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Recently a lot of interest has been shown in parameter estimation using ad hoc

wireless sensor networks. An ad hoc wireless sensor network is devoid of any

centralized fusion center and thus, has a distributed structure. Several algorithms

have been proposed in the literature in order to exploit this distributed structure

in order to improve estimation. One algorithm that was practically sound as well

as fully distributed was called Diffusion LMS (DLMS) algorithm. In this work,

variations to the DLMS algorithm are incorporated.

The first algorithm improves the DLMS algorithm by varying the step-size of

the algorithm and eventually the Variable Step-Size DLMS (VSSDLMS) algorithm

is setup. Well known VSSLMS algorithms are compared, then the most suitable

algorithm identified to provide the best trade-off between performance and com-

plexity is chosen.
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Next, an algorithm is derived using the constraint that the noise variance is

known. This algorithm is akin to the VSSDLMS algorithm but is computationally

more complex. Convergence and steady-state analyses are carried out in detail

for both algorithms. The effect of mismatch in noise variance estimate is studied

for the constraint based algorithm. Extensive simulations are carried out to as-

sess the performance of the proposed algorithms. Simulation results are found to

corroborate the theoretical findings.

Finally a new scenario is investigated. All the algorithms existing in literature

assume knowledge of regressor data. However, this information is not always

available. This work studies blind algorithms for adaptive networks. Inspired by

second order statistics based blind estimation methods, two algorithms are first

converted into recursive block blind algorithms. Then these algorithms are applied

to the adaptive network scenario using the diffusion scheme. Simulation results are

carried out to assess the performance of the algorithms under different scenarios.

Keywords: Diffusion least mean square algorithm, Variable step-size least mean

square algorithm, Noise constrained least mean square algorithm, Blind estimation
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CHAPTER 1

INTRODUCTION

In recent years, wireless sensor networks (WSNs) have become a very hot topic

of interest for researchers due to the multiplicity of their uses [1]-[5]. Several

applications have emerged that use WSNs with several more in the pipeline [6].

Furthermore, decentralized estimation of signals of interest using WSNs has also

attracted much attention recently [7]-[18].

A wireless sensor has the ability to sense the surrounding physical environment,

perform signal processing tasks and then communicate relevant information using

a wireless transceiver. A large collection of such sensors in a close-bound network

is thus referred to as a wireless sensor network (WSN). In order to meet the cost

for large scale deployment, sensors are small, inexpensive devices with limited

computational and communication capability as well as constrained resources.

However, their popularity is due to the fact that despite the constraints, they

provide the user with cost-effective high performance. The ability of sensor nodes

to communicate with each other further enhances their performance, giving rise to

1



an entirely new area of applications in environmental, domestic as well as military

areas.

A few emerging applications utilizing WSNs are distributed field monitor-

ing, localization, surveillance, power spectrum estimation, and target tracking [6].

These applications typically require estimating parameters of interest like tem-

perature, concentration of certain chemicals, and speed and position of targets.

Among surveillance applications are detection of critical events such as smoke

alarms. Such applications benefit mainly from the distributed structure of a WSN.

However, it has recently been realized that without empowering the sensors with

some signal processing capability, the ultimate goals cannot be achieved. Sensors

need to be empowered with the required signal processing tools that fully utilize

the distributive nature of the network as well as provide optimal results. This

need has been addressed recently and several algorithms proposed. The aim of

this dissertation is to improve upon the existing algorithms [7]-[16], as well as to

provide a novel algorithm that is more suitable in applications where the source

is unknown.

The chapter is organized as follows. A background for wireless sensor networks

and adaptive filtering is given in the context of estimation and the least mean

square (LMS) algorithm is given as an example. This is followed by a detailed

literature survey. The aims of the dissertation are then briefly explained and the

chapter ends with a layout of the dissertation.
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1.1 Background

1.1.1 Wireless Sensor Networks

There are generally two types of WSNs used in practice (see Fig. 1.1). One has

a central processing unit known as a Fusion Center (FC). The sensors usually

sense the required data and then transmit the data via a wireless channel to the

fusion center. The sensors do not perform much processing except quantizing and

coding the data before transmitting it to the fusion center. The fusion center acts

as a data sink where data from all sensors is collected and then processed in order

to ascertain the estimates of the parameters of interest. Unlike sensors, a fusion

center has large processing capability as well as storage capacity.

A network devoid of a fusion network is generally termed as an ad hoc net-

work. The sensors only communicate with neighboring sensors that are within

communication range. In such a network, the sensors have access to data from

their neighboring sensors only that can be attained via a wireless communication

link between the sensors. The sensors are required to do a two-fold process in

such cases. First, they need to acquire the available data from the nearby neigh-

bors. Then each sensor performs some signal processing on the available data in

order to estimate some parameter of interest. This is usually done over several

iterations, with each iteration improving the previous estimate. Since the sensors

do not have access to the entire network, the estimate may differ for each sensor.

Iterative algorithms make certain that sensors can reach a mutually agreeable
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Fusion Center 

Figure 1.1: (a) A Fusion Center-based WSN; (b) An ad hoc topology
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estimate. This is usually achieved by the sensors by exploiting the spatial diversity

of the network available to them. In most cases, however, such an estimate is only

reached asymptotically. Still, the network behaves as a self-organized entity even

in the absence of a fusion center but with added intelligence and signal processing

capabilities.

The network with a fusion center has a major drawback in that if the center

fails then the whole network falls into disarray. Also, there exists the problem of

communicating with the sensors that are located far away. Such sensors would

need higher power in order to transmit their data to the center. This problem

may be overcome using a multi-hop system within the network where the data

from distant sensors hops from one sensor to another until it reaches the center.

However, this adds additional complexity to the system but still provides an alter-

native to using high power, which will utilize the battery of a sensor more rapidly,

thus causing the sensor to shut down. Despite this solution, the problem of the

center failing still remains. In comparison, ad hoc networks do not have such a

limitation as they are working without any such processing center. Even if some

sensors fail, the performance degradation is the only problem to worry about in

ad hoc WSNs as the network still continues to function.

It is usually the case that FC-based topologies benchmark the performance

among the class of decentralized estimators that can be implemented using WSNs.

This is because all network-wide information is centrally available for processing,

whereas in ad hoc WSNs sensor data spreads via single-hop exchanges among
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neighboring sensors. There is an inherent delay till a given sensor can make use

of all the data collected by the WSN. Hence, intermediate local sensor estimates

will generally be of lower quality when compared to those formed by the FC.

Resource allocation, medium access control and general communication pro-

tocols for in-network processing schemes are interesting problems in their own

right, and have been studied by several researchers. However, this work looks at

improving techniques for distributed estimation in WSNs.

1.1.2 Adaptive Filtering

Any system that gives a certain output given some input can be regarded as

a filter. If that filter has the ability to adapt itself according to the changing

surroundings in order to keep a certain parameter constant or within certain pre-

defined limits, then such a filter is regarded as an adaptive filter. Adaptive filters

are generally used in applications where some unknown parameters need to be es-

timated. An example is that of channel estimation in a communication system. In

a communication system information travels from the transmitter to the receiver

via some medium that is known as the channel. In wireless communications the

channel is usually unknown and needs to be identified at the receiver in order to

estimate the possible transformation that may have occurred on the transmitted

information whilst it was propagating through the wireless channel. In order to

identify/estimate the channel a system is needed that can adapt itself until there

is an approximate match. Thus, an adaptive filter is used. A known information
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signal is transmitted through the channel and the transformed signal is received at

the receiver by the adaptive filter. The aim of the adaptive filter is to take in the

same input signal and try to adapt itself such that its output matches that of the

channel. This is usually an iterative process. At each iteration the adaptive filter

outputs a certain value of the signal and tries to match it to the received signal.

Based on the error, the adaptive filter adjusts itself and repeats the process. This

goes on until the error between the output of the channel and the output of the

filter is under a certain threshold. At this point the communication system can

start functioning as the channel has been estimated and its effects can now easily

be nullified.

An interesting point to note here is that the actual measure to check the per-

formance is not the error itself. Error between the two outputs can be positive or

negative and is generally a zero-mean process. Therefore, it is not reliable to de-

velop an algorithm for adaptation based on just the error. A much better quantity

would be the squared error or the absolute error. The simplest algorithms usually

tend to minimize the mean square error. The error between the two outputs is

squared and minimized. Repeating this process over several experiments generally

gives a measure of how well the algorithm is performing. Hence the term mean

square error (MSE). Recently, another measure is being adopted by researchers

called mean square deviation (MSD). Instead of measuring the error between the

channel output and the filter output, performance is measured by looking at the

error between the coefficients of the channel and the filter. This shows how far off
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the filter is from reaching the actual channel. This error is usually a vector and

its inner product gives the squared deviation value at every iteration. Repeating

the process several times and averaging gives the MSD which then describes how

well the algorithm is performing. The simplest and most common adaptive filter

in use is called Least Mean Square (LMS) Algorithm.

1.1.3 Least Mean Square Algorithm

Consider an unknown system defined by its parameters that can be represented

in a column vector, wo, of length (M × 1). An adaptive filter is used to identify

the unknown system. The input and output of the system are defined at every

iteration as u (i) and scalar d (i), respectively, where u is a row vector of length

(1 × M) and d is a scalar given by

d (i) = u (i)wo + v (i) , (1.1)

where v is a zero-mean noise being added at the output of the unknown system and

i denotes the time instant. If the adaptive filter is represented at every iteration

by a column vector w (i) then the noise-free output of the filter, y (i) will be given

by
y (i) = u (i)w (i) . (1.2)

The error is thus defined as

e (i) = d (i) − y (i)

= u (i)wo + v (i) − u (i)w (i) . (1.3)
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Here, a cost function is defined for the adaptive filter. The aim is to minimize

the cost function by choosing the appropriate value of w that matches wo as best

possible. The cost function is defined as

J = E
[|d(i) − y(i)|2] , (1.4)

where J is the expected value of the square of the error. We thus have a mean

square error-based algorithm. Minimizing this cost function with respect to w and

after some evaluations, the resulting algorithm is called Least Mean Square (LMS)

algorithm, which is a realization of the minimum mean square error (MMSE)

algorithm. The update equation for the adaptive filter for LMS algorithm is,

thus, given by
w (i + 1) = w (i) + μe (i)u∗ (i) , (1.5)

where u∗ (i) is the transpose conjugate of the input vector at iteration i. This

equation describes the LMS algorithm which is the simplest adaptive filtering

algorithm. It has some drawbacks but because of its simplicity and ease of imple-

mentation, it is preferred in most applications.

The work being proposed in this thesis deals with adaptive filtering in WSNs

and LMS algorithm, in particular, has been used mainly in literature for dis-

tributed estimation. A brief literature survey of related work will be presented

next.
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1.2 Literature Survey

The advent of WSNs has created renewed interest in the field of distributed com-

puting, calling for collaborative solutions that enable low-cost estimation of sta-

tionary signals as well as reduced-complexity tracking of non-stationary processes.

Different from WSN topologies that include an FC, ad hoc ones are devoid of hi-

erarchies and rely on in-network processing to effect agreement among sensors on

the estimate of interest. A great body of literature has been amassed in recent

years, building up the field of consensus-based distributed signal processing. The

tutorial in [19] gives general results and a vast list of related works and thus serves

as a good initial reading for a beginner in the field.

In [20], consensus among nearest neighbors was considered to coordinate vehic-

ular motion among particles such that they are made to move in the same direction

despite the absence of a centralized system for coordination. The authors in [21]

discuss consensus issues among various types of graphs and provide some theoret-

ical basis for their further development. The authors in [22] develop methods for

getting the best possible consensus average in a distributed network by studying

the results over several vast networks. A recent work suggests projection into lin-

ear subspace in order to overcome constraints of centralized processing and thus

suggests a decentralized algorithm that utilizes consensus to produce results sim-

ilar to a centralized system [23]. This technique was used for successful spectrum

sensing with a decentralized network in cognitive radios [24]. A constraint-based

solution for decentralized estimation was presented in [9],[10] that treats each
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sensor as a separate entity and thus provides a simple algorithm for distributed

estimation that results in a solution to which all sensors converge asymptotically.

In all the schemes mentioned thus far, sensors collect data all at once and then

reach consensus by locally exchanging messages.

The work in [25] provides a frequency-domain version of the tracking algorithm

for mobile sensor networks. A consensus algorithm is used for mobile tracking in

frequency-domain. The authors in [26] provide further extension of the work done

for tracking in mobile environments by providing algorithms for sensor fusion

using novel consensus filters and also suggest methods for designing such filters.

The authors in [27] suggest exchanging sequential peer-to-peer data in order to

achieve a least squares solution. The algorithm provides good results but at the

cost of high computational cost as well as requiring extensive communication

between sensors. Also, the algorithm is not robust enough to tackle the problem

of estimating time-varying signals or dynamic systems. This problem of using ad

hoc WSNs for distributed state estimation of dynamical systems has also received

a lot of attention recently. The authors in [28] suggest a diffusion scheme for

distributed Kalman filtering. The data between neighboring sensors is diffused

before each sensor updates its own estimate using a Kalman filter, thus improving

the overall performance of the system. The work in [29] provides a similar diffusion

scheme for Kalman smoothing. In [30], three different distributed Kalman filtering

algorithms are designed and discussed. Solutions to some potential problems are

also suggested. The works in [10] and [31] suggest distributed Kalman filtering
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and Kalman tracking algorithms but with certain constraints on channel models.

In many applications however, sensors need to perform estimation in a con-

stantly changing environment without having available a (statistical) model for the

underlying processes of interest. This motivates the development of distributed

adaptive estimation algorithms, the subject dealt with in the current work. The

first such approach introduced a sequential scheme, whereby information circu-

lated through a topological cycle in conjunction with LMS-type adaptive filter-

ing per sensor, allowing the network to account for time variations in the signal

statistics [7]. This information could comprise of estimation updates of the node

and/or the complete data available. The sensors follow a Hamiltonian cycle and

each sensor transmits its update to the next sensor in the cycle, which then uses

its own data to update this estimate. The sensors use newly acquired data at

each iteration to update the estimate, thus, accounting for any time variations in

the process. In [32], a more general algorithm for the incremental scheme of [7] is

given. Such incremental schemes may provide a solution that converges faster than

a centralized solution as well as providing a low steady-state error at a very low

complexity cost. These features make the incremental algorithm very attractive.

However, in case of node failure, the cycle is broken and the network would seize

to function until the cycle is regenerated using the remaining functioning sensor

nodes. This process is a non-deterministic polynomial-time (NP)-hard problem

[33]. For medium- to large-sized WSNs this can be a very complex problem and

not very applicable. Also, time delay can cause problems in cases where applica-
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tions are time-critical. A solution to the node failure problem was suggested in

[14]. However, the computational complexity of the algorithm increased at the

cost of performance degradation.

A new algorithm was proposed in [8] that got rid of the topological constraints

in [7] and fully exploited the distributed nature of the network. The computa-

tional cost increased but the overall solution was more practical. The algorithm

was termed as (combine-then-adapt) diffusion LMS. Each sensor forms a convex

combination of the local estimates acquired from the nearby neighbors. This com-

bined estimate is then used in the LMS recursion to update the local estimate.

This process is repeated for each sensor at each iteration. An improved version

of the algorithm was suggested in [34] in which the steps of the process were re-

versed, that is, the LMS recursion updates the local estimate at each sensor at

every iteration and then the convex combination of the estimates of the nearby

neighbors is taken. This new (adapt-then-combine) diffusion LMS improves the

performance over the previous algorithm and provides a variant of the algorithm

that was originally proposed in [35]. Another way to improve performance is to

diffuse not only the local estimates but also the sensor observations to nearby

neighbors [34, 15]. This results in improving the flow of data across the WSN

but can be computationally expensive, especially in the presence of communi-

cation noise. The authors in [15] also give a generalized form of the diffusion

LMS algorithm as well as a detailed-yet-generic analysis of the possible variants

that were separately addressed in previous publications. A variant of diffusion
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LMS was suggested in [13] in which the network was divided into several small

networks, each having its own diffusion LMS algorithm network. A sensor node

from each small network was then chosen as a supernode and then the supernodes

formed a new network which conducted its own diffusion LMS algorithm. The hi-

erarchical structure provided a multilevel diffusion LMS algorithm that improved

performance but at the cost of extra computational cost. Another variant used

adaptive combiners instead of a fixed combination technique [16]. At each itera-

tion, a sensor forms an error-based matrix from the estimates of the previous two

iterations of each nearby neighbor. Based on the cross-correlation of this error

matrix, the combiner weight of a certain neighbor is selected at every iteration and

then the diffusion LMS algorithm is run. This scheme slightly improved results

but was computationally very extensive. For applications where fast convergence

is required and sensors can be burdened with increased computational load, a

distributed RLS scheme was introduced in [36]. A detailed analysis and design

of the diffusion RLS scheme was given in [37]. An improved variant of [7] was

introduced in [14]. The authors use a Markovian chain to randomly select the

order of the cycle for the incremental scheme at each iteration. This solves the

problem of the link failure faced by the original algorithm in [7] but comes at the

price of extra computational cost required to select the next sensor node every

time.

Several distributed estimation algorithms are dependent on iterative optimiza-

tion methods, which capitalize upon the separable structure of the cost function
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that defines the specific estimator. The sample mean estimator was formulated in

[38] as an optimization problem, and was solved in a distributed fashion using a

primal dual approach such as the one described in [39]. Similarly, the incremental

schemes in [7, 32, 36, 40] are all based in incremental (sub)gradient methods that

have been described generally in [41] and specifically for applications in [42]. Even

the diffusion LMS algorithm in [8] has been recently shown to have a connection

with incremental strategies, when these are applied to optimize an approximate

reformulation of the LMS cost [34]. Building on the framework introduced in

[9, 10], the Distributed-LMS algorithm was developed in [43], and was obtained

upon recasting the respective decentralized estimation problem as multiple equiv-

alent constrained subproblems. The resulting minimization subtasks can be simul-

taneously solved across sensors, when carried out using the alternating-direction

method of multipliers (AD-MoM) [39, 44]. As a result, the algorithm divides the

sensors into bridge nodes and data nodes, connected via Lagrangian multipliers.

The constraint set upon the estimates is such that all nodes reach the same es-

timate asymptotically. The work in [12] gives a detailed performance analysis

of this algorithm comparing it with diffusion LMS algorithms given in [8, 34].

Based on a similar approach, the distributed RLS algorithm was developed in

[11]. However, the hierarchical division of bridge and data nodes was removed

using the alternating minimization algorithm of [45], making it simpler and more

robust. Similar ideas have been applied in spectrum cartography for cognitive

radio networks [46], distributed demodulation [47] and distributed classification
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[48].

Recently, the diffusion algorithm was used to synchronize the movement of

mobile sensors moving towards a specific target [49]. This work showed the ro-

bustness of the algorithm in an environment where the parameters being estimated

are constantly changing. Each sensor has access to a direction vector as well its

own position. The data being sensed by each node is simply the position of the

target towards which the network has to travel. Since the sensed data is noisy, the

exact position has to be estimated and each node has to make sure that it is mov-

ing in sync with the rest of the nodes. Therefore, each node estimates the position

of the target and also updates its own position and speed with respect to its neigh-

boring sensors. Although the work presented in [49] is application specific, yet it

can be extended to other applications, showing the usefulness of the algorithm for

systems working in stationary as well as non-stationary environments.

All the algorithms discussed above assume that each node has access to com-

plete regressor data. The problem boils down to estimating an unknown system

for which the input and output are known. This problem is akin to a system iden-

tification problem. However, in certain applications this luxury is not available.

Taking the example of the work in [49], the direction vector may not be known to

the sensor nodes. This makes the problem a blind estimation problem. So far no

research has been done to find out a solution for the blind estimation problem.

Although blind estimation has been studied in great detail in literature yet none

of the blind estimation algorithms have been applied to the case of distributed
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estimation in a WSN.

1.3 Dissertation Contributions

The Thesis contributions are briefly listed here. First, a variable step-size diffusion

least mean square (VSSDLMS) algorithm is formulated. A generalized version of

the algorithm is also proposed. A complete performance analysis of the algorithm

is carried out.

Next, a noise-constrained diffusion least mean square (NCDLMS) algorithm is

derived based on the constraint that the noise variance is known. A generalized

version of the new algorithm is also proposed. A complete performance analysis is

carried out including the case where the noise variance is not estimated correctly

and also when the noise variance is completely omitted from the calculations.

Finally, blind block diffusion algorithms are proposed. Inspired from algo-

rithms based on second order statistics, two recursive algorithms are proposed

and then used for blind block estimation over adaptive networks. Their perfor-

mance and computational complexity is discussed.

1.4 Dissertation Layout

The remainder of this thesis is organized as follows. Chapter 2 describes the

system model and details the problem statement. The diffusion LMS algorithm

[15] is given as an existing solution. Chapter 3 introduces variable step-size LMS
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(VSSLMS) algorithms and states the benefits of using these algorithms. The

VSSLMS algorithm providing the best trade-off between complexity and per-

formance is then chosen and incorporated in the diffusion scheme. The result-

ing algorithm, named variable step-size diffusion LMS (VSSDLMS) algorithm is

then studied in detail. Convergence and steady-state analyses are carried out fol-

lowed by simulations results for the proposed algorithm under different scenarios.

Chapter 4 introduces and derives the so-called noise-constrained diffusion LMS

(NCDLMS) algorithm after motivating the need to use the said constraint. Con-

vergence and steady-state analyses are carried out. At the end, simulation results

are given followed by a discussion on the performance of the proposed algorithm.

Chapter 5 begins with a motivation for the need of blind algorithms. Two blind

estimation algorithms are discussed. These algorithms are then converted into a

recursive form and then incorporated in the diffusion scheme. Simulation results

compare the algorithms followed by a discussion on the performance of the algo-

rithms. Chapter 6 lists the contributions of this work followed by some future

recommendations and ends with a conclusion to this work.
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CHAPTER 2

DISTRIBUTED ESTIMATION

PROBLEM AND NETWORK

MODEL

In this work, different algorithms have been developed to deal with the problem

of distributed estimation over adaptive wireless sensor networks (WSNs). This

chapter gives an overview of the system model of a wireless sensor network and

then formulates the problem statement for distributed estimation. In the end,

existing solutions to the problem are briefly explained.

2.1 System Model

Consider a set of sensor nodes spread over a geographical area in close proximity

to each other as depicted in Fig. 2.1. The nodes are assumed to be spread in
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Node 1 
{d1(i), u 1,i }

Node 2 
{d2(i), u 2,i }

Node k 
{dk(i), u k,i }

Node N 
{dN(i), u N,i }

Figure 2.1: Adaptive network of N nodes.
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such a fashion that the whole network is interconnected. However, each node has

access to only the neighbor nodes which are within communication range. Data

is shared over a single-hop only even though the nodes are all connected through

multi-hops. Each node k has access to scalar measurements dk, which are sensed

by the node, as well as the regressor vector uk, which is of size (1 × M). The

neighbors of any node k are given by Nk.

2.2 Problem Statement

The purpose of the nodes in the network is to estimate a certain parameter of

interest. The parameter can be denoted by a vector wo of size (M × 1). The

scalar measurement sensed by node k, dk at any time instant i, is given as

dk (i) = uk (i)wo + vk (i) , (2.1)

where vk (i) is zero-mean additive white noise. The simplest solution to this

estimation problem is for each node to estimate the unknown vector using only

its own set of data. Such a case is termed as the no cooperation case as the nodes

are not communicating with each other. The spatial diversity of the nodes is not

being utilized here and so this case is counter productive as the poor performance

of the nodes with low SNR will result in poor performance of the network. In

order to obtain a fully distributed estimation algorithm, a cost function is needed

that defines the complete network. Thus, the cost function is defined as follows:

21



J (w) =
N∑

k=1

Jk (w)

=
N∑

k=1

E
[|dk − ukw|2]. (2.2)

Consequently, the steepest descent solution for this problem is given as

wk (i + 1) = wk (i) + μ

N∑
k=1

(rdu,k − Ru,kwk (i)), (2.3)

where rdu,k = E
[
dku

T
k

]
is the cross-correlation between dk and uk, and Ru,k =

E
[
uT

k uk

]
is the auto-correlation of uk. The recursion (2.3) requires full knowledge

of the statistics of the entire network. Moreover, it requires exact statistical

knowledge of the data, which is not possible in a practical scenario. A more

practical solution utilizes the distributive nature of the network by dividing the

cost function into local cost functions that add up to the global cost function.

The solution to the local cost functions is similar to (2.3). However, a practical

approach leads to the use of the least mean square (LMS) algorithm as a solution.

The work in [8] gives a fully distributed solution, which is modified and improved

in [15]. Using the Adapt-then-Combine (ATC) scheme, the diffusion LMS (DLMS)

algorithm [15] is given as

Ψk (i + 1) = wk (i) + μkuk (i) [dk (i) − uk (i)wk (i)]

wk (i + 1) =
∑
l∈Nk

clkΨl (i + 1), (2.4)
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where Ψk (i + 1) is the intermediate update, clk is the weight connecting node

k to its neighboring node l ∈ Nk and can be fixed according to a chosen rule

[8], and μk is the step-size for the kth node. Each node uses its own set of data,

{dk(i),uk(i)}, to get an intermediate update for the estimate. Then intermediate

updates from neighbor nodes are combined together through a weighted sum to

get the final update for the estimate.

Unlike clk in (2.4), which have constant values, the work in [16] improves

the DLMS algorithm by introducing adaptive combiner weights clk (i). An error

matrix is defined for each node at every iteration, defined as

Δψk (i)
Δ
= [ψl (i) − ψl (i − 1)]l∈Nk

, (2.5)

which is used to form the error correlation matrix given by

QΨ,k = ΔΨT
k (i) ΔΨk (i) . (2.6)

Based on this matrix, new weighting metrics are calculated and the combiner

weights are then updated using these metrics. Ultimately, the second equation in

(2.4) becomes
wk (i + 1) =

∑
l∈Nk

clk(i)Ψl (i + 1), (2.7)

where the combiner weights are updated at every iteration. This algorithm re-

quires N 2
k M extra multiplications as well as N 2

k (M − 1) extra additions just to

evaluate the error correlation matrix at each iteration. For a relatively large sized

network, the algorithm becomes very heavy. An improvement in performance is
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achieved using this algorithm but at the cost of significant increase in computa-

tional complexity.

Another algorithm was suggested in [11] based on the constraint that each

node arrives at the same estimate asymptotically. As a result of this constraint,

the cost function is modified accordingly to look like the following:

J (w) =
N∑

k=1

(
E
[|dk − ukwk|2

]
+ pT

k

∑
l∈Nk

(wk − wl) +
∑
l∈Nk

c

2
‖wk − wl‖2

)
,

(2.8)

where pk defines the Lagrangian vector for node k, Nk defines the number of

neighbors for node k and c is a positive constant. The distributed algorithm is

given as
pk (i) = pk (i − 1) + c

∑
l∈Nk

(wk (i) − wl (i)), (2.9)

and

wk (i + 1) = wk (i) + μk

[
2uT

k (i) ek (i) − pk (i) − c
∑
l∈Nk

(wk (i) − wl (i))

]
.

(2.10)

As can be seen from (2.9) and (2.10), the algorithm is computationally more

complex than the DLMS algorithm. However, the performance of this algorithm

is not as good as that of the DLMS algorithm except when there is a very noisy

connection between neighbor nodes. Even in such a case the performance of the

two algorithms is comparable, making the DLMS algorithm the preferred choice.
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2.3 Network Model

The network setup is done as follows. The sensor nodes are spread randomly over

an area normalized to (1× 1) square units. Based on the amount of transmitting

power each node is allowed, the communication range r is set. All the nodes that

are within the range r of any node k comprise the neighbors of that node k. This

model is followed throughout this work. It is also assumed that communication

between nodes is noise free.

Consider a network of N = 20 nodes with communication range r = 0.3. Here

we compare the performance of the above given algorithms at an SNR of 20 dB.

The combiner weights for the DLMS algorithm are formed using the Metropolis

rule [8]. The value for c in the distributed LMS algorithm is chosen to be 1. The

results are shown in Fig. 2.2. As shown in the figure, the DLMS with adap-

tive combiners algorithm performs best. Despite its computational complexity,

the distributed LMS algorithm does not perform well compared with the DLMS

algorithm.

Next, the effect of varying the network size is compared for all the algorithms.

Figure 2.3 shows how the connectivity varies with the range for each node. The

average number of neighbors per node increases as the number of nodes in the net-

work increases. Figure 2.4 shows how the performance of each algorithm improves

as the network size increases resulting in greater connectivity for each node. The

figure shows steady-state MSD values. For a small network size, the performance

of each algorithm is similar. However, the performance of the DLMS algorithm
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and the DLMS with adaptive combiners algorithm improves significantly as the

connectivity increases. The increase in connectivity results in an increase in com-

putational complexity as well. However, as shown in Fig. 2.4, this increase in

complexity is well compensated by improvement in performance.
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Figure 2.2: MSD comparison for SNR of 20 dB with N = 20 and r = 0.3.
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Figure 2.4: Steady-state MSD values for varying number of nodes and r = 0.3.
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CHAPTER 3

VARIABLE STEP-SIZE

DIFFUSION LEAST MEAN

SQUARE ALGORITHM

3.1 Introduction

The DLMS algorithm [8],[15] uses a fixed step-size LMS algorithm. Improvement

in performance is achieved through the use of adaptive combiner weights in [16] but

the cost is heavy computational complexity as shown in [16]. Taking motivation

from the algorithm in [16], the work in this chapter improves the DLMS algorithm

by using a variable steps-size LMS (VSSLMS) algorithm [50]-[54]. Here, first the

well known VSSLMS algorithms are compared, then the most suitable algorithm

identified to provide the best trade-off between performance and complexity is

chosen. Second, detailed convergence and steady-state analyses are carried out.
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Next, computational complexity of the proposed algorithm is compared with that

of the previous algorithms. Finally, extensive simulations are carried out to test

the robustness of the proposed algorithm under different scenarios. Moreover, the

simulation results are found to corroborate the theoretical findings very well.

3.2 Variable Step-Size LMS (VSSLMS) Algo-

rithms

Many VSSLMS algorithms have been devised over the years to eliminate the

problem of the LMS algorithm with fixed step-size. Some have been designed for

specific applications. Other algorithms, however, are general and can be slightly

modified to fit a certain application. Most algorithms provide good convergence

with a low error floor but are computationally complex. Two algorithms that

are widely regarded as simple yet effective were developed separately in [50] and

[51]. An improved version for [50] was presented in [52]. Another variant of the

VSSLMS algorithm was suggested in [53] and further improved in [54]. In the

ensuing, these algorithms are discussed and used for comparison in this work.

For the LMS algorithm, the update equation is given by

w (i + 1) = w (i) + μuT (i) e (i) , (3.1)

where w (i) is the estimate of the unknown vector, μ is the step-size, u (i) is a row

input regressor vector, and e (i) is the instantaneous error. Here, the step-size μ
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is fixed. On the other hand, the algorithms that vary the step-size use different

strategies to control the variations in the step-size. The step-size can initially

be taken large but within the stability range, for fast initial convergence. The

update equation then automatically adjusts the step-size so that it becomes small,

resulting in a low steady-state mean square error. The initial fast convergence

allows the algorithm to reach the error floor much faster than a fixed step-size

LMS algorithm does. The parameters of the algorithm, however, have to be

chosen carefully so that the algorithm does not diverge.

The algorithm in [50] provides remarkable improvement in performance with

small computational complexity and is therefore the most opted VSSLMS algo-

rithm. Only a few extra multiplications and additions are required. However, the

algorithm is directly dependent on the energy of the measurement noise and may

result in a large steady-state misadjustment [51], especially at low SNR. Another

approach was presented in [51] to counter this problem. This algorithm uses the

correlation between the current error and the previous error in the update equa-

tion instead of the error energy. This algorithm tends to remove the problem

by using the correlation as the update criterion in order to provide the required

solution. The work also shows improved performance over that of [50]. Lately,

however, the work in [55] shows that if the parameters are chosen carefully then

the VSSLMS algorithm in [50] outperforms that of [51]. The work in [52] enhances

the algorithm of [50] by using data correlation in the update equation of the step-

size. Finally, the strategies in [53] and [54] simply utilize the cross-correlation
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between the present and past regressor input vectors to update the step-size. The

various update equations are summarized in 3.1 below. Simulation results show

that for the current scenario, the algorithm in [50] provides the best trade-off be-

tween performance and complexity. Therefore, this algorithm is adopted in this

work.

In [16], the authors introduce a method to vary the combination weights at

every iteration in order to improve performance. This method is computationally

very complex and results only in slight improvement in performance. To prove

useful, a VSSLMS-based algorithm that is computationally efficient and yielding

better performance than that of [16] was introduced in [17]. The VSSLMS algo-

rithm used in [17] was adopted from [50]. Next, detailed analysis of the proposed

VSSLMS algorithm is carried out in the coming sections. The authors in [17] in-

troduced a VSSLMS based algorithm that is computationally efficient compared

with the work in [16] and shows better performance as well. The VSSLMS algo-

rithm used in [17] was taken from [50]. Here, we discuss other VSSLMS algorithms

to find the best option.

3.3 The Proposed Algorithm

The VSSLMS algorithms show marked improvement over the LMS algorithm at a

low computational complexity [50]-[54]. Therefore, if this variation is inserted in

the distributed algorithm this would achieve an improved performance. A heavy
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Algorithm Step-size update equation

Kwong-Johnston [50] μ (i + 1) = αμ (i) + γe2 (i)

p (i) = βp (i − 1) + (1 − β) e (i) e (i − 1)
Aboulnasr-Mayyas [51]

μ (i + 1) = αμ (i) + γp2 (i)

Costa-Bermudez [52] μ (i + 1) = αμ (i) + γ
[
ku (i)uT (i − 1) − 1

]
e2 (i)

Mathews-Xie [53] μ (i + 1) = μ (i) + γe (i) e (i − 1)uT (i − 1)u (i)

Table 3.1: Step-size update equations for VSSLMS algorithms
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step-size adaptation algorithm would not be suitable because of the physical lim-

itations of the sensor node. However, the algorithms being discussed here are not

computationally heavy and are therefore well suited for this application.

The proposed algorithm simply incorporates the VSSLMS algorithm into the

diffusion scheme, given here again for ease of explanation

Ψk (i + 1) = wk (i) + μkuk (i) [dk (i) − uk (i)wk (i)]

wk (i + 1) =
∑
l∈Nk

clkΨl (i + 1). (3.2)

Using a VSSLMS algorithm, the step-size will also become variable in this system

of equations. Then the variable step-size diffusion LMS (VSSDLMS) algorithm is

governed by the following:

Ψk (i + 1) = wk (i) + μk (i)uk (i) (dk (i) − uk (i)wk (i)) ,

μk (i + 1) = f [μk (i)] , (3.3)

wk (i + 1) =
∑
l∈Nk

clkΨl (i + 1),

where f [μk (i)] is the step-size adaptation function that can be defined by one of

the recursions given in Table 3.1. For our analysis we will use the update equation

of [50]. So the update for the step-size becomes

μk (i + 1) = αμk (i) + γ (dk (i) − uk (i)wk (i))2

= αμk (i) + γe2
k (i) , (3.4)
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where ek (i) = dk (i) − uk (i)wk (i).

3.3.1 Generalized VSSDLMS algorithm

A specialized case of the above proposed algorithm is now presented. Assuming

that enough time delay is allowed between iterations for the nodes to share twice

the amount of data and that the extra energy required can also be compensated,

the algorithm can be generalized. Instead of sharing only the intermediate es-

timates with neighbor nodes, all the available data is shared. The generalized

algorithm is thus given by

Ψk,gen (i + 1) = wk,gen (i) + μk,gen (i)
∑
l∈Nk

slku
T
l (i) (dl (i) − ul (i)wl,gen (i)),

μk,gen (i + 1) = αμk,gen (i) + γe2
k,gen (i) (3.5)

wk,gen (i + 1) =
∑
l∈Nk

clkΨl,gen (i + 1),

where ek,gen (i) =
∑

l∈Nk

slk (dl (i) − ul (i)wl,gen (i)) and slk is the combiner weight

for the sensor data being shared by node l with node k. As can be seen, each

node is now transmitting twice the amount of data compared with the originally

proposed algorithm. An extra weighted sum is required and the computational

cost increases slightly. However, the main cost will be the added time delay and

the extra energy required for processing and sharing the data, which will result in

a reduction in lifetime of the sensor node. However, if these can be compensated

for, depending on the application, then the generalized algorithm can be used for

better performance, as will be shown later through simulation results.
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In order to better understand the cost effect of the generalized case, let us look

at an example. Suppose that the time required to transmit or receive a packet

is τ seconds. The number of neighbors for any node k is Nk. So the total time

required for node k to transmit or receive shared data is given by Nkτ seconds.

If we assume the total processing time for the original algorithm to be τ1 seconds

and the power required per process to be Pk, then the total energy consumed by

the node for a single iteration will be given by

Ek,0 = Pk(Nkτ + τ1). (3.6)

The generalized algorithm requires to transmit and receive an extra set of packets

and then perform an extra weighted sum operation. So the total time required

can be given as (2Nkτ + τ1 + Δ) seconds, where Δ seconds is the time required

for the extra calculation. So the total energy consumed by the node for a single

iteration of the generalized algorithm will be given by

Ek,1 = Pk(2Nkτ + τ1 + Δ)

= Ek,0 + Pk(Nkτ + Δ)

= Ek,0 + ΔEk, (3.7)

where ΔEk = Pk(Nkτ + Δ). Since the lifetime of a node is inversely proportional

to the energy consumed, the ratio between the new and old lifetimes of the sensor
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is given as

ζk =
Ek,0

Ek,1

=
Ek,0

Ek,0 + ΔEk

=
Nkτ + τ1

2Nkτ + τ1 + Δ
(3.8)

So it can be seen that the energy consumed mainly depends on the time taken

by the node to transmit and receive data and to process it. For relatively smaller

networks the generalized algorithm can be used without much loss in battery life.

However, as the network size grows significantly large, the number of neighbors

increases for each node and compared with the processing time, the time required

for transmitting and receiving shared data becomes significantly large. As a re-

sult, the lifetime of a node becomes nearly half. So, even though the generalized

algorithm provides significant improvement in performance, it is not very cost

efficient and therefore, is considered here only as a special case.

3.4 Performance analysis

Since data between nodes is exchanged, each update is affected by the weighted

average of the previous estimates. Therefore, it is suitable to study the perfor-

mance of the complete network. Hence, some new variables need to be introduced
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and the local variables are transformed into global variables as follows [8]:

w (i) = col {w1 (i) , ...,wN (i)}, Ψ (i) = col {Ψ1 (i) , ...,ΨN (i)},

U (i) = diag {u1 (i) , ...,uN (i)}, D (i) = diag {μ1 (i) IM , ..., μN (i) IM},

d (i) = col {d1 (i) , ..., dN (i)}, v (i) = col {v1 (i) , ..., vN (i)}.

From these new variables a completely new set of equations representing the entire

network is formed, starting with the relation between the measurements

d (i) = U (i)w(o) + v (i) , (3.9)

where w(o) = Qwo is the global unknown vector and Q = col {IM, IM, ..., IM} is a

MN ×M matrix. Similarly, the update equations can be remodeled to represent

the entire network

Ψ (i + 1) = w (i) + D (i)UT (i) (d (i) − U (i)w (i)) ,

D (i + 1) = f [D (i)] , (3.10)

w (i + 1) = GΨ (i + 1) ,

where G = C⊗ IM , C is a N × N weighting matrix, where {C}lk = clk, ⊗ is the

block-Kronecker product and f [D (i)] is the step-size update function that can be

applied individually for each node as the matrix D (i) is diagonal. For the case of
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the VSSLMS algorithm of [50], this update equation will become

D (i + 1) = αD (i) + γE (i) , (3.11)

where

E (i) = diag
{
e2
1 (i) IM , e2

2 (i) IM , ..., e2
N (i) IM

}
. (3.12)

Considering the above set of equations, the mean analysis, the mean-square anal-

ysis and the steady-state behavior of the VSSDLMS algorithm are carried out.

3.4.1 Mean Analysis

To begin with, let us introduce the global weight-error vector, defined as

w̃ (i) = w(o) − w (i) . (3.13)

Since Gw(o) Δ
= w(o), incorporating the global weight-error vector into (3.10), we

get

w̃ (i + 1) = GΨ̃ (i + 1)

= Gw̃ (i) − GD (i)UT (i) (U (i) w̃ (i) + v (i))

= G
(
IMN − D (i)UT (i)U (i)

)
w̃ (i) − GD (i)UT (i)v (i) .

(3.14)
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where Ψ̃ (i) = w(o) − Ψ (i). Taking the expectation on both sides of the above

equation gives

E [w̃ (i + 1)] = G (IMN − E [D (i)]RU) E [w̃ (i)] , (3.15)

where we have assumed that the step-size matrix D (i) is independent of the

regressor matrix U (i) [50]. According to this assumption, for small values of γ,

E
[
D (i)UT (i)U (i)

] ≈ E [D (i)] E
[
UT (i)U (i)

]
, (3.16)

where E
[
UT (i)U (i)

]
= RU is the auto-correlation matrix of U (i). Also, since

the measurement noise is spatially uncorrelated, the expectation of the second

part of the right-hand side of (3.14) is zero.

From [15], we see that the diffusion algorithm is stable if the combination

weights are restricted to within the unit circle. However, in this case stability is

also dependent on the step-size. In this case, the algorithm will be stable if

n∏
i=0

(I − E [μk (i)]Ru,k) → 0, as n → ∞ (3.17)

which holds true if the mean of the step-size is governed by

0 < E [μk (i)] <
2

λmax (Ru,k)
, 1 ≤ k ≤ N, (3.18)

where λmax (Ru,k) is the maximum eigenvalue of the auto-correlation matrix Ru,k.
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3.4.2 Mean-Square Analysis

In this section the mean-square analysis of the VSSDLMS algorithm is inves-

tigated. We take the weighted norm of (3.14) [56]-[57] and then applying the

expectation operator on both sides of the equation. This yields the following:

E
[‖w̃ (i + 1)‖2

Σ

]
= E

[∥∥G (IMN − D (i)UT (i)U (i)
)
w̃ (i) − GD (i)UT (i)v (i)

∥∥2

Σ

]

= E
[‖w̃ (i)‖2

GT ΣG

]− E
[
‖w̃ (i)‖2

GT ΣY(i)U(i)

]

−E
[
‖w̃ (i)‖2

UT (i)YT (i)ΣG

]
+ E

[
‖w̃ (i)‖2

UT (i)YT (i)ΣY(i)U(i)

]

+E
[
vT (i)YT (i)ΣY (i)v (i)

]
= E

[‖w̃ (i)‖2
Σ′
]
+ E

[
vT (i)YT (i)ΣY (i)v (i)

]
, (3.19)

where

Y (i) = GD (i)UT (i) (3.20)

Σ′ = GTΣG − GTΣY (i)U (i) − UT (i)YT (i)ΣG

+UT (i)YT (i)ΣY (i)U (i) . (3.21)

Using the data independence assumption [57] and applying the expectation oper-

ator gives
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Σ′ = GTΣG − GTΣE [Y (i)U (i)] − E
[
UT (i)YT (i)

]
ΣG

+E
[
UT (i)YT (i)ΣY (i)U (i)

]
= GTΣG − GTΣGE [D (i)] E

[
UT (i)U (i)

]
−E
[
UT (i)U (i)

]
E [D (i)]GTΣG

+E
[
UT (i)YT (i)ΣY (i)U (i)

]
. (3.22)

Gaussian Data

The evaluation of the expectation in the last term in (3.22) is very complex for

non-Gaussian data. Therefore, it is assumed here that the data is Gaussian in

order to evaluate (3.22). For Gaussian data, the auto-correlation matrix can

be decomposed as RU = TΛTT , where Λ is a diagonal matrix containing the

eigenvalues for the entire network and T is a matrix containing the eigenvectors

corresponding to these eigenvalues. Using this eigenvalue decomposition, we define

the following relations

w̄ (i) = TT w̃ (i) Ū (i) = U (i)T Ḡ = TTGT

Σ̄ = TTΣT Σ̄′ = TTΣ′T D̄ (i) = TTD (i)T = D (i).

Using these relations (3.19) and (3.22) can be rewritten, respectively, as

E
[‖w̄ (i + 1)‖2

Σ̄

]
= E

[‖w̄ (i)‖2
Σ̄′
]
+ E

[
vT (i) ȲT (i) Σ̄Ȳ (i)v (i)

]
, (3.23)
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and

Σ̄′ = ḠT Σ̄Ḡ − ḠT Σ̄ḠE [D (i)] E
[
ŪT (i) Ū (i)

]
−E
[
ŪT (i) Ū (i)

]
E [D (i)] ḠT Σ̄Ḡ

+E
[
ŪT (i) Ȳ (i) Σ̄Ȳ (i) Ū (i)

]
, (3.24)

where Ȳ (i) = ḠD (i) ŪT (i).

It can be seen that E
[
ŪT (i) Ū (i)

]
= Λ. Also, using the bvec operator [58],

we have σ̄ = bvec
{
Σ̄
}
. Now, let Rv = Λv � IM denote the noise variance matrix

for the entire network, where � denotes the block Kronecker product [58]. Hence,

the second term of the right-hand side of (3.23) is

E
[
vT (i) ȲT (i) Σ̄Ȳ (i)v (i)

]
= bT (i) σ̄, (3.25)

where b (i) = bvec
{
GRvE [D2 (i)]ΛGT

}
.

The fourth-order moment E
[
ŪT (i) ȲT (i) Σ̄Ȳ (i) Ū (i)

]
remains to be evalu-

ated. Using the step-size independence assumption and the � operator, we get

bvec
{
E
[
ŪT (i) ȲT (i) Σ̄Ȳ (i) Ū (i)

]}
= (E [D (i) � D (i)]) A

(
GT � GT

)
σ̄,

(3.26)

where we have from [8]

A = diag {A1,A2, ...,AN} , (3.27)
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and each matrix Ak is given by

Ak = diag
{
Λ1 ⊗ Λk, ..., λkλ

T
k + 2Λk ⊗ Λk, ...,ΛN ⊗ Λk

}
. (3.28)

The output of the matrix E [D (i) � D (i)] can be written as

(E [D (i) � D (i)])kk

= E [diag {μk (i) IM ⊗ μ1 (i) IM , ..., μk (i) IM ⊗ μk (i) IM ,

..., μk (i) IM ⊗ μN (i) IM}]

= E
[
diag

{
μk (i) μ1 (i) IM2 , ..., μ2

k (i) IM2 , ..., μk (i) μN (i) IM2

}]
= diag

{
E [μk (i)] E [μ1 (i)] IM2 , ..., E

[
μ2

k (i)
]
IM2 ,

..., E [μk (i)] E [μN (i)] IM2} (3.29)

Now applying the bvec operator on the weighting matrix Σ̄′, we get

bvec
{
Σ̄′} = σ̄′ = [IM2N2 − (IMN � ΛE [D (i)]) − (ΛE [D (i)] � IMN)

+ (E [D (i) � D (i)]) A]
(
GT � GT

)
σ̄

= F (i) σ̄, (3.30)

where

F (i) = [IM2N2 − (IMN � ΛE [D (i)]) − (ΛE [D (i)] � IMN)

+ (E [D (i) � D (i)]) A]
(
GT � GT

)
. (3.31)
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Then (3.19) will look like the following:

E
[‖w̄ (i + 1)‖2

σ̄

]
= E

[
‖w̄ (i)‖2

F(i)σ̄

]
+ bT (i) σ̄, (3.32)

and hence, the transient behavior of the network is characterized by (4.40).

Learning Behavior

In this section, the learning behavior of the VSSDLMS algorithm is evaluated.

Starting with w̄0 = w(o) and D0 = μ0IMN , we have for iteration i + 1

E (i − 1) = diag
{(

E
[‖w̄ (i − 1)‖2

λ

]
+ σ2

v,1

)
IM , ...,

(
E
[‖w̄ (i − 1)‖2

λ

]
+ σ2

v,N

)
IM

}
E [D (i)] = αE [D (i − 1)] + γE (i − 1)

E
[
D2 (i)

]
= α2E

[
D2 (i − 1)

]
+ 2αγE (i − 1) + γ2E2 (i − 1)

F (i) = [IM2N2 − (IMN � ΛE [D (i)]) − (ΛE [D (i)] � IMN)

+ (E [D (i) � D (i)]) A]
(
GT � GT

)
b (i) = bvec

{
GRvE

[
D2 (i)

]
ΛGT

}
,

then incorporating the above relations in (4.40) gives

E
[‖w̄ (i + 1)‖2

σ̄

]
= E

[
‖w̄ (i)‖2

F(i)σ̄

]
+ bT (i) σ̄

=
∥∥w̄(o)

∥∥2�
i�

m=0
F(m)

�
σ̄

+

[
i−1∑
m=0

bT (m)

(
i∏

n=m+1

F (n)

)
+bT (i) IMN

]
σ̄. (3.33)
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Now, subtracting the results of iteration i from from those of iteration i + 1

and simplifying we get

E
[‖w̄ (i + 1)‖2

σ̄

]
= E

[‖w̄ (i)‖2
σ̄

]
+
∥∥w̄(o)

∥∥2

F′(i)(F(i)−IMN )σ̄

+
[
F′′ (i) (F (i) − IMN) + bT (i) IMN

]
σ̄. (3.34)

where

F′ (i) =
i−1∏
m=0

F (m), (3.35)

F′′ (i) =
i−2∑
m=0

bT (m)

(
i−1∏

n=m+1

F (n)

)
+ bT (i) IMN , (3.36)

which can be defined iteratively as

F′ (i + 1) = F′ (i)F (i) , (3.37)

F′′ (i + 1) = F′′ (i)F (i) + bT (i) IMN . (3.38)

In order to evaluate the Mean-Square Deviation (MSD) and Excess Mean-

Square Error (EMSE), we need to define the corresponding weighting matrix for

each of them. Taking σ̄ = (1/N) bvec {IMN} = qη and η (i) = (1/N) E
[‖w̄ (i)‖2]

for the MSD we get

η (i) = η (i − 1) +
∥∥w̄(o)

∥∥2

F′(i)(F(i)−IMN )qη
+
[
F′′ (i) (F (i) − IMN) + bT (i) IMN

]
qη.

(3.39)
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Similarly, taking σ̄ = (1/N) bvec {Λ} = λζ and ζ (i) = (1/N) E
[‖w̄ (i)‖2

Λ

]
, the

EMSE behavior is governed by

ζ (i) = ζ (i − 1) +
∥∥w̄(o)

∥∥2

F′(i)(F(i)−IMN )λζ
+
[
F′′ (i) (F (i) − IMN) + bT (i) IMN

]
λζ .

(3.40)

3.4.3 Steady-State Analysis

From (3.11), it is seen that the step-size for each node is independent of data

from other nodes. Even though the connectivity matrix, G, does not permit the

weighting matrix, F (i), to be evaluated separately for each node, this is not the

case for the step-size of any node. Therefore, taking the approach of [50], we first

find the misadjustment, given by

Mk =
1 −
[
1 − 2

(3−α)γσ2
v,k

1−α2 tr (Λk)
]1/2

1 +
[
1 − 2

(3−α)γσ2
v,k

1−α2 tr (Λk)
]1/2

, (3.41)

which leads to the steady-state values for the step-size and its square for each

node

μss,k =
γσ2

v,k (1 + Mk)

1 − α
, (3.42)

μ2
ss,k =

2αγμss,kσ
2
v,k (1 + Mk) + γ2σ4

v,k (1 + Mk)
2

1 − α2
. (3.43)
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Incorporating these steady-state relations in (4.41) to get the steady-state weight-

ing matrix as

Fss = [IM2N2 − (IMN � ΛE [Dss]) − (ΛE [Dss] � IMN)

+ (E [Dss � Dss]) A]
(
GT � GT

)
, (3.44)

where Dss = diag {μss,kIM}.

Thus, the steady-state mean-square behavior is given by

E
[‖w̄ss‖2

σ

]
= E

[‖w̄ss‖2
Fssσ

]
+ bT

ssσ, (3.45)

where bss = GRvD
2
ssΛGT and D2

ss = diag
{
μ2

ss,kIM

}
. Now solving (4.54), we get

E
[‖w̄ss‖2

σ

]
= bT

ss [IM2N2 − Fss]
−1 σ. (3.46)

This equation gives the steady-state performance measure for the entire net-

work. In order to solve for steady-state values of MSD and EMSE, we take σ̄ = qη

and σ̄ = λζ , respectively, as in (4.48) and (4.49). This gives us the steady-state

values for MSD and EMSE as follows

ηss = bT
ss [IM2N2 − Fss]

−1 qη, (3.47)

ζss = bT
ss [IM2N2 − Fss]

−1 λζ . (3.48)
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3.5 Numerical Results

In this section, several simulation scenarios are considered and discussed to assess

the performance of the proposed VSSDLMS algorithm. Results have been con-

ducted for different average signal-to-noise ratio (SNR) values. The performance

measure is the mean square deviation (MSD).

3.5.1 Comparison of the VSSLMS algorithms

First, the discussed VSSLMS algorithms are compared in a WSN environment

and this comparison is reported in Fig. 3.1. As can be depicted from Fig. 3.1 the

algorithm in [50] performs the best and therefore this algorithm is chosen for the

proposed VSSDLMS algorithm.

3.5.2 Sensitivity Analysis

Now we perform a sensitivity analysis for the VSSDLMS algorithm. Since the

VSSDLMS algorithm depends upon the choice of α and γ, these values are varied

to check the performance of the algorithm. As can be seen from Fig. 3.2 the

performance of the VSSDLMS algorithm degrades as α gets larger. Similarly,

performance of the proposed algorithm improves as γ increases as depicted in Fig.

3.3. Based on this investigation, the choice of α and γ is made.
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Figure 3.1: MSD for various VSSLMS algorithms applied to diffusion.
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Figure 3.2: Steady-state MSD values for varying values of α.
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Figure 3.3: Steady-state MSD values for varying values of γ.
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3.5.3 Performance of the proposed algorithm

Next, the proposed algorithm is compared with existing algorithms, which are the

no cooperation case (NCLMS), the distributed LMS (DSLMS) [11], the DLMS

[8], the DLMS with adaptive combiners (DLMSAC) [16] and the diffusion RLS

(DRLS) [37]. The length of the unknown vector is taken as M = 4. The size

of the network is N = 20. The sensors are randomly placed in an area of one

unit square. The input regressor vector is assumed to be white Gaussian with

auto-correlation matrix having the same variance for all nodes. Results are shown

for two different values of SNR and communication range 0.3. Figure 3.4 reports

the performance behavior of the different algorithms at an SNR of 10 dB. As can

be seen from this figure the performance of the proposed VSSDLMS algorithm

comes after that of the DRLS algorithm. The improvement in performance of the

VSSDLMS algorithm is more for an SNR of 20 dB as depicted in Fig. 3.5. In

both of these figures, when compared with other algorithms of similar complexity,

the improvement in performance of the VSSDLMS algorithm is very significant.

Similar performance for the steady-state behavior is obtained by the proposed

VSSDLMS algorithm at SNR of 10 and 20 dB as shown, respectively, in Fig. 3.6

and Fig. 3.7. The DRLS algorithm performs better as expected but the proposed

algorithm is clearly better than the remaining algorithms, both in convergence

speed as well as steady-state error. Also, diffusion results in effecting the step-size

variation of neighboring nodes and as a result the steady-state MSD for all nodes

is nearly the same for all cases. This is in contrast with other algorithms for which
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Figure 3.5: MSD for 20 nodes at SNR 20 dB.
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Figure 3.6: MSD at steady-state for 20 nodes at SNR 10 dB.
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Figure 3.7: MSD at steady-state for 20 nodes at SNR 20 dB.
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the steady-state MSD is effected by the SNR at each node, even when the SNR

is high.

3.5.4 Theoretical analysis results

Next, the theoretical analysis of the proposed algorithm as compared to the sim-

ulation results is reported in Figs. 3.8 and 3.9. As can be seen from these figures,

the simulation analysis are corroborating the theoretical findings very well. This

is done for a network of 15 nodes with M = 2 and range 0.35. Two values for α

are chosen, α = 0.95 and α = 0.995 whereas γ = 0.001.

3.5.5 Effect of network size

The effect on the performance of the proposed algorithm when the size of the

network varies is reported in Figs. 3.10 and 3.11. As can be seen, an increase in

network size improves performance. The trend is almost linear so it is safe to as-

sume that performance improves linearly with increase in network size. However,

when the number of nodes increase, the connectivity of the network also increases

and so the cost of communication and computations also increases. Therefore,

the size of the network has to be moderately large for an adequate performance,

depending on the application. Furthermore, the trends shown in Figs. 3.10 and

3.11 show a vast improvement in performance over the previous algorithms.
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Figure 3.8: MSD for theory and simulation with α = 0.95 and γ = 0.001.
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Figure 3.9: MSD for theory and simulation with α = 0.995 and γ = 0.001.
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Figure 3.10: Steady-state MSD for varying N at SNR 10 dB.
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Figure 3.11: Steady-state MSD for varying N at SNR 20 dB.
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3.5.6 Effect of node malfunction

An important aspect of working with sensor nodes is the possibility of a node

switching off. In such a case the network may be required to adapt itself. The

diffusion scheme is robust to such a change and this scenario has been considered

here and results are shown in Figs. 3.12 and 3.13. A network of 50 nodes is chosen

so that enough nodes can be switched off in order to study the performance of

the proposed algorithm in this scenario. Two cases are considered, one where 15

nodes are switched off and another where 30 nodes are switched off. Results are

shown in Figs. 3.12 and 3.13 for SNR of 10 dB and 20 dB, respectively. The

nodes to be switched off are chosen at random. It is clear that malfunctioning

of the nodes does effect the performance of the network. However, even with

more than half the nodes switched off, the network still performs very well as

the remaining network remains intact. The degradation would be slightly more

severe if the malfunctioning nodes are those with most neighbors as that would

reduce cooperation significantly. However, the network is still able to perform by

adjusting itself to the change.
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Figure 3.12: Node malfunction performance at SNR 10 dB.
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Figure 3.13: Node malfunction performance at SNR 20 dB.
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3.5.7 Performance of generalized algorithm

It was shown earlier that the algorithm could be improved by sharing the com-

plete data between neighbor nodes if the extra time delay and energy requirements

can be compensated for. A comparison between the two versions of the proposed

algorithm is shown in Figs. 3.14 and 3.15. As can be seen from the figures,

the generalized algorithm performs much better in comparison with the originally

proposed algorithm. The performance improves by almost 10 dB, which provides

a reasonable trade-off between performance and cost for relatively small networks

and the generalized solution can be considered in applications where cost effec-

tiveness can be compensated for.

3.5.8 Steady-state performance

Finally, the comparison of the theoretical and simulated steady-state values for

MSD and EMSE for two different input regressor auto-correlation matrices is given

in Table 3.2. As can be seen from this table, close agreement between theory and

simulations is observed.
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Figure 3.14: Proposed algorithms at SNR 10 dB.
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Figure 3.15: Proposed algorithms at SNR 20 dB.
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Λ MSD MSD EMSE EMSE
equation (4.56) simulations equation (4.57) simulations

IMN -63.7800 -63.2838 -63.7800 -63.2814

diag
{
σ2

u,kIM
}

-63.3310 -63.5882 -58.4950 -58.8067

Table 3.2: Steady-state values for MSD and EMSE
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3.6 Conclusion

The variable step-size diffusion LMS (VSSDLMS) algorithm is proposed in this

chapter. Several popular VSSLMS algorithms are investigated. Based on perfor-

mance, the algorithm chosen for the proposed VSSDLMS algorithm is that from

[50]. Next, complete transient and steady state analyses are carried out. The

independence assumption is used along with the Gaussian data assumption in

order to find a closed form solution. Simulation results show that despite the use

of assumptions, the theoretical results are corroborated by simulation results. A

sensitivity analysis has been carried out to choose appropriate parameters that

control how the step size should be varied. Simulation results show a compar-

ison of the proposed algorithm with previous algorithms. It is found that the

proposed algorithm shows remarkable improvement in performance and provides

an excellent trade-off with computational cost. The proposed algorithm is then

found to be robust even when several nodes are turned off. Finally, a steady-state

comparison between theoretical and simulated results is tabulated and the results

are found to corroborate each other.
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CHAPTER 4

NOISE-CONSTRAINED

DIFFUSION LEAST MEAN

SQUARE ALGORITHM

4.1 Introduction

In the previous chapter a VSSLMS algorithm was directly incorporated into the

diffusion scheme to come up with the VSSDLMS algorithm. Inspired by the work

in [59] and motivated by the constraint-based approach used by [11], [12], the

current chapter derives a new algorithm using the noise constraint. Here, first

the derivation of the noise constraint based algorithm is given. Second, detailed

convergence and steady-state analyses are carried out, including analyses for the

case where there is mismatch in the noise variance estimate. Finally, extensive

simulations are carried out to test the robustness of the proposed algorithm under
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different scenarios, especially the mismatch scenario. Moreover, the simulation

results are found to corroborate the theoretical findings very well.

4.2 The Proposed Algorithm

The global cost function for the entire network is given in Chapter 2 as

J (w) =
N∑

k=1

E
[|dk − ukw|2] (4.1)

From (4.1), we can write the local cost function for each node k as

Jk (w) = E
[|dk − ukw|2] , (4.2)

where letting E [u∗
kuk] = Ru,k and solving gives

Jk (w) = ‖w − wk‖2
Ru,k

+ MMSE, (4.3)

where MMSE represents the noise floor and does not include w and can, therefore,

be ignored. Incorporating (4.3) into (4.1), the global cost function can be written

as

J (w) = Jk (w) +
N∑

l �=k

Jl (w)

= E
[|dk − ukw|2]+

N∑
l �=k

‖w − wl‖2
Ru,l

(4.4)
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This model assumes that any node k has access to data across the entire network.

However, this is not a practical assumption as node k has access only to its

neighbors. As a result, the cost function is approximated with data from neighbors

being shared at each node. The resulting weighting matrix for the second term

in (4.4) changes from Ru,l to a constant weighting factor blk, where the subscript

lk denotes the connection between node k with its neighbor node l. The cost

function, thus, becomes

J (w) = E
[|dk − ukw|2]+

∑
l∈Nk
l �=k

blk ‖w − wl‖2

= Jk (w) +
∑
l∈Nk
l �=k

blk ‖w − wl‖2. (4.5)

Assuming that the additive noise variance, σ2
v,k, is known, the cost function can

be modified using Lagrange multipliers as follows:

min
w

J ′ (w) = Jk (w) +
∑
l∈Nk
l �=k

blk ‖w − wl‖2

+γβk

(
Jk (w) − σ2

v,k

)− γβ2
k , (4.6)

where the last term is a correction term added to avoid any spurious behavior.

For node k, this cost function will be slightly modified as follows:

min
wk

J ′ (wk) = Jk (wk) +
∑
l∈Nk
l �=k

blk ‖wk − wl‖2

+γβk

(
Jk (wk) − σ2

v,k

)− γβ2
k , (4.7)
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The solution for (4.7) can be obtained from the Robbins-Munro algorithm [60]

wk (i + 1) = wk (i) − μk
∂J ′

k (wk)

∂wk

, (4.8)

βk (i + 1) = βk (i) + α
∂J ′

k (wk)

∂βk

. (4.9)

4.2.1 Steepest Descent Solution

Solution of the first partial derivative is given by

∂Jk (wk)

∂wk

= (1 + γβk) (Ru,kwk − rdu,k)

+
∑
l∈Nk
l �=k

blk (wk − wl), (4.10)

where Ru,k = E
[
uT

k uk

]
is the auto-correlation of the regressor vector uk and

rdu,k = E
[
duT

k

]
is the cross-correlation between the regressor vector and the

measured data.

Similarly, the solution of the 2nd partial derivative is

∂J ′
k (wk)

∂βk

= γ
(
E
[|dk − ukw|2]− σ2

v,k

)− 2γβk, (4.11)

which results in

βk (i + 1) = βk (i) + αγ
(
E
[|dk − ukw|2]− σ2

v,k

)− 2αγβk (i) . (4.12)

If we replace αγ by α/2 and then insert the solutions to the partial derivatives
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into the algorithm, we get the resulting steepest descent solution

wk (i + 1) = wk (i) + μk (1 + γβk (i)) (Ru,kwk (i) − Rdu,k) ,

+ υk

∑
l∈Nk
l �=k

blk (wl (i) − wk (i)) (4.13)

βk (i + 1) = (1 − α) βk (i)

+
α

2

(
E
[|dk − ukw|2]− σ2

v,k

)
. (4.14)

Now, (4.13) can be written as a two-step process

Ψk (i + 1) = wk (i) + μk (1 + γβk (i))

. (Ru,kwk − Rdu,k) , (4.15)

wk (i + 1) = Ψk (i + 1) + υk

∑
l∈Nk
l �=k

blk (Ψl (i + 1) − Ψk (i + 1))

= Ψk (i + 1) (1 − υk + bkkυk) + υk

∑
l∈Nk
l �=k

blkΨl (i + 1)

=
∑
l∈Nk

clkΨl (i + 1), (4.16)

where

clk =

⎧⎪⎪⎨
⎪⎪⎩

1 − υk + υkbkk, l = k

υkblk, l 
= k

Combining (4.15), (4.16) with (4.14) results in the steepest descent solution

to the noise-constrained diffusion problem.
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4.2.2 Least Mean Square Solution

The steepest descent solution requires complete statistical knowledge of the

data. For a practical adaptive solution, we simply replace Ru,k, Rdu,k and

E
[|dk − ukw|2] by their instantaneous values. Noting that ek(i) = dk(i) −

uk (i)wk (i), we get

Ψk (i + 1) = wk (i) + μk (1 + γβk (i))uT
k (i) ek(i), (4.17)

wk (i + 1) =
∑
l∈Nk

clkΨl (i + 1), (4.18)

βk (i + 1) = (1 − α) βk (i) +
α

2

(
e2

k (i) − σ2
v,k

)
, (4.19)

where

clk =

⎧⎪⎪⎨
⎪⎪⎩

1 − υk + υkbkk, l = k

υkblk, l 
= k

So equations (4.17)-(4.21) form the proposed Noise-Constrained Diffusion LMS

(NCDLMS) algorithm [18].

4.2.3 Generalized solution

As in the previous chapter, a generalized algorithm can be derived using sharing of

complete data. Following the same derivation steps as for the NCDLMS algorithm,
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the generalized NCDLMS algorithm can be derived as

Ψk,gen (i + 1) = wk,gen (i) + μk,gen (1 + γβk,gen (i))

.
∑
l∈Nk

slku
T
l (i) (dl (i) − ul (i)wl,gen (i)),

wk,gen (i + 1) =
∑
l∈Nk

clkΨl,gen (i + 1) (4.20)

βk,gen (i + 1) = (1 − α) βk,gen (i) +
α

2

(
e2

k,gen (i) − σ2
v,k

)
,

where ek,gen (i) =
∑

l∈Nk

slk (dl (i) − ul (i)wl,gen (i)) and slk is the combiner weight

for the sensor data being shared by node l with node k. As in the previous chapter,

the generalized algorithm is considered as a special case and the cost comparison

carried out in the previous chapter holds true for this case as well.

4.3 Performance Analysis

In order to perform the analysis, the whole network needs to be looked at be-

cause any node k is being affected by its neighbors and the neighbors in turn

are affected by their respective neighbors. Therefore, we introduce new terms to

study the performance of the network in a global manner. The local variables are

transformed into global variables as in the previous chapter as follows:

w (i) = col {w1 (i) , ...,wN (i)}, Ψ (i) = col {Ψ1 (i) , ...,ΨN (i)},

U (i) = diag {u1 (i) , ...,uN (i)}, D = diag {μ1IM , ..., μNIM},

d (i) = col {d1 (i) , ..., dN (i)}, v (i) = col {v1 (i) , ..., vN (i)}.

70



Following the same procedure as in the previous chapter, the set of equations for

the entire networks is given as

Ψ (i + 1) = w (i) + D (IMN + γB (i))UT (i) (d (i) − U (i)w (i)) , (4.21)

w (i + 1) = GΨ (i + 1) , (4.22)

B (i + 1) = (1 − α)B (i) +
α

2
(E (i) − S) , (4.23)

where G = C⊗ IM , C is the N × N weighting matrix, ⊗ is the Block Kronecker

operator, Bi = diag {β1IM , ..., βNIM} is the diagonal update matrix for the La-

grange multipliers, E(i) = diag {e2
1 (i) IM , ..., e2

N (i) IM} is the diagonal matrix for

instantaneous error and S = diag {σ2
1IM , ..., σ2

NIM} is the diagonal matrix contain-

ing the estimated noise variances for all nodes. Here it is assumed that the noise

variances have been estimated exactly. The noise variance estimate mismatch will

also be considered later.

4.3.1 Mean Analysis

As before, the global weight-error vector is given as

w̃ (i) = w(o) − w (i) (4.24)
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Similarly, using Gw(o) Δ
= w(o) in (4.21) and (4.22), we get

w̃ (i + 1) = G̃Ψ (i + 1)

= G
(
IMN −D (i)UT (i)U (i)

)
w̃ (i) − GD (i)UT (i)v (i)(4.25)

Taking the expectation on both sides of the above equation gives

E [w̃ (i + 1)] = G (IMN −D (i)RU) E [w̃ (i)] (4.26)

where RU = E
[
UTU

]
is the regressor auto-correlation matrix for the entire

network and the matrix D (i) = D (IMN + γB (i)) is assumed to be independent

of the regressor matrix as it depends only on the values from the previous i −

1 iterations. Also, since the measurement noise is spatially uncorrelated, the

expectation of the second part of the right-hand side of equation (4.25) is zero.

From [15], we see that the diffusion algorithm is stable if the combination

weights are restricted to within the unit circle. However, in this case stability is

also dependent on the Lagrange multipliers. In this case, the algorithm will be

stable if, for each node

n∏
i=1

(IM − μk (1 + γE [β (i)])Ru,k) → 0, as n → ∞ (4.27)
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which holds true if

0 < μk <
2

(1 + γE [β (i)]) λmax (Ru,k)
, 1 ≤ k ≤ N, (4.28)

where λmax (Ru,k) is the maximum eigenvalue of the auto-correlation matrix Ru,k.

The step-size limit is dependent on the convergence of the Lagrangian multiplier.

The step-size can be kept under control with the proper selection of the parameters

α and γ. If these parameters are chosen carefully, the multiplier value converges

to a steady-state value which is equal to half that of the steady-state excess mean

square error (EMSE). Since this value is small, the limit on the step-size can be

safely approximated as follows:

0 < μk <
2

λmax (Ru,k)
. (4.29)

Effect Of Noise Variance Estimate Mismatch

The previous analysis assumed perfect noise variance estimation. However, in a

practical system it is not always possible to have an exact estimate and a mismatch

can occur. The analysis in this case may be altered slightly in order to include the

effect of the mismatch. The Lagrangian does not converge as in (4.28) because of
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the mismatch. Taking the expectation of (4.21), we have

E [βk (i + 1)] = (1 − α) E [βk (i)] +
α

2
E
[
e2

k (i) − σ̂2
v,k

]
= (1 − α) E [βk (i)] +

α

2

(
EMSE (i) + σ2

v,k − σ̂2
v,k

)
= (1 − α) E [βk,i−1] +

α

2

(
EMSE (i) + σ̃2

v,k

)
, (4.30)

where σ̂2
v,k is the imperfect estimate of the noise variance for node k, σ̃2

v,k is the

noise variance mismatch and EMSE is the excess mean square error. Thus, at

steady-state the Lagrange multiplier becomes

βk,ss =
1

2

(
EMSEss + σ̃2

v,k

)
, (4.31)

which is simply a summation of the steady-state EMSE and the noise power

mismatch. Since the value of EMSE is reasonably small, the bound on the step-

size can be approximated by

0 < μk <
2(

1 + σ̃2
v,k/2

)
λmax (Ru,k)

. (4.32)

In case of the zero noise-constrained algorithm (ZNCDLMS) there is no esti-

mate for the noise power and so the limit can be approximated as

0 < μk <
2(

1 + σ2
v,k/2

)
λmax (Ru,k)

, (4.33)

where the mismatch of the estimate, σ̃2
v,k, is replaced by the actual noise power,
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σ2
v,k.

4.3.2 Mean-Square Analysis

As in the previous chapter, taking the weighted norm of (4.25) [56], [57] and

applying the expectation operator yields

E
[‖w̃ (i + 1)‖2

Σ

]
= E

[‖w̃ (i)‖2
Σ′
]
+ E

[
vT (i)LT (i) ΣL (i)v (i)

]
, (4.34)

where

L (i) = GD (i)UT (i) (4.35)

Σ′ = GT ΣG − GT ΣL (i)U (i) − UT (i)LT (i) ΣG

+UT (i)LT (i) ΣL (i)U (i) . (4.36)

Using the data independence assumption [57] and applying the expectation oper-

ator directly on (4.36) we have

Σ′ = GTΣG − GTΣGE [D (i)] E
[
UT (i)U (i)

]
−E
[
UT (i)U (i)

]
E [D (i)]GTΣG

+E
[
UT (i)LT (i)ΣL (i)U (i)

]
, (4.37)

where E [D (i)] = D (IMN + γE [B (i)]).

As can be seen, (4.34) and (4.37) are similar to (3.19) and (3.22) so the analysis
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will follow a similar process as the previous chapter. Following the same process as

before, the data is assumed to be Gaussian and (4.34) and (4.37) are transformed

as follows:

E
[‖w̄(i + 1)‖2

Σ̄

]
= E

[‖w̄(i)‖2
Σ̄′
]
+ E

[
vT (i)L̄T (i)Σ̄L̄(i)v(i)

]
, (4.38)

and

Σ̄′ = ḠT Σ̄Ḡ − ḠT Σ̄ḠE [D(i)] E
[
ŪT (i)Ū(i)

]
−E
[
ŪT (i)Ū(i)

]
E [D(i)] ḠT Σ̄Ḡ

+E
[
ŪT (i)L̄T (i)Σ̄L̄(i)Ū(i)

]
, (4.39)

where L̄ (i) = ḠD (i) ŪT (i).

Similarly, the expectations can be solved as before and the final solution is

given as

E
[‖w̄ (i + 1)‖2

σ̄

]
= E

[
‖w̄ (i)‖2

F(i)σ̄

]
+ bT (i) σ̄, (4.40)

where b (i) = bvec
{
GRvE [D2 (i)]ΛGT

}
and

F (i) = [IM2N2 − (IMN � ΛE [D (i)]) − (ΛE [D (i)] � IMN)

+ (E [D (i) �D (i)])A]
(
GT � GT

)
. (4.41)

and hence, the transient behavior of the network is characterized by (4.40).
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Learning Behavior

In this section, the learning behavior of the NCDLMS algorithm is evaluated.

Starting with w̄0 = w(o) and D0 = μ0IMN , we have for iteration i + 1

E (i − 1) = diag
{(

E
[‖w̄ (i − 1)‖2

λ

]
+ σ̃2

v,1

)
IM , ...,

(
E
[‖w̄ (i − 1)‖2

λ

]
+ σ̃2

v,N

)
IM

}
= diag

{(
E
[‖w̄ (i − 1)‖2

λ

]
+ (1 − a) σ2

v,1

)
IM ,

...,
(
E
[‖w̄ (i − 1)‖2

λ

]
+ (1 − a)σ2

v,N

)
IM

}
E [B(i)] = (1 − α) E [B(i − 1)] +

α

2
E(i − 1)

E
[
B2(i)

]
= (1 − α)2 E

[
B2(i − 1)

]
+ α (1 − α) E [B(i − 1)] E(i − 1) +

α2

4
(E(i − 1))2

E [D(i)] = D (IMN + γE [B(i)])

E
[D2(i)

]
= D2

(
IMN + 2γE [B(i)] + γ2E

[
B2(i)

])
F (i) = [IM2N2 − (IMN � ΛE [D (i)]) − (ΛE [D (i)] � IMN)

+ (E [D (i) �D (i)])A]
(
GT � GT

)
b (i) = bvec

{
GRvE

[D2 (i)
]
ΛGT

}
,

where a = σ̂2
v,k/σ

2
v,k is the ratio between the estimated and actual noise power

at node k. For a perfect estimate, this would result in a = 1, for a mismatch,

0 < a < 1 and for the case of ZNCDLMS, a = 0. Incorporating the above relations
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in (4.40) gives

E
[‖w̄ (i + 1)‖2

σ̄

]
= E

[
‖w̄ (i)‖2

F(i)σ̄

]
+ bT (i) σ̄

=
∥∥w̄(o)

∥∥2�
i�

m=0
F(m)

�
σ̄

+

[
i−1∑
m=0

bT (m)

(
i∏

n=m+1

F (n)

)
+bT (i) IMN

]
σ̄. (4.42)

Now, subtracting the results of iteration i from from those of iteration i + 1

and simplifying we get

E
[‖w̄ (i + 1)‖2

σ̄

]
= E

[‖w̄ (i)‖2
σ̄

]
+
∥∥w̄(o)

∥∥2

F′(i)(F(i)−IMN )σ̄

+
[
F′′ (i) (F (i) − IMN) + bT (i) IMN

]
σ̄. (4.43)

where

F′ (i) =
i−1∏
m=0

F (m), (4.44)

F′′ (i) =
i−2∑
m=0

bT (m)

(
i−1∏

n=m+1

F (n)

)
+ bT (i) IMN , (4.45)

which can be defined iteratively as

F′ (i + 1) = F′ (i)F (i) , (4.46)

F′′ (i + 1) = F′′ (i)F (i) + bT (i) IMN . (4.47)

In order to evaluate the Mean-Square Deviation (MSD) and Excess Mean-
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Square Error (EMSE), we need to define the corresponding weighting matrix for

each of them. Taking σ̄ = (1/N) bvec {IMN} = qη and η (i) = (1/N) E
[‖w̄ (i)‖2]

for the MSD we get

η (i) = η (i − 1) +
∥∥w̄(o)

∥∥2

F′(i)(F(i)−IMN )qη
+
[
F′′ (i) (F (i) − IMN) + bT (i) IMN

]
qη.

(4.48)

Similarly, taking σ̄ = (1/N) bvec {Λ} = λζ and ζ (i) = (1/N) E
[‖w̄ (i)‖2

Λ

]
, the

EMSE behavior is governed by

ζ (i) = ζ (i − 1) +
∥∥w̄(o)

∥∥2

F′(i)(F(i)−IMN )λζ
+
[
F′′ (i) (F (i) − IMN) + bT (i) IMN

]
λζ .

(4.49)

4.3.3 Steady-State Analysis

From (4.23), it is seen that the Lagrangian multiplier update for each node is

independent of data from other nodes. Even though the connectivity matrix, G,

does not permit the weighting matrix, F (i), to be evaluated separately for each

node, this is not the case for the step-size of any node. Therefore, taking the

approach of [59], we first find the misadjustment, given by

Mk =
μkTr {Ru,k}

2

(
1 +

γσ2
v,k (1 − a)

2
+

γ2ασ2
v,k

2 (2 − α)
(
1 + γσ2

v,k (1 − a) /2
)
)

,

(4.50)
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which leads to the steady-state values for the Lagrange multiplier update and its

square for each node

βk,ss =
1

2

(
EMSEss + (1 − a)σ2

v,k

)
=

1

2

(Mkσ
2
v,k + (1 − a) σ2

v,k

)
=

σ2
v,k

2
(Mk + 1 − a) , (4.51)

β2
k,ss =

α

(1 − α)
βk,ssσ

2
v,k (Mk + 1 − a) +

σ4
v,k

4 (1 − α)2 (Mk + 1 − a)2 . (4.52)

Incorporating these relations in (4.41) to get the steady-state weighting matrix as

Fss = [IM2N2 − (IMN � ΛE [Dss]) − (ΛE [Dss] � IMN)

+ (E [Dss �Dss])A]
(
GT � GT

)
, (4.53)

where Dss = diag {μk(1 + γβk,ss)IM}.

Thus, the steady-state mean-square behavior is given by

E
[‖w̄ss‖2

σ

]
= E

[‖w̄ss‖2
Fssσ

]
+ bT

ssσ, (4.54)

where bss = RvD2
ssΛ and D2

ss = diag {μ2
k(1 + γβk,ss)

2IM}. Now solving (4.54),

we get

E
[‖w̄ss‖2

σ

]
= bT

ss [IM2N2 − Fss]
−1 σ. (4.55)

This equation gives the steady-state performance measure for the entire net-

work. In order to solve for steady-state values of MSD and EMSE, we take σ̄ = qη
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and σ̄ = λζ , respectively, as in (4.48) and (4.49). This gives us the steady-state

values for MSD and EMSE as follows

ηss = bT
ss [IM2N2 − Fss]

−1 qη, (4.56)

ζss = bT
ss [IM2N2 − Fss]

−1 λζ . (4.57)

4.4 Numerical Results

In this section, several simulation scenarios are considered and discussed to assess

the performance of the proposed NCDLMS algorithm. Results have been con-

ducted for different average signal-to-noise ratio (SNR) values. The performance

measure is the mean square deviation (MSD).

4.4.1 Performance of the proposed algorithm

First, the proposed algorithm is compared with existing algorithms, which are the

no cooperation case (NCLMS), the distributed LMS (DSLMS) [11], the DLMS [8],

the DLMS with adaptive combiners (DLMSAC) [16], the VSSDLMS algorithm [17]

and the diffusion RLS (DRLS) [37]. The length of the unknown vector is taken

as M = 4. The size of the network is N = 20. The sensors are randomly placed

in an area of one unit square. The input regressor vector is assumed to be white

Gaussian with auto-correlation matrix having the same variance for all nodes.

Results are shown for two different values of SNR and communication range 0.3.

Figure 4.1 reports the performance behavior of the different algorithms at an
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SNR of 10 dB. As can be seen from this figure the performance of the proposed

NCDLMS algorithm comes after that of the DRLS algorithm. The performance

of the NCDLMS algorithm improves better for an SNR of 20 dB as depicted in

Fig. 4.2. In both of these figures, when compared with other algorithms of similar

complexity, the improvement in performance of the NCDLMS algorithm is very

significant. Similar performance for the steady-state behavior is obtained by the

proposed NCDLMS algorithm at SNR of 10 and 20 dB as shown, respectively,

in Fig. 4.3 and Fig. 4.4. The DRLS algorithm performs better as expected but

the proposed algorithm is clearly better than the remaining algorithms, both in

convergence speed as well as steady-state error. Also, since noise variance has

been estimated, diffusion effects the step-size variation of neighboring nodes and

the combination of these two factors results in the steady-state MSD for all nodes

being nearly the same for all cases. This is in contrast with other algorithms for

which the steady-state MSD is effected by the SNR at each node, even when the

SNR is high, as noise variance is unknown for those algorithms.

4.4.2 Effect of noise variance estimate mismatch

Next, the robustness of the proposed NCDLMS algorithm is shown when there

is a mismatch in the noise variance estimate. The performance is compared with

that of the VSSDLMS algorithm. Figure 4.5 shows the comparison for a SNR of

10 dB. As can be seen from the figure, the performance degrades as the mismatch

increases but the performance is still better than the VSSDLMS algorithm. The
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Figure 4.1: MSD for 20 nodes at SNR 10 dB.
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Figure 4.2: MSD for 20 nodes at SNR 20 dB.
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Figure 4.3: MSD at steady-state for 20 nodes at SNR 10 dB.
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Figure 4.4: MSD at steady-state for 20 nodes at SNR 20 dB.

84



0 200 400 600 800 1000
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

iterations

M
S

D
 (d

B
)

VSSDLMSZNCDLMS

50% Mismatch 20% Mismatch No Mismatch

Figure 4.5: Mismatch at SNR 10 dB.
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ZNCDLMS algorithm performs slightly worse than the VSSDLMS algorithm but

its complexity is comparable to that of the VSSDLMS algorithm and the perfor-

mance is justified.

4.4.3 Theoretical analysis results

Next, the theoretical analysis of the proposed algorithm as compared to the simu-

lation results is reported in Figs. 4.6 and 4.7 for perfect noise variance estimation

and Figs. 4.8 and 4.9 for a 50% mismatch in noise variance estimation. As can be

seen from these figures, the simulation analysis are corroborating the theoretical

findings very well. The value for α = 0.01 whereas γ = 20 and the results are

shown for SNR of 10 dB and 20 dB.

4.4.4 Effect of network size

The effect on the performance of the proposed algorithm when the size of the

network varies is reported in Figs. 4.10 and 4.11. An increase in network size

improves performance. As can be seen, the improvement is approximately linear.

However, the computational complexity greatly increases for large networks as the

connectivity also increases. Furthermore, the trends shown in Figs. 4.10 and 4.11

show a vast improvement in performance over the previous algorithms.
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Figure 4.6: MSD for theory and simulation at SNR 10 dB.
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Figure 4.7: MSD for theory and simulation at SNR 20 dB.
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Figure 4.8: MSD for theory and simulation at SNR 10 dB for 50% mismatch.
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Figure 4.9: MSD for theory and simulation at SNR 20 dB for 50% mismatch.
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Figure 4.10: Steady-state MSD for varying N at SNR 10 dB.
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Figure 4.11: Steady-state MSD for varying N at SNR 20 dB.
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4.4.5 Effect of node malfunction

As before the robustness of the proposed algorithm is assessed when several nodes

switch off. A network of 50 nodes is chosen. Two cases are considered, one where

15 nodes are switched off and another where 30 nodes are switched off. Results

are shown in Figs. 4.12 and 4.13 for SNR of 10 dB and 20 dB, respectively. Again,

the nodes to be switched off are chosen at random. As seen in the previous chap-

ter, even with more than half the nodes switched off, the network still performs

very well as the remaining network remains intact. The degradation would be

slightly more severe if the malfunctioning nodes are those with most neighbors as

that would reduce cooperation significantly. However, the network is still able to

perform by adjusting itself to the change.

4.4.6 Performance of generalized algorithm

A generalized version of the algorithm was derived where sensor nodes can share

all available data given enough resources. A comparison between the two versions

of the proposed algorithm is shown in Figs. 4.14 and 4.15. As can be seen from

the figures, the generalized algorithm performs much better in comparison with

the originally proposed algorithm. However, as explained earlier, the generalized

algorithm can only be utilized in cost effective applications.
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Figure 4.12: Node malfunction performance at SNR 10 dB.
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Figure 4.13: Node malfunction performance at SNR 20 dB.
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Figure 4.14: Proposed algorithms at SNR 10 dB.
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Figure 4.15: Proposed algorithms at SNR 20 dB.
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4.4.7 Steady-state performance

Finally, we look at the stability analysis of the algorithm. Here, the auto-

correlation matrix, Ru,k, is taken to be an identity matrix. Table 4.1 gives results

for steady-state MSD for the network when the value of μk is varied, for k = 3,

γNC = 0.1, αNC = 0.01, and SNR = 20 dB. From this table, it can be seen

that the simulations corroborate the theoretical finding for the steady-state MSD.

Moreover, the bound in (4.28) holds true.
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μk γNC SS-MSD SS-MSD
simulations equation (4.56)

1.9 0.1 -15.3 -15.7

1.75 0.1 -18.4 -18.6

1.5 0.1 -21.5 -21.5

1 0.1 -25.8 -26

Table 4.1: Comparison of MSD, from simulations and theory.
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4.5 Conclusion

The noise constrained diffusion LMS (NCDLMS) algorithm is proposed in this

chapter. Complete derivation of the algorithm using the ATC diffusion tech-

nique is given for estimation in a wireless sensor network. A generalized form of

the algorithm is suggested as a special case. Complete convergence and steady-

state analyses are carried out including the effect of noise variance estimate mis-

match. Simulations are carried out to assess the performance of the proposed

algorithm under different scenarios. The algorithm is found to outperform all

existing algorithms including the VSSDLMS algorithm suggested in the previ-

ous chapter. A comparison of the performance of the algorithm is shown for

various degrees of noise variance estimate mismatch, including the case of zero

NCDLMS (ZNCDLMS) algorithm, which is found to have similar complexity and

performance as the VSSDLMS algorithm. Theoretical results are compared with

simulation results for exact estimate as well as the mismatch case and the results

are found to be corroborating each other. The performance of the proposed al-

gorithm is then studied under different scenarios and the algorithm is found to

be robust under all scenarios. Finally, a table lists results for the steady-state

analysis and theoretical results corroborate simulation results. Furthermore, the

step-size limits defined by (4.28) are also corroborated by simulation results.

95



CHAPTER 5

BLIND DIFFUSION

ALGORITHMS

5.1 Introduction

The previous two chapters introduced algorithms that assume that the input re-

gressor data, uk,i, is available at the sensors. If this information is not available,

then the said problem becomes a blind estimation problem. Blind algorithms have

been a topic of interest ever since Sato devised a blind equalization approach in

[61]. Since then several algorithms have been derived for blind estimation [62],

[63], [64]. The work in [64] summarizes the second order statistics based ap-

proaches, also known as subspace methods, for blind identification. These include

multichannel as well as single channel blind estimation methods. The work in [65]

is one of the most popular blind estimation techniques for a single-input-single-

output (SISO) model. The work in [66] shows that the technique of [65] can be
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improved using only two blocks of data. The authors in [67] use the idea from

[66] to devise an algorithm that uses only 2 blocks of data and does indeed show

improvement over the algorithm of [65], which uses N blocks. However, the com-

putational complexity of this new algorithm is greater as well. The authors in [68]

improve both these algorithms by generalizing them. In [69], a Cholesky factoriza-

tion based least squares solution is suggested that simplifies the work of [65], [67]

and [68]. The performance is shown to be only slightly degraded but taking more

number of blocks shows that even though the computational complexity reduces

remarkably, the performance is not as good as the previous works. However, in

systems where less complexity is required and performance can be compromised

to an extent, this algorithm provides a good substitute. In this work, blind block

recursive least squares algorithms are derived from the works in [65] and [69] and

then implemented in a distributed WSN environment using the diffusion approach

suggested by [36].

5.1.1 Singular Value Decomposition Based Blind Algo-

rithm

The work in [65] uses redundant filterbank precoding to construct data blocks

that have trailing zeros. These data blocks are then collected at the receiver and

used for blind channel identification. In this work, however, there is no precoding

required. The trailing zeros will still be used though, for estimation purposes. Let

the unknown vector be of size (L × 1). Suppose the input vector is a (P × 1)
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vector with P − M trailing zeros

si = {s0 (i) , s1 (i) , ..., sM−1 (i) , 0, ..., 0}T , (5.1)

where P and M are related through P = M + L− 1. The unknown vector can be

written in the form of a convolution matrix given by

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w (0) 0 · · · 0

w (1) w (0) · · · 0

...
. . .

. . .
...

w (L − 1) · · · w (0) 0

0 w (L − 1)
. . . w (0)

...
. . .

. . .
...

0 · · · 0 w (L − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.2)

where wo = [w (0) , w (1) , ..., w (L − 1)] is the unknown vector. The output data

block can now be written as

di = Wsi + vi, (5.3)

where v is added white Gaussian noise. The output blocks are collected together

to form a matrix

DN = (d0,d1, ...,dN−1) , (5.4)

where N is greater than the minimum number of data blocks required for the input

blocks to have a full rank. The singular value decomposition (SVD) of the auto-
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correlation of DN gives a set of null eigenvectors. Thus the eigendecomposition

DNDT
N =

(
Ū Ũ

)⎛⎜⎜⎝ ΣM×M 0M×(L−1)

0(L−1)×M 0(L−1)×(L−1)

⎞
⎟⎟⎠
⎛
⎜⎜⎝ ŪT

ŨT

⎞
⎟⎟⎠ , (5.5)

gives the (P ×L− 1) matrix Ũ whose columns form the null space for DN , which

implies

ŨTW = 0, (5.6)

which can also be written as

ũT
l W = 0T , (5.7)

where l = 1, ..., L− 1. This equation denotes convolution since W is essentially a

convolution matrix. Since convolution is commutative, equation (5.7) can also be

written as

wTU := wT (U1...UL−1) = 0T , (5.8)

where Ul is an (L × M) Hankel matrix given by

Ul =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũl (0) ũl (1) · · · ũl (P − L − 1)

ũl (1) ũl (2) · · · ũl (P − L)

...
...

...
...

ũl (L − 1) ũl (L) · · · ũl (P − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.9)

The final estimate is given by the unique solution (up to a constant factor) for

equation (5.8).
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5.1.2 Cholesky Factorization Based Blind Algorithm

The work in [69] describes a method based on the Cholesky factorization to blindly

estimate the channel. Again, the output equation can be written as

di = WsT
i + vi. (5.10)

Taking the auto-correlation of di in equation (5.10) and assuming the input data

regressors are white Gaussian with variance σ2
u, we get

Rd = E
[
did

T
i

]
= σ2

sWWT + σ2
vI. (5.11)

Now if the second order statistics of both the input regressor data as well as the

additive noise are known then the correlation matrix for the unknown vector can

be written as

Rw = WWT

=
(
Rd − σ2

vI
)
/σ2

s . (5.12)

However, this information is not always known and cannot be easily estimated

as well, particularly the information about the input regressor data. Therefore,

the correlation matrix of the unknown vector has to be approximated by the

correlation matrix of the received/sensed data. Now the algorithm in [69] takes
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the Cholesky factor of this matrix and then provides a least squares solution for

the estimate of the unknown vector.

The method given in [69] is summarized here. Since the correlation matrix is

not available at the receiver, an approximate matrix is calculated using K blocks

of data. So the correlation matrix is given by

R̂d =
1

K

K∑
i=1

did
T
i . (5.13)

As the second order statistics are not known, the noise variance is estimated and

then subtracted from the correlation matrix. Thus, we have

R̂w = R̂d − σ̂2
vIK

=
1

K

K∑
i=1

did
T
i − σ̂2

vIK , (5.14)

where the noise variance is estimated using the null space of the estimated corre-

lation matrix, R̂d. If the number of data blocks considered are not enough then

the resulting matrix could be singular. Taking the Cholesky factor of this matrix

gives us the upper triangular matrix Ĝ

Ĝ = chol
{
R̂w

}
, (5.15)

Next we use the vec operator to get a M2 × 1 vector ĝ

ĝ = vec
{
Ĝ
}

. (5.16)
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Its given that the vectors g and wo are related through

g = Qwo, (5.17)

where Q is a M2 × M selection matrix given by Q =
[
JT

1 JT
2 ...JT

M

]T
, and the

M × M matrices Jk are defined as

Jk =

⎧⎪⎪⎨
⎪⎪⎩

1, if s + t = k − 1

0, otherwise

(5.18)

where {s, t, k} = 0, ...,M − 1. So the least squares solution is given as

ŵ =
(
QTQ

)−1
QT ĝ. (5.19)

The work in [69] also gives a method to estimate the noise variance. Results

given in [69] show that this method works just fine. However, it is not so easy

to find a correct estimate of noise at low SNR and subtracting it from the auto-

correlation matrix may not yield a positive definite matrix, which means that

Cholesky factorization may not be possible. Without the use of the noise estimate,

however, the estimate is poor. The main advantage of this method is very low

computational complexity. Whereas the method of [65] requires singular value

decomposition of the auto-correlation matrix followed by formation of Hankel

matrices using the null eigenvectors and then finding a unique solution to an

overdetermined set of linear equation, this method simply evaluates the Cholesky
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factor upper triangular matrix of the auto-correlation matrix and directly finds the

estimate from this matrix. Computational complexity is, thus, greatly reduced.

However, performance is also degraded.

Both these methods require that several blocks of data be stored before esti-

mation can be performed. Although the least squares approximation gives a good

estimate, a sensor network requires a recursive algorithm in order to cooperate

and enhance performance. Therefore, the first step would be to make both these

algorithms recursive in order to utilize them in a WSN setup.

5.1.3 Blind Block Recursive SVD Algorithm

Here we show how the algorithm from [65] can be made into a blind block recursive

algorithm. Since the algorithm requires a complete block of data, we base our

iterative process on blocks as well. So instead of the matrix D, we have the block

data vector d. The auto-correlation matrix for the first data block is defined in

as

R̂d (1) = d1d
T
1 . (5.20)

The matrix is expanded for two blocks in the original algorithm as

R̂d (2) = D2D
T
2

=

[
d1 d2

]⎡⎢⎢⎣ dT
1

dT
2

⎤
⎥⎥⎦
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= d1d
T
1 + d2d

T
2

= R̂d (1) + d2d
T
2 . (5.21)

From this a generalization can be written as

R̂d (i) = R̂d (i − 1) + did
T
i . (5.22)

The first few iterations may not give a good estimate and the error may even seem

to be increasing as the matrix will be rank deficient. However, with sufficient data

blocks, the rank becomes full and the estimate then begins to improve. The next

step is to get the eigendecomposition for this matrix. Applying the SVD on Rd

we get the eigenvector matrix U, from which we get the (L − 1 × M) matrix Ũ

forming the null space of the autocorrelation matrix, from which we can form the

L Hankel matrices of size (L × M + 1) that are concatenated to give the matrix

U(〉) from which we can finally get the estimate w̃(i)

SV D {Rd (i)} ⇒ U (i) ⇒ Ũ (i) ⇒ U (i) ⇒ w̃i. (5.23)

The update for the estimate of the unknown vector is then given by

ŵi = λŵi−1 + (1 − λ) w̃i. (5.24)

It can be seen that the recursive algorithm does not become computationally

less complex. However, it does require lesser memory and the result improves with
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increase in the number of data blocks. The performance almost matches that of

the batch processing least squares algorithm of [65].

Table 5.1 gives the Blind Block Recursive SVD (BBRS) algorithm. The for-

getting factor is fixed in this case. If the forgetting factor value is changed to

λi = 1− 1
i
, the algorithm becomes Variable Forgetting Factor BBRS (VFFBBRS)

algorithm. However, simulations show that the VFFBBRS algorithm converges

slower. Results show that if the forgetting factor is small, the algorithm converges

faster even though it gives a higher error floor at steady-state. When varied, the

forgetting factor increases with time so the convergence slows down even though

it eventually reaches a very low steady-state error floor.

5.1.4 Blind Block Recursive Cholesky Algorithm

In this section, we show how the algorithm of [69] can be converted into a blind

block recursive solution. Equation (5.14) can be rewritten as

R̂w (i) =
1

i

i∑
n=1

dnd
T
n − σ̂2

vIK

=
1

i
did

T
i +

1

i

i−1∑
n=1

dnd
T
n − σ̂2

vIK

=
1

i

(
did

T
i − σ̂2IK

)
+

i − 1

i
R̂w (i − 1) (5.25)
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Blind Block Recursive SVD Algorithm

Step 1. Form auto-correlation matrix for iteration i from equation (5.22).

Step 2. Get U (i) from SVD of R̂d (i).

Step 3. Form Ũ (i) from the null eigenvectors of U (i).

Step 4. Form Hankel matrices of size (L × M − 1) from individual vectors of Ũ (i).

Step 5. Form U (i) by concatenating the Hankel matrices.

Step 6. The null eigenvector from the SVD of U (i) is the estimate w̃i.

Step 7. Use w̃i in equation (5.24) to get the update ŵi.

Table 5.1: Summary of the Blind Block Recursive SVD (BBRS) algorithm.
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Similarly, we have

Ĝ (i) = chol
{
R̂w (i)

}
(5.26)

ĝi = vec
{
Ĝ (i)

}
. (5.27)

Letting QA =
(
QTQ

)−1
QT , we have

ŵi = QAĝi. (5.28)

This equation is still not recursive. So we expand ĝi in terms of equation (5.25)

and use the fact that the vec operator is linear to get

ŵi = QAĝi

= QAvec
{
Ĝ (i)

}

= QAvec
{

chol
{
R̂w (i)

}}

= QAvec

{
chol

{
1

i
did

T
i +

i − 1

i
R̂w (i − 1)

}}
, (5.29)

where we now add and subtract chol
{

i−1
i

R̂w (i − 1)
}

from the right hand side of

the equation to get

ŵi = QAvec

{
chol

{
1

i
did

T
i +

i − 1

i
R̂w (i − 1)

}

−chol

{
i − 1

i
R̂w (i − 1)

}
+ chol

{
i − 1

i
R̂w (i − 1)

}}

(5.30)
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= QAvec

{
chol

{
1

i
did

T
i +

i − 1

i
R̂w (i − 1)

}
− chol

{
i − 1

i
R̂w (i − 1)

}}

+QAvec

{
chol

{
i − 1

i
R̂w (i − 1)

}}
. (5.31)

Recognizing that chol
{

i−1
i

R̂w (i − 1)
}

= i−1
i

ĝ (i − 1) and

QAvec
{

chol
{

i−1
i

R̂w (i − 1)
}}

= i−1
i

QAĝi−1 = i−1
i

ŵi−1, we get

ŵi = QA

(
ĝi − i − 1

i
ĝi−1

)
+

i − 1

i
QAĝi−1

= QA

(
ĝi − i − 1

i
ĝi−1

)
+

i − 1

i
ŵi−1. (5.32)

Letting λi = 1− 1
i
, the blind block recursive Cholesky algorithm is summarised

in Table 5.2. The table defines the Blind Block Recursive Cholesky algorithm with

variable forgetting factor (VFFBBRC). If the forgetting factor is fixed then the

algorithm can simply be called Blind Block Recursive Cholesky (BBRC) algo-

rithm. Simulation results show that the VFFBBRC algorithm converges to the

least squares solution obtained through the algorithm given in [69]. The BBRC

algorithm can also achieve the same result if the value of the forgetting factor is

extremely close to 1. However, the convergence speed of the BBRC algorithm is

slow compared to that of the VFFBBRC algorithm even though it requires lesser

memory and is therefore computationally less complex. There are two issues with

the recursive algorithm. Firstly, the Cholesky factorization cannot be applied un-

til at least M blocks of data have been received as the correlation matrix needs

to be positive definite in order for the factorization to be possible. The second

issue involves the noise variance of the additive noise. In [69] it is shown that if
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the noise variance can be estimated, the estimate of the unknown vector will im-

prove. However, using the noise variance in the recursive algorithm can make the

resulting matrix to have zero or negative eigenvalues and so the Cholesky factor-

ization may not be possible until a considerable number of data blocks have been

received. The performance does degrade if noise variance cannot be subtracted

from the auto-correlation matrix but this algorithm is still computationally less

complex compared to the SVD approach. One approach is to estimate the noise

variance after a certain number of blocks have been received and then use that

value for the remainder of the iterations. The table below summarises the algo-

rithm.

5.1.5 Diffusion Blind Block Recursive Algorithms

In order to incorporate the above defined algorithms in a WSN setup, we simply

use the ATC scheme for diffusion and incorporating the algorithms directly, we

come up with the Diffusion BBRS (DBBRS) and Diffusion BBRC (DBBRC) al-

gorithms. Reforming the algorithms from tables 5.1 and 5.2, the new algorithms

can be summarised as in tables 5.3 and 5.4. The subscript k denotes the node

number, Nk is the set of neighbors of node k, ĥk is the intermediate estimate for

node k, clk is the combination weight for the estimate coming from node l to node

k.
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Blind Block Recursive Cholesky Algorithm

Step 1. Let forgetting factor be defined as λi = 1 − 1
i
.

Step 2. Form auto-correlation matrix for iteration i using λi in equation (5.25) to get

R̂w (i) = (1 − λ (i))
(
did

T
i − σ̂2

vIK
)

+ λ (i) R̂w (i − 1)

Step 3. Get Ĝ (i) as the Cholesky factor of R̂w (i).

Step 4. Apply the vec operator to get ĝi.

Step 5. Use λi in equation (5.32) to get the final update

ŵi = QA (ĝi − λiĝi−1) + λiŵi−1.

Table 5.2: Summary of Blind Block Recursive Cholesky (BBRC) algorithm
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Diffusion Blind Block Recursive SVD Algorithm

Step 1. Form auto-correlation matrix for iteration i from equation (5.22) for each node k.

R̂d,k (i) = dk,id
T
k,i + R̂d,k (i − 1)

Step 2. Get Uk (i) from SVD of R̂d,k (i).

Step 3. Form Ũk (i) from the null eigenvectors of Uk (i).

Step 4. Form Hankel matrices of size (L × M − 1) from individual vectors of Ũk (i).

Step 5. Form Uk (i) by concatenating the Hankel matrices.

Step 6. The null eigenvector from the SVD of Uk (i) is the estimate w̃k,i.

Step 7. Use w̃k,i in equation (5.24) to get the intermediate update ĥk,i.

ĥk,i = λŵk,i−1 + (1 − λ) w̃k,i

Step 8. Combine estimates from neighbors of node k to get ŵk,i.

ŵk,i =
∑
lεNk

clkĥl,i

Table 5.3: Summary of DBBRS algorithm.
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Diffusion Blind Block Recursive Cholesky Algorithm

Step 1. Let forgetting factor be defined as λk,i = 1 − 1
i
.

Step 2. Form auto-correlation matrix for iteration k from

R̂w,k (i) = (1 − λk,i)
(
dk,id

T
k,i − σ̂2

v,kIK
)

+ λk,iR̂w,k (i − 1)

Step 3. Get Ĝk (i) as the Cholesky factor of R̂w,k (i).

Step 4. Apply the vec operator to get ĝk,i.

Step 5. The intermediate update is then given as

ĥk,i = QA (ĝk,i − λk,iĝk,i−1) + λk,iŵk,i−1.

Step 6. The final update is the weighted sum of the estimates of all neighbors of node k

ŵk,i =
∑
lεNk

clkĥl,i

Table 5.4: Summary of DBBRC algorithm
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5.2 Computational complexity of the proposed

algorithms

In order to fully understand the variation in performance of the two algorithms it

is necessary to look at the computational complexity as it tells us how much an

algorithm gains in terms of computations as it loses in terms of performance. We

first look at the complexity of the original algorithms and then move on to the

recursive versions.

5.2.1 Blind SVD Algorithm

The length of the unknown vector is M and the data block size is K. A total num-

ber of N data blocks are required for estimation where N ≥ K. This means that

we have a data block matrix of size K ×N . The correlation matrix formed using

this matrix will thus have the size K ×K and this function requires K2 (2N − 1)

calculations (including both multiplications and additions). The next step is Sin-

gular Value Decomposition (SVD), which is done using the QR decomposition

algorithm. This algorithm requires a total of [4
3
K3 + 3

2
K2 + 19

6
K − 6] calculations.

Then the null eigenvectors are separated and each eigenvector is used to form a

Hankel matrix and all the Hankel matrices are stacked together to form a matrix

of size M × (K − M)(M − 1). The unique null eigenvector of this new matrix

gives the estimate of the unknown vector. To find the eigenvector requires an-

other [
(
2K + 7

3

)
M3 − 2M4 +(1 − 4K) M2

2
+ 19

6
M − 6] calculations. So the overall
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calculations required for the algorithm can be given as

TC,SV D =
4

3
K3 +

(
2N +

1

2

)
K2 +

19

6
K +

(
2K +

7

3

)
M3

−2M4 + (1 − 4K)
M2

2
+

19

6
M − 12. (5.33)

5.2.2 Blind Cholesky Algorithm

Like the SVD algorithm, here also the unknown vector length is M and the data

block size is K. The total number of data blocks are taken as N in order to have

uniformity in comparison. The correlation process is the same except for the final

averaging step which results in an extra division so the total calculations become

K2 (2N − 1) + 1. The next step is to estimate the noise variance, which requires

the SVD decomposition and therefore another [4
3
K3+ 3

2
K2+ 19

6
K−6] calculations.

The minimum number of calculations required to estimate the noise variance is 1

division. The noise variance is then subtracted from the diagonal of the correlation

matrix, resulting in another K calculations. After that the Cholesky factorization

is performed, which requires [1
3
(M3 + 3M2 + M)] calculations. Finally the last

step is to get the estimate of the unknown vector through the pseudo-inverse and

this step requires another [M (2M2 − 1)] calculations. Thus the total number of

calculations required are given as

TC,Chol =
4

3
K3 +

(
2N +

1

2

)
K2 +

19

6
K − 4 +

1

3

(
7M3 + 3M2 − M

)
. (5.34)
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5.2.3 Blind Block Recursive SVD Algorithm

Moving on to the recursive algorithms, we can notice that there is only a slight

change in the overall algorithm but it reduces the calculations by nearly half. Since

the correlation matrix is only being updated at each iteration, the calculations

required for the first step are now only 2K2 instead of K2 (2N − 1). However, an

extra M + 2 calculations are required for the final step. The overall calculations

are thus given as

TC,RS =
4

3
K3 +

7

2
K2 +

19

6
K +

(
2K +

7

3

)
M3 − 2M4

+ (1 − 4K)
M2

2
+

25

6
M − 10. (5.35)

5.2.4 Blind Block Recursive Cholesky Algorithm

Similarly, the number of calculations for the first step for this algorithm is reduced

to 2K2+2 instead of K2 (2N − 1)+1. The final step includes an extra K2+M +2

calculations. Thus the total number of calculations is now given as

TC,RC =
4

3
K3 +

7

2
K2 +

19

6
K +

1

3

(
7M3 + 3M2 + 2M

)
. (5.36)

However, it should be noted that the estimation of the noise variance need not

be repeated at each iteration. After a few iterations, the number of which can be

fixed apriori, the noise variance can be estimated and then this same value can be

used in the remaining iterations instead of estimating it repeatedly. The number
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of calculations, thus, reduces to

TC,RC = 2K2 +
1

3

(
7M3 + 3M2 + 2M

)
+ 4. (5.37)

5.2.5 Complexity Comparison

Here we compare all the algorithms for specific scenarios. The value for M is fixed

to 4. The value for K is varied whereas the value for N is varied between 10 and

20 for the least squares algorithms. The number of calculations for the recursive

algorithms are shown for one iteration only. The last algorithm is the recursive

Cholesky algorithm where the noise variance is calculated only once, after a select

number of iterations have occurred, and then it is kept constant. Tables 5.5 and

5.6 summarize the results.

Table 5.5 lists the number of computations for the original algorithms, showing

that the Cholesky based method requires lesser computations and so the trade off

between performance and complexity is justified. If the number of blocks is small

then the Cholesky based method may even perform better than the SVD based

method as shown in [69]. Here it is assumed that the exact length of the unknown

vector is known. Generally, an upper bound of this value is known and that value

is used, resulting in an increase in calculations. Since the assumption stands true

for both algorithms here, the comparison is fair.
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M = 4 N = 10 N = 20

K = 8 K = 10 K = 8 K = 10 K = 20

SVD 2434 4021 3714 6021 28496

Chol 2180 3575 3460 5575 27090

Table 5.5: Computations for original least squares algorithms.

M = 4 K = 8 K = 10 K = 20

RS 1352 2327 13702

RC 1100 1883 12298

RCNV 300 372 972

Table 5.6: Computations for recursive algorithms.
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Table 5.6 lists the computations per iteration for the recursive algorithms. RS

gives the number of computations for the recursive SVD algorithm and RC is

for the recursive Cholesky algorithm. RCNV lists the number of computations

when the noise variance is estimated only once. This shows how the complexity

of the algorithm can be reduced greatly by a small improvisation. Although the

performance does suffer slightly, the gain in complexity more than compensates

for this loss.

5.3 Simulations and Results

Here we compare results for the newly developed algorithms. Results are shown for

a network of 20 nodes, show in fig. 5.1. The forgetting factor is both varied as well

as kept fixed in order to study how the performance varies. The two algorithms

are compared with each other and then compared under different scenarios to see

how each performs. The forgetting factor, data block size and network size are

changed one by one while all other variables are kept constant to check how the

performance varies for each algorithm.

5.3.1 Performance of the proposed algorithms

Initially, the two algorithms are used to identify an unknown vector of length

M = 4 in an environment with signal-to-noise ratio (SNR) of 10 and 20 dB. The
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Figure 5.1: Network of 20 nodes.
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forgetting factor is fixed at λ = {0.9, 0.99}. The block size is taken as K = 8. Re-

sults are shown for the two algorithms for both diffusion and no cooperation cases.

Figures 5.2-5.5 show these results. As can be seen, the Cholesky algorithm does

not perform well when the forgetting factor is small. The performance improves

with increase in forgetting factor but the speed of convergence reduces. However,

its one main positive attribute remains its low computational complexity. For

the SVD algorithm, the performance improves slightly with increase in forgetting

factor but at a loss of convergence speed.

5.3.2 Effect of forgetting factor

Next, the performance of each algorithm is separately studied for different values

of the forgetting factor. For the fixed case the values taken are λ = {0.9, 0.95, 0.99}

and the results are compared with the variable forgetting factor case. The SNR

is chosen as 20 dB and the network size is taken to be 20 nodes. Fig. 5.6 shows

the results for the Cholesky factorization based BBRC algorithm. It is seen that

the performance improves as the forgetting factor is increased but the speed of

convergence slows down. The algorithm performs best when the forgetting factor

is variable. The results for the SVD based BBRS algorithm are shown in figs. 5.7-

5.9. Fig. 5.7 shows the complete curves. However, there is not much difference in

the performance so the figure is zoomed in to see how the algorithm is behaving

at the beginning and the end of the simulation. Fig. 5.8 shows the result that is

expected. The speed of convergence is fastest for λ = 0.9 and slowest for λ = 0.99.
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Figure 5.2: MSD at SNR 10 dB and FF 0.9.
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Figure 5.3: MSD at SNR 20 dB and FF 0.9.
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Figure 5.4: MSD at SNR 10 dB and FF 0.99.
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Figure 5.5: MSD at SNR 20 dB and FF 0.99.
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For the variable forgetting factor (VFF) case, the speed is fast initially but slows

down with time. Fig. 5.9 shows how the curves approach steady-state. It is

evident that λ = 0.99 would give the lowest steady-state error whereas the VFF

case would take the longest to reach the steady-state and although the results may

be as good as for the case of λ = 0.99 or even better, the speed of convergence is

too slow.

5.3.3 Performance of the proposed algorithms using opti-

mal forgetting factor

From these results it can easily be inferred that the Cholesky factorization based

approach yields the best results when the forgetting factor is varied whereas the

SVD based algorithm performs best if the forgetting factor is fixed. In order to

have a fair performance comparison, the two algorithms need to be compared

under conditions in which they both perform the best. Figs. 5.10 and 5.11 give

the respective results. As can be seen, at SNR 10 dB, the Cholesky based DBBRC

algorithm performs slightly better than the SVD based BBRS algorithm without

diffusion whereas both SVD based algorithms outperform the Cholesky based

algorithms at SNR 20 dB. However, the BBRC algorithm remains computationally

less complex than BBRS algorithm. In the end it is a trade off between complexity

and performance while choosing either of the algorithms.
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Figure 5.6: MSD at SNR 20 dB for BBRC with different FFs.
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Figure 5.7: MSD at SNR 20 dB for BBRS with different FFs.
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Figure 5.8: MSD at SNR 20 dB for BBRS with different FFs (Transient).
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Figure 5.9: MSD at SNR 20 dB for BBRS with different FFs (Near Steady-State).
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Figure 5.10: MSD at SNR 10 dB under best performance.
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Figure 5.11: MSD at SNR 20 dB under best performance.
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5.3.4 Effect of block size

Since it has been stated in the original works that the block size can effect the

performance of the algorithm, the performance of the algorithms is also considered

for various block sizes. The size is varied as K = {5, 8, 10, 15, 20}. The SNR is

20 dB. This is done for both algorithms separately. Here it is important to note

that as the size of the data block increases, the total amount of data required for

the same number of blocks also increases. For example, if a simulation is run for

1000 blocks of data then a block size of K = 8 would mean 8000 sensed values

whereas a block size of K = 20 would mean 20,000 sensed values. Figures 5.12 and

5.13 give results for the BBRC algorithm. The algorithm fails badly for K = 5.

However, for the remaining block sizes the algorithm performs almost similarly.

The convergence speeds are nearly the same (see fig. 5.12) and the performance

at steady-state is similar as well with only slight difference (see fig. 5.13). From

fig. 5.13 it can be inferred that the best result, in every respect, is achieved when

block size is just large enough to achieve a full rank input data matrix (K = 8 in

this case). Thus, it is essential to estimate a tight upper bound for the size of the

unknown vector in order to achieve good performance. Figures 5.14 and 5.15 give

the results for the BBRS algorithm. Here, the performance improves gradually

with increase in block size. However, the speed of convergence is slow for a large

block size (see fig. 5.14) even though a larger block size gives better performance

at steady-state (see fig. 5.15). Again it can be inferred that it is best to keep the

block size reasonably small in order to achieve a good trade off between
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Figure 5.12: MSD at SNR 20 dB for varying K for BBRC.
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Figure 5.13: MSD at SNR 20 dB for varying K for BBRC (zoomed in at the end).
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Figure 5.14: MSD at SNR 20 dB for varying K for BBRS.

1800 1850 1900 1950 2000
−33

−32.5

−32

−31.5

−31

−30.5

−30

−29.5

−29

data blocks

M
S

D
 (d

B
)

K = 5 K = 8
K = 10

K = 20

Figure 5.15: MSD at SNR 20 dB for varying K for BBRS (zoomed in at the end).
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performance and speed of convergence, especially taking into account the fact that

a larger block size would mean sensing more data for the same number of blocks.

5.3.5 Effect of network size

Next it is seen how the size of the network can have an effect on the perfor-

mance of the algorithms. For this purpose, the size of the network is varied for

N = {10 − 50} while the forgetting factor is kept fixed at λ = 0.9 for the BBRS al-

gorithm and variable for the BBRC algorithm. The block size is taken as K = 8.

This performance comparison is also done for both algorithms separately. The

number of neighbors for each node are increased gradually as the size of the net-

work is increased. Figures 5.16 and 5.17 show results for the BBRC algorithm.

The performance is not so good when N = 10 but the performance improves as

N increases. The initial speed of convergence is similar as can be seen in fig.

5.16 but near steady-state, the bigger sized networks show slight improvement in

performance, as shown in fig. 5.17. Figures 5.18 and 5.19 show the results for

the BBRS algorithm. Here the trend is slightly different. It can be seen that the

initial speed of convergence improves with increase in N (see fig. 5.18) but the im-

provement in performance is slightly lesser near steady-state (see fig. 5.19). Also,

the difference in performance is lesser for larger networks, which is as expected.
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Figure 5.16: MSD at SNR 20 dB for varying network sizes for BBRC.
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Figure 5.17: MSD at SNR 20 dB for varying network sizes for BBRC (zoomed in
at the end).
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Figure 5.18: MSD at SNR 20 dB for varying network sizes for BBRS.
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Figure 5.19: MSD at SNR 20 dB for varying network sizes for BBRS (zoomed in
at the end).
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5.3.6 Effect of node malfunction

Finally, it is shown how the performance can be effected if one or more nodes

malfunction. Two different network sizes are chosen under two different SNR

values to show how performance gets effected in this scenario. First, a network

of 20 nodes is used and 5 nodes are switched off, resulting in a re-calibration of

weights. The nodes with the maximum number of neighbors are switched off to

see how badly the network performance might be effected. Results are shown

for SNR 10 dB and 20 dB both, in figs 5.20 and 5.21 respectively. The network

size is then increased to 50 nodes and again a quarter of the nodes are switched

off, which is 13 nodes in this case. Results are shown in figs 5.22 and 5.23. The

performance gets effected greatly for the BBRC algorithm at SNR 10 dB but there

is not much difference in performance at SNR 20 dB and the difference gets even

smaller when the network size is increased. The degradation is similar for the SVD

based algorithm for all the cases, which shows that the SVD based algorithm is

strongly dependent on the connectivity of the nodes. As expected, the overall

performance improves with increase in network size. The effect of switched off

nodes, however, is similar in both cases when the ratio of switched off nodes to

the total nodes is the same.
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Figure 5.20: MSD at SNR 10 dB for 20 nodes when 5 nodes are off.
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Figure 5.21: MSD at SNR 20 dB for 20 nodes when 5 nodes are off.
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Figure 5.22: MSD at SNR 10 dB for 50 nodes when 13 nodes are off.
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Figure 5.23: MSD at SNR 20 dB for 50 nodes when 13 nodes are off.
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5.4 Conclusion

This work develops blind block recursive least squares algorithms based on

Cholesky factorization and singular value decomposition (SVD). The algorithms

are then used to estimate an unknown vector of interest in a wireless sensor

network using cooperation between neighboring sensor nodes. Incorporating the

algorithms in the sensor networks creates new diffusion based algorithms, which

are shown to perform much better than the no cooperation case. The new algo-

rithms have been tested using both a variable forgetting factor as well as a fixed

forgetting factor. The two algorithms are named as the Diffusion Blind Block

Recursive Cholesky (DBBRC) algorithm and the Diffusion Blind Block Recursive

SVD (DBBRS) algorithm. Simulation results compare the two algorithms under

different scenarios. It has been seen that the DBBRS algorithm performs much

better but is also computationally very complex. Comparatively, the DBBRC

algorithm is computationally less complex but does not perform as well. Also, the

DBBRC algorithm performs better when the forgetting factor is variable whereas

the DBBRS algorithm gives better results with a fixed forgetting factor. The

value of the forgetting factor in the case of DBBRS does not effect the final result

a great deal except for the slight variation in convergence speed and steady-state

performance. It was also seen that the size of the data block has an effect on

the performance of the algorithms. The speed of convergence slows down and

this means that with a large block size, the amount of data required would also

increase but the performance does not necessarily improve with an increase in
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block size and generally, a small block size gives a better performance. Therefore,

it is essential to estimate a very low upper bound to the size of the unknown

vector so that the data block size is not so large. Next, it was noticed that an

increase in the network size improves performance but the improvement gradually

decreases for large sized networks. Finally, it was seen that switching off of nodes

can slightly degrade the performance of the algorithm. In the case of the Cholesky

based algorithm, the degradation can be severe at low SNR but the SVD based

algorithm shows only a slight degradation.
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CHAPTER 6

CONCLUSIONS AND FUTURE

RECOMMENDATIONS

6.1 Conclusions

This dissertation proposes several algorithms for distributed parameter estima-

tion over ad hoc wireless sensor networks. The non-blind algorithms are studied

in detail and complete performance analyses are carried out, supported by simu-

lation results to assess the performance of the proposed algorithms under various

scenarios. The blind algorithms are formulated recursively and then applied for

estimation in a wireless sensor network environment. The main contributions of

the dissertation are listed below:

1. The variable step-size diffusion least mean square (VSSDLMS) algorithm is

formulated after choosing the most suitable VSSLMS algorithm form the

existing literature. A generalized formulation for the algorithm is also sug-
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gested. A complete analysis of the algorithm is carried out and a detailed

performance study is done for the proposed algorithm.

2. The noise-constrained diffusion least mean square (NCDLMS) algorithm is

derived for estimation in a wireless sensor network. A generalized formula-

tion is then suggested for the algorithm. Complete performance analysis is

carried out including the effect of noise variance estimate mismatch. The

bounds on performance have been tested and the robustness of the proposed

algorithm is tested under different scenarios.

3. Two blind block estimation algorithms are formulated in the recursive sense

inspired form existing algorithms and then applied to estimation in a wire-

less sensor network. Computational complexity of the algorithms is studied.

Then the performance is studied through simulations and the effect of dif-

ferent variables on performance is shown.

6.2 Future Recommendations

Based on the results achieved in this work, several recommendations for future

work are being suggested.

1. This work studies only time invariant environments. Time varying environ-

ments should be studied for the algorithms proposed in this work.

2. The proposed algorithms should be applied to applications such as radar

detection and tracking, medical imaging, and spectrum sensing in order to
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study their effectiveness.

3. The analysis of the non-blind algorithms has been done for Gaussian data

only. The analysis can be extended for non-Gaussian data to see if it is

possible to find a closed form solution.

4. The work in this dissertation is done using real-valued uncorrelated data

only. The work should be extended to complex-valued and correlated data

sets.

5. The analysis of the non-blind algorithms should be studied without using

the independence assumptions.

6. A study of the parameters controlling the non-blind algorithms should be

carried out to ascertain optimal performance measures.

7. Semi-blind algorithms should be studied in order to see if a trade-off be-

tween non-blind and blind algorithms can be reached for a practically im-

plementable solution.
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