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 ,LPC)  ٍِٗ أٍثيزٖب با ٍزطاثطٗ ٝنُ٘ ٍزَبثلا  بفٜ أّظَخ اىزؼطف اىظ٘رٜ إلا أُ اىنثٞط ٍْٖ رسزرسً
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1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

Speech is the most effective mean of communication among humans. The speech 

communication process begins with an idea, a thought, or information (message) that the 

speaker wants to deliver to the listener. This message is generated as a sequence of basic 

speech sounds called phonetics. The phonetics are encoded by language rules in a form of 

a word. Words are modulated and transmitted to the recipient who will demodulate and 

decode the words to get back the original message. Different perspectives can be taken 

when analyzing speech; these include acoustics, linguistics, and psychology, to mention a 

few. The specific origins of speech are unknown with a number of questions remaining to 

be answered or tracked, even in the twenty-first century [96]. Traditionally, speech has 

been seen as a combination of sentences which are composed of words, which in turns are 

composed of phonemes. Phonemes are the smallest units of speech and are the sounds 

that distinguish one word from another. For a complete speech communication system, 

two processes must be considered: speech production and speech perception (these are 

called a speech chain). Speech chains can be modeled as in Figure 1.1 [95] and are 

illustrated in more details in the following sections. 

http://en.wikipedia.org/wiki/Phonetic
http://en.wikipedia.org/wiki/Phonetic
http://en.wikipedia.org/wiki/Acoustics
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Speech Production 

Speech production is the process by which the vocal system produces the sound which is 

then encoded in a form of a language word. The vocal system consists of: vocal tract, 

larynx, and glottis, (Figure 1.2) [83]. The Vocal tract includes: laryngeal pharynx, oral 

pharynx, oral cavity, nasal pharynx and nasal cavity. The larynx includes the vocal cords 

(vocal folds), the top of cricoid cartilage, the arytenoid cartilages, and the thyroid 

cartilage (known as "Adam's apple"). The vocal cords are stretched between the thyroid 

cartilage and the arytenoid cartilages. The glottis is the area between the vocal cords and 

the larynx. The pharynx connects the larynx to the oral cavity. The soft palate connects 

and isolates the route from the nasal cavity to the pharynx. At the bottom of the pharynx, 

we find the epiglottis and the false vocal cords to prevent food reaching the larynx, and to 

 
 

Figure 1.1: The Speech Chain: from Message Formulation to Message Understanding [95] 
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isolate the esophagus acoustically from the vocal tract. The epiglottis, the false vocal 

cords and the vocal cords are closed during swallowing and open during normal 

breathing. 

The oral cavity is one of the most important components of the vocal tract. The lips 

control the size and shape of the mouth opening through which speech sound is radiated. 

Unlike the oral cavity, the nasal cavity has fixed dimensions and shape. The air stream to 

the nasal cavity is controlled by the soft palate. The oral cavity can change considerably 

in size enabling sound pronunciation. 

 

 

 

 

 

 

 

 

 

Speech is originated by the lungs (with assistance from the diaphragm) where air flow is 

pressed through the glottis to the three main cavities of the vocal tract, the pharynx and 

 
 

Figure 1.2: Human Vocal System [83] 

(1) Nasal cavity, (2) Hard palate, (3) Alveoral ridge, (4) Soft palate (Velum), (5) Tip of the 
tongue (Apex), (6) Dorsum, (7) Uvula, (8) Radix, (9) Pharynx, (10) Epiglottis, (11) False vocal 

cords, (12) Vocal cords, (13) Larynx, (14) Esophagus, and (15) Trachea. 
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the oral and nasal cavities. From the oral and nasal cavities, the air flow exits through the 

nose and mouth, respectively. The vocal cords module the air flow by smooth systolic and 

flatter while glottis rapid opening and closing generating buzzing sound which are the 

phonemes. Phonemes are usually considered as voiced, however they can also be 

unvoiced, and in some cases they are between the two states. Voiced phonemes consist of 

a fundamental frequency (F0) and its harmonic components produced by the vocal cords. 

The vocal tract modifies this excitation signal causing the production of formants (poles) 

and sometimes anti-formants (zeros) frequencies. 

On the other hand, with purely unvoiced sounds, there is no fundamental frequency in the 

excitation signal, and therefore no harmonic structure exists; hence the excitation can be 

seen as a white noise process. Unvoiced sounds are usually more silent and less steady 

than voiced ones. Phonemes are also classified as vowels and consonants. Consonants can 

also be classified according to the air flow blockage by vocal tract: total (voiced 

consonant), partial (stop consonant) or none (unvoiced consonant). Vowels (voiced) are 

characterized by harmonic patterns and relatively free passage of air flow through vocal 

tract.  The fundamental frequency of vocal cords vibration depends on their mass and 

tension. 

The most common model used for the vocal system is the single non-uniform acoustic 

tube (between the glottis and mouth). This model simulates vocal tract as a tube that 

varies as a function of time and displacement along the axis of sound propagation [1]. The 

non-uniform model is known as the Multitube Lossless Model because it consists of 

series of N concatenated lossless acoustic tubes; Figure 1.3 shows an example of a 7-tube 
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lossless model. Each single tube, k , is characterized by its cross-sectional area, Ak , and 

its length lk. Resonance frequency is produced when the sound wave propagates through 

the conjunction area between two adjacent tubes. Appropriate estimation for the number 

of tubes in Multitube model leads to an accurate approximation of human vocal tract [1]. 

 

 

 

 

 

 

 

 

 

Acoustic Speech Variability: 

Human speech sound carries not only the basic acoustic message, but it also provides 

some indication of the speaker’s main characteristics. Several speech studies showed that 

speaker characteristics can significantly affect the sound produced. Examples of speaker’s 

characteristics include: 

A. Emotional state: 

Emotional state of the speaker may affect the acoustic content of the utterances. Speaker’s 

emotion such as anger, fear, contentment, happiness and love could all be communicated 

Figure 1.3: Acoustic Tube Model for the Human Vocal Tract 

A1 A2 A3 A4 A5 A6 A7 

l1 

l2 

l3 

l4 
l5 

l6 

l7 

Glottis                                   Vocal Tract                                Lips 
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within the acoustic speech. Generally, negative emotions are perceived and 

communicated more accurately from the speech than the positive ones. 

B. Physical state: 

Poor health, tiredness and physical exertion can all cause variability in the speech signal. 

Speakers in good physical condition “produced vowel phonation for maximum duration 

with significantly less jitter and shimmer and had larger phonation range than did subjects 

of similar chronological ages in poor physical condition” [45]. 

C. Gender: 

Previous research work has shown difference in speech signals resulting from male and 

female speakers especially in the fundamental frequency [73]. The fundamental 

frequency of men, women, and children are estimated to be around 110 Hz, 200 Hz, and 

300 Hz, respectively. A scaling factor of 1.6 based on membranous vocal cord length was 

found to account for the difference in the fundamental frequency between male and 

female. 

D. Age: 

Age related changes in the physiology of vocal tract can have significant impact on the 

speech produced. Studies found that utterances from older speakers contain significantly 

more shimmer in the vowel duration than younger speakers. Also the vowel articulation 

becomes more central in elderly speakers while the formants frequency is higher for 

children than for adults. Models trained with speech from older people become more and 

more unstable for the recognition of new utterances from speakers as time passes [46]. In 
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most speech recognition systems, the only practical way to maintain recognition 

reliability over time is to retrain the recognition system with new training data or to 

progressively retrain the system with new samples at appropriate time intervals. 

E. Dialect: 

Significant differences exist between speech of native and non-native speakers of a 

language; and between speakers of different dialects. For example, Fokes and his partners 

[47] found that non-native speakers of English have difficulty producing unstressed 

syllables appropriately, although they tend to use appropriate acoustic parameters for 

these. 

In a comparison study of three different Arabic dialects, Yeou, and his partners [48] 

found variation in acoustic correlates, like F0 peak alignment, F0 contour shape and vowel 

duration [48]. 

F. Other Factors: 

There is also considerable speaker specific information present in speech signals. This 

information can be useful for speaker recognition, but can also cause difficulty for speech 

recognition systems. 

Along with these speaker specific characteristics, noise can be a major factor of acoustic 

variability. Noise can by due to surrounding environment or an imperfect channel for 

transmission such as low microphone quality. To reduce noise effect, it is common to 

attempt to control the environment where the recognition system is used. Features 

extracted from the speech signal may also be selected based on their robustness against 

noise. 
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Speech perception 

The auditory system is the sensory system that allows humans to hear and understand 

sounds. The auditory system enables human also to recognize dangers that can't be seen. 

The ear (Figure 1.4) represents the main auditory system for humans. The ear can hear 

sounds ranging from 20 Hz to 20 kHz. It is most sensitive to frequencies between 500 Hz 

and 4 kHz, which corresponds almost to the speech frequency band using the telephone 

based system. There are three main sections in the ear: outer ear, middle ear, and inner 

ear. The outer ear is the part that we can see. The outer ear protects the inner and middle 

ears and it composed of the Pinna, auditory canal and ear drum. The Pinna is positioned 

on each side of the head to make help with the directional identification of sounds by 

differences of intensity, and time of arrival. The auditory canal behaves as a quarter 

wavelength resonator at approximately 3 kHz. This is the reason why the human ear has 

its maximum sensitivity around this frequency. The ear drum is a stiff conical diaphragm. 

The ear drum is seen as the boundary between the auditory canal and the middle ear. The 

middle ear is located between the outer and the inner ear and it composed of three bones 

called ossicles. These are: the malleus (also called the hammer), the incus (also called the 

anvil), and the stapes (also called the stirrup). The malleus is attached to the inner layer of 

the ear drum. The incus connects the malleus to the stapes. The stapes has a footplate and 

a superstructure. Its footplate is seated in the oval window, which is the separation 

between the middle ear and the inner ear. The eustachian tube connects the middle ear to 

the back of the throat. It is normally closed but opens when swallowing or coughing to 

equalize pressure between the middle ear and the ambient pressure in the throat. The 
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inner ear is composed of cochlea, auditory nerve and the three semi-circulars canals. The 

cochlea is filled with liquid and contains the hairy sensory cells. The three semi-circulars 

are arranged in planes orthogonal to each another. They have no auditory functions but 

help in maintaining balance. 

 

 

 

 

 

 

 

 

 

The funnel-shaped pinna collects sounds. These are transmitted along the auditory cane; 

and set the ear drum into vibrations. At the ear drum, sound energy, which is in fact air 

pressure fluctuation, is transformed into mechanical energy of ear drum movement. As 

the ear drum vibrates, so does the malleus. The vibrations are transmitted inwards from 

the malleus to the incus, and to the stapes. The vibrations of the stapes make the fluids 

inside the inner ear to vibrate. The vibration of the stapes footplate sets up a travelling 

wave pattern within the cochlea. This wavelike pattern causes a shearing of the hairy 

sensory cells of the cochlea, resulting in the generation of neural impulses which are then 

 
 

Figure 1.4: The Human Auditory System [www.skidmore.edu]. 
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sent through the auditory nerve to higher brain centers. The brain then interprets neural 

impulses as sounds. 

In summary, the overall auditory system can be schematically modeled as shown in 

Figure 1.5. 

 

 

 

 

 

1.2 Overview of the Arabic Language 

“Arabic is a Semitic language, and it is one of the oldest languages in the world” [23]. 

Arabic has 34 basic phonemes, six are vowels, and 28 are consonants [23]. There are 

three short vowels and the other three are long. The short vowels are not part of Arabic 

alphabet; they are represented as marks over or below the consonant or the long vowel. The 

Arabic short vowels are called “Harakats”, and they are shown in Table 1.1. The long vowels 

are part of Arabic alphabet. The long vowel is about twice the length of a short one and it 

is pronounced as a stress on the short one. The Arabic long vowels are called “Al-Mad 

Letters”, these are also shown in Table 1.1. The 28 consonants used in Arabic are the 

letters: (see Table 1.1). A special case of the consonant when it becomes a vowel is called 

“Shaddah (   ّ  )” which is a stress sound to pronounce a repeated consonant, Table 1.1. 

 

 
 

Figure 1.5: Schematic Model of Human Auditory System [95]. 
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Table 1.1: Arabic Vowels and Consonants 

Arabic Short Vowels 

Vowel Name Vowel Name Vowel Name Vowel Name 

  ّ  Fathah   ّ  Dammah   ّ  Kasrah   ّ  Shaddah 

Arabic Long Vowels 

Vowel Pronunciation Vowel Pronunciation Vowel Pronunciation 

 Aa ٗ oo OR uu ٛ ee OR uu ا

Arabic Consonants 

Consonants Name Pronunciation Consonants Name Pronunciation 

 d ḍ   ع ʾalif ʾ(a) ا

 ṭ '   ط B ʾ B ة

 ẓ '   ظ T ʾ T د

 ʿayn ʿ ع Th ʾ Th س

 Ghayn Gh ؽ Jīm J ج

 F ʾ f ف ḥ '   ذ

 Q f q ق Kh ʾ Kh خ

 K f k ك D l D ز

 L m l ه Dh l Dh ش

 R ʾ R ً Mīm m ض

 Z y Z ُ Nūn n ظ

 H ʾ h ٕـ Sīn S غ

 Shīn Sh ٗ W w w ش

 d ṣ ٛ Y ʾ y   ص

 

“In Arabic, vowels cannot be initials as they can only occur between two consonants or at 

the end of word; [while] consonants can occur as initials, intervocalics, or syllable 

closings. Intervocalic and initial consonants have durations which are about half those of 

syllable closing or syllable suffix consonants” [14]. “The allowed syllables in Arabic are: 

CV, CVC, and CVCC where V indicates a vowel and C indicates a consonant. … All 

Arabic syllables must contain at least one vowel. Arabic syllables can be classified as 
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short or long. … The CV type is a short one while all others are long. Syllables can also 

be classified as open or closed. An open syllable ends with a vowel, while a closed 

syllable ends with a consonant” [23]. Table 1.2 shows syllabus representation of the 

Arabic digits as a typical example. 

Arabic has a special characteristic for its words by using the “harakates”. With “Al-

harakates”, the Arabic spoken word is cited differently than the written one (the same 

combination of letters pronounced differently with different harakates) [37]. “Arabic has 

a rich [and productive] morphology characterized by high degree of affixation and 

interspersed vowel patterns in the word root” [27]. Arabic is a rich language of dialects, 

of which there are four main types [27]: 

1. Gulf, which includes Gulf (Gulf coast from Kuwait to Oman) and Iraqi dialects. 

2. Levantine, which includes Shami (Syrian, Lebanese, Palestinian, and Jordanian) 

dialects. 

3. North African, which includes Maghreb (Tunisian, Algerian, Moroccan, Libyan) 

and Hassaniiya (Mauritania) dialects. 

4. Standalone, which include Hijazi, Najdi, Yemeni, Egyptian and Sudanese dialects. 

Researchers working in speech recognition agree that the Arabic language is difficult 

because of these different dialects. It is important for Arabic ASR system to be capable of 

accurately recognizing the word/words irrespective of its dialect. 
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Table 1.2: Syllables of Arabic Digits 

Digit Arabic Writing Pronunciation Syllables No. of Syllables 

 WA HID CV-CVC 2 ٗاحس 1

 ITH NIN CVC-CVCC 2! اثِْٞ 2

 THA LA THAH CV-CV-CVC 3 ثلثخ 3

 AR BA !AH CVC-CV-CVC 3 أضثؼخ 4

 KHAM SAH CVC-CVC 3 ذَسخ 5

 SIT TAH CVC-CVC 3 سزخ 6

 SAB !AH CVC-CVC 3 سجؼخ 7

 THA MA NE YAH CV-CV-CV-CVC 4 ثَبّٞخ 8

 TES !AH CVC-CVC 2 رسؼخ 9

 SEFR CVCC 1 طفط 0

 

1.3 Research Motivation and Objectives of The Thesis 

Speech recognition systems attempt to simulate the human auditory system to deduce 

spoken words. A typical speech recognition system detects the sound signal and decodes 

it into the original word/words. Speech recognition technology also known as Automatic 

Speech Recognition (ASR) has gradually evolved from limited vocabulary speaker 

dependent recognition systems, to large vocabulary speaker independent recognition 

systems.  This progression becomes clearer in the past few years with the evolution from 

isolated word recognition systems to continuous speech recognition system. The fast 

processors, the significant growth of Interactive Voice Response (IVR) technology, and 

the development of advanced algorithms; all support current research in speech 

recognition. As a result speech recognition has reached a significant high level of 

performance in terms of accuracy and speed in diverse applications. 

ASR systems consist mainly of 4 major blocks: feature extraction, acoustic modeling, 

pronunciation and language modeling, and decision (Figure 1.6).  
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Feature extraction is the first stage of the speech recognition process in both training and 

classification modules. The feature extraction stage converts a given input sound signal 

into a sequence of acoustical vectors that characterize the sound. This makes the feature 

extraction stage extremely important. Some considerable efforts have been carried out 

attempting to optimize the extraction of the most effective features to improve recognition 

accuracy. 

Although Arabic is the sixth most widely spoken language in the world [27], “there has 

been relatively minimal research [carried] on Arabic compared to other languages” [23]. 

Arabic; my native language; is a native language of 206 million speakers and 24 million 

people as their second language [110]. Arabic is also the formal language of Islam all 

over the world. Continuous efforts and growing demand require the development of 

reliable Arabic speech recognition systems. Reliable systems are these that perform very 

well in different environments and produce accurate recognition. A number of attempts 

have been made to build such reliable systems for Quranic Verse recitation and 

delimitation [37, 38, 39, 40 and 41]. 

 
 

 
Figure 1.6: Major Components of Automatic Speech Recognition System. 
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Our approach in selecting the optimal features in speech recognition is to formulate the 

problem as an optimization framework over the most relevant features for speech 

recognition applications. Such features are obtained from a large pool of traditional 

features. 

In particular, the objectives of this research are: 

1. To introduce a new approach for the optimal selection of features in speech 

recognition applications using the concept of mutual information. 

2. To compare the performance of the optimal feature set using (1) with different 

standard feature sets traditionally used in speech recognition applications. 

3. To apply the above model for Arabic speech recognition and compare the results 

to those obtained for the English language. 

1.4 Thesis Organization 

This thesis is organized as follows. Chapter 2 gives an overview of speech processing 

focusing on speech recognition. Chapter 3 describes the mutual information concept and 

introduces the mRMR algorithm for optimization. Chapter 4 illustrates the experiments 

carried in this work and the different results obtained. Chapter 5 provides a conclusion 

followed by some future research directions.  
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CHAPTER 2 

OVERVIEW OF SPEECH RECOGNITION TECHNIQUES 

2.1 Introduction 

Speech Processing is usually used to mean analysis of human speech signals for a given 

application of interest.  

Speech processing covers a wide range of applications. Speech processing can be 

subdivided into three main areas of applications (Figure 2.1); namely: 

 Recognition; which covers applications that aim at recognizing or even 

understanding speech. Speech recognition applications include: 

 Systems for identifying input speech to extract message content. 

 Systems for identifying the speaker using voice input. 

 Systems for verifying the speaker claimed identity. 

 Automatic Language Translation used for online translation of 

words/sentences between languages. 

 Analysis and Synthesis; this area covers techniques used to process speech 

waveforms to extract original or important information from the data. Examples 

include: 

http://en.wikipedia.org/wiki/Identity_(social_science)
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 Systems for enhancing signal quality by reducing/removing the effects of 

noise. 

 Word Spotting applications such as word searching. 

 Systems for producing natural-sounding synthetic speech also known as Text 

To Speech (TTS) systems. TTS has some modern applications like: reading 

emails in unified messaging services and reading GPS information and 

providing instruction in automobiles. 

 Coding; this area covers the techniques for representing speech at lower 

dimensions while preserving information content. Speech coding is used in 

storage and transmission. Examples of speech coding applications include: 

 Voice Communication which enables communication between people 

including: narrowband/broadband wired communication e.g. ADSL and VoIP 

and narrowband/broadband wireless communication e.g. GSM and CDMA. 

 Speech Storage which is used when speech is required to be efficiently stored 

for services or security purposes. Interactive Voice Response (IVR) systems 

are a common application of such systems. 

2.2 Speech Recognition 

2.2.1 Historical Background 

For humans, speech is the most natural and effective way of communication. As can be 

seen from Figure 2.1, speech recognition is an important branch of speech processing. 
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Speech Recognition (SR) technology enables the identification of spoken words using 

PC-based systems. The goal of research in SR technology is to develop systems that can 

receive and analyze spoken information accurately and efficiently and act appropriately 

based on the extracted information. Accurately and efficiently means here that the SR 

process should be independent of the device used (i.e., the transducer, telephone or 

microphone), the speaker’s accent, or the acoustic environment where the speaker is 

located (e.g. quiet, noisy, indoors, outdoors, standing or moving) [95]. Acting 

appropriately depends primarily on the accuracy of the recognized message. So the 

ultimate goal of SR, which has not yet been achieved yet, is to perform as well as a 

human licenser (hear, understand and act “and sometimes speak with help of Text To 

Speech technology”) [95]. Nowadays, the commonly used speech recognition systems fall 

into one of the following three categories [1]: 

1. Small vocabulary (~10 – 100 words). 

2. Isolated words (> 10.000 words). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Speech Processing Hierarchy 
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3. Continuous speech with constrained “task domain” e.g. business words and 

directory names (~1000 – 5000 words). 

SR can be classified based on the speaking methods: Isolated Word Recognition (IWR), 

Connected Word Recognition (CWR) and Continuous Speech Recognition (CSR). SR 

can also be defined as Speaker Dependant (SD) or Speaker Independent (SI) based on the 

constraints of recognizing the speakers involved in the training phase. SR can also be 

classified from an application point of view as an artificial syntax system which is 

domain-specific or as a natural language processing system which is language-specific. 

The first success story in speech recognition was a sound-activated toy dog named “Radio 

Rex”, this effort was not a real engineering system, but was an excellent initiative. The 

first speech recognizer appeared in 1952 and was a device for isolated digit recognition 

for a single speaker [98]. Another early device was the IBM Shoebox, exhibited at the 

1964 New York World's Fair [1]. These early systems were based on spectral resonance 

extracted by an analog filter bank and a logic circuit. By the mid 1970’s, the basic ideas 

of applying fundamental pattern recognition technology to speech recognition were 

developed [98]. The first pattern recognition technology was based on Linear Predictive 

Coding and Dynamic Time Warping (DTW) matching methods. In 1970s, commercial 

systems became available. These speaker dependent systems were designed to recognize 

small vocabulary discrete utterances (words) in relatively noise-free environment [1]. The 

1980s witnessed a major evolution in SR life cycle by moving from the more intuitive 

template-based approach towards a more rigorous statistical modeling framework [98]. 

The introduction of the Hidden Markov Model (HMM) in 1985 as a speech modeling 
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technique gave a major boost to SR. By end of 1980s, IBM; using HMMs; developed an 

experimental system capable of recognizing 20,000 isolated words or naturally spoken 

utterances drawn from a 5,000- word vocabulary. In the late 1980’s, Artificial Neural 

Networks (ANN) technology was also introduced as another statistical modeling 

technique. 

In the 1990’s, the methods for stochastic language understanding and modeling, as well 

as statistical learning of acoustics were the key technologies enabling the building of 

large vocabulary systems with unconstrained language models, and constrained task 

syntax models for continuous speech recognition. In late 1990’s, real speech-enabled 

applications were developed. AT&T’s developed the “Voice Recognition Call Processing 

(VRCP)” which was an automated handling of operator-assisted calls. AT&Ts also 

developed the “How May I Help You? (HMIHY)” system to which was an automatic 

flight information system for all customers help line calls [98]. In 2000s, SR has 

progressed towards multi-modal systems i.e. audio-visual speech recognition systems and 

even multi-languages systems. 

Main Applications of Speech Recognition: 

Speech Recognition is widely used in many different areas with diverse applications 

(services), some of these include: 

 Telecom Services, for example: 

o Voice Activated Dialer where the caller can request his mobile phone with an 

activated voice recognition service to dial a number using voice commands. 
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o Voice Enabled Unified Messaging where the caller can access and handle his 

email, voice mail and fax messages over the phone using voice commands. 

 Computing Services when a person can interface with his computer’s functions 

and applications using voice commands instead of mouse and keyboard, e.g. 

Windows Speech Recognition. 

 Call Center Services, for example: 

o Airline Services where the customer can inquire about flight information, 

reservation information, booking information or check-in through speech 

recognition services and without help desk agents. 

o Automatic Directory Assistance where one can speak the name of the entity 

or the corporate to the system which will respond with the contact number 

without any human interaction. 

 Financial Services that allow customers to inquire about their banking accounts 

and making different transactions using voice commands. 

 Medical Services, for example: 

o Medical Transcriptionist (MT) systems where one can talk to the deaf through 

a speech recognition system which transcripts the words into text. 

o Electronic Medical Records (EMR) where the doctor dictates the medical 

diagnosis, illness description, and medicine prescription, which is updated in 

the patient record. 
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o Disabilities Services that enable disabled people to use their voice to perform 

activities that they cannot do them with their hands. 

 Education Services where the student is taught or trained through speech 

recognition systems e.g.: recitation the Holy Quran. 

 Military and Civil Aviation Services, for example: 

o Airplane Control Systems where the pilot can interact with the airplane 

control system through speech recognition systems for different instructions. 

o Aviation Training where trainees can talk to speech recognition systems that 

simulates different functions of the land controller. 

 Traffic Facility where car drivers can speak to the Global Positioning Systems 

(GPS) to retrieve information on trip, map, etc... 

 General Services, for example: 

o Transcription and Automatic Translation Services that recognize speech and 

convert it to text or to another language. 

o Robotics with speech recognition enabled systems that allow a person to 

interact with robots and give instructions. 

In general, we can say that speech recognition applications are only limited by 

imagination. We will see more and more of such applications at home and at work. Open 

source speech recognition systems are also available, including HTK, ISIP, AVCSR and 

CMU Sphinx-4 systems [3]. 
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2.2.2 Speech Recognition Models 

Recognition of speech involves identifying the unknown input utterance by utilizing a 

reference model obtained from the training phase. There are two classes of speech 

recognition models: Template matching models which use a pattern matching algorithm, 

and Stochastic models such as the Maximum Likelihood (ML) algorithm [1] 

A. Template/Pattern Matching Models (deterministic models):  

The basic idea here is to use certain distance measures to compute pattern similarities [3]. 

This requires aligning temporally the features of the test utterances with those of the 

reference utterances before computing the matching score. The major drawback of this 

approach is that pattern similarity requires time alignment. Time alignment and distance 

computation are often performed simultaneously. Dynamic Time Warping (DTW) is the 

popular technique used for time alignment. DTW temporally wraps (stretch or compress 

in time) the frames of a test pattern to fit the corresponding frames of the reference 

pattern and use dynamic programming to accumulated distance between these. DWT has 

been successfully employed in simple applications [1]. 

Let the test pattern be denoted as T, and the reference pattern denoted as R. The warping 

distance D(T,R) between the test pattern and the reference pattern is the sum of the local 

distances between each correspondence frame assuming both patterns have the same 

number of frames [2] and it is given by: 

    )1.2(,)(),(,
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Where d(T(n),R(n)) is the local distance between frame n of T and frame n of R. The 

Euclidean distance and LPC log likelihood distance have been shown to be reasonable 

distance measures for this problem [36]. DWT can also be used with the feature extracted 

from the frames such as LPC. It is worth noting that there are several approaches that can 

be used for matching patterns including the nearest neighbor rule or the K-nearest 

neighbor rule, among others. 

B. Stochastic Models: 

Template Matching Models exhibit some limitations that restrict their use to relatively 

small to medium vocabulary databases and speaker-independent applications. For large 

and complicated applications where the cost of variability, storage and computation is 

high, Stochastic Models are more appropriate. The term stochastic indicates that some 

variable characteristics of the speech are used. There are two commonly used models: the 

Hidden Markov Model (HMM), and Artificial Neural Networks (ANN). HMM has been 

the basis for successful large-scale laboratory and commercial speech recognition 

systems, while ANNs have been a part of much more general research efforts to explore 

alternative computing architectures mimicking biological neural systems [1]. ANNs give 

computing an amazing capability in applications that usually require human observation 

and thought process. ANNs are built from a large number of neural cells, each 

representing a simple processor that deals with part of the problem. The concept of ANNs 

is to distribute the computation load among the cells [37]. An input is propagated through 

the ANNs network, and then the output is compared with a desired reference to produce 
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an error. The load weights of the cells are adjusted to minimize the error until an optimal 

solution is reached based on some performance criterion. The main disadvantage of 

ANNs is that the training is a very long process. On the other hand, HMM converges 

faster and it is a more preferred stochastic modeling technique used in speech recognition. 

The power of HMM resides in the feature that it is able to model time-varying patterns 

and track the changes, hence, it is appropriate in modeling the tracking of speech features 

with time. HMM is discussed in details in section 4.3. The Stochastic approach generally 

uses an ML criterion to decide on the reference utterance that most likely matches the test 

utterance. 

Let O represents the observation sequence (feature vector) from the test utterance, and let 

Mi represent the different model of the possible utterances. The ML formulation is 

written: select utterance u such that: 

   )2.2(|max ••MOPu i
i

  

where P(O| Mi ) is the probability of the observation O given a model Mi, (i=1, 2, …N) 

with N being the number of possible utterances. 

2.2.3 Automatic Speech Recognition (ASR) Systems 

Automatic speech recognition systems consist generally of 2 stages: training and 

recognition. The training phase is the process of learning from known speech units with 

the aim of building reference models. This simulates the teaching of a kid a given word 

until he memorizes it and stores it in his brain. The goal of training is to develop a 

dictionary of speech units. ASR systems operate by matching the index of input speech 
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signals with the ones of known speech units from a dictionary. The training phase, in 

general, consists of three stages, these are: 

1. Building the database and codebook. 

2. Building the classification model. 

3. Validation. 

The recognition phase is the process of identifying the spoken unit based on the reference 

models. This involves a classification step followed by a decision. Pattern classification 

basically measures the similarity between the input utterance pattern and each reference 

pattern with either of the classification models discussed earlier. The decision step 

identifies the unknown utterance based on algorithm’s result which depends on similarity 

measurements of classification.  The recognition phase simulates a word recognized by 

the human brain based on a stored referenced model for that word built earlier. 

The recognition phase consists of two stages namely: 

1. Classifying the sequence of symbols. 

2. Declaring the utterances with the highest probability. 

Figure 2.2 shows a block diagram for a typical ASR system. 
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Figure 2.2: Block Diagram for Automatic Speech Recognition. 
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Before the training and the recognition phases, the utterances are preprocessed and 

analyzed to extract the different sets of feature vectors. The utterances (acoustic unit) can 

be a word or sub-word, such as phonemes, diphones (a phoneme with its neighbor), 

triphones (a phoneme with its left and right neighbors) or syllables [28]. The feature 

vectors are seen as the raw data for both training and recognition. The process of 

determining the feature vectors is known as the feature extraction stage. This stage is very 

important; hence it will be discussed in more details in the next section. 

2.3 Feature Extraction for Speech Recognition Applications 

Feature extraction is a key step in developing robust speech recognition systems. This 

stage is used to convert speech utterances into sets of small size characterizing features. 

The estimation of the time varying spectrum is usually the first step in most feature 

extraction methods [8]. This is carried out by pre-emphasizing speech data and then 

segmenting it into frames. Each frame (usually 25 msec) is windowed to smooth out the 

frame ends. The different features are then extracted. In the training stage, segments of 

feature vectors are stored as pattern for different utterances or words. These vectors may 

be used to develop models for the different utterances. In the recognition phase (or 

testing), the estimated feature vectors from the unknown utterances are mapped to the 

best matching pattern using probability (or distance). Figure 2.3 presents the basic block 

diagram for the feature extraction stage. 
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Note that the feature extraction stage is preceded with two important stages: segmentation 

and windowing. These are briefly explained before discussing in more details the 

different features commonly used in speech analysis. 

Speech Preemphasis: 

Spectral tilt is one characteristic of human speech spectrum. Spectral tilt represents the 

spectrum of the voiced signal which has more energy at lower frequencies than higher. To 

overcome this unbalanced energy distribution, a first order preemphasis filter (1 − αz
−1

) is 

used to boost high frequency energy. Typical pre-emphasis filter coefficient is between 

0.95 - 0.97. 

Speech Segmentation: 

Human speech frequency characteristics change with time, so speech is said to be 

nonstationarity. To reflect this nonstationarity, we need to recalculate the feature 

coefficients margin at regular time intervals. To perform short time analysis of segments 

over the whole speech, the concept of sliding windows is used. Previous research has 

shown that speech can be stationary over short time intervals of 10-30 ms. Based on this 

assumption, the window sliding approach is used with short overlap between consecutive 

frames. Typical frame duration is 20-30 ms and overlap duration of 10-20 ms. 

 

 

 

 

 

 

 

 

 

 
Figure 2.3: Block Diagram for Feature Extraction 
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Windowing (Frames): 

Large prediction errors may result at frame edges because of prediction length (small 

number of non-zero samples). To reduce this error, speech frames are first multiplied by 

soft window functions to smooth out the frame edges. A Soft window has slow 

truncations at both edges, so multiplying it by the speech frame will smoothly taper the 

frame ends. The Hamming window is the most commonly used window with 99% of its 

energy residing in the main lobe and the highest side lobe is at -43 dB [4]. The Hamming 

window is defined as [1]: 
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where N = the length of the window. 

Other reasons for multiplying frames with windows include spectral leakage [4]. Simple 

segmentation can be obtained using a rectangular window which means in frequency 

domain a convolution of the signal spectrum with the frequency response of rectangle 

window. The rectangle window response has a very narrow main lobe and relatively large 

side lobes. This causes a corruption of frequency components in the region of the side 

lobes. On the other hand, Hamming window frequency response has a wider main lobe 

and smaller side lobes (Figure 2.4). The spectral leakage in Hamming window case is 

reduced because of its small side lobes [1]. 
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Feature Analysis: 

After segmenting speech into frames, we are now ready to analyze the frames to extract 

the different characteristic features. Traditionally, there have been 2 approaches used for 

speech parameterization. In particular, these two approaches are: parametric and 

nonparametric. Parametric methods are usually used for time domain analysis, and 

represent the resonant structure of the human vocal tract (human production system). 

Whereas, nonparametric methods are implemented in frequency domain and it is used in 

representing the human auditory perception system [22]. The most popular features are 

the Linear Prediction coefficients (LPC) and the Cepstral Coefficients. Broadly speaking, 

features can be classified into Auditory based or Articulatory based features: 

 

 

 
 

Figure: 2.4: Rectangular and Hamming Filters of Length 32. 
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2.3.1 Auditory Based Features 

Auditory features are mainly based on models of the human auditory system. The Human 

auditory system exhibits a number of limitations including a nonlinear frequency scale, 

spectral amplitude compression, and decreasing hearing sensitivity at lower frequencies. 

These constrains are taken into account in the extraction of the auditory based features. 

We will briefly describe in the next paragraphs the most popular auditory based features 

used in speech recognition. 

Linear Prediction Coefficients (LPC): 

Linear Prediction Coefficients (LPCs) were proposed by Atal and Hanauer as dominant 

speech features [39]. LPCs are based on the modeling of the acoustic parameters in 

representing a given sample of speech from previous samples. The LPC model is an all-

pole system and represented by: 
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where: 

k ’s are the LPC coefficients (features), 

G is the Gain, and 

p is the LPC order. 

By evaluating the parameters sk ' ; a given speech sample can be approximated as: 
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The residual signal energy is given by: 
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The LPC coefficients are estimated by minimizing the residual energy E over the 

parameters. Such optimization results in solving the famous Yale-Walker equations. 

LPC is a powerful model in estimating the acoustic parameters and representing speech 

using a smooth spectrum. Enhanced forms of LPC can be obtained from the original LPC; 

these include: the Line Spectrum Pairs (LSP), the Reflection Coefficients (RC), and the 

Log Area Ratio Parameters (LAR). 

Line Spectrum Pairs (LSP): 

The LSP model is another representation of LPC. The LSP model represents the 

predictors in the Z-domain in which the zeros of A(z) are mapped into the unit circle 

through a pair of polynomials. The LSP polynomials are represented by: 
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Since the zeros of the polynomials P(z) and Q(z) are complex conjugate pairs, there are 

only p real parameters (frequency or phase)  which are required to define the LSP 

parameters (since the magnitude is unity). LSP can be interpreted in term of format 

frequencies of the model. Each zero of A(z) maps into one zero in each of the polynomials 

P(z) and Q(z.) If these 2 zeros are close in frequency, their parent zero in A(z) represents a 

formant (narrow bandwidth) in the model. Otherwise, the original zero represents a wide 

bandwidth spectral component [1]. 

Reflection Coefficients (RC): 

The RC model is based on wave theory and the acoustic tube model of the vocal tract 

where at each boundary of the model a portion of the sound wave is transmitted while the 

remainder is reflected. RC coefficients are obtained from LPC coefficients by using the 

following backward recursion: 
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where: 

aj’s are the LPC coefficients, and 

ki’s are the reflection coefficients. 

Log Area Ratios (LAR): 

The LAR coefficients exhibit similar advantages to the RC coefficients. The LAR model 

is also based on the acoustic tube model of the vocal tract but uses the ratios of cross-
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sectional areas of adjacent sections. The LAR coefficients are derived from the RC 

coefficients by the following non-linear transformation: 
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where: 

LARi’s are the LAR coefficients, and  

ki’s are the reflection coefficients. 

Filter Bank Features (FB): 

The Filter bank used for speech is designed to match the human ear spectral 

characteristics. Each of the filters used is called an auditory filter representing a resonance 

frequency of the human speech signal. Each auditory filter is centered at the tone 

frequency, and the bandwidth (critical band) is seen as the minimum bandwidth of the 

filter that blocks adjacent resonance frequency from interfering with it. 

To calculate the power of each tone in an auditory band, we will assume that the input 

noise is a wide-sense stationary (WSS) process and the auditory filter is a symmetric, 

linear, time-invariant system. Based on that, the power spectrum of tone for each filter is 

the power spectrum of the input noise multiplied by the transfer function squared of the 

filter. Then the total power is calculated as: 

    )11.2(......,2,1,
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where: 

Ki is a constant, 

Ni (f) is the power spectral of the noise in a given frequency band, and 
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Hi (f) is the transfer function of the auditory filter at the same frequency band. 

Cepstrum Coefficients (CC): 

The Cepstrum Coefficients (CCs) were introduced as speech features by Oppenheim [39]. 

The CC model is based on the linear separation of the speech generator spectrum 

(Excitation E(z)) from (the vocal tract filter H(z)) [32]. Since the speech spectrum (X(z)) 

is represented by: 

      )12.2(zHzEzX   

By applying the log operation, the speech spectrum can be represented using a linear 

combination of the excitation and the filter as follows: 

      )13.2(logloglog •zHzEzX   

The CC is defined as the inverse z-transform of the log spectrum of X(z). The lower order 

coefficients of CC represent the vocal tract characteristics, whereas the higher order 

coefficients represent the excitation characteristics [32]. 

Mel Frequency Cepstrum Coefficient (MFCC): 

The MFCC parameters of Davis and Mermelstein were introduced as one of the most 

dominant speech features in the literature [39]. The MFCC model is a modified form of 

the CC. the MFCC model provides a representation of a smooth short-term spectrum that 

has been compressed and equalized hence better simulates the human hearing system 

characteristics. The MFCC coefficients are the most popular features used in speech 

analysis and shown to be more robust to noise and speech distortion than any other 

features [36]. The MFCC coefficients are generated from the filter bank parameters using 
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the Mel-frequency scale. The Mel-scale filter banks represent the non-linear pitch 

perception pattern of the human ear. To calculate the MFCCs, the Discrete Fourier 

Transform (DFT) is first applied to the input speech frame to obtain the magnitude 

spectrum. The magnitude spectrum is then frequency-warped in order to transform the 

spectrum into Mel-frequency. Then, each magnitude spectrum is multiplied by the 

corresponding filter gain to compute the energy for each filter. Finally, the Discrete 

Cosine Transform (DCT) of the each log energy is computed resulting into the MFCC 

coefficients [10].  
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where: 

ci’s are the MFCC coefficients, 

N is the number of points used, and 

mj’s are the log energies. 

Delta Cepstrum (DC): 

The DC is a good measurement of dynamic behavior of speech. It is based on an estimate 

of the local time derivative of the short time cepstrum. This is typically implemented as a 

least-square approximation to the local slope and so it is a smoother estimate of the local 

derivate [2]. The DC coefficients can be expressed as [32]: 
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Where n is the window width and ki’s are the regression coefficients. Thus, each stream 

of delta cepstral coefficients is computed by correlating the corresponding stream of 

cepstral values with a straight line that has a slope of one [2]. 

The second derivative, (known as Delta-Delta Cepstrum) is also useful as it corresponds 

to a similar correlation, but with a parabolic function [2]. The delta–delta parameters, 

Δ
2
Ct’s, are derived in the same manner, but using differences of the delta parameters. 

These features tend to emphasize the dynamic aspect of speech spectrum over time. 

However, these feature vectors miss some of the coarse characteristics that are important 

in static spectral representation [2]. DC and D-DC are not sufficient by themselves for 

good recognition performance, but they are used as add-on features to static measures 

such as MFCC or PLP coefficients [2]. 

Perceptual Linear Predictive coefficients (PLP): 

The PLP parameters were introduced as speech features by Hermansky [39]. The PLP 

model is similar to the MFCC in relation to good smooth estimation of local spectrum and 

for optimal modeling of the human hearing system characteristics. The main difference 

between PLPs and MFCCs is the nature of the cepstral smoothing [2]. PLP is viewed as a 

Mel-cepstral analysis with LPC-like spectral smoothing, or as an LPC analysis for an 

implicit version of the speech that has been warped according to auditory properties [2]. 

PLP is as efficient as standard LPC, and has practical advantages over some other 

perceptually based processing techniques. 
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Cepstral Mean Subtraction (CMS) coefficients: 

The CMS coefficients are a special case of cepstral coefficient where the estimates of 

local time derivatives of cepstral parameters are more robust by suppressing the constant 

spectral components in the data. Consider a linear time-invariant system, let X(ω,t) is the 

short-term spectrum of the observed signal,  

      )16.2(,,, tHtStX    

Then the corresponding short-term log power spectrum becomes: 

      )17.2(,log,log,log
222

tHtStX  
 

For instance, if H is constant over time, and if the constant component of S is not useful, 

then we can estimate the constant component of the sum by computing the mean of the 

log spectrum. Alternatively, we can take the Fourier transform of equation 2.18 to get the 

cepstrum, then remove the mean. The CMS is more robust in a system that has sudden 

changes (disturbances) resulting from unexpected environment events such as a 

disturbance affecting the speech, including; a change in telephone channel, a switch in 

microphones, or just a turn off the speaker’s headset so that the overall spectral 

characteristic is modified. Disturbances that are of convolution nature in the time domain 

become additive in the log spectral domain. If such additive components have different 

spectral characteristics, we can use linear filters to separate these. 

Relative Spectra (RASTA): 

The RASTA model is comparable to CMS, but is obtained from PLP. In RASTA, 

conventional critical-band short-term spectrum in PLP is replaced with a spectral estimate 
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in which each frequency channel is filtered with a band-pass filter of sharp spectral zero 

at the zero frequency. With this design, any constant or slowly varying component in each 

channel is suppressed. 

Speech-Signal-Based Frequency Cepstral Coefficients (SFCC): 

The Speech-Signal-Based Frequency Cepstral Coefficients are a new features introduced 

by Paliwal, Shannon, Lyons and Wojcicki in April, 2009 [99]. Unlike the auditory based 

frequency wrapping scale (MFCC), the new feature’s wrapping function is based purely 

on the properties of the acoustic speech signal [99]. The concept of Speech-Signal-Based 

frequency wrapping is based on the hypothesis that the majority of the linguistic 

information is carried in the high energy (formants) regions of the speech spectrum. 

SFCC is computed by ensemble averaging the short-time power spectrum,  fP  over the 

entire speech signal. Then, the frequency axis is divided into M non-overlapping 

intervals, such that the area under  fPlog is equal for all intervals. Finally, the middle 

frequency of each interval represents the warped frequency. Mathematically, consider the 

short-time Fourier transform of a discrete signal s(n) as: 

      )18.2(,
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where: 

w(n) is a window of length N, and 

Fs is the sampling frequency. 

With assumption that speech is a wide-sense stationary (WSS) process, the short-time 

power spectrum for the speech signal s(n) is computed as: 
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An ensemble average is computed by averaging P(n, f) over the entire signal as: 

    )20.2(, fnPfP   

Then, the logarithm of the ensemble spectrum is divided into equal interval as [99]: 
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where: 

Ai is the area of the i
th 

interval, and 

fi and fi+1 are the cutoff frequencies of the interval. 

The Speech-Signal-Based frequency warping function is simply the middle frequency of 

the interval and it is calculated by: 
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The SFCCs are computed using the MFCCs (mentioned above); however, the speech-

signal-based frequency warping is used for the triangular filterbank design instead of the 

Mel-scale [99]. 

Power Normalized Cepstral Coefficients (PNCC): 

The Power Normalized Cepstral Coefficients are new features introduced by Kim, and 

Stern in 2009 and 2010 [100]. PNCC is an auditory based processing technique. The 

PNCC feature extraction process is comparable to MFCC except for two steps. PNCC 
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uses power-law function instead of the log function used in MFCC. In addition, PNCC 

uses gammatone filter while MFCC uses the triangular filter. Also, PNCC has an 

additional step over MFCC that is using Power-Bias Subtraction (PBS) to suppress 

background noise. The computational cost of PNCC is slightly larger than that of 

conventional MFCC processing [100]. 

The power-law nonlinearity function used in PNCC is described by the equation [111]: 

)24.2(1.0xy   

where the value of 0.1 is the best observed value which approximates the physiological 

rate-intensity function [100]. An attractive feature of the power-law nonlinearity over the 

log nonlinearity is that the dynamic behavior of the output does not depend critically on 

the input amplitude [100]. PBS is used in PNCC to bias the power in each of the 

frequency channels to maximize the sharpness of the power distribution. This procedure 

is motivated by the fact that the human auditory system is more sensitive to changes in 

power over frequency and time than to relatively constant background excitation [105]. 

The normalized power based on power-bias subtraction  lmP ,
~

 is given by [105]: 
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where: 

l1 = min(l−N, L), l2 = max(l+N, 1), L is the total number of channels and N the weight 

smoothing factor, and 

 lmQ ,
~

 is the normalized power given by: 
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where p0 is the peak power value after normalization, qf provides power flooring. 

Q(m,l) is the medium-duration power, which is the running average of the short-time 

power P(m,l) and it is given below: 
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where m is the frame index, the l is the gammatone channel index and M = 2 based on 

speech recognition results obtained with different values of M.  

P(m, l) is the normalized short-time power by the peak power and it is given by: 
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where Porg(m, l) is the short-time spectral power in the m
th

 frame and the l
th

 gammatone 

channel, Ppeak is the peak power that is the 95
th

 percentile of the short-time power and P0 

is a constant value. 

2.3.2 Articulatory Based Features 

In human biology, articulators are the finer anatomical features critical to speech 

production and include the vocal cords, soft plate, tongue, teeth and lips [1]. Articulation 

is the science of how the movement of articulators produces different phonemes. Based 

on the biological human speech production system, a number of articulatory based 

features were developed. In particular, the three articulatory feature dimensions that 

describe consonants: 
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 Place of articulation which describes the position of the main constriction of the vocal 

tract. This dimension includes bilabial, labiodentals, dental, alveolar, postalveolar, 

retroflex, palatal, velar, uvular and glottal features. 

 Manner of articulation which describes the degree of the constriction of the vocal tract, 

the position of the velum, and some other characteristic of articulators’ behavior. This 

dimension includes aspirated, plosive, nasal, trill, flap, fricative, affricate and 

approximant features. 

 Vibration of vocal cords which classifies consonants into either voiced or unvoiced. 

For vowels, it is described by the position of the highest point of the tongue called 

dorsum. There are two dimensions in which dorsum’s position describes vowels: 

 Horizontal which includes close, close-mid, open and open-mid features. 

 Vertical which includes front, central and back features. 

We list in what follow the most commonly used articulatory based features: 

Speech Intensity: 

Intensity is the loudness of sound [14]. The intensity of a continuous sound can be 

calculated using the following equation: 
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where; 

Po is the auditory threshold pressure and equal (2.10)
2
 Pascals, 

X(t) is the sound pressure measured in Pascal, 

Ic is the sound intensity in continuous time domain, and 
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T is the duration of the sound. 

For a given discrete sound signal the intensity, Id, is calculated by the same manner with 

the equation: 
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where: xi  is the instantaneous sound pressure in Pascal, and 

n is the number of samples. 

Formant Frequencies: 

Formant frequencies are the resonant frequencies of the vocal tract and are crucial in 

speech production modes. “One of the most common methods used for formant analysis 

is Linear Predictive Coding in which formant frequencies are estimated from the spectral 

peaks of the speech signal” [14]. The formant transition tracks provide us with the 

important “hidden” information of the formant frequency trends for different phonemes. 

Voicedness Feature: 

Voiced sounds have a periodic structure when viewed over short time intervals and 

perceive of the fundamental frequency of this periodic signal is known as pitch [95].  

Pitch is commonly used interchangeably with fundamental frequency [1]. Pitch is 

constrained by the individual’s larunx. For men, the possible pitch range is usually 

between 50 – 250 Hz, while for women the range is between 120 – 500 Hz [1]. 

Voicedness is a state measurement of the vocal cords and it describes how periodic the 

speech signal is in a given time period t (frame index) [56]. To measure the periodicity, 
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the autocorrelation function is used. Let us define R
t
(τ) as the autocorrelation function of 

x
t
(ν): 
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where T is the length of a time frame, τ is the time delay or lag and t is the frame index. 

It is worth noting that the autocorrelation function of cyclostationary signals is periodic 

with maxima R
t
(0) reached at .....,2,10,  kTk  Therefore, a peak in the range of 

possible pitches with a value close to R
t
(0) is a strong indication of periodicity. 

To produce a bounded measure of voicedness in the interval [-1, 1], the autocorrelation 

function is normalized. The voicedness measure v
t
; which is the maximum value of the 

normalized autocorrelation in the interval of natural pitch periods [2.5ms...12.5ms]; is 

defined as: 
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where fs denotes the sample rate. When v
t
 close to "1", the time frame described as 

voicedness. And when it is close to "0", it is described as voiceless [56]. 

Based on the analysis of different features discussed above, we summarized the 

advantages and disadvantages of different features in Table 2.1. 

Table 2.1: Comparison of the Most Popular Acoustical Features 

Technique Summary Advantage Disadvantage 

LPC 
Represents the spectral 

envelope of the short time 

spectrum of speech.  

1. Good approximation 

for voiced speech. 

Very sensitive to 

quantization noise. 
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2. Low computation. 

LSP 

Represents the resonant 

frequencies in speech 

spectrum. 

1. Less sensitive to 

quantization noise. 

2. Stable. 

Resonant 

frequencies may 

provide redundant 

information. 

RC 

Represents the reflection 

at the boundaries of 

acoustical tube model of 

the vocal tract. 

1. Good representation 

for the vocal tract. 

2. Stable. 

Highly sensitive to 

quantization noise 

if the magnitude is 

near unity. 

LAR 

Represents the area ration 

of acoustical tubes of the 

vocal tract model. 

Robust to quantization 

noise. 

Relatively high 

computational 

load. 

CC 

Provides a linear 

separation of the 

excitation from the vocal 

tract. 

1. Orthogonal. 

2. Improved recognition 

performance. 

High 

computational 

load. 

Delta-CC 

Represents the dynamic 

aspect of the speech 

spectrum over time. 

Relatively insensitive to 

constant spectral 

characteristics. 

Not sufficient for 

good recognition. 

MFCC 
Represents a smoothed 

short-time cepstrum. 

1. Robust features. 

2. Best representation of 

all classes of speech 

sounds. 

3. Best recognition 

performance. 

High 

computational 

load. 

Intensity 

Represents sound 

loudness. 
Low computational load. Speaker dependant. 

Formant 

Frequencies 

Represent the peaks in 

the spectral envelope of 

the sound. 

1. Good tracking of the 

phonemes in 

frequency. 

2. Unaffected by 

changes in the voice 

source. 

Sensitive to 

classification error. 
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2.3.3 Optimal Feature Selection for Speech Recognition 

We have seen that all of the features mentioned above have their own advantages and 

drawbacks. For this reason, it would be desirable to find an optimized set of features 

based on a certain optimality criterion. Such a move from the traditional use of existing 

features is expected to lead to an improved recognition accuracy under different 

environments. There are many feature selection algorithms proposed in the literature and 

most of them operate based on a certain definition of relevance. The main drawback of 

many of these algorithms is that the non-negligible redundancy between different selected 

features which usually leads to low classification accuracy. The optimization algorithm 

that we propose here is the use of the minimum Redundancy Maximum Relevance 

(mRMR) criterion. This algorithm has demonstrated excellent classification results by 

solving the problem of redundant features. The successful implementation of mRMR in 

biomedical field prompts us to introduce this algorithm in feature selection for speech 

recognition technology aiming to improve the accuracy by reducing the irrelevant or 

redundant features. It is worth mentioning that this is the first attempt to use the mRMR 

in speech recognition. In our work, we will discuss an approach for choosing an optimal 

set of features from the traditional following features: LPC, LSP, RC, CC and MFCC. We 

will show that the resulting optimized feature set significantly enhances the recognition 

performance of ASR systems even at low Signal-to-Noise-Ratio (SNR). Speech 

recognition at low SNR is a challenging problem given difficulty in extracting good 

characterizing features. In our research, we focus only on low SNR region since it is 
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obvious that improving the performance in this region will be reflected at high SNR 

where speech has more power than noise making the problem of speech recognition 

simpler. 

Before discussing the mRMR algorithm, we will briefly discuss the Hidden Markov 

Model that we will use in training and classification. 

2.4 The Hidden Markov Model in Speech Recognition 

The Hidden Markov Model (HMM) is one of the most powerful modeling techniques 

used in speech recognition [11]. The Dragon Speech Recognition System was the first 

ASR application using HMM in the early 1970s [26]. HMM became a popular statistical 

modeling technique in ASR since the mid-1980s. The introduction of HMM prior to 

speech processing work was related to the work of Levinson and Poritz for their approach 

in modeling the problem of characterizing a random process with incomplete 

observations [1]. Their algorithm was known as the Estimate-Maximize (EM) algorithm. 

In the early 1970s, Baum and colleagues worked on the special case of HMM and they 

developed the EM algorithm for HMM parameter estimation and decoding. This 

algorithm was known as the forward-backward (F-B) algorithm (it is also called the 

Baum-Welch reestimation algorithm). The F-B algorithm simplified computationally 

intractable problem into a manageable one [1]. Basically HMM is a statistical model 

consisting of a Markov chain process with a set of unknown parameters, and the 

challenge is to estimate these (hidden) parameters from a sequence of observable 
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parameters [23]. The Hidden Markov model can be explained clearly with a simple coin 

tossing experiment. Consider that we have a set of numbered coins that are tossed one at 

the time and at each step we record the output. In this experiment, the states sequence 

(coins number and the probability of changing between them) is hidden and the recorded 

output sequence (called observations symbols) is the only observed information. The 

challenge is to use the HMM to statistically estimate the state sequence from the observed 

output sequence. For example, if we have an output sequence: T T H, the question is: 

what is the probability of generating this sequence from a certain state sequence, say; 

state#2, then state#3 then state# 2? The HMM model helps answering this question. 

The term “hidden” indicates that the state sequence of interest is not directly observed, 

however, it can be estimated from the outputs (observed) since the state sequence affects 

the generated output sequence. 

Another example of HMM is speaker classification. Imagine that there is group of people 

behind a wall and they are a random mix of personnel (doctors, students, engineers, 

researchers and farmers). We cannot see the people behind, but we can hear them. We ask 

each speaker to utter a deep sigh and since the speakers are different so their acoustics 

sigh are also different. The goal of this experiment is to assign the speakers from their 

acoustic signature to different career groups. We refer to the career group of the speakers 

as the states (hidden) and the heard acoustics as the observations. The career sequence 

(hidden states) which is the probability of being in a state and the probability of transition 

to another state is generated according to some distribution. And for each career state, the 

output acoustic signals (observations) are generated according to another distribution. 
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HMM uses the observed acoustic distribution to describe the career sequence distribution. 

To formally describe the HMM model in this experiment, let Si’s correspond to different 

career groups (states). Each state is associated with a probability density function for the 

emitted acoustics at a time t; these are represented by Oi’s. We assume that the state and 

the observation sequences form a first order Markov chain i.e. their density functions are 

independent of the previous state or observations. As a Markov chain, we can describe the 

career sequence clearly if we can estimate the transition probabilities between different 

career states; say aij, and the initial probability of each career state; say πi. Well, the 

HMM model supplies us with these quantities. 

Formally, the HMM model with states {Si} is represented by the states probabilities and 

transition probabilities {πi, aij} and the observation probabilities {Bi}. It is written as: M= 

(π, A, B). 

HMM in Speech Recognition 

HMM provides a simple and effective framework for modeling time-varying spectrum 

signal such as in speech [95]. HMM has an advantage of preserving the temporal 

information content of speech. There are two major phases of HMM modeling in speech 

recognition: the training phase and the recognition phase. 

 In the training phase, a set of testing observations is used to derive the reference 

models corresponding to the number of classes (or words in our case). 
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 In the recognition phase, the probability of generating the unknown observations 

is computed against each of the reference models and the model leading to the 

highest probability is declared as the selected class (or word). 

The left-to-right type of HMM is the typical choice for modeling speech recognition 

application. The HMM model is expressed by the set M = (π, A, B) and is characterized 

by the following elements: 

1. N is the number of states in the model. “In the speech recognition context, there 

[are] two methods to estimate the value of N” [16]. These are: 

a. States representing different phonetic units (phonemes, phones, 

syllables...). Usually, N is around 6 in speech application. 

b. States have no-phonetic meaning, they represent basically temporal 

frames. 

2. S = {s1,…,  N} is a set of all states in a model. 

3. T is the number of observations in a sequence. 

4. I = {s1,…, sT} is a set of all possible state sequence, where st, represents the state 

at time t, st ϵ S. 

5. R is the total number of distinct observation symbols per state (assume to be the 

same for all states). 

6. V = {v1,…, vR} is a set of all possible observation symbols. 

7. O = {O1(v), …, OT(v)} is a set of all possible observation sequence, Ot(v) is the 

observation symbol v at time t. 
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8. B = {bi(v)}, bi(v) = P(Ot(v) | xt=si), the probability of getting observation Ot(v) 

from state si at time t. 

9. π = {πi}, πi = P(s1=si), the initial probability of state si, (i =1, 2, … N,  
i

i 1 ). 

10. A = {aij}, aij = P(xt+1=sj | xt=si), the transition probability from state si at time t to 

state sj at time t+1. 

Figure 2.5 shows an example of HMM model of 3 states and 4 observations. 

 

 

 

 

 

 

 

 

To fully describe the HMM model, 3 main problems should be addressed: 

1. The Evaluation Problem: problem of computing P(O | M), the probability of an 

observation sequence given the model. 

2. The Decoding Problem: problem of maximizing P(O, I | M), the probability of an 

observation sequence and the state sequence given the model. 

3. The Training Problem: problem of adjusting the model M = (π, A, B) parameters 

to maximize P(O| M) or P(O, I | M). 

 
Figure 2.5: HMM Model of 3-States and 4-Observations 
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Problems 2 and 3 represent the training phase of HMM, while problem 1 represents the 

recognition phase. The mathematical solutions for those problems are briefly described 

below: 

Solution to problem 1 (Forward-Backward Procedure) 

Using Baye’s rule, one can calculate P(O | M) by starting with P(O, I | M) for all possible 

state sequence and multiplying it by P(I | M), then sum up over all possible I’s, 

P(O, I | M) = bi1(O1) bi2(O2)…. biT(OT)            (2.33) 

P(I | M) = πi1a i1 i2a i2 i3…..a iT-1 iT        (2.34) 

We can then write: 

P(O| M) = ∑ P(O, I | M) P(I | M)        (2.35) 

 = ∑ πi1 bi1(O1) a i1 i2 bi2(O2)… a iT-1 iT biT(OT).         (2.36) 

Since there is N
T
 distinct possible state sequence of I and (2.36) involves 2T-1 

multiplication so the total number of computation is 2TN
T
 multiplications and N

T
-1 

additions, which is extensive computation. Hence, we need more efficient procedure for 

solving this problem. We use here the popular Forward-Backward Procedure [31]: 

Forward Procedure: 

Consider the forward variable αt(i) defined as: 

αt(i) = P(O1, O2, O3, …. , Ot, it=i | M),        (2.37) 

Which is the probability of the partial observation sequence up to time t and the state i at 

time t, given the model M. Then, we can use the following iterations: 
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1. initialization: 

    NiObi iit  1,1
       (2.38) 

2. Recursion: 

      )39.2(1,1....1,1
1

1 NjTtObaij tj

N

i
ijtt 





 


   

3. Termination: 

    )40.2(,|
1




N

i
T iMOP   

Here, we will only need N+N(N+1)(T-1) multiplications and N(N+1)(T-1) additions (i.e. 

order of N
2
T multiplication) [31]. 

Backward Procedure: 

Consider: 

    )41.2(, i,=i | O , .… ,O ,OP = tT2t1t Mit    

Which is the probability of the partial observation sequence from t+1 to T given the state 

i at time t, and the model M. Then we perform the following: 

1. initialization: 

  )42.2(11 NiiT 
 

2. Recursion: 

      )43.2(1,1...2,1,11
1

NiTTtjObai ttj

N

j
ijt  



  

3. Termination: 

      )44.2(,| 1
1

1 iObMOP
N

i
ii 
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Here, we will also have an order of N
2
T multiplications [31]. 

Both the Forward and Backward Procedures are equivalent and efficient for the 

computation of P(O| M). 

Solution to problem 2 (Viterbi Algorithm) 

Here, we have to find I that maximize P(O, I | M). The famous algorithm to solve that is 

the Viterbi Algorithm, which is an inductive algorithm in which at each instant; the best 

possible state sequence is kept as intermediate sequence towards the desired observation 

sequence. 

Let   tjij Obaw ln  is the weight on the path from state i to state j , δt(i) denote the 

accumulative weight when we are in state i at time t and ψt(j) denote the state at time t-1 

which has the lowest cost corresponding to the state transition to state j at time t. the 

algorithm proceed as follows: 

1. initialization: 

      

  )46.2(

)45.2(
1,

0

lnln

1

11
Ni

i

Obi ii













 

2. Recursion: 
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3. Termination: 
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4. Tracing back the optimal state sequence: 

  )51.2(
1…2,-

1-=
,*

11
* •

T

Tt
qq ttt





   

Here P
*
 gives the required state-optimized probability and Q

*
 = { *

1q , *

2q ,… *

Tq }is the 

optimal state sequence. The complexity of this recursion is of order N
2
T [31]. 

Solution to problem 3 

As we know there are two identical probability functions used for identification; P(O, I| 

M) and P(O| M). Based on that, there are two popular techniques used for solving the 

training problem. 

1) The Segmental K-means algorithm: where the parameters of M = (π, A, B) are 

adjusted to maximize P(O, I| M). This criterion is called maximum state optimized 

likelihood criterion. This algorithm is carried out as follows: 

a) Randomly chose N observation symbols. The initial choice of N doesn’t represent 

the final HMM however, it is critical to estimate the number of iterations required 

for HMM training. So Segmental K-means algorithm is biased upon the right 

choice of N. 

b) Calculate the initial probability and the transition probability as: 
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c) Calculate the mean vector and the covariance matrix for each state: 

    )55.2(ˆˆ
1ˆ

)54.2(
1

ˆ

1

•••OO
N

V

•••O
N

Nifor

iO
it

T
iti

iO
t

t

t

 











  

d) Calculate the symbol probability distribution for each training vector for each 

state: 
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e) Find the optimal state sequence (solution of problem 2) for each training sequence 

using  iiii BAM ˆ,ˆ,ˆˆ  . A vector is reassigned a state if its original assignment is 

different from the estimated optimum state. 

f) If any vector is reassigned, use the new assignment and repeat the process. 

2) The Baum-Welch Re-estimation Formulas: where the parameters of M = (π, A, B) 

are adjusted to maximize P(O| M). This criterion is called maximum likelihood 

criterion.  

Define    MOsiPi itt ,| , the probability of being in state i at time t given the 

observation sequence O, and the model M, 
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Define ζ(i, j)=P(it=si, it+1=sj | O, M), probability of being in state si at time t and making 

a transition to state sj at time t+1 given the observation sequence O, and the model M. 
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Hence, it is clear that: 
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Now the Baum-Welch reestimation formulas become: 
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In general, the Segmental K-means algorithm is more preferable than the Baum-Welch 

algorithm as it involves manipulating of small values (since no summation is involved). 

Also Segmental K-means requires much less computation than Baum-Welch. However, 

many of the existing systems still use the traditional Baum-Welch re-estimation approach. 

In summary, we have discussed the features used in representing speech and we have 

provided different examples of these features. We also provided a summary table 
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comparing the most popular features. Our focus in this research is to propose a new 

approach for selecting the optimal features for speech recognition applications. Before 

discussion our approach in detail, we will first introduce the concept of Mutual 

Information and describe its different applications in speech analysis.  
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CHAPTER 3 

INFORMATION THEORY AND SPEECH ANALYSIS 

3.1 Background 

Suppose there is a closed envelop and you are asked to guess the message inside. You can 

only ask yes/no questions about the contents of the message. Assuming this exercise is 

repeated many times, and you get as clever as possible while choosing your questions. 

The question now what's the smallest number of questions needed, on average, to guess 

correctly the contents of the message? The answer to this question is as follows; suppose 

there are only a finite number of words inside the message or just there is a limit on the 

length of the messages. Then you can number the words/characters from 1 to N. Call the 

word you get on each trial X. Since the game is repeated many times we can define 

P(X=i)=pi as the probability of getting word/character number i for N words/characters 

on any given trial. The maximum number of yes/no questions needed to pick out any 

given message is calculated as log N. But you can do better than this: if message i is more 

frequent than message j (i.e.      ), it will save time if you ask whether the message is i 

before considering the possibility that it is j. We will define H as the smallest average 

number of questions needed. In probability, H is called the information content or the 

entropy of the message. 
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Now suppose there are two envelopes and you are asked to know the messages inside. 

The question here: how many questions will that take? Call the two variables as X and Y. 

To find out the value of X takes H[X] questions and for it Y takes H[Y]. So we need 

together a maximum of H[X] + H[Y] questions. But some combinations of messages may 

be more likely than others which is due to information dependency of messages also 

called joint entropy, H[X, Y]. 

Now suppose that you found the content of message X, the question is how many 

questions you will need to find out the contents of Y? This is what we call the conditional 

entropy, the entropy of Y conditioned on X, written as H[Y|X].  

The concept of entropy (in term of probability theory) was introduced, simultaneously, by 

some mathematicians and engineers during World War II (among the Americans Claude 

Shannon and Norbert Wiener), working on a major practical problems of coding, code-

breaking, communication and automatic control. Norbert Wiener worked out the 

continuous case of the standard entropy/coding/ communication channel part of 

information theory at the same time as Shannon was working on the discrete case. 

Information theory was first introduced in 1948 by Claude Shannon who is known as the 

father of information theory. He discussed some fundamental limits on the representation 

and transmission of information. Since that time, the results have been extended to cover 

multiple areas. In a sense, information theory has provided the theoretical motivation for 

many great advances in digital communications and digital storage. For example, what is 

the optimum size of information that can be sent over the phone system of certain 

properties? 
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3.2 The Concept of Mutual Information 

Mutual information, written as I[X; Y], is defined as the amount of information we can 

learn about Y from our knowledge of X. Consider our previous example of closed 

envelop, the mutual information represents the number of questions we can save from the 

original number of questions required to identify the message content. The mutual 

information quantifies how much one message can tell us about another. 

Mathematical Description of Mutual Information Concepts: 

We will first introduce the concept of entropy which is a measure of uncertainty of a 

random variable. Let X be a discrete random variable with sample values {x1, x2, …, xN} 

with probability mass function p(xi) = P[X=xi] 

 The entropy is then defined as the average information over all instances (N) of the 

random variable X: 

             
 
                        (3.1) 

The joint entropy measures the dependence of a random variable X on another random 

variable Y and it is defined as: 

                                        (3.2) 

where        represents the joint probability mass function of the random variable X and Y 

(assuming X and Y are discrete random variables). 
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The conditional entropy is another measurement of randomness of Y given the knowledge 

of X and it is defined as: 

                            (3.3) 

For continuous random variables, replace ∑ with ∫ in all previous expressions. 

The conditional entropy can provide information on 2 random variables when they are 

completely independent            , however it is insufficient to inform about their 

dependency. A small value of H(X|Y) may imply that Y provides us a great information 

about X, the value of H(X) is small or the value of H(Y) is large. For that the mutual 

information is defined. The mutual information I(X; Y) between 2 random variables X and 

Y is defined as the reduction of randomness of a random variable X given a prior 

knowledge of another random variable Y: 

                            (3.4) 

For discrete random variables, the mutual information is calculated using: 

                        
        

          
           (3.5) 

where: 

p(xi, yi) is the joint probability density function of X and Y, and 

p(xi) and p(yi) are the marginal probability density functions of X and Y respectively. 

For continuous random variables, the mutual information from Eq. 3.6 is rewritten as: 

                
  

    
      

        
                (3.6) 
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where: 

p(x, y) is the joint probability density function of X and Y, and 

p(x) and p(y) are the marginal probability density functions of X and Y respectively. 

Conventionally, the mutual information is measured in bit since log base-2 is used. The 

mutual information measures the reduction of randomness (uncertainty) of a random 

variable X given the knowledge of another random variable Y. Or in other words, the 

mutual information measures how much our knowledge about one random variable (Y) 

reduces our uncertainty about another random variable (X). For example, if X and Y are 

independent, then knowing X does not give any information about Y and vice versa, so 

their mutual information is zero. On the other hand, if X and Y are identical, then knowing 

X completely determines Y and vice versa, so their mutual information is the same as the 

uncertainty contained in one of the variables (their entropy). 

The conditional mutual information is also used to describe the mutual information of two 

random variables conditioned on a third one. For discrete random variables X, Y and Z, 

the conditional mutual information is defined as: 

                                    
                  

                  
              (3.7) 

Where p is represents marginal, joint, and/or conditional probability density functions. 

Mutual Information conditioning on a third random variable may either increase or 

decrease the original mutual information, however I(X,Y | Z) is always positive. 

The Mutual information I(X, Y) has a number of properties: 

1. Symmetry:               , but (H(X) ≠ H(Y)) and (H(X/Y ) ≠ H(Y/X)). 

http://en.wikipedia.org/wiki/Information_entropy
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2. It is “0” iff X and Y are independent: I(X;Y)= H(X)-H(X|Y) and H(X|Y)= H(X) 

when X and Y are independent. 

3. Non-negativity: I(X;Y) ≥ 0. 

4. Additivity: I(X; Y, Z) = I(X;Y) + I(X; Z| Y). 

Typical applications of Mutual information: 

Mutual information has been largely used in the context of communication system. 

However the concept of mutual information has been expanded to solve difficult 

estimation and data analysis problems in biomedical applications [61], image processing 

and signal processing. The key in using of mutual information in these applications is to 

measure the independence between two random variables or distributions. In image 

processing [62] and speech recognition [63], the use of the maximum mutual information 

(MMI) between the observed data and available models has resulted in powerful 

algorithms for training models for classifications. 

Some examples of areas where Mutual Information is applied include: 

1. Coding for channel capacity. 

2. Discriminative feature selection and transformation. 

3. Training of hidden Markov models. 

4. Error coding detection. 

5. Medical study of genes. 

6. Phase synchronization detection. 

7. Clustering comparing measure. 

8. Corpus linguistics. 
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In summary, the objective of this chapter was to provide an overview of the concept of 

Mutual Information as it plays an important role in our research. We use Mutual 

Information as a measure of correlation in our feature selection algorithm. The detailed 

description of the proposed feature selection algorithm, the experimental approach, design 

and results will now be explained in chapter 4.  
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CHAPTER 4 

THE PROPOSED FEATURE SELECTION ALGORITHM 

USING THE MRMR 

4.1 The Minimum Redundancy–Maximum Relevance Algorithm for 

Feature Selection 

In many pattern recognition applications, identifying the most characterizing features 

from observed data (feature selection) is critical to minimizing the classification error 

[53]. From classification point of view, the extracted features are classified as [112]: 

1. Relevant: Features with high impact on classification accuracy. 

2.  Irrelevant: Features with negligible impact on classification accuracy. 

3. Redundant: Features that can be replaced by other features with no change on 

classification accuracy. 

Dealing with a large number of redundant features is inefficient in terms of time and 

processing and may lead to inaccurate conclusion. In addition, irrelevant features may 

“confuse” the classification algorithms leading to wrong decisions. Hence, it is important 

to use the right features before a given classification task. The main task of feature 

selection is to determine the minimum set of relevant features that highly represent the 
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original features. This selection is achieved by eliminating features with no or little 

impact on classification. 

Feature selection reduces the computational cost by reducing the space dimension as well 

as improving classification accuracy. Other advantages of feature selection include 

reducing effect of noise, facilitating data visualization and data understanding, reducing 

measurement and storage requirements and improving data quality. 

Given the input observations and M feature vectors Q = {xi; i =1, . . ., M}, and the target 

classification vector C, the feature selection problem is that of finding from the M-

dimensional feature space, S
M

, a subspace of m features, S
m
, that “optimally” 

characterizes C [54]. 

4.1.1 Feature Selection Algorithms (FSA): 

“A feature selection algorithm (FSA) is a computational solution that is motivated by a 

certain definition of relevance [112]”. Characterization of FSA can be seen mainly from 3 

different dimensions: search strategy, successor generation and evaluation. Search 

strategy is the algorithm that drives the feature selection process according to a specific 

strategy. There are 3 types of search: exponential, sequential and random. Successor 

generation is the mechanism used to generate a successor from all possible variants. The 

most operators used as successor generators are: Forward, Backward, Compound, 

Weighting, and Random. Evaluation measure is the function that evaluates the generated 

successor to guide the search algorithm. Many evaluation measurements are used in 

feature selection and the famous ones are: Divergence, Dependence, Information Theory 

and Consistency. By combining these characteristics, numerous FSAs have been 
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developed [90]. Table 4.1 presents the different combinations of search strategy and 

evaluation function that are available in the literature. 

Table 4.1: Available Feature Selection Methods by Search Strategy and Evaluation Function [90] 
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Feature selection techniques can mainly be classified into two categories according to 

how the search technique combines with the classification model. These techniques are 

the wrappers and the filters [100]. 

The Wrappers feature selection approach wraps features around a specific prediction 

or classification method. This means that with very small number of features, we can get 

high accuracy since the features’ characteristics match well the learning algorithm used. 

The advantage of the wrapper method is that the selected feature subset is often very 

small and gives high performance, but it has an extensive computation process. Also it 

has a problem of stability and sensitivity of the selected features where the selected subset 

changes significantly with changing the classification methods, and/or when adding more 

data points. According to the search characteristic, wrapper methods can be classified 

into: deterministic and randomized wrappers. [55] 

The Filters feature selection approach selects features based on their relevance with 

respect to the targeted classes. The name of this method is related to the concept of data 

filtering. This method is popularly used in practice. The advantage of this method is that 

the selected features from training data can be generalized to new data. The common 

practical process of the filter method is simply to rank the features and select the top-

ranked ones. A problem of this approach is that these features could result in high mutual 

information between these i.e. the features are correlated or redundant, and therefore they 

are not provide good representations of target classes. There are two aspects to this 

problem: 
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1) Efficiency: if a feature set of say 50 features contains a good number of mutually 

highly correlated features, the true representative “independent” features are therefore 

much fewer, say 20. We can delete the 30 highly correlated features without affecting the 

performance, which means there are 30 wasted or redundant features. 

2) Broadness: because the features are selected according to their discrimination, they are 

not highly representing the original space covered by the entire dataset. The feature set 

may represent several dominant characteristics of the target classes; however these could 

not be enough to generalize to a larger dataset. Filter methods can be univariant or 

multivariant based on how many features are considered at a time. The table below shows 

the classification of feature selection methods with their advantages and disadvantages 

and some popular examples for each type. The choice for the best method is based on the 

goal and the available resources [112]. 

Table 4.2: Classification of Feature Selection Methods [112] 

Model Advantage Disadvantage Example 

Filter 

Univariant 
Fast, Scalable, 

Independent of the 

classifier 

Ignores feature 

dependencies, 
Ignores interaction 

with the classifier 

Х
2
, Euclidian 

distance, 
t-test, 

Information gain 

Mulivariant 

Models feature 

dependencies, 

Independent of the 
classifier, 

Better 

computational 
complexity than 

wrapper methods 

Slower than univariate 

techniques, 
Less sclable than 

univariate techniques, 

Ignores interaction 
with the classifier 

mRMR 
Correlation-based 

feature 

selection(CFS), 

Markov blanket 
filter (MBF), 

Fast correlation-

based feature 
selection (FCBF) 

Wrapper Deterministic 

Simple, 

Interacts with the 

classifier, 
Models feature 

dependencies, 

Risk of over fitting, 

More prone than 

randomized algorithms 
to getting stuck in a 

local optimum (greedy 

Sequential forward 

selection (SFS), 

Sequential 
backward 

elimination (SBE), 
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Less 

computationally 

intensive than 
randomized 

methods 

search), 

Classifier dependent 

selection 

Plus L Minus R, 

Beam search 

Randomized 

Less prone to local 

optima, 

Interacts with the 

classifier, 
Models feature 

dependencies 

Computationally 
intensive, 

Classifier dependent 

selection, 

Higher risk of over 
fitting than 

deterministic 

algorithms 

Simulated 
annealing, 

Randomized hill 

climbing, 

Genetic algorithms, 
Estimation of 

distribution 

algorithms 
 

As we mentioned earlier, the majority of FSAs operate by selecting the maximum 

relevant features and ignoring any redundancy between the selected features. This 

redundancy may degrade the performance and reduce the accuracy. The mRMR is one of 

the most robust algorithms proposed to overcome this problem. 

4.1.2 The minimum Redundancy, Maximum Relevance (mRMR): 

The mRMR is an enhanced version of the general filter based feature selection. Its 

objective is to “expand the representative power of the feature set” [101] by maximizing 

the features discrimination properties. The mRMR was first introduced by Ding and Peng 

in 2003 in their original paper to improved class predictions of microarray genes data 

[51]. The benefits of this mRMR approach can be summarized in two ways [52]: 

1) Generalization: with the same number of features, the mRMR feature set is more 

representative of the target classes; hence it leads to a better overview. 

2) Equivalently: with smaller feature set, the mRMR effectively covers the same space as a 

larger conventional feature set does. 
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The mRMR is a simultaneous optimization of a minimum redundancy criterion and 

maximum relevance criterion. The aim of the former is to select the feature sets that are 

maximally dissimilar among themselves. While the goal of the latter is to select the 

feature sets that are maximally similar to the target classes. The mRMR is described using 

information theory concept by finding the features that are mutually apart from each other 

(minimum redundancy) while they are individually most comparable to the observation 

set (maximum relevance) [103]. 

To explain the concept of mRMR, suppose we have a group of people and we categorize 

them into classes of doctors, engineers, scientist, artist and basketball-players. To 

describe these classes, we list some features including age, tall, educational degree, 

educational period, white dress, monthly income, stethoscope, glasses, brush, computer, 

microscope and hat. We would like to use the mRMR process to select the features that 

best describe the class Doctors. We know that a doctor has a high educational degree, 

spends longer in education, uses stethoscope as a main tool, wears white robe, has high 

monthly income and he is usually quite old in age. These 6 features are the most features 

classify the class Doctor. This ordered list of features represents the maximum relevance 

part of mRMR. However, there are some dependant features like using stethoscope as a 

main tool and wearing white dress. Also spending longer in education and elderliness are 

dependant. So having both features in the list doesn’t provide additional information in 

classifying the classes. For more efficiency, this redundancy (dependant features) is 

minimized by removing the less relevant feature while keeping the other one. This 

process represents the minimum redundancy part of mRMR. Finally; to specify the class 
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Doctor, there are 4 extracted features that have the maximum relevance with the class 

Doctor and the minimum redundancy between themselves. 

Mutual information is used to measure the correlation “similarity” between the features 

themselves as well as between each feature and the target classes. Maximum relevance is 

calculated by the mean value of the mutual information values between individual 

features and the target classes. And minimum redundancy is calculated also by the mean 

value of the mutual information values between each pair of features. 

4.1.3 Mathematical Formulation of the mRMR Algorithm: 

Let F represents the pool of all features; F = {fi; i =1, . . .,M}, let S represents the subset 

of features that we are seeking to find (S   F); S = {fi; i =1, . . .,m}, and let C = {c1,… 

,cK} represent the K target classes. 

For discrete random variables, we use the mutual information I(fi, fj) to measure the level 

of similarity among the features fi and fj. Also, we use mutual information I(C, fi) to 

measure the level of relevance (discriminate) between the target classes C and the feature 

fi. 

The mutual information between two discrete random variables X and Y is defined based 

on their joint probability distribution function p(xi, yj) and their respective marginal 

probability function s p(xi) and p(yj) and calculated by Eq. 3.6. 

Based on the above, we define the minimum redundancy as: 

 
SS S ji

ji ffIDD
,

2
,

1
,min

           (3.8)
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where  ji ffI ,  is the mutual information between each pair of features fi and fj, and |S| is 

the number of features in S. 

The maximize relevance, on the other hand, is defined as: 

 
SS

C
S i

ifIVV ,
1

,max

          (3.9)

 

where  ifI ,C  is the mutual information between the class set C and the  feature fi. 

To simplify the mRMR for discrete random variable, we will have to quantize the 

observations of the features. 

Continuous Case: 

For continuous random variables, the Pearson's correlation coefficient Cor(i, j) or 

Euclidean distance d(i, j) is used for the minimum redundancy condition. 

Pearson's correlation coefficient between two variables X and Y is defined as the 

covariance of the two variables divided by the product of their standard deviations that is: 
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For n observations, the Euclidean distance between sets {xi} and {yi} is defined as: 
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For maximizing the relevance, a statistical test such as F-test is used to compare between 

class set C and the feature fi. F-test; Ft(fi, C); is defined as: 
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where f  is the mean value of all observations (k=1, 2, …,K) of all features, kf  is the 

mean value of the observations of fi over the k
th

 class, and
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 , is the 

pooled variance (where nk and σk are the size and the variance of the k
th

 class). 

The minimum redundancy condition for the continuous case becomes: 
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where Cor(fi, fj) and d(fi, fj) are the correlation coefficient and Euclidian distance (Eq. 3.10 

and 3.11) between each pair of features fi and fj. 

Moreover, the maximize relevance condition is: 

 
SS

C
S i

it fFVV ,
1

,max

       (3.15)

 

where Ft(C, fi) is the F-test (Eq. 3.12) between the class set C and feature fi. 

The mRMR feature set is obtained by optimizing these two conditions simultaneously. 

The simplest way for simultaneous optimization of the 2 quantities is to maximize the 

difference between these quantities (additive combination). An alternative approach is to 

maximize the quotient (multiplicative combination) of the 2 cost functions. 

1. Additive combination: 

 DV max        (3.16) 
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The additive combination for discrete random variables based on mutual information is 

called Mutual Information Difference (MID). However; for continuous random variables 

based on F-test correlation, it is called F-test Correlation Difference (FCD). 

2. Multiplicative combination: 










D

V
max

       (3.17) 

The multiplicative combination for discrete random variables based on mutual 

information is called Mutual Information Quotient (MIQ). On the other hand; for 

continuous random variables based on F-test with correlation, the multiplicative 

combination is called the F-test Correlation Quotient (FCQ). However, for continuous 

random variables based on F-test with distance, the algorithm is called the F-test Distance 

Multiplication (FDM) (for multiplication) or the F-test Similarity Quotient (FSQ) (for 

quotient). 

The computational cost of evaluating correlations or mutual information in mRMR is 

O(NM
2), where M is the number of feature set and N is the training set size [102]. 

4.1.4 The mRMR Algorithm Procedure: 

The main steps of the mRMR consist of N-1 iterations, where N is the number of the 

desired selected features. The mRMR is carried through the following steps: 

1) Maximum Relevance: the mutual information between each feature set and the 

target class is calculated, then, the features are ranking in a descending order 

according to the values of their mutual information. The feature of the highest 

mutual information value is declared as the maximum relevance feature (Eq. 3.9). 
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2) Minimum Redundancy: in each of N-1 iterations, we calculate the mutual 

information between the selected feature in the previous iteration (maximum 

relevance one at the first iteration) and the rest of the features in the order of the 

maximum relevance step. Then, we average the mutual information values of each 

of the remaining features with all the previous selected features as per Eq.3.8. 

3) mRMR step: for N-1 iterations, the mRMR feature is selected by either additive 

combination (Eq. 3.16) or multiplicative combination (Eq. 3.17). In both cases, 

the mathematical operation is carried out between the mutual information values 

of the maximum relevance step and the average mutual information values 

resulted from the minimum redundancy step for the remaining features ordered as 

of maximum relevance order. 

4.1.5 Numerical Example for The mRMR Algorithm Procedure: 

Consider that we have a pool of 6 features and we need to select the best 3 features 

targeting to a specific classification task using the mRMR algorithm. Since N= 3 in this 

example, we need 2 iterations. We apply the steps mentioned above as follows: (the 

values below are just to explain the concept). 

1) Maximum Relevance (V): 

I(C, f1)= 0.50  f5 

I(C, f2)= 0.40  f1 

I(C, f3)= 0.49  f3 

I(C, f4)= 0.47  f4 

I(C, f5)= 0.53  f2 
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I(C, f6)= 0.36  f6 

 

2) 1
st
 Iteration: 

2.1) Minimum Redundancy (D) with the 1
st
 selected feature (f5): 

I(f5,  f1)= 0.16    I1 mean 

I(f5, f2)= 0.14  mean I(f5, f1)= 0.16  0.16  

I(f5, f3)= 0.20   mean I(f5, f3)= 0.20 0.20 

I(f5, f4)= 0.10   mean I(f5, f4)= 0.10  0.10  

I(f5, f5)= 0   mean I(f5, f2)= 0.14  0.14  

I(f5, f6)= 0.15  mean I(f5, f6)= 0.15  0.15  

 

2.2) mRMR (V-D) or (V/D): 

Feature V D mRMR (V-D) mRMR (V/ D) 

f1 0.50 0.16 0.34 3.13 

f3 0.49 0.20 0.29 2.45 

f4 0.47 0.10 0.37 4.70 

f2 0.40 0.14 0.26 2.86 

f6 0.36 0.15 0.21 2.40 

 

Based on the above table, we select feature f4. 

3) 2
nd

 Iteration: 

3.1) Minimum Redundancy (D) with the 2
nd

 selected feature (f4): 
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I(f4,  f1)= 0.30   I1 I2 mean 

I(f4, f2)= 0.24  mean [I(f5, f1) + I(f4, f1)]  0.16 0.30 0.23 

I(f4, f3)= 0.40  mean [I(f5, f3) + I(f4, f3)] 0.20 0.40 0.30 

I(f4, f4)= 0  mean [I(f5, f2) + I(f4, f2)] 0.14 0.24 0.19 

I(f6, f6)= 0.13  mean [I(f5, f6) + I(f4, f6)] 0.15 0.13 0.14 

 

3.2) mRMR (V-D): 

Feature V D mRMR (V-D) mRMR (V/ D) 

f1 0.50 0.23 0.27 2.17 

f3 0.49 0.30 0.19 1.63 

f2 0.40 0.19 0.21 2.11 

f6 0.36 0.14 0.22 2.57 

 

Finally, the 3 optimal selected features using Mutual Information Difference mRMR algorithm 

are: f5, f4 and f1. With the Mutual Information Quotient mRMR algorithm, the 3 optimal 

features selected are:  f5, f4 and f6. In contrast, the normal filter-base selection algorithm 

declares f5, f1 and f3 as the best features based on maximum relevance condition only. 

4.1.6 Advantages of mRMR Algorithm: 

The mRMR feature selection technique has a number of advantages over other feature 

selection algorithms, these include: 

 Efficient coverage of space: obviously, the mRMR as a type of feature selection that 

reduces space dimension. However, mRMR efficiently do the reduction by 

minimizing the redundancy and consequently consider more “valuable” feature 
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instead of the redundant ones. This careful selection of independent feature 

guarantees comprehensive space coverage. 

 Low computational cost: that is a consequent result of the dimension reduction. 

 Better reliability: the mRMR improves classification performance and reliability 

from two aspects: increasing accuracy and reducing noise. Accuracy improvement is 

a result of effective selection of features. 

 Easier and faster since it is a low dimensional problem, it is faster and easier than 

other algorithm that involves multivariate density or high dimensional space. 

These advantages especially the efficient reduction of space dimensions and the reliability 

prompted us to choose the mRMR as the optimization algorithm to best select the features 

that would improve speech recognition performance specifically at low SNR where the 

recognition accuracy is very low. In our research, we define the range from -10 dB to +5 

dB as a low SNR area of interest. 

4.2 Our Proposed Approach 

For our implementation we used the MATLAB environment. For this research, we focus 

on developing an Isolated Word Recognition (IWR) system for both Arabic and English 

languages. The utterances were modeled using HMM and the feature selecting 

optimization algorithm is based on the mRMR MID algorithm. TI-46 is the English 

standard database [63] used in the English part of our experiments. While the Arabic 

database is a collection from local volunteers and from a database supported from 

Acoustics Center of King Abdulaziz City for Science and Technology (KACST) in 
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Riyadh. Samples of noise data under different environments were collected from 

NOISEX-92 database [63]. Figures 4.1 through 4.4 represent the flow charts of our 

approach. 

 

  

 
 

Figure 4.1: Flow Chart of Recognition Phase. 
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Figure 4.3: Flow Chart of Quantization & Codebook. 
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Figure 4.2: Flow Chart of Training Phase. 
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Figure 4.4: Flow Chart of mRMR Phase. 
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4.3 Outline of The Experimental Setup 

Our proposed system is run in 6 main steps: 

1. Preprocessing: First, the speech signal s(n) is digitized by sampling at a frequency of 

10kHz. Then the resulted samples are segmented into frames of 320 samples/ frame or 

equivalently 32ms. The consecutive frames are overlapped with 80 samples. Then each 

frame is windowed by Hamming Window. Then the desired feature set is extracted in 

form of 16 feature vectors sequence for each word. 

2. Feature extraction: The sequence of feature vectors are derived from the spectral 

analysis of the speech signal. In this work, 7 types of features were studied, 6 standard 

features and to the optimum one. The standard features are: LPC, LSP, RC, CC, Delta-CC 

and MFCC. The optimum feature is derived from the other 6 standard features. 

3. Vector Quantization: The feature vectors are grouped into clusters of disjoint sets. 

Each observation vector is quantized into one of permissible sets of 16 scalar and discrete 

values. Then, we implemented the k-means vector quantization algorithm. 

4. Training the HMM: Data for each digit is modeled into an m-state HMM. The HMM 

is trained using 10 observations for each digit. The model is trained under a very high 

SNR which is the ideal situation to generate the accurate reference models. 

5. Testing/Recognition: Here, we calculated P(y| M); the probability of getting the 

feature sequence y given model M. We then declared a digit whose model leads to the 

highest score. The computation of P(y| M) is based on forward/ backward recursions. The 

noises data used here are: White, Factory, Volvo and Pink. 
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The overall accuracy is determined for the range {-10 to +5} Signal to Noise Ratio 

(SNR). In our analysis, we segment the SNR range of interest into 2 parts:  

1) The negative SNRs which cover the range from -10 dB where the signal power is 

10 times less than the noise power to 0 dB where both powers are identical. 

2) The positive SNRs that span from 0 dB to +5 dB at which the signal power is 5 

times more than the noise power. 

Recognition accuracy is evaluated every 5 dB step in the SNR in the concerned range for 

the four different types of noises mentioned above. 

6. The Optimized Feature Set: Here, we used the MID optimization algorithm to select 

the mRMR features among 96 feature vectors (16 vectors per each of the 6 standard 

feature sets). The reference classes are the digits. Minimum redundancy is carried first by 

calculating the mutual information index between the classes and features. Then, 

maximum relevance is obtained by calculating the mutual information index between the 

features vectors themselves in the order of the previous step. Using this set of optimal 

feature, we calculated the recognition accuracy of 5 remaining set of utterances for the 

range {-10 to +5} SNR of four different types of noises: White, Factory, Volvo and Pink 

noises. 

Finally, the whole experimental setup is repeated with Arabic digits. We will discuss in 

the next section our result of both Arabic and English languages. However, before 

presenting the experimental results, we will briefly discuss the different types of noises 

considered in our performance analysis. 
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TI46 Database: 

The TI46 is a corpus of isolated spoken words collected at Texas Instruments (TI) in 

1980. The words of this corpus were recorded in an isolated booth, using a cardoid 

dynamic microphone, positioned 2 inches from the speaker's mouth and out of his/her 

breathe stream. The TI46 database contains 46 words uttered 26 times from 16 speakers 

(8 males and 8 females). 

Noise Database: 

To cover as many types of noises as possible, we selected 4 types, these are:  

White Noise: This noise is the most popular type of noise considered in the literature. 

The power spectrum density of white noise is constant over the whole frequency range 

(Figure 4.1). 

 

 

 

 

 

 

 

 

 

 

  
Figure 4.5: Power Spectral Density of White Noise. 
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Car Factory Noise: This noise was recorded in a car production hall. The power 

spectrum density of the factory noise decreases with frequency and also exhibits tones at 

low frequencies (Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Volvo Noise: This noise was recorder in a Volvo car at speed of 120 km/h, in the 4
th

 gear, 

on an asphalt road, in rainy conditions. The power spectrum density of the Volvo noise 

decreases with frequency and exhibits very noticeable time domain impulses at low 

frequencies (Figure 4.3). 

 

 

 

 

 
Figure 4.6: Power Spectral Density of Factory Noise. 
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Pink Noise: This type of noise exhibits an equal energy per 1/3 octave. The power 

spectrum density of pink noise decreases 3dB per octave with frequency (Figure 4.4). 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8: Power Spectral Density of Pink Noise. 
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Figure 4.7: Power Spectral Density of Volvo Noise. 
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4.4 Experimental Results 

4.4.1Experimental Results for English Language Digits: 

In our first experiment and assuming a noise free environment, we obtained a recognition 

accuracy of 98% for both the MFCC feature set and the Optimized feature set. The results 

emphasize the power of the MFCC coefficients in speech recognition. It is worth noting 

the Optimized feature set obtained using the mRMR algorithm consists of a large number 

of MFCC coefficients as shown in the table below: 

Table 4.3: Optimized Feature Set for The English Language Numerals 

1 MFCC01 

2 LPC12 

3 MFCC09 

4 MFCC02 

5 MFCC13 

6 MFCC08 

7 MFCC05 

8 CC01 

9 RF06 

10 MFCC11 

11 DeltaCC03 
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12 MFCC07 

13 MFCC06 

14 MFCC15 

15 LPC01 

16 MFCC04 

 

The performance with English digits in terms of recognition accuracy with additive white 

noise for the standard and Optimized features; is shown in Table 4.4 and Figure 4.9. 

The results show also that the MFCC coefficients dominate the other features over a wide 

range of SNR values. The Optimized feature set shows an improvement over the MFCC 

with an average of 15%. 

Table 4.4: Recognition Accuracy in % for English Numerals with Additive White Noise 

Case of Additive White Noise 

       Feat 

 

 

       

SNR 

LPC 

(%) 

LSP 

(%) 

RFC 

(%) 

CC/ 

DeltaCC 

(%) 

MFCC 

(%) 

Optimized 

(%) 

Improvement 

in recognition 

accuracy (%) 

w.r.t best the 

feature set 

-10 20 20 16 20 20 36 16 

-5 20 20 20 28 32 40 8 

0 24 32 24 24 36 48 12 

5 36 28 48 44 52 76 24 

10 64 56 72 60 80 92 12 



92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The recognition accuracy performance in the case of additive factory noise; is shown in 

Table 4.5 and Figure 4.10. 

Once again, the MFCC coefficients outperform other coefficients. The Optimized feature 

set improves the recognition accuracy for all SNRs. The important thing to notice is that 

the Optimized feature set exhibits a better improvement in accuracy at negative SNRs. 

Table 4.5: Recognition Accuracy in % for English Numerals with Additive Factory Noise 

Case of Additive Factory Noise 

     Feat 

  

   

SNR 

LPC 

(%) 

LSP 

(%) 

RFC 

(%) 

CC/ 

DeltaCC 

(%) 

MFCC 

(%) 

Optimized 

(%) 

Improvement in 

recognition 

accuracy (%) w.r.t 

best the feature set 

-10 12 14 10 8 14 44 30 

-5 10 20 24 20 30 58 28 

 
Figure 4.9: Results for English Numerals with White Noise. 
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0 22 34 36 42 46 60 14 

5 32 46 48 60 62 72 10 

10 56 60 56 64 72 74 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results shown in Figure 4.11 and Table 4.6 summarize our experiment for the case of 

additive Volvo noise. In this case, all features perform well in negative SNRs, but they 

progress slowly towards the positive region. While the MFCC coefficients dominate the 

other coefficients, the Optimized feature set shows an improvement in performance over 

the MFCC coefficients particularly above 0 dB SNRs. 

 

 

 
Figure 4.10: Results for English Numerals with Factory Noise. 
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Table 4.6: Recognition Accuracy in % for English Numerals with Additive Volvo Noise 

Case of Additive Volvo Noise 

     Feat 

   

 

     

SNR 

LPC 

(%) 

LSP 

(%) 

RFC 

(%) 

CC/ 

DeltaCC 

(%) 

MFCC 

(%) 

Optimized 

(%) 

Improvement 

in recognition 

accuracy (%) 

w.r.t best the 

feature set 

-10 32 48 40 40 66 66 0 

-5 44 64 52 60 68 70 2 

0 42 62 50 64 70 78 8 

5 50 66 58 66 70 80 10 

10 50 66 60 70 74 84 10 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.11: Results for English Numerals with Volvo Noise. 
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The case of additive pink noise was the most challenging one. In this case, the overall 

performance was low for all features between the range -10 dB and -5 dB SNRs. 

However, above -5 dB SNR, the performance of the MFCC features and the Optimized 

features are very similar (see Figure 4.12 and Table 4.7). 

 

Table 4.7: Recognition Accuracy in % for English Numerals with Additive Pink Noise 

Case of Additive Pink Noise 

     Feat 

 

 

       

SNR 

LPC 

(%) 

LSP  

(%) 

RFC 

(%) 

CC/ 

DeltaCC 

(%) 

MFCC 

(%) 

Optimized 

(%) 

Improvement 

in recognition 

accuracy (%) 

w.r.t best the 

feature set 

-10 16 14 20 16 10 20 10 

-5 14 32 22 20 28 34 6 

0 14 38 30 40 46 46 0 

5 30 48 44 58 66 68 2 

10 36 68 52 72 78 78 0 
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4.4.2 Experimental Results for Arabic Language Digits: 

Without noise, the performance reached was 92% in terms of recognition accuracy for 

both the MFCC feature set and the Optimized feature set. The Arabic Optimized feature 

set of size of 16 consists mainly of MFCC features as shown in the below table: 

Table 4.8: Optimized Feature Set for The Arabic Language Numerals 

1 MFCC04 

2 DeltaCC02 

3 MFCC10 

4 MFCC03 

5 MFCC13 

6 MFCC14 

 
 

Figure 4.12: Results for English Numerals with Pink Noise. 
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7 MFCC11 

8 MFCC06 

9 MFCC08 

10 CC04 

11 LPC01 

12 DeltaCC04 

13 MFCC15 

14 DeltaCC03 

15 RF05 

16 MFCC12 

 

In our first experiment, we started by considering additive white noise. For this case, the 

Optimized feature set shows an improvement over the MFCC coefficients with an 

average of 10%. Note that this improvement is lower than the case of English language. 

This is due to the complicated structure of the Arabic language spectrum compared to 

English. The results are summarized in Figure 4.13 and Table 4.9. 

Table 4.9: Recognition Accuracy in % for Arabic Numerals with Additive White Noise 

 Case of Additive White Noise 

  Feat 

 

  

SNR 

LPC 

(%) 

LSP 

(%) 

RFC 

(%) 

CC/ 

DeltaCC 

(%) 

MFCC 

(%) 

Optimized 

(%) 

Improvement in 

recognition 

accuracy (%) w.r.t 

best the feature set 

-10 26 18 26 20 32 44 12 

-5 26 30 30 32 38 48 10 
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0 26 38 26 44 52 56 4 

5 30 48 44 62 64 68 4 

10 30 56 56 66 68 84 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the case of additive factory noise (Figure 4.14 and Table 4.10), the Optimized feature 

set gives an improvement in performance over MFCCs of about 11%. The major 

improvement appears at the negative range of SNRs. 

 

 

 

 
Figure 4.13: Results for Arabic Numerals with White Noise. 
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Table 4.10: Recognition Accuracy in % for Arabic Numerals with Additive Factory Noise 

Case of Additive Factory Noise 

     Feat 

       

 

SNR 

LPC 

(%) 

LSP 

(%) 

RFC 

(%) 

CC/ 

DeltaCC 

(%) 

MFCC 

(%) 

Optimized 

(%) 

Improvement in 

recognition accuracy 

(%) w.r.t best the 

feature set 

-10 14 22 18 22 20 30 10 

-5 22 32 22 28 38 58 20 

0 26 42 44 48 50 64 14 

5 30 62 58 46 66 70 4 

10 36 68 58 50 76 80 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.14: Results for Arabic Numerals with Factory Noise. 
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A reduced improvement is also noticed for the case of additive Volvo noise as can be 

seen in Table 4.11 and Figure 4.15. While all features perform well at very low SNRs, 

MFCC coefficients perform better overall SNRs. The improvement of the Optimized 

feature set over MFCC coefficients is noticeable below +5 dB SNRs with an overall 

average improvement of 7%. 

Table 4.11: Recognition Accuracy in % for Arabic Numerals with Additive Volvo Noise 

Case of Additive Volvo Noise 

     Feat 

     

 

   

SNR 

LPC 

(%) 

LSP 

(%) 

RFC 

(%) 

CC/ 

DeltaCC 

(%) 

MFCC 

(%) 

Optimized 

(%) 

Improvement 

in recognition 

accuracy (%) 

w.r.t best the 

feature set 

-10 34 40 42 48 50 64 14 

-5 42 52 42 52 68 76 8 

0 46 60 50 60 70 78 8 

5 42 68 56 64 78 78 0 

10 46 68 60 64 82 86 4 
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The result we obtained in the case of additive pink noise indicates that the Optimized feature 

set and the MFCC feature set are comparable as shown in Table 4.12 and Figure 4.16. 

 

Table 4.12: Recognition Accuracy in % for Arabic Numerals with Additive Pink Noise 

Case of Additive Pink Noise 

     Feat 

  

 

      

SNR 

LPC 

(%) 

LSP 

(%) 

RFC 

(%) 

CC/ 

DeltaCC 

(%) 

MFCC 

(%) 

Optimized 

(%) 

Improvement 

in recognition 

accuracy (%) 

w.r.t best the 

feature set 

-10 14 22 22 12 12 20 8 

-5 12 22 22 16 28 40 12 

 
 

Figure 4.15: Results for Arabic Numerals with Volvo Noise. 
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0 12 34 20 30 40 44 4 

5 12 42 26 34 58 54 -4 

10 18 46 38 42 78 74 -4 

 

 

 

 

 

 

  

 
Figure 4.16: Results for Arabic Numerals with Pink Noise. 
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CHAPTER 5 

CONCLUSION 

5.1 Summary 

In this work, we have discussed applying a new approach for Speech Recognition based 

on selecting optimal features and an HMM classifier. As introduction a background of the 

human speech communication process was given in Chapter 1. The importance and the 

objectives of this research were stated at the end of the introduction. Chapter 2 describes 

the concept of Speech Recognition and the implementation details of such systems. 

Feature Extraction is the entry process of speech recognition system upon which the 

overall system performance depends. Feature extraction and selection were explained also 

in this chapter. The Hidden Markov Model as a popular statistical modeling algorithm 

used in speech recognition was also discussed in this chapter. In Chapter 3, we briefly 
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described some basis of information theory focusing on the concept of mutual 

information. In this chapter, we also introduced the concept of minimum Redundancy, 

Maximum Relevance (mRMR) algorithm for feature selection. In Chapter 4, we 

described the algorithm setup, implementation parameters, and the detailed results of 

experiments. In summary, the proposed algorithm of minimum Redundancy, Maximum 

Relevance selects the optimum features that perform better at low SNR for a range of 

noises. The majority of the optimized selected features by the mRMR were MFCC 

coefficients. In 16-features English experiment, the mRMR selects 11 MFCCs, 2 LPCs, 1 

RFC, 1 CC and 1 Delta-CC features. The Optimum features exhibit an improvement at 

low SNR (-10 to +10) for white, factory, and Volvo noises. The average improvements 

over the studied low SNR range are 15% and 17% for white and factory noises 

respectively. This improvement is reduced to about 4% for Volvo noise case. On the other 

hand, the Optimum feature performs as well as the MFCC in a pink noise. In 16-features 

Arabic experiment, the mRMR selects 10 MFCCs, 3 Delta-CCs, 1 LPC, 1 RFC and 1 CC 



105 

 

 

 

features. The Arabic Optimum feature set provides the same performance results as 

English for all types of tested noises. The average improvements achieved for white and 

factory noises are 10% and 11% respectively. For Volvo noise case, the average 

improvement is 7% which is the only case that Arabic language results overcome the 

English language results. Compared to the results discussed by Korba et al. [106], our 

algorithm gives a substantial improvement at low SNR for different type of noises. 

5.2 Future Research Directions 

The work we started in this thesis is the first step in a new direction of research for 

enhancing speech recognition algorithms. To further enhance this work, we list below a 

number of ideas: 

1. A Parameterized mRMR algorithm: one could introduce a weighted factor for each 

part of mRMR equation and study the performance. Modified mRMR optimization 

algorithm becomes: 

 ,max DV   for additive combination                     (5.1) 
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,max 








D

V




for multiplicative combination          (5.2) 

where α and β are constant cumulative values sum up to 1. The objective of the 

parameterized algorithm is to find the values of α and β that provide better recognition 

performance.  

2. Changing the optimization technique used for maximum relevance part is another area 

for research. The summary of this idea is to combine another optimization technique 

like gradient descent or genetic algorithm for maximum relevance part with the mutual 

information technique for minimum redundancy.  

3. An interesting research is to evaluate the speech recognition performance using 

mRMR with other classifier e.g. Bayesian and Neural Network. In our research, we 

used HMM as a common and successful classifier for speech recognition systems.  In 

the proposed research, one can concludes if mRMR can boost up the performance of 

other classifiers to the level of HMM or better. 
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4. Acknowledged outcome of mRMR algorithm are based on precise measurements for 

relevance and redundancy. The type of measurements is another field for research. 

Studying how different statistical measuring function such as correlation function 

impacts the efficiency of mRMR. 

5. Another area of research is the study of the relationship between the performance 

improvement and the size of the selected feature. Our algorithm chooses the first 16 

optimized features. This number is chosen as the same number used for standard 

features. The suggested study will find the optimum mRMR feature set size that 

provides the best performance. 

6. Another study is to consider the performance of the Quotient mRMR. Along with that 

is the performance study of the combination of Differential mRMR and Quotient 

mRMR. The aim of such a research is to evaluate different performance of different 

types of mRMR and to find the optimal cost function.  
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7. Finally, evaluating the performance of mRMR algorithm among different standard and 

new standalone features is a nice topic for research. In this research, we selected the 

most popular standard features from which the selected optimized feature score a 

recognized improvement. The proposed study of different features will help to find a 

criteria for features on which mRMR can operate well.  
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