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In this thesis, gas components in a multi-stage separator are predicted using Hybrid 

Computational Intelligence (HCI) and Ensemble of HCI (EHCI) models. We have used 

Root Mean Square Error (RMSE), Correlation Coefficient (CC), training time and 

number of negatively predicted values as performance measures of the HCI, EHCI 

models and compared with Equation of State and Empirical Correlation based Chevron 

Phase Calculation Program (CPCP) as a benchmark. First, we have used the evolutionary 

algorithm based Genetic Algorithm to optimize the parameters of the Computational 

Intelligence models such as Artificial Neural Network, Support Vector Regression and 

Adaptive Neuro-Fuzzy Inference System in order to form HCI models. We observed that 

for 2 out of 6 gas components, the performance of HCI models is better than CPCP but 

for the rest 4 gas components the performance is very close to the CPCP in terms of 

RMSE and CC but truly could not outperform it. Due to this reason and because the 

generalization ability of an ensemble is usually much stronger than that of base learners, 

we have developed heterogeneous and homogenous types of EHCI models. The 

experimental results of the EHCI models show that for 5 out of 6 gas components, the 

EHCI models outperformed both the individual HCI models and CPCP in terms of RMSE 

and CC with no negative predicted values at all.  



 

 

xvii 
 

الرسالة ملخص   

  محمد امتياز حسين:   الاســـــــــــــــم

     هَجن ومُحَسَّن لتنبؤِ بمكوّناتِ الغازِنموذج حسابي مُ :  الرسالة عنوان

  علوم الحاسب:   التخصــــــــص

  2011يونيو :   التخــرج تاريخ

يعتبر التنبؤ بمرآبات الغازات في عمليات فصل الغازات عن الزيوت متعددة المراحل تحديا وذلك لأن معدل تغير 

قة مباشرة بين هذه المتغيرات حيث إنها تعتمد على ولا توجد علا. المرآبات تتنوع آثيرا مع تغير الضغط والحرارة

وعمليات فصل الغازات عن الزيوت هذه لها . وعلى والمرآبات الابتدائية للزيت - بل وأحيانا على العينة  -المكمن 

تقدير آمية المرآب الغازي قبل إنتاجه قد يساعد في تخفيض تكلفة . أهمية آبيرة في إنتاج آل من الغازات والزيوت

وعادة ما تستخدم طريقتا معادلة الحال والارتباط التجريبي لتحليل . الإنتاج، وزيادة آفاءة الإنتاج، وتحديد جودة الزيت

معادلة. مكونات الموائع بعض الخصائص فى التنبؤ للكنها غير قادرة على  تعمل على ما يرام في بعض الحالات الحال 

لذا، فقد تزايد . ت المعقدة تكون آلتا الطريقتين ذات نتائج غير مرضيةففي حالات الهيدروآربونا. آثير من الحالات

 ليس هذا فحسب، بل إن أنظمة مهجنة من تقنيات. في مجال هندسة النفط وغيرهالطلب على تقنيات الذآاء الحاسوبي 

ات الغازات في في هذه الرسالة، نقوم بالتنبؤ بمرآب. مختلفة باتت تطرح من أجل آفاءة أعلىال حاسوبيالذآاء ال

وقد . هجينة ونماذج موحدة لهاالحاسوبي الذآاء العمليات فصل الغازات عن الزيوت متعددة المراحل باستخدام أنظمة 

ابتدأنا بإيجاد أمثل القيم لمتغيرات أنظمتنا عبر خوارزميات جينية، . قمنا باستخدام معايير متعددة لقياس آفاءة العمل

 متجانسةوغير  متجانسةثم قمنا بعمل نماذج . للغاز مكونات كونين اثنين من أصل ستةمالتنبؤ لمما أسفر عن تحسن 

مقارنة بأداء الطرق ن تلك المكونات لخمسة م التنبؤ مما أسفر عن تحسين المختلفة تقنيات الذآاء الحاسوبيمن 

                                                                                                                                   .التقليدية
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CHAPTER 1                                                                           

INTRODUCTION 

 

Gas components prediction in multi-stage oil and gas separation process is a challenging 

task as the rate of changes of the components varies in bulk by the change of pressure and 

temperature. There is no straight forward relation between these changes rather it depends 

on reservoir characteristics and initial oil components which might vary by reservoir to 

reservoir and even sample to sample. Gas separation is an important process which is 

essential for oil and gas production. Quantifying the gas composition prior to the 

production may help in cutting down the production cost, maximizing the production 

efficiency and determining the quality of oil. Equation of State (EOS) and Empirical 

Correlation (EC) are generally used for fluid components analysis. EOS works properly 

under some stable conditions but unable to estimate the properties of all substances under 

all conditions accurately. EOS is basically a poor predictive tool for complex 

hydrocarbon system and on the other hand EC has limited accuracy though it doesn’t 

involve complex calculation. Computational Intelligence (CI) techniques such as 

Artificial Neural Network (ANN), Support Vector Regression (SVR) and Adaptive 

Neuro-Fuzzy Inference System (ANFIS) have gained immense popularity in many areas 

of research including petroleum engineering and outperform the conventional EOS and 
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EC based techniques in many cases. Moreover, combinations of CI models with 

evolutionary optimized models will have an obvious advantage in their performance 

when applied in complex domains of application. In this thesis, gas components in a 

multi-stage separator are predicted using Hybrid Computational Intelligence (HCI) and 

Ensemble of HCI (EHCI) models. We have used Root Mean Square Error (RMSE), 

Correlation Coefficient (CC), training time and number of negatively predicted values as 

performance measures of the HCI, EHCI models and compared with conventional EOS 

and EC based Chevron Phase Calculation Program (CPCP) as a benchmark. First, we 

have used the evolutionary algorithm based Genetic Algorithm (GA) to optimize the 

parameters of the CI models mentioned above in order to form HCI models. We observed 

that for 2 out of 6 gas components, the performance of HCI models is better than CPCP 

but for the rest 4 gas components the performance is very close to the CPCP in terms of 

RMSE and CC but truly could not outperform it. Due to this reason and because the 

generalization ability of an ensemble is usually much stronger than that of base learners, 

we have developed heterogeneous and homogenous types of EHCI models. The 

experimental results of the EHCI models show that for 5 out of 6 gas components, the 

EHCI models outperformed both the individual HCI models and CPCP in terms of RMSE 

and CC with no negative predicted values at all. 



3 

 

 
 

1.1. HYBRID AND ENSEMBLE COMPUTATIONAL INTELLIGENCE MODELS 

Computational Intelligence (CI) is a branch of computer science that deals with problems 

for which do not have any effective solutions. Researches in CI have produced a huge 

collection of algorithms, grouped into the main CI paradigms. These CI techniques are 

used repeatedly to create hybrid intelligent systems, where different algorithms from 

different CI paradigms are combined to form a hybrid model. This process required a re-

implementation of existing CI algorithms. In addition to the CI components of a hybrid 

system, a communication protocol among the CI techniques are needed to be defined and 

implemented.  

A Hybrid Computational Intelligent (HCI) system combines at least two CI techniques. 

For example, combining a ANN with a Fuzzy Inference System (FIS) results in a hybrid 

neuro-fuzzy system. HCI models are defined as any effective combination of CI 

techniques in sequential or parallel manner that performs superior to simple CI techniques 

[1,2]. HCI was adopted in several scientific papers during the last decade, as an extension 

to the standard experimentation along with other well-known CI techniques, in various 

application domains [3,4,5]. In EUNITE 2001 [6], it was stated that “intelligent hybrid 

systems” are meant to be any combinations of intelligent technologies (e.g. neuro-fuzzy 

approaches, evolutionary optimized networks, etc.) but particularly those, which have an 

noticeable advantage in their performance when it is applied in complex domains of 

application (either by means of accuracy obtained, or by means of comprehensibility of 
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the acquired results). The main challenge of HCI model is the collaboration efficiency of 

each component. Another important factor of a hybrid system is the speed of process and 

the time needed to produce a generalized high-performance decision model. The evidence 

drawn from recent literature [1,2] on the effectiveness of a specific kind of hybrid 

methodologies in a variety of real-world applications could render this hybrid scheme as 

method of choice for the decision makers. In this sense, to solve different parts of the 

overall problem can be manipulated effectively by different intelligent techniques (e.g. 

cluster formation, feature selection for reduction of complexity and so forth), a fact that 

often leads to the establishment of a hybrid intelligent model for better handling of the 

problem. Choosing an appropriate HCI model is vital as one should start from referring to 

the particular advantages and disadvantages of each of the standard CI techniques. The 

evolutionary computation, genetic programming, etc., models are time consuming in the 

training phase, so the complexity of this method has to be accounted for prior to the 

design stage. On the other hand, they perform very well in generalization and robust 

model building from complex data. Figure 1 shows optimization of SVR model using 

GA. 
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Figure 1: Optimization Process of Genetic SVR [7] 

If the problem involves uncertainty, incorporating the Fuzzy Logic (FL) in hybrid model 

would be a good choice. Fuzzy rule based approaches are by far advantageous in handling 

of approximate or vague concepts existing within a dataset. ANN is typical a black box 

architecture (i.e. of very low comprehensibility of the produced decision model) that 

prove superior in handling numerical data and highly non-linear domains of application. 

Thus the Neuro-fuzzy systems are usually superior to simple ANN, due to the fact that a 
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ANN “suffers” from noise, whereas the neuro-fuzzy system has the ability to “absorb” the 

noise with the use of the embedded membership functions. Fuzzy-genetic systems are 

preferable than simple FIS as the fuzzy-genetic approaches do not have to define oneself 

the rule-base. For similar reasons, a neuro-fuzzy system is superior to a simple FIS, as the 

neuro-fuzzy systems do not have to tune the rule-base. Generally the reliability and the 

availability of the data under processing are also a crucial factor for the success or the 

failure of a specific hybrid intelligent methodology. 

Ensemble learning is a way of combining different CI or HCI models (at least two) in 

parallel or sequential manner. Ensemble model contains a number of learners which are 

usually called base learners. The generalization ability of an ensemble is usually much 

stronger than that of base learners [8,9]. Actually, ensemble learning is appealing because 

that it is able to boost weak learners which are slightly better than random guess to strong 

learners which can make very accurate predictions. So, “base learners” are also referred 

as “weak learners”. It is noteworthy, however most theoretical analyses work on weak 

learners, base learners used in practice are not necessarily weak since using the not-so-

weak base learners often shows better performance. Base learners are usually generated 

from training data by a base learning algorithm which can be ANN, SVR, ANFIS or 

other kinds of machine learning algorithms.  
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boosted to strong learners, and the proof resulted in Boosting, one of the most influential 

ensemble methods. 

1.2. PROBLEM BACKGROUND 

Petroleum deposits are naturally occurring mixtures of organic compounds consisting 

mainly of hydrogen and carbon and are termed as hydrocarbons which are mainly 

Methane, Ethane, Propane, Butane, and other organic compounds. The deposits found in 

the gaseous form are called ‘natural gas’ and that in the liquid form is called ‘crude oil’. 

Apart from hydrocarbon gases, non-hydrocarbon gases also exist in the reservoirs in 

varying amounts. The non-hydrocarbon gases are treated as contaminants which are 

nitrogen (N2), hydrogen (H2), carbon dioxide (CO2), hydrogen sulfide (H2S), and rare 

gases such as helium. Crude oil and gases are found underground at elevated pressure and 

temperature conditions. Gas extracted with crude oil from oil wells (called "associated" 

gas) must be separated at the wellhead. Producing, separating, transporting, and storing 

petroleum fluids are the primary responsibilities of a petroleum and natural gas engineer. 

At every stage of the petroleum exploration and production business, a hydrocarbon fluid 

engineer is needed. Hydrocarbon fluid engineers might find themselves dealing with 

activities such as reserve evaluations, drilling operations, reservoir analyses, production 

operations, and gas processing. Most of the fluid handling protocols require the engineer 

to derive a priori about how the fluids will behave under a wide range of pressure and 

temperature conditions. Optimal design and efficient operation of hydrocarbon production 
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handling and processing systems strongly depends on accurate knowledge of fluid phase 

behavior. Usually it is much economical to use three to four stages of separation for the 

hydrocarbon mixture. Maximization of condensate yield is virtually impossible without 

the tools for accurate prediction of the amount of liquid existing under a given condition 

of pressure, temperature and composition. Therefore, having advanced predictive tools 

for the characterization of hydrocarbon phase behavior with highest accuracy proves to be 

a key solution so as to overtake the economics of hydrocarbon systems. 

The function of oil production is focused on separating the oil well stream into three 

components or “phases” (oil, gas, and water) into marketable products or disposes them 

in an environmental friendly manner. “Separators” is a mechanical device where gas is 

flashed from the liquids and “water” is separated from the oil (Figures 3, 4). These steps 

also remove light hydrocarbons from oil to produce a stable crude oil with volatility (i.e., 

vapor pressure) that meet the required criteria. Separators are classified as “two-phase” if 

they separate gas from the total liquid stream and “three-phase” if they also separate the 

liquid stream into its crude oil and water components. The separated gas is compressed 

before commercializing. Modeling such mechanism is very crucial for controller design, 

fault detection and isolation, process optimization and dynamic simulation [12]. In this 

thesis, we focused on predicting the three-stage separators’ gas compositions as they form 

the main processes in the upstream petroleum industry and have a significant economic 

impact on produced oil quality. 
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Figure 3: Multistage Surface Separation Facility [13] 

 

Figure 4: Separators in Oil Field 

Capacity and efficiency of gas/liquid separation is a major issue in natural gas production. 

One of the problems encountered in the field of petroleum is the fact that the behavior of 

the multiphase flow under the prevailing circumstances is complex and quite difficult to 

predict. A complication that occurs when attempting to quantify the behavior of these 
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multiphase flows is that under high pressure the properties of the mixture may differ 

considerably from those of the same mixture under atmospheric conditions. This effect 

requires expensive experimental equipment to conduct experiments under actual 

circumstances and equally expensive computing equipment and software to carry out 

numerical flow simulations. Produced gas contains liquid and solid constituents. The 

removal of these constituents forms the most important process before delivery. The 

liquid almost invariably consist of water and hydrocarbons that are gaseous under 

reservoir conditions but condenses during the production due to drop off pressure and 

temperature. 

 

Figure 5: Conceptual View of Reservoir and Three Stage Separator 

Oil resides in the reservoir at huge temperature and pressure such as 250F and 5000 psi 

respectively. After the oil extracted from reservoir it is collected in sequential tanks under 

low temperature and pressure such as 150F and 175 psi respectively (Figure 5). Due to 
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properties. For example, Chevron’s Phase Calculation Program (CPCP) is a program 

based on EOS and EC being used in industries for various purposes. CPCP is designed to 

help the engineer to calculate the phase compositions, densities, viscosities, thermal 

properties, and the interfacial tensions between phases for liquids and vapor in 

equilibrium. One of the applications of CPCP is that it considers reservoir crude oil 

compositions, C7+ Molecular weight and density, separator stage temp and pressure as 

input to predict the gas compositions on particular stage using EOS and EC. EOS is 

useful for description of fluid properties like Pressure Volume Temperature (PVT). But 

there is no single EOS that accurately estimates the properties of fluids under all 

conditions. The EOS has adjustment issues against the phase behavior data of reservoir 

fluid of known composition while the EC has limited accuracy [19]. In the recent years, 

CI techniques such as ANN, SVR and ANFIS have gained immense popularity in solving 

various petroleum related problem like PVT properties, Porosity, Permeability, Viscosity 

prediction, etc [20,21,22,23,24,25,24,26,27]. Each of the CI techniques have some 

limitations and is already proved in the literature that an ensemble or hybrid of these 

models have better generalization ability than a single CI model [26,27,28,29]. In this 

thesis, heterogeneous and homogeneous EHCI models are developed to learn the complex 

relationship between the input and the output parameters to predict the gas compositions 

in multi-stage separator. The accuracy of ensemble model depends on the diversity and 

accuracy of each member of ensemble model [9,30,31] . We enforced diversity by using 

heterogeneous and homogeneous ensemble models as well as random sampling from the 
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idea of Bagging and Boosting. HCI is used to enforce accuracy of each member of the 

ensemble models. The hybrids are designed in order to be benefitted from the strengths of 

the individual techniques and to complement the weaknesses of each of them and thus 

enforce accuracy on the unseen data. Experimental results show that the generalization 

ability of EHCI outperforms the GA optimized single CI models. EHCI also outperforms 

the conventional EOS and EC based CPCP for most of the hydrocarbons and non-

hydrocarbons in gases. 

1.3. PROBLEM STATEMENT 

Enormous volume of gas is released from oil/gas production process. The function of oil 

production is focused on separating the oil well stream into three components or “phases” 

(oil, gas, and water) into marketable products or disposes them in an environmental 

friendly manner. “Separators” is a mechanical device where gas is flashed from the 

liquids and “water” is separated from the oil. Knowing the gas compositions produced in 

separator helps to determine the quality of oil and optimize the production process. We 

want to predict the gas compositions in multistage separator that releases from oil 

production process. In the industry, EOS and EC are usually used for fluid compositions 

analysis and determining other oil/gas properties. The EOS has adjustment issues against 

the phase behavior data of reservoir fluid of known composition while the EC has limited 

accuracy. CI techniques such as ANN, SVR and ANFIS have gained immense popularity 

in solving various petroleum related problem like PVT, Porosity, Permeability, Viscosity 
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prediction, etc and outperform EOC and EC based techniques. To achieve better 

prediction accuracy we have used EHCI models to predict the gas components in the 

multi-stage separator. 

1.4. OBJECTIVE 

The goal of this thesis is to develop EHCI models to solve a regression problem of gas 

components prediction in multi-stage separator. We used ANN, SVR and widely used 

hybrid model ANFIS as members of EHCI models. To have better generalization, 

ensemble members should be diverse and accurate as well. We improved the accuracy of 

the CI models by using Evolutionary Algorithms (EA) based Genetic Algorithm (GA). To 

enforce diversity we have used different model structure of the same CI model results in 

creating homogeneous EHCI models. Different CI models are used to create 

heterogeneous EHCI model and thus having diversity among the members of the 

ensemble. Moreover we have used the concept of “boosting” sampling techniques that 

applied in classification problem to boost the performance of the EHCI members in 

sequential manner which results in more diverse members. 

1.5. MOTIVATION 

Gas separation is an essential step for gas/oil production process. Gas composition 

predictions beforehand may help in cutting down the production cost, maximizing the 

production efficiency and determining the quality of stock tank oil. EOS and EC are 
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generally used for fluid compositions analysis. But there is no single EOS that accurately 

estimates the properties of all substances under all conditions. EOS is poor predictive 

tools for complex hydrocarbon system and EC has limited accuracy. To the best of our 

knowledge CI techniques are not yet applied to sort out this problem. Moreover, CI 

techniques successfully outperform EOS and EC techniques in many applications of 

petroleum industry and there is no existing robust solution gas compositions prediction in 

multistage separators. 

1.6. DATASETS DESCRIPTION 

In this thesis, we have collected data of 60 different crude oil samples from Asian oil 

reservoirs. We have also collected around 17 samples from European oil reservoirs [32]. 

To increase the number of training samples we have synthesized 50 samples from the 

available data by using the material balance method [33]. We have used 80% of the 

relevant samples for training and validation and the remaining 20% used for testing. 

We used the reservoir crude oil sample compositions as well as other available 

information as an input and the separator gas compositions as output. We are predicting 

the gas compositions in the further stage at certain temperature and pressure. Input 

parameters consist of mole percent of the non-hydrocarbon and hydrocarbon contents of 

reservoir crude oil sample. Non-hydrocarbons i.e. N2, H2S and CO2 and hydrocarbons i.e. 

Methane (CH4 as C1), Ethane (C2H6 C2), Propane (C3H8 as C3), Butane (C4H10 C4), 

Pentane (C5H12 as C5), Hexane (C6H14 as C6), Heptanes & heavier (C7+) are present in 
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the crude oil. Isomers of C4 and C5 are also presents. Hydrocarbons are distinguished by 

the number of carbon atoms in the molecule. Methane (CH4) is symbolized as C1 which 

represents one carbon atom in the molecule (Figure 7).  

 

Figure 7: Chemical Bonding of Hydrocarbons 

At normal temperature and pressure C1 to C4 are gases, C5 to C16 are liquids and those 

with more than 16 atoms of carbon are in solid state. All the components of gas and 

hydrocarbons occur in liquid state in the reservoir due to the presence of high pressure 

and temperature. The other available information is also used as an input such as stock 

tank API gravity (American Petroleum Institute gravity is a good indicator of its quality 

and is the major basis for its pricing which is a measurement of the density of crude oil), 

Bubble point pressure (BPP), reservoir temperature, separator stage pressure and 

temperature, C7+ molecular weights, C7+ density. Output parameters consist of mole 

fraction of different non-hydrocarbon and hydrocarbon gases such as N2, CO2, H2S, C1, 

C2, C3, iC4, nC4, iC5, nC5, C6, and C7+ at each stage. 
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1.7. DATASETS ANALYSIS 

The statistical analysis of the inputs and outputs data is provided in Table 1 and Table 2.  

Table 1 and Table 2 provide the statistical descriptions of the predictor variables and 

predicting variables respectively. The mean and standard deviation provide insights about 

the dispersion, and the maximum and minimum values indicate the range of the data. 

Skewness is a measure of the asymmetry of the data around the sample mean and its 

negative value indicates that the data are spread out more to the left of the mean than to 

the right. On the other hand, the positive value of skewness means that the data are spread 

out more to the right. If the value of skewness is zero, it can be concluded that the 

distribution is normal distribution or any perfectly symmetric distribution. The skewness 

values of the data used in this study revealed that majority of the predictor and predicting 

variables are spread out more to the right of the mean and there is no clear indication that 

the data are generated from any perfectly symmetric distribution process. Kurtosis reveals 

the outlier-prone characteristics of a distribution and the kurtosis of the normal 

distribution is 3. The kurtosis values of the input data indicate that all the variables are 

less outlier-prone than the normal distribution except for four cases. On the other hand the 

kurtosis values of the output data indicate that half of the variables are less outlier-prone 

than the normal distribution except for five cases. 

 



19 

 

 
 

1.7.1. Input Data Analysis 

Table 1: Statistical Properties - Input Data 

Input N2 CO2 H2S C1 C2 C3 i_C4 n_C4 i_C5 n_C5 C6 C7+ C7+ 
Density 

C7+ 
MW 

Stage 
Temp 

Stage 
Pres 

BPP ST 
API 

Res 
Temp 

Mean 0.30 1.61 0.74 18.16 6.90 6.81 1.43 4.53 2.01 2.95 4.45 50.15 0.87 260.36 116.29 126.29 2183.18 36.89 193.22 

Std Dev 0.66 2.18 1.88 13.90 3.06 1.68 0.61 1.05 0.70 0.78 1.68 15.16 0.04 39.70 33.75 110.81 750.19 10.32 27.96 

Max 4.70 7.38 12.37 47.70 14.05 12.03 3.34 7.76 4.22 4.79 9.79 75.11 0.93 350.00 315.00 519.00 3986.00 124.10 280.00 

Min 0.00 0.00 0.00 0.52 1.29 2.83 0.79 2.52 1.19 1.38 1.88 24.97 0.72 193.00 50.00 14.70 390.00 24.20 130.00 

Skewness 4.92 1.26 4.31 0.44 -0.04 0.35 1.46 0.97 1.04 0.24 1.00 0.15 -1.20 0.32 2.01 1.07 0.10 5.58 0.60 

Kurtosis 26.82 0.10 22.00 -0.99 -1.10 0.84 1.01 0.81 0.54 -0.82 0.56 -1.48 3.72 -0.63 9.72 1.23 0.01 45.76 0.39 

1.7.2. Output Data Analysis 

Table 2: Statistical Properties - Output Data 

Input N2 CO2 H2S C1 C2 C3 i_C4 n_C4 i_C5 n_C5 C6 C7+

Mean 0.65 3.61 1.14 47.74 19.78 15.62 2.35 5.34 1.24 1.38 0.83 0.31

Std Dev 1.41 4.28 2.91 22.36 6.15 10.32 2.34 4.64 1.21 1.22 0.75 0.30

Max 9.66 16.44 18.86 82.40 36.17 42.36 9.94 20.67 6.68 6.52 3.95 1.80

Min 0.00 0.00 0.00 2.98 8.37 3.81 0.41 1.04 0.16 0.19 0.08 0.00

Skewness 4.86 1.26 4.21 -0.47 0.41 0.97 1.68 1.32 1.76 1.64 1.88 2.23

Kurtosis 25.72 0.26 20.76 -0.79 -0.18 -0.42 2.18 0.62 3.27 2.63 3.58 6.59

19
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1.8. CONTRIBUTION OF THIS THESIS 

1. A systemic way of building Ensemble of HCI (EHCI) Models. 

2. An Evolutionary Algorithm based Genetic Algorithm is effectively used to 

optimize the parameters of the members’ of EHCI models. 

3. The Output of each member of EHCI models is aggregated in linear and non-

linear manners and analyzed the consequences in EHCI models. 

4. The EHCI models are applied in gas components prediction in multistage 

separator, where there is no robust CI based solution available for this problem. 

1.9. THESIS ORGANIZATION 

The thesis is structured as follows: 

Chapter 2: Presents literature review of the CI, HCI, Ensemble models and the 

techniques used for gas composition prediction in various research areas. 

Chapter 3: Gives an in depth description of ANN, SVR, ANFIS and GA. 

Chapter 4: Provides the methodology of building HCI models. 

Chapter 5: Describes in details of EHCI models building steps. 

Chapter 6: Illustrates the experimental results, analysis of the results obtained by both 

HCI and EHCI models followed by a comparison with the CPCP benchmark. 

Chapter 7: Provides conclusions and future work. 
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CHAPTER 2                                                                           

LITERATURE REVIEW 

 

2.1. COMPUTATIONAL INTELLIGENCE IN PETROLEUM ENGINEERING 

Farhan et al. [20] have developed a reliable predictive tool using ANN for the forecasting 

of optimum operating conditions of a surface facility for the recovery of condensates 

from natural gases. They used ANN consists of 2 hidden layers with 30 and 15 neurons, 

13 input neurons ( C1 – C7+, N2, H2S, CO2, Pressure, MW C7+, SG C7+) and 3 output 

neurons (optimum CGR, API, and pressure at stage2). The “log–sigmoidal” and “purelin” 

function were utilized as the transfer function within middle layers. The network is able 

to predict optimum operating conditions for maximum surface condensate recovery with 

minimal error. They also implemented TEKA criteria [34] to determine the input 

relevancy. They found that surface condensate recovery from natural gases is highly 

dominated by the amounts of lights (C1), intermediates (C4), heavies (C7+) and pressure 

at the operating stage. Beyond these, the non-hydrocarbons have more influence than the 

other hydrocarbons. 

Elsharkawy et al. [19] presents two general regression neural network (GRNN) models to 

predict the changes in retrograde gas condensate composition and to estimate the pressure 

depletion behavior of gas condensate reservoirs. The first model, GRNNM1, is developed 
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to predict dew point pressure and gas compressibility at dew point using initial 

composition of numerous samples while the second model, GRNNM2, is developed to 

predict the changes in well stream effluent composition at any stages of pressure 

depletion. GRNNM2 can also be used to determine the initial reservoir fluid composition 

using dew point pressure, gas compressibility at dew point, and reservoir temperature. 

The study showed that the GRNN models general are accurate, valid, and reliable. 

Moghadassi et al. [35] described details about the need of ANN for prediction oil/gas 

properties. EOS are useful for description of fluid properties such as pressure-volume-

temperature (PVT). At present, there is no single equation of state that accurately 

estimates the properties of all substances under all conditions. In that work they proposed 

a new method based on ANN for estimation of PVT properties of compounds. ANN is a 

model based on some experimental results that is proposed to predict the required data 

because of avoiding more experiments. They found minimum Mean Square Error (MSE) 

of 0.000606 by using ANN with sixty neurons in the hidden layer and conclude that 

ANN’s capability to estimate the PVT properties is one of the best estimating methods 

with high performance. 

Aminzadeh et al. [23] highlights the applications of soft computing and artificial 

intelligence in the oil industry, using geological and geophysical data. The strength and 

weakness of human intelligence versus machine intelligence and the need for combining 

human and machine intelligence is pointed out. It is argued that the role soft computing 
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methods (ANN, Fuzzy Logic (FL) and evolutionary computing) that can play a good role 

in establishing “hybrid” intelligence for addressing E&P problems. 

Xie et al. [36] have developed a methodology that provides permeability estimates for all 

rock-types or lithologies, for a wide range of permeability. This is a hybrid Genetic 

Programming and Fuzzy/Neural Net inference system and which utilizes lithologic and 

permeability facies as indicators. The results from conducting cross-validation suggest 

this methodology is robust in estimating permeability in complex heterogeneous 

reservoirs. Hybrid GP-Fuzzy/Neural system has been shown to be robust in estimating 

permeability from elastic parameter input. This system yields the estimated permeability 

that matches core permeability more consistently. 

Chang and Chang [28] used the ANFIS to build a prediction model for reservoir 

management. To illustrate the applicability and capability of the ANFIS, the Shihmen 

reservoir, Taiwan, was used as a case study. They used a large number (132) of typhoon 

and heavy rainfall events with 8640 hourly data sets collected in past 31 years. To 

investigate whether this neuro-fuzzy model can be cleverer (accurate) if human 

knowledge, i.e. current reservoir operation outflow, is provided, they developed two 

ANFIS models: one with human decision as input, another without. They demonstrated 

that the ANFIS can be applied successfully and it can provide high accuracy and 

reliability for reservoir water level forecasting in the next three hours. They consequently 
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found that the model with human decision as input variable has consistently superior 

performance with regard to all used indexes than the model without this input. 

Wafaa and Alaa [37] suggested an intelligent technique using FL and ANN to determine 

reservoir properties from well logs. Fuzzy curve analyses based on fuzzy logic were used 

for selecting the best related well logs with core porosity and permeability data. ANN is 

used as a nonlinear regression method to develop transformation between the selected 

well logs and core measurements. The technique was demonstrated with an application to 

the well data in West July oil field, Gulf of Suez, Egypt for the Miocene Upper Rudeis 

reservoirs (Asal and Hawara formations). The results shows that the technique can make 

more accurate and reliable reservoir properties estimation compared with conventional 

computing methods. This intelligent technique can be utilized as a powerful tool for 

reservoir properties estimation from well logs in oil and natural gas development projects. 

2.2. COMPUTATIONAL INTELLIGENCE IN GAS RELATED STUDY 

Sheng-wei Fei et al. [22] proposed Support Vector Machine (SVM) with Genetic 

Algorithm (SVMG) to forecast the ratios of key-gas in power transformer oil, among 

which GA is used to determine free parameters of support vector machine. The 

experimental results indicate that the SVMG method can achieve greater accuracy than 

ANN under the circumstance of small training data. SVMG implements the principle of 

structural risk minimization in place of experiential risk minimization, which makes it 

have excellent generalization ability in the situation of small sample. And it can change a 



25 

 

 
 

non-linear learning problem into a linear learning problem in order to reduce the 

algorithm complexity by using the kernel function idea. In addition, GA can be used to 

select suitable parameters to forecast the ratios data of key-gas, which avoids over fitting 

or under-fitting of the SVM model occurring be-cause of the improper determining of 

these parameters. 

Mohaghegh and  Balan [21]  used their efforts toward the development of a new and novel 

methodology for optimal design of hydraulic fracture treatments in a gas storage field. A 

hybrid system that is consisted of two neural networks and a genetic algorithm routine 

was developed for design and optimization of hydraulic fracturing procedures in a gas 

storage field in Ohio. The major difference between these systems with conventional two 

or three dimensional frac simulators was that the developed hybrid system provide a 

solution for frac treatment design and optimization in the absence of conventional 

reservoir data that were an absolute necessity when using conventional (2D or 3D) 

simulators.  They used available data, without access to reservoir data such as 

permeability, porosity, thickness and stress profiles. The hybrid system developed in this 

study is able to forecast gas storage well deliverability with higher than 95% accuracy. 

This system is also capable of helping the practicing engineers to design optimum 

hydraulic fractures. The developed system is currently being used to select candidate 

wells and to design frac jobs in the aforementioned field. 
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Ozmen  and Tekce [17] presented a system which is made of an array of eight 

phthalocyanine-coated QCM sensors and an ANN to find the corresponding composition 

of a gas mixture. The digital data collected from the sensor responses were pre-processed 

by a sliding window algorithm, and then used to train a three layer ANN to determine the 

gas compositions. The system is tested with the following gas mixtures: (1) ethanol–

acetone, (2) ethanol–trichloroethylene, (3) acetone–trichloroethylene. They demonstrated 

that finding the compositions of gas mixtures using an array of QCM sensors and ANN is 

possible. The success rate in identifying the constituent component amounts of the 

approach 84.5% for gas 1, 94.3% for gas 2. Similarly, average prediction errors are 15.5% 

for gas 1, 5.7% for gas 2 and 10.6% overall. The sensor array and the method developed 

to process the sensor data in this work is promising for future experiments. Although the 

system developed in this work is applicable only when a gas mixture belongs to the 

certain specified categories. 

Shokir et al. [24] presented a new pure hydrocarbon gas and gas mixture viscosity model 

over a wide range of temperatures and pressures as a function of gas density, pseudo-

reduced temperature, pseudo-reduced pressure, and the molecular weight of pure and 

hydrocarbon gas mixtures. The new model designed seems to be simpler and eliminated 

the numerous computations involved in any EOS calculation. The developed new model 

yields a more accurate prediction of the pure gas and gas mixture viscosity with the 

lowest average absolute relative error (5.6%) among all tested gas viscosity correlations. 

They resolved that the GP-modeling approach is capable of estimating the viscosity of 
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pure and hydrocarbon gas mixtures with high accuracy compared to the experimental 

values.  This work could be extended to develop a universal viscosity correlation 

considering gas condensate and sour natural gas mixtures. 

Ilkhchi et al. [38] proposed an optimal and improved model to make a quantitative and 

qualitative correlation between Normalize Oil Content (NOC) and well log responses by 

integration of neural network training algorithms and the committee machine concept. 

This committee machine with training algorithms (CMTA) combines Levenberg–

Marquardt (LM), Bayesian regularization (BR), gradient descent (GD), one step secant 

(OSS), and resilient back-propagation (RP) algorithms. Each of these algorithms has a 

weight factor showing its contribution in overall prediction. The optimal combination of 

the weights is derived by a genetic algorithm. They performed a case study where 231 

data composed of well log data and measured NOC from three wells of South Pars Gas 

Field were clustered into 194 modelling dataset and 37 testing samples for evaluating 

reliability of the models. The result shows that the CMTA provides more reliable and 

acceptable results than each of the individual neural networks differing in training 

algorithms. Also CMTA can accurately identify production pay zones (PPZs) from well 

logs. 

2.3. RESEARCH IN ENSEMBLE 

Polikar [8] discussed about bootstrap-inspired techniques in CI, specifically in ensemble 

of classifiers based algorithms. The crux in this article is to generate an ensemble of 



28 

 

 
 

diverse classifiers, where each classifier is trained on a strategically selected bootstrap 

sample of the original data. Pragmatically he discussed the ability of bootstrap-based 

approaches so as to signify the outcomes of implementations of such approaches on a 

variety of real-world problems. He used several examples of these algorithms that create 

strong classifiers from an ensemble of weaker ones. Such algorithms make good use of 

small datasets by training multiple classifiers on bootstrap samples of the available data. 

As a result he concluded that new ensemble is generated using each new dataset, where 

individual classifiers are trained with bootstrapped samples of the training data, whose 

distribution is adjusted to ensure that the novel information is efficiently learned. 

Zhao et al. [39] performed a constructive survey on the ANN ensembles, including 

effective analysis and general implement steps of ensembles. Compared with a single 

ANN, the ensemble is able to efficiently improve the generalization ability of the 

classifier work. They concluded that ensemble of network can improve the generalization 

performance of a classification system greatly. Furthermore the availability of local 

minima in the individuals in neural network ensemble are expected to have different local 

minima of error surface thus increased the diversity of ensemble. They mentioned that the 

challenge of Ensemble researchers is how to effectively design the individual works that 

is not only highly correct, but also different as much as possible. 

He and Shen [40] used a bootstrap methods for time-series prediction  are used to 

construct multiple learning models, and then use a combination function to combine the 
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output of each model for the final predicted output. ANN model as the base learning 

algorithm and applied this approach to the foreign currency exchange rate predictions. 

Both daily prediction and weekly prediction indicate that the proposed method can 

significantly improve the forecasting performance compared to the traditional single 

neural network based approach. After training, testing points are sent to every ANN 

model and a combination function is used to combine the outputs from individual neural 

networks 

Lai et al. [41] proposed a new nonlinear ANN ensemble model for financial time series 

forecasting. It starts with the generation of many different neural networks then they used 

the principal component analysis technique is used to select the appropriate ensemble 

members. They did ANN ensemble using SVR method. Testing was done using two real 

financial time series. A novel triple-phase nonlinear ensemble predictor for financial time 

series forecasting is proposed. The effectiveness of the proposed nonlinear ensemble 

approach, implying that the proposed nonlinear ensemble model can be used as a feasible 

approach to financial time series forecasting is demonstrated experimentally. 

Dong and Han [42] used ensemble methods for weak classifiers and whether they are 

effective for strong classifiers is not clear. SVM had been the state-of-the- art 

performance for the Text Classification (TC) tasks. Due to the complexity of the TC 

problems, it becomes a challenge to systematically develop classifiers with better 

performance. They deployed five types of data partitioning ensemble of SVMs were 
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experimentally compared on two well-accepted benchmark collections, and they found 

that disjoint partitioning ensembles of SVMs with stacking performed best and 

consistently outperformed the single SVM. They also found that bagging and cluster 

partitioning ensembles are not effective to combine strong classifiers like SVM, and 

boosting always achieves worse results on all of the collections. 

Melville et al. [43] compared the sensitivity of bagging, boosting, and decorate to three 

types of imperfect data: missing features, classification noise, and feature noise. In 

comparing bagging, boosting and decorate, bagging is quite sensitive while boosting is 

fairly robust but that decorate is constructs diverse committees using artificial data. It has 

been shown to generally outperform both boosting and bagging when training data is 

limited. For missing data, they found that Decorate is the most robust. For classification 

noise, bagging and Decorate are both robust, with bagging being slightly better than 

Decorate, while boosting is quite sensitive. For feature noise, all of the ensemble methods 

increase the resilience of the base classifier. They concluded that Bagging performs the 

best at combating high amounts of classification noise. In the presence of noise in the 

features, all ensemble methods produce consistent improvements over the base learner. 

Chen [31] focused mainly on the diversity among ensemble members and the 

regularization. He proved that diversity highly correlates with the generalization error 

only when diversity is low, and the correlation decreases when the diversity exceeds a 

threshold. He investigated error diversity in x using negative correlation learning (NCL) 
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in detail. This provides a Bayesian formulation of RNCL and implements RNCL by two 

techniques: gradient descent with Bayesian Inference and evolutionary multi-objective 

algorithm. According to him the numerical results demonstrate the superiority of RNCL. 

Left-truncated Gaussian is used by him prior for this probabilistic model to obtain a set of 

sparse and non-negative combination weights. He summarized various selection-based 

and weight-based algorithms for ensemble pruning, which aims to reduce the size of 

ensemble and simultaneously improve the generalization performance by balancing 

diversity, regularization and accuracy in the ensemble.  

Pasquariello et al. [44] presented a comparison of classification strategy based on the 

combination of the outputs of a ANN ensemble and the application of SVM classifiers in 

the analysis of remotely sensed data. On analysis they proved that the non linear, Multi-

Layer Perceptron (MLP) based, combination provides the best results among the different 

combination schemes. This method gave a combination error lower than that of the best 

classifier in the ensemble. A performance enhancer can be obtained by using a non linear 

combiner, such as the MLP neural network: the value of the combination error was the 

lowest. The application of a further MLP module to combine the outputs of the ensemble 

helps to overcome some of the main limitations of the generalization capability of each 

single module in the ensemble. When a more transparent formalism is required in 

understanding why a combination scheme is better than another and in what 

circumstances, the Bayesian and the error correlation matrix are the preferable techniques 
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for selecting the coefficient of the linear combination. Since they are more robust with 

respect to the generalization issue and give the similar results like MLP.  

Redondo et al. [45] proposed two new ensemble combiners based on the Mixture of 

Neural Networks model. Two different network architectures on the methods based on 

the Mixture of Neural Networks: the Basic Network (BN) and the Multilayer Feed 

forward Network (MF) is incorporated experimentally. A comparison of the mixture 

combiners was proposed by them with three different mixture models and other 

traditional combiners are presented. The results show that the mixture combiners 

proposed are the best way to build multi-net systems among the methods studied in the 

paper in general. The two new combiners are applied to ensembles of Multilayer Feed 

forward networks previously trained with Simple ensemble. In first which is Mix-SE-BN, 

Basic Network as gating network is applied to weight and combine the outputs provided 

by the networks of the ensemble previously trained with Simple Ensemble. In the second 

one, Mix-SE-MF, Multilayer Feed forward network is applied as gating network to 

combine the ensemble previously trained with Simple ensemble. In experiments the first 

mixture model, Mix-BN-BN, the Basic Network is used as expert and gating networks. In 

the second, Mix-MF-BN, the Multilayer Feed forward network is used as expert networks 

whereas the Basic Network is used as gating network. In the last one, Mix-MF-MF, the 

Multilayer Feed forward network is used as expert and gating networks. To compare the 

combiners proposed with the seven traditional combiners, they have used ensembles of 3, 

9, 20 and 40 networks previously trained with Simple Ensemble. After comparing the two 
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sets mean Increase of Performance and the mean Percentage of Error Reduction are 

calculated with respect to a single MF network to compare all the methods. It was found 

by them, the mixture combiners on Simple Ensemble are the best way to build Multi-Net 

systems among the models and combiners studied, also the combiners proposed are more 

robust than the traditional ones. Similar results are obtained in other cases too. It is 

proved that the accuracy of an ensemble of Multilayer feed forward networks can be 

improved by applying the gating network of the Mixture of ANNs as ensemble combiner.    

Zhou et al. [46] analyzed the relationship between the generalization ability of the neural 

network ensemble and the correlation of the individual neural networks, which reveals 

that ensembling a selective subset of individual networks is superior to ensembling all the 

individual networks in some cases. An algorithm called GASEN is proposed by them, 

which trains several individual neural networks and then employs genetic algorithm to 

select an optimum subset of individual networks to constitute an ensemble. Comparing 

with a popular ensemble approach, i.e. averaging all, and a theoretically optimum 

selective ensemble approach, i.e. enumerating, GASEN has preferable performance in 

generating ensembles with strong generalization ability in relatively small computational 

cost is proved experimentally.  

Wen et al. [47] investigated whether a hybrid approach combining different stock 

prediction approaches together can dramatically outperform the single approach and 

compare the performance of different hybrid approaches. The hybrid model includes three 
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well-researched prediction algorithms: back propagation neural network (BPNN), ANFIS 

and SVM They were utilized independently to single-step forecast the stock price, and 

then they were integrated into a final result by a combining strategy. Two different 

combining methods are investigated by them. The first method is a linear combination of 

the three forecasts. The second method combines them by a neural network. Combining 

the single algorithm considerately, a better performance can be received is verified 

experimentally. A number of soft computing approaches have successfully applied in the 

prediction of stock price and showed good performance. 

Aljahdali et al. [48] explored GA as an alternative approach to derive different software 

reliability models. GA is a powerful machine learning and optimization techniques to 

estimate the parameters of well known reliably growth models. The reason of choosing 

GA for this task is its capability of estimating optimal parameters through learning from 

historical data.  Experiments were conducted to confirm these hypotheses by evaluating 

the predictive capability of the developed ensemble of models and the results were 

compared with traditional models. Predictability of software reliability using ensemble of 

models trained using GA arte measured. The study is applied on three study sets; 

Military, Real Time Control and Operating System.  In comparison to the predictability of 

the single AR model and ensemble of AR models trained by GA algorithm over the 

trained and test data is concerned, the ensemble of models performed better the single 

model. Also, they found that the weighted average combining method for ensemble has a 
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better performance in a comparison with average method. This due to the GA learned 

weights which decide the contribution of each model in the final results.  

Zainal et al. [49] used an ensemble of one-class classifiers where each uses different 

learning paradigms. Three techniques are incorporated which are: Linear Genetic 

Programming (LGP), ANFIS and Random Forest (RF). The strengths from the individual 

models were evaluated by them and ensemble rule was formulated. Empirical results 

show an improvement in detection accuracy for all classes of network traffic; Normal, 

Probe, DoS, U2R and R2L. RF was also able to address imbalance dataset problem that 

many of machine learning techniques fail to sufficiently address it. Ensemble of different 

learning paradigms can improve the detection accuracy is demonstrated in this paper. 

This was achieved by assigning proper weight to the individual classifiers in the ensemble 

model. Using experimentation they found out that, LGP has performed well in all the 

classes except the U2R attacks. In contrary, RF shows a better true positive rate for U2R 

class. Thus, by including the RF in the assemble model, the overall performance 

particularly the result for U2R class has improved.  

Chandra and Yao [50] tried to come up with a co-evolutionary framework with a view to 

synthesize evolutionary ensemble learning algorithms. Ensembles of learning machines 

have been outperforming single predictors in many cases. This happens usually when 

they constitute members which form a diverse and accurate set. Keeping in mind they 

developed a multi-objective evolutionary optimization as a formidable ensemble 
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construction technique. In addition to presenting detailed empirical results and 

comparisons with a wide range of algorithms in the machine learning literature in this 

paper they tried to explicate on the intricacies of the proposed framework. All ensemble 

learning methods are essentially based on a very simple idea which is their goal of having 

diverse and accurate members within them which help them to outperform single 

learners. An algorithm called DIVACE is also proposed by them with an idea to enforce 

diversity and accuracy within the ensemble explicitly within a multi-objective 

evolutionary setup. This becomes an evolutionary framework that uses a myriad of 

diversity enforcement ideas rolled into one evolutionary ensemble learning algorithms in 

terms of the average test error rates for the Australian credit card assessment dataset.  
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CHAPTER 3                                                                           

OVERVIEW OF COMPUTATIONAL INTELLIGENCE TECHNIQUES 

 

3.1. ARTIFICIAL NEURAL NETWORK  

Artificial Neural Network (ANN) is a machine learning approach inspired by the 

biological nervous systems that mimic human brain performing a particular learning task. 

ANN is parallel computing systems consisting of large number of simple processing unit 

called “neuron”, similar to neuron of brain with many connections. Each node is 

characterized by a node function with fixed or adjustable parameters. The node function 

is called “Activation function” is used for scaling the output of each neuron.  The 

architecture of ANN depends on the pattern of connections between the neurons. A 

learning algorithm is required to determine the weights on the connections. One of the 

main properties of ANNs is their ability to learn from data. In general, the available data 

can be divided into two parts: one part for training, and the other for testing. The training 

phase of a ANN is a process to determine optimum parameters values to sufficiently fit 

the training data. The basic learning rule is the well-known back-propagation method 

which seeks to minimize some measure of error, usually a sum of squared differences 

between a network outputs and desired outputs. When the test error is much larger than 
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Figure 10 shows two kind of activation function used in this dissertation. 

 
 

Figure 10: log-sigmoidal and tan-sigmoidal Activation Function 

3.2. SUPPORT VECTOR REGRESSION 

Support Vector Machines (SVMs) were first introduced by Boser et al. at the COLT 1992 

conference [51]. In 1995 the soft margin classifier was introduced by Cortes and Vapnik 

[52]. In the same year the algorithm was extended to the case of regression by Vapnik in 

The Nature of Statistical Learning Theory [53]. Support Vector Regression (SVR) as a 

regression version of SVMs. The main idea is always the same for both SVR and SVM 

which is to minimize error and individualizing the hyper-plane which follows the 

maximum margin algorithm: a non-linear function is leaned by linear learning machine 

mapping into high dimensional kernel induced feature space. The capacity of the system is 

controlled by parameters that do not depend on the dimensionality of feature space. 

Margin is a distance between optimal hyper-plane and a vector which lies closest to it. The 

decision boundary (optimal hyper-plane) should be as far away from the data of both 

classes as possible (Figure 11). 
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݂ሺݔሻ ൌ ௜ሻݔሺ׎௜ݓ ൅ ܾ (1)

In linear regression, we actually minimize the error function 
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By replacing the quadratic error function by ε-insensitive error function we get  
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Where the error function is 
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otherwise 

For a target point to lie inside the ε tube 
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Our target is to find a flat model. The flatness in (1) means that a small w is needed. One 

way to ensure is to minimize the norm of w i.e. 2
w . This problem can be written as 
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(5)  

The constant C > 0 determines the trade-off between the flatness of f and the upper bound 

of the deviations larger than ε will be tolerated. In most cases the optimization problem of 

Eq. (5) can be solved more easily in its dual formulation. The key idea is to construct a 

Lagrange function from the primal objective function and the corresponding constraints, 

by introducing a dual set of variables. This constrained optimization problem is solved 

using the following primal Lagrangian form: 

ܮ ൌ
1
2

צ ݓ ଶ൅צ ܥ ෍ሺߦ௜ ൅ ௜ߦ
ሻכ െ ෍ሺߟ௜ߦ௜ ൅ ௜ߟ

௜ߦכ
ሻכ

௡

௜ୀଵ

௡

௜ୀଵ

 

െ ෍ ௜ߙ
ߝሺכ ൅ ௜ߦ

כ െ ௜ݕ ൅ ௜ሻݔሺ׎௜ݓ ൅ ܾሻ
ே

௜ୀଵ

 

െ ෍ ߝ௜ሺߙ ൅ ௜ߦ െ ௜ݕ ൅ ௜ሻݔሺ׎௜ݓ ൅ ܾሻ
ே

௜ୀଵ

 ………………………..(6) 
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The Saddle point of L has to be found by minimization with respect to ݓ, ܾ, ,௜ߦ ௜ߦ
 and  כ

maximization with respect to langrage multipliers ߙ௜, ௜ߙ
,כ ,௜ߟ ௜ߟ

 These dual variables have .כ

to satisfy positivity constraints, i.e. ߙ௜
ሺכሻ, ௜ߟ

ሺכሻ ൒ 0 . It follows from the saddle point 

condition that the partial derivatives of L with respect to the primal variables 

,ݓ  ܾ, ,௜ߦ ௜ߦ
  .have to vanish for optimality כ

ܮ߲
ݓ߲

ൌ 0 ฺ ݓ െ ෍ሺߙ௜ െ ௜ߙ
,௜ݔ൫ܭሻכ ௝൯ݔ ൌ 0

௡

௜ୀଵ  

(7)
 

ܮ߲
߲ܾ

ൌ 0 ฺ ෍ሺߙ௜ െ ௜ߙ
ሻכ ൌ 0

௡

௜ୀଵ

 
(8)

 

ܮ߲
௜ߦ߲

ൌ 0 ฺ ௜ߙ ൅ ௜ߟ ൌ  ܥ
(9)

 

ܮ߲
௡ߦ߲

כ ൌ 0 ฺ ௜ߙ
כ ൅ ௜ߟ

כ ൌ  ܥ
(10)

 

Now Eq. (6) can be rewritten as dual optimization problem from Eq. (7), (8), (9) and (10) 

as follows 
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Maximize 

െ
1
2

෍ ෍ሺߙ௜ െ ௜ߙ
ሻכ

௡

௝ୀଵ

൫ߙ௝ െ ௝ߙ
,௜ݔ൫ܭ൯כ ௝൯ݔ

௡

௜ୀଵ

 

െߝ ෍ሺߙ௜ ൅ ௜ߙ
ሻכ

௡

௜ୀଵ

൅ ෍ሺߙ௜ െ ௜ߙ
௜ݕሻכ

௡

௜ୀଵ

 

Subject to 

෍ሺߙ௜ െ ௜ߙ
ሻכ

௡

௜ୀଵ

ൌ 0 

0 ൑ ܽ௡ ൑  ܥ

0 ൑ ܽ௡
ି ൑ (11) ܥ  

In deriving Eq. (11) the dual variables  ߟ௜ , ௜ߟ
 is eliminated by the condition of Eq. (9) and כ

(10) which can be reformulated as ߟ௜ ൌ ܥ െ ௜ߟ ௜ andߙ
כ ൌ ܥ െ ௜ߙ

 After calculating  .כ

௜ߙ ݀݊ܽ ௜ߙ
כ
 In Eq. (11) the optimal desired weights vector of the regression hyper-plane is 

represented as  

כݓ ൌ ෍ሺߙ௜ െ ௜ߙ
,௜ݔ൫ܭሻכ ௝൯ݔ

௡

௜ୀଵ

 (12)

Therefore the regression equation would be 

݂ሺݔ, ,ߙ ሻכߙ ൌ ෍ሺߙ௜ െ ௜ߙ
,௜ݔ൫ܭሻכ ௝൯ݔ

௡

௜ୀଵ

൅ ܾ (13)  
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Here, ܭ൫ݔ௜, ௝൯ݔ
 
is called the kernel function. The value of the kernel is equivalent to the 

inner product of two vectors ݔ௜ and ݔ௝ in the feature space ׎ሺݔ௜ሻ and  ׎൫ݔ௝൯. Therefore,

,௜ݔ൫ܭ ௝൯ݔ ൌ ௜ሻݔሺ׎ ൈ  ௝൯. The inner product can be computed by K without goingݔ൫׎

through the map ׎ሺ. ሻ which is also known as kernel trick. In practice, we specify K, 

thereby specifying ׎ሺ. ሻ indirectly. Intuitively, ܭ൫ݔ௜, ௝൯ݔ
 
represents our desired notion of 

similarity between data ݔ௜ and ݔ௝ 
and this is from our prior knowledge. Any function that 

satisfies Mercer's condition can be used as the Kernel function by [53]. The Polynomial 

and Gaussian are the most widely used kernel function. Few standard kernels are 

provided below 

Linear : ܭሺݔ, ௜ሻݔ ൌ ,ݔۃ  ۄ௜ݔ

Polynomial: ܭሺݔ, ௜ሻݔ ൌ ,ݔۃ  ௗۄ௜ݔ

Gaussian: ܭሺݔ, ௜ሻݔ ൌ ݌ݔ݁ ቈെ
צ ݔ െ ௜ݔ ଶצ

ଶߪ2 ቉ 

3.3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

In recent years a new branch of CI named “soft computing” aims to integrate the power of 

Artificial Neural Network (ANN) and Fuzzy Inference Systems (FIS).  ANN possesses 

exciting capabilities such as learning, adaptation, fault-tolerance, parallelism and 

generalization whereas FIS performs an inference mechanism under cognitive uncertainty 
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[4]. To enable a system to deal with cognitive uncertainties in a manner more like 

humans, the concept of ANN can be incorporated into fuzzy logic. The resulting hybrid 

system is called a neuro-fuzzy network [55]. Adaptive Neuro-Fuzzy Inference System 

(ANFIS) is claimed as a universal approximator to represent highly non-linear functions 

more powerfully than conventional statistical methods [56]. Intelligence methodologies 

such as Neuro- Fuzzy inference is a method that interprets the relationship between input 

and output by means of some set of fuzzy ‘‘IF-THEN’’ rules e.g. 

IF X is A THEN Y is B 

Where A and B are labels of fuzzy sets, e.g. “hot”, “cold”. Each fuzzy set is characterized 

by appropriate membership functions that map each element to a membership value 

between 0 and 1. The “IF” part is called antecedent and the “THEN” part is called 

consequent of a rule can have multiple parts linked by Boolean operators (AND, OR) 

which have equivalent fuzzy operators (MIN, MAX). A fuzzy inference system are 

composed of “rule base” signifying fuzzy rules, a “database” defining the membership 

functions of the fuzzy sets, and a “reasoning mechanism” which performs the inference 

procedure (Figure 20). 
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Figure 21: (a) First Order Sugeno Fuzzy Model, (b) Corresponding ANFIS Network 
Architecture. 

 

While modeling FIS, it is difficult to decide the shape of the membership functions 

simply by observing the data. These parameters can be chosen to adapt the membership 

functions by the variation of the input/output data, rather than choosing the parameters 

arbitrarily associated with a given membership function. This is where the so-called 

neuro-adaptive learning technique incorporated into ANFIS can help. Let us assume a FIS 

with two inputs x, y and one output z with the first order of Sugeno Fuzzy Model is 

shown in Figure 21 (a), the reasoning mechanism can be implemented into a feed-forward 
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neural network with supervised learning capability, which is known as ANFIS 

architecture (Figure 21 (b)). Jang et al. [56] developed a hybrid-learning rule for ANFIS 

which is faster than the classical back-propagation method by combining the gradient 

method and the least squares estimate to identify antecedent and consequent parameters. 

The square nodes in Figure 21 (b) indicate adaptive nodes with parameters and circle 

modes indicate fixed nodes without parameters. ANFIS basically implements a first order 

Sugeno-style fuzzy system. Although it is quite easy to express linguistically the relation 

between input and output, it is difficult to fit the fuzzy model to the target data using trial 

and error. A better approach is to approximate the target function with a piece-wise linear 

function and interpolate, in some way, between the linear regions. In the Takagi-Sugeno 

model the idea is that each rule in a rule base defines a region for a model, which can be 

linear. This is achieved by clustering the input space [58]. We have used subtractive 

clustering to create initial FIS and then trained that FIS using ANFIS hybrid learning 

algorithm. The functionality of nodes in ANFIS, as a five layered feed-forward neural 

structure layers can be summarized as follows: 

 

Layer 1: The first layer consists of square nodes that perform fuzzification with chosen 

membership function. The parameters in this layer are called premises (antecedent) 

parameters. Nodes in this layer are adaptive. Membership functions of input variables are 

used as node functions. 

2,1)(,1  iforxO
iAi   
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Layer 2: In the second layer, the T-norm operation is performed to produce the firing 

strength of each rule. Nodes in this layer are fixed with outputs and the T-norm operator 

perform fuzzy AND operation. 

2,1),()(,2  iyxwO
ii BAii   

)()....().....().()( 21
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n

j
j xxxxxO  



 

 

Layer 3: In the third layer the nodes are fixed with outputs generating the normalized 

firing strengths by calculating the ratio of the ith rule firing strength to the sum of all 

rules’ firing strength is calculated in the third layer. 

21
,3 ww

w
wO i

ii 
  
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Layer 4: The fourth layer consists of square nodes that perform multiplication of 

normalized firing strengths with the corresponding rule. The parameters in this layer are 

called consequent parameters. Nodes are adaptive with node function given by Layer 1 

for a first-order model, and with parameters referred to as defuzzifier or consequent 

parameters. 

)(,4 iiiiiii ryqxpwfwO   

 

Layer 5: The fifth layer the single node is fixed with output which calculated by the sum 

of all incoming signals in the fifth layer. 


 

i i

i ii
i

i
ii w

fw
fwFO ,5  

Table 3: Two passes in the hybrid learning procedure in ANFIS 

ANFIS with Hybrid Learning Forward Pass Backward Pass 

Premise Parameters (nonlinear) Fixed Gradient descent 

Consequent parameters (linear) 
Least-square 

estimator 
Fixed 

Signals Node outputs Error signals 
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3.4. EVOLUTIONARY ALGORITHM 

Evolutionary Algorithms (EA) is a population-based optimization technique. It operates 

on a population of potential solutions to produce a better solution. The basic idea is to 

represent every individual of the potential solution as an array of sequences of strings, 

chromosomes. Each string in the chromosome is called a gene and the position of a gene 

is called its locus. The values that genes might take are called alleles. The initial 

population of the potential solutions is created randomly and it evolves according to 

processes that are based on natural evolution, such as selection, recombination or 

crossover, and mutations. During these operations, which are called evolutionary 

operations, every chromosome in the population is evaluated and receives a fitness value 

representing an objective or a fitness function. According to their fitness values, the most 

successful chromosomes are selected for the crossover process to produce new offspring 

that might have better fitness values. The mutation process is applied to add diversity to 

the potential solutions. An evolutionary algorithm is characterized by the following five 

components: 

(1) Encoding: a mechanism to represent the population of potential solutions. 

(2) Initialization: a mechanism to create the initial population of the potential 

solution. 

(3) Fitness function: an objective function or evaluation function that is used to assign 

the fitness values to the chromosomes. 
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(4) Evolutionary operators: Crossover and Mutation. 

(5) Working parameters: a set of values of the different parameters such as population 

size and chromosome length. 

Genetic Algorithm (GA) is one of the important classes of EA. GA is a non-

comprehensive search techniques based on natural selection, the process that derives 

biological evolution. GA is used to determine the global optima or the sub optima of a 

given function (or a process) that may or may not be subject to constraints. Unlike other 

search-based optimization procedures such as Hill Climbing or Random Search, GA has 

consistently achieved good performance in terms of balancing between the two 

conflicting objectives of any search procedure, which are the exploitation of the best 

solution and the exploration of the search space. GA has a number of other interesting 

features that differentiate them from other derivative based classical optimization 

techniques in two main ways:  

 Classical Algorithm generates a single point at each iteration. The sequence of 

points approaches an optimal solution. Selects the next point in the sequence by a 

deterministic computation.  

 GA generates a population of solutions at each iteration. The best point in the 

population approaches an optimal solution. Selects the next population by 

computation which uses random number generators. 
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The basic idea of GAs is to choose first a random population in the range of optimization, 

with a fixed size n (n usually depends on the search range, the accuracy required and the 

nature of the function itself). Using the so-called binary encoding procedure, each 

variable is represented as a string of q binary digits. This leads to a population of 

elements represented by a matrix of n rows and q columns. A set of “genetic” operators is 

then applied to this matrix to create a new population at which the function f attains 

increasingly larger values. The most common operators that have been used to achieve 

this task are: Selection, Crossover and Mutation. 

 

(a): Crossover 

 

(b): Mutation 

Figure 22: Crossover & Mutation [59] 
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Figure 23: Schematic presentation of Genetic Algorithm 



63 

 

 
 

CHAPTER 4  

HYBRID COMPUTATIONAL INTELLIGENCE MODELS 

 

4.1. HYBRID OF MULTI-LAYER PERCEPTRON WITH GENETIC ALGORITHM 

We have used Genetic Algorithm (GA) to find the optimum structure of the Multi-Layer 

Perceptron (MLP), the hidden neurons’ transfer function and the type of the training 

algorithm that would fit that structure. Initially we run MLP without incorporating GA for 

each output components. As we have limited number of training samples, we decided to 

keep the network structure small and so used only one hidden layer. We normalized the 

data from -1 to 1 so in the output layer we have used tan-sigmoidal activation function in 

order that it can map the output as normalized format. As we predicted one output at a 

time, so we have used one node in the output layer. Figure 24 depicts the basic structure 

of ANN model used in this thesis. We have used are learning rate: 0.001, epochs: 300, 

error goal: 0.00001. The other parameter we decided to be optimized by GA. We tried to 

achieve the number of nodes in the hidden layer. We kept the range of hidden nodes 

between 1~63 to keep the network simpler. The second parameters that we achieved by 

GA is the hidden neurons’ activation function. The possible options for activation 
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4.3. HYBRID OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM WITH 

GENETIC ALGORITHM 

The performance of ANFIS depends on the initial FIS. The more the initial FIS 

represented better, the better the performance of ANFIS would be. The FIS we have 

created by using Subtractive Clustering (Subclust) [61]. Subclust is one of the clustering 

algorithms based on a measure of the density of data points in the feature space. It 

generates the rules that approximate a function. The rule extraction method first uses SC 

to determine number of rules and input membership functions equation. Each fuzzy 

cluster is mapped into a generalized bell shaped (Figure 27) membership function which 

is defined as 

 

where, c is centre of cluster, a is cluster radius, b is slope ( a linear function ) 

 

Figure 27: Generalized bell-shaped membership function 

We decided to optimize the radius ‘a’ of Subclust by GA. The range of the radius we 

choose to be (0.2~0.9). Figure 28 shows a chromosome representation of ANFIS which is 
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and higher CC values represents better models. So we have designed two objective 

functions where in one we setup the criterion is minimizing RMSE whereas in other the 

criterion is to maximize CC. some gas components perform well with minimizing RMSE 

objective while some other perform well with the objective maximizing CC. 
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CHAPTER 5  

ENSEMBLE OF HYBRID COMPUTATION INTELLIGENCE MODEL 

 

5.1. ENSEMBLE LEARNING 

Ensemble Learning employs a committee of multiple learning machines and combines 

their outputs performing as a single decision maker. Figure 31 shows an ensemble of N 

number of CI models. The principle is that the combined decision of ensemble members 

should have better overall accuracy, on average, than any individual member. Numerous 

empirical and theoretical studies showed that ensemble accuracy significantly exceed the 

single model [9,30,39]. The underlying principle of ensemble learning is that every model 

has limitations and makes errors. Moreover, different learning algorithm suit with 

different problems. The goal of ensemble learning is to manage each learning algorithms’ 

strengths and weaknesses automatically, leading to the best possible decision being taken 

overall.  
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space being searched might not contain the true target function, while ensembles can give 

some good approximation. For example, it is well-known that the classification 

boundaries of decision trees are linear segments parallel to coordinate axes. If the target 

classification boundary is a smooth diagonal line, using a single decision tree cannot lead 

to a good result yet a good approximation can be achieved by combining a set of decision 

trees. Note that those are intuitive instead of rigorous theoretical explanations. 

Krough and Vedelsby [63] proved the formulation of ensemble error in case of regression 

using a linearly weighted ensemble. Let us assume the task is to learn a function f(x) and 

the training samples are drawn randomly from the distribution p(x). Suppose the 

ensemble consist of N base learners, in our cases base learners are HCI models (Figure 

31) and the output of the ith HCI model is ௜ܱሺݔሻ. The output of the ensemble is defined as 

௘ܱ௡ሺݔሻ ൌ ∑ ௜ܹ ௜ܱሺݔሻ௜  ……………………………………………………….…... (i) 

The diversity on input x of an individual HCI is defined as 

݀௜ ൌ ൫ ௜ܱሺݔሻ െ ௘ܱ௡ሺݔሻ൯
ଶ
……………………………………………….…….…... (ii) 

Then ensemble diversity on input x is  

݀௘௡ ൌ ∑ ௜ܹ݀௜௜ ൌ ∑ ௜ܹ൫ ௜ܱሺݔሻ െ ௘ܱ௡ሺݔሻ൯
ଶ

௜ ……………………….…………..… (iii) 

The quadratic errors of the ith HCI model and of the ensemble are respectively as follows: 
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݁௜ሺݔሻ ൌ ൫݂ሺݔሻ െ ௜ܱሺݔሻ൯
ଶ
………………………………………………………... (iv) 

݁௘௡ሺݔሻ ൌ ൫݂ሺݔሻ െ ௘ܱ௡ሺݔሻ൯
ଶ
…………………………………………………..…. (v) 

 

From Eq. (3) and Eq. (5) we can write   

݁௘௡ሺݔሻ ൌ ∑ ௜ܹ݁௜ሺݔሻ െ ݀௘௡ሺݔሻ௜  …………………………………………..……… (vi) 

The average of   over the input distribution p(x) can be written as follows: 

Average error of individual model, ܧ௜ሺݔሻ ൌ ׬ ሻݔሺ݌ݔ݀ ݁௜ሺݔሻ ………………..….. (vii) 

Average error of ensemble model, ܧ௘௡ሺݔሻ ൌ ׬ ሻݔሺ݌ ݔ݀ ݁௘௡ሺݔሻ ……………..…. (viii) 

Average diversity of individual model, ܦ௜ሺݔሻ ൌ ׬ ሻݔሺ݌ݔ݀ ݀௜ሺݔሻ ……………….. (ix) 

From the Eq. (vii, viii, ix), the ensemble generalization error of Eq. (vi) can be 

formulated as 

௘௡ܧ ൌ തܧ െ  ഥ ……………………………………………………………………… (x)ܦ

Where  

തܧ ൌ ∑ ௜ܹܧ௜ሺݔሻ௜  is the weighted average of the generalization errors of the individual 

HCI model and  

ഥܦ ൌ ∑ ௜ܹܦ௜ሺݔሻ௜  is the weighted average of the diversity among these HCI models which 

is a non-negative value. 
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Eq. (x) show that an ideal ensemble consists of highly correct HCI models that disagree 

as much as possible and the generalization error of the ensemble is always smaller than 

the average of the individual errors, that is ܧ௘௡ ൏   .തܧ

5.1.2. Diversity & Accuracy 

Theoretically the ensemble error can be described as two distinct components: first of all, 

the accuracies of the individual models and secondly, a term for their interactions, i.e. 

their diversity. In a regression problem squared is commonly used for error measure. 

Using a linear combiner the accuracy-diversity breakdown for regression problem is 

called the “Ambiguity Decomposition” by Krogh and Vedelsby [63]. They showed that 

the squared error of the linearly combined ensemble, f(x), can be broken into a sum of two 

components: 

ሺࢌሺ࢞ሻ െ ሻ૛ࢊ ൌ ૚

ࢀ
∑ ሺ࢚ࢌሺ࢞ሻ െ ࢀሻ૛ࢊ

ୀ૚࢚

 
െ ૚

ࢀ
∑ ൫࢚ࢌሺ࢞ሻ െ ሻ൯࢞ሺࢌ

૛ࢀ
ୀ૚࢚

 
…………….…….. (a) 

The first term on the right hand side is the average squared error of the individual models, 

while the second term computes the variation between the predictions. This second term 

is called “ambiguity" which is always positive. This assures that, for any arbitrary data 

point, the ensemble squared error is always less than or equal to the average of the 

individual squared errors. 

The optimal “diversity” can be thinking of as a credit assignment problem. If a committee 

of doctors as a whole concluded an erroneous diagnosis of a disease, how much of this 
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error should be attributed to each doctor? In particular, how much of the committee 

decision is due to the accuracies of the individual doctor and how much is due to their 

interactions when they were combined. The intuition here can also be understood by a 

fairground game example explained by Brown [64]. Let us imagine groups of five 

players, playing “guess the weight of the cake": if a player's guess is close enough to the 

true weight, that group will win the cake. The fairground manager states that each player 

can only submit one guess. The dilemma seems to be in whose guess the group should 

submit. However, the Ambiguity decomposition in Eq. (a) shows that taking the average 

of their guesses will always on average be closer than choosing a player at random and 

submitting their guess. 

Note that this is qualified with “on average" it may well be that one of the predictions will 

in fact be closer than the average prediction, but there is no way of identifying which 

predictor to choose, other than random. It can be seen that greater diversity in the 

predictions (i.e. a larger ambiguity term) will result in a larger gain over the average 

individual performance. However it is also clear that there is a trade off to be had: too 

much diversity would cause the average error to be extremely large. 

In summary, the definition of diversity depends on the problem. In a regression problem, 

the optimal diversity is the trade-off between the bias, variance and covariance 

components of the squared error. In a classification problem, with a linear combiner, there 

exists partial theory to relate the classifier correlations to the ensemble error rate. In a 
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classification problem with a voting combiner, there is no single theoretical framework or 

definition of diversity. 

5.1.3. Bias & Variance 

The bias component tells us how accurate the model is, on average across different 

possible training sets. The variance component tells us how sensitive the learning 

algorithm is to small changes in the training set. Let us assume we have target variable ܻ, 

vector of inputs ܺ, Prediction model ݂ሺݔሻ. Therefore, 

   ,Y f X    Where εN (0, 1),   0,E     2Var    

Then for an input point  ܺ ൌ  the following figures ,(uniform random variable in [0,1]) ݔ

in Figure 32 depicts some scenario of  over-fitting and under-fitting by the effect of bias 

and variances. 
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(a): y=h(x)+ε where εN(0,1) 

 

(b): Low variance, high bias method 
(under-fitting) 

(c): Low bias, high variance method   
(over-fitting) 

(d): No noise doesn’t imply no variance 
(but less variance) 

Figure 32: Effect of Bias and Variances 

5.1.4. Bias –Varinace Relation with Model’s Complexity 

 

Figure 33: Bias and Variance of a Model [65]  
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As complexity of the model is increased, bias decreases (a better fit to data) and variance 

increases (fit varies more with data) (Figure 33). Uaually, the bias is a decreasing function 

of the complexity, while variance is an increasing function of the complexity (Figure 34). 

 

Figure 34: The Variation of Bias & Variance Model Complexity 

Generalization performance of a learning method measure of prediction capability on 

independent test data thus guides model selection. Training data usually affect 

monotonically increasing performance with model complexity. Training error is 

computed by average loss over training samples. Increasing the model complexity would 

cause in decreasing training error consistently and drops to zero with high enough 

complexity i.e. over fitting situation would occur (Figure 35).  
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Figure 36: Bias-Variance Effect with Increasing Hidden Nodes 

Example 3 – At fixed model complexity, bias remains constant and variance decreases 

with the learning sample size (Figure 37). 

 

Figure 37: Variance Affect with Training Sample Size and Fixed Complexity 

Example 4 – When the complexity of the model is dependent on the learning sample 

size, both bias and variance decrease with the learning sample size (Figure 38). 
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Figure 38: Bias-Variance Affect with Training Sample Size and Complexity 

5.1.5. Bias-Variance Decomposition 

The bias-variance decomposition is a useful theoretical tool to understand the 

performance characteristics of a learning algorithm. Brown [64] explained the bias-

variance analysis by dartboard example quoting from Moore and McCabe [66] (Figure 

39). 

 

Figure 39: Effect of Bias and Variance – Dartboard Analogy [64] 

Each dart is thrown after training the “dart-throwing” model in a slightly different 

manner. If the darts vary wildly, the learner is high variance. If they are far from the 
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bull’s eye, the learner is high bias. The efforts to reduce variance often cause increases in 

bias, and vice-versa. A large bias and low variance is an indicator that a learning 

algorithm is prone to over-fitting the model. 

The ideal is clearly to have both low bias and low variance; however this is often 

difficult, giving an alternative terminology as the bias-variance ‘dilemma'. The idea of a 

trade-off between diversity-accuracy is suggested by Geman et al. [67] as “Bias-Variance 

decomposition”. In fact, there is a deep connection between these results. Mathematically, 

this can be quantified as a decomposition of the mean squared error function. For a testing 

example f(x) with target d, the decomposition is: 

ሻ࢞ሺࢌሼሺࡰࢿ െ ሻ૛ሽࢊ ൌ ሺࡰࢿሼࢌሺ࢞ሻ െ ሽሻ૛ࢊ ൅ ሼሺfሺxሻࡰࢿ െ εDሼfሺxሻሽሻଶሽ……………………..(b)  

5.1.6. Bias-Variance-Covariance Decomposition 

The Bias-Variance-Covariance decomposition is a theoretical result underlying Ensemble 

Learning algorithms. It is an extension of the Bias-Variance decomposition, for linear 

combinations of models. Taking the expected value of Eq (a) above over all possible 

training sets gives us the ensemble analogy to the bias-variance decomposition described 

by Ueda and Nakano [30], called the “Bias-Variance-Covariance decomposition”. This 

shows that the expected squared error of an ensemble f(x) from a target d is: 

ࡰࢿ ቄ൫ࢌതሺ࢞ሻ െ ൯ࢊ
૛

ቅ ൌ ૛തതതതതതതത࢙ࢇଙ࢈ ൅ ૚

ࢀ
തതതതത࢘ࢇ࢜ ൅ ቀ૚ െ ૚

ࢀ
ቁ  തതതതതതതതത          …………….……(c)࢘ࢇ࢜࢕ࢉ
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 Noise(x) = Ey|x{(y-hB(x))2} : Noise quantifies how much y varies from hB(x) = 

Ey|x{y}, the Bayes model. This is also called Irreducible Error: Variance of the 

target around the true mean 

 Bias2(x) = (hB(x)-ELS{ŷ(x)})2 :  Bias measures the error between the Bayes model 

and the average model i.e. Amount by which average estimate differs from the 

true mean 

 Variance(x) = ELS{(ŷ(x)-ELS{ŷ(x))2} : Variance quantify how much ŷ(x) varies 

from one learning sample to another i.e. Expected deviation of f^ around its mean 

5.1.8. Challenges of Ensemble 

An ensemble is a very successful technique where the outputs of a set of separately 

trained base learners are combined to form one unified prediction. First it can improve the 

generalization performance of a classification system greatly. Second, it can be viewed as 

an effective approach for CI as a result of its variety of potential applications and validity. 

Third, local minima are available for ensembles. Individuals in ensemble are expected to 

different local minima of error surface, increasing the diversity of ensemble. Although 

ensembles have been used widely, the key problem for researchers is how to effectively 

design the individual works that are not only highly correct, but also different as much as 

possible. 

5.2. ENSEMBLE LEARNING ALGORITHMS 

An ensemble basically consists of a set of models and a method to combine them. If we 

had a committee of people taking decisions, it is self-evident that we would not want 
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them all to make the same bad judgments at the same time. With a committee of learning 

models, the same intuition applies: we will have no gain from combining a set of identical 

models. We wish the models to exhibit a certain element of “diversity” in their group 

behavior, though still retaining good performance individually.  

It is known that Bagging can significantly reduce the variance, and therefore it is better to 

be applied to learners suffered from large variance, e.g., unstable learners such as 

decision trees or neural networks. Boosting can significantly reduce the bias in addition to 

reducing the variance, and therefore, on weak learners such as decision stumps, Boosting 

is usually more effective. 

5.2.1. Bagging 

Bagging is an Ensemble Learning technique. Breiman [68] developed the bagging 

ensemble based algorithm in which different training data subsets are randomly selected 

with replacement from the entire training data to train different individual models and 

combined by a uniform average or vote. Each member of the ensemble is constructed 

from a different training dataset. Each dataset is a bootstrap sample from the original. The 

name “Bagging” comes from “Bootstrap AGGregatING”. Since a bootstrap samples N 

items uniformly at random with replacement, the probability of any individual data item 

not being selected is ݌ ൌ ሺ1 െ ଵ

ே
ሻே. Therefore with large N, a single bootstrap is expected 

to contain approximately 63.2% of the original set, while 36.8% of the originals are not 

selected. Figure 46 shows flowchart of Bagging algorithm.  
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problem. A weak model has a high bias (strictly, in classification, a model slightly better 

than random guessing). The main difference of Boosting with previous ensemble methods 

is building the models sequentially on modified versions of the data. The Predictions of 

the models are combined through a weighted sum or majority voting. Adaboost is the 

most well known and successful of the Boosting family, though there exist many variants 

specialized for particular tasks, such as cost-sensitive and noise-tolerant versions [64]. It 

was demonstrated by Dietterich [62] that when the number of outliers is very large, the 

emphasis placed on the hard samples can become detrimental to the performance of the 

AdaBoost. Friedman [70] put forward a variant of AdaBoost, called "Gentle AdaBoost" 

that puts less emphasis on outliers. 

5.2.3. Adaboost 

Adaboost is the most well known of the Boosting family of algorithms [11]. The 

algorithm trains models sequentially, with a new model trained at each round. At the end 

of each round, misclassified examples are identified and have their emphasis increased in 

a new training set which is then fed back into the start of the next round, and a new model 

is trained. The idea is that subsequent models should be able to compensate for errors 

made by earlier models. Some similarities with Bagging are evident; a key difference is 

that at each round n, Bagging has a uniform distribution Dn, while Adaboost adapts a non-

uniform distribution. The ensemble is constructed by iteratively adding models. Each 

time a model is learnt, it is checked to ensure it has at least ߳௡ ൏ 0.5, that is, it has 
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performance better than random guessing on the data it was supplied with. If it does not, 

either an alternative model is constructed, or the loop is terminated. After each round, the 

distribution Dn is updated to emphasize incorrectly classified examples. Mease and 

Wyner [71] presented a discussion of several questions on why and how Adaboost 

succeeds. The conclusion is, while no single theory can fully explain Boosting, each 

provides a different part of the still unfolding story. 

5.3. ENSEMBLE OF HYBRID COMPUTATIONAL INTELLIGENCE MODELS 

BUILDING APPROACH 

Typically, an ensemble is constructed in two steps. First, a number of base learners are 

produced, which can be generated in a parallel style (Bagging) or in a sequential style 

(Boosting) where the generation of a base learner has influence on the generation of 

subsequent learners. Then, the base learners are combined to use, where among the most 

popular combination schemes are majority voting for classification and weighted 

averaging for regression. 

In this thesis we resolved a regression problem of gas compositions prediction in 

multistage separator using Ensemble of Hybrid CI (EHCI) models. We developed three 

homogeneous and one heterogeneous EHCI models using parallel scheme. Homogeneous 

models consist of same types of CI models as base learners and heterogeneous model 

consist of different types of CI models as base learners. We used the most popular CI 

models MLP, SVR and ANFIS as base learners of ensemble models which are 
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successfully used in many problems of petroleum industry [20,21,22,23,24,25,24,26,27]. 

We combined GA with each base learner to have hybrid models. GA optimizes the most 

crucial parameters of each CI model which are mainly responsible for accuracy. To 

compare the performance of the EHCI models, results from CPCP is used as a 

benchmark. The EHCI models are found having improved generalization ability 

comparing CPCP and single HCI models. 

Many approaches for designing individuals in ensemble have been developed in the 

literature. Here we focused to emphasize the accuracy in each CI model and at the same 

time tried to enforce diversity among the CI models in a number of ways.  The EHCI 

model is constructed by two steps, one is designing the ensemble members and the other 

is combining their predictions. 

5.3.1. Designing the Ensemble Members 

Combining the output of several classifiers is useful only if they disagree on some inputs. 

Theoretical and empirical work showed that an effective ensemble should consist of a set 

of networks that are not only highly correct, but ones that make their errors on different 

parts of the input space as well [10,63]. Generally, the approaches for employing diversity 

while designing the networks can be conducted into three groups [39] as follows: 
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5.3.1.1. Difference in Ensemble Members’ Structures  

Diverse individuals can be obtained by adopting different model structure. In case of 

Neural Network different types of models can be obtained by having different network 

types, number of neuron in hidden layer, learning algorithm and initial state in weight 

space. For SVR it can be different kernel function and kernel parameters as well as 

different C, ε and λ values. On the other hand for ANFIS it would be the methodology of 

creating initial FIS, the different types of ANFIS structure, etc.  

5.3.1.2. Difference in Training Set 

Diversity can be supported by training the EHCI members on different training datasets 

which can be achieved by bagging, boosting or cross validation [11,63,68]. Both the first 

one and the second one generate a group of networks which are error uncorrelated 

directly. Partridge [72] experimentally compared the capabilities of the method above and 

concluded that varying the net type and the training data are the two best ways for 

creating ensembles of networks making different errors. 

5.3.1.3. Difference in Training Inputs 

Different input parameters can be given to different base learners thus having a diverse 

knowledge overall the problem domain. In this case different base learners are expert in 

different portion of the solution space and improve the generalization ability of the 

combined model. 
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5.3.1.4. Selecting Uncorrelated Ensemble Members 

Another popular way to have diversity is to generate a large number of initial networks 

from which several uncorrelated networks are selected as a member of the ensemble. 

Opitz and Shavlik [73] proposed an approach based on generic algorithm, searching for 

highly diverse set of accurate trained networks. Lazarevic and Obradoric [74] proposed a 

pruning algorithm to eliminate redundant classifier. Zhou et al. [46] described a selective 

constructing approach for ensemble; clustering-based selective neural network ensemble. 

5.3.2. Enforcing Diversity in EHCI Models 

We have emphasized on the first two ways to enforce diversity in our EHCI models. 

Basically we have followed three ways to enforce diversity. 

5.3.2.1. Heterogeneous Ensemble 

Heterogeneous Ensemble consists of members having multiple type base learning 

algorithms. In this case ensemble members can be different by the structure. We 

developed one heterogeneous ensembles model having GA optimized CI models of type 

MLP, SVR and ANFIS. At first we provided the input in MLP. We selected the badly 

predicted training data by MLP and provide it to train the SVR and later on the badly 

predicted training data by SVR is provided to ANFIS for training. In this way the model 

would become diverse by having training datasets and one HCI model handled those 

cases which cannot be handled by the other HCI model. 
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5.3.2.2. Homogeneous Ensemble 

Homogeneous Ensemble consists of members having a single type base learning 

algorithm. In this case ensemble members can be different by the structure. We developed 

three homogeneous ensemble models and each has three HCI models of same type. As we 

have used three types of HCI models, we come up with three heterogeneous EHCI 

models. 

5.3.2.3. Selecting Training Set for Each EHCI Member 

We have selected different sizes of training set for different types of output. At first we 

divided the whole datasets into training and testing. Around 80% of the whole datasets is 

used for training and the 20% of the relevant datasets were used for testing. The training 

size for the ensemble members varies from 60% - 80% of the whole training set. We took 

the idea of sampling from the concept of boosting, especially in the case of classification. 

After the first run of the algorithm, in each of the following run we have selected the 

same amount of training data as selected in the first run which are badly predicted by the 

CI model of the current run.  

5.3.3. Combing the Outputs of EHCI Members 

To combine the outputs of the ensemble we have used linear and non-linear approaches. 

When the ensemble is used in classifying, voting is usually been used for combining 

outputs and when the ensemble is used in regression, simple average and weighted 
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average are always been used [39]. Opitz and Shavlik [73] has pointed out that simple 

averaging outperforms since optimizing the combining weights can easily lead to the 

problem of over-fitting. Perrone and Copper [75] considers weighted average has a better 

performance as each network can avoided over-fitting by using a cross-validatory 

stopping rule. Sollich and Krogh [76] found that in large ensembles, one should use the 

simple averaging. In this way, the globally optimal generalization error on the basis of all 

the available data can be reached by optimizing the training set sizes of the individual 

member. For ensembles of more realistic size, optimizing the ensemble weights can still 

yield substantially better generalization performance than an optimally chosen single 

network trained on all data with the same amount of training noise. 

The outputs of the EHCI members goes as an input into CI models and these models are 

trained after the training phase completion of the members of EHCI. We found that in 

some cases non-linear combiner performed well while in some cases the linear combiner 

performed better results. Among the linear approaches we have used simple average and 

weighted average methods to combine the outputs of EHCI members. We have also used 

many non-linear approaches to combine the outputs [41]. We have chosen CI models 

such as ANN, SVR, FIS created with Fuzzy C-means Clustering (FCM) and Subtractive 

Clustering (Subclust) as a combiner. For ANN combiner we have used MLP with one 

neuron in the hidden layer with logsigmoidal activation function. In the output layer we 

have used tansigmoidal activation function and we have used Rprop training algorithm. 

For SVR we have used “gaussian” type kernel with γ value 5. The other parameters e.g. C 
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= 0.5, lambda = 1e-7 and epsilon = 0.0001. For creating FIS, we have used FCM with 6 

clusters and radius of 0.3 for Subclust. 

5.4. ENSEMBLE OF HYBRID COMPUTATION INTELLIGENCE MODELS 

DEVELOPMENT STEPS 

The Ensemble of Hybrid Computational Intelligence (EHCI) models building steps are 

stated as follows -  

1.  Determine the CI models’ parameters to be optimized by observing models’ 
accuracy and complexity. 

2.  Develop an Ensemble Model - 

a. Randomly choose X% of the training datasets. 

b. Optimize CI model using GA 

c. Training CI model on this X% datasets; 

d. Predict 100% training datasets; 

e. Choose the X% of badly predicted training datasets. 

f. Perform the steps b, c and d for N times on the data availed by step e. (N = 
number of ensemble members). 

At first, we divide the datasets randomly into training and testing set. We have used 80% 

of the datasets for training and 20% for testing. To make homogeneous EHCI model same 

kind of CI model with different fixed parameters is chosen in step b of each run. 

Performing optimization by GA with different fixed parameters results into a completely 

different architecture of the CI model in each run. Consequently, though the 
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homogeneous EHCI models have similar type of CI models, their architecture is 

completely different. Furthermore, these HCI members of the EHCI models are trained by 

different portion of the training datasets and thus EHCI models are enforced to be diverse 

enough in order to substantiate better generalization. On the other hand to make a 

heterogeneous EHCI model a different CI model must be chosen at step b in each run. 

The algorithm can be continued to N runs so as to have an ensemble of N members. The 

training and testing phase in EHCI model building steps are described below. 

5.4.1. EHCI Model Development Steps: Training Phase with Linear Combiner 

 

Figure 49: EHCI Model Building Steps - Training Phase with Linear Combiner 
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To train the EHCI models we have selected X% of the training data randomly with 

replacement to perform training of the base CI model in the first run. The percentages of 

training size are varying from 60%-90% for different gas components in order to achieve 

better performance. In the training phase (Figure 49: (a)), at first the parameters of the CI 

models were optimized using GA and then the training is performed. In the subsequent 

steps we predicted the whole training set as a part of “local testing” and chose X% of the 

badly predicted data from the whole training set to perform training in the next run. To 

perform combining of the EHCI members output linearly we have used simple average 

and weighted average method (Figure 49: (b)). To assign weight of the members of ECHI 

model we predicted the whole training data to measure each member’s performance in 

terms of RMSE. The formula for weighted average method is 
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5.4.2. EHCI Model Development Steps: Training Phase with Non-Linear 

Combiner 

The training phase is similar as stated above. In order to combine with non-linear 

approach we predicted the whole training data. The predicted output of the EHCI 

members are used as input and the actual outputs are used as output of the non-linear 

models. We have used NN, SVR, FIS-Subclust and FIS-FCM non-linear models as 

combiner (Figure 50: (b)). We have trained these non-linear models and used them for 

prediction in the testing phase. 

 

Figure 50: EHCI Model Building Steps - Training Phase with Non-Linear Combiner 



104 

 

 
 

5.4.3. EHCI Testing Phase 

The test data is predicted using the EHIC members and then combined the outputs by 

linear and non-linear models (Figure 51). 

 

Figure 51: EHCI Testing Phase 

5.5. DEVELOPMENT TOOLS 

The experiments are conducted by High Performance Computing (HPC) of ITC at 

KFUPM. Some experiments are also accomplished in high speed Intel Xeon quad core 

2.8GHz platform. The EHCI models are implemented using MATLAB codes and 
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MATLAB toolboxes of Neural Network, ANFIS, GA, etc. The SVM-KM package is used 

for SVR. The CPCP dongle is used to produce result of the test data to use it as a 

benchmark. 



106 

 

 
 

CHAPTER 6                                                                           

EXPERIMENTAL RESULTS & DISCUSSION 

 

6.1. PERFORMANCE EVALUATION 

In this thesis commonly used techniques for measuring regression problem will be 

applied to evaluate the performance of the results. They are explained as follows:  

6.1.1. Correlation Coefficient 

The Correlation Coefficient (CC) measures the statistical correlation between the 

predicted and actual values. CC shows how good the prediction is i.e. how strongly the 

relation is between the actual and predicted output. This method is unique, in the sense 

that it does not change with a scale in values. The value “1” means perfect statistical 

correlation and a “0” means no correlation at all. This performance measure is only used 

for numerical input and output. 

The formula:    
  

   

' '

2 2' '

x x y y

x x y y

 

 
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Where xand y are the actual and predicted values while  'x  and 'y are the mean of the 

actual and predicted values.  

A good prediction model should have significant level (p-value) within 5%.  A p-value is 

a measure to show the evidence against the null hypothesis. The null hypothesis 

represents the hypothesis of no change or no effect. P-value represents the probability of 

finding a co-relation by chance. In the sense of statistical significance the lower the p-

value, the less likely the result is if the null hypothesis is true, and consequently the more 

"significant" the result is. The null hypothesis is often rejected when the p-value is less 

than 0.05 or 0.01.  

6.1.2. Root Mean-Squared Error 

The root mean-squared error is one of the most commonly used measures of success for 

numeric prediction. This value is computed by taking the average of the squared 

differences between each predicted value xn and its corresponding actual value yn. The 

root mean-squared error is simply the square root of the mean squared error. The root 

mean-squared error gives the error value the same dimensionality as the actual and 

predicted values.  

The formula:     
     2 2 2

1 1 2 2 3 3...x y x y x y

n

    
 

Where n is the size of data. 
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6.1.3. Training Time 

Comparing training time with prediction time, we found that prediction time is fraction of 

a second and negligible amount. So we discard prediction time and consider only training 

time as it differs excessively with training algorithm. It is computed as follows:  

T2 – T1 

Where T2 is the CPU time at the end of the run and T1 is the CPU time at the beginning of 

training. The prediction time is very less comparing the training time. Though it takes 

huge time to train, once the training is done the model can be used for prediction in no 

time. 

6.1.4. Number of Negatively Predicted Values 

As we are predicting mole fraction of gas compositions, the predicted values should not 

contain negative values. We counted the frequency of negative values predicted by each 

HCI and EHCI models and consider it as a performance measure. 

We have used two metrics two represent results so as to easily compare the outcomes of 

the models. One metric of CC vs. RMSE and the other is number of negative prediction 

vs. training time. In the first metric the upper left most point indicates the best 

performance as we can see from the Figure 52: (a) that the upper left most point have 0 

RMSE errors with highest CC value 1. In the second metric of Figure 52: (b), we can 
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observe that the lower left corner represents the highest performance as we can see it has 

lowest training time with no negative predicted values. 

 

 

 

 

(a): CC vs. RMSE 

 

 

 

 

(b): Negative Prediction vs. Training Time 

Figure 52: Metrics for Performance Measure 

We gave most importance to error measure of a model that is the RMSE values as long as 

it has an accepted CC value. In statistics CC value greater than 0.75 represents strong 

correlation between the predicted output and original values. We don’t give too much 

importance to training time as long as we have lower RMSE value because once the 

model is trained, prediction require insignificant amount of time. 

6.2. EXPERIMENTAL SETUP 

 Individual CI Models:  MLP, SVR, ANFIS 

 Hybrid CI Models:  GA+MLP, GA+SVR, GA+ANFIS 

 Ensemble of Hybrid CI models: 

o Homogeneous EHCI models:  
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 Ensemble of 3 GA+MLP models 

 Ensemble of 3 GA+SVR models 

 Ensemble of 3 GA+ANFIS models 

o Heterogeneous EHCI model: 

 Ensemble of GA+MLP, GA+SVR and GA+ANFIS models.  

The Table 4 shows the Training data percent that is randomly selected from the training 

set to train the each model. The rest of the training data is used for Table 5 to Table 8 

shows the optimized parameters for the CI models obtained by GA and the corresponding 

GA parameters. 

Table 4: Training Data Percent (X%) from Training Dataset 

Component GA + CI EN_of_NN+SVR+ANFIS EN_of_MLP EN_of_SVR EN_of_ANFIS

N2 80 70 70 70 70

CO2 90 70 70 70 70

H2S 80 80 80 80 80

C1 70 80 80 80 80

C2 80 80 80 80 80

C3 90 60 60 60 60

Table 5: Optimized Parameters for ANFIS 

Parameters GA+ANFIS 
Component radius # of Rules Generated pop gen crfn 

N2 0.2998 65 10 5 0.65 

CO2 0.6120 13 50 20 0.65 

H2S 0.7959 9 50 20 0.65 

C1 0.6062 33 50 10 0.65 

C2 0.6141 32 50 20 0.5 

C3 0.5533 27 10 5 0.9 
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Table 6: Optimized Parameters for MLP 

Parameters GA+MLP 
Component Hidden Nodes HL Act Fn OL Act Fn Tr Alg Epoche Lr Rate Error Goal pop gen crfn

N2 56 logsig tansig trainlm 10 0.001 0.00001 10 5 0.65

CO2 21 tansig tansig trainlm 9 0.001 0.00001 50 20 0.65

H2S 17 logsig tansig trainlm 10 0.001 0.00001 50 20 0.65

C1 5 tansig tansig trainlm 13 0.001 0.00001 50 10 0.65

C2 26 logsig tansig trainlm 14 0.001 0.00001 50 20 0.65

C3 8 logsig tansig trainlm 15 0.001 0.00001 10 5 0.9 
 

Table 7: Optimized Parameters for SVR 

Parameters GA+SVR 

Component C λ ε # of SV Kernel Kernel Op pop gen crfn

N2 0.9763 0.000666782 0.1754 17 poly 0.5 10 5 0.65

CO2 6.2202 0.000503941 0.0352 54 poly 0.5 50 20 0.65

H2S 0.8796 0.000435202 0.0001 77 poly 0.5 50 20 0.65

C1 1.2912 0.000788126 0.2410 33 poly 0.5 50 10 0.65

C2 0.4764 1.95766E-06 0.0541 51 poly 0.5 50 20 0.65

C3 1.9763 0.000666782 0.1912 48 poly 0.5 10 5 0.9 
 

111 
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6.3. RESULTS & DISCUSSIONS 

In this work, the non-hydrocarbons and the hydrocarbons that occupy most of the volume 

out of twelve in a multi-stage separator are predicted. The non-hydrocarbons Nitrogen 

(N2), Carbon dioxide (CO2), Hydrogen Sulfide (H2S) and the mostly dense hydrocarbons 

Methane (CH4 as C1), Ethane (C2H6 as C2) and Propane (C3H8 as C3), i.e. altogether 6 

gas components are predicted. We have showed the performance of each model in the 

following figures. The upper two figures of each box mainly depict the performance in 

terms of the metrics RMSE vs. CC and # of negative prediction vs. training time. The 

black square spot (■) in the Figures represents the performance of the benchmark model 

CPCP. The lower Figures of each boxes show the regression analysis of the prediction of 

training data as well as the test data for the best performed model. 
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6.3.1. Nitrogen (N2) 

(a) (b) 

(c) (d) 

Figure 53: Performance of CI and HCI for N2 Prediction 
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(a) (b) 

(c) (d) 

Figure 54: Performance of Ensemble of ANFIS for N2 Prediction 
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(a) (b) 

(c) (d) 

Figure 55: Performance of Ensemble of SVR for N2 Prediction 
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(a) 

 
(b) 

Figure 56: Performance of Ensemble of MLP for N2 Prediction 

 

 (a)  (b) 

Figure 57: Performance of Heterogeneous Ensemble for N2 Prediction 
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Figure 53: (a) shows that the performance of HCI model GA+ANFIS outperforms other 

CI, HCI and CPCP models for N2 prediction. It is noticeable that the HCI models 

perform better than the corresponding CI models. Figure 53: (b) shows that GA+ANFIS 

took less time than GA+MLP and did not predict any negative value. The regression 

analysis of GA+ANFIS in figure 53: (c, d) on training and testing data shows that the 

prediction is strongly correlated with the original values. 

Figure 54: (a) shows that the EHCI model of ANFIS combined with FIS-Subclust 

performed better than other combiner as well as CPCP. The error RMSE value of the best 

model GA+ANFIS in Figure 53: (a) is near to 0.6 whereas the EHCI model of ANFIS 

combined with FIS-Subclust is much lower than 0.6. Nevertheless EHCI model of SVR 

with average combining method in Figure 55: (a) shows that the RMSE value is near to 

0.4 which is much lower than the previous models. 

Figures 56 and 57 show the other ECHI models’ performance on predicting N2 in 

separators gas compositions. 
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6.3.2. Carbon dioxide (CO2) 

(a) (b) 

 

(c) 

 

(d) 

Figure 58: Performance of CI and HCI for CO2 Prediction 
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(a) (b) 

(c) (d) 

Figure 59: Performance of Ensemble of MLP for CO2 Prediction 
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(a) (b) 

Figure 60: Performance of Ensemble of ANFIS for CO2 Prediction 

 

(a) (b) 

Figure 61: Performance of Ensemble of SVR for CO2 Prediction 
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(a) (b) 

Figure 62: Performance of Heterogeneous Ensemble for CO2 Prediction 

Figure 58: (a) shows that the performance of HCI model GA+MLP outperforms other CI, 

HCI models for CO2 prediction. It is noticeable that the HCI models perform better than 

the corresponding CI models. Figure 58: (b) shows that GA+MLP took less time than 

GA+ANFIS and did not predict any negative value. The regression analysis of GA+MLP 

in Figure 53: (c, d) on training and testing data shows that the prediction is strongly 

correlated with the original values. 

Figure 59: (a) shows that the EHCI model of MLP combined with SVR performed better 

than other combiner. The error RMSE value of the best model GA+MLP in Figure 58: (a) 

is above 0.6 whereas the EHCI model of MLP combined with SVR is 0.4.  

Figures 60, 61 and 62 show the other ECHI models’ performance on predicting CO2 in 

separators gas compositions.  
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6.3.3. Hydrogen Sulfide (H2S) 

(a) (b) 

(c) (d)  

Figure 63: Performance of CI and HCI for H2S Prediction 
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(a) 

 

(b) 

(c) (d) 

Figure 64: Performance of Ensemble of ANFIS for H2S Prediction 
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(a) (b) 

(c) (d) 

Figure 65: Performance of Ensemble of MLP for H2S Prediction 
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(a) (b) 

(c) (d) 

Figure 66: Performance of Ensemble of SVR for H2S Prediction 
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(a) (b) 

(c) (d) 

Figure 67: Performance of Heterogeneous Ensemble for H2S Prediction 
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Figure 63: (a) shows that the performance of CI model MLP outperforms other CI, HCI 

and CPCP models for H2S prediction. HCI models except GA+MLP performs better than 

the corresponding CI models. Figure 63: (b) shows that CI model MLP took minimum 

time comparing other CI and HCI models and did not predict any negative value. The 

regression analysis of MLP in Figure 63: (c, d) on training and testing data shows that the 

prediction is strongly correlated with the original values. 

Figure 64: (a) shows that the EHCI model of ANFIS combined with simple average 

method performed better than other combiner as well as CPCP. The error RMSE value of 

the best CI model MLP in Figure 63: (a) is near to 0.7 whereas the EHCI model of 

ANFIS is about 0.6 with 1 negative prediction (Figure 64: (b)).  

On the other hand EHCI model of MLP with FIS-Subclust combining method in Figure 

65: (a), EHCI model of SVR with weighted average method (Figure 66: (a)) and 

heterogeneous EHCI model (Figure 67: (a)) performance are not as good as EHCI model 

of ANFIS but all the models performs better than CPCP. 
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6.3.4. Methane (CH4 as C1) 

(a) (b) 

 

(c) 

 

(d) 

Figure 68: Performance of CI and HCI for C1 Prediction 
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(a) (b) 

(c) (d) 

Figure 69: Performance of Heterogeneous Ensemble for C1 Prediction 
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(a) (b) 

(c) (d) 

Figure 70: Performance of Ensemble of MLP for C1 Prediction 
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(a) (b) 

Figure 71: Performance of Ensemble of SVR for C1 Prediction 

 

(a) (b) 

Figure 72: Performance of Ensemble of ANFIS for C1 Prediction 
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Figure 68: (a) shows that the performance of CI model ANFIS outperforms all the CI, 

HCI and CPCP models for C1 prediction. It is noticeable that the HCI models perform 

better than the corresponding CI models except ANFIS. Figure 68: (b) shows that ANFIS 

took less time along with MLP and SVR than the HCI models with no negative 

prediction. The regression analysis of GA+ANFIS in Figure 68: (c, d) on training and 

testing data shows that the prediction is strongly correlated with the original values. 

Figure 69: (a) shows that the heterogeneous EHCI model combined with FIS-Subclust 

performed better than other combiner as well as CPCP. The error RMSE value of the best 

model ANFIS in Figure 68: (a) is near to 3.75 whereas the RMSE of heterogeneous EHCI 

model is about 2.5 (Figure 69: (a)). Nevertheless EHCI model of MLP with weighted 

average combining method in Figure 70: (a) shows that the RMSE value is near to 2.5. 

Figures 71 and 72 show the other ECHI models’ performance on predicting C1 in 

separators gas compositions. 
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6.3.5. Ethane (C2H6 as C2) 

(a)  (b) 

(c)  

(d) 

Figure 73: Performance of CI and HCI for C2 Prediction 
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(a) (b) 

(c) (d) 

Figure 74: Performance of Ensemble of SVR for C2 Prediction 
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(a) (b) 

Figure 75: Performance of Ensemble of ANFIS for C2 Prediction 

 

 

(a) (b) 

Figure 76: Performance of Ensemble of MLP for C2 Prediction 
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(a) (b) 

Figure 77: Performance of Heterogeneous Ensemble for C2 Prediction 

Figure 73: (a) shows that the performance of HCI model GA+SVR outperforms the other 

CI, HCI models for C2 prediction. It is noticeable that the HCI models perform better 

than the corresponding CI models except GA+MLP. Figure 73: (b) shows that GA+SVR 

took less time than other HCI models and did not predict any negative value. The 

regression analysis of GA+SVR in Figure 73: (c, d) on training and testing data shows 

that the prediction is strongly correlated with the original values. 

Figure 74: (a) shows that the EHCI model of SVR combined with weighted average 

method performed better than other combiner. The error RMSE value of the best model 

GA+SVR in Figure 73: (a) is near 1.5 whereas the EHCI model of SVR has RMSE about 

0.8. Figures 75, 76 and 77 show the other ECHI models’ performance on predicting CO2 

in separators gas compositions.  
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6.3.6. Propane (C3H8 as C3) 

 (a) (b) 

(c) (d) 

Figure 78: Performance of CI and HCI for C3 Prediction 
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(a) 

 

(b) 

(c) (d) 

Figure 79: Performance of Ensemble of MLP for C3 Prediction 
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(a) (b) 

Figure 80: Performance of Ensemble of ANFIS for C3 Prediction 

 

 

(a) (b) 

Figure 81: Performance of Ensemble of SVR for C3 Prediction 
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(a) (b) 

Figure 82: Performance of Heterogeneous Ensemble for C3 Prediction 

Figure 78: (a) shows that the performance of HCI model GA+MLP outperforms the other 

CI, HCI models for C3 prediction. It is noticeable that the HCI models perform better 

than the corresponding CI models. Figure 78: (b) shows that GA+MLP took less time 

than GA+ANFIS and did not predict any negative value. The regression analysis of 

GA+SVR in Figure 78: (c, d) on training and testing data shows that the prediction is 

strongly correlated with the original values. 

Figure 79: (a) shows that the EHCI model of MLP combined with FIS-Subclust method 

performed better than other combiner. The error RMSE value of the best model GA+MLP 

in Figure 78: (a) is near 1 whereas the EHCI model of MLP has RMSE about 0.7.  

Figures 80, 81 and 82 show the other ECHI models’ performance on predicting CO2 in 

separators gas compositions.  
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Table 8: Performance of CI Models on Training Data 

Training CP MLP SVR ANFIS 
Component CC RMSE CC P-value RMSE CC P-value RMSE CC P-value RMSE 

N2 0.8008 1.1383 0.9233 0.0000 0.8834 0.8142 0.0000 1.2879 0.9426 0.0000 0.5110 

CO2 0.9978 0.2926 0.9910 0.0000 0.6219 0.9865 0.0000 2.3149 0.9976 0.0000 0.2927 

H2S 0.9947 0.5334 0.9908 0.0000 0.5512 0.9799 0.0000 2.9719 0.9944 0.0000 0.3241 

C1 0.9611 6.7795 0.9613 0.0000 6.3902 0.8810 0.0000 12.0963 0.9805 0.0000 4.4701 

C2 0.8063 3.9949 0.9190 0.0000 2.5136 0.8782 0.0000 3.5870 0.9236 0.0000 2.3067 

C3 0.9480 3.8902 0.9641 0.0000 3.0871 0.8832 0.0000 6.0333 0.9895 0.0000 1.5100 

 

Table 9: Performance of CI Models on Test Data 

Testing CP MLP SVR ANFIS 
Component CC RMSE CC P-value RMSE CC P-value RMSE CC P-value RMSE 

N2 0.9586 0.7402 0.9403 0.0001 1.5183 0.9843 0.0000 1.2947 0.9764 0.0000 0.6331 

CO2 0.9989 0.3114 0.9669 0.0000 1.2819 0.9419 0.0000 2.0379 0.9693 0.0000 1.1854 

H2S 0.6800 2.0037 0.9016 0.0004 0.6673 0.9149 0.0002 2.8769 0.7828 0.0074 1.0078 

C1 0.9592 4.1464 0.9073 0.0003 4.3953 0.7058 0.0226 8.1564 0.9449 0.0000 3.7612 

C2 0.9719 0.8453 0.8166 0.0039 1.6302 0.8143 0.0041 2.5780 0.5389 0.1080 2.4759 

C3 0.9684 1.0511 0.6426 0.0451 1.8437 0.6319 0.0500 4.6158 0.4720 0.1684 2.2636 
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Table 10: Performance of HCI Models on Training Data 

Training CP GA+MLP GA+SVR GA+ANFIS 
Component CC RMSE CC P-value RMSE CC P-value RMSE CC P-value RMSE

N2 0.8008 1.1383 0.9239 0.0000 0.6173 0.7954 0.0000 0.9110 0.8965 0.0000 0.6655 

CO2 0.9978 0.2926 0.9932 0.0000 0.5030 0.9890 0.0000 0.6285 0.9991 0.0000 0.1845 

H2S 0.9947 0.5334 0.9786 0.0000 0.7012 0.9963 0.0000 0.2969 0.9990 0.0000 0.1388 

C1 0.9611 6.7795 0.9737 0.0000 5.3129 0.9716 0.0000 5.5233 0.9847 0.0000 3.9868 

C2 0.8063 3.9949 0.9496 0.0000 1.8938 0.8821 0.0000 2.8458 0.9694 0.0000 1.4813 

C3 0.9480 3.8902 0.9764 0.0000 2.3174 0.8912 0.0000 4.7318 0.9926 0.0000 1.2935 

 

Table 11: Performance of HCI Models on Test Data 

Testing CP GA+MLP GA+SVR GA+ANFIS 
Component CC RMSE CC P-value RMSE CC P-value RMSE CC P-value RMSE

N2 0.9586 0.7402 0.8953 0.0005 1.1926 0.9767 0.0000 0.7183 0.9795 0.0000 0.5851 

CO2 0.9989 0.3114 0.9920 0.0000 0.6492 0.9385 0.0001 1.6950 0.9827 0.0000 0.9162 

H2S 0.6800 2.0037 0.8527 0.0017 0.9093 0.9119 0.0002 0.7088 0.8211 0.0036 0.9878 

C1 0.9592 4.1464 0.9346 0.0001 3.8597 0.8195 0.0037 7.6243 0.9242 0.0001 4.0493 

C2 0.9719 0.8453 0.7971 0.0058 3.0978 0.8779 0.0008 1.4300 0.8339 0.0027 1.4430 

C3 0.9684 1.0511 0.8950 0.0005 0.9948 0.6227 0.0545 4.5514 0.5898 0.0727 2.2791 
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Table 12: Performance of EHCI Models of Heterogeneous and MLP on Training Data 

Training CP EN_of_MLP+SVR+ANFIS EN_of_MLP 

Component CC RMSE CC 
P-

value 
RMSE Combiner CC 

P-
value 

RMSE Combiner

N2 0.8008 1.1383 0.8404 0.0000 0.8733 FCM 0.8458 0.0000 0.8740 FCM 

CO2 0.9978 0.2926 0.9946 0.0000 0.4420 Avg 0.9734 0.0000 1.0653 SVR 

H2S 0.9947 0.5334 0.9970 0.0000 0.2342 Avg 0.9983 0.0000 0.1756 Subclust 

C1 0.9611 6.7795 0.9940 0.0000 2.4706 Subclust 0.9850 0.0000 3.8961 WT_Avg 

C2 0.8063 3.9949 0.9849 0.0000 1.0394 Subclust 0.9476 0.0000 1.9194 Subclust 

C3 0.9480 3.8902 0.9574 0.0000 3.0316 NN 0.9854 0.0000 1.7741 Subclust 

 

Table 13: Performance of EHCI Models of Heterogeneous and MLP on Test Data 

Testing CP EN_of_MLP+SVR+ANFIS EN_of_MLP 

Component CC RMSE CC 
P-

value 
RMSE Combiner CC 

P-
value 

RMSE Combiner

N2 0.9586 0.7402 0.9445 0.0000 1.3335 FCM 0.9354 0.0001 0.9959 FCM 

CO2 0.9989 0.3114 0.9760 0.0000 1.1102 Avg 0.9921 0.0000 0.6455 SVR 

H2S 0.6800 2.0037 0.8635 0.0013 0.8243 Avg 0.8254 0.0033 0.9471 Subclust 

C1 0.9592 4.1464 0.9724 0.0000 2.5963 Subclust 0.9734 0.0000 2.6864 WT_Avg 

C2 0.9719 0.8453 0.7901 0.0065 1.8677 Subclust 0.9579 0.0000 0.9375 Subclust 

C3 0.9684 1.0511 0.7165 0.0197 1.8074 NN 0.9626 0.0000 0.7051 Subclust 
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Table 14: Performance of EHCI Models of SVR and ANFIS on Training Data 

Training CP EN_of_SVR EN_of_ANFIS 

Component CC RMSE CC 
P-

value 
RMSE Combiner CC P-value RMSE Combiner 

N2 0.8008 1.1383 0.9152 0.0000 0.5971 WT_Avg 0.8604 0.0000 0.2509 Subclust 

CO2 0.9978 0.2926 0.9951 0.0000 0.4142 Subclust 0.9694 0.0000 1.1126 SVR 

H2S 0.9947 0.5334 0.9975 0.0000 0.2155 WT_Avg 0.9984 0.0000 0.1904 Avg 

C1 0.9611 6.7795 0.9655 0.0000 6.8267 FCM 0.9975 0.0000 1.5971 Subclust 

C2 0.8063 3.9949 0.9216 0.0000 2.3371 WT_Avg 0.9790 0.0000 1.2252 Subclust 

C3 0.9480 3.8902 0.9835 0.0000 1.8862 Subclust 0.8759 0.0000 5.1539 NN 

Table 15: Performance of EHCI Models of SVR and ANFIS on Test Data 

Testing CP EN_of_SVR EN_of_ANFIS 

Component CC RMSE CC 
P-

value 
RMSE Combiner CC P-value RMSE Combiner 

N2 0.9586 0.7402 0.9920 0.0000 0.5339 WT_Avg 0.9735 0.0000 0.5858 Subclust 

CO2 0.9989 0.3114 0.9539 0.0000 1.4027 Subclust 0.9253 0.0001 1.7695 SVR 

H2S 0.6800 2.0037 0.8884 0.0006 0.8431 WT_Avg 0.9315 0.0001 0.6100 Avg 

C1 0.9592 4.1464 0.9005 0.0004 5.7066 FCM 0.9113 0.0002 4.2918 Subclust 

C2 0.9719 0.8453 0.9519 0.0000 0.7818 WT_Avg 0.8604 0.0014 1.2852 Subclust 

C3 0.9684 1.0511 0.8394 0.0024 1.3132 Subclust 0.4582 0.1830 2.2419 NN 
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The Tables 8 to 15 show the numerical values of the CC, RMSE and P-values of all the 

models. The CC value represents how good the prediction is and the P-value shows how 

significant the prediction is. The CC above 0.75 represents statistically acceptable 

correlation and the P-value less than or equal to 0.05 means the significance level is 

within 5%. In the Tables 8 to 15 we can see that the P-value is less than 0.05 except one 

or two cases which shows that the prediction of models are significant. 
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CHAPTER 7                                                                           

CONCLUSION AND FUTURE WORK 

 

The outcomes indicate that the performances of EHCI models are anticipating. Various 

types of EHCI models are equipped with different gas components. The performance of 

CPCP is ameliorating only for CO2. Nevertheless it should be noted that if the fraction of 

gas components is low comparing to other gas components then a relatively small 

difference in prediction would cause a higher error in calculation. Although CPCP 

performed well, the results obtained by CPCP are fixed. On the other contrary, the 

performances of HCI or EHCI models are still have options to be optimized. Fine tuning 

to GA operator and other parameters of the models can improve the HCI or EHCI 

model’s performance. 

Different EHCI models perform well for different gas components. It cannot be 

extrapolated to use particular types of EHCI model for all the gas components. 

Furthermore the combining techniques are also important and its performance for 

different gas components varies. We have used EHCI model consisting of only 3 

members. In general there is no ensemble method which surpasses other ensemble 

methods consistently. It is anticipated that using more base learners will lead to a better 

performance, yet Zhou et al. proved the “many could be better than all” theorem which 
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points that this may not be the fact. Though ensemble having more members might have 

better accuracy, we have got better results than CPCP benchmark by using EHCI model 

having only three members. So we didn’t include more members in ensemble so as to 

obtain the simple EHCI model. We can further improve the EHCI model by incorporating 

new HCI members of EHCI models. Moreover new HCI can be included as a member 

such as different types of ANN, Type II Fuzzy Logic, GHDH based model, Extreme 

Learning Machine (ELM) etc. To make the HCI member diverse, enough data can be 

divided intelligently by flocking the training sets or the dominant input parameters. The 

parameters of GA can be finely tuned so that the accuracy of EHCI models can be 

improved to greater degree. Moreover EHCI members can be chosen from a group of 

well diverse and accurate HCI models. We do not perform post processing so that very 

small value counted as negative. Post processing of the output can improve the 

performance by eliminating negative predicted value. Furthermore, there are still 6 more 

gas components left to be predicted. 
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APPENDIX A: A RESERVOIR SAMPLE WITH SEPARATOR COMPOSITION  

Table 16: Molar compositions related to reservoir of Fluid F3 [JAUBERT] 

  First stage 
conditions: 

Tsep/ °C = 89.0 
Psep/bar = 34.0 

Second stage conditions: 
Tstock/ °C = 15.0 

Pstock/bar = 1.01325 
tank oil density (kg/m3) = 828.4 

 
Properties of the cuts from C6 

to C20+ 

Compound Reservoir 
fluid (F3) 

Separator 
gas 

Separator 
liquid 

Residual gas Stock tank oil Molar weight 

)molg( 1  

density at 
15 °C (kg/m3)

1. Hydrogen Sulfide 
2. Nitrogen 
3. Carbon dioxide 
4. Methane 
5. Ethane 
6. Propane 
Cut C4 
7. i-Butane 
8. n-Butane 
Cut C5 
9. i-Pentanes 
10. n-Pentane 
Cut C6 
11. i-Hexanes 
12. n-Hexane 
Cut C7 
13. i-Heptanes 
14. Benzene 
15. Cyclanes C7 
16. n-heptane 
Cut C8 
17. i-Octanes 
18. Toluene 
19. Cyclanes C8 
20. n-Octane 
Cut C9 
21. i-Nonanes 
22. Aromatics C9 
23. Cyclanes C9 
24. n-Nonane 
Cut C10 
25. i-Decanes 
26. Aromatics C10 
27. n-Decane 
28. undecanes (cut C11) 
29. dodecanes (cut C12) 
30. tridecanes (cut C13) 
31. tetradecanes (cut C14) 
32. pentadecanes (cut C15) 
33. hexadecanes (cut C16) 
34. heptadecanes (cut C17) 
35. octadecanes (cut C18) 
36. nonadecanes (cut C19) 
37. eicosanes plus (C20+) 

0.000 
0.450 
1.640 

45.850 
7.150 
6.740 

 
0.840 
3.110 

 
1.030 
1.650 

 
1.280 
1.240 

 
0.470 
0.240 
2.230 
0.830 

 
0.720 
0.740 
2.020 
0.800 

 
0.620 
0.920 
0.640 
0.520 

 
1.020 
0.360 
0.310 
1.810 
1.470 
1.450 
1.280 
1.150 
0.910 
0.820 
0.800 
0.710 
6.180 

0.000 
0.780 
2.510 
73.180 
9.870 
8.190 

 
0.840 
2.620 

 
0.560 
0.750 

 
0.200 
0.190 

 
0.030 
0.020 
0.150 
0.050 

 
0.010 
0.010 
0.040 
0.010 

 
0.000 
0.000 
0.000 
0.000 

 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.040 
0.470 
8.280 
3.740 
6.680 

 
1.270 
5.250 

 
2.070 
3.440 

 
2.540 
2.460 

 
1.030 
0.520 
4.950 
1.830 

 
1.370 
1.430 
3.890 
1.530 

 
1.390 
2.060 
1.420 
1.150 

 
2.010 
0.700 
0.620 
4.130 
3.350 
3.320 
2.920 
2.640 
2.070 
1.860 
1.830 
1.620 

14.110 

0.000 
0.190 
2.420 
42.510 
16.340 
22.470 

 
2.640 
8.220 

 
1.570 
1.930 

 
0.510 
0.490 

 
0.070 
0.030 
0.320 
0.120 

 
0.030 
0.030 
0.080 
0.030 

 
0.000 
0.000 
0.000 
0.000 

 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.690 
2.860 

 
0.940 
4.530 

 
2.190 
3.810 

 
3.030 
2.940 

 
1.270 
0.640 
6.060 
2.240 

 
1.700 
1.760 
4.810 
1.900 

 
1.720 
2.550 
1.770 
1.430 

 
2.500 
0.870 
0.770 
5.120 
4.160 
4.130 
3.630 
3.270 
2.570 
2.320 
2.270 
2.010 

17.540 

 
 
 
 
 
 
 
 
 
 
 
 
 

86.0 
 
 

92.0 
 
 
 
 

106.0 
 
 
 
 

120.0 
 
 
 
 

137.0 
 
 

146.0 
159.0 
172.0 
183.0 
198.0 
218.0 
233.0 
249.0 
262.0 
474.0 

 
 
 
 
 
 
 
 
 
 
 
 
 

672.8 
 
 

729.4 
 
 
 
 

750.9 
 
 
 
 

773.9 
 
 
 
 

783.5 
 
 

796.8 
805.7 
815.1 
827.2 
843.7 
845.8 
844.9 
849.1 
858.9 
925.3 
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