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CHAPTER 1

INTRODUCTION AND

MOTIVATION

1.1 Introduction

In this section, the motivation for research in decimal arithmetic - particularly dec-

imal multiplication - is presented. The inaccuracy of binary computer arithmetic in

floating-point calculations and inefficient software solutions for decimal arithmetic

will be highlighted.

Most current computer systems today have floating-point arithmetic units based

on binary standards. This is not only because binary data can be efficiently stored

in digital machines [5] but also because they are easy to implement in hardware [6].

In spite of their advantages, there are reasons that push towards having decimal
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floating-point arithmetic. Most of data stored and manipulated in database sys-

tems are represented in decimal format which is affine to human nature. A survey

was conducted on commercial databases of 51 major organizations covering a wide

range of applications, including airline systems, banking, financial analysis, insur-

ance, inventory control, management reporting, marketing services, order entry and

processing, pharmaceutical, and retail sales, has shown that 55% of the numerical

data were decimal and 43.7% of the remaining data were integers which can also be

represented as decimals [7]. The primary motivation for decimal computer arith-

metic is to enable users of computing systems to represent fractional data correctly

and perform fractional decimal operations without representation errors, conversion

errors, and rounding errors [4]. Commonly used fractional decimal numbers, like

0.1, 0.2, 0.3 etc, require infinite binary representation to be accurately represented.

Instead, these fractions are rounded to fit in the available system precision. Ac-

cordingly, even if the subsequent operations are exact, the result is not exact [7].

This kind of approximation can be avoided if the numbers are represented in dec-

imal format. Let us consider an example of sales tax calculation of 5% such as

a $0.70 telephone call. Using binary floating-point, multiplying 0.70 by 1.05 will

yield a result that is around 0.734999999999 which will be rounded to $0.73 that

is less than the expected value obtained by decimal arithmetic ($0.735 rounded to

$0.74)[7]. Such one-cent errors will add up in many cases leading to huge errors. For

example, for a mobile telecom company serving millions of calls a day, the annual
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loss could be in the order of millions. Thus, this minor approximation can cause

a huge loss for the telecom company in the long term. Notice that this error is

due to lack of accuracy in binary floating-point representation not due to rounding

errors. For these reasons, financial calculations are preferably performed in decimal

representation. Many programming languages support decimal floating-point arith-

metic like C/C++, COBOL, Eiffel, Java, Lua, PERL,Python, Rexx, and Ruby [4].

Decimal data is usually represented as an integer scaled (divided) by a power of ten.

Initial tests have shown that processing-bound applications (rather than I/O-bound

applications) spend around 50-90% of their processing time in decimal processing

suffering between 100× to 1000× performance penalty over hardware [7]. Thus,

hardware solutions may enhance the execution speed of such applications by two to

three orders of magnitude.

Due to the increase of decimal arithmetic importance in computer systems and

the need for unified standard, IEEE approves a standard for decimal floating-point

operations in June 2008 [9].

1.2 Thesis Objective and Organization

The purpose of this thesis is to design and implement a design for an online decimal

multiplier. In this thesis work, the algorithm for online multiplication is introduced

then it will be adopted for decimal multiplication operation. Online multiplication
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algorithm accepts inputs from most significant digits and produces output in the

same manner. Also the thesis includes a survey about decimal addition algorithms

- specially signed-digit decimal addition - in order to adopt an encoding for decimal

digits to optimize the speed and area of the implementation.

The objectives of the thesis are: (1) to study online multiplication operation, (2)

to devise an online algorithm for decimal multiplication, (3) to design and implement

an architecture for an online decimal multiplier, (4) model the proposed design using

a Hardware Description Language (VHDL), (5) synthesize the VHDL code for area

and delay in FPGA and evaluate performance and efficiency.

The rest of the thesis is organized as follows. In Chapter 2, background about

decimal arithmetic is introduced. It includes a literature review about decimal mul-

tiplication, decimal addition, and online arithmetic, and summary about decimal

section in the IEEE 754-2008 standard for floating-point. Chapter 3 provides de-

tailed description about the proposed algorithm and its hardware implementation.

This includes the selection of a digit set, various components in the design, and the

details of the data path. Chapter 4 presents the synthesis results of the design. The

designs are synthesized to optimize area and delay and these results are discussed

and compared. Conclusions and future work are presented in Chapter 5.
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CHAPTER 2

BACKGROUND

As this thesis discusses algorithms and designs for decimal multiplication, it is ap-

propriate to present the standard of decimal floating-point (DFP) arithmetic and

show current processor support for decimal arithmetic. The first section presents

some of the existing hardware support for decimal arithmetic in modern computer

systems. The second section of this chapter discusses the decimal multiplication

operation, its phases, and possible alternatives. Decimal addition is investigated

with different approaches and digit sets in the third section. A summary about

the specifications and format of decimal arithmetic included in the IEEE 754-2008

standard [9], which constitutes the basis of all modern DFP (decimal floating-point)

arithmetic is presented in the fourth section. The last section details the serial op-

erations in computer arithmetic, highlights the online arithmetic, and focuses on

online multiplication.
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2.1 Hardware Support in Modern Systems

Since the IEEE 754-2008 standard has been approved in June 2008 [9], few DFP units

that are compliant with the standard have made it to the market [1]. The first IEEE

754-2008 compliant hardware has been reported by IBM Power6 dual-core processor

released in June 2007 and IBM z10 mainframe quad-core microprocessor released in

March 2008 [1]. Other manufacturers, such as Intel, have software implementations

but they are planning to either incorporate DFP units or to add hardware support

for IEEE 754-2008 decimal operations [1].

2.2 Decimal Multiplication

Multiplication operation consists of three essential stages (phases): generation of

partial products, reduction of partial products into two operands representing the

sum in redundant form and final conversion (usually using carry-propagate addition)

to convert the result into non-redundant representation [2] [1]. To enhance the

reduction operation, some implementations use recoding of the input operands in

which case two recoding stages are used; one at the beginning and one at the end [4].

Decimal multiplication differs from binary multiplication in two aspects: first, the

wide range of decimal digits [0,9] and second, is the low representation efficiency

of decimal values in binary systems using regular binary-coded decimal (BCD8421)
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where only 10 out of 16 possible representations are used [1]. The first aspect

complicates the generation of multiples of the multiplicand where the multiplication

unit should deal with 9 possible multiples compared to binary which dose not need

more than the multiplicand itself. The second aspect adds more complexity to

the generation and reduction of partial products [2]. Thus, decimal multiplication

algorithms and hardware designs are more complex than their binary counterparts.

Commercial hardware implementations of decimal fixed-point integer multipliers

are based on iterative algorithms characterized by low performance (long execution

time) and reduced area cost [1]. Academic research proposed sequential multipliers

that improve the latency of commercial ones. Recently, parallel fixed-point decimal

multipliers have been proposed [1].

2.2.1 Generation of Partial Products

Multiplication performs the operation P = A×B where A is the multiplicand, B is

the multiplier, and P is the product (multiplication result). Both operands A and B

are n-digit numbers while P is 2n-digits in general [11]. In most hardware designs,

these quantities are considered as unsigned numbers and the sign of the product

- when needed - is determined by special logic circuit based on signs of inputs A

and B. A straightforward approach is through a digit-by-digit iteration over the

multiplier B starting with the least (most) significant digit each time adding the

appropriate multiple of the multiplicand A to the partial result PP followed by a
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one digit left (right)-shift of the result, which corresponds to multiplication (division)

by 10 [11]. One approach suggests that all multiples should be calculated and stored

in advance (before the beginning of the multiplication process) to reduce the delay.

The set of multiples that include all multiples is called the primary set or primary

multiples [11]. The most notable drawbacks of this approach is the significant delay

of pre-calculations and the area needed to store these multiples [11]. The recurrence

equation used by this approach is given by:

Pi+1 = (Pi + rn × A × bi) × 10−1

where bi is the ith digit of the multiplier starting from the least significant digit,

P0 = 0 , 0 ≤ i < n , and n is the number of digits. An alternative to gener-

ating and storing all multiples is to generate and store a reduced set of multiples

called secondary set. The main characteristic of this reduced set is that all remain-

ing multiples can be obtained by adding two elements of the reduced set, i.e. the

remaining multiples are generated dynamically [11]. Using secondary set of multi-

ples reduces the cost of the generating and storing the set of multiples needed but

affects the complexity of the design since more addition operations are needed to

generate the partial product. Different secondary sets have been proposed. Even

multiples 2A, 4A, 6A, 8A is an example of a secondary set where odd multiplies

3A, 5A, 7A, 9A are generated on demand from the corresponding even multiplies as
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mX+X,m = 2, 4, 6, 8 [1]. Other examples of the reduced set are 2A, 3A, 4A, 8A [11]

and A, 2A, 4A, 8A [15]. Although the last reduced set is smaller and simpler in cal-

culations (simple shifting to BCD8421 coding), it requires more than two addition

operations for some multiples (requires addition of three multiples A, 2A, and 4A to

generate 7A) which increase the delay and area needed in this design. A reduced set

of A, 2A, 4A, 5A can be generated without carry propagation over the whole number

(the carry will propagate to the next significant only) [11]. In order to avoid the

complexity of multiples generation, the multiplier can be recoded to a signed-digit

(SD) representation. In [16], the multiplier digits are recoded as yi = yHi + yLi

with yHi ∈ {0, 5, 10} and yLi ∈ {−2,−1, 0, 1, 2}. Generation of the reduced set

{A, 2A, 5A, 10A} for this design requires few levels of combinational logic without

carry propagation. It also requires an additional 10’s complement operation to gen-

erate negative multiples. The recurrence equation for algorithms that use reduced

sets is :

Pi+1 = (Pi + rn(A × b′i + A × b′′i )) × 10−1

where bi = b′i + b′′i is the ith digit of the multiplier starting from the least significant

digit and Ab′i, Ab′′i are selected from the secondary set of multiples, P0 = 0 , 0 ≤

i ≤ n , and n is the number of digits. Another approach for generation of partial

products is to perform BCD digit-by-digit multiplication of input operands using

lookup tables [12] or combinational logic [13]. A recoding of the operands digits by

9



Table 2.1: BCD Codings
BCD-8421 BCD-5421 BCD-4221 BCD-4221 BCD-5211 BCD-5211

(S1) (S2) (S1) (S2)
0 0000 0000 0000 0000 0000 0000
1 0001 0001 0001 0001 0001 0010
2 0010 0010 0100 0010 0100 0100
3 0011 0011 0101 0011 0101 0101
4 0100 0100 0110 1000 0111 0111
5 0101 1000 1001 1001 1000 1000
6 0110 1001 1010 1010 1010 1001
7 0111 1010 1011 1011 1011 1100
8 1000 1011 1110 1110 1110 1101
9 1001 1100 1111 1111 1111 1111

a signed-digit radix-10 is suggested to reduce the magnitude range [14]. Recoding

of both operands speeds up and simplifies the generation of signed-digit partial

products using simplified lookup tables and combinational logic. This approach

is more suited for serial multiplier implementations because of its high hardware

demand that makes them impractical for parallel designs [2].

Another approach to generate multiples is to recode the multiplicand digits.

Recoding simplifies the generation of multiples and negative multiples. Different

BCD coding schemes are shown in Table 2.1. An advantage of using BCD-4221 and

BCD-5211 is that they are self-complementing (i.e. their 9’s complement is simply

obtained by bit inversion which simplifies the generation of negative multiples) [1].

The generation of 2X using BCD-5421 - unique encoding shown in Table 2.1 - is

simply done by a 1-bit left shift with the result coded in BCD 8421 [1]. For example,

shifting the code (0100), that represents number 4 in BCD-5421 according to Table

10



2.1, will result in (1000) which is equivalent to number 8 in BCD-8421. Similarly,

number 7 (1010) will produce two digits, (0001) and (0100) which represent number

14 in BCD-8421. Likewise, the generation of 5X using BCD-4221 (both S1 and

S2) is simply by 3-bit left shift with the result coded in BCD 5211 [1]. Figure 2.1

shows an example of this operation. Another way to generate 2X is to encode

digits in BCD-5211 (S2) and shift to the left by one bit with the result encoded

using BCD-4221 (S2) [1]. For example, shifting the code (0101), that represents

number 3 in BCD-5211(S2) according to Table 2.1, will result in (1010) which is

equivalent to number 6 in BCD-4221(S2). The recoding could be done through

simple combinational logic [1] [2]. This recoding of multiplicand digits can be used

with a signed-digit (SD) recoding of the multiplier digits to improve the performance

of the multiplier. In [1] [2], the recoding of multiplier in SD radix-4, SD radix-5 and

SD radix-10 is proposed.

� ��� � ���� ���

� ��

�� ����������

� ��� � ���� ���

� ��

�� ����������

�

��

Figure 2.1: Example of calculation of ×5 for decimal operands coded in BCD 4221
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2.2.2 Reduction of Partial Products

In this stage, appropriate set of multiples generated in the first stage are selected

and added together with the partial products accumulated during previous stages.

The type of adder used in this stage depends on the encoding of the decimal digits.

The reduction stage is the main stage that affects the time required to generate the

result of the multiplier since it should be executed in every cycle. Designers try

to optimize adders to enhance the delay of multipliers. Usually the output of the

reduction stage is represented in redundant form in order to reduce the time required

to calculate the complete result. Decimal addition algorithms and procedures are

described in section 2.3. These algorithms include unsigned BCD representations

and signed-digit representations.

2.2.3 Final Carry Propagate Addition

The reduction stage sometimes produces the final result in redundant form (in sum

S and carry C component) at the end. This stage converts the final result into a

non-redundant form. The sum and carry components are passed to a carry prop-

agate adder that perform the addition operation according to addition algorithms

described in section 2.3 (speculative decimal addition algorithm and direct decimal

addition algorithm). [4] [1]
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2.3 Decimal Addition

2.3.1 Unsigned BCD Addition

In BCD-8421 encoding, ten out of sixteen possible combinations are used (i.e. six

combination from ’1010’ to ’1111’ are unused). Because of this, decimal addition is

more complicated than binary addition. The basic decimal addition algorithm is de-

scribed in Figure 2.2. If the sum of two BCD digits exceeds the value of nine and gets

into the unused range, the sum should be wrapped around to the appropriate value

and the carry out bit should be set [11]. This problem can be resolved by additional

hardware to detect when the sum digit exceeds the allowed range or by adding six

to the final sum and check if a carry-out is generated or not. In this subsection, the

operands are considered as unsigned numbers(i.e. addition of negative values and

subtraction is not considered). Another alternative way to skip the unused combi-

nations is by biasing one BCD digit by six, perform the addition operation with the

second BCD digit and then make a correction operation (subtracting the +6 bias)

if the carry-out Ci+1 is zero. This algorithm is called speculative decimal addition

detailed in figure 2.3. The addition of six in each digit in one of the operands allows

the use of binary adders, that are already available, for each decimal digit. The

operation of adding six (biasing) can be performed digitwise using a single level of

combinational logic according to the following Boolean equations:
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Algorithm: Basic Decimal Addition (S=X+Y) 
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Figure 2.2: Basic Addition Algorithm

Algorithm: Speculative Decimal Addition (S=X+Y) 
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Figure 2.3: Speculative Decimal Addition Algorithm
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Xi + 6 = {(xi,3 + xi,2 + xi,1), (xi,2 ⊕ xi,1), (xi,1), (xi,0)}

where Xi is a 4-bit decimal digit (Xi = xi,3 xi,2 xi,1 xi,0) and Xi ∈ [0, 9] ⇒

Xi + 6 ∈ [6, 15] is represented in BCD excess-6 [1]. Instead of biasing one of the

operands, both operands can be represented in BCD excess-3 format which will lead

to the same result. Likewise, the correction stage (subtracting six from each digit)

can be implemented using a single level of combinational logic as follows:

Si − 6 = {(si,3.si,2.si,1), (si,2 ⊕ si,1), (si,1), (si,0)}

where Si is a 4-bit decimal digit (Si = si,3 si,2 si,1 si,0) and Si − 6 ∈ [0, 9] Although

this algorithm allows the use of binary adders, the main drawback of this algorithm is

the propagation delay in the critical path which includes the delay of operands setup,

the carry computation, the sum and the post-correction stage [1]. This delay can be

reduced by parallelizing evaluation and correction of BCD sum digits with the carry

computation using a hybrid prefix tree/carry-select adder which is implemented in

the fixed-point unit of IBM z900 and IBM z990 microprocessors [10][18].

Another algorithm of decimal addition is direct decimal addition that accepts

two 4-bit BCD digits Xi and Yi as inputs in BCD-8421 along with Ci[0] one bit

carry-in and directly produce the a 4-bit sum digit Si in BCD-8421 and 1-bit carry-

out Ci+1[0] [11]. In direct decimal addition algorithm, the decimal carry is obtained
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directly through an implementation of a decimal carry recurrence (Ci+1 = Gi+AiCi)

which depends on the decimal carry generate Gi and decimal carry alive Ai signals

that represent the conditions for generating and propagating of a decimal carry [1].

This algorithm does not allow the use of binary adders. Figure 2.4 describes the

direct decimal algorithm.

The generate Gi and alive signals Ai are given by:

Gi = GU
i + AU

i . xi,0 . yi,0 (2.1)

Ai = AU
i .(xi,0 + yi,0) (2.2)

where the upper decimal carry-generate GU
i and upper decimal carry-alive AU

i

signals are obtained from the three most significant bits of the decimal digit as

follows:

GU
i = xi,3(yi,3 + yi,2 + yi,1) + yi,3(xi,2 + xi,1) + xi,2yi,2(xi,1 + yi,1) (2.3)

AU
i = xi,3 + yi,3 + xi,2yi,2 + (xi,3 + yi,3)xi,1yi,1 (2.4)

Also the upper decimal carry-generate GU
i and upper decimal carry-alive AU

i

signals can be expressed in term of the binary carry-generate (gi,j = xi,j.yi,j) and
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binary carry-alive (ai,j = xi,j + yi,j) signals as follows:

GU
i = gi,3 + gi,2.ai,1 + ai,3(ai,2 + ai,1) (2.5)

AU
i = ai,3 + gi,2 + ai,2.gi,2 (2.6)

The sum digit in direct decimal addition Si given by Si = mod16(Xi + Yi + Ci +

6.Ci+1) can be evaluated directly from Xi and Yi and the computed carries using

combinational logic [1]. The bits of the sum digit Si are given as follow:

ci,1 = gi,0 + ai,0.Ci (2.7)

Ci+1 = GU
i + AU

i .ci,1 (2.8)

gi,j = xi,j.yi,j (2.9)

ai,j = xi,j + yi,j (2.10)

pi,j = xi,j ⊕ yi,j (2.11)

Si =















































si,3 = (gi,3 + pi,2.pi,1)pi,3.ci,1 + AU
i .GU

i ci,1

si,2 = (pi,2 ⊕ pi,1.AU
i ).ci,1 + (pi,2 ⊕ pi,1.G

U
i ).ci,1

si,1 = pi,1 ⊕ AU
i .ci,1 + (pi,1 ⊕ GU

i ).ci,1

si,0 = pi,0 ⊕ Ci

Another way to add decimal numbers is to use recoding of decimal digits into
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redundant non-conventional encodings (examples are shown in table 2.1). For Ex-

ample, input operands are encoded in BCD-4221 or BCD-5211 and fed to a binary

carry-save adder to produce a sum component S and a carry component H as:

Xi + Yi + Ci =
3

∑

j=0

(si,j + 2hi,j)rj =
3

∑

j=0

si,jrj + 2
3

∑

j=0

hi,jrj = Si + 2Hi

where (r3, r2, r1, r0) is either (4, 2, 2, 1) or (5, 2, 1, 1) and

si,j = xi,j ⊕ yi,j ⊕ ci,j (2.12)

hi,j = xi,j.yi,j + (xi,j + yi,j).ci,j (2.13)

Hi ∈ [0, 9], Si ∈ [0, 9] are the decimal carry and sum digits at position i respec-

tively [2][1]. Sum and carry components do not need any correction (i.e. further

addition or subtraction operations). There are three different implementations of

addition operation of recoded digits using binary carry-save adders described below:

Input and output operands encoded in BCD-4221 : In this case, a one-decimal-

digit carry-save adder consists of 4-bit binary carry-save adder and a digit re-

coder from (4221) to (5211). The decimal digit CSA receives three operands

encoded in BCD-4221 and produce two operands in the same encoding. How-

ever, the carry component H needs to be multiplied by 2 before further com-

putations. This can be done by recoding the carry word into BCD-5211 then
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shift it to the left by one bit. [2]. Figure 2.5 shows this case. For example,

addition operation of (1110) = 8, (1100) = 6, and (1001) = 5 is shown in

Table 2.2

Table 2.2: Example of Decimal Addition with recoding: Input and Output operands
encoded in BCD-4221 (case 1)

(4221) (4221)
0 8

Input(Xi) 0000 1110
0 6

Input(Yi) 0000 1100
0 5

Input(Ci) 0000 1001

0 7
Sum(Si) 0000 1011

0 6

Carry(H̀i) 0000 1100
Carry recoding

(5211) (5211)
0 6

Carry(Hi) 0000 1010
Carry shifting

(5211) (5211)
1 2

Carry(Hi) 0001 0100

Input and output operands encoded in BCD-5211 : This case is much sim-

ilar to the previous one. Its decimal digit CSA consists of 4-bit binary carry-

save adder and a digit recoder from (5211) to (4221). The carry component

H needs to be multiplied by 2 before further computations (i.e. to get 2H).

This is achieved by shifting the carry component by one bit to the left followed

by recoding from BCD-4221 to BCD-5211 [1]. Figure 2.6 shows this case. An
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Algorithm: Direct Decimal Addition (S=X+Y) 
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Figure 2.4: Direct Decimal Addition Algorithm
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Figure 2.5: Decimal Digit (4-bit) 3:2 CSA: Input and Output operands encoded in
BCD-4221 (case 1)
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example for addition operation of (1110) = 8, (1100) = 7, and (0110) = 3 is

shown in Table 2.3.

������ ��� ���

���������������������������������������	���	���	


��
��
��
��


���
���
���
��	

�������	
���������
�
	����
���


�����
��
��

���	���
�	������������


��
��
��
��
���


�����
��
��

Figure 2.6: Decimal Digit (4-bit) 3:2 CSA: Input and Output operands encoded in
BCD-5211 (case 2)

Mixed input and output encodig : In this case, the decimal digit CSA needs

only 4-bit binary carry-save adder. The input operands are encoded in BCD-

5211 and the output operands (sum S and carry H components) are encoded

in BCD-5211. The carry component is shifted to the left by one bit postion

to get 2H encoded in BCD-4221 [1]. Figure 2.7 shows this case. The example

is shown in Table 2.3 without the recoding phase.

The recoding process can be achieved through a simple gate level. The logical
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Table 2.3: Example of Decimal Addition with recoding: Input and Output operands
encoded in BCD-5211 (case 2)

(5211) (5211)
0 7

Input(Xi) 0000 1100
0 7

Input(Yi) 0000 1100
0 3

Input(Ci) 0000 0110

0 3
Sum(Si) 0000 0110

0 7

Carry(H̀i) 0000 1100
Carry shifting

(4221) (4221)
1 4

Carry(Hi) 00001 1000
Carry recoding

(5211) (5211)
1 4

Carry(Hi) 0001 0111
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Figure 2.7: Decimal Digit (4-bit) 3:2 CSA: Mixed Input and Output operands en-
coding (case 3)
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expressions for BCD-4221 to BCD-5211 recoding is given by:

wi,3 = hi,3.(hi,2 + hi,1 + hi,0) + hi,2.hi,1.hi,0 (2.14)

wi,2 = hi,2.hi,1.hi,3 ⊕ hi,0 + (hi,3.hi,0) ⊕ hi,2 ⊕ hi,1 (2.15)

wi,1 = hi,2.hi,1.hi,3 ⊕ hi,0 + hi,3.hi,0.hi,2 ⊕ hi,1 (2.16)

wi,0 = (hi,2.hi,1). ⊕ hi,3⊕hi,0
(2.17)

where the input H = (hi,3, hi,2, hi,1, hi,0) is encoded in BCD-4221 and the output

W = (wi,3, wi,2, wi,1, wi,0) is encoded in BCD-5211 [2]. The reverse digit recoding

from BCD-5211 to BCD-4221 is easily implemented using a single full adder where

the most significant bit hi,3 and the two least significant bits hi,1, hi,0 are added

according to the following equation:

Hi(5211) = hi,3(4 + 1) + hi,2(2) + hi,1(1) + hi,0(1) (2.18)

= hi,3(4) + hi,2(2) + (hi,3(1) + hi,1(1) + hi,0(1)) (2.19)

with wi,3 = hi,3, wi,2 = hi,2 and (hi,3(1) + hi,1(1) + hi,0(1)) = 2 × wi,1 + wi,0 where

the input H = (hi,3, hi,2, hi,1, hi,0) is encoded in BCD-5211 and the output W =

(wi,3, wi,2, wi,1, wi,0) is encoded in BCD-4221 [1].
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2.3.2 Signed Digit Decimal Addition

The second category of decimal addition algorithms is signed-digit addition. There

are many algorithms and hardware implementations for signed-digit addition based

on the codes used for the decimal digits. Signed-digit representations of decimal

numbers allow redundant representations of some decimal numbers. Signed-digit

addition does not have a carry propagation, but it has a transfer quantity that is

independent from the input carry and only propagate to the next digit position. In

[26], Antonin Svoboda introduced a signed-digit adder that uses a symmetric digit

set [-6,+6]. Svoboda suggested 5-bits representations for a svoboda-encoded digit

xi ∈ [−6, 6] given by:

Xi = 3xi(mod 31) for 0 ≤ Xi ≤ 31

so that

Xi = 3xi for xi ≥ 0

and

Xi = 31 − 3xi for xi ≤ 0

Binary codes for decimal digits based on Svoboda rule are shown in Table 2.4.

These Svoboda proposed codes have the following important properties:
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Table 2.4: Svoboda Signed-digit Codes
xi Binary Code Xi

e d c b a
+6 1 0 0 1 0 +18
+5 0 1 1 1 1 +15
+4 0 1 1 0 0 +12
+3 0 1 0 0 1 +9
+2 0 0 1 1 0 +6
+1 0 0 0 1 1 +3
+0 0 0 0 0 0 0
-0 1 1 1 1 1 31
-1 1 1 1 0 0 28
-2 1 1 0 0 1 25
-3 1 0 1 1 0 22
-4 1 0 0 1 1 19
-5 1 0 0 0 0 16
-6 0 1 1 0 1 13

1. Sign inversion is done by complementing bits.

2. Positive digits have even parity while negative digits have odd parity. More-

over, the MSB can be used as a sign bit (except for +6 and -6).

3. The marginal digits (+6,-6) are distinguished by the relations:

(xi = +6) ⇔ (abc = 1)

(xi = −6) ⇔ (a + b + c = 1)

(xi = ±6) ⇒ (a + b + c + d ≡ 1(mod 2))

4. When (+6 = 10 - 4) is fed as an input to the adder, a transfer value of +10
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from order i to order i + 1 is generated as a single additive unit and the value

of current digit (+6) should be replaced by (-4). Closer investigation of the

codes of both values (+6 and -4) shows that this conversion is simply achieved

by complementing the least significant bit (i.e. change a from 0 to 1).

5. Likewise when (-6 = -10 + 4) is fed as an input to the adder, a transfer value

of -10 from order i to order i + 1 is generated as a single additive unit and the

value of current digit (-6) should be replaced by (+4). Closer investigation

of the codes of both values (-6 and +4) shows that this conversion is simply

achieved by complementing the least significant bit (i.e. change a from 1 to

0).

The hardware structure of this adder is shown in Figure 2.8. This hardware structure

is meant for description purposes and not for synthesis as indicated by the author.

As shown in the hardware structure, this algorithm uses binary adders to add the

input digits and to add the transfer digit but it uses unconventional encoding of

decimal digits so a recoding operation is needed. Also, it uses 5-bits to represents

digits set [-6,+6] which indicates inefficiency in representation (i.e. 13 combinations

are used out of 32 possible combinations).

A Second algorithm was proposed in 2007 by John Moskal, Erdal Oruklu and

Jafar Saniie [27]. In this algorithm, decimal signed-digit number Xi is represented

by two 4-bits quantities (X+
i , X−

i ) where X+
i represents the positive component
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Figure 2.8: Svoboda Signed-digit Decimal Adder (Descriptive Diagram, i.e. not for
synthesis purposes)
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and X−

i represents the negative component. Both components are encoded using

BCD encoding. To obtain the numerical value of the number, subtract the negative

component from the positive component (i.e. Xi = X+
i − X−

i ). The digit set of

this algorithm is from +9 to -9 inclusive. To add two decimal digits, if the value

of interim sum exceeds (1) then a transfer digit is set and a correction factor of

10 is subtracted. Similar operation is applied for negative quantities. When the

interim sum is less than (-1), then the transfer digit is set to (-1) and a correction

factor of (+10) is added. The transfer digit is set to zero in remaining cases when

the interim sum is either (0), (+1) or (-1). Thus, the transfer digit depends on the

input values only regardless of the transfer digit from the previous digit which means

there is no carry propagation. Since the interim sum is in the range of [+18,-18],

this guarantees that the output digit will remain in the same range of the inputs

[+9,-9] (after adding the transfer digit performing the correction operation).

Ui = Xi + Yi

ti =































1 if (Xi + Yi) > 1

0 if |Xi + Yi| ≤ 1

1 if (Xi + Yi) < −1

Si = Ui + ti−1 − 10 × ti

The architecture of the adder depicting this algorithm is shown in Figure 2.9.
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The design consists of three functional blocks: compressor block, selector block and

correction block. In the compressor block, the initial addition operation between two

operands is performed and the interim sum is produced. Selector block chooses one of

two intermediate values generated by the first block to perform further calculations

and compute the transfer digit. Correction block receives the transfer digit from

less order digit, applies it to the interim sum, adjusts the result of the transfer-out

digit and reduces the final result to 4 bits. These functional blocks use the following

components:

Combined Compressor: is a single bit compressor that takes two SD values and

represents their sum in two equivalent forms. There are two types of compres-

sors: Type ”‘A”’ compressor represents Xi + Yi as sum of C−

i+1, C
+
i+1 and S−

i

and type ”‘B”’ compressor represents Xi + Yi as sum of C−

i+1, C
+
i+1 and S+

i .

Sign Detector: used to detect the sign of the intermediate result and determine

the transfer digits.

SD Binary Adder: takes two inputs, one SD number and one binary number, and

provides positive carry-out C+
i+1 and negative sum S−

i .

Reduction Circuit: used to correct the result coming from the binary adder and

reduce it from 5 bits into 4 bits.

The inefficient representation of decimal digits is considered as a disadvantage

(19 values are represented by 8 bits). Although this increases the redundancy, it
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increases the area of components involved in computation. In the hardware design,

some components generates values that are not used which means that the hardware

is not fully utilized.

Another signed-digit decimal addition algorithm was proposed by Behrooz Shi-

razi, David Y.Y. Yun, and Chang N. Zhang in 1989 [28]. This algorithm uses 4 bits

to represent digits in the digit set D from -7 to +7 coded in BCD. Negative values

are represented in 2’s complement. Table 2.5 shows digits and their corresponding

redundant BCD (RBCD) codes.

Table 2.5: Redundant BCD (RBCD) Signed-digit Codes
Digit RBCD code Digit RBCD code
0 0000
1 0001 -1 1111
2 0010 -2 1110
3 0011 -3 1101
4 0100 -4 1100
5 0101 -5 1011
6 0110 -6 1010
7 0111 -7 1001

Addition operation suggested by this algorithm consists of three stages. In the

first stage, operands are fed to a binary carry-save adder to generate interim sum

which should be in the subset D̀ = D−{7,−7} = {6, 5, ..., 0, ...,−5,−6} and transfer

digit T ∈ {−1, 0, 1}. Then, the interim sum is exposed to a correction operation

if the output digit goes beyond the boundaries of the digit set. When the interim

sum digit is within the ranges {8, 9, ..., 14}, then addition of (-6) and setting the

transfer carry to (+1) are performed in correction stage. On the other hand, when
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Figure 2.9: Decimal Adder Architecture (Moskal Algorithm)
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the interim sum digit enters the range {−8,−9, ...,−14}, then addition of (+6) and

setting the transfer carry to (-1) are performed in correction stage. By combining

these three cases (i.e. intermediate sum ∈ {6, 5, ..., 0, ...,−5,−6}, intermediate sum

∈ {7, 8, ..., 14}, and intermediate sum ∈ {−7,−8, ...,−14} ), for any pair of RBCD

digits added, there are 9 possible correction factors used to correct the intermediate

sum, namely {−7,−6,−5,−1, 0, 1, 5, 6, 7}.

The large set of correction factors and the condition on them makes the decision

more complicated. Since 2’complement representation is common and allows the

use of binary adders, this addition algorithm is more suitable to be integrated with

binary adders.

An enhanced algorithm of the previous one was proposed by Jeff Rebacz, Erdal

Oruklu, and Jafar Saniie in [29]. The main enhancements lie in digit set, carry

detection unit and correction stage. The new digit set is [9,-9] inclusive represented

in 2’complement 5 bits vector. The operands are added by using Carry-look-ahead

adder to generated 6-bits interim sum ui. Then, two level of logic is used to determine

the transfer carry ti (+1 when ui > 7, -1 when ui < −8, 0 otherwise). After that,

the correction vector (=−10 × ti + ti−1) is computed and added. The Hardware

proposed for this adder is shown in Figure 2.10.
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Figure 2.10: Enhanced RBCD Decimal Adder Architecture
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2.4 IEEE 754-2008 Standard for Floating-Point

The IEEE 754-2008 standard is a revision of the IEEE 754-1985 standard for floating-

point operations in computer systems [9]. The standard specifies formats, methods,

standard and extended functions for floating-point arithmetic in computer systems

with single, double, extended, and extendable precision. Also the standard includes

recommended formats for computation and data interchange between binary and

decimal representation. The standard could be implemented in hardware, software,

or a combination of both. Exception conditions and their handling are included [9].

IEEE 754-2008 adds new operations that were not included in the old standard

IEEE 754-1985 like fused multiply add, and adds new binary types (16-bit and 128-

bits) in addition to decimal specifications [1]. In this overview, we summarize some

of the specifications for decimal floating-point operations.

2.4.1 Decimal Specifications in IEEE 754-2008 Standard

Both decimal formats and encodings are an integral part of IEEE 754-2008 stan-

dard [1]. In decimal floating-point format, a number can have multiple representa-

tions which are called cohort [9]. Members of cohort are distinct representation of

the same floating-point value.

The standard defines interchange formats as formats that have a specific fixed-

width encoding defined in the standard, and classifies them as follows:
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Basic Formats which are the formats available for arithmetic operations [1]. Two

basic formats are defined for decimal operations of length 64 bits (decimal64)

and 128 bits (decimal128) [9].

Storage Formats which are smaller than basic format and not required for arith-

metic. The standard defines only one storage format with length of 32 bits

(decimal32) [1].

Extended Precision Formats which have both wider range and wider precision

to extend a supported basic format [9].

Also the standard mentioned extendable formats that are under user control. Users

can specify the range and precision of that format according to their design needs [9].

To interchange data represented in an extendable format, it needs to be converted

into one of the interchange formats [1].

Decimal Floating-point (DFP) representation has two forms: scientific and

financial. In the scientific form, a DFP is represented by a triplet s, e,M corre-

sponding to a value of:

(−1)s × M × 10e

where s ∈ {0, 1} is the sign of the number, emin ≤ e ≤ emax is the integer ex-

ponent and M < 10 is the unsiged not normalized fractional part, in the form

M0.M1M2M3M4...Mp−1, Mi ∈ {0, 1, 2, ..., 9} [1]. In the financial form, a DFP is
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represented by a triplet s, q, C corresponding to a value of:

(−1)s × C × 10q

where s ∈ {0, 1} is the sign of the number, the exponent (or quantum q) such

that emin ≤ q + p − 1 ≤ emax is the integer exponent and C < 10p is a string of

decimal digits in the form C0C1C2C3C4...Cp−1, Ci ∈ {0, 1, 2, ..., 9} [1]. This type

of representation is called scaled decimal and is needed in financial applications

since the trailing zeros may represent extra information that should be preserved

such as currency (cents or hallals) [1]. For example, the value 672.80 is represented

as 67280 with a quantum of 2 (or an exponent -2), that is, as 67280 × 10−2.The

scaled decimal encoding is not unique since different combinations of quantum and

integer coefficient can represent the same value (coefficient 030 with quantum 1

and coefficient 003 with quantum 3 represents the value 300) [1]. These different

representations forms a Cohort. In general, If C is a multiple of 10 and q < emax

then {s, q, C} and {s, q + 1, C/10} are two different representations of the same DFP

number [1][9].

Although they seem to be different, both forms of representation (financial and

scientific) are equivalent since e and M in the scientific form are equal to q + p − 1

and C × 10p respectively in the financial form [1].

The encoding is the mapping between DFP number and a string of bits that

36



represent it. The standard defines the general layout for interchange formats and

allows the integer coefficient to be represented in either a compressed form (Densely

Packed Decimal, DPD) or pure binary form (Binary Integer Decimal, BID) [1]. The

DPD encoding allows the compression of 3 decimal digits into 10 bits [23]. The

general layout of DFP number encoded in k bits consists of the following three

fields:

Sign Field S : 1-bit field that encodes the sign of the number.

Combinational Field G : w+5 bits field that contains biased exponent (w+2

bits) represented in binary (E = q + bias) and the 4 most significant bits of

decimal coefficient (the most significant digit). The most significant bits of

the exponent can not be (11)b [9].

Coefficient Field T : 10J bits field that encodes 3J digits of the coefficient en-

coded in DPD or binary integer value between 0 and 210t−1. This field with

the most significant digit in the combinational field forms the 3× t+1 decimal

digits of the integer coefficient [9].

Table 2.6 shows the values of k, w, p, t, and bias for different interchange formats.

The combinational field G conveys the type of information stored as follows:

1. If the most significant bits of the combinational field G are ”‘11111”’ (i.e.

bits from G0 through G4 are ones), then the value is NaN (Not a Number).
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Moreover, the next bit G5 is used to distinguish between different types of

NaN. When G5 = 1, then the value is sNaN (signaling NaN), and when it

is ”‘0”’ then the value is qNaN (quit NaN). The remaining bits of G have

no meaning and the T field carries the payload which is used to differentiate

between various NaN. [9]

2. If the most significant bits of the combinational field G are ”‘11110”’, then

this represents the value of (−1)S × (+∞). The rest of G and T fields are

negligible but it is preferred to be set to zeros [9].

3. For a finite number r = (S, E − bias, C) that has a value v = (−1)S ×

10(E−bias) ×C, the value of C is combined from the leading significant digit or

bits from combinational field G and coefficient field T and the biased exponent

E is contained in combinational field G. The encoding of these information

differs according to the type of the encoding used for the coefficient (binary

or decimal). [9]

(a) If the coefficient is encoded in decimal, then the bits from G5 to Gw+4

contain the least significant w bits of the biased exponent. The most

significant two bits of the biased exponent E and the coefficient C are

contained in the most significant bits of the combinational field G (i.e.

bits from G0 through G4) and the coefficient field T as follows:

i. If the bits (G0G1G2G3G4) = (1110x) or (110xx), then the most sig-
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nificant digit of the coefficient d0 is 8 + G4 (i.e. d0 = 8 or 9) and the

leading biased exponent bits are 2G2 +G3 (i.e. equal to 0,1, or 2) [9].

ii. If the bits (G0G1G2G3G4) = (0xxxx) or (10xxx), then the most

significant digit of the coefficient d0 is 4G2 + 2G3 + G4 (i.e. d0 in

the range 0 to 7) and the leading biased exponent bits are 2G0 + G1

(i.e. equal to 0,1, or 2) [9]. So, if T field is all zeros and G =

00000, 01000, 10000 then the value = (−1)S × (+0) [9].

The remaining digits of the coefficient are encoded in T field by DPD

(b) If the coefficient is encoded in binary, then:

i. If (G0G1 = 00, 01, or 10), then bits from G0 through Gw+1 contain

the biased exponent and significand is formed from bits Gw+2 to the

end of the encoding (including T field) [9].

ii. If (G0G1 = 11) and (G2G3 = 00, 01, or 10), then bits from G2

through Gw+3 contain the biased exponent and significand is formed

from prefixing the 4 bits (8 + Gw+4) to T field [9].

The maximum value that can be represented in the integer coefficient by

both encoding (decimal and binary) are the same, that is 10(3×J+1)−1 (or

10(3×J) −1 when T is used as payload in NaN). When the value exceeded

the maximum, the value used for c is zero.[9]
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2.4.2 Densely Packed Decimal (DPD)

Densely packed decimal encoding was introduced by Cowlishaw in 2002 [23]. It

is a compact representation of decimal data that offers significant advantages over

binary coded decimal encoding (BCD) which is used widely for encoding decimal

data. DPD is an improvement to the encoding introduced by Chen and Ho in

[24] in 1975 and called (Chen-Ho encoding) where three decimal digits at most are

compressed into 10 bits providing 17% more space over BCD encoding [23]. Chen-

Ho encoding was built based on Huffman code with leading bits to indicate which

digit combination is used [23]. Chen-Ho encoding have some advantages over other

encodings like: [23]

• conversion from BCD and vice versa is achieved by simple boolean operations

(i.e. multiplication or division operations are not needed).

• fixed-length encoding which allows simpler encoding and decoding over vari-

able length encodings like encoding proposed by Smith in [25].

Although Chen-Ho encoding works extremely fine when the length of digit is a mul-

tiple of 3, it is not suitable with other lengths because either digits are wasted or

another encoding need to be used to represent the remaining digits of the num-

ber [23]. For example, consider a 256-bit register where 237 bits are available for

the significand and 19 bits are used for sign and exponent. Only 230 bits can be
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used to encode 69 digits by Chen-Ho encoding and the remaining 7 bits are wasted

while they are sufficient to encode two more digits. DPD utilizes the advantages of

Chen-Ho encoding and tries to avoid the drawbacks. It is also built using equivalent

Huffman coding to Chen-Ho encoding scheme with better arrangement of bits that

gives more advantages:

1. Compression of one or two decimal digits is allowed with 4 or 7 bits respec-

tively. This means that any number of decimal digits could be encoded with

DPD efficiently. For example, 71 decimal digits could be encoded in 237 bits

(compared with 69 using Chen-Ho encoding).

2. Encodings of one or two decimal digits are right aligned with the 10 bits (re-

maining bits are all zeros). This allows simple expansion of a number by

appending zeros to the left without recoding. Chen-Ho encoding scheme re-

quires recoding to expand a one or two digits field into three digits.

3. The rearrangement of bits allows all single digits numbers (indeed all the

numbers in the range from 0 through 79) to have the same code as in BCD.

This simplifies the conversion process from and to BCD. In Chen-Ho encoding

scheme, only numbers from 0 to 7 have this advantage.

Table 2.7 shows some decimal numbers with their BCD, Chen-Ho, and DPD

codes.
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Table 2.6: Decimal interchange format parameters
Parameter decimal32 decimal64 decimal128 decimalk (k ≥ 32)
storage width in bits(k) 32 64 128 multiple of 32
precision in digits(p) 7 16 34 9 × k/32 − 2

Maximum exponent(emax) 96 384 6144 3k/16+3

Encoding Parameters
bias, E − q 101 398 6176 emax + p − 2
sign bit 1 1 1 1
Combinational field

11 13 17
k/16 + 9

in bits (w + 5)
Trailing significand field

20 50 110 15 × k/16 − 10
width in bits (t)
storage width in bits(k) 32 64 128 1 + 5 + w + t

Table 2.7: Comparision of Decimal Encoding
Decimal BCD Chen-Ho Densely Packed
5 0000 0000 0101 000 000 0101 000 000 0101
9 0000 0000 1001 110 000 0000 000 000 1001
55 0000 0101 0101 000 010 1101 000 101 0101
99 0000 1001 1001 111 000 1001 000 101 1111
555 0101 0101 0101 010 110 1101 101 101 0101
999 1001 1001 1001 111 111 1001 001 111 1111
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Table 2.8: Encoding 3 decimal digits to 10 densely packed decimal encoding
d(1,0), d(2,0), d(3,0) b0, b1, b2 b3, b4, b5 b6 b7, b8, b8

000 d(1,1:3) d(2,1:3) 1 d(3,1:3)

001 d(1,1:3) d(2,1:3) 1 0, 0, d(3,3)

010 d(1,1:3) d(3,1:3), d(2,3) 1 0, 1, d(3,3)

011 d(1,1:3) 1, 0, d(2,3) 1 1, 1, d(3,3)

100 d(3,1:2), d(1,3) d(2:1,3) 1 1, 0, d(3,3)

101 d(2,1:2), d(1,3) 0, 1, d(2,3) 1 1, 1, d(3,3)

110 d(3,1:2), d(1,3) 0, 0, d(2,3) 1 1, 1, d(3,3)

111 0, 0, d(2,1:2), d(1,3) 0, 1, d(2,3) 1 1, 1, d(3,3)

DPD encoding scheme accepts three decimal digits d1d2d3 each encoded in BCD

and having 4 bits and encode (compress) then into 10 bits. Table 2.8 shows how

DPD expresses 3 decimal digits in 10 bits. In the table, the symbol d1,0:3 refers to

the bits from 0 through 3 in digit 1 where bit 0 is the most significant bit and bit 3 is

the least significant bit and bits from b0 to b9 represent the code after compression.

The conversion operation described in Table 2.8 generates 1000 combinations,

that represent values in the range from 0 through 999, out of 1024 possible com-

binations. Although, the rest of the bit patterns like 01x11x111x, 10x11x111x, or

11x11x111x are not generated, they are mapped to a value in the range of number

from 0 to 999. [9]

Table 2.9 shows the decoding operation of a DPD code into its original decimal

digits. The symbol ”‘x”’ in the table denotes a ”‘don’t care”’ bit. Thus, all possible

bits combinations are acceptable and mapped into 1000 possible 3-digit numbers

with some redundancy. [9]
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Table 2.9: Decoding 10-bits DPD Code into 3 Decimal Digits
b6, b7, b8, b3, b4 d1 d2 d3

0xxxx 4b0 + 2b1 + b2 4b3 + 2b4 + b5 4b7 + 2b8 + b9

100xx 4b0 + 2b1 + b2 4b3 + 2b4 + b5 8 + b9

101xx 4b0 + 2b1 + b2 8 + b5 4b7 + 2b8 + b9

110xx 8 + b2 4b3 + 2b4 + b5 4b7 + 2b8 + b9

11100 8 + b2 8 + b5 4b7 + 2b8 + b9

11101 8 + b2 4b3 + 2b4 + b5 8 + b9

11110 4b0 + 2b1 + b2 8 + b5 8 + b9

11111 8 + b2 8 + b5 8 + b9
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2.5 Serial Arithmetic

Serial arithmetic refers to arithmetic operations where one digit of each input

operand is received and one digit of the output is delivered at each clock cycle

(Figure 2.11 shows the typical timing diagram for serial operations). Note that cy-

cle 1 is the cycle in which the first digit of the output is delivered (by convention).

The main advantage of using serial arithmetic is to reduce the number of intercon-

necting signal lines between modules in the design and to simplify their interfaces

which influence the area and power dissipation. The time (number of clock cycles)

required to receive the whole input digits and produce the output digit is the main

drawback. Timing diagram in Figure 2.11 shows that the total execution time of

serial operations consists of two components: the initial delay δ and the time to

deliver all output digits n. The initial delay δ corresponds to the number of digits

of input operands that are needed to determine the first result digit. Thus, the first

output digit will be produced δ + 1 cycles after the first digit of input operands is

received. The time to deliver all output digits n is equal to the number of digits in

the output as one digit is delivered each cycle. Consequently, the execution time is:

Tn = δ + 1 + n
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This delay can be reduced by computing the result as few digits of the operands

are received instead of collecting all input digits before starting the operation which

will include the delay of collection beside the operational delay.

There are two modes of serial arithmetic: Least-significant digit first (LSDF)

mode and Most-significant digit first (MSDF). In LSDF, the digits of the input

operands are applied from the least significant digit and the result is produced from

the least significant digit as well. This mode is also known as right-to-left mode.

On the other hand, in MSDF mode, the digit of input operands are received from

the most significant position and the output digits are also produced from the most

significant digit. This mode of serial arithmetic is known as online arithmetic and

the corresponding delay is referred to as online delay. Figure 2.12 shows these two

modes of serial arithmetic.

2.5.1 Online Arithmetic

Online arithmetic concept was introduced in 1977 by Ercegovac [20]. The name on-

line comes from the possibility of overlapping between performing the operation with

the digit-by-digit communication of operands/result [22]. This overlapping reduces

the time required to perform a single operation and also reduces the time of long

sequence of consecutive arithmetic operations by allowing operation overlapping.

For certain applications, online Arithmetic algorithms are favored because (i)

it reduces the on-chip and off-chip connections (ii) it allows parallelism between
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Figure 2.12: Digit flow for different serial arithmetic modes
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several operations specially those dependent [22] (iii) some operations like division

and square rooting calculations cannot be implemented in LSDF mode.

The online delay, or latency δ, is an important characteristic of online arithmetic.

It represents the minimum number of input operands digits that are needed to pro-

duce the first digit of the result (i.e. the ith digit of the result is produced after

δ + i input digits are received). Figure 2.11 shows the online delay. Even though

this additional overhead could be considered as a disadvantage, it can be masked by

allowing successive operations to execute in an overlapped manner with a delay of δ

cycles [22]. Each operation can start when the first digit of the result of the previous

operation appears (i.e. after δ cycles of the beginning of the previous operation). In

contrast to conventional parallel approach, online arithmetic does not require com-

pletion of an operation before beginning successive operations. Figure 2.13 shows

the difference between parallelism in online arithmetic and conventional parallel ap-

proaches. According to that, overlapping between arithmetic operations is better

and more effective in online arithmetic than in parallel approaches with strong data

dependencies. Hence, online arithmetic is more advantageous when more operations

are to be performed in sequence [22]. The online delay δ is fixed and depends on

the type of the operation itself regardless of the size of inputs (independent of the

precision), whereas, LSDF mode has a small fixed initial delay for addition and

multiplication but the initial delay for division, square rooting, and max/min oper-

ations depends on the size of the input which makes this mode not suitable to these
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operations.

Since the result is calculated in digit-by-digit manner, online approach has a

low-bandwidth communication requirements which is preferable in high concurrent

special purpose VLSI designs where the interconnections have a significant impact

on the area and time [22].

Online (MSDF) mode computation requires flexibility in computing and selecting

output digits based on partial information of inputs [22][19]. This flexibility, which

could help to introduce compensation in the following digits and limit the carry

propagation to only one digit position at most, can be achieved by representing

operands digits using redundant number system where multiple representations can

represent single value. Carry-Save and signed-digit are the main redundant num-

ber representations in binary systems and can be also used for other radices [19].

Signed-digit redundant number system is the most frequently used in online arith-

metic with both symmetric {−a, ..., 0, ..., a} and asymmetric {−b, ..., 0, ..., c} digit

sets. Heterogeneous representations can be used to optimize the implementation of

complex computations since different redundant representations are possible. Also,

redundant representation of some internal signals may enhance the addition opera-

tion [19]. Converting redundant numbers into conventional representation requires

carry-propagation addition in parallel arithmetic operations while this conversion

can be performed efficiently without carry-propagation addition by using on-the-fly

conversion method [19]
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Figure 2.13: Time line for executing sequence of arithmetic operations
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2.5.2 Online Multiplication

An online algorithm for multiplication was introduced by Kishor Trivedi and Milos

Ercegovac in 1977 [21]. It was derived following the well-known technique of incre-

mental multiplication in addition to the use of redundant number system [21]. The

algorithm accepts two serially received n-digit input operands X, Y starting with

the most significant digit and produces digits of the output product P in the same

manner after the online delay of δ = 2. Both inputs and output are represented as

radix-r normalized floating-point fraction in the range (−1, 1) in radix-r redundant

number system. Then, X,Y, and P are expressed as [21]:

X =
m

∑

i=1

xi . r−i (2.20)

Y =
m

∑

i=1

yi . r−i (2.21)

P =
m

∑

i=1

pi . r−i (2.22)

Accordingly, we define Xj, Yj, and Pj as the accumulated digits of X, Y, and P

at the jth cycle [22][19]. Thus,
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Xj =

j
∑

i=1

xi . r−i = Xj−1 + xj . r−j (2.23)

Yj =

j
∑

i=1

yi . r−i = Yj−1 + yj . r−j (2.24)

Pj =

j
∑

i=1

pi . r−i = Pj−1 + pj . r−j (2.25)

The partial product at jth cycle is given by:

Xj.Yj = Xj−1.Yj−1 + (Xj.yj + Yj−1.xj)r
−j

The error bound at jthcycle is given by [19]

|Xj.Yj − Pj| < r−j

Let Pj be a scaled partial product, then:

Pj = Xj.Yj.r
j = rPj−1 + (Xj.yj + Yj−1.xj) (2.26)

Where P0 = 0 [21]. In order to generate the output digits from left-to-right as

required, a signed-digit redundant number system must be adopted. Symmetric
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redundant digit set need to be used. [21]

Dρ = {−ρ,−(ρ − 1), ...,−1, 0, 1, ..., (ρ − 1), ρ}

where

r

2
≤ ρ ≤ r − 1

The basic recurrence relation (2.26) of online multiplication is given by:

wj = r(wj−1 − dj−1) + (Xj.yj + Yj−1.xj) (2.27)

where the digits dj ∈ Dρ are selected using the following selection function: [21]

dj = SELM(wj) = sign(wj). b|wj| + 1/2c (2.28)

From (2.26) and (2.27), the following relation can be derived by induction:

wj = Pj −

j−1
∑

i=1

di.r
(j−i) (2.29)

After rearranging and substituting n = j, we have:

Pn = X.Y.rn = rn

n−1
∑

i=1

di.r
(−i) + wn (2.30)
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or

X.Y =
n

∑

i=1

di.r
(−i) + (wn − dn)r−n

Since the difference between the wj and dj is less than or equal to 1/2, then

the quantity
∑n

i=1 di.r
(−i) represents the most significant part of the product in

redundant form.

Since product digits di ∈ Dρ, the selection function SELM(wj) generates digits

|di| ≤ ρ. To guarantee that, this condition need to be satisfied:

|wj| < ρ + 1/2, ∀j = 1, 2, ...., n (2.31)

To ensure that the condition in (2.31) is satisfied, an upper bound M is defined on

the values of the inputs X,Y . Let X, Y ≤ M , |wj−1−dj−1| ≤ 1/2, and |xj|, |y−j| ≤ ρ

then by substituting in (2.27) we get:

|wj| ≤
r

2
+ 2Mρ

which, after rearranging and substituting wj by (2.31), leads to

M <
1

2
−

r − 1

4ρ
(2.32)

which means

1

2r
< M <

1

4
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The following example illustrates the online multiplication algorithm for r = 10

and ρ = 5. Let X and Y be 6-digit decimal numbers, where X = 0.025472 =

0.035532 and Y = −0.033721 = 03 432 1

P = X.Y =
∑6

j=1 dj.10−j + 10−6(w6 − d6) = 0.001141 + 10−6 × 0.58688 =

−0.000859 + 0.000000058688 = −0.000858941312

Figure 2.14 shows a possible implementation of the online multiplication algo-

rithm.

55



Table 2.10: Online Multiplication Example
j xj yj Xj.yj + Yj−1.xj wj dj 2(wj − dj)
1 0 0 0 0 0 0
2 3 -3 -0.09 -0.09 0 -0.9
3 -5 -4 0.05 -0.85 -1 1.5
4 5 3 -0.0935 1.4065 1 4.065
5 -3 -2 0.05016 4.11516 4 1.1516
6 2 -1 -0.092912 1.058688 1 0.58688

��������� ������	�
�

��
������

���������

��
������

���������

�������� ��������

�������


�����

����

����

�� ������ !
"!#!$%

!�"������������������
����#��
�$�����������#�����#��������������#���
��
��

�����
����
��#����
%�
���
���������
������


Figure 2.14: General Implementation of Radix-r Online Multiplier
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CHAPTER 3

DECIMAL ONLINE

MULTIPLIER DESIGN

The general algorithm of online multiplication is described in Section 2.5.2. To

derive the algorithm for radix 10, we replace the variable r which represents the

radix by 10. Then, the recurrence relation of the radix 10 algorithm is as follows:

wj = 10 × (wj−1 − dj−1) + (Xj.yj + Yj−1.xj) (3.1)

where the digits dj, chosen from a digit set Dρ, are determined by the following

selection function [21]:

dj = SELM(wj) = sign(wj). b|wj| + 1/2c
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The algorithm followed in the radix-10 online multiplication is given in Figure 3.1.

Online Multiplication Algorithm (radix 10) 
Input: X= , Y=
Output: Pout = output digit 
1. initialization 
 x[-3]= y[-3]= w[-3]= 0 

for j=-3, -2, -1 
x[j+1] � CA(x[j],xj+4) 
y[j+1] � CA(y[j],yj+4) 
v[j+1] = 10×w[j]+(x[j]yj+4 + y[j+1]xj+4)×10

-3

w[j+1] � v[j] 
end for 

2. recurrence 
For j= 0,…,n-1 
x[j+1] � CA(x[j],xj+4) 
y[j+1] � CA(y[j],yj+4) 
v[j+1] = 10×w[j]+(x[j]yj+4 + y[j+1]xj+4)×10

-3

pj+1 = SELD(v[j]) 
w[j+1] � v[j] – pj+1 
pout � pj+1
end For 

where: 

• n is the operands size in digits 

• CA is a conversion and appending function. 

• SELD() is the product-digit selection function. 

• Pout is the product digit output. 

Figure 3.1: Radix-10 Online Multiplication Algorithm for Radix 10

3.1 Choice of Digit Set and Encoding

as explained in Section 2.5.2, online algorithms are designed using redundant num-

ber systems. Signed-digit and carry-save are the most commonly used redundant

number systems. In decimal arithmetic, several SD encodings have been described

together with their addition algorithms (Section 2.3). The choice of encoding is an

essential step in designing online decimal multiplication hardware since the encoding
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affects the digit set used in the design as well as the design complexity.

By referring to the recurrence relation in equation 3.1, two multiplication op-

erations are needed together with three addition and subtraction operations. The

required multiplications are digit-by-word decimal multiplications. To perform these

multiplications, a set of multiples (primary set or secondary set) need to be gener-

ated. The product of each multiplication operation is computed by selecting and

adding appropriate multiples. These multiplications are calculated at each iteration

since the quantities Xj and Yj−1 accept new digit at each cycle. The operation of

multiples generation and computation is in the critical path of the online multipli-

cation operation so the choice of digit encoding should both simplify the process of

multiples generation and have an efficient addition algorithm in order to enhance

the overall performance.

The choice of digit set also affects the complexity of the design since it affects

the number of multiples that need to be generated each iteration. As the number

of multiples increases, the hardware complexity and components needed to generate

these multiples become more complex resulting in larger implementation area and

slower speed. Further, with SD set, both positive and negative multiples need to be

generated.

To summarize, when a given digit set and encoding, the following criteria have

been used:

1. The number system used should be redundant (signed-digit is preferable).
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2. A smaller size digit set is preferred in order to reduce the number of multiples

to be generated.

3. The encoding should result in an efficient addition algorithm and hardware

implementation .

4. The encoding should allow fast and simple generation of multiples (primary

set or secondary set of multiples).

5. The encoding should allow fast and simple sign conversion as the digit set is

signed.

The decimal SD encodings described together with their addition algorithms in

Section 2.3 are evaluated against the above criteria. All unsigned BCD digit sets

and encodings can not be chosen as only redundant signed-digit sets are needed.

For the [-6,+6] [26], [-7,+7] [28], and [-9,+9] [29] [27] digit sets , the [-6,+6] Svoboda

digit set has the smallest size and hence needs the least number of multiples. A

smaller digit set, smaller set of multiples calculated, and simpler hardware compo-

nents. Thus, according to the second criteria, designs with digit set [-9,+9] are ruled

out. Also the hardware design of algorithm described in [27] is more complicated

with inefficient area utilization.For sign representation, algorithms reported in [28]

and [29] uses 2’s complement representation requiring additional correction steps to

generate transfer quantities during the multiple generation process compared with

the Svoboda encoding [26]. Although multiplication by 2 in 2’s complement system
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can be accomplished by left-shifting, this step is not enough in SD representation.

For example, some multiplication operations require both sign conversion and gen-

eration of a transfer digit ( e.g. in digit set [-7,+7] 4 × 2 = 8 = 12, the input (4)

is positive (0100) while the output (-2) is negative (1110) with a transfer digit of

(+1)). Thus, it is important that the selected digit set and encoding have simple

sign conversion mechanism.

Based on these criteria and the above discussion, the Svoboda encoding (de-

scribed in [26]) has been chosen for our design from amongst other encodings dis-

cussed in Section 2.3. The digit set used in the Svoboda design has been modified

to be from (-5) to (+5) in order to simplify multiples generation and sign detection.

With the restricted [-5,+5] modified digit set, the most significant bit determines

the sign of the digit rather than through the use of a parity circuit. Table 3.1 shows

the adopted modified Svoboda codes. The modified [-5,+5] digit set is used for the

inputs and for multiples generation while the original [-6,+6] digit set is used in the

addition and reduction operations.

3.2 Internal Multiplication Operations

The recurrence relation of online multiplication includes two digit-by-word multipli-

cations (yjXj and xjYj−1). In each iteration, two new digits (xj and yj) are received,

and the words (Xj and Yj) are updated. Thus, the two multiplication operations
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Table 3.1: Modified Svoboda Signed-digit Codes
xi Binary Code Xi

e d c b a
+5 0 1 1 1 1 +15
+4 0 1 1 0 0 +12
+3 0 1 0 0 1 +9
+2 0 0 1 1 0 +6
+1 0 0 0 1 1 +3
+0 0 0 0 0 0 0
-0 1 1 1 1 1 31
-1 1 1 1 0 0 28
-2 1 1 0 0 1 25
-3 1 0 1 1 0 22
-4 1 0 0 1 1 19
-5 1 0 0 0 0 16

need to be calculated every cycle. Generating all multiples (primary set) is not an

appropriate choice since it increases the clock period and the implementation area.

Generating a subset of the multiples, a secondary set, such that all other multiples

can be calculated as the sum of two elements of the secondary set. Two different

secondary sets have been considered for our design: the first one consists of the

multiples {−A,A, 2A, 5A} and the second one consists of the multiples {A, 2A, 4A}.

Generating other multiples from these sets is described in Table 3.2.

Table 3.2: Use secondary set to generate all multiples

Digit
Secondary Set Secondary Set

(A, ,−A, 2A, 5A) (A, 2A, 4A)
5 5A A, 4A
4 5A,−A 4A
3 A, 2A A, 2A
2 2A 2A
1 A A
0 0 0
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The choice of multiples is based on the absolute value of the multiplier digit and

then the sign of the result is changed if the multiplier digit is negative. Changing

the sign in Svoboda encoding is simply done by bit complementation.

Multiplying a Sovoboda encoded digit (X = x4x3x2x1x0) by 2 is simply done by

shifting one bit to the left with feedback coming from the second most significant

bit (2X = x3x2x1x0x3, t = (−1)x4(x4 ⊕ x3)). A transfer bit having a weight of 10

is sent to the higher order digit as (+1 or -1) if the most significant two bits are

different and the sign of the transfer is determined by the sign of the current digit

(the most significant bit). The transfer bits coming from lower significant digit are

then added to the shifted number using a 4-bit ripple carry adder. The digit after

shifting is even (i.e. 0,2,4,-2,-4) which means the output digit will be in the range

[-5,+5] after adding the transfer bits. Figure 3.2 shows the operation of multiplying

by 2.

The input carry to the first full adder is estimated by combinational logic circuit

based on the input digit. The addition circuit is similar to the part of the Svoboda

adder circuit that adds the interim sum and the transfer digit. The logic function

of this carry is (cin = t+int
−

in + x1x0t
−

in + x3t
−

in + x4t
−

in + x4x3x1t
+
in). The transfer bits

are given by (t−out = x4x3) and (t+out = x4x3) where input (X = x4x3x2x1x0) and t+in

and t+in are the input transfer bits.

Multiplying a Svoboda encoded digit by 4 is achieved by multiplying the digit

by 2 twice. The same procedure used to multiply by 2 is applied twice to get the
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Figure 3.2: Multiplying a Svoboda encoded digit by 2

result of multiplication by 4.

Multiplying a Svoboda encoded digit by 5 is achieved by shifting the whole

number by one digit to the left (multiplying by 10) then dividing the result by 2. As

an example consider the number (−25 = 35); after multiplication by (10) it is equal

to (350). The operation of division by 2 is achieved by the two level combinational

logic shown in Figure 3.3. After the division operation, a transfer digit of value (+5

or -5) is sent to the lower order digit if the current digit is odd (e.g. dividing 3

results in 1 in the currect position and (-5) is sent to lower order digit. Also the

result of division could be (2̄) in the current position and (+5) is transfered to lower

order digit). The least significant bit of the digit is used to distinguish between even

numbers and odd numbers. The sign of the transfer digit is determined by the sign

of lower order digit to avoid carry propagation. When the signs of two consecutive
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digits are the same, the sign of the transfer digit is converted and (+1) or (-1) is

added to the current digit based on the sign. On the other hand, a transfer back

digit with the same sign of current digit (+5 or -5) is sent without any addition if the

signs are different (i.e. the sign of (3̄) and (5) are different then the result of dividing

(3̄) by 2 is (1̄) and (-5) is transfered back to lower order digit whereas when (5) is

divided by 2, the result is (3) and (-5) is transfered back to lower order digit since

the signs of (5) and (0) are both positive). Multiplying the number (3̄5) by (5) gives

(3̄50) after shifting the whole number by one digit to the left and then (1̄2̄5̄ = −125)

after dividing by 2. The resultant digit after dividing the digit by 2 is in the range

[-3,3]. Making the sign of the transfered-back digit different from the sign of the

current digit avoids further transfer bits (i.e. the transfer back digit equals to (+5)

when the current digit is negative and vice versa). Figure 3.4 shows an example of

multiplying a Svoboda encoded number by 5. The flowchart of multiplication-by-5

operation is shown in Figure 3.5. The operation of dividing a Svoboda encoded digit

by two can be performed using a two level of combinational logic according to the

following Boolean equations:
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Zi =




















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

































z4 = x0x3x4 + x0x3x4 + x0x1x2 + x0x1x2

z3 = x0x3x4 + x0x2 + x1x2

z2 = x1x2 + x0(x3 ⊕ x4)

z1 = x0

z0 = x0

Table 3.3 shows all digits in the Svoboda digit set with the result of multiplying

by 2 and dividing by 2.

Table 3.3: Svoboda encoded digits and their results of multiplication by 2 and
division by 2

Digit Multiplied by 2 Divided by 2
Tout D D Transfer back

5 T+
out 0

2 +5
3 -5

4 T+
out -2 2 0

3 T+
out -4

1 +5
2 -5

2 0 4 1 0

1 0 2
0 +5
1 -5

0 0 0 0 0

-1 0 -2
0 -5
-1 +5

-2 0 -4 -1 0

-3 T−

out 4
-1 -5
-2 +5

-4 T−

out 2 -2 0

-5 T−

out 0
-2 -5
-3 +5

66



��� ��� ��� ��� ���

��� ��� ��� ������

Figure 3.3: Dividing a Svoboda encoded digit by 2

3.3 Hardware Architecture

The recurrence relation of decimal online multiplication algorithm is

wj = 10 × (wj−1 − dj−1) + (Xj.yj + Yj−1.xj)

Then, the data path of decimal online multiplication algorithm should perform

the following steps each iteration:

• Generate secondary set of multiples ((−A,A, 2A, 5A) or (A, 2A, 4A)).

• From the secondary set, select the combination of multiples to add so as to

calculate Xjyj and Yj−1xj.

• Calculate the sum yjXj + xjYj−1.
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Figure 3.4: Example of multiplying a Svoboda encoded number by 5

• Compute the value of wj by adding (wj−1−dj−1×10) calculated in the previous

iteration.

• Derive the output digit dj according to the selection function dj = SELM(wj) =

sign(wj). b|wj| + 1/2c.

• Compute the quantity 10 × (wj−1 − dj−1) and store it for use in the next

iteration.

The first two steps depend on the adopted secondary set of multiples used.

In this design, two sets of multiples, (−A,A, 2A, 5A) and (A, 2A, 4A), have been

implemented. The data path of each one is described below.
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In the first implementation, the set of chosen multiples are (−A,A, 2A, 5A). The

complete data path is shown in Figure 3.7. Following is a descriptive of the data

path modules used in the design:

Right append register: This register accepts one digit at each clock cycle and

appends it to the right of the already received digits. Two n-digit registers of

this type are needed in decimal online multiplication.

2-by-1 Multiplexers: Used to choose between multiples. The output of the mul-

tiplexer is zero if the enable signal is not active.

Decimal adder: This adder adds two n-digits Svoboda-encoded decimal numbers.

Each adder consists of k digit-by-digit adders that are connected together as

shown in Figure 3.6. The internal logic of a digit-by-digit adder is shown

in Figure 2.8. The input carries for both stages are generated separately by

lookahead logic according to the following Boolean equations:

c1in = x1y2y1y0 + x2y3y2 + x3y3 + x3x1y1 + x3x2y2

c2in = t+int
−

in + x1x0t
−

in + x3t
−

in + x4t
−

in + x4x3x1t
+
in

Sign converter: Can change the sign of an input number by complementing all

bits. Its functionality is like multiplying the input by the sign.
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Multiply-by-2 component: It accepts a n-digit Svoboda-encoded number X and

generates 2X in (k+1) digits. The process of multiplication is described in the

previous section.

Multiply-by-5 component: It accepts a n-digits Svoboda-encoded number X and

generates 5X in (k+1) digits. The process of multiplication is described in the

previous section.

Output digit selection (SELD): This component accepts 2 most significant dig-

its of (wj) and calculates the output digit dj. It computes the formula dj =

sign(wj). b|wj| + 1/2c. It includes circuitry to detect the sign, circuitry to ap-

ply the floor function, and an adder (not a complete adder) to increment the

output digit by one when needed.

Register (W): Used to hold the value of W from one cycle to another.

Zeroing Logic: This component is used to either pass the input value or force

all output bits to zeros. This component is used in the architecture with

secondary set includes (A, 2A, 4A) to pass the value of (A) or zeros.

The difference between the first and second implementations is in the set of used

multiples. Using different multiple set (secondary set) affects the count and the type

of components used. The second implementation uses a secondary set that includes

(A, 2A, 4A) which means that there is no need to use Multiply-by-5 component. The
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generation of 4A is achieved by using two Multiply-by-2 components consecutively.

The data path of this implementation is shown in Figure 3.8.

As mentioned before, the digit set of the output of the components that generate

multiples is [-5,+5]. After signed-digit addition, the resulting digit set is the regular

[-6,+6] Svoboda digit set. The online algorithm guarantees that the output digit is

in the Modified digit set [-5,+5].

Table 3.4 shows a snapshot of the online multiplication operation. Inputs are

(X = 0.0422996 = 0.0423004̄) and (Y = 0.2617661 = 0.34̄22̄3̄4̄1).The output digits

so far are (000) The snapshot is taken at 4th cycle.
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Table 3.4: Snapshot of the designs during the
Architecture 1 Architecture 2
(A,−A, 2A, 5A) (A, 2A, 4A)

Input digits x4 = 3, y4 = 2̄

Accumulated inputs
X4 = 0423
Y3 = 34̄2

Multiples generated (X)

X = 0423 X = 0423
−X = 0̄4̄2̄3̄
2X = 012̄54̄ 2X = 012̄54̄
5X = 02125̄ 4X = 023̄1̄2

multiples selected 2X 2X
y4 × X4 = (−2) × X4 01̄25̄4 01̄25̄4

Multiples generated (Y )

Y = 34̄2 Y = 34̄2
−Y = 3̄42̄
2Y = 15̄24 2Y = 15̄24
5Y = 1310 4Y = 1052̄

multiples selected Y + 2Y Y + 2Y
x4 × Y3 = (3) × Y3 0012̄1̄4̄ 0012̄1̄4̄
y4X4 + x4Y3 0013̄014 0013̄014
10 × (w3 − d3) 110040 110040
W = y4X4 + x4Y3 + 10 × (w3 − d3) 1113̄414 1113̄414
SELD(W ) 1 1
10 × (w4 − d4) 113̄414 113̄414
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Figure 3.5: Flowchart for Multiplying-by-5 Operation
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Figure 3.6: Svoboda Signed-digit Adder: (A) Single digit adder, (B) n-digit adder

74



��������� �������	�
�

�
������������ �
������������

�����

����

��������

��� �
�
�� !

"#$%&'!("#$%&)!(
 �!�
"!��

���#

 �!�
"!��

����

 �!�
"!��

���#

 �!�
"!��

����

�
���

���������

�
���

���������

����

�

�

����

�

�

����

�

�

����

�

�

�
������
�
�

��������

�
������
�
�

��������

�
������
�
�

��������

�
������
�
�

��������

$�%�������
�������""������&����'��
�
������&���
�&�����"��������&����!
���

�"�������
���&���������
���!���"��������
��

$��%����
�
���
������
�
��������'&
�&�������'�����
�
��������������������(����

�&
)��!�)�

Figure 3.7: Data Path of Decimal Online Multiplier (secondary set of multiples
(-A,A,2A,5A))
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Figure 3.8: Data Path of Decimal Online Multiplier (secondary set of multiplies
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CHAPTER 4

SYNTHESIS RESULTS AND

DISCUSSION

4.1 Synthesis Results and Optimization

The design of online decimal multiplier has been modeled using VHDL hardware de-

scription language and synthesized on XILINX FPGA. Two different datapath archi-

tectures have been modeled structurally; one using a secondary set of (−A,A, 2A, 5A)

and the other using secondary set of (A, 2A, 4A). The developed models have been

synthesized once for delay optimization and another for area optimization. Xilinx

ISE 6.2i was used to synthesize designs on VertexE xcv3200e FPGA. The whole

design is bounded between two registers with no combinational logic before or af-

ter these registers. Thus, the synthesized longest propagation delay only affects
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the clock period (the longest path is bounded between two registers). The syn-

thesis results for the first datapath that uses a secondary set of (−A,A, 2A, 5A) is

shown in tables 4.1 and 4.2. Table 4.1 shows the area and minimum clock period

for the design when synthesized for area optimization while table 4.2 shows the

area and minimum clock period for the design when synthesized for speed optimiza-

tion. Likewise, synthesis results for the second datapath that uses the secondary set

(A, 2A, 4A) is shown in tables 4.3 and 4.4. Table 4.3 shows the area and minimum

clock period for the design when synthesized under area optimization while table 4.4

shows the area and minimum clock period for the design when synthesized under

speed optimization.

Figure 4.1 and 4.2 show plots of these results where the architecture using the

secondary set (−A,A, 2A, 5A) is designated by (Mul125) while the architecture using

the secondary set (A, 2A, 4A) is designated by (Mul124). Figure 4.1 shows that the

architecture (Mul124) gives better area compared to (Mul125) architecture when

synthesized for area optimization since the combinational logic used in multiple

generation is simpler. As described in section 3.2, the operation of multiplying a

Svoboda-encoded number by 4 involves two stages of shifting and addition operation

using 4-bit ripple carry adder while the operation of multiplying by 5 involves some

combinational logic and two 4-bit ripple carry additions. This also explains the fast

rate of area increase in (Mul125) architecture compared to that of the (Mul124)

architecture. When synthesized for optimum delay, the design area for both ar-
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Table 4.1: Delay and Area Synthesis Results for the First Implementation of Online
Decimal Multiplier (−A,A, 2A, 5A) (Area optimization)

Number Area Period Logic delay Routing Delay
of Digits (in slices) (in ns) (in ns) (in ns)

7 533 67.768 20.192 47.576
8 569 66.910 19.794 47.116
16 892 66.890 19.794 47.096
17 934 66.890 19.794 47.096
25 1247 66.890 19.794 47.096
26 1292 66.890 19.794 47.096
34 1587 66.890 19.794 47.096
35 1640 66.910 19.794 47.116
43 1937 66.910 19.794 47.116
44 1980 66.910 19.794 47.116

Table 4.2: Delay and Area Synthesis Results for the First Implementation of Online
Decimal Multiplier (−A,A, 2A, 5A) (Speed optimization)

Number Area Period Logic delay Routing Delay
of Digits (in slices) (in ns) (in ns) (in ns)

7 1011 41.754 11.038 30.716
8 1025 42.772 11.716 31.056
16 1450 43.236 10.920 32.316
17 1475 43.440 10.920 32.520
25 1799 43.506 11.318 32.188
26 1899 41.622 11.318 30.304
34 2343 42.498 10.522 31.976
35 2252 43.618 11.318 32.300
43 2400 42.659 11.255 31.404
44 2438 42.958 11.318 31.640
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Table 4.3: Delay and Area Synthesis Results for the Second Implementation of
Online Decimal Multiplier (A, 2A, 4A) (Area optimization)

Number Area Period Logic delay Routing Delay
of Digits (in slices) (in ns) (in ns) (in ns)

7 431 62.386 18.202 44.184
8 441 62.186 18.202 43.984
16 598 63.682 18.718 44.964
17 614 62.548 18.320 44.228
25 752 63.118 18.718 44.400
26 782 62.838 18.718 44.400
34 918 62.838 18.718 44.120
35 928 63.118 18.718 44.400
43 1072 63.118 18.718 44.400
44 1119 63.118 18.718 44.400

Table 4.4: Delay and Area Synthesis Results for the Second Implementation of
Online Decimal Multiplier (A, 2A, 4A) (Speed optimization)

Number Area Period Logic delay Routing Delay
of Digits (in slices) (in ns) (in ns) (in ns)

7 857 43.014 11.318 31.696
8 856 43.068 11.716 31.352
16 998 41.936 10.920 31.016
17 1019 41.960 10.920 31.040
25 1174 41.080 10.920 30.160
26 1176 42.016 10.920 31.096
34 1326 41.800 10.920 30.880
35 1343 41.880 10.920 30.960
43 1489 41.936 10.920 31.016
44 1543 42.016 10.920 31.096
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chitectures almost doubled since the synthesis tool duplicates some components to

reduce the routing delay. Synthesis results show that around more than 70% of the

delay is due to routing. Further, results show that the delay due to logic is almost

constant (difference between maximum and minimum logic delay is less than 1 ns).

This expected since there is no carry propagation through the whole number (sig-

nals only propagate to the next digit only). Figure 4.2 plots the clock period for all

synthesis results.

 !!! "!!#!!!#"!!$!!! % &'()% *+) &,- .* #" .% &'()% *, /), .* #" .% &'()% *+) &,- .* #0 .% &'()% *, /), .* #0 .!"!! 1 2  3  1 #" #3 $0 $" 0$ 00
Figure 4.1: Design Area (Number of slices) Vs. Number of digits

 ! "!!!  "!!!#! "!!!# "!!!$! "!!! %& '()* +,- .+*& /01 .+23 .%& '()* +,- .+0 '&0 .+23 .%& '()* +,- .+*& /01 .+234 .%& '()* +,- .+0 '&0 .+234 .4! "!!!4 "!!! $ 5 2# 2$ 3 3# 64 6 46 44
Figure 4.2: Clock period (in nanoseconds) Vs. Number of digits

81



4.2 Performance Evaluation

Since no other decimal online multiplier has been reported in the literature, thus

for, we will compare our results to those of the decimal multiplier reported by Mark

A. Erle, Eric M. Schwarz, and Michael J. Schulte in [14]. A non-pipelined version

of this sequential multiplier was VHDL modeled and synthesized for this purpose.

This multiplier accepts inputs in regular BCD encoding, converts them into [-5,+5]

signed-magnitude digits, and generates the partial products. The multiplier uses

signed-digit number system with digit set [-5,+5] in order to reduce the cost of

combinational logic used for partial products generation. In the reduction stage, the

design utilizes the Svoboda adder described in [26]. The multiplication operation

begins from the least significant digit of the multiplier. Synthesis results are shown

in table 4.5 for area optimization and Table 4.6 for speed optimization.

Figure 4.3 shows a area plot for synthesis results of all designs. The graph

includes the number of slices of both architectures (Mul125 and Mul124) together

with the sequential multiplier of Erle when synthesized for area optimization. Also

Figure 4.4 shows maximum clock period for these designs.

From the figures, we can notice that the clock period of the sequential multiplier

is less than that of the online multiplier. This is because the online multiplier uses

more components in order to generate the output digit while the sequential multiplier

does not need any additional logic to produce output since full inputs operands are
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Table 4.5: Delay and Area Synthesis Results for the Sequential Decimal Multiplier
(Erle Design) (Area Optimization)

Number Area Period Logic delay Routing Delay
of Digits (in slices) (in ns) (in ns) (in ns)

7 857 43.014 11.318 31.696
8 856 43.068 11.716 31.352
16 998 41.936 10.920 31.016
17 1019 41.960 10.920 31.040
25 1174 41.080 10.920 30.160
26 1176 42.016 10.920 31.096
34 1326 41.800 10.920 30.880
35 1999 45.864 12.512 33.352
43 2315 46.208 12.512 33.696
44 2365 46.288 12.512 33.776

Table 4.6: Delay and Area Synthesis Results for the Sequential Decimal Multiplier
(Erle Design) (Speed optimization)

Number Area Period Logic delay Routing Delay
of Digits (in slices) (in ns) (in ns) (in ns)

7 607 32.688 8.532 24.156
8 750 33.298 8.134 25.164
16 1547 31.252 8.532 22.720
17 1652 30.936 8.532 22.404
25 2786 32.172 8.532 23.640
26 2931 32.252 8.532 23.720
34 4599 33.190 8.350 24.840
35 4716 32.767 8.071 24.696
43 4315 31.634 8.134 23.500
44 4404 31.634 8.134 23.500
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available. Since both multipliers (sequential and online) use signed-digit number

system, the logic delay is almost constant since there is no carry propagation.

The sequential multiplier differs from online multipliers in number of cycles re-

quired to generate the complete result. Sequential multiplier requires n cycles to

produce the complete result whereas online multipliers require 2n + δ to produce

the complete result where δ is the online delay. Although the online multiplier can

calculate the complete product after n + δ cycles, the property of online arithmetic

that forces online multipliers to produce one digit every cycle increases the delay.

Figure 4.3 shows that the sequential multiplier has a much higher rate of area

increase compared with the online ones. This is because the sequential multiplier

uses digit-by-digit multiplication approach using combinational logic rather than

the digit-by-word approach used in the online multiplier to generate the partial

products. This result shows that digit-by-word multiplication approach may help

to reduce area.

 !!! "!!#!!!#"!! $ %& '()*&) +%*  ,$-.$-#$-"$ /$ %& '()*&) +%* # ,$-#$-0$ /1*2 +* 3) (4 5 ,6%5* /!"!! 7 8  9  7 #" #9 :0 :" 0: 00
Figure 4.3: Design Area (Number of slices) Vs. Number of digits (Sequential Vs.
Online)
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 ! "!!!#! "!!!$! "!!!%! "!!!&!! "!!! ' () *+,-), .(- & /'01'02'03' 4' () *+,-), .(- 2 /'02'05' 46-7 .- 8, +9 : /;(:- 4<! "!!!5! "!!!3! "!!! # $ & &# 23 2 <5 <3 5< 55
Figure 4.4: Clock period (in nanoseconds) Vs. Number of digits (Sequential Vs.
Online)
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CHAPTER 5

CONCLUSIONS AND FUTURE

WORK

One of the major contributions of the thesis is the design of the first decimal online

multiplier. This multiplier computes the product of two decimal number P = A×B

given that A,B, and P are all online inputs and output.

WE have implemented our proposed decimal multiplier architecture for two sec-

ondary sets with the corresponding variations in data paths. The proposed im-

plementation of the online decimal multiplier has two datapath designs with two

different secondary set of multiples (A,−A, 2A, 5A) and (A, 2A, 4A). The digits

are represented in signed-digit redundant representation and encoded with a special

encoding proposed by Antonin Svoboda in 1969.

To verify the correctness of the proposed design and estimate the area and speed
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of the proposed design, we have developed a VHDL model for our design. The

model is parameterizable to allow synthesis with different number of digits. Both

data path designs were modeled and synthesized for area and speed optimization.

Xilinx ISE 6.2i was used to synthesize the designs on VertexE xcv3200e FPGA.

Synthesis results show that the architecture using the secondary set (A, 2A, 4A)(Mul124)

is more area efficient and has better delay over the architecture using the secondary

set (−A,A, 2A, 5A)(Mul125) in general.

The following are some possible future directions for further research related to

this work:

• Optimize the encoding of the decimal digits. The encoding should speed-up

the addition operation and simplify the generation of multiples operation.

• Develop a novel design for generating multiples that can reduce the area re-

quired for this step. The new design does not need to recompute the multiple

of the whole received word. Only the multiple of the new incoming digits is

computed and used to update the previously computed multiple.
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