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THESIS ABSTRACT
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In this thesis, gas components in a multi-stage separator are predicted using Hybrid
Computational Intelligence (HCI) and Ensemble of HCI (EHCI) models. We have used
Root Mean Square Error (RMSE), Correlation Coefficient (CC), training time and
number of negatively predicted values as performance measures of the HCI, EHCI
models and compared with Equation of State and Empirical Correlation based Chevron
Phase Calculation Program (CPCP) as a benchmark. First, we have used the evolutionary
algorithm based Genetic Algorithm to optimize the parameters of the Computational
Intelligence models such as Artificial Neural Network, Support Vector Regression and
Adaptive Neuro-Fuzzy Inference System in order to form HCI models. We observed that
for 2 out of 6 gas components, the performance of HCI models is better than CPCP but
for the rest 4 gas components the performance is very close to the CPCP in terms of
RMSE and CC but truly could not outperform it. Due to this reason and because the
generalization ability of an ensemble is usually much stronger than that of base learners,
we have developed heterogeneous and homogenous types of EHCI models. The
experimental results of the EHCI models show that for 5 out of 6 gas components, the
EHCI models outperformed both the individual HCI models and CPCP in terms of RMSE

and CC with no negative predicted values at all.
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CHAPTER 1

INTRODUCTION

Gas components prediction in multi-stage oil and gas separation process is a challenging
task as the rate of changes of the components varies in bulk by the change of pressure and
temperature. There is no straight forward relation between these changes rather it depends
on reservoir characteristics and initial oil components which might vary by reservoir to
reservoir and even sample to sample. Gas separation is an important process which is
essential for oil and gas production. Quantifying the gas composition prior to the
production may help in cutting down the production cost, maximizing the production
efficiency and determining the quality of oil. Equation of State (EOS) and Empirical
Correlation (EC) are generally used for fluid components analysis. EOS works properly
under some stable conditions but unable to estimate the properties of all substances under
all conditions accurately. EOS is basically a poor predictive tool for complex
hydrocarbon system and on the other hand EC has limited accuracy though it doesn’t
involve complex calculation. Computational Intelligence (CI) techniques such as
Artificial Neural Network (ANN), Support Vector Regression (SVR) and Adaptive
Neuro-Fuzzy Inference System (ANFIS) have gained immense popularity in many areas

of research including petroleum engineering and outperform the conventional EOS and



EC based techniques in many cases. Moreover, combinations of CI models with
evolutionary optimized models will have an obvious advantage in their performance
when applied in complex domains of application. In this thesis, gas components in a
multi-stage separator are predicted using Hybrid Computational Intelligence (HCI) and
Ensemble of HCI (EHCI) models. We have used Root Mean Square Error (RMSE),
Correlation Coefficient (CC), training time and number of negatively predicted values as
performance measures of the HCI, EHCI models and compared with conventional EOS
and EC based Chevron Phase Calculation Program (CPCP) as a benchmark. First, we
have used the evolutionary algorithm based Genetic Algorithm (GA) to optimize the
parameters of the CI models mentioned above in order to form HCI models. We observed
that for 2 out of 6 gas components, the performance of HCI models is better than CPCP
but for the rest 4 gas components the performance is very close to the CPCP in terms of
RMSE and CC but truly could not outperform it. Due to this reason and because the
generalization ability of an ensemble is usually much stronger than that of base learners,
we have developed heterogeneous and homogenous types of EHCI models. The
experimental results of the EHCI models show that for 5 out of 6 gas components, the
EHCI models outperformed both the individual HCI models and CPCP in terms of RMSE

and CC with no negative predicted values at all.



1.1. HYBRID AND ENSEMBLE COMPUTATIONAL INTELLIGENCE MODELS

Computational Intelligence (CI) is a branch of computer science that deals with problems
for which do not have any effective solutions. Researches in CI have produced a huge
collection of algorithms, grouped into the main CI paradigms. These CI techniques are
used repeatedly to create hybrid intelligent systems, where different algorithms from
different CI paradigms are combined to form a hybrid model. This process required a re-
implementation of existing CI algorithms. In addition to the CI components of a hybrid
system, a communication protocol among the CI techniques are needed to be defined and

implemented.

A Hybrid Computational Intelligent (HCI) system combines at least two CI techniques.
For example, combining a ANN with a Fuzzy Inference System (FIS) results in a hybrid
neuro-fuzzy system. HCI models are defined as any effective combination of CI
techniques in sequential or parallel manner that performs superior to simple CI techniques
[1,2]. HCI was adopted in several scientific papers during the last decade, as an extension
to the standard experimentation along with other well-known CI techniques, in various
application domains [3,4,5]. In EUNITE 2001 [6], it was stated that “intelligent hybrid
systems” are meant to be any combinations of intelligent technologies (e.g. neuro-fuzzy
approaches, evolutionary optimized networks, etc.) but particularly those, which have an
noticeable advantage in their performance when it is applied in complex domains of

application (either by means of accuracy obtained, or by means of comprehensibility of



the acquired results). The main challenge of HCI model is the collaboration efficiency of
each component. Another important factor of a hybrid system is the speed of process and
the time needed to produce a generalized high-performance decision model. The evidence
drawn from recent literature [1,2] on the effectiveness of a specific kind of hybrid
methodologies in a variety of real-world applications could render this hybrid scheme as
method of choice for the decision makers. In this sense, to solve different parts of the
overall problem can be manipulated effectively by different intelligent techniques (e.g.
cluster formation, feature selection for reduction of complexity and so forth), a fact that
often leads to the establishment of a hybrid intelligent model for better handling of the
problem. Choosing an appropriate HCI model is vital as one should start from referring to
the particular advantages and disadvantages of each of the standard CI techniques. The
evolutionary computation, genetic programming, etc., models are time consuming in the
training phase, so the complexity of this method has to be accounted for prior to the
design stage. On the other hand, they perform very well in generalization and robust

model building from complex data. Figure 1 shows optimization of SVR model using

GA.
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Figure 1: Optimization Process of Genetic SVR [7]

If the problem involves uncertainty, incorporating the Fuzzy Logic (FL) in hybrid model
would be a good choice. Fuzzy rule based approaches are by far advantageous in handling
of approximate or vague concepts existing within a dataset. ANN is typical a black box
architecture (i.e. of very low comprehensibility of the produced decision model) that
prove superior in handling numerical data and highly non-linear domains of application.

Thus the Neuro-fuzzy systems are usually superior to simple ANN, due to the fact that a



ANN “suffers” from noise, whereas the neuro-fuzzy system has the ability to “absorb” the
noise with the use of the embedded membership functions. Fuzzy-genetic systems are
preferable than simple FIS as the fuzzy-genetic approaches do not have to define oneself
the rule-base. For similar reasons, a neuro-fuzzy system is superior to a simple FIS, as the
neuro-fuzzy systems do not have to tune the rule-base. Generally the reliability and the
availability of the data under processing are also a crucial factor for the success or the

failure of a specific hybrid intelligent methodology.

Ensemble learning is a way of combining different CI or HCI models (at least two) in
parallel or sequential manner. Ensemble model contains a number of learners which are
usually called base learners. The generalization ability of an ensemble is usually much
stronger than that of base learners [8,9]. Actually, ensemble learning is appealing because
that it is able to boost weak learners which are slightly better than random guess to strong
learners which can make very accurate predictions. So, “base learners” are also referred
as “weak learners”. It is noteworthy, however most theoretical analyses work on weak
learners, base learners used in practice are not necessarily weak since using the not-so-
weak base learners often shows better performance. Base learners are usually generated
from training data by a base learning algorithm which can be ANN, SVR, ANFIS or

other kinds of machine learning algorithms.



Figure 2: Ensemble of CI Models

Most ensemble methods use a single base learning algorithm to produce homogeneous
base learners, but there are also some methods which use multiple learning algorithms to
produce heterogeneous learners. In the latter case there is no single base learning
algorithm and so it is called individual learners or component learners to “base learners”,
while the names “individual learners” and “component learners” can also be used for
homogeneous base learners. It is difficult to trace out the starting point of the history of
ensemble methods since the basic idea of deploying multiple models has been in use for a
long time, yet research on ensemble learning became popular since the 1990s. The first is
an applied research conducted by Hansen and Salamon [10] at the end of 1980s, where
they found that predictions made by the combination of a set of classifiers are often more
accurate than predictions made by the best single classifier. The second is a theoretical

research conducted in 1989, where Schapire [11] proved that weak learners can be



boosted to strong learners, and the proof resulted in Boosting, one of the most influential

ensemble methods.

1.2. PROBLEM BACKGROUND

Petroleum deposits are naturally occurring mixtures of organic compounds consisting
mainly of hydrogen and carbon and are termed as hydrocarbons which are mainly
Methane, Ethane, Propane, Butane, and other organic compounds. The deposits found in
the gaseous form are called ‘natural gas’ and that in the liquid form is called ‘crude oil’.
Apart from hydrocarbon gases, non-hydrocarbon gases also exist in the reservoirs in
varying amounts. The non-hydrocarbon gases are treated as contaminants which are
nitrogen (N3), hydrogen (H,), carbon dioxide (CO,), hydrogen sulfide (H,S), and rare
gases such as helium. Crude oil and gases are found underground at elevated pressure and
temperature conditions. Gas extracted with crude oil from oil wells (called "associated"
gas) must be separated at the wellhead. Producing, separating, transporting, and storing
petroleum fluids are the primary responsibilities of a petroleum and natural gas engineer.
At every stage of the petroleum exploration and production business, a hydrocarbon fluid
engineer is needed. Hydrocarbon fluid engineers might find themselves dealing with
activities such as reserve evaluations, drilling operations, reservoir analyses, production
operations, and gas processing. Most of the fluid handling protocols require the engineer
to derive a priori about how the fluids will behave under a wide range of pressure and

temperature conditions. Optimal design and efficient operation of hydrocarbon production



handling and processing systems strongly depends on accurate knowledge of fluid phase
behavior. Usually it is much economical to use three to four stages of separation for the
hydrocarbon mixture. Maximization of condensate yield is virtually impossible without
the tools for accurate prediction of the amount of liquid existing under a given condition
of pressure, temperature and composition. Therefore, having advanced predictive tools
for the characterization of hydrocarbon phase behavior with highest accuracy proves to be

a key solution so as to overtake the economics of hydrocarbon systems.

The function of oil production is focused on separating the oil well stream into three
components or “phases” (oil, gas, and water) into marketable products or disposes them
in an environmental friendly manner. “Separators” is a mechanical device where gas is
flashed from the liquids and “water” is separated from the oil (Figures 3, 4). These steps
also remove light hydrocarbons from oil to produce a stable crude oil with volatility (i.e.,
vapor pressure) that meet the required criteria. Separators are classified as “two-phase” if
they separate gas from the total liquid stream and “three-phase” if they also separate the
liquid stream into its crude oil and water components. The separated gas is compressed
before commercializing. Modeling such mechanism is very crucial for controller design,
fault detection and isolation, process optimization and dynamic simulation [12]. In this
thesis, we focused on predicting the three-stage separators’ gas compositions as they form
the main processes in the upstream petroleum industry and have a significant economic

impact on produced oil quality.
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Figure 3: Multistage Surface Separation Facility [13]

Capacity and efficiency of gas/liquid separation is a major issue in natural gas production.
One of the problems encountered in the field of petroleum is the fact that the behavior of
the multiphase flow under the prevailing circumstances is complex and quite difficult to

predict. A complication that occurs when attempting to quantify the behavior of these
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multiphase flows is that under high pressure the properties of the mixture may differ
considerably from those of the same mixture under atmospheric conditions. This effect
requires expensive experimental equipment to conduct experiments under actual
circumstances and equally expensive computing equipment and software to carry out
numerical flow simulations. Produced gas contains liquid and solid constituents. The
removal of these constituents forms the most important process before delivery. The
liquid almost invariably consist of water and hydrocarbons that are gaseous under
reservoir conditions but condenses during the production due to drop off pressure and

temperature.

Figure 5: Conceptual View of Reservoir and Three Stage Separator

Oil resides in the reservoir at huge temperature and pressure such as 250°F and 5000 psi
respectively. After the oil extracted from reservoir it is collected in sequential tanks under

low temperature and pressure such as 150°F and 175 psi respectively (Figure 5). Due to
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this huge loss of temperature and pressure gas releases and gets separated. Most of the
time 3 separators are used and in some cases up to 4. The pressure and the temperature in
these separators decrease as oil moves further and so gas releases. At the stage 3 the
pressure and temperature becomes normal such as 14.7 psi and 60°F. According to Figure
6, Stagel consist of oil and gas (Oill+Gasl). Gasl is then extracted and Oill moves to
Stage2 separator. As pressure and temperature decrease, gases come out from Oill.
Therefore Oill = Oil2 + Gas2. In the same way, Oil2 moves to Stage3 separator which is
at atmospheric pressure and temperature (14.7 psi and 60°F). At this stage too, gases are

released. Therefore, Oil2 = Oil3 + Gas3.
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Figure 6: Oil and Gas Flow in Three-stage Separator System
Gas components prediction is carried out in few research areas [14,15,16,17,18]. But to
the best of our knowledge no noticeable work has been done in the field of gas
components prediction in multistage separator using CI techniques. In the industry, EOS

and EC are usually used for fluid compositions analysis and determining other oil/gas
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properties. For example, Chevron’s Phase Calculation Program (CPCP) is a program
based on EOS and EC being used in industries for various purposes. CPCP is designed to
help the engineer to calculate the phase compositions, densities, viscosities, thermal
properties, and the interfacial tensions between phases for liquids and vapor in
equilibrium. One of the applications of CPCP is that it considers reservoir crude oil
compositions, C7+ Molecular weight and density, separator stage temp and pressure as
input to predict the gas compositions on particular stage using EOS and EC. EOS is
useful for description of fluid properties like Pressure Volume Temperature (PVT). But
there is no single EOS that accurately estimates the properties of fluids under all
conditions. The EOS has adjustment issues against the phase behavior data of reservoir
fluid of known composition while the EC has limited accuracy [19]. In the recent years,
CI techniques such as ANN, SVR and ANFIS have gained immense popularity in solving
various petroleum related problem like PVT properties, Porosity, Permeability, Viscosity
prediction, etc [20,21,22,23,24,25,24,26,27]. Each of the CI techniques have some
limitations and is already proved in the literature that an ensemble or hybrid of these
models have better generalization ability than a single CI model [26,27,28,29]. In this
thesis, heterogeneous and homogeneous EHCI models are developed to learn the complex
relationship between the input and the output parameters to predict the gas compositions
in multi-stage separator. The accuracy of ensemble model depends on the diversity and
accuracy of each member of ensemble model [9,30,31] . We enforced diversity by using

heterogeneous and homogeneous ensemble models as well as random sampling from the
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idea of Bagging and Boosting. HCI is used to enforce accuracy of each member of the
ensemble models. The hybrids are designed in order to be benefitted from the strengths of
the individual techniques and to complement the weaknesses of each of them and thus
enforce accuracy on the unseen data. Experimental results show that the generalization
ability of EHCI outperforms the GA optimized single CI models. EHCI also outperforms
the conventional EOS and EC based CPCP for most of the hydrocarbons and non-

hydrocarbons in gases.

1.3. PROBLEM STATEMENT

Enormous volume of gas is released from oil/gas production process. The function of oil
production is focused on separating the oil well stream into three components or “phases”
(oil, gas, and water) into marketable products or disposes them in an environmental
friendly manner. “Separators” is a mechanical device where gas is flashed from the
liquids and “water” is separated from the oil. Knowing the gas compositions produced in
separator helps to determine the quality of oil and optimize the production process. We
want to predict the gas compositions in multistage separator that releases from oil
production process. In the industry, EOS and EC are usually used for fluid compositions
analysis and determining other oil/gas properties. The EOS has adjustment issues against
the phase behavior data of reservoir fluid of known composition while the EC has limited
accuracy. CI techniques such as ANN, SVR and ANFIS have gained immense popularity

in solving various petroleum related problem like PVT, Porosity, Permeability, Viscosity
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prediction, etc and outperform EOC and EC based techniques. To achieve better
prediction accuracy we have used EHCI models to predict the gas components in the

multi-stage separator.

1.4. OBJECTIVE

The goal of this thesis is to develop EHCI models to solve a regression problem of gas
components prediction in multi-stage separator. We used ANN, SVR and widely used
hybrid model ANFIS as members of EHCI models. To have better generalization,
ensemble members should be diverse and accurate as well. We improved the accuracy of
the CI models by using Evolutionary Algorithms (EA) based Genetic Algorithm (GA). To
enforce diversity we have used different model structure of the same CI model results in
creating homogeneous EHCI models. Different CI models are used to create
heterogeneous EHCI model and thus having diversity among the members of the
ensemble. Moreover we have used the concept of “boosting” sampling techniques that
applied in classification problem to boost the performance of the EHCI members in

sequential manner which results in more diverse members.

1.5. MOTIVATION

Gas separation is an essential step for gas/oil production process. Gas composition
predictions beforehand may help in cutting down the production cost, maximizing the

production efficiency and determining the quality of stock tank oil. EOS and EC are
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generally used for fluid compositions analysis. But there is no single EOS that accurately
estimates the properties of all substances under all conditions. EOS is poor predictive
tools for complex hydrocarbon system and EC has limited accuracy. To the best of our
knowledge CI techniques are not yet applied to sort out this problem. Moreover, CI
techniques successfully outperform EOS and EC techniques in many applications of
petroleum industry and there is no existing robust solution gas compositions prediction in

multistage separators.

1.6. DATASETS DESCRIPTION

In this thesis, we have collected data of 60 different crude oil samples from Asian oil
reservoirs. We have also collected around 17 samples from European oil reservoirs [32].
To increase the number of training samples we have synthesized 50 samples from the
available data by using the material balance method [33]. We have used 80% of the

relevant samples for training and validation and the remaining 20% used for testing.

We used the reservoir crude oil sample compositions as well as other available
information as an input and the separator gas compositions as output. We are predicting
the gas compositions in the further stage at certain temperature and pressure. Input
parameters consist of mole percent of the non-hydrocarbon and hydrocarbon contents of
reservoir crude oil sample. Non-hydrocarbons i.e. N, H,S and CO; and hydrocarbons i.e.
Methane (CH4 as C1), Ethane (C,H¢ C2), Propane (CsHg as C3), Butane (C4H;¢ C4),

Pentane (CsH;; as C5), Hexane (CgH;4 as C6), Heptanes & heavier (C7+) are present in
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the crude oil. Isomers of C4 and C5 are also presents. Hydrocarbons are distinguished by
the number of carbon atoms in the molecule. Methane (CH4) is symbolized as C1 which

represents one carbon atom in the molecule (Figure 7).
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Figure 7: Chemical Bonding of Hydrocarbons
At normal temperature and pressure C1 to C4 are gases, C5 to C16 are liquids and those
with more than 16 atoms of carbon are in solid state. All the components of gas and
hydrocarbons occur in liquid state in the reservoir due to the presence of high pressure
and temperature. The other available information is also used as an input such as stock
tank API gravity (American Petroleum Institute gravity is a good indicator of its quality
and is the major basis for its pricing which is a measurement of the density of crude oil),
Bubble point pressure (BPP), reservoir temperature, separator stage pressure and
temperature, C7+ molecular weights, C7+ density. Output parameters consist of mole
fraction of different non-hydrocarbon and hydrocarbon gases such as N,, CO,, H,S, CI,

C2, C3,1C4, nC4, iC5, nC5, C6, and C7+ at each stage.
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1.7. DATASETS ANALYSIS

The statistical analysis of the inputs and outputs data is provided in Table 1 and Table 2.
Table 1 and Table 2 provide the statistical descriptions of the predictor variables and
predicting variables respectively. The mean and standard deviation provide insights about
the dispersion, and the maximum and minimum values indicate the range of the data.
Skewness is a measure of the asymmetry of the data around the sample mean and its
negative value indicates that the data are spread out more to the left of the mean than to
the right. On the other hand, the positive value of skewness means that the data are spread
out more to the right. If the value of skewness is zero, it can be concluded that the
distribution is normal distribution or any perfectly symmetric distribution. The skewness
values of the data used in this study revealed that majority of the predictor and predicting
variables are spread out more to the right of the mean and there is no clear indication that
the data are generated from any perfectly symmetric distribution process. Kurtosis reveals
the outlier-prone characteristics of a distribution and the kurtosis of the normal
distribution is 3. The kurtosis values of the input data indicate that all the variables are
less outlier-prone than the normal distribution except for four cases. On the other hand the
kurtosis values of the output data indicate that half of the variables are less outlier-prone

than the normal distribution except for five cases.



1.7.1. Input Data Analysis

Table 1: Statistical Properties - Input Data

Input N2 | CO2 | H2S C1 C2 C3 |iC4| nCq4|iC5|nC5| Co6 | C7T+ C7+ C7+ Stage | Stage BPP ST Res
Density | MW | Temp | Pres API | Temp
Mean 0.30 | 1.61 | 0.74 | 18.16 | 6.90 | 6.81 | 1.43 | 453 | 2.01 | 2.95 | 445 | 50.15 0.87 260.36 | 116.29 | 126.29 | 2183.18 | 36.89 | 193.22
StdDev | 0.66 | 2.18 | 1.88 | 13.90 | 3.06 | 1.68 | 0.61 | 1.05 | 0.70 | 0.78 | 1.68 | 15.16 0.04 39.70 | 33.75 | 110.81 | 750.19 | 10.32 | 27.96
Max 470 | 7.38 | 12.37 | 47.70 | 14.05 | 12.03 | 334 | 7.76 | 4.22 | 479 | 9.79 | 75.11 0.93 350.00 | 315.00 | 519.00 | 3986.00 | 124.10 | 280.00
Min 0.00 | 0.00 | 0.00 | 052 | 1.29 | 283 | 0.79 | 2.52 | 1.19 | 1.38 | 1.88 | 24.97 0.72 193.00 | 50.00 | 14.70 | 390.00 | 24.20 | 130.00
Skewness | 492 | 1.26 | 431 | 044 | -0.04 | 035 | 1.46 | 097 | 1.04 | 0.24 | 1.00 | 0.15 -1.20 0.32 2.01 1.07 0.10 5.58 0.60
Kurtosis | 26.82 | 0.10 | 22.00 | -0.99 | -1.10 | 0.84 | 1.01 | 0.81 | 0.54 | -0.82 | 0.56 | -1.48 3.72 -0.63 9.72 1.23 0.01 45.76 0.39
1.7.2. Output Data Analysis
Table 2: Statistical Properties - Output Data

Input N2 | CO2 | H2S | C1 C2 C3 |iC4|nC4|iC5 nC5| C6 |CT+

Mean 0.65 | 3.61 | 1.14 | 47.74 | 19.78 | 15.62 | 2.35 | 534 | 1.24 | 1.38 | 0.83 | 0.31

StdDev | 1.41 | 428 | 291 |2236| 6.15 [ 1032 | 2.34 | 464 | 1.21 | 1.22 | 0.75| 0.30

Max 9.66 | 16.44 | 18.86 | 82.40 | 36.17 | 42.36 | 9.94 | 20.67 | 6.68 | 6.52 | 3.95| 1.80

Min 0.00 | 0.00 | 0.00 | 2.98 | 837 | 3.81 | 0.41 | 1.04 | 0.16 | 0.19 | 0.08 | 0.00

Skewness | 4.86 | 1.26 | 421 | -047 | 0.41 | 097 | 1.68 | 1.32 | 1.76 | 1.64 | 1.88 | 2.23

Kurtosis | 25.72 | 0.26 | 20.76 | -0.79 | -0.18 | -0.42 | 2.18 | 0.62 | 3.27 | 2.63 | 3.58 | 6.59

61
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1.8. CONTRIBUTION OF THIS THESIS

1. A systemic way of building Ensemble of HCI (EHCI) Models.

2. An Evolutionary Algorithm based Genetic Algorithm is effectively used to

optimize the parameters of the members’ of EHCI models.

3. The Output of each member of EHCI models is aggregated in linear and non-

linear manners and analyzed the consequences in EHCI models.

4. The EHCI models are appliedin gas components prediction in multistage

separator, where there is no robust CI based solution available for this problem.

1.9. THESIS ORGANIZATION

The thesis is structured as follows:

Chapter 2: Presents literature review of the CI, HCI, Ensemble models and the
techniques used for gas composition prediction in various research areas.

Chapter 3: Gives an in depth description of ANN, SVR, ANFIS and GA.

Chapter 4: Provides the methodology of building HCI models.

Chapter 5: Describes in details of EHCI models building steps.

Chapter 6: Illustrates the experimental results, analysis of the results obtained by both
HCI and EHCI models followed by a comparison with the CPCP benchmark.

Chapter 7: Provides conclusions and future work.
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CHAPTER 2

LITERATURE REVIEW

2.1. COMPUTATIONAL INTELLIGENCE IN PETROLEUM ENGINEERING

Farhan et al. [20] have developed a reliable predictive tool using ANN for the forecasting
of optimum operating conditions of a surface facility for the recovery of condensates
from natural gases. They used ANN consists of 2 hidden layers with 30 and 15 neurons,
13 input neurons ( C1 — C7+, Ny, H,S, CO,, Pressure, MW C7+, SG C7+) and 3 output
neurons (optimum CGR, API, and pressure at stage2). The “log—sigmoidal” and “purelin”
function were utilized as the transfer function within middle layers. The network is able
to predict optimum operating conditions for maximum surface condensate recovery with
minimal error. They also implemented TEKA criteria [34] to determine the input
relevancy. They found that surface condensate recovery from natural gases is highly
dominated by the amounts of lights (C1), intermediates (C4), heavies (C7+) and pressure
at the operating stage. Beyond these, the non-hydrocarbons have more influence than the

other hydrocarbons.

Elsharkawy et al. [19] presents two general regression neural network (GRNN) models to
predict the changes in retrograde gas condensate composition and to estimate the pressure

depletion behavior of gas condensate reservoirs. The first model, GRNNM], is developed
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to predict dew point pressure and gas compressibility at dew point using initial
composition of numerous samples while the second model, GRNNM2, is developed to
predict the changes in well stream effluent composition at any stages of pressure
depletion. GRNNM2 can also be used to determine the initial reservoir fluid composition
using dew point pressure, gas compressibility at dew point, and reservoir temperature.

The study showed that the GRNN models general are accurate, valid, and reliable.

Moghadassi et al. [35] described details about the need of ANN for prediction oil/gas
properties. EOS are useful for description of fluid properties such as pressure-volume-
temperature (PVT). At present, there is no single equation of state that accurately
estimates the properties of all substances under all conditions. In that work they proposed
a new method based on ANN for estimation of PVT properties of compounds. ANN is a
model based on some experimental results that is proposed to predict the required data
because of avoiding more experiments. They found minimum Mean Square Error (MSE)
of 0.000606 by using ANN with sixty neurons in the hidden layer and conclude that
ANN’s capability to estimate the PVT properties is one of the best estimating methods

with high performance.

Aminzadeh et al. [23] highlights the applications of soft computing and artificial
intelligence in the oil industry, using geological and geophysical data. The strength and
weakness of human intelligence versus machine intelligence and the need for combining

human and machine intelligence is pointed out. It is argued that the role soft computing
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methods (ANN, Fuzzy Logic (FL) and evolutionary computing) that can play a good role

in establishing “hybrid” intelligence for addressing E&P problems.

Xie et al. [36] have developed a methodology that provides permeability estimates for all
rock-types or lithologies, for a wide range of permeability. This is a hybrid Genetic
Programming and Fuzzy/Neural Net inference system and which utilizes lithologic and
permeability facies as indicators. The results from conducting cross-validation suggest
this methodology is robust in estimating permeability in complex heterogeneous
reservoirs. Hybrid GP-Fuzzy/Neural system has been shown to be robust in estimating
permeability from elastic parameter input. This system yields the estimated permeability

that matches core permeability more consistently.

Chang and Chang [28] used the ANFIS to build a prediction model for reservoir
management. To illustrate the applicability and capability of the ANFIS, the Shihmen
reservoir, Taiwan, was used as a case study. They used a large number (132) of typhoon
and heavy rainfall events with 8640 hourly data sets collected in past 31 years. To
investigate whether this neuro-fuzzy model can be cleverer (accurate) if human
knowledge, i.e. current reservoir operation outflow, is provided, they developed two
ANFIS models: one with human decision as input, another without. They demonstrated
that the ANFIS can be applied successfully and it can provide high accuracy and

reliability for reservoir water level forecasting in the next three hours. They consequently
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found that the model with human decision as input variable has consistently superior

performance with regard to all used indexes than the model without this input.

Wafaa and Alaa [37] suggested an intelligent technique using FL. and ANN to determine
reservoir properties from well logs. Fuzzy curve analyses based on fuzzy logic were used
for selecting the best related well logs with core porosity and permeability data. ANN is
used as a nonlinear regression method to develop transformation between the selected
well logs and core measurements. The technique was demonstrated with an application to
the well data in West July oil field, Gulf of Suez, Egypt for the Miocene Upper Rudeis
reservoirs (Asal and Hawara formations). The results shows that the technique can make
more accurate and reliable reservoir properties estimation compared with conventional
computing methods. This intelligent technique can be utilized as a powerful tool for

reservoir properties estimation from well logs in oil and natural gas development projects.

2.2. COMPUTATIONAL INTELLIGENCE IN GAS RELATED STUDY

Sheng-wei Fei et al. [22] proposed Support Vector Machine (SVM) with Genetic
Algorithm (SVMG) to forecast the ratios of key-gas in power transformer oil, among
which GA is used to determine free parameters of support vector machine. The
experimental results indicate that the SVMG method can achieve greater accuracy than
ANN under the circumstance of small training data. SVMG implements the principle of
structural risk minimization in place of experiential risk minimization, which makes it

have excellent generalization ability in the situation of small sample. And it can change a
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non-linear learning problem into a linear learning problem in order to reduce the
algorithm complexity by using the kernel function idea. In addition, GA can be used to
select suitable parameters to forecast the ratios data of key-gas, which avoids over fitting
or under-fitting of the SVM model occurring be-cause of the improper determining of

these parameters.

Mohaghegh and Balan [21] used their efforts toward the development of a new and novel
methodology for optimal design of hydraulic fracture treatments in a gas storage field. A
hybrid system that is consisted of two neural networks and a genetic algorithm routine
was developed for design and optimization of hydraulic fracturing procedures in a gas
storage field in Ohio. The major difference between these systems with conventional two
or three dimensional frac simulators was that the developed hybrid system provide a
solution for frac treatment design and optimization in the absence of conventional
reservoir data that were an absolute necessity when using conventional (2D or 3D)
simulators. They used available data, without access to reservoir data such as
permeability, porosity, thickness and stress profiles. The hybrid system developed in this
study is able to forecast gas storage well deliverability with higher than 95% accuracy.
This system is also capable of helping the practicing engineers to design optimum
hydraulic fractures. The developed system is currently being used to select candidate

wells and to design frac jobs in the aforementioned field.
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Ozmen and Tekce [17] presented a system which is made of an array of eight
phthalocyanine-coated QCM sensors and an ANN to find the corresponding composition
of a gas mixture. The digital data collected from the sensor responses were pre-processed
by a sliding window algorithm, and then used to train a three layer ANN to determine the
gas compositions. The system is tested with the following gas mixtures: (1) ethanol—
acetone, (2) ethanol-trichloroethylene, (3) acetone—trichloroethylene. They demonstrated
that finding the compositions of gas mixtures using an array of QCM sensors and ANN is
possible. The success rate in identifying the constituent component amounts of the
approach 84.5% for gas 1, 94.3% for gas 2. Similarly, average prediction errors are 15.5%
for gas 1, 5.7% for gas 2 and 10.6% overall. The sensor array and the method developed
to process the sensor data in this work is promising for future experiments. Although the
system developed in this work is applicable only when a gas mixture belongs to the

certain specified categories.

Shokir et al. [24] presented a new pure hydrocarbon gas and gas mixture viscosity model
over a wide range of temperatures and pressures as a function of gas density, pseudo-
reduced temperature, pseudo-reduced pressure, and the molecular weight of pure and
hydrocarbon gas mixtures. The new model designed seems to be simpler and eliminated
the numerous computations involved in any EOS calculation. The developed new model
yields a more accurate prediction of the pure gas and gas mixture viscosity with the
lowest average absolute relative error (5.6%) among all tested gas viscosity correlations.

They resolved that the GP-modeling approach is capable of estimating the viscosity of
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pure and hydrocarbon gas mixtures with high accuracy compared to the experimental
values. This work could be extended to develop a universal viscosity correlation

considering gas condensate and sour natural gas mixtures.

Ilkhchi et al. [38] proposed an optimal and improved model to make a quantitative and
qualitative correlation between Normalize Oil Content (NOC) and well log responses by
integration of neural network training algorithms and the committee machine concept.

This committee machine with training algorithms (CMTA) combines Levenberg—
Marquardt (LM), Bayesian regularization (BR), gradient descent (GD), one step secant
(OSS), and resilient back-propagation (RP) algorithms. Each of these algorithms has a

weight factor showing its contribution in overall prediction. The optimal combination of
the weights is derived by a genetic algorithm. They performed a case study where 231
data composed of well log data and measured NOC from three wells of South Pars Gas
Field were clustered into 194 modelling dataset and 37 testing samples for evaluating
reliability of the models. The result shows that the CMTA provides more reliable and
acceptable results than each of the individual neural networks differing in training
algorithms. Also CMTA can accurately identify production pay zones (PPZs) from well

logs.

2.3. RESEARCH IN ENSEMBLE

Polikar [8] discussed about bootstrap-inspired techniques in CI, specifically in ensemble

of classifiers based algorithms. The crux in this article is to generate an ensemble of
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diverse classifiers, where each classifier is trained on a strategically selected bootstrap
sample of the original data. Pragmatically he discussed the ability of bootstrap-based
approaches so as to signify the outcomes of implementations of such approaches on a
variety of real-world problems. He used several examples of these algorithms that create
strong classifiers from an ensemble of weaker ones. Such algorithms make good use of
small datasets by training multiple classifiers on bootstrap samples of the available data.
As a result he concluded that new ensemble is generated using each new dataset, where
individual classifiers are trained with bootstrapped samples of the training data, whose

distribution is adjusted to ensure that the novel information is efficiently learned.

Zhao et al. [39] performed a constructive survey on the ANN ensembles, including
effective analysis and general implement steps of ensembles. Compared with a single
ANN, the ensemble is able to efficiently improve the generalization ability of the
classifier work. They concluded that ensemble of network can improve the generalization
performance of a classification system greatly. Furthermore the availability of local
minima in the individuals in neural network ensemble are expected to have different local
minima of error surface thus increased the diversity of ensemble. They mentioned that the
challenge of Ensemble researchers is how to effectively design the individual works that

is not only highly correct, but also different as much as possible.

He and Shen [40] used a bootstrap methods for time-series prediction are used to

construct multiple learning models, and then use a combination function to combine the
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output of each model for the final predicted output. ANN model as the base learning
algorithm and applied this approach to the foreign currency exchange rate predictions.
Both daily prediction and weekly prediction indicate that the proposed method can
significantly improve the forecasting performance compared to the traditional single
neural network based approach. After training, testing points are sent to every ANN
model and a combination function is used to combine the outputs from individual neural

networks

Lai et al. [41] proposed a new nonlinear ANN ensemble model for financial time series
forecasting. It starts with the generation of many different neural networks then they used
the principal component analysis technique is used to select the appropriate ensemble
members. They did ANN ensemble using SVR method. Testing was done using two real
financial time series. A novel triple-phase nonlinear ensemble predictor for financial time
series forecasting is proposed. The effectiveness of the proposed nonlinear ensemble
approach, implying that the proposed nonlinear ensemble model can be used as a feasible

approach to financial time series forecasting is demonstrated experimentally.

Dong and Han [42] used ensemble methods for weak classifiers and whether they are
effective for strong classifiers is not clear. SVM had been the state-of-the- art
performance for the Text Classification (TC) tasks. Due to the complexity of the TC
problems, it becomes a challenge to systematically develop classifiers with better

performance. They deployed five types of data partitioning ensemble of SVMs were
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experimentally compared on two well-accepted benchmark collections, and they found
that disjoint partitioning ensembles of SVMs with stacking performed best and
consistently outperformed the single SVM. They also found that bagging and cluster
partitioning ensembles are not effective to combine strong classifiers like SVM, and

boosting always achieves worse results on all of the collections.

Melville et al. [43] compared the sensitivity of bagging, boosting, and decorate to three
types of imperfect data: missing features, classification noise, and feature noise. In
comparing bagging, boosting and decorate, bagging is quite sensitive while boosting is
fairly robust but that decorate is constructs diverse committees using artificial data. It has
been shown to generally outperform both boosting and bagging when training data is
limited. For missing data, they found that Decorate is the most robust. For classification
noise, bagging and Decorate are both robust, with bagging being slightly better than
Decorate, while boosting is quite sensitive. For feature noise, all of the ensemble methods
increase the resilience of the base classifier. They concluded that Bagging performs the
best at combating high amounts of classification noise. In the presence of noise in the

features, all ensemble methods produce consistent improvements over the base learner.

Chen [31] focused mainly on the diversity among ensemble members and the
regularization. He proved that diversity highly correlates with the generalization error
only when diversity is low, and the correlation decreases when the diversity exceeds a

threshold. He investigated error diversity in x using negative correlation learning (NCL)
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in detail. This provides a Bayesian formulation of RNCL and implements RNCL by two
techniques: gradient descent with Bayesian Inference and evolutionary multi-objective
algorithm. According to him the numerical results demonstrate the superiority of RNCL.
Left-truncated Gaussian is used by him prior for this probabilistic model to obtain a set of
sparse and non-negative combination weights. He summarized various selection-based
and weight-based algorithms for ensemble pruning, which aims to reduce the size of
ensemble and simultaneously improve the generalization performance by balancing

diversity, regularization and accuracy in the ensemble.

Pasquariello et al. [44] presented a comparison of classification strategy based on the
combination of the outputs of a ANN ensemble and the application of SVM classifiers in
the analysis of remotely sensed data. On analysis they proved that the non linear, Multi-
Layer Perceptron (MLP) based, combination provides the best results among the different
combination schemes. This method gave a combination error lower than that of the best
classifier in the ensemble. A performance enhancer can be obtained by using a non linear
combiner, such as the MLP neural network: the value of the combination error was the
lowest. The application of a further MLP module to combine the outputs of the ensemble
helps to overcome some of the main limitations of the generalization capability of each
single module in the ensemble. When a more transparent formalism is required in
understanding why a combination scheme is better than another and in what

circumstances, the Bayesian and the error correlation matrix are the preferable techniques
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for selecting the coefficient of the linear combination. Since they are more robust with

respect to the generalization issue and give the similar results like MLP.

Redondo et al. [45] proposed two new ensemble combiners based on the Mixture of
Neural Networks model. Two different network architectures on the methods based on
the Mixture of Neural Networks: the Basic Network (BN) and the Multilayer Feed
forward Network (MF) is incorporated experimentally. A comparison of the mixture
combiners was proposed by them with three different mixture models and other
traditional combiners are presented. The results show that the mixture combiners
proposed are the best way to build multi-net systems among the methods studied in the
paper in general. The two new combiners are applied to ensembles of Multilayer Feed
forward networks previously trained with Simple ensemble. In first which is Mix-SE-BN,
Basic Network as gating network is applied to weight and combine the outputs provided
by the networks of the ensemble previously trained with Simple Ensemble. In the second
one, Mix-SE-MF, Multilayer Feed forward network is applied as gating network to
combine the ensemble previously trained with Simple ensemble. In experiments the first
mixture model, Mix-BN-BN, the Basic Network is used as expert and gating networks. In
the second, Mix-MF-BN, the Multilayer Feed forward network is used as expert networks
whereas the Basic Network is used as gating network. In the last one, Mix-MF-MF, the
Multilayer Feed forward network is used as expert and gating networks. To compare the
combiners proposed with the seven traditional combiners, they have used ensembles of 3,

9, 20 and 40 networks previously trained with Simple Ensemble. After comparing the two
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sets mean Increase of Performance and the mean Percentage of Error Reduction are
calculated with respect to a single MF network to compare all the methods. It was found
by them, the mixture combiners on Simple Ensemble are the best way to build Multi-Net
systems among the models and combiners studied, also the combiners proposed are more
robust than the traditional ones. Similar results are obtained in other cases too. It is
proved that the accuracy of an ensemble of Multilayer feed forward networks can be

improved by applying the gating network of the Mixture of ANNs as ensemble combiner.

Zhou et al. [46] analyzed the relationship between the generalization ability of the neural
network ensemble and the correlation of the individual neural networks, which reveals
that ensembling a selective subset of individual networks is superior to ensembling all the
individual networks in some cases. An algorithm called GASEN is proposed by them,
which trains several individual neural networks and then employs genetic algorithm to
select an optimum subset of individual networks to constitute an ensemble. Comparing
with a popular ensemble approach, i.e. averaging all, and a theoretically optimum
selective ensemble approach, i.e. enumerating, GASEN has preferable performance in
generating ensembles with strong generalization ability in relatively small computational

cost is proved experimentally.

Wen et al. [47] investigated whether a hybrid approach combining different stock
prediction approaches together can dramatically outperform the single approach and

compare the performance of different hybrid approaches. The hybrid model includes three
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well-researched prediction algorithms: back propagation neural network (BPNN), ANFIS
and SVM They were utilized independently to single-step forecast the stock price, and
then they were integrated into a final result by a combining strategy. Two different
combining methods are investigated by them. The first method is a linear combination of
the three forecasts. The second method combines them by a neural network. Combining
the single algorithm considerately, a better performance can be received is verified
experimentally. A number of soft computing approaches have successfully applied in the

prediction of stock price and showed good performance.

Aljahdali et al. [48] explored GA as an alternative approach to derive different software
reliability models. GA is a powerful machine learning and optimization techniques to
estimate the parameters of well known reliably growth models. The reason of choosing
GA for this task is its capability of estimating optimal parameters through learning from
historical data. Experiments were conducted to confirm these hypotheses by evaluating
the predictive capability of the developed ensemble of models and the results were
compared with traditional models. Predictability of software reliability using ensemble of
models trained using GA arte measured. The study is applied on three study sets;
Military, Real Time Control and Operating System. In comparison to the predictability of
the single AR model and ensemble of AR models trained by GA algorithm over the
trained and test data is concerned, the ensemble of models performed better the single

model. Also, they found that the weighted average combining method for ensemble has a
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better performance in a comparison with average method. This due to the GA learned

weights which decide the contribution of each model in the final results.

Zainal et al. [49] used an ensemble of one-class classifiers where each uses different
learning paradigms. Three techniques are incorporated which are: Linear Genetic
Programming (LGP), ANFIS and Random Forest (RF). The strengths from the individual
models were evaluated by them and ensemble rule was formulated. Empirical results
show an improvement in detection accuracy for all classes of network traffic; Normal,
Probe, DoS, U2R and R2L. RF was also able to address imbalance dataset problem that
many of machine learning techniques fail to sufficiently address it. Ensemble of different
learning paradigms can improve the detection accuracy is demonstrated in this paper.
This was achieved by assigning proper weight to the individual classifiers in the ensemble
model. Using experimentation they found out that, LGP has performed well in all the
classes except the U2R attacks. In contrary, RF shows a better true positive rate for U2R
class. Thus, by including the RF in the assemble model, the overall performance

particularly the result for U2R class has improved.

Chandra and Yao [50] tried to come up with a co-evolutionary framework with a view to
synthesize evolutionary ensemble learning algorithms. Ensembles of learning machines
have been outperforming single predictors in many cases. This happens usually when
they constitute members which form a diverse and accurate set. Keeping in mind they

developed a multi-objective evolutionary optimization as a formidable ensemble
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construction technique. In addition to presenting detailed empirical results and
comparisons with a wide range of algorithms in the machine learning literature in this
paper they tried to explicate on the intricacies of the proposed framework. All ensemble
learning methods are essentially based on a very simple idea which is their goal of having
diverse and accurate members within them which help them to outperform single
learners. An algorithm called DIVACE is also proposed by them with an idea to enforce
diversity and accuracy within the ensemble explicitly within a multi-objective
evolutionary setup. This becomes an evolutionary framework that uses a myriad of
diversity enforcement ideas rolled into one evolutionary ensemble learning algorithms in

terms of the average test error rates for the Australian credit card assessment dataset.
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CHAPTER 3

OVERVIEW OF COMPUTATIONAL INTELLIGENCE TECHNIQUES

3.1. ARTIFICIAL NEURAL NETWORK

Artificial Neural Network (ANN) is a machine learning approach inspired by the
biological nervous systems that mimic human brain performing a particular learning task.
ANN is parallel computing systems consisting of large number of simple processing unit
called “neuron”, similar to neuron of brain with many connections. Each node is
characterized by a node function with fixed or adjustable parameters. The node function
is called “Activation function” is used for scaling the output of each neuron. The
architecture of ANN depends on the pattern of connections between the neurons. A
learning algorithm is required to determine the weights on the connections. One of the
main properties of ANNSs is their ability to learn from data. In general, the available data
can be divided into two parts: one part for training, and the other for testing. The training
phase of a ANN is a process to determine optimum parameters values to sufficiently fit
the training data. The basic learning rule is the well-known back-propagation method
which seeks to minimize some measure of error, usually a sum of squared differences

between a network outputs and desired outputs. When the test error is much larger than
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the training error, then an over-fitting problem has occurred. “Over-training” diminishes
the forecasting capability of the network due to its structure which is excessively adapted
to the training data. In order to be trained a network architecture is needed to be prepared.
By using the training algorithm the complex relationship is learned by the network from
the input and output data of the given problem. The model performance is always
checked by means of distinct test data, and a relatively good fitting is expected, especially
in the testing phase. Methods of learning can be of two categories: Supervised Learning
and Unsupervised Learning depend on the availability of information. In the supervised
learning, the weights are usually obtained by minimizing some error function which
measures the difference between the desired output values and those computed by the
neural network. In unsupervised learning, the data is presented to the network without any

external information and the network must discover by itself the patterns.

Input layer Hiddden layer Qutput layer

Figure 8: Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is one of the widely used ANN that has gained vast

popularity in many research areas [14,20,35]. MLP has one input layer, one output layer,
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and one or more hidden layers of processing units and no feed-back connections (Figure
8). The hidden layers sit in between the input and output layers, and are thus hidden from
the outside world. It can be learn a particular function from the input and output relation
by adjusting the values of the connections (weights) between neurons. Typically, MLP is
adjusted, or trained, so that a particular input leads to a specific target output. The weights
are adjusted, based on a comparison of the output and the target, until the network output
matches the target. Typically, many such input/target pairs are needed to train a network.
In general ANN has been trained to perform complex functions in various fields including
petroleum, pattern recognition, pattern, identification, classification, speech recognition,
computer vision, control systems, etc. Figure 9 shows a neuron with sigmoidal activation

function where,

a:ixj(n)wj(n)

Figure 9: Neuron with Sigmoid-Function
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Figure 10 shows two kind of activation function used in this dissertation.

a = logsig(n) a = tansig(n)

Figure 10: log-sigmoidal and tan-sigmoidal Activation Function

3.2. SUPPORT VECTOR REGRESSION

Support Vector Machines (SVMs) were first introduced by Boser et al. at the COLT 1992
conference [51]. In 1995 the soft margin classifier was introduced by Cortes and Vapnik
[52]. In the same year the algorithm was extended to the case of regression by Vapnik in
The Nature of Statistical Learning Theory [53]. Support Vector Regression (SVR) as a
regression version of SVMs. The main idea is always the same for both SVR and SVM
which is to minimize error and individualizing the hyper-plane which follows the
maximum margin algorithm: a non-linear function is leaned by linear learning machine
mapping into high dimensional kernel induced feature space. The capacity of the system is
controlled by parameters that do not depend on the dimensionality of feature space.
Margin is a distance between optimal hyper-plane and a vector which lies closest to it. The
decision boundary (optimal hyper-plane) should be as far away from the data of both

classes as possible (Figure 11).
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Figure 11: Hyper-plane & Margin of SVM

One of the advantages of SVM/SVR as the part of it is that, it can be used to avoid
difficulties of using linear functions in the high dimensional feature space and
optimization problem is transformed into dual convex quadratic programs. In regression
case the loss function is used to penalize errors that are greater than threshold - €. Such
loss functions usually lead to the sparse representation of the decision rule, giving
significant algorithmic and representational advantages. SVM/SVR maps input vectors to
a higher dimensional feature space via non-linear mapping (®) where a maximal
separating hyper plane is constructed by performing linear regression in this space
[51,53]. This is shown in Figure 12. The Figure 12 (a) shows the two dimensional data
having the circular decision boundary which is linearly non-separable. The Figure 12 (b)
shows the mapping of the data into three dimensional spaces where the circular decision
boundary becomes a linear hyper-plane. The Figure 12 (c) shows the two dimensional

projection of the Figure 12 (b).
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Figure 12 (a, b, ¢): Support Vector Machine [54]

3.2.1. Insensitivity Zone

In the case of regression, a margin of tolerance ¢ is set in approximation to the SVR
which would have already being inferred from the problem. The generalization ability of
SVR is ensured by special properties of the optimal hyper-plane that maximizes the
distance to training examples in a high dimensional feature space. They relied on defining
the loss function that ignores errors, which are situated within the certain distance of the
true value. This type of function is often called — epsilon intensive — loss function. In
Figure 13 only the points outside the shaded region contribute to the cost insofar, as the
deviations are penalized in a linear fashion. Figure 13 depicts the variation of model

performance with sizes of the tube.

Parameter ¢ controls the width of the e-insensitive zone, used to fit the training data. The

value of ¢ can affect the number of support vectors used to construct the regression
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function. The bigger ¢, the fewer support vectors are selected (Figure 14). Support vectors
are points that lie on the boundary or outside the tube. On the other hand, bigger e-values

results in more ‘flat’ estimates. It is obvious that the thinner the “tube”, the more complex

the model.
ednsensitive loss function
Y penalty
m————— ..I -
— 1—e
2= - - -—-—-——-
' BITON,
penalty o 45°
o
(y— f(xi))
Figure 13: ¢ — insensitive loss function
g | Thicktube
_____ 1-—-.1*' &

(a): Under-fitting (b): Over-fitting (¢): Good Generalization

Figure 14: Effects of € tube in SVR
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3.2.2. Regularization Parameter

The regularization parameter C determines the tradeoff between the model complexity
(flatness) and the degree to which deviations larger than € are tolerated in optimization
formulation for example, if C is too large (infinity), then the objective is to minimize the
empirical risk only, without regard to model complexity part in the optimization
formulation. Hence, both C and ¢ values affect model complexity (but in a different

way). Figure 15 shows the effect of C in SVR.

Cis small Cis reasonable
Y I
_______ A 6
1 1
(a): Under-fitting (b): Good Generalization

Figure 15: Effect of C in SVR

3.2.3. Linear Support Vector Regression

Linear SVR perform linear regression in the feature space. Unlike in least square
regression, the error function is e-insensitive loss function. Instinctively, mistake less than
¢ is ignored and thus leads to sparseness similar to SVM. The Figure 16 shows an
example of one-dimensional linear regression function with — epsilon intensive — band.
The variables measure the cost of the errors on the training points. These are zero for all

points that are inside the band.
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Figure 16: Linear SVR

3.2.4. Non-Linear Support Vector Regression

Non-Linear SVR performs the same way of linear SVR. The only difference is that the
data input space x transform into a higher-dimensional feature space ®(x) where a hyper-
plane can be constructed. Linear operation in the feature space is equivalent to non-linear
operation in input space. But mapping involves high computational burden and hard to

get a good estimate.
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Input space Feature space

Figure 17: Input Space Transformation

Figure 17 shows the transformation of input space into higher dimension where data can

be separated linearly. Figure 18 (a) shows non-linear SVR of the corresponding linear
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SVR. Figure 18 (b) shows the two hyper-planes and e-insensitive zone is between this

two planes. The optimal hyper-plane resides exactly the same distance of this two planes.
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I r c__-m"_-"_: ;T_;———h—'_ i L_._._ l__\b(’ b/ 10
" a0 40 30 20 10 o \/:
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(2): Non-linear SVR (b): 3D View of Hyper-planes

Figure 18: Non-linear SVR
3.2.5. The standard formulation of the SVR model

Suppose a given training dataset {x,, y,}" ~where x € R%andy € R, and a nonlinear
mapping to a higher dimensional space : R* — R" whered < /. SVR finds the optimal
value of wand b such that f(x)=we(x)+b, Where ¢ (x)is the feature of inputs x and
both wand b are coefficients. In e-SVR [53] goal is to find a function f(x)that has at
most ¢ deviation from the actually obtained targets y,for all the training data, and at the

same time is as flat as possible. The errors are not taken into account as long as they are
less than ¢, but will not accept any deviation larger than this. A real life example can be

not to lose more than € money when dealing with exchange rates. The SVR function is
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f(x) — Wi(b(xi) L LEEPP TP RPRRRRRRP PR (1)

In linear regression, we actually minimize the error function
1% p
R=2 > () =y +5 1w P
2 ¢ 2
i=1
By replacing the quadratic error function by e-insensitive error function we get

N
Rreg(©) = €Y E(fGe) —y) +5 Il w I?
i=1

Where the error function is

0 for |[f(x) -yl <e
E.(f(x) —yi) = {

[f(x) —y|—¢ otherwise
For a target point to lie inside the € tube
f(xl)_SSyle(xl)_i_g ....................................... (2)

Our target is to find a flat model. The flatness in (1) means that a small w is needed. One

way to ensure is to minimize the norm of w i.e. |w| . This problem can be written as
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Minimize > Ilwll

Subject to
yi—wid(x;)) —b<e¢€

Wi(b(xi) +b —y; S £ e (3)

However this may not be the case always. We may need to allow some errors. Simply we
need a soft margin that allows points lie outside the tube [Figure 14]. For this we need to

introduce slack variables in Eq. (2)
i< flx)+e+é;

Vi = f()—e—& (4)

1
Yy ,;,I p
-

Figure 19: Soft Margin of non-linear SVR

Hence the formulation of Eq. (3) can be written as in Vapnik [53]
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Minimize
1 n
~lw i+ CZ(& +&)
i=1

Subject to

yi—wi@(x) —b < e+

wid(x) +b—y; <e+§;

1,60 =0
The constant C > 0 determines the trade-off between the flatness of f'and the upper bound
of the deviations larger than ¢ will be tolerated. In most cases the optimization problem of
Eq. (5) can be solved more easily in its dual formulation. The key idea is to construct a
Lagrange function from the primal objective function and the corresponding constraints,
by introducing a dual set of variables. This constrained optimization problem is solved

using the following primal Lagrangian form:

1 o o
L= 0w C ) G+ )= ) i+ i)
i=1 i=1

N

=) @ie + & = i+ widGx) + b)
i=1
N
—Z a,(e+ & —yi +wi@(x;)+b) (6)

i=1
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The Saddle point of L has to be found by minimization with respect tow, b, §;,§; and

maximization with respect to langrage multipliers a;, a;,1;,1;. These dual variables have

to satisfy positivity constraints, i.e. ai(*),ni(*) >0 . It follows from the saddle point

condition that the partial derivatives of L with respect to the primal variables

w, b, &;, & have to vanish for optimality.

oL

n
F 0= W_Z(ai —af)K(xl-,xj) =0
1=

oL C )
%=0=>Z(oci—ai)=0
i=

OL 9)
—=0=a;+n,=C
afl l T’l

oL . L e, (10)
afr*l—Oﬁai +n;=C

Now Eq. (6) can be rewritten as dual optimization problem from Eq. (7), (8), (9) and (10)

as follows
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Maximize

i=1 j=1
n n
—Ez(ai +a;) + Z(“i — a;)Y;
i=1 i=1
Subject to
n
D (ai—ap =0
i=1
0<a,<C
0<as<C e (11)

In deriving Eq. (11) the dual variables 1; ,7; is eliminated by the condition of Eq. (9) and

*

(10) which can be reformulated asn; = C —a;andn; = C — ;. After calculating
a; and a; In Eq. (11) the optimal desired weights vector of the regression hyper-plane is

represented as

W*

Z(ai - a;)K(xi; xj) ................................. (12)
i=1

Therefore the regression equation would be

flx,a,a*) = X(Qi - a;)]((xi,xj) F D (13)
i=1
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Here, K (xl-, xj) is called the kernel function. The value of the kernel is equivalent to the
inner product of two vectors x; and x; in the feature space @(x;) and Q)(xj). Therefore,
K (xi,xj) = Q(x;) X (D(xj). The inner product can be computed by K without going
through the map @(.) which is also known as kernel trick. In practice, we specify K,
thereby specifying @(.) indirectly. Intuitively, K (xi, xj) represents our desired notion of
similarity between data x; and x; and this is from our prior knowledge. Any function that

satisfies Mercer's condition can be used as the Kernel function by [53]. The Polynomial
and Gaussian are the most widely used kernel function. Few standard kernels are

provided below

Linear : K(x,x;) = {x,x;)

Polynomial:  K(x,x;) = {(x,x;)¢

202

: I x —x; II?
Gaussian: K(x,x;) = exp I_ —ll

3.3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

In recent years a new branch of CI named “soft computing” aims to integrate the power of
Artificial Neural Network (ANN) and Fuzzy Inference Systems (FIS). ANN possesses
exciting capabilities such as learning, adaptation, fault-tolerance, parallelism and

generalization whereas FIS performs an inference mechanism under cognitive uncertainty
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[4]. To enable a system to deal with cognitive uncertainties in a manner more like
humans, the concept of ANN can be incorporated into fuzzy logic. The resulting hybrid
system is called a neuro-fuzzy network [55]. Adaptive Neuro-Fuzzy Inference System
(ANFIS) is claimed as a universal approximator to represent highly non-linear functions
more powerfully than conventional statistical methods [56]. Intelligence methodologies
such as Neuro- Fuzzy inference is a method that interprets the relationship between input

and output by means of some set of fuzzy ‘IF-THEN’’ rules e.g.

IFXis ATHEN Yis B

Where A and B are labels of fuzzy sets, e.g. “hot”, “cold”. Each fuzzy set is characterized
by appropriate membership functions that map each element to a membership value
between 0 and 1. The “IF” part is called antecedent and the “THEN” part is called
consequent of a rule can have multiple parts linked by Boolean operators (AND, OR)
which have equivalent fuzzy operators (MIN, MAX). A fuzzy inference system are
composed of “rule base” signifying fuzzy rules, a “database” defining the membership
functions of the fuzzy sets, and a “reasoning mechanism” which performs the inference

procedure (Figure 20).
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Fuzzy Inference System

Figure 20: Fuzzy Inference System

Among various fuzzy inference systems, Tagaki—Sugeno system is more suitable for
sample-data based fuzzy modeling [57] in which the output of each rule is predetermined

function of input variables. To give an example, in a first-order Sugeno model with two

inputs (x,y), the iy, rule is described as

Rule 1: IF x is A AND y is B, THEN fi=px+qy+tr;

Rule 2: IF x is A AND y is B, THEN f>=px+qy+tr;

Where variable x and y stands for the fuzzy sets corresponding to the domain of each

linguistic label, and p; is a set of adjustable parameters. The final output, fis the weighted

average of each rules f = ZWZ f, where w; is the weight of the iy rule. The Figure 21

shows the first order Sugeno FIS and the corresponding ANFIS model.
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Figure 21: (a) First Order Sugeno Fuzzy Model, (b) Corresponding ANFIS Network

Architecture.

While modeling FIS, it is difficult to decide the shape of the membership functions

simply by observing the data. These parameters can be chosen to adapt the membership

functions by the variation of the input/output data, rather than choosing the parameters

arbitrarily associated with a given membership function. This is where the so-called

neuro-adaptive learning technique incorporated into ANFIS can help. Let us assume a FIS

with two inputs x, y and one output z with the first order of Sugeno Fuzzy Model is

shown in Figure 21 (a), the reasoning mechanism can be implemented into a feed-forward
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neural network with supervised learning capability, which is known as ANFIS
architecture (Figure 21 (b)). Jang et al. [56] developed a hybrid-learning rule for ANFIS
which is faster than the classical back-propagation method by combining the gradient
method and the least squares estimate to identify antecedent and consequent parameters.
The square nodes in Figure 21 (b) indicate adaptive nodes with parameters and circle
modes indicate fixed nodes without parameters. ANFIS basically implements a first order
Sugeno-style fuzzy system. Although it is quite easy to express linguistically the relation
between input and output, it is difficult to fit the fuzzy model to the target data using trial
and error. A better approach is to approximate the target function with a piece-wise linear
function and interpolate, in some way, between the linear regions. In the Takagi-Sugeno
model the idea is that each rule in a rule base defines a region for a model, which can be
linear. This is achieved by clustering the input space [58]. We have used subtractive
clustering to create initial FIS and then trained that FIS using ANFIS hybrid learning
algorithm. The functionality of nodes in ANFIS, as a five layered feed-forward neural

structure layers can be summarized as follows:

Layer 1: The first layer consists of square nodes that perform fuzzification with chosen
membership function. The parameters in this layer are called premises (antecedent)
parameters. Nodes in this layer are adaptive. Membership functions of input variables are

used as node functions.

O,=p,(x)  fori=12
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0, = Mg, ) Jori=34

Where
1
IUA (X) = 2b
X—c.
1+ !
a;
1
luB (y) = 2b
1+ Y6
ai

Layer 2: In the second layer, the T-norm operation is performed to produce the firing
strength of each rule. Nodes in this layer are fixed with outputs and the T-norm operator

perform fuzzy AND operation.

0, =w,= Hy (x)/uBi (), =12

Layer 3: In the third layer the nodes are fixed with outputs generating the normalized
firing strengths by calculating the ratio of the iy, rule firing strength to the sum of all

rules’ firing strength is calculated in the third layer.
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Layer 4: The fourth layer consists of square nodes that perform multiplication of
normalized firing strengths with the corresponding rule. The parameters in this layer are
called consequent parameters. Nodes are adaptive with node function given by Layer 1
for a first-order model, and with parameters referred to as defuzzifier or consequent

parameters.

Oy =wif; =w(PX+q,y+1)

Layer 5: The fifth layer the single node is fixed with output which calculated by the sum

of all incoming signals in the fifth layer.

— W,/
O, :F:Zszz :%

Table 3: Two passes in the hybrid learning procedure in ANFIS

ANFIS with Hybrid Learning Forward Pass Backward Pass

Premise Parameters (nonlinear) Fixed Gradient descent

Least-square

) Fixed
estimator

Consequent parameters (linear)

Signals Node outputs Error signals
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3.4. EVOLUTIONARY ALGORITHM

Evolutionary Algorithms (EA) is a population-based optimization technique. It operates
on a population of potential solutions to produce a better solution. The basic idea is to
represent every individual of the potential solution as an array of sequences of strings,
chromosomes. Each string in the chromosome is called a gene and the position of a gene
is called its locus. The values that genes might take are called alleles. The initial
population of the potential solutions is created randomly and it evolves according to
processes that are based on natural evolution, such as selection, recombination or
crossover, and mutations. During these operations, which are called evolutionary
operations, every chromosome in the population is evaluated and receives a fitness value
representing an objective or a fitness function. According to their fitness values, the most
successful chromosomes are selected for the crossover process to produce new offspring
that might have better fitness values. The mutation process is applied to add diversity to
the potential solutions. An evolutionary algorithm is characterized by the following five

components:

(1) Encoding: a mechanism to represent the population of potential solutions.

(2) Initialization: a mechanism to create the initial population of the potential
solution.

(3) Fitness function: an objective function or evaluation function that is used to assign

the fitness values to the chromosomes.
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(4) Evolutionary operators: Crossover and Mutation.
(5) Working parameters: a set of values of the different parameters such as population

size and chromosome length.

Genetic Algorithm (GA) is one of the important classes of EA. GA is a non-
comprehensive search techniques based on natural selection, the process that derives
biological evolution. GA is used to determine the global optima or the sub optima of a
given function (or a process) that may or may not be subject to constraints. Unlike other
search-based optimization procedures such as Hill Climbing or Random Search, GA has
consistently achieved good performance in terms of balancing between the two
conflicting objectives of any search procedure, which are the exploitation of the best
solution and the exploration of the search space. GA has a number of other interesting
features that differentiate them from other derivative based classical optimization

techniques in two main ways:

» Classical Algorithm generates a single point at each iteration. The sequence of
points approaches an optimal solution. Selects the next point in the sequence by a
deterministic computation.

» GA generates a population of solutions at each iteration. The best point in the
population approaches an optimal solution. Selects the next population by

computation which uses random number generators.
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The basic idea of GAs is to choose first a random population in the range of optimization,
with a fixed size n (n usually depends on the search range, the accuracy required and the
nature of the function itself). Using the so-called binary encoding procedure, each
variable is represented as a string of ¢ binary digits. This leads to a population of
elements represented by a matrix of n rows and ¢ columns. A set of “genetic” operators is
then applied to this matrix to create a new population at which the function f attains
increasingly larger values. The most common operators that have been used to achieve

this task are: Selection, Crossover and Mutation.
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Figure 22: Crossover & Mutation [59]



Figure 23: Schematic presentation of Genetic Algorithm
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CHAPTER 4

HYBRID COMPUTATIONAL INTELLIGENCE MODELS

4.1. HYBRID OF MULTI-LAYER PERCEPTRON WITH GENETIC ALGORITHM

We have used Genetic Algorithm (GA) to find the optimum structure of the Multi-Layer
Perceptron (MLP), the hidden neurons’ transfer function and the type of the training
algorithm that would fit that structure. Initially we run MLP without incorporating GA for
each output components. As we have limited number of training samples, we decided to
keep the network structure small and so used only one hidden layer. We normalized the
data from -1 to 1 so in the output layer we have used tan-sigmoidal activation function in
order that it can map the output as normalized format. As we predicted one output at a
time, so we have used one node in the output layer. Figure 24 depicts the basic structure
of ANN model used in this thesis. We have used are learning rate: 0.001, epochs: 300,
error goal: 0.00001. The other parameter we decided to be optimized by GA. We tried to
achieve the number of nodes in the hidden layer. We kept the range of hidden nodes
between 1~63 to keep the network simpler. The second parameters that we achieved by

GA is the hidden neurons’ activation function. The possible options for activation
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functions are either tan-sigmoidal or log-sigmoidal. We have also found the training

algorithm either LM (Levenberg-Marquardt) or Rprop (Resilient Backpropagation).

19 Inputs

21

log-sigmoidal

Rprop

Figure 25: Binary Encoded Chromosome for MLP (8 bits)

We have used binary encoding to represent chromosome for MLP parameters

optimization (Figure 25). We have used population type bit string. And the right most bit

is to decide the training algorithm. The second bit is to choose activation function in the
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hidden layers. And the left most 6 bits is to choose the number of nodes in the hidden

layer.

4.2. HYBRID OF SUPPORT VECTOR REGRESSION WITH GENETIC

ALGORITHM

The optimal parameter search on SVR plays a crucial role in building a prediction model
with high prediction accuracy and stability. From the initial run of the problems we have
decided to use “polynomial” type kernel. The degrees of polynomial we have used are
0.5, 2 and 3. For different member of ensemble we have used different degree of
polynomial to make the model diverse. Genetic Algorithm can automatically optimize the
SVR parameters and thus increase the predictive accuracy and capability of
generalization [7,25,60]. The chromosome for SVR are encoded into Real Valued
Encoding in the following ranges of C (0.0001~100), € (0.0001~ 0.6), A (0.000000001~
0.001). An example of SVR chromosome representation is given in Figure 26. The ranges

are decided from the initial prediction performance of each gas component.

f’.Z U.f[l 1 0.00001
C £ A

Figure 26: Chromosome for SVR
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4.3. HYBRID OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM WITH

GENETIC ALGORITHM

The performance of ANFIS depends on the initial FIS. The more the initial FIS
represented better, the better the performance of ANFIS would be. The FIS we have
created by using Subtractive Clustering (Subclust) [61]. Subclust is one of the clustering
algorithms based on a measure of the density of data points in the feature space. It
generates the rules that approximate a function. The rule extraction method first uses SC
to determine number of rules and input membership functions equation. Each fuzzy
cluster is mapped into a generalized bell shaped (Figure 27) membership function which

1s defined as

1

1 |xz=c
L+ 45

bell (x;a,b, c) =

|2b

where, c is centre of cluster, a is cluster radius, b is slope ( a linear function )

[
ghellmf, P=[2 4 B]

Figure 27: Generalized bell-shaped membership function

We decided to optimize the radius ‘a’ of Subclust by GA. The range of the radius we

choose to be (0.2~0.9). Figure 28 shows a chromosome representation of ANFIS which is
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only one real encoded value. Figure 29 shows the steps of creating ANFIS from the initial

FIS created using Subclust. Figure 30 shows the flow chart of radius optimization using

GA.

0.45

I

radius

Figure 28: Chromosome of ANFIS
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Figure 29: FIS Generation by ANFIS using Subtractive Clustering [58]

ANFIS

Final FIS
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Figure 30: Radius (Subclust) Optimizing Steps using GA

4.4. GENETIC ALGORITHM PARAMETERS

The parameters of GA we have used for different gas components are given below:

= Population : 20~100

= (Generation : 20~50

= Crossover fraction : 0.4~0.9
= Elite individual: 2

= Mutated Individual: (population — elite) — ((crossover fraction) x population)

4.5. OBJECTIVE FUNCTION

The performance of the HCI model mostly depends on the design of the objective

function. We have used RMSE or CC as a criterion of measuring fitness. Lower RMSE
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and higher CC values represents better models. So we have designed two objective
functions where in one we setup the criterion is minimizing RMSE whereas in other the
criterion is to maximize CC. some gas components perform well with minimizing RMSE

objective while some other perform well with the objective maximizing CC.
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CHAPTER 5

ENSEMBLE OF HYBRID COMPUTATION INTELLIGENCE MODEL

5.1. ENSEMBLE LEARNING

Ensemble Learning employs a committee of multiple learning machines and combines
their outputs performing as a single decision maker. Figure 31 shows an ensemble of N
number of CI models. The principle is that the combined decision of ensemble members
should have better overall accuracy, on average, than any individual member. Numerous
empirical and theoretical studies showed that ensemble accuracy significantly exceed the
single model [9,30,39]. The underlying principle of ensemble learning is that every model
has limitations and makes errors. Moreover, different learning algorithm suit with
different problems. The goal of ensemble learning is to manage each learning algorithms’
strengths and weaknesses automatically, leading to the best possible decision being taken

overall.
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Figure 31: Ensemble of Hybrid CI Model

5.1.1. Why Ensembles is Better?

To understand that why the generalization ability of an ensemble is usually much stronger
than that of a single learner, Dietterich [62] gave three reasons by viewing the nature of
machine learning as searching a hypothesis space for the most accurate hypothesis. The
first reason is that, the training data might not provide sufficient information for choosing
a single best learner. For example, there may be many learners perform equally well on
the training data set. Thus, combining these learners may be a better choice. The second

reason is that, the search processes of the learning algorithms might be imperfect.

For example, even if there exist a unique best hypothesis, it might be difficult to achieve
since running the algorithms result in sub-optimal hypotheses. Thus, ensembles can

compensate for such imperfect search processes. The third reason is that, the hypothesis
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space being searched might not contain the true target function, while ensembles can give
some good approximation. For example, it is well-known that the classification
boundaries of decision trees are linear segments parallel to coordinate axes. If the target
classification boundary is a smooth diagonal line, using a single decision tree cannot lead
to a good result yet a good approximation can be achieved by combining a set of decision

trees. Note that those are intuitive instead of rigorous theoretical explanations.

Krough and Vedelsby [63] proved the formulation of ensemble error in case of regression
using a linearly weighted ensemble. Let us assume the task is to learn a function f(x) and
the training samples are drawn randomly from the distribution p(x). Suppose the
ensemble consist of N base learners, in our cases base learners are HCI models (Figure

31) and the output of the iy, HCI model is O;(x). The output of the ensemble is defined as

Oen(X) = Zi WlOI(x) ...................................................................... (1)

The diversity on input x of an individual HCI is defined as

d; = (0;(0) = Oen (X)) oo (i)

Then ensemble diversity on input x is

Aon = S Wid; = B Wi(0:06) = 0anCO) v, (iif)

The quadratic errors of the i, HCI model and of the ensemble are respectively as follows:
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e(X) = (GO = 052)) oo (iv)
Cen () = (FGO) = Oon () oo )

From Eq. (3) and Eq. (5) we can write

Een(X) = X iWiei(X) = den(X) coneiii (vi)

The average of over the input distribution p(x) can be written as follows:

Average error of individual model, E;(x) = [ dxp(x) e;(x) ...coovevvneiinniinnnn, (vii)
Average error of ensemble model, Eg, (x) = [ dx p(x) €ern (%) ovoivvniivnininn, (viii)
Average diversity of individual model, D;(x) = [ dxp(x) d;(x) ..ccovvvvvnennn... (ix)

From the Eq. (vii, viii, ix), the ensemble generalization error of Eq. (vi) can be

formulated as

B = FE — D oo (%)

Where

E =Y, W,E;(x) is the weighted average of the generalization errors of the individual

HCI model and

D = Y; W;D;(x) is the weighted average of the diversity among these HCI models which

is a non-negative value.
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Eq. (x) show that an ideal ensemble consists of highly correct HCI models that disagree
as much as possible and the generalization error of the ensemble is always smaller than

the average of the individual errors, that is E,, < E.

5.1.2. Diversity & Accuracy

Theoretically the ensemble error can be described as two distinct components: first of all,
the accuracies of the individual models and secondly, a term for their interactions, i.e.
their diversity. In a regression problem squared is commonly used for error measure.
Using a linear combiner the accuracy-diversity breakdown for regression problem is
called the “Ambiguity Decomposition” by Krogh and Vedelsby [63]. They showed that
the squared error of the linearly combined ensemble, f{x), can be broken into a sum of two

components:

(F(0) = d)? = 23T (Fe(0) = d)? =337, (Fe(0) = FX))” v (@)

The first term on the right hand side is the average squared error of the individual models,
while the second term computes the variation between the predictions. This second term
is called “ambiguity" which is always positive. This assures that, for any arbitrary data
point, the ensemble squared error is always less than or equal to the average of the

individual squared errors.

The optimal “diversity” can be thinking of as a credit assignment problem. If a committee

of doctors as a whole concluded an erroneous diagnosis of a disease, how much of this
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error should be attributed to each doctor? In particular, how much of the committee
decision is due to the accuracies of the individual doctor and how much is due to their
interactions when they were combined. The intuition here can also be understood by a
fairground game example explained by Brown [64]. Let us imagine groups of five
players, playing “guess the weight of the cake": if a player's guess is close enough to the
true weight, that group will win the cake. The fairground manager states that each player
can only submit one guess. The dilemma seems to be in whose guess the group should
submit. However, the Ambiguity decomposition in Eq. (a) shows that taking the average
of their guesses will always on average be closer than choosing a player at random and

submitting their guess.

Note that this is qualified with “on average" it may well be that one of the predictions will
in fact be closer than the average prediction, but there is no way of identifying which
predictor to choose, other than random. It can be seen that greater diversity in the
predictions (i.e. a larger ambiguity term) will result in a larger gain over the average
individual performance. However it is also clear that there is a trade off to be had: too

much diversity would cause the average error to be extremely large.

In summary, the definition of diversity depends on the problem. In a regression problem,
the optimal diversity is the trade-off between the bias, variance and covariance
components of the squared error. In a classification problem, with a linear combiner, there

exists partial theory to relate the classifier correlations to the ensemble error rate. In a
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classification problem with a voting combiner, there is no single theoretical framework or

definition of diversity.

5.1.3. Bias & Variance

The bias component tells us how accurate the model is, on average across different
possible training sets. The variance component tells us how sensitive the learning
algorithm is to small changes in the training set. Let us assume we have target variable Y,

vector of inputs X, Prediction model f(x). Therefore,
Y=f(X)+¢&, Wheree~N (0, 1), E(¢)=0, Var(&) =07

Then for an input point X = x (uniform random variable in [0,1]), the following figures
in Figure 32 depicts some scenario of over-fitting and under-fitting by the effect of bias

and variances.
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(a): y=h(x)+& where e~N(0,1)

(b): Low variance, high bias method
(under-fitting)

(c): Low bias, high variance method
(over-fitting)

(d): No noise doesn’t imply no variance
(but less variance)

Figure 32: Effect of Bias and Variances

5.1.4. Bias —Varinace Relation with Model’s Complexity

Figure 33: Bias and Variance of a Model [65]
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As complexity of the model is increased, bias decreases (a better fit to data) and variance
increases (fit varies more with data) (Figure 33). Uaually, the bias is a decreasing function

of the complexity, while variance is an increasing function of the complexity (Figure 34).

High Gias Low Bias
Low Variance High Variance
L e T »
=
]
=
£
5 Test Sample
1)
E -

«

Training Sample

Low M’ High
Model Complexity

Figure 34: The Variation of Bias & Variance Model Complexity

Generalization performance of a learning method measure of prediction capability on
independent test data thus guides model selection. Training data usually affect
monotonically increasing performance with model complexity. Training error is
computed by average loss over training samples. Increasing the model complexity would
cause in decreasing training error consistently and drops to zero with high enough

complexity i.e. over fitting situation would occur (Figure 35).
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Figure 35: Minimum Test Error Occur at Minimum of “E”

5.1.4.1. Some Examples of Bias-Variance Influences with CI Models’ Complexity

Example 1 — Bias-Variance with SVR’s degree of polynomial

» Low degree polynomial has high bias (fits poorly) but has low variance with

different data sets

» High degree polynomial has low bias (fits well) but has high variance with different

data sets

Example 2 — Error, bias and variance w.r.t the number of neuron in the hidden layer of

MLP (Figure 36).
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Figure 36: Bias-Variance Effect with Increasing Hidden Nodes

Example 3 — At fixed model complexity, bias remains constant and variance decreases

with the learning sample size (Figure 37).
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Figure 37: Variance Affect with Training Sample Size and Fixed Complexity

Example 4 — When the complexity of the model is dependent on the learning sample

size, both bias and variance decrease with the learning sample size (Figure 38).
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Figure 38: Bias-Variance Affect with Training Sample Size and Complexity

5.1.5. Bias-Variance Decomposition

The bias-variance decomposition is a useful theoretical tool to understand the
performance characteristics of a learning algorithm. Brown [64] explained the bias-

variance analysis by dartboard example quoting from Moore and McCabe [66] (Figure

HOO®

High bias .Low bjas High hias Low hias
High variance High variance Low variance Low variance

39).

Figure 39: Effect of Bias and Variance — Dartboard Analogy [64]

Each dart is thrown after training the “dart-throwing” model in a slightly different

manner. If the darts vary wildly, the learner is high variance. If they are far from the



82

bull’s eye, the learner is high bias. The efforts to reduce variance often cause increases in
bias, and vice-versa. A large bias and low variance is an indicator that a learning

algorithm is prone to over-fitting the model.

The ideal is clearly to have both low bias and low variance; however this is often
difficult, giving an alternative terminology as the bias-variance ‘dilemma'. The idea of a
trade-off between diversity-accuracy is suggested by Geman et al. [67] as “Bias-Variance
decomposition”. In fact, there is a deep connection between these results. Mathematically,
this can be quantified as a decomposition of the mean squared error function. For a testing

example f(x) with target d, the decomposition is:

ep{(f(x) — d)?} = (ep{f(x) — d})? + £p{(fX) — epffCINZevvovveeroeeerern, (b)

5.1.6. Bias-Variance-Covariance Decomposition

The Bias-Variance-Covariance decomposition is a theoretical result underlying Ensemble
Learning algorithms. It is an extension of the Bias-Variance decomposition, for linear
combinations of models. Taking the expected value of Eq (a) above over all possible
training sets gives us the ensemble analogy to the bias-variance decomposition described
by Ueda and Nakano [30], called the “Bias-Variance-Covariance decomposition”. This

shows that the expected squared error of an ensemble f(x) from a target d is:

o {(fx) — )’} = bias? + 1var + (1-1)covar ..o ©
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The expectation is with respect to all possible training datasets D. While the bias and
variance terms are constrained to be positive, the covariance between models can become
negative. Therefore, the definition of diversity comes forward as an extra degree of
freedom in the bias-variance dilemma. This extra degree of freedom allows an ensemble
to approximate functions that are difficult to find with a single model [9]. Shortly the
error is composed of the average bias of the models, plus a term involving their average
variance, and a final term involving their average pair wise co-variance. This shows that
while a single model has a two-way bias-variance trade off, an ensemble is controlled by
a three-way trade off. This ensemble trade off is often referred to as the accuracy-

diversity dilemma for an ensemble.

5.1.7. Bias-Variance-Covariance Decomposition: An Illustration

P

—

y
Figure 40: Target Variable y, Need to Find p(y)

In case of prediction we want find estimation let say y such that the expectation
E,{(y - )2} over the whole population is minimized. The estimation that minimizes the
error can be computed by taking

OE, o
35 {y-9*=0
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Ey{=2.(y —=9)} =0,
By}~ {5} =,
y=Eyy}
So, the estimation which minimizes the error is E,{y}. In AL, it is called the Bayes
model. But in reality, wet cannot compute the exact value of E},{y} because it involves

the whole population which is not faceable to compute.

As p(y) is unknown, find an estimation y from a sample of individuals, LS = {y1, y», ... ,
wn}, drawn from the whole population. As LS are randomly drawn, the prediction y will

also be a random variable.

ps(M)

y

Figure 41: Estimation of ¥ Required

A good learning algorithm should not be good only on one learning sample but in average

over all learning samples (of size N), we want to minimize:
E = Eis{E{(y - )%}

Let us analyze this error in more details —
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Eis {Ey{(y - 37)2}}
= E, {Ey {(y —E,{y}+ E{y} - 37)2}}

= E {Ey {(y — Ey{y})z}} + ELg {Ey {(Ey{y} - 37)2}}
+ Es{E,(2(y - E,00)(E, 0} - 9)})

=B, {(y - 5,00} + Eis {(B,0) - 9)°} + Euis{2(E, ) - E, 00 (B, 0} - 9)}

=E, {(v - E,0)°} + Eis {(B, 01 - 9)°)

var,{y} I

E, v} y

Figure 42: Variance of y

2 Ry
E = E,{(y - E,) '} + Es {(B,01 - 9)°}
The first term is called residual error i.e. minimum attainable error. It is basically var,{y}.

Ry

Ers {(Ey{y} - )’) }

R 2
=Eis {(Ey{y} — Es{9} + ELs{9} — 9) }

= Eis {(E, 1} — Eus )} + Eusl(Bus ) — )2} + Eus{2(E, — E,s(9}) (Eus(9} - )}

= (Ey{y} - ELS{y})Z + E{(§ — Es{yD?} + Z(Ey - ELS{j;})ELS{(ELS{j;} -9}



= (Ey{y} - ELS{)A’})Z + E {9 — ELs{9D?}

t bias?

Figure 43: Bias between § and y

E=var{y} + (E,{}-ELsiP})’ + ...
Where, E;s{j} = average model (over all LS)

bias” = error between the Bayes and the average model

var, ¢{i

=i

E.sift

Figure 44: Variance of §

E = var,{y} + bias® + Ers{(J-Ers{/})’}

var;s{y} = estimation variance = consequence of over-fitting

Efy} E.sif} 7
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+ bias?

var,{y} var, o{y}

——

Elv} E sy} y

Figure 45: Variances & Bias between § and y

E =var,{y} + bias® + var,s{}

Now consider an input point x € X. In regression problem we want to find a function J(x)

of several inputs. Using unit-square loss and regression fit the error is -

MSE(x) = Exy[(y — 9(x))%]

=0’ + [EY(0) —yI* + E[F () — EYy()]?
=0, + Bias[y(0)]* + Var[§(0)]

Over all the learning sets:

o= (-5
= E, {ELS {Em {(y —y (E))Z}}}

= E, {varym{y}} + E,{bias*(x)} + Ey {vaTLS{y(E)}}

Therefore, ELS{Eyp_C{(y—)?()_c))z}} = Noise(x) + Bias*(x) + Variance(x)
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» Noise(x) = Eyu{(y-hg()_c))z} : Noise quantifies how much y varies from hg(x) =
Eyx{y}, the Bayes model. This is also called Irreducible Error: Variance of the

target around the true mean

» Bias’(x) = (hB()_c)—ELS{)?()_c)})zz Bias measures the error between the Bayes model
and the average model i.e. Amount by which average estimate differs from the

true mean

» Variance(x) = E;s{(3(x)-Ers{3(x))*} : Variance quantify how much y(x) varies

from one learning sample to another i.e. Expected deviation of f* around its mean

5.1.8. Challenges of Ensemble

An ensemble is a very successful technique where the outputs of a set of separately
trained base learners are combined to form one unified prediction. First it can improve the
generalization performance of a classification system greatly. Second, it can be viewed as
an effective approach for CI as a result of its variety of potential applications and validity.
Third, local minima are available for ensembles. Individuals in ensemble are expected to
different local minima of error surface, increasing the diversity of ensemble. Although
ensembles have been used widely, the key problem for researchers is how to effectively
design the individual works that are not only highly correct, but also different as much as

possible.

5.2. ENSEMBLE LEARNING ALGORITHMS

An ensemble basically consists of a set of models and a method to combine them. If we

had a committee of people taking decisions, it is self-evident that we would not want
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them all to make the same bad judgments at the same time. With a committee of learning
models, the same intuition applies: we will have no gain from combining a set of identical
models. We wish the models to exhibit a certain element of “diversity” in their group

behavior, though still retaining good performance individually.

It is known that Bagging can significantly reduce the variance, and therefore it is better to
be applied to learners suffered from large variance, e.g., unstable learners such as
decision trees or neural networks. Boosting can significantly reduce the bias in addition to
reducing the variance, and therefore, on weak learners such as decision stumps, Boosting

is usually more effective.

5.2.1. Bagging

Bagging is an Ensemble Learning technique. Breiman [68] developed the bagging
ensemble based algorithm in which different training data subsets are randomly selected
with replacement from the entire training data to train different individual models and
combined by a uniform average or vote. Each member of the ensemble is constructed
from a different training dataset. Each dataset is a bootstrap sample from the original. The
name “Bagging” comes from “Bootstrap AGGregatING”. Since a bootstrap samples N

items uniformly at random with replacement, the probability of any individual data item
not being selected isp = (1 — %)N . Therefore with large N, a single bootstrap is expected

to contain approximately 63.2% of the original set, while 36.8% of the originals are not

selected. Figure 46 shows flowchart of Bagging algorithm.
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Figure 46: Flow Chart of Bagging

Bagging works best with unstable learners which differing generalization patterns with
small changes to the training data. These are also known as high variance models,
examples of which are Decision Trees and Neural Networks. Bagging therefore tends not
to work well with very simple models. In effect, Bagging samples randomly from the
space of possible models to make up the ensemble with very simple models the sampling
produces almost identical (low diversity) predictions. Despite its apparent capability for
variance reduction, situations have been demonstrated where Bagging can converge

without affecting variance [9].
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Figure 47: Idea of Bagging Ensemble

The idea behind Bagging is shown in Figure 47 where the average model E;s{y(x)} has
the same bias as the original method but zero variance. Usually, bagging reduces very
much the variance without increasing too much the bias. It decreases the variance

(because of averaging) but (slightly) increases the bias (because of the perturbation).

5.2.2. Boosting

Boosting is a family of ensemble learning methods which is a generally an effective
method for improving the accuracy of any given learning algorithm. In the algorithm the
successive networks are trained with a training set selected at random from the original
training set, but the probability of selecting a pattern changes depending on the correct
classification of the pattern and on the performance of the last trained network. Figure 48
shows the flowchart of Boosting algorithm that linearly combines the output of each CI

models.
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Figure 48: Flow Chart of Boosting

The Boosting framework is an answer to a question posed on whether two complexity
classes of learning problems are equivalent: strongly learnable and weakly learnable. The
Boosting framework is a proof by construction that the answer is positive, they are

3

equivalent. The framework allows a “weak" model, only slightly better than random

guessing, to be boosted into an arbitrarily accurate strong model. The motivation of

2

boosting is to combine the output of many “weak” models to produce a powerful
ensemble of models. Schapire and Freund [11,69] proved the equivalence between the
strong learning model and weak learning model, and gave a boosting approach that
convert the weak learning model into strong learning model directly. In Boosting
ensemble, the distribution of a particular training set in the series is over-represented by

the patterns that the earlier classifiers in the series recognize incorrectly. The individual

classifiers are trained hierarchically to learn harder and harder parts if a classification
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problem. A weak model has a high bias (strictly, in classification, a model slightly better
than random guessing). The main difference of Boosting with previous ensemble methods
is building the models sequentially on modified versions of the data. The Predictions of
the models are combined through a weighted sum or majority voting. Adaboost is the
most well known and successful of the Boosting family, though there exist many variants
specialized for particular tasks, such as cost-sensitive and noise-tolerant versions [64]. It
was demonstrated by Dietterich [62] that when the number of outliers is very large, the
emphasis placed on the hard samples can become detrimental to the performance of the
AdaBoost. Friedman [70] put forward a variant of AdaBoost, called "Gentle AdaBoost"

that puts less emphasis on outliers.

5.2.3. Adaboost

Adaboost is the most well known of the Boosting family of algorithms [11]. The
algorithm trains models sequentially, with a new model trained at each round. At the end
of each round, misclassified examples are identified and have their emphasis increased in
a new training set which is then fed back into the start of the next round, and a new model
is trained. The idea is that subsequent models should be able to compensate for errors
made by earlier models. Some similarities with Bagging are evident; a key difference is
that at each round n, Bagging has a uniform distribution D,,, while Adaboost adapts a non-
uniform distribution. The ensemble is constructed by iteratively adding models. Each

time a model is learnt, it is checked to ensure it has at least e, < 0.5, that is, it has
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performance better than random guessing on the data it was supplied with. If it does not,
either an alternative model is constructed, or the loop is terminated. After each round, the
distribution D, is updated to emphasize incorrectly classified examples. Mease and
Wyner [71] presented a discussion of several questions on why and how Adaboost
succeeds. The conclusion is, while no single theory can fully explain Boosting, each

provides a different part of the still unfolding story.

5.3. ENSEMBLE OF HYBRID COMPUTATIONAL INTELLIGENCE MODELS

BUILDING APPROACH

Typically, an ensemble is constructed in two steps. First, a number of base learners are
produced, which can be generated in a parallel style (Bagging) or in a sequential style
(Boosting) where the generation of a base learner has influence on the generation of
subsequent learners. Then, the base learners are combined to use, where among the most
popular combination schemes are majority voting for classification and weighted

averaging for regression.

In this thesis we resolved a regression problem of gas compositions prediction in
multistage separator using Ensemble of Hybrid CI (EHCI) models. We developed three
homogeneous and one heterogeneous EHCI models using parallel scheme. Homogeneous
models consist of same types of CI models as base learners and heterogeneous model
consist of different types of CI models as base learners. We used the most popular CI

models MLP, SVR and ANFIS as base learners of ensemble models which are
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successfully used in many problems of petroleum industry [20,21,22,23,24,25,24,26,27].
We combined GA with each base learner to have hybrid models. GA optimizes the most
crucial parameters of each CI model which are mainly responsible for accuracy. To
compare the performance of the EHCI models, results from CPCP is used as a
benchmark. The EHCI models are found having improved generalization ability

comparing CPCP and single HCI models.

Many approaches for designing individuals in ensemble have been developed in the
literature. Here we focused to emphasize the accuracy in each CI model and at the same
time tried to enforce diversity among the CI models in a number of ways. The EHCI
model is constructed by two steps, one is designing the ensemble members and the other

is combining their predictions.

5.3.1. Designing the Ensemble Members

Combining the output of several classifiers is useful only if they disagree on some inputs.
Theoretical and empirical work showed that an effective ensemble should consist of a set
of networks that are not only highly correct, but ones that make their errors on different
parts of the input space as well [10,63]. Generally, the approaches for employing diversity

while designing the networks can be conducted into three groups [39] as follows:
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5.3.1.1. Difference in Ensemble Members’ Structures

Diverse individuals can be obtained by adopting different model structure. In case of
Neural Network different types of models can be obtained by having different network
types, number of neuron in hidden layer, learning algorithm and initial state in weight
space. For SVR it can be different kernel function and kernel parameters as well as
different C, € and A values. On the other hand for ANFIS it would be the methodology of

creating initial FIS, the different types of ANFIS structure, etc.

5.3.1.2. Difference in Training Set

Diversity can be supported by training the EHCI members on different training datasets
which can be achieved by bagging, boosting or cross validation [11,63,68]. Both the first
one and the second one generate a group of networks which are error uncorrelated
directly. Partridge [72] experimentally compared the capabilities of the method above and
concluded that varying the net type and the training data are the two best ways for

creating ensembles of networks making different errors.

5.3.1.3. Difference in Training Inputs

Different input parameters can be given to different base learners thus having a diverse
knowledge overall the problem domain. In this case different base learners are expert in
different portion of the solution space and improve the generalization ability of the

combined model.
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5.3.1.4. Selecting Uncorrelated Ensemble Members

Another popular way to have diversity is to generate a large number of initial networks
from which several uncorrelated networks are selected as a member of the ensemble.
Opitz and Shavlik [73] proposed an approach based on generic algorithm, searching for
highly diverse set of accurate trained networks. Lazarevic and Obradoric [74] proposed a
pruning algorithm to eliminate redundant classifier. Zhou et al. [46] described a selective

constructing approach for ensemble; clustering-based selective neural network ensemble.

5.3.2. Enforcing Diversity in EHCI Models

We have emphasized on the first two ways to enforce diversity in our EHCI models.

Basically we have followed three ways to enforce diversity.

5.3.2.1. Heterogeneous Ensemble

Heterogeneous Ensemble consists of members having multiple type base learning
algorithms. In this case ensemble members can be different by the structure. We
developed one heterogeneous ensembles model having GA optimized CI models of type
MLP, SVR and ANFIS. At first we provided the input in MLP. We selected the badly
predicted training data by MLP and provide it to train the SVR and later on the badly
predicted training data by SVR is provided to ANFIS for training. In this way the model
would become diverse by having training datasets and one HCI model handled those

cases which cannot be handled by the other HCI model.
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5.3.2.2. Homogeneous Ensemble

Homogeneous Ensemble consists of members having a single type base learning
algorithm. In this case ensemble members can be different by the structure. We developed
three homogeneous ensemble models and each has three HCI models of same type. As we
have used three types of HCI models, we come up with three heterogeneous EHCI

models.

5.3.2.3. Selecting Training Set for Each EHCI Member

We have selected different sizes of training set for different types of output. At first we
divided the whole datasets into training and testing. Around 80% of the whole datasets is
used for training and the 20% of the relevant datasets were used for testing. The training
size for the ensemble members varies from 60% - 80% of the whole training set. We took
the idea of sampling from the concept of boosting, especially in the case of classification.
After the first run of the algorithm, in each of the following run we have selected the
same amount of training data as selected in the first run which are badly predicted by the

CI model of the current run.

5.3.3. Combing the Outputs of EHCI Members

To combine the outputs of the ensemble we have used linear and non-linear approaches.
When the ensemble is used in classifying, voting is usually been used for combining

outputs and when the ensemble is used in regression, simple average and weighted
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average are always been used [39]. Opitz and Shavlik [73] has pointed out that simple
averaging outperforms since optimizing the combining weights can easily lead to the
problem of over-fitting. Perrone and Copper [75] considers weighted average has a better
performance as each network can avoided over-fitting by using a cross-validatory
stopping rule. Sollich and Krogh [76] found that in large ensembles, one should use the
simple averaging. In this way, the globally optimal generalization error on the basis of all
the available data can be reached by optimizing the training set sizes of the individual
member. For ensembles of more realistic size, optimizing the ensemble weights can still
yield substantially better generalization performance than an optimally chosen single

network trained on all data with the same amount of training noise.

The outputs of the EHCI members goes as an input into CI models and these models are
trained after the training phase completion of the members of EHCI. We found that in
some cases non-linear combiner performed well while in some cases the linear combiner
performed better results. Among the linear approaches we have used simple average and
weighted average methods to combine the outputs of EHCI members. We have also used
many non-linear approaches to combine the outputs [41]. We have chosen CI models
such as ANN, SVR, FIS created with Fuzzy C-means Clustering (FCM) and Subtractive
Clustering (Subclust) as a combiner. For ANN combiner we have used MLP with one
neuron in the hidden layer with logsigmoidal activation function. In the output layer we
have used tansigmoidal activation function and we have used Rprop training algorithm.

For SVR we have used “gaussian” type kernel with y value 5. The other parameters e.g. C
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= (0.5, lambda = le-7 and epsilon = 0.0001. For creating FIS, we have used FCM with 6

clusters and radius of 0.3 for Subclust.

5.4. ENSEMBLE OF HYBRID COMPUTATION INTELLIGENCE MODELS

DEVELOPMENT STEPS

The Ensemble of Hybrid Computational Intelligence (EHCI) models building steps are
stated as follows -
1. Determine the CI models’ parameters to be optimized by observing models’
accuracy and complexity.
2. Develop an Ensemble Model -
a. Randomly choose X% of the training datasets.
b. Optimize CI model using GA
c. Training CI model on this X% datasets;
d. Predict 100% training datasets;
e. Choose the X% of badly predicted training datasets.

f. Perform the steps b, ¢ and d for N times on the data availed by step e. (N =
number of ensemble members).

At first, we divide the datasets randomly into training and testing set. We have used 80%
of the datasets for training and 20% for testing. To make homogeneous EHCI model same
kind of CI model with different fixed parameters is chosen in step b of each run.
Performing optimization by GA with different fixed parameters results into a completely

different architecture of the CI model in each run. Consequently, though the
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homogeneous EHCI models have similar type of CI models, their architecture is
completely different. Furthermore, these HCI members of the EHCI models are trained by
different portion of the training datasets and thus EHCI models are enforced to be diverse
enough in order to substantiate better generalization. On the other hand to make a
heterogeneous EHCI model a different CI model must be chosen at step b in each run.
The algorithm can be continued to N runs so as to have an ensemble of N members. The

training and testing phase in EHCI model building steps are described below.

5.4.1. EHCI Model Development Steps: Training Phase with Linear Combiner

Figure 49: EHCI Model Building Steps - Training Phase with Linear Combiner
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To train the EHCI models we have selected X% of the training data randomly with
replacement to perform training of the base CI model in the first run. The percentages of
training size are varying from 60%-90% for different gas components in order to achieve
better performance. In the training phase (Figure 49: (a)), at first the parameters of the CI
models were optimized using GA and then the training is performed. In the subsequent
steps we predicted the whole training set as a part of “local testing” and chose X% of the
badly predicted data from the whole training set to perform training in the next run. To
perform combining of the EHCI members output linearly we have used simple average
and weighted average method (Figure 49: (b)). To assign weight of the members of ECHI
model we predicted the whole training data to measure each member’s performance in

terms of RMSE. The formula for weighted average method is

n
Z WX,

i=1

n
Zwi

i=1

Where the weight calculation formula is

> RMSE, - RMSE,
WA — i=1
(n—1)x > RMSE,

i=l1
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5.4.2. EHCI Model Development Steps: Training Phase with Non-Linear

Combiner

The training phase is similar as stated above. In order to combine with non-linear
approach we predicted the whole training data. The predicted output of the EHCI
members are used as input and the actual outputs are used as output of the non-linear
models. We have used NN, SVR, FIS-Subclust and FIS-FCM non-linear models as
combiner (Figure 50: (b)). We have trained these non-linear models and used them for

prediction in the testing phase.

Figure 50: EHCI Model Building Steps - Training Phase with Non-Linear Combiner
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5.4.3. EHCI Testing Phase

The test data is predicted using the EHIC members and then combined the outputs by

linear and non-linear models (Figure 51).

Figure 51: EHCI Testing Phase

5.5. DEVELOPMENT TOOLS

The experiments are conducted by High Performance Computing (HPC) of ITC at
KFUPM. Some experiments are also accomplished in high speed Intel Xeon quad core

2.8GHz platform. The EHCI models are implemented using MATLAB codes and
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MATLAB toolboxes of Neural Network, ANFIS, GA, etc. The SVM-KM package is used
for SVR. The CPCP dongle is used to produce result of the test data to use it as a

benchmark.
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CHAPTER 6

EXPERIMENTAL RESULTS & DISCUSSION

6.1. PERFORMANCE EVALUATION

In this thesis commonly used techniques for measuring regression problem will be

applied to evaluate the performance of the results. They are explained as follows:

6.1.1. Correlation Coefficient

The Correlation Coefficient (CC) measures the statistical correlation between the
predicted and actual values. CC shows how good the prediction is i.e. how strongly the
relation is between the actual and predicted output. This method is unique, in the sense
that it does not change with a scale in values. The value “1” means perfect statistical
correlation and a “0” means no correlation at all. This performance measure is only used

for numerical input and output.

> (x=x)(y-v)
V=) Sy

The formula:
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Where xand y are the actual and predicted values while x and y are the mean of the

actual and predicted values.

A good prediction model should have significant level (p-value) within 5%. A p-value is
a measure to show the evidence against the null hypothesis. The null hypothesis
represents the hypothesis of no change or no effect. P-value represents the probability of
finding a co-relation by chance. In the sense of statistical significance the lower the p-
value, the less likely the result is if the null hypothesis is true, and consequently the more
"significant" the result is. The null hypothesis is often rejected when the p-value is less

than 0.05 or 0.01.

6.1.2. Root Mean-Squared Error

The root mean-squared error is one of the most commonly used measures of success for
numeric prediction. This value is computed by taking the average of the squared
differences between each predicted value x, and its corresponding actual value y,. The
root mean-squared error is simply the square root of the mean squared error. The root
mean-squared error gives the error value the same dimensionality as the actual and

predicted values.

2

The formula: \/(X1 4 )2 + (-, )2 (% -0
n

Where n is the size of data.
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6.1.3. Training Time

Comparing training time with prediction time, we found that prediction time is fraction of
a second and negligible amount. So we discard prediction time and consider only training

time as it differs excessively with training algorithm. It is computed as follows:

T, -T,

Where T is the CPU time at the end of the run and T is the CPU time at the beginning of
training. The prediction time is very less comparing the training time. Though it takes
huge time to train, once the training is done the model can be used for prediction in no

time.

6.1.4. Number of Negatively Predicted Values

As we are predicting mole fraction of gas compositions, the predicted values should not
contain negative values. We counted the frequency of negative values predicted by each

HCI and EHCI models and consider it as a performance measure.

We have used two metrics two represent results so as to easily compare the outcomes of
the models. One metric of CC vs. RMSE and the other is number of negative prediction
vs. training time. In the first metric the upper left most point indicates the best
performance as we can see from the Figure 52: (a) that the upper left most point have 0

RMSE errors with highest CC value 1. In the second metric of Figure 52: (b), we can
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observe that the lower left corner represents the highest performance as we can see it has

lowest training time with no negative predicted values.

1@ E
%
&
Z
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© :
s
T+
«— «—
0 0@
RMSE Training Time
(a): CC vs. RMSE (b): Negative Prediction vs. Training Time

Figure 52: Metrics for Performance Measure

We gave most importance to error measure of a model that is the RMSE values as long as
it has an accepted CC value. In statistics CC value greater than 0.75 represents strong
correlation between the predicted output and original values. We don’t give too much
importance to training time as long as we have lower RMSE value because once the

model is trained, prediction require insignificant amount of time.

6.2. EXPERIMENTAL SETUP

» Individual CI Models: MLP, SVR, ANFIS
» Hybrid CI Models: GA+MLP, GA+SVR, GA+ANFIS
» Ensemble of Hybrid CI models:

0 Homogeneous EHCI models:



= Ensemble of 3 GA+MLP models

=  Ensemble of 3 GA+SVR models

=  Ensemble of 3 GA+ANFIS models

0 Heterogeneous EHCI model:
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= Ensemble of GA+MLP, GA+SVR and GA+ANFIS models.

The Table 4 shows the Training data percent that is randomly selected from the training

set to train the each model. The rest of the training data is used for Table 5 to Table 8

shows the optimized parameters for the CI models obtained by GA and the corresponding

GA parameters.

Table 4: Training Data Percent (X%) from Training Dataset

Component | GA + CI | EN_of NN+SVR+ANFIS | EN_of MLP | EN_of SVR | EN_of ANFIS
N2 80 70 70 70 70
Cco2 90 70 70 70 70
H2S 80 80 80 80 80
C1 70 80 80 80 80
C2 80 80 80 80 80
C3 90 60 60 60 60
Table 5: Optimized Parameters for ANFIS

Parameters | GA+ANFIS

Component radius # of Rules Generated pop gen crfn
N2 0.2998 65 10 5 0.65
CO2 0.6120 13 50 20 0.65
H2S 0.7959 9 50 20 0.65
C1 0.6062 33 50 10 0.65
C2 0.6141 32 50 20 0.5
C3 0.5533 27 10 5 0.9




Table 6: Optimized Parameters for MLP

Parameters GA+MLP

Component | Hidden Nodes | HL Act Fn OL ActFn | Tr Alg | Epoche | Lr Rate | Error Goal | pop | gen | crfn
N2 56 logsig tansig trainlm 10 0.001 0.00001 10 5 10.65
CcO2 21 tansig tansig trainlm 9 0.001 0.00001 50 | 20 | 0.65
H2S 17 logsig tansig trainlm 10 0.001 0.00001 50 | 20 | 0.65
C1 5 tansig tansig trainlm 13 0.001 0.00001 50 | 10 | 0.65
C2 26 logsig tansig trainlm 14 0.001 0.00001 50 | 20 | 0.65
C3 8 logsig tansig trainlm 15 0.001 0.00001 10 5 0.9

Table 7: Optimized Parameters for SVR

Parameters GA+SVR

Component C A € # of SV Kernel Kernel Op pop gen | crfn
N2 0.9763 0.000666782 0.1754 17 poly 0.5 10 5 10.65
CO2 6.2202 0.000503941 0.0352 54 poly 0.5 50 20 | 0.65
H2S 0.8796 0.000435202 0.0001 77 poly 0.5 50 20 | 0.65
C1 1.2912 0.000788126 0.2410 33 poly 0.5 50 10 | 0.65
C2 0.4764 1.95766E-06 0.0541 51 poly 0.5 50 20 | 0.65
C3 1.9763 0.000666782 0.1912 48 poly 0.5 10 5109

LTI
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6.3. RESULTS & DISCUSSIONS

In this work, the non-hydrocarbons and the hydrocarbons that occupy most of the volume
out of twelve in a multi-stage separator are predicted. The non-hydrocarbons Nitrogen
(N3), Carbon dioxide (CO,), Hydrogen Sulfide (H,S) and the mostly dense hydrocarbons
Methane (CH4 as C1), Ethane (C,Hg as C2) and Propane (C3;Hg as C3), i.e. altogether 6
gas components are predicted. We have showed the performance of each model in the
following figures. The upper two figures of each box mainly depict the performance in
terms of the metrics RMSE vs. CC and # of negative prediction vs. training time. The
black square spot (m) in the Figures represents the performance of the benchmark model
CPCP. The lower Figures of each boxes show the regression analysis of the prediction of

training data as well as the test data for the best performed model.



6.3.1. Nitrogen (N,)

113

CC vs RMSE of N2 - Test Data - by Cl & HCI

Neg Prediction vs Training Time of N2 - Test Data - by Cl & HCI
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Figure 53: Performance of CI and HCI for N, Prediction
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CC vs RMSE of N2 - Test Data
Ensemble of ANFIS

Neg Prediction vs Training Time of N2 - Test Data
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Figure 54: Performance of Ensemble of ANFIS for N, Prediction
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CC vs RMSE of N2 - Test Data
Ensemble of SVR
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Figure 55: Performance of Ensemble of SVR for N, Prediction



116

095 ----

09

cC

0.8a

0a

0.7a

CC vs RMSE of N2 - Test Data
Ensemble of MLP

BEEICE SR Y |

T
CPCP
Awverage
WT-Aorg
MK

S
FIS+FCM
FIS+Subclust H

# of Neg Prediction

Neg Prediction vs Training Time of N2 - Test Data
Ensemble of MLP
1 T T T T T
: : : Average

WT-Avg
1§
S
FIS+FCM
FIS+Subclust

360.2 360.4 360.6 3608 361

Training Time (sec)

(b)

Figure 56: Performance of Ensemble of MLP for N, Prediction

0.76

CC vs RMSE of N2 - Test Data
Ensemble of MLP+SVM+ANFIS

CPCR
Average
W=y
M

S
FIS+FCM

Llt*konten

FIS+Subclust

# of Neg Prediction

Neg Prediction vs Training Time of N2 - Test Data
Ensemble of MLP+SVM+ANFIS
1 T T T T T T
: : : : Awerage

*
WAy
NN

Q  SvM
¥ FIs+FCwM |
+  FIS+Subclust

479 4792 4794 4796 4798

Training Time (sec)

(b)

Figure 57: Performance of Heterogeneous Ensemble for N, Prediction




117

Figure 53: (a) shows that the performance of HCI model GA+ANFIS outperforms other
CI, HCI and CPCP models for N2 prediction. It is noticeable that the HCI models
perform better than the corresponding CI models. Figure 53: (b) shows that GA+ANFIS
took less time than GA+MLP and did not predict any negative value. The regression
analysis of GA+ANFIS in figure 53: (c, d) on training and testing data shows that the

prediction is strongly correlated with the original values.

Figure 54: (a) shows that the EHCI model of ANFIS combined with FIS-Subclust
performed better than other combiner as well as CPCP. The error RMSE value of the best
model GA+ANFIS in Figure 53: (a) is near to 0.6 whereas the EHCI model of ANFIS
combined with FIS-Subclust is much lower than 0.6. Nevertheless EHCI model of SVR
with average combining method in Figure 55: (a) shows that the RMSE value is near to

0.4 which is much lower than the previous models.

Figures 56 and 57 show the other ECHI models’ performance on predicting N2 in

separators gas compositions.
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Figure 58: Performance of CI and HCI for CO; Prediction
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Figure 59: Performance of Ensemble of MLP for CO; Prediction
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Figure 60: Performance of Ensemble of ANFIS for CO; Prediction
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Figure 61: Performance of Ensemble of SVR for CO, Prediction
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Figure 62: Performance of Heterogeneous Ensemble for CO; Prediction

Figure 58: (a) shows that the performance of HCI model GA+MLP outperforms other CI,
HCI models for CO; prediction. It is noticeable that the HCI models perform better than
the corresponding CI models. Figure 58: (b) shows that GA+MLP took less time than
GA+ANFIS and did not predict any negative value. The regression analysis of GA+MLP
in Figure 53: (c, d) on training and testing data shows that the prediction is strongly

correlated with the original values.

Figure 59: (a) shows that the EHCI model of MLP combined with SVR performed better
than other combiner. The error RMSE value of the best model GA+MLP in Figure 58: (a)

1s above 0.6 whereas the EHCI model of MLP combined with SVR is 0.4.

Figures 60, 61 and 62 show the other ECHI models’ performance on predicting CO; in

separators gas compositions.



6.3.3. Hydrogen Sulfide (H,S)
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CC vs RMSE of H2S - Test Data - by Cl & HCI
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Figure 63: Performance of CI and HCI for H,S Prediction
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Figure 64: Performance of Ensemble of ANFIS for H,S Prediction
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Figure 65: Performance of Ensemble of MLP for H,S Prediction
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CC vs RMSE of H2S - Test Data
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Figure 66: Performance of Ensemble of SVR for H,S Prediction
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CC vs RMSE of H2S - Test Data
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Figure 67: Performance of Heterogeneous Ensemble for H,S Prediction
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Figure 63: (a) shows that the performance of CI model MLP outperforms other CI, HCI
and CPCP models for H,S prediction. HCI models except GA+MLP performs better than
the corresponding CI models. Figure 63: (b) shows that CI model MLP took minimum
time comparing other CI and HCI models and did not predict any negative value. The
regression analysis of MLP in Figure 63: (c, d) on training and testing data shows that the

prediction is strongly correlated with the original values.

Figure 64: (a) shows that the EHCI model of ANFIS combined with simple average
method performed better than other combiner as well as CPCP. The error RMSE value of
the best CI model MLP in Figure 63: (a) is near to 0.7 whereas the EHCI model of

ANFIS is about 0.6 with 1 negative prediction (Figure 64: (b)).

On the other hand EHCI model of MLP with FIS-Subclust combining method in Figure
65: (a), EHCI model of SVR with weighted average method (Figure 66: (a)) and
heterogeneous EHCI model (Figure 67: (a)) performance are not as good as EHCI model

of ANFIS but all the models performs better than CPCP.



6.3.4. Methane (CH,4 as C1)
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CC vs RMSE of C1 -Test Data - by Cl & HCI
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Figure 68: Performance of CI and HCI for C1 Prediction
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Figure 69: Performance of Heterogeneous Ensemble for C1 Prediction
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Figure 70: Performance of Ensemble of MLP for C1 Prediction
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Figure 71: Performance of Ensemble of SVR for C1 Prediction
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Figure 72: Performance of Ensemble of ANFIS for C1 Prediction
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Figure 68: (a) shows that the performance of CI model ANFIS outperforms all the CI,
HCI and CPCP models for C1 prediction. It is noticeable that the HCI models perform
better than the corresponding CI models except ANFIS. Figure 68: (b) shows that ANFIS
took less time along with MLP and SVR than the HCI models with no negative
prediction. The regression analysis of GA+ANFIS in Figure 68: (c, d) on training and

testing data shows that the prediction is strongly correlated with the original values.

Figure 69: (a) shows that the heterogeneous EHCI model combined with FIS-Subclust
performed better than other combiner as well as CPCP. The error RMSE value of the best
model ANFIS in Figure 68: (a) is near to 3.75 whereas the RMSE of heterogeneous EHCI
model is about 2.5 (Figure 69: (a)). Nevertheless EHCI model of MLP with weighted

average combining method in Figure 70: (a) shows that the RMSE value is near to 2.5.

Figures 71 and 72 show the other ECHI models’ performance on predicting C1 in

separators gas compositions.
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6.3.5. Ethane (C,H; as C2)

CC vs RMSE of C2 - Test Data - by Cl & HCI Neg Prediction vs Training Time of C2 - Test Data - by Cl & HCI
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Figure 73: Performance of CI and HCI for C2 Prediction
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Figure 74: Performance of Ensemble of SVR for C2 Prediction



135

CC vs RMSE of C2 - Test Data
Ensemble of ANFIS

CPCP
Average

WYT- Ay

N

SWR
FIS+FCM
FIS+Subclust

# of Neg Prediction

0.8

0B

0.4

Neg Prediction vs Training Time of C2 - Test Data

Ensemble of ANFIS
! ! 1 ! ! ! ! !

& Auerage

"""" R i e .

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ® NN 1
! O =R

_______ bbb % RISHFCM |
! +  FIs+Subclust

I i i i I i
5218585218 65218 65218 646218 66218 685218 75218 7 5218 746218 76
Training Time (sec)

(b)

Figure 75: Performance of Ensemble of ANFIS for C2 Prediction
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Figure 76: Performance of Ensemble of MLP for C2 Prediction
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Figure 77: Performance of Heterogeneous Ensemble for C2 Prediction

Figure 73: (a) shows that the performance of HCI model GA+SVR outperforms the other

CI, HCI models for C2 prediction. It is noticeable that the HCI models perform better

than the corresponding CI models except GA+MLP. Figure 73: (b) shows that GA+SVR

took less time than other HCI models and did not predict any negative value. The

regression analysis of GA+SVR in Figure 73: (c, d) on training and testing data shows

that the prediction is strongly correlated with the original values.

Figure 74: (a) shows that the EHCI model of SVR combined with weighted average

method performed better than other combiner. The error RMSE value of the best model

GA+SVR in Figure 73: (a) is near 1.5 whereas the EHCI model of SVR has RMSE about

0.8. Figures 75, 76 and 77 show the other ECHI models’ performance on predicting CO,

in separators gas compositions.
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CC vs RMSE of C3 - Test Data - by Cl & HCI
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Figure 78: Performance of CI and HCI for C3 Prediction
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CC vs RMSE of C3 - Test Data
Ensemble of MLP
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Figure 79: Performance of Ensemble of MLP for C3 Prediction
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CC vs RMSE of C3 - Test Data
Ensemble of ANFIS
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Figure 80: Performance of Ensemble of ANFIS for C3 Prediction
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Figure 81: Performance of Ensemble of SVR for C3 Prediction
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Figure 82: Performance of Heterogeneous Ensemble for C3 Prediction

Figure 78: (a) shows that the performance of HCI model GA+MLP outperforms the other

CI, HCI models for C3 prediction. It is noticeable that the HCI models perform better

than the corresponding CI models. Figure 78: (b) shows that GA+MLP took less time

than GA+ANFIS and did not predict any negative value. The regression analysis of

GA+SVR in Figure 78: (c, d) on training and testing data shows that the prediction is

strongly correlated with the original values.

Figure 79: (a) shows that the EHCI model of MLP combined with FIS-Subclust method

performed better than other combiner. The error RMSE value of the best model GA+MLP

in Figure 78: (a) is near 1 whereas the EHCI model of MLP has RMSE about 0.7.

Figures 80, 81 and 82 show the other ECHI models’ performance on predicting CO; in

separators gas compositions.
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Cl & HCI Model's Performance
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Figure 83: Performance of CI and HCI Models

Figure 83 shows the performance of gas components prediction in terms of RMSE. The
black square (m) represents the performance of CPCP. The triangular symbol represents
CI models performance and the circular symbols represent the performance of HCI
models. It is expected that the circular symbols should appear lower part of the graph. In
the case e.g. H2S we see that the performance of CI model is better than HCI models. But
in most of the cases the performance of HCI is better than CI models. Some CI model
may perform better than other HCI models but it is expected that on average the HCI

models accuracy would be higher than CI models.
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EHCI Model's Performance
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Figure 84: Performance of EHCI Models

The Figure 84 demonstrates the EHCI model’s performance. By comparing with Figure
83 we can see that the EHCI models RMSE values are much lower than the CI and HCI
model. In case of CO, the performance of CI and HCI (Figure 83) are far from the
expected value but in case of EHCI the RMSE value is closer to CPCP. In case of C2
(Figure 83) the performance of CI and HCI could not outperform CPCP but EHCI model
of SVR outperforms CPCP (Figure 84). For all other components the RMSE is much

lower in the ECHI models.



Table 8: Performance of CI Models on Training Data

Training Cp MLP SVR ANFIS
Component CC RMSE CC | P-value | RMSE CC P-value | RMSE CC P-value | RMSE
N2 0.8008 | 1.1383 | 0.9233 | 0.0000 | 0.8834 | 0.8142 | 0.0000 1.2879 | 0.9426 | 0.0000 0.5110
CO2 0.9978 | 0.2926 | 0.9910 | 0.0000 | 0.6219 | 0.9865 | 0.0000 2.3149 | 0.9976 | 0.0000 0.2927
H2S 0.9947 | 0.5334 | 0.9908 | 0.0000 | 0.5512 | 0.9799 | 0.0000 2.9719 | 0.9944 | 0.0000 0.3241
C1 0.9611 | 6.7795 | 0.9613 | 0.0000 | 6.3902 | 0.8810 | 0.0000 | 12.0963 | 0.9805 | 0.0000 4.4701
C2 0.8063 | 3.9949 | 0.9190 | 0.0000 | 2.5136 | 0.8782 | 0.0000 3.5870 | 0.9236 | 0.0000 2.3067
C3 0.9480 | 3.8902 | 0.9641 | 0.0000 | 3.0871 | 0.8832 | 0.0000 6.0333 | 0.9895 | 0.0000 1.5100

Table 9: Performance of CI Models on Test Data
Testing CP MLP SVR ANFIS
Component CC RMSE CC | P-value | RMSE CC P-value | RMSE CC P-value | RMSE
N2 0.9586 | 0.7402 | 0.9403 | 0.0001 | 1.5183 | 0.9843 0.0000 1.2947 | 0.9764 | 0.0000 0.6331
CO2 0.9989 | 0.3114 | 0.9669 | 0.0000 | 1.2819 | 0.9419 | 0.0000 2.0379 | 0.9693 0.0000 1.1854
H2S 0.6800 | 2.0037 | 0.9016 | 0.0004 | 0.6673 | 0.9149 | 0.0002 2.8769 | 0.7828 | 0.0074 1.0078
C1 0.9592 | 4.1464 | 0.9073 | 0.0003 | 4.3953 | 0.7058 | 0.0226 8.1564 | 0.9449 | 0.0000 3.7612
C2 0.9719 | 0.8453 | 0.8166 | 0.0039 | 1.6302 | 0.8143 0.0041 2.5780 | 0.5389 | 0.1080 2.4759
C3 0.9684 | 1.0511 | 0.6426 | 0.0451 | 1.8437 | 0.6319 | 0.0500 4.6158 | 0.4720 | 0.1684 2.2636

evl




Table 10: Performance of HCI Models on Training Data

Training Ccp GA+MLP GA+SVR GA+ANFIS
Component CC RMSE CC P-value | RMSE CC | P-value | RMSE | CC | P-value | RMSE
N2 0.8008 1.1383 | 0.9239 | 0.0000 0.6173 | 0.7954 | 0.0000 | 0.9110 | 0.8965 | 0.0000 | 0.6655
CO2 0.9978 0.2926 | 0.9932 | 0.0000 0.5030 | 0.9890 | 0.0000 | 0.6285 | 0.9991 | 0.0000 | 0.1845
H2S 0.9947 0.5334 | 0.9786 | 0.0000 0.7012 | 0.9963 | 0.0000 | 0.2969 | 0.9990 | 0.0000 | 0.1388
C1 0.9611 6.7795 | 0.9737 | 0.0000 5.3129 | 0.9716 | 0.0000 | 5.5233 | 0.9847 | 0.0000 | 3.9868
C2 0.8063 3.9949 | 0.9496 | 0.0000 1.8938 | 0.8821 | 0.0000 | 2.8458 | 0.9694 | 0.0000 | 1.4813
C3 0.9480 3.8902 | 0.9764 | 0.0000 2.3174 | 0.8912 | 0.0000 | 4.7318 | 0.9926 | 0.0000 | 1.2935

Table 11: Performance of HCI Models on Test Data
Testing Cp GA+MLP GA+SVR GA+ANFIS
Component CC RMSE CC P-value | RMSE CC | P-value | RMSE | CC | P-value | RMSE
N2 0.9586 0.7402 | 0.8953 0.0005 1.1926 | 0.9767 | 0.0000 | 0.7183 | 0.9795 | 0.0000 | 0.5851
CO2 0.9989 03114 | 0.9920 | 0.0000 0.6492 | 0.9385 | 0.0001 | 1.6950 | 0.9827 | 0.0000 | 0.9162
H2S 0.6800 2.0037 | 0.8527 | 0.0017 0.9093 | 0.9119 | 0.0002 | 0.7088 | 0.8211 | 0.0036 | 0.9878
C1 0.9592 4.1464 | 0.9346 | 0.0001 3.8597 | 0.8195 | 0.0037 | 7.6243 | 0.9242 | 0.0001 | 4.0493
C2 0.9719 0.8453 | 0.7971 0.0058 3.0978 | 0.8779 | 0.0008 | 1.4300 | 0.8339 | 0.0027 | 1.4430
C3 0.9684 1.0511 0.8950 | 0.0005 0.9948 | 0.6227 | 0.0545 | 4.5514 | 0.5898 | 0.0727 | 2.2791
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Table 12: Performance of EHCI Models of Heterogeneous and MLP on Training Data

Training CP EN_of MLP+SVR+ANFIS EN_of MLP
Component | CC |RMSE | CC P- | RMSE | Combiner | CC P- | RMSE | Combiner
value value
N2 0.8008 | 1.1383 | 0.8404 | 0.0000 | 0.8733 FCM 0.8458 | 0.0000 | 0.8740 FCM
CO2 0.9978 | 0.2926 | 0.9946 | 0.0000 | 0.4420 Avg 0.9734 | 0.0000 | 1.0653 SVR
H2S 0.9947 | 0.5334 | 0.9970 | 0.0000 | 0.2342 Avg 0.9983 | 0.0000 | 0.1756 | Subclust
C1 0.9611 | 6.7795 | 0.9940 | 0.0000 | 2.4706 | Subclust | 0.9850 | 0.0000 | 3.8961 | WT Avg
C2 0.8063 | 3.9949 | 0.9849 | 0.0000 | 1.0394 | Subclust | 0.9476 | 0.0000 | 1.9194 | Subclust
C3 0.9480 | 3.8902 | 0.9574 | 0.0000 | 3.0316 NN 0.9854 | 0.0000 | 1.7741 | Subclust
Table 13: Performance of EHCI Models of Heterogeneous and MLP on Test Data
Testing CP EN_of MLP+SVR+ANFIS EN_of MLP
Component | CC |RMSE | CC P- | RMSE | Combiner | CC P- | RMSE | Combiner
value value
N2 0.9586 | 0.7402 | 0.9445 | 0.0000 | 1.3335 FCM 0.9354 | 0.0001 | 0.9959 FCM
CO2 0.9989 | 0.3114 | 0.9760 | 0.0000 | 1.1102 Avg 0.9921 | 0.0000 | 0.6455 SVR
H2S 0.6800 | 2.0037 | 0.8635 | 0.0013 | 0.8243 Avg 0.8254 | 0.0033 | 0.9471 | Subclust
C1 0.9592 | 4.1464 | 0.9724 | 0.0000 | 2.5963 | Subclust | 0.9734 | 0.0000 | 2.6864 | WT Avg
C2 0.9719 | 0.8453 | 0.7901 | 0.0065 | 1.8677 | Subclust | 0.9579 | 0.0000 | 0.9375 | Subclust
C3 0.9684 | 1.0511 | 0.7165 | 0.0197 | 1.8074 NN 0.9626 | 0.0000 | 0.7051 | Subclust
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Table 14: Performance of EHCI Models of SVR and ANFIS on Training Data

Training CP EN_of SVR EN_of ANFIS
Component | CC RMSE | CC V;;le RMSE | Combiner | CC P-value | RMSE | Combiner
N2 0.8008 1.1383 | 0.9152 | 0.0000 | 0.5971 | WT Avg | 0.8604 0.0000 0.2509 Subclust
CO2 0.9978 0.2926 | 0.9951 | 0.0000 | 0.4142 | Subclust | 0.9694 0.0000 1.1126 SVR
H2S 0.9947 | 0.5334 | 0.9975 | 0.0000 | 0.2155 | WT Avg | 0.9984 0.0000 0.1904 Avg
C1 0.9611 6.7795 | 0.9655 | 0.0000 | 6.8267 FCM 0.9975 0.0000 1.5971 Subclust
C2 0.8063 3.9949 10.9216 | 0.0000 | 2.3371 | WT Avg | 0.9790 0.0000 1.2252 Subclust
C3 0.9480 3.8902 | 0.9835 | 0.0000 | 1.8862 | Subclust | 0.8759 0.0000 5.1539 NN

Table 15: Performance of EHCI Models of SVR and ANFIS on Test Data

Testing CP EN_of SVR EN_of ANFIS
Component CC RMSE CC V;;le RMSE | Combiner | CC P-value | RMSE | Combiner
N2 0.9586 0.7402 | 0.9920 | 0.0000 | 0.5339 | WT _Avg | 0.9735 0.0000 0.5858 Subclust
CcO2 0.9989 0.3114 | 0.9539 | 0.0000 | 1.4027 Subclust 0.9253 0.0001 1.7695 SVR
H2S 0.6800 2.0037 |0.8884 | 0.0006 | 0.8431 | WT Avg | 0.9315 0.0001 0.6100 Avg
C1 0.9592 4.1464 | 0.9005 | 0.0004 | 5.7066 FCM 09113 0.0002 42918 Subclust
C2 0.9719 0.8453 | 0.9519 | 0.0000 | 0.7818 | WT Avg | 0.8604 0.0014 1.2852 Subclust
C3 0.9684 1.0511 | 0.8394 | 0.0024 | 1.3132 Subclust 0.4582 0.1830 2.2419 NN

4!
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The Tables 8 to 15 show the numerical values of the CC, RMSE and P-values of all the
models. The CC value represents how good the prediction is and the P-value shows how
significant the prediction is. The CC above 0.75 represents statistically acceptable
correlation and the P-value less than or equal to 0.05 means the significance level is
within 5%. In the Tables 8 to 15 we can see that the P-value is less than 0.05 except one

or two cases which shows that the prediction of models are significant.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

The outcomes indicate that the performances of EHCI models are anticipating. Various
types of EHCI models are equipped with different gas components. The performance of
CPCP is ameliorating only for CO,. Nevertheless it should be noted that if the fraction of
gas components 1S low comparing to other gas components then a relatively small
difference in prediction would cause a higher error in calculation. Although CPCP
performed well, the results obtained by CPCP are fixed. On the other contrary, the
performances of HCI or EHCI models are still have options to be optimized. Fine tuning
to GA operator and other parameters of the models can improve the HCI or EHCI

model’s performance.

Different EHCI models perform well for different gas components. It cannot be
extrapolated to use particular types of EHCI model for all the gas components.
Furthermore the combining techniques are also important and its performance for
different gas components varies. We have used EHCI model consisting of only 3
members. In general there is no ensemble method which surpasses other ensemble
methods consistently. It is anticipated that using more base learners will lead to a better

performance, yet Zhou et al. proved the “many could be better than all” theorem which



149

points that this may not be the fact. Though ensemble having more members might have
better accuracy, we have got better results than CPCP benchmark by using EHCI model
having only three members. So we didn’t include more members in ensemble so as to
obtain the simple EHCI model. We can further improve the EHCI model by incorporating
new HCI members of EHCI models. Moreover new HCI can be included as a member
such as different types of ANN, Type II Fuzzy Logic, GHDH based model, Extreme
Learning Machine (ELM) etc. To make the HCI member diverse, enough data can be
divided intelligently by flocking the training sets or the dominant input parameters. The
parameters of GA can be finely tuned so that the accuracy of EHCI models can be
improved to greater degree. Moreover EHCI members can be chosen from a group of
well diverse and accurate HCI models. We do not perform post processing so that very
small value counted as negative. Post processing of the output can improve the
performance by eliminating negative predicted value. Furthermore, there are still 6 more

gas components left to be predicted.
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APPENDIX A: A RESERVOIR SAMPLE WITH SEPARATOR COMPOSITION

Table 16: Molar compositions related to reservoir of Fluid F3 [JAUBERT]

First stage
conditions:

Second stage conditions:
Tstock/ °C =15.0

Properties of the cuts from C6

Tsep/ °C=89.0 Pstock/bar = 1.01325 to C20+
Psep/bar =34.0 | tank oil density (kg/m3) = 828.4
Compound Reservoir|Separator| Separator | Residual gas | Stock tank oil | Molar weight | density at
fluid (F3)| gas liquid (g- mol’l) 15 °C (kg/m3)
1. Hydrogen Sulfide 0.000 0.000 0.000 0.000 0.000
2. Nitrogen 0.450 0.780 0.040 0.190 0.000
3. Carbon dioxide 1.640 2.510 0.470 2.420 0.000
4. Methane 45.850 | 73.180 8.280 42.510 0.000
5. Ethane 7.150 9.870 3.740 16.340 0.690
6. Propane 6.740 8.190 6.680 22.470 2.860
Cut C4
7. i-Butane 0.840 0.840 1.270 2.640 0.940
8. n-Butane 3.110 2.620 5.250 8.220 4.530
Cut C5
9. i-Pentanes 1.030 0.560 2.070 1.570 2.190
10. n-Pentane 1.650 0.750 3.440 1.930 3.810
Cut C6
11. i-Hexanes 1.280 0.200 2.540 0.510 3.030 86.0 672.8
12. n-Hexane 1.240 0.190 2.460 0.490 2.940
Cut C7
13. i-Heptanes 0.470 0.030 1.030 0.070 1.270 92.0 729.4
14. Benzene 0.240 0.020 0.520 0.030 0.640
15. Cyclanes C7 2.230 0.150 4.950 0.320 6.060
16. n-heptane 0.830 0.050 1.830 0.120 2.240
Cut C8
17. i-Octanes 0.720 0.010 1.370 0.030 1.700 106.0 750.9
18. Toluene 0.740 0.010 1.430 0.030 1.760
19. Cyclanes C8 2.020 0.040 3.890 0.080 4.810
20. n-Octane 0.800 0.010 1.530 0.030 1.900
Cut C9
21. i-Nonanes 0.620 0.000 1.390 0.000 1.720 120.0 773.9
22. Aromatics C9 0.920 0.000 2.060 0.000 2.550
23. Cyclanes C9 0.640 0.000 1.420 0.000 1.770
24. n-Nonane 0.520 0.000 1.150 0.000 1.430
Cut C10
25. i-Decanes 1.020 0.000 2.010 0.000 2.500 137.0 783.5
26. Aromatics C10 0.360 0.000 0.700 0.000 0.870
27. n-Decane 0.310 0.000 0.620 0.000 0.770
28. undecanes (cut C11) 1.810 0.000 4.130 0.000 5.120 146.0 796.8
29. dodecanes (cut C12) 1.470 0.000 3.350 0.000 4.160 159.0 805.7
30. tridecanes (cut C13) 1.450 0.000 3.320 0.000 4.130 172.0 815.1
31. tetradecanes (cut C14) | 1.280 0.000 2.920 0.000 3.630 183.0 827.2
32. pentadecanes (cut C15)| 1.150 0.000 2.640 0.000 3.270 198.0 843.7
33. hexadecanes (cut C16) | 0.910 0.000 2.070 0.000 2.570 218.0 845.8
34. heptadecanes (cut C17)| 0.820 0.000 1.860 0.000 2.320 233.0 844.9
35. octadecanes (cut C18) | 0.800 0.000 1.830 0.000 2.270 249.0 849.1
36. nonadecanes (cut C19)| 0.710 0.000 1.620 0.000 2.010 262.0 858.9
37. eicosanes plus (C20+) | 6.180 0.000 | 14.110 0.000 17.540 474.0 925.3
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