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ABSTRACT (ARABIC) 

 نصير الدين محمودمحمد  : الاسم

 UWB في نظمتقدير وقت وصول وتحديد قناة  : العنوان

 الهندسة الكهربا'ة : التخصص

 ما يو : تاريخ

 

 

مبنية على ) ع.ف.ن(يكشف هذا البحث عن تقنية مطورلتقديروقت وصول الإشارات في أنظمة  النطاق فائق العرض 

على  ، و غير المباشر بنائاءا)مباشرة(كما أنه يصنف القناة إلى خظ النظر المباشر ). أ. ك. ت(ترشيح كالمن أنسينتيد 
 . تحليل المعطيات

ويوُجد التقدير الدقيق لوقت وصول الإشارات والتعريف الصحيح للقناة العديد من التطبيقات في أنظمة الاتصال بتقنية 
 .وفي تحديد الأماكن) ع.ف.ن(

ولقد تم دراسة تأثير مستوى نسبة التشويش إلى نسبة الإشارة وتأثير عوامل التضاؤل على أداء تأخر وقت الوصول و 
 . تتبع قوة الإشارة على قناة متعددة المسارات

 . وقيم الخطأ في تقدير وقت الوصول لأول مسار، ووجد أن لديه أداء جاوسي بخلاف مستوى الإشارة و بيئة التضاؤل

وقيوموا بنائا على عوامل كارتوزيز و . حص استجابة القناة النبضي للبيانات المقاسة عمليا  وللبيانات المحاكاةوتم ف
نسبة القمة إلى تأخر الطليعة و متوسط الفائض المتأخر و متوسط الجذر التربيعي للتعريض المتأخر، وذلك لتصنيف 

 . التشويش وطريقة الفصل و تقليل الوضع على التصنيفوأيضا درس تأثير قمع . الإشارة كمباشرة وغير مباشرة

و نُفذت مقارنة . ولقد تم الحصول على نتائج  بناءا على استقصاء، فاقترح أسلوب لاكتساب الوقت وتعريف القناة
 .للأداء مع أساليب سابقة
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Chapter1  
 
 
INTRODUCTION 
 

1.1 Introduction and Motivation 

Accurate Time of Arrival (TOA) estimation based on the received signal is the key aspect 

for precise ranging and synchronization of radar and communication systems. TOA 

estimation is a challenging issue due to noise and channel impairments. In dense 

multipath channels, the first path is often not the strongest, making the estimation of the 

TOA a difficult task [Yu04]. 

At the same time Non Line of Sight (NLOS) channels are one of the major obstacles for 

accurate ranging and localization. Hence NLOS identification and mitigation carries 

significant importance in wireless positioning systems. 

The estimation of TOA, the identification and mitigation of NLOS errors directly 

improve the accuracy of the application in which they are applied such as high resolution 

positioning systems and synchronization.  

Assuming a coarse timing estimate is already available, the focus of this research is to get 

a fine estimate of the time of arrival of the received signal utilizing the relatively new 

Ultra Wideband (UWB) Technology. 
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Any signal that has an absolute bandwidth of at least 500 MHz or a fractional bandwidth, 

i.e. ratio of difference in 3dB frequencies to the center frequency, of larger than 20% is 

characterized as UWB signal [Ben06]. Since these signals have very large bandwidths, 

compared to those of conventional narrowband/wideband signals, they have narrow time-

domain pulse which means that they offer the possibility for very high positioning 

accuracy. 

UWB systems are excellent candidates for high resolution positioning and short distance 

high data rate wireless applications. They have a number of features such as (i) low 

complexity and cost; (ii) a noise-like signal spectrum; (iii) resistance to severe multipath 

and jamming; (iv) a very good time-domain resolution allowing for location and tracking 

applications, which make it attractive for consumer communications systems.  

For radiolocation applications, the most widely used positioning approach is based on 

TOA or Time Difference of Arrival (TDOA) data. This is because the timing information 

is usually extracted for synchronization purposes, and hence doesn’t require additional 

hardware compared to Angle of Arrival (AOA) based techniques, which require more 

complex hardware processing. The time-based techniques are also found to be more 

robust in the severely distorted and multipath-impaired wireless propagation channels.  

In the case of UWB signals, the additional advantage of fine timing resolution enables the 

receivers to resolve more closely spaced multipath components (MPCs) and improve the 

accuracy of the time-based positioning. Therefore TOA (or TDOA) estimation-based 

positioning is preferred in UWB-based positioning systems as opposed to AOA or 

Received Signal Strength (RSS)-based approaches. 
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In the remaining part of this chapter the proposed research tasks are presented followed 

by the literature survey. 

1.2 Thesis Contribution 

The objective of this research is to develop an improved time of arrival estimation for 

UWB systems. The objective is achieved by examining the Channel Impulse Response 

(CIR) and evaluating some parameters like the Kurtosis and the Peak to Lead delay and 

use them to refine the time of arrival estimation. Another proposed approach is based on 

estimating the CIR using Kalman filtering. Identifying the channel as being LOS or 

NLOS is directly related to the time estimation problem and hence, the performance of 

the above parameters is examined in classifying the channels as LOS or NLOS. 

Given the non linear dependency of the channel parameters (path delays and amplitudes) 

on the received signals in multipath scenarios, the Unscented Kalman Filtering (UKF) 

approach is indeed one of the promising methods that will be investigated for the purpose 

of MPC parameter estimation required for efficient UWB-based positioning and NLOS 

mitigation. 

In order to extract more information about the channel a deconvolution technique is 

applied since it is most needed for the characterization of wideband channels due to the 

limited bandwidths of available test signals as compared to the bandwidths of channels 

themselves. Moreover, with deconvolution the estimated channel impulse response is 

independent of the excitation signal, which allows us to study the effect of different pulse 

shapes. 
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Subsetting of the channel impulse response is done to evaluate the effect of sub sampling 

the channel profiles of the IEEE 802.15.4a channel model. 

Based on the investigation carried and the results obtained an attempt to suggest a hybrid 

(improved) technique for time acquisition and channel identification is proposed and a 

comparison of the performance with existing techniques will be carried out. 

1.3 Organization of the Thesis 

This thesis is organized as follows. A background of related research and literature 

review is provided in the rest of this chapter.  

Chapter 2 introduces Kalman Filtering, the Extended Kalman Filtering and their 

disadvantages. The advantage of applying the UKF over other filtering techniques is 

highlighted. An explanation of the used unscented transformation is presented along with 

the implemented UKF algorithm. 

In Chapter 3, details about the parametric approach for LOS/NLOS classification and 

identification are presented. This chapter deals with the CIR and introduces the various 

channel statistics that were exploited in this research for channel classification. 

Results obtained are presented in Chapter 4. Analysis based on the observation and 

discussions are covered in this section. 

Chapter 5 concludes the work and presents suggestions for future work in this research 

direction. 

1.4 Literature Survey 

Due to its potential for a large number of applications there has been great interest in 

UWB technology in the recent years. The literature review done to assist this research 
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work can be classified into four areas. A large body of literature exists on the 

characterization of indoor propagation channels and many indoor propagation 

measurements were performed [Win00], [Win98], [Cas02], [Cho05a], [Cho05b] 

[Muq06]. UWB has good capability for short-range communications in dense multipath 

environments because of its fine delay resolution properties. Accurate position location is 

one of the most attractive capabilities of UWB technology [Dar04]. 

Most positioning techniques are based on the time of arrival estimation of the first path 

[Yu04] but in dense multipath channels generally the first path is not the strongest 

making the estimation of the TOA challenging. 

Papers related to parametric and threshold-based TOA estimators were also reviewed. 

A conventional threshold-based estimator and other algorithms implementing an ML 

estimator, based on a peak detection process using experimental data for TOA estimation 

were discussed in [Fal06]. Through analysis, it was evident that a good channel 

parameter estimator does not always provide noticeable gains over the conventional 

threshold-based estimator. A tradeoff exists between ranging accuracy, algorithm 

complexity, and sensitivity of the parameters’ optimization to propagation conditions. If 

the threshold (in the threshold-based estimator) or the number of paths (in the peak-

detection-based estimator) was not chosen properly, the presence of noise and multipath 

may lead to a biased TOA estimation even in a high SNR environment. 

Threshold-based TOA estimators in dense multipath UWB channels, were discussed in 

[Dar08], [Dar06a], [Dar06b] wherein a comparison between Matched Filter (MF) and 

Energy Detector (ED) TOA estimators was made based on performance  which concludes 
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that MF-based estimators were attractive when high ranging accuracy was desired; 

whereas ED-based estimators were suitable to reduce the implementation complexity and 

cost. Additionally, a reasonable suboptimal, but practical, choice of the threshold which 

uses the relationship between the probability of early detection and Threshold to Noise 

Ratio (TNR) was proposed and does not require a priori statistical channel knowledge. 

This approach was found to have a good performance in terms of MSE. 

Performance investigation of various practical TOA estimators for UWB ranging systems 

in the presence of narrowband and wideband interference and a practical TOA estimation 

scheme to mitigate both narrowband and wideband interference was presented in 

[Dar07].  

[Xu08] proposed a dedicated ranging preamble used for coarse timing estimate and 

multipath removal at the receiver. The preamble is designed to have a good 

autocorrelation property so that the leading edge of the received signal can be easily 

identified even in the presence of noise. A threshold-based search back algorithm based 

on matched filter was also introduced. 

TOA estimation using a UWB dual pulse was discussed in [Zha08]. Autocorrelation and 

threshold crossing at the receiver is used for signal detection. Impact of different 

thresholds and training sequences was also studied and a comparison to the existing 

energy detection-based method was carried out. 

In [Guv05a] a normalized threshold selection technique that exploits the Kurtosis of the 

received signal samples was proposed for time of arrival estimation of UWB signals. The 

advantages of using this technique are its low sampling rates requirements and its simple 
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implementation. Kurtosis was used as it captures both the statistics of individual channel 

realizations and the SNR of the received signal, and can be computed from the received 

signal samples. Error gets lower with increasing Kurtosis making it a suitable parameter 

for threshold selection. A performance comparison between threshold crossing and 

maximum energy selection-based TOA estimation algorithms [Guv05b] shows that using 

the Kurtosis metric, estimation error can be significantly decreased compared to fixed 

threshold. 

In [Muc09] the same parameter, Kurtosis, was used for identifying the room typology in 

indoor UWB environments. For the same SNR apart from distinguishing between LOS 

and NLOS conditions this technique was also capable of ordering the quality of the 

received signal in two different LOS or NLOS rooms (LOS, Quasi-LOS, high-NLOS, 

low-NLOS, and extreme-low-NLOS). 

Other TOA estimation techniques such as the energy detection, peak detection etc. were 

also studied and their performance comparison with the threshold-based detectors were 

made.  

In [Rab06a] a ML TOA estimation strategy-based on an energy detection approach 

utilizing a relatively long integration window was presented which offers improved 

estimation accuracy whilst overcoming the practical hardware limitation associated with 

the need for very short integration times in the receiver. A ML estimator with partial 

channel state knowledge and a Generalized-ML (GML) estimator based on relatively 

long integration time have been proposed and later demonstrated that the GML estimator 

was equivalent to a sliding window-based solution [Rab06b]. 
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TOA estimates for IR-UWB systems with different transceiver types were analyzed in 

[Guv06a]. The performances of TOA estimation techniques based on stored-reference, 

transmitted reference, and energy detection for IR-UWB systems at sub Nyquist sampling 

rates were analyzed. A new estimator was proposed that jointly exploits the noise 

statistics and power delay profile of the channel, and a Bayesian estimator was analyzed 

which (ideally) gives a lower bound. 

[She10b] proposed a low complexity energy detection based non-coherent TOA 

estimation scheme. This scheme composed of two processing stages: initial signal 

acquisition (ISA) and fine timing estimation (FTE). To coarsely capture the arrival of the 

IR-UWB signals, a linear quadrature optimization (LQO)-based weighting scheme was 

proposed. A double-threshold test (DTT) for locating the leading edge of the IR-UWB 

signal being the second stage. 

The issue of synchronization, due to the time sensitive nature of UWB pulse, TOA and 

position estimation for low complexity, low data rate UWB devices was dealt with in 

[Che05] wherein an evaluation of a non-coherent UWB system with positioning 

capability was performed. 

In [Yu09] a two step TOA estimate algorithm was proposed. The first step is statistically 

averaging the received signals to mitigate impact of AWGN as long as possible. Using 

incoherent power detection algorithm, obtain rude TOA estimation which is made 

incoherent power detection once more in the second step so as to further optimize in time. 
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[Kol10] describes a method for reduction of TDOA measurement errors in UWB edge 

detection receivers. It presents necessary receiver modifications and an algorithm for 

TDOA value correction. 

In [Sha10] a joint estimator of TOA and average power delay profile (APDP) was 

presented. First a parametric approach was assumed for the APDP, thereby assuming 

absence of knowledge about the APDP a priori, from which the TOA estimate was 

derived. The parameters for the APDP were evaluated using the least squares method. At 

high SNRs this technique was found to outperform the conventional techniques. 

 [She10a] proposed two novel methods, constant false alarm rate method and maximum 

probability of detection method, for TOA estimation in dense multipath and NLOS 

environments. Also comparisons were made with other well known schemes present in 

literature. 

TOA estimation in the presence of pulse overlap was mentioned in [Van10]. This was 

achieved by a low complexity algorithm which estimates not only the first arriving path 

but also the rest of the channel path to have an accurate TOA estimate. The algorithm 

tracks the strongest few required paths by looking for the paths that are closest in 

Euclidean distance to the received signal.  

 [Ian82] examines the estimate of the difference in time of arrival of a common random 

for both small and large estimation errors. Experimental verifications of the approximate 

theoretical results were presented. The variance of the time delay estimate for both a 

gated mode and an ungated mode was examined and this observed variance was 

compared with the theoretical variance based on a small error analysis for both modes. 
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The Cramer Rao Lower bounds for the time delay estimation of UWB signals was 

presented in [Zha04] for single pulse systems and time hopping systems in AWGN and 

multipath channels. These synchronization errors of different monocycles have very close 

influence on bit error rate. The Ziv-Zakai lower bounds for Impulse Radio (IR)-UWB, for 

TOA-based positioning and TDOA-based positioning error, based on geometry of indoor 

environments were derived in [Zha10]. 

Literature related to the Kalman Filtering framework was surveyed. These consisted of 

papers dealing with Kalman Filtering, Extended Kalman Filtering and the Unscented 

Kalman Filtering. 

For the purpose of jointly estimating the multipath channel tap delays and gains, the use 

of the Kalman filter (KF) framework is a very promising approach given its ability to 

efficiently tackle nonlinear problems (the problem at hand is indeed highly non-linear) 

and produce optimum results. This general optimum filtering led to several methods for 

channel parameter estimation, as discussed in [Kim02].  Detectors based on the 

approximate linearized Extended KF (EKF) were developed in [Lak02]. Although the 

EKF is one of the most widely used approximate solutions for nonlinear estimation and 

filtering, it has some limitations since it uses linearization around the current state 

estimate using a first order truncation of a multidimensional Taylor series expansion. 

These approximations often introduce large errors which may lead to suboptimal 

performance and sometimes divergence of the filter [Wan01].  

When the system models are highly non-linear, it is observed that the effects of the higher 

order terms in linearized approximations can become significant. A derivative-free 
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nonlinear filtering approach was developed in and termed as the Unscented Kalman filter 

(UKF) [Jul04]. The UKF, unlike EKF, does not explicitly approximate the nonlinear 

process and observation models. Rather it utilizes the true nonlinear models to obtain 

recursive minimum mean-square error (MMSE) estimators. The state distribution is 

defined using a minimal set of sample points known as ‘sigma points’ wherein the true 

mean and covariance of the Gaussian Random Variable is captured, and when it is 

propagated through the true nonlinear system the posterior mean and covariance are 

accurately captured up to the 2nd order for any nonlinearity [Ali09].
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Chapter2  
 
 
MULTIPATH CHANNEL DELAY PROFILE 
ESTIMATION BY THE UNSCENTED 
KALMAN FILTER  
This chapter introduces the Kalman filtering-based approach for channel estimation. At 

first a general introduction to Kalman Filters and its derivates, the Extended Kalman 

Filter is provided followed by their disadvantages and the reason for adopting the 

Unscented Kalman filter. Next the UKF is explained along with the unscented 

transformation and the algorithm implemented in this research work. Results and 

discussions for this approach are presented in the later part of the section. 

2.1 The Kalman Filter and the Extended Kalman Filter 

The use of the Kalman filter (KF) framework is a very promising approach when we 

want to estimate the multipath channel coefficients and time delays because of its ability 

to efficiently tackle nonlinear problems for obtaining optimum results. KF provides a 

recursive solution to the linear optimal filtering problem. Both stationary as well as non 

stationary environments are applicable. Each updated estimate of the state is computed 

from the previous estimate and the new input data, so only the previous estimate requires 

storage. Apart from eliminating the need for storing the entire past observed data, KF is 
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computationally more efficient than computing the estimate directly, at each step of the 

filtering process, from the entire past observed data. The basic Kalman filter is limited to 

a linear assumption. More complex systems, however, can be nonlinear.  

An improved form of the KF applicable to the nonlinear problems is the Extended KF 

(EKF). It uses linearization of the system and observation equations about the current 

state estimate based on a first-order truncation of a multidimensional Taylor series 

expansion. It assumes that the apriori distribution of the variable is Gaussian, and uses the 

Kalman filter framework for obtaining the estimates for the state and covariance of these 

estimates. The current state estimate is chosen as the best estimate, i.e.: the 

approximation of the conditional mean. 

Even though the EKF is one of the most widely used approximate solutions for nonlinear 

estimation and filtering, its estimation using a first-order truncation of the 

multidimensional Taylor series expansion results in some limitations. This is because 

these approximations are valid only if all the higher order derivatives of the nonlinear 

function are effectively zero. In other words, it requires the zeroth and first order terms to 

dominate the rest of the terms. As a result, this has large implications on the accuracy and 

consistency of the resulting EKF algorithm. These approximations often introduce large 

errors in the EKF calculated posterior mean and covariance of the transformed Gaussian 

random variable, which may lead to suboptimal performance and sometimes the 

divergence of the filter. 

The solution to these issues, the UKF, is presented in the next section. 
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2.2 The Unscented Kalman Filter 

The Unscented KF (UKF) is a derivative free non linear approach that is applicable to 

system models that are highly nonlinear where the effects of the higher order terms in 

linearized approximations can become significant. The UKF utilizes the true nonlinear 

models to obtain recursive minimum mean-square error (MMSE) estimators. The state 

distribution is approximated as Gaussian, and is represented using a minimal set of 

carefully chosen sample points. These sample points completely capture the true mean 

and covariance of the Gaussian random variable, and, when propagated through the true 

nonlinear system, captures the posterior mean and covariance accurately to second order 

(Taylor series expansion) for any nonlinearity [Caf00], [Jul04], [Hay01]. 

We now consider the application of the UKF to our multipath channel estimation 

problem.  We have the following nonlinear system model for an M multipath received 

signal of the form 

   ( 2.1) 

where ,   are channel coefficients and time delays of the ith path sampled at time 

instant ‘l’,  is the mth transmitted symbol,  is the symbol interval,  is the 

spreading waveform and  is AWGN. The state-space model representation is used 

where the unknown channel parameters (path delays & gains) to be estimated are given 

by a 2M vector 

      ( 2.2) 
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where c = [c1, c2, c3… cM]T, τ = [τ1, τ2, τ3… τM]T. Our interest lies in evaluating this vector 

because these estimates can be further used for channel classification. These channel 

coefficients and time delays are assumed to obey a Gauss-Markov dynamic channel 

model hence we can write: 

    ( 2.3) 

    ( 2.4) 

where Fc & Fτ are M x M state transition matrices and  & are M x 1 mutually 

independent Gaussian random variables. 

Hence, the State Model can be written as:  

    ( 2.5) 

where F=  is a 2M x 2M state transition matrix and  =[ ] is a 2M x 1 

process noise vector. Therefore, the scalar measurement model, which is a nonlinear 

function of , is given as 

    ( 2.6) 

 is the nonlinear transformation.[Ali09] 

The UKF algorithm implemented in this work is explained next. 
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2.3 The UKF Algorithm 

In order to estimate the state ‘x’ of an ‘n’ dimensional Gaussian distribution, having 

covariance P, the state distribution is defined using a minimal set of sample points known 

as ‘sigma points’ wherein the true mean and covariance of the Gaussian random variable 

are captured, and when it is propagated through the true nonlinear system the posterior 

mean and covariance are accurately captured up to the 2nd order for any nonlinearity 

[Ali09]. The set of sigma points is given by 

  i=0     ( 2.7) 

   ( 2.8) 

  ( 2.9) 

where  is the mean of ‘x’,  is a scaling parameter, α controls the 

spread of the sigma points around ‘x’, k is a secondary scaling parameter, and Q is the 

covariance of the process noise. 

Sigma points are translated using the unscented transformations wherein the sigma points 

of x are evaluated from its mean and covariance and are transformed nonlinearly to a new 

set of sigma points of y, the nonlinear mapping of x. These sigma points of y are then 

used to evaluate the posterior mean and posterior covariance of y.  

The state prediction is evaluated using 

    ( 2.10) 

where F is the state transition matrix. 
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Next the predicted state vector and predicted state covariance matrix are computed as: 

    ( 2.11) 

  ( 2.12) 

where  =  

=     are the weights 

Now the predicted observation vector and the predicted covariance are computed: 

    ( 2.13) 

     ( 2.14) 

=  ( 2.15) 

h(.) being the nonlinear function; and the innovation covariance is given as 

   ( 2.16) 

where (σn) 2 is the process noise covariance. 

Then the cross covariance matrix of x and y is calculated as 

 ( 2.17) 
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The Kalman gain is calculated using 

   ( 2.18) 

Now the updated mean estimate is 

    ( 2.19) 

where   is the innovation given as :  

    ( 2.20) 

and the updated covariance is given by 

  ( 2.21) 

Once the parameter estimates and the error covariance matrices are updated the process is 

repeated. [Ali09] 

The algorithm is tabulated step by step in Table  2.1. 

The UKF algorithm was successfully used in [Ali09] for multipath channel estimation 

with closely-spaced channels taps of CDMA signals for the purpose of mobile 

positioning, and we are proposing to extend this framework to UWB systems. This will 

assist us in developing a LOS/NLOS classification based on the estimates, apart from 

classification based on the true values. 
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STEP I: Sigma Points Calculation 

    i=0      

    

   

=  

=      

STEP II: Prediction  

1. Prediction State 

     

     

   

2. Observation Prediction 

     

    

=   

STEP III: Measurement Update 

1. Computing the innovation covariance and cross covariance 

    

  

2. Calculating the Kalman gain 

    

3. Updating state estimation 

     

     

4. Updating the covariance 

 

Table  2.1: The UKF algorithm [Ali09]. 
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In the next section the estimation results obtained will be presented along with their 

interpretations. The behavior of certain parameters will be justified and other key points 

will be discussed. 

2.4 Results and Discussions 

The input to the UKF algorithm is a multipath profile with arbitrary amplitudes and time 

delays. The multipath channel was simulated for four paths with path spacing of half a 

chip. One such sample profile of four paths, with exponentially decaying average path 

power, is presented in Figure  2.1. 

 

Figure  2.1: Sample multipath channel profile with exponentially decaying amplitudes. 
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The algorithm was implemented for 4 and 8 paths. Also the error in TOA estimation is 

calculated. Only the first arriving path was used in TOA error estimation. The delays 

have been assumed to be constant during one measurement. Time delay estimates and 

average amplitude estimates are plotted and from them the error in tracking is evaluated 

and presented in a histogram form.  

A spreading sequence of length 32 with 16 symbols was transmitted. Each symbol 

contained 16 chips and there were 16 samples per chip. The type of fading simulated was 

the Nakagami fading with varying Nakagami fading parameters to study the effect of 

change in fading environment. The Signal to Noise Ratio (SNR) was also varied to study 

the effect of noise on the system performance. Two values of SNR are being reported 

here. The simulations are run multiple times to get a finer estimate of both the time delay 

and the average signal amplitude. An initial error in the time delay of up to half a chip, 

and an initial amplitude error of 30% are set. Both errors are assumed to be alternating in 

nature. An over sampled UWB waveform is selected with a pulse width of Tc, Tc being 

the chip duration.  

It is necessary to maintain the initial error in timing within half the path spacing between 

two paths because if the initial error exceeds this value the algorithm is prone to 

divergence. However, when the initial error is less than the path spacing the UKF 

algorithm converges and the error is within few samples of a chip. This shows that the 

UKF is very sensitive to the initialization. Hence when the initial value is not close to the 

true delay value the steady state error is of the order of a chip or more. 
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The data bits, dk,m, were not included in the estimation process, but were assumed 

unknown apriori. For the state space model we have taken state transition matrix to be 

F=0.999In×n and the process noise covariance matrix as Q=0.001In×n. The scaling 

parameter for the UKF, κ=0, and α that controls the spread of the sigma points is set to 

0.01. The other parameter β which incorporates the prior knowledge of the distribution of 

‘x’ is maintained at 2; to capture higher order (fourth) terms in the Taylor series 

expansion [Ali09].  

2.4.1 Time delay and Amplitude tracking  

Simulations were run for various values of the Nakagami shape parameter, ‘µ’, and two 

values, µ=0.6 and 1, are being reported here. When the Nakagami shape parameter is set 

to 1 the channel behaves like a Rayleigh Fading channel. The SNR is varied between 5dB 

and 10dB. Four paths are considered with an irregular spacing between each other. Figure 

 2.2 shows a plot of the time delay estimates for the four paths. A SNR of 10 dB was 

maintained with Nakagami factor ‘µ’ of 0.6. It is observed that the estimates track the 

true value with a very good accuracy. The estimates converge after around 12 symbols 

and remain close to the true value after that. It was also observed that as the path power 

reduces the number of symbols required for convergence increase marginally. 
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Figure  2.2: Time delay estimates for the 4 paths, SNR=10dB and µ=0.6 
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The average signal amplitude for the 4 paths is also estimated for the same Nakagami 

shaping factor and SNR value. This is presented in Figure  2.3. Close estimates of 

amplitude were obtained for these set of parameters. 

 

Figure  2.3: Average signal amplitude estimates for the 4 paths, SNR=10dB and µ=0.6 

Figure  2.4 is a plot of the time delay estimates for the four paths. A SNR of 5 dB was 

maintained here with Nakagami factor ‘µ’ of 0.6. It is observed that with a decrease in 

SNR more symbols are required for convergence. 
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Figure  2.4: Time delay estimates for the 4 paths, SNR=5dB and µ=0.6. 

The signal amplitude tracking estimates for the 4 paths for the same SNR and Nakagami 

factor are presented in Figure  2.5. Similar to the case for SNR of 10dB a close amplitude 

estimate was obtained. 
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Figure  2.5: Average signal amplitude estimates for the 4 paths, SNR=5dB and µ=0.6 

Figure  2.6 shows the time delay estimates for the 4 paths with a SNR of 10dB for a µ of 

1.0. The estimates track quickly to the true value. 
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Figure  2.6: Time delay estimates for the 4 paths, SNR=10dB and µ=1. 

The average signal amplitude for the 4 paths is also estimated for the same Nakagami 

shaping factor and SNR value. This is shown in Figure  2.7. The amplitudes are quickly 

tracked to the true values.  
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Figure  2.7: Average signal amplitude estimates for the 4 paths, SNR=10dB and µ=1.0. 

Figure  2.8 is a plot of the time delay estimates for the four paths. SNR of 5dB was 

maintained here with Nakagami factor ‘µ’ of 1.0. The delays track the true values quickly 

with some degradation in performance compared to the case with same µ but SNR of 

10dB. This degradation was observed by plotting the normalized histograms of the error 

in estimating the true time delay for both SNR values. 
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Figure  2.8: Time delay estimates for the 4 paths, SNR=5dB and µ=1. 

The signal amplitude tracking estimates for the 4 paths for the same SNR and Nakagami 

factor are presented in Figure  2.9. The amplitudes take more samples to converge 

compared to when a higher SNR of 10dB was used. 
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Figure  2.9: Average signal amplitude estimates for the 4 paths, SNR=5dB and µ=1.0. 

Simulations were carried out similarly with number of paths increased to 8. It was 

observed that the number of symbols required, for the estimate to converge to the true 

value, are more than that compared to the 4 paths scenario. These estimates are used for 

developing a classification between LOS/NLOS scenarios. 

2.4.2 Error Statistics in TOA Estimation 

The estimation of the TOA of the first path is of most importance in mobile positioning 

applications. In order to do so we track the estimate with its true value. The error in 

tracking is calculated and plotted as a histogram. From these histograms we can evaluate 
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the variance in error which in turn helps in position estimation. In order to do so the error 

is evaluated for different fading environments and SNRs. The spacing between the paths 

is also altered to get generalized results. The error in estimation is evaluated for two 

different SNRs and two different µ values. SNR values of 10dB and 5dB were used while 

µ was varied between 0.6 and 1.0. The simulations were run multiple times to get 

consistent and averaged results. The normalized histograms of the error in TOA estimates 

are shown in Figure  2.10. The Gaussian distributions for the respective standard 

deviations, in multiples of Tc /16, are also plotted over these estimates for reference. 

Lower signal to noise ratios result in higher values of standard deviation, while changing 

the Nakagami shape parameter does not influence the standard deviation by a huge 

amount. 
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Figure  2.10: Normalized Histograms of error in TOA estimates for the first path: 

(i) µ=0.6, SNR=10dB (ii) µ=1, SNR=10dB, (iii) µ=0.6, SNR=5dB (iv) µ=1, SNR=5dB 

This chapter has focused on the application of the UKF in UWB environment for TOA 

estimation. Also error in estimating the first path was studied specifically. 

Experimental results of the tracking algorithm are found to corroborate the actual values 

for µ=1 and SNR =10dB. The algorithm is found also to have good performance when 

different µ values are set and this performance is directly related to the signal levels 

maintained. Finally the error statistics in TOA estimation were also touched upon and 

were found to have a Gaussian behavior.  
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Chapter3  
 

 

PARAMETRIC APPROACH FOR 
CHANNEL IDENTIFICATION 
 

A channel is completely characterized by its Channel Impulse Response (CIR). The 

interest in CIR measurements to develop statistical models dates back to several decades. 

A typical channel impulse response consists of a main response, the first arrival, followed 

by one or more secondary responses.  

The statistical distributions of amplitudes and arrival times of these responses are 

sometimes used to characterize the channel. When the channel impulse response is 

known, a receiver can exploit the information to deliver optimum performance.  

3.1 The Chanel Impulse Response and its Parameters 

The CIR completely characterizes the channel. There are many partial channel 

characteristics such as the Kurtosis, the Peak to Lead delay, Mean Excess delay and RMS 

delay spread etc. as seen in Figure  3.1. These parameters not only provide intuitive 

measures for certain channel properties, but can also provide guidelines for the design 
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and evaluation of time of arrival estimation algorithms and channel identification. These 

parameters are studied and evaluated for different channel responses. 

The Kurtosis of a certain data is the ratio of the fourth order moment of the data to the 

square of the second order moment (i.e., the variance) of the data. Given a channel 

realization h(t), its Kurtosis can be calculated as: 

    ( 3.1) 

where  is the mean of h(t). 

Kurtosis gives a measure of whether the data are peaked or flat relative to a normal 

distribution; i.e., data sets with high Kurtosis tend to have a distinct peak near the mean, 

decline rather rapidly, and have heavy tails, while data sets with low Kurtosis tend to 

have a flat top near the mean rather than a sharp peak [Guv07]. Since the Kurtosis 

characterizes how peaky a sample data is, it may also be used as a tool to characterize 

how strong the LOS path of a certain channel is. This implies that for a CIR with high 

Kurtosis values, it is more likely that the received signal is LOS. Hence signals with low 

Kurtosis can be identified as NLOS signals and their effect can be mitigated thereby 

improving the timing and position accuracy. It is effective for channel classification to a 

great extent in most UWB environments. 
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Figure  3.1: Few channel characteristics that can be used for channel identification 

While the Kurtosis provides information about the amplitude statistics of the received 

MPCs, it does not provide any information regarding the delay properties of the received 

MPCs [Guv07]. This information can be achieved from the Peak to Lead delay. 

The Peak to Lead delay (τpld) specifies the time interval between the first and the strongest 

MPCs. If the first signal path is the strongest, ‘τpld=0’, it is desirable TOA scenario 

whereas in channels that are likely to have a weaker first arrival if we select the delay 

corresponding to the strongest MPC as the TOA estimate then large ranging errors could 

appear. Selection of the noise threshold plays a major role in determining τpld. A very 

high value could suppress a weak LOS signal whereas a low value could result in noise 

terms being included as weak LOS signals, in both cases leading to error in position 

location. Thereby selecting an optimum noise threshold is very important. A search-back 
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algorithm can be implemented to determine the delay of the first signal component after 

determining the delay of the strongest MPC in order to overcome the large ranging errors 

[Guv06b]. The probability density function of τpld might be used to develop accurate 

search-back schemes. For instance, the length of the maximum search-back window can 

be determined. 

Two other important statistics that characterize the delay information of the multipath 

channel are the Mean Excess delay ‘τmed’ and the RMS delay spread ‘τrms’. The Mean 

Excess delay and the RMS delay spread are measures of the spread of the impulse 

response and provide similar useful insights in identifying a channel. 

The Mean Excess delay for a channel h(t) is given by the equation: 

     ( 3.2) 

and the RMS delay spread for it is calculated using: 

    ( 3.3) 

In narrowband systems the received signal can be approximated to the channel impulse 

response but this is not the case in wideband communication systems. Thus a 

deconvolution technique must be applied to the received signal in order to extract the 

impulse response of the channel. Also after deconvolution the estimated channel impulse 

response is independent of the excitation signal, which allows us to study the effect of 

different pulse shapes. 
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After introducing this technical background the next section discusses the methodology 

that was followed for conducting our research in UWB channel identification. 

3.2 Methodology 

In order to evaluate the mentioned proposal of parametric approach for LOS/NLOS 

classification, the performance will be observed via both simulation and experimental 

data. 

To carry out the simulations, it is necessary to simulate a UWB environment and this is 

done using the IEEE 802.15.4a channel model. This model provides simulated impulse 

response for different LOS and NLOS scenarios [Mol05]. 

For the experimental data bank, a total of 396 channel profiles are available for channel 

characterization from measurements taken earlier [Muq03]. From these measurements 

various parameters that help in channel identification and TOA estimation will be 

evaluated. 

3.2.1 Simulation Details: The IEEE 802.15.4a Channel Model   

In order to implement the IEEE 802.15.4a channel model it is necessary to fully 

understand its functionality. The IEEE 802.15.4a [Mol05], based on Saleh-Valenzuela 

model, provides models for UWB channels operating at frequencies in the range of 2 to 

10 GHz that covers indoor residential, indoor office, industrial, outdoor, and open 

outdoor environments (usually with a distinction between LOS and NLOS properties). A 

Nakagami distribution is used rather than Rayleigh distribution for the multipath gain 

magnitude. The model is given by 
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    ( 3.4) 

where ,   are complex channel coefficients and time delays of the ith path 

sampled at time instant ‘l’,  is the mth transmitted symbol,  is the symbol interval, 

 is the spreading waveform. 

The model accounts for both attenuation and delay dispersion. The former subsumes both 

shadowing and average pathloss, while the latter describes the power delay profile (PDP) 

and the small-scale fading statistics; from this, other parameters such as RMS delay 

spread, number of multipath components carrying  of the energy etc are derived. 

The model takes into account pathloss that is not only distance dependent but also 

frequency dependent wherein it considers these two parameters to be independent of each 

other for simplicity. The frequency dependency of the antenna characteristics has to be 

dealt with separately though, since different proposals may have different antenna types 

depending on the frequency of operation and application. Also shadowing or large-scale 

fading which is the variation of the local mean around the pathloss is considered in 

calculating the pathloss. 

The PDP, which is the magnitude-squared of the CIR [Sey05], gives the intensity of a 

signal received through a multipath channel as a function of time delay, and is computed 

as: 

    ( 3.5) 

where,  is the tap weight of the kth component of the lth cluster,   is the integrated 

energy of the lth cluster,  is the intra-cluster decay time constant, and ray arrival times 
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are modeled as a mixture of two Poisson processes with ray arrival rates  and the 

mixture probability .  

This can be observed from Figure  3.2 which is a plot of the impulse response against 

time, where τ1, τ2, τ3, τ4, and τ5 correspond to the times of occurrence of peaks of the 

primary and secondary responses, respectively. 

 

Figure  3.2: A typical Power Delay Profile 

The phase is considered to be uniformly distributed and the number of clusters is 

considered to be Poisson distributed wherein the distributions of the cluster arrival rates 

are assumed to be Poisson distributed. The ray arrival times are modeled with mixtures of 

two Poisson processes due to the discrepancy in fitting for the different environments. 

The PDP is exponential within each cluster and the cluster decay rates are found to 

depend linearly on the arrival time of the cluster also the mean (over the cluster 

shadowing) mean (over the small-scale fading) energy (normalized), of the lth cluster 
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follows in general an exponential decay. For the NLOS case of some environments, 

office and industrial, the shape of the PDP can be different, namely on a log-linear scale. 

The other parameters that are computed are the RMS delay spread, given as [Mol05]: 

 Sr=       ( 3.6) 

where  is the PDP, which has been used extensively in the past for the 

characterization of delay dispersion, the number of multipath components that is within x 

dB of the peak amplitude, or the number of MPCs that carries at least y% of the total 

energy. Since these can be determined from the PDP in conjunction with the amplitude 

fading statistics they are not considered a primary parameter. 

The distribution of the small-scale amplitudes is considered Nakagami with a Nakagami 

m-factor of m>0.5 which is a lognormal distributed random variable. For the first 

component of each cluster, the Nakagami factor is modeled differently and it is assumed 

to be deterministic and independent of delay. 

The code for the IEEE 802.15.4a UWB channel model was examined and analyzed. The 

channel impulse response corresponding to indoor residential LOS environment (CM1) is 

shown in Figure  3.3. Many such profiles are considered in each simulation to obtain a 

better estimate of the channel. 
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Figure  3.3: The magnitude of CIR of 1 profile of channel model 1(Indoor LOS scenario). 

3.2.2 Measurement Details 

In addition to simulation, we have studied the provided data bank, the measurement 

environment and the used parameters. To be able to use the available bank of measured 

CIRs, knowledge about the measurement procedure and environment is needed. The 

details about the measurements and their locations are briefly mentioned in this section. 

The measurements were carried out in two buildings Whittemore Hall and Durham Hall 

on Virginia Tech Campus. Characterization of these building for some narrowband 

measurements and site-specific ray tracing studies has been done previously [Sei94], 
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[Haw91], [Rap92], [And02a], [And02b]. Thereby enabling, a comparison between 

narrowband and UWB channel characterization results. 

The measurements were conducted in different floors at different transmitter locations 

and for each transmitter location measurements at different receiver locations were 

performed. Room-to-room, within the room and hallways are all typical indoor 

environments that are explored.  

From the data bank one such received signal profile for the TEM antenna, which plots the 

received signal strength versus time duration in nanoseconds, is shown in Figure  3.4. The 

signal is corrupted with noise and hence it is further processed before LOS/NLOS 

identification can be performed. For more information about the measurements refer to 

[Muq03]. 

 

Figure  3.4: A profile of the received signal in Durham Hall for using TEM antenna 
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The received signal is squared, and then a threshold value is selected to limit the received 

signal so that unwanted noise is removed. Since measured signals can have variable 

propagation delay, we shift the signal such that all received signal profiles have a 

common time reference. The processed signal is shown in Figure  3.5. Once the signal is 

processed it can be used for identification purposes. 

 

Figure  3.5: The received signal after being squared, noise removed, and shifted @ 10% 

threshold. 
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3.3 Subsetted processing of the CIR 

3.3.1 Introduction 

In order to reduce processing complexity and improve processing speed we propose to 

examine the subsetted version of the channel profile. Thus instead of using the entire 

channel profile for channel identification we use just a few limited paths. Thus we 

experiment with 5, 10 and 20 paths. 

Only simulated profiles provided by the IEEE 802.15.4a channel model are used to 

evaluate the impact of subsetting on channel classification. 1000 channel responses are 

generated for each scenario. The received channel response has paths of the order of a 

few hundreds. We need to select a few paths from the complete profile. This can be done 

in three ways: 

(i) either selecting the initial few paths from the full profile i.e.: selecting the first 

5, 10 or 20 paths that appear in the received profile irrespective of their 

amplitudes  

(ii) or selecting these paths uniformly throughout the profile i.e.: selecting paths 

spaced at regular intervals irrespective of their amplitudes 

(iii) or by selecting just the peaks of each local cluster as it appears from the full 

profile 

All of these methods have been explored via simulation.  
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3.3.2 Thresholding 

Thresholding plays an important role in the identification process. It is done in order to 

remove the low amplitude noise terms that may cause an error in judgment. The selection 

of threshold is a crucial process. If a low value of threshold is selected high intensity 

noise terms could be included in our signal, on the other hand, if a high value of threshold 

is selected the weak received signal terms could be neglected and could thereby lead to a 

wrong identification.  

Thresholding can be classified into two categories as depicted in Figure  3.6: 

� Delay independent (DI) thresholding 

� Delay Dependent (DD) thresholding 

 

Figure  3.6: Types of thresholding 

Under DD thresholding, the threshold level is dependent on the time delay of the channel 

profile. We have examined exponential thresholding and lognormal thresholding for both 

experimental and simulated data. 
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DI thresholding means that the threshold level is maintained constant irrespective of the 

delay. The threshold in this case is usually selected based on the peak signal level and 

noise level. In our work threshold levels of 5%, 10% and 20% of the profile maximum 

are studied. 

Based on evaluation of the channel profiles obtained via simulation and the given 

measurements data it was observed that if a threshold of 10% of the maximum peak, of 

the profile under consideration is selected, it results in a relatively satisfactory 

performance. 

For each LOS/NLOS scenario different cases were considered.  A summary of the 

considered cases is given in Table  3.1. 

Case # Subsetting method Thresholding Objective 

1 Initial samples No thresholding 

Study the effect of thresholding 

2 Initial samples 10% thresholding 

3 Equally spaced spread samples No  thresholding 
Study the effect of thresholding 

and spread sample selection 
4 Equally spaced spread samples 10% thresholding 

5 Peaks of local clusters 10% thresholding Study the effect of cluster heads 

 

Table  3.1: Subsetting cases. 

The first two cases are examined to study the impact of thresholding on the received 

signal. The third and fourth cases along with the previous two cases are used to study the 
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effect of thresholding as well as the effect of selecting the samples through different 

methods. In the fifth case, paths that are the local maximas in each cluster are selected. 

Once the received signal is processed, the Kurtosis, Mean Excess delay and RMS delay 

are calculated for each of these cases. From these parameters we plot their histogram for 

identification between LOS/NLOS through inspection. 

3.4 Deconvolution 

In narrowband systems we can approximate the received signal to the channel impulse 

response but this is not possible in wideband systems. Thus a deconvolution technique, 

for classification improvement, is applied to the received signal in order to extract the 

impulse response of the channel. After deconvolution, the estimated channel impulse 

response is independent of the reference waveform, which allows us to study the effect of 

different pulse shapes. 

In the deconvolution techniques used, the main idea was to correlate the received signal 

with the reference waveform and locate the correlation peaks. After locating these peaks 

either of the two different techniques namely Subtractive Deconvolution and Zero 

Forcing Deconvolution was applied. Under Subtractive Deconvolution technique, we 

subtract the reference waveform from the received signal at locations corresponding to 

the correlation peaks. In this manner once a peak was located we remove its effect on the 

next iteration by subtraction. An alternate approach tried was Zero Forcing wherein once 

the correlation peaks were located we replace the reference waveform at the 

corresponding locations in the received signal by zeros. For more details about the 

deconvolution refer [Muq09]. 
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The received signal is a delayed and scaled version of not only one pulse shape but 

different pulse shapes depending on the angles of transmission and reception. Thus the 

received signal was deconvolved with both single and multi template reference 

waveforms to study the impact of using more than one template. In our case we had 

limited ourselves to five.  

After deconvolving the received signal, its Kurtosis, Mean Excess delay, RMS delay 

spread and Peak to Lead delay are calculated and based on these parameters an 

identification is made whether the signal classifies as LOS or NLOS. 

It is desired to know the minimum number of paths required for efficient 

classification/identification after deconvolution of the received signal. In order to do so 

the simulations were repeated many times by varying the number of multipaths each time 

and the impact on correct classification was studied each time. 

3.5 Evaluation Measures  

Apart from identification based on visual methods, in order to numerically evaluate the 

identification process, two tests were applied. These are: the Two sample Kolmogorov 

Smirnov (KS) test and the Likelihood Ratio test. Both these tests are explained in this 

section. 

3.5.1 Two sample Kolmogorov Smirnov (KS) Test 

The Two sample KS test is a nonparametric test used to determine if two datasets differ 

significantly. The Kolmogorov–Smirnov statistic quantifies a distance between the 

empirical distribution functions of two samples which is given by: 
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D12=     ( 3.7) 

where D is the distance (dissimilarity) between the input samples, sup is the supreme 

function also referred to as the Least Upper Bound, F1 and F2 are the empirical 

distribution functions of the first and the second sample respectively. 

The KS test provides a parameter, ‘p’ value, which is a measure of the similarity between 

two signals. Its value ranges between 0 and 1 where 1 corresponds to identical inputs and 

0 corresponds to totally different inputs. 

3.5.2  Likelihood Ratio Test 

After classification of the LOS/NLOS signals, a Likelihood Ratio test is developed to 

check if a certain received signal is correctly identified. In order to do so the knowledge 

of the statistics of Kurtosis ‘k’, Peak to lead delay ‘ ’, Mean Excess delay ‘ ’ and 

RMS delay spread ‘ ’ is used for hypothesis selection under the LOS and NLOS 

scenarios in a certain environment. From PDFs of the various parameters calculated, for a 

given channel realization h(t), the following Likelihood Ratio tests for LOS/NLOS 

identification of h(t) are considered: 

     ( 3.8) 

     ( 3.9) 

     ( 3.10) 
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              ( 3.11) 

where , , , , , , , 

 are the PDFs of the Kurtosis, PLD, the Mean Excess delay spread, and the RMS 

delay spread corresponding to LOS and NLOS conditions, respectively. If the likelihood 

ratio is larger than 1, we choose the LOS hypothesis (H0), and  otherwise, we choose the 

NLOS hypothesis (H1).  

Rather than using the PDFs of a single parameter, we can use all of the parameters or a 

subgroup of them for the test. For instance, we can test a joint of two parameters at a 

time, which will yield for e.g.: 

.     ( 3.12) 

Since it is very difficult to obtain the joint PDFs, a suboptimal approach can be obtained 

by considering ‘k’, ‘ ’, ‘ ’ and ‘ ’ to be independent of each other resulting in 

=  x    ( 3.13) 

For each channel realization the Likelihood Ratio test is applied, and the percentage of 

correctly identified scenarios is calculated. These results have been tabulated for both 

LOS and NLOS identification percentages using both individual and joint likelihood 

techniques. 

Results and discussion for the parametric approach are presented in the following section. 
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3.6 Results and Discussions 

This section summarizes the analysis results for the parametric approach in classifying 

the UWB channel into LOS/NLOS channels. Initially the effect of thresholding is 

demonstrated. In the next part, we present the PDFs for different channel parameters 

(Kurtosis, PLD, Mean Excess delay, RMS delay spread) for LOS and NLOS scenarios 

and we identify the classification threshold based on the Likelihood Ratio test.  The 

ability to classify the channels based on these parameters is numerically evaluated using 

the KS test. 

Since UWB signals requires large number of samples which translate into hardware cost, 

we evaluated the performance of the parametric analysis for classifying the channels 

using a subset of the channel response. A comparison between the subsetted and fully 

processed channel response is also presented.  

Under the parametric approach LOS/NLOS classification results for both simulated 

environment and data available from measurements are presented.  

The last part discusses the impact of extracting the parameters from the received profile 

as opposed to extracting them from the channel impulse response obtained through 

deconvolution. Numerical results from Likelihood Ratio test are presented to support the 

work. 

3.6.1 Effect of Thresholding 

It is required to filter the signal before processing. A threshold of 10% of the maximum 

signal peak has been set in our work. It is observed that application of a threshold to the 
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received waveform makes it easy to identify a LOS signal from a NLOS signal. For 

example, in the case of channel model CM1 (LOS scenario) and CM2 (NLOS scenario) 

from the PDF of the Mean Excess delay plotted for respective cases it was observed that 

when a threshold is applied to the received signal it makes it easier to differentiate 

between LOS and NLOS signals. A plot of this case is presented in Figure  3.7, which 

supports this argument. As seen without thresholding the PDFs overlap to a greater extent 

thus making classification difficult, but when thresholding is applied a demarcation can 

be made thereby separating the two. Similar trends were observed for other LOS/NLOS 

channel model pairs. Hence this threshold is maintained for the rest of the results also. 

 

Figure  3.7: PDF of the Mean Excess delay for CM1 (LOS) & CM2 (NLOS) of the 

IEEE802.15.4a channel model with (i) No thresholding (ii) 10% thresholding. 

3.6.2 Classifications based on Parametric Analysis  

The Kurtosis, Mean Excess delay, RMS delay spread and the PLD are calculated for 

different environments for both LOS and NLOS scenarios. Simulated channel impulse 
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responses are provided by the IEEE 802.15.4a channel model. In order to ensure stable 

results, 1000 profiles for each LOS/NLOS scenario are generated and processed.  

Based on the  IEEE 802.15.4a channel model, all odd channel numbers (CM1, CM3, 

CM5, and CM7) belong to LOS scenarios and all even channel numbers (CM2, CM4, 

CM6 and CM8) belong to NLOS scenarios. CM1 & CM2 belong to indoor residential 

environments; CM3 & CM4 correspond to indoor office environments; CM5 & CM6 

simulate outdoor environments and CM7 & CM8 resemble industrial environments 

[Mol05]. 

Figure  3.8 presents the Kurtosis of the received signals for all simulated channel models. 

It is observed that almost in all cases, except the case of outdoor environments, a clear 

classification between LOS/NLOS scenarios can be made as LOS signals tend to have a 

higher Kurtosis value compared to the NLOS signals. For example, for the indoor office 

environment CM3 & CM4 a value of 80 for the Kurtosis can be used as threshold for 

distinction between LOS/NLOS scenarios. Similar results were obtained by [Guv07]. 

Figure  3.9 shows the PLD plotted for all the channel models. It is observed that a LOS 

signal has a low PLD compared to NLOS signals for any given environment. From the 

figure, it is possible to distinguish between NLOS and LOS signals, for example, for the 

case of CM7 and CM8 we can say that a PLD value of 4 can be taken as a threshold and 

any signal with a PLD lesser than that can be classified as a LOS signal. 
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Figure  3.8: PDF of Kurtosis of IEEE 802.15.4a channel models. 

 

Figure  3.9: PDFs of PLD of IEEE 802.15.4a channel models. 
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The Mean Excess delay for all channel models is shown in Figure  3.10. A distinction 

between LOS/ NLOS scenarios is visible from the plot and is confirmed that LOS signals 

have a lesser Mean Excess delay compared to NLOS signals for a given set of scenarios. 

The numerical measure for the similarity or the degree of similarity/distinction between 

the PDF is given later. 

 

Figure  3.10: PDFs of Mean Excess delay of IEEE 802.15.4a channel models. 

Also RMS delay spread for the received profiles is evaluated and plotted to assist 

LOS/NLOS identification. Figure  3.11 presents the PDFs of RMS delay spread of all 

channel models of the IEEE 802.15.4a. It also provides a fair LOS/NLOS identification 

opportunity.  
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Figure  3.11: PDFs of RMS delay spread of IEEE 802.15.4a channel models. 

While the Kurtosis can be a good parameter for CM3/CM4 and CM7/CM8, it is not very 

useful for other environments. For example, in the case of CM5/CM6, i.e. Outdoor 

environments, it is difficult to make a decision based on this parameter. PLD is found to 

be much effective in this case. A signal with a PLD of 10ns or less can be considered as 

LOS signal. Similar is the case with Mean Excess delay and RMS delay spread. In 

CM7/CM8, for example, a signal with a Mean Excess delay spread of 8ns or more can be 

considered as NLOS signal. RMS delay spread is found to be effective in almost all 

environments except CM1/CM2, where the decision is unclear. 

The results of the KS test, i.e. the ‘p values’, are presented for the different parameters 

under both LOS and NLOS conditions in Table  3.2 for the simulated IEEE 802.15.4a 
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channel model. The smaller the ‘p value’, the more likely it is that the two signals are 

different. 

From this table we can observe that while all parameters help in clearly distinguishing the 

LOS from NLOS for the Industrial environment, this is not the case with the rest of the 

environments. For example, in the Residential scenario only PLD gives distinguishable 

results. Overall it is observed that PLD performs well except for the scenario of Indoor 

Office (p=0.5815) where Kurtosis (p=0.1862) is found to present best results. Hence a 

classification using a joint decision involving more than one parameter is more efficient.  

Parameters 
 

Channel 
Kurtosis PLD Mean Excess 

delay 
RMS delay 

spread 

Residential 
(CM1 & CM2) 0.4913 0.2609 0.9811 0.8927 

Indoor Office 
(CM3 & CM4) 0.1862 0.5815 0.6158 0.4333 

Outdoor 
(CM5 & CM6) 0.7864 0.2811 0.4351 0.4217 

Industrial 
(CM7 & CM8) 0.2015 0.2132 0.1612 0.1862 

 

Table  3.2: KS test for all profiles of the IEEE 802.15.4a channel model 

The Likelihood Ratio test was also applied to both simulated and measurement profiles to 

check the probability of correct identification of a particular profile. These results are 

tabulated in Table  3.3. The higher the probability of correct identification the better is our 

approach. It can be seen that using individual metrics may yield high identification 

percentage only for certain channel models (depending on the amplitude and delay 

characteristics of the channel under consideration), while the joint approach involving 
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Kurtosis, PLD and RMS delay spread achieves best identification percentage for all the 

channel models. Almost all channel models could be identified with a minimum of 90% 

certainty for the joint optimization case. 

Parameters 
 

Channel 
Kurtosis PLD RMS Kurtosis 

& PLD 
Kurtosis 
& RMS 

PLD 
& 

RMS 

Kurtosis, 
PLD & 
RMS 

CM1 (LOS) 74.9 72.3 63.2 85.2 79.2 80.5 89.1 

CM2 (NLOS) 80.2 70.9 73.2 87.3 89.7 81.2 91.2 

CM3 (LOS) 95.1 81.3 69.2 90.2 100 89.3 94.4 

CM4 (NLOS) 93.2 74.3 89.2 92.7 99.4 92.7 95.7 

CM5 (LOS) 63.8 87.3 91.3 89.9 87.4 89.8 97.3 

CM6 (NLOS) 69.7 78.7 84.3 83.6 81.3 81.2 92.4 

CM7 (LOS) 98.3 97.3 99.7 98.6 96.9 99.0 99.1 

CM8 (NLOS) 98.7 96.4 99.9 98.9 94.7 98.9 99.4 

 

Table  3.3: LOS/NLOS identification percentages for full IEEE channel model. 

All parameters are found to perform well in Industrial environment, with a minimum 

correct identification percentage of 98.7%, but for other environments some parameters 

outperform others. Apart from Industrial environments, Kurtosis was found to give good 

results, as close as 95.1%, for CM1/CM2 and CM3/CM4, i.e.: Residential and Indoor 

Office environments respectively where RMS delay spread was found to have inferior 

performance. RMS delay spread gave good results as close as 99.9% for CM5/CM6, i.e.: 
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Outdoor environments, where Kurtosis had lower identification percentage. The PLD 

performed moderately well irrespective of the environment, giving best identification 

percentages as high as 97.3%. 

3.6.2.1 Performance of Parametric classification for Practical Measurements 

The published results for the parametric classification were all based on simulation 

[Guv07]. In this section we evaluate the performance of practical measurements. 

Measurements that were received were processed initially then from those processed 

profiles Kurtosis and other parameter were extracted. Figure  3.12 (i) presents the PDF of 

the Kurtosis of these measurements, Figure  3.12 (ii) presents the PDF of the PLD while 

Figure  3.12 (iii) is a plot of the PDF of the Mean Excess delay. Similarly the PDF of the 

RMS delay spread for the measured data is plotted in Figure  3.12 (iv). 
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Figure  3.12: PDF of (i) Kurtosis, (ii) Peak to Lead delay, (iii) Mean Excess delay, and  

(iv) RMS delay spread of measurement data. 

It is observed that a clear classification between the LOS/NLOS curves is not possible as 

the respective PDF curves are not distinct, thus a fair threshold for discrimination is not 

selectable. 

The Likelihood Ratio test was also applied to the measurement data and is presented here 

in Table  3.4. Similar to the simulated profiles, it is observed that the joint approach 

involving Kurtosis, PLD and RMS delay spread achieves better identification percentage 

for all the channel models. 
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Parameters 

Channel 
Kurtosis PLD Mean Excess 

delay 
RMS delay 

spread 
Kurtosis, 

PLD & RMS 

LOS 60.3 78.2 78.1 76.8 80.4 

NLOS 77.6 68.3 80.2 79.2 82.7 

 

Table  3.4: LOS/NLOS identification percentages for measurements pre deconvolution. 

It is evident from the above analysis that the parametric classification based on the IEEE 

802.15.4a is very optimistic. The experimental evaluation showed inferior results in terms 

of classifications. For instance the two sample KS test for the Mean Excess delay and 

RMS delay spread for the experimental data gives a ‘p’ value of 0.92 and 0.94 

respectively, which are very high and unacceptable values for classification. Hence more 

signal processing is required before a satisfactory classification can be made. It is 

suggested that deconvolution will increase the resolution of the received signal and hence 

could result in an improved classification. 

3.6.3 Impact Classification based on Deconvolved Impulse Response 

Since the received signal is the output of the channel rather that the channel impulse 

response itself, we deconvolve the received signal so that the effect of using different 

pulse shapes can be studied. Figure  3.13 shows a comparative plot of the Kurtosis plotted 

before deconvolution and after deconvolution of the received signal. For illustrating the 

impact of deconvolution, CM1 of the IEEE 802.15.4a channel model was convolved with 

a reference template to simulate a received signal, and later it was deconvolved. 
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Figure  3.13: Comparison of Kurtosis (for CM1 of the IEEE 802.15.4a channel model) 

before and after deconvolution. 

The effect of deconvolving the signal on the Kurtosis is evident from the plot. The 

Kurtosis value of the impulse response reduces by a small amount when convolved with a 

waveform due to the spread of that waveform. This deconvolution technique will be 

studied for the profiles from the measurement data bank, since the received signal from 

the measurement data bank are a convolution of the true channel impulse response and 

the reference input waveform. 

Deconvolution was applied using both single template and multi template and was found 

that it was better to adopt a multi template approach rather than a single template 

approach since when we use a single template we tend to lose some of the significant 

multipath components just for the reason that they do not resemble our single template. 
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Both Subtractive deconvolution and Zero Forcing deconvolution techniques were 

implemented and was observed that the Subtractive deconvolution technique outperforms 

the Zero Forcing technique. One of the reason is that when two paths are closely spaced 

then applying a Zero Forcing deconvolution results in some residue signal that does not 

resemble the input waveform thereby resulting in undesired outputs. The Subtractive 

deconvolution on the other hand subtracts the first signal from the closely spaced 

received signal thereby resulting in a multipath that resembles the input template. Since 

closely spaced multipath signals are a significant feature of UWB systems hence 

subtractive deconvolution is preferred. [Muq10] 

The number of successfully deconvolved multipaths also affects the performance of our 

analysis. It was observed that though 10 paths were sufficient to make a satisfactory 

classification between LOS and NLOS, a selection of 20 paths gave a reliable 

classification as it captured most of the possible energy of the received signal.  

The energy capture is defined as [Muq10]: 

     ( 3.14) 

where  is the received signal and  is the reconstructed deconvolved signal.  

Figure  3.14 shows the percentage energy capture with respect to number of paths for one 

of the received profiles of the LOS scenario. We can observe that the percentage of 

captured energy when 10 multipaths are used is close to 70 if we increase the number of 

paths by 5 this percentage also increases by 5 till we reach 20 paths. Increasing the 

number of paths beyond 20 does not increase the percentage of captured energy by a 
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significant level. Similar trend is observed for the rest of the profiles of both LOS as well 

as NLOS profiles. Thus 20 multipath components were considered in our analysis. 

 

Figure  3.14: Energy captured with respect to number of deconvolved multipaths. 

Figure  3.15 shows the PDFs of the Kurtosis, PLD, Mean Excess delay and RMS delay 

spread for the LOS and NLOS scenarios.  It is obtained by considering multi template 

reference waveform and subtractive deconvolution. A fair classification can be made 

between LOS and NLOS signals based on these PDFs. LOS signals are observed to have 

a higher Kurtosis value as expected, whereas most of the NLOS signals tend to have a 

small Kurtosis value. A threshold of 60 could be considered, signals with Kurtosis values 

above which can be classified as LOS signals, and signals having lower Kurtosis values 

as NLOS.  
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Figure  3.15: PDF of (i) Kurtosis, (ii) Peak to Lead delay, (iii) Mean Excess delay, and  

(iv) RMS delay spread of LOS NLOS scenarios based from measurement data after 

deconvolution. 

Similarly for Mean Excess delay we observe that a threshold of 21 if deployed can 

distinguish between LOS and NLOS signals. The RMS delay spread, for a particular 

signal of the measurement data bank, if below 18 would mean that the signal is possibly a 

LOS. On performing the Likelihood Ratio test, it is found that there is a 5% - 8% increase 
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in the correctly identified profiles post deconvolution for Kurtosis and PLD, and this 

percentage increases up to 12% - 15% for Mean Excess delay and RMS delay spread. 

A comparison between the LOS and NLOS signals before deconvolution and after 

deconvolution was done and was found that a reasonable classification is possible if the 

signals are deconvolved before their Kurtosis, Mean Excess delay, RMS, PLD values are 

computed and their PDFs evaluated. Figure  3.16 shows a plot to support this discussion.  

Figure  3.16 (i) is the PDF of the RMS delay spread without deconvolution and Figure 

 3.16 (ii) is the PDF of the RMS delay spread after deconvolution using Subtractive 

deconvolution with multi (5) templates and 20 multipaths. 

 

Figure  3.16: PDF of the RMS delay spread of the LOS NLOS measurements 

(i) before deconvolution (ii) after deconvolution. 

It is observed that deconvolution affects the Mean Excess delay and RMS delay spread to 

a more extent than it does to the Kurtosis and the PLD. And overall there is an 

improvement in the percentage of correctly classified profiles. This is supported by the 

Likelihood Ratio test presented. 



 
 

67 
 

The KS test was also applied to these signals from the measurement data bank. This is 

tabulated in Table  3.5. While Mean Excess delay and RMS delay spread were not so 

helpful for classification of simulated signals, it was found that these parameters gave 

good results for experimental signals. The PLD was found to have a similar performance 

in both cases. Kurtosis was found to perform the worst for experimental data while Mean 

Excess delay had the best performance. 

Parameters Kurtosis PLD Mean Excess 
delay 

RMS delay 
spread 

Measurement 
Data 0.87 0.32 0.15 0.16 

 

Table  3.5: KS test for the profiles of the measurement data 

Likelihood Ratio test results are tabulated in Table  3.6. Results for Kurtosis and PLD for 

the measured data resemble results of the Residential environment and the Indoor Office 

environment respectively, of the simulated full profile of the IEEE channel model. 

Parameters 

Channel 
Kurtosis PLD Mean 

Excess delay 
RMS delay 

spread 
Kurtosis, 

PLD & RMS 

LOS 68.9 82.7 93.1 97.3 95.6 

NLOS 82.1 73.9 92.5 94.8 96.3 

 

Table  3.6: LOS/NLOS identification percentages for measurements post deconvolution. 
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3.6.4 Impact of Subsetting on Performance of Parametric Analysis 

Processing of the entire channel profile can be time consuming when the number of 

profiles considered is huge. There is a tradeoff between complexity, processing time and 

performance. Thus, a suboptimal approach is required that reduces processing time but 

maintains the performance above a certain satisfactory level. To achieve this, we propose 

a new method which is to process a partial representation of the channel profile instead of 

using the entire received profile. The profile is subsetted at local cluster peaks wherein 

only 5, 10 or 20 paths are selected from the profile to evaluate parameters like Kurtosis, 

PLD, Mean Excess delay, RMS delay spread. It is found that based on this subsetted 

version, we still can make a successful classification between LOS/NLOS signals. 

The ways in which the few paths are selected from the received profile also make a 

difference in ease of identification between LOS/NLOS scenarios. For each of the cases 

mentioned in  3.3, the normalized histograms were plotted to test the effect of initial 

sample selection, spread sample selection and local cluster peaks selection.  

The selection of paths from cluster heads of the local peaks is found to be the best 

method of paths selection among the three discussed methods. It is found to present the 

maximum difference in the obtained PDFs. Also it bears most resemblance with the case 

where the entire channel profile is considered. This is also in accordance with the 

reference paper [Guv07] that deals with NLOS identification and mitigation for UWB 

localization systems.  

In Figure  3.17 a plot of the PDF of the Kurtosis of CM1 & CM2 for 20 paths is 

presented. Cluster head-based subsetting provides the best distinction between 
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LOS/NLOS signals and bears closest resemblance to the reference full profile. Figure 

 3.18 depicts a plot of the PDFs of Mean Excess delay for CM3 (LOS) & CM4 (NLOS) 

with 20 paths for the three ways of paths selection along with the reference plot for the 

full profile. From these figure we observe that when the paths are selected from the local 

cluster heads we have a better identification chance compared to the other two methods. 

 

Figure  3.17: PDFs of Kurtosis of CM1 (LOS) & CM2 (NLOS) with just 20 paths for 

cases (i) Initial samples, (ii) Spread samples  (iii) Cluster Head samples (iv) Full Profile 

[Guv07].  
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Figure  3.18: PDFs of Mean Excess delay of CM3 (LOS) & CM4 (NLOS) with just 20 

paths for cases (i) Initial samples, (ii) Spread samples (iii) Cluster Head samples (iv) Full 

Profile [Guv07]. 

The PDFs of RMS delay spread for CM1 & CM2 and CM5 & CM6 are plotted 

respectively in comparison with the PDFs plotted for the full profiles, by the reference 

paper in Figure  3.19. The PDFs generated are found to bear close resemblance. They 

were plotted by selecting local peak heads as sample paths. 
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Figure  3.19: PDFs of RMS Delay Spread of CM1 (LOS) / CM2 (NLOS) with 20 paths 

for cases (i) Cluster Heads Samples (ii) Full Profile [Guv07] & CM5 (LOS) / CM6 

(NLOS) with just 20 paths for cases (iii) Cluster Heads Samples (iv) Full Profile 

[Guv07]. 

Since selection of cluster heads was found to be the best way to subset the channel 

profile, it was further implemented for all channel environments of the channel model.  

Figure  3.20 shows a plot of the PDF of the Kurtosis for the channel model with cluster 

head-based subsetted profile paths for all LOS/NLOS scenarios. It is observed that these 

paths can be used efficiently to make an identification except for the case of outdoor 

environment. 
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Figure  3.20: PDFs of Kurtosis of cluster head-based subsetted channel models. 

The PLD for this subsetted profile is also calculated and is plotted in Figure  3.21. It is 

observed here also that LOS signals have lower PLDs compared to NLOS signals except 

for the case of CM7 and CM8. 
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Figure  3.21: PDFs of PLD of cluster head-based subsetted channel models. 

Similar to the Kurtosis and PLD, the Mean Excess delay is also evaluated for the 

subsetted channel profile. This is presented in Figure  3.22 and is observed from the plot 

that apart from indoor Residential scenario (CM1/CM2) all other scenarios provide a 

good identification plot.  
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Figure  3.22: PDFs of Mean Excess delay of cluster head-based subsetted channel models. 

RMS delay spread for all scenarios of the cluster head-based subsetted channel model is 

plotted and presented in Figure  3.23.  
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Figure  3.23: PDFs of RMS delay spread of cluster head-based subsetted channel models. 

It is evident from the obtained results that using a cluster head-based subsetted version of 

the channel profile is an efficient way to reduce processing time while retaining a good 

classification capability. 

The probability/likelihood of the subsetted IEEE channel profile to be correctly identified 

is evaluated using the Likelihood Ratio test. The performance was found to decline by a 

small percentage for the individual parameters, compared to the full profile, but the joint 

hypothesis provided a good result with a minimum correct identification percent of 85% 

for the profiles. This is presented in Table  3.7.  
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Parameters 

Channel 
Kurtosis PLD RMS Kurtosis 

& PLD 
Kurtosis 
& RMS 

PLD & 
RMS 

Kurtosis, 
PLD, RMS 

CM1 (LOS) 66.7 63.4 56.9 84.5 77.3 79.3 87.7 

CM2 (NLOS) 73.1 61.0 79.5 86.0 89.4 79.1 89.7 

CM3 (LOS) 80.8 74.0 67.0 88.2 100 86.0 87.3 

CM4 (NLOS) 88.1 66.6 93.6 88.8 99.2 91.0 93.1 

CM5 (LOS) 61.2 79.6 92.0 88.4 85.2 88.4 89.2 

CM6 (NLOS) 54.2 70.0 79.4 81.5 84.2 76.3 85.1 

CM7 (LOS) 88.4 92.8 99.4 91.9 96.8 98.8 96.9 

CM8 (NLOS) 89.7 92.6 99.7 90.9 90.3 98.6 97.4 

 

Table  3.7: LOS/NLOS identification percentages for subsetted IEEE channel model. 

Similar to the case of the full profile, Kurtosis performed well for all environments 

except to CM5/CM6 while RMS delay spread had lower identification percentages for 

CM1 and CM3. PLD was again found to perform consistently moderate compared to the 

two parameters, irrespective of the environment. The joint optimization technique 

involving Kurtosis, PLD and RMS delay spread was found to be effective for the 

subsetted channel profiles too. 

From our observations, we conclude that the hybrid technique of using Kurtosis, PLD 

and RMS delay spread for channel classification is a promising approach in UWB 

systems. 
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This chapter focused on evaluation of the various channel parameters for classification of 

both simulated environment and measurement data. The Two sample KS test and the 

Likelihood Ratio test were applied to numerically support the work. 

The impact of thresholding was also studied and it was found that signals thresholded for 

noise removal provide better classification. 

The deconvolution technique applied improved the percentage of correctly identified 

LOS/NLOS signals by 5% for PLD and by 8% for Kurtosis, post deconvolution. While 

Mean square delay and RMS delay were improved by approximately 15%.  

Subsetted version of the simulated IEEE model, obtained by selecting the cluster heads 

within the signal, was also explored and found to be quite effective in LOS/NLOS 

classification. While it reduces processing time by a great amount a small degradation in 

the overall performance, of the order of just 2% in most scenarios of the IEEE channel 

model, was observed during the Likelihood ratio test. 

Based on the investigation carried and the results obtained, a hybrid (improved) 

technique for channel identification was introduced. This method guaranteed a minimum 

of 90% correct identification percentage under the Likelihood ratio test, which is closed 

to 10% better than that obtained for some of the individual parameters.  
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Chapter4  
 

 

CONCLUSION & FUTURE WORK 
This chapter provides a summary of the work accomplished and some suggestions for 

future work. 

4.1 Summary of Contributions 

The two main topics investigated in this work are the TOA estimation based on the 

Unscented Kalman Filter-based approach and the parametric approach for LOS/NLOS 

classification of UWB signals by examining the CIR and evaluating the parameters: 

Kurtosis, Peak to Lead delay, Mean Excess delay, RMS delay spread. 

Under the UKF module work was done for TOA estimation with varying SNRs in 

Nakagami environments with varying Nakagami parameters. The performance of the 

algorithm was found to be directly related to the SNR maintained, i.e., higher SNR 

assured better performance; while changing the Nakagami factor had no significant 

change in the performance. The algorithm was tested for 4 and 8 paths and found to be 

converging for both cases. Also, the TOA of the first path was estimated by varying 

SNRs, Nakagami fading environments and varying path spaces between the multipath 

signals, where the error in estimation was found to have a Gaussian behavior irrespective 
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of the fading environment. A decrease in the SNR by half; approximately doubled the 

variance of the Gaussian error.  

Under the parametric approach the channel parameters mentioned earlier were evaluated 

for classification of both simulated environment and measurement data. Also evaluation 

measures such as the KS test and the Likelihood Ratio test were applied to check the 

percentage of correct identification of channels. 

The difference in dealing with experimental results compared to simulated data was 

observed. While the Mean Excess delay and the RMS delay spread were found to be less 

effective in LOS/NLOS classification for the Indoor scenarios of simulated data, they 

were efficient in providing classification information for experimental measurements 

taken indoors. The impact of thresholding was also studied and it was found that signals 

thresholded for noise removal provide better classification. 

In order to extract the channel impulse response from the received signal a deconvolution 

technique was employed which improved the percentage of correctly identified 

LOS/NLOS signals. The PLD identification was found to improve by 5% and the 

Kurtosis by 8% post deconvolution. While Mean square delay and RMS delay were 

improved by approximately 15%.  

Subsetted version of the simulated IEEE model, obtained by selecting the cluster heads 

within the signal, was also explored and found to be quite effective in LOS/NLOS 

classification. While it reduces processing time by a great amount a small degradation in 

the overall performance, of the order of just 2% in most scenarios of the IEEE channel 

model, was observed during the Likelihood ratio test. 
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Based on the investigation carried and the results obtained, a hybrid (improved) 

technique for channel identification which was the selection of a joint estimation scheme 

involving Kurtosis, PLD and RMS delay spread was suggested and justified. This method 

guaranteed a minimum of 90% correct identification percentage under the Likelihood 

ratio test, which is closed to 10% better than that obtained for some of the individual 

parameters. 

4.2 Future Work 

This work helps in better time estimation and channel identification, the next step would 

be to study the impact of this estimation and identification in positioning estimation. 

Work in this direction is being done as part of a Master Thesis. 

The power of the paths of the received signal in the UKF-based approach was 

exponentially generated in this work. Other distributions such as the lognormal can be 

investigated. 

A possible direction in extending the parametric approach is to explore the performance 

of new parameters, and, their ability to assist in LOS/NLOS classification can be 

analyzed. Based on the classification obtained a NLOS mitigation technique, for ex: 

Weighted Least Square can be implemented.  

For eliminating the unwanted noise in our received signals we did a preliminary study 

and found delay independent thresholding scheme suitable for our work; delay dependent 

thresholding can be deployed to test the performance. 
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After deconvolution the estimated channel impulse response is independent of the 

excitation signal. Thus, the effect of different pulse shapes can be studied. 

Two evaluation measures, the KS Test and the Likelihood Ratio test, were carried out in 

this work, other test for example the Cramér-von-Mises test could be conducted. 

Also, the hybrid technique used in our work had the assumption that the parameters are 

independent of each other. The dependence between these parameters can be 

investigated. 
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NOMENCLATURE 
List of Abbreviations 

AOA    Angle of Arrival 

APDP    Average Power Delay Profile 

AWGN  Additive White Gaussian Noise 

CIR   Channel Impulse Response 

CM   Channel Model 

DD   Delay dependent 

DI   Delay independent  

ED    Energy Detector  

EKF   Extended KF 

GML   Generalized-ML 

IR   Impulse Radio 

KF   Kalman filter 

KS   Kolmogorov Smirnov  

LOS   Line of Sight 
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MF   Matched Filter  

ML   Maximum Likelihood  

MMSE   Minimum Mean-Square Error 

MPCs    Multipath Components  

MSE   Mean-Square Error 

NLOS   Non Line of Sight 

PDP   Power Delay Profile 

PLD   Peak to Lead delay 

RMS   Root Mean Square 

RSS    Received Signal Strength 

SNR   Signal to Noise Ratio 

TDOA   Time Difference of Arrival 

TNR   Threshold to Noise Ratio 

TOA   Time of Arrival 

UKF   Unscented Kalman Filtering 

UWB   Ultra Wideband 
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List of Symbols 

    spreading waveform  

    multipath gain coefficient 

   channel coefficient 

dk,m   data bits 

    mth symbol transmitted 

E [ ]   Expected value 

Fc & Fτ   state transition matrices of UKF Algorithm 

h(t)    channel impulse response 

K    total number of paths within a cluster 

k   Kurtosis 

L    total number of clusters  

m, µ   Nakagami factor 

   AWGN 

    PDP 

Q   noise covariance matrix 

q    number of samples per chip 
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    symbol interval 

Tc    chip duration 

    time arrival of the first path of the first cluster 

    delay of lth cluster 

t   time ( in nano seconds) 

  &   mutually independent Gaussian random variable s for amplitude 

and delays resp. 

 &   UKF weights for mean and covariance respectively. 

  lognormal shadowing where the subscript i refers to the ith 

realization 

   Gaussian random variable 

α    controls the spread of the sigma points 

β    incorporates the prior knowledge of the distribution of ‘x’ 

   mixture probability (in IEEE channel model) 

    intra-cluster decay time constant 

κ    kappa, secondary scaling parameter 

   ray arrival rates  

    mean of h(t) 
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σn 2    noise covariance 

   time delay 

    delay of the kth path in the lth cluster relative to   

  delay of the kth multipath component relative to the lth cluster-

arrival time 

τmed    Mean Excess delay 

τpld   Peak to Lead delay 

τrms   RMS delay spread 
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