exp

(
−1
2

(
t

σ

)2
)

(2.3)

The factor
√

4
3σ
√
π
ensures that the signal is normalized to unit energy, i.e.,

∫ +inf

− inf

p2(t)dt = 1 (2.4)
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This allows the energy in the received waveform to be stated explicitly, that is,

the received energy in
√

Epp(t) is simply Ep. The scale factor, σ, determines the

effective width of the pulse and is chosen such that it results in the pulse width

of approximately 1 nanosecond. The pulse shape in Eq. (2.3) can be considered

as the transmitted pulse shape by lumping both derivatives at the transmitter

end of the system. This propagation model is very simplistic, but will suffice

for the purpose of the work presented here. For detailed propagation studies of

UWB signals see [10] or [11] and the references therein.

UWB signals can be modulated in different ways such as pulse position

modulation (PPM), phase-shift keying (PSK), pulse amplitude modulation

(PAM), and on-off keying (OOK) for binary schemes; M-ary PPM and M-ary

PAM for M-ary schemes [12]. Since the UWB transmission is mainly power

limited instead of spectrum limited, binary modulation is usually adopted.

Initially PPM was exclusively used for UWB communication [7] but as pulse

negation became easier to implement, PAM attracted more attention [13].

In a typical UWB system, each information-conveying symbol is represented by

a number of (Nf) pulses, each transmitted per frame of duration Tf � Tp (here

multiple frames comprise a symbol). As the pulse duty cycle is very small, the

transmitter is gated off for the bulk of the symbol period. To allow for multi-user

access to the UWB channel, mainly two methods have been applied:
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� Time-Hopping (TH)

Time-hopping can be implemented by employing appropriately chosen hop-

ping sequences for different users to minimize the probability of collisions

due to multiple access. In TH UWB, each frame is subdivided into a number

of chips of duration Tc > Tp. Each user is assigned a unique pseudo-random

time shift pattern called a TH sequence, which provides an additional time

shift to each pulse in the pulse train. Therefore each pulse undergoes an

additional time shift within the addressable time delay bin.

� Direct-Sequence (DS)

Direct-sequence codes can also be used with both PAM and PPM modu-

lation for multiple access. Since IR-UWB systems are inherently spread

spectrum systems, the use of spreading codes in DS-UWB systems is solely

for accommodating multiple users where the pseudo-noise (PN) sequence is

used to identify the user.

2.3 UWB Channel

This section describes channel models for UWB communications. An accurate

model is needed for designing an efficient communication system which includes

achieving maximum data rate, adopting suitable modulation scheme, and design-

ing efficient algorithm for signal processing. UWB channels are very different from

narrowband wireless channels, especially with regard to fading statistics and the

prescence of multipath clusters. To accurately appreciate and evaluate UWB sys-
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tem designs, it is important to first understand the propagation characteristics of

the UWB waveforms and accurately model the channel statistics. Given the wide-

band nature of UWB transmissions, the conventional channel models developed

for narrowband transmissions are not adequate anymore. In general, the received

signal is made up of several components: first, the direct component is commen-

surate with the portion of the wave travel along a line-of-sight (LOS) between the

transmit and receive antennae and; second, the components arrive after having

been reflected or diffracted on scattering objects that are part of the propagation

environment. The latter is known as multipath propagation. As a result of the rich

multipath propagation, the received UWB signal is made up of multiple replicas

of the transmitted signal, all of which exhibit different attenuations and delays.

Now we examine the channel model recommended by the IEEE 802.15.3a and 4a

working groups. In narrowband communication Rayleigh fading channel is widely

used, but the UWB channel model is presented by a log-normal fading model in

[5] where a modified Saleh-Valenzuela (S-V) model is used for power and delay

profile. Four types of UWB channels were defined by the IEEE 802.15.3a group

to meet measurement results, namely CM1, CM2, CM3, and CM4, for different

channel characteristics.

� CM1: LOS scenario with a separation between transmitter and receiver of

less than 4m.

� CM2: the same range as CM1 but non-Line-of-Sight (NLOS).

� CM3: NLOS scenario for distance between 4− 10m.
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� CM4: a situation with strong delay dispersion, resulting in a delay spread

of at least 25ns.

In this thesis we use the more parametrized channel model recommended by the

IEEE 802.15.4a WG in [1], which is extracted from a large amount of measure-

ments in different communication environments such as residential, office, indus-

try, and outdoor, covering the frequency range from 2GHz to 10GHz. We will

focus on indoor channels since more than 80% of the envisioned commercial UWB

applications are for indoor communications. It was noticed that the MPCs arrive

in clusters and the mean-square value of the amplitude decays with increasing ray

and cluster arrival time. The channel impulse response is modeled as follows

h(t) =
C−1∑
c=0

K−1∑
k=0

αk,c δ(t− Tc − τk,c) (2.5)

where C is the total number of clusters, K is the total number of paths occuring

in each cluster, Tc is the arrival time of the cth cluster and τk,c is the arrival time

(relative to Tc) of the kth path of the cth cluster. The corresponding multipath

fading coefficients of the received profile are denoted by αk,c. The cluster inter-

arrival time, ΔTc = Tc− Tc−1, and the ray inter-arrival time, Δτk,c = τk,c− τk,c−1,

are each exponentially distributed with probability density functions

f(ΔTc) = Λ exp−Λ.ΔTc (2.6)

f(Δτk,c) = λ exp−λ.Δτk,c (2.7)
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where Λ is the arrival rate of the Poisson process for the clusters and λ is the

arrival rate of the Poisson process for the paths within a cluster and their typical

values are given by the IEEE model [1] for various environments. This results in

a double Poisson arrival process for the MPCs.

The average power delay profile (APDP) of the received profile from [1]

can be expressed as

E(α2
k,c) ∝ exp

(
−Tc
Γ

)
exp

(
−τk

γ

)
(2.8)

where E(.) denotes statistical expectation, Γ is the decay factor for the first

MPCs of the clusters, and γ is the decay factor for the remaining MPCs of a

cluster. Typical values of Γ and γ for various environments such as line-of-sight

(LOS), non-line-of-sight (NLOS), indoor, office and resedential environments are

given in [1] and shown in Table ??.

The arrival time of the lth MPC, denoted by τl, can be expressed as, τl = Tc+ τk,c,

where the lth MPC is the kth path of the cth cluster in the received signal profile .

Therefore, the channel impulse response for UWB channel of Eq. (2.5) can now

be expressed as

h(t) =
L−1∑
l=0

αlδ(t− τl) (2.9)
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where L is the total number of resolvable MPCs, δ(t) is the Dirac delta function,

αl is the fading gain of the lth MPC and τl is its delay relative to the arrival

time of the first MPC of the received profile, i.e. τ0 = 0. As opposed to common

baseband models of narrow-band systems αl is real-valued. Upon synchronization,

the receiver adjusts its timing according to the first MPC arrival time τ0.

It is very difficult to obtain the statistics of αl from the statistics of αk,c

for the double Poisson process. This is because the fading co-efficients αl’s not

only depends on the arrival time of the lth MPC but also depends on the arrival

of the first MPC of the same cluster. Since, the number of clusters as well as

the arival time of clusters is random, it is not possible to ascertain the cluster

to which the lth MPC belongs. We overcome this difficulty by approximating

the MPCs arrival as a single Poisson process. We assume that γ = Γ (i.e., the

clusters and the paths within each cluster decay at the same rate) in Eq. (2.8)

for all the clusters. This implies that the channel impulse response of Eq. (2.9)

consists of the arrival of MPCs belonging to a single large cluster with a decay

rate Γ and MPCs arrival rate λ. Thus the APDP for the channel in Eq. (2.9) is

expressed as

E(α2
l ) ∝ exp

(
−Tc + τk,c

Γ

)
(2.10)

∝ exp
(
−τl
Γ

)
(2.11)
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for l = 0, . . . , (L− 1). In the matrix form, we can write the APDP as,

D = E[aaH ] (2.12)

where a is a vector of the fading coefficients of the received signal profile at the

sampled instants and D is a diagonal matrix since the fading of the different

MPCs is independent.

Due to the large bandwidth, only a few MPCs fall within a small time bin

and therefore, the central limit theorem is not applicable to the UWB chan-

nel leading to non-Gaussian fading statistics. Thus, the small-scale fading

co-efficients, αl’s, are modelled as independent Nakagami distributed in [1] as,

p(αl) =
2

Γ(m)

(
m

ζ

)m

α2m−1
l exp

(
−m

ζ
α2
l

)
(2.13)

where m ≥ 1/2 is the Nakagami m-factor, Γ(m) is the Gamma function and

ζ = E(α2
l ) corresponds to the mean power and its delay dependence is given by

Eq. (2.11).

The model in Eq. (2.9) is known as a specular multipath model where the

effect of the channel is assumed to simply sum up many scaled and time-shifted

versions of the original transmitted pulse, i.e., there is no pulse waveform distor-

tion. The appropriate multipath model when considering waveform distortion
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is the diffuse model [14]. The diffuse model can be thought of in a couple

different ways. First, the same form as Eq. (2.9) with the summation taken

over an uncountable set can be considered. Secondly, the summation can remain

countable with the output pulse waveform becoming a function of the index l. Of

course, a combination of these two models might also be conceivable. The diffuse

model is more accurate but comes with increased complexity. For the purposes

of this work, the specular model will suffice as many observed channel response

waveforms can be adequately modeled as such.

2.4 UWB Receiver

Although UWB technology can enable many attractive features deploying

IR-UWB systems is quite challenging. One of the key challenges for IR-UWB

communications system is the construction of low-cost receivers that work well

in multipath environments. As a result of high bandwidth of UWB signals, very

fine multipath delays are resolvable in such environments. Due to the energy

dispersion, a robust receiver that is capable of collecting the rich multipath

must be designed to mitigate the performance degradation. The most common

UWB receiver designs include Energy Detectors (ED), Transmit-Reference (TR)

receivers, and RAKE (correlation) receivers. The ED are simple to implement,

with tradeoff on performance, and suitable for UWB radar systems. RAKE

correlation receivers coherently detect the received signal and can achieve the

optimal performance in theory. Ideally, the RAKE receiver can be used to collect
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the multipath components (MPC’s). However, a RAKE receiver relies on the

maximum ratio combining (MRC) from the accurate channel state information

(CSI) to produce reliable decision statistics. Therefore, it is important to devise

methods for perfect synchronization and channel estimation. Suboptimal receiver

schemes, such as TR and ED which do not need any sophisticated channel

estimation and precise synchronization have also been employed [15]. These

sub-optimal schemes suffer from performance penalty.

In order to capture a considerable portion of the signal energy scattered in

multipath components, a conventional RAKE-based digital receiver not only has

to sample and operate at a minimum of hundreds of MHz to even multi-GHz

clock rates, but also requires an impractically large number of RAKE fingers.

Realizing optimal RAKE reception performance requires accurate channel and

timing knowledge, which is quite challenging to obtain as the number of resolvable

paths grows. Moreover, the received pulse shapes of resolvable multipath might

be distorted differently due to diffraction, which make it suboptimal to use

line-of-sight signal waveform as the correlation template in RAKE reception.

For these reasons, Transmit-Reference, also known as autocorrelation, re-

ceivers have drawn significant attention in recent years. TR encodes the data

in the phase difference of the two pulses of a pulse pair. The first pulse in that

pair does not carry information, but serves as a reference pulse; the second
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pulse is modulated by the data and is referred to as the data pulse. The

two pulses are separated by a fixed delay. It can be easily shown that the

receiver can demodulate this signal by simply multiplying the received signal

with a delayed version of itself. In a slow fading environment, TR collects

multipath energy efficiently without requiring multipath tracking or channel

estimation. Nevertheless, TR autocorrelators entail several drawbacks: the

use of reference pulses increases transmission overhead and reduces data rate,

which results in reduced transmission power efficiency; the bit-error-rate (BER)

performance is limited by the noise term in the reference signal [16]. Finally,

the performance of TR receivers relies on the implementation of accurate

analog delay lines which can save and delay the reference waveforms for up to

tens of nanoseconds. This is still a big challenge to current circuit technology [17].

Optimal energy capture is obtained by a coherent RAKE receiver that has

enough fingers to collect all resolvable multipath components (MPCs). A RAKE

receiver can be used to exploit the diversity by constructively combining the

separable received MPCs. In order to benefit from the optimality of RAKE

reception and to make its implementation practical, Selective-RAKE (S-RAKE)

scheme has been adopted [18]. In an S-RAKE receiver only the strongest

MPC’s are estimated and used to detect the data. Such a receiver consists of

L correlators/fingers to collect the received signal energy from the L strongest

paths. The lth correlator, for l = 0, 1, 2, ..., L − 1, is to correlate the received
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signal with the receiver locally generated reference signal delayed by τl. The

output of the correlators can be linearly combined in different ways to form the

decision variable. The maximal ratio combining (MRC) approach provides better

performance, with the prerequisite of accurate channel information at the receiver

[19]. When accurate channel information is not available, equal gain combining

(EGC) could be used [20]. Since, the UWB channel is sparse (i.e., several time

bins have no MPCs) and randomly distributed, the RAKE receiver searches for

the finger locations and positions them at the correlation lags where the impulse

response has power. If the receiver fingers are uniformly spaced then some of

these would carry only noise and would lead to unnecessary noise enhancement

and reduction in detection performance at the receiver. In our work we have

incorporated the UWB channel sparsity information.

2.5 UWB Channel Estimation

This multipath diversity of a UWB channel calls for the use of RAKE or S-RAKE

receivers for significant energy capture, higher performance and flexibility, despite

its complexity over sub-optimal counterparts. The RAKE receiver is a coherent

receiver and relies on the accurate channel estimates. Recently, there has been

a renewed interest in the use of RAKE in UWB communications, e.g., MIMO

systems [14], BAN [21], cooperative BAN [22], and the prerake systems [23].

In essence, the design or enhancement of accurate channel estimator must not

be overlooked and is imperative for efficient IR-UWB communications and can
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greatly improve the performance of the UWB based positioning and ranging

systems [24].

Several estimators have been developed for UWB channel. In [10] Win

and Scholtz proposed a maximum likelihood (ML) channel estimator for an

isolated UWB pulse, and in [25] Lottici et al. presented both data-aided (DA)

and non-data aided (NDA) based ML estimation. Unfortunately, these methods

require operating at the formidable Nyquist sampling frequency. Since then,

many other variants of the estimator and new receiver types have been proposed

to reduce the complexity. Although the ML scheme is shown to be a superior

estimator, the tremendous BW of UWB signal renders its implementation

difficult because of the Nyquist criterion. Since UWB applications are mostly for

high-rate communications, in our work we asssume the channel to be constant

only over a single symbol. This implies that fading is assumed to be quasi-

static, allowing all channel coefficients αl’s and relative delays τl’s to be constant

over a single symbol period and change independently from one symbol to another.

Sampling rate plays a crucial role in signal processing and communications.

With time more and more analog techniques are being replaced by their digital

counterparts. It is well known from Nyquist-Shannon sampling theorem that un-

ambiguous reconstruction is possible if the signal is bandlimited and the sampling

frequency is greater than twice the signal bandwidth. The error which corre-
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sponds to the failure of band limitation is referred to as aliasing. The condition

for alias-free sampling at rate Fs called Nyquist sampling frequency is Fs � 2B,

where B is the bandwidth of the signal. UWB signal processing requires much

higher sampling rate than general narrowband signal if the Nyquist sampling

frequency is observed due to the much wider bandwidth. High Nyquist sam-

pling frequency requires more expensive analog-to-digital converter (ADC) and

more power to support high speed signal processing and is thus a design challenge.

Most existing literature on ML complexity reduction tackle the issue by

redefining the problem, or eliminating the use of ML altogether. Refs. [26] and

[27] approached the complexity issue by way of formulating it as a synchronization

or timing recovery problem, respectively. A frame synchronization approach to

complexity reduction was addressed in [28], where a search over possible frame

delays was performed to maximize the log-likelihood function. In contrast,

[10] eliminated the ML formulation and concentrated on timing recovery with

LS signal model. In [29], the ML estimator was simplified by recognizing that

MPCs arrive in clusters, and executing search only for rays falling into the

highest energy clusters. Although they are of low-complexity, their performance

implicitly depends on acquiring high-rate samples. Ref. [30] proposed a finite rate

of innovation approach which projects a signal into lower dimensional subspace.

Unfortunately, due to the closely spaced path arrivals inherent in UWB systems,

the solution to rate of innovation is often ill-conditioned. Despite these attempts,
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the most critical issue - Nyquist sampling rate reduction - of the ML channel

estimator has yet to be addressed.

The limitation due to the high sampling requirements led to leave aside

classical conception of sampling (Nyquist) and seek for new techniques that allow

more information rate using less sample requirements. The emerging theory

of compressed sensing (CS) outlines a novel strategy to jointly compress and

detect a sparse signal with fewer sampling resources than the traditional method,

opening a new range of possibilities in UWB communication. For a signal r ∈ R
N

which is K-sparse, with K � N being an integer, compressed sensing shows that

with high probability r can be reconstructed from M compressive measurements

when M ≥ CKlog(N/K) � N , where C > 1 is the oversampling factor [31].

Compressed sensing for UWB was first proposed in [24] as a generalized likelihood

ratio test receiver taking advantage of the signal structure by incorporating

pilot assisted modulation. It was later discussed in [32] as an alternative for

UWB channel estimation. In both cases the signal was reconstructed using

the matching pursuit (MP) algorithm. Unfortunately, how well MP estimates

ties directly to the design parameters, such as the number of iterations and

residual error for convergence [33], which are subject to change depending on the

environment.

In our case the algorithms used for recovering the signal and estimating
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the channel will address the trade-off between the high sampling rate, the high

computational time for reconstruction and the structural and statistical a priori

knowledge from the model.

2.6 Linear Estimation

2.6.1 Parametric Models

A parametric model is a mathematical function that depends on the values of some

parameters. The aim in parametric modeling is often to adjust the parameters of

an appropriate model function such that the model optimizes some criterion, such

as fitting the measured signal with a minimum possible error. This task is called

parameter estimation. The opposite of a parametric model is a non-parametric

model and there is no common form for non-parametric models. The performance

of the signal processing methods for estimation depends on the chosen model

structure and on the quality of the parameter estimates. Let y(n) describe a

signal sampled at the time instants n = 0, 1, ..., N −1. Then y(n) can be modeled

as follows:

y(n) = f(α, n) + e(n) (2.14)

where f(.) will be termed the parametric model function, α is the parameter

vector and e(n) describes the difference between the measured signal and the

model function. The term e(n) is often termed as noise, error or residual. In

practical applications of signal processing there will always be a non-zero noise
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term included in the signal and is commonly treated as an additive noise. It is

important to realize that f(α, n) is only a model of reality. There exist many

different classes of parametric signal models. Some different types of models are

listed and described below.

� Physical and Black-Box Models

A physical model is derived from knowledge of the physical reality which

generate the data. This means that the parameters are interpretable quan-

tities, and their accurate estimation is often the task of interest. A black-box

signal model, on the other hand, is not derived from any physical properties

of the signal. It is simply a mathematical description that is appropriate for

the signal under study, and the model parameters do not necessarily have a

physical meaning.

� Deterministic and Stochastic Models

A deterministic model is a model for which, once the exact parameter values

are known, the signal can be reproduced exactly. A stochastic model is

inherently random, so exact signal reproduction is not possible.

� Linear and Non-Linear Models

A signal model is linear if the signal depends linearly on the model pa-

rameters and possible inputs and disturbances. Otherwise, the model is

non-linear.

In some applications an appropriate model function f(α, n) is known beforehand.

However, often only an appropriate function type is known, and not the exact
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expression. In those instances, there will be several candidate model functions to

choose from. The goal in model selection is to decide which one of the candidates

is most appropriate for describing y(n). A very complex model (i.e., a model with

many parameters) for describing y(n) is highly flexible and it can likely describe

most of the characteristics of the signal. Indeed, models with more parameters

will always fit the measured data better than the models with few parameters (due

to their increased degrees of freedom). However, there is always a problem with

this basic approach: The more complex the model is, the more data we need to

estimate its parameters accurately. If we have only, e.g. 5 data samples we might

be able to estimate the coefficients of a 0th or 1st degree polynomial with a reason-

able accuracy, but hardly the coefficients of a polynomial of degree 4 or 5, unless

the noise level is very low. Therefore, for a fixed number of data samples, we must

not choose a model that is too complex. Otherwise, the parameter estimates will

often be severely affected by the random measurement noise (so called overfitting).

The Occam’s razor principle is often discussed in relation to the problem

of model selection [34]. This principle states essentially that all things being

equal, the simplest solution should be preferred. For model selection purposes,

this should be interpreted as follows: When several models are equal in other re-

spects, the model which imposes the least restrictive assumptions and introduces

the fewest parameters should be selected. This is a reasoning which is intuitively

pleasing. It is also interesting to note that this is essentially how sound model
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selection algorithms work: they often include a term which penalizes complex

models [35].

A nested set of models is one in which each model in the set can be de-

scribed as a special case of the models in the set with higher complexity. Finite

impulse response (FIR) filters of different lengths are examples of nested models

where a single integer valued parameter (i.e., the length of the FIR filter) is

sufficient to describe the model complexity. This integer valued parameter is the

order of the model, and its estimation is often called model order selection. In

the general model set, a model can consist of any combination of the considered

parameters. This means that if we consider n parameters we get 2n possible

model structures. Prior knowledge about the allowed model structures can,

however, reduce this number considerably. Sparse models play an important

role in some applications, such as the UWB channel estimation in a multipath

propagation environment. The general problem of interest is then detection and

estimation of time-delayed reflections of the transmitted signal.

2.6.2 Bayesian Inference

Bayesian inference is a scientific method for finding probabilities (or probability

densities) of propositions by combining measured data and information given

by the user [36]. Bayesian arguments will be frequently used in parts of this

thesis, so it seems worthwhile to provide a short background. The mechanisms
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of Bayesian inference operate on distributions and follow a few simple rules from

probability theory. The big advantage of the Bayesian framework is that, once

the necessary distributions are available, inference is a purely mechanical process

which leads to optimal solutions (conditional on the information supplied by

the user). The disadvantage is that these solutions are often computationally

prohibitive and in this thesis we have specially addressed this issue and reduced

the computational complexity of our Bayesian estimators.

In this thesis for Bayesian channel estimation of UWB channels, we make

use of the a priori statistical information about the channel from the IEEE

802.15.4a standard [4]. The probability distributions used for the parameters

in the standard have been adopted after fitting a large number of physical

measurements. To perform Bayesian inference, essentially only two tools are

required: namely the product rule and marginalization. The first of these two

tools has the following expression:

p(A,B|C) = p(A|C)p(B|A,C) (2.15)

The above equation should be read ”given the information C, the probability

for the propositions A and B to both be true equals the product between the

probability that A is true and the probability that B is true given that A is true.”

Since the propositions A and B are exchangeable, the product rule can also be
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written as:

p(A,B|C) = p(B|C)p(A|B,C) (2.16)

and by combining the above two equations and rearranging the terms, one obtains

the famous Bayes’ theorem:

p(A|B,C) =
p(A|C)p(B|A,C)

p(B|C) (2.17)

Bayes’ theorem is often used to make a hypothesis and data ”exchange positions”

in p(.) (since it shows how p(A|B,C) relates to p(B|A,C)). Say that A stands for a

hypothesis and B for some data. Then Eq. (2.17) tells us the relation between the

probability of the hypothesis A given the data B and the probability that the data

B is observed assuming the hypothesis A is true. The expression p(A|C) is the

prior of the hypothesis A and p(B|C) is the prior of the data B. The second tool,

i.e., marginalization, describes a way to get rid of nuisance parameters which are

of no specific interest for the inference. For a proposition B that takes on discrete

values:

p(A|C) =
∑
B

p(A,B|C) (2.18)

In the above expression, B is the set containing every possible value of B, so the

above should be read ”the probability for A to be true equals the sum, over all

possible values of B, of the probabilities that both A and B are true.” If B is
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continuous, then the corresponding expression becomes,

p(A|C) =
∫
B
p(A,B|C)dB (2.19)

The Bayesian essentially get its desired information by repeated use of the above

mentioned tools.

2.6.3 Linear Regression

Consider the linear regression model,

y = Hr+w (2.20)

where y ∈ R
M is a vector of observed data, H = [h1h2 . . .hN ] ∈ R

M×N is a known

matrix of N regressors {hi}Ni=1, r = [r1r2 . . . rN ]
T ∈ R

N is the unknown vector of

linear regression coefficients (r is called the parameter vector) and w ∼ N (0, N0I)

is a length M vector of zero-mean Gaussian white noise with co-variance matrix

N0I. We call Eq. (2.20) the full model and assume that the data are generated

by a model of the form:

Mk : y = Hkrk +w (2.21)

where the model order is k and that we know kmin and kmax such that kmin < k <

kmax. We consider the following interrelated problems:

1. The model order selection problem: to find the correct order k, given H and

y.
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2. The parameter estimation problem: to estimate r as accurately as possible

when the order k is known.

3. The joint model order selection and parameter estimation problem: to esti-

mate r as accurately as possible when the order k is unknown.

The Least Squares (LS) estimation is commonly used owing to its simplicity and

its connection to ML when the noise is Gaussian. However, if something is known

about the r a priori (before the data are collected), then one can do better than

the LS estimate. For example, if one knows that r ∼ N (0, σ2
rI) a priori, then the

estimate r̂ which has the smallest mean-square error (MSE), i.e., E[‖r̂− r‖22] is

given by the conditional mean of r given that y was observed. Note that when

σ2
r → ∞, corresponding to the observer having no a priori knowledge of r, then

the MMSE and LS estimates coincide. Generally, the minimum MSE (MMSE)

estimate is better (in the MSE sense) than the LS estimate, owing to the influence

of the a priori knowledge of r.

2.6.4 Sparse Linear Models

Sparse linear models are relevant in a variety of applications. For example, in a

statistical data analysis one may know before the measurement that the data are

likely to be explained by only a few factors. The estimation of the communication

channel impulse responses (CIR) of the UWB channel is also a sparse signal

estimation. This is so because the bandwidth of UWB signal is so large that

individual multipath components can be resolved, and in general are separated
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by more than one sample period. Linear regression for sparse models has been

studied both in the statistics community and in the signal processing litera-

ture [35]. We next review some of the representative contributions and approaches.

A large class of methods [22] is based on Bayesian maximum a posteriori

(MAP) estimation of r assuming a prior density for r which induces sparsity. The

LASSO (Least absolute shrinkage and selection operator) method [37] estimates r

by minimizing the LS criterion subject to a l1-norm constraint on the parameter

vector. More precisely, LASSO finds r as a solution to a linearly constrained

quadratic problem, which can be effciently solved. Interestingly, LASSO has a

Bayesian interpretation in that the estimate of r turns out to be the same as the

MAP estimate obtained if r has a Laplacian prior density of the form,

p(r|λ) = λ

2
exp

(
−λ

2
‖r‖1

)
(2.22)

Using a small enough value for λ, a user parameter in LASSO typically leads

to a parameter vector estimate for which many coeffcients actually are equal to

zero (i.e., not only ”small”). The Sparse Bayesian Learning (SBL) method of

[38] is based on the assumption that r is composed of independent zero-mean

Gaussian entries with unknown variances. These variances and the noise variance

are treated as hyperparameters and can be eliminated from the likelihood by

maximizing it using the expectation-maximization (EM) algorithm.
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All methods (including the standard MMSE estimate) which use an ex-

plicit prior for r allow the regression problem to be underdetermined, that is

M < N and one can think of the use of priors on r as a way of regularizing the

problem.

The methods discussed above are Bayesian (or at least they have a Bayesian

interpretation) and as such they are arguably optimal (in the sense of MAP)

if the model and the a priori knowledge assumed in the algorithm match

perfectly with the process that generates the data. There are many existing

methods which primarily concern with determining the structure of r (i.e.,

finding out what elements are zero). This problem is the model selection

problem as mentioned previously. In the sparse signal reconstruction methods

the objective is then to find a (small) set of ”basis vectors” (i.e., columns

of H) such that the observed vector y can be expressed as a linear combina-

tion of these vectors. Thus the objective is to find the sparsest representation of r.

In this thesis our primary objective is to estimate r (the channel parame-

ter vector) from y (the received signal) as accurately as possible, although we

will obtain a solution to the model selection problem as well. Note that accurate

estimation of r is of interest in the channel estimation problem because the

performance of the communication system is directly related to the quality of the

channel estimate.
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CHAPTER 3

IR-UWB CHANNEL

ESTIMATION

3.1 Introduction

The estimation of the parameters that characterizes the channel is of paramount

importance to increase the performance of UWB coherent receivers such as the

RAKE receiver. A conceptual UWB communication model is depicted in Fig.

??. The received UWB waveform r not only depends on the transmitted symbols

x but also on a set of parameters related to the UWB channel α. They are

unknown to the receiver and in order to be able to retrieve the symbol sequence

x, it must estimate these parameters which can be considered unwanted since

they somehow corrupt the signal that transport the sequence x. Once estimated,

the parameters are then used as if they were true values. The estimation of the

unknown channel parameters, α, at the receiver is termed as channel estimation.
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In Section 3.2 we present the linear model for channel estimation of IR-UWB

communication system and highlight its statistical and structural information. In

Section 3.3 we discuss the channel estimation problem with respect to the linear

model.

3.2 IR-UWB Communication Model

The received UWB signal profile is given by the following,

r(t) = p(t) ∗ h(t) + ω(t) (3.1)

=
L−1∑
l=0

αlp(t− τl) + ω(t) (3.2)

where L is the total number of MPCs, p(t) is the transmitted pulse, h(t) is

the channel impulse response and ∗ denotes linear convolution while ω(t) is

the additive noise at the receiver which is assumed to be white Gaussian (AWGN).

In this thesis, we assume that the pulse shape p(t) is known at the re-

ceiver and so the task of the UWB channel estimator of Fig. ?? is to estimate a

set of unknown parameters αl’s and τl’s in a known signal corrupted by noise.

Consider the signal profile in Eq. (3.2), which we would like to express in

matrix form. We can represent r(t) using its Nyquist rate (FN). Thus, the
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samples are taken every δt =
1
FN

seconds which is much less than the pulse

duration Tp and we can write,

r(nδt) =

L−1∑
l=0

αlp(nδt − lΔδt) + ω(nδt) (3.3)

r(n) =

L−1∑
l=0

αlp(n− lΔ) + ω(n) (3.4)

where we assume that the delays τl’s can be represented as integral multiples of

δt, i.e. τl = lΔδt (Δ is the number of samples of the basic shift of the pulse as

shown in Eq. (3.12)) and where we drop δt from the argument in Eq. (3.4) for

notational convenience.

Since the MPCs arrival is a Poisson process and its rate is given by λ in

Eq. (2.7) the expected number of paths occuring in a time bin of duration δt

seconds is given by λδt. It thus follows that the probability of having k paths in

a duration of δt seconds is given by the Poisson distribution as follows:

P (k) =
(δtλ)

k exp−(δtλ)

k!
(3.5)

Therefore, the probability of having no path (i.e., k = 0) during δt is exp
−(δtλ) and

of having a single path (i.e., k = 1) is (δtλ) exp
−(δtλ). If the duration δt is small

enough then the probability of having multiple paths during δt is much smaller
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than having a single path or no path, that is,

P (1), P (2)� P (k) for k = 3, 4, . . . , L− 1 (3.6)

When δt is very small Eq. (3.6) is satisfied and exp
−(δtλ) ≈ 1, therefore,

P (1) = (δtλ) exp
−(δtλ) (3.7)

≈ δtλ (3.8)

Now the occurance of an MPC in a bin of duration δt can be approximated by

a Bernoulli trial [39], where the probability of success (i.e., a single path occurs

during δt) is pb = λδt and probability of failure (i.e., no path occurs during δt) is

1−pb. This approximation results from the well-known approximation of a Poisson

process by a Binomial distribution. This implies that if we divide a certain time

span of T seconds into N small durations of δt seconds each, then the probability

of having MPCs in k of these N bins is given by,

Pb(k) = p
k
b (1− pb)

N−k (3.9)

= (λδt)
k(1− λδt)

N−k (3.10)

In practice, the number of multipath components L is generally large but only

the Lmax strongest MPCs capture the significant portion of the transmitted

signal energy [40]. This leads to a practical RAKE (Selective-RAKE) Receiver
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implementation where estimates of only Lmax τl’s and the corresponding αl’s are

required.

Now, while we can represent r(t) using its Nyquist rate samples, we sub-

sample it at a lower rate FS = μFN where μ = M
N
and M < N . We represent this

in the matrix form as,

y = Ψα+ ω (3.11)

where

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(n−Δ) . . . p(n−NΔ)

p(n + 1−Δ) . . . p(n + 1−NΔ)

. . . . .

. . . . .

p (n+ (M − 1)−Δ) . . . p (n+ (M − 1)−NΔ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.12)

The matrix Ψ consists of, as its columns, the discretized shifted versions of the

pulse p(t) of Eq. (2.3). Note that in Eq. (3.11) y is the M × 1 received vector,

and ω is the M × 1 AWGN vector with zero-mean and M ×M covariance matrix

Cω = N0I. The vector α is the N × 1 channel parameter vector. Moreover, α is

sparse and its active elements correspond to the channel taps and so we decompose

α as

α = a�α (3.13)

where � denotes elelment by element multiplication. In this equation, α is an

N × 1 binary vector that represents the support of α (i.e., α = supp(α)), and a
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is an N × 1 vector of the amplitudes of α. Now, if we set A = diag(α), then we

can rewrite eq. (3.11) as,

y = ΨAα+ ω (3.14)

Suppose the Hamming weight of a certain α is l (i.e., l = |α|0) then aα is the l×1

vector which contains the non-zero amplitudes of α, and Ψα represents the N × l

sub-matrix of Ψ formed by collecting those columns of Ψ which are indicated by

α. Therefore, when α is known Eq. (3.14) can be written as,

y = Ψαaα + ω (3.15)

First we assume the unknown channel parameters α and aα to be deterministic

and develop estimators using classical estimation techniques. Secondly, we assume

these channel parameters to be random and apply Bayesian estimation. We also

exploit the sparsity of the received UWB signal profile and the structure of the

matrix Ψ of our model Eq. (3.11) to develop low-complexity estimators. In the

following sub-sections we highlight the statistical information about the channel

and the rich structure of Ψ.

3.2.1 Statistical Information

The statistical a priori information about the UWB channel used in this thesis

is basically form the IEEE 802.15.4a model where the MPCs arrival is modeled

as the double Poisson process. We approximate this as a single Poisson process
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with the MPC arrival rate λ as discussed previously. for the Indoor Resedential

Line-of-Sight (LOS) channel model. The MPCs amplitudes are modeled to be

Nakagami-m distributed as discussed previously. with an exponentially decaying

APDP. Under this approximation the received signal profile is a single cluster as

descussed with the decay rate Γ. The Table 3.1 shows the typical values of λ and

Γ for the Indoor Resedential LOS model. The approximation is made in order

to incorporate the statistical information from the model [14] into the design of

our Bayesian estimators. The double Poisson process is very complex to handle

and to the best of our knowledge no reserch work has been able to do so in its

entirety. The difficulty arises from the fact that in the double Poisson process, the

probability of the arrival of MPCs in a given time bin depends on which cluster

that MPC belongs to. The start of each cluster itself belongs to another Poisson

process and hence to determine the probability of MPC arrival in a certain time

bin cannnot be expressed in a closed form. The MPCs time of arrival statistics for

the double Poisson process is intractable and cannot be used and so we assume

it as a single large cluster which leads us to the Bernoulli assumption on the the

MPCs arrivals as discussed. Moreover, the fading statistics are also a function of

the MPCs’ arrival time and so the assumption of a single Poisson process makes

this statistical information to be useful. Since it is difficult to obtain closed form

Parameter Value
Λ 0.047ns−1

Γ 22.61ns

Table 3.1: Parameters for Resedential LOS Channel Model from [1]
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expressions for the density functions of the Nakagami distributed channel coeffi-

cients, we consider the following three cases for the channel amplitudes statistics

in order to develop estimators in the Bayesian framework:

1. Non-Gaussian Amplitudes

2. Non-Gaussian Amplitudes with Known 2nd Order Statistics from the APDP

3. Gaussian Amplitudes with zero mean and known 2nd Order Statistics from

the APDP

3.2.2 Structural Information

The sensing matrix Ψ in Eqs. (3.11) - (3.14) is rich in structure. It is not only

Toeplitz but is a banded diagonal matrix. If the length of the support of the basic

pulse p(n) at Nyquist rate is denoted by |p|, then for a given sub-sampling ratio,

μ, the bandwidth of the matrix Ψ is given by β = |p|μ. This implies that

ψH
i ψj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(|i− j|), |i− j| ≤ β

0, |i− j| > β

where f(.) is a function denoting the correlation between the columns and ψi is

the ith column of Ψ which is correlated only to few of its neighbouring columns,

as shown in Fig. 3.1. This is true for all the columns of Ψ because of its Toeplitz

structure. Therefore we can group consecutive columns of Ψ into a number of

custers of width ν = sβ, where s is an integer. Since these clusters are mutually
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nearly orthogonal, this technique is refered to as orhtogonal clustering (OC). We

remark here that for a received vector y only a few of these clusters will be active

due to the multipath sparsity and those active clusters are more likley to be

mutually orthogonal. This is illustrated in Fig. 4.1. We note here that clusters

thus formed are refered to as ‘othogonal clusters’ in the thesis to differentiate

them from the clusters in the received profile due to the UWB channel.
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Figure 3.1: Correlations Among the Columns of Ψ

3.3 Channel Estimation Problem

In order to estimate the UWB channel we need to estimate the channel parameter

vector α of Eq. (3.11). As described in the previous section, α is the support

of the channel and aα is the vector of channel fading coefficients. Therefore, in
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order to estimate the channel we need to jointly estimate α and aα. Thus we

develop the joint MMSE estimate of the channel. We also estimate the channel

by decomposing the channel estimation problem into two parts: (i) estimation of

the support vector α, followed by (ii) estimation of the corresponding amplitude

vector aα. The channel decomposition is explained in the next sub-section.

3.3.1 Channel Decomposition

From the formulation in Eq. (3.14) and Eq. (3.15) the estimation of the

MPCs delays, τl’s, and their amplitudes, αl’s, of Eq. (3.2) translates into

the estimation of the vectors α and aα respectively. Furthermore, based

on the model in Eq. (3.14) we can first estimate the channel support and

then for the estimated support estimate the corresponding channel amplitudes

from Eq. (3.15). In this way we have decomposed the channel estimation problem.

The estimation of the channel support vector α is a model selection prob-

lem and where we need to find the best model from the 2N possible ones. We

denote by α̂ the estimate of the channel support, and develop the estimate in the

classical estimation framework (i.e., assuming deterministic unknown parameters)

which reduces the square error is the solution to the following search problem

α̂ = argmin
α∈ℵ

‖y −ΨAα‖2 (3.16)

47



where ℵ is the set consisting all the 2N possible support vectors α. The fading

co-efficients are then estimated using the Least Squares (LS).

In the case of Bayesian framework, channel estimators are developed for

the different fading statistics of the channel. As such, we develop channel

estimators for the following three fading statistics:

� Non-Gaussian

� Non-Gaussian Amplitudes with Known Second Order Statistics

� Gaussian

3.3.2 LS Amplitudes Estimation

When the amplitudes are assumed to be unknown deterministic (classical estima-

tion) or random but non-Gaussian (Bayesian estimation) then the Least-Squares

(LS) is the best solution. For a certain support vector α we have,

y = Ψαaα + ω (3.17)

where Ψα is the matrix formed by those columns of Ψ which are indicated by

α. The amplitudes vector corresponding to the support aα can now be estimated

using as

âαLS
=
(
Ψα

HΨα

)−1
Ψα

Hy (3.18)
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3.3.3 MMSE Amplitudes Estimation

When the amplitudes are assumed to be Gaussian then the a posteriori probability

density is also Gaussian in the prescence of AWGN. Therefore, we can estimate the

amplitudes using the Minimum Mean Square Error (MMSE) estimator which is

optimal in the sense of minimizing the mean-square estimation error. The MMSE

estimate of the amplitudes corresponding to a known support vector is given by,

âαMMSE
= E(aα|y,α) (3.19)

3.3.4 Estimation Performance Metrics

The performance metrics used to evaluate the performance of the various channel

estimation methods developed in the thesis are:

� Normalized Root Mean Square Error (NRMSE) in the estiamtion of the

MPC’s arrival times

� Energy Capture (EC)

First, we discuss the estimation of the arrival times of the MPCs. The absolute

arrival time of the lth MPC is denoted by τl as in Eq. (3.2). The estimate of

the channel support vector α̂ corresponds to the estimate of the τl’s. Without

loss of generality we assume that the arrival time of the first MPC is τ0 = 0.

Therefore, the estimate of the absolute value of the lth MPC’s arrival time, for
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l = 1, 2, . . . , L− 1 is given as,

τ̂l = α̂
(l)(Δδt) (3.20)

where α̂(l) is the index of the lth non-zero element of the estimated support vector

α̂. The L × 1 vector τ is composed of τl’s as its elements. Thus the Normalized

Root Mean Square Error (NRMSE) in the estiamtion of the MPC’s arrival times

which is expressed in number of samples, is calculated from Z runs of Monte Carlo

simulations as,

τ̃NRMSE =
1

δt

√√√√ 1

Z

Z∑
z=1

‖τ − τ̂ (z)‖2 (3.21)

The amplitude of the lth MPC is denoted by αl as in Eq. (3.2). The estimate of

the L × 1 channel amplitude vector âα corresponds to the estimate of the αl’s.

Therefore, the estimate of the lth MPC’s amplitude, for l = 1, 2, . . . , L−1 is given

as,

α̂l = â
(l)
α (3.22)

where â
(l)
α is the lth element of the estimated support vector âα. Thus the Energy

Capture (EC) at the receiver based on the estimates is given as,

EC =

(
1− ‖x(t)− x̂(t)‖2

‖x(t)‖2
)
× 100% (3.23)
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where,

x(t) =
L−1∑
l=0

αlp(t− τl) (3.24)

x̂(t) =

L−1∑
l=0

α̂lp(t− τ̂l) (3.25)
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CHAPTER 4

SPARSITY BASED

ESTIMATION

4.1 Introduction

In this chapter we present the UWB channel estimation by exploiting the sparsity

of the received UWB signal profile. As we have seen in that due to the large

bandwidth, the MPCs can be finely resolved in UWB systems and the received

UWB signal profile consists of MPCs arrival in only a few of the time bins. This

is termed as mulitpath sparsity and depicted in Figure 4.1. We present Genetic

Aglorithm based search method for channel estimation in Section 4.2 and Cor-

relation based support estimation in Section 4.3. We also employ Compressive

Sensing in Section 4.4 to estimate the UWB channel. In Section 4.5, we present

the two-step estimation approaches by exploiting the multipath sparsity of the

channel.
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Figure 4.1: Noise Free Received Typical UWB Received Signal

4.2 Genetic Algorithm (GA) Based Search

Genetic Algorithms (GAs) belong to the class of guided random search techniques.

These are evolutionary computing techniques in which a randomly chosen initial

population of potential solutions (chromosomes) is evolved using evolutionary

operations and the next generation is selected based on the principles of the

surrvival of the fittest. A fitness function is used to assign the fitness values to

the individuals of the popoulation at every generation. Genetic algorithms are

specifically used to find the global optima of a given objective function that may

or may not be subject to constraints [41]. GAs take several evolution cycles to

reach to the solution and are attractive as they do not get stuck in or around a
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local optima and are thus more likely to reach the global optima. GAs should

be useful if they have a higher rate of convergence, good quality of solution and

reasonable computaional requirements.

In our channel estimation problem we employ GA to search for the Lmax = 20

MPCs that minimize the square error. The fitness function g(.) assigns the

normalized squared error as the fintness value. If α̂ denotes the estimate of α

the fitness function is

g (α̂) = 1−
(‖α̂−α‖2

‖α‖2
)

(4.1)

and the GA estimate of α is

α̂GA = argmax
α

g (α) (4.2)

Now the estimate of the channel support using the Genetic algorithm is given by

α̂GA = supp(α̂GA) (4.3)

We note here that the fitness function of Eq. (4.1) is also the fraction of α’s

energy present in α̂GA and as such is a good choice for a fitness function. We

select the population size to be more than the Lmax and use binary encod-

ing for the chromosomes of the population. The new population is generated

by applying the evolutionary operations such as selection, crossover and mutation.
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The simulations show that with a larger population size the estimates are

better but the computaional time is increased manifolds. The rate of convergence

improves slightly with the increase in the population size. We observe that the

high computational complexity and slow convergence is due to the large search

space and undirected random initial population. In the follwoing we propose

two-step estimation methods where the initial population for the GA based search

is first found by applying Compressive Sensing and Correlation, respectively.

4.3 Correlation Based Support Estimation

Now we present the estimation of the channel support by correlating the receivied

vector y with all the columns of Ψ. Based on the sparsity of the received UWB

signal profile we expect only a few of these correlations to be significant. Therefore,

we use thresholding to find the significant of these correlations to estimate of the

channel support. The true value of the threshold η is a function of the receiver

SNR.

α̂CR(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 yHψi < η

1 yHψi > η

for i = 1, 2, . . . , N and α̂CR(i) is the ith element of the vector α̂CR.

Once we obtain the estimate of the channel support, α̂CR, we can use LS

to estimate the channel fading co-efficients. The Figure 4.2 shows the normalized

RMSE (NRMSE) in estimation of the channel support using Correlation and
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comparing it with CS based estimation. It is clear that the Correlation method

for estimating the channel support is sensitive to the choice of η but it is very

simple to implement. Therefore, we describe how we use Correlation based

estimates as the initial coarse estimates in a two-step estimation approach.

4.4 Compressive Sensing (CS) Based Estima-

tion

Compressive sensing (CS) is a revolutionary and rapidly growing field in signal

processing. The core idea in compressive sensing, or also known as compressed

sensing, is to exploit the sparsity of the unknown data to reconstruct it from fewer

observations. In a few years CS has found applications in all the major areas of

signal processing where it is used for many tasks such as signal reconstruction,

signal estimation, signal de-noising etc. In the following a brief background is

presented on CS as an estimation technique since we employ CS to the UWB

channel estimation problem.

Suppose we have a vector r of size N × 1 that we need to estimate but

are able to sense only M < N observations of r. We denote these observations

by the M × 1 vector y. Thus mathematically

y = Φr (4.4)
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where Φ is the M × N sensing matrix. Now, we wish to obtain r from y that is

to solve the under-determined system of Eq. (4.4). Suppose we also know that r

can be expressed as

r = Dα (4.5)

where D is a known N ×N matrix, also commonly known as the dictionary for r

in the CS literature and α is the N ×1 vector. The theory of compressive sesning

reveals that if the matrices D and Φ are mutually incoherent (i.e., a vector cannot

be simultaneously sparse in both D and Ψ, for more details see [42]) and known,

and α is sparse (i.e., only few of its entries are non-zero), then we can reconstruct

r from y successfully with a very high probability [43]. Combining Eqs. (4.4) and

(4.5), we can write

y = ΦDα (4.6)

= Ψα (4.7)

Therefore, in order to apply CS for estimating r all we need to know is the

dictionary D, in which r can be represented by a sparse vector α and use

a suitable sensing martix Φ to obtain the observation vector y. Then CS

reconstruction methods find the sparsest α that satisfies Eq. (4.6).

It has been shown [44] that for any fixed deterministic matrix D a ran-

dom sensing matrix Φ with i.i.d. entries can be used for CS. This has lead to
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many applications of CS in signal reconstruction from randomly sub-sampled

observations. Suitable sensing matrices such as random matrices have been

shown to satisfy the Restricted Isometry Property (RIP) [45]. RIP is widely used

to determine whether a certain matrix can be used as a sensing matrix in CS.

Recently, certain class of deterministic matrices such as Toeplitz matrices, have

also been shown to be suitable choices for sensing matrices in CS [46].

The optimal estimate of α from the CS perspective (i.e., the sparsest solu-

tion) is given as

α̂CS = argmin
α
‖α‖0 s.t. y = Ψα (4.8)

where ‖.‖0 represents the l0 norm.

In our UWB channel estimation problem, the under-determined system is

described by Eq. (3.11), which we reproduce here

y = Ψα+ ω (4.9)

We need to estimate the chanel parameter vector α from the observation y. In

Eq. (4.9) the matrix Ψ is a uniformly sub-sampled Toeplitz banded matrix. We

apply CS to recover α from the uniformly sub-sampled received vector y. We

note that Eq. (4.9) is different from the model in Eq. (4.4) as it also contains a

noise term.
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There are several methods for reconstructing α from y used in the CS

literature. These reconstruction methods can be broadly classified as:

1. Convex Relaxation Based Reconstruction

2. Greedy Algorithm Based Reconstruction

4.4.1 CS Based on Convex Relaxation

The optimal estimate of Eq. (4.8) is a solution to a combinatorial problem and is

NP -hard. Therefore, convex relaxation of the problem using the l1-norm is widely

used in the sparse signal recovery literature. Thus the CS estimate of α based on

the l1 relaxation in the prescence of noise Eq. (4.9) is given as

α̂CS = argmin
α
‖α‖1 s.t. ‖y−Ψα‖22 < ε (4.10)

where ε is the amount of tolerable residual error in the estimate and depends

on the received SNR. This is known as the Basis Pursuit De-Noising (BPDN)

algorithm in the CS literature. The optimization problem of Eq. (4.10) is equiv-

alent to the famous Least Absolute Shrinkage and Selection Operator (LASSO)

in the statistical community. Interestingly, an equivalent form of Eq. (4.10) also

has a Bayesian interpretation which we will discuss. In general, the l1 relaxation

based reconstruction methods are computationally extensive and therefore alter-

nate reconstruction methods such as Greedy algorithms have also been adopted
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[47].

4.4.2 CS Based on Greedy Reconstruction

Several Greedy algorithms have been developed and applied to solve convex op-

timization poblems [43]. These algorithms have also been used for sparse signal

approximation and therefore are used for signal reconstruction in CS problems.

Greedy methods are a fast alternative to l1 based convex optimization problems.

The greedy algoritms follow a problem solving heuristic of choosing the local

optima at every stage with the hope of finding the global optima. In certain

circumstances greedy strategies have been shown to perform better or nearly as

good as the convex methods. The popular greedy methods are:

1. Matching Pursuit (MP)

Matching Pursuit finds the best matching projections of y onto the dictio-

nary D. MP iteratively generates a sorted list of indices of those atoms of

the dictionary (i.e., columns of D) onto which the projection of the residuals

in each iteration is the largest. After every iteration, the contribution of the

selected column is subtracted from the previous residual to obtain the next

residual. In every subsequent iteration the best projections of the residual

is sought. The iterations stop when the projections fall below a pre-defined

threshold value [48].

2. Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit was developed as an improvement to the MP
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[47]. It shares some properties of MP and inherits the selection procedure.

The difference is that, in OMP the residual at each iteration is calculated

such that it is always orthogonal to the subspace formed by the previously

selected columns of D [49].

3. Gradient Pursuit (GP)

Gradient Pursuit is an approximation to the OMP developed with reduced

computational requirements. It uses a gradient term to update the direction

for the pursuit of the GP in the next iteration [50].

We denote the estimate of α obtained by applying the greedy algorithms on the

received vector of Eq. (4.9) as α̂G. The corresponding estimate of the support of

α is given by

α̂G = supp(α̂G) (4.11)

and corresponds to the estimate of the MPCs arrival times. Figure 4.3 shows

the NRMSE in the estimation of the MPCs arrival times using CS with various

greedy algorithms for reconstruction. Figure 4.4 shows the comparison in the

performance of the greedy algorithms in terms of the resulting Energy Capture

where the amplitudes are estimated using LS.

4.5 Two-Step Estimation

We observed that Genetic algorithm performs better in estimating the channel

when the number of population generations is increased but requires a large

61



amount of time to converge to the estimates. On the other hand, CS and Corre-

lation based estimation methods provide the most likely locations of the channel

support with a far fewer number of computations and has less computational

complexity. Therefore, in the following we combine the CS and Correlation based

estimation techniques in a two-step estimation approach.

4.5.1 CS followed by GA

In the first step, we apply CS to obtain the likely support of the channel. From

the CS estimate of the channel we retain the Lcs > Lmax largest estimates and

the corresponding support is used as the initial population for the GA in the

second step. Figure 4.5 shows the NRMSE performance of this two-step channel

estimation approach.

4.5.2 Correlation followed by GA

In the first step, we apply Correlation technique to obtain the likely support

of the channel. From the Correlation based estimate of the channel we retain

the Lcr > Lmax largest estimates and the corresponding support is used as the

initial population for the GA in th second step. Figure 4.5 shows the NRMSE

performance of this two-step channel estimation approach.
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4.6 Results
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Figure 4.2: Performance of Correlation Based Estimation and CS

63



−5 0 5 10 15 20
120

140

160

180

200

220

240
Normalized Root Mean Square Error in Estiamtion of 20 paths

SNR (dB)

N
R

M
S

E
 (

sa
m

p
le

s)

L−1 BPDN
MP
OMP
GP

Figure 4.3: Performance Comparison in MPCs Arrival Time Estimation Error of
Different CS Methods

64



5 10 15 20 25
15

20

25

30

35

40

45

50

55
Energy Capture by MPCs at SNR = 10 dB

MPCs

E
n
e
rg

y 
C

a
p
tu

re
 (

%
)

BPDN
MP
OMP
GP

Figure 4.4: Performance Comparison in Energy Capture using Different CS Meth-
ods + LS for Amplitudes Estimation

−5 0 5 10 15 20
60

80

100

120

140

160

180

200

220

240
Normalized Root Mean Square Error in Estiamtion of 20 paths

SNR (dB)

N
R

M
S

E
 (

sa
m

p
le

s)

CS (BPDN)
CS + GA
Correlation + GA
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CHAPTER 5

CLASSICAL ESTIMATION

5.1 Introduction

In this chapter we present the channel estimation of the UWB channel in a

classical estimtion framwork where the unknown quantities to be estimated

are assumed to be deterministic. There are several estimators in the classical

estimation theory among whcih the Minimum Variance Un-biased Estimator

(MVUE) is known to be the optimal estimator in the sense that it has the

minimum variance among all the un-biased estimators. MVUE achieves the

Cramer-Rao Lower Bound (CRLB) and are thus efficient estimators. But we

are not always able to determine the MVUE and even if we can, in some cases,

it could not be implemented [36]. Therefore, if an efficient estimator does not

exist then the approach of the CRLB to find an MVUE fails. In such cases,

Rao-Blackwell-Lehmann-Scheffe (RBLS) theorem is sometimes used to determine

the MVUE, but this requires to first find the sufficient statistic which is not
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always possible. All these methods of estimation require the data model and

are thus parametric estimation methods. Moreover, these classical estimation

techniques require that the knowledge of the data is summarized in the parametric

probability density function (pdf) p(y;α) where y is the observation vector and

α the parameter vector to be estimated and pdf p(y;α) is functionally dependent

on α.

When the data model is a linear model, then the MVUE is given by the

Best Linear Un-biased Estimator (BLUE). BLUE has the minimum varianec

among all the un-biased estimators that are linear in data. The Least-Squares

Estimator (LSE) is widely used in various estimation problems. LSE is very

straight forward to implement and it minimizes the LS error criterion. In

general, the LSE does not minimize the estimation error. It is particularly useful

when the signal explicitly depends on the unknown parameter. LSE satisfies no

optimality criteria in general but is the Maximum Likelihood Estimator (MLE)

in the case when observations are made in the prescence of additive Gaussian noise.

In Section 5.2 the Maximum-Likelihood based channel estimation is de-

scribed and in Section 5.3 the two-step estimation approaches are described

where the search space for MLE is reduced in the first step. Lastly, Section 5.4

describes the novel Low-Complexity MLE technique.
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5.2 Maximum-Likelihood (ML) Estimation

Maximum Likelihood Estimator (MLE) is perhaps the most widely used esti-

mator. In order to find the MLE, we have a well-defined method. The MLE of

the parameter α is the one that will maximize the likelihood p(y;α). If MVUE

exists then the maximum likelihood procedure gaurantees to produce it. For the

case of additive Gaussian noise the MLE is asymptotically (i.e., for large data

records) the MVUE.

The linear model in our UWB channel estimation problem is

y = Ψα+ ω (5.1)

where ω ∼ N (0, N0I). Therefore, we can write the likelihood of α as

p(y|α) = 1

(2π)M/2

exp
(
− 1

2N0
(y −Ψα)H (y −Ψα)

)
det(N0I)1/2

(5.2)

=
1

(2πN2
0 )
M/2

exp

(
− 1

2N2
0

‖y −Ψα‖2
)

(5.3)

Equivalently the log-likelihood upto an irrelevant proportionality factor is given

by

ln p(y|α) = ‖y−Ψα‖2 (5.4)
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Therefore, the MLE estiamte of α denoted by α̂ML is found by maximizing Eq.

(5.2) or equivalently minimizing Eq. (5.4).

α̂ML = argmin
α
‖y −Ψα‖2 (5.5)

Based on the channel decomposition, the estimation of the channel support and

the amplitudes are de-coupled and we can re-write the model as

y = Ψαaα + ω (5.6)

Since ω is Gaussian the MLE of aα is given by as a LSE

âαML
=
(
ΨH

αΨα

)−1
ΨH

αy (5.7)

Since aα depends on the estimate of the support α, therefore, we first need to

estimate the support and then use Eq. (5.7) to estimate the amplitudes. The

estimation of the support is a non-linear optimization problem as

α̂ML = argmin
α∈ℵ

yHΠ⊥
Ψα

y (5.8)

where ℵ is the set over which the search is performed and Π⊥
Ψα

is the orthogonal

projector onto the column space of Ψα

Π⊥
Ψα

= I−Ψα

[
ΨH

αΨα

]−1
ΨH

α (5.9)
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We note here that the solution to Eq. (5.8) is computationally very complex as it

requires a search over the entire set ℵ which contains all the 2N possible support

vectors. Therefore, in the next section we attempt at overcoming this problem by

adopting a two-step estimation approach. The first step is to reduce the search

space and in the second step the MLE is found within the reduced space.

5.3 Two Step Estimation

5.3.1 Correlation followed by ML Estimation

In the first step, we apply Correlation technique to obtain the likely support of

the channel. From the Correlation based estimate of the channel we retain the

Lcr > Lmax largest estimates and the corresponding support is used to form the

reduced search space ℵcr. The MLE of the support is thus found as

α̂ML = arg min
α∈ℵcr

yHΠ⊥
Ψα

y (5.10)

We note that now the search is over a reduced space which contains 2Lcr possible

support vectors. Figure 5.1 and Figure 5.2 show the performance of this two-step

channel estimation approach.

5.3.2 CS followed by ML Estimation

In the first step, we apply CS to obtain the likely support of the channel. From

the CS estimate of the channel we retain the Lcs > Lmax largest estimates and the
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corresponding support is used to form the reduced search space ℵcs. The MLE of

the support is thus found as

α̂ML = arg min
α∈ℵcs

yHΠ⊥
Ψα

y (5.11)

We note that now the search is over a reduced space which contains 2Lcs possible

support vectors. Figure 5.1 and Figure 5.2 show the performance of this two-step

channel estimation approach.

5.3.3 GA followed by ML Estimation

In the first step, we apply GA to obtain the likely support of the channel. From

the GA estimate of the channel we retain the Lga > Lmax largest estimates and

the corresponding support is used to form the reduced search space ℵga. The MLE

of the support is thus found as

α̂ML = arg min
α∈ℵga

yHΠ⊥
Ψα

y (5.12)

We note that now the search is over a reduced space which contains 2Lga possible

support vectors. Figure 5.1 and Figure 5.2 show the performance of this two-step

channel estimation approach.
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5.4 Low-Complexity (LC) ML Estimation

The MLE of the support involves the minimization of the metric yHΠ⊥
Ψα

y in Eq.

(5.8) where,

yHΠ⊥
Ψα

y = ‖y‖2 − yHΨα

[
ΨH

αΨα

]−1
ΨH

αy (5.13)

Therefore, the log-likelihood of α is to be maximized to obtain the MLE of α,

given by

α̂ML = argmax
α
L(α) (5.14)

where,

L(α) = yHΨα

[
ΨH

αΨα

]−1
ΨH

αy (5.15)

In the following we leverage the structure of Ψ to reduce the computational com-

plexity in evaluating Eq. (5.15). It was shown that the matrix Ψ can be divided

into a number of nearly orthogonal clusters. Let there be C such orthogonal clus-

ters denoted by ΨΘr
for r = 1, 2, . . . , C. The matrix ΨΘr

is composed of the

columns belonging to the rth orthogonal cluster and is of size N × ν since the

length of each cluster is ν. Now we can express Ψα in a block matrix form as,

Ψα = [ΨΘ1 ΨΘ2 . . .ΨΘC
] (5.16)
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where each sub-matrix ΨΘr
consists of those columns of Ψ at the corresponding

locations which are indicated by α. The locations in ΨΘr
which are not indicated

by α contain zero cloumns.

Due to the orhtogonality of the clusters, the inverse term that appears in

Eq. (5.15) becomes the inverse of the block diagonal matrix,

[
Ψ
H
αΨα

]−1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ΨH
Θ1

ΨΘ1)
−1 0 . . . 0

0 (ΨH
Θ2

ΨΘ2)
−1 . . .

...

... 0
. . . 0

0
... . . . (ΨH

ΘC
ΨΘC

)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.17)

Furthermore, using the Toeplitz structure of Ψ it is also easy to show that, for

r = 1, 2, . . . , C;

(ΨH
Θr
ΨΘr

)−1 = (ΨH
Θ1
ΨΘ1)

−1 (5.18)

Therefore, we can write the log-likelihood as,

L(α) = LΨΘ1 (α) + LΨΘ2 (α) + · · ·+ LΨΘC (α) (5.19)

where LΨΘr (α) is the likelihood over the rth cluster and given by,

LΨΘr (α) = yHΨΘr
(ΨH

Θr
ΨΘr

)−1ΨH
Θr
y (5.20)

= yHΘr
ΨΘr

(ΨH
Θr
ΨΘr

)−1Ψ
H

Θr
yΘr

(5.21)
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where yΘr
is a ν × 1 vector and is the masked version of y which includes only

those elements of y which correspond to the rth cluster, ΨΘr
is the ν × ν sub-

matrix of ΨΘr
composed of its non-zero portion for the rth cluster. We note here

that due to the Toeplitz structure, we have

ΨΘr
= ΨΘ1 (5.22)

for r = 1, 2, . . . , C. Therefore, we need to perform the matrix inversion only for

the first cluster to find (ΨH
Θ1
ΨΘ1)

−1 and can use it to calculate the log-likelihoods

for all the clusters in Eq. (5.19). Thus the Low-Complexity MLE of the support

is,

α̂LCML = argmax
α∈ℵ

L(α) (5.23)

where,

L(α) = yHΘ1
ΣyΘ1 + y

H
Θ2
ΣyΘ2 + · · ·+ yHΘr

ΣyΘr
(5.24)

= ‖yΘ1‖2Σ + ‖yΘ2‖2Σ + · · ·+ ‖yΘr
‖2
Σ

(5.25)

and

Σ = ΨΘ1(Ψ
H
Θ1
ΨΘ1)

−1Ψ
H

Θ1
(5.26)
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We note that in computing the LCML estimate of the support, the termΣ needs to

be computed just once and that for the first cluster. After which we can compute

the log-likelihoods for all the remaining orthogonal clusters by simply masking y

and calculating its weighted norm, as shown in Eq. (5.25). Figure 5.1 shows the

estimation performance of LCML and Figure 5.2 shows the energy capture.

5.5 Results
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Figure 5.1: NRMSE Performance in Estimation of MPCs Arrival Time
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CHAPTER 6

BAYESIAN ESTIMATION

6.1 Introduction

In this chapter we present the estimation of the UWB channel in a Bayesian

Framework. In the Bayesian framework the unknown channel parameters, the

channel support vector α and the fading co-efficient vector aα are assumed

to be random quantities. We remark here that for Bayesian estimation of the

UWB channel we need to know the start of the received signal profile in order

to incorporate the amplitudes’ statistical information from the Average Power

Delay Profile (APDP) of the channel given in the IEEE 802.15.4a Standard [1].

Therefore, for all the estimation methods presented in this Chapter we assume

that the arrival of the first MPC is estimated (known) prior to performing the

channel estimation. The estimation of the arrival time of the first MPC is known

as Time-of-Arrival (TOA) estimation. There are several methods reported in

literature that estimate the TOA of a received UWB signal profile in various
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channel environments such as [51], [52] and [53].

We adopt two approaches to estimate the UWB channel in the Bayesian

framework:

1. Decomposed Channel Estimation

In this approach the channel is estimated for the decomposed channel , where

first the channel support is estimated and then the corresponding channel

fading co-efficients are estimated.

2. Joint Channel Estimation

In this approach the channel support and the channel fading co-efficients

are jointly estimated.

6.2 A Priori Information

In Bayesian estimation of the UWB channel, a priori statistical information of the

channel is incorporated into the estimation process. In the following we look into

the statistical prior knowledge about the UWB channel.

6.2.1 Channel Support

We first consider the channel support, denoted by α which is the unknown random

vector with a prior probability density function p(α). We expect to improve the

estimate by incorporating this a priori information. From Eq. (3.9), it follows
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that the elements of α are independent Bernoulli trials, with

Pb (αi = 1) = pb (6.1)

Pb (αi = 0) = (1− pb) (6.2)

for i = 1, 2, . . . , (N − 1) and αi is the ith element of α. Therefore, for a certain

support with ‖α‖0 number of non-zero elements, p(α) can be calculated as,

p(α) = p
‖α‖0
b (1− pb)

N−‖α‖0 (6.3)

where ‖.‖0 deontes the l0-norm (i.e., the number of non-zero entries) of the

vector. We note that p(α) depends on the l0-norm of α which corresponds to the

number of MPCs present in the received profile.

We need to determine the likelihood function of α from the model given

in Eq. (3.14) which we reproduce here,

y = ΨAα+ ω (6.4)

It is clear that the likelihood function p(y|α) depends on the statistics of A or

equivalently aα. Therefore, we consider the different statistics of the amplitude

vector aα to determine p(y|α).
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6.2.2 Channel Amplitudes

The vector of unknown channel amplitudes or fading co-efficients denoted by aα

is assumed to be random with a prior probability density function p(aα). Condi-

tioned on the support the channel amplitudes are estimated from the model given

in Eq. (3.15), which we reproduce here,

y = Ψαaα + ω (6.5)

The likelihood function p(y|α) is needed to perform the channel support estima-

tion, the correpsonding channel amplitudes estimation and also the joint channel

estimation, as will be discussed in the subsequent Sections of this Chapter. We

consider three cases for the statistics of the channel fading amplitudes and deter-

mine the likelihood function p(y|α) for each of three cases.

1. Non-Gaussian Amplitudes

We first consider the case when the fading amplitudes do not follow a Gaus-

sian distribution. This means that the elements of aα are non-Gausian and

corresponds to the channel fading statistics of the IEEE UWB channel model

[5], where the small-scale fading co-efficients are modeled as Nakagami dis-

tributed, as given in Eq. (2.13). Therefore, the vector aα in Eq. (6.5) is

now non-Gaussian and so it is difficult to obtain the expression for the joint

probability distribution of aα and hence the likelihood p(y|α) in a closed

form. For a certain support vector α, the best we can say is that the re-
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ceived vector y lies in the subspace spanned by the columns of Ψα, plus an

AWGN vector ω. Thus, the orthogonal projection of y onto the orthogonal

complement of Ψα is Gaussian. Specifically, the vector Π⊥
Ψα

y is Gaussian.

Therefore, the likelihood p(y|α) can be approximated by,

p(y|α)∝ exp

(
− 1

2N0

‖Π⊥
Ψα

y‖22
)

(6.6)

where,

Π⊥
Ψα

= I−Ψα

[
ΨH

αΨα

]−1
ΨH

α (6.7)

2. Non-Gaussian Amplitudes with Known 2nd Order Statistics

Now, we consider the case where the amplitude vector aα is non-Gaussian

but its second order statistics are known.

In the following we motivate one way of incorporating the second or-

der statistics by modifying the sensing matrix. Since the vector α is

sparse, therefore we can assume a sparsity inducing prior on α, as is

widely used in the sparse signal recovery literature. One such popular

prior is the Laplacian prior which is used in the famous Basis Pursuit

De-noising (BPDN) and the Least Absolutle Shrinkage and Selection

Operator (LASSO) algorithms for sparse signal recovery. The LASSO or
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the equivalent BPDN for the model in Eq. (3.11) is given as,

α̂ = argmin
α

1

N0

‖y−Ψα‖22 + ρ‖α‖1 (6.8)

From the Bayesian perspective α̂ in Eq. (6.8) is the MAP estimate of α

in the prescence of AWGN and with a Laplacian prior on α having i.i.d

entries distributed with zero-mean and variance 2No

ρ
. In the same spirit if

we assume a general sparsity inducing prior on α as,

p(α) � exp

(
−1
2

L−1∑
j=0

|αj|
bj

)
(6.9)

where the bj ’s are positive user parameters. The MAP estimate of α in

AWGN becomes,

α̂ = argmin
α

1

N0

‖y −Ψα‖22 +B‖α‖1 (6.10)

where B is a diagonal matrix B = diag[ 1
b0

1
b1

. . . 1
bL−1

]. By applying a change

of variable β = Dα, we obtain,

β̂ = argmin
β

1

N0
‖y −Ψβ‖22 + ‖β‖1 (6.11)

= argmin
β

1

N0

‖y −ΨBα‖22 + ‖β‖1 (6.12)

If we set B = D, where D is given by Eq. (2.12), then the MAP estimate
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of β from Eq. (6.11) becomes

β̂ = argmin
β

1

N0

‖y−ΨDα‖22 + ‖β‖1 (6.13)

where β is now given by,

β = Dα (6.14)

The above suggests that one way to incorporate the second order statistics

is to modify the sensing matrix Ψ by absorbing the effect of the variance

into the sensing matrix, that is,

H = ΨD (6.15)

Thus the matrix H absorbs the effect of the variance of the MPC’s

amplitudes into the respective columns.

From the IEEE 802.15.4a model, we have the a priori information

about the average power delay profile of the UWB channel and the second

order statistics of the amplitudes are given as shown in Eq. (2.11).

Therefore, conditioned on the support α we can write,

Daα
= E

[
aαa

H
α

]
(6.16)

where Daα
is a diagonal matrix. The elements of aα are independent but
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non-identically distributed (i.e., their variance are different). Thus the model

conditioned on the support vector α is,

y = Hαaα + ω (6.17)

Now the best we can say is that the received vector y lies in the subspace

spanned by the columns of Hα, plus an AWGN vector ω. Thus, the orthog-

onal projection of y onto the orthogonal complement of Hα is Gaussian.

Specifically, the vector Π⊥
Hα

y is Gaussian. Therefore, the likelihood p(y|α)

can be approximated by,

p(y|α)∝ exp

(
− 1

2N0
‖Π⊥

Hα

y‖22
)

(6.18)

where,

Π⊥
Hα

= I−Hα

[
HH

αHα

]−1
HH

α (6.19)

3. Gaussian Amplitudes

Now, we consider the case where the channel amplitudes are independent

and Gaussian. For UWB communication in a dense multipath environment,

such as the industrial environment where there are a large number of scat-

ters, the assumption that there are many MPCs falling in the same bin is

fairly valid [39]. Therefore, we assume the vector aα to be Gaussian with

84



independent but non-identically distributed entries. Therefore, conditioned

on the support the amplitudes are Gaussian. This results from Eq. (6.5)

and the fact that linear combination of independent Gaussian vectors is also

a Gaussian. Thus, aα is a Gaussian vector and the likelihood is given by,

p(y|α) = exp
(−1

2
yHΣ−1α y

)√
det(Σα)

(6.20)

where Σα is the co-variance matrix conditioned on the support vector α

and given by,

Σα = E[yyH |α] (6.21)

= N0I+ΨαE[aαa
H
α ]Ψ

H
α (6.22)

= N0I+ΨαDαΨ
H
α (6.23)

where Dα is as given in Eq. (6.16). Dα is a diagonal matrix of the variances

of the amplitudes corresponding to the support α.

6.3 Decomposed Channel Estimation

In this section we present the channel estimation for the decomposed channel in a

Bayesian framework where we first present the estimation of the channel support

followed by the estimation of the channel amplitudes.
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6.3.1 Support Estimation

In order to find the most probable support based on the observation y, the maxi-

mum of the a posteriori probability (MAP) of α is sought. For the MAP estimate,

we need the posteriori pdf p(α|y) which is given using the Baye’s Rule as,

p(α|y) = p(y,α)

p(y)
(6.24)

=
p(y|α)p(α)

p(y)
(6.25)

The MAP estimate of α maximizes p(α|y) and is equivalent to the maximization

of the numerator in Eq. (6.25), therefore, we need to search for the best estimate

of α over the entire set ℵ. We use the a priori probability p(α) to obtain the

MAP estimate of α as,

α̂MAP = argmax
α∈ℵ

p(y|α)p(α) (6.26)

= argmax
α∈ℵ

p(y|α) p‖α‖0b (1− pb)
N−‖α‖0 (6.27)

Equivalently the MAP estimate can be obtained by maximizing the logarithm,

α̂MAP = argmax
α∈ℵ

ln [p(y|α)] + ln

(
pb

1− pb

)‖α‖0
(6.28)

where ln [p(y|α)] is the log-likelihood function of α. Since the search space ℵ

is large we perform a two-step estimation where we first reduce the serch space

by applying Compressive Sesnsing and Correlation to obtain the reduced search
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spaces ℵcs and ℵcr, respectively. Thus the MAP estimate of the channel support

for the three cases of channel amplitudes is found by using the respective likelihood

function p(y|α) as follows:

1. Non-Gaussian Amplitudes:

α̂MAP = argmax
α∈ℵ�

− 1

2N0
‖Π⊥

Ψα

y‖22 + ln

(
pb

1− pb

)‖α‖0
(6.29)

2. Non-Gaussian Amplitudes with Known 2nd Order Statistics:

α̂MAP = argmax
α∈ℵ�

− 1

2N0
‖Π⊥

Hα

y‖22 + ln

(
pb

1− pb

)‖α‖0
(6.30)

3. Gaussian Amplitudes:

α̂MAP = argmax
α∈ℵ�

−yHΣ−1α y − ln [det(Σα)] + ln

(
pb

1− pb

)‖α‖0
(6.31)

where in Eq. (6.29) - Eq. (6.31) the search space ℵ	 is ℵcs when the reduction

in the search space in the first step is done using Compressive Sensing and

the support estimate is called as CSMAP (Compressive Sensing based MAP)

estimate. Similarly, ℵ	 is ℵcr when the reduction in the search space in the first

step is done using Correlation and the support estimate is called as CRMAP

(Correlation based MAP) estimate. Figure 6.1 shows the performance of CRMAP

and CSMAP in estimating the channel support for the three amplitudes cases.
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In general the number of MPCs, i.e., ‖α‖0, is not known a priori at the

receiver and so Eq. (6.28) is maximized over ‖α‖0 = 0, 1, . . . , Lmax. When the

number of MPCs is known, or, we want to estimate a fixed number of MPCs, then

p(α) is uniform and the MAP estimate of the support reduces to the Maximum

Likelihood (ML) estimate of Eq. (5.8).

6.3.2 Amplitudes Estimation

Once the channel support has been estimated the corresponding amplitudes of

the channel are estimated for each of the three cases of the amplitudes.

1. Non-Gaussian Amplitudes:

When the amplitudes are non-Gaussian and we have the MAP estimate

of the channel support α̂MAP , we have an over-determined system. Since

the amplitudes are non-Gaussian the best estimate of the amplitudes is the

Least-Squares Estimation (LSE).

âαLS
= (ΨH

αΨα)
−1ΨH

αy (6.32)

where Ψα represents the matrix comprised of the columns of Ψ which are

indicated by α = α̂MAP . Figure 6.5 shows the performance in terms of

energy capture.

2. Non-Gaussian Amplitudes with Known 2nd Order Statistics

When the amplitudes are non-Gaussian with second order statistics, and we
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have the MAP estimate of the channel support α̂MAP , we have the over-

determined system where the second order statistics are effectively absorbed

in the model as described previously. Since the amplitudes are non-Gaussian

the best estimate of the amplitudes is the Least-Squares Estimation (LSE)

âαLS
= (HH

αHα)
−1HH

αy (6.33)

where Hα represents the matrix comprised of the columns of H which are

indicated by α = α̂MAP . Figure 6.5 shows the performance in terms of

energy capture.

3. Gaussian Amplitudes

When the amplitudes are Gaussian and we have the MAP estimate of the

channel support α̂MAP , we have the over-determined system. Since the

amplitudes are Gaussian the best estimate of the amplitudes is the Minimum

Mean Square Error (MMSE) estimate.

âαMMSE
= DαΨ

H
α Σ

−1
α aα (6.34)

where Ψα represents the matrix comprised of the columns of Ψ which are

indicated by α and Σα is the co-variance matrix given in Eq. (??) for

α = α̂MAP . Figure 6.5 shows the performance in terms of energy capture.
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6.4 Joint Channel Estimation

Now we discuss, in a Bayesian framework, the joint estimation of the support

and the corresponding amplitudes of the channel which from now onwards we call

simply channel estimation. The channel estimation refers to the estimation of the

vector α. We determine the estimate of the channel for the model given in Eq.

(3.11) which we reproduce here,

y = Ψα+ ω (6.35)

The Minimum Mean Square Error (MMSE) estimate of the channel is given as

follows,

α̂MMSE =
∑
α∈ℵ

p(α|y)E(aα|y) (6.36)

In calculating the above MMSE estimate of the channel we need to evaluate

E(aα|y) corresponding to every support vector α and weight it by that support’s

posterior probability p(α|y) and eventually sum these to obtain the MMSE es-

timate of the channel. Since, the space ℵ is large and contains 2N vectors we

proceed to find the approximate MMSE estimate of the channel by reducing the

space to the most likely candidates obtained from Compressive Sensing and Cor-

relation based support estimation. Thus the approximate MMSE of the channel
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is given by,

α̂AMMSE =
∑
α∈ℵ�

p(α|y)E(aα|y) (6.37)

where the search space ℵ	 is ℵcs when the reduction in the search space in the

first step is done using Compressive Sensing and the channel estimate is called

as CSAMMSE (Compressive Sensing based Approximate MMSE) estimate.

Similarly, ℵ	 is ℵcr when the reduction in the search space in the first step is done

using Correlation and the channel estimate is called as CRAMMSE (Correlation

based Approximate MMSE) estimate.

In calculating the AMMSE estimate of the channel from Eq. (6.37) we

proceed by finding the a posteriori probability of the support vectors p(α|y)

alongwith the corresponding estimate of the amplitudes for each of the support

vectors in ℵ	. Each estimate of the amplitude is weighted by the corresponding a

posteriori probability of its support and normalized over all the support vectors

in ℵ	. In the following we present the AMMSE estimation for each of the three

cases of the channel amplitudes:

1. Non-Gaussian Amplitudes

When the amplitudes are non-Gaussian E(aα|y) is approximated with the

Least-Squares Estimation (LSE).

E(aα|y) = (ΨH
αΨα)

−1ΨH
αy (6.38)
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The posterior density function p(α|y) is given according to the Baye’s Rule

and is approximated by normalizing over the set ℵ	.

p(α|y) = p(y|α)p(α)∑
α∈ℵ� p(y|α)p(α)

(6.39)

=
1

Z
exp

(
− 1

2N0
‖Π⊥

Ψα

y‖22
)
p
‖α‖0
b (1− pb)

N−‖α‖0 (6.40)

where Z =
∑

α∈ℵ� p(y|α)p(α) is the normalizing factor. Thus the AMMSE

channel estimate is given as,

α̂AMMSE =
1

Z

∑
α∈ℵ�

exp

(
− 1

2N0
‖Π⊥

Ψα

y‖22
)
p
‖α‖0
b (1− pb)

N−‖α‖0 (ΨH
αΨα)

−1ΨH
αy

(6.41)

2. Non-Gaussian Amplitudes with Known 2nd Order Statistics

When the amplitudes are non-Gaussian with known second order statistics,

the second order statistics are effectively absorbed in the model as described

earlier. Therefore, E(aα|y) is approximated with the Least-Squares Estima-

tion (LSE).

E(aα|y) = (HH
αHα)

−1HH
αy (6.42)

The posterior density function p(α|y) is given according to the Baye’s Rule
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and is approximated by normalizing over the set ℵ	.

p(α|y) = p(y|α)p(α)∑
α∈ℵ� p(y|α)p(α)

(6.43)

=
1

Z
exp

(
− 1

2N0

‖Π⊥
Hα

y‖22
)
p
‖α‖0
b (1− pb)

N−‖α‖0 (6.44)

where Z =
∑

α∈ℵ� p(y|α)p(α) is the normalizing factor. Thus the AMMSE

channel estimate is given as,

α̂AMMSE =
1

Z

∑
α∈ℵ�

exp

(
− 1

2N0
‖Π⊥

Hα

y‖22
)
p
‖α‖0
b (1− pb)

N−‖α‖0 (HH
αHα)

−1HH
αy

(6.45)

3. Gaussian Amplitudes

When the amplitudes are Gaussian we obtain the exact E(aα|y) as,

E(aα|y) = DαΨ
H
α Σ

−1
α aα (6.46)

The posterior density function p(α|y) is given according to the Baye’s Rule

and is approximated by normalizing over the set ℵ	

p(α|y) = p(y|α)p(α)∑
α∈ℵ� p(y|α)p(α)

(6.47)

=
1

Z

exp
(−1

2
yHΣ−1α y

)√
det(Σα)

p
‖α‖0
b (1− pb)

N−‖α‖0 (6.48)

where Z =
∑

α∈ℵ� p(y|α)p(α) is the normalizing factor. Thus the AMMSE
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channel estimate is given as,

α̂AMMSE =
1

Z

∑
α∈ℵ�

exp
(−1

2
yHΣ−1α y

)√
det(Σα)

p
‖α‖0
b (1− pb)

N−‖α‖0DαΨ
H
α Σ

−1
α aα

(6.49)

6.5 Low-Complexity MMSE Channel Estima-

tion

6.5.1 Orthogonal Clustering

We leverage the structure of Ψ to develop the Low-Complexity MMSE

(LCMMSE) estimator for the channel. As discussed earlier, Ψ can be divided

into nearly orthogonal clusters of fixed width ν. Let there be C such clusters

denoted by ΨΘr
for r = 1, 2, . . . , C.

Due to the sparsity of the the received vector y, not all the C orthogonal

clusters are active, i.e., y is not composed of columns belonging to all the C

othogonal clusters. Therefore, y is first correlated with all the columns of Ψ

and the orthogonal clusters containing the significantly correlated columns are

identified and included into the set S. We select χ as the significance level of
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correlation between y and columns of Ψ, then for r = 1, 2, . . . , C

Θr ∈ S

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yHψi ≥ χ

ψi ∈ ΨΘr

(6.50)

where ψi denotes the ith column of Ψ for i = 1, 2, . . . , N − 1.

6.5.2 Non-Gaussian Amplitudes

When the vector of the channel amplitudes aα is non-Gaussian then, conditioned

on the support vector α,

y = Ψαaα + ω (6.51)

The orthogonal projection of y onto the orthogonal complement ofΨα is Gaussian.

Therefore, the likelihood p(y|α) can be approximated by,

p(y|α)∝ exp

(
− 1

2N0
‖Π⊥

Ψα

y‖22
)

(6.52)

where,

Π⊥
Ψα

= I−Ψα

[
ΨH

αΨα

]−1
ΨH

α (6.53)
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Since there are C orthogonal clusters, then we can express Ψα in a block matrix

form as,

Ψα = [ΨΘ1 ΨΘ2 . . .ΨΘC
] (6.54)

where ΨΘi
is the matrix formed by collecting the columns of Ψ belonging to the

ith orthogonal cluster. Now the inverse term that appears in Eq. (6.53) becomes

the inverse of the block diagonal matrix,

[
Ψ
H
αΨα

]−1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ΨH
Θ1

ΨΘ1)
−1 0 . . . 0

0 (ΨH
Θ2

ΨΘ2)
−1 . . .

...

... 0
. . . 0

0
... . . . (ΨH

ΘC
ΨΘC

)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.55)

Furthermore, it is also easy to show that, for r = 1, . . . , C;

(ΨH
Θr

ΨΘr)
−1 = (ΨH

Θ1
ΨΘ1)

−1 (6.56)

Since the clusters are orhtogonal, the projection matrix of Eq. (6.7) can be ex-

pressed in terms of the sum of individual projection matrix of each cluster as

follows,

Π⊥
Ψα

= −CI + I+Π⊥
ΨΘ1

+ · · ·+Π⊥
ΨΘC

(6.57)

Therefore, we can write the likelihood as,

p(y|α) ∝ exp

(
1

2N0

(
C‖y‖2 − ‖y‖2 − ‖Π⊥

ΨΘ1
y‖2 − · · · − ‖Π⊥

ΨΘC
y‖2

))
(6.58)
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Thus upto an irrelevant proportionality constant the likelihood is given by,

p(y|α) = exp

[
1

2N0

(
(C − 1)‖y‖2 − ‖Π⊥

ΨΘ1
y‖2 − · · · − ‖Π⊥

ΨΘC
y‖2

)]
(6.59)

= exp

[
(C − 1)

2N0
‖y‖2 − 1

2N0

C∑
r=1

‖Π⊥
ΨΘr
y‖2

]
(6.60)

In calculating the above likelihood we need to compute the l2-norm of the projec-

tion of y onto each orthogonal cluster. These norms can be expressed as,

‖Π⊥
ΨΘr
y‖2 = yHΨΘr

[
ΨH

Θr
ΨΘr

]−1
ΨH

Θr
y (6.61)

= yHΘr
ΨΘr

[
ΨH

Θ1
ΨΘ1

]−1
Ψ
H

Θr
yΘr

(6.62)

=
(
Ψ
H

Θr
yΘr

)H
W

(
Ψ
H

Θr
yΘr

)
(6.63)

= ‖ΨH

Θr
y
Θr
‖2
W

(6.64)

where we have used Eq. (6.56) to obtain Eq. (6.62) andW = [ΨH
Θ1
ΨΘ1]

−1. The

vector yΘr
is ν × 1 and is the masked version of y which includes only those

elements of y which correspond to the rth cluster and ΨΘr
is the ν×ν sub-matrix

of ΨΘr
composed of the non-zero portion of the rth cluster. We note here that

from the Toeplitz structure,

ΨΘr
= ΨΘ1 (6.65)

for r = 1, 2, . . . , C. Now Eq. (6.60) is expressed as follows,

p(y|α) = exp

[
(C − 1)

2N0

‖y‖2 − 1

2N0

C∑
r=1

‖ΨH

Θ1
y
Θr
‖2
W

]
(6.66)
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Therefore, we need to perform the matrix inversion only for the first cluster to

find W and obtain the projection matrix Ψ
H

Θ1
. When a vector y is received,

we need to calculate its norm, mask it to get yΘr
for r = 1, 2, . . . , C and find

the weighted norm of the projections Ψ
H

Θ1
y
Θr

for all the masked vectors yΘr
to

calculate the likelihood of Eq. (6.66).

To further reduce the computations, the likelihood p(y|α) is computed

over only those orthogonal clusters which are included in the set S of Eq. (6.50)

and used in Eq. (6.41) to obtain the Low-Complexity AMMSE (LC-AMMSE)

channel estimate for the case of non-Gaussian amplitudes.

Figure 6.3 shows the NRMSE in the estimation of the support using AMMSE

estimation and Figure 6.4 shows the correponding performance in terms of the

energy capture.

6.5.3 Non-Gaussian Amplitudes with Known 2nd Order

Statistics

When the vector of the channel amplitudes aα is non-Gaussian but its Second-

Order Statistics is known, this information incorporated into the modified sensing

matrix H. Then conditioned on the support vector α,

y = Hαaα + ω (6.67)
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The orthogonal projection of y onto the orthogonal complement ofHα is Gaussian.

Therefore, the likelihood p(y|α) can be approximated by,

p(y|α)∝ exp

(
− 1

2N0
‖Π⊥

Hα

y‖22
)

(6.68)

where,

Π⊥
Hα

= I−Hα

[
HH

αHα

]−1
HH

α (6.69)

Similar to the previous section, if there are C orthogonal clusters, we can

express Hα in a block matrix form as,

Hα = [HΘ1 HΘ2 . . .HΘC
] (6.70)

where HΘi
is the matrix formed by collecting the columns of H belonging to the

ith orthogonal cluster. We observe that,

HH
Θr
HΘr

= γr(H
H
Θ1
HΘ1) (6.71)

where,

γr =
E(a2r)

E(a21)
(6.72)

= exp
(
−r

ν

Γ

)
(6.73)
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Γ is the decay constant, E(a2r) is the variance of the first element of the rth

orthogonal cluster for r = 1, . . . , C; ν is as defined earlier and Eq. (6.73) follows

from the exponential nature of the APDP. The value of the factors γr depend on

the location of the rth orthogonal cluster.

The inverse term that appears in Eq. (6.69) becomes the inverse of the

block diagonal matrix,

[Hα
H
Hα]

−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(HH
Θ1

HΘ1)
−1 0 . . . 0

0 (HH
Θ2

HΘ2)
−1 . . .

...

... 0
. . . 0

0
... . . . (HH

ΘC
HΘC

)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.74)

It is also easy to show that, for r = 1, . . . , C;

(HH
Θr

HΘr)
−1 =

1

γr
(HH

Θ1
HΘ1)

−1 (6.75)

Since the clusters are orhtogonal, the projection matrix of Eq. (6.69) can be

expressed in terms of the sum of individual projection matrix of each cluster as,

Π⊥
Hα

= −CI + I+Π⊥
HΘ1

+ · · ·+Π⊥
HΘC

(6.76)

Therefore, we can write the likelihood as,

p(y|α) ∝ exp

(
1

2N0

(
C‖y‖2 − ‖y‖2 − ‖Π⊥

HΘ1
y‖2 − · · · − ‖Π⊥

HΘC
y‖2

))
(6.77)
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Thus upto an irrelevant proportionality constant the likelihood is given by,

p(y|α) = exp

[
1

2N0

(
(C − 1)‖y‖2 − ‖Π⊥

HΘ1
y‖2 − · · · − ‖Π⊥

HΘC
y‖2

)]
(6.78)

= exp

[
(C − 1)

2N0
‖y‖2 − 1

2N0

C∑
r=1

‖Π⊥
HΘr
y‖2

]
(6.79)

We set the ν × 1 vector yΘr
as the masked version of y which includes only those

elements of y which correspond to the rth cluster and HΘr
is the ν×ν sub-matrix

of HΘr
composed of the non-zero portion of the rth cluster. We note here that

from the Toeplitz structure,

HΘr
=
√
γr HΘ1 (6.80)

for r = 1, 2, . . . , C. In calculating the likelihood of Eq. (6.79) we need to compute

the l2-norm of the projections of y onto each orthogonal cluster. These norms can

be expressed as,

‖Π⊥
HΘr
y‖2 = yHHΘr

[
HH

Θr
HΘr

]−1
HH

Θr
y (6.81)

=
1

γr
yHΘr
HΘr

[
HH

Θ1
HΘ1

]−1
H
H

Θr
yΘr

(6.82)

= yHΘr
HΘ1

[
HH

Θ1
HΘ1

]−1
H
H

Θ1
yΘr

(6.83)

=
(
H
H

Θ1
yΘ1

)H
W′

(
H
H

Θ1
yΘr

)
(6.84)

= ‖HH

Θ1
y
Θr
‖2
W′

(6.85)

where we have used Eq. (6.75) to obtain Eq. (6.82) andW′ = [HH
Θ1
HΘ1]

−1. Now
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Eq. (6.79) is expressed as follows,

p(y|α) = exp

[
(C − 1)

2N0

‖y‖2 − 1

2N0

C∑
r=1

‖HH

Θ1
y
Θr
‖2
W

]
(6.86)

Therefore, we need to perform the matrix inversion only for the first cluster to

find W′ and obtain the projection matrix H
H

Θ1
. When a vector y is received,

we need to calculate its norm, mask it to get yΘr
for r = 1, 2, . . . , C and find

the weighted norm of the projections H
H

Θ1
y
Θr

for all the masked vectors yΘr
to

calculate the likelihood of Eq. (6.86).

To further reduce the computations, the likelihood p(y|α) is computed

over only those orthogonal clusters which are included in the set S of Eq.

(6.50) and used in Eq. (6.45) and we obtain the Low-Complexity AMMSE

(LC-AMMSE) channel estimate for the case of non-Gaussian amplitudes with

known second order statistics.

Figure 6.3 shows the NRMSE in the estimation of the support using AMMSE

estimation and Figure 6.4 shows the correponding performance in terms of the

energy capture.
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6.5.4 Gaussian Amplitudes

When the vector of the channel amplitudes aα is Gaussian then, conditioned on

the support vector α,

y = Ψαaα + ω (6.87)

The likelihood is given by,

p(y|α) = exp
(−1

2
yHΣ−1α y

)√
det(Σα)

(6.88)

where Σα = N0I+ΨαDαΨ
H
α is the co-variance matrix.

Similar to previous section, if there are C orthogonal clusters, then the

overall likelihood becomes the product of the individual likelihoods of each

orthogonal cluster, as follows,

p(y|α) = exp
(−1

2
yHΣ−1Θ1

y
)

det(ΣΘ1)

exp
(−1

2
yHΣ−1Θ2

y
)

det(ΣΘ2)
. . .

exp
(−1

2
yHΣ−1ΘC

y
)

det(ΣΘC
)

(6.89)

=
exp

[
−1

2

∑C
r=1

(
yHΣ−1Θr

y
)]

∏C
r=1 det(ΣΘr

)
(6.90)
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where ΣΘr
is the ν×ν co-variance matrix when only the rth cluster is active. ΣΘr

for r = 1, 2, . . . , C is given by,

ΣΘr
= E[yyH |Θr] (6.91)

= N0I+ΨΘr
DΘr

ΨH
Θr

(6.92)

where DΘr
is the ν × ν sub-matrix of D given in Eq. (2.12) corresponding to the

columns of ΨΘr
. Thus the likelihood for the rth cluster is given as,

p(y|Θr) =
exp

(−1
2
yHΣ−1Θr

y
)√

det(ΣΘr
)

(6.93)

We note that for the rth cluster the calculation of the inverse of ΣΘr
is the com-

putationally intensive part. We proceed with finding the inverse by splitting the

matrix DΘr
as a product of its square root diagonal matrices and applying the

matrix inversion lemma, as follows,

Σ−1Θr
=
(
N0I+ΨΘr

DΘr
ΨH

Θr

)−1
(6.94)

=
(
N0I+ΨΘr

(D
1/2
Θr
)(D

1/2
Θr
)ΨH

Θr

)−1
(6.95)

=
(
N0I+ (ΨΘr

D
1/2
Θr
)(ΨΘr

D
1/2
Θr
)H
)−1

(6.96)
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We set ΨΘr
D

1/2
Θr

= ΩΘr
and use the matrix inversion lemma to obatin,

Σ−1Θr
=
(
N0I+ΩΘr

ΩH
Θr

)−1
(6.97)

=
1

N0

(
I+

1

N0
ΩΘr

ΩH
Θr

)−1
(6.98)

=
1

N0

(
I− 1

N0

ΩΘr

(
N0I+Ω

H
Θr
ΩΘr

)−1
ΩH

Θr

)
(6.99)

Now we only consider the inverse part, where we decompose the symmetric matrix

ΩH
Θr
ΩΘr

using the eigenvlaue decomposition,

(
N0I+Ω

H
Θr
ΩΘr

)−1
=
(
N0I+QΛΘr

QH
)−1

(6.100)

=
(
N0QIQ

H +QΛΘr
QH

)−1
(6.101)

= Q (N0I+ΛΘr
)−1QH (6.102)

where ΛΘr
is the diagonal matrix of the eigenvalues and Q contains the corre-

sponding eigenvectors. For the first cluster, we can write,

Σ−1Θ1
=

1

N0

(
I− 1

N0

ΩΘ1Q (N0I+ΛΘ1)
−1QHΩH

Θ1

)
(6.103)

=
1

N0
I− 1

N2
0

(ΩΘ1Q) (N0I+ΛΘ1)
−1 (QHΩH

Θ1
) (6.104)

The computation for the matrix inversion is reduced as we can see from Eq.

(6.104) that the inverse operation is simply the inverse of a diagonal matrix. We

note that, the eigenvectors for all the C orthogonal clusters are the same and

hence the matrix Q remains the same for all the clusters. If we denote by ΩΘr
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the ν × ν non-zero sub-matrix of ΩΘr
, then due to the Toeplitz structure of Ψ,

we can write,

ΩΘr
=
√
γr ΩΘ1 (6.105)

Thus, the eigenvalue matrix for the rth cluster ΛΘr
can be easily calculated from

the eigenvalue decomposition of the first cluster as,

ΛΘr
=
√
γr ΛΘ1 (6.106)

Therefore, we only need to perform the Eigenvalue decomposition for the

first cluster to obtain Q and ΛΘ1 and based on the location we compute the

eigenvalues for all the remaining orthogonal clusters (i.e. ΛΘr
for r = 1, . . . , C).

Now all the matrix inversions in Eq. (6.89) become simple inversions of diagonal

matrices.

For the rth cluster using Eq. (6.99) and the eigenvalue decomposition, we

can write,

yHΣ−1Θr
y =

1

N0
‖y‖2 − 1

N2
0

(yHΩΘr
Q) (N0I+ΛΘr

)−1 (QHΩH
Θr
y) (6.107)
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Using and the fact that D
−1/2
Θr

si symmetric and D
−1/2
Θr

=
√
γr D

−1/2
Θ1

, the second

term in the above equation can be expressed as,

1

N2
0

(yHΩΘr
Q) (N0I+ΛΘr

)−1 (QHΩH
Θr
y) (6.108)

=
1

N2
0

(yHΨΘr
D
−1/2
Θr

Q) (N0I+
√
γr ΛΘr

)−1 (QHD
−1/2
Θr

ΨH
Θr
y) (6.109)

=
γr
N2

0

(yHΘr
D
−1/2
Θ1

Q) (N0I+
√
γr ΛΘr

)−1 (QHD
−1/2
Θ1

yHΘr
) (6.110)

=
γr
N2

0

(QHD
−1/2
Θ1

yHΘr
)H (N0I+ γr ΛΘ1)

−1 (QHD
−1/2
Θ1

yHΘr
) (6.111)

=
γr
N2

0

‖(QHD
−1/2
Θ1

yHΘr
)‖2

W̃
(6.112)

where we set W̃ = (N0I+ γr ΛΘ1)
−1 and the ν × 1 vector yΘr

as the masked

version of y which includes only those elements of y which correspond to the rth

cluster, yΘr
= ΨH

Θr
y.

Using the determinant lemma and the fact that (ΨH
Θr
ΨΘr

) = (ΨH
1 Ψ1) due

to the Toeplitz structure of Ψ, we can write,

det(ΣΘr
) = det

(
N0I+ΩΘr

ΩH
Θr

)
(6.113)

= NN−ν
0 det

(
N0I+Ω

H
Θr
ΩΘr

)
(6.114)

= NN−ν
0 det

(
N0I+

[
ΨΘr

D
−1/2
Θr

]H [
ΨΘr

D
−1/2
Θr

])
(6.115)

= NN−ν
0 det

(
N0I+ γrD

−1/2
Θ1

(ΨH
Θr
ΨΘr

)D
−1/2
Θ1

)
(6.116)

= NN−ν
0 det

(
N0I+ γrD

−1/2
Θ1

(ΨH
Θ1
ΨΘ1)D

−1/2
Θ1

)
(6.117)
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Thus the likelihood for the rth cluster is computed as,

p(y|Θr) = −
exp

(
1
N0
‖y‖2 + γr

N2
0
‖(QHD

−1/2
Θ1

yHΘr
)‖2

W̃

)
N

N−ν
2

0

√
det

(
N0I+ γrD

−1/2
Θ1

(ΨH
Θ1
ΨΘ1)D

−1/2
Θ1

) (6.118)

The overall likelihood is now given as,

p(y|α) =
exp

[
−1

2

∑C
r=1

(
1
N0
‖y‖2 + γr

N2
0
‖(QHD

−1/2
Θ1

yHΘr
)‖2

W̃

)]
N

C(N−ν)
2

0

∏C
r=1

√
det

(
N0I+ γrD

−1/2
Θ1

(ΨH
Θ1
ΨΘ1)D

−1/2
Θ1

) (6.119)

Now we present the calculation of the log-likelihood function of Eq. (6.93) for a

single orthogonal cluster in an order recursive way for the prescence of 1, 2, . . . , kc

active columns where kc was given earlier We begin with the case of a single active

column in a cluster and denote the corresponding covariance matrix as Σ1 where

we drop the subscript indicating the cluster for clarity. Similarly for two paths

within a custer, the covariance matrix is expressed as Σ2. Now we can write,

Σi+1 = Σi +ψjE[a
2
j ]ψ

H
j (6.120)

where ψj is the column of Ψ added when moving from order i to i+1. Similarly,

we can write the determinant as;

det(Σi+1) = det(Σi +ψjE[a
2
j ]ψ

H
j ) (6.121)

= det(Σi +ψjσ
2
jψ

H
j ) (6.122)

= det(Σi) det(1 + σ2
jψ

H
j (Σi)

−1ψj) (6.123)
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where E[a2j ] = σ2
j ∝ exp(−j ν

Γ
) and we have used the matrix determinant lemma.

Now we can write,

det(Σi+1)

det(Σi)
= 1 + σ2

aj
ψH
j (Σi)

−1ψj (6.124)

= ci+1 (6.125)

Therefore, the inverse of Eq. (6.120) is now expressed as,

(Σi+1)
−1 = (Σi +ψjσ

2
jψ

H
j )
−1 (6.126)

= (Σi)
−1 − (Σi)

−1ψj

[
1

σ2
j

+ψH
j (Σi)

−1ψj

]−1
ψH
j (Σi)

−1 (6.127)

= (Σi)
−1 − σ2

j (Σi)
−1ψj

[
1 + σ2

jψ
H
j (Σi)

−1ψj

]−1
ψH
j (Σi)

−1 (6.128)

= (Σi)
−1 − σ2

j

ci+1
(Σi)

−1ψjψ
H
j (Σi)

−1 (6.129)

Thus the likelihood function of Eq. (6.118) is computed in an order recursive way

for each cluster with the reduced complexity in evaluating the terms as shown

above.

To further reduce the computations, the likelihood p(y|α) is computed

over only those orthogonal clusters which are included in the set S of Eq. (6.50)

and used in Eq. (6.49) to obtain the Low-Complexity AMMSE (LC-AMMSE)

channel estimate for the case of Gaussian amplitudes where the co-variance

matrices and determinants for the orthogonal clusters are computed in a recursive
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way as shown above.

Figure 6.3 shows the NRMSE in the estimation of the support using AMMSE

estimation and Figure 6.4 shows the correponding performance in terms of the

energy capture.

6.6 Results
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CHAPTER 7

CONCLUSION

7.1 Conclusion

The Bayesian estimation provided the best estimates of the UWB channel param-

eters. Among the Bayesian estimates the AMMSE channel estimate for the case

of non-Gaussian amplitudes with known 2nd order statistics performed the best.

Among the Classical estiamtion methods GA followed by ML provided the best

estimates of the channel but it requires a very high computation time primarily

because of the GA step. The LC-MAP was reasonably good but had a remarkably

reduced computational complexity.

7.2 Future Work

In the future work, we would like to include the effect of UWB channel’s frequency

selective fading in the model and develop low-complexity channel estimator. An-

other future work is to address the order recursive step for the case of Gaussian
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amplitudes where the non-identical variances inhibit the usefulness of the metrics

from one orthogonal cluster to the next.
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